Science.gov

Sample records for designed wall thickness

  1. Wall thickness design and corrosion management

    SciTech Connect

    Gestel, W.M. van; Guijt, J.

    1994-12-31

    In 1995, Norske Shell will install two 36-in. sweet wet gas pipe lines in the Norwegian sector of the North Sea. The lines cross the Norwegian trench with water depths up to 350 meter. For the last 3.5 km. of the route the pipelines will be laid in a tunnel which will be flooded after construction. The two lines will transport largely untreated well fluids from the Troll field to an onshore processing plant at Kollsness, North of Bergen. From there sales gas will be transported to the continent via the Furopipe and Zeepipe systems. Gas contracts covering 30 years have been concluded with gas utilities on the continent. The maximum wall thickness that could be installed was limited by the capabilities of the present generation of lay barges and pipe mill capacities. The over-thickness, i.e. beyond that what is required for pressure containment and external collapse, is available as corrosion allowance. The paper discusses a novel probabilistic approach to define the corrosion control measures. The corrosion control system is based on the injection of glycol for corrosion mitigation and inspection by ultrasonic internal smart pigs, which in combination with identified fall back options, ensure a minimum 50 year service life.

  2. Tube wall thickness measurement apparatus

    DOEpatents

    Lagasse, Paul R.

    1987-01-01

    An apparatus for measuring the thickness of a tube's wall for the tube's entire length and circumference by determining the deviation of the tube wall thickness from the known thickness of a selected standard item. The apparatus comprises a base and a first support member having first and second ends. The first end is connected to the base and the second end is connected to a spherical element. A second support member is connected to the base and spaced apart from the first support member. A positioning element is connected to and movable relative to the second support member. An indicator is connected to the positioning element and is movable to a location proximate the spherical element. The indicator includes a contact ball for first contacting the selected standard item and holding it against the spherical element. The contact ball then contacts the tube when the tube is disposed about the spherical element. The indicator includes a dial having a rotatable needle for indicating the deviation of the tube wall thickness from the thickness of the selected standard item.

  3. Tube wall thickness measurement apparatus

    DOEpatents

    Lagasse, P.R.

    1985-06-21

    An apparatus for measuring the thickness of a tube's wall for the tube's entire length and radius by determining the deviation of the tube wall thickness from the known thickness of a selected standard item. The apparatus comprises a base and a first support member having first and second ends. The first end is connected to the base and the second end is connected to a spherical element. A second support member is connected to the base and spaced apart from the first support member. A positioning element is connected to and movable relative to the second support member. An indicator is connected to the positioning element and is movable to a location proximate the spherical element. The indicator includes a contact ball for first contacting the selected standard item and holding it against the spherical element. The contact ball then contacts the tube when the tube is disposed about the spherical element. The indicator includes a dial having a rotatable needle for indicating the deviation of the tube wall thickness from the thickness of the selected standard item.

  4. Turbine airfoil with outer wall thickness indicators

    DOEpatents

    Marra, John J; James, Allister W; Merrill, Gary B

    2013-08-06

    A turbine airfoil usable in a turbine engine and including a depth indicator for determining outer wall blade thickness. The airfoil may include an outer wall having a plurality of grooves in the outer surface of the outer wall. The grooves may have a depth that represents a desired outer surface and wall thickness of the outer wall. The material forming an outer surface of the outer wall may be removed to be flush with an innermost point in each groove, thereby reducing the wall thickness and increasing efficiency. The plurality of grooves may be positioned in a radially outer region of the airfoil proximate to the tip.

  5. Wall thickness measuring method and apparatus

    DOEpatents

    Salzer, L.J.; Bergren, D.A.

    1987-10-06

    An apparatus for measuring the wall thickness of a nonmagnetic article having a housing supporting a magnet and a contiguous supporting surface. The tubular article and the housing are releasably secured to the supporting surface and a support member of an optical comparator, respectively. To determine the wall thickness of the article at a selected point, a magnetically responsive ball is positioned within the tubular article over said point and retained therein by means of a magnetic field produced by the magnet. Thereafter, an optical comparator is employed to project a magnified image of the ball on a screen and the wall thickness at the selected point is calculated by using a ball surface measurement taken with the comparator in conjunction with a previously determined base line measurement.

  6. Wall thickness measuring method and apparatus

    DOEpatents

    Salzer, Leander J.; Bergren, Donald A.

    1989-01-01

    An apparatus for measuring the wall thickness of a nonmagnetic article having a housing supporting a magnet and a contiguous supporting surface. The tubular article and the housing are releasably secured to the supporting surface and a support member of an optical comparator, respectively. To determine the wall thickness of the article at a selected point, a magnetically responsive ball is positioned within the tubular article over said point and retained therein by means of a magnetic field produced by the magnet. Thereafter, an optical comparator is employed to project a magnified image of the ball on a screen and the wall thickness at the selected point is calculated by using a ball surface measurement taken with the comparator in conjunction with a previously determined base line measurement.

  7. Reproducibility of airway wall thickness measurements

    NASA Astrophysics Data System (ADS)

    Schmidt, Michael; Kuhnigk, Jan-Martin; Krass, Stefan; Owsijewitsch, Michael; de Hoop, Bartjan; Peitgen, Heinz-Otto

    2010-03-01

    Airway remodeling and accompanying changes in wall thickness are known to be a major symptom of chronic obstructive pulmonary disease (COPD), associated with reduced lung function in diseased individuals. Further investigation of this disease as well as monitoring of disease progression and treatment effect demand for accurate and reproducible assessment of airway wall thickness in CT datasets. With wall thicknesses in the sub-millimeter range, this task remains challenging even with today's high resolution CT datasets. To provide accurate measurements, taking partial volume effects into account is mandatory. The Full-Width-at-Half-Maximum (FWHM) method has been shown to be inappropriate for small airways1,2 and several improved algorithms for objective quantification of airway wall thickness have been proposed.1-8 In this paper, we describe an algorithm based on a closed form solution proposed by Weinheimer et al.7 We locally estimate the lung density parameter required for the closed form solution to account for possible variations of parenchyma density between different lung regions, inspiration states and contrast agent concentrations. The general accuracy of the algorithm is evaluated using basic tubular software and hardware phantoms. Furthermore, we present results on the reproducibility of the algorithm with respect to clinical CT scans, varying reconstruction kernels, and repeated acquisitions, which is crucial for longitudinal observations.

  8. On thick domain walls in general relativity

    NASA Technical Reports Server (NTRS)

    Goetz, Guenter; Noetzold, Dirk

    1989-01-01

    Planar scalar field configurations in general relativity differ considerably from those in flat space. It is shown that static domain walls of finite thickness in curved space-time do not possess a reflection symmetry. At infinity, the space-time tends to the Taub vacuum on one side of the wall and to the Minkowski vacuum (Rindler space-time) on the other. Massive test particles are always accelerated towards the Minkowski side, i.e., domain walls are attractive on the Taub side, but repulsive on the Minkowski side (Taub-vacuum cleaner). It is also proved that the pressure in all directions is always negative. Finally, a brief comment is made concerning the possibility of infinite, i.e., bigger than horizon size, domain walls in our universe. All of the results are independent of the form of the potential V(phi) greater than or equal to 0 of the scalar field phi.

  9. High accuracy wall thickness loss monitoring

    NASA Astrophysics Data System (ADS)

    Gajdacsi, Attila; Cegla, Frederic

    2014-02-01

    Ultrasonic inspection of wall thickness in pipes is a standard technique applied widely in the petrochemical industry. The potential precision of repeat measurements with permanently installed ultrasonic sensors however significantly surpasses that of handheld sensors as uncertainties associated with coupling fluids and positional offsets are eliminated. With permanently installed sensors the precise evaluation of very small wall loss rates becomes feasible in a matter of hours. The improved accuracy and speed of wall loss rate measurements can be used to evaluate and develop more effective mitigation strategies. This paper presents an overview of factors causing variability in the ultrasonic measurements which are then systematically addressed and an experimental setup with the best achievable stability based on these considerations is presented. In the experimental setup galvanic corrosion is used to induce predictable and very small wall thickness loss. Furthermore, it is shown that the experimental measurements can be used to assess the effect of reduced wall loss that is produced by the injection of corrosion inhibitor. The measurements show an estimated standard deviation of about 20nm, which in turn allows us to evaluate the effect and behaviour of corrosion inhibitors within less than an hour.

  10. Gas turbine bucket wall thickness control

    DOEpatents

    Stathopoulos, Dimitrios; Xu, Liming; Lewis, Doyle C.

    2002-01-01

    A core for use in casting a turbine bucket including serpentine cooling passages is divided into two pieces including a leading edge core section and a trailing edge core section. Wall thicknesses at the leading edge and the trailing edge of the turbine bucket can be controlled independent of each other by separately positioning the leading edge core section and the trailing edge core section in the casting die. The controlled leading and trailing edge thicknesses can thus be optimized for efficient cooling, resulting in more efficient turbine operation.

  11. 49 CFR 178.33-7 - Wall thickness.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Wall thickness. 178.33-7 Section 178.33-7 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Containers, and Linings § 178.33-7 Wall thickness. (a) The minimum wall thickness for any container shall...

  12. 49 CFR 178.33-7 - Wall thickness.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Wall thickness. 178.33-7 Section 178.33-7 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... Specifications for Inside Containers, and Linings § 178.33-7 Wall thickness. (a) The minimum wall thickness...

  13. 49 CFR 178.33-7 - Wall thickness.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Wall thickness. 178.33-7 Section 178.33-7 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Containers, and Linings § 178.33-7 Wall thickness. (a) The minimum wall thickness for any container shall...

  14. 49 CFR 178.33a-7 - Wall thickness.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Wall thickness. 178.33a-7 Section 178.33a-7 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Containers, and Linings § 178.33a-7 Wall thickness. (a) The minimum wall thickness for any container shall...

  15. 49 CFR 178.33a-7 - Wall thickness.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Wall thickness. 178.33a-7 Section 178.33a-7 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Containers, and Linings § 178.33a-7 Wall thickness. (a) The minimum wall thickness for any container shall...

  16. 49 CFR 178.33-7 - Wall thickness.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Wall thickness. 178.33-7 Section 178.33-7 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Containers, and Linings § 178.33-7 Wall thickness. (a) The minimum wall thickness for any container shall...

  17. 49 CFR 178.33-7 - Wall thickness.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Wall thickness. 178.33-7 Section 178.33-7 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Containers, and Linings § 178.33-7 Wall thickness. (a) The minimum wall thickness for any container shall...

  18. 49 CFR 178.33a-7 - Wall thickness.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Wall thickness. 178.33a-7 Section 178.33a-7 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... Specifications for Inside Containers, and Linings § 178.33a-7 Wall thickness. (a) The minimum wall thickness...

  19. 49 CFR 178.33a-7 - Wall thickness.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Wall thickness. 178.33a-7 Section 178.33a-7 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Containers, and Linings § 178.33a-7 Wall thickness. (a) The minimum wall thickness for any container shall...

  20. 49 CFR 178.33a-7 - Wall thickness.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Wall thickness. 178.33a-7 Section 178.33a-7 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Containers, and Linings § 178.33a-7 Wall thickness. (a) The minimum wall thickness for any container shall...

  1. Gastric Wall Thickness in Sleeve Gastrectomy Patients: Thickness Variation of the Gastric Wall.

    PubMed

    van Rutte, Pim W J; Naagen, Bertus J; Spek, Marinus; Jakimowicz, Jack J; Nienhuijs, Simon W

    2015-11-01

    The sleeve gastrectomy has been accepted as a primary bariatric procedure. One of the most feared complications is staple line leakage. It is important to use the right staple sizes to minimize the risk of leak. Knowledge of gastric thickness is important. The goal of this study was to measure the thickness of the gastric wall after elimination of the gastric folds in the mucosa. An electronic thickness gauge was developed that measured the anterior and posterior wall of the fresh stomach specimen together at 5 points at a pressure based on the finger pressure necessary to flatten the gastric folds. Thirty-three fresh specimens were measured. The mean compression pressure was 714 grams, and no difference was found between the 5 measure points. There was a significant difference in stomach wall thickness. The gastric antrum was more than 1 mm thicker than the fundus. No difference was found between BMI groups <40 Kg/m2, 40-50 Kg/m2, or >50 Kg/m2. No bleeding occurred, leakage occurred in 1 case. There is a significant difference in thickness of the stomach wall between the gastric fundus and the antrum. A pressure 2.5 times lower than applied in prior studies was necessary to achieve full tissue compression. Choosing thinner staple sizes for the gastric fundus might be the optimal technique for compression. However, there are several additional factors that influence the risk of staple line leaks. PMID:26680415

  2. Wall thickness effect on the resistive wall mode stability in toroidal plasmas

    SciTech Connect

    Zheng, L.-J.; Kotschenreuther, M.T.

    2005-07-15

    The effect of finite wall thickness on the stability of n=1 resistive wall modes in toroidal plasmas is investigated. A fusion reactor-relevant configuration is examined. The investigation employs a novel ideal-magnetohydrodynamics adaptive shooting code for axisymmetric plasmas, extended to take into account the wall thickness. Although finite wall thickness generally reduces the growth rate of the resistive wall modes, no contribution to stabilization is found to be made by the portion of the wall that is located beyond the critical position for perfectly conducting wall stabilization. Thus, when the inner side of the wall lies near the critical wall position, the scaling of the growth rate versus wall thickness in the realistic thick-wall calculation is significantly different from that of the usual thin-wall theory. The thin-wall estimate is relevant only when the wall is brought very close to the plasma and is not too thick.

  3. New portable pipe wall thickness measuring technique

    NASA Astrophysics Data System (ADS)

    Pascente, Joseph E.

    1998-03-01

    One of the biggest inspection challenges facing many of the process industries; namely the petrochemical, refining, fossil power, and pulp and paper industries is: How to effectively examine their insulated piping? While there are a number of failure mechanisms involved in various process piping systems, piping degradation through corrosion and erosion are by far the most prevalent. This degradation can be in the form of external corrosion under insulation, internal corrosion through a variety of mechanisms, and internal erosion caused by the flow of the product through the pipe. Refineries, chemical plants and electrical power plants have MANY thousands of miles of pipe that are insulated to prevent heat loss or heat absorption. This insulation is often made up of several materials, with calcium based material being the most dense. The insulating material is usually wrapped with an aluminum or stainless steel outer wrap. Verification of wall thickness of these pipes can be accomplished by removing the insulation and doing an ultrasound inspection or by taking x- rays at a tangent to the edge of the pipe through the insulation. Both of these processes are slow and expensive. The time required to obtain data is measured in hours per meter. The ultrasound method requires that the insulation be plugged after the inspection. The surface needs to be cleaned or the resulting data will not be accurate. The tangent x-ray only shows two thicknesses and requires that the area be roped off because of radiation safety.

  4. Multilayer injection moulding of thick-walled optical plastics parts

    NASA Astrophysics Data System (ADS)

    Hopmann, Ch.; Neuss, A.; Weber, M.; Walach, P.

    2014-05-01

    Optical components are often thick-walled. The cycle time of precise polymer optics with a wall thickness of more than 20 mm exceeds several minutes. The multilayer injection moulding or compression moulding lowers the cycle time and increases the quality of the moulded parts. For the production of multilayer moulded lenses the mould design plays an important role. An innovative mould concept is presented with the possiblity to produce double or triple layer lenses. To ensure the quality and the endurance of multilayer moulded optical components in their applications, the cohesion in the interface is important. Tensile shear tests show the ability of multilayer moulded parts with high cohesion values for optical applications.

  5. Thick-wall Kevlar 49/Epoxy pressure vessels

    SciTech Connect

    Guess, T.R.

    1984-01-01

    The feasibility of thick-wall composite vessels for very high pressure applications is demonstrated. Prototype vessels, in both spherical and cylindrical geometries, were designed, fabricated and burst tested. It is shown that experimental burst pressures are in excellent agreement with predicted values for burst pressures up to 60 ksi. Each unit consisted of a thin, seamless, copper liner with stainless steel fill stems and a filament-wound Kevlar 49/epoxy outer shell. Analysis of vessel performance accounted for liner thickness and yield strengths, composite thickness, mechanical properties and fiber volume fraction, and stress concentrations caused by the fill stem. Spherical vessels of three different sizes (inside diameters of 2.15 inches, 4.0 inches and 5.3 inches) with either 30 ksi or 60 ksi design burst pressure are discussed. Also, cylindrical vessels with identical liners but of two different composite thicknesses are described. These vessels achieved 50 ksi and 57 ksi burst pressures, respectively. In addition to the design considerations alluded to throughout the paper, the stress state in a thin metal liner during cyclic loading and the life prediction of composite vessels under sustained loading are discussed.

  6. Myocardium wall thickness transducer and measuring method

    NASA Technical Reports Server (NTRS)

    Feldstein, C.; Lewis, G. W.; Silver, R. H.; Culler, V. H. (Inventor)

    1976-01-01

    A miniature transducer for measuring changes of thickness of the myocardium is described. The device is easily implantable without traumatizing the subject, without affecting the normal muscle behavior, and is removable and implantable at a different muscle location. Operating features of the device are described.

  7. Reconstruction of full thickness chest wall defects.

    PubMed

    Morgan, R F; Edgerton, M T; Wanebo, H J; Daniel, T M; Spotnitz, W D; Kron, I L

    1988-06-01

    Over the last 5 years, 14 patients were treated by wide en bloc resection of chest wall tumors with primary reconstruction. There were nine females and five male patients with an age range of 31-77 years. All patients had a skeletal resection of the chest wall. An average of 3.9 ribs were resected in the patients treated. In three patients a partial sternectomy was carried out in conjunction with the rib resections. Chest wall skeletal defects were reconstructed with Prolene mesh, which was placed under tension. Soft tissue reconstruction utilized selected portions of the latissimus dorsi musculocutaneous territory with fasciocutaneous extensions beyond the muscle itself. Primary healing was obtained in all patients and secondary procedures were not required. The average hospitalization was 23 days. All patients survived the resection and reconstruction and were alive 30 days after operation. In selected patients the preservation of a portion of the innervated muscle in situ or the transfer of the muscle with the preservation of its resting length has maintained the majority of the muscle function. PMID:3389939

  8. Reconstruction of full thickness chest wall defects.

    PubMed Central

    Morgan, R F; Edgerton, M T; Wanebo, H J; Daniel, T M; Spotnitz, W D; Kron, I L

    1988-01-01

    Over the last 5 years, 14 patients were treated by wide en bloc resection of chest wall tumors with primary reconstruction. There were nine females and five male patients with an age range of 31-77 years. All patients had a skeletal resection of the chest wall. An average of 3.9 ribs were resected in the patients treated. In three patients a partial sternectomy was carried out in conjunction with the rib resections. Chest wall skeletal defects were reconstructed with Prolene mesh, which was placed under tension. Soft tissue reconstruction utilized selected portions of the latissimus dorsi musculocutaneous territory with fasciocutaneous extensions beyond the muscle itself. Primary healing was obtained in all patients and secondary procedures were not required. The average hospitalization was 23 days. All patients survived the resection and reconstruction and were alive 30 days after operation. In selected patients the preservation of a portion of the innervated muscle in situ or the transfer of the muscle with the preservation of its resting length has maintained the majority of the muscle function. Images Fig. 3A. Fig. 3C. Fig. 3D. Fig. 4A. Fig. 4C. Fig. 4D. Fig. 4E. Fig. 5A. Fig. 5B. Fig. 5D. Fig. 6A. Fig. 6C. Fig. 6D. Fig. 6E. Fig. 6F. Fig. 6G. Fig. 6H. PMID:3389939

  9. Evaluation of Tube Wall Thickness of Feed Water Heater

    NASA Astrophysics Data System (ADS)

    Uchikura, Takahisa; Morisaki, Koichi; Hamada, Seiichi

    With regard to the high pressure (HP) feed water heater of thermal power plant at Tokyo Electric Power Company (TEPCO) sites, inspection of feed water (FW) tubes wall thickness are conducted whenever required such that frequent tube leak occurs. As a standard inspection methodology, FW heater is disassembled during planned outage, tube wall thickness is measured by the ultrasonic pulse techique (UT), then plugs are installed at the both ends of FW tube if its measured wall thickness is found below calculated threshold. However, the root causes of wall thinning of FW tube are various such as erosion and corrosion, based on wall thinning condition, the above threshold is not applied but utilizing the other technically well-grounded evaluation method is sometimes more rational. Therefore, TEPCO classified wall-thinning condition based on inspection data and established technically well-grounded and rational evaluation methodologies of FW tube wall thickness to suite each wall thinning condition. Moreover, with recent improvement of inspection technique, technology enabled faster, larger amount, and more accurate data acquisition, TEPCO has developed the systematized evaluation methodology that can transact data acquisition and evaluation simultaneously. This article introduces the logic of evaluation methods and examined algorithms to make them systematized.

  10. An analytic description of thick-wall bubbles

    SciTech Connect

    Hong, Jooyoo.

    1992-01-01

    A new approximation scheme to the false-vacuum decay is suggested. In this scheme the bounce solutions can be obtained in an explicit and analytic way even for thick-wall bubbles. The result is compared with Coleman's thin-wall description, which shows that is nicely comprises the result of the latter prescription. Some applications are also discussed.

  11. An analytic description of thick-wall bubbles

    SciTech Connect

    Hong, Jooyoo

    1992-08-01

    A new approximation scheme to the false-vacuum decay is suggested. In this scheme the bounce solutions can be obtained in an explicit and analytic way even for thick-wall bubbles. The result is compared with Coleman`s thin-wall description, which shows that is nicely comprises the result of the latter prescription. Some applications are also discussed.

  12. Fluid-structure interaction in abdominal aortic aneurysms: effects of asymmetry and wall thickness

    PubMed Central

    Scotti, Christine M; Shkolnik, Alexander D; Muluk, Satish C; Finol, Ender A

    2005-01-01

    Background Abdominal aortic aneurysm (AAA) is a prevalent disease which is of significant concern because of the morbidity associated with the continuing expansion of the abdominal aorta and its ultimate rupture. The transient interaction between blood flow and the wall contributes to wall stress which, if it exceeds the failure strength of the dilated arterial wall, will lead to aneurysm rupture. Utilizing a computational approach, the biomechanical environment of virtual AAAs can be evaluated to study the affects of asymmetry and wall thickness on this stress, two parameters that contribute to increased risk of aneurysm rupture. Methods Ten virtual aneurysm models were created with five different asymmetry parameters ranging from β = 0.2 to 1.0 and either a uniform or variable wall thickness to study the flow and wall dynamics by means of fully coupled fluid-structure interaction (FSI) analyses. The AAA wall was designed to have a (i) uniform 1.5 mm thickness or (ii) variable thickness ranging from 0.5 – 1.5 mm extruded normally from the boundary surface of the lumen. These models were meshed with linear hexahedral elements, imported into a commercial finite element code and analyzed under transient flow conditions. The method proposed was then compared with traditional computational solid stress techniques on the basis of peak wall stress predictions and cost of computational effort. Results The results provide quantitative predictions of flow patterns and wall mechanics as well as the effects of aneurysm asymmetry and wall thickness heterogeneity on the estimation of peak wall stress. These parameters affect the magnitude and distribution of Von Mises stresses; varying wall thickness increases the maximum Von Mises stress by 4 times its uniform thickness counterpart. A pre-peak systole retrograde flow was observed in the AAA sac for all models, which is due to the elastic energy stored in the compliant arterial wall and the expansion force of the artery

  13. Strain to failure of pressurized thick wall cylinders

    SciTech Connect

    Priddy, T.G.; Roach, D.P.

    1989-01-01

    The determination of the fully plastic response and pressure limit of a highly pressurized vessel is of considerable importance in design. The plastic-strain response during and following autofrettage operations, in comparison with the limiting strain condition, is of special interest. This paper presents the results of an analysis method for thick wall, high pressure, cylinders where the effective plastic strain distribution through the thickness is the material response variable of primary interest. The limiting value of this effective plastic strain depends on the level of tensile-stress triaxiality which also varies through the thickness. This strain-to-failure criterion is used to predict the complete pressure versus strain response and the maximum pressure for test cylinders. A simple model of effective-stress versus effective plastic strain is employed. This model is quantified by data taken from uniaxial, tension, true-stress-strain curves and from the fracture zone of the tensile specimen. A sample calculation is included and, in a companion paper, a series of burst tubes having properties ranging from brittle to ductile are compared with this analytical method. 21 refs., 5 figs., 2 tabs.

  14. Bladder wall thickness mapping for magnetic resonance cystography

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Liang, Zhengrong; Zhu, Hongbin; Han, Hao; Duan, Chaijie; Yan, Zengmin; Lu, Hongbing; Gu, Xianfeng

    2013-08-01

    Clinical studies have shown evidence that the bladder wall thickness is an effective biomarker for bladder abnormalities. Clinical optical cystoscopy, the current gold standard, cannot show the wall thickness. The use of ultrasound by experts may generate some local thickness information, but the information is limited in field-of-view and is user dependent. Recent advances in magnetic resonance (MR) imaging technologies lead MR-based virtual cystoscopy or MR cystography toward a potential alternative to map the wall thickness for the entire bladder. From a high-resolution structural MR volumetric image of the abdomen, a reasonable segmentation of the inner and outer borders of the bladder wall can be achievable. Starting from here, this paper reviews the limitation of a previous distance field-based approach of measuring the thickness between the two borders and then provides a solution to overcome the limitation by an electric field-based strategy. In addition, this paper further investigates a surface-fitting strategy to minimize the discretization errors on the voxel-like borders and facilitate the thickness mapping on the three-dimensional patient-specific bladder model. The presented thickness calculation and mapping were tested on both phantom and human subject datasets. The results are preliminary but very promising with a noticeable improvement over the previous distance field-based approach.

  15. Steel shear walls, behavior, modeling and design

    SciTech Connect

    Astaneh-Asl, Abolhassan

    2008-07-08

    In recent years steel shear walls have become one of the more efficient lateral load resisting systems in tall buildings. The basic steel shear wall system consists of a steel plate welded to boundary steel columns and boundary steel beams. In some cases the boundary columns have been concrete-filled steel tubes. Seismic behavior of steel shear wall systems during actual earthquakes and based on laboratory cyclic tests indicates that the systems are quite ductile and can be designed in an economical way to have sufficient stiffness, strength, ductility and energy dissipation capacity to resist seismic effects of strong earthquakes. This paper, after summarizing the past research, presents the results of two tests of an innovative steel shear wall system where the boundary elements are concrete-filled tubes. Then, a review of currently available analytical models of steel shear walls is provided with a discussion of capabilities and limitations of each model. We have observed that the tension only 'strip model', forming the basis of the current AISC seismic design provisions for steel shear walls, is not capable of predicting the behavior of steel shear walls with length-to-thickness ratio less than about 600 which is the range most common in buildings. The main reasons for such shortcomings of the AISC seismic design provisions for steel shear walls is that it ignores the compression field in the shear walls, which can be significant in typical shear walls. The AISC method also is not capable of incorporating stresses in the shear wall due to overturning moments. A more rational seismic design procedure for design of shear walls proposed in 2000 by the author is summarized in the paper. The design method, based on procedures used for design of steel plate girders, takes into account both tension and compression stress fields and is applicable to all values of length-to-thickness ratios of steel shear walls. The method is also capable of including the effect of

  16. Gear-shift lever having variable thickness walls

    SciTech Connect

    Tanaka, T.

    1988-01-03

    A one-piece elongated tubular transmission gear shift lever, is described comprising a tubular connector part at a first end of the gear shift lever, whereby the tubular connector part is adapted to be secured to a pivot means; a spherical part extending from the connector part, the connector part and the spherical part having a first wall thickness; a cylindrical part extending from the spherical part in a direction opposite the tubular connector part, the cylindrical part having a second wall thickness less than the first wall thickness; a tapered part extending from the cylindrical part; and a threaded part extending from the tapered part, the threaded part formed at a second end of the gear shift lever opposite the first end, whereby a gear shift knob may be attached.

  17. Vesicular thick-walled swollen hyphae in pulmonary zygomycosis.

    PubMed

    Kimura, Masatomo; Ito, Hiroyuki

    2009-03-01

    An autopsy case of pulmonary zygomycosis in a patient with rheumatoid arthritis on immunosuppressive therapy is presented herein. There was a pulmonary cavitated infarct caused by mycotic thrombosis. Thin-walled narrow hyphae and vesicular thick-walled swollen hyphae were found on the pleural surface and in the necrotic tissue at the periphery of the cavity. Findings of such shaped fungal elements may cause erroneous histopathological diagnosis because pauciseptate broad thin-walled hyphae are usually the only detectable fungal elements in zygomycosis tissue. Although immunohistochemistry confirmed these unusual elements to be zygomycetous in the present case, it is important for the differential diagnosis to be aware that zygomycetes can form thin narrow hyphae and vesicular thick-walled swollen hyphae. PMID:19261095

  18. Thick-walled carbon composite multifunctional structures

    NASA Astrophysics Data System (ADS)

    Haake, John M.; Jacobs, Jack H.; McIlroy, Bruce E.

    1997-06-01

    Satellite programs are moving in the direction of smaller and lighter structures. Technological advances have permitted more sophisticated equipment to be consolidated into compact spaces. Micro-satellites, between 10 and 100 kg, will incorporate micro-electric devices into the lay-up of the satellite structure. These structures will be designed to carry load, provide thermal control, enhance damping, and include integrated passive electronics. These multifunctional structures offer lighter weight, reduced volume, and a 'smarter' overall package for incorporation of sensors, electronics, fiber optics, powered appendages or active components. McDonnell Douglas Corporation (MDC) has applied technology from the synthesis and processing of intelligent cost effective structures (SPICES) and independent research and development (IRAD) programs to the modular instrument support system (MISS) for multifunctional space structures and micro-satellites. The SPICES program was funded by the Defense Advanced Research Projects Agency (DARPA) to develop affordable manufacturing processes for smart materials to be used in vibration control, and the MISS program was funded by NASA-Langley. The MISS program was conceived to develop concepts and techniques to make connections between different multifunctional structures. MDA fabricated a trapezoidal carbon composite structure out of IM7/977-3 tape prepreg. Flex circuits, thermal and optical conduits were embedded to realize a utility modular connector. These provide electrical, thermal, optical and mechanical connections between micro- satellite components. A quick disconnect mount was also developed to accommodate a variety of devices such as solar arrays, power sources, thermal transfer and vibration control modules.

  19. Evaluation of scoring accuracy for airway wall thickness

    NASA Astrophysics Data System (ADS)

    Odry, Benjamin L.; Kiraly, Atilla P.; Novak, Carol L.; Naidich, David P.; Ko, Jane P.; Godoy, Myrna C. B.

