Science.gov

Sample records for design iteration test

  1. Design realization towards the qualification test of ITER cold circulator

    NASA Astrophysics Data System (ADS)

    Bhattacharya, R.; Sarkar, B.; Vaghela, H.; Patel, P.; Das, J.; Srinivasa, M.; Shukla, V.

    2015-12-01

    Cold circulators, part of ITER Cryo-distribution system, have now reached to a stage of final qualification to demonstrate the design to cater the maximum mass flow and operational demands of the toroidal field (TF) superconducting magnet of ITER with a very high isentropic efficiency. The design for the two numbers of TF cold circulators are now complete gratifying additionally the operational requirements of poloidal field & central solenoid superconducting magnet as well as the cryopumps towards the fulfilment of standardization aspects. Management of physical and functional interfaces has been identified as one the most critical aspect towards the performance of cold circulator. All the interfaces of cold circulators have been analysed with the help of optimized interfacing parameters of Test Auxiliary Cold Box (TACB) and cryogenic test facility at JAEA, Japan during the course of design finalization. Testing at the warm conditions after completion of precise manufacturing of cold circulators has been performed before integrating into the TACB to fulfil the Japanese as well as European regulatory requirements simultaneously. The paper elaborates the methodology of interface management and control, analysis performed towards the interface management and preliminary test results towards the qualification test of the ITER cold circulator.

  2. Validation of the ITER CXRS design by tests on TEXTOR

    SciTech Connect

    Jaspers, R. J. E.; Hellermann, M. G. von; Delabie, E.; Biel, W.; Marchuk, O.; Yao, L.

    2008-10-15

    The charge exchange recombination spectroscopy system (CXRS) for ITER is designed to measure the core helium concentration, and in addition, profiles of ion temperature and rotation. This highly demanding task, due to the huge background radiation (bremsstrahlung) and the high attenuation of the dedicated diagnostic neutral beam, requires high throughput spectrometers with high resolution. On TEXTOR, a CXRS system has been developed with the aim to test the physics implications of these specifications. (i) A relevant spectrometer has been tested. (ii) A method to determine the helium concentrations from the CXRS intensity, using the beam emission has been evaluated. A 20% discrepancy in beam emission was revealed. (iii) The determination of the magnetic pitch angle by the ratio of Balmer lines showed qualitatively the right behavior, although the accuracy was limited by the polarization sensitivity of the first mirror. (iv) The simulation code developed for the prediction of the CXRS spectra was quantitatively confronted with experimental data.

  3. General-Purpose Heat Source development: safety test program. Postimpact evaluation, Design Iteration Test 2

    SciTech Connect

    Schonfeld, F.W.; George, T.G.

    1984-06-01

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of /sup 238/PuO/sub 2/ decay to thermoelectric elements. Because of the inevitable return of certain missions, the heat source must be Designed and constructed to survive both re-entry and Earth impact. The Design Iteration Test (DIT) series is part of an ongoing test program. In the first Design Iteration Test (DIT-1), a full GPHS module ontaining four iridium-alloy capsules loaded with /sup 238/PuO/sub 2/ was impacted at 57 m/s and 930/sup 0/C. All four capsules survived and none was breached. The capsules used in DIT-1 were loaded and welded at Los Alamos. The second Design Iteration Test (DIT-2) also used a full GPHS module and was impacted at 58 m/s and 930/sup 0/C. The four iridium-alloy capsules used in this test were loaded and welded at the Savannah River Plant (SRP). Postimpact examination revealed that two capsules had survived and two capsules had breached; a small quantity (approx. = 50 ..mu..g) of /sup 238/PuO/sub 2/ was released from the breached capsules. Internal cracking similar to that observed in the DIT-1 capsules was evident in all four of the DIT-2 capsules. Postimpact analyses of the units are described with emphasis on weld structure and performance.

  4. Liquid metal blanket module testing and design for ITER/TIBER II

    SciTech Connect

    Mattas, R.F.; Cha, Y.; Finn, P.A.; Majumdar, S.; Picologlou, B.; Stevens, H.; Turner, L.

    1988-05-01

    A major goal for ITER is the testing of nuclear components to demonstrate the integrated performance of the most attractive concepts that can lead to a commercial fusion reactor. As part of the ITER/TIBER II study, the test program and design of test models were examined for a number of blanket concepts. The work at Argonne National Laboratory focused on self-cooled liquid metal blankets. A test program for liquid metal blankets was developed based upon the ITER/TIBER II operating schedule and the specific data needs to resolve the key issues for liquid metals. Testing can begin early in reactor operation with liquid metal MHD tests to confirm predictive capability. Combined heat transfer/MHD tests can be performed during initial plasma operation. After acceptable heat transfer performance is verified, tests to determine the integrated high temperature performance in a neutron environment can begin. During the high availability phase operation, long term performance and reliability tests will be performed. It is envisioned that a companion test program will be conducted outside ITER to determine behavior under severe accident conditions and upper performance limits. A detailed design of a liquid metal test module and auxiliary equipment was also developed. The module followed the design of the TPSS blanket. Detailed analysis of the heat transfer and tritium systems were performed, and the overall layout of the systems was determined. In general, the blanket module appears to be capable of addressing most of the testing needs. 8 refs., 27 figs., 11 tabs.

  5. General-Purpose Heat Source Development: safety test program. Postimpact evaluation, Design Iteration Test 1

    SciTech Connect

    Schonfeld, F.W.

    1984-04-01

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of /sup 238/PuO/sub 2/ decay to thermoelectric elements. Because of the inevitable return of certain missions, the heat source must be designed and constructed to survive re-entry and Earth impact. The Design Iteration Test (DIT) series is part of an ongoing impact test program. The first DIT used a full GPHS module containing two graphite impact shells (GISs); each GIS contained two iridium (0.3 wt%) capsules filled with /sup 238/PuO/sub 2/. It was impacted at 57 m/s and 930/sup 0/C. All four fuel capsules survived and none was breached. However, serious cracking of the iridium-alloy capsules was found; some cracks extended through approx. 70% of the wall thickness. Postimpact analyses of the unit are described with emphasis on weld structure and performance. 51 figures.

  6. Techniques for design and testing of iterative and systolic arrays. [C-testability concept

    SciTech Connect

    Elhuni, H.A.

    1986-01-01

    In this thesis, the author studies the issue of testing array-type structures such as iterative arrays of combinational cells and systolic arrays with a constant number of test vectors independent of the array size (C-Testability). The main contribution of this work is the extension of the C-testability concept in different directions. It is extended to orthogonally connected iterative arrays in chapter three. This is a contribution to the C-testability theory because of the undecidability property of general two-dimensional arrays. The C-testability is extended further to hexagonal iterative arrays in chapter four. The application of the C-testability concept was limited to few arrays such as ripple-carry adders, bit-sliced microprocessors and array multipliers. In chapter five, the author extended the concept to systolic arrays and apply it to some systolic designs. The application to hexagonal systolic arrays is made in chapter six. It is shown that several systolic arrays such as those used for matrix multiplication can be tested with a small number of test vectors; twice the number required to test a single cell. The testing time of such arrays is also introduced and discussed. In chapter seven, he introduces a new concept called STV-testability for testing bilateral systolic arrays. STV-testable arrays have simple test generation and verification procedures.

  7. Preliminary system design and analysis of an optimized infrastructure for ITER prototype cryoline test

    NASA Astrophysics Data System (ADS)

    Shah, Nitin Dineshkumar; Bhattacharya, Ritendra Nath; Sarkar, Biswanath; Badgujar, Satish; Vaghela, Hitensinh; Patel, Pratik

    2012-06-01

    The prototype cryoline (PTCL) for ITER is a representative cryoline from the complicated network of all cryolines for the project. The PTCL is being designed with four process pipes at temperature level 4.5 K, two process pipes at 80 K and will be manufactured in a 1:1 scale with a configuration of main line and branch line including vacuum barriers. The test objectives are focused to demonstrate best possible risk free engineering and reliable manufacturing of the cryolines as per the ITER functional requirements. The measured physical parameters will assess the confirmation for acceptable heat loads, stresses and mechanical integrity in normal, off-normal and accident scenarios such as a break of insulation vacuum (BIV). The PTCL will be tested to measure heat load at 4.5 K with scaled mass flow rate having the thermal shield at 80 K. Necessary infrastructure along with the control system have been designed, analyzed and optimized within the imposed constraints to fulfill the test objectives. The system approach along with instrumentations and controls, results of the optimization study, and its usefulness in the present context within the constraints of economics and schedule have been described.

  8. ITER breeding blanket design

    SciTech Connect

    Gohar, Y.; Cardella, A.; Ioki, K.; Lousteau, D.; Mohri, K.; Raffray, R.; Zolti, E.

    1995-12-31

    A breeding blanket design has been developed for ITER to provide the necessary tritium fuel to achieve the technical objectives of the Enhanced Performance Phase. It uses a ceramic breeder and water coolant for compatibility with the ITER machine design of the Basic Performance Phase. Lithium zirconate and lithium oxide am the selected ceramic breeders based on the current data base. Enriched lithium and beryllium neutron multiplier are used for both breeders. Both forms of beryllium material, blocks and pebbles are used at different blanket locations based on thermo-mechanical considerations and beryllium thickness requirements. Type 316LN austenitic steel is used as structural material similar to the shielding blanket. Design issues and required R&D data are identified during the development of the design.

  9. Iterative Design and Usability Testing of the Imhere System for Managing Chronic Conditions and Disability

    PubMed Central

    FAIRMAN, ANDREA D.; YIH, ERIKA T.; MCCOY, DANIEL F.; LOPRESTI, EDMUND F.; MCCUE, MICHAEL P.; PARMANTO, BAMBANG; DICIANNO, BRAD E.

    2016-01-01

    A novel mobile health platform, Interactive Mobile Health and Rehabilitation (iMHere), is being developed to support wellness and self-management among people with chronic disabilities. The iMHere system currently includes a smartphone app with six modules for use by persons with disabilities and a web portal for use by medical and rehabilitation professionals or other support personnel. Our initial clinical research applying use of this system provides insight into the feasibility of employing iMHere in the development of self-management skills in young adults (ages 18–40 years) with spina bifida (SB) (Dicianno, Fairman, et al., 2015). This article describes the iterative design of the iMHere system including usability testing of both the app modules and clinician portal. Our pilot population of persons with SB fostered the creation of a system appropriate for people with a wide variety of functional abilities and needs. As a result, the system is appropriate for use by persons with various disabilities and chronic conditions, not only SB. In addition, the diversity of professionals and support personnel involved in the care of persons with SB also enabled the design and implementation of the iMHere system to meet the needs of an interdisciplinary team of providers who treat various conditions. The iMHere system has the potential to foster communication and collaboration among members of an interdisciplinary healthcare team, including individuals with chronic conditions and disabilities, for a client-centered approach to support self-management skills. PMID:27563387

  10. Iterative Design and Usability Testing of the Imhere System for Managing Chronic Conditions and Disability.

    PubMed

    Fairman, Andrea D; Yih, Erika T; McCoy, Daniel F; Lopresti, Edmund F; McCue, Michael P; Parmanto, Bambang; Dicianno, Brad E

    2016-01-01

    A novel mobile health platform, Interactive Mobile Health and Rehabilitation (iMHere), is being developed to support wellness and self-management among people with chronic disabilities. The iMHere system currently includes a smartphone app with six modules for use by persons with disabilities and a web portal for use by medical and rehabilitation professionals or other support personnel. Our initial clinical research applying use of this system provides insight into the feasibility of employing iMHere in the development of self-management skills in young adults (ages 18-40 years) with spina bifida (SB) (Dicianno, Fairman, et al., 2015). This article describes the iterative design of the iMHere system including usability testing of both the app modules and clinician portal. Our pilot population of persons with SB fostered the creation of a system appropriate for people with a wide variety of functional abilities and needs. As a result, the system is appropriate for use by persons with various disabilities and chronic conditions, not only SB. In addition, the diversity of professionals and support personnel involved in the care of persons with SB also enabled the design and implementation of the iMHere system to meet the needs of an interdisciplinary team of providers who treat various conditions. The iMHere system has the potential to foster communication and collaboration among members of an interdisciplinary healthcare team, including individuals with chronic conditions and disabilities, for a client-centered approach to support self-management skills. PMID:27563387

  11. Initial results of systems analysis of the ETR/ITER (Engineering Test Reactor/International Thermonuclear Experimental Reactor) design space

    SciTech Connect

    Peng, Y.K.M.; Galambos, J.D.; Reid, R.L.; Strickler, D.J.; Kalsi, S.; Deleanu, L.

    1987-01-01

    Preliminary versions of the Engineering Test Reactor (ETR) systems code TETRA (Tokamak Engineering Test Reactor Analysis), which determines design solutions by the method of constrained optimization, are used to characterize the International Thermonuclear Experimental Reactor (ITER) and its design parameter space. We find that the physics objectives of high ignition margin and high plasma current lead to minimum size at relatively low aspect ratios (A = 2.5-3.0), while the engineering objective of high neutron wall load (W/sub L/ /approx gt/ 1.0 MW/m/sup 2/) leads to minimum size at higher A (/approximately/3.5). For minimum-size ITERs, the optimal toroidal field coil (TFC) designs fall within a narrow range of maximum fields (10-11 T) with R varying over only a few percent despite a factor of two change in the winding pack current density J/sub wp/. The major radius of the design is found to be sensitive to changes in elongation, inboard distances (such as plasma scrape-off), inductive flux capability, plasma temperature, beta limit, and ignition margin. A preliminary characterization of the US ITER designs with plasma current I/sub p/ > 15 MA and R < 4.5 m has been obtained by combining the engineering assumptions for devices such as the Tokamak Ignition/Burn Engineering Reactor (TIBER) with the physics assumptions for devices such as the Compact Ignition Tokamak (CIT) and the Next European Torus (NET). These devices can accommodate a range of full- to reduced-bore, driven (Q < 10), steady-state plasmas for the engineering phase that produces high neutron wall load and fluence. 12 refs., 4 figs., 3 tabs.

  12. US ITER limiter module design

    SciTech Connect

    Mattas, R.F.; Billone, M.; Hassanein, A.

    1996-08-01

    The recent U.S. effort on the ITER (International Thermonuclear Experimental Reactor) shield has been focused on the limiter module design. This is a multi-disciplinary effort that covers design layout, fabrication, thermal hydraulics, materials evaluation, thermo- mechanical response, and predicted response during off-normal events. The results of design analyses are presented. Conclusions and recommendations are also presented concerning, the capability of the limiter modules to meet performance goals and to be fabricated within design specifications using existing technology.

  13. US solid breeder blanket design for ITER

    SciTech Connect

    Gohar, Y.; Attaya, H.; Billone, M.; Lin, C.; Johnson, C.; Majumdar, S.; Smith, D. ); Goranson, P.; Nelson, B.; Williamson, D.; Baker, C. ); Raffray, A.; Badawi, A.; Gorbis, Z.; Ying, A.; Abdou, M. ); Sviatoslavsky, I.; Blanchard, J.; Mogahed, E.; Sawan, M.; Kulcinski, G. )

    1990-09-01

    The US blanket design activity has focused on the developments and the analyses of a solid breeder blanket concept for ITER. The main function of this blanket is to produce the necessary tritium required for the ITER operation and the test program. Safety, power reactor relevance, low tritium inventory, and design flexibility are the main reasons for the blanket selection. The blanket is designed to operate satisfactorily in the physics and the technology phases of ITER without the need for hardware changes. Mechanical simplicity, predictability, performance, minimum cost, and minimum R D requirements are the other criteria used to guide the design process. The design aspects of the blanket are summarized in this paper. 2 refs., 7 figs., 3 tabs.

  14. ITER Disruption Mitigation System Design

    NASA Astrophysics Data System (ADS)

    Rasmussen, David; Lyttle, M. S.; Baylor, L. R.; Carmichael, J. R.; Caughman, J. B. O.; Combs, S. K.; Ericson, N. M.; Bull-Ezell, N. D.; Fehling, D. T.; Fisher, P. W.; Foust, C. R.; Ha, T.; Meitner, S. J.; Nycz, A.; Shoulders, J. M.; Smith, S. F.; Warmack, R. J.; Coburn, J. D.; Gebhart, T. E.; Fisher, J. T.; Reed, J. R.; Younkin, T. R.

    2015-11-01

    The disruption mitigation system for ITER is under design and will require injection of up to 10 kPa-m3 of deuterium, helium, neon, or argon material for thermal mitigation and up to 100 kPa-m3 of material for suppression of runaway electrons. A hybrid unit compatible with the ITER nuclear, thermal and magnetic field environment is being developed. The unit incorporates a fast gas valve for massive gas injection (MGI) and a shattered pellet injector (SPI) to inject a massive spray of small particles, and can be operated as an SPI with a frozen pellet or an MGI without a pellet. Three ITER upper port locations will have three SPI/MGI units with a common delivery tube. One equatorial port location has space for sixteen similar SPI/MGI units. Supported by US DOE under DE-AC05-00OR22725.

  15. Design of load-to-failure tests of high-voltage insulation breaks for ITER's cryogenic network

    NASA Astrophysics Data System (ADS)

    Langeslag, S. A. E.; Rodriguez Castro, E.; Aviles Santillana, I.; Sgobba, S.; Foussat, A.

    2015-12-01

    The development of new generation superconducting magnets for fusion research, such as the ITER experiment, is largely based on coils wound with so-called cable-in-conduit conductors. The concept of the cable-in-conduit conductor is based on a direct cooling principle, by supercritical helium, flowing through the central region of the conductor, in close contact with the superconducting strands. Consequently, a direct connection exists between the electrically grounded helium coolant supply line and the highly energised magnet windings. Various insulated regions, constructed out of high-voltage insulation breaks, are put in place to isolate sectors with different electrical potential. In addition to high voltages and significant internal helium pressure, the insulation breaks will experience various mechanical forces resulting from differential thermal contraction phenomena and electro-magnetic loads. Special test equipment was designed, prepared and employed to assess the mechanical reliability of the insulation breaks. A binary test setup is proposed, where mechanical failure is assumed when leak rate of gaseous helium exceeds 10-9·Pa·m3/s. The test consists of a load-to-failure insulation break charging, in tension, while immersed in liquid nitrogen at the temperature of 77 K. Leak tightness during the test is monitored by measuring the leak rate of the gaseous helium, directly surrounding the insulation break, with respect to the existing vacuum inside the insulation break. The experimental setup is proven effective, and various insulation breaks performed beyond expectations.

  16. Development and test of the ITER conductor joints

    SciTech Connect

    Martovetsky, N., LLNL

    1998-05-14

    Joints for the ITER superconducting Central Solenoid should perform in rapidly varying magnetic field with low losses and low DC resistance. This paper describes the design of the ITER joint and presents its assembly process. Two joints were built and tested at the PTF facility at MIT. Test results are presented, losses in transverse and parallel field and the DC performance are discussed. The developed joint demonstrates sufficient margin for baseline ITER operating scenarios.

  17. Qualification tests and facilities for the ITER superconductors

    NASA Astrophysics Data System (ADS)

    Bruzzone, P.; Wesche, R.; Stepanov, B.; Cau, F.; Bagnasco, M.; Calvi, M.; Herzog, R.; Vogel, M.

    2009-06-01

    All the ITER superconductors are tested as short length samples in the SULTAN test facility at CRPP. Twenty-four TF conductor samples with small layout variations were tested since February 2007 with the aim of verifying the design and qualification of the manufacturers. The sample assembly and the measurement techniques at CRPP are discussed. Starting in 2010, another test facility for ITER conductors, named EDIPO, will be operating at CRPP to share with SULTAN the load of the samples for the acceptance tests during the construction of ITER.

  18. ITER EDA design confinement capability

    NASA Astrophysics Data System (ADS)

    Uckan, N. A.

    Major device parameters for ITER-EDA and CDA are given in this paper. Ignition capability of the EDA (and CDA) operational scenarios is evaluated using both the 1 1/2-D time-dependent transport simulations and 0-D global models under different confinement ((chi((gradient)(T)(sub e)(sub crit)), empirical global energy confinement scalings, chi(empirical), etc.) assumptions. Results from some of these transport simulations and confinement assessments are summarized in and compared with the ITER CDA results.

  19. Development and test of the ITER SC conductor joints

    SciTech Connect

    Gung, C. Y.; Jayakumar, R.; Manahan, R.; Martovetsky, N.; Michael, P.; Minervini, J.; Randall, A.

    1998-08-05

    Joints for the ITER superconducting Central Solenoid should perform in rapidly varying magnetic field with low losses and low DC resistance. This paper describes the design of the ITER joint and presents its assembly process. Two joints were built and tested at the PTF facility at MIT. Test results are presented; losses in transverse and parallel field and the DC performance are discussed. The developed joint demonstrates sufficient margin for baseline ITRR operating scenarios.

  20. ITER Magnet Feeder: Design, Manufacturing and Integration

    NASA Astrophysics Data System (ADS)

    CHEN, Yonghua; ILIN, Y.; M., SU; C., NICHOLAS; BAUER, P.; JAROMIR, F.; LU, Kun; CHENG, Yong; SONG, Yuntao; LIU, Chen; HUANG, Xiongyi; ZHOU, Tingzhi; SHEN, Guang; WANG, Zhongwei; FENG, Hansheng; SHEN, Junsong

    2015-03-01

    The International Thermonuclear Experimental Reactor (ITER) feeder procurement is now well underway. The feeder design has been improved by the feeder teams at the ITER Organization (IO) and the Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP) in the last 2 years along with analyses and qualification activities. The feeder design is being progressively finalized. In addition, the preparation of qualification and manufacturing are well scheduled at ASIPP. This paper mainly presents the design, the overview of manufacturing and the status of integration on the ITER magnet feeders. supported by the National Special Support for R&D on Science and Technology for ITER (Ministry of Public Security of the People's Republic of China-MPS) (No. 2008GB102000)

  1. ITER physics design guidelines at high aspect ratio

    NASA Astrophysics Data System (ADS)

    Uckan, N. A.

    1991-09-01

    The physics requirements for the International Thermonuclear Experimental Reactor (ITER) design are formulated in a set of physics design guidelines. These guidelines, established by the ITER Physics Group during the Conceptual Design Activity (CDA, 1988--90), were based on credible extrapolations of the tokamak physics database as assessed during the CDA, and defined a class of tokamak designs (with plasma current I is approximately 20 MA and aspect ratio A is approximately 2.5--3.5) that meet the ITER objectives. Recent U.S. studies have indicated that there may be significant benefits if the ITER-CDA design point is moved from the low aspect ratio, high current baseline (A = 2.79, I = 22 MA) to a high aspect ratio machine at Ais approximately 4, I is approximately 15 MA, especially regarding steady-state, technology-testing performance. To adequately assess the physics and technology testing capability of higher aspect ratio design options, several changes are proposed to the original ITER guidelines to reflect the latest developments in physics understanding at higher aspect ratios. The critical issues for higher aspect ratio design options are the uncertainty in scaling of confinement with aspect ratio, the variation of vertical stability with elongation and aspect ratio, plasma shaping requirements, ability to control and maintain plasma current and q-profiles for MHD stability (and volt-second consumption), access for current drive, restrictions on field ripple and divertor plate incident angles, etc.

  2. New High Power CW Test Facilities For ITER ICRH Components Testing

    NASA Astrophysics Data System (ADS)

    Bernard, J. M.; Lombard, G.; Argouarch, A.; Chaix, J. P.; Fejoz, P.; Garibaldi, P.; Hatchressian, J. C.; Lebourg, P.; Martinez, A.; Mollard, P.; Mouyon, D.; Mougeolle, G.; Pagano, M.; Thouvenin, D.; Volpe, D.; Volpe, R.; Vulliez, K.

    2011-12-01

    First CW test bed, devoted for Ion Cyclotron Resonance Heating (ICRH), has been built at CEA Cadarache. It has been designed for testing the ICRH antenna sub assemblies under ITER relevant conditions (vacuum, cooling and RF). This paper presents a technical overview of these facilities and discusses their future operations in the framework of the ITER ICRH European R&D program.

  3. Diagnostics of the ITER neutral beam test facility

    SciTech Connect

    Pasqualotto, R.; Serianni, G.; Agostini, M.; Brombin, M.; Dalla Palma, M.; Gazza, E.; Pomaro, N.; Rizzolo, A.; Spolaore, M.; Zaniol, B.; Sonato, P.; De Muri, M.; Croci, G.; Gorini, G.

    2012-02-15

    The ITER heating neutral beam (HNB) injector, based on negative ions accelerated at 1 MV, will be tested and optimized in the SPIDER source and MITICA full injector prototypes, using a set of diagnostics not available on the ITER HNB. The RF source, where the H{sup -}/D{sup -} production is enhanced by cesium evaporation, will be monitored with thermocouples, electrostatic probes, optical emission spectroscopy, cavity ring down, and laser absorption spectroscopy. The beam is analyzed by cooling water calorimetry, a short pulse instrumented calorimeter, beam emission spectroscopy, visible tomography, and neutron imaging. Design of the diagnostic systems is presented.

  4. The ITER ICRF Antenna Design with TOPICA

    NASA Astrophysics Data System (ADS)

    Milanesio, Daniele; Maggiora, Riccardo; Meneghini, Orso; Vecchi, Giuseppe

    2007-11-01

    TOPICA (Torino Polytechnic Ion Cyclotron Antenna) code is an innovative tool for the 3D/1D simulation of Ion Cyclotron Radio Frequency (ICRF), i.e. accounting for antennas in a realistic 3D geometry and with an accurate 1D plasma model [1]. The TOPICA code has been deeply parallelized and has been already proved to be a reliable tool for antennas design and performance prediction. A detailed analysis of the 24 straps ITER ICRF antenna geometry has been carried out, underlining the strong dependence and asymmetries of the antenna input parameters due to the ITER plasma response. We optimized the antenna array geometry dimensions to maximize loading, lower mutual couplings and mitigate sheath effects. The calculated antenna input impedance matrices are TOPICA results of a paramount importance for the tuning and matching system design. Electric field distributions have been also calculated and they are used as the main input for the power flux estimation tool. The designed optimized antenna is capable of coupling 20 MW of power to plasma in the 40 -- 55 MHz frequency range with a maximum voltage of 45 kV in the feeding coaxial cables. [1] V. Lancellotti et al., Nuclear Fusion, 46 (2006) S476-S499

  5. Iterative LQG Controller Design Through Closed-Loop Identification

    NASA Technical Reports Server (NTRS)

    Hsiao, Min-Hung; Huang, Jen-Kuang; Cox, David E.

    1996-01-01

    This paper presents an iterative Linear Quadratic Gaussian (LQG) controller design approach for a linear stochastic system with an uncertain open-loop model and unknown noise statistics. This approach consists of closed-loop identification and controller redesign cycles. In each cycle, the closed-loop identification method is used to identify an open-loop model and a steady-state Kalman filter gain from closed-loop input/output test data obtained by using a feedback LQG controller designed from the previous cycle. Then the identified open-loop model is used to redesign the state feedback. The state feedback and the identified Kalman filter gain are used to form an updated LQC controller for the next cycle. This iterative process continues until the updated controller converges. The proposed controller design is demonstrated by numerical simulations and experiments on a highly unstable large-gap magnetic suspension system.

  6. ITER fuel storage system conceptual design description

    SciTech Connect

    Nasise, J.E.; Anderson, J.L.; Bartlit, J.R.; Muller, M.E.

    1990-01-01

    Fuel, in the form of hydrogen isotopes Q{sub 2} (where Q is H, D, or T), is required to be stored and assayed in a safe manner at the proposed International Thermonuclear Experimental Reactor (ITER). Two subsystems are proposed for this task: Fuel Storage (FS) and Fuel Management (FM). The combined system, Fuel Storage and Management System (FSMS), will provide fuel storage, tritium inventory, gas analysis, transfer pumping, and flow measurements. Presented is a Conceptual Design Description (CDD) of only the FS portion of the FSMS. The proposed FS system permits tritium and its associated isotopes to be stored within ZrCo storage beds, as a solid metal-hydride, or as a gas stored in tanks. 10 refs., 4 figs., 3 tabs.

  7. Overview of International Thermonuclear Experimental Reactor (ITER) engineering design activities*

    NASA Astrophysics Data System (ADS)

    Shimomura, Y.

    1994-05-01

    The International Thermonuclear Experimental Reactor (ITER) [International Thermonuclear Experimental Reactor (ITER) (International Atomic Energy Agency, Vienna, 1988), ITER Documentation Series, No. 1] project is a multiphased project, presently proceeding under the auspices of the International Atomic Energy Agency according to the terms of a four-party agreement among the European Atomic Energy Community (EC), the Government of Japan (JA), the Government of the Russian Federation (RF), and the Government of the United States (US), ``the Parties.'' The ITER project is based on the tokamak, a Russian invention, and has since been brought to a high level of development in all major fusion programs in the world. The objective of ITER is to demonstrate the scientific and technological feasibility of fusion energy for peaceful purposes. The ITER design is being developed, with support from the Parties' four Home Teams and is in progress by the Joint Central Team. An overview of ITER Design activities is presented.

  8. Rapid iterative reanalysis for automated design

    NASA Technical Reports Server (NTRS)

    Bhatia, K. G.

    1973-01-01

    A method for iterative reanalysis in automated structural design is presented for a finite-element analysis using the direct stiffness approach. A basic feature of the method is that the generalized stiffness and inertia matrices are expressed as functions of structural design parameters, and these generalized matrices are expanded in Taylor series about the initial design. Only the linear terms are retained in the expansions. The method is approximate because it uses static condensation, modal reduction, and the linear Taylor series expansions. The exact linear representation of the expansions of the generalized matrices is also described and a basis for the present method is established. Results of applications of the present method to the recalculation of the natural frequencies of two simple platelike structural models are presented and compared with results obtained by using a commonly applied analysis procedure used as a reference. In general, the results are in good agreement. A comparison of the computer times required for the use of the present method and the reference method indicated that the present method required substantially less time for reanalysis. Although the results presented are for relatively small-order problems, the present method will become more efficient relative to the reference method as the problem size increases. An extension of the present method to static reanalysis is described, ana a basis for unifying the static and dynamic reanalysis procedures is presented.

  9. Mechanical modeling of the ITER toroidal field coils shear keys behavior. Design and choice of key mock-up for electrical insulation testing on the basis of numerical models

    SciTech Connect

    Bondarchuk, E.; Krasnov, S.; Krivchenkov, Y.; Panin, A.

    1996-07-01

    The ITER shear key system is designed to interconnect neighboring toroidal field coils at their inner portions. Due to these keys the coils inner portions resist the torque as a whole structure. On the other hand, the ITER magnet system design provides supporting of the centering load on the TFC by a buckling cylinder. Hence, the keys should not produce any significant wedging during the radial movement of the coils. Numerical modeling of the so called scissors` action keys that satisfy above requirements has been performed with assembly gaps being taking into account. Cooldown, TFC energizing and poloidal fields coils pulse regimes have been studied. Since the TFC torsion produces high cyclic compression on the key ground insulation, the electrical insulation testing is required. Two mock-up systems for this testing have been proposed and modeled. One system models an effect of the TFC radial movement resulting in higher peak compression on the insulation.

  10. Iter

    NASA Astrophysics Data System (ADS)

    Iotti, Robert

    2015-04-01

    ITER is an international experimental facility being built by seven Parties to demonstrate the long term potential of fusion energy. The ITER Joint Implementation Agreement (JIA) defines the structure and governance model of such cooperation. There are a number of necessary conditions for such international projects to be successful: a complete design, strong systems engineering working with an agreed set of requirements, an experienced organization with systems and plans in place to manage the project, a cost estimate backed by industry, and someone in charge. Unfortunately for ITER many of these conditions were not present. The paper discusses the priorities in the JIA which led to setting up the project with a Central Integrating Organization (IO) in Cadarache, France as the ITER HQ, and seven Domestic Agencies (DAs) located in the countries of the Parties, responsible for delivering 90%+ of the project hardware as Contributions-in-Kind and also financial contributions to the IO, as ``Contributions-in-Cash.'' Theoretically the Director General (DG) is responsible for everything. In practice the DG does not have the power to control the work of the DAs, and there is not an effective management structure enabling the IO and the DAs to arbitrate disputes, so the project is not really managed, but is a loose collaboration of competing interests. Any DA can effectively block a decision reached by the DG. Inefficiencies in completing design while setting up a competent organization from scratch contributed to the delays and cost increases during the initial few years. So did the fact that the original estimate was not developed from industry input. Unforeseen inflation and market demand on certain commodities/materials further exacerbated the cost increases. Since then, improvements are debatable. Does this mean that the governance model of ITER is a wrong model for international scientific cooperation? I do not believe so. Had the necessary conditions for success

  11. Testing Short Samples of ITER Conductors and Projection of Their Performance in ITER Magnets

    SciTech Connect

    Martovetsky, N N

    2007-08-20

    Qualification of the ITER conductor is absolutely necessary. Testing large scale conductors is expensive and time consuming. To test straight 3-4m long samples in a bore of a split solenoid is a relatively economical way in comparison with fabrication of a coil to be tested in a bore of a background field solenoid. However, testing short sample may give ambiguous results due to different constraints in current redistribution in the cable or other end effects which are not present in the large magnet. This paper discusses processes taking place in the ITER conductor, conditions when conductor performance could be distorted and possible signal processing to deduce behavior of ITER conductors in ITER magnets from the test data.