    2009-02-01

    Bronchial wall thickening is commonly observed in airway diseases. One method often used to quantitatively evaluate wall thickening in CT images is to estimate the ratio of the bronchial wall to the accompanying artery, or BWA ratio, and then assign a severity score based on the ratio. Assessment by visual inspection is unfortunately limited to airways perpendicular or parallel to the scanning plane. With high-resolution images from multi-detector CT scanners, it becomes possible to assess airways in any orientation. We selected CT scans from 20 patients with mild to severe COPD. A computer system automatically segmented each bronchial tree and measured the bronchial wall thicknesses. Next, neighboring arteries were detected and measured to determine BWA ratios. A score characterizing the extent and severity of wall thickening within each lobe was computed according to recommendations by Sheehan et al [1]. Two experienced radiologists independently scored wall thickening using visual assessment. Spearman's rank correlation showed a non-significant negative correlation (r=-0.1) between the computer and the reader average (p=0.4), while the correlation between readers was significant at r=0.65 (p=0.001). We subsequently identified 24 lobes with high discrepancies between visual and automated scoring. The readers re-examined those lobes and measured wall thickness using electronic calipers on perpendicular cross sections, rather than visual assessment. Using this more objective standard of wall thickness, the reader estimates of wall thickening increased to reach a significant positive correlation with automated scoring of r=0.65 (p=0.001). These results indicate that subjectivity is an important problem with visual evaluation, and that visual inspection may frequently underestimate disease extent and severity. Given that a manual evaluation of all airways is infeasible in routine clinical practice, we argue that automated methods should be developed and utilized.

  20. Stability of resistive wall modes with plasma rotation and thick wall in ITER scenario

    NASA Astrophysics Data System (ADS)

    Zheng, L. J.; Kotschenreuther, M.; Chu, M.; Chance, M.; Turnbull, A.

    2004-11-01

    The rotation effect on resistive wall modes (RWMs) is examined for realistically shaped, high-beta tokamak equilibria, including reactor relevant cases with low mach number M and realistic thick walls. For low M, Stabilization of RWMs arises from unusually thin inertial layers. The investigation employs the newly developed adaptive eigenvalue code (AEGIS: Adaptive EiGenfunction Independent Solution), which describes both low and high n modes and is in good agreement with GATO in the benchmark studies. AEGIS is unique in using adaptive methods to resolve such inertial layers with low mach number rotation. This feature is even more desirable for transport barrier cases. Additionally, ITER and reactors have thick conducting walls ( ˜.5-1 m) which are not well modeled as a thin shell. Such thick walls are considered here, including semi-analytical approximations to account for the toroidally segmented nature of real walls.

  1. Combined Visualization of Wall Thickness and Wall Shear Stress for the Evaluation of Aneurysms.

    PubMed

    Glaßer, Sylvia; Lawonn, Kai; Hoffmann, Thomas; Skalej, Martin; Preim, Bernhard

    2014-12-01

    For an individual rupture risk assessment of aneurysms, the aneurysm's wall morphology and hemodynamics provide valuable information. Hemodynamic information is usually extracted via computational fluid dynamic (CFD) simulation on a previously extracted 3D aneurysm surface mesh or directly measured with 4D phase-contrast magnetic resonance imaging. In contrast, a noninvasive imaging technique that depicts the aneurysm wall in vivo is still not available. Our approach comprises an experiment, where intravascular ultrasound (IVUS) is employed to probe a dissected saccular aneurysm phantom, which we modeled from a porcine kidney artery. Then, we extracted a 3D surface mesh to gain the vessel wall thickness and hemodynamic information from a CFD simulation. Building on this, we developed a framework that depicts the inner and outer aneurysm wall with dedicated information about local thickness via distance ribbons. For both walls, a shading is adapted such that the inner wall as well as its distance to the outer wall is always perceivable. The exploration of the wall is further improved by combining it with hemodynamic information from the CFD simulation. Hence, the visual analysis comprises a brushing and linking concept for individual highlighting of pathologic areas. Also, a surface clustering is integrated to provide an automatic division of different aneurysm parts combined with a risk score depending on wall thickness and hemodynamic information. In general, our approach can be employed for vessel visualization purposes where an inner and outer wall has to be adequately represented. PMID:26356964

  2. Performance Evaluation of Several Types of Pulsed Eddy Current Probes for Detecting Wall Thickness Reduction

    NASA Astrophysics Data System (ADS)

    Shin, Young-Kil; Choi, Dong-Myung; Jung, Hee-Sung; Um, Tae-Gun

    2010-02-01

    In this paper, four different types of pulsed eddy current (PEC) probe are designed and their performance of detecting wall thickness reduction is compared. By using the backward difference method in time and the finite element method in space, PEC signals from various thickness and materials are numerically calculated and three features of the signal are selected. Since PEC signals and features are obtained by various types and sizes of probe, the comparison is made through the normalized features which reflect the sensitivity of the feature to thickness reduction. The normalized features indicate that the shielded reflection probe provides the best sensitivity to wall thickness reduction for all three signal features. Results show that the best sensitivity to thickness reduction is achieved by the peak value, but also suggest that the time to peak can be a good candidate because of its linear relationship with the thickness variation.

  3. Thick domain walls in AdS black hole spacetimes

    SciTech Connect

    Moderski, Rafal; Rogatko, Marek

    2006-08-15

    Equations of motion for a real self-gravitating scalar field in the background of a black hole with negative cosmological constant were solved numerically. We obtain a sequence of static axisymmetric solutions representing thick domain wall cosmological black hole systems, depending on the mass of black hole, cosmological parameter and the parameter binding black hole mass with the width of the domain wall. For the case of extremal cosmological black hole the expulsion of scalar field from the black hole strongly depends on it.

  4. Evaluation of UT Wall Thickness Measurements and Measurement Methodology

    SciTech Connect

    Weier, Dennis R.; Pardini, Allan F.

    2007-10-01

    CH2M HILL has requested that PNNL examine the ultrasonic methodology utilized in the inspection of the Hanford double shell waste tanks. Specifically, PNNL is to evaluate the UT process variability and capability to detect changes in wall thickness and to document the UT operator's techniques and methodology in the determination of the reported minimum and average UT data and how it compares to the raw (unanalyzed) UT data.

  5. Thick-wall effects in the theory of resistive wall modes

    SciTech Connect

    Pustovitov, V. D.

    2012-06-15

    Magnetic interaction of the plasma perturbations with the nearby resistive wall is considered as a resistive wall mode (RWM) problem, but with two essential differences from the traditional thin-wall approach. First, the wall is treated as magnetically thick, which means that the skin depth is not assumed larger than the wall thickness. Second, the plasma is allowed to enter the region where the RWM must be deeply unstable without rotation. The latter corresponds to the plasma operation above the no-wall stability limit demonstrated in the DIII-D tokamak [E. J. Strait et al., Phys. Plasmas 11, 2505 (2004)]. It is shown that the rotational stabilization observed in these experiments can be reproduced in this model if the mode is forced to rotate with a frequency above a critical level. The analytical estimates show that this effect (absent in the model based on the thin-wall approximation) is strong at realistic parameters. The model also predicts that the locking of the rotationally stabilized mode gives rise to instability with a growth rate much larger than its thin-wall estimate.

  6. Eddy current technique applied to the nondestructive evaluation of turbine blade wall thickness

    NASA Astrophysics Data System (ADS)

    Le Bihan, Yann; Joubert, Pierre-Yves; Placko, Dominique

    2000-05-01

    The high pressure turbine blades of jet engines show internal channels designed for air cooling. These recesses define the internal walls (partitions) and external walls of the blade. The external wall thickness is a critical parameter which has to be systematically checked in order to ensure the blade strength. The thickness evaluation is usually lead by ultrasonic technique or by X-ray tomography. Nevertheless, both techniques present some drawbacks related to measurement speed and automation capability. These drawbacks are bypassed by the eddy current (EC) technique, well known for its robustness and reliability. However, the wall thickness evaluation is made difficult because of the complexity of the blade geometry. In particular, some disturbances appear in the thickness evaluation because of the partitions, which exclude the use of classical EC probes such as cup-core probe. In this paper, we show the main advantages of probes creating an uniformly oriented magnetic field in order to reduce the partition disturbances. Furthermore, we propose a measurement process allowing to separate the wall thickness parameter from the EC signals. Finally, we present some experimental results validating the proposed technique.

  7. Theoretical quantification of the effects of plastic wall thickness on phantom measurements in electromagnetic hyperthermia.

    PubMed

    Ross, M P; Paulsen, K D

    1989-08-01

    Phantom experiments are a staple of research and development in electromagnetic hyperthermia. Phantom containers and compartments are typically constructed from plastics which are readily available in a wide variety of thicknesses and material compositions. The perturbation effects of these plastics on the electric fields to be measured may be important, especially if one is trying to obtain quantitative results such as when comparing with a numerical model. This communication presents a theoretical investigation into the effects of plastic wall thickness on the computed electric field. Design curves are reported which aid in the selecting of an acceptable wall thickness given a maximum degree of wall perturbation that can be tolerated. Many other materials such as rubbers and polystyrenes also have electrical properties within the ranges considered herein; hence, the results should apply to a variety of commonly used phantom construction materials. PMID:2759648

  8. Inverse Design of a Thick Supercritical Airfoil

    NASA Astrophysics Data System (ADS)

    Pambagjo, Tjoetjoek Eko; Nakahashi, Kazuhiro; Obayashi, Shigeru

    In this paper, a study on designing a thick supercritical airfoil by utilizing Takanashi’s inverse design method is discussed. One of the problems to design a thick supercritical airfoil by Takanashi’s method is that an oscillation of the geometry may occur during the iteration process. To reduce the oscillation, an airfoil parameterization method is utilized as the smoothing procedure. A guideline to determine the target pressure distribution to realize the thick airfoil is also discussed.

  9. Microvascular Reconstructions of Full-Thickness Oncological Chest Wall Defects

    PubMed Central

    Tukiainen, Erkki; Popov, Pentscho; Asko-Seljavaara, Sirpa

    2003-01-01

    Objective: To evaluate the suitability of microvascular flaps for the reconstruction of extensive full-thickness defects of the chest wall. Summary Background Data: Chest wall defects are conventionally reconstructed with pedicular musculocutaneous flaps or the omentum. Sometimes, however, these flaps have already been used, are not reliable due to previous operations or radiotherapy, or are of inadequate size. In such cases, microvascular flaps offer the only option for reconstruction. Methods: From 1988 to 2001, 26 patients with full-thickness resections of the chest wall underwent reconstruction with microvascular flaps. There were 8 soft tissue sarcomas, 8 recurrent breast cancers, 5 chondrosarcomas, 2 desmoid tumors, 1 large cell pulmonary cancer metastasis, 1 renal cancer metastasis, and 1 bronchopleural fistula. The surgery comprised 5 extended forequarter amputations, 5 lateral resections, 8 thoracoabdominal resections, and 8 sternal resections. The mean diameter of a resection was 28 cm. The soft tissue defect was reconstructed with 16 tensor fasciae latae, 5 tensor fascia latae combined with rectus femoris, and 3 transversus rectus abdominis myocutaneous flaps. In 2 patients with a forequarter amputation, the remnant forearm was used as the osteomusculocutaneous free flap. Results: There were no flap losses or perioperative mortality. Four patients needed tracheostomy owing to prolonged respiratory difficulties. The mean survival time for patients with sarcomas was 39 months and for those with recurrent breast cancer 18 months. Conclusions: Extensive chest wall resections are possible with acceptable results. In patients with breast cancer, the surgery may offer valuable palliation and in those with sarcomas it can be curative. PMID:14631216

  10. Thick-walled composite tubes under mechanical and hygrothermal loading

    NASA Astrophysics Data System (ADS)

    Wuetrich, C.

    1992-11-01

    The stresses in long thick-walled composite tubes were determined analytically for loading by internal and external pressure, longitudinal forces and twisting moments. Effects of thermal and hygrothermal expansion were also treated. The solution is restricted to tubes built up from one or more layers with macroscopically orthotropic properties. Such layers may be produced, for example, by filament winding or winding of textile reinforcements. It was shown how the elastic and hygrothermal parameters of the macroscopically orthotropic materials may be calculated by homogenization of the properties of uniaxially reinforced materials.

  11. Terahertz inline wall thickness monitoring system for plastic pipe extrusion

    NASA Astrophysics Data System (ADS)

    Hauck, J.; Stich, D.; Heidemeyer, P.; Bastian, M.; Hochrein, T.

    2014-05-01

    Conventional and commercially available inline wall thickness monitoring systems for pipe extrusion are usually based on ultrasonic or x-ray technology. Disadvantages of ultrasonic systems are the usual need of water as a coupling media and the high damping in thick walled or foamed pipes. For x-ray systems special safety requirements have to be taken into account because of the ionizing radiation. The terahertz (THz) technology offers a novel approach to solve these problems. THz waves have many properties which are suitable for the non-destructive testing of plastics. The absorption of electrical isolators is typically very low and the radiation is non-ionizing in comparison to x-rays. Through the electromagnetic origin of the THz waves they can be used for contact free measurements. Foams show a much lower absorption in contrast to acoustic waves. The developed system uses THz pulses which are generated by stimulating photoconductive switches with femtosecond laser pulses. The time of flight of THz pulses can be determined with a resolution in the magnitude of several ten femtoseconds. Hence the thickness of an object like plastic pipes can be determined with a high accuracy by measuring the time delay between two reflections on materials interfaces e.g. at the pipe's inner and outer surface, similar to the ultrasonic technique. Knowing the refractive index of the sample the absolute layer thickness from the transit time difference can be calculated easily. This method in principle also allows the measurement of multilayer systems and the characterization of foamed pipes.

  12. Terahertz inline wall thickness monitoring system for plastic pipe extrusion

    SciTech Connect

    Hauck, J. E-mail: d.stich@skz.de E-mail: m.bastian@skz.de Stich, D. E-mail: d.stich@skz.de E-mail: m.bastian@skz.de Heidemeyer, P. E-mail: d.stich@skz.de E-mail: m.bastian@skz.de Bastian, M. E-mail: d.stich@skz.de E-mail: m.bastian@skz.de Hochrein, T. E-mail: d.stich@skz.de E-mail: m.bastian@skz.de

    2014-05-15

    Conventional and commercially available inline wall thickness monitoring systems for pipe extrusion are usually based on ultrasonic or x-ray technology. Disadvantages of ultrasonic systems are the usual need of water as a coupling media and the high damping in thick walled or foamed pipes. For x-ray systems special safety requirements have to be taken into account because of the ionizing radiation. The terahertz (THz) technology offers a novel approach to solve these problems. THz waves have many properties which are suitable for the non-destructive testing of plastics. The absorption of electrical isolators is typically very low and the radiation is non-ionizing in comparison to x-rays. Through the electromagnetic origin of the THz waves they can be used for contact free measurements. Foams show a much lower absorption in contrast to acoustic waves. The developed system uses THz pulses which are generated by stimulating photoconductive switches with femtosecond laser pulses. The time of flight of THz pulses can be determined with a resolution in the magnitude of several ten femtoseconds. Hence the thickness of an object like plastic pipes can be determined with a high accuracy by measuring the time delay between two reflections on materials interfaces e.g. at the pipe's inner and outer surface, similar to the ultrasonic technique. Knowing the refractive index of the sample the absolute layer thickness from the transit time difference can be calculated easily. This method in principle also allows the measurement of multilayer systems and the characterization of foamed pipes.

  13. Enhancing cell-free layer thickness by bypass channels in a wall.

    PubMed

    Saadatmand, M; Shimogonya, Y; Yamaguchi, T; Ishikawa, T

    2016-07-26

    When blood flows near a wall, red blood cells (RBCs) drift away from the wall and a cell-free layer (CFL) is formed adjacent to the wall. Controlling the CFL thickness is important for preventing adhesion of cells in the design of biomedical devices. In this study, a novel wall configuration with stenoses and bypass channels is proposed to increase the CFL thickness. We found that the presence of bypass channels modified the spatial distribution of cells and substantially increased the CFL downstream of the stenosis. A single-bypass geometry with 5% hematocrit (Hct) blood flow showed a 1.7μm increase in CFL thickness compared to without the bypass. In the case of three bypass channels, a 3μm increase in CFL thickness was observed. The CFL enhancement was observed up to 10% Hct, but no significant enhancement of CFL was indicated for 20% Hct blood flow. The mechanism of the CFL enhancement was investigated using a numerical simulation of the flow field. The results showed that the distance between each streamline and the corner of the stenosis compared with size of RBC was important parameter in regulating CFL thickness. These results show the potential of the proposed mechanism to prevent adhesion of cells to biomedical devices. PMID:26803337

  14. 49 CFR 192.109 - Nominal wall thickness (t) for steel pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Nominal wall thickness (t) for steel pipe. 192.109 Section 192.109 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND... Nominal wall thickness (t) for steel pipe. (a) If the nominal wall thickness for steel pipe is not...

  15. 49 CFR 192.109 - Nominal wall thickness (t) for steel pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Nominal wall thickness (t) for steel pipe. 192.109 Section 192.109 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND... Nominal wall thickness (t) for steel pipe. (a) If the nominal wall thickness for steel pipe is not...

  16. 49 CFR 192.109 - Nominal wall thickness (t) for steel pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Nominal wall thickness (t) for steel pipe. 192.109 Section 192.109 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND... Nominal wall thickness (t) for steel pipe. (a) If the nominal wall thickness for steel pipe is not...

  17. 49 CFR 192.109 - Nominal wall thickness (t) for steel pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Nominal wall thickness (t) for steel pipe. 192.109 Section 192.109 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND... Nominal wall thickness (t) for steel pipe. (a) If the nominal wall thickness for steel pipe is not...

  18. 49 CFR 192.109 - Nominal wall thickness (t) for steel pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Nominal wall thickness (t) for steel pipe. 192.109 Section 192.109 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND... Nominal wall thickness (t) for steel pipe. (a) If the nominal wall thickness for steel pipe is not...

  19. Stress intensity factors in a reinforced thick-walled cylinder

    NASA Technical Reports Server (NTRS)

    Tang, R.; Erdogan, F.

    1984-01-01

    An elastic thick-walled cylinder containing a radial crack is considered. It is assumed that the cylinder is reinforced by an elastic membrane on its inner surface. The model is intended to simulate pressure vessels with cladding. The formulation of the problem is reduced to a singular integral equation. Various special cases including that of a crack terminating at the cylinder-reinforcement interface are investigated and numerical examples are given. Results indicate that in the case of the crack touching the interface the crack surface displacement derivative is finite and consequently the stress state around the corresponding crack tip is bounded; and generally, for realistic values of the stiffness parameter, the effect of the reinforcement is not very significant.

  20. Thick Liquid-Walled, Field-Reversed Configuration

    SciTech Connect

    Moir, R W; Bulmer, R H; Gulec, K; Fogarty, P; Nelson, B; Ohnishi, M; Rensink, M; Rognlien, T D; Santarious, J F; Sze, D K

    2000-09-22

    A thick flowing layer of liquid (e.g., flibe--a molten salt, or Sn{sub 80}Li{sub 20}--a liquid metal) protects the structural walls of the field-reversed configuration (FRC) so that they can last the life of the plant even with intense 14 MeV neutron bombardment from the D-T fusion reaction. The surface temperature of the liquid rises as it passes from the inlet nozzles to the exit or receiver nozzles due to absorption of line and bremsstrahlung radiation, and neutrons. The surface temperature can be reduced by enhancement of convection near the surface to transport hot surface liquid into the cooler interior. This surface temperature must be compatible with a practical heat transport and energy recovery system. The evaporative flux from the wall driven by the surface temperature must also result in an acceptable impurity level in the core plasma. The shielding of the core by the edge plasma is modeled with a 2D transport code for the resulting impurity ions; these ions are either swept out to the distant end tanks, or diffuse to the hot plasma core. An auxiliary plasma between the edge plasma and the liquid wall can further attenuate evaporating flux of atoms and molecules by ionization. The current in this auxiliary plasma might serve as the antenna for the current drive method, which produces a rotating magnetic field. Another method of current drive uses small spheromaks injected along the magnetic fields, which additionally provide fueling along with pellet fueling if necessary.

  1. Changes in Bladder Wall Thickness and Detrusor Wall Thickness After Surgical Treatment of Benign Prostatic Enlargement in Patients With Lower Urinary Tract Symptoms: A Preliminary Report

    PubMed Central

    Lee, Hakmin; Choo, Minsoo; Kim, Myong; Cho, Sung Yong; Lee, Seung Bae; Jeong, Hyeon

    2014-01-01

    Purpose The purpose of the present study was to evaluate the perioperative changes in bladder wall thickness and detrusor wall thickness after transurethral prostatectomy. Materials and Methods Fifty-one men who were treated for benign prostatic hyperplasia/lower urinary tract symptoms with transurethral prostatectomy were prospectively analyzed from May 2012 to July 2013. Prostate size, detrusor wall thickness, and bladder wall thickness were assessed by transrectal and transabdominal ultrasonography perioperatively. All postoperative evaluations were performed 1 month after the surgery. Results The patients' mean age was 69.0 years, the mean prostate-specific antigen concentration was 8.1 ng/mL, and the mean prostate volume was 63.2 mL. The mean bladder wall thickness was 5.1 mm (standard deviation [SD], ±1.6), 5.1 mm (SD, ±1.6), and 5.0 mm (SD, ±1.4) preoperatively and 4.5 mm (SD, ±1.5), 4.5 mm (SD, ±1.3), and 4.6 mm (SD, ±1.2) postoperatively in the anterior wall, dome, and trigone, respectively (p=0.178, p=0.086, and p=0.339, respectively). The mean detrusor wall thickness was 0.9 mm (SD, ±0.4) preoperatively and 0.7 mm (SD, ±0.3) postoperatively (p=0.001). A subgroup analysis stratifying patients into a large prostate group (weight, ≥45 g) and a high Abrams-Griffiths number group (>30) showed a significant decrease in detrusor wall thickness (p=0.002, p=0.018). Conclusions There was a decrease in detrusor wall thickness after transurethral prostatectomy. The large prostate group and the high Abrams-Griffiths number group showed a significant decrease in detrusor wall thickness after surgery. PMID:24466397

  2. Thick Liquid-Walled Spheromak Magnetic Fusion Power Plant

    SciTech Connect

    Moir, R W; Bulmer, R H; Fowler, T K; Youssef, M Z

    2002-04-08

    We assume a spheromak configuration can be made and sustained by a steady gun current, which injects particles, current and magnetic field, i.e., helicity injection. The equilibrium is calculated with an MHD equilibrium code, where an average beta of 10% is found. The toroidal current of 40 MA is sustained by an injection current of 100 kA (125 MW of gun power). The flux linking the gun is 1/1000th that of the flux in the spheromak. The geometry allows a flow of liquid, either molten salt, (flibe-Li{sub 2}BeF{sub 4} or flinabe-LiNaBeF{sub 4}) or liquid metal such as SnLi which protects most of the walls and structures from neutron damage. The free surface between the liquid and the burning plasma is heated by bremsstrahlung and optical radiation and neutrons from the plasma. The temperature of the free surface of the liquid is calculated and then the evaporation rate is estimated. The impurity concentration in the burning plasma is estimated and limited to a 20% reduction in the fusion power. For a high radiating edge plasma, the divertor power density of 460 MW/m{sup 2} is handled by high-speed (20 m/s), liquid jets. For low radiating edge plasmas, the divertor-power density of 1860 MW/m{sup 2} is too high to handle for flibe but possibly acceptable for SnLi with jets of 100 m/s flow speed. Calculations show the tritium breeding is adequate with enriched Li and appropriate design of the walls not covered by flowing liquid 15% of the total. We have come up with a number of problem areas needing further study to make the design self consistent and workable.

  3. Assessment of bladder wall thickness in women with overactive bladder

    PubMed Central

    Üçer, Oktay; Gümüş, Bilal; Albaz, Ali Can; Pekindil, Gökhan

    2016-01-01

    Objective To compare bladder wall thickness (BWT) between female patients with overactive bladder (OAB) and aged-matched healthy controls. Material and methods Thirty-six female patients with OAB and 31 healthy women were enrolled in the present prospective observational study. Qmax and Qave were measured by using uroflowmetry in all of the women in the patient and control groups, and also maximum bladder capacity (MBC), post- void residual urine (PVRU), prevoiding and postvoiding BWT were measured by using transabdominal ultrasound. Lower urinary tract symptoms of the participants were assessed by using Overactive Bladder Version-8 (OAB-V8) and International Consultation on Incontinence Questionnaire-Short Form (ICIQ-SF). All of the data were statistically compared between the patient and control groups. In the patient group, the relationships between parameters were evaluated correlation analysis. Results The mean age of the patients and controls were similar (respectively, 45.58±12.35 and 44.21±11.60 years (p=0.68). The mean pre- and post-voiding BWT, OAB-V8 and ICIQ-SF scores of the patients were significantly higher than the controls. In the patient group, the moderate positive correlations between BWT with Qmax (p=0.02) and Qave (p=0.02) were found. Conclusion This study showed that the BWTs of the female patients with OAB are higher than those of healthy women. Further studies should investigate the changes in BWT of patients with OAB after treatment of OAB. PMID:27274895

  4. A pilot study on bladder wall thickness at different filling stages

    NASA Astrophysics Data System (ADS)

    Zhang, Xi; Liu, Yang; Li, Baojuan; Zhang, Guopeng; Liang, Zhengrong; Lu, Hongbing

    2015-03-01

    The ever-growing death rate and the high recurrence of bladder cancer make the early detection and appropriate followup procedure of bladder cancer attract more attention. Compare to optical cystoscopy, image-based studies have revealed its potentials in non-invasive observations of the abnormities of bladder recently, in which MR imaging turns out to be a better choice for bladder evaluation due to its non-ionizing and high contrast between urine and wall tissue. Recent studies indicate that bladder wall thickness tends to be a good indicator for detecting bladder wall abnormalities. However, it is difficult to quantitatively compare wall thickness of the same subject at different filling stages or among different subjects. In order to explore thickness variations at different bladder filling stages, in this study, we preliminarily investigate the relationship between bladder wall thickness and bladder volume based on a MRI database composed of 40 datasets acquired from 10 subjects at different filling stages, using a pipeline for thickness measurement and analysis proposed in our previous work. The Student's t-test indicated that there was no significant different on wall thickness between the male group and the female group. The Pearson correlation analysis result indicated that negative correlation with a correlation coefficient of -0.8517 existed between the wall thickness and bladder volume, and the correlation was significant(p <0.01). The corresponding linear regression equation was then estimated by the unary linear regression. Compared to the absolute value of wall thickness, the z-score of wall thickness would be more appropriate to reflect the thickness variations. For possible abnormality detection of a bladder based on wall thickness, the intra-subject and inter-subject thickness variation should be considered.

  5. Effects of Antimony and Wall Thickness on Graphite Morphology in Ductile Iron Castings

    NASA Astrophysics Data System (ADS)

    Glavas, Zoran; Strkalj, Anita; Maldini, Kresimir

    2016-05-01

    Effects of Sb additions on the graphite morphology of ductile iron castings in different wall thicknesses (3, 12, 25, 38, 50, 75, and 100 mm) were analyzed in this paper. In the wall thicknesses of 3, 12, and 25 mm, low contents of rare earth (RE) elements showed a beneficial effect on nodule count and nodularity. Nodularity >80 pct and a high nodule count were achieved without the addition of Sb. In the wall thicknesses of 38, 50, 75, and 100 mm, nodularity >80 pct was not achieved without the use of the chill or proper content of Sb. Excess of RE elements was neutralized with the addition of proper amount of Sb to the wall thickness. Addition of 0.01 wt pct Sb (ratio of RE/Sb = 0.34, ratio of RE/SE = 0.105) was sufficient to achieve nodularity >80 pct in the wall thicknesses of 38, 50, 75, and 100 mm.

  6. Effects of Antimony and Wall Thickness on Graphite Morphology in Ductile Iron Castings

    NASA Astrophysics Data System (ADS)

    Glavas, Zoran; Strkalj, Anita; Maldini, Kresimir

    2016-08-01

    Effects of Sb additions on the graphite morphology of ductile iron castings in different wall thicknesses (3, 12, 25, 38, 50, 75, and 100 mm) were analyzed in this paper. In the wall thicknesses of 3, 12, and 25 mm, low contents of rare earth (RE) elements showed a beneficial effect on nodule count and nodularity. Nodularity >80 pct and a high nodule count were achieved without the addition of Sb. In the wall thicknesses of 38, 50, 75, and 100 mm, nodularity >80 pct was not achieved without the use of the chill or proper content of Sb. Excess of RE elements was neutralized with the addition of proper amount of Sb to the wall thickness. Addition of 0.01 wt pct Sb (ratio of RE/Sb = 0.34, ratio of RE/SE = 0.105) was sufficient to achieve nodularity >80 pct in the wall thicknesses of 38, 50, 75, and 100 mm.

  7. A Digital Stereomicroscopic Study of the Radicular Wall Thickness of Two-Canal Mandibular Incisors

    PubMed Central

    Khedmat, Sedigheh; Mohamadian, Sohayla; Kharrazifard, Mohamad Javad

    2015-01-01

    Objectives: This study aimed to assess the radicular wall thickness in mandibular incisors with two canals and find the maximum and minimum thickness to prevent root canal treatment (RCT) procedural errors. Materials and Methods: A total of 160 extracted mandibular incisors were selected and radiographed; out of which, 55 had two canals. Three parallel transverse sections were made in each tooth at 1mm below the cementoenamel junction (CEJ), mid-root and 1 millimeter to the apex. Specimens were evaluated under a stereomicroscope and the thickness of radicular walls in each section was determined for the buccal, lingual and proximal surfaces. Data were statistically analyzed using Pearson’s correlation coefficient test. Results: The thickness of radicular wall decreased from the cervical towards the apex. In all three sections (cervical, mid-root and apical), the thickness of lingual wall was significantly greater than the buccal wall. Also, the thickness of buccal and lingual walls was significantly higher than that of the proximal walls. Conclusion: The lingual radicular wall had the highest thickness in two-canal mandibular incisors. Therefore, in these teeth, the lingual canal is a better choice for post placement. PMID:26877738

  8. Impact of exercise training on arterial wall thickness in humans

    PubMed Central

    Thijssen, Dick H. J.; Cable, N. Timothy; Green, Daniel J.

    2011-01-01

    Thickening of the carotid artery wall has been adopted as a surrogate marker of pre-clinical atherosclerosis, which is strongly related to increased cardiovascular risk. The cardioprotective effects of exercise training, including direct effects on vascular function and lumen dimension, have been consistently reported in asymptomatic subjects and those with cardiovascular risk factors and diseases. In the present review, we summarize evidence pertaining to the impact of exercise and physical activity on arterial wall remodelling of the carotid artery and peripheral arteries in the upper and lower limbs. We consider the potential role of exercise intensity, duration and modality in the context of putative mechanisms involved in wall remodelling, including haemodynamic forces. Finally, we discuss the impact of exercise training in terms of primary prevention of wall thickening in healthy subjects and remodelling of arteries in subjects with existing cardiovascular disease and risk factors. PMID:22150253

  9. Adaptive ultrasonic measurement of blood vessel diameter and wall thickness: theory and experimental results.

    PubMed

    Rafii, K; Jaffe, J S

    1998-01-01

    An adaptive ultrasonic technique for measuring blood vessel diameter and wall thickness is presented. This technique allows one to use a target-specific transmitted waveform/receiver filter to obtain a larger signal-to-noise ratio (SNR) in the received signal than conventional techniques. Generally, SNR of a received wave increases as the intensity of the transmit wave increases; however, because of the FDA limitations placed on the amount of transmit energy, it is important to be able to make the most efficient use of the energy that is available to obtain the best possible SNR in the received signal. Adaptive ultrasonic measurement makes the most efficient use of the energy that is available by placing the maximum amount of energy in the largest target scattering mode. This results in more energy backscatter from a given target, which leads to a higher SNR in the received waveform. Computer simulations of adaptive ultrasonic measurement of blood vessel diameter show that for a SNR of 0 dB in the transmitted waveform, the standard deviation of the diameter measurements for a custom-designed transmitted waveform is about two orders of magnitude less than the standard deviation of the diameter measurements using more conventional waveforms. Diameter and wall thickness measurement experiments were performed on a latex tube and a bovine blood vessel using both custom-made and conventionally used transmitted waveforms. Results show that the adaptively designed waveform gives a smaller uncertainty in the measurements. The adaptive ultrasonic blood vessel diameter and wall thickness measuring technique has potential applications in examining vessels which are either too deep inside the body or too small for conventional techniques to be used, because of the low SNR in the received signal. PMID:18244211

  10. Continued research on the strain to failure of thick-walled cylinders subjected to internal pressure

    SciTech Connect

    Roach, D.P.; Priddy, T.G.

    1990-01-01

    The determination of the fully plastic response and pressure limit of a pressure vessel is of considerable importance in design. In-house experience in weapon development, new aerospace applications and autofrettage operations all require in-depth knowledge of the strength of high pressure containment structures. This paper presents additional results to support the strain-to-failure analysis of thick-walled cylindrical vessels. Both aluminum and steel, with material properties ranging from ductile to brittle, were tested at stress levels through plastic and strain hardening ranges to fracture. From these tests, the pressure-expansion and through thickness yielding characteristics were determined for these specimens. The critical effective plastic strain depends on the level of tensile stress triaxiality which varies through the wall thickness. It is shown that the proposed strain-to-failure criterion is based on this triaxiality of stress in the critical region and can be used to predict the complete pressure versus strain relations and maximum pressure for the test cylinders. 17 refs., 12 figs.

  11. Method of manufacturing hollow members having uniform wall thickness through use of ablation

    DOEpatents

    Anderson, Paul R.; Downs, Raymond L.; Henderson, Timothy M.

    1982-01-01

    A method of manufacturing a hollow structure of uniform wall thickness comprising the steps of selecting or forming a precursor having one wall surface of desired geometry, treating a portion of the precursor consisting of the one wall surface and a uniform depth of material beneath the wall surface to increase resistance to ablation, and then removing by ablation and discarding the remaining or untreated portion of the precursor.

  12. Shear wall experiments and design in Japan

    SciTech Connect

    Park, Y.J.; Hofmayer, C.

    1994-12-01

    This paper summarizes the results of recent survey studies on the available experimental data bases and design codes/standards for reinforced concrete (RC) shear wall structures in Japan. Information related to the seismic design of RC reactor buildings and containment structures was emphasized in the survey. The seismic requirements for concrete structures, particularly those related to shear strength design, are outlined. Detailed descriptions are presented on the development of Japanese shear wall equations, design requirements for containment structures, and ductility requirements.

  13. Patient-specific left atrial wall-thickness measurement and visualization for radiofrequency ablation

    NASA Astrophysics Data System (ADS)

    Inoue, Jiro; Skanes, Allan C.; White, James A.; Rajchl, Martin; Drangova, Maria

    2014-03-01

    INTRODUCTION: For radiofrequency (RF) catheter ablation of the left atrium, safe and effective dosing of RF energy requires transmural left atrium ablation without injury to extra-cardiac structures. The thickness of the left atrial wall may be a key parameter in determining the appropriate amount of energy to deliver. While left atrial wall-thickness is known to exhibit inter- and intra-patient variation, this is not taken into account in the current clinical workflow. Our goal is to develop a tool for presenting patient-specific left atrial thickness information to the clinician in order to assist in the determination of the proper RF energy dose. METHODS: We use an interactive segmentation method with manual correction to segment the left atrial blood pool and heart wall from contrast-enhanced cardiac CT images. We then create a mesh from the segmented blood pool and determine the wall thickness, on a per-vertex basis, orthogonal to the mesh surface. The thickness measurement is visualized by assigning colors to the vertices of the blood pool mesh. We applied our method to 5 contrast-enhanced cardiac CT images. RESULTS: Left atrial wall-thickness measurements were generally consistent with published thickness ranges. Variations were found to exist between patients, and between regions within each patient. CONCLUSION: It is possible to visually determine areas of thick vs. thin heart wall with high resolution in a patient-specific manner.

  14. Semiautomatic vessel wall detection and quantification of wall thickness in computed tomography images of human abdominal aortic aneurysms

    SciTech Connect

    Shum, Judy; DiMartino, Elena S.; Goldhammer, Adam; Goldman, Daniel H.; Acker, Leah C.; Patel, Gopal; Ng, Julie H.; Martufi, Giampaolo; Finol, Ender A.

    2010-02-15

    Purpose: Quantitative measurements of wall thickness in human abdominal aortic aneurysms (AAAs) may lead to more accurate methods for the evaluation of their biomechanical environment. Methods: The authors describe an algorithm for estimating wall thickness in AAAs based on intensity histograms and neural networks involving segmentation of contrast enhanced abdominal computed tomography images. The algorithm was applied to ten ruptured and ten unruptured AAA image data sets. Two vascular surgeons manually segmented the lumen, inner wall, and outer wall of each data set and a reference standard was defined as the average of their segmentations. Reproducibility was determined by comparing the reference standard to lumen contours generated automatically by the algorithm and a commercially available software package. Repeatability was assessed by comparing the lumen, outer wall, and inner wall contours, as well as wall thickness, made by the two surgeons using the algorithm. Results: There was high correspondence between automatic and manual measurements for the lumen area (r=0.978 and r=0.996 for ruptured and unruptured aneurysms, respectively) and between vascular surgeons (r=0.987 and r=0.992 for ruptured and unruptured aneurysms, respectively). The authors' automatic algorithm showed better results when compared to the reference with an average lumen error of 3.69%, which is less than half the error between the commercially available application Simpleware and the reference (7.53%). Wall thickness measurements also showed good agreement between vascular surgeons with average coefficients of variation of 10.59% (ruptured aneurysms) and 13.02% (unruptured aneurysms). Ruptured aneurysms exhibit significantly thicker walls (1.78{+-}0.39 mm) than unruptured ones (1.48{+-}0.22 mm), p=0.044. Conclusions: While further refinement is needed to fully automate the outer wall segmentation algorithm, these preliminary results demonstrate the method's adequate reproducibility

  15. Control of domain wall thickness by spatial modulation of uniaxial anisotropy and exchange stiffness parameters

    NASA Astrophysics Data System (ADS)

    Arai, Hiroko; Imamura, Hiroshi

    2015-03-01

    The effect of spatial modulation of the uniaxial anisotropy (K) and exchange stiffness (A) parameters on the domain wall thickness was theoretically studied. We derived the Euler-Lagrange equation and the Landau-Lifshitz-Gilbert equation considering the modulation of K and A, and showed that the modulation of A gives rise to an additional term consisting of the first derivatives of A and the magnetization unit vector. Owing to this term, the modulation of A is more effective to modify the domain wall thickness than K. The condition for domain wall pinning by controlling its thickness through the modulation of K and A was also obtained.

  16. Method and apparatus for determining diameter and wall thickness of minute hollow spherical shells

    DOEpatents

    Steinman, David A.

    1982-01-01

    Method and apparatus for determining diameter and wall thickness of hollow microspheres or shells wherein terminal velocities of shells traveling in fluid-filled conduits of differing diameters are measured. A wall-effect factor is determined as a ratio of the terminal velocities, and shell outside diameter may then be ascertained as a predetermined empirical function of wall-effect factor. For shells of known outside diameter, wall thickness may then be ascertained as a predetermined empirical function of terminal velocity in either conduit.

  17. Method and apparatus for determining diameter and wall thickness of minute hollow spherical shells

    DOEpatents

    Steinman, D.A.

    1980-05-30

    Method and apparatus for determining diameter and wall thickness of hollow microspheres or shells wherein terminal velocities of shells traveling in fluid-filled conduits of differing diameters are measured. A wall-effect factor is determined as a ratio of the terminal velocities, and shell outside diameter may then be ascertained as a predetermined empirical function of wall-effect factor. For shells of known outside diameter, wall thickness may then be ascertained as a predetermined empirical function of terminal velocity in either conduit.

  18. Method of controlling the side wall thickness of a turbine nozzle segment for improved cooling

    DOEpatents

    Burdgick, Steven Sebastian

    2002-01-01

    A gas turbine nozzle segment has outer and inner bands and a vane extending therebetween. Each band has a side wall, a cover and an impingement plate between the cover and nozzle wall defining two cavities on opposite sides of the impingement plate. Cooling steam is supplied to one cavity for flow through apertures of the impingement plate to cool the nozzle wall. The side wall of the band has an inturned flange defining with the nozzle wall an undercut region. The outer surface of the side wall is provided with a step prior to welding the cover to the side wall. A thermal barrier coating is applied in the step and, after the cover is welded to the side wall, the side wall is finally machined to a controlled thickness removing all, some or none of the coating.

  19. Colonic wall thickness measured by ultrasound: striking differences in patients with cystic fibrosis versus healthy controls.

    PubMed Central

    Haber, H P; Benda, N; Fitzke, G; Lang, A; Langenberg, M; Riethmüller, J; Stern, M

    1997-01-01

    BACKGROUND: Colonic strictures represent an advanced stage of fibrosing colonopathy in patients with cystic fibrosis. AIMS: To clarify whether ultrasonography can identify patients with an early stage of fibrosing colonopathy and to determine clinical factors that influence bowel wall thickening. PATIENTS: Ninety patients with cystic fibrosis, median age 10 years, and 46 healthy controls, median age 13 years, were investigated. METHODS: Bowel wall thickness was measured by ultrasound in a prospective study. RESULTS: In cystic fibrosis, wall thickness of both small intestine and colon was significantly (p < 0.0001) higher than in controls; 81% of patients with cystic fibrosis had a maximum colon wall thickness at any site of 2 mm or more, a value that was never reached by controls. The maximum colon wall thickness was 6.5 mm. Bowel wall thickness was unchanged at re-examination after one year. There was no progression even with high dose pancreatic supplements. There was no association between bowel wall thickness and clinical features such as previous meconium ileus, intestinal resection, distal intestinal obstruction syndrome, abdominal pain, or pancreatic enzyme dose. CONCLUSIONS: There is genuine intestinal involvement in cystic fibrosis; in a few cases this could lead to fibrosing colonopathy. Images PMID:9135533

  20. 49 CFR 179.500-4 - Thickness of wall.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... the marked test pressure of the tank, the calculated fiber stress in psi at inner wall of tank multiplied by 3.0 will not exceed the tensile strength of any specimen taken from the tank and tested as... maximum marked test pressure permitted to be marked on the tank shall be made by the formula: P = [10S(D...

  1. 49 CFR 179.500-4 - Thickness of wall.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... pressure equal to 7/10 of the marked test pressure of the tank, the calculated fiber stress in psi at inner wall of tank multiplied by 3.0 will not exceed the tensile strength of any specimen taken from the tank... to determine the maximum marked test pressure permitted to be marked on the tank shall be made by...

  2. 49 CFR 179.500-4 - Thickness of wall.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... the marked test pressure of the tank, the calculated fiber stress in psi at inner wall of tank multiplied by 3.0 will not exceed the tensile strength of any specimen taken from the tank and tested as... maximum marked test pressure permitted to be marked on the tank shall be made by the formula: P = [10S(D...

  3. 49 CFR 179.500-4 - Thickness of wall.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... the marked test pressure of the tank, the calculated fiber stress in psi at inner wall of tank multiplied by 3.0 will not exceed the tensile strength of any specimen taken from the tank and tested as... maximum marked test pressure permitted to be marked on the tank shall be made by the formula: P = [10S(D...

  4. 49 CFR 179.500-4 - Thickness of wall.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... the marked test pressure of the tank, the calculated fiber stress in psi at inner wall of tank multiplied by 3.0 will not exceed the tensile strength of any specimen taken from the tank and tested as... maximum marked test pressure permitted to be marked on the tank shall be made by the formula: P = [10S(D...

  5. Real-time velocimetry for evaluation of change in thickness of arterial wall.

    PubMed

    Kanai, H; Koiwa, Y

    2000-03-01

    We previously developed a new method, namely, the phased tracking method, for accurately tracking the movement of the heart wall and arterial wall based on both the phase and magnitude of the demodulated signals to determine the instantaneous position of an object. By this method, the local change in wall thickness during one heartbeat can be determined. We have now developed a real-time system for measuring change in thickness of the myocardium and arterial wall. In this system, four high-speed digital signal processing (DSP) chips are employed for obtaining the initially developed method in real time. The tracking results for both sides of the wall are superimposed on the M (motion)-mode image in the workstation, and the thickness changes of the arterial wall are displayed in real time. Using this system, reported herein, velocity signals of the arterial wall with amplitudes less than several micrometers can be successfully detected in real time with sufficient reproducibility. The elasticity of the arterial wall is evaluated by referring to the blood pressure. In in vivo experiments, the rapid response of the change in wall thickness of the carotid artery to the dose of nitroglycerine (NTG) is evaluated for a young healthy subject and a young smoker. This new real-time system offers potential for quantitative diagnosis of early-stage atherosclerosis by the transient evaluation of the rapid response of the cardiovascular system to physiological stress. PMID:10829692

  6. Artificial Climbing Wall Design and Use.

    ERIC Educational Resources Information Center

    Cinnamon, Jerry

    Climbing walls can be designed to satisfy the needs of both untrained and experienced climbers offering these people a place to learn their craft as well as a place for them to keep their skills honed during off seasons. Users of the artificial wall can be classified into special groups, such as "Youth at Risk," who are engaged in challenge/growth…

  7. Mitigating the effects of surface morphology changes during ultrasonic wall thickness monitoring

    NASA Astrophysics Data System (ADS)

    Cegla, Frederic; Gajdacsi, Attila

    2016-02-01

    Ultrasonic wall thickness monitoring using permanently installed sensors has become a tool to monitor pipe wall thicknesses online and during plant operation. The repeatability of measurements with permanently installed transducers is excellent and can be in the nanometer range. It has, however, also been shown that the measured wall thickness is dependent on surface morphology and that when there are changes in surface morphology the monitored thickness trends can be affected. With an adaptive cross correlation approach, this effect can be successfully muted. However, under some surface morphology change conditions, this can also lead to inaccuracies. Here, an approach to detect when surface morphology changes can influence trend accuracies is presented. This method requires the combination of measurements from several sensors that independently sample an area where the same wall loss mechanism is assumed to occur. Simulation results for the effectiveness of the technique are presented.

  8. The study on ``load relief`` mechanism of multiple cracks in thick-wall cylinder

    SciTech Connect

    Zhang, Y.H.; Huang, Z.Z.; Tan, Y.; Chen, L.Y.; Pan, B.Z.

    1995-11-01

    In this paper, the stress field on a given cross section in a thick-wall cylinder with single or multiple cracks is analyzed by means of 3-D photoelastic. Based on the study of the effect of crack on stress field, the concept of ``Additional Bending Moment`` is presented and the expression for non-dimensional ABM, M, is derived. The ``load relief`` mechanism of multiple cracks in a thick-wall cylinder is studied.

  9. Optimization of Focal Position of Ultrasonic Beam in Measurement of Small Change in Arterial Wall Thickness

    NASA Astrophysics Data System (ADS)

    Watanabe, Masaru; Kanai, Hiroshi

    2001-05-01

    We have previously developed a method for measurement of a small change in thickness of the arterial wall during a single cardiac cycle [H. Kanai, M. Sato, Y. Koiwa and N. Chubachi: IEEE Trans. UFFC 43 (1996) 791]. The resultant change in thickness is shown to be useful for the in vivo assessment of the regional elasticity of the arterial wall. Although the accuracy of the measurement of the change in thickness is found to be within 1 μm, it is affected by the interference of ultrasonic pulses. In this study, we simulate the propagation of ultrasonic pulses transmitted and received by a linear probe. In the simulation experiments, the ultrasonic pulses generated by a computer are reflected by a tube, which has a small change in wall thickness of 10 μm. The optimum focal position of the ultrasonic beam is determined by evaluating the root-mean-square (rms) error in the measured change in thickness.

  10. Prevalence and histopathological finding of thin-walled and thick-walled Sarcocysts in slaughtered cattle of Karaj abattoir, Iran.

    PubMed

    Nourollahi-Fard, Saeid R; Kheirandish, Reza; Sattari, Saeid

    2015-06-01

    Sarcocystosis is a zoonotic disease caused by Sarcocystis spp. with obligatory two host life cycle generally alternating between an herbivorous intermediate host and a carnivorous definitive host. Some species of this coccidian parasite can cause considerable morbidity and mortality in cattle. The present study was set to investigate the prevalence of Sarcocystis spp. and type of cyst wall in slaughtered cattle of Karaj abattoir, Iran. For this purpose 125 cattle (88 males and 37 females) were investigated for the presence of macroscopic and microscopic Sarcocystis cysts in muscular tissues. No macroscopic Sarcocystis cysts were found in any of the samples. In light microscopy, 121 out of 125 cattle (96.8 %) had thin-walled cysts of Sarcocystis cruzi, while 43 out of them (34.4 %) had thick-walled Sarcocystis cyst. In this survey, the most infected tissue was esophagus and heart and the less was diaphragm. Thin-walled cysts (S. cruzi) mostly found in heart and skeletal muscle showed the less. However, thick-walled cyst (S. hominis or S. hirsuta) mostly were detected in diaphragm, heart muscle showed no thick-walled cyst. No significant relation was observed between age and sex and the rate of infection. The results showed that Sarcocystis cyst is prevalent in cattle in the North part of Iran and the evaluation of infection potential can be useful when considering control programs. PMID:26064016

  11. Post-cast EDM method for reducing the thickness of a turbine nozzle wall

    DOEpatents

    Jones, Raymond Joseph; Bojappa, Parvangada Ganapathy; Kirkpatrick, Francis Lawrence; Schotsch, Margaret Jones; Rajan, Rajiv; Wei, Bin

    2002-01-01

    A post-cast EDM process is used to remove material from the interior surface of a nozzle vane cavity of a turbine. A thin electrode is passed through the cavity between opposite ends of the nozzle vane and displaced along the interior nozzle wall to remove the material along a predetermined path, thus reducing the thickness of the wall between the cavity and the external surface of the nozzle. In another form, an EDM process employing a profile as an electrode is disposed in the cavity and advanced against the wall to remove material from the wall until the final wall thickness is achieved, with the interior wall surface being complementary to the profile surface.

  12. Assessment of the chest wall thickness of the lawrence livermore torso phantom using a voxel image.

    PubMed

    Ahmed, A S M Sabbir; Capello, Kevin; Kramer, Gary H

    2011-06-01

    This paper describes the methodology of measuring the chest wall thickness using the voxel image of the Lawrence Livermore National Lab (LLNL) torso phantom. The LLNL phantom is used as a standard to calibrate a lung counter consisting of a 2 × 2 array of germanium detectors. In general, an average thickness estimated from four counting positions is used as the chest wall thickness for a given overlay plate. For a given overlay, the outer chest surface differs from that of inner one, and the chest wall thickness varies from one position to other. The LLNL phantom with chest plate and C4 overlay plate installed was scanned with a CT (computed tomography) scanner. The image data, collected in DICOM (Digital Imaging and Communication) format, were converted to the MCNP input file by using the Scan2Mcnp program. The MCNP file was visualized and analyzed with the Moritz visual editor. An analytic expression was formulated and solved to calculate the chest wall thickness by using the point detector responses (F 5 tally of MCNP). To map the chest thickness, the entire chest wall was meshed into virtual grids of 1 cm width. A source and detector pair was moved along the inner and outer surface of the chest wall from right to left at different heights from neck to abdomen. For each height (z(k)), (x(i), y(j)) coordinates for the detector source pair were calculated from the visual editor and were scaled on-screen. For each (x(i), y(j), z(k)) position, a mesh thickness was measured from on-screen measurement and by solving the detector responses. The chest wall thicknesses at different positions on the outer surface of the chest were compared and verified using two methods. PMID:22004927

  13. Simultaneous measurement of sound velocity and wall thickness of a tube.

    PubMed

    He, P

    2001-10-01

    A method for simultaneously measuring the sound propagation velocity and the thickness of each wall on the opposite sides of a tube is presented. The method uses a pair of ultrasound transducers to produce two reflected pulses from the outer and inner surfaces of the tube wall on the each side, and two transmitted pulses, one with and one without the tube sample between the two transducers. Using the time-domain analysis, sound velocity and wall thickness of the tube are determined from the time delays between the three pairs of ultrasound pulses, whereas using the frequency-domain analysis, phase velocity, group velocity, and wall thickness of the tube are determined from the phase differences between the three pairs of ultrasound pulses. Results of measurements on five tube samples are reported. PMID:11775655

  14. Laser Ultrasonic Thickness Measurements of Very Thick Walls at High Temperatures

    SciTech Connect

    Kruger, S. E.; Lord, M.; Monchalin, J.-P.

    2006-03-06

    Laser-ultrasonics presents many advantages compared to conventional ultrasonics, but is, generally, considered as less sensitive. As a consequence, laser-ultrasonics should not be adequate for ultrasonic measurements in coarse microstructure materials or measurements of large thicknesses. However, since the generated waves extend to very low frequencies, measurements in such conditions can be successfully performed if a photorefractive interferometer sensitive also to these low frequencies and properly balanced is used for detection. This is demonstrated by measurements of thicknesses up to 100 mm (4'') for various steel grades and at temperatures up to 1250 deg. C.

  15. Colonic wall thickness using level sets for CT virtual colonoscopy visual assessment and polyp detection

    NASA Astrophysics Data System (ADS)

    Van Uitert, Robert L.; Summers, Ronald M.

    2007-03-01

    The detection of polyps in virtual colonoscopy is an active area of research. One of the critical elements in detecting cancerous polyps using virtual colonoscopy, especially in conjunction with computer-aided detection, is the accurate segmentation of the colon wall. The large CT attenuation difference between the lumen and inner, mucosal layer of the colon wall makes the segmentation of the lumen easily performed by traditional threshold segmentation techniques. However, determining the location of the colon outer wall is often difficult due to the low contrast difference between the colon wall's outer serosal layer and the fat surrounding the colon. We have developed an automatic, level set based method to determine from a CT colonography scan the location of the colon inner boundary and the colon outer wall boundary. From the location of the inner and outer colon wall boundaries, the wall thickness throughout the colon can be computed. Color mapping of the wall thickness on the colon surface allows for easy visual determination of potential regions of interest. Since the colon wall tends to be thicker at polyp locations, potential polyps also can be detected automatically at sites of increased colon wall thickness. This method was validated on several CT colonography scans containing optical colonoscopy-proven polyps. The method accurately determined thicker colonic wall regions in areas where polyps are present in the ground truth datasets and detected the polyps at a false positive rate between 44.4% and 82.8% lower than a state-of-the-art curvature-based method for initial polyp detection.

  16. Increased Coronary Vessel Wall Thickness in HIV-Infected Young Adults

    PubMed Central

    Abd-Elmoniem, Khaled Z.; Unsal, Aylin B.; Eshera, Sarah; Matta, Jatin R.; Muldoon, Nancy; McAreavey, Dorothea; Purdy, Julia B.; Hazra, Rohan; Hadigan, Colleen; Gharib, Ahmed M.

    2014-01-01

    Background. Individuals with long-term human immunodeficiency virus (HIV) infection are at risk for premature vasculopathy and cardiovascular disease (CVD). We evaluated coronary vessel wall thickening, coronary plaque, and epicardial fat in patients infected with HIV early in life compared with healthy controls. Methods. This is a prospective cross-sectional study of 35 young adults who acquired HIV in early life and 11 healthy controls, free of CVD. Time resolved phase-sensitive dual inversion recovery black-blood vessel wall magnetic resonance imaging (TRAPD) was used to measure proximal right coronary artery (RCA) wall thickness, and multidetector computed tomography (CT) angiography was used to quantify coronary plaque and epicardial fat. Results. RCA vessel wall thickness was significantly increased in HIV-infected patients compared with sex- and race-matched controls (1.32 ± 0.21 mm vs 1.09 ± 0.14 mm, P = .002). No subject had discrete plaque on CT sufficient to cause luminal narrowing, and plaque was not related to RCA wall thickness. In multivariate regression analyses, smoking pack-years (P = .004) and HIV infection (P = .007) were independently associated with thicker RCA vessel walls. Epicardial fat did not differ between groups. Among the HIV-infected group, duration of antiretroviral therapy (ART) (P = .02), duration of stavudine exposure (P < .01), low-density lipoprotein cholesterol (P = .04), and smoking pack-years (P < .01) were positively correlated with RCA wall thickness. Conclusions. This investigation provides evidence of subclinical coronary vascular disease among individuals infected with HIV in early life. Increased duration of ART, hyperlipidemia, and smoking contributed to proximal RCA thickening, independent of atherosclerotic plaque quantified by CT. These modifiable risk factors appear to influence early atherogenesis as measured by coronary wall thickness and may be important targets for CVD risk reduction. PMID:25159580

  17. Surface plasmon and photonic mode propagation in gold nanotubes with varying wall thickness

    SciTech Connect

    Kohl, Jesse; Fireman, Micha; O'Carroll, Deirdre M.

    2011-12-15

    Gold nanotube arrays are synthesized with a range of wall thicknesses (15 to >140 nm) and inner diameters of {approx}200 nm using a hard-template method. A red spectral shift (>0.39 eV) with decreasing wall thickness is observed in dark-field spectra of nanotube arrays and single nanowire/nanotube heterostructures. Finite-difference-time-domain simulations show that nanotubes in this size regime support propagating surface plasmon modes as well as surface plasmon ring resonances at visible wavelengths (the latter is observed only for excitation directions normal to the nanotube long axis with transverse polarization). The energy of the surface plasmon modes decreases with decreasing wall thickness and is attributed to an increase in mode coupling between propagating modes in the nanotube core and outer surface and the circumference dependence of ring resonances. Surface plasmon mode propagation lengths for thicker-walled tubes increase by a factor of {approx}2 at longer wavelengths (>700 nm), where ohmic losses in the metal are low, but thinner-walled tubes (30 nm) exhibit a more significant increase in surface plasmon propagation length (by a factor of more than four) at longer wavelengths. Additionally, nanotubes in this size regime support a photonic mode in their core, which does not change in energy with changing wall thickness. However, photonic mode propagation length is found to decrease for optically thin walls. Finally, correlations are made between the experimentally observed changes in dark-field spectra and the changes in surface plasmon mode properties observed in simulations for the various gold nanotube wall thicknesses and excitation conditions.

  18. Computed tomographic assessment of maxillary sinus wall thickness in edentulous patients.

    PubMed

    Yang, S-M; Park, S-I; Kye, S-B; Shin, S-Y

    2012-06-01

    Posterior maxillary region is considered to be the most challenging area for dental implant placement. Lateral window opening is the gold standard procedure for maxillary sinus augmentation in this area. The purpose of this study is to evaluate lateral wall thickness of the maxillary sinus for sinus augmentation using computed tomography (CT) in edentulous patients. Computed tomography images of 302 patients were analysed. Using the maxillary sinus floor as the reference point in edentulous regions, lateral wall thickness was measured on CT scans. After drawing a tangent line at the lowest point of the sinus floor, another perpendicular line to the tangent line was drawn at the same point of the sinus floor. Thickness of the lateral wall of the maxillary sinus was measured using 10DR implant software at 3 (R1), 10 (R2) and 15 mm (R3) from the sinus floor. The mean thickness of the lateral wall of the maxillary sinus from the first premolar to second molar was 1·69 ± 0·71, 1·50 ± 0·72, 1·77 ± 0·78 and 1·89 ± 0·85 mm, respectively. The thickness differed significantly at the R2 and R3 points. Women had thinner lateral walls at the R1 and R2 points at the premolars than did men. At the R2 and R3 points at the second premolar, the mean thickness of smokers was larger than that of non-smokers. There were no significant differences on age or reasons for tooth loss. The changes in the thickness of the lateral wall at different reference points were observed, and CT examinations may help make lateral window without membrane perforation. PMID:22471834

  19. Highly Fluorescent Nanotubes with Tunable Diameter and Wall Thickness Self-Assembled from Asymmetric Perylene Diimides.

    PubMed

    Peng, Cheng; Zhang, Yibin; Zhang, Yifan; Hu, Yanyong; Che, Yanke; Zhao, Jincai

    2016-08-01

    Highly fluorescent bilayer-walled and monolayer-walled nanotubes are assembled from elaborately designed asymmetric perylene diimide (PDI) molecules. The diameter of bilayer-walled nanotubes increases with the size of the branched substituents at the meta-position of the phenyl moiety of PDI molecules, whereas that of monolayer-walled nanotubes remains unchanged regardless of the size of branched substituents. PMID:27375155

  20. Comparison of Two Methods of Finite Element Modeling for Elbows with Unequal Wall Thickness

    NASA Astrophysics Data System (ADS)

    Dong, Junhua; Bao, Xiangfu; Zheng, Xize

    In Finite Element Stress Analysis of elbow, its unequal wall thickness can be obtained by two methods: eccentric circle method and multi-spot spline curve drawed according to wall thickness of elbow. In this work, an elbow with constant inner diameter was taken as an illustration and its simulation results based on these two modeling methods were compared under different ratios of central line bend radius to mean diameter of pipe R/D. It is found that modeling method has no effect on the stress analysis results of elbows. But eccentric circle method has the virtue of being easier to implement and can be used without restriction of R/D, so it is an ideal method of finite element modeling for unequal wall thickness elbows. Because the FEA results of equal thickness elbows are recognizably higher than those of elbows with unequal wall thickness, considering non-uniform thickness of elbows is necessary to set up a reasonable safety evaluation for elbows.