  12. Initial results of systems analysis ETR/ITER design space

    SciTech Connect

    Peng, Yueng Kay Martin; Galambos, John D; Reid, R. L.; Strickler, Dennis J

    1987-01-01

    Preliminary versions of the Engineering Test REactor (ETR) systems code TETRA (Tokamak Engineering Test Reactor Analysis), which determines design solutions by the method of constrained optimization, are used to characterize the International Thermonuclear Experimental Reactor (ITER) and its design parameter space. They find that the physics objectives of high ignition margin and high plasma current lead to minimum size at relatively low aspect ratios (A = 2.5-3.0), while the engineering objective of high neutron wall load (W{sub L} {approx}> 1.0 MW/m{sup 2}) leads to minimum size at higher A ({approx} 3.5). For minimum-size ITERs, the optimal toroidal field coil (TFC) designs fall within a narrow range of maximum fields (10-11 T) with R varying over only a few percent despite a factor of two change in the winding pack current density J{sub wp}. The major radius of the design is found to be sensitive to changes in elongation, inboard distances (such as plasma scrape-off), inductive flux capability, plasma temperature, beta limit, and ignition margin. A preliminary characterization of the US ITER designs with plasma current I{sub p} > 15 MA and R < 4.5 m has been obtained by combining the engineering asumptions for devices such as the Tokamak Ignition/Burn Engineering Reactor (TIBER) with the physics assumptions for devices such as the Compact Ignition Tokamak (CIT) and the Next European Torus (NET). These devices can accommodate a range of full- to reduced-bore, driven (Q < 10), steady-state plasmas for the engineering phase that produces high neutron wall load and fluence.

  13. Magnet design technical report---ITER definition phase

    SciTech Connect

    Henning, C.

    1989-04-28

    This report contains papers on the following topics: conceptual design; radiation damage of ITER magnet systems; insulation system of the magnets; critical current density and strain sensitivity; toroidal field coil structural analysis; stress analysis for the ITER central solenoid; and volt-second capabilities and PF magnet configurations.

  14. Test Strategy for the European HCPB Test Blanket Module in ITER

    SciTech Connect

    Boccaccini, L.V.; Meyder, R.; Fischer, U.

    2005-05-15

    According to the European Blanket Programme two blanket concepts, the Helium Cooled Pebble Bed (HCPB) and a Helium Cooled Lithium Lead (HCLL) will be tested in ITER. During 2004 the test blanket modules (TBM) of both concepts were redesigned with the goal to use as much as possible similar design options and fabrication techniques for both types in order to reduce the European effort for TBM development. The result is a robust TBM box being able to withstand 8 MPa internal pressure in case of in-box LOCA; the TBM box consists of First wall (FW), caps, stiffening grid and manifolds. The box is filled with typically 18 and 24 breeding units (BU), for HCPB and HCLL respectively. A breeding unit has about 200 mm in poloidal and toroidal direction and about 400 mm in radial direction; the design is adapted to contain and cooling ceramic breeder/beryllium pebble beds for the HCPB and eutectic Lithium-Lead for the HCLL.The use of a new material, EUROFER, and the innovative design of these Helium Cooled components call for a large qualification programme before the installation in ITER; availability and safety of ITER should not be jeopardised by a failure of these components. Fabrication technologies especially in the welding processes (diffusion welding, EB, TIG, LASER) need to be tested in the manufacturing of large mock-ups; an extensive out-of-pile programme in Helium facility should be foreseen for the verification of the concept from basic helium cooling functions (uniformity of flow in parallel channels, heat transfer coefficient in FW, etc.) up to the verification of large portions of the TBM design under relevant ITER loading.In ITER the TBM will have the main objective to collect information that will contribute to the final design of DEMO blankets. A strategy has been proposed in 2001 that leads to the tests in ITER 4 different Test Blanket Modules (TBM's) type during the first 10 years of ITER operation. For the new HCPB design this strategy is confirmed with

  15. The Iterative Design Process in Research and Development: A Work Experience Paper

    NASA Technical Reports Server (NTRS)

    Sullivan, George F. III

    2013-01-01

    The iterative design process is one of many strategies used in new product development. Top-down development strategies, like waterfall development, place a heavy emphasis on planning and simulation. The iterative process, on the other hand, is better suited to the management of small to medium scale projects. Over the past four months, I have worked with engineers at Johnson Space Center on a multitude of electronics projects. By describing the work I have done these last few months, analyzing the factors that have driven design decisions, and examining the testing and verification process, I will demonstrate that iterative design is the obvious choice for research and development projects.

  16. International Thermonuclear Experimental Reactor (ITER) neutral beam design

    SciTech Connect

    Myers, T.J.; Brook, J.W.; Spampinato, P.T.; Mueller, J.P.; Luzzi, T.E.; Sedgley, D.W. . Space Systems Div.)

    1990-10-01

    This report discusses the following topics on ITER neutral beam design: ion dump; neutralizer and module gas flow analysis; vacuum system; cryogenic system; maintainability; power distribution; and system cost.

  17. The Effect of Iteration on the Design Performance of Primary School Children

    ERIC Educational Resources Information Center

    Looijenga, Annemarie; Klapwijk, Remke; de Vries, Marc J.

    2015-01-01

    Iteration during the design process is an essential element. Engineers optimize their design by iteration. Research on iteration in Primary Design Education is however scarce; possibly teachers believe they do not have enough time for iteration in daily classroom practices. Spontaneous playing behavior of children indicates that iteration fits in…

  18. Safety Analysis of the US Dual Coolant Liquid Lead-Lithium ITER Test Blanket Module

    SciTech Connect

    Merrill, Brad; Reyes, Susana; Sawan, Mohamed; Wong, Clement

    2006-07-01

    The US is proposing a prototype of a dual coolant liquid lead-lithium (DCLL) DEMO blanket concept for testing in the International Thermonuclear Experimental Reactor (ITER) as an ITER Test Blanket Module (TBM). Because safety considerations are an integral part of the design process to ensure that this TBM does not adversely impact the safety of ITER, a safety assessment has been conducted for this TBM and its ancillary systems as requested by the ITER project. Four events were selected by the ITER International Team (IT) to address specific reactor safety concerns, such as VV pressurization, confinement building pressure build-up, TBM decay heat removal capability, tritium and activation products release from the TBM system, and hydrogen and heat production from chemical reactions. This paper summarizes the results of this safety assessment conducted with the MELCOR computer code.

  19. U.S. Plans and Strategy for ITER Blanket Testing

    SciTech Connect

    Abdou, M.; Sze, D.; Wong, C.; Sawan, M.; Ying, A.; Morley, N.B.; Malang, S

    2005-04-15

    Testing blanket concepts in the integrated fusion environment is one of the principal objectives of ITER. Blanket test modules will be inserted in ITER from Day 1 of its operation and will provide the first experimental data on the feasibility of the D-T cycle for fusion. With the US rejoining ITER, the US community has decided to have strong participation in the ITER Test Blanket Module (TBM) Program. A US strategy for ITER-TBM has evolved that emphasizes international collaboration. A study was initiated to select the two blanket options for the US ITER-TBM in light of new R and D results from the US and world programs over the past decade. The study is led by the Plasma Chamber community in partnership with the Materials, PFC, Safety, and physics communities. The study focuses on assessment of the critical feasibility issues for candidate blanket concepts and it is strongly coupled to R and D of modeling and experiments. Examples of issues are MHD insulators, SiC insert viability and compatibility with PbLi, tritium permeation, MHD effects on heat transfer, solid breeder 'temperature window' and thermomechanics, and chemistry control of molten salts. A dual coolant liquid breeder and a helium-cooled solid breeder blanket concept have been selected for the US ITER-TBM.

  20. Visible and Infrared Optical Design for the ITER Upper Ports

    SciTech Connect

    Lasnier, C; Seppala, L; Morris, K; Groth, M; Fenstermacher, M; Allen, S; Synakowski, E; Ortiz, J

    2007-03-01

    This document contains the results of an optical design scoping study of visible-light and infrared optics for the ITER upper ports, performed by LLNL under contract for the US ITER Project Office. ITER is an international collaboration to build a large fusion energy tokamak with a goal of demonstrating net fusion power for pulses much longer than the energy confinement time. At the time of this report, six of the ITER upper ports are planned to each to contain a camera system for recording visible and infrared light, as well as other diagnostics. the performance specifications for the temporal and spatial resolution of this system are shown in the Section II, Functional Specifications. They acknowledge a debt to Y. Corre and co-authors of the CEA Cadarache report ''ITER wide-angle viewing and thermographic and visible system''. Several of the concepts used in this design are derived from that CEA report. The infrared spatial resolution for optics of this design is diffraction-limited by the size of the entrance aperture, at lower resolution than listed in the ITER diagnostic specifications. The size of the entrance aperture is a trade-off between spatial resolution, optics size in the port, and the location of relay optics. The signal-to-noise ratio allows operation at the specified time resolutions.

  1. Safety Analysis of ITER EDA Design by GEMSAFE

    NASA Astrophysics Data System (ADS)

    Arika, Mitsuhiro; Saito, Masaki; Sawada, Tetsuo; Fujii-e, Yoichi

    1997-06-01

    General Methodology of Safety Analysis and Evaluation for Fusion Systems (GEMSAFE) was applied to the International Thermonuclear Experimental Reactor (ITER) design in the stage of Engineering Design Activities (EDA) to identify Design Basis Events (DBEs) and the related safety features, which were compared with those of the ITER design in the stage of Conceptual Design Activities (CDA). As a result, 18 DBEs for the EDA design were selected in comparison with 25 DBEs for the CDA design. DBEs related to the fuel area were categorized in higher event category than those of the CDA design due to the increase of the mobile tritium contained in some components. It was necessary to reduce the inventory of the tritium absorbed in the tokamak dust in the EDA design as well as in the CDA design. Some measures were recommended to reduce mobile tritium dissolved in the coolant in the single cooling loop due to the increase of this estimated inventory.

  2. Design Issues of the Pre-Compression Rings of Iter

    NASA Astrophysics Data System (ADS)

    Knaster, J.; Baker, W.; Bettinali, L.; Jong, C.; Mallick, K.; Nardi, C.; Rajainmaki, H.; Rossi, P.; Semeraro, L.

    2010-04-01

    The pre-compression system is the keystone of ITER. A centripetal force of ˜30 MN will be applied at cryogenic conditions on top and bottom of each TF coil. It will prevent the `breathing effect' caused by the bursting forces occurring during plasma operation that would affect the machine design life of 30000 cycles. Different alternatives have been studied throughout the years. There are two major design requirements limiting the engineering possibilities: 1) the limited available space and 2) the need to hamper eddy currents flowing in the structures. Six unidirectionally wound glass-fibre composite rings (˜5 m diameter and ˜300 mm cross section) are the final design choice. The rings will withstand the maximum hoop stresses <500 MPa at room temperature conditions. Although retightening or replacing the pre-compression rings in case of malfunctioning is possible, they have to sustain the load during the entire 20 years of machine operation. The present paper summarizes the pre-compression ring R&D carried out during several years. In particular, we will address the composite choice and mechanical characterization, assessment of creep or stress relaxation phenomena, sub-sized rings testing and the optimal ring fabrication processes that have led to the present final design.

  3. A VLSI design concept for parallel iterative algorithms

    NASA Astrophysics Data System (ADS)

    Sun, C. C.; Götze, J.

    2009-05-01

    Modern VLSI manufacturing technology has kept shrinking down to the nanoscale level with a very fast trend. Integration with the advanced nano-technology now makes it possible to realize advanced parallel iterative algorithms directly which was almost impossible 10 years ago. In this paper, we want to discuss the influences of evolving VLSI technologies for iterative algorithms and present design strategies from an algorithmic and architectural point of view. Implementing an iterative algorithm on a multiprocessor array, there is a trade-off between the performance/complexity of processors and the load/throughput of interconnects. This is due to the behavior of iterative algorithms. For example, we could simplify the parallel implementation of the iterative algorithm (i.e., processor elements of the multiprocessor array) in any way as long as the convergence is guaranteed. However, the modification of the algorithm (processors) usually increases the number of required iterations which also means that the switch activity of interconnects is increasing. As an example we show that a 25×25 full Jacobi EVD array could be realized into one single FPGA device with the simplified μ-rotation CORDIC architecture.

  4. Status of the ITER ICRF system design - 'Externally Matched' approach

    SciTech Connect

    Lamalle, P. U.; Dumortier, P.; Durodie, F.; Evrard, M.; Louche, F.; Messiaen, A.; Vervier, M.; Shannon, M.; Borthwick, A.; Chuilon, B.; Nightingale, M.; Goulding, R.; Swain, D.

    2007-09-28

    The design of the ITER ICRF system has been under revision for several years. The paper presents the status of the design proposal based on a 24 strap antenna plug (6 poloidal by 4 toroidal short radiating conductors) in which the straps are passively combined in 8 poloidal triplets by means of 4-port junctions. These triplets are connected in parallel pairwise through matching elements to form 4 load-resilient conjugate-T circuits. All adjustable matching elements are located outside the plug, i.e. in the ITER port cell and in the generator area.

  5. Reduced activation martensitic steels as a structural material for ITER test blanket

    NASA Astrophysics Data System (ADS)

    Shiba, K.; Enoeda, M.; Jitsukawa, S.

    2004-08-01

    A Japanese ITER test blanket module (TBM) is planed to use reduced-activation martensitic steel F82H. Feasibility of F82H for ITER test blanket module is discussed in this paper. Several kinds of property data, including physical properties, magnetic properties, mechanical properties and neutron-irradiation data on F82H have been obtained, and these data are complied into a database to be used for the designing of the ITER TBM. Currently obtained data suggests F82H will not have serious problems for ITER TBM. Optimization of F82H improves the induced activity, toughness and HIP resistance. Furthermore, modified F82H is resistant to temperature instability during material production.

  6. ITER TCWS Conceptual Design Chit Resolution Report

    SciTech Connect

    Berry, Jan

    2012-02-01

    Design Chits resulted from the External Conceptual Design Review (CDR) held at Cadarache on July 21-23, 2009 (Reference [5.1.3]). Those Chits were categorized into 3 categories in accordance with the following rules: Category 1 - Chits to be resolved before proceeding with preliminary design; Category 2 - Chits to be resolved during preliminary design; and Category 3 - Chits already resolved or covered by higher category Chits such that no further action is required. Prior to the preliminary design, all the category 1 chits were resolved and the category chit 1 resolution report was approved (Reference [5.1.4]). However, as the design has been evolving, one of the category 1 chits needs to be re-addressed. The purpose of this report is to present the resolutions to one CDR Category 1 Chit (Cat 1 Chit No.5) and twenty-three CDR Category 2 Chits. The Category 2 Chit resolutions presented are listed in order from item number one to item number twenty-three.

  7. Summary report for ITER Task -- D4: Activation calculations for the stainless steel ITER design

    SciTech Connect

    Attaya, H.

    1995-02-01

    Detailed activation analysis for ITER has been performed as a part of ITER Task D4. The calculations have been performed for the shielding blanket (SS/water) and for the breeding blanket (LiN) options. The activation code RACC-P, which has been modified under IFER Task-D-10 for pulsed operation, has been used in this analysis. The spatial distributions of the radioactive inventory, decay heat, biological hazard potential, and the contact dose were calculated for the two designs for different operation modes and targeted fluences. A one-dimensional toroidal geometrical model has been utilized to determine the neutron fluxes in the two designs. The results are normalized for an inboard and outboard neutron wall loadings of 0.91 and 1.2 MW/M{sup 2}, respectively. The point-wise distributions of the decay gamma sources have been calculated everywhere in the reactor at several times after the shutdown of the two designs and are then used in the transport code ONEDANT to calculate the biological dose everywhere in the reactor. The point-wise distributions of all the responses have also been calculated. These calculations have been performed for neutron fluences of 3.0 MWa/M{sup 2}, which corresponds to the target fluence of ITER, and 0.1 MWa/M{sup 2}, which is anticipated to correspond to the beginning of an extended maintenance period.

  8. Cryogenic Test Results of the ITER TF Model Coil Test in TOSKA

    NASA Astrophysics Data System (ADS)

    Zahn, G.; Bagnasco, M.; Darweschsad, M.; Dittrich, G.; Duchateau, J. L.; Fillunger, H.; Fietz, W. H.; Fink, S.; Fuhrman, U.; Heger, R.; Heller, R.; Herz, W.; Komarek, P.; Kienzler, A.; Langhans, O.; Lehmann, W.; Lingor, A.; Meyer, I.; Neumann, H.; Nicollet, S.; Noether, G.; Roehrling, M.; Savoldi-Richard, L.; Specht, E.; Süsser, M.; Ulbricht, A.; Wuechner, F.; Zanino, R.

    2004-06-01

    The ITER Toroidal Field Model Coil (TFMC) was designed and manufactured by the European Home Team in collaboration with European industry. The test in the TOSKA facility of the Forschungszentrum Karlsruhe was successfully performed in 2001 and 2002 and has confirmed that the used design and construction principles are applicable for the ITER TF coils. The TFMC was tested up to the rated current of 80 kA as a single coil and in the background field of the EURATOM LCT coil in order to achieve ITER TF coil relevant stress levels. For the operation of the TFMC and LCT coils, special developed forced-flow-cooled current leads were used. Both coils with a total weight of 108 t were forced-flow-cooled with supercritical He at 4.5 K in a secondary cooling loop connected to the 2 kW refrigerator. However, for currents above 11.4 kA in the LCT coil, its winding had to be cooled at 3.0 K with a separate refrigerator and cooling system. Details of the process engineering of both cooling systems will be described. The operation experiences during cool down, standby and current operation and recooling after fast discharges or Tcs measurements will be outlined hereafter.

  9. RHIC D0 INSERTION DIPOLE DESIGN ITERATIONS DURING PRODUCTION.

    SciTech Connect

    SCHMALZLE,J.; ANERELLA,M.; GANETIS,G.; GHOSH,A.; GUPTA,R.; JAIN,A.; KAHN,S.; MORGAN,G.; MURATORE,J.; SAMPSON,W.; WANDERER,P.; WILLEN,E.

    1997-05-12

    Iterations to the cross section of the Relativistic Heavy Ion Collider (RHIC) D0 Insertion Dipole magnets were made during the production. This was included as part of the production plan because no R&D or pre-production magnets were built prior to the start of production. The first magnet produced had the desired coil pre-stress and low field harmonics in the body of the magnet and is therefore being used in the RHIC Machine. On the first eight magnets, iterations were carried out to minimize the iron saturation and to compensate for the end harmonics. This paper will discuss the details of the iterations made, the obstacles encountered, and the results obtained. Also included will be a brief summary of the magnet design and performance.

  10. How to Combine Objectives and Methods of Evaluation in Iterative ILE Design: Lessons Learned from Designing Ambre-Add

    ERIC Educational Resources Information Center

    Nogry, S.; Jean-Daubias, S.; Guin, N.

    2012-01-01

    This article deals with evaluating an interactive learning environment (ILE) during the iterative-design process. Various aspects of the system must be assessed and a number of evaluation methods are available. In designing the ILE Ambre-add, several techniques were combined to test and refine the system. In particular, we point out the merits of…

  11. Design of fast tuning elements for the ITER ICH system

    SciTech Connect

    Swain, D.W.; Goulding, R.H.

    1996-05-01

    The coupling between the ion cyclotron (IC) antenna and the ITER plasma (as expressed by the load resistance the antenna sees) will experience relatively fast variations due to plasma edge profile modifications. If uncompensated, these will cause an increase in the amount of power reflected back to the transmitter and ultimately a decrease in the amount of radio frequency (rf) power to the plasma caused by protective suppression of the amount of rf power generated by the transmitter. The goals of this task were to study several alternate designs for a tuning and matching (T&M) system and to recommend some research and development (R&D) tasks that could be carried out to test some of the most promising concepts. Analyses of five different T&M configurations are presented in this report. They each have different advantages and disadvantages, and the choice among them must be made depending on the requirements for the IC system. Several general conclusions emerge from our study: The use of a hybrid splitter as a passive reflected-power dump [``edge localized mode (ELM)-dump``] appears very promising; this configuration will protect the rf power sources from reflected power during changes in plasma loading due to plasma motion or profile changes (e.g., ELM- induced changes in the plasma scrape-off region) and requires no active control of the rf system. Trade-offs between simplicity of design and capability of the system must be made. Simple system designs with few components near the antenna either have high voltages over considerable distances of transmission lines, or they are not easily tuned to operate at different frequencies. Designs using frequency shifts and/or fast tuning elements can provide fast matching over a wide range of plasma loading; however, the designs studied here require components near the antenna, complicating assembly and maintenance. Capacitor-tuned resonant systems may offer a good compromise.

  12. Status of PRIMA, the test facility for ITER neutral beam injectors

    NASA Astrophysics Data System (ADS)

    Sonato, P.; Antoni, V.; Bigi, M.; Chitarin, G.; Luchetta, A.; Marcuzzi, D.; Pasqualotto, R.; Pomaro, N.; Serianni, G.; Toigo, V.; Zaccaria, P.; ITER International Team

    2013-02-01

    The ITER project requires additional heating by two neutral beam injectors, each accelerating to 1MV a 40A beam of negative deuterons, delivering to the plasma about 17MW up to one hour. As these requirements have never been experimentally met, it was decided to build a test facility, PRIMA (Padova Research on ITER Megavolt Accelerator), in Italy, including a full-size negative ion source, SPIDER, and a prototype of the whole ITER injector, MITICA, aiming to develop the heating injectors to be installed in ITER. The Japan and the India Domestic Agencies participate in the PRIMA enterprise; European laboratories, such as KIT-Karlsruhe, IPP-Garching, CCFE-Culham, CEA-Cadarache and others are also cooperating. In the paper the main requirements are discussed and the design of the main components and systems are described.

  13. Progress on radio frequency auxiliary heating system designs in ITER

    SciTech Connect

    Makowski, M.; Bosia, G.; Elio, F.

    1996-09-01

    ITER will require over 100 MW of auxiliary power for heating, on- and off-axis current drive, accessing the H-mode, and plasma shut-down. The Electron Cyclotron Range of Frequencies (ECRF) and Ion Cyclotron Range of Frequencies (ICRF) are two forms of Radio Frequency (RF) auxiliary power being developed for these applications. Design concepts for both the ECRF and ICRF systems are presented, key features and critical design issues are discussed, and projected performances outlined.

  14. Design considerations for ITER (International Thermonuclear Experimental Reactor) magnet systems

    SciTech Connect

    Henning, C.D.; Miller, J.R.

    1988-10-09

    The International Thermonuclear Experimental Reactor (ITER) is now completing a definition phase as a beginning of a three-year design effort. Preliminary parameters for the superconducting magnet system have been established to guide further and more detailed design work. Radiation tolerance of the superconductors and insulators has been of prime importance, since it sets requirements for the neutron-shield dimension and sensitively influences reactor size. The major levels of mechanical stress in the structure appear in the cases of the inboard legs of the toroidal-field (TF) coils. The cases of the poloidal-field (PF) coils must be made thin or segmented to minimize eddy current heating during inductive plasma operation. As a result, the winding packs of both the TF and PF coils includes significant fractions of steel. The TF winding pack provides support against in-plane separating loads but offers little support against out-of-plane loads, unless shear-bonding of the conductors can be maintained. The removal of heat due to nuclear and ac loads has not been a fundamental limit to design, but certainly has non-negligible economic consequences. We present here preliminary ITER magnetic systems design parameters taken from trade studies, designs, and analyses performed by the Home Teams of the four ITER participants, by the ITER Magnet Design Unit in Garching, and by other participants at workshops organized by the Magnet Design Unit. The work presented here reflects the efforts of many, but the responsibility for the opinions expressed is the authors'. 4 refs., 3 figs., 4 tabs.

  15. Experimental Vertical Stability Studies for ITER Performance and Design Guidance

    SciTech Connect

    Humphreys, D A; Casper, T A; Eidietis, N; Ferrera, M; Gates, D A; Hutchinson, I H; Jackson, G L; Kolemen, E; Leuer, J A; Lister, J; LoDestro, L L; Meyer, W H; Pearlstein, L D; Sartori, F; Walker, M L; Welander, A S; Wolfe, S M

    2008-10-13

    Operating experimental devices have provided key inputs to the design process for ITER axisymmetric control. In particular, experiments have quantified controllability and robustness requirements in the presence of realistic noise and disturbance environments, which are difficult or impossible to characterize with modeling and simulation alone. This kind of information is particularly critical for ITER vertical control, which poses some of the highest demands on poloidal field system performance, since the consequences of loss of vertical control can be very severe. The present work describes results of multi-machine studies performed under a joint ITPA experiment on fundamental vertical control performance and controllability limits. We present experimental results from Alcator C-Mod, DIII-D, NSTX, TCV, and JET, along with analysis of these data to provide vertical control performance guidance to ITER. Useful metrics to quantify this control performance include the stability margin and maximum controllable vertical displacement. Theoretical analysis of the maximum controllable vertical displacement suggests effective approaches to improving performance in terms of this metric, with implications for ITER design modifications. Typical levels of noise in the vertical position measurement which can challenge the vertical control loop are assessed and analyzed.

  16. Status of the design of the Diagnostic Residual Gas Analyzer System for ITER first plasma

    NASA Astrophysics Data System (ADS)

    Biewer, T. M.; Klepper, C. C.; Devan, B.; Graves, V.; Marcus, C.; Younkin, T.; Andrew, P.; Johnson, D. W.

    2013-10-01

    Among the ITER procurements awarded to the US ITER Domestic Agency, and subsequently to the ORNL Fusion & Materials for Nuclear Systems Division, is the design and fabrication of the Diagnostc Residual Gas Analyzer (DRGA) system. The DRGA system reached the Preliminary Design Review (PDR) in Spring 2013, and has transitioned into the Final Design phase. As a result of the PDR, and ITER systems design evolutions, several design changes have been incorporated into the DRGA system. The design effort has focused on the vacuum and mechanical interface of the DRGA gas sampling tube with the ITER vacuum vessel and cyrostat. Moreover, R&D tasks to demonstrate the 3-sensor instrumentation design (quadrupole mass spectrometer, ion-trap mass spectrometer, and optical Penning gauge) are maturing through the construction and testing of a DRGA prototype at ORNL. Results will be presented at this poster along with the DRGA design overview. This work was supported by the U.S. D.O.E. contract DE-AC05-00OR22725.

  17. Asynchronous sequential circuit design using pass transistor iterative logic arrays

    NASA Technical Reports Server (NTRS)

    Liu, M. N.; Maki, G. K.; Whitaker, S. R.

    1991-01-01

    The iterative logic array (ILA) is introduced as a new architecture for asynchronous sequential circuits. This is the first ILA architecture for sequential circuits reported in the literature. The ILA architecture produces a very regular circuit structure. Moreover, it is immune to both 1-1 and 0-0 crossovers and is free of hazards. This paper also presents a new critical race free STT state assignment which produces a simple form of design equations that greatly simplifies the ILA realizations.

  18. Detailed design optimization of the MITICA negative ion accelerator in view of the ITER NBI

    NASA Astrophysics Data System (ADS)

    Agostinetti, P.; Aprile, D.; Antoni, V.; Cavenago, M.; Chitarin, G.; de Esch, H. P. L.; De Lorenzi, A.; Fonnesu, N.; Gambetta, G.; Hemsworth, R. S.; Kashiwagi, M.; Marconato, N.; Marcuzzi, D.; Pilan, N.; Sartori, E.; Serianni, G.; Singh, M.; Sonato, P.; Spada, E.; Toigo, V.; Veltri, P.; Zaccaria, P.

    2016-01-01

    The ITER Neutral Beam Test Facility (PRIMA) is presently under construction at Consorzio RFX (Padova, Italy). PRIMA includes two experimental devices: an ITER-size ion source with low voltage extraction, called SPIDER, and the full prototype of the whole ITER Heating Neutral Beams (HNBs), called MITICA. The purpose of MITICA is to demonstrate that all operational parameters of the ITER HNB accelerator can be experimentally achieved, thus establishing a large step forward in the performances of neutral beam injectors in comparison with the present experimental devices. The design of the MITICA extractor and accelerator grids, here described in detail, was developed using an integrated approach, taking into consideration at the same time all the relevant physics and engineering aspects. Particular care was taken also to support and validate the design on the basis of the expertise and experimental data made available by the collaborating neutral beam laboratories of CEA, IPP, CCFE, NIFS and JAEA. Considering the operational requirements and the other physics constraints of the ITER HNBs, the whole design has been thoroughly optimized and improved. Furthermore, specific innovative concepts have been introduced.

  19. Testing of ITER prototype cable-in-conduit conductors in the FENIX facility

    SciTech Connect

    Shen, S.S.; Chaplin, M.R.; Felker, B.; Hassenzahl, W.V.; Kishiyama, K.I.; Parker, J.M.

    1993-09-15

    The Fusion Engineering International experiment (FENIX) Test Facility has been operational since 1991 at the Lawrence Livermore National Laboratory for testing the International Thermonuclear Experimental Reactor (ITER) prototype conductors. These conductors are designed to operate stably with transport current of more than 40 kA at a magnetic field of 13 T. The FENIX facility consists of four magnet sets that are configured to allow easy access to the 40-cm high-field region with a test cross-section area of 10 * 15 cm{sup 2}. FENIX provides test conditions that closely simulate the ITER magnet operation mode. Performed experiments Include measurements of critical current, current-sharing temperature, forced-flow properties, stability, joint performance and cyclic fatigue effects. This paper describes the design and performance of these experiments.

  20. ITER Test Blanket Module Error Field Simulation Experiments

    NASA Astrophysics Data System (ADS)

    Schaffer, M. J.

    2010-11-01

    Recent experiments at DIII-D used an active-coil mock-up to investigate effects of magnetic error fields similar to those expected from two ferromagnetic Test Blanket Modules (TBMs) in one ITER equatorial port. The largest and most prevalent observed effect was plasma toroidal rotation slowing across the entire radial profile, up to 60% in H-mode when the mock-up local ripple at the plasma was ˜4 times the local ripple expected in front of ITER TBMs. Analysis showed the slowing to be consistent with non-resonant braking by the mock-up field. There was no evidence of strong electromagnetic braking by resonant harmonics. These results are consistent with the near absence of resonant helical harmonics in the TBM field. Global particle and energy confinement in H-mode decreased by <20% for the maximum mock-up ripple, but <5% at the local ripple expected in ITER. These confinement reductions may be linked with the large velocity reductions. TBM field effects were small in L-mode but increased with plasma beta. The L-H power threshold was unaffected within error bars. The mock-up field increased plasma sensitivity to mode locking by a known n=1 test field (n = toroidal harmonic number). In H-mode the increased locking sensitivity was from TBM torque slowing plasma rotation. At low beta, locked mode tolerance was fully recovered by re-optimizing the conventional DIII-D ``I-coils'' empirical compensation of n=1 errors in the presence of the TBM mock-up field. Empirical error compensation in H-mode should be addressed in future experiments. Global loss of injected neutral beam fast ions was within error bars, but 1 MeV fusion triton loss may have increased. The many DIII-D mock-up results provide important benchmarks for models needed to predict effects of TBMs in ITER.

  1. The Iterative Design of a Virtual Design Studio

    ERIC Educational Resources Information Center

    Blevis, Eli; Lim, Youn-kyung; Stolterman, Erik; Makice, Kevin

    2008-01-01

    In this article, the authors explain how they implemented Design eXchange as a shared collaborative online and physical space for design for their students. Their notion for Design eXchange favors a complex mix of key elements namely: (1) a virtual online studio; (2) a forum for review of all things related to design, especially design with the…

  2. Design, fabrication and test of block 4 design solar cell modules. Part 2: Residential module

    NASA Technical Reports Server (NTRS)

    Jester, T. L.

    1982-01-01

    Design, fabrication and test of the Block IV residential load module are reported. Design changes from the proposed module design through three iterations to the discontinuance of testing are outlined.

  3. Status of the 1 MeV Accelerator Design for ITER NBI

    SciTech Connect

    Kuriyama, M.; Boilson, D.; Hemsworth, R.; Svensson, L.; Graceffa, J.; Schunke, B.; Decamps, H.; Tanaka, M.; Bonicelli, T.; Masiello, A.

    2011-09-26

    The beam source of neutral beam heating/current drive system for ITER is needed to accelerate the negative ion beam of 40A with D{sup -} at 1 MeV for 3600 sec. In order to realize the beam source, design and R and D works are being developed in many institutions under the coordination of ITER organization. The development of the key issues of the ion source including source plasma uniformity, suppression of co-extracted electron in D beam operation and also after the long beam duration time of over a few 100 sec, is progressed mainly in IPP with the facilities of BATMAN, MANITU and RADI. In the near future, ELISE, that will be tested the half size of the ITER ion source, will start the operation in 2011, and then SPIDER, which demonstrates negative ion production and extraction with the same size and same structure as the ITER ion source, will start the operation in 2014 as part of the NBTF. The development of the accelerator is progressed mainly in JAEA with the MeV test facility, and also the computer simulation of beam optics also developed in JAEA, CEA and RFX. The full ITER heating and current drive beam performance will be demonstrated in MITICA, which will start operation in 2016 as part of the NBTF.

  4. Design of the DEMO Fusion Reactor Following ITER

    PubMed Central

    Garabedian, Paul R.; McFadden, Geoffrey B.

    2009-01-01

    Runs of the NSTAB nonlinear stability code show there are many three-dimensional (3D) solutions of the advanced tokamak problem subject to axially symmetric boundary conditions. These numerical simulations based on mathematical equations in conservation form predict that the ITER international tokamak project will encounter persistent disruptions and edge localized mode (ELMS) crashes. Test particle runs of the TRAN transport code suggest that for quasineutrality to prevail in tokamaks a certain minimum level of 3D asymmetry of the magnetic spectrum is required which is comparable to that found in quasiaxially symmetric (QAS) stellarators. The computational theory suggests that a QAS stellarator with two field periods and proportions like those of ITER is a good candidate for a fusion reactor. For a demonstration reactor (DEMO) we seek an experiment that combines the best features of ITER, with a system of QAS coils providing external rotational transform, which is a measure of the poloidal field. We have discovered a configuration with unusually good quasisymmetry that is ideal for this task.