  1. Multimodal optical measurement in vitro of surface deformations and wall thickness of the pressurized aortic arch.

    PubMed

    Genovese, Katia; Humphrey, Jay D

    2015-04-01

    Computational modeling of arterial mechanics continues to progress, even to the point of allowing the study of complex regions such as the aortic arch. Nevertheless, most prior studies assign homogeneous and isotropic material properties and constant wall thickness even when implementing patient-specific luminal geometries obtained from medical imaging. These assumptions are not due to computational limitations, but rather to the lack of spatially dense sets of experimental data that describe regional variations in mechanical properties and wall thickness in such complex arterial regions. In this work, we addressed technical challenges associated with in vitro measurement of overall geometry, full-field surface deformations, and regional wall thickness of the porcine aortic arch in its native anatomical configuration. Specifically, we combined two digital image correlation-based approaches, standard and panoramic, to track surface geometry and finite deformations during pressurization, with a 360-deg fringe projection system to contour the outer and inner geometry. The latter provided, for the first time, information on heterogeneous distributions of wall thickness of the arch and associated branches in the unloaded state. Results showed that mechanical responses vary significantly with orientation and location (e.g., less extensible in the circumferential direction and with increasing distance from the heart) and that the arch exhibits a nearly linear increase in pressure-induced strain up to 40%, consistent with other findings on proximal porcine aortas. Thickness measurements revealed strong regional differences, thus emphasizing the need to include nonuniform thicknesses in theoretical and computational studies of complex arterial geometries. PMID:25867620

  2. Dependence of Thermal Conductivity on Thickness in Single-Walled Carbon Nanotube Films.

    PubMed

    Lee, Kyung-Min; Shrestha, Ramesh; Dangol, Ashesh; Chang, Won Seok; Coker, Zachary; Choi, Tae-Youl

    2016-01-01

    Herein, we report experimentally dependence of thermal conductivity on thickness of single walled carbon nanotubes (SWNTs) thin films; the measurements are based on the micropipette thermal sensor technique. Accurate and well resolved measurements of thermal conductivity made by the micropipette sensor showed a correlated behavior of thickness and thermal conductivity of CNT films that thermal conductivity decreased as thickness increased. The thickness dependence is explained by reduction of mean free path (MFP), which is induced by more intertubular junctions in more dense-packed carbon nanotube (CNT) networks; the thicker SWCNT films were revealed to have higher density. PMID:27398564

  3. Airway wall thickness assessment: a new functionality in virtual bronchoscopy investigation

    NASA Astrophysics Data System (ADS)

    Saragaglia, A.; Fetita, C.; Brillet, P. Y.; Prêteux, F.; Grenier, P. A.

    2007-03-01

    While classic virtual bronchoscopy offers visualization facilities for investigating the shape of the inner airway wall surface, it provides no information regarding the local thickness of the wall. Such information may be crucial for evaluating the severity of remodeling of the bronchial wall in asthma and to guide bronchial biopsies for staging of lung cancers. This paper develops a new functionality with the virtual bronchoscopy, allowing to estimate and map the information of the bronchus wall thickness on the lumen wall surface, and to display it as coded colors during endoluminal navigation. The local bronchus wall thickness estimation relies on a new automated 3D segmentation approach using strong 3D morphological filtering and model-fitting. Such an approach reconstructs the inner/outer airway wall surfaces from multi-detector CT data as follows. First, the airway lumen is segmented and its surface geometry reconstructed using either a restricted Delaunay or a Marching Cubes based triangulation approach. The lumen mesh is then locally deformed in the surface normal direction under specific force constraints which stabilize the model evolution at the level of the outer bronchus wall surface. The developed segmentation approach was validated with respect to both 3D mathematicallysimulated image phantoms of bronchus-vessel subdivisions and to state-of-the-art cross-section area estimation techniques when applied to clinical data. The investigation in virtual bronchoscopy mode is further enhanced by encoding the local wall thickness at each vertex of the lumen surface mesh and displaying it during navigation, according to a specific color map.

  4. Optimization of Condition of Ultrasonic Beam for Measurement of Small Change in Thickness of Arterial Wall

    NASA Astrophysics Data System (ADS)

    Watanabe, Masaru; Hasegawa, Hideyuki; Kanai, Hiroshi

    2002-05-01

    We previously developed a method for measuring small changes in thickness of the arterial wall during one cardiac cycle. Knowledge of this change in thickness is useful for in vivo assessment of the regional elasticity of the arterial wall. In this study, from computer simulations, it is found that measurement error depends on the distance of the ultrasonic beam from the center of the artery and it can be reduced by optimally setting the focal position. In basic experiments using a silicone rubber tube and in in vivo experiments with a human carotid artery, it is found that by optimizing the focal position, measurement of the change in thickness becomes more robust against mispositioning of the ultrasonic beam. From these results, it is demonstrated that optimum focal positioning provides more robustness in measurement, even if there is arterial wall motion causing the position of the ultrasonic beam to deviate from the center of the artery.

  5. General tube law for collapsible thin and thick-wall tubes.

    PubMed

    Kozlovsky, Pavel; Zaretsky, Uri; Jaffa, Ariel J; Elad, David

    2014-07-18

    Modeling the complex deformations of cylindrical tubes under external pressure is of interest in engineering and physiological applications. The highly non-linear post-buckling behavior of cross-section of the tube during collapse attracted researchers for years. Major efforts were concentrated on studying the behavior of thin-wall tubes. Unfortunately, the knowledge on post-buckling of thick-wall tubes is still incomplete, although many experimental and several theoretical studies have been performed. In this study we systematically studied the effect of the wall thickness on post-buckling behavior of the tube. For this purpose, we utilized a computational model for evaluation of the real geometry of the deformed cross-sectional area due to negative transmural (internal minus external) pressure. We also developed an experimental method to validate the computational results. Based on the computed cross-sections of tubes with different wall thicknesses, we developed a general tube law that accounts for thin or thick wall tubes and fits the numerical data of computed cross-sectional areas versus transmural pressures. PMID:24837222

  6. Wall-thickness and midwall-radius variations in ventricular mechanics.

    PubMed

    Chadwick, R S; Ohayon, J; Lewkowicz, M

    1989-05-01

    A fluid-fiber-collagen stress tensor is used to describe the rheology of the left ventricle of the heart. Linear theory is used to find the equilibrium solutions for the end-diastolic and end-systolic states of general axisymmetric shapes that are small perturbations of a thick-walled finite cylinder. The general problem can be studied by superposing the effects of variable midwall radius but constant wall thickness with those of variable wall thickness but constant midwall radius. A Fourier series representation is used to describe the midwall radius and thickness functions. Numerical calculations are performed to determine the deformed geometry and spatial distributions of tissue pressure, stresses, and fiber strains. The calculations proved to be highly accurate when compared to an analytical solution obtained for the special case of no fibers. The results show significant longitudinal differences when compared to results for the cylindrical geometry, with more sensitivity to variation in wall thickness than to variation in midwall radius. PMID:2717607

  7. An exact solution for a thick domain wall in general relativity

    NASA Technical Reports Server (NTRS)

    Goetz, Guenter; Noetzold, Dirk

    1989-01-01

    An exact solution of the Einstein equations for a static, planar domain wall with finite thickness is presented. At infinity, density and pressure vanish and the space-time tends to the Minkowski vacuum on one side of the wall and to the Taub vacuum on the other side. A surprising feature of this solution is that the density and pressure distribution are symmetric about the central plane of the wall whereas the space-time metric and therefore also the gravitational field experienced by a test particle is asymmetric.

  8. Thermal Marangoni instability of a thin film flowing down a thick wall deformed in the backside

    NASA Astrophysics Data System (ADS)

    Dávalos-Orozco, L. A.

    2016-05-01

    The nonlinear instability of a thin liquid film flowing down a heated thick wall with deformations in the backside is investigated. Here it is assumed that the wall deformations are sinusoidal in space. Time dependent perturbations are imposed at the origin of the free surface of the film. It is found that the wall deformations have an important influence on the flow instability. Moreover, it is shown that the free surface has a large amplitude spatial response to the backside deformations of the wall. This response increases its amplitude considerably when decreasing the wall spatial wavelength down to the wavelength of the time dependent perturbations. At that point, numerical analysis reveals that the time dependent perturbations in some cases are almost impossible to observe on the free surface response. However, in other cases, their interaction produces large amplitude nonlinear wave modulations.

  9. Investigation of Adiabatic Shear Bands in Thick-Walled Cylinders Collapsed by Electro-Magnetic Driving Forces

    NASA Astrophysics Data System (ADS)

    Lovinger, Z.; Rikanati, A.; Rittel, D.; Rosenberg, Z.

    2009-12-01

    The Thick-Walled Cylinder technique, reported in the literature, employs an explosive cylinder to create the driving force, collapsing the cylindrical sample. This experimental set-up has been established as a controlled and repeatable technique to create and study multiple adiabatic shear bands. Searching to establish a simpler experimental platform to perform large sets of experiments, we have designed an Electro-Magnetic (EM) set-up for the collapse of thick walled cylinders. The EM setup is based on a pulsed current generator using a capacitor bank system. The specimen is an assembly of coaxial cylinders, where the inner and outer cylinders, each attached to an opposite pole, are short-circuited. Upon discharge, a high current flows through the cylinders, in opposite directions, creating repulsive magnetic forces between them. This work presents the design procedure of the specimens using numerical simulations as well as some results for SS304L thick-walled specimens, using this setup. The spatial distribution of the multiple adiabatic shear bands in these experiments is in good agreement with that reported in the literature for the explosive driven experiments with SS304L specimens. Our numerical simulations show good agreement with the experimental results for both global behaviour and shear band distribution.

  10. Fatigue life improvement of an autofrettage thick-walled pressure vessel with an external groove

    NASA Astrophysics Data System (ADS)

    Koh, Seung K.; Stephens, Ralph I.

    1992-01-01

    This report presents an investigation into a fatigue life improvement of an autofrettaged thick-walled pressure vessel with an external groove subjected to pulsating internal pressure, along with mean strain and mean stress effects on strain-controlled low cycle fatigue behavior. Linear elastic stress analysis of an autofrettaged thick-walled pressure vessel with an external groove is done using a finite element method. Autofrettage loading is performed using a thermal loading analogy. Change of external groove geometry is made using a quasi-optimization technique and finite element method to achieve longer fatigue life by relieving the stress concentration at the groove root. Surface treatment using shot peening is employed to produce compressive residual stresses at the vulnerable surface of the groove root to counteract the high tensile stresses. An evaluation of the fatigue life of an autofrettaged thick-walled pressure vessel with an external groove is done through a series of simulation fatigue tests using C-shaped specimens taken from the thick-walled pressure vessel.

  11. Magnet Fall inside a Conductive Pipe: Motion and the Role of the Pipe Wall Thickness

    ERIC Educational Resources Information Center

    Donoso, G.; Ladera, C. L.; Martin, P.

    2009-01-01

    Theoretical models and experimental results are presented for the retarded fall of a strong magnet inside a vertical conductive non-magnetic tube. Predictions and experimental results are in good agreement modelling the magnet as a simple magnetic dipole. The effect of varying the pipe wall thickness on the retarding magnetic drag is studied for…

  12. Automatic Thickness and Volume Estimation of Sprayed Concrete on Anchored Retaining Walls from Terrestrial LIDAR Data

    NASA Astrophysics Data System (ADS)

    Martínez-Sánchez, J.; Puente, I.; GonzálezJorge, H.; Riveiro, B.; Arias, P.

    2016-06-01

    When ground conditions are weak, particularly in free formed tunnel linings or retaining walls, sprayed concrete can be applied on the exposed surfaces immediately after excavation for shotcreting rock outcrops. In these situations, shotcrete is normally applied conjointly with rock bolts and mesh, thereby supporting the loose material that causes many of the small ground falls. On the other hand, contractors want to determine the thickness and volume of sprayed concrete for both technical and economic reasons: to guarantee their structural strength but also, to not deliver excess material that they will not be paid for. In this paper, we first introduce a terrestrial LiDAR-based method for the automatic detection of rock bolts, as typically used in anchored retaining walls. These ground support elements are segmented based on their geometry and they will serve as control points for the co-registration of two successive scans, before and after shotcreting. Then we compare both point clouds to estimate the sprayed concrete thickness and the expending volume on the wall. This novel methodology is demonstrated on repeated scan data from a retaining wall in the city of Vigo (Spain), resulting in a rock bolts detection rate of 91%, that permits to obtain a detailed information of the thickness and calculate a total volume of 3597 litres of concrete. These results have verified the effectiveness of the developed approach by increasing productivity and improving previous empirical proposals for real time thickness estimation.

  13. Size Dependence in Hexagonal Mesoporous Germanium: Pore Wall Thickness versus Energy Gap and Photoluminescence

    SciTech Connect

    Armatas, G. S.; Kanatzidis, Mercouri G.

    2010-08-10

    A series of hexagonal mesoporous germanium semiconductors with tunable wall thickness is reported. These nanostructures possess uniform pores of 3.1-3.2 nm, wall thicknesses from 1.3 to 2.2 nm, and large internal BET surface area in the range of 404-451 m2/g. The porous Ge framework of these materials is assembled from the templated oxidative self-polymerization of (Ge9)4- Zintl clusters. Total X-ray scattering analysis supports a model of interconnected deltahedral (Ge9)-cluster forming the framework and X-ray photoelectron spectroscopy indicates nearly zero-valence Ge atoms. We show the controllable tuning of the pore wall thickness and its impact on the energy band gap which increases systematically with diminishing wall thickness. Furthermore, there is room temperature photoluminescence emission which shifts correspondingly from 672 to 640 nm. The emission signal can be quenched via energy transfer with organic molecules such as pyridine diffusing into the pores.

  14. Room temperature synthesis of indium tin oxide nanotubes with high precision wall thickness by electroless deposition

    PubMed Central

    Ionescu, Emanuel; Fu, Ganhua; Ensinger, Wolfgang

    2011-01-01

    Summary Conductive nanotubes consisting of indium tin oxide (ITO) were fabricated by electroless deposition using ion track etched polycarbonate templates. To produce nanotubes (NTs) with thin walls and small surface roughness, the tubes were generated by a multi-step procedure under aqueous conditions. The approach reported below yields open end nanotubes with well defined outer diameter and wall thickness. In the past, zinc oxide films were mostly preferred and were synthesized using electroless deposition based on aqueous solutions. All these methods previously developed, are not adaptable in the case of ITO nanotubes, even with modifications. In the present work, therefore, we investigated the necessary conditions for the growth of ITO-NTs to achieve a wall thickness of around 10 nm. In addition, the effects of pH and reductive concentrations for the formation of ITO-NTs are also discussed. PMID:21977422

  15. Surgical resection of cerebellar hemangioblastoma with enhanced wall thickness: A report of two cases

    PubMed Central

    SUN, ZHENXING; YUAN, DAN; SUN, YAXING; YAN, PENGXIANG; ZUO, HUANCONG

    2015-01-01

    Hemangioblastomas are tumors of the central nervous system, and the cerebellum is the most common site of occurrence. Cerebellar hemangioblastoma with enhanced wall thickness is rare and often misdiagnosed preoperatively. At present, no unified radiological classification system based on magnetic resonance imaging (MRI) findings exists for cerebellar hemangioblastoma, and this tumor type can be solid or cystic mass, according to the MRI findings. The most common presentation of cerebellar hemangioblastoma observed radiologically is a large sac with small nodules, where the wall of the large cyst is not enhanced. A tumor with enhanced large cysts and tumor nodules is extremely rare. The most effective treatment is complete resection of the cyst and the solid growth. The present case reports the successful treatment of two cases of cerebellar hemangioblastoma with enhanced wall thickness, including the MRI findings for the differential diagnoses and the surgical experiences. PMID:25789007

  16. Real-time dielectric-film thickness measurement system for plasma processing chamber wall monitoring

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Yong; Chung, Chin-Wook

    2015-12-01

    An in-situ real-time processing chamber wall monitoring system was developed. In order to measure the thickness of the dielectric film, two frequencies of small sinusoidal voltage (˜1 V) signals were applied to an electrically floated planar type probe, which is positioned at chamber wall surface, and the amplitudes of the currents and the phase differences between the voltage and current were measured. By using an equivalent sheath circuit model including a sheath capacitance, the dielectric thickness can be obtained. Experiments were performed in various plasma condition, and reliable dielectric film thickness was obtained regardless of the plasma properties. In addition, availability in commercial chamber for plasma enhanced chemical vapor deposition was verified. This study is expected to contribute to the control of etching and deposition processes and optimization of periodic maintenance in semiconductor manufacturing process.

  17. Quantification of esophageal wall thickness in CT using atlas-based segmentation technique

    NASA Astrophysics Data System (ADS)

    Wang, Jiahui; Kang, Min Kyu; Kligerman, Seth; Lu, Wei

    2015-03-01

    Esophageal wall thickness is an important predictor of esophageal cancer response to therapy. In this study, we developed a computerized pipeline for quantification of esophageal wall thickness using computerized tomography (CT). We first segmented the esophagus using a multi-atlas-based segmentation scheme. The esophagus in each atlas CT was manually segmented to create a label map. Using image registration, all of the atlases were aligned to the imaging space of the target CT. The deformation field from the registration was applied to the label maps to warp them to the target space. A weighted majority-voting label fusion was employed to create the segmentation of esophagus. Finally, we excluded the lumen from the esophagus using a threshold of -600 HU and measured the esophageal wall thickness. The developed method was tested on a dataset of 30 CT scans, including 15 esophageal cancer patients and 15 normal controls. The mean Dice similarity coefficient (DSC) and mean absolute distance (MAD) between the segmented esophagus and the reference standard were employed to evaluate the segmentation results. Our method achieved a mean Dice coefficient of 65.55 ± 10.48% and mean MAD of 1.40 ± 1.31 mm for all the cases. The mean esophageal wall thickness of cancer patients and normal controls was 6.35 ± 1.19 mm and 6.03 ± 0.51 mm, respectively. We conclude that the proposed method can perform quantitative analysis of esophageal wall thickness and would be useful for tumor detection and tumor response evaluation of esophageal cancer.

  18. Patient-specific modelling of abdominal aortic aneurysms: The influence of wall thickness on predicted clinical outcomes.

    PubMed

    Conlisk, Noel; Geers, Arjan J; McBride, Olivia M B; Newby, David E; Hoskins, Peter R

    2016-06-01

    Rupture of abdominal aortic aneurysms (AAAs) is linked to aneurysm morphology. This study investigates the influence of patient-specific (PS) AAA wall thickness on predicted clinical outcomes. Eight patients under surveillance for AAAs were selected from the MA(3)RS clinical trial based on the complete absence of intraluminal thrombus. Two finite element (FE) models per patient were constructed; the first incorporated variable wall thickness from CT (PS_wall), and the second employed a 1.9mm uniform wall (Uni_wall). Mean PS wall thickness across all patients was 1.77±0.42mm. Peak wall stress (PWS) for PS_wall and Uni_wall models was 0.6761±0.3406N/mm(2) and 0.4905±0.0850N/mm(2), respectively. In 4 out of 8 patients the Uni_wall underestimated stress by as much as 55%; in the remaining cases it overestimated stress by up to 40%. Rupture risk more than doubled in 3 out of 8 patients when PS_wall was considered. Wall thickness influenced the location and magnitude of PWS as well as its correlation with curvature. Furthermore, the volume of the AAA under elevated stress increased significantly in AAAs with higher rupture risk indices. This highlights the sensitivity of standard rupture risk markers to the specific wall thickness strategy employed. PMID:27056256

  19. Distribution of ice thickness and subglacial topography of the "Chinese Wall" around Kunlun Station, East Antarctica

    NASA Astrophysics Data System (ADS)

    Cui, Xiang-Bin; Sun, Bo; Su, Xiao-Gang; Guo, Jing-Xue

    2016-03-01

    As fundamental parameters of the Antarctic Ice Sheet, ice thickness and subglacial topography are critical factors for studying the basal conditions and mass balance in Antarctica. During CHINARE 24 (the 24th Chinese National Antarctic Research Expedition, 2007/08), the research team used a deep ice-penetrating radar system to measure the ice thickness and subglacial topography of the "Chinese Wall" around Kunlun Station, East Antarctica. Preliminary results show that the ice thickness varies mostly from 1600 m to 2800 m along the "Chinese Wall", with the thickest ice being 3444 m, and the thinnest ice 1255 m. The average bedrock elevation is 1722 m, while the minimum is just 604 m. Compared with the northern side of the ice divide, the ice thickness is a little greater and the subglacial topography lower on the southern side, which is also characterized by four deep valleys. We found no basal freeze-on ice in the Gamburtsev Subglacial Mountains area, subglacial lakes, or water bodies along the "Chinese Wall". Ice thickness and subglacial topography data extracted from the Bedmap 2 database along the "Chinese Wall" are consistent with our results, but their resolution and accuracy are very limited in areas where the bedrock fluctuates intensely. The distribution of ice thickness and subglacial topography detected by ice-penetrating radar clarifies the features of the ice sheet in this "inaccessible" region. These results will help to advance the study of ice sheet dynamics and the determination of future locations of the GSM's geological and deep ice core drilling sites in the Dome A region.

  20. Wall energy and wall thickness of exchange-coupled rare-earth transition-metal triple layer stacks

    SciTech Connect

    Raasch, D.; Mathieu, C.

    1997-08-01

    The room-temperature wall energy {sigma}{sub w}=4.0{times}10{sup {minus}3}J/m{sup 2} of an exchange-coupled Tb{sub 19.6}Fe{sub 74.7}Co{sub 5.7}/Dy{sub 28.5}Fe{sub 43.2}Co{sub 28.3} double layer stack can be reduced by introducing a soft magnetic intermediate layer in between both layers exhibiting a significantly smaller anisotropy compared to Tb{endash}FeCo and Dy{endash}FeCo. {sigma}{sub w} will decrease linearly with increasing intermediate layer thickness, d{sub IL}, until the wall is completely located within the intermediate layer for d{sub IL}{ge}d{sub w}, where d{sub w} denotes the wall thickness. Thus, d{sub w} can be obtained from the plot {sigma}{sub w} versus d{sub IL}. We determined {sigma}{sub w} and d{sub w} on Gd{endash}FeCo intermediate layers with different anisotropy behavior (perpendicular and in-plane easy axis) and compared the results with data obtained from Brillouin light-scattering measurements, where exchange stiffness, A, and uniaxial anisotropy, K{sub u}, could be determined. With the knowledge of A and K{sub u}, wall energy and thickness were calculated and showed an excellent agreement with the magnetic measurements. A ten times smaller perpendicular anisotropy of Gd{sub 28.1}Fe{sub 71.9} in comparison to Tb{endash}FeCo and Dy{endash}FeCo resulted in a much smaller {sigma}{sub w}=1.1{times}10{sup {minus}3}J/m{sup 2} and d{sub w}=24nm at 300 K. A Gd{sub 34.1}Fe{sub 61.4}Co{sub 4.5} with in-plane anisotropy at room temperature showed a further reduced {sigma}{sub w}=0.3{times}10{sup {minus}3}J/m{sup 2} and d{sub w}=17nm. The smaller wall energy was a result of a different wall structure compared to perpendicular layers. {copyright} {ital 1997 American Institute of Physics.}

  1. Bladder wall thickness in the assessment of neurogenic bladder: a translational discussion of current clinical applications.

    PubMed

    Sturm, Renea M; Cheng, Earl Y

    2016-01-01

    The prospective trial by Kim et al. "Can Bladder Wall Thickness Predict Videourodynamic Findings in Children with Spina Bifida?" published in Journal of Urology investigated the measurement of bladder wall thickness (BWT) as a non-invasive assessment tool for lower urinary tract changes in neurogenic bladder (NGB). In this study, no significant association was observed between BWT and high-risk urodynamic parameters. This editorial discusses the basic science of bladder wall thickening as well as prior studies relating wall thickness to clinical parameters. Although Kim et al. provide a unique literature contribution in terms of assessment of BWT at defined percent cystometric capacity, specific aspects of study methodology and population may have contributed to a lack of correlation with high-risk urodynamic findings. The application of non-invasive modalities to lower urinary tract assessment of NGB remains a promising and relevant area of future research to prevent progression to end stage lower urinary tract changes for all individuals with spina bifida. PMID:26889485

  2. Bladder wall thickness in the assessment of neurogenic bladder: a translational discussion of current clinical applications

    PubMed Central

    Sturm, Renea M.

    2016-01-01

    The prospective trial by Kim et al. “Can Bladder Wall Thickness Predict Videourodynamic Findings in Children with Spina Bifida?” published in Journal of Urology investigated the measurement of bladder wall thickness (BWT) as a non-invasive assessment tool for lower urinary tract changes in neurogenic bladder (NGB). In this study, no significant association was observed between BWT and high-risk urodynamic parameters. This editorial discusses the basic science of bladder wall thickening as well as prior studies relating wall thickness to clinical parameters. Although Kim et al. provide a unique literature contribution in terms of assessment of BWT at defined percent cystometric capacity, specific aspects of study methodology and population may have contributed to a lack of correlation with high-risk urodynamic findings. The application of non-invasive modalities to lower urinary tract assessment of NGB remains a promising and relevant area of future research to prevent progression to end stage lower urinary tract changes for all individuals with spina bifida. PMID:26889485

  3. The effect of fig wall thickness in Ficus erecta var. beecheyana on parasitism

    NASA Astrophysics Data System (ADS)

    Tzeng, Hsy-Yu; Ou, Chern-Hsiung; Lu, Fu-Yuan; Bain, Anthony; Chou, Lien-Siang; Kjellberg, Finn

    2014-05-01

    Fig wasp communities constitute a model system to analyse determinants of community complexity and to investigate how biological interaction networks are maintained. It has been suggested for monoecious figs, that fig pollinating wasps avoid ovipositing in flowers located close to the fig wall because of strong parasitic pressure by wasps ovipositing through the fig wall. This behaviour could help explain why mainly seeds are produced in flowers located close to the fig wall, thus stabilizing the fig-pollinating wasp mutualism. In this contribution we explore, for dioecious figs, whether ovipositor length of parasitic species may really be limiting. In dioecious figs, functionally male figs produce pollinating wasps and pollen while female figs produce only seeds, facilitating selection of traits favouring pollinator reproduction in male figs. We show in Ficus erecta that fig walls are thicker in male figs than in female figs. Male figs presenting thick walls, thicker than the length of the parasites' ovipositors, went unparasitized while male figs presenting thinner walls were systematically parasitized. Hence, in F. erecta, ovipositor length of the parasites is limiting access to some figs. However, we also show that in another dioecious species, Ficus formosana, presenting thin walled male figs, no fig is protected against oviposition by its two parasites. Hence in dioecious as well as in monoecious figs, in some Ficus species, ovipositors of the parasites are limiting access to ovules, while in other Ficus species all ovules are exposed to parasitism.

  4. Chest wall thickness in military personnel: implications for needle thoracentesis in tension pneumothorax.

    PubMed

    Harcke, H Theodore; Pearse, Lisa A; Levy, Angela D; Getz, John M; Robinson, Stephen R

    2007-12-01

    Needle thoracentesis is an emergency procedure to relieve tension pneumothorax. Published recommendations suggest use of angiocatheters or needles in the 5-cm range for emergency treatment. Multidetector computed tomography scans from 100 virtual autopsy cases were used to determine chest wall thickness in deployed male military personnel. Measurement was made in the second right intercostal space at the midclavicular line. The mean horizontal thickness was 5.36 cm (SD = 1.19 cm) with angled (perpendicular) thickness slightly less with a mean of 4.86 cm (SD 1.10 cm). Thickness was generally greater than previously reported. An 8-cm angiocatheter would have reached the pleural space in 99% of subjects in this series. Recommended procedures for needle thoracentesis to relieve tension pneumothorax should be adapted to reflect use of an angiocatheter or needle of sufficient length. PMID:18274025

  5. Ultrasonic Wall Thickness Monitoring at High Temperatures (>500 °C)

    NASA Astrophysics Data System (ADS)

    Cegla, F. B.; Allin, J.; Davies, J. O.; Collins, P.; Cawley, P.

    2011-06-01

    Corrosion and erosion shorten the life of components that are used in the petrochemical industry. In order to mitigate the safety and financial risks posed by the degradation mechanisms, plant operators monitor wall thicknesses at regular inspection intervals. In high temperature locations inspections have to be carried out at plant shut downs because conventional ultrasonic sensors cannot withstand the high operating temperatures. The authors have developed a waveguide based high temperature thickness gauge for monitoring of wall thicknesses in high temperature areas. The waveguide allows the use of conventional transduction systems (max temp. 60 °C) at one end and guides ultrasonic waves into the high temperature region where the inspection is to be carried out. Slender stainless steel waveguides allow a temperature drop of ˜500-600 °C per 200 mm length to be sustained simply by natural convection cooling. This paper describes the technical challenges that had to be overcome (dispersion and source/receiver characteristics) in order to implement this "acoustic cable". A range of experimental results of thickness measurements on components of different thickness, and furnace tests at different temperatures are presented. An accelerated corrosion test that demonstrates the effectiveness of the monitoring for corrosion is also presented.

  6. Elastic analysis of heterogeneous thick-walled spherical pressure vessels with parabolic varying properties

    NASA Astrophysics Data System (ADS)

    Karami, Keyhan; Abedi, Majid; Zamani Nejad, Mohammad; Lotfian, Mohammad Hassan

    2012-12-01

    On the basis of plane elasticity theory (PET), the displacement and stress components in a thick-walled spherical pressure vessels made of heterogeneous materials subjected to internal and external pressure is developed. The mechanical properties except the Poisson's ratio are assumed to obey the parabolic variations throughout the thickness. Effect of material inhomogeneity on the elastic deformations and stresses is investigated. The analytical solutions and the solutions carried out through the FEM have a good agreement. The values used in this study are arbitrary chosen to demonstrate the effect of inhomogeneity on displacements, and stresses distributions.

  7. The thick left ventricular wall of the giraffe heart normalises wall tension, but limits stroke volume and cardiac output.