  5. Design Evolution and Analysis of the ITER Cryostat Support System

    NASA Astrophysics Data System (ADS)

    Xie, Han; Song, Yuntao; Wang, Songke

    2015-12-01

    The cryostat is a vacuum tight container enveloping the entire basic systems of the ITER tokamak machine, including a vacuum vessel, a superconducting magnet and thermal shield etc. It is evacuated to a pressure of 10-4 Pa to limit the heat transfer via gas conduction and convection to the cryogenically cooled components. Another important function of cryostat is to support all the loads from the tokamak to the concrete floor of the pit by its support system during different operational regimes and accident scenarios. This paper briefly presents the design evolution and associated analysis of the cryostat support system and the structural interface with the building.

  6. Design of Matching Optics Unit (MOU) for coaxial ITER gyrotron

    SciTech Connect

    Jin, Jianbo; Gantenbein, Gerd; Kern, Stefan; Rzesnicki, Tomasz; Thumm, Manfred

    2011-07-01

    The paper presents the design of a MOU for the coaxial ITER gyrotron. Corrugated waveguides are used to transmit the high power mm-waves generated by gyrotrons to the plasma Electron Cyclotron Resonance Heating (ECRH) and Current Drive (CD). The MOU contains two focusing mirrors, which are used to convert the gyrotron output into a Gaussian distribution with optimal parameters to improve the coupling efficiency of the TEM{sub 00} Gaussian distribution to the HE{sub 11} mode of the corrugated wave guide. The calculation results reveal that the coupling efficiency of the Gaussian beam to the HE{sub 11} mode is approximately 96.33%. (author)

  7. THERMAL DESIGN OF THE ITER VACUUM VESSEL COOLING SYSTEM

    SciTech Connect

    Carbajo, Juan J; Yoder Jr, Graydon L; Kim, Seokho H

    2010-01-01

    RELAP5-3D models of the ITER Vacuum Vessel (VV) Primary Heat Transfer System (PHTS) have been developed. The design of the cooling system is described in detail, and RELAP5 results are presented. Two parallel pump/heat exchanger trains comprise the design one train is for full-power operation and the other is for emergency operation or operation at decay heat levels. All the components are located inside the Tokamak building (a significant change from the original configurations). The results presented include operation at full power, decay heat operation, and baking operation. The RELAP5-3D results confirm that the design can operate satisfactorily during both normal pulsed power operation and decay heat operation. All the temperatures in the coolant and in the different system components are maintained within acceptable operating limits.

  8. Progress in the Design and Development of the ITER Low-Field Side Reflectometer (LFSR) System

    NASA Astrophysics Data System (ADS)

    Doyle, E. J.; Wang, G.; Peebles, W. A.; US LFSR Team

    2015-11-01

    The US has formed a team, comprised of personnel from PPPL, ORNL, GA and UCLA, to develop the LFSR system for ITER. The LFSR system will contribute to the measurement of a number of plasma parameters on ITER, including edge plasma electron density profiles, monitor Edge Localized Modes (ELMs) and L-H transitions, and provide physics measurements relating to high frequency instabilities, plasma flows, and other density transients. An overview of the status of design activities and component testing for the system will be presented. Since the 2011 conceptual design review, the number of microwave transmission lines (TLs) and antennas has been reduced from twelve (12) to seven (7) due to space constraint in the ITER Tokamak Port Plug. This change has required a reconfiguration and recalculation of the performance of the front-end antenna design, which now includes use of monostatic transmission lines and antennas. Work supported by US ITER/PPPL Subcontracts S013252-C and S012340, and PO 4500051400 from GA to UCLA.

  9. Experimental study on subaperture testing with iterative triangulation algorithm.

    PubMed

    Yan, Lisong; Wang, Xiaokun; Zheng, Ligong; Zeng, Xuefeng; Hu, Haixiang; Zhang, Xuejun

    2013-09-23

    Applying the iterative triangulation stitching algorithm, we provide an experimental demonstration by testing a Φ120 mm flat mirror, a Φ1450 mm off-axis parabolic mirror and a convex hyperboloid mirror. By comparing the stitching results with the self-examine subaperture, it shows that the reconstruction results are in consistent with that of the subaperture testing. As all the experiments are conducted with a 5-dof adjustment platform with big adjustment errors, it proves that using the above mentioned algorithm, the subaperture stitching can be easily performed without a precise positioning system. In addition, with the algorithm, we accomplish the coordinate unification between the testing and processing that makes it possible to guide the processing by the stitching result. PMID:24104151

  10. The cryogenic system for ITER CC superconducting conductor test facility

    NASA Astrophysics Data System (ADS)

    Peng, Jinqing; Wu, Yu; Liu, Huajun; Shi, Yi; Chen, Jinglin; Ren, Zhibin

    2011-01-01

    This paper describes the cryogenic system of the International Thermonuclear Experimental Reactor (ITER) Correction Coils (CC) test facility, which consists of a 500 W/4.5 K helium refrigerator, a 50 kA superconducting transformer cryostat (STC) and a background field magnet cryostat (BFMC). The 500 W/4.5 K helium refrigerator synchronously produces both the liquid helium (LHe) and supercritical helium (SHe). The background field magnet and the primary coil of the superconducting transformer (PCST) are cooled down by immersing into 4.2 K LHe. The secondary Cable-In-Conduit Conductor (CICC) coil of the superconducting transformer (SCST), superconducting joints and the testing sample of ITER CC are cooled down by forced-flow supercritical helium. During the commissioning experiment, all the superconducting coils were successfully translated into superconducting state. The background field magnet was fully cooled by immersing it into 4.2 K LHe and generated a maximal background magnetic field of 6.96 T; the temperature of transformer coils and current leads was reduced to 4.3 K; the inlet temperature of SHe loop was 5.6 K, which can meet the cooling requirements of CIC-Conductor and joint boxes. It is noted that a novel heat cut-off device for High Temperature Superconducting (HTS) binary current leads was introduced to reduce the heat losses of transformer cryostat.

  11. Tritium processing system for the ITER Li/V blanket test module

    SciTech Connect

    Sze, D.K.; Hua, T.Q.; Abdou, M.A.; Dagher, M.A.; Waganer, L.M.

    1997-04-01

    The purpose of the ITER Blanket Testing Module is to test the operating and performance of candidate blanket concepts under a real fusion environment. To assure fuel self-sufficiency the tritium breeding, recovery and processing have to be demonstrated. The tritium produced in the blanket has to be processed to a purity which can be used for refueling. All these functions need to be accomplished so that the tritium system can be scaled to a commercial fusion power plant from a safety and reliability point of view. This paper summarizes the tritium processing steps, the size of the equipment, power requirements, space requirements, etc. for a self-cooled lithium blanket. This information is needed for the design and layout of the test blanket ancillary system and to assure that the ITER guidelines for remote handling of ancillary equipment can be met.

  12. Metamorphic manipulating mechanism design for MCCB using index reduced iteration

    NASA Astrophysics Data System (ADS)

    Xu, Jinghua; Zhang, Shuyou; Zhao, Zhen; Lin, Xiaoxia

    2013-03-01

    The present research on moulded case circuit breaker(MCCB) focuses on the enhancement of current-limiting interrupting performance during short circuit, overload, under voltage and phase failure, involving electrics, magnetic, mechanics, thermal, material, friction, arc extinguishing, impact vibration, skin effect, etc. The rigid-flexible coupling of the parts and components of the metamorphic manipulating mechanism in multi-fields leads to the non-rigid, high frequency, high damping, singularity of the Euler-Lagrange equations which represents the multi-body dynamics. The small step iteration which is used for obtaining the instantaneous and short time critical interrupting performance of metamorphic mechanism appears inaccuracy. It is difficult to realize top-down design by existing CAD systems. Therefore, a metamorphic manipulating mechanism design method for MCCB using index reduced iteration(IRI) is put forward. The metamorphic manipulating mechanism of MCCB is decomposed into three mechanisms: main switch connector mechanism, electromagnet-drawbar-jump buckle mechanism, and bimetallic strip-drawbar mechanism, which is respectively described by electro-dynamic force, electromagnet force, and bimetallic strip force. The dummy part(virtual rigid) without moment of inertia and mass is employed as intermediate to join the flexible body and rigid body. The model of rigid-flexible coupling metamorphic mechanism multi-body dynamics is built. The differential algebraic equations(DAEs) of the multibody dynamics model are converted to pure ordinary differential equations(ODEs) by coordinate partition. Order reduced integration with multi-step and variable step-size is preceded based on IRI. The non-linear algebraic equations are solved in each integration step by Newton-Rapson iteration. There is no ill-condition and singularity of Jacobian matrix when step size reduces to zero. The independent prototype design system using ACIS R13, HOOPS V11.0 and Visual C++.NET 2003

  13. Combined and Iterative Use of Computational Design and Directed Evolution for Protein-Ligand Binding Design.

    PubMed

    Wang, Meng; Zhao, Huimin

    2016-01-01

    The advantages of computational design and directed evolution are complementary, and only through combined and iterative use of both approaches, a daunting task such as protein-ligand interaction design, can be achieved efficiently. Here, we describe a systematic strategy to combine structure-guided computational design, iterative site saturation mutagenesis, and yeast two-hybrid system (Y2H)-based phenotypic screening to engineer novel and orthogonal interactions between synthetic ligands and human estrogen receptor α (hERα) for the development of novel gene switches. PMID:27094289

  14. DESIGN OF THE ITER IN-VESSEL COILS

    SciTech Connect

    Neumeyer, C; Bryant, L; Chrzanowski, J; Feder, R; Gomez, M; Heitzenroeder, P; Kalish, M; Lipski, A; Mardenfeld, M; Simmons, R; Titus, P; Zatz, I; Daly, E; Martin, A; Nakahira, M; Pillsbury, R; Feng, J; Bohm, T; Sawan, M; Stone, H; Griffiths, I; Schaffer, M

    2010-11-27

    The ITER project is considering the inclusion of two sets of in-vessel coils, one to mitigate the effect of Edge Localized Modes (ELMs) and another to provide vertical stabilization (VS). The in-vessel location (behind the blanket shield modules, mounted to the vacuum vessel inner wall) presents special challenges in terms of nuclear radiation (~3000 MGy) and temperature (100oC vessel during operations, 200oC during bakeout). Mineral insulated conductors are well suited to this environment but are not commercially available in the large cross section required. An R&D program is underway to demonstrate the production of mineral insulated (MgO or Spinel) hollow copper conductor with stainless steel jacketing needed for these coils. A preliminary design based on this conductor technology has been developed and is presented herein.

  15. Primary Design and Analysis of Feeder for ITER Poloidal Field

    NASA Astrophysics Data System (ADS)

    Lei, Mingzhun; Song, Yuntao; Liu, Sumei; Lu, Kun; Wang, Zhongwei

    2011-10-01

    An electromagnetic (EM) analytic model for the PF feeder, applied to ITER and needed to convey the cryogenic supply and electrical power to the PF magnets, was built up. The magnetic flux density and the EM force under the worst conditions with the maximum working current in each coil were then calculated. Based on the EM analysis and theoretical calculation, the relationship between the busbar stress and the distance of neighbouring busbar supports was obtained, which provides an approach to optimize the design of the busbar supports. In order to check the feasibility of the PF feeder structure, a finite element model was built up and the ANSYS code was applied to analyze the stress and displacement. The numerical results show that the stress of the PF feeder is within the allowable limits and the structure is feasible.

  16. Status of the design of the ITER ECE diagnostic

    SciTech Connect

    Taylor, G.; Austin, M. E.; Beno, J. H.; Danani, S.; Feder, R.; Hesler, J. L.; Hubbard, A. E.; Johnson, D. W.; Kumar, R.; Pandya, H. K. B.; Roman, C.; Rowan, W. L.; Udintsev, V.; Vayakis, G.; Walsh, M.; Kubo, S.

    2015-03-12

    In this study, the baseline design for the ITER electron cyclotron emission (ECE) diagnostic has entered the detailed preliminary design phase. Two plasma views are planned, a radial view and an oblique view that is sensitive to distortions in the electron momentum distribution near the average thermal momentum. Both views provide high spatial resolution electron temperature profiles when the momentum distribution remains Maxwellian. The ECE diagnostic system consists of the front-end optics, including two 1000 K calibration sources, in equatorial port plug EP9, the 70-1000 GHz transmission system from the front-end to the diagnostics hall, and the ECE instrumentation in the diagnostics hall. The baseline ECE instrumentation will include two Michelson interferometers that can simultaneously measure ordinary and extraordinary mode ECE from 70 to 1000 GHz, and two heterodyne radiometer systems, covering 122-230 GHz and 244-355 GHz. Significant design challenges include 1) developing highly-reliable 1000 K calibration sources and the associated shutters/mirrors, 2) providing compliant couplings between the front-end optics and the polarization splitter box that accommodate displacements of the vacuum vessel during plasma operations and bake out, 3) protecting components from damage due to stray ECH radiation and other intense millimeter wave emission and 4) providing the low-loss broadband transmission system.

  17. Status of the design of the ITER ECE diagnostic

    DOE PAGESBeta

    Taylor, G.; Austin, M. E.; Beno, J. H.; Danani, S.; Ellis, R. F.; Feder, R.; Hesler, J. L.; Hubbard, A. E.; Johnson, D. W.; Kumar, R.; et al

    2015-03-12

    In this study, the baseline design for the ITER electron cyclotron emission (ECE) diagnostic has entered the detailed preliminary design phase. Two plasma views are planned, a radial view and an oblique view that is sensitive to distortions in the electron momentum distribution near the average thermal momentum. Both views provide high spatial resolution electron temperature profiles when the momentum distribution remains Maxwellian. The ECE diagnostic system consists of the front-end optics, including two 1000 K calibration sources, in equatorial port plug EP9, the 70-1000 GHz transmission system from the front-end to the diagnostics hall, and the ECE instrumentation inmore » the diagnostics hall. The baseline ECE instrumentation will include two Michelson interferometers that can simultaneously measure ordinary and extraordinary mode ECE from 70 to 1000 GHz, and two heterodyne radiometer systems, covering 122-230 GHz and 244-355 GHz. Significant design challenges include 1) developing highly-reliable 1000 K calibration sources and the associated shutters/mirrors, 2) providing compliant couplings between the front-end optics and the polarization splitter box that accommodate displacements of the vacuum vessel during plasma operations and bake out, 3) protecting components from damage due to stray ECH radiation and other intense millimeter wave emission and 4) providing the low-loss broadband transmission system.« less

  18. Status of the design of the ITER ECE diagnostic

    NASA Astrophysics Data System (ADS)

    Taylor, G.; Austin, M. E.; Beno, J. H.; Danani, S.; Ellis, R. F.; Feder, R.; Hesler, J. L.; Hubbard, A. E.; Johnson, D. W.; Kumar, R.; Kumar, S.; Kumar, V.; Ouroua, A.; Pandya, H. K. B.; Phillips, P. E.; Roman, C.; Rowan, W. L.; Udintsev, V.; Vayakis, G.; Walsh, M.

    2015-03-01

    The baseline design for the ITER electron cyclotron emission (ECE) diagnostic has entered the detailed preliminary design phase. Two plasma views are planned, a radial view and an oblique view that is sensitive to distortions in the electron momentum distribution near the average thermal momentum. Both views provide high spatial resolution electron temperature profiles when the momentum distribution remains Maxwellian. The ECE diagnostic system consists of the front-end optics, including two 1000 K calibration sources, in equatorial port plug EP9, the 70-1000 GHz transmission system from the front-end to the diagnostics hall, and the ECE instrumentation in the diagnostics hall. The baseline ECE instrumentation will include two Michelson interferometers that can simultaneously measure ordinary and extraordinary mode ECE from 70 to 1000 GHz, and two heterodyne radiometer systems, covering 122-230 GHz and 244-355 GHz. Significant design challenges include 1) developing highly-reliable 1000 K calibration sources and the associated shutters/mirrors, 2) providing compliant couplings between the front-end optics and the polarization splitter box that accommodate displacements of the vacuum vessel during plasma operations and bake out, 3) protecting components from damage due to stray ECH radiation and other intense millimeter wave emission and 4) providing the low-loss broadband transmission system.

  19. Design Performance of Front Steering-Type Electron Cyclotron Launcher for ITER

    SciTech Connect

    Takahashi, K.; Imai, T.; Kobayashi, N.; Sakamoto, K.; Kasugai, A.; Hayakawa, A.; Mori, S.; Mohri, K.

    2005-01-15

    The performance of a front steering (FS)-type electron cyclotron launcher designed for the International Thermonuclear Experimental Reactor (ITER) is evaluated with a thermal, electromagnetic, and nuclear analysis of the components; a mechanical test of a spiral tube for the steering mirror; and a rotational test of bearings. The launcher consists of a front shield and a launcher plug where three movable optic mirrors to steer incident multimegawatt radio-frequency beam power, waveguide components, nuclear shields, and vacuum windows are installed. The windows are located behind a closure plate to isolate the transmission lines from the radioactivated circumstance (vacuum vessel). The waveguide lines of the launcher are doglegged to reduce the direct neutron streaming toward the vacuum windows and other components. The maximum stresses on the critical components such as the steering mirror, its cooling tube, and the front shield are less than their allowable stresses. It was also identified that the stress on the launcher, which yielded from electromagnetic force caused by plasma disruption, was a little larger than the criteria, and a modification of the launcher plug structure was necessary. The nuclear analysis result shows that the neutron shield capability of the launcher satisfies the shield criteria of the ITER. It concludes that the design of the FS launcher is generally suitable for application to the ITER.

  20. TRANSP Tests Of TGLF and Predictions For ITER

    SciTech Connect

    none,; Budny, Robert; Yuan, Xingqiu

    2014-02-26

    Gyro kinetic simulations of turbulence capture some of the features observed in transport, fluctuations, and correlations measured in tokamak plasmas. These codes calculations are CPU intensive, and are not practical for incorporation in present time-dependant transport codes, so reduced models based on these gyro kinetic codes are being used. An example is the TGLF model [1] which is a quasilinear gyrofluid model calibrated to nonlinear results from the GYRO code [2]. Recently TGLF has been incorporated into TRANSP. Analysis of experimental data using TRANSP with such models provides fundamental understanding of turbulent transport. Predictions of ITER performance with various plasma scenarios using such models are useful for optimizing design and for exposing issues that can be addressed in present experiments and theory. For instance, which combinations of heating, torquing, and current drive are optimal. Another application is for nuclear licensing (e.g. system integrity, neutron rates). Others are generating inputs for design of diagnostic systems and for theoretical studies. An example of the later is Alfv´en Eigenmode and AE-induced loss of fast ions. The beam ion distribution can either enhance or reduce the alpha pressure drive of the AE instability. The AE instability can cause dangerous amounts of fast ion losses, as was seen in TFTR.

  1. Design and Analysis of the ITER Vertical Stability Coils

    SciTech Connect

    Peter H. Titus, et. al.

    2012-09-06

    The ITER vertical stability (VS) coils have been developed through the preliminary design phase by Princeton Plasma Physics Laboratory (PPPL). Final design, prototyping and construction will be carried out by the Chinese Participant Team contributing lab, Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP). The VS coils are a part of the in-vessel coil systems which include edge localized mode (ELM) coils as well as the VS coils. An overview of the ELM coils is provided in another paper at this conference. 15 The VS design employs four turns of stainless steel jacketed mineral insulated copper (SSMIC) conductors The mineral insulation is Magnesium Oxide (MgO). Joule and nuclear heat is removed by water flowing at 3 m/s through the hollow copper conductor. A key element in the design is that slightly elevated temperatures in the conductor and its support spine during operation impose compressive stresses that mitigate fatigue damage. Away from joints, and break-outs, conductor thermal stresses are low because of the axisymmetry of the winding (there are no corner bends as in the ELM coils).The 120 degree segment joint, and break-out or terminal regions are designed with similar but imperfect constraint compared with the ring coil portion of the VS. The support for the break-out region is made from a high strength copper alloy, CuCrZr. This is needed to conduct nuclear heat to the actively cooled conductor and to the vessel wall. The support "spine" for the ring coil portion of the VS is 316 stainless steel, held to the vessel with preloaded 718 bolts. Lorentz loads resulting from normal operating loads, disruption loads and loads from disruption currents in the support spine shared with vessel, are applied to the VS coil. The transmission of the Lorentz and thermal expansion loads from the "spine" to the vessel rails is via friction augmented with a restraining "lip" to ensure the coil frictional slip is minimal and acceptable. Stresses in the coil

  2. Iterative usability testing: ensuring a usable clinical workstation.

    PubMed

    Coble, J M; Karat, J; Orland, M J; Kahn, M G

    1997-01-01

    Once the users' needs are determined, how does one ensure that the resulting software meets the users' needs? This paper describes our application of a process, usability testing, that is used to measure the usability of systems as well as guide modifications to address usability problems. Usability testing is not a method to elicit opinions about software, but rather a method to determine scientifically a product's level of usability. Our application of usability testing is designed to determine the current usability level of a workstation designed for the clinician's use, determine specific problems with the Clinical Workstation's usability, and then evaluate the effectiveness of changes that address those problems. PMID:9357724

  3. Status of the JET ITER-Like Antenna High-Power Prototype Test Program

    SciTech Connect

    Goulding, R.H.; Baity, F.W.; Fadnek, A.; Freudenberg, K.D.; Nelson, B.E.; Rasmussen, D.A.; Sparks, D.O.; Durodie, F.; Nightingale, M.; Walton, R.

    2005-09-26

    Previous tests of a High Power Prototype (HPP) comprising one quadrant of the JET ITER-Like ICRF Antenna have indicated the need for some design modifications in order to achieve 10 s pulses coupling the full design power (7.1 MW) into the reference plasma load (R' = 4 {omega}/m). These modifications have now been made to the HPP, as well as to the design of the ITER-Like Antenna itself. In particular, maximum current densities have been reduced or otherwise accommodated in key areas. New current straps for the HPP have been fabricated from stereo-lithography-based investment castings. Design modifications to the antenna enclosure have also been implemented. This work has been materially assisted through the use of CST Microwave Studio (MWS), a commercially available 3-D electromagnetic modeling package. Essentially the full engineering CAD model of the HPP current straps and antenna enclosure has been ex-ported from ProE to MWS. Computed current density profiles have been introduced into an ANSYS thermal model. These activities will be discussed, as well as the current status of the HPP test program.

  4. Computational study of the electromagnetic forces and torques on different ITER first wall designs.

    SciTech Connect

    Kotulski, Joseph Daniel; Garde, Joseph Maurico; Coats, Rebecca Sue; Pasik, Michael Francis; Ulrickson, Michael Andrew

    2009-06-01

    An electromagnetic analysis is performed on different first wall designs for the ITER device. The electromagnetic forces and torques present due to a plasma disruption event are calculated and compared for the different designs.

  5. ITER EDA project status

    NASA Astrophysics Data System (ADS)

    Chuyanov, V. A.

    1996-10-01

    The status of the ITER design is as presented in the Interim Design Report accepted by the ITER council for considerations by ITER parties. Physical and technical parameters of the machine, conditions of operation of main nuclear systems, corresponding design and material choices are described, with conventional materials selected. To fully utilize the safety and economical potential of fusion advanced materials are necessary. ITER shall and can be built with materials already available. The ITER project and advanced fusion material developments can proceed in parallel. The role of ITER is to establish (experimentally) requirements to these materials and to provide a test bed for their final qualification in fusion reactor environment. To achieve this goal, the first wall/blanket modules test program is foreseen.

  6. EU contribution to the test and analysis of the ITER poloidal field conductor insert and the central solenoid model coil

    NASA Astrophysics Data System (ADS)

    Zanino, R.; Bagnasco, M.; Ciazynski, D.; Lacroix, B.; van Lanen, E. P. A.; Nicollet, S.; Nijhuis, A.; Savoldi Richard, L.; Sborchia, C.; Torre, A.; Vostner, A.; Zani, L.

    2009-08-01

    The PFCI is a single-layer solenoid wound from a 45 m long ITER-type NbTi dual-channel cable-in-conduit conductor, designed to be representative of the one currently proposed for the ITER PF1&6 coils. The PFCI, installed in the bore of the ITER central solenoid model coil (CSMC) at JAEA Naka, Japan, and well instrumented from both the thermal hydraulic and the electromagnetic points of view, has been successfully tested in June-August 2008. The test concentrated on DC performance (current sharing temperature and critical current measurements) and AC loss measurements. The results of the analysis of those measurements are reported in the paper, with particular attention to the comparison with the PFCI short sample, which was previously tested in the SULTAN facility. The evolution of the DC performance of the CSMC is also discussed.

  7. A design study for the ECH launcher for ITER

    SciTech Connect

    Prater, R.; Grunloh, H.J.; Moeller, C.P.; Doane, J.L.; Olstad, R.A.; Makowski, M.A.; Harvey, R.W.

    1997-04-01

    The Design Description Document for ITER calls for 50 MW of electron cyclotron power at a frequency of 170 GHz, upgradeable to 100 MW. This power is intended to heat the plasma from Ohmic temperatures to ignition, in concert with power from some combination of neutral injection and/or ICRF heating. The second major application of ECH power is current drive. In the advanced steady-state scenarios, the total current is 12 to 16 MA, of which 75% is driven by bootstrap effects. The current drive requirement is 2 to 3 MA at a relative minor radius of 0.7, plus a small current near the center of the discharge. ECH power is also used for plasma initiation and startup, using a separate ECH system of two fixed frequencies between 90 to 140 GHz and total power to 6 MW. Suppression or control of MHD instabilities like neoclassical tearing modes, sawteeth, ELMs, and locked modes are also important objectives for the ECH systems. However, the launching and power characteristics of the ECH for these applications is highly specialized. The ability to modulate at high frequency (at least several tens of kHz), the ability to redirect the beams with precision at relatively high speed, and the requirement that the stabilization be carried out at the same time as the bulk heating and current drive imply that separate and specialized ECH systems are needed for the stabilization activities. For example, for stabilization of neoclassical tearing modes current must be driven inside the islands near the q = 2 surface. If this is done near the outboard mid plane, a system with optimized frequency might be much more effective than what could be done with the main 170 GHz system. This paper does not treat the launchers for the stabilization systems.

  8. Engineering, Manufacture and Preliminary Testing of the ITER Toroidal Field (TF) Magnet Helium Cold Circulator

    NASA Astrophysics Data System (ADS)

    Rista, P. E. C.; Shull, J.; Sargent, S.

    2015-12-01

    The ITER cryodistribution system provides the supercritical Helium (SHe) forced flow cooling to the magnet system using cold circulators. The cold circulators are located in each of five separate auxiliary cold boxes planned for use in the facility. Barber-Nichols Inc. has been awarded a contract from ITER-India for engineering, manufacture and testing of the Toroidal Field (TF) Magnet Helium Cold Circulator. The cold circulator will be extensively tested at Barber-Nichols’ facility prior to delivery for qualification testing at the Japan Atomic Energy Agency's (JAEA) test facility at Naka, Japan. The TF Cold Circulator integrates features and technical requirements which Barber-Nichols has utilized when supplying helium cold circulators worldwide over a period of 35 years. Features include a vacuum-jacketed hermetically sealed design with a very low helium leak rate, a heat shield for use with both nitrogen & helium cold sources, a broad operating range with a guaranteed isentropic efficiency over 70%, and impeller design features for high efficiency. The cold circulator will be designed to meet MTBM of 17,500 hours and MTBF of 36,000 hours. Vibration and speed monitoring are integrated into a compact package on the rotating assembly with operation and health monitoring in a multi-drop PROFIBUS communication environment using an electrical cabinet with critical features and full local and network PLC interface and control. For the testing in Japan and eventual installation in Europe, the cold circulator must be certified to the Japanese High Pressure Gas Safety Act (JHPGSA) and CE marked in compliance with the European Pressure Equipment Directive (PED) including Essential Safety Requirements (ESR). The test methodology utilized at Barber-Nichols’ facility and the resulting test data, validating the high efficiency of the TF Cold Circulator across a broad operating range, are important features of this paper.

  9. Evolution of the Design of Cold Mass Support for the ITER Magnet Feeder System

    NASA Astrophysics Data System (ADS)

    Lu, Kun; Song, Yuntao; Niu, Erwu; Zhou, Tinzhi; Wang, Zhongwei; Chen, Yonghua; Zhu, Yinfeng

    2013-02-01

    This paper presents the evolution of the design of cold mass support for the ITER magnet feeder system. The glass fibers in the cylinder and the flanges of the normal G10 support are discontinuous in the preliminary design. The heat load of this support from the analysis is only 4.86 W. However, the mechanical test of the prototype showed that it can only endure 9 kN lateral force, which is significantly less than the required 20 kN. So, the configuration of the glass fibers in the cylinders and flanges of this G10 support are modified by changing it to a continuous and knitted type to reinforce the support, and then a new improved prototype is manufactured and tested. It could endure 15 kN lateral forces this time, but still not meet the required 20 kN. Finally, the SS316LN material is chosen for the cold mass supports. The analysis results show that it is safe under 20 kN lateral forces with the heat load increased to 14.8 W. Considering the practical application, the requirements of strength is of primary importance. So, this SS316LN cold mass support is acceptable for the ITER magnet feeder system. On the other hand, the design idea of using continuous and knitted glass fibers to reinforce the strength of a G10 support is a good reference for the case with a lower heat load and not too high Lorentz force.

  10. JPL-IDEAS - ITERATIVE DESIGN OF ANTENNA STRUCTURES

    NASA Technical Reports Server (NTRS)

    Levy, R.

    1994-01-01

    The Iterative DEsign of Antenna Structures (IDEAS) program is a finite element analysis and design optimization program with special features for the analysis and design of microwave antennas and associated sub-structures. As the principal structure analysis and design tool for the Jet Propulsion Laboratory's Ground Antenna and Facilities Engineering section of NASA's Deep Space Network, IDEAS combines flexibility with easy use. The relatively small bending stiffness of the components of large, steerable reflector antennas allows IDEAS to use pinjointed (three translational degrees of freedom per joint) models for modeling the gross behavior of these antennas when subjected to static and dynamic loading. This facilitates the formulation of the redesign algorithm which has only one design variable per structural element. Input data deck preparation has been simplified by the use of NAMELIST inputs to promote clarity of data input for problem defining parameters, user selection of execution and design options and output requests, and by the use of many attractive and familiar features of the NASTRAN program (in many cases, NASTRAN and IDEAS formatted bulk data cards are interchangeable). Features such as simulation of a full symmetric structure based on analyses of only half the structure make IDEAS a handy and efficient analysis tool, with many features unavailable in any other finite element analysis program. IDEAS can choose design variables such as areas of rods and thicknesses of plates to minimize total structure weight, constrain the structure weight to a specified value while maximizing a natural frequency or minimizing compliance measures, and can use a stress ratio algorithm to size each structural member so that it is at maximum or minimum stress level for at least one of the applied loads. Calculations of total structure weight can be broken down according to material. Center of gravity weight balance, static first and second moments about the center of

  11. Design of a DC Busbar for the ITER PF Converter

    NASA Astrophysics Data System (ADS)

    Guo, Bin; Song, Zhiquan; Xu, Liuwei; Zhang, Ming; Li, Jinchao; Jiang, Li; Fu, Peng; Wang, Min; Dong, Lin

    2014-04-01

    The DC busbar is an important component for the ITER PF converter module to connect the converter and the reactor. This paper analyzes different cross-sections and different thermodynamic properties under natural-cooling and water-cooling conditions, and simulation is carried out by the software of the finite element method (FEM). The result of the analysis shows that the water-cooling method is the better choice for the DC busbar.

  12. Object-oriented design of preconditioned iterative methods

    SciTech Connect

    Bruaset, A.M.

    1994-12-31

    In this talk the author discusses how object-oriented programming techniques can be used to develop a flexible software package for preconditioned iterative methods. The ideas described have been used to implement the linear algebra part of Diffpack, which is a collection of C++ class libraries that provides high-level tools for the solution of partial differential equations. In particular, this software package is aimed at rapid development of PDE-based numerical simulators, primarily using finite element methods.

  13. Conceptual design of a polarimetric Thomson scattering diagnostic in ITER

    NASA Astrophysics Data System (ADS)

    Giudicotti, L.; Bassan, M.; Orsitto, F. P.; Pasqualotto, R.; Kempenaars, M.; Flanagan, J.

    2016-01-01

    Polarimetric Thomson scattering (TS) is a novel diagnostic technique proposed as an alternative to conventional (spectral) TS, for the measurement of the electron temperature Te and density ne in very hot fusion plasmas. Contrary to spectral TS, which is based on the reconstruction of the Doppler broadened frequency spectrum, in polarimetric TS Te is determined from the depolarization of the scattered radiation. The technique is suitable for ITER, where it is expected to be competitive with conventional spectral TS for measurements in the highest Te range, specially in backward-like conditions with the scattering angle 90° ll θ <= 180°. In this paper we consider a hypothetical polarimetric TS diagnostic for ITER and evaluate its performance for the θ = 145° scattering condition typical of the core TS system and also for a different scattering geometry in which, using a tangential laser beam, the central region of the ITER plasma can be observed under a scattering angle θ ~ 75°. In both cases we calculate the expected errors on the measured Te and ne that can be obtained with a simple, two-channel polarimeter, and taking into account that only a fraction of the TS wavelength spectrum is detected. In both cases the expected performances are compared with those of the conventional spectral core TS diagnostic to determine the plasma conditions in which the polarimetric technique is more advantageous. A measurement of the depolarization effect of the TS radiation using the JET High Resolution TS system of JET is also discussed.