    PubMed

    Smerup, Morten; Damkjær, Mads; Brøndum, Emil; Baandrup, Ulrik T; Kristiansen, Steen Buus; Nygaard, Hans; Funder, Jonas; Aalkjær, Christian; Sauer, Cathrine; Buchanan, Rasmus; Bertelsen, Mads Frost; Østergaard, Kristine; Grøndahl, Carsten; Candy, Geoffrey; Hasenkam, J Michael; Secher, Niels H; Bie, Peter; Wang, Tobias

    2016-02-01

    Giraffes--the tallest extant animals on Earth--are renowned for their high central arterial blood pressure, which is necessary to secure brain perfusion. Arterial pressure may exceed 300 mmHg and has historically been attributed to an exceptionally large heart. Recently, this has been refuted by several studies demonstrating that the mass of giraffe heart is similar to that of other mammals when expressed relative to body mass. It thus remains unexplained how the normal-sized giraffe heart generates such massive arterial pressures. We hypothesized that giraffe hearts have a small intraventricular cavity and a relatively thick ventricular wall, allowing for generation of high arterial pressures at normal left ventricular wall tension. In nine anaesthetized giraffes (495±38 kg), we determined in vivo ventricular dimensions using echocardiography along with intraventricular and aortic pressures to calculate left ventricular wall stress. Cardiac output was also determined by inert gas rebreathing to provide an additional and independent estimate of stroke volume. Echocardiography and inert gas-rebreathing yielded similar cardiac outputs of 16.1±2.5 and 16.4±1.4 l min(-1), respectively. End-diastolic and end-systolic volumes were 521±61 ml and 228±42 ml, respectively, yielding an ejection fraction of 56±4% and a stroke volume of 0.59 ml kg(-1). Left ventricular circumferential wall stress was 7.83±1.76 kPa. We conclude that, relative to body mass, a small left ventricular cavity and a low stroke volume characterizes the giraffe heart. The adaptations result in typical mammalian left ventricular wall tensions, but produce a lowered cardiac output. PMID:26643090

  8. A thermoelastic transversely isotropic thick walled cylinder/disk application: An analytical solution and study

    NASA Technical Reports Server (NTRS)

    Arnold, S. M.

    1989-01-01

    A continuum theory is utilized to represent the thermoelastic behavior of a thick walled composite cylinder that can be idealized as transversely isotropic. A multiaxial statement of the constitutive theory employed is presented, as well as the out of the plane of isotropy, plane stress, and plane strain reductions. The derived analytical solution presented is valid for a cylindrical tube or thin disk with a concentric hole, subjected to internal and/or external pressure and a general radial temperature distribution. A specific problem examined is that of a thick walled cylinder subjected to an internal and external pressure loading and a linear radial temperature distribution. The results are expressed in nondimensional form and the effects on the response behavior are examined for various material properties, fiber orientation and types of loadings.

  9. Simulation on the Effect of Bottle Wall Thickness Distribution using Blow Moulding Technique

    NASA Astrophysics Data System (ADS)

    Suraya, S.; Azman, M. D.; Fatchurrohman, N.; Jaafar, A. A.; Yusoff, A. R.

    2016-02-01

    The aims of this study are to assess the deformation behavior of a polymeric material during a blow moulding process. Transient computations of two dimensional model of a PP bottle were performed using ANSYS Polyflow computer code to predict the wall thickness distribution at four different parison's diameter; 8mm, 10mm, 18mm, and 20mm. Effects on the final wall thickness diameter and time step are studied. The simulated data shows that the inflation performance degrades with increasing parison diameter. It is concluded that the blow moulding process using 10mm parison successfully meet the product processing requirements. Factors that contribute to the variation in deformation behaviour of the plastic during the manufacturing process are discussed.

  10. Increased wall thickness using ultrasonography is associated with inflammation in an animal model of experimental colitis

    PubMed Central

    Lied, Gülen Arslan; Milde, Anne Marita; Nylund, Kim; Mujic, Maja; Grimstad, Tore; Hausken, Trygve; Gilja, Odd Helge

    2012-01-01

    Experimentally induced colitis is used in animals to investigate pathophysiological mechanisms in inflammatory bowel disease. When following disease course and treatment effects, it should be possible to perform repeated measurements without harming the animals. This pilot study was performed to investigate whether transabdominal ultrasound using a clinical scanner could be used on rats to demonstrate bowel inflammation in an experimental colitis model. Colitis was induced by either 5% dextran sodium sulfate (DSS) in drinking water for 7 days or a single dose of intracolonic trinitrobenzene sulfonic acid (TNBS). Using ultrasonography, wall thickness of distal colon, cecum, and small bowel was recorded prior to and after DSS, and prior to, 2, and 7 days after TNBS. Blood (tumor necrosis factor [TNF]-alpha) and fecal samples (HemoFEC occult blood) were taken from each group on the same days as sonography. Thereafter, rats were killed and specimens for histology were taken. Wall thickness of distal colon, not of cecum or small bowel, increased significantly after 7 days of DSS, and wall thickness of both distal colon and small bowel increased on day 2 and 7 after TNBS. TNF-alpha increased after 7 days in the latter group only. There was a significant correlation between ultrasonographic measurements and combined histology score of distal colon in the DSS group. HemoFEC was also positive in accordance with sonographic and histological features. Increased intestinal wall thickness in response to both DSS- and TNBS-induced colitis was able to be visualized by transabdominal sonography. Moreover, ultrasound findings, occult blood sampling, and histological findings supported each other, indicating that ultrasonography can be used to assess inflammation in a rat experimental model. PMID:23055765

  11. Influence of slab thickness on responses of concrete walls under fire

    SciTech Connect

    Huang, C.L.D.; Ahmed, G.N. )

    1991-01-01

    Of considerable concern in safety assessments of high-temperature nuclear reactors and of tall buildings is the ability to determine the concrete response, and, in turn, its structural integrity after exposure, to a severe thermal environment. Under hostile environmental conditions, the concrete structure could be exposed to extremely high temperatures. The induced gradients of temperature, pressure, and moisture content in concrete provoke internal stresses that may cause microcracks, macrocracks, and explosive spalling of concrete. Thus the integrity of concrete may be questionable, and the prediction of coupled heat and mass transport in concrete under high temperature (fire, for instance) is becoming more and more important. For the purpose of fire safety, concrete walls with different thicknesses exposed to the fire course described by ASTM E119 and the following decay stage specified in ISO 834 standard are considered. A mathematical model, simulating the coupled heat and mass transfer in concrete walls under time-dependent boundary conditions, has been developed and numerically solved. The results predict the pore pressure, temperature, and moisture histories for different concrete wall thicknesses at various depth thickness ratios. The results show that, under fire, thinner slabs are more vulnerable to damages and ruptures than thicker ones.

  12. A comparative assessment of the wall thickness margin taking into account the initial flaws in steam line elements

    NASA Astrophysics Data System (ADS)

    Gladshtein, V. I.

    2011-02-01

    A procedure for estimating the wall thickness margin for operation during a specified design service life under creep conditions if the metal of articles contains initial flaws is presented. The analysis is carried out taking as an example parts of steam lines made of two different grades of steel: a cast elbow with the size d = 426 × 30 mm made of 15Kh1M1FL low-alloy steel and a pipe bend with the size d = 219 × 32 mm made of EI-756 12% chromium steel. The calculated assessments are compared with the results obtained from long-term operation.

  13. Safety Analysis Using Lebesgue Strain Measure of Thick-Walled Cylinder for Functionally Graded Material under Internal and External Pressure

    PubMed Central

    Aggarwal, A. K.; Sharma, Richa; Sharma, Sanjeev

    2013-01-01

    Safety analysis has been done for thick-walled circular cylinder under internal and external pressure using transition theory which is based on the concept of generalized principal Lebesgue strain measure. Results have been analyzed theoretically and discussed numerically. From the analysis, it can be concluded that circular cylinder made of functionally graded material is on the safer side of the design as compared to homogeneous cylinder with internal and external pressure, which leads to the idea of “stress saving” that minimizes the possibility of fracture of cylinder. PMID:24089605

  14. Carotid wall stress calculated with continuous intima-media thickness assessment using B-mode ultrasound

    NASA Astrophysics Data System (ADS)

    Pascaner, A. F.; Craiem, D.; Casciaro, M. E.; Danielo, R.; Graf, S.; Guevara, E.

    2016-04-01

    Cardiovascular risk is normally assessed using clinical risk factors but it can be refined using non-invasive infra-clinical markers. Intima-Media Thickness (IMT) is recognized as an early indicator of cardiovascular disease. Carotid Wall Stress (CWS) can be calculated using arterial pressure and carotid size (diameter and IMT). Generally, IMT is measured during diastole when it reaches its maximum value. However, it changes during the cardiac cycle and a time-dependant waveform can be obtained using B-mode ultrasound images. In this work we calculated CWS considering three different approaches for IMT assessment: (i) constant IMT (standard diastolic value), (ii) estimated IMT from diameter waveform (assuming a constant cross-sectional wall area) and (iii) continuously measured IMT. Our results showed that maximum wall stress depends on the IMT estimation method. Systolic CWS progressively increased using the three approaches (p<0.024). We conclude that maximum CWS is highly dependent on wall thickness and accurate IMT measures during systole should be encouraged.

  15. Detection of colonic polyp candidates with level set-based thickness mapping over the colon wall

    NASA Astrophysics Data System (ADS)

    Han, Hao; Li, Lihong; Duan, Chaijie; Zhao, Yang; Wang, Huafeng; Liang, Zhengrong

    2015-03-01

    Further improvement of computer-aided detection (CADe) of colonic polyps is vital to advance computed tomographic colonography (CTC) toward a screening modality, where the detection of flat polyps is especially challenging because limited image features can be extracted from flat polyps, and the traditional geometric features-based CADe methods usually fail to detect such polyps. In this paper, we present a novel pipeline to automatically detect initial polyp candidates (IPCs), especially flat polyps, from CTC images. First, the colon wall mucosa was extracted via a partial volume segmentation approach as a volumetric layer, where the inner border of colon wall can be obtained by shrinking the volumetric layer using level set based adaptive convolution. Then the outer border of colon wall (or the colon wall serosa) was segmented via a combined implementation of geodesic active contour and Mumford-Shah functional in a coarse-to-fine manner. Finally, the wall thickness was estimated along a unique path between the segmented inner and outer borders with consideration of the volumetric layers and was mapped onto a patient-specific three-dimensional (3D) colon wall model. The IPC detection results can usually be better visualized in a 2D image flattened from the 3D model, where abnormalities were detected by Z-score transformation of the thickness values. The proposed IPC detection approach was validated on 11 patients with 22 CTC scans, and each scan has at least one flat poly annotation. The above presented novel pipeline was effective to detect some flat polyps that were missed by our CADe system while keeping false detections in a relative low level. This preliminary study indicates that the presented pipeline can be incorporated into an existing CADe system to enhance the polyp detection power, especially for flat polyps.

  16. Local Quantification of Wall Thickness and Intraluminal Thrombus Offer Insight into the Mechanical Properties of the Aneurysmal Aorta.

    PubMed

    Martufi, Giampaolo; Satriano, Alessandro; Moore, Randy D; Vorp, David A; Di Martino, Elena S

    2015-08-01

    Wall stress is a powerful tool to assist clinical decisions in rupture risk assessment of abdominal aortic aneurysms. Key modeling assumptions that influence wall stress magnitude and distribution are the inclusion or exclusion of the intraluminal thrombus in the model and the assumption of a uniform wall thickness. We employed a combined numerical-experimental approach to test the hypothesis that abdominal aortic aneurysm (AAA) wall tissues with different thickness as well as wall tissues covered by different thrombus thickness, exhibit differences in the mechanical behavior. Ultimate tissue strength was measured from in vitro tensile testing of AAA specimens and material properties of the wall were estimated by fitting the results of the tensile tests to a histo-mechanical constitutive model. Results showed a decrease in tissue strength and collagen stiffness with increasing wall thickness, supporting the hypothesis of wall thickening being mediated by accumulation of non load-bearing components. Additionally, an increase in thrombus deposition resulted in a reduction of elastin content, collagen stiffness and tissue strength. Local wall thickness and thrombus coverage may be used as surrogate measures of local mechanical properties of the tissue, and therefore, are possible candidates to improve the specificity of AAA wall stress and rupture risk evaluations. PMID:25631202

  17. [Pulse pressure and common carotid arterial wall thickness assessed by ultrasonography].

    PubMed

    Kawamoto, R; Doi, T

    2000-06-01

    This study was conducted on a total of 358 normotensive (mean blood pressure < 107 mmHg) inpatients (182 men and 176 women, mean age: 67.8 years) who had no cardiorenal or nutrition disorders that would affect blood pressure, lipid and glucose metabolism and who had not been given depressors or antilipidemic agents during the four years from September 1995 to August 1999. In addition to the known risk factors for atherosclerosis, the effects of pulse pressure and mean blood pressure on sclerotic changes of the carotid arteries were examined. These sclerotic changes were assessed by measuring the thickness of the combined intima-media of the common carotid artery (carotid arterial wall thickness) by ultrasonography (Hitachi EUB-565) and linear probe (7.5 MHz). When the patients were divided into three groups based on pulse pressure (PP1, lower than 51 mmHg: PP2, 51-65 mmHg; PP3, higher than 65 mmHg), the age of the group with higher pulse pressure was significantly higher (p = 0.0011), women more (p = 0.0315). However there were no differences in background factors such as body mass index, Brinkman index, lipid metabolism, uric acid, and glucose metabolism. There was observed a positive correlation between the mean blood pressure and the pulse pressure for both men and women (r = 0.31, p < 0.001, respectively). As for the relation between the pulse pressures and the blood pressure parameters, the systolic blood pressure, pulse pressure and the mean blood pressure were significantly higher in the group with higher pulse pressure (p < 0.001, respectively), but the diastolic blood pressure was significantly lower (p = 0.0275). As for the relation between the pulse pressure and the carotid wall thickness, the groups of both men and women with higher pulse pressures had significantly greater carotid arterial wall thickness (p < 0.001, p = 0.0042, respectively). Logistic regression analysis of the carotid arterial wall thickness (defined as hypertrophic if greater than 1

  18. Measure Guideline: Incorporating Thick Layers of Exterior Rigid Insulation on Walls

    SciTech Connect

    Lstiburek, Joseph; Baker, Peter

    2015-04-01

    This measure guideline provides information about the design and construction of wall assemblies that use layers of rigid exterior insulation thicker than 1-½ inches and that require a secondary cladding attachment location exterior to the insulation. The guideline is separated into several distinct sections that cover: fundamental building science principles relating to the use of exterior insulation on wall assemblies; design principles for tailoring this use to the specific project goals and requirements; and construction detailing to increase understanding about implementing the various design elements.

  19. Measure Guideline. Incorporating Thick Layers of Exterior Rigid Insulation on Walls

    SciTech Connect

    Lstiburek, Joseph; Baker, Peter

    2015-04-09

    This measure guideline, written by the U.S. Department of Energy’s Building America team Building Science Corporation, provides information about the design and construction of wall assemblies that use layers of rigid exterior insulation thicker than 1-½ in. and that require a secondary cladding attachment location exterior to the insulation. The guideline is separated into several distinct sections that cover: (1) fundamental building science principles relating to the use of exterior insulation on wall assemblies; (2) design principles for tailoring this use to the specific project goals and requirements; and (3) construction detailing to increase understanding about implementing the various design elements.

  20. Accurate measurement of respiratory airway wall thickness in CT images using a signal restoration technique

    NASA Astrophysics Data System (ADS)

    Park, Sang Joon; Kim, Tae Jung; Kim, Kwang Gi; Lee, Sang Ho; Goo, Jin Mo; Kim, Jong Hyo

    2008-03-01

    Airway wall thickness (AWT) is an important bio-marker for evaluation of pulmonary diseases such as chronic bronchitis, bronchiectasis. While an image-based analysis of the airway tree can provide precise and valuable airway size information, quantitative measurement of AWT in Multidetector-Row Computed Tomography (MDCT) images involves various sources of error and uncertainty. So we have developed an accurate AWT measurement technique for small airways with three-dimensional (3-D) approach. To evaluate performance of these techniques, we used a set of acryl tube phantom was made to mimic small airways to have three different sizes of wall diameter (4.20, 1.79, 1.24 mm) and wall thickness (1.84, 1.22, 0.67 mm). The phantom was imaged with MDCT using standard reconstruction kernel (Sensation 16, Siemens, Erlangen). The pixel size was 0.488 mm × 0.488 mm × 0.75 mm in x, y, and z direction respectively. The images were magnified in 5 times using cubic B-spline interpolation, and line profiles were obtained for each tube. To recover faithful line profile from the blurred images, the line profiles were deconvolved with a point spread kernel of the MDCT which was estimated using the ideal tube profile and image line profile. The inner diameter, outer diameter, and wall thickness of each tube were obtained with full-width-half-maximum (FWHM) method for the line profiles before and after deconvolution processing. Results show that significant improvement was achieved over the conventional FWHM method in the measurement of AWT.

  1. Design of Post-Wall Feed Waveguide for a Parallel Plate Slot Array by an Analysis Model with Corrected Solid-Walls

    NASA Astrophysics Data System (ADS)

    Hashimoto, Koh; Hirokawa, Jiro; Ando, Makoto

    A novel analysis model for post-wall waveguide T-junctions is proposed. Equivalent solid-walls for the post-walls to have equal guided wavelength are corrected in the analysis model so that the wall thickness for the coupling windows is set to the difference in the width between the post-wall and the solid-wall waveguides. The accuracy of the proposed model is confirmed by comparing it to an HFSS analysis for the real structure of the post-wall waveguide T-junction including the post surfaces. 61.25GHz model antennas are fabricated for experimental verification. The reflection of the antenna designed by the modified analysis model is suppressed to below -15dB over a 5.6GHz bandwidth, while that in the antenna designed by the conventional model is larger than -15dB around the design frequency.

  2. Growth and Remodeling in a Thick-Walled Artery Model: Effects of Spatial Variations in Wall Constituents

    PubMed Central

    Alford, Patrick W.; Humphrey, Jay D.; Taber, Larry A.

    2008-01-01

    A mathematical model is presented for growth and remodeling of arteries. The model is a thick-walled tube composed of a constrained mixture of smooth muscle cells, elastin and collagen. Material properties and radial and axial distributions of each constituent are prescribed according to previously published data. The analysis includes stress-dependent growth and contractility of the muscle and turnover of collagen fibers. Simulations were conducted for homeostatic conditions and for the temporal response following sudden hypertension. Numerical pressure-radius relations and opening angles (residual stress) show reasonable agreement with published experimental results. In particular, for realistic material and structural properties, the model predicts measured variations in opening angles along the length of the aorta with reasonable accuracy. These results provide a better understanding of the determinants of residual stress in arteries and could lend insight into the importance of constituent distributions in both natural and tissue-engineered blood vessels. PMID:17786493

  3. Collapse Pressure Analysis of Transversely Isotropic Thick-Walled Cylinder Using Lebesgue Strain Measure and Transition Theory

    PubMed Central

    Aggarwal, A. K.; Sharma, Richa; Sharma, Sanjeev

    2014-01-01

    The objective of this paper is to provide guidance for the design of the thick-walled cylinder made up of transversely isotropic material so that collapse of cylinder due to influence of internal and external pressure can be avoided. The concept of transition theory based on Lebesgue strain measure has been used to simplify the constitutive equations. Results have been analyzed theoretically and discussed numerically. From this analysis, it has been concluded that, under the influence of internal and external pressure, circular cylinder made up of transversely isotropic material (beryl) is on the safer side of the design as compared to the cylinders made up of isotropic material (steel). This is because of the reason that percentage increase in effective pressure required for initial yielding to become fully plastic is high for beryl as compared to steel which leads to the idea of “stress saving” that reduces the possibility of collapse of thick-walled cylinder due to internal and external pressure. PMID:24523632

  4. A hybrid method for airway segmentation and automated measurement of bronchial wall thickness on CT.

    PubMed

    Xu, Ziyue; Bagci, Ulas; Foster, Brent; Mansoor, Awais; Udupa, Jayaram K; Mollura, Daniel J

    2015-08-01

    Inflammatory and infectious lung diseases commonly involve bronchial airway structures and morphology, and these abnormalities are often analyzed non-invasively through high resolution computed tomography (CT) scans. Assessing airway wall surfaces and the lumen are of great importance for diagnosing pulmonary diseases. However, obtaining high accuracy from a complete 3-D airway tree structure can be quite challenging. The airway tree structure has spiculated shapes with multiple branches and bifurcation points as opposed to solid single organ or tumor segmentation tasks in other applications, hence, it is complex for manual segmentation as compared with other tasks. For computerized methods, a fundamental challenge in airway tree segmentation is the highly variable intensity levels in the lumen area, which often causes a segmentation method to leak into adjacent lung parenchyma through blurred airway walls or soft boundaries. Moreover, outer wall definition can be difficult due to similar intensities of the airway walls and nearby structures such as vessels. In this paper, we propose a computational framework to accurately quantify airways through (i) a novel hybrid approach for precise segmentation of the lumen, and (ii) two novel methods (a spatially constrained Markov random walk method (pseudo 3-D) and a relative fuzzy connectedness method (3-D)) to estimate the airway wall thickness. We evaluate the performance of our proposed methods in comparison with mostly used algorithms using human chest CT images. Our results demonstrate that, on publicly available data sets and using standard evaluation criteria, the proposed airway segmentation method is accurate and efficient as compared with the state-of-the-art methods, and the airway wall estimation algorithms identified the inner and outer airway surfaces more accurately than the most widely applied methods, namely full width at half maximum and phase congruency. PMID:26026778

  5. Influence of remaining dentin wall thickness on the fracture strength of endodontically treated tooth

    PubMed Central

    Haralur, Satheesh B.; Al-Qahtani, Ali Saad; Al-Qarni, Marie Mohammed; Al-Homrany, Rami Mohammed; Aboalkhair, Ayyob Ehsan

    2016-01-01

    Background: Remaining dentin wall thickness may influence the fracture resistance of tooth. Aims: To investigate the effect of various coronal dentin wall widths on the fracture strength of root canal treated teeth. Materials and Methods: Fifty recently extracted single canal mandibular premolars were used for the study. Ten unrestored teeth were used as control (Group 1); remaining teeth were root canal treated and divided into four groups (n = 10). The Groups 2a, 2b and 3a, 3b were having 2.5 mm, 1.5 mm remaining dentin with and without post, respectively. The samples fracture resistance was tested under the universal testing machine. The data were analyzed with one-way ANOVA and post-hoc Tukey test for comparative evaluation. Results: The mean fracture strength observed in Group 1 was (29.75 Mpa) followed by Group 2a (28.97 Mpa), Group 2b (27.70 Mpa), Group 3a (23.39 Mpa), and Group 3b (16.38 Mpa). There was no statistically significant difference between control and Groups 2a and 2b with P > 0.05. The post contributed significantly for fracture resistance in Group 3a. Conclusion: The endodontic post is not required in root canal treated teeth >2.5 mm coronal dentin wall width while the post is essential for a tooth with <1.5 mm dentin wall width to improve fracture resistance. PMID:26957796

  6. Failure prediction method for hydro forming simulation of thick walled tubes

    NASA Astrophysics Data System (ADS)

    Kolleck, Ralf; Auer, Peter; Auer, Gerfried

    2011-05-01

    The industrial production of thick walled hydro formed steel parts is a process difficult to control. In particular the prevention of cracks in the production of these parts is very important. It is of utmost importance to have a virtual tool to predict forming results. Standard methods for the simulation of hydro formed parts base upon processes using a shell element formulation and implement a forming limit curve (FLC) for crack prediction. But the forming limit curve is limited to the case of linear strain paths. The initial FLC is no longer valid in the case of nonlinear strain paths. Because of the geometric specifications of the investigated parts—thick walls, compact dimensions, high strains—and the known limitations of the forming limit curve—which don't accord to the hydro forming process— these standard simulation methods are not applicable for the present investigations. A new approach to simulate thick walled hydro formed parts is the use of a volume element formulation in combination with a more complex failure criterion, which gives information about the risk of ductile normal fracture and ductile shear fractures with nonlinear strain paths. The onset of necking must be predicted directly by the volume elements. The aim of this work is to implement the failure criteria in a hydroforming simulation and to compare the results of the simulation with real cracked test parts. The commercial FEM code PamStamp 2G is used as a solver and a comprehensive fracture model is applied. This fracture model distinguishes between two mechanisms responsible for ductile fracture. One is the void growth and coalescence (ductile normal fracture) and the other one is the shear failure model (ductile shear fracture).

  7. Impaired Gallbladder Motility and Increased Gallbladder Wall Thickness in Patients with Nonalcoholic Fatty Liver Disease

    PubMed Central

    Colak, Yasar; Bozbey, Gulcin; Erim, Tolga; Caklili, Ozge Telci; Ulasoglu, Celal; Senates, Ebubekir; Mutlu, Hasan Huseyin; Mesci, Banu; Doğan, Mehmet Sait; Tasan, Guralp; Enc, Feruze Yilmaz; Tuncer, Ilyas

    2016-01-01

    Background/Aims Nonalcoholic fatty liver disease (NAFLD) is currently the most common chronic liver disease worldwide. Along with the increase in the incidence of NAFLD and associated obesity, an increase in gallbladder disease (GD) has been noted. This has led to the identification of a new disease entity called fatty GD. There is a gap in the literature on the dynamics of gallbladder function in patients with NAFLD. Methods An observational case-control study, a total of 50 patients with biopsy proven NAFLD without gallbladder stone/sludge and 38 healthy comparison subjects were enrolled. Fasting, postprandial gallbladder volumes (PGV), gallbladder ejection fraction (GEF), and fasting gallbladder wall thickness (FGWT) were measured by real-time 2-dimensional ultrasonography. Results Fasting gallbladder wall thickness, fasting gallbladder volumes and PGV were significantly higher in patients with NAFLD than control subjects (P < 0.001, P = 0.006, and P < 0.001, respectively). Gallbladder ejection fraction was significantly lower in the NAFLD group than the controls (P = 0.008). The presence of NAFLD was an independent predictor for GEF, PGV, and FGWT. Also, steatosis grade was an independent predictor for GEF, and GEF was significantly lower in the nonalcoholic steatohepatitis (NASH) subgroup than the controls. Conclusions Gallbladder dysfunction and increase in gallbladder wall thickness exists in asymptomatic (without stone/sludge and related symptoms) patients with NAFLD and are useful in identifying fatty GD. Measurement of these variables in NAFLD patients may be useful in identifying those at higher risk for GD. PMID:26932908

  8. IFE thick liquid wall chamber dynamics: Governing mechanisms andmodeling and experimental capabilities

    SciTech Connect

    Raffray, A.R.; Meier, W.; Abdel-Khalik, S.; Bonazza, R.; Calderoni, P.; Debonnel, C.S.; Dragojlovic, Z.; El-Guebaly, L.; Haynes,D.; Latkowski, J.; Olson, C.; Peterson, P.F.; Reyes, S.; Sharpe, P.; Tillack, M.S.; Zaghloul, M.

    2005-01-24

    For thick liquid wall concepts, it is important to understand the different mechanisms affecting the chamber dynamics and the state of the chamber prior to each shot a compared with requirements from the driver and target. These include ablation mechanisms, vapor transport and control, possible aerosol formation, as well as protective jet behavior. This paper was motivated by a town meeting on this subject which helped identify the major issues, assess the latest results, review the capabilities of existing modeling and experimental facilities with respect to addressing remaining issues, and helping guide future analysis and R&D efforts; the paper covers these exact points.

  9. Effect of bladder wall thickness on miniature pneumatic artificial muscle performance.

    PubMed

    Pillsbury, Thomas E; Kothera, Curt S; Wereley, Norman M

    2015-10-01

    Pneumatic artificial muscles (PAMs) are actuators known for their high power to weight ratio, natural compliance and light weight. Due to these advantages, PAMs have been used for orthotic devices and robotic limbs. Small scale PAMs have the same advantages, as well as requiring greatly reduced volumes with potential application to prostheses and small scale robotics. The bladder of a PAM affects common actuator performance metrics, specifically: blocked force, free contraction, hysteresis, and dead-band pressure. This paper investigates the effect that bladder thickness has on static actuation performance of small scale PAMs. Miniature PAMs were fabricated with a range of bladder thicknesses to quantify the change in common actuator performance metrics specifically: blocked force, free contraction, and dead-band pressure. These PAMs were then experimentally characterized in quasi-static conditions, where results showed that increasing bladder wall thickness decreases blocked force and free contraction, while dead-band pressure increases. A nonlinear model was then applied to determine the structure of the stress-strain relationship that enables accurate modeling and the minimum number of terms. Two nonlinear models are compared and the identified parameters are analyzed to study the effect of the bladder thickness on the model. PMID:26414160

  10. Thermoelastic Analysis of a Functionally Graded Rotating Thick-Walled Tube Subjected to Mechanical and Thermal Loads

    NASA Astrophysics Data System (ADS)

    Xin, Libiao; Yang, Shengyou; Ma, Baoyu; Dui, Guansuo

    2015-11-01

    A thermoelastic solution for the functionally graded rotating thick-walled tube subjected to axisymmetric mechanical and thermal loads is given in terms of volume fractions of constituents. We assume that the tube consists of two linear elastic constituents and the volume fraction of one phase is a power function varied in the radial direction. By using the assumption of a uniform strain field within the representative volume element, the theoretical solutions of the displacement and the stresses are presented. Based on the relation of the volume average stresses of constituents and the macroscopic stresses of the composite material in micromechanics, the present method can avoid the assumption of the distribution regularities of unknown overall material parameters appeared in existing papers, such as Young's modulus, thermal expansion coefficient, thermal conductivity, and density. The effects of the angular velocity, the volume fraction, the ratio of two thermal expansion coefficients, the ratio of two thermal conductivities, and the ratio of two densities on the displacement and stresses are systematically studied, which should help structural engineers and material scientists optimally design thick-walled tube comprised inhomogeneous materials.

  11. Consistent HYLIFE wall design that withstands transient loading conditions

    SciTech Connect

    Pitts, J.H.

    1980-10-01

    The design for a first structural wall (FSW) promises to satisfy the impact and thermal stress loads for the 30-year lifetime anticipated for the HYLIFE reaction chamber. The FSW is a 50-mm-thick cylindrical plate that is 10 m in diameter; it can withstand a rapidly varying liquid metal impact stress up to a peak of 60 MPa, combined with slowly varying thermal stresses up to 86 MPa. We selected 2 1/4 Cr-1 Mo ferritic steel as the structural material because it has adequate fatigue properties and yield strength at the peak operating temperature of 810/sup 0/K, is compatible with liquid lithium, and has good neutron activation characteristics.