  14. Physics and technology in the ion-cyclotron range of frequency on Tore Supra and TITAN test facility: implication for ITER

    NASA Astrophysics Data System (ADS)

    Litaudon, X.; Bernard, J. M.; Colas, L.; Dumont, R.; Argouarch, A.; Bottollier-Curtet, H.; Brémond, S.; Champeaux, S.; Corre, Y.; Dumortier, P.; Firdaouss, M.; Guilhem, D.; Gunn, J. P.; Gouard, Ph.; Hoang, G. T.; Jacquot, J.; Klepper, C. C.; Kubič, M.; Kyrytsya, V.; Lombard, G.; Milanesio, D.; Messiaen, A.; Mollard, P.; Meyer, O.; Zarzoso, D.

    2013-08-01

    To support the design of an ITER ion-cyclotron range of frequency heating (ICRH) system and to mitigate risks of operation in ITER, CEA has initiated an ambitious Research & Development program accompanied by experiments on Tore Supra or test-bed facility together with a significant modelling effort. The paper summarizes the recent results in the following areas: Comprehensive characterization (experiments and modelling) of a new Faraday screen concept tested on the Tore Supra antenna. A new model is developed for calculating the ICRH sheath rectification at the antenna vicinity. The model is applied to calculate the local heat flux on Tore Supra and ITER ICRH antennas. Full-wave modelling of ITER ICRH heating and current drive scenarios with the EVE code. With 20 MW of power, a current of ±400 kA could be driven on axis in the DT scenario. Comparison between DT and DT(3He) scenario is given for heating and current drive efficiencies. First operation of CW test-bed facility, TITAN, designed for ITER ICRH components testing and could host up to a quarter of an ITER antenna. R&D of high permittivity materials to improve load of test facilities to better simulate ITER plasma antenna loading conditions.

  15. Physics and technology in the ion-cyclotron range of frequency on Tore Supra and TITAN test facility: implication for ITER

    SciTech Connect

    Litaudon, X; Bernard, J. M.; Colas, L.; Dumont, R. J.; Argouarch, A.; Bottollier-Curtet, H.; Bremond, S.; Champeaux, S.; Corre, Y.; Dumortier, P.; Firdaouss, M.; Guilhem, D.; Gunn, J. P.; Gouard, Ph.; Hoang, G T; Jacquot, Jonathan; Klepper, C Christopher; Kubic, M.; Kyrytsya, V.; Lombard, G.; Milanesio, D.; Messiaen, A.; Mollard, P.; Meyer, O.; Zarzoso, D.

    2013-01-01

    To support the design of an ITER ion-cyclotron range of frequency heating (ICRH) system and to mitigate risks of operation in ITER, CEA has initiated an ambitious Research & Development program accompanied by experiments on Tore Supra or test-bed facility together with a significant modelling effort. The paper summarizes the recent results in the following areas: Comprehensive characterization (experiments and modelling) of a new Faraday screen concept tested on the Tore Supra antenna. A new model is developed for calculating the ICRH sheath rectification at the antenna vicinity. The model is applied to calculate the local heat flux on Tore Supra and ITER ICRH antennas. Full-wave modelling of ITER ICRH heating and current drive scenarios with the EVE code. With 20 MW of power, a current of 400 kA could be driven on axis in the DT scenario. Comparison between DT and DT(3He) scenario is given for heating and current drive efficiencies. First operation of CW test-bed facility, TITAN, designed for ITER ICRH components testing and could host up to a quarter of an ITER antenna. R&D of high permittivity materials to improve load of test facilities to better simulate ITER plasma antenna loading conditions.

  16. Physics design of the injector source for ITER neutral beam injector (invited)

    SciTech Connect

    Antoni, V.; Agostinetti, P.; Aprile, D.; Chitarin, G.; Fonnesu, N.; Marconato, N.; Pilan, N.; Sartori, E.; Serianni, G. Veltri, P.; Cavenago, M.

    2014-02-15

    Two Neutral Beam Injectors (NBI) are foreseen to provide a substantial fraction of the heating power necessary to ignite thermonuclear fusion reactions in ITER. The development of the NBI system at unprecedented parameters (40 A of negative ion current accelerated up to 1 MV) requires the realization of a full scale prototype, to be tested and optimized at the Test Facility under construction in Padova (Italy). The beam source is the key component of the system and the design of the multi-grid accelerator is the goal of a multi-national collaborative effort. In particular, beam steering is a challenging aspect, being a tradeoff between requirements of the optics and real grids with finite thickness and thermo-mechanical constraints due to the cooling needs and the presence of permanent magnets. In the paper, a review of the accelerator physics and an overview of the whole R and D physics program aimed to the development of the injector source are presented.

  17. Iterative method of baffle design for modified Ritchey-Chretien telescope.

    PubMed

    Senthil Kumar, M; Narayanamurthy, C S; Kiran Kumar, A S

    2013-02-20

    We developed a baffle design method based on a combination of the results of optical design software and analytical relations formulated herein. The method finds the exact solution for baffle parameters of a modified Ritchey-Chretien telescope by iteratively solving the analytical relations using the actual ray coordinates of the telescope computed with the aid of optical design software. The baffle system so designed not only blocks the direct rays of stray light reaching the image plane but also provides minimum obscuration to imaging light. Based on the iterative method, we proposed a baffle design approach for a rectangular-image-format telescope. PMID:23434995

  18. Computer Designed Instruction & Testing.

    ERIC Educational Resources Information Center

    New Mexico State Univ., Las Cruces.

    Research findings on computer designed instruction and testing at the college level are discussed in 13 papers from the first Regional Conference on University Teaching at New Mexico State University. Titles and authors are as follows: "Don't Bother Me with Instructional Design, I'm Busy Programming! Suggestions for More Effective Educational…

  19. Detailed design of ex-vessel neutron yield monitor for ITER

    NASA Astrophysics Data System (ADS)

    Asai, K.; Iguchi, T.; Watanabe, K.; Kawarabayashi, J.; Nishitani, T.; Walker, C. I.

    2004-10-01

    Taking into consideration the latest design of the International Thermonuclear Experimental Reactor (ITER) main units, we have made the detailed design consideration for an ex-vessel neutron yield monitor to meet the ITER requirements. The monitoring system is constructed of four detector modules consisting of several 235U fission chambers with different sensitivities and graphite (or beryllium) neutron moderator. We also selected possible spaces in the diagnostic ports to install them at appropriate distances and neutron shielding effects from the plasma. Through Monte Carlo neutron transport calculations, it has been confirmed that the present system can cover all the neutron yields encountered in the ITER experiments including the in situ calibrations with a time resolution around 200 μs without detector replacement over the whole ITER experiments. This system can also be calibrated with 10% of required accuracies in a realistic 50 h of accumulation time using a DT neutron generator.

  20. Nuclear Safety Functions of ITER Gas Injection System Instrumentation and Control and the Concept Design

    NASA Astrophysics Data System (ADS)

    Yang, Yu; Maruyama, S.; Fossen, A.; Villers, F.; Kiss, G.; Zhang, Bo; Li, Bo; Jiang, Tao; Huang, Xiangmei

    2016-08-01

    The ITER Gas Injection System (GIS) plays an important role on fueling, wall conditioning and distribution for plasma operation. Besides that, to support the safety function of ITER, GIS needs to implement three nuclear safety Instrumentation and Control (I&C) functions. In this paper, these three functions are introduced with the emphasis on their latest safety classifications. The nuclear I&C design concept is briefly discussed at the end.

  1. Component tests for the ITER Ion Cyclotron Transmission Line and Matching System - Status and Plans

    NASA Astrophysics Data System (ADS)

    Goulding, R. H.; McCarthy, M. P.; Deibele, C. E.; Rasmussen, D. A.; Swain, D. W.; Barber, G. C.; Campbell, I. H.; Gray, S. L.; Moon, R. L.; Pesavento, P. V.; Sanabria, R. M.; Fredd, E.; Greenough, N.; Kung, C.

    2015-11-01

    New Z0 = 50 Ω gas-cooled component designs for the ITER Ion Cyclotron Heating and Current Drive System have been successfully tested at high RF power levels. They include two types featuring spoke-ring assembly (SRA) inner conductor supports: 20° elbows, and variable length assembly bellows, both achieving RF voltages > 35 kV peak, and currents ~ 760 A peak during quasi-steady state operation. The SRA utilizes mechanically preloaded fused quartz spokes, increasing lateral load handling capability. Components with SRA supports have been seismically tested, with no variation in low power electrical performance detected after testing. A 3 MW four-port switch has also been successfully tested at high RF power, and tests of a 6 MW hybrid power splitter are planned in the near future. Latest results will be presented. Plans for arc localization tests in a 60 m SRA transmission line run, and RF tests of Z0 = 50 Ω and Z0 = 20 Ω matching components with water-cooled inner conductors will also be discussed. This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.

  2. ITER Construction--Plant System Integration

    SciTech Connect

    Tada, E.; Matsuda, S.

    2009-02-19

    This brief paper introduces how the ITER will be built in the international collaboration. The ITER Organization plays a central role in constructing ITER and leading it into operation. Since most of the ITER components are to be provided in-kind from the member countries, integral project management should be scoped in advance of real work. Those include design, procurement, system assembly, testing, licensing and commissioning of ITER.

  3. Design studies for ITER x-ray diagnostics

    SciTech Connect

    Hill, K.W.; Bitter, M.; von Goeler, S.; Hsuan, H.

    1995-01-01

    Concepts for adapting conventional tokamak x-ray diagnostics to the harsh radiation environment of ITER include use of grazing-incidence (GI) x-ray mirrors or man-made Bragg multilayer (ML) elements to remove the x-ray beam from the neutron beam, or use of bundles of glass-capillary x-ray ``light pipes`` embedded in radiation shields to reduce the neutron/gamma-ray fluxes onto the detectors while maintaining usable x-ray throughput. The x-ray optical element with the broadest bandwidth and highest throughput, the GI mirror, can provide adequate lateral deflection (10 cm for a deflected-path length of 8 m) at x-ray energies up to 12, 22, or 30 keV for one, two, or three deflections, respectively. This element can be used with the broad band, high intensity x-ray imaging system (XIS), the pulseheight analysis (PHA) survey spectrometer, or the high resolution Johann x-ray crystal spectrometer (XCS), which is used for ion-temperature measurement. The ML mirrors can isolate the detector from the neutron beam with a single deflection for energies up to 50 keV, but have much narrower bandwidth and lower x-ray power throughput than do the GI mirrors; they are unsuitable for use with the XIS or PHA, but they could be used with the XCS; in particular, these deflectors could be used between ITER and the biological shield to avoid direct plasma neutron streaming through the biological shield. Graded-d ML mirrors have good reflectivity from 20 to 70 keV, but still at grazing angles (<3 mrad). The efficiency at 70 keV for double reflection (10 percent), as required for adequate separation of the x-ray and neutron beams, is high enough for PHA requirements, but not for the XIS. Further optimization may be possible.

  4. The performance test and analysis of the third and fourth China PF conductor for ITER

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Wu, Yu; Bruzzone, Pierluigi; Stepanov, Boris; Qin, Jinggang; Long, Feng

    2014-04-01

    The third Chinese PF conductor for ITER PF5 (PFCN3) and the fourth Chinese PF conductor for ITER PF2/3/4 (PFCN4) conductor in Phase II were manufactured in ASIPP and tested in the SULTAN facility. This paper introduces the PFCN3 and PFCN4 sample manufacture, including strand, sample preparation, current sharing temperature (Tcs), AC loss and Minimum Quench Energy (MQE) test performance of PFCN3 and PFCN4 conductors. The Tcs test result of PFCN4 conductor is consistent with the calculated result used the strand scaling and the Tcs test result of PFCN3 conductor is a little larger than calculated result, whose maximum difference is about 0.2 K. According to the SULTAN test result, the Tcs performance of both PFCN3 and PFCN4 conductor sample could meet the ITER requirement.

  5. Electromagnetic Analysis For The Design Of ITER Diagnostic Port Plugs During Plasma Disruptions

    SciTech Connect

    Zhai, Y

    2014-03-03

    ITER diagnostic port plugs perform many functions including structural support of diagnostic systems under high electromagnetic loads while allowing for diagnostic access to plasma. The design of diagnotic equatorial port plugs (EPP) are largely driven by electromagnetic loads and associate response of EPP structure during plasma disruptions and VDEs. This paper summarizes results of transient electromagnetic analysis using Opera 3d in support of the design activities for ITER diagnostic EPP. A complete distribution of disruption loads on the Diagnostic First Walls (DFWs). Diagnostic Shield Modules (DSMs) and the EPP structure, as well as impact on the system design integration due to electrical contact among various EPP structural components are discussed.

  6. Structural materials for ITER in-vessel component design

    NASA Astrophysics Data System (ADS)

    Kalinin, G.; Gauster, W.; Matera, R.; Tavassoli, A.-A. F.; Rowcliffe, A.; Fabritsiev, S.; Kawamura, H.

    1996-10-01

    The materials proposed for ITER in-vessel components have to exhibit adequate performance for the operating lifetime of the reactor or for specified replacement intervals. Estimates show that maximum irradiation dose to be up to 5-7 dpa (for 1 MWa/m 2 in the basic performance phase (BPP)) within a temperature range from 20 to 300°C. Austenitic SS 316LN-ITER Grade was defined as a reference option for the vacuum vessel, blanket, primary wall, pipe lines and divertor body. Conventional technologies and mill products are proposed for blanket, back plate and manifold manufacturing. HIPing is proposed as a reference manufacturing method for the primary wall and blanket and as an option for the divertor body. The existing data show that mechanical properties of HIPed SS are no worse than those of forged 316LN SS. Irradiation will result in property changes. Minimum ductility has been observed after irradiation in an approximate temperature range between 250 and 350°C, for doses of 5-10 dpa. In spite of radiation-induced changes in tensile deformation behavior, the fracture remains ductile. Irradiation assisted corrosion cracking is a concern for high doses of irradiation and at high temperatures. Re-welding is one of the critical issues because of the need to replace failed components. It is also being considered for the replacement of shielding blanket modules by breeding modules after the BPP. Estimates of radiation damage at the locations for re-welding show that the dose will not exceed 0.05 dpa (with He generation of 1 appm) for the manifold and 0.01 dpa (with He generation 0.1 appm) for the back plate for the BPP of ITER operation. Existing experimental data show that these levels will not result in property changes for SS; however, neutron irradiation and He generation promote crack formation in the heat affected zone during welding. Cu based alloys, DS-Cu (Glidcop A125) and PHCu CuCrZr bronze) are proposed as a structural materials for high heat flux

  7. Current status of final design and R&D for ITER blanket shield blocks in Korea

    NASA Astrophysics Data System (ADS)

    Ha, M. S.; Kim, S. W.; Jung, H. C.; Hwang, H. S.; Heo, Y. G.; Kim, D. H.; Ahn, H. J.; Lee, H. G.; Jung, K. J.

    2015-07-01

    The main function of the ITER blanket shield block (SB) is to provide nuclear shielding and support the first wall (FW) panel. It needs to accommodate all the components located on the vacuum vessel (in particular the in-vessel coils, blanket manifolds and the diagnostics). The conceptual, preliminary and final design reviews have been completed in the framework of the Blanket Integrated Product Team. The Korean Domestic Agency has successfully completed not only the final design activities, including thermo-hydraulic and thermo-mechanical analyses for SBs #2, #6, #8 and #16, but also the SB full scale prototype (FSP) pre-qualification program prior to issuing of the procurement agreement. SBs #2 and #6 are located at the in-board region of the tokamak. The pressure drop was less than 0.3 MPa and fully satisfied the design criteria. The thermo-mechanical stresses were also allowable even though the peak stresses occurred at nearby radial slit end holes, and their fatigue lives were evaluated over many more than 30 000 cycles. SB #8 is one of the most difficult modules to design, since this module will endure severe thermal loading not only from nuclear heating but also from plasma heat flux at uncovered regions by the FW. In order to resolve this design issue, the neutral beam shine-through module concept was applied to the FW uncovered region and it has been successfully verified as a possible design solution. SB #16 is located at the out-board central region of the tokamak. This module is under much higher nuclear loading than other modules and is covered by an enhanced heat flux FW panel. In the early design stage, many cooling headers on the front region were inserted to mitigate peak stresses near the access hole and radial slit end hole. However, the cooling headers on the front region needed to be removed in order to reduce the risk from cover welding during manufacturing. A few cooling headers now remain after efforts through several iterations to remove

  8. ITER Building Design (D230-B), Task No. 28. Final report

    SciTech Connect

    1995-12-01

    The International Thermonuclear Experimental Reactor (ITER) Project requires a set of buildings, each with its own distinct function, to support ITER`s mission. The Joint Central Team (JCT) has identified all the buildings in the set and has placed them in an efficient arrangement on the site. The JCT has developed a conceptual layout of each individual building. The buildings have been categorized into two main groups: (1) {open_quotes}Level 1 Buildings{close_quotes} which are on the construction schedule critical path and (2) {open_quotes}Level 2 Buildings{close_quotes} which, while important, are not on the critical path. The buildings are further categorized according to construction material, that is, {open_quotes}reinforced concrete{close_quotes} or {open_quotes}steel-frame on concrete slab{close_quotes}. This Report responds to the Project`s request to perform the initial structural steel design for all the {open_quotes}steel-frame on concrete slab{close_quotes} buildings. Of the twelve (12) {open_quotes}steel-frame on concrete slab{close_quotes} buildings, four (4) are Level 1 and eight (8) are Level 2 Buildings. This Report is a deliverable for the ITER Task Assignment entitled {open_quotes}ITER Buildings Design (D230-B){close_quotes}, also designated as Task No. 28. ITER U.S. Home Team Industrial Consortium members, Raytheon Engineers & Constructors (RE&C) and Stone & Webster Engineering Corporation (SWEC), teamed to perform Task 28. This task commenced in May 1995. It was performed in accordance with the design criteria specified by the ITER-JCT, San Diego Joint Work Site.

  9. Not All Wizards Are from Oz: Iterative Design of Intelligent Learning Environments by Communication Capacity Tapering

    ERIC Educational Resources Information Center

    Mavrikis, Manolis; Gutierrez-Santos, Sergio

    2010-01-01

    This paper presents a methodology for the design of intelligent learning environments. We recognise that in the educational technology field, theory development and system-design should be integrated and rely on an iterative process that addresses: (a) the difficulty to elicit precise, concise, and operationalized knowledge from "experts" and (b)…

  10. Transmission line component testing for the ITER Ion Cyclotron Heating and Current Drive System

    NASA Astrophysics Data System (ADS)

    Goulding, Richard; Bell, G. L.; Deibele, C. E.; McCarthy, M. P.; Rasmussen, D. A.; Swain, D. W.; Barber, G. C.; Barbier, C. N.; Cambell, I. H.; Moon, R. L.; Pesavento, P. V.; Fredd, E.; Greenough, N.; Kung, C.

    2014-10-01

    High power RF testing is underway to evaluate transmission line components for the ITER Ion Cyclotron Heating and Current Drive System. The transmission line has a characteristic impedance Z0 = 50 Ω and a nominal outer diameter of 305 mm. It is specified to carry up to 6 MW at VSWR = 1.5 for 3600 s pulses, with transient voltages up to 40 kV. The transmission line is actively cooled, with turbulent gas flow (N2) used to transfer heat from the inner to outer conductor, which is water cooled. High voltage and high current testing of components has been performed using resonant lines generating steady state voltages of 35 kV and transient voltages up to 60 kV. A resonant ring, which has operated with circulating power of 6 MW for 1 hr pulses, is being used to test high power, low VSWR operation. Components tested to date include gas barriers, straight sections of various lengths, and 90 degree elbows. Designs tested include gas barriers fabricated from quartz and aluminum nitride, and transmission lines with quartz and alumina inner conductor supports. The latest results will be presented. This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.

  11. Multiphysics Engineering Analysis for an Integrated Design of ITER Diagnostic First Wall and Diagnostic Shield Module Design

    SciTech Connect

    Zhai, Y.; Loesser, G.; Smith, M.; Udintsev, V.; Giacomin, T., T.; Khodak, A.; Johnson, D,; Feder, R,

    2015-07-01

    ITER diagnostic first walls (DFWs) and diagnostic shield modules (DSMs) inside the port plugs (PPs) are designed to protect diagnostic instrument and components from a harsh plasma environment and provide structural support while allowing for diagnostic access to the plasma. The design of DFWs and DSMs are driven by 1) plasma radiation and nuclear heating during normal operation 2) electromagnetic loads during plasma events and associate component structural responses. A multi-physics engineering analysis protocol for the design has been established at Princeton Plasma Physics Laboratory and it was used for the design of ITER DFWs and DSMs. The analyses were performed to address challenging design issues based on resultant stresses and deflections of the DFW-DSM-PP assembly for the main load cases. ITER Structural Design Criteria for In-Vessel Components (SDC-IC) required for design by analysis and three major issues driving the mechanical design of ITER DFWs are discussed. The general guidelines for the DSM design have been established as a result of design parametric studies.

  12. Learner Interest: An Affective Variable in Iterative Course Design Evaluation

    ERIC Educational Resources Information Center

    Francis, Linda M.

    2009-01-01

    The study examined interest, a unique affective construct distinct from motivation, as an important instructional design consideration. New interest theory suggests that interest develops along a continuum, and at its earliest stages, may be triggered through intentional use of interesting materials and environments. Instructional designers need…

  13. Designing Needs Statements in a Systematic Iterative Way

    ERIC Educational Resources Information Center

    Verstegen, D. M. L.; Barnard, Y. F.; Pilot, A.

    2009-01-01

    Designing specifications for technically advanced instructional products, such as e-learning, simulations or simulators requires different kinds of expertise. The SLIM method proposes to involve all stakeholders from the beginning in a series of workshops under the guidance of experienced instructional designers. These instructional designers…

  14. Status and perspective of the R&D on ceramic breeder materials for testing in ITER

    NASA Astrophysics Data System (ADS)

    Ying, A.; Akiba, M.; Boccaccini, L. V.; Casadio, S.; Dell'Orco, G.; Enoeda, M.; Hayashi, K.; Hegeman, J. B.; Knitter, R.; van der Laan, J.; Lulewicz, J. D.; Wen, Z. Y.

    2007-08-01

    The main line of ceramic breeder materials research and development is based on the use of the breeder material in the form of pebble beds. At present, there are three candidate pebble materials (Li 4SiO 4, and two forms of Li 2TiO 3) for DEMO reactors that will be used for testing in ITER. This paper reviews the R&D of as-fabricated pebble materials against the blanket performance requirements and makes recommendations on necessary steps toward the qualification of these materials for testing in ITER.

  15. Iterative method for the design of SLM realizable minimum average correlation energy (MACE) filters

    NASA Astrophysics Data System (ADS)

    Rajan, P. Karivaratha; Ramakrishnan, R.

    1995-03-01

    Design of optical pattern recognition filters taking into account the nonideal characteristics of the spatial light modulators on which the filters are implemented is an important research problem. In this paper, an iterative method is developed for the design of SLM constrained minimum average correlation energy (MACE) filters. The algorithm uses a relaxation algorithm in conjunction with Juday's minimum euclidean distance (MED) mapping technique in an iterative manner. The performance of the filter designed using this method was evaluated using computer simulations and the results are compared with a constrained MACE filter designed using a software based on a simulated annealing technique. The new software requires much less computer time than the simulated annealing based software providing comparable response. The time taken by the new algorithm is more than that for the MED mapped design; but, the new algorithm provides less deviation from the specified response for training images than the MED mapped design.

  16. Recent progress in developing a 170 GHz, 500 kW gyrotron for testing ITER transmission line components

    NASA Astrophysics Data System (ADS)

    Felch, Kevin; Blank, Monica; Borchard, Philipp; Cahalan, Pat; Cauffman, Steve

    2011-10-01

    A 170 GHz, 500 kW CW gyrotron has been developed for testing ITER transmission line components. Although specified as a 500 kW source, the electrical design has been conceived with the goal of generating up to 1 MW of continuous output power. The design employs a double-anode electron gun, an interaction cavity operating in the TE31,8 cavity mode, a three-mirror internal converter to produce a fundamental Gaussian output beam, a CVD diamond output window and a depressed collector to safely dissipate the spent electron beam power. Fabrication of the gyrotron is nearly complete and initial high-power tests will soon be carried out. Details of the gyrotron design, results of low-power tests on the internal converter and initial high-power tests will be presented.

  17. Design of a Prototype for the In Situ Calibration Source for the ECE Diagnostic on ITER

    NASA Astrophysics Data System (ADS)

    Phillips, P. E.; Austin, M. E.; Rowan, W. L.; Beno, J.; Ouroua, A.; Ellis, R. F.

    2009-11-01

    A large area (200mm diameter) calibration source will be prototyped for ITER. The source will generate blackbody emission (emissivity > 0.7) for frequencies greater than 120 GHz in the ITER vacuum environment. The device is a primary vacuum component (VQC 1B) and is subject to stringent vacuum requirements that will be tested in the case of this prototype. The source will operate at temperatures up to 800 ^oC though it will not be actively heated during plasma operation. A major challenge is to assure high reliability both in maintenance of calibration and mechanical integrity. SiC has been selected as the active emissive surface. Prior to construction of the prototype, candidate-heating methods will be critically examined for reliability, efficiency, and ITER compatibility. Results of test of a resistively heated source will be presented. A progress report on the development of the prototype will also be presented.

  18. Tensile tests of ITER TF conductors jacket materials

    NASA Astrophysics Data System (ADS)

    Anashkin, O. P.; Kеilin, V. E.; Krivykh, A. V.; Diev, D. N.; Dinisilov, A. S.; Shcherbakov, V. I.; Tronza, V. I.

    2012-06-01

    The set of very tough requirements has been formulated for TF jacket materials with extremely high plasticity at liquid helium temperature. The stainless steel 316LN-IG is recommended to be used for TF jacket tubes. Samples of 316LN-IG tubes (whole tubes and sub-size samples) made of the material from the same electro slag remelt have been tested in different conditions - as received tubes and tubes after prescribed compaction, 2.5% deformation at room temperature and heat treatment at 650 0C, 200 hours. The tensile tests were carried out at room, liquid nitrogen and liquid helium temperatures down to 4.2 K, meeting corresponding ASME and ASTM requirements. The low temperature testing devices are described. The tests results for sub-size samples and whole tubes show that the latter tests are considerably more representative and important for butt weld qualification at LHe temperature. It was observed that the ferromagnetic properties of all samples and especially of butt welds increase with lowering the temperature and increasing the degree of deformation. At LHe temperature a non-uniform and highly localized serrated deformations were observed.

  19. Mechanical design issues associated with mounting, maintenance, and handling of an ITER divertor

    SciTech Connect

    Goranson, P.L.; Fogarty, P.J.; Jones, G.H.

    1991-01-01

    Several designs that address plasma-facing plate configurations and thermal-hydraulic design issues have been developed for the ITER divertor. Design criteria growing out of physics requirements, physical constraints, and remote handling requirements impose severe mechanical requirements on the support structure and its attachments. These pose a challenge to the mechanical design of a divertor, which must be addressed before a functional divertor is practical -- that is, one that can be remotely handled, aligned, and maintained; that functions reliably under thermal loading and disruptions; and that gives the required life in the nuclear environment predicted for ITER. This paper discusses the design criteria for the divertor mounting structure and identifies the mechanical design issues that need to be addressed. Achieving the criteria may require the development of new components and innovative configurations, specifically a new class of remote fasteners and electrically resistant material for mounts. The possible design of such components and an R D program to develop them are described, and issues specific to the high-aspect-ratio design (HARD) configuration are summarized. Analysis and experiments that will resolve these issues and concerns and lead to a final ITER design are identified. 2 refs., 2 figs.

  20. Thermo-mechanical analysis of ITER first mirrors and its use for the ITER equatorial visible/infrared wide angle viewing system optical design

    SciTech Connect

    Joanny, M.; Salasca, S.; Dapena, M.; Cantone, B.; Travere, J. M.; Thellier, C.; Ferme, J. J.; Marot, L.; Buravand, O.; Perrollaz, G.; Zeile, C.

    2012-10-15

    ITER first mirrors (FMs), as the first components of most ITER optical diagnostics, will be exposed to high plasma radiation flux and neutron load. To reduce the FMs heating and optical surface deformation induced during ITER operation, the use of relevant materials and cooling system are foreseen. The calculations led on different materials and FMs designs and geometries (100 mm and 200 mm) show that the use of CuCrZr and TZM, and a complex integrated cooling system can limit efficiently the FMs heating and reduce their optical surface deformation under plasma radiation flux and neutron load. These investigations were used to evaluate, for the ITER equatorial port visible/infrared wide angle viewing system, the impact of the FMs properties change during operation on the instrument main optical performances. The results obtained are presented and discussed.

  1. Vacuum Bellows, Vacuum Piping, Cryogenic Break, and Copper Joint Failure Rate Estimates for ITER Design Use

    SciTech Connect

    L. C. Cadwallader

    2010-06-01

    The ITER international project design teams are working to produce an engineering design in preparation for construction of the International Thermonuclear Experimental Reactor (ITER) tokamak. During the course of this work, questions have arisen in regard to safety barriers and equipment reliability as important facets of system design. The vacuum system designers have asked several questions about the reliability of vacuum bellows and vacuum piping. The vessel design team has asked about the reliability of electrical breaks and copper-copper joints used in cryogenic piping. Research into operating experiences of similar equipment has been performed to determine representative failure rates for these components. The following chapters give the research results and the findings for vacuum system bellows, power plant stainless steel piping (amended to represent vacuum system piping), cryogenic system electrical insulating breaks, and copper joints.

  2. Test of prototype ITER vacuum ultraviolet spectrometer and its application to impurity study in KSTAR plasmas.

    PubMed

    Seon, C R; Hong, J H; Jang, J; Lee, S H; Choe, W; Lee, H H; Cheon, M S; Pak, S; Lee, H G; Biel, W; Barnsley, R

    2014-11-01

    To optimize the design of ITER vacuum ultraviolet (VUV) spectrometer, a prototype VUV spectrometer was developed. The sensitivity calibration curve of the spectrometer was calculated from the mirror reflectivity, the grating efficiency, and the detector efficiency. The calibration curve was consistent with the calibration points derived in the experiment using the calibrated hollow cathode lamp. For the application of the prototype ITER VUV spectrometer, the prototype spectrometer was installed at KSTAR, and various impurity emission lines could be measured. By analyzing about 100 shots, strong positive correlation between the O VI and the C IV emission intensities could be found. PMID:25430310

  3. A Toolset for Supporting Iterative Human Automation: Interaction in Design

    NASA Technical Reports Server (NTRS)

    Feary, Michael S.

    2010-01-01

    The addition of automation has greatly extended humans' capability to accomplish tasks, including those that are difficult, complex and safety critical. The majority of Human - Automation Interacton (HAl) results in more efficient and safe operations, ho,,:,ever ertain unpected atomatlon behaviors or "automation surprises" can be frustrating and, In certain safety critical operations (e.g. transporttion, manufacturing control, medicine), may result in injuries or. the loss of life.. (Mellor, 1994; Leveson, 1995; FAA, 1995; BASI, 1998; Sheridan, 2002). This papr describes he development of a design tool that enables on the rapid development and evaluation. of automaton prototypes. The ultimate goal of the work is to provide a design platform upon which automation surprise vulnerability analyses can be integrated.

  4. Progress in design and integration of the ITER Electron Cyclotron H&CD system

    SciTech Connect

    Darbos, Caroline; Henderson, Mark; Kobayashi, N.; Albajar, F.; Bonicelli, T.; Saibene, G.; Bigelow, Timothy S; Rasmussen, David A; Chavan, R.; Fasel, D.; Hogge, J. P.; Denisov, G. G.; Heidinger, R.; Piosczyk, B.; Thumm, M.; Rao, S. L.; Sakamoto, K.; Takahaski, K.; Thumm, M.

    2009-06-01

    The Electron Cyclotron system for ITER is an in-kind procurement shared between five parties and the total installed power will be 24 MW, corresponding to a nominal injected power of 20 MW to the plasma, with a possible upgrade up to 48 MW (corresponding to 40 MW injected). Some critical issues have been raised and changes are proposed to simplify these procurements and to facilitate the integration into ITER. The progress in the design and the integration of the EC system into the whole project is presented in this paper, as well as some issues still under studies and some recommendations made by external expert committees.

  5. TIMO-2-A cryogenic test bed for the ITER cryosorption pumps

    NASA Astrophysics Data System (ADS)

    Haas, Horst; Day, Christian; Herzog, Friedhelm

    2012-06-01

    The Karlsruhe Institute of Technology (KIT) has been carrying out research and development in the field of vacuum cryopumps for nuclear fusion devices over the last decade. Together with the development activities also experience in the operation of the needed cryogenic systems necessary for such type of large scale cryopumps was collected. Due to the specific requirements of a large fusion device, such as ITER, the cryogenic distribution is based on gaseous helium at the needed temperature levels rather than liquid nitrogen or liquid helium. KIT has set up a large scale research facility, called TIMO-2, fully equipped with supercritical helium supply at large flow rates to be able to perform cryogenic tests of components under ITER-relevant conditions. During first test campaigns at TIMO-2 with a large scale model cryopump the ITER cryosorption vacuum pumping concept was successfully validated. After major refurbishments and upgrades, the TIMO-2 facility is now ready for the acceptance tests of the ITER torus cryopump. This paper describes the modified test facility TIMO-2 with particular attention to the available cryogenic supply at different temperature levels. The new 100 K helium supply facility will be described in detail.