  12. Effect of subcooling and wall thickness on pool boiling from downward-facing curved surfaces in water

    SciTech Connect

    El-Genk, M.S.; Glebov, A.G.

    1995-09-01

    Quenching experiments were performed to investigate the effects of water subcooling and wall thickness on pool boiling from a downward-facing curved surface. Experiments used three copper sections of the same diameter (50.8 mm) and surface radius (148 mm), but different thickness (12.8, 20 and 30 mm). Local and average pool boiling curves were obtained at saturation and 5 K, 10 K, and 14 K subcooling. Water subcooling increased the maximum heat flux, but decreased the corresponding wall superheat. The minimum film boiling heat flux and the corresponding wall superheat, however, increased with increased subcooling. The maximum and minimum film boiling heat fluxes were independent of wall thickness above 20 mm and Biot Number > 0.8, indicating that boiling curves for the 20 and 30 thick sections were representative of quasi steady-state, but not those for the 12.8 mm thick section. When compared with that for a flat surface section of the same thickness, the data for the 12.8 mm thick section showed significant increases in both the maximum heat flux (from 0.21 to 0.41 MW/m{sup 2}) and the minimum film boiling heat flux (from 2 to 13 kW/m{sup 2}) and about 11.5 K and 60 K increase in the corresponding wall superheats, respectively.

  13. Electromagnetic acoustic transducers for wall thickness applications in the petrochemical industry

    NASA Astrophysics Data System (ADS)

    Edwards, C.; Dixon, S.; Widdowson, A.; Palmer, S. B.

    2000-05-01

    Electromagnetic acoustic transducers (EMATs) are now becoming widely used in the field, for example for boiler tube wall thickness surveys in Power Generation plant. In general EMATs work efficiently on steel components with a surface oxide layer, where the oxides can be residual mill scale from the steel manufacturing process due to in-service growth in boilers or chemical processing plant. Very often these oxides have rough surfaces and have to be removed prior to conventional ultrasonic inspection. This can be both time consuming and costly, in addition the removal of the protective oxide layer accelerates the future wall lose rate of the pipe or vessel. As well as the Power Generation application, EMATs can also be used for ultrasonic inspection of petrochemical tubulars without having to remove oxides giving the same associated benefits. This paper presents results obtained from laboratory trials of EMAT thickness monitoring of petrochemical plant pipe samples and real EMAT surveys carried out on-site on refinery plant. In parallel with the practical application of EMATs we are studying the underlying physics of operation with the aim of predicting the EMAT performance for steels with and without oxide layers.

  14. On what controls the spacing of spontaneous adiabatic shear bands in collapsing thick-walled cylinders

    NASA Astrophysics Data System (ADS)

    Lovinger, Zev; Rosenberg, Zvi; Rittel, Daniel

    2015-09-01

    Shear bands formation in collapsing thick walled cylinders occurs in a spontaneous manner. The advantage of examining spontaneous, as opposed to forced shear localization, is that it highlights the inherent susceptibility of the material to adiabatic shear banding without prescribed geometrical constraints. The Thick-Walled Cylinder technique (TWC) provides a controllable and repeatable technique to create and study multiple adiabatic shear bands. The technique, reported in the literature uses an explosive cylinder to create the driving force, collapsing the cylindrical sample. Recently, we developed an electro-magnetic set-up using a pulsed current generator to provide the collapsing force, replacing the use of explosives. Using this platform we examined the shear band evolution at different stages of formation in 7 metallic alloys, spanning a wide range of strength and failure properties. We examined the number of shear bands and spacing between them for the different materials to try and figure out what controls these parameters. The examination of the different materials enabled us to better comprehend the mechanisms which control the spatial distribution of multiple shear bands in this geometry. The results of these tests are discussed and compared to explosively driven collapsing TWC results in the literature and to existing analytical models for spontaneous adiabatic shear localization.

  15. Quantitative Analysis of Intraventricular Dyssynchrony Using Wall Thickness by Multidetector Computed Tomography

    PubMed Central

    Truong, Quynh A.; Singh, Jagmeet P.; Cannon, Christopher P.; Sarwar, Ammar; Nasir, Khurram; Auricchio, Angelo; Faletra, Francesco F.; Sorgente, Antonio; Conca, Cristina; Moccetti, Tiziano; Handschumacher, Mark; Brady, Thomas J.; Hoffmann, Udo

    2009-01-01

    OBJECTIVES We sought to determine the feasibility of cardiac computed tomography (CT) to detect significant differences in the extent of left ventricular dyssynchrony in heart failure (HF) patients with wide QRS, HF patients with narrow QRS, and age-matched controls. BACKGROUND The degree of mechanical dyssynchrony has been suggested as a predictor of response to cardiac resynchronization therapy. There have been no published reports of dyssynchrony assessment with the use of CT. METHODS Thirty-eight subjects underwent electrocardiogram-gated contrast-enhanced 64-slice multidetector CT. The left ventricular endocardial and epicardial boundaries were delineated from short-axis images reconstructed at 10% phase increments of the cardiac cycle. Global and segmental CT dyssynchrony metrics that used changes in wall thickness, wall motion, and volume over time were assessed for reproducibility. We defined a global metric using changes in wall thickness as the dyssynchrony index (DI). RESULTS The DI was the most reproducible metric (interobserver and intraobserver intraclass correlation coefficients ≥0.94, p < 0.0001) and was used to determine differences between the 3 groups: HF-wide QRS group (ejection fraction [EF] 22 ± 8%, QRS 163 ± 28 ms), HF-narrow QRS (EF 26 ± 7%, QRS 96 ± 11 ms), and age-matched control subjects (EF 64 ± 5%, QRS 87 ± 9 ms). Mean DI was significantly different between the 3 groups (HF-wide QRS: 152 ± 44 ms, HF-narrow QRS: 121 ± 58 ms, and control subjects: 65 ± 12 ms; p < 0.0001) and greater in the HF-wide QRS (p < 0.0001) and HF-narrow QRS (p = 0.005) groups compared with control subjects. We found that DI had a good correlation with 2-dimensional (r = 0.65, p = 0.012) and 3-dimensional (r = 0.68, p = 0.008) echocardiographic dyssynchrony. CONCLUSIONS Quantitative assessment of global CT-derived DI, based on changes in wall thickness over time, is highly reproducible and renders significant differences between subjects most likely to

  16. An Approach for Patient-Specific Multi-domain Vascular Mesh Generation Featuring Spatially Varying Wall Thickness Modeling

    PubMed Central

    Raut, Samarth S.; Liu, Peng; Finol, Ender A.

    2015-01-01

    In this work, we present a computationally efficient image-derived volume mesh generation approach for vasculatures that implements spatially varying patient-specific wall thickness with a novel inward extrusion of the wall surface mesh. Multi-domain vascular meshes with arbitrary numbers, locations, and patterns of both iliac bifurcations and thrombi can be obtained without the need to specify features or landmark points as input. In addition, the mesh output is coordinate-frame independent and independent of the image grid resolution with high dimensional accuracy and mesh quality, devoid of errors typically found in off-the-shelf image-based model generation workflows. The absence of deformable template models or Cartesian grid-based methods enables the present approach to be robust by handling aneurysmatic geometries with highly irregular shapes, arterial branches nearly parallel to the image plane, and variable wall thickness. The assessment of the methodology was based on i) estimation of the surface reconstruction accuracy, ii) validation of the output mesh using an aneurysm phantom, and iii) benchmarking the volume mesh quality against other frameworks. For the phantom image dataset (pixel size 0.105 mm; slice spacing 0.7 mm; mean wall thickness 1.401 ± 0.120 mm), the average wall thickness in the mesh was 1.459 ± 0.123 mm. The absolute error in average wall thickness was 0.060 ± 0.036 mm, or about 8.6% of the largest image grid spacing (0.7 mm) and 4.36% of the actual mean wall thickness. Mesh quality metrics and the ability to reproduce regional variations of wall thickness were found superior to similar alternative frameworks. PMID:25976018

  17. An approach for patient-specific multi-domain vascular mesh generation featuring spatially varying wall thickness modeling.

    PubMed

    Raut, Samarth S; Liu, Peng; Finol, Ender A

    2015-07-16

    In this work, we present a computationally efficient image-derived volume mesh generation approach for vasculatures that implements spatially varying patient-specific wall thickness with a novel inward extrusion of the wall surface mesh. Multi-domain vascular meshes with arbitrary numbers, locations, and patterns of both iliac bifurcations and thrombi can be obtained without the need to specify features or landmark points as input. In addition, the mesh output is coordinate-frame independent and independent of the image grid resolution with high dimensional accuracy and mesh quality, devoid of errors typically found in off-the-shelf image-based model generation workflows. The absence of deformable template models or Cartesian grid-based methods enables the present approach to be sufficiently robust to handle aneurysmatic geometries with highly irregular shapes, arterial branches nearly parallel to the image plane, and variable wall thickness. The assessment of the methodology was based on i) estimation of the surface reconstruction accuracy, ii) validation of the output mesh using an aneurysm phantom, and iii) benchmarking the volume mesh quality against other frameworks. For the phantom image dataset (pixel size 0.105 mm; slice spacing 0.7 mm; and mean wall thickness 1.401±0.120 mm), the average wall thickness in the mesh was 1.459±0.123 mm. The absolute error in average wall thickness was 0.060±0.036 mm, or about 8.6% of the largest image grid spacing (0.7 mm) and 4.36% of the actual mean wall thickness. Mesh quality metrics and the ability to reproduce regional variations of wall thickness were found superior to similar alternative frameworks. PMID:25976018

  18. Optimization of Cone Wall Thickness to Reduce High Energy Electron Generation for Fast-Ignition Scheme

    NASA Astrophysics Data System (ADS)

    Kojima, Sadaoki; Zhe, Zhang; Sawada, Hiroshi; Firex Team

    2015-11-01

    In Fast Ignition Inertial Confinement Fusion, optimization of relativistic electron beam (REB) accelerated by a high-intensity laser pulse is critical for the efficient core heating. The high-energy tail of the electron spectrum is generated by the laser interaction with a long-scale-length plasma and does not efficiently couple to a fuel core. In the cone-in-shell scheme, long-scale-length plasmas can be produced inside the cone by the pedestal of a high-intensity laser, radiation heating of the inner cone wall and shock wave from an implosion core. We have investigated a relation between the presence of pre-plasma inside the cone and the REB energy distribution using the Gekko XII and 2kJ-PW LFEX laser at the Institute of Laser Engineering. The condition of an inner cone wall was monitored using VISAR and SOP systems on a cone-in-shell implosion. The generation of the REB was measured with an electron energy analyzer and a hard x-ray spectrometer on a separate shot by injecting the LFEX laser in an imploded target. The result shows the strong correlation between the preheat and high-energy tail generation. Optimization of cone-wall thickness for the fast-ignition will be discussed. This work is supported by NIFS, MEXT/JSPS KAKENHI Grant and JSPS Fellows (Grant Number 14J06592).

  19. On the Opening of Thick Walled Elastic Tubes: A Fluid-Structure Model for Acid Reflux

    NASA Astrophysics Data System (ADS)

    Ghosh, Sudip; Kahrilas, Peter

    2005-11-01

    A coupled fluid-structure mathematical model was developed to quantify rapid opening of thick-walled elastic tubes, a phenomenon underlying biological flows such as gastroesophageal reflux disease (GERD). The wall was modeled using non-linear finite deformation theory to predict space-time radial distention of an axisymmetric tube with luminal fluid flow. Anisotropic azimuthal and longitudinal muscle-induced stresses were incorporated, and interstitial material properties were assumed isotropic and linearly elastic. Fluid flow was modeled using lubrication theory with inertial correction. Opening and flow were driven by a specified inflow pressure and zero pressure gradient was specified at outflow. No-slip and surface force balance were applied at the fluid-wall interface. Viscoelasticity was modeled with ad hoc damping and the evolution of the tube geometry was predicted at mid-layer. A potentially important discovery was made when applied to studies of initiation of opening with GERD: while material stiffness is of minor consequence, small changes in resting lumen distension (˜2 mm diameter) may be a sensitive distinguishing feature of the disease.

  20. First wall and blanket design for a high wall loading compact tokamak power reactor

    SciTech Connect

    Sviatoslavsky, I.N.; Abdel-Khalik, S.I.; Corradini, M.L.; El-Afify, M.; Huh, K.Y.; Kuleinski, G.L.; Wittenberg, L.J.

    1985-07-01

    Among the specific limitations which tend to complicate a compact high wall loading (HWL) tokamak reactor design are high surface and nuclear heating, compactness leading to crowded components, unlikely breeding on the inboard side and frequent first wall/blanket replacement. This paper describes the mechanical, thermal hydraulic and tritium aspects of an improved blanket design for a high ..beta.. (20%), high wall loading (R 10 MW/m/sup 2/) compact fusion power reactor of 1000 MW /sub th/ power output.

  1. Multiphysics design optimization model for structural walls incorporating phase-change materials

    NASA Astrophysics Data System (ADS)

    Stockwell, A.; Neithalath, N.; Rajan, S. D.

    2015-03-01

    The development of energy-efficient building envelopes has been an ongoing effort in many countries owing to the pressing need to achieve energy independence. In this study numerical optimization techniques and finite element analysis provide the means to find a compromise point between adding phase-change materials (PCMs) to a concrete wall, the energy savings and the wall's structural capacity. The primary objective is to minimize the overall lifetime cost of a wall by understanding the implications of PCM layer thickness, material properties and position in the wall on the overall energy consumption. While it is difficult to manually configure a typical wall for the lowest total cost, the developed computational framework provides an automated tool for searching for the best design. The results show that successful designs can be obtained where material and energy costs can be minimized through a judicious combination of existing building materials with thermal energy storage materials.

  2. Design of a Variable Thickness Plate to Focus Bending Waves

    NASA Technical Reports Server (NTRS)

    Schiller, Noah H.; Lin, Sz-Chin Steven; Cabell, Randolph H.; Huang, Tony Jun

    2012-01-01

    This paper describes the design of a thin plate whose thickness is tailored in order to focus bending waves to a desired location on the plate. Focusing is achieved by smoothly varying the thickness of the plate to create a type of lens, which focuses structural-borne energy. Damping treatment can then be positioned at the focal point to efficiently dissipate energy with a minimum amount of treatment. Numerical simulations of both bounded and unbounded plates show that the design is effective over a broad frequency range, focusing traveling waves to the same region of the plate regardless of frequency. This paper also quantifies the additional energy dissipated by local damping treatment installed on a variable thickness plate relative to a uniform plate.

  3. Airway wall thickness is increased in COPD patients with bronchodilator responsiveness

    PubMed Central

    2014-01-01

    Rationale Bronchodilator responsiveness (BDR) is a common but variable phenomenon in COPD. The CT characteristics of airway dimensions that differentiate COPD subjects with BDR from those without BDR have not been well described. We aimed to assess airway dimensions in COPD subjects with and without BDR. Methods We analyzed subjects with GOLD 1–4 disease in the COPDGene® study who had CT airway analysis. We divided patients into two groups: BDR + (post bronchodilator ΔFEV1 ≥ 10%) and BDR-(post bronchodilator ΔFEV1 < 10%). The mean wall area percent (WA%) of six segmental bronchi in each subject was quantified using VIDA. Using 3D SLICER, airway wall thickness was also expressed as the square root wall area of an airway of 10 mm (Pi10) and 15 mm (Pi15) diameter. %Emphysema and %gas trapping were also calculated. Results 2355 subjects in the BDR-group and 1306 in the BDR + group formed our analysis. The BDR + group had a greater Pi10, Pi15, and mean segmental WA% compared to the BDR-group. In multivariate logistic regression using gender, race, current smoking, history of asthma, %emphysema, %gas trapping, %predicted FEV1, and %predicted FVC, airway wall measures remained independent predictors of BDR. Using a threshold change in FEV1 ≥ 15% and FEV1 ≥ 12% and 200 mL to divide patients into groups, the results were similar. Conclusion BDR in COPD is independently associated with CT evidence of airway pathology. This study provides us with greater evidence of changes in lung structure that correlate with physiologic manifestations of airflow obstruction in COPD. PMID:25248436

  4. A method of computing the transient temperature of thick walls from arbitrary variation of adiabatic-wall temperature and heat-transfer coefficient

    NASA Technical Reports Server (NTRS)

    Hill, P R

    1958-01-01

    A method of calculating the temperature of thick walls has been developed in which the time series and the response to a unit triangle variation of surface temperature concepts are used, together with essentially standard formulas for transient temperature and heat flow into thick walls. The method can be used without knowledge of the mathematical tools of its development. The method is particularly suitable for determining the wall temperature in one-dimensional thermal problems in aeronautics where there is a continuous variation of the heat-transfer coefficient and adiabatic-wall temperature. The method also offers a convenient means for solving the inverse problem of determining the heat-flow history when temperature history is known.

  5. Conceptual design strategy for liquid-metal-wall inertial-fusion reactors

    SciTech Connect

    Monsler, M.J.; Meier, W.R.

    1981-02-01

    The liquid-metal-wall chamber has emerged as an attractive reactor concept for inertial fusion energy conversion. The principal feature of this concept is a thick, free-flowing blanket of liquid metal used to protect the structure of the reactor. The development and design of liquid-metal-wall chambers over the past decade provides a basis for formulating a conceptual design strategy for such chambers. Both the attractive and unattractive features of a LMW chamber are enumerated, and a design strategy is formulated which accommodates the engineering constraints while minimizing the liquid-metal flow rate.

  6. Residual stress analysis in forming process of filament wound thick-walled CFRP pipes

    SciTech Connect

    Kondo, Toshimi; Sekine, Hideki; Nakano, Kunio

    1995-11-01

    Residual stress analysis for the cracking phenomenon of filament would thick-walled CFRP pipes, which frequently occurs in the forming process of curing and thermal cycling through the course of the wet filament winding, was made from both the experimental and theoretical points of view. A simple analytical model to study the cracking in the CFRP pipes was proposed. The pipes are multilayered and reinforced in the axial and circumferential directions alternatively by carbon fibers. Taking account of the anisotropy of mechanical and thermal properties including the shrinkage strain, which depend considerably on the temperature, the residual stresses in the CFRP pipes were elucidated in the forming process, particularly, in cooling of the cure process.

  7. Residual stress effect on fatigue crack growth in thick wall cylinders

    SciTech Connect

    Kiciak, A.; Glinka, G.; Burns, D.J.

    1995-11-01

    Recently derived weight functions for a single, semi-elliptical, longitudinal crack in a thick wall cylinder with the diameter ratio D{sub 0}/D{sub i} = 2, have been used to analyze fatigue crack propagation in autofrettaged and non-autofrettaged, pressurized cylinders. Two levels of autofrettage, 30 and 60%, have been considered. The influences of the level of autofrettage, surface crack closure, and different sets of parameters of crack closure, and different sets of parameters of crack propagation relation have been investigated. The development of cracks has been compared to the experimental results. The results of analyses confirm beneficial influence of autofrettage. It has been shown that the discrepancies between the observed and calculated crack developments cannot be ascribed to the influence of surface crack closure. The comparison of the experiments and predictions unveils the need for an additional series of experiments.

  8. Preferred propagation patterns of axial surface cracks in thick-walled cylinders

    SciTech Connect

    Perez, E.H.; Kendall, D.P.

    1996-12-01

    Semi-elliptical axial surface cracks, growing due to cyclic pressure loading in thick-walled cylinders undergo significant shape change during the propagation process. These growing cracks change their shapes such that they approach and follow preferred propagation patterns (PPPs). These PPPs depend on the diameter ratio of the cylinder and on the fatigue crack propagation constant, ``m`` in the Paris equation. The objective of this paper is to show the crack shape variation during fatigue crack growth using linear elastic fracture mechanics. It is shown that a crack whose initial shape does not agree with this preferred propagation pattern will grow such that its shape converges to the preferred pattern. The results of this study also show the effect of autofrettage on the PPPs and the final shape of the cracks at breakthrough.

  9. Interventricular Septum and Posterior Wall Thickness Are Associated With Higher Systolic Blood Pressure.

    PubMed

    Eliakim-Raz, Noa; Prokupetz, Alex; Gordon, Barak; Shochat, Tzippy; Grossman, Alon

    2016-07-01

    Elevated blood pressure (BP) is a known factor that affects the structure of the left ventricle. The association between left ventricular hypertrophy (LVH) and BP in normotensive individuals is poorly understood. All individuals who underwent routine echocardiography and BP measurements as aircrew candidates for the Israeli Air Force in the years 2006 to 2012 were identified. Participants with normal values were included. Associations between echocardiographic characteristics and BP were studied. A total of 2386 participants were included. Mean systolic BP was 125.31±11.18 mm Hg and mean diastolic BP was 68.69±9.02 mm Hg. Interventricular septal (IVS) thickness was positively correlated with systolic BP (P<.001, correlation coefficient 0.121) and significantly inversely correlated with heart rate and hematocrit level (P<.001 for both). Men with evidence of IVS or posterior wall thickening on echocardiography, even within the normal range, may require a closer follow-up of BP. PMID:26607051

  10. Facilitating protein crystal cryoprotection in thick-walled plastic capillaries by high-pressure cryocooling

    PubMed Central

    Chen, Yi-Fan; Tate, Mark W.; Gruner, Sol M.

    2009-01-01

    Many steps in the X-ray crystallographic solution of protein structures have been automated. However, the harvesting and cryocooling of crystals still rely primarily on manual handling, frequently with consequent mechanical damage. An attractive alternative is to grow crystals directly inside robust plastic capillaries that may be cryocooled and mounted on the beamline goniometer. In this case, it is still desirable to devise a way to cryoprotect the crystals, which is difficult owing to the poor thermal conductivity of thick plastic capillary walls and the large thermal mass of the capillary and internal mother liquor. A method is described to circumvent these difficulties. It is shown that high-pressure cryocooling substantially reduced the minimal concentrations of cryoprotectants required to cryocool water inside capillaries without formation of ice crystals. The minimal concentrations of PEG 200, PEG 400 and glycerol necessary for complete vitrification under pressure cryocooling were determined. PMID:19529790

  11. Left Ventricular Relative Wall Thickness Versus Left Ventricular Mass Index in Non-Cardioembolic Stroke Patients

    PubMed Central

    Hashem, M-Sherif; Kalashyan, Hayrapet; Choy, Jonathan; Chiew, Soon K.; Shawki, Abdel-Hakim; Dawood, Ahmed H.; Becher, Harald

    2015-01-01

    Abstract In non-cardioembolic stroke patients, the cardiac manifestations of high blood pressure are of particular interest. Emerging data suggest that echocardiographically determined left ventricular hypertrophy is independently associated with risk of ischemic stroke. The primary objective of this study was to evaluate the frequency of different patterns of left ventricular (LV) remodeling and hypertrophy in a group of consecutive patients admitted with non-cardioembolic stroke or transient ischemic attack (TIA). In particular, we were interested in how often the relative wall thickness (RWT) was abnormal in patients with normal LV mass index (LVMI). As both abnormal RWT and LVMI indicate altered LV remodeling, the secondary objective of this research was to study whether a significant number of patients would be missing the diagnosis of LV remodeling if the RWT is not measured. All patients were referred within 48 hours after a stroke or a TIA for a clinically indicated transthoracic echocardiogram. The echocardiographic findings of consecutive patients with non-cardioembolic stroke or TIA were analyzed. All necessary measurements were performed in 368 patients, who were enrolled in the study. Mean age was 63.7 ± 12.5 years, 64.4% men. Concentric remodeling carried the highest frequency, 49.2%, followed by concentric hypertrophy, 30.7%, normal pattern, 15.5%, and eccentric hypertrophy, 4.1%. The frequency of abnormal left ventricular RWT (80.4%) was significantly higher than that of abnormal LVMI (35.3%), (McNemar P < 0.05). In this group of non-cardioembolic stroke patients, abnormal LV remodeling as assessed by relative wall thickness is very frequent. As RWT was often found without increased LV mass, the abnormal left ventricular geometry may be missed if RWT is not measured or reported. PMID:25997067

  12. Cross-Sectional Elasticity Imaging of Arterial Wall by Comparing Measured Change in Thickness with Model Waveform

    NASA Astrophysics Data System (ADS)

    Tang, Jiang; Hasegawa, Hideyuki; Kanai, Hiroshi

    2005-06-01

    For the assessment of the elasticity of the arterial wall, we have developed the phased tracking method [H. Kanai et al.: IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43 (1996) 791] for measuring the minute change in thickness due to heartbeats and the elasticity of the arterial wall with transcutaneous ultrasound. For various reasons, for example, an extremely small deformation of the wall, the minute change in wall thickness during one heartbeat is largely influenced by noise in these cases and the reliability of the elasticity distribution obtained from the maximum change in thickness deteriorates because the maximum value estimation is largely influenced by noise. To obtain a more reliable cross-sectional image of the elasticity of the arterial wall, in this paper, a matching method is proposed to evaluate the waveform of the measured change in wall thickness by comparing the measured waveform with a template waveform. The maximum deformation, which is used in the calculation of elasticity, was determined from the amplitude of the matched model waveform to reduce the influence of noise. The matched model waveform was obtained by minimizing the difference between the measured and template waveforms. Furthermore, a random error, which was obtained from the reproducibility among the heartbeats of the measured waveform, was considered useful for the evaluation of the reliability of the measured waveform.

  13. A more realistic thermal shock analysis of a radially multicracked thick-walled cylinder

    NASA Astrophysics Data System (ADS)

    Perl, M.; Ashkenazi, A.

    1992-07-01

    Presently available analyses of multicracking of thick-walled cylinders due to an internal thermal shock, model the shock by a temperature step-change at the cylinder bore, yielding a considerably overestimated temperature field through the cylinder's wall. In the present work a more realistic thermal shock model is employed assuming convection boundary conditions at both the inner and the outer cylinder surfaces. Transient mode I stress intensity factors (SIF), resulting from the thermal shock during the firing process in a typical gun barrel, are evaluated for large arrays of radial cracks emanating from the bore surface of the cylinder. The transient thermal analysis as well as the computation of the SIFs is performed via the finite element method. Once the thermal problem is solved, SIFs at various time steps are calculated for numerous crack arrays (2-1024) and for a wide range of relevant crack lengths. The present analysis emphasizes the importance of using the proper thermal shock model by showing that the previously available results are nonconservative, and exemplifies the favorable effect of the above thermal shock on the effective SIF prevailing at the tips of these cracks.

  14. Echocardiographic Manifestations of Glycogen Storage Disease III: Increase in Wall Thickness and Left Ventricular Mass over Time

    PubMed Central

    Vertilus, Shawyntee M.; Austin, Stephanie L.; Foster, Kimberly S.; Boyette, Keri E.; Bali, Deeksha; Li, Jennifer S.; Kishnani, Priya S.; Wechsler, Stephanie Burns

    2013-01-01

    Purpose Glycogen Storage Disease (GSD) type III, glycogen debranching enzyme deficiency, causes accumulation of glycogen in liver, skeletal, and cardiac muscle. Some patients develop increased left ventricular (LV) thickness by echocardiography, but the rate of increase and its significance remain unclear. Methods We evaluated 33 patients with GSD type III, 23 with IIIa and 10 with IIIb, ages 1 month – 55.5 yrs, by echocardiography for wall thickness, LV mass, shortening and ejection fractions, at 1 time point (n = 33) and at 2 time points in patients with more than 1 echocardiogram (13 of the 33). Results Of 23 cross-sectional patients with type IIIa, 12 had elevated LV mass, 11 had elevated wall thickness. One type IIIb patient had elevated LV mass but 4 had elevated wall thickness. For those with multiple observations, 9 of 10 with type IIIa developed increased LV mass over time, with 3 already increased at first measurement. Shortening and ejection fractions were generally normal. Conclusion Elevated LV mass and wall thickness is more common in patients with type IIIa but develops rarely in type IIIb, though ventricular systolic function is preserved. This suggests serial echocardiograms with attention to LV thickness and mass are important for care of these patients. PMID:20526204

  15. Axial Crushing of Thin-Walled Columns with Octagonal Section: Modeling and Design

    NASA Astrophysics Data System (ADS)

    Liu, Yucheng; Day, Michael L.

    This chapter focus on numerical crashworthiness analysis of straight thinwalled columns with octagonal cross sections. Two important issues in this analysis are demonstrated here: computer modeling and crashworthiness design. In the first part, this chapter introduces a method of developing simplified finite element (FE) models for the straight thin-walled octagonal columns, which can be used for the numerical crashworthiness analysis. Next, this chapter performs a crashworthiness design for such thin-walled columns in order to maximize their energy absorption capability. Specific energy absorption (SEA) is set as the design objective, side length of the octagonal cross section and wall thickness are selected as design variables, and maximum crushing force (Pm) occurs during crashes is set as design constraint. Response surface method (RSM) is employed to formulate functions for both SEA and Pm.

  16. Conceptual design of the INTOR first-wall system

    SciTech Connect

    Smith, D.L.; Majumdar, S.; Mattas, R.F.; Turner, L.; Jung, J.; Abdou, M.A.; Bowers, D.; Trachsel, C.; Merrill, B.

    1981-10-01

    The design concept and performance characteristics of the first-wall design for the phase-1 INTOR (International Tokamak Reactor) study is described. The reference design consists of a water-cooled stainless steel panel. The major uncertainty regarding the performance of the bare stainless steel wall relates to the response of a thin-melt layer predicted to form on limited regions during a plasma disruption. A more-complex backup design, which incorporates radiatively cooled graphite tiles on the inboard wall, is briefly described.

  17. Measurement of Change in Wall Thickness of Cylindrical Shell Due to Cyclic Remote Actuation for Assessment of Viscoelasticity of Arterial Wall

    NASA Astrophysics Data System (ADS)

    Hasegawa, Hideyuki; Kanai, Hiroshi; Koiwa, Yoshiro; Butler, James P.

    2003-05-01

    To characterize tissues in atherosclerotic plaques, we have developed a method, the phased tracking method, for measuring the strain (change in wall thickness) and elasticity of the arterial wall. However, some types of tissue, such as lipids and blood clots, cannot be discriminated from each other based only on elasticity because of the small difference in their elasticity. For more precise tissue characterization, we are attempting to measure the regional viscoelasticity. To determine viscoelastic properties, elastic moduli at multiple frequencies were obtained by generating the change in internal pressure due to remote cyclic actuation. From basic experiments using a silicone rubber tube, it was found that the change in internal pressure at the ultrasonic beam position (for measurement of the elastic modulus) can be generated by remotely applied actuation. Furthermore, from the resultant minute changes in wall thickness of less than 10 μm measured by the phased tracking method, elastic moduli were obtained at multiple actuation frequencies.

  18. Design and Validation of a Constant Wall Temperature Plate

    NASA Astrophysics Data System (ADS)

    Biles, Drummond; Ebadi, Alireza; Ma, Allen; White, Chris

    2014-11-01

    A thermally conductive constant temperature wall-plate has been constructed and wind tunnel validation tests of the wall-plate design have been performed. The wall-plate is a sectioned wall design, where each section is independently heated and controlled. Each section consists of an aluminum 6061 plate, an array of resistive heaters affixed to the bottom of the aluminum plate, and a calcium silicate holder used for thermal isolation. A 3 × 3 grid of embedded thermocouples in each aluminum plate are used to monitor wall temperature and for feedback control of wall heating. The streamwise (flow direction) length of each section increases with downstream position since the wall heat flux decreases with downstream position.The section components sit in a Delrin (acetal) frame, chosen for its low thermal conductivity and machinability. The wall-plate will be used to investigate thermal transport in non-equilibrium boundary layer flows. In this talk, we report on the validation tests performed to-date to investigate the aerodynamic and thermal performance of the wall-plate, and the capability of the controller to maintain the wall-plate at a pre-selected fixed temperature in steady and unsteady laminar boundary layer flow.

  19. Effect of material properties on the strain to failure of thick-walled cylinders subjected to internal pressure

    SciTech Connect

    Roach, D.P.; Priddy, T.G. )

    1994-05-01

    The determination of the fully plastic response and pressure limit of a pressure vessel is of considerable importance in design, especially in autofrettage considerations. This paper presents the results of an experimental study which measured the maximum internal pressure which can be applied to thick-walled cylindrical vessels. Both aluminum and steel, with material properties ranging from ductile to brittle, were tested at stress levels through plastic and strain hardening ranges to fracture. From these tests, the pressure-expansion and through-thickness yielding characteristics were determined for these specimens. It is shown that a strain-to-failure criterion, based on the triaxiality of stress in the critical region, can be used to predict the complete pressure versus strain relations and maximum pressure for these cylinders. A simple tension-true stress-strain relation of the material is employed to analytically predict the response of the cylinder into the plastic regime. Finally, simplified theoretical and empirical formulas for bursting pressures are checked against the experimental results.

  20. Assessment of carotid diameter and wall thickness in ultrasound images using active contours improved by a multiresolution technique

    NASA Astrophysics Data System (ADS)

    Gutierrez, Marco A.; Pilon, Paulo E.; Lage, Silvia G.; Kopel, Liliane; Carvalho, Ricardo T.; Furuie, Sergio S.

    2002-04-01

    Carotid vessel ultrasound imaging is a reliable non-invasive technique to measure the arterial morphology. Vessel diameter, intima-media thickness (IMT) of the far wall and plaque presence can be reliably determined using B-mode ultrasound. In this paper we describe a semi-automatic approach to measure artery diameter and IMT based on an active contour technique improved by a multiresolution analysis. The operator selects a region-of-interest (ROI) in a series of carotid images obtained from B-mode ultrasound. This set of images is convolved with the corresponding partial derivatives of the Gaussian filter. The filter response is used to compute a 2D gradient magnitude image in order to refine the vessel's boundaries. Using an active contour technique the vessel's border is determined automatically. The near wall media-adventitia (NWMA), far wall media-adventitia (FWMA) and far wall lumen-intima (FWLI) borders are obtained by a least-square fitting of the active contours result. The distance between NWMA and FWLI (vessel diameter) and between FWLI and FWMA (far wall intima-media thickness) are obtained for all images and the mean value is computed during systole and diastole. The proposed method is a reliable and reproducible way of assessing the vessel diameter and far wall intima-media thickness of the carotid artery.

  1. Qualitative Reliability Issues for Solid and Liquid Wall Fusion Design

    SciTech Connect

    Cadwallader, Lee Charles

    2001-01-01

    This report is an initial effort to identify issues affecting reliability and availability of solid and liquid wall designs for magnetic fusion power plant designs. A qualitative approach has been used to identify the possible failure modes of major system components and their effects on the systems. A general set of design attributes known to affect the service reliability has been examined for the overview solid and liquid wall designs, and some specific features of good first wall design have been discussed and applied to these designs as well. The two generalized designs compare well in regard to these design attributes. The strengths and weaknesses of each design approach are seen in the comparison of specific features.

  2. Qualitative Reliability Issues for Solid and Liquid Wall Fusion Designs

    SciTech Connect

    Cadwallader, L.C.

    2001-01-31

    This report is an initial effort to identify issues affecting reliability and availability of solid and liquid wall designs for magnetic fusion power plant designs. A qualitative approach has been used to identify the possible failure modes of major system components and their effects on the systems. A general set of design attributes known to affect the service reliability has been examined for the overview solid and liquid wall designs, and some specific features of good first wall design have been discussed and applied to these designs as well. The two generalized designs compare well in regard to these design attributes. The strengths and weaknesses of each design approach are seen in the comparison of specific features.

  3. Reconstruction of full-thickness chest wall defects using rectus abdominis musculocutaneous flap: A report of fifteen cases

    SciTech Connect

    Miyamoto, Y.; Hattori, T.; Niimoto, M.; Toge, T. )

    1986-02-01

    In 15 patients chest walls were excised because of recurrent breast cancer, radiation ulcer, or rib tumor. In most cases the full-thickness defect of the chest wall was about 10 x 10 cm. Reconstruction was performed using only a rectus abdominis musculocutaneous flap. No patient developed circulation problems in the flap or severe flail chest, and we had successful results in all our cases. These results show that the rectus abdominis musculocutaneous flap is quite effective and safe to use in the reconstruction of chest wall defects.

  4. Design of a three-component wall-mounted balance

    NASA Technical Reports Server (NTRS)

    Winkelmann, Allen E.; Gonzalez, Hugo A.

    1990-01-01

    The design and evaluation of a three-component, wall-mounted pyramidal balance for a small wind tunnel is discussed. The balance was designed to measure lift, drag, pitching moment, and angle of attack. The specific design of each component and mathematical models used to design the balance are covered. Balance evaluation consisted of calibration, tare, and interaction analysis.

  5. Electromagnetic approaches to wall characterization, wall mitigation, and antenna design for through-the-wall radar systems

    NASA Astrophysics Data System (ADS)

    Thajudeen, Christopher

    of ground reflections, and situations where they may be applied to the estimation of the parameters associated with an interior wall. It is demonstrated through extensive computer simulations and laboratory experiments that, by proper exploitation of the electromagnetic characteristics of walls, one can efficiently extract the constitutive parameters associated with unknown wall(s) as well as to characterize and image the intra-wall region. Additionally, it is possible, to a large extent, to remove the negative wall effects, such as shadowing and incorrect target localization, as well as to enhance the imaging and classification of targets behind walls. In addition to the discussion of post processing the radar data to account for wall effects, the design of antenna elements used for transmit (Tx) and receive (Rx) operations in TWR radars is also discussed but limited to antennas for mobile, handheld, or UAV TWR systems which impose design requirements such as low profiles, wide operational bands, and in most cases lend themselves to fabrication using surface printing techniques. A new class of wideband antennas, formed though the use of printed metallic paths in the form of Peano and Hilbert space-filling curves (SFC) to provide top-loading properties that miniaturize monopole antenna elements, has been developed for applications in conformal and/or low profile antennas systems, such as mobile platforms for TWRI and communication systems. Additionally, boresight gain enhancements of a stair-like antenna geometry, through the addition of parasitic self-similar patches and gate like ground plane structures, are presented.

  6. Repair of Full-Thickness Defects in Alimentary Tract Wall With Patches of Expanded Polytetrafluoroethylene

    PubMed Central

    Oh, Daniel S.; Manning, Melanie M.; Emmanuel, Janson; Broyles, Stuart E.; Stone, H. Harlan

    2002-01-01

    Objectives To test the efficacy of patches of expanded polytetrafluoroethylene (ePTFE) for the repair of full-thickness defects in alimentary tract wall. Summary Background Data A recent report of successful replacement of duodenal wall with patches of ePTFE was met with skepticism and clearly warranted confirmation as well as evaluation in repair of other segments of the abdominal intestinal tract. Methods Defects of 4 cm2 were created in various segments of canine abdominal alimentary tract (stomach, duodenum, small bowel, and colon) as well as in bladder dome. For the duodenum in 13 dogs, three different ePTFE fabrications were used: CVX (cardiovascular), PDX (preclude dura membrane), and DLM (dual mesh plus). In repair of the other areas in six dogs, the PDX patch was used. When the animals were killed, both gross inspection of the parietes and tissue for histologic study became the basis for evaluation. Peritoneal and intraluminal cultures of the specific study viscera were also taken. Results There were no patch failures. Only six significant adhesions were noted in 3 of the 19 dogs. Serosal surface healing was complete without exception by 1 week in all animals. Patches of CVX and PDX had heaping mucosa at the margin of well-sealed patch edges in the study involving duodenum. However, the DLM patch had an undergrowth of mucosa with partial patch separation by 1 week, beginning patch extrusion into gut lumen at 3 weeks, and total separation of patch with complete mucosal repair at 6 weeks. The fate of the PDX patches at 6 weeks in stomach, small bowel, colon, and bladder was identical to what had been observed for the PDX patch in the duodenum. All peritoneal and bladder cultures had no growth, whereas the contents of the alimentary tract grew expected flora. Conclusions These observations suggest that ePTFE may well be an acceptable membrane for at least temporary replacement of full-thickness hollow viscus defects, even in the face of heavy bacterial

  7. Utilization of a global data grid repository in CAD assessment of carotid wall thickness

    NASA Astrophysics Data System (ADS)

    Gutierrez, Marco A.; Lee, Jasper; Zhou, Zheng; Pilon, Paulo E.; Lage, Silvia G.

    2007-03-01

    A CAD method of calculating wall thickness of carotid vessels addresses the time-consuming issue of using B-mode ultrasound as well as inter- and intra-observer variability in results. Upon selection of a region-of-interest and filtering of a series of ultrasound carotid images, the CAD is able to measure the geometry of the lumen and plaque surfaces using a least-square fitting of the active contours during systole and diastole. To evaluate the approach, ultrasound image sequences from 30 patients were submitted to the procedure. The images were stored on an international data grid repository that consists of three international sites: Image Processing and Informatics (IPI) Laboratory at University of Southern California, USA; InCor (Heart Institute) at Sao Paulo, Brazil, and Hong Kong Polytechnic University, Hong Kong. The three chosen sites are connected with high speed international networks including the Internet2, and the Brazilian National Research and Education Network (RNP2). The Data Grid was used to store, backup, and share the ultrasound images and analysis results, which provided a large-scale and a virtual data system. In order to study the variability between the automatic and manual definition of artery boundaries, the pooled mean and the standard deviation for the difference between measurements of lumen diameter were computed. The coefficient of variation and correlation were also calculated. For the studied population the difference between manual and automatic measurement of the lumen diameter (LD) and intima-media-thickness (IMT) were 0.12 +/-0.10 and 0.09+/- 0.06, respectively.

  8. A new possibility of melt cooling in extrusion dies to prevent sagging-effects in thick-walled pipes

    NASA Astrophysics Data System (ADS)

    te Heesen, O.; Wortberg, J.

    2014-05-01

    One challenge in the extrusion process of thick-walled pipes is the cooling of the product. Besides the output of the extruder, the line speed is also limited by the efficiency of the cooling line. The cooling time increases according to the wall thickness of the pipe under otherwise equal process conditions. State of the art is the cooling of the outer surface in water tanks or spray-cool-tanks. In addition to that, it is possible to cool the inner surface by air that is sucked through the pipe. Despite these technologies it is problematic to cool down thick walled-products with the right speed. Especially thick-walled pipes show problems by cooling the layers in the middle of the wall. On the one hand an intensive cooling of the outer and inner surface of the pipe entail the formation of shrink holes in the middle of the pipe wall. On the other hand without a quick cooling the melt flow in circumferential direction because of the gravity takes place (sagging-effect). Because of this reason in the presented paper new possibilities of melt cooling in extrusion dies to prevent sagging-effects are given. An aimed cooling of the inbound melt layers inside the extrusion die could prevent the effect of melt flow in circumferential direction after the extrusion die, allows the specification of a specific temperature profile over the radius of the pipe wall and helps to reduce the melt temperature for rising mass throughputs and screw driving speeds of the extruder. It is also thinkable to influence the crystallization process and thereby the mechanical properties of the end-product by an aimed cooling of the inner pipe layers.

  9. Bobbin-Tool Friction-Stir Welding of Thick-Walled Aluminum Alloy Pressure Vessels

    SciTech Connect

    Dalder, E C; Pastrnak, J W; Engel, J; Forrest, R S; Kokko, E; Ternan, K M; Waldron, D

    2007-06-06

    It was desired to assemble thick-walled Al alloy 2219 pressure vessels by bobbin-tool friction-stir welding. To develop the welding-process, mechanical-property, and fitness-for-service information to support this effort, extensive friction-stir welding-parameter studies were conducted on 2.5 cm. and 3.8 cm. thick 2219 Al alloy plate. Starting conditions of the plate were the fully-heat-treated (-T62) and in the annealed (-O) conditions. The former condition was chosen with the intent of using the welds in either the 'as welded' condition or after a simple low-temperature aging treatment. Since preliminary stress-analyses showed that stresses in and near the welds would probably exceed the yield-strength of both 'as welded' and welded and aged weld-joints, a post-weld solution-treatment, quenching, and aging treatment was also examined. Once a suitable set of welding and post-weld heat-treatment parameters was established, the project divided into two parts. The first part concentrated on developing the necessary process information to be able to make defect-free friction-stir welds in 3.8 cm. thick Al alloy 2219 in the form of circumferential welds that would join two hemispherical forgings with a 102 cm. inside diameter. This necessitated going to a bobbin-tool welding-technique to simplify the tooling needed to react the large forces generated in friction-stir welding. The bobbin-tool technique was demonstrated on both flat-plates and plates that were bent to the curvature of the actual vessel. An additional issue was termination of the weld, i.e. closing out the hole left at the end of the weld by withdrawal of the friction-stir welding tool. This was accomplished by friction-plug welding a slightly-oversized Al alloy 2219 plug into the termination-hole, followed by machining the plug flush with both the inside and outside surfaces of the vessel. The second part of the project involved demonstrating that the welds were fit for the intended service. This

  10. Modeling Periodic Adiabatic Shear Bands Evolution in a 304L Stainless Steel Thick-Walled Cylinder

    NASA Astrophysics Data System (ADS)

    Liu, Mingtao; Hu, Haibo; Fan, Cheng; Tang, Tiegang

    2015-06-01

    The self-organization of multiple shear bands in a 304L stainless steel thick-walled cylinder (TWC) was numerically studied. The microstructures of material lead to the non-uniform distribution of local yield stress, which plays a key role in the formation of spontaneous shear localization. We introduced a probability factor satisfied Gauss distribution into the macroscopic constitutive relationship to describe the non-uniformity of local yield stress. Using the probability factor, the initiation and propagation of multiple shear bands in TWC were numerically replicated in our 2D FEM simulation. Experimental results in the literature indicate that the machined surface at the internal boundary of a 304L stainless steel cylinder provides a work-hardened layer (about 20 μm) which has significantly different microstructures from base material. The work-hardened layer leads to the phenomenon that most shear bands are in clockwise or counterclockwise direction. In our simulation, periodic oriented perturbations were applied to describe the grain orientation in the work-hardened layer, and the spiral pattern of shear bands was successfully replicated.

  11. The interaction of moderately strong shock waves with thick perforated walls of low porosity

    NASA Technical Reports Server (NTRS)

    Grant, D. J.

    1972-01-01

    A theoretical prediction is given of the flow through thick perforated walls of low porosity resulting from the impingement of a moderately strong traveling shock wave. The model was a flat plate positioned normal to the direction of the flow. Holes bored in the plate parallel to the direction of the flow provided nominal hole length-to-diameter ratios of 10:1 and an axial porosity of 25 percent of the flow channel cross section. The flow field behind the reflected shock wave was assumed to behave as a reservoir producing a quasi-steady duct flow through the model. Rayleigh and Fanno duct flow theoretical computations for each of three possible auxiliary wave patterns that can be associated with the transmitted shock (to satisfy contact surface compatibility) were used to provide bounding solutions as an alternative to the more complex influence coefficients method. Qualitative and quantitative behavior was verified in a 1.5- by 2.0-in. helium shock tube. High speed Schlieren photography, piezoelectric pressure-time histories, and electronic-counter wave speed measurements were used to assess the extent of correlation with the theoretical flow models. Reduced data indicated the adequacy of the bounding theory approach to predict wave phenomena and quantitative response.

  12. Wall thickness measurement using resonant phenomena of circumferential Lamb waves generated by plural transducer elements located evenly on girth

    NASA Astrophysics Data System (ADS)

    Nishino, Hideo; Iwata, Kodai; Ishikawa, Masashi

    2016-07-01

    We present a novel method of measuring the pipe wall thickness using the resonance of the circumferential (C-) Lamb wave generated by a piezoelectric ring-shaped sensor (PS). The PS is a special device for an axially propagating torsional wave; however, the C-Lamb waves are generated simultaneously as spurious signals owing to the structure of the PS. Particularly under resonant conditions, the C-Lamb waves are dominantly generated, distorting the axially propagating wave. In this method, these troublesome spurious signals are used effectively for the measurement of the wall thickness under the PS location that is a dead zone of the PS itself. The method can compensate for its drawback, namely, the dead zone problem, without using additional instruments. In this study, the mechanisms of the generation and resonance of the C-Lamb waves were first explained. Secondly, the principle of the wall thickness estimation utilizing the resonance of the C-Lamb waves was proposed. Finally, experimental verifications were carried out. The estimated wall thicknesses agreed very well (maximum 1.5% error) with those measured by a micrometer caliper under suitable resonant conditions.

  13. Computer-aided detection of bladder tumors based on the thickness mapping of bladder wall in MR images

    NASA Astrophysics Data System (ADS)

    Zhu, Hongbin; Duan, Chaijie; Jiang, Ruirui; Li, Lihong; Fan, Yi; Yu, Xiaokang; Zeng, Wei; Gu, Xianfeng; Liang, Zhengrong

    2010-03-01

    Bladder cancer is reported to be the fifth leading cause of cancer deaths in the United States. Recent advances in medical imaging technologies, such as magnetic resonance (MR) imaging, make virtual cystoscopy a potential alternative with advantages as being a safe and non-invasive method for evaluation of the entire bladder and detection of abnormalities. To help reducing the interpretation time and reading fatigue of the readers or radiologists, we introduce a computer-aided detection scheme based on the thickness mapping of the bladder wall since locally-thickened bladder wall often appears around tumors. In the thickness mapping method, the path used to measure the thickness can be determined without any ambiguity by tracing the gradient direction of the potential field between the inner and outer borders of the bladder wall. The thickness mapping of the three-dimensional inner border surface of the bladder is then flattened to a twodimensional (2D) gray image with conformal mapping method. In the 2D flattened image, a blob detector is applied to detect the abnormalities, which are actually the thickened bladder wall indicating bladder lesions. Such scheme was tested on two MR datasets, one from a healthy volunteer and the other from a patient with a tumor. The result is preliminary, but very promising with 100% detection sensitivity at 7 FPs per case.

  14. Strength-toughness requirements for thick-walled high pressure vessels

    NASA Astrophysics Data System (ADS)

    Kapp, Joseph A.

    1992-05-01

    The strength and toughness requirements of materials used in high pressure vessels has been the subject of some discussion in the meetings of the Materials Task Group of the Special Working Group - High Pressure Vessels. A fracture mechanics analysis has been performed to theoretically establish the required toughness for a high pressure vessel. The analysis is based on the validity requirement for plane-strain fracture of fracture toughness test specimens. This means that at fracture, the crack length, uncracked ligament, and vessel length must each be greater than fifty times the crack tip plastic zone since for brittle fracture to occur. For high pressure piping applications, the limiting physical dimension is the uncracked ligament, since it can be assumed that the other dimensions are always greater than fifty times the crack tip plastic zone. To perform the fracture mechanics analysis, several parameters must be known, including vessel dimensions, material strength, degree of autofrettage, and design pressure. Remarkably, the results of the analysis show that the effects of radius ratio, pressure, and degree of autofrettage can be ignored when establishing strength and toughness requirements for design code purposes. The only parameters that enter into the calculation are yield strength, toughness and vessel thickness. The final results can easily be represented as a graph of yield strength against toughness on which several curves, one for each vessel thickness, are plotted.

  15. Optimum heating of thick-walled pressure components assuming a quasi-steady state of temperature distribution

    NASA Astrophysics Data System (ADS)

    Dzierwa, Piotr; Trojan, Marcin; Taler, Dawid; Kamińska, Katarzyna; Taler, Jan

    2016-08-01

    As a result of the development of wind farms, the gas — steam blocks, which shall quickly ensure energy supply in case the wind velocity is too low, are introduced to the energy system. To shorten the start-up time of the gas — steam and conventional blocks, the structure of the basic components of the blocks are changed, e.g. by reducing the diameter of the boiler, the thickness of its wall is also reduced. The attempts were also made to revise the currently binding TRD 301 regulations, replacing them by the EN 12952-3 European Standard, to reduce the allowable heating and cooling rates of thick walled boiler components. The basic assumption, on which the boiler regulations allowing to calculate the allowable temperature change rates of pressure components were based, was the quasi — steady state of the temperature field in the simple shaped component, such as a slab, cylindrical or spherical wall.

  16. On the use of thick-airfoil theory to design airfoil families in which thickness and lift are varied independently

    NASA Technical Reports Server (NTRS)

    Barger, R. L.

    1974-01-01

    A method has been developed for designing families of airfoils in which the members of a family have the same basic type of pressure distribution but vary in thickness ratio or lift, or both. Thickness ratio and lift may be prescribed independently. The method which is based on the Theodorsen thick-airfoil theory permits moderate variations from the basic shape on which the family is based.

  17. Reproducibility of Gadolinium Enhancement Patterns and Wall Thickness in Hypertrophic Cardiomyopathy

    PubMed Central

    Rodriguez-Granillo, Gaston A.; Deviggiano, Alejandro; Capunay, Carlos; Zan, Macarena C. De; Carrascosa, Patricia

    2016-01-01

    Background Reproducibility data of the extent and patterns of late gadolinium enhancement (LGE) in hypertrophic cardiomyopathy (HCM) is limited. Objective To explore the reproducibility of regional wall thickness (WT), LGE extent, and LGE patterns in patients with HCM assessed with cardiac magnetic resonance (CMR). Methods The extent of LGE was assessed by the number of segments with LGE, and by the total LV mass with LGE (% LGE); and the pattern of LGE-CMR was defined for each segment. Results A total of 42 patients (672 segments) with HCM constituted the study population. The mean WT measurements showed a mean difference between observers of -0.62 ± 1.0 mm (6.1%), with limits of agreement of 1.36 mm; -2.60 mm and intraclass correlation coefficient (ICC) of 0.95 (95% CI 0.93-0.96). Maximum WT measurements showed a mean difference between observers of -0.19 ± 0.8 mm (0.9%), with limits of agreement of 1.32 mm; -1.70 mm, and an ICC of 0.95 (95% CI 0.91-0.98). The % LGE showed a mean difference between observers of -1.17 ± 1.2 % (21%), with limits of agreement of 1.16%; -3.49%, and an ICC of 0.94 (95% CI 0.88-0.97). The mean difference between observers regarding the number of segments with LGE was -0.40 ± 0.45 segments (11%), with limits of agreement of 0.50 segments; -1.31 segments, and an ICC of 0.97 (95% CI 0.94-0.99). Conclusions The number of segments with LGE might be more reproducible than the percent of the LV mass with LGE. PMID:27305110

  18. Detection of myocardial viability by dobutamine stress echocardiography: incremental value of diastolic wall thickness measurement

    PubMed Central

    Zaglavara, T; Pillay, T; Karvounis, H; Haaverstad, R; Parharidis, G; Louridas, G; Kenny, A

    2005-01-01

    Objective: To assess the diagnostic accuracy of baseline diastolic wall thickness (DWT) alone and as an adjunct to dobutamine stress echocardiography (DSE) for prediction of myocardial viability in patients with ischaemic left ventricular (LV) dysfunction, with the recovery of resting function after revascularisation as the yardstick. Patients: 24 patients with ischaemic LV dysfunction (ejection fraction < 40%) scheduled for surgical revascularisation. Setting: Regional cardiothoracic centre. Methods: All patients underwent DSE before and resting echocardiography six months after revascularisation. DWT was measured in each of the 16 LV segments. A receiver operating characteristic (ROC) and a multi-ROC curve were generated to assess the ability of DWT alone and in combination with DSE to predict myocardial viability. Results: DWT > 0.6 cm provided a sensitivity of 80%, a specificity of 51%, and a negative predictive value of 80% for the prediction of viability in akinetic segments. DSE had an excellent specificity (92%) but a modest sensitivity (60%) in akinetic segments. A combination of improvement at DSE or DWT > 0.8 cm improved sensitivity (90% v 60%, p < 0.001) and negative predictive value (92% v 78%, p  =  0.03) in akinetic segments compared with DSE alone. This was achieved with some loss in specificity (75% v 92%, p  =  0.01) and positive predictive value (71% v 82%, p  =  0.79). Conclusions: DWT measurement may improve the sensitivity of DSE for the detection of myocardial viability. Akinetic segments with DWT > 0.8 cm have a good chance of recovery despite the absence of contractile reserve during DSE. Further testing may be required before excluding myocardial viability in these cases. PMID:15831644

  19. Preparation of Silicon Nitride Multilayer Ceramic Radome Material and Optimal Design of the Wall Structure

    SciTech Connect

    Chen Fei; Shen Qiang; Zhang Lianmeng

    2008-02-15

    A study of silicon nitride ceramic radomes, which includes preparation of the material and optimal design of the radome wall structure, is presented in this paper. Multilayer radome wall structure with high dielectric constant skins and a low dielectric constant core layer is used for broadband application. As a candidate material for both the skins and core layer, silicon nitride ceramics of controlled dielectric constant in the range 3.0{approx}7.5 were prepared by adding different content of sintering aids such as magnesia, alumina, silica and zirconium phosphate binder and choosing suitable sintering methods. A computer aided design (CAD) for the wall structure of silicon nitride multilayer ceramic radome based on microwave equivalent network method is carried out according to design requirements. By optimizing the thickness of skins and core layer, the power transmission efficiency of such a multilayer Si{sub 3}N{sub 4} ceramic radome is calculated. The calculated results suggest that when the dielectric constant of skins lies in the range 6{approx}7.5 and core layer in the range 3.5{approx}4, the power transmission efficiency is above 85% with frequency of 2{approx}18 GHz while the thickness of skins is less than 0.03{lambda} and the thickness ratio of skins to core layer is less than 1:15.

  20. Transpiring wall supercritical water oxidation test reactor design report

    SciTech Connect

    Haroldsen, B.L.; Ariizumi, D.Y.; Mills, B.E.; Brown, B.G.; Rousar, D.C.

    1996-02-01

    Sandia National Laboratories is working with GenCorp, Aerojet and Foster Wheeler Development Corporation to develop a transpiring wall supercritical water oxidation reactor. The transpiring wall reactor promises to mitigate problems of salt deposition and corrosion by forming a protective boundary layer of pure supercritical water. A laboratory scale test reactor has been assembled to demonstrate the concept. A 1/4 scale transpiring wall reactor was designed and fabricated by Aerojet using their platelet technology. Sandia`s Engineering Evaluation Reactor serves as a test bed to supply, pressurize and heat the waste; collect, measure and analyze the effluent; and control operation of the system. This report describes the design, test capabilities, and operation of this versatile and unique test system with the transpiring wall reactor.

  1. Permeable wall boundary conditions for transonic airfoil design

    NASA Astrophysics Data System (ADS)

    Leonard, O.; van den Braembussche, R.

    This paper describes a method for the design of airfoils with prescribed Mach number or static pressure distribution along both the suction and pressure sides. The method consists of an iterative procedure, in which the final geometry is obtained through successive modifications of an existing shape. Each modification is computed by solving the Euler equations using permeable wall boundary conditions, in which the required Mach number distribution can be imposed on the airfoil wall. Since the classical slip condition is no longer imposed, the resulting flow is not tangent to the wall. A new geometry is created using this normal velocity component and a transpiration method.

  2. Sarcocystis sinensis is the most prevalent thick-walled Sarcocystis species in beef on sale for consumers in Germany.

    PubMed

    Moré, G; Pantchev, A; Skuballa, J; Langenmayer, M C; Maksimov, P; Conraths, F J; Venturini, M C; Schares, G

    2014-06-01

    Bovines are intermediate hosts of Sarcocystis cruzi, Sarcocystis hirsuta, and Sarcocystis hominis, which use canids, felids, or primates as definitive hosts, respectively. Cattle represent also intermediate hosts of Sarcocystis sinensis, but the definitive hosts of this parasite are not yet known. Sarcocystosis in cattle is frequently asymptomatic. The infection is characterized by the presence of thin-walled (S. cruzi) or thick-walled muscle cysts or sarcocysts (S. hominis, S. sinensis, and S. hirsuta). Recent reports suggest high prevalence of the zoonotic S. hominis in beef in Europe. We therefore aimed at differentiating Sarcocystis spp. in beef offered to consumers in Germany using molecular and microscopical methods, focusing on those species producing thick-walled sarcocysts. A total of 257 beef samples were obtained from different butcheries and supermarkets in Germany and processed by conventional and multiplex real-time PCR. In addition, 130 of these samples were processed by light microscopy and in 24.6% thick-walled cysts were detected. Transmission electron microscopical analysis of six of these samples revealed an ultrastructural cyst wall pattern compatible with S. sinensis in five samples and with S. hominis in one sample. PCR-amplified 18S ribosomal DNA (rDNA) fragments of 28 individual thick-walled cysts were sequenced, and sequence identities of ≥98% with S. sinensis (n = 22), S. hominis (n = 5) and S. hirsuta (n = 1) were observed. Moreover, nine Sarcocystis sp. 18S rDNA full length gene sequences were obtained, five of S. sinensis, three of S. hominis, and one of S. hirsuta. Out of all samples (n = 257), 174 (67.7%) tested positive by conventional PCR and 179 (69.6%) by multiplex real-time PCR for Sarcocystis spp. Regarding individual species, 134 (52%), 95 (37%), 17 (6.6%), and 16 (6.2%) were positive for S. cruzi, S. sinensis, S. hirsuta, and S. hominis, respectively. In conclusion, S. sinensis is the most prevalent thick-walled

  3. Optimal Design of Sheet Pile Wall Embedded in Clay

    NASA Astrophysics Data System (ADS)

    Das, Manas Ranjan; Das, Sarat Kumar

    2015-09-01

    Sheet pile wall is a type of flexible earth retaining structure used in waterfront offshore structures, river protection work and temporary supports in foundations and excavations. Economy is an essential part of a good engineering design and needs to be considered explicitly in obtaining an optimum section. By considering appropriate embedment depth and sheet pile section it may be possible to achieve better economy. This paper describes optimum design of both cantilever and anchored sheet pile wall penetrating clay using a simple optimization tool Microsoft Excel ® Solver. The detail methodology and its application with examples are presented for cantilever and anchored sheet piles. The effects of soil properties, depth of penetration and variation of ground water table on the optimum design are also discussed. Such a study will help professional while designing the sheet pile wall penetrating clay.