  6. Non-destructive qualification tests for ITER cryogenic axial insulating breaks

    SciTech Connect

    Kosek, Jacek; Lopez, Roberto; Tommasini, Davide; Rodriguez-Mateos, Felix

    2014-01-29

    In the ITER superconducting magnets the dielectric separation between the CICC (Cable-In-Conduit Conductors) and the helium supply pipes is made through the so-called insulating breaks (IB). These devices shall provide the required dielectric insulation at a 30 kV level under different types of stresses and constraints: thermal, mechanical, dielectric and ionizing radiations. As part of the R and D program, the ITER Organization launched contracts with industrial companies aimed at the qualification of the manufacturing techniques. After reviewing the main functional aspects, this paper describes and discusses the protocol established for non-destructive qualification tests of the prototypes.

  7. Design of a -1 MV dc UHV power supply for ITER NBI

    NASA Astrophysics Data System (ADS)

    Watanabe, K.; Yamamoto, M.; Takemoto, J.; Yamashita, Y.; Dairaku, M.; Kashiwagi, M.; Taniguchi, M.; Tobari, H.; Umeda, N.; Sakamoto, K.; Inoue, T.

    2009-05-01

    Procurement of a dc -1 MV power supply system for the ITER neutral beam injector (NBI) is shared by Japan and the EU. The Japan Atomic Energy Agency as the Japan Domestic Agency (JADA) for ITER contributes to the procurement of dc -1 MV ultra-high voltage (UHV) components such as a dc -1 MV generator, a transmission line and a -1 MV insulating transformer for the ITER NBI power supply. The inverter frequency of 150 Hz in the -1 MV power supply and major circuit parameters have been proposed and adopted in the ITER NBI. The dc UHV insulation has been carefully designed since dc long pulse insulation is quite different from conventional ac insulation or dc short pulse systems. A multi-layer insulation structure of the transformer for a long pulse up to 3600 s has been designed with electric field simulation. Based on the simulation the overall dimensions of the dc UHV components have been finalized. A surge energy suppression system is also essential to protect the accelerator from electric breakdowns. The JADA contributes to provide an effective surge suppression system composed of core snubbers and resistors. Input energy into the accelerator from the power supply can be reduced to about 20 J, which satisfies the design criteria of 50 J in total in the case of breakdown at -1 MV.

  8. FEMCAM Analysis of SULTAN Test Results for ITER Nb3SN Cable-conduit Conductors

    SciTech Connect

    Yuhu Zhai, Pierluigi Bruzzone, Ciro Calzolaio

    2013-03-19

    Performance degradation due to filament fracture of Nb3 Sn cable-in-conduit conductors (CICCs) is a critical issue in large-scale magnet designs such as ITER which is currently being constructed in the South of France. The critical current observed in most SULTAN TF CICC samples is significantly lower than expected and the voltage-current characteristic is seen to have a much broader transition from a single strand to the CICC. Moreover, most conductors exhibit the irreversible degradation due to filament fracture and strain relaxation under electromagnetic cyclic loading. With recent success in monitoring thermal strain distribution and its evolution under the electromagnetic cyclic loading from in situ measurement of critical temperature, we apply FEMCAM which includes strand filament breakage and local current sharing effects to SULTAN tested CICCs to study Nb3 Sn strain sensitivity and irreversible performance degradation. FEMCAM combines the thermal bending effect during cool down and the EM bending effect due to locally accumulating Lorentz force during magnet operation. It also includes strand filament fracture and related local current sharing for the calculation of cable n value. In this paper, we model continuous performance degradation under EM cyclic loading based on strain relaxation and the transition broadening upon cyclic loading to the extreme cases seen in SULTAN test data to better quantify conductor performance degradation.

  9. In-Vessel Coil Material Failure Rate Estimates for ITER Design Use

    SciTech Connect

    L. C. Cadwallader

    2013-01-01

    The ITER international project design teams are working to produce an engineering design for construction of this large tokamak fusion experiment. One of the design issues is ensuring proper control of the fusion plasma. In-vessel magnet coils may be needed for plasma control, especially the control of edge localized modes (ELMs) and plasma vertical stabilization (VS). These coils will be lifetime components that reside inside the ITER vacuum vessel behind the blanket modules. As such, their reliability is an important design issue since access will be time consuming if any type of repair were necessary. The following chapters give the research results and estimates of failure rates for the coil conductor and jacket materials to be used for the in-vessel coils. Copper and CuCrZr conductors, and stainless steel and Inconel jackets are examined.

  10. Physics design of the injector source for ITER neutral beam injector (invited).

    PubMed

    Antoni, V; Agostinetti, P; Aprile, D; Cavenago, M; Chitarin, G; Fonnesu, N; Marconato, N; Pilan, N; Sartori, E; Serianni, G; Veltri, P

    2014-02-01

    Two Neutral Beam Injectors (NBI) are foreseen to provide a substantial fraction of the heating power necessary to ignite thermonuclear fusion reactions in ITER. The development of the NBI system at unprecedented parameters (40 A of negative ion current accelerated up to 1 MV) requires the realization of a full scale prototype, to be tested and optimized at the Test Facility under construction in Padova (Italy). The beam source is the key component of the system and the design of the multi-grid accelerator is the goal of a multi-national collaborative effort. In particular, beam steering is a challenging aspect, being a tradeoff between requirements of the optics and real grids with finite thickness and thermo-mechanical constraints due to the cooling needs and the presence of permanent magnets. In the paper, a review of the accelerator physics and an overview of the whole R&D physics program aimed to the development of the injector source are presented. PMID:24593568

  11. Design considerations for ITER (International Thermonuclear Experimental Reactor) magnet systems: Revision 1

    SciTech Connect

    Henning, C.D.; Miller, J.R.

    1988-10-09

    The International Thermonuclear Experimental Reactor (ITER) is now completing a definition phase as a beginning of a three-year design effort. Preliminary parameters for the superconducting magnet system have been established to guide further and more detailed design work. Radiation tolerance of the superconductors and insulators has been of prime importance, since it sets requirements for the neutron-shield dimension and sensitively influences reactor size. The major levels of mechanical stress in the structure appear in the cases of the inboard legs of the toroidal-field (TF) coils. The cases of the poloidal-field (PF) coils must be made thin or segmented to minimize eddy current heating during inductive plasma operation. As a result, the winding packs of both the TF and PF coils includes significant fractions of steel. The TF winding pack provides support against in-plane separating loads but offers little support against out-of-plane loads, unless shear-bonding of the conductors can be maintained. The removal of heat due to nuclear and ac loads has not been a fundamental limit to design, but certainly has non-negligible economic consequences. We present here preliminary ITER magnet systems design parameters taken from trade studies, designs, and analyses performed by the Home Teams of the four ITER participants, by the ITER Magnet Design Unit in Garching, and by other participants at workshops organized by the Magnet Design Unit. The work presented here reflects the efforts of many, but the responsibility for the opinions expressed is the authors'. 4 refs., 3 figs., 4 tabs.

  12. Conceptual design of a High Temperature Superconductor current feeder system for ITER

    NASA Astrophysics Data System (ADS)

    Tanna, V. L.; Fietz, W. H.; Heller, R.; Vostner, A.; Wesche, R.; Zahn, G. R.

    2006-06-01

    The International Thermonuclear Experimental Reactor (ITER) project envisages a techno-economically feasible solution of its current feeder system in order to reduce the overall cryogenic requirements and operational costs. Since the ITER magnet system has a long stand-by time with respect to its operation duty cycle, it is essential to optimize the operational costs of the current feeder system taking into consideration both, the full current and stand-by modes. The present HTS technology has reached the maturity that HTS conductors are applicable for the current feeder system of ITER. The replacement of the actually planned conventional current leads by HTS current leads would provide considerable savings in the refrigeration investment and operational costs. Another option is the substitution of the water cooled high current aluminum feeders by HTS feeders, so called HTS bus bars. In this paper, the different design options of Bi-2223/Ag HTS based bus bars as prototype unit modules for ITER are discussed. The performance of different cooling schemes for HTS bus bars is studied and the design related critical issues e.g. metallic transition (65 K -300 K) and bending of bus bar, AC loss, thermal loss and reliability of the cooling system are investigated.

  13. An iterative approach to the optimal co-design of linear control systems

    NASA Astrophysics Data System (ADS)

    Jiang, Yu; Wang, Yebin; Bortoff, Scott A.; Jiang, Zhong-Ping

    2016-04-01

    This paper investigates the optimal co-design of both physical plants and control policies for a class of continuous-time linear control systems. The optimal co-design of a specific linear control system is commonly formulated as a nonlinear non-convex optimisation problem (NNOP), and solved by using iterative techniques, where the plant parameters and the control policy are updated iteratively and alternately. This paper proposes a novel iterative approach to solve the NNOP, where the plant parameters are updated by solving a standard semi-definite programming problem, with non-convexity no longer involved. The proposed system design is generally less conservative in terms of the system performance compared to the conventional system-equivalence-based design, albeit the range of applicability is slightly reduced. A practical optimisation algorithm is proposed to compute a sub-optimal solution ensuring the system stability, and the convergence of the algorithm is established. The effectiveness of the proposed algorithm is illustrated by its application to the optimal co-design of a physical load positioning system.

  14. Application of a repetitive process setting to design of monotonically convergent iterative learning control

    NASA Astrophysics Data System (ADS)

    Boski, Marcin; Paszke, Wojciech

    2015-11-01

    This paper deals with the problem of designing an iterative learning control algorithm for discrete linear systems using repetitive process stability theory. The resulting design produces a stabilizing output feedback controller in the time domain and a feedforward controller that guarantees monotonic convergence in the trial-to-trial domain. The results are also extended to limited frequency range design specification. New design procedure is introduced in terms of linear matrix inequality (LMI) representations, which guarantee the prescribed performances of ILC scheme. A simulation example is given to illustrate the theoretical developments.

  15. Achievements in the development of the Water Cooled Solid Breeder Test Blanket Module of Japan to the milestones for installation in ITER

    NASA Astrophysics Data System (ADS)

    Tsuru, Daigo; Tanigawa, Hisashi; Hirose, Takanori; Mohri, Kensuke; Seki, Yohji; Enoeda, Mikio; Ezato, Koichiro; Suzuki, Satoshi; Nishi, Hiroshi; Akiba, Masato

    2009-06-01

    As the primary candidate of ITER Test Blanket Module (TBM) to be tested under the leadership of Japan, a water cooled solid breeder (WCSB) TBM is being developed. This paper shows the recent achievements towards the milestones of ITER TBMs prior to the installation, which consist of design integration in ITER, module qualification and safety assessment. With respect to the design integration, targeting the detailed design final report in 2012, structure designs of the WCSB TBM and the interfacing components (common frame and backside shielding) that are placed in a test port of ITER and the layout of the cooling system are presented. As for the module qualification, a real-scale first wall mock-up fabricated by using the hot isostatic pressing method by structural material of reduced activation martensitic ferritic steel, F82H, and flow and irradiation test of the mock-up are presented. As for safety milestones, the contents of the preliminary safety report in 2008 consisting of source term identification, failure mode and effect analysis (FMEA) and identification of postulated initiating events (PIEs) and safety analyses are presented.

  16. Experimental characterization of the ITER TF structure cooling in HELIOS test facility

    NASA Astrophysics Data System (ADS)

    Hoa, C.; Rousset, B.; Lacroix, B.; Nicollet, S.; Vallcorba, R.; Bessette, D.; Vostner, A.; Gauthier, F.

    2015-12-01

    During ITER plasma operation, large thermal loads are generated in the stainless steel Toroidal Field (TF) coil casing. To minimize the impact on the temperature of the TF Cable in Conduit Conductor (CICC), these heat loads are intercepted by case cooling channels which are implemented at the interface to the winding pack. One of the design options for the case cooling channels consists of a stainless steel pipe inserted in a rectangular groove which is machined in the casing and filled by a charged resin of high thermal conductivity. A higher number of cooling pipes is arranged at the plasma facing wall of the case, thus providing a better shielding to the TF conductor at high field. To assess the efficiency of the cooling pipes and their thermal coupling with the charged resin, experimental characterizations have been performed. First of all, the thermal resistance vs temperature of some of the individual components of a TF coil has been measured on representative samples in a cryogenic bench. Further characterizations have been performed on an integrated mock-up of the TF cooling scheme at cryogenic temperature in HELIOS test facility at CEA Grenoble. The mock-up consists of a piece of TF casing that can be heated uniformly on its surface, one cooling channel implemented in the groove which is filled with the charged resin, the filler, the ground insulation, the radial plate and one insulated CICC. The cooling pipe and the CICC are cooled by supercritical helium at 4.4 K and 5 bar; the instrumentation consists of temperature, pressure and mass flow sensors. Both stationary and transient operating modes have been investigated to assess the thermal efficiency of the case cooling design. The experimental tests are presented and the first results are discussed and analyzed in this document.

  17. Modeling design iteration in product design and development and its solution by a novel artificial bee colony algorithm.

    PubMed

    Chen, Tinggui; Xiao, Renbin

    2014-01-01

    Due to fierce market competition, how to improve product quality and reduce development cost determines the core competitiveness of enterprises. However, design iteration generally causes increases of product cost and delays of development time as well, so how to identify and model couplings among tasks in product design and development has become an important issue for enterprises to settle. In this paper, the shortcomings existing in WTM model are discussed and tearing approach as well as inner iteration method is used to complement the classic WTM model. In addition, the ABC algorithm is also introduced to find out the optimal decoupling schemes. In this paper, firstly, tearing approach and inner iteration method are analyzed for solving coupled sets. Secondly, a hybrid iteration model combining these two technologies is set up. Thirdly, a high-performance swarm intelligence algorithm, artificial bee colony, is adopted to realize problem-solving. Finally, an engineering design of a chemical processing system is given in order to verify its reasonability and effectiveness. PMID:25431584

  18. Modeling Design Iteration in Product Design and Development and Its Solution by a Novel Artificial Bee Colony Algorithm

    PubMed Central

    2014-01-01

    Due to fierce market competition, how to improve product quality and reduce development cost determines the core competitiveness of enterprises. However, design iteration generally causes increases of product cost and delays of development time as well, so how to identify and model couplings among tasks in product design and development has become an important issue for enterprises to settle. In this paper, the shortcomings existing in WTM model are discussed and tearing approach as well as inner iteration method is used to complement the classic WTM model. In addition, the ABC algorithm is also introduced to find out the optimal decoupling schemes. In this paper, firstly, tearing approach and inner iteration method are analyzed for solving coupled sets. Secondly, a hybrid iteration model combining these two technologies is set up. Thirdly, a high-performance swarm intelligence algorithm, artificial bee colony, is adopted to realize problem-solving. Finally, an engineering design of a chemical processing system is given in order to verify its reasonability and effectiveness. PMID:25431584

  19. Mechanical property tests on structural materials for ITER magnet system at low temperatures in China

    NASA Astrophysics Data System (ADS)

    Huang, Chuanjun; Huang, Rongjin; Li, Laifeng

    2014-01-01

    High field superconducting magnets need strong non-superconducting components for structural reinforcement. For instance, the ITER magnet system (MS) consists of cable-in-conduit conductor, coil case, magnet support, and insulating materials. Investigation of mechanical properties at magnet operation temperature with specimens machined at the final manufacturing stages of the conductor jacket materials, magnet support material, and insulating materials, even the component of the full-size conductor jacket is necessary to establish sound databases for the products. In China, almost all mechanical property tests of structural materials for the ITER MS, including conductor jacket materials of TF coils, PF coils, CCs, case material of CCs, conductor jacket materials of Main Busbars (MB) and Corrector Busbars (CB), material of magnet supports, and insulating materials of CCs have been carried out at the Technical Institute of Physics and Chemistry (TIPC), Chinese Academy of Sciences (CAS). In this paper, the mechanical property test facilities are briefly demonstrated and the mechanical tests on the structural materials for the ITER MS, highlighting test rigs as well as test methods, are presented.

  20. Design and Overview of 100 kV Bushing for the DNB Injector of ITER

    NASA Astrophysics Data System (ADS)

    Shah, Sejal; Rajesh, S.; Nishad, S.; Srusti, B.; Bandyopadhyay, M.; Rotti, C.; Singh, M. J.; Roopesh, G.; Chakraborty, A. K.; Schunke, B.; Hemsworth, R.; Chareyre, J.; Svensson, L.

    2011-09-01

    The 100 kV bushing is one of the most important and technologically challenging Safety Important Class (SIC) components of the Diagnostic Neutral Beam (DNB) injector of ITER. It forms interface between gas insulated electrical transmission line and torus primary vacuum and acts as a vacuum feedthrough of ITER. Design optimization has been carried out to meet the electric and structural requirements based on its classification. Unlike HNB bushing, single stage bushing is designed to provide 100 kV isolation. Finite Element Analysis (FEA) based optimization has been carried out for electrostatic and structural analysis. Manufacturing assembly sequence is studied and presented in this paper. However validation of the same is foreseen from manufacturer.

  1. Design and Overview of 100 kV Bushing for the DNB Injector of ITER

    SciTech Connect

    Shah, Sejal; Bandyopadhyay, M.; Rotti, C.; Singh, M. J.; Roopesh, G.; Chakraborty, A. K.; Rajesh, S.; Nishad, S.; Srusti, B.; Schunke, B.; Hemsworth, R.; Chareyre, J.; Svensson, L.

    2011-09-26

    The 100 kV bushing is one of the most important and technologically challenging Safety Important Class (SIC) components of the Diagnostic Neutral Beam (DNB) injector of ITER. It forms interface between gas insulated electrical transmission line and torus primary vacuum and acts as a vacuum feedthrough of ITER. Design optimization has been carried out to meet the electric and structural requirements based on its classification. Unlike HNB bushing, single stage bushing is designed to provide 100 kV isolation. Finite Element Analysis (FEA) based optimization has been carried out for electrostatic and structural analysis. Manufacturing assembly sequence is studied and presented in this paper. However validation of the same is foreseen from manufacturer.

  2. Design of a diagnostic residual gas analyzer for the ITER divertor

    SciTech Connect

    Klepper, C Christopher; Biewer, T. M.; Graves, Van B; Andrew, P.; Marcus, Chris; Shimada, M.; Hughes, S.; Boussier, B.; Johnson, D. W.; Gardner, W. L.; Hillis, D. L.; Vayakis, G.; Vayakis, G.; Walsh, M.

    2015-01-01

    One of the ITER diagnostics having reached an advanced design stage is a diagnostic RGA for the divertor, i.e. residual gas analysis system for the ITER divertor, which is intended to sample the divertor pumping duct region during the plasma pulse and to have a response time compatible with plasma particle and impurity lifetimes in the divertor region. Main emphasis is placed on helium (He) concentration in the ducts, as well as the relative concentration between the hydrogen isotopes (H2, D2, T2). Measurement of the concentration of radiative gases, such as neon (Ne) and nitrogen (N2), is also intended. Numerical modeling of the gas flow from the sampled region to the cluster of analysis sensors, through a long (~8m long, ~110mm diameter) sampling pipe terminating in a pressure reducing orifice, confirm that the desired response time (~1s for He or D2) is achieved with the present design.

  3. Design finalization and material qualification towards procurement of the ITER vacuum vessel

    NASA Astrophysics Data System (ADS)

    Ioki, K.; Barabash, V.; Bachmann, C.; Chappuis, P.; Choi, C. H.; Cordier, J.-J.; Giraud, B.; Gribov, Y.; Heitzenroeder, Ph.; Her, N.; Johnson, G.; Jones, L.; Jun, C.; Kim, B. C.; Kuzmin, E.; Loesser, D.; Martin, A.; Merola, M.; Pathak, H.; Readman, P.; Sugihara, M.; Terasawa, A.; Utin, Yu.; Wang, X.; Wu, S.; Yu, J.; ITER Organization; ITER Parties

    2011-10-01

    Procurement arrangements for ITER key components including the vacuum vessel (VV) have been signed and the ITER activities are now fully devoted towards construction. Final design reviews have been carried out for the main vessel and ports. One of the design review topics is the selection of materials, material procurement, and assessment of material performance during operation. The width of the inner shell splice plates was increased from 120 mm to 160 mm to minimize risk during the assembly of the Thermal shields and the VV. Instead of facet shaping, 3D shaping was introduced for the outboard inner shell. The material qualification procedures have been started for VV structural materials such as 316L(N) IG for licensing as a nuclear pressure equipment component. In accordance with the regulatory requirements and quality requirements for operation, common material specifications have been prepared in collaboration with the domestic agencies.

  4. Irradiation testing of 316L(N)-IG austenitic stainless steel for ITER

    NASA Astrophysics Data System (ADS)

    van Osch, E. V.; Horsten, M. G.; de Vries, M. I.

    1998-10-01

    In the frame work of the European Fusion Technology Programme and the International Thermonuclear Experimental Reactor (ITER), ECN is investigating the irradiation behaviour of the structural materials for ITER. The main structural material for ITER is austenitic stainless steel Type 316L(N)-IG. The operating temperatures of (parts of) the components are envisaged to range between 350 and 700 K. A significant part of the dose-temperature domain of irradiation conditions relevant for ITER has already been explored, there is, however, very little data at about 600 K. Available data tend to indicate a maximum in the degradation of the mechanical properties after irradiation at this temperature, e.g. a minimum in ductility and a maximum of hardening. Therefore an irradiation program for plate material 316L(N)-IG, its Electron Beam (EB) weld and Tungsten Inert Gas (TIG) weld metal, and also including Hot Isostatically Pressed (HIP) 316L(N) powder and solid-solid joints, was set up in 1995. Irradiations have been carried out in the High Flux Reactor (HFR) in Petten at a temperature of 600 K, at dose levels from 1 to 10 dpa. The paper presents the currently available post-irradiation test results. Next to tensile and fracture toughness data on plate, EB and TIG welds, first results of powder HIP material are included.

  5. Design and Analysis of the Main AC/DC Converter System for ITER

    NASA Astrophysics Data System (ADS)

    Sheng, Zhicai; Xu, Liuwei; Fu, Peng

    2012-04-01

    A design of the main AC/DC converter system for ITER is described and the configuration of the main AC/DC converters is presented. To reduce the reactive power absorbed from the converter units, the main AC/DC converters are designed to be series-connected and work in a sequential mode. The structure of the regulator of the converter system is described. A simulation model was built up for the PSCAD/EMTDC code, and the design was validated accordingly. Harmonic analysis and reactive power calculation of the converters units are presented. The results reveal the advantage of sequential control in reducing reactive power and harmonics.

  6. Irradiation tests of ITER candidate Hall sensors using two types of neutron spectra

    SciTech Connect

    Duran, I.; Viererbl, L.; Lahodova, Z.; Sentkerestiova, J.; Bem, P.

    2010-10-15

    We report on irradiation tests of InSb based Hall sensors at two irradiation facilities with two distinct types of neutron spectra. One was a fission reactor neutron spectrum with a significant presence of thermal neutrons, while another one was purely fast neutron field. Total neutron fluence of the order of 10{sup 16} cm{sup -2} was accumulated in both cases, leading to significant drop of Hall sensor sensitivity in case of fission reactor spectrum, while stable performance was observed at purely fast neutron spectrum. This finding suggests that performance of this particular type of Hall sensors is governed dominantly by transmutation. Additionally, it further stresses the need to test ITER candidate Hall sensors under neutron flux with ITER relevant spectrum.

  7. Iterative procedure for in-situ EUV optical testing with an incoherent source

    SciTech Connect

    Miyawaka, Ryan; Naulleau, Patrick; Zakhor, Avideh

    2009-12-01

    We propose an iterative method for in-situ optical testing under partially coherent illumination that relies on the rapid computation of aerial images. In this method a known pattern is imaged with the test optic at several planes through focus. A model is created that iterates through possible aberration maps until the through-focus series of aerial images matches the experimental result. The computation time of calculating the through-focus series is significantly reduced by a-SOCS, an adapted form of the Sum Of Coherent Systems (SOCS) decomposition. In this method, the Hopkins formulation is described by an operator S which maps the space of pupil aberrations to the space of aerial images. This operator is well approximated by a truncated sum of its spectral components.

  8. Irradiation tests of ITER candidate Hall sensors using two types of neutron spectra.

    PubMed

    Ďuran, I; Bolshakova, I; Viererbl, L; Sentkerestiová, J; Holyaka, R; Lahodová, Z; Bém, P

    2010-10-01

    We report on irradiation tests of InSb based Hall sensors at two irradiation facilities with two distinct types of neutron spectra. One was a fission reactor neutron spectrum with a significant presence of thermal neutrons, while another one was purely fast neutron field. Total neutron fluence of the order of 10(16) cm(-2) was accumulated in both cases, leading to significant drop of Hall sensor sensitivity in case of fission reactor spectrum, while stable performance was observed at purely fast neutron spectrum. This finding suggests that performance of this particular type of Hall sensors is governed dominantly by transmutation. Additionally, it further stresses the need to test ITER candidate Hall sensors under neutron flux with ITER relevant spectrum. PMID:21033987

  9. Test Design and Speededness

    ERIC Educational Resources Information Center

    van der Linden, Wim J.

    2011-01-01

    A critical component of test speededness is the distribution of the test taker's total time on the test. A simple set of constraints on the item parameters in the lognormal model for response times is derived that can be used to control the distribution when assembling a new test form. As the constraints are linear in the item parameters, they can…

  10. Design considerations for neutron activation and neutron source strength monitors for ITER

    SciTech Connect

    Barnes, C.W.; Jassby, D.L.; LeMunyan, G.; Roquemore, A.L.; Walker, C.

    1997-12-31

    The International Thermonuclear Experimental Reactor will require highly accurate measurements of fusion power production in time, space, and energy. Spectrometers in the neutron camera could do it all, but experience has taught us that multiple methods with redundancy and complementary uncertainties are needed. Previously, conceptual designs have been presented for time-integrated neutron activation and time-dependent neutron source strength monitors, both of which will be important parts of the integrated suite of neutron diagnostics for this purpose. The primary goals of the neutron activation system are: to maintain a robust relative measure of fusion energy production with stability and wide dynamic range; to enable an accurate absolute calibration of fusion power using neutronic techniques as successfully demonstrated on JET and TFTR; and to provide a flexible system for materials testing. The greatest difficulty is that the irradiation locations need to be close to plasma with a wide field of view. The routing of the pneumatic system is difficult because of minimum radius of curvature requirements and because of the careful need for containment of the tritium and activated air. The neutron source strength system needs to provide real-time source strength vs. time with {approximately}1 ms resolution and wide dynamic range in a robust and reliable manner with the capability to be absolutely calibrated by in-situ neutron sources as done on TFTR, JT-60U, and JET. In this paper a more detailed look at the expected neutron flux field around ITER is folded into a more complete design of the fission chamber system.

  11. Low PMEPR OFDM Radar Waveform Design Using the Iterative Least Squares Algorithm

    NASA Astrophysics Data System (ADS)

    Huang, Tianyao; Zhao, Tong

    2015-11-01

    This letter considers waveform design of orthogonal frequency division multiplexing (OFDM) signal for radar applications, and aims at mitigating the envelope fluctuation in OFDM. A novel method is proposed to reduce the peak-to-mean envelope power ratio (PMEPR), which is commonly used to evaluate the fluctuation. The proposed method is based on the tone reservation approach, in which some bits or subcarriers of OFDM are allocated for decreasing PMEPR. We introduce the coefficient of variation of envelopes (CVE) as the cost function for waveform optimization, and develop an iterative least squares algorithm. Minimizing CVE leads to distinct PMEPR reduction, and it is guaranteed that the cost function monotonically decreases by applying the iterative algorithm. Simulations demonstrate that the envelope is significantly smoothed by the proposed method.

  12. A new iterative Fourier transform algorithm for optimal design in holographic optical tweezers

    NASA Astrophysics Data System (ADS)

    Memmolo, P.; Miccio, L.; Merola, F.; Ferraro, P.; Netti, P. A.

    2012-06-01

    We propose a new Iterative Fourier Transform Algorithm (IFTA) capable to suppress ghost traps and noise in Holographic Optical Tweezers (HOT), maintaining a high diffraction efficiency in a computational time comparable with the others iterative algorithms. The process consists in the planning of the suitable ideal target of optical tweezers as input of classical IFTA and we show we are able to design up to 4 real traps, in the field of view imaged by the microscope objective, using an IFTA built on fictitious phasors, located in strategic positions in the Fourier plane. The effectiveness of the proposed algorithm is evaluated both for numerical and optical reconstructions and compared with the other techniques known in literature.

  13. Review of the International Thermonuclear Experimental Reactor (ITER) detailed design report

    SciTech Connect

    1997-04-18

    Dr. Martha Krebs, Director, Office of Energy Research at the US Department of Energy (DOE), wrote to the Fusion Energy Sciences Advisory Committee (FESAC), in letters dated September 23 and November 6, 1996, requesting that FESAC review the International Thermonuclear Experimental Reactor (ITER) Detailed Design Report (DDR) and provide its view of the adequacy of the DDR as part of the basis for the United States decision to enter negotiations with the other interested Parties regarding the terms and conditions for an agreement for the construction, operations, exploitation and decommissioning of ITER. The letter from Dr. Krebs, referred to as the Charge Letter, provided context for the review and a set of questions of specific interest.

  14. Experimental neutronics tests for a neutron activation system for the European ITER TBM

    SciTech Connect

    Klix, A.; Fischer, U.; Gehre, D.; Kleizer, G.; Raj, P.; Rovni, I.; Ruecker, Tom

    2014-08-21

    We are investigating methods for neutron flux measurement in the ITER TBM. In particular we have tested sets of activation materials leading to induced gamma activities with short half-lives of the order of tens of seconds up to minutes and standard activation materials. Packages of activation foils have been irradiated with the intense neutron generator of Technical University of Dresden in a pure DT neutron field as well as in a neutronics mock-up of the European ITER HCLL TBM. An important aim was to check whether the gamma activity induced in the activation foils in these packages could be measured simultaneously. It was indeed possible to identify gamma lines of interest in gamma-ray measurements immediately after extraction from the irradiation.

  15. Solving large test-day models by iteration on data and preconditioned conjugate gradient.

    PubMed

    Lidauer, M; Strandén, I; Mäntysaari, E A; Pösö, J; Kettunen, A

    1999-12-01

    A preconditioned conjugate gradient method was implemented into an iteration on a program for data estimation of breeding values, and its convergence characteristics were studied. An algorithm was used as a reference in which one fixed effect was solved by Gauss-Seidel method, and other effects were solved by a second-order Jacobi method. Implementation of the preconditioned conjugate gradient required storing four vectors (size equal to number of unknowns in the mixed model equations) in random access memory and reading the data at each round of iteration. The preconditioner comprised diagonal blocks of the coefficient matrix. Comparison of algorithms was based on solutions of mixed model equations obtained by a single-trait animal model and a single-trait, random regression test-day model. Data sets for both models used milk yield records of primiparous Finnish dairy cows. Animal model data comprised 665,629 lactation milk yields and random regression test-day model data of 6,732,765 test-day milk yields. Both models included pedigree information of 1,099,622 animals. The animal model ¿random regression test-day model¿ required 122 ¿305¿ rounds of iteration to converge with the reference algorithm, but only 88 ¿149¿ were required with the preconditioned conjugate gradient. To solve the random regression test-day model with the preconditioned conjugate gradient required 237 megabytes of random access memory and took 14% of the computation time needed by the reference algorithm. PMID:10629827

  16. Design of the Remote Steerable ECRH launching system for the ITER upper ports

    NASA Astrophysics Data System (ADS)

    Verhoeven, A. G. A.; Elzendoorn, B. S. Q.; Bongers, W. A.; Bruschi, A.; Cirant, S.; Danilov, I.; Fernandez, A.; Gantenbein, G.; Graswinckel, M. F.; Heidinger, R.; Kasparek, W.; Kleefeldt, K.; Kruijt, O. G.; Lamers, B.; Piosczyk, B.; Plaum, B.; Ronden, D. M. S.; Saibene, G.; Zohm, H.

    2005-01-01

    An ECRH (electron-cyclotron resonance heating) launching system for the ITER upper ports is being designed. The aim of the system is to inject Electron Cyclotron Waves (ECW) in the ITER plasma in order to stabilize neoclassical tearing modes (NTM). Each of the four upper-port launchers consists of six mm-wave lines capable of transmitting high power up to 2 MW per line at 170 GHz. In order to exploit the capability of ECW for localized heating and current drive over a range of plasma radii in ITER, the ECH&CD upper port launcher must have a beam steering capability. The Remote Steering (RS) principle has great advantages, because it enables to avoid steerable mirrors with flexible cooling lines at the plasma-facing end of the launcher. The principle consists of a long, corrugated, square waveguide having the steerable optics placed outside of the first confinement boundary of the vacuum vessel. All vulnerable components are far away from the hostile plasma environment. Furthermore, the RS launching system enables to do maintenance on the system during shutdown, without affecting the torus vacuum and the blanket cooling circuits.

  17. Engineering aspects of design and integration of ECE diagnostic in ITER

    SciTech Connect

    Udintsev, V. S.; Taylor, G.; Pandya, H. K.B.; Austin, M. E.; Casal, N.; Catalin, R.; Clough, M.; Cuquel, B.; Dapena, M.; Drevon, J. -M.; Feder, R.; Friconneau, J. P.; Giacomin, T.; Guirao, J.; Henderson, M. A.; Hughes, S.; Iglesias, S.; Johnson, D.; Kumar, Siddhart; Kumar, Vina; Levesy, B.; Loesser, D.; Messineo, M.; Penot, C.; Portalès, M.; Oosterbeek, J. W.; Sirinelli, A; Vacas, C.; Vayakis, G.; Walsh, M. J.; Kubo, S.

    2015-03-12

    ITER ECE diagnostic [1] needs not only to meet measurement requirements, but also to withstand various loads, such as electromagnetic, mechanical, neutronic and thermal, and to be protected from stray ECH radiation at 170 GHz and other millimeter wave emission, like Collective Thomson scattering which is planned to operate at 60 GHz. Same or similar loads will be applied to other millimetre-wave diagnostics [2], located both in-vessel and in-port plugs. These loads must be taken into account throughout the design phases of the ECE and other microwave diagnostics to ensure their structural integrity and maintainability. The integration of microwave diagnostics with other ITER systems is another challenging activity which is currently ongoing through port integration and in-vessel integration work. Port Integration has to address the maintenance and the safety aspects of diagnostics, too. Engineering solutions which are being developed to support and to operate ITER ECE diagnostic, whilst complying with safety and maintenance requirements, are discussed in this paper.

  18. Engineering aspects of design and integration of ECE diagnostic in ITER

    DOE PAGESBeta

    Udintsev, V. S.; Taylor, G.; Pandya, H. K.B.; Austin, M. E.; Casal, N.; Catalin, R.; Clough, M.; Cuquel, B.; Dapena, M.; Drevon, J. -M.; et al

    2015-03-12

    ITER ECE diagnostic [1] needs not only to meet measurement requirements, but also to withstand various loads, such as electromagnetic, mechanical, neutronic and thermal, and to be protected from stray ECH radiation at 170 GHz and other millimeter wave emission, like Collective Thomson scattering which is planned to operate at 60 GHz. Same or similar loads will be applied to other millimetre-wave diagnostics [2], located both in-vessel and in-port plugs. These loads must be taken into account throughout the design phases of the ECE and other microwave diagnostics to ensure their structural integrity and maintainability. The integration of microwave diagnosticsmore » with other ITER systems is another challenging activity which is currently ongoing through port integration and in-vessel integration work. Port Integration has to address the maintenance and the safety aspects of diagnostics, too. Engineering solutions which are being developed to support and to operate ITER ECE diagnostic, whilst complying with safety and maintenance requirements, are discussed in this paper.« less

  19. Engineering aspects of design and integration of ECE diagnostic in ITER

    NASA Astrophysics Data System (ADS)

    Udintsev, V. S.; Taylor, G.; Pandya, H. K. B.; Austin, M. E.; Casal, N.; Catalin, R.; Clough, M.; Cuquel, B.; Dapena, M.; Drevon, J.-M.; Feder, R.; Friconneau, J. P.; Giacomin, T.; Guirao, J.; Henderson, M. A.; Hughes, S.; Iglesias, S.; Johnson, D.; Kumar, Siddhart; Kumar, Vina; Levesy, B.; Loesser, D.; Messineo, M.; Penot, C.; Portalès, M.; Oosterbeek, J. W.; Sirinelli, A.; Vacas, C.; Vayakis, G.; Walsh, M. J.

    2015-03-01

    ITER ECE diagnostic [1] needs not only to meet measurement requirements, but also to withstand various loads, such as electromagnetic, mechanical, neutronic and thermal, and to be protected from stray ECH radiation at 170 GHz and other millimeter wave emission, like Collective Thomson scattering which is planned to operate at 60 GHz. Same or similar loads will be applied to other millimetre-wave diagnostics [2], located both in-vessel and in-port plugs. These loads must be taken into account throughout the design phases of the ECE and other microwave diagnostics to ensure their structural integrity and maintainability. The integration of microwave diagnostics with other ITER systems is another challenging activity which is currently ongoing through port integration and in-vessel integration work. Port Integration has to address the maintenance and the safety aspects of diagnostics, too. Engineering solutions which are being developed to support and to operate ITER ECE diagnostic, whilst complying with safety and maintenance requirements, are discussed in this paper.

  20. September 2006 Monthly Report- ITER Visible/IRTV Optical Design Scoping Study

    SciTech Connect

    Lasnier, C

    2006-09-27

    LLNL received a request from the US ITER organization to perform a scoping study of optical design for visible/IR camera systems for the 6 upper ports of ITER. A contract was put in place and the LLNL account number was opened July 19, 2006. A kickoff meeting was held at LLNL July 26. The principal work under the contract is being performed by Lynn Seppala (optical designer), Kevin Morris (mechanical designer), Max Fenstermacher (visible cameras), Mathias Groth (assisting with visible cameras), and Charles Lasnier (IR cameras and Principal Investigator), all LLNL employees. Kevin Morris has imported ITER CAD files and developed a simplified 3D view of the ITER tokamak with upper ports, which he used to determine the optimum viewing angle from an upper port to see the outer target. He also determined the minimum angular field of view needed to see the largest possible coverage of the outer target. We examined the CEA-Cadarache report on their optical design for ITER visible/IRTV equatorial ports. We found that the resolution was diffraction-limited by the 5-mm aperture through the tile. Lynn Seppala developed a similar front-end design for an upper port but with a larger 6-inch-diameter beam. This allows the beam to pass through the port plug and port interspace without further focusing optics until outside the bioshield. This simplifies the design as well as eliminating a requirement for complex relay lenses in the port interspace. The focusing optics are all mirrors, which allows the system to handle light from 0.4 {micro}m to 5 {micro}m wavelength without chromatic aberration. The window material chosen is sapphire, as in the CEA design. Sapphire has good transmission in the desired wavelengths up to 4.8 {micro}m, as well as good mechanical strength. We have verified that sapphire windows of the needed size are commercially available. The diffraction-limited resolution permitted by the 5 mm aperture falls short of the ITER specification value but is well

  1. Large-scale tests of insulated conduit for the ITER CS coil

    NASA Astrophysics Data System (ADS)

    Reed, R. P.; Walsh, R. P.; Schutz, J. B.

    Compression-fatigue tests at 77 K were conducted on test modules of insulated Incoloy 908 conduit. To replicate the operating conditions for the ITER central solenoid (CS) full-scale coil, fatigue loads up to 3.6 MN were applied for 10 5 cycles; no mechanical breakdowns occurred. The conduits were insulated with a preimpregnated resin system, a tetraglycidyl diaminodiphenyl methane (TGDM) epoxy cured with DDS aromatic amine. The conduits were joined by vacuum-pressure impregnation with a diglycidyl ether of bisphenol-F epoxy/anhydride-cured resin system. In the 4×4 stacked-conduit test modules, the layer insulation (a high-pressure laminate of TGDM epoxy cured with DDS aromatic amine) was inserted. Periodically during the tests, breakdown voltage was measured across the conduits of both turn and layer insulation; throughout the test, breakdown voltages were at least 46 kV. The addition of a barrier increased structural and electrical reliability.

  2. ITER tokamak device

    NASA Astrophysics Data System (ADS)

    Doggett, J.; Salpietro, E.; Shatalov, G.

    1991-07-01

    The results of the Conceptual Design Activities for the International Thermonuclear Experimental Reactor (ITER) are summarized. These activities, carried out between April 1988 and December 1990, produced a consistent set of technical characteristics and preliminary plans for co-ordinated research and development support of ITER, a conceptual design, a description of design requirements and a preliminary construction schedule and cost estimate. After a description of the design basis, an overview is given of the tokamak device, its auxiliary systems, facility and maintenance. The interrelation and integration of the various subsystems that form the ITER tokamak concept are discussed. The 16 ITER equatorial port allocations, used for nuclear testing, diagnostics, fueling, maintenance, and heating and current drive, are given, as well as a layout of the reactor building. Finally, brief descriptions are given of the major ITER sub-systems, i.e., (1) magnet systems (toroidal and poloidal field coils and cryogenic systems), (2) containment structures (vacuum and cryostat vessels, machine gravity supports, attaching locks, passive loops and active coils), (3) first wall, (4) divertor plate (design and materials, performance and lifetime, a.o.), (5) blanket/shield system, (6) maintenance equipment, (7) current drive and heating, (8) fuel cycle system, and (9) diagnostics.

  3. Design and RF measurements of a 5 GHz 500 kW window for the ITER LHCD system

    NASA Astrophysics Data System (ADS)

    Hillairet, J.; Achard, J.; Bae, Y. S.; Bernard, J. M.; Dechambre, N.; Delpech, L.; Ekedahl, A.; Faure, N.; Goniche, M.; Kim, J.; Larroque, S.; Magne, R.; Marfisi, L.; Namkung, W.; Park, H.; Park, S.; Poli, S.; Vulliez, K.

    2014-02-01

    CEA/IRFM is conducting R&D efforts in order to validate the critical RF components of the 5 GHz ITER LHCD system, which is expected to transmit 20 MW of RF power to the plasma. Two 5 GHz 500 kW BeO pill-box type window prototypes have been manufactured in 2012 by the PMB Company, in close collaboration with CEA/IRFM. Both windows have been validated at low power, showing good agreement between measured and modeling, with a return loss better than 32 dB and an insertion loss below 0.05 dB. This paper reports on the window RF design and the low power measurements. The high power tests up to 500kW have been carried out in March 2013 in collaboration with NFRI. Results of these tests are also reported.

  4. RAMI Analysis for Designing and Optimizing Tokamak Cooling Water System (TCWS) for the ITER's Fusion Reactor

    SciTech Connect

    Ferrada, Juan J; Reiersen, Wayne T

    2011-01-01

    U.S.-ITER is responsible for the design, engineering, and procurement of the Tokamak Cooling Water System (TCWS). TCWS is designed to provide cooling and baking for client systems that include the first wall/blanket, vacuum vessel, divertor, and neutral beam injector. Additional operations that support these primary functions include chemical control of water provided to client systems, draining and drying for maintenance, and leak detection/localization. TCWS interfaces with 27 systems including the secondary cooling system, which rejects this heat to the environment. TCWS transfers heat generated in the Tokamak during nominal pulsed operation - 850 MW at up to 150 C and 4.2 MPa water pressure. Impurities are diffused from in-vessel components and the vacuum vessel by water baking at 200-240 C at up to 4.4 MPa. TCWS is complex because it serves vital functions for four primary clients whose performance is critical to ITER's success and interfaces with more than 20 additional ITER systems. Conceptual design of this one-of-a-kind cooling system has been completed; however, several issues remain that must be resolved before moving to the next stage of the design process. The 2004 baseline design indicated cooling loops that have no fault tolerance for component failures. During plasma operation, each cooling loop relies on a single pump, a single pressurizer, and one heat exchanger. Consequently, failure of any of these would render TCWS inoperable, resulting in plasma shutdown. The application of reliability, availability, maintainability, and inspectability (RAMI) tools during the different stages of TCWS design is crucial for optimization purposes and for maintaining compliance with project requirements. RAMI analysis will indicate appropriate equipment redundancy that provides graceful degradation in the event of an equipment failure. This analysis helps demonstrate that using proven, commercially available equipment is better than using custom-designed equipment

  5. Test and Analysis of China's First Short Conductor Sample for ITER Toroidal Field Coils

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Wu, Yu

    2011-02-01

    In the framework of the ITER qualification tests, the first China TF conductor sample (CNTF1) was tested at the SULTAN facility. The sample was made of two TF conductor sections manufactured from identical internal stannum strands provided by the Oxford Superconducting technology company (OST). In order to evaluate the conductor performance, the current sharing temperature (Tcs) was measured at specified electromagnetic load cycling steps. Both conductor sections of the CNTF1 sample showed identical performance. Tcs was 7.2 K before cycling loading, and 6.9 K even after 950 cycles, without significant degradation, which substantially exceeds the ITER requirement of 5.7 K. The tests of the CNTF1 conductor sample showed that the electromagnetic cyclic load exhibited a negligible effect on the conductor performance. The coupling time constant θ for AC loss was 214 ms and 71.52 ms before and after the cycling load, respectively. The test results of the sample are compared with the strand performance and parameter model analysis.

  6. Three-Dimensional Electromagnetic Modeling of the ITER ICRF Antenna (External Matching Design)

    SciTech Connect

    Louche, F.; Lamalle, P.U.; Dumortier, P.; Messiaen, A.M.

    2005-09-26

    The present work reports on 3D radio-frequency (RF) analysis of a design for the ITER antenna with the CST Microwave Studio registered software. The four-port junctions which connect the straps in triplets have been analyzed. Non-TEM effects do not play any significant role in the relevant frequency domain, and a well-balanced splitting of current between the straps inside a triplet is achieved. The scattering matrix has also been compared with RF measurements on a scaled antenna mockup, and the agreement is very good. Electric field patterns along the system have been obtained, and the RF optimization of the feeding sections is under way.

  7. Iterative design of a helically folded aromatic oligoamide sequence for the selective encapsulation of fructose

    NASA Astrophysics Data System (ADS)

    Chandramouli, Nagula; Ferrand, Yann; Lautrette, Guillaume; Kauffmann, Brice; Mackereth, Cameron David; Laguerre, Michel; Dubreuil, Didier; Huc, Ivan

    2015-04-01

    The ab initio design of synthetic molecular receptors for a specific biomolecular guest remains an elusive objective, particularly for targets such as monosaccharides, which have very close structural analogues. Here we report a powerful approach to produce receptors with very high selectivity for specific monosaccharides and, as a demonstration, we develop a foldamer that selectively encapsulates fructose. The approach uses an iterative design process that exploits the modular structure of folded synthetic oligomer sequences in conjunction with molecular modelling and structural characterization to inform subsequent refinements. Starting from a first-principles design taking size, shape and hydrogen-bonding ability into account and using the high predictability of aromatic oligoamide foldamer conformations and their propensity to crystallize, a sequence that binds to β-D-fructopyranose in organic solvents with atomic-scale complementarity was obtained in just a few iterative modifications. This scheme, which mimics the adaptable construction of biopolymers from a limited number of monomer units, provides a general protocol for the development of selective receptors.

  8. Facilities for technology testing of ITER divertor concepts, models, and prototypes in a plasma environment

    SciTech Connect

    Cohen, S.A.

    1991-12-01

    The exhaust of power and fusion-reaction products from ITER plasma are critical physics and technology issues from performance, safety, and reliability perspectives. Because of inadequate pulse length, fluence, flux, scrape-off layer plasma temperature and density, and other parameters, the present generation of tokamaks, linear plasma devices, or energetic beam facilities are unable to perform adequate technology testing of divertor components, though they are essential contributors to many physics issues such as edge-plasma transport and disruption effects and control. This Technical Requirements Documents presents a description of the capabilities and parameters divertor test facilities should have to perform accelerated life testing on predominantly technological divertor issues such as basic divertor concepts, heat load limits, thermal fatigue, tritium inventory and erosion/redeposition. The cost effectiveness of such divertor technology testing is also discussed.

  9. Current Sharing Temperature Test and Simulation with GANDALF Code for ITER PF2 Conductor Sample

    NASA Astrophysics Data System (ADS)

    Li, Shaolei; Wu, Yu; Liu, Bo; Weng, Peide

    2011-10-01

    Cable-in-conduit conductor (CICC) conductor sample of the PF2 coil for ITER was tested in the SULTAN facility. According to the test results, the CICC conductor sample exhibited a stable performance regarding the current sharing temperature. Under the typical operational conditions of a current of 45 kA, a magnetic field of 4 T and a temperature of 5 K for PF2, the test result for the conductor current sharing temperature is 6.71 K, with a temperature margin of 1.71 K. For a comparison thermal-hydraulic analysis of the PF2 conductor was carried out using GANDALF code in a 1-D model, and the result is consistent with the test one.

  10. RF Measurements and Modeling from the JET-ITER Like Antenna Testing

    NASA Astrophysics Data System (ADS)

    Vrancken, M.; Argouarch, A.; Blackman, T.; Dumortier, P.; Durodié, F.; Goulding, R.; Graham, M.; Huygen, S.; Lamalle, P. U.; Messiaen, A. M.; Nicholls, K.; Nightingale, M.; Vervier, M.

    2007-09-01

    The RF characteristics of the JET-ITER Like (JET-IL) antenna relevant for operation on plasma have been assessed using full wave three Dimensional (3D) electromagnetic CST® Microwave Studio (MWS) simulations, measurements of the full 8-port antenna strap array S/Z-matrix, and RF circuit modeling. These efforts are made in parallel with the high voltage testing of the antenna inside a vacuum tank and the hardware implementation of a RF (Radio Frequency) matching feedback control system prior to installation of the antenna on the JET tokamak.

  11. RF Measurements and Modeling from the JET-ITER Like Antenna Testing

    SciTech Connect

    Vrancken, M.; Dumortier, P.; Durodie, F.; Huygen, S.; Lamalle, P. U.; Messiaen, A. M.; Vervier, M.; Argouarch, A.; Blackman, T.; Graham, M.; Nicholls, K.; Nightingale, M.

    2007-09-28

    The RF characteristics of the JET-ITER Like (JET-IL) antenna relevant for operation on plasma have been assessed using full wave three Dimensional (3D) electromagnetic CST registered Microwave Studio (MWS) simulations, measurements of the full 8-port antenna strap array S/Z-matrix, and RF circuit modeling. These efforts are made in parallel with the high voltage testing of the antenna inside a vacuum tank and the hardware implementation of a RF (Radio Frequency) matching feedback control system prior to installation of the antenna on the JET tokamak.

  12. Assessment of the ITER electron cyclotron upper launcher capabilities in view of an optimized design

    NASA Astrophysics Data System (ADS)

    Figini, L.; Farina, D.; Henderson, M.; Mariani, A.; Poli, E.; Saibene, G.

    2015-05-01

    The 24 MW ITER electron cyclotron (EC) heating and current drive (H and CD) system, operating at 170 GHz, consists of one equatorial and four upper launchers (UL). The main task of the UL will be the control of magneto-hydrodynamic activity such as neoclassical tearing modes (NTMs) at the q = 3/2 and q = 2 surfaces and sawteeth at q = 1, but it will also be needed for current profile tailoring in advanced scenarios and to assist plasma break-down and L- to H-mode transition. Moreover, it is required to be effective both when ITER will operate at nominal and reduced magnetic field magnitude. Here the performance of the UL has been assessed through the study of the full temporal evolution of different scenarios, including the reference ITER 15 MA H-mode plasma, a half-field case at 2.65 T and a steady state scenario. The ECCD efficiency has been evaluated for a wide range of injection angles, deriving the optimal angles and the power required for NTMs stabilization with simplified criteria. An injected power ranging from 3 MW to 9 MW should be sufficient to control NTMs in the flat-top phase of the scenarios considered here. The result of the analysis shows that the EC system maintains a good performance level even at intermediate values of the magnetic field, between the nominal and the half-field value. The analysis has also allowed to evaluate the adequateness of the available steering range for reaching the rational surfaces during all the phases of the discharge and to quantify the steering sensitivity to shifts of the target or aiming errors. The result is an assessment of the UL design requirements to achieve the desired functionalities, which will be used to drive the optimization and finalization of the UL design.

  13. Conceptual design of the tangentially viewing combined interferometer-polarimeter for ITER density measurements

    SciTech Connect

    Van Zeeland, M. A.; Boivin, R. L.; Carlstrom, T. N.; Chavez, J. A.; O'Neill, R. C.; Brower, D. L.; Ding, W. X.; Lin, L.; Feder, R.; Johnson, D.; Watts, C.

    2013-04-15

    One of the systems planned for the measurement of electron density in ITER is a multi-channel tangentially viewing combined interferometer-polarimeter (TIP). This work discusses the current status of the design, including a preliminary optical table layout, calibration options, error sources, and performance projections based on a CO{sub 2}/CO laser system. In the current design, two-color interferometry is carried out at 10.59 {mu}m and 5.42 {mu}m and a separate polarimetry measurement of the plasma induced Faraday effect, utilizing the rotating wave technique, is made at 10.59 {mu}m. The inclusion of polarimetry provides an independent measure of the electron density and can also be used to correct the conventional two-color interferometer for fringe skips at all densities, up to and beyond the Greenwald limit. The system features five chords with independent first mirrors to reduce risks associated with deposition, erosion, etc., and a common first wall hole to minimize penetration sizes. Simulations of performance for a projected ITER baseline discharge show the diagnostic will function as well as, or better than, comparable existing systems for feedback density control. Calculations also show that finite temperature effects will be significant in ITER even for moderate temperature plasmas and can lead to a significant underestimate of electron density. A secondary role TIP will fulfill is that of a density fluctuation diagnostic; using a toroidal Alfven eigenmode as an example, simulations show TIP will be extremely robust in this capacity and potentially able to resolve coherent mode fluctuations with perturbed densities as low as {delta}n/n Almost-Equal-To 10{sup -5}.

  14. Conceptual design of the tangentially viewing combined interferometer-polarimeter for ITER density measurements

    NASA Astrophysics Data System (ADS)

    Van Zeeland, M. A.; Boivin, R. L.; Brower, D. L.; Carlstrom, T. N.; Chavez, J. A.; Ding, W. X.; Feder, R.; Johnson, D.; Lin, L.; O'Neill, R. C.; Watts, C.

    2013-04-01

    One of the systems planned for the measurement of electron density in ITER is a multi-channel tangentially viewing combined interferometer-polarimeter (TIP). This work discusses the current status of the design, including a preliminary optical table layout, calibration options, error sources, and performance projections based on a CO2/CO laser system. In the current design, two-color interferometry is carried out at 10.59 μm and 5.42 μm and a separate polarimetry measurement of the plasma induced Faraday effect, utilizing the rotating wave technique, is made at 10.59 μm. The inclusion of polarimetry provides an independent measure of the electron density and can also be used to correct the conventional two-color interferometer for fringe skips at all densities, up to and beyond the Greenwald limit. The system features five chords with independent first mirrors to reduce risks associated with deposition, erosion, etc., and a common first wall hole to minimize penetration sizes. Simulations of performance for a projected ITER baseline discharge show the diagnostic will function as well as, or better than, comparable existing systems for feedback density control. Calculations also show that finite temperature effects will be significant in ITER even for moderate temperature plasmas and can lead to a significant underestimate of electron density. A secondary role TIP will fulfill is that of a density fluctuation diagnostic; using a toroidal Alfvén eigenmode as an example, simulations show TIP will be extremely robust in this capacity and potentially able to resolve coherent mode fluctuations with perturbed densities as low as δn/n ≈ 10-5.

  15. Conceptual design of the tangentially viewing combined interferometer-polarimeter for ITER density measurements.

    PubMed

    Van Zeeland, M A; Boivin, R L; Brower, D L; Carlstrom, T N; Chavez, J A; Ding, W X; Feder, R; Johnson, D; Lin, L; O'Neill, R C; Watts, C

    2013-04-01

    One of the systems planned for the measurement of electron density in ITER is a multi-channel tangentially viewing combined interferometer-polarimeter (TIP). This work discusses the current status of the design, including a preliminary optical table layout, calibration options, error sources, and performance projections based on a CO2/CO laser system. In the current design, two-color interferometry is carried out at 10.59 μm and 5.42 μm and a separate polarimetry measurement of the plasma induced Faraday effect, utilizing the rotating wave technique, is made at 10.59 μm. The inclusion of polarimetry provides an independent measure of the electron density and can also be used to correct the conventional two-color interferometer for fringe skips at all densities, up to and beyond the Greenwald limit. The system features five chords with independent first mirrors to reduce risks associated with deposition, erosion, etc., and a common first wall hole to minimize penetration sizes. Simulations of performance for a projected ITER baseline discharge show the diagnostic will function as well as, or better than, comparable existing systems for feedback density control. Calculations also show that finite temperature effects will be significant in ITER even for moderate temperature plasmas and can lead to a significant underestimate of electron density. A secondary role TIP will fulfill is that of a density fluctuation diagnostic; using a toroidal Alfvén eigenmode as an example, simulations show TIP will be extremely robust in this capacity and potentially able to resolve coherent mode fluctuations with perturbed densities as low as δn∕n ≈ 10(-5). PMID:23635190

  16. Modified Visible and Infrared Optical Design for the ITER Upper Ports

    SciTech Connect

    Lasnier, C; Seppala, L; Morris, K

    2008-04-24

    This document reports the results of a follow-on optical design study of visible-light and infrared optics for the ITER upper ports, performed by LLNL under contract for the US ITER Project Office. The major objectives of this work are to move the viewing aperture closer to the plasma so that the optical path does not cut through any adjacent blanket shield module other than the module designated for the port; move optics forward into the port tube to increase the aperture size and therefore improve the spatial resolution; assess the trade-off between spatial resolution and spatial coverage by reducing the field of view; and create a mechanical model with a neutron labyrinth. Here we show an optical design incorporating all these aspects. The new design fits into a 360 mm ID tube, as did the previous design. The entrance aperture is increased from 10 mm to 21 mm, with a corresponding increase in spatial resolution. The Airy disk diameter for 3.8 {micro}m wavelength IR light is 5.1 mm at the most distant target point in the field of view. The field of view is reduced from 60 toroidal degrees (full toroidal coverage with 6 cameras) to 50 toroidal degrees. The 10 degrees eliminated are those nearest the camera, which have the poorest view of the divertor plate and in fact saw little of the plate. The Cassegrain telescope that was outside the vacuum windows in the previous design is now in vacuum, along with lenses for visible light. The Cassegrain for visible light is eliminated. An additional set of optical relay lenses is added for the visible and for the IR.

  17. Automatic Synthesis of UML Designs from Requirements in an Iterative Process

    NASA Technical Reports Server (NTRS)

    Schumann, Johann; Whittle, Jon; Clancy, Daniel (Technical Monitor)

    2001-01-01

    The Unified Modeling Language (UML) is gaining wide popularity for the design of object-oriented systems. UML combines various object-oriented graphical design notations under one common framework. A major factor for the broad acceptance of UML is that it can be conveniently used in a highly iterative, Use Case (or scenario-based) process (although the process is not a part of UML). Here, the (pre-) requirements for the software are specified rather informally as Use Cases and a set of scenarios. A scenario can be seen as an individual trace of a software artifact. Besides first sketches of a class diagram to illustrate the static system breakdown, scenarios are a favorite way of communication with the customer, because scenarios describe concrete interactions between entities and are thus easy to understand. Scenarios with a high level of detail are often expressed as sequence diagrams. Later in the design and implementation stage (elaboration and implementation phases), a design of the system's behavior is often developed as a set of statecharts. From there (and the full-fledged class diagram), actual code development is started. Current commercial UML tools support this phase by providing code generators for class diagrams and statecharts. In practice, it can be observed that the transition from requirements to design to code is a highly iterative process. In this talk, a set of algorithms is presented which perform reasonable synthesis and transformations between different UML notations (sequence diagrams, Object Constraint Language (OCL) constraints, statecharts). More specifically, we will discuss the following transformations: Statechart synthesis, introduction of hierarchy, consistency of modifications, and "design-debugging".

  18. Design and Operating Features of the ITER 4.5 K Cryoplant

    SciTech Connect

    Kalinine, V.; Haange, R.; Shatil, N.; Millet, F.; Jager, B.; Briend, P.; Crispel, S.; Dauguet, P.

    2004-06-23

    The main cryogenic users of ITER are the superconducting magnet system and the cryogenic vacuum pumps. The magnet system consists of 18 toroidal field and six poloidal field coils and the central solenoid coils. The cryogenic vacuum pumps contain eight pumps for the vacuum vessel, up to four pumps for the neutral beam injectors and two for the tokamak cryostat.The paper presents the current design status of the ITER cryoplant and its operating features that allow stable and flexible operation for different plasma pulsing scenarios and transient operating modes including cool-down and coil quench. The LHe plant operates in a combined liquefaction / refrigeration mode. Liquefied helium is used for the coil current leads and for cool-down of the cryopumps after their regeneration at 80 K. The operating temperature of the LHe plant can vary in the range of 4.3 K to 4.5 K to satisfy different cooling demands of various plasma scenarios. The LHe plant is designed for a large variation ratio of refrigeration to liquefaction in order to facilitate filling of the coils with a large amount of supercritical helium after a standard cool-down or specific cool-down mode following a fast energy discharge.

  19. ITER Core Imaging X-Ray Spectrometer Conceptual Design and Performance Assessment - Phase 2

    SciTech Connect

    Beiersdorfer, P; Wen, J; Dunn, J; Morris, K

    2011-01-02

    During Phase 2 of our study of the CIXS conceptual design we have tackled additional important issues that are unique to the ITER environment. These include the thermal control of the crystal and detector enclosures located in an environment with a 100-250 C ambient temperature, tritium containment, and the range of crystal and detector movement based on the need for spectral adjustments and the desire to make measurements of colder plasmas. In addressing these issues we have selected a ''Dewar''-type enclosure for the crystals and detectors. Applying realistic view factors for radiant heat and making allowance for conduction we have made engineering studies of this enclosure and showed that the cooling requirements can be solved and the temperature can be kept sufficiently constant without compromising the specification parameters of the CIXS. We have chosen a minimum 3 mm combined thickness of the six beryllium windows needed in a Dewar-type enclosure and showed that a single window of 0.5 mm thickness satisfies tritium containment requirements. For measuring the temperature in cooler ITER plasmas, we have chosen to use the K-shell lines of Fe24+. Iron is the preferred choice because its radiation can be analyzed with the identical CIXS settings used for analyzing the tungsten radiation, i.e., essentially no adjustments besides a simple crystal rotation need to be made. We have, however, included an xy{theta}-drive motor arrangement in our design for fine adjustments and full rotation of the crystal mounts.

  20. Tensile and fatigue qualification testing of ITER-CS conduit alloy JK2LB

    NASA Astrophysics Data System (ADS)

    Walsh, R. P.; McRae, D. M.; Han, K.; Martovetsky, N. N.

    2015-12-01

    The ITER Central Solenoid (CS) coils utilize cable-in-conduit conductor (CICC) and the conduit alloy is JK2LB. The production grade conduit alloy (and it's welds) must meet strict requirements for strength, toughness, fatigue crack resistance, and fabricability. The conduit alloy must retain good mechanical properties after additional fabrication steps such as welding, coil winding strain and exposure to the Nb3Sn superconductor's reaction heat treatment. Here we present data from cryogenic tensile, fracture toughness, fatigue crack growth rate, and axial fatigue tests of JK2LB alloy and conduit butt welds, before and after the exposure to the reaction heat treatment. The tests of specimens removed directly from the conduit provide confirmation of the materials properties and the effect of the cold work and aging. The 4 K fatigue performance is extremely important to the reliability of the CS and is covered both by axial cyclic fatigue tests and the fatigue crack growth rate measurements.

  1. ITER fast ion confinement in the presence of the European test blanket module

    NASA Astrophysics Data System (ADS)

    Äkäslompolo, Simppa; Kurki-Suonio, Taina; Asunta, Otto; Cavinato, Mario; Gagliardi, Mario; Hirvijoki, Eero; Saibene, Gabriella; Sipilä, Seppo; Snicker, Antti; Särkimäki, Konsta; Varje, Jari

    2015-09-01

    This paper addresses the confinement of thermonuclear alpha particles and neutral beam injected deuterons in the 15 MA Q = 10 inductive scenario in the presence of the magnetic perturbation caused by the helium cooled pebble bed test blanket module using the vacuum approximation. Both the flat top phase and plasma ramp-up are studied. The transport of fast ions is calculated using the Monte Carlo guiding center orbit-following code ASCOT. A detailed three-dimensional wall, derived from the ITER blanket module CAD data, is used for evaluating the fast ion wall loads. The effect of the test blanket module is studied for both overall confinement and possible hot spots. The study indicates that the test blanket modules do not significantly deteriorate the fast ion confinement.

  2. Test Results of the First US ITER TF Conductor in SULTAN

    SciTech Connect

    Martovetsky, N N; Hatfield, D R; Miller, J R; Gung, C; Schultz, J S; Cheggour, N; Goodrich, L F; Bruzzone, P; Stepanov, B; Wesche, R; Seeber, B

    2008-08-18

    The US Domestic Agency is one of six parties supplying TF cable-in-conduit conductors (CICCs) for ITER. Previous tests have shown that measured performance of the TF CICCs can be much lower than expected from the strand properties at the projected uniaxial strain and that the cabling pattern may also be an important factor. Worst of all, voltage signals well below the expected critical surface could not be reliably interpreted or canceled, making test results very suspect. The TFUS1 sample was prepared to achieve multiple goals: (1) to ensure uniform current distribution and to eliminate parasitic voltage signals by improving joints, (2) to explore the potential benefits of a different cabling pattern for better support of strain-sensitive strands, and (3) to explore the source of voltage development in the cable through the use of innovative penetrating diagnostics. Test results of the first US-made samples are presented and discussed.

  3. Vector fuzzy control iterative algorithm for the design of sub-wavelength diffractive optical elements for beam shaping

    NASA Astrophysics Data System (ADS)

    Lin, Yong; Hu, Jiasheng; Wu, Kenan

    2009-08-01

    The vector fuzzy control iterative algorithm (VFCIA) is proposed for the design of phase-only sub-wavelength diffractive optical elements (SWDOEs) for beam shaping. The vector diffraction model put forward by Mansuripur is applied to relate the field distributions between the SWDOE plane and the output plane. Fuzzy control theory is used to decide the constraint method for each iterative process of the algorithm. We have designed a SWDOE that transforms a circular flat-top beam to a square irradiance pattern. Computer design results show that the SWDOE designed by the VFCIA can produce better results than the vector iterative algorithm (VIA). And the finite difference time-domain method (FDTD), a rigorous electromagnetic analysis technique, is used to analyze the designed SWDOE for further confirming the validity of the proposed method.

  4. European contributions to the beam source design and R&D of the ITER neutral beam injectors

    NASA Astrophysics Data System (ADS)

    Massmann, P.; Bayetti, P.; Bucalossi, J.; Desgranges, C.; Di Pietro, E.; Frank, P.; Fumelli, M.; Fujiwara, Y.; Hanada, M.; Heinemann, B.; Hemsworth, R. S.; Inoue, T.; Jacquot, C.; Kraus, W.; Okumura, Y.; Probst, F.; Simonin, A.; Speth, E.; Trainham, R.; Vollmer, O.

    2000-03-01

    The article reports on the progress made by the ITER European Home Team in strong interaction with the ITER Joint Central Team and the Japan Atomic Energy Research Institute regarding several key aspects of the beam source for the ITER injectors: (1) Integration of the SINGAP accelerator into the ITER injector design. This is a substantially simpler concept than the multiaperture, multigap (MAMuG) accelerator of the ITER NBI reference design that has the potential for significant cost savings and that avoids some of the weaknesses of the reference design such as the need for intermediate high voltage potentials from the high voltage power supply and pressurized gas insulation. (2) High energy negative ion acceleration using a SINGAP accelerator. (3) Long pulse (i.e. >1000 s) negative ion source operation in deuterium. (4) RF source development, which could reduce the scheduled maintenance of the ITER injectors (as it uses no filaments), and simplify the transmission line and the auxiliary power supplies for the ion source.

  5. Testing of the ITER-ECE prototype receiver and related components on DIII-D

    NASA Astrophysics Data System (ADS)

    Austin, M. E.; Brookman, M. W.; Phillips, P. E.; Rowan, W. L.; Danani, S.

    2015-11-01

    Real-world testing of advanced plasma diagnostic instruments and techniques intended for use on ITER is crucial to ensure their success. A prototype millimeter-wave receiver developed by Virginia Diodes, Inc. was brought to DIII-D to check its performance by measuring third harmonic ECE in high temperature plasmas. The receiver is state-of-the art, employing a waveguide based triplexer and a DRO-based local oscillator with an integrated tripler, subharmonic mixer and amplifier to detect emission in the 200-300 GHz range. Comparisons of ECE measurements with those from the DIII-D Michelson interferometer will evaluate linearity, sensitivity, and noise temperature. Also, transmission measurements of a double wedged quartz window, very similar to that proposed for the ITER vacuum interface, are given, showing no interference effects and good broadband performance. Additionally, results of the testing of a new high intensity LED light source for alignment of transmission line components are shown. Supported by US DOE DE-FG02-97ER54415, DE-FC02-04ER54698.

  6. A robust helium-cooled shield/blanket design for ITER

    NASA Astrophysics Data System (ADS)

    Wong, C. P. C.; Bourque, R. F.; Baxi, C. B.; Colleraine, A. P.; Grunloh, H. J.; Letchenberg, T.; Leuer, J. A.; Reis, E. E.; Redler, K.; Will, R.

    1993-11-01

    General Atomics Fusion and Reactor Groups have completed a helium-cooled, conceptual shield/blanket design for ITER. The configuration selected is a pressurized tubes design embedded in radially oriented plates. This plate can be made from ferritic steel or from V-alloy. Helium leakage to the plasma chamber is eliminated by conservative, redundant design and proper quality control and inspection programs. High helium pressure at 18 MPa is used to reduce pressure drop and enhance heat transfer. This high gas pressure is believed practical when confined in small diameter tubes. Ample industrial experience exists for safe high gas pressure operations. Inboard shield design is highlighted in this study since the allowable void fraction is more limited. Lithium is used as the thermal contacting medium and for tritium breeding; its safety concerns are minimized by a modular, low inventory design that requires no circulation of the liquid metal for the purpose of heat removal. This design is robust, conservative, reliable, and meets all design goals and requirements. It can also be built with present-day technology.

  7. Library designs for generic C++ sparse matrix computations of iterative methods

    SciTech Connect

    Pozo, R.

    1996-12-31

    A new library design is presented for generic sparse matrix C++ objects for use in iterative algorithms and preconditioners. This design extends previous work on C++ numerical libraries by providing a framework in which efficient algorithms can be written *independent* of the matrix layout or format. That is, rather than supporting different codes for each (element type) / (matrix format) combination, only one version of the algorithm need be maintained. This not only reduces the effort for library developers, but also simplifies the calling interface seen by library users. Furthermore, the underlying matrix library can be naturally extended to support user-defined objects, such as hierarchical block-structured matrices, or application-specific preconditioners. Utilizing optimized kernels whenever possible, the resulting performance of such framework can be shown to be competitive with optimized Fortran programs.

  8. Second performance assessment iteration of the Greater Confinement Disposal facility at the Nevada Test Site

    SciTech Connect

    Baer, T.A.; Emery, J.N.; Price, L.L.; Olague, N.E.

    1994-04-01

    The Greater Confinement Disposal (GCD) facility was established in Area 5 at the Nevada Test Site for containment of waste inappropriate for shallow land burial. Some transuranic (TRU) waste has been disposed of at the GCD facility, and compliance of this disposal system with EPA regulation 40 CFR 191 must be evaluated. We have adopted an iterative approach in which performance assessment results guide site data collection, which in turn influences the parameters and models used in performance assessment. The first iteration was based upon readily available data, and indicated that the GCD facility would likely comply with 40 CFR 191 and that the downward flux of water through the vadose zone (recharge) had a major influence on the results. Very large recharge rates, such as might occur under a cooler, wetter climate, could result in noncompliance. A project was initiated to study recharge in Area 5 by use of three environmental tracers. The recharge rate is so small that the nearest groundwater aquifer will not be contaminated in less than 10,000 years. Thus upward liquid diffusion of radionuclides remained as the sole release pathway. This second assessment iteration refined the upward pathway models and updated the parameter distributions based upon new site information. A new plant uptake model was introduced to the upward diffusion pathway; adsorption and erosion were also incorporated into the model. Several modifications were also made to the gas phase radon transport model. Plutonium solubility and sorption coefficient distributions were changed based upon new information, and on-site measurements were used to update the moisture content distributions. The results of the assessment using these models indicate that the GCD facility is likely to comply with all sections of 40 CFR 191 under undisturbed conditions.

  9. Gamma-irradiation tests of IR optical fibres for ITER thermography--a case study

    SciTech Connect

    Reichle, R.; Pocheau, C.; Jouve, M.

    2008-03-12

    In the course of the development of a concept for a spectrally resolving infrared thermography diagnostic for the ITER divertor we have tested 3 types of infrared (IR) fibres in Co{sup 60} irradiation facilities under {gamma} irradiation. The fibres were ZrF{sub 4} (and HfF{sub 4}) fibres from different manufacturers, hollow fibres (silica capillaries with internal Ag/AgJ coating) and a sapphire fibre. For the IR range, only the latter fibre type encourages to go further for neutron tests in a reactor. If one restricted the interest onto the near infrared range, high purity core silica fibres could be used. This study might be seen as a typical example of the relation between diagnostic development for a nuclear environment and irradiation experiments.

  10. Critical Design Issues of Tokamak Cooling Water System of ITER's Fusion Reactor

    SciTech Connect

    Kim, Seokho H; Berry, Jan

    2011-01-01

    U.S. ITER is responsible for the design, engineering, and procurement of the Tokamak Cooling Water System (TCWS). The TCWS transfers heat generated in the Tokamak to cooling water during nominal pulsed operation 850 MW at up to 150 C and 4.2 MPa water pressure. This water contains radionuclides because impurities (e.g., tritium) diffuse from in-vessel components and the vacuum vessel by water baking at 200 240 C at up to 4.4MPa, and corrosion products become activated by neutron bombardment. The system is designated as safety important class (SIC) and will be fabricated to comply with the French Order concerning nuclear pressure equipment (December 2005) and the EU Pressure Equipment Directive using ASME Section VIII, Div 2 design codes. The complexity of the TCWS design and fabrication presents unique challenges. Conceptual design of this one-of-a-kind cooling system has been completed with several issues that need to be resolved to move to next stage of the design. Those issues include flow balancing between over hundreds of branch pipelines in parallel to supply cooling water to blankets, determination of optimum flow velocity while minimizing the potential for cavitation damage, design for freezing protection for cooling water flowing through cryostat (freezing) environment, requirements for high-energy piping design, and electromagnetic impact to piping and components. Although the TCWS consists of standard commercial components such as piping with valves and fittings, heat exchangers, and pumps, complex requirements present interesting design challenges. This paper presents a brief description of TCWS conceptual design and critical design issues that need to be resolved.

  11. Questions Dog Design of Tests

    ERIC Educational Resources Information Center

    Gewertz, Catherine

    2012-01-01

    On the verge of signing a contract to help design assessments for the common standards, ACT Inc. has withdrawn from the project amid conflict-of-interest questions sparked by its own development of a similar suite of tests. Even though it involves only a small subcontract, the move by the Iowa-based test-maker, and the questions from the state…

  12. LSP Composite Test Bed Design

    NASA Technical Reports Server (NTRS)

    Day, Arthur C.; Griess, Kenneth H.

    2013-01-01

    This document provides standalone information for the Lightning Strike Protection (LSP) Composite Substrate Test Bed Design. A six-sheet drawing set is reproduced for reference, as is some additional descriptive information on suitable sensors and use of the test bed.

  13. Design Analysis and Manufacturing Studies for ITER In-Vessel Coils

    SciTech Connect

    Kalish, M.; Heitzenroeder, P.; Neumeyer, C.; Titus, P.; Zhai, Y.; Zatz, I.; Messineo, M.; Gomez, M.; Hause, C.; Daly, E.; Martin, A.; Wu, Y.; Jin, J.; Long, F.; Song, Y.; Wang, Z.; Yun, Zan; Hsiao, J.; Pillsbury, J. R.; Bohm, T.; Sawan, M.; Jiang, NFN

    2014-07-01

    ITER is incorporating two types of In Vessel Coils (IVCs): ELM Coils to mitigate Edge Localized Modes and VS Coils to provide Vertical Stabilization of the plasma. Strong coupling with the plasma is required so that the ELM and VS Coils can meet their performance requirements. Accordingly, the IVCs are in close proximity to the plasma, mounted just behind the Blanket Shield Modules. This location results in a radiation and temperature environment that is severe necessitating new solutions for material selection as well as challenging analysis and design solutions. Fitting the coil systems in between the blanket shield modules and the vacuum vessel leads to difficult integration with diagnostic cabling and cooling water manifolds.

  14. Which Events Can Cause Iteration in Instructional Design? An Empirical Study of the Design Process

    ERIC Educational Resources Information Center

    Verstegen, D. M. L.; Barnard, Y. F.; Pilot, A.

    2006-01-01

    Instructional design is not a linear process: designers have to weigh the advantages and disadvantages of alternative solutions, taking into account different kinds of conflicting and changing constraints. To make sure that they eventually choose the most optimal one, they have to keep on collecting information, reconsidering continuously whether…

  15. Applications of a direct/iterative design method to complex transonic configurations

    NASA Technical Reports Server (NTRS)

    Smith, Leigh Ann; Campbell, Richard L.

    1992-01-01

    The current study explores the use of an automated direct/iterative design method for the reduction of drag in transport configurations, including configurations with engine nacelles. The method requires the user to choose a proper target-pressure distribution and then develops a corresponding airfoil section. The method can be applied to two-dimensional airfoil sections or to three-dimensional wings. The three cases that are presented show successful application of the method for reducing drag from various sources. The first two cases demonstrate the use of the method to reduce induced drag by designing to an elliptic span-load distribution and to reduce wave drag by decreasing the shock strength for a given lift. In the second case, a body-mounted nacelle is added and the method is successfully used to eliminate increases in wing drag associated with the nacelle addition by designing to an arbitrary pressure distribution as a result of the redesigning of a wing in combination with a given underwing nacelle to clean-wing, target-pressure distributions. These cases illustrate several possible uses of the method for reducing different types of drag. The magnitude of the obtainable drag reduction varies with the constraints of the problem and the configuration to be modified.

  16. High resolution fast wave reflectometry: JET design and implications for ITER.

    PubMed

    Cupido, L; Cardinali, A; Igreja, R; Serra, F; Manso, M E; Murari, A

    2008-10-01

    The measurement of the fuel mixture remains a very difficult task in thermonuclear plasmas, where the hydrogen isotopes are fully stripped and do not emit line radiation. On the other hand, direct determination of the ion species mix will be essential in the reactor to keep the mixture close to 50/50 and maximize the fusion output. In this paper, the design of fast wave reflectometry for JET is reviewed to show the potential of such a method in the perspective of ITER. The main design elements of the antenna and the detection system, based on vectorial measurements, are reported. The main challenges to such a diagnostic, mainly the intrinsic ion cyclotron emission from the plasma and the extensive use of ion cyclotron radiofrequencies as additional heating, are addressed in detail. The overall design indicates that the proposed system would be able to provide a measurement of the fuel ratio with spatial resolution in the range of few centimeters and temporal resolution in the range of 1 ms in the vast majority of JET scenarios. PMID:19068526

  17. High resolution fast wave reflectometry: JET design and implications for ITER

    SciTech Connect

    Cupido, L.; Igreja, R.; Serra, F.; Manso, M. E.; Cardinali, A.; Murari, A.

    2008-10-15

    The measurement of the fuel mixture remains a very difficult task in thermonuclear plasmas, where the hydrogen isotopes are fully stripped and do not emit line radiation. On the other hand, direct determination of the ion species mix will be essential in the reactor to keep the mixture close to 50/50 and maximize the fusion output. In this paper, the design of fast wave reflectometry for JET is reviewed to show the potential of such a method in the perspective of ITER. The main design elements of the antenna and the detection system, based on vectorial measurements, are reported. The main challenges to such a diagnostic, mainly the intrinsic ion cyclotron emission from the plasma and the extensive use of ion cyclotron radiofrequencies as additional heating, are addressed in detail. The overall design indicates that the proposed system would be able to provide a measurement of the fuel ratio with spatial resolution in the range of few centimeters and temporal resolution in the range of 1 ms in the vast majority of JET scenarios.

  18. Iterative Structure-Based Peptide-Like Inhibitor Design against the Botulinum Neurotoxin Serotype A

    PubMed Central

    Zuniga, Jorge E.; Hammill, Jared T.; Drory, Omri; Nuss, Jonathan E.; Burnett, James C.; Gussio, Rick; Wipf, Peter; Bavari, Sina; Brunger, Axel T.

    2010-01-01

    The botulinum neurotoxin serotype A light chain (BoNT/A LC) protease is the catalytic component responsible for the neuroparalysis that is characteristic of the disease state botulism. Three related peptide-like molecules (PLMs) were designed using previous information from co-crystal structures, synthesized, and assayed for in vitro inhibition against BoNT/A LC. Our results indicate these PLMS are competitive inhibitors of the BoNT/A LC protease and their Ki values are in the nM-range. A co-crystal structure for one of these inhibitors was determined and reveals that the PLM, in accord with the goals of our design strategy, simultaneously involves both ionic interactions via its P1 residue and hydrophobic contacts by means of an aromatic group in the P2′ position. The PLM adopts a helical conformation similar to previously determined co-crystal structures of PLMs, although there are also major differences to these other structures such as contacts with specific BoNT/A LC residues. Our structure further demonstrates the remarkable plasticity of the substrate binding cleft of the BoNT/A LC protease and provides a paradigm for iterative structure-based design and development of BoNT/A LC inhibitors. PMID:20614028

  19. The Enhanced Performance Launcher Design For The ITER Upper Port ECH Antenna

    SciTech Connect

    Henderson, M. A.; Chavan, R.; Bertizzolo, R.; Duron, J.; Landis, J.-D.; Sauter, O.; Sanchez, F.; Shidara, H.; Udintsev, V. S.; Zucca, C.; Bruschi, A.; Criant, S.; Farina, D.; Ramponi, G.; Heidinger, R.; Poli, E.; Zohm, H.; Saibene, G.

    2007-09-28

    The ITER ECH heating and current drive system delivers 24 MW (170 GHz), which can be directed to either the equatorial (EL) or upper (UL) port launching antennas depending on the desired physics application. The UL design uses two front steering (FS) mirrors that sweep eight beams in a poloidal plane providing co-ECCD over the outer half of the plasma cross section. A novel frictionless, backlash-free steering mechanism has been developed for an increased reliability and providing a steering mirror rotation of up to {+-}7 deg. ({+-}14 deg. for RF beam). The principle aim of the UL is to stabilize the neoclassical tearing modes (NTM) and (by extending the steering range) access the q = 1 flux surface for control of the sawtooth oscillation. Increasing the range of the UL can relax the EL steering range, and optimize the EL for enhanced performance with an optimized central deposition and potential for counter ECCD. This paper will summarize the present UL design status along with the proposed design modifications to the UL for enhanced performance and increased reliability.

  20. Sequential Optimal Monitoring Network Design using Iterative Kriging for Identification of Unknown Groundwater Pollution Sources Location

    NASA Astrophysics Data System (ADS)

    Prakash, O.; Datta, B.

    2011-12-01

    Identification of unknown groundwater pollution source characteristics, in terms of location, magnitude and activity duration is important for designing an effective pollution remediation strategy. Precise source characterization also becomes very important to ascertain liability, and to recover the cost of remediation from parties responsible for the groundwater pollution. Due to the uncertainties in accurately predicting the aquifer response to source flux injection, generally encountered sparsity of concentration observation data in the field, and the non uniqueness in the aquifer response to the subjected hydraulic and chemical stresses, groundwater pollution source characterization remains a challenging task. A scientifically designed pollutant concentration monitoring network becomes imperative for accurate pollutant source characterization. The efficiency of the unknown source locations identification process is largely determined by locations of monitoring wells where the pollutant concentration is observed. The proposed method combines spatial interpolation of concentration measurements and Simulated Annealing as optimization algorithm to find the optimum locations for monitoring wells. Initially, the observed concentration data at few sparsely and arbitrarily distributed wells are used to interpolate the concentration data for the aquifer study area. The concentration information is passed to the optimization algorithm (decision model) as concentration gradient which in turn finds the optimum locations for implementing the next sequence of monitoring wells. Concentration measurement data from these designed monitoring wells and already implemented monitoring network are iteratively used as feedback information for potential groundwater pollution source locations identification. The potential applicability of the developed methodology is demonstrated for an illustrative study area.

  1. Implementation of a Computerized Screening Inventory: Improved Usability Through Iterative Testing and Modification

    PubMed Central

    Fischer, Andrew Christopher; Haskins, Brianna Lyn; Saeed Zafar, Zubair; Chen, Guanling; Chinai, Sneha A

    2016-01-01

    Background The administration of health screeners in a hospital setting has traditionally required (1) clinicians to ask questions and log answers, which can be time consuming and susceptible to error, or (2) patients to complete paper-and-pencil surveys, which require third-party entry of information into the electronic health record and can be vulnerable to error and misinterpretation. A highly promising method that avoids these limitations and bypasses third-party interpretation is direct entry via a computerized inventory. Objective To (1) computerize medical and behavioral health screening for use in general medical settings, (2) optimize patient acceptability and feasibility through iterative usability testing and modification cycles, and (3) examine how age relates to usability. Methods A computerized version of 15 screeners, including behavioral health screeners recommended by a National Institutes of Health Office of Behavioral and Social Sciences Research collaborative workgroup, was subjected to systematic usability testing and iterative modification. Consecutive adult, English-speaking patients seeking treatment in an urban emergency department were enrolled. Acceptability was defined as (1) the percentage of eligible patients who agreed to take the assessment (initiation rate) and (2) average satisfaction with the assessment (satisfaction rate). Feasibility was defined as the percentage of the screening items completed by those who initiated the assessment (completion rate). Chi-square tests, analyses of variance, and Pearson correlations were used to detect whether improvements in initiation, satisfaction, and completion rates were seen over time and to examine the relation between age and outcomes. Results Of 2157 eligible patients approached, 1280 agreed to complete the screening (initiation rate=59.34%). Statistically significant increases were observed over time in satisfaction (F 3,1061=3.35, P=.019) and completion rates (F 3,1276=25.44, P<.001

  2. Design of Electron Cyclotron Heating and Current Drive System of ITER

    SciTech Connect

    Kobayashi, N.; Bigelow, T.; Rasmussen, D.; Bonicelli, T.; Ramponi, G.; Saibene, G.; Cirant, S.; Denisov, G.; Heidinger, R.; Piosczyk, B.; Henderson, M.; Hogge, J.-P.; Thumm, M.; Tran, M. Q.; Rao, S. L.; Sakamoto, K.; Takahashi, K.; Temkin, R. J.; Verhoeven, A. G. A.; Zohm, H.

    2007-09-28

    Since the end of EDA, the design of the Electron Cyclotron Heating and Current Drive (ECH and CD) system has been modified to respond to progress in physics understanding and change of interface conditions. Nominal RF power of 20 MW is shared by four upper launchers or one equatorial launcher RF beams are steered by front steering mirrors providing wide sweeping angle for the RF beam. DC high voltage power supply may be composed of IGBT pulse step modulators because of high frequency modulation and design flexibility to three different types of 170 GHz gyrotrons provided by three parties. The RF power from the 170 GHz gyrotron is transmitted to the launcher by 63.5 mm{phi} corrugated waveguide line and remotely switched by a waveguide switch between the upper launcher and the equatorial launcher. The ECH and CD system has also a start-up sub-system for assist of initial discharge composed of three 127.5 GHz gyrotrons and a dedicated DC high voltage power supply. Three of transmission lines are shared between 170 GHz gyrotron and 127.5 GHz gyrotron so as to inject RF beam for the start-up through the equatorial launcher. R and Ds of components for high power long pulse and mirror steering mechanism have been on-going in the parties to establish a reliable ITER ECH and CD system.

  3. Iterative experiment design guides the characterization of a light-inducible gene expression circuit

    PubMed Central

    Ruess, Jakob; Parise, Francesca; Milias-Argeitis, Andreas; Khammash, Mustafa; Lygeros, John

    2015-01-01

    Systems biology rests on the idea that biological complexity can be better unraveled through the interplay of modeling and experimentation. However, the success of this approach depends critically on the informativeness of the chosen experiments, which is usually unknown a priori. Here, we propose a systematic scheme based on iterations of optimal experiment design, flow cytometry experiments, and Bayesian parameter inference to guide the discovery process in the case of stochastic biochemical reaction networks. To illustrate the benefit of our methodology, we apply it to the characterization of an engineered light-inducible gene expression circuit in yeast and compare the performance of the resulting model with models identified from nonoptimal experiments. In particular, we compare the parameter posterior distributions and the precision to which the outcome of future experiments can be predicted. Moreover, we illustrate how the identified stochastic model can be used to determine light induction patterns that make either the average amount of protein or the variability in a population of cells follow a desired profile. Our results show that optimal experiment design allows one to derive models that are accurate enough to precisely predict and regulate the protein expression in heterogeneous cell populations over extended periods of time. PMID:26085136

  4. Ares I Static Tests Design

    NASA Technical Reports Server (NTRS)

    Carson, William; Lindemuth, Kathleen; Mich, John; White, K. Preston; Parker, Peter A.

    2009-01-01

    Probabilistic engineering design enhances safety and reduces costs by incorporating risk assessment directly into the design process. In this paper, we assess the format of the quantitative metrics for the vehicle which will replace the Space Shuttle, the Ares I rocket. Specifically, we address the metrics for in-flight measurement error in the vector position of the motor nozzle, dictated by limits on guidance, navigation, and control systems. Analyses include the propagation of error from measured to derived parameters, the time-series of dwell points for the duty cycle during static tests, and commanded versus achieved yaw angle during tests. Based on these analyses, we recommend a probabilistic template for specifying the maximum error in angular displacement and radial offset for the nozzle-position vector. Criteria for evaluating individual tests and risky decisions also are developed.

  5. Optical design and testing: introduction.

    PubMed

    Liang, Chao-Wen; Koshel, John; Sasian, Jose; Breault, Robert; Wang, Yongtian; Fang, Yi Chin

    2014-10-10

    Optical design and testing has numerous applications in industrial, military, consumer, and medical settings. Assembling a complete imaging or nonimage optical system may require the integration of optics, mechatronics, lighting technology, optimization, ray tracing, aberration analysis, image processing, tolerance compensation, and display rendering. This issue features original research ranging from the optical design of image and nonimage optical stimuli for human perception, optics applications, bio-optics applications, 3D display, solar energy system, opto-mechatronics to novel imaging or nonimage modalities in visible and infrared spectral imaging, modulation transfer function measurement, and innovative interferometry. PMID:25322438

  6. Optimization applications in aircraft engine design and test

    NASA Technical Reports Server (NTRS)

    Pratt, T. K.

    1984-01-01

    Starting with the NASA-sponsored STAEBL program, optimization methods based primarily upon the versatile program COPES/CONMIN were introduced over the past few years to a broad spectrum of engineering problems in structural optimization, engine design, engine test, and more recently, manufacturing processes. By automating design and testing processes, many repetitive and costly trade-off studies have been replaced by optimization procedures. Rather than taking engineers and designers out of the loop, optimization has, in fact, put them more in control by providing sophisticated search techniques. The ultimate decision whether to accept or reject an optimal feasible design still rests with the analyst. Feedback obtained from this decision process has been invaluable since it can be incorporated into the optimization procedure to make it more intelligent. On several occasions, optimization procedures have produced novel designs, such as the nonsymmetric placement of rotor case stiffener rings, not anticipated by engineering designers. In another case, a particularly difficult resonance contraint could not be satisfied using hand iterations for a compressor blade, when the STAEBL program was applied to the problem, a feasible solution was obtained in just two iterations.

  7. Failure analysis of beryllium tile assembles following high heat flux testing for the ITER program

    SciTech Connect

    B. C. Odegard, Jr.; C. H. Cadden; N. Y. C. Yang

    2000-05-01

    The following document describes the processing, testing and post-test analysis of two Be-Cu assemblies that have successfully met the heat load requirements for the first wall and dome sections for the ITER (International Thermonuclear Experimental Reactor) fusion reactor. Several different joint assemblies were evaluated in support of a manufacturing technology investigation aimed at diffusion bonding or brazing a beryllium armor tile to a copper alloy heat sink for fusion reactor applications. Judicious selection of materials and coatings for these assemblies was essential to eliminate or minimize interactions with the highly reactive beryllium armor material. A thin titanium layer was used as a diffusion barrier to isolate the copper heat sink from the beryllium armor. To reduce residual stresses produced by differences in the expansion coefficients between the beryllium and copper, a compliant layer of aluminum or aluminum-beryllium (AlBeMet-150) was used. Aluminum was chosen because it does not chemically react with, and exhibits limited volubility in, beryllium. Two bonding processes were used to produce the assemblies. The primary process was a diffusion bonding technique. In this case, undesirable metallurgical reactions were minimized by keeping the materials in a solid state throughout the fabrication cycle. The other process employed an aluminum-silicon layer as a brazing filler material. In both cases, a hot isostatic press (HIP) furnace was used in conjunction with vacuum-canned assemblies in order to minimize oxidation and provide sufficient pressure on the assemblies for full metal-to-metal contact and subsequent bonding. The two final assemblies were subjected to a suite of tests including: tensile tests and electron and optical metallography. Finally, high heat flux testing was conducted at the electron beam testing system (EBTS) at Sandia National Laboratories, New Mexico. Here, test mockups were fabricated and subjected to normal heat loads to

  8. Testing RMP ELM suppression models in low torque ITER Baseline Scenario

    NASA Astrophysics Data System (ADS)

    Moyer, R. A.; Ferraro, N. M.; Groebner, R. J.; La Haye, R. J.; Luce, T. C.; Osborne, T. H.; Paz-Soldan, C.; Grierson, B. A.; Nazikian, R.; Solomon, W. M.; Rhodes, T. L.; Zeng, L.; McKee, G. R.; Yan, Z.; Hanson, J. M.; Turco, F.; Mordijck, S.; Fenstermacher, M. E.

    2015-11-01

    RMP ELM suppression experiments in low torque (Tinj) ITER Baseline Scenario provide an excellent test of our emerging model of ELM suppression when the edge plasma bifurcates to tearing response. In 2-fluid theory, this bifurcation occurs where the electron perpendicular rotation Ω⊥e ~ 0 , where Ω⊥e is the sum of the E × B and electron diamagnetic rotation ΩDe frequencies. To extend RMP ELM suppression to Tinj ~ 1 Nm, we reduced Tinj from 5 to 3.5 Nm, which produced lower core radial electric field and loss of ELM suppression as the Ω⊥e ~ 0 point moved deeper into the core. We also varied ΩDe at high Tinj by reducing the edge electron density, which led to ELM suppression. These results will be compared with expectations from 2-fluid theory. Supported in part by the US DOE under DE-FG02-07ER54917, DE-FC02-04ER54698, DE-AC02-09CH11466, DE-FG02-08ER54984, DE-FG02-04ER54761, DE-FG02-89ER53296, DE-SC0007880, DE-AC52-07NA27344.

  9. An Overview Of The Motional Stark Effect Diagnostic On DIII-D And Design Work For An ITER MSE

    SciTech Connect

    Holcomb, C T; Allen, S L; Makowski, M A; Jayakumar, R J; Gu, M F; Lerner, S; Morris, K L; Latkowski, J; Moller, J M; Meyer, W; Ellis, R; Geer, R; Behne, D; Chipman, R; Smith, P; McClain, S

    2007-09-20

    The advanced tokamak research program at DIII-D relies critically on the measurement of the current density profile. This was made possible by the development of a Motional Stark Effect (MSE) polarimeter that was first installed in 1992. Three major upgrades have since occurred, and improvements in our understanding of critical performance issues and calibration techniques are ongoing. In parallel with these improvements, we have drawn on our DIII-D experience to begin studies and design work for MSE on burning plasmas and ITER. This paper first reviews how Motional Stark Effect polarimetry (MSE) is used to determine the tokamak current profile. It uses the DIII-D MSE system as an example, and shows results from the latest upgrade that incorporates an array of channels from a new counter-Ip injected neutral beam. The various calibration techniques presently used are reviewed. High-leverage or unresolved issues affecting MSE performance and reliability in ITER are discussed. Next, we show a four-mirror collection optics design for the two ITER MSE views. Finally, we discuss measurements of the polarization properties of a few candidate mirrors for the ITER MSE.

  10. The Cryoplant for the Iter Neutral Beam Test Facility to BE Built at Rfx in Padova, Italy

    NASA Astrophysics Data System (ADS)

    Pengo, R.; Fellin, F.; Sonato, P.

    2010-04-01

    The Neutral Beam Test Facility (NBTF), planned to be constructed in Padua (Italy), will constitute the prototype of the two Neutral Beam Injectors (NBI), which will be installed in the ITER plant (Cadarache-France). The NBTF is composed of a 1 MV accelerator that can produce a 40 A deuteron pulsed neutral beam particles. The necessary vacuum needed in the accelerator is achieved by two large cryopumps, designed by FZK-Karlsruhe, with radiation shields cooled between 65 K and 90 K and with cryopanels cooled by 4 bar supercritical helium (ScHe) between 4.5 K and 6.5 K. A new cryoplant facility will be installed with two large helium refrigerators: a Shield Refrigerator (SR), whose cooling capacity is up to 30 kW between 65 K and 90 K, and a helium Main Refrigerator (MR), whose equivalent cooling capacity is up to 800 W at 4.5 K. The cooling of the cryopanels is obtained with two (ScHe) 30 g/s pumps (one redundant), working in a closed cycle around 4 bar producing a pressure head of 100 mbar. Two heat exchangers are immersed in a buffer dewar connected to the MR. The MR and SR different operation modes are described in the paper, as well as the new cryoplant installation.

  11. Engineering test facility design definition

    NASA Astrophysics Data System (ADS)

    Bercaw, R. W.; Seikel, G. R.

    1980-06-01

    The Engineering Test Facility (ETF) is the major focus of the Department of Energy (DOE) Magnetohydrodynamics (MHD) Program to facilitate commercialization and to demonstrate the commercial operability of MHD/steam electric power. The ETF will be a fully integrated commercial prototype MHD power plant with a nominal output of 200 MW sub e. Performance of this plant is expected to meet or surpass existing utility standards for fuel, maintenance, and operating costs; plant availability; load following; safety; and durability. It is expected to meet all applicable environmental regulations. The current design concept conforming to the general definition, the basis for its selection, and the process which will be followed in further defining and updating the conceptual design.

  12. Engineering test facility design definition

    NASA Technical Reports Server (NTRS)

    Bercaw, R. W.; Seikel, G. R.

    1980-01-01

    The Engineering Test Facility (ETF) is the major focus of the Department of Energy (DOE) Magnetohydrodynamics (MHD) Program to facilitate commercialization and to demonstrate the commercial operability of MHD/steam electric power. The ETF will be a fully integrated commercial prototype MHD power plant with a nominal output of 200 MW sub e. Performance of this plant is expected to meet or surpass existing utility standards for fuel, maintenance, and operating costs; plant availability; load following; safety; and durability. It is expected to meet all applicable environmental regulations. The current design concept conforming to the general definition, the basis for its selection, and the process which will be followed in further defining and updating the conceptual design.

  13. Composite materials: Testing and design

    NASA Technical Reports Server (NTRS)

    Whitcomb, John D. (Editor)

    1988-01-01

    The present conference discusses topics in the analysis of composite structures, composite materials' impact and compression behavior, composite materials characterization methods, composite failure mechanisms, NDE methods for composites, and filament-wound and woven composite materials' fabrication. Attention is given to the automated design of a composite plate for damage tolerance, the effects of adhesive layers on composite laminate impact damage, instability-related delamination growth in thermoset and thermoplastic composites, a simple shear fatigue test for unidirectional E-glass epoxy, the growth of elliptic delaminations in laminates under cyclic transverse shear, and the mechanical behavior of braided composite materials.

  14. Designing Test Chips for Custom Integrated Circuits

    NASA Technical Reports Server (NTRS)

    Buehler, M. G.; Griswold, T. W.; Pina, C. A.; Timoc, C. C.

    1985-01-01

    Collection of design and testing procedures partly automates development of built-in test chips for CMOS integrated circuits. Testchip methodology intended especially for users of custom integratedcircuit wafers. Test-Chip Designs and Testing Procedures (including datareduction procedures) generated automatically by computer from programed design and testing rules and from information supplied by user.

  15. High Dielectric Dummy Loads for ITER ICRH Antenna Laboratory Testing: Numerical Simulation of One Triplet Loading by Ferroelectric Ceramics

    SciTech Connect

    Champeaux, S.; Gouard, Ph.; Bottollier-Curtet, H.; Dumortier, P.; Koch, R.; Kyrytsya, V.; Messiaen, A.

    2011-12-23

    Up to now, classical 'water' loads have been used for low power testing of ITER ICRH prototype or mock-up antennas . A fair description of the antenna frequency response is obtained excepted for the phasing (0 {pi} 0 {pi}). High dielectric loads are requested to improve the antenna response in the low frequency band. In view of laboratory testing, dummy loads are also required to have efficient wave spatial attenuation to avoid standing waves and to minimize load volume. In this paper, barium titanate ceramic powders mixed with water are shown to exhibit very attractive electromagnetic properties. Coupling performance of one triplet of the ITER ICRH antenna to such kind of loads is numerically investigated. The radiated wave attenuation into the load is also characterized. In spite of its frequency dispersion, 'barium titanate' loads are shown to allow the characterization of the full scale triplet frequency response on a scaled-down mock-up.

  16. Design and Implementation of a Technique for Iterative Magnetorheological Jet Polishing

    NASA Astrophysics Data System (ADS)

    Li, Pak-yin Adam; Cheung, Ming-fu Melvin; Tong, Hang; Cheng, Haobo; Yam, Yeung

    2014-07-01

    This article introduces a technique for iterative high precision freeform lens polishing, with operations alternating between a fabrication and a measurement unit. The technique is implemented using a Magnetorheological Jet Polishing (MJP) machine as fabrication unit, and a sub-aperture stitching interferometric system as measurement unit. The two units are separately located and have different internal coordinate references. Precision integration of the two is the key to realize high performance iterative polishing. In our study, application of the proposed technique yields a peak to valley (PV) value of 1/7λ in polishing flat optical elements.

  17. The ITER project construction status

    NASA Astrophysics Data System (ADS)

    Motojima, O.

    2015-10-01

    The pace of the ITER project in St Paul-lez-Durance, France is accelerating rapidly into its peak construction phase. With the completion of the B2 slab in August 2014, which will support about 400 000 metric tons of the tokamak complex structures and components, the construction is advancing on a daily basis. Magnet, vacuum vessel, cryostat, thermal shield, first wall and divertor structures are under construction or in prototype phase in the ITER member states of China, Europe, India, Japan, Korea, Russia, and the United States. Each of these member states has its own domestic agency (DA) to manage their procurements of components for ITER. Plant systems engineering is being transformed to fully integrate the tokamak and its auxiliary systems in preparation for the assembly and operations phase. CODAC, diagnostics, and the three main heating and current drive systems are also progressing, including the construction of the neutral beam test facility building in Padua, Italy. The conceptual design of the Chinese test blanket module system for ITER has been completed and those of the EU are well under way. Significant progress has been made addressing several outstanding physics issues including disruption load characterization, prediction, avoidance, and mitigation, first wall and divertor shaping, edge pedestal and SOL plasma stability, fuelling and plasma behaviour during confinement transients and W impurity transport. Further development of the ITER Research Plan has included a definition of the required plant configuration for 1st plasma and subsequent phases of ITER operation as well as the major plasma commissioning activities and the needs of the accompanying R&D program to ITER construction by the ITER parties.

  18. ITERATIVE PROCESS OF QSAR BUILDING AND STRATEGIC TESTING: PREDICTING ER BINDING AFFINITY

    EPA Science Inventory

    Basic principles of QSAR model development and application are discussed. The most difficult step in QSAR application for regulatory use may be determining when a model is sufficiently improved to provide predictions for a specified chemical domain of regulatory concern. The iter...

  19. Teachers Supporting Teachers in Urban Schools: What Iterative Research Designs Can Teach Us

    ERIC Educational Resources Information Center

    Shernoff, Elisa S.; Marinez-Lora, Ane M.; Frazier, Stacy L.; Jakobsons, Lara J.; Atkins, Marc S.

    2011-01-01

    Despite alarming rates and negative consequences associated with urban teacher attrition, mentoring programs often fail to target the strongest predictors of attrition: effectiveness around classroom management and engaging learners Edution; and connectedness to colleagues. Using a mixed-method iterative development framework, we highlight the…

  20. Perl Modules for Constructing Iterators

    NASA Technical Reports Server (NTRS)

    Tilmes, Curt

    2009-01-01

    The Iterator Perl Module provides a general-purpose framework for constructing iterator objects within Perl, and a standard API for interacting with those objects. Iterators are an object-oriented design pattern where a description of a series of values is used in a constructor. Subsequent queries can request values in that series. These Perl modules build on the standard Iterator framework and provide iterators for some other types of values. Iterator::DateTime constructs iterators from DateTime objects or Date::Parse descriptions and ICal/RFC 2445 style re-currence descriptions. It supports a variety of input parameters, including a start to the sequence, an end to the sequence, an Ical/RFC 2445 recurrence describing the frequency of the values in the series, and a format description that can refine the presentation manner of the DateTime. Iterator::String constructs iterators from string representations. This module is useful in contexts where the API consists of supplying a string and getting back an iterator where the specific iteration desired is opaque to the caller. It is of particular value to the Iterator::Hash module which provides nested iterations. Iterator::Hash constructs iterators from Perl hashes that can include multiple iterators. The constructed iterators will return all the permutations of the iterations of the hash by nested iteration of embedded iterators. A hash simply includes a set of keys mapped to values. It is a very common data structure used throughout Perl programming. The Iterator:: Hash module allows a hash to include strings defining iterators (parsed and dispatched with Iterator::String) that are used to construct an overall series of hash values.

  1. Neutron activation for ITER

    SciTech Connect

    Barnes, C.W.; Loughlin, M.J.; Nishitani, Takeo

    1996-04-29

    There are three primary goals for the Neutron Activation system for ITER: maintain a robust relative measure of fusion power with stability and high dynamic range (7 orders of magnitude); allow an absolute calibration of fusion power (energy); and provide a flexible and reliable system for materials testing. The nature of the activation technique is such that stability and high dynamic range can be intrinsic properties of the system. It has also been the technique that demonstrated (on JET and TFTR) the highest accuracy neutron measurements in DT operation. Since the gamma-ray detectors are not located on the tokamak and are therefore amenable to accurate characterization, and if material foils are placed very close to the ITER plasma with minimum scattering or attenuation, high overall accuracy in the fusion energy production (7--10%) should be achievable on ITER. In the paper, a conceptual design is presented. A system is shown to be capable of meeting these three goals, also detailed design issues remain to be solved.

  2. ITER Ion Cyclotron Heating and Fueling Systems

    SciTech Connect

    Rasmussen, D.A.; Baylor, L.R.; Combs, S.K.; Fredd, E.; Goulding, R.H.; Hosea, J.; Swain, D.W.

    2005-04-15

    The ITER burning plasma and advanced operating regimes require robust and reliable heating and current drive and fueling systems. The ITER design documents describe the requirements and reference designs for the ion cyclotron and pellet fueling systems. Development and testing programs are required to optimize, validate and qualify these systems for installation on ITER.The ITER ion cyclotron system offers significant technology challenges. The antenna must operate in a nuclear environment and withstand heat loads and disruption forces beyond present-day designs. It must operate for long pulse lengths and be highly reliable, delivering power to a plasma load with properties that will change throughout the discharge. The ITER ion cyclotron system consists of one eight-strap antenna, eight rf sources (20 MW, 35-65 MHz), associated high-voltage DC power supplies, transmission lines and matching and decoupling components.The ITER fueling system consists of a gas injection system and multiple pellet injectors for edge fueling and deep core fueling. Pellet injection will be the primary ITER fuel delivery system. The fueling requirements will require significant extensions in pellet injector pulse length ({approx}3000 s), throughput (400 torr-L/s,) and reliability. The proposed design is based on a centrifuge accelerator fed by a continuous screw extruder. Inner wall pellet injection with the use of curved guide tubes will be utilized for deep fueling.

  3. Modelling of 3D fields due to ferritic inserts and test blanket modules in toroidal geometry at ITER

    NASA Astrophysics Data System (ADS)

    Liu, Yueqiang; Äkäslompolo, Simppa; Cavinato, Mario; Koechl, Florian; Kurki-Suonio, Taina; Li, Li; Parail, Vassili; Saibene, Gabriella; Särkimäki, Konsta; Sipilä, Seppo; Varje, Jari

    2016-06-01

    Computations in toroidal geometry are systematically performed for the plasma response to 3D magnetic perturbations produced by ferritic inserts (FIs) and test blanket modules (TBMs) for four ITER plasma scenarios: the 15 MA baseline, the 12.5 MA hybrid, the 9 MA steady state, and the 7.5 MA half-field helium plasma. Due to the broad toroidal spectrum of the FI and TBM fields, the plasma response for all the n  =  1–6 field components are computed and compared. The plasma response is found to be weak for the high-n (n  >  4) components. The response is not globally sensitive to the toroidal plasma flow speed, as long as the latter is not reduced by an order of magnitude. This is essentially due to the strong screening effect occurring at a finite flow, as predicted for ITER plasmas. The ITER error field correction coils (EFCC) are used to compensate the n  =  1 field errors produced by FIs and TBMs for the baseline scenario for the purpose of avoiding mode locking. It is found that the middle row of the EFCC, with a suitable toroidal phase for the coil current, can provide the best correction of these field errors, according to various optimisation criteria. On the other hand, even without correction, it is predicted that these n  =  1 field errors will not cause substantial flow damping for the 15 MA baseline scenario.

  4. Design considerations and test facilities for accelerated radiation effects testing

    NASA Technical Reports Server (NTRS)

    Price, W. E.; Miller, C. G.; Parker, R. H.

    1972-01-01

    Test design parameters for accelerated dose rate radiation effects tests for spacecraft parts and subsystems used in long term mission (years) are detailed. A facility for use in long term accelerated and unaccelerated testing is described.

  5. Program Helps Design Tests Of Developmental Software

    NASA Technical Reports Server (NTRS)

    Hops, Jonathan

    1994-01-01

    Computer program called "A Formal Test Representation Language and Tool for Functional Test Designs" (TRL) provides automatic software tool and formal language used to implement category-partition method and produce specification of test cases in testing phase of development of software. Category-partition method useful in defining input, outputs, and purpose of test-design phase of development and combines benefits of choosing normal cases having error-exposing properties. Traceability maintained quite easily by creating test design for each objective in test plan. Effort to transform test cases into procedures simplified by use of automatic software tool to create cases based on test design. Method enables rapid elimination of undesired test cases from consideration and facilitates review of test designs by peer groups. Written in C language.

  6. Manufacturing of 50 kA superconducting transformer for ITER correction coil conductor test.

    PubMed

    Liu, H J; Wu, Y; Ren, Zh B; Wu, S T; Shi, Y; Peng, J Q; Chen, J L; Long, F; Yu, M; Qian, L

    2010-04-01

    To meet the specifications of International Thermonuclear Experimental Reactor correction coil (CC) conductor, a 50 kA superconducting transformer has been designed and manufactured to provide the short sample of the CC conductor the current. The transformer consists of two concentric layer-wound superconducting solenoids with the primary inside the secondary coil. In order to test the transformer, the two legs of the secondary coil were directly connected by superconducting cables. A 500 W/4.5 K refrigerator was used to provide the supercritical helium. The maximum current of 56.3 kA in the secondary coil loop was obtained. PMID:20441358

  7. On the safety of ITER accelerators.

    PubMed

    Li, Ge

    2013-01-01

    Three 1 MV/40A accelerators in heating neutral beams (HNB) are on track to be implemented in the International Thermonuclear Experimental Reactor (ITER). ITER may produce 500 MWt of power by 2026 and may serve as a green energy roadmap for the world. They will generate -1 MV 1 h long-pulse ion beams to be neutralised for plasma heating. Due to frequently occurring vacuum sparking in the accelerators, the snubbers are used to limit the fault arc current to improve ITER safety. However, recent analyses of its reference design have raised concerns. General nonlinear transformer theory is developed for the snubber to unify the former snubbers' different design models with a clear mechanism. Satisfactory agreement between theory and tests indicates that scaling up to a 1 MV voltage may be possible. These results confirm the nonlinear process behind transformer theory and map out a reliable snubber design for a safer ITER. PMID:24008267

  8. Analysis of Thermal-Hydraulic Gravity/ Buoyancy Effects in the Testing of the ITER Poloidal Field Full Size Joint Sample (PF-FSJS)

    SciTech Connect

    Zanino, R.; Savoldi Richard, L.; Bruzzone, P.; Ciazynski, D.; Nicollet, S.

    2004-06-23

    The PF-FSJS is a full-size joint sample, based on the NbTi dual-channel cable-in-conduit conductor (CICC) design currently foreseen for the International Thermonuclear Experimental Reactor (ITER) Poloidal Field coil system. It was tested during the summer of 2002 in the Sultan facility of CRPP at a background peak magnetic field of typically 6 T. It includes about 3 m of two jointed conductor sections, using different strands but with identical layout. The sample was cooled by supercritical helium at nominal 4.5-5.0 K and 0.9-1.0 MPa, in forced convection from the top to the bottom of the vertical configuration. A pulsed coil was used to test AC losses in the two legs resulting, above a certain input power threshold, in bundle helium backflow from the heated region. Here we study the thermal-hydraulics of the phenomenon with the M and M code, with particular emphasis on the effects of buoyancy on the helium dynamics, as well as on the thermal-hydraulic coupling between the wrapped bundles of strands in the annular cable region and the central cooling channel. Both issues are ITER relevant, as they affect the more general question of the heat removal capability of the helium in this type of conductors.

  9. Metallographic autopsies of full-scale ITER prototype cable-in-conduit conductors after full testing in SULTAN: 1. The mechanical role of copper strands in a CICC

    DOE PAGESBeta

    Sanabria, Carlos; Lee, Peter J.; Starch, William; Blum, Timothy; Devred, Arnaud; Jewell, Matthew C.; Pong, Ian; Martovetsky, Nicolai; Larbalestier, David C.

    2015-06-22

    Cables made with Nb3Sn-based superconductor strands will provide the 13 T maximum peak magnetic field of the ITER Central Solenoid (CS) coils and they must survive up to 60,000 electromagnetic cycles. Accordingly, prototype designs of CS cable-in-conduit-conductors (CICC) were electromagnetically tested over multiple magnetic field cycles and warm-up-cool-down scenarios in the SULTAN facility at CRPP. We report here a post mortem metallographic analysis of two CS CICC prototypes which exhibited some rate of irreversible performance degradation during cycling. The standard ITER CS CICC cable design uses a combination of superconducting and Cu strands, and because the Lorentz force on themore » strand is proportional to the transport current in the strand, removing the copper strands (while increasing the Cu:SC ratio of the superconducting strands) was proposed as one way of reducing the strand load. In this study we compare the two alternative CICCs, with and without Cu strands, keeping in mind that the degradation after SULTAN test was lower for the CICC without Cu strands. The post mortem metallographic evaluation revealed that the overall strand transverse movement was 20% lower in the CICC without Cu strands and that the tensile filament fractures found were less, both indications of an overall reduction in high tensile strain regions. Furthermore, it was interesting to see that the Cu strands in the mixed cable design (with higher degradation) helped reduce the contact stresses on the high pressure side of the CICC, but in either case, the strain reduction mechanisms were not enough to suppress cyclic degradation. Advantages and disadvantages of each conductor design are discussed here aimed to understand the sources of the degradation.« less

  10. Metallographic autopsies of full-scale ITER prototype cable-in-conduit conductors after full testing in SULTAN: 1. The mechanical role of copper strands in a CICC

    SciTech Connect

    Sanabria, Carlos; Lee, Peter J.; Starch, William; Blum, Timothy; Devred, Arnaud; Jewell, Matthew C.; Pong, Ian; Martovetsky, Nicolai; Larbalestier, David C.

    2015-06-22

    Cables made with Nb3Sn-based superconductor strands will provide the 13 T maximum peak magnetic field of the ITER Central Solenoid (CS) coils and they must survive up to 60,000 electromagnetic cycles. Accordingly, prototype designs of CS cable-in-conduit-conductors (CICC) were electromagnetically tested over multiple magnetic field cycles and warm-up-cool-down scenarios in the SULTAN facility at CRPP. We report here a post mortem metallographic analysis of two CS CICC prototypes which exhibited some rate of irreversible performance degradation during cycling. The standard ITER CS CICC cable design uses a combination of superconducting and Cu strands, and because the Lorentz force on the strand is proportional to the transport current in the strand, removing the copper strands (while increasing the Cu:SC ratio of the superconducting strands) was proposed as one way of reducing the strand load. In this study we compare the two alternative CICCs, with and without Cu strands, keeping in mind that the degradation after SULTAN test was lower for the CICC without Cu strands. The post mortem metallographic evaluation revealed that the overall strand transverse movement was 20% lower in the CICC without Cu strands and that the tensile filament fractures found were less, both indications of an overall reduction in high tensile strain regions. Furthermore, it was interesting to see that the Cu strands in the mixed cable design (with higher degradation) helped reduce the contact stresses on the high pressure side of the CICC, but in either case, the strain reduction mechanisms were not enough to suppress cyclic degradation. Advantages and disadvantages of each conductor design are discussed here aimed to understand the sources of the degradation.

  11. Metallographic autopsies of full-scale ITER prototype cable-in-conduit conductors after full testing in SULTAN: 1. The mechanical role of copper strands in a CICC

    NASA Astrophysics Data System (ADS)

    Sanabria, Carlos; Lee, Peter J.; Starch, William; Blum, Timothy; Devred, Arnaud; Jewell, Matthew C.; Pong, Ian; Martovetsky, Nicolai; Larbalestier, David C.

    2015-08-01

    Cables made with Nb3Sn-based superconductor strands will provide the 13 T maximum peak magnetic field of the ITER central solenoid (CS) coils and they must survive up to 60 000 electromagnetic cycles. Accordingly, prototype designs of CS cable-in-conduit-conductors (CICC) were electromagnetically tested over multiple magnetic field cycles and warm-up-cool-down scenarios in the SULTAN facility at CRPP. We report here a post-mortem metallographic analysis of two CS CICC prototypes which exhibited some rate of irreversible performance degradation during cycling. The standard ITER CS CICC cable design uses a combination of superconducting and Cu strands, and because the Lorentz force on the strand is proportional to the transport current in the strand, removing the copper strands (while increasing the Cu:SC ratio of the superconducting strands) was proposed as one way of reducing the strand load. In this study we compare the two alternative CICCs, with and without Cu strands, keeping in mind that the degradation after the SULTAN test was lower for the CICC without Cu strands. The post-mortem metallographic evaluation revealed that the overall strand transverse movement was 20% lower in the CICC without Cu strands and that the tensile filament fractures found were less, both indications of an overall reduction in high tensile strain regions. It was interesting to see that the Cu strands in the mixed cable design (with higher degradation) helped reduce the contact stresses on the high pressure side of the CICC, but in either case, the strain reduction mechanisms were not enough to suppress cyclic degradation. Advantages and disadvantages of each conductor design are discussed here aimed to understand the sources of the degradation.

  12. Future technological tests on large-scale mock-ups of ITER blanket modules at IVV-2M reactor

    SciTech Connect

    Zyrianov, A.P.; Tokarev, V.I.; Zlokazov, S.B.

    1994-12-31

    A multisection core of water-cooled water-moderated reactor IVV-2M facilities testing of large scale mock-ups of ITER breeder blanket modules, the reactor arrangement in a building provides a maximum close position of tritium {open_quotes}in-pile{close_quotes} measurement station {open_quotes}RITM{close_quotes} to the core (in-pile testing of tritium producing mock-ups). Mock-ups of ceramic and liquid metal blankets are planned to be tested complying the following requirements: mock-up dimensions maximum close to those of ITER, distributions of nuclear power density, temperature fields, tritium release modes at continuous helium purging, provision of cyclic neutron and thermal loading variations. Variants of location of large ({approximately}150x200 mm) mock-up of ceramic blanket and a submerged loop facility containing liquid lithium and a vanadium alloy as a structure material are described. A technological scheme of {open_quotes}RITM{close_quotes} measurement station to study tritium system operation modes are presented.

  13. A3 Subscale Diffuser Test Article Design

    NASA Technical Reports Server (NTRS)

    Saunders, G. P.

    2009-01-01

    This paper gives a detailed description of the design of the A3 Subscale Diffuser Test (SDT) Article Design. The subscale diffuser is a geometrically accurate scale model of the A3 altitude rocket facility. It was designed and built to support the SDT risk mitigation project located at the E3 facility at Stennis Space Center, MS (SSC) supporting the design and construction of the A3 facility at SSC. The subscale test article is outfitted with a large array of instrumentation to support the design verification of the A3 facility. The mechanical design of the subscale diffuser and test instrumentation are described here

  14. 10 CFR 63.133 - Design testing.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Design testing. 63.133 Section 63.133 Energy NUCLEAR... MOUNTAIN, NEVADA Performance Confirmation Program § 63.133 Design testing. (a) During the early or... design, such as, for example, borehole and shaft seals, backfill, and drip shields, as well as...

  15. 10 CFR 63.133 - Design testing.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Design testing. 63.133 Section 63.133 Energy NUCLEAR... MOUNTAIN, NEVADA Performance Confirmation Program § 63.133 Design testing. (a) During the early or... design, such as, for example, borehole and shaft seals, backfill, and drip shields, as well as...

  16. Development and irradiation test of lost alpha detection system for ITER.

    PubMed

    Nishiura, M; Nagasaka, T; Fujioka, K; Fujimoto, Y; Tanaka, T; Ido, T; Yamamoto, S; Kashiwa, S; Sasao, M

    2010-10-01

    We developed a lost alpha detection system to use in burning plasma experiments. The scintillators of Ag:ZnS and polycrystalline Ce:YAG were designed for a high-temperature environment, and the optical transmission line was designed to transmit from the scintillator to the port plug. The required optical components of lenses and mirrors were irradiated using the fission reactor with the initial result that there was no clear change after the irradiation with a neutron flux of 9.6×10(17) nm(-2)  s(-1) for 48 h. We propose a diagnostic of alpha particle loss, so-called alpha particle induced gamma ray spectroscopy. The initial laboratory test has been carried out by the use of the Ce doped Lu(2)SiO(5) scintillator detector and an Am-Be source to detect the 4.44 MeV high energy gamma ray due to the (9)Be(α,nγ)(12)C reaction. PMID:21033839

  17. Iterated combination-based paired permutation tests to determine shape effects of chemotherapy in patients with esophageal cancer.

    PubMed

    Alfieri, Rita; Bonnini, Stefano; Brombin, Chiara; Castoro, Carlo; Salmaso, Luigi

    2016-04-01

    The nonparametric combination of dependent permutation tests method is a useful general tool when a testing problem can be broken down into a set of different k > 1 partial tests. These partial tests, after adjustment of p-values to control for multiplicity, can be marginally analyzed, but jointly considered they can provide information on an overall hypothesis, which might represent the true goal of the testing problem. On the one hand, independence among the partial tests is usually an unrealistic assumption; on the other, even when the underlying dependence relations are known quite often they are difficult to cope with properly. Therefore this combination must be achieved nonparametrically, by implicitly taking into account the dependence structure of tests without explicitly describing it. An important property of the tests based on nonparametric combination methodology, when the number of response variables is high compared to the sample sizes, consists in the finite sample consistency. A practical problem involves choosing the most suitable combining function for each specific testing problem given that the final result can be affected by this crucial choice. The purpose of this article is to present an nonparametric combination solution based on the iterated combination of partial tests, evaluate its power behavior using a Monte Carlo simulation study and apply it to a real medical problem, namely the evaluation of the effects of chemotherapy on the shape of esophageal tumors. R code has been implemented to carry out the analyses. PMID:23070597

  18. On the criteria guiding the design of the upper electron-cyclotron launcher for ITER

    NASA Astrophysics Data System (ADS)

    Poli, E.; Angioni, C.; Casson, F. J.; Farina, D.; Figini, L.; Goodman, T. P.; Maj, O.; Sauter, O.; Weber, H.; Zohm, H.; Saibene, G.; Henderson, M. A.

    2015-03-01

    Electron cyclotron waves injected from an antenna located in the upper part of the vessel will be employed in ITER to controlMHD instabilities, particularly neoclassical tearingmodes (NTMs). The derivation of the NTM stabilization criteria used up to now to guide the optimization of the launcher is reviewed in this paper and their range of validity elucidated. Possible effects leading to a deterioration of the predicted performance through a broadening of the EC deposition profile are discussed. The most detrimental effect will likely be the scattering of the EC beams from density fluctuations, resulting in a beam broadening in the 100% range. The combined impact of these effects with that of beam misalignment (with respect to the targeted surface) is discussed for a time slice of the standard Q = 10 H-mode scenario.

  19. Teachers Supporting Teachers in Urban Schools: What Iterative Research Designs Can Teach Us

    PubMed Central

    Shernoff, Elisa S.; Maríñez-Lora, Ane M.; Frazier, Stacy L.; Jakobsons, Lara J.; Atkins, Marc S.; Bonner, Deborah

    2012-01-01

    Despite alarming rates and negative consequences associated with urban teacher attrition, mentoring programs often fail to target the strongest predictors of attrition: effectiveness around classroom management and engaging learners; and connectedness to colleagues. Using a mixed-method iterative development framework, we highlight the process of developing and evaluating the feasibility of a multi-component professional development model for urban early career teachers. The model includes linking novices with peer-nominated key opinion leader teachers and an external coach who work together to (1) provide intensive support in evidence-based practices for classroom management and engaging learners, and (2) connect new teachers with their larger network of colleagues. Fidelity measures and focus group data illustrated varying attendance rates throughout the school year and that although seminars and professional learning communities were delivered as intended, adaptations to enhance the relevance, authenticity, level, and type of instrumental support were needed. Implications for science and practice are discussed. PMID:23275682

  20. A numerical approach to controller design with an application to a space structure test facility

    NASA Technical Reports Server (NTRS)

    Frazier, W. G.; Irwin, R. D.

    1992-01-01

    An iterative numerical algorithm that improves feasible closed loop design criteria by updating the parameters of a linear controller is developed. The algorithm allows the use of experimentally derived data collected from the open loop plant. It eliminates the need for an accurate parametric model of the open loop system. Experimental results from the application of a controller designed for a large space structure ground test facility using the algorithm are presented.

  1. Test Information Targeting Strategies for Adaptive Multistage Testing Designs.

    ERIC Educational Resources Information Center

    Luecht, Richard M.; Burgin, William

    Adaptive multistage testlet (MST) designs appear to be gaining popularity for many large-scale computer-based testing programs. These adaptive MST designs use a modularized configuration of preconstructed testlets and embedded score-routing schemes to prepackage different forms of an adaptive test. The conditional information targeting (CIT)…

  2. Artificial Neural Networks: a viable tool to design heat load smoothing strategies for the ITER Toroidal Field coils

    NASA Astrophysics Data System (ADS)

    Froio, A.; Bonifetto, R.; Carli, S.; Quartararo, A.; Savoldi, L.; Zanino, R.

    2015-12-01

    In superconducting tokamaks, cryoplants provide the helium needed to cool the superconducting magnet systems. The evaluation of the heat load from the magnets to the cryoplant is fundamental for the design of the latter and the assessment of suitable strategies to smooth the heat load pulses induced by the pulsed plasma scenarios is crucial for the operation. Here, a simplified thermal-hydraulic model of an ITER Toroidal Field (TF) magnet, based on Artificial Neural Networks (ANNs), is developed and inserted into a detailed model of the ITER TF winding and casing cooling circuits based on the state-of-the-art 4C code, which also includes active controls. The low computational effort requested by such a model allows performing a fast parametric study, to identify the best smoothing strategy during standard plasma operation. The ANNs are trained using 4C simulations, and the predictive capabilities of the simplified model are assessed against 4C simulations, both with and without active smoothing, in terms of accuracy and computational time.

  3. Formal functional test designs with a test representation language

    NASA Technical Reports Server (NTRS)

    Hops, J. M.

    1993-01-01

    The application of the category-partition method to the test design phase of hardware, software, or system test development is discussed. The method provides a formal framework for reducing the total number of possible test cases to a minimum logical subset for effective testing. An automatic tool and a formal language were developed to implement the method and produce the specification of test cases.

  4. An iteration normalization and test method for differential expression analysis of RNA-seq data

    PubMed Central

    2014-01-01

    Background Next generation sequencing technologies are powerful new tools for investigating a wide range of biological and medical questions. Statistical and computational methods are key to analyzing massive and complex sequencing data. In order to derive gene expression measures and compare these measures across samples or libraries, we first need to normalize read counts to adjust for varying sample sequencing depths and other potentially technical effects. Results In this paper, we develop a normalization method based on iterating median of M-values (IMM) for detecting the differentially expressed (DE) genes. Compared to a previous approach TMM, the IMM method improves the accuracy of DE detection. Simulation studies show that the IMM method outperforms other methods for the sample normalization. We also look into the real data and find that the genes detected by IMM but not by TMM are much more accurate than the genes detected by TMM but not by IMM. What’s more, we discovered that gene UNC5C is highly associated with kidney cancer and so on. PMID:25285156

  5. Design, test, and evaluation of three active flutter suppression controllers

    NASA Technical Reports Server (NTRS)

    Adams, William M., Jr.; Christhilf, David M.; Waszak, Martin R.; Mukhopadhyay, Vivek; Srinathkumar, S.

    1992-01-01

    Three control law design techniques for flutter suppression are presented. Each technique uses multiple control surfaces and/or sensors. The first method uses traditional tools (such as pole/zero loci and Nyquist diagrams) for producing a controller that has minimal complexity and which is sufficiently robust to handle plant uncertainty. The second procedure uses linear combinations of several accelerometer signals and dynamic compensation to synthesize the model rate of the critical mode for feedback to the distributed control surfaces. The third technique starts with a minimum-energy linear quadratic Gaussian controller, iteratively modifies intensity matrices corresponding to input and output noise, and applies controller order reduction to achieve a low-order, robust controller. The resulting designs were implemented digitally and tested subsonically on the active flexible wing wind-tunnel model in the Langley Transonic Dynamics Tunnel. Only the traditional pole/zero loci design was sufficiently robust to errors in the nominal plant to successfully suppress flutter during the test. The traditional pole/zero loci design provided simultaneous suppression of symmetric and antisymmetric flutter with a 24-percent increase in attainable dynamic pressure. Posttest analyses are shown which illustrate the problems encountered with the other laws.

  6. 10 CFR 63.133 - Design testing.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Design testing. 63.133 Section 63.133 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Performance Confirmation Program § 63.133 Design testing. (a) During the early...

  7. 10 CFR 63.133 - Design testing.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Design testing. 63.133 Section 63.133 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Performance Confirmation Program § 63.133 Design testing. (a) During the early...

  8. 10 CFR 63.133 - Design testing.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Design testing. 63.133 Section 63.133 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Performance Confirmation Program § 63.133 Design testing. (a) During the early...

  9. Tritium processing for the European test blanket systems: current status of the design and development strategy

    SciTech Connect

    Ricapito, I.; Calderoni, P.; Poitevin, Y.; Aiello, A.; Utili, M.; Demange, D.

    2015-03-15

    Tritium processing technologies of the two European Test Blanket Systems (TBS), HCLL (Helium Cooled Lithium Lead) and HCPB (Helium Cooled Pebble Bed), play an essential role in meeting the main objectives of the TBS experimental campaign in ITER. The compliancy with the ITER interface requirements, in terms of space availability, service fluids, limits on tritium release, constraints on maintenance, is driving the design of the TBS tritium processing systems. Other requirements come from the characteristics of the relevant test blanket module and the scientific programme that has to be developed and implemented. This paper identifies the main requirements for the design of the TBS tritium systems and equipment and, at the same time, provides an updated overview on the current design status, mainly focusing onto the tritium extractor from Pb-16Li and TBS tritium accountancy. Considerations are also given on the possible extrapolation to DEMO breeding blanket. (authors)

  10. MITG test assembly design and fabrication

    SciTech Connect

    Schock, A.

    1983-01-01

    The design, analysis, and evaluation of the Modular Isotopic Thermoelectric Generator (MITG), described in an earlier paper, led to a program to build and test prototypical, modules of that generator. Each test module duplicates the thermoelectric converters, thermal insulation, housing and radiator fins of a typical generator slice, and simulates its isotope heat source module by means of an electrical heater encased in a prototypical graphite box. Once the approx. 20-watt MITG module has been developed, it can be assembled in appropriate number to form a generator design yielding the desired power output. The present paper describes the design and fabrication of the MITG test assembly, which confirmed the fabricability of the multicouples and interleaved multifoil insulation called for by the design. Test plans, procedures, instrumentation, results, and post-test analyses, as well as revised designs, fabrication procedures, and performance estimates, are described in subsequent papers in these proceedings.