  4. Mechanical Performance and Failure Mechanism of Thick-walled Composite Connecting Rods Fabricated by Resin Transfer Molding Technique

    NASA Astrophysics Data System (ADS)

    Liu, Gang; Luo, Chuyang; Zhang, Daijun; Li, Xueqin; Qu, Peng; Sun, Xiaochen; Jia, Yuxi; Yi, Xiaosu

    2015-08-01

    A resin transfer molding technique was used to fabricate thick-walled composite connecting rods, and then the mechanical performance of the connecting rod was studied experimentally, at the same time the stress and failure index distributions were simulated numerically. The experimental results show that under a tensile load, the connecting rod first cracks near the vertex of the triangle areas at the two ends, and then the damage propagates along the interface between the main bearing beam and the triangle area as well as along the round angle of the triangle area. Whereas under a compressive load, the delamination primarily occurs at the corner of the U-shaped flange, and the final destruction is caused by the fracture of fibers in the main bearing beam. The simulated results reveal that the tensile failure is originated from the delamination at the round angle transition areas of the T-joints, and the failure strength is determined by the interlaminar strength. Whereas the compressive failure is caused by the fracture of fibers in the main bearing beam, and the failure strength of the structure is determined by the longitudinal compressive strength of the composite material. The simulated results are basically consistent with the experimental results. Hence the mechanical performance and failure mechanism of the complicated composite structure are revealed in great detail through the coupling of the two kinds of research methods, which is helpful for the optimal design of composite structures.

  5. Biometric estimation of chest wall thickness of female radiation workers as an aid in in-vivo detection of the actinides

    SciTech Connect

    Lane, B.H.; Berger, C.D.

    1983-01-01

    An equation was derived to estimate female chest wall thickness from a series of biometric measurements. This technique will result in improved performance for actinide detection in females by accounting for variations in chest wall thickness in derivation of calibration factors.

  6. Finite-element modelling of low-temperature autofrettage of thick-walled tubes of the austenitic stainless steel AISI 304 L: Part II. Thick-walled tube with cross-bore

    NASA Astrophysics Data System (ADS)

    Feng, H.; Donth, B.; Mughrabi, H.

    1998-01-01

    In part I, the autofrettage of a smooth thick-walled tube of the austenitic stainless steel AISI 304 L was studied by finite-element (FE) modelling. It was shown that low- temperature autofrettage is more efficient than autofrettage at room temperature, since it produces a larger beneficial compressive residual tangential (hoop) stress at the inner bore of the tube and hence permits a more significant enhancement of the fatigue resistance against pulsating internal pressure. The objective of the present study (part II) was to investigate the technically more relevant case of a thick-walled tube with a cross-bore made of the same steel. For this purpose, three-dimensional FE calculations were performed in order to characterize the influences of the autofrettage pressure and temperature on the stress and strain changes, in particular at the site of the cross-bore, also taking into account the effects of work hardening and reverse yielding. The results indicate that low-temperature autofrettage can also be applied advantageously in the case of thick-walled tubes with a cross-bore by virtue of the significantly larger residual compressive stresses, compared to room temperature autofrettage. From the quantitative FE calculations, the optimal combination of autofrettage temperature and pressure were concluded to lie in the range of 0965-0393/6/1/007/img1 to 0965-0393/6/1/007/img2, respectively. The calculated results were found to be in fair agreement with the measured values.

  7. Enhanced film thickness for Néel wall in soft magnetic film by introducing strong magnetocrystalline anisotropy.

    PubMed

    Xu, Fei; Wang, Tao; Ma, Tianyong; Wang, Ying; Zhu, Shimeng; Li, Fashen

    2016-01-01

    This study investigated the magnetic domain walls in a single-layer soft magnetic film with strong magnetocrystalline anisotropy energy. The soft magnetic film is composed of a highly c-axis-oriented hcp-Co81Ir19 alloy with strong negative magnetocrystalline anisotropy. The domain structure of the soft Co81Ir19 films with thickness ranging from 50-230 nm in a demagnetization state was observed through magnetic force microscopy and Lorentz transmission electron microscopy. Results reveal that the critical transition thickness at which the domain wall changes from Néel type to Bloch type is about 138 nm, which is much larger than the critical value of traditional Fe- and Co-based soft magnetic films with negligible magnetocrystalline anisotropy. Theoretical calculation was also performed and the calculated result agrees well with experimental data. PMID:26821614

  8. Enhanced film thickness for Néel wall in soft magnetic film by introducing strong magnetocrystalline anisotropy

    PubMed Central

    Xu, Fei; Wang, Tao; Ma, Tianyong; Wang, Ying; Zhu, Shimeng; Li, Fashen

    2016-01-01

    This study investigated the magnetic domain walls in a single-layer soft magnetic film with strong magnetocrystalline anisotropy energy. The soft magnetic film is composed of a highly c-axis-oriented hcp-Co81Ir19 alloy with strong negative magnetocrystalline anisotropy. The domain structure of the soft Co81Ir19 films with thickness ranging from 50–230 nm in a demagnetization state was observed through magnetic force microscopy and Lorentz transmission electron microscopy. Results reveal that the critical transition thickness at which the domain wall changes from Néel type to Bloch type is about 138 nm, which is much larger than the critical value of traditional Fe- and Co-based soft magnetic films with negligible magnetocrystalline anisotropy. Theoretical calculation was also performed and the calculated result agrees well with experimental data. PMID:26821614

  9. Thermal insulating concrete wall panel design for sustainable built environment.

    PubMed

    Zhou, Ao; Wong, Kwun-Wah; Lau, Denvid

    2014-01-01

    Air-conditioning system plays a significant role in providing users a thermally comfortable indoor environment, which is a necessity in modern buildings. In order to save the vast energy consumed by air-conditioning system, the building envelopes in envelope-load dominated buildings should be well designed such that the unwanted heat gain and loss with environment can be minimized. In this paper, a new design of concrete wall panel that enhances thermal insulation of buildings by adding a gypsum layer inside concrete is presented. Experiments have been conducted for monitoring the temperature variation in both proposed sandwich wall panel and conventional concrete wall panel under a heat radiation source. For further understanding the thermal effect of such sandwich wall panel design from building scale, two three-story building models adopting different wall panel designs are constructed for evaluating the temperature distribution of entire buildings using finite element method. Both the experimental and simulation results have shown that the gypsum layer improves the thermal insulation performance by retarding the heat transfer across the building envelopes. PMID:25177718

  10. Thermal Insulating Concrete Wall Panel Design for Sustainable Built Environment

    PubMed Central

    Zhou, Ao; Wong, Kwun-Wah

    2014-01-01

    Air-conditioning system plays a significant role in providing users a thermally comfortable indoor environment, which is a necessity in modern buildings. In order to save the vast energy consumed by air-conditioning system, the building envelopes in envelope-load dominated buildings should be well designed such that the unwanted heat gain and loss with environment can be minimized. In this paper, a new design of concrete wall panel that enhances thermal insulation of buildings by adding a gypsum layer inside concrete is presented. Experiments have been conducted for monitoring the temperature variation in both proposed sandwich wall panel and conventional concrete wall panel under a heat radiation source. For further understanding the thermal effect of such sandwich wall panel design from building scale, two three-story building models adopting different wall panel designs are constructed for evaluating the temperature distribution of entire buildings using finite element method. Both the experimental and simulation results have shown that the gypsum layer improves the thermal insulation performance by retarding the heat transfer across the building envelopes. PMID:25177718

  11. Using The Descending Aortic Wall Thickness Measured In Transesophageal Echocardiography As A Risk Marker For Aortic Dissection

    PubMed Central

    Fanari, Zaher; Hammami, Sumaya; Hammami, Muhammad Baraa; Hammami, Safa; Eze-Nliam, Chete; Weintraub, William S.

    2015-01-01

    Objective The aim of this study is to estimate whether aortic wall thickness is increased in patients with Aortic dissection (AD) compared to low risk control group and can be used in addition to aortic diameter as a risk marker of AD. Background AD occurs due to pathologies that may increase thickness of the aortic wall. Transesophageal echocardiography (TEE) has the ability to visualize both the thoracic aortic wall and lumen. Aortic diameter has been used to predict aortic dissection and timing of surgery, but it is not always predictive of that risk. Methods In 48 patients with AD who underwent TEE were examined retrospectively and compared to 48 control patients with patent foramen ovale (PFO). We measured aortic diameter at different levels, intimal/medial thickness (IMT) and complete wall thickness (CMT). Demographic data and cardiovascular risk factors were reviewed. The data was analyzed using ANOVA and student t test. Results (AD) patients were older [mean age 66 AD vs. 51 PFO], had more hypertension, diabetes, hyperlipidemia and Coronary artery disease. Both IMT and CMT in the descending aorta were increased in AD group [(1.85 vs. 1.43 mm; P=0.03 and 2.93 vs. 2.46 mm; p=0.01). As expected the diameter of ascending aorta was also greater in AD (4.61 vs. 2.92 cm; P=0.004). Conclusions CMT and IMT in the descending aorta detected by TEE is greater in patients with AD when compared to control and may add prognostic data to that of aortic diameter. PMID:25984293

  12. Shear flow over a plane wall with an axisymmetric cavity or a circular orifice of finite thickness

    NASA Astrophysics Data System (ADS)

    Pozrikidis, C.

    1994-01-01

    Shear flow over a plane wall that contains an axisymmetric depression or pore is studied using a new boundary integral method which is suitable for computing three-dimensional Stokes flow within axisymmetric domains. Numerical results are presented for cavities in the shape of a section of a sphere or a circular cylinder of finite length, and for a family of pores or orifices with finite thickness. The results illustrate the distribution of shear stresses over the plane wall and inside the cavities or pores. It is found that in most cases, the distribution of shear stresses over the plane wall, around the depressions, is well approximated with that for flow over an orifice of infinitesimal thickness for which an exact solution is available. The kinematic structure of the flow is discussed with reference to eddy formation and three-dimensional flow reversal. It is shown that the thickness of a circular orifice or depth of a pore play an important role in determining the kinematical structure of the flow underneath the orifice in the lower half-space.

  13. Recommendations for protecting against failure by brittle fracture: Category II and III ferritic steel shipping containers with wall thickness greater than four inches

    SciTech Connect

    Schwartz, M.W.; Fischer, L.E.

    1996-08-01

    This report provides criteria for selecting ferritic steels that would prevent brittle fracture in Category II and III shipping containers with wall thickness greater than 4 inches. These methods are extensions of those previously used for Category II and III containers less than 4 inches thick and Category I containers more than 4 inches thick.

  14. Riser Difference Evaluation from Ultrasonic Wall Thickness Inspection of Thirteen Double-Shell Tanks

    SciTech Connect

    Weier, Dennis R.; Pardini, Allan F.

    2010-03-15

    PNNL has performed an analysis of ultrasonic thickness measurements taken on Hanford's double-shell tanks (DSTs) approximately eight years apart. The analysis was performed to determine whether significant differences exist between ultrasonic thickness measurements made in two opposite risers in Hanford DSTs that have been examined twice.

  15. Diffusion capacity and CT measures of emphysema and airway wall thickness – relation to arterial oxygen tension in COPD patients

    PubMed Central

    Saure, Eirunn Waatevik; Bakke, Per Sigvald; Eagan, Tomas Mikal Lind; Aanerud, Marianne; Jensen, Robert Leroy; Grydeland, Thomas Blix; Johannessen, Ane; Nilsen, Roy Miodini; Thorsen, Einar; Hardie, Jon Andrew

    2016-01-01

    Background Decreased diffusing capacity of the lung for carbon monoxide (DLCO) is associated with emphysema. DLCO is also related to decreased arterial oxygen tension (PaO2), but there are limited data on associations between PaO2 and computed tomography (CT) derived measures of emphysema and airway wall thickness. Objective To examine whether CT measures of emphysema and airway wall thickness are associated with level of arterial oxygen tension beyond that provided by measurements of diffusion capacity and spirometry. Methods The study sample consisted of 271 smoking or ex-smoking COPD patients from the Bergen COPD Cohort Study examined in 2007–2008. Emphysema was assessed as percent of low-attenuation areas<−950 Hounsfield units (%LAA), and airway wall thickness as standardised measure at an internal perimeter of 10 mm (AWT-Pi10). Multiple linear regression models were fitted with PaO2 as the outcome variable, and %LAA, AWT-Pi10, DLCO and carbon monoxide transfer coefficient (KCO) as main explanatory variables. The models were adjusted for sex, age, smoking status, and haemoglobin concentration, as well as forced expiratory volume in one second (FEV1). Results Sixty two per cent of the subjects were men, mean (SD) age was 64 (7) years, mean (SD) FEV1 in percent predicted was 50 (15)%, and mean PaO2 (SD) was 9.3 (1.1) kPa. The adjusted regression coefficient (CI) for PaO2 was –0.32 (−0.04–(−0.019)) per 10% increase in %LAA (p<0.01). When diffusion capacity and FEV1 were added to the model, respectively, the association lost its statistical significance. No relationship between airway wall thickness and PaO2 was found. Conclusion CT assessment of airway wall thickness is not associated with arterial oxygen tension in COPD patients. Emphysema score measured by chest CT, is related to decreased PaO2, but cannot replace measurements of diffusion capacity in the clinical evaluation of hypoxaemia. PMID:27178139

  16. Design of Wall Segments for Ferritic Wall Mode studies on HBT-EP

    NASA Astrophysics Data System (ADS)

    Hughes, P.; Bialek, J.; Boozer, A. H.; Mauel, M. E.; Maurer, D. A.; Navratil, G. A.

    2011-10-01

    Low-activation ferritic steels are leading material candidates for use in next-generation fusion development experiments such as a prospective US component test facility and DEMO. Understanding the interaction of plasmas with a ferromagnetic wall will be crucial physics for these experiments. Although there has been a linear FRWM experiment, the FRWM has not yet been observed in toroidal geometry. Using its high-resolution magnetic diagnostics, HBT-EP will explore the dynamics and stability of plasma interacting with ferromagnetic materials. We describe an analysis of the plasma-wall coupling constant as a function of ferritic segment configuration and plasma position, as well as comparing material options for magnetic properties, cost, and ease of fabrication. Also, initial modeling, design, and installation of moderate permeability (μ ~ 5) wall segments on HBT-EP will be discussed. Supported by U.S. DOE Grant DE-FG02-86ER53222.

  17. Nonaxisymmetric turbine end wall design: Part 1 -- Three-dimensional linear design system

    SciTech Connect

    Harvey, N.W.; Rose, M.G.; Taylor, M.D.; Shahpar, S.; Hartland, J.; Gregory-Smith, D.G.

    2000-04-01

    A linear design system, already in use for the forward and inverse design of three-dimensional turbine aerofoils, has been extended for the design of their end walls. This paper shows how this method has been applied to the design of a nonaxisymmetric end wall for a turbine rotor blade in linear cascade. The calculations show that nonaxisymmetric end wall profiling is a powerful tool for reducing secondary flows, in particular the secondary kinetic energy and exit angle deviations. Simple end wall profiling is shown to be at least as beneficial aerodynamically as the now standard techniques of differentially skewing aerofoil sections up the span, and (compound) leaning of the aerofoil. A design is presented that combines a number of end wall features aimed at reducing secondary loss and flow deviation. The experimental study of this geometry, aimed at validating the design method, is the subject of the second part of this paper. The effects of end wall perturbations on the flow field are calculated using a three-dimensional pressure correction based Reynolds-averaged Navier-Stokes CFD code. These calculations are normally performed overnight on a cluster of work stations. The design system then calculates the relationships between perturbations in the end wall and resulting changes in the flow field. With these available, linear superposition theory is used to enable the designer to investigate quickly the effect on the flow field of many combinations of end wall shapes (a matter of minutes for each shape).

  18. Student-Designed Cultural Lesson Boards and Wall Maps

    ERIC Educational Resources Information Center

    Beck, Charles R.

    2010-01-01

    Display boards and wall maps, created by a teacher or designed by a company, are a common sight in most elementary classrooms, but students usually have a rather limited role in constructing these materials. The main objective of this article is to describe some techniques for encouraging students to create social studies displays that can serve…

  19. Stress-intensity factors for a thick-walled cylinder containing an annular imbedded or external or internal surface crack

    NASA Technical Reports Server (NTRS)

    Erdol, R.; Erdogan, F.

    1976-01-01

    The elastostatic axisymmetric problem for a long thick-walled cylinder containing a ring-shaped internal or edge crack is considered. Using the standard transform technique the problem is formulated in terms of an integral equation which has a simple Cauchy kernel for the internal crack and a generalized Cauchy kernel for the edge crack as the dominant part. As examples the uniform axial load and the steady-state thermal stress problems have been solved and the related stress intensity factors have been calculated. Among other findings the results show that in the cylinder under uniform axial stress containing an internal crack the stress intensity factor at the inner tip is always greater than that at the outer tip for equal net ligament thicknesses and in the cylinder with an edge crack which is under a state of thermal stress the stress intensity factor is a decreasing function of the crack depth, tending to zero as the crack depth approaches the wall thickness.

  20. Design and installation of a ferromagnetic wall in tokamak geometry

    SciTech Connect

    Hughes, P. E. Levesque, J. P.; Rivera, N.; Mauel, M. E.; Navratil, G. A.

    2015-10-15

    Low-activation ferritic steels are leading material candidates for use in next-generation fusion development experiments such as a prospective component test facility and DEMO power reactor. Understanding the interaction of plasmas with a ferromagnetic wall will provide crucial physics for these facilities. In order to study ferromagnetic effects in toroidal geometry, a ferritic wall upgrade was designed and installed in the High Beta Tokamak–Extended Pulse (HBT-EP). Several material options were investigated based on conductivity, magnetic permeability, vacuum compatibility, and other criteria, and the material of choice (high-cobalt steel) is characterized. Installation was accomplished quickly, with minimal impact on existing diagnostics and overall machine performance, and initial results demonstrate the effects of the ferritic wall on plasma stability.

  1. Design and installation of a ferromagnetic wall in tokamak geometry.

    PubMed

    Hughes, P E; Levesque, J P; Rivera, N; Mauel, M E; Navratil, G A

    2015-10-01

    Low-activation ferritic steels are leading material candidates for use in next-generation fusion development experiments such as a prospective component test facility and DEMO power reactor. Understanding the interaction of plasmas with a ferromagnetic wall will provide crucial physics for these facilities. In order to study ferromagnetic effects in toroidal geometry, a ferritic wall upgrade was designed and installed in the High Beta Tokamak-Extended Pulse (HBT-EP). Several material options were investigated based on conductivity, magnetic permeability, vacuum compatibility, and other criteria, and the material of choice (high-cobalt steel) is characterized. Installation was accomplished quickly, with minimal impact on existing diagnostics and overall machine performance, and initial results demonstrate the effects of the ferritic wall on plasma stability. PMID:26520952

  2. First wall/blanket/shield design and optimization system

    SciTech Connect

    Gohar, Y.; Baker, C.; Attaya, H.; Cha, Y.; Majumdar, S.; Scandora, T.

    1988-02-01

    First wall/blanket/shield design and optimization system (BSDOS) has been developed to provide a state-of-the-art design tool for fast accurate analysis. In addition, it has been designed to perform several other functions: (1) allowing comparison and evaluation studies for different concepts using the same data bases and ground rules, (2) permitting the use of any figure of merit in the evaluation studies, (3) optimizing the first wall/blanket/shield design parameters for any figure of merit under several design constraints, (4) permitting the use of different reactor parameters in the evaluation and optimization analyses, (5) allowing the use of improved eingineering data bases to study the impact on the design performance for planning future research and development, and (6) evaluating the effect of the data base uncertainties on the design performance. BSDOS is the first design and optimization system to couple the highly interacting neutronics, heat transfer, thermal hydraulics, stress analysis, radioactivity and decay-heat analyses, tritium balance, and capital cost. A brief description of the main features of BSDOS is given in this paper. Also, results from using BSDOS to perform design analysis for several reactor components are presented. 17 refs., 1 fig., 2 tabs.

  3. The gender-specific chest wall thickness prediction equations for routine measurements of 239Pu and 241Am within the lungs using HPGe detectors.

    PubMed

    Vickers, L R

    1996-03-01

    The current chest wall thickness prediction equation is not applicable to use in routine lung counting measurements for detection of low energy photons (17--60 keV) within the lungs of male and female subjects. The current chest wall thickness prediction equation was derived for the NaI-CsI "phoswich" detection system, which is not the routine detection system in use; the subject position was supine, which is not the routine position; the equation did not account for the intercostal tissue thicknesses of muscle and adipose which significantly attenuate low energy photons (17--60keV); it was derived from male subjects only and is used to predict the chest wall thickness of female subjects for whom it is not applicable. The current chest wall thickness prediction equation yields unacceptable percent errors in the HPGe detection efficiency calibration for 239Pu and 241Am (17- and 59.5-keV photons, respectively) relative to the gender-specific HPGe chest wall thickness prediction equations of this paper (+284% to --73% for 239Pu; (+)42% to --39% for 241Am). As a result, use of the current chest wall thickness prediction equation yields unacceptable percent errors (proportional in magnitude to the percent errors in the detection efficiency calibration) in the calculation of the minimum detectable activity (Bq) or in an initial assessment of a radioactive contamination exposure detected by a routine lung count measurement. PMID:8609026

  4. Oscillatory limited compressible fluid flow induced by the radial motion of a thick-walled piezoelectric tube

    NASA Astrophysics Data System (ADS)

    Shin, Dong-Youn; Grassia, Paul; Derby, Brian

    2003-09-01

    A simple oscillatory, slightly compressible, fluid flow model in a thick-walled piezoelectric tube used in a drop-on-demand inkjet print head is developed from the point of view of fluid-structure interaction to take account of pressure wave propagation and pressure loading opposing wall motion. A frequency sweep is performed computationally using the model revealing the first acoustic fluid-structure resonance frequency and the influence of fluid viscosity. The validity of the model, with given information on the speed of sound in a fluid, is evaluated by comparing the theoretically predicted resonance frequency to the experimentally measured resonance frequency. In addition, the intrinsic speed of sound can be easily computed using the measured acoustic resonance frequency and this computed speed of sound agrees closely with speeds of sound reported in the literature.

  5. Automatic airway wall segmentation and thickness measurement for long-range optical coherence tomography images

    NASA Astrophysics Data System (ADS)

    Qi, Li; Huang, Shenghai; Heidari, Andrew E.; Dai, Cuixia; Zhu, Jiang; Zhang, Xuping; Chen, Zhongping

    2016-03-01

    We present an automatic segmentation method for delineation and quantitative thickness measurement of multiple layers in endoscopic airway optical coherence tomography (OCT) images. The boundaries of the mucosa and the sub-mucosa layers were extracted using a graph-theory-based dynamic programming algorithm. The algorithm was tested with pig airway OCT images acquired with a custom built long range endoscopic OCT system. The performance of the algorithm was demonstrated by cross-validation between auto and manual segmentation experiments. Quantitative thicknesses changes in the mucosal layers are obtained automatically for smoke inhalation injury experiments.

  6. Recurrent cystosarcoma phylloides of breast: extensive full-thickness excision of chest wall with immediate repair using steel mesh and a latissimus dorsi myocutaneous flap.

    PubMed

    Mindikoğlu, A N; Aktan, K

    1983-10-01

    The case of a young woman with a massive recurrent cystosarcoma phylloides of the breast is presented in whom a full thickness excision of the chest wall was carried out en bloc together with four ribs. The large full-thickness defect of the chest wall was reconstructed with stainless steel mesh and covered by a latissimus dorsi myocutaneous flap. The management of post-operative paradoxical movement is also described. PMID:6313105

  7. The importance of ultrasonographic measurement of peritoneal wall thickness in pediatric chronic peritoneal dialysis patients.

    PubMed

    Yavaşcan, Önder; Aksu, Nejat; Alparslan, Caner; Sarıtaş, Serdar; Elmas, Cengiz Han; Eraslan, Ali Nihat; Duman, Soner; Mir, Sevgi

    2015-04-01

    Loss of peritoneal function due to peritoneal fibrosing syndrome (PFS) is a major factor leading to treatment failure in chronic peritoneal dialysis (PD) patients. Although the precise biologic mechanisms responsible for these changes have not been defined, the general assumption is that alterations in peritoneal function are related to structural changes in the peritoneal membrane. Studies of the peritoneal membrane by non-invasive ultrasonography (US) in chronic PD patients are limited. The aim of the present study is to assess the relationship between functional parameters of peritoneum and peritoneal thickness measured by US in children treated by chronic PD. We recruited two groups of patients: 23 subjects (13 females, 10 males) on chronic PD (patient group) and 26 (7 females, 19 males) on predialysis out-patient follow-up (creatinine clearance: 20-60 mL/min/1.73 m(2)) (control group). Age, sex, weight, height, body mass index (BMI), chronic PD duration, episodes of peritonitis and the results of peritoneal equilibration test (PET) were recorded. Hemoglobin (Hb), blood pressure (BP), left ventricular mass index (LVMI) and renal osteodystrophy (ROD) parameters were also obtained. The thickness of the parietal peritoneum was measured by trans-abdominal US in all children. Statistical analyses were performed by using Student's t and Pearson's correlation tests. Mean peritoneal thickness in chronic PD patients (1028.26 ± 157.26 μm) was significantly higher than control patients (786.52 ± 132.33). Mean peritoneal thickness was significantly correlated with mean body height (R(2) = 0.93, p < 0.05), BMI (R(2) = 0.25, p < 0.05), chronic PD duration (R(2) = 0.64, p < 0.05), episodes of peritonitis (R(2) = 0.93, p < 0.05), D/Pcreatinine (R(2) = 0.76, p < 0.05) and D4/D0glucose (R(2) = 0.81, p < 0.05). No correlation was found between peritoneal thickness and Hb, BP, LVMI and ROD parameters. In conclusion

  8. Instrumented thick-walled tube method for measuring thermal pressure in fluids and isotropic stresses in thermosetting resins

    NASA Astrophysics Data System (ADS)

    Merzlyakov, Mikhail; Simon, Sindee L.; McKenna, Gregory B.

    2005-06-01

    We have developed a method for measuring the thermal pressure coefficient and cure-induced and thermally induced stresses based on an instrumented thick-walled tube vessel. The device has been demonstrated at pressures up to 330 MPa and temperatures to 300 °C. The method uses a sealed stainless steel thick-walled tube to impose three-dimensional isotropic constraints. The tube is instrumented with strain gauges in hoop and in axial directions and can be used in open or closed configurations. By making measurements of the isotropic stresses as a function of temperature, the method allows determination of the thermal pressure coefficient in both the glassy and rubbery (or liquid) states. The method also can be used to measure isotropic stress development in thermosetting resins during cure and subsequent thermal cycling. Experimental results are presented for sucrose benzoate, di-2-ethylhexylsebacate, and an epoxy resin. The current report shows that the method provides reliable estimates for the thermal pressure coefficient. The thermal pressure coefficient is determined with resolution on the order of 10kPa/K. Among advantages of the method is that the tubes are reusable, even when measurements are made for cure response of thermosetting resins.

  9. Metachronous carcinoma of rectum with reconstruction of a full-thickness abdominal wall defect using a pedicled anterolateral thigh flap

    PubMed Central

    Kok, Amy Siu Yan

    2016-01-01

    Reconstruction of large, complex defects of the abdominal wall after resection of malignant tumors can be challenging. The transfer of an anterolateral thigh (ALT) flap is a feasible and effective option. However, no report has been published on the use of ALT flap after metachronous colonic tumor resection so far. We present an original case of resection of metachronous carcinoma of rectum with reconstruction of the abdominal wall defect using an ALT flap harvested with its aponeurosis. The postoperative course was uncomplicated. Functional and esthetic results were satisfactory. There was no postoperative incisional hernia or tumor recurrence. We conclude that abdominal wall defects of large sizes can be successfully reconstructed using an appropriately designed ALT flap; a simple, single-stage effective reconstruction. PMID:27161142

  10. Stress analysis for wall structure in mobile hot cell design

    NASA Astrophysics Data System (ADS)

    Bahrin, Muhammad Hannan; Rahman, Anwar Abdul; Hamzah, Mohd Arif; Mamat, Mohd Rizal; Azman, Azraf; Hasan, Hasni

    2016-01-01

    Malaysian Nuclear Agency is developing a Mobile Hot Cell (MHC) in order to handle and manage Spent High Activity Radioactive Sources (SHARS) such as teletherapy heads and irradiators. At present, there are only two units of MHC in the world, in South Africa and China. Malaysian Mobile Hot cell is developed by Malaysian Nuclear Agency with the assistance of IAEA expert, based on the design of South Africa and China, but with improved features. Stress analysis has been performed on the design in order to fulfil the safety requirement in operation of MHC. This paper discusses the loading analysis effect from the sand to the MHC wall structure.

  11. Design of Wall Segments for Ferritic Wall Mode Studies on HBT-EP

    NASA Astrophysics Data System (ADS)

    Hughes, Paul; Bialek, J.; Boozer, A.; Mauel, M. E.; Levesque, J. P.; Navratil, G. A.

    2012-10-01

    Low-activation ferritic steels are leading material candidates for use in next-generation fusion development experiments such as a prospective US component test facility and DEMO [1]. Understanding the interaction of plasmas with a ferromagnetic wall will be crucial physics for these experiments. Although there has been a linear FRWM experiment [2], the FRWM has not yet been observed in toroidal geometry. Using its high-resolution magnetic diagnostics, HBT-EP will explore the dynamics and stability of plasma interacting with ferromagnetic materials. We describe simple models [3] for plasma-wall interaction in the presence of ferromagnetic material, and compare material options for magnetic properties, cost, and ease of fabrication. Also, initial modeling, design, and installation of moderate permeability (1<μ<10) wall segments on HBT-EP will be discussed.[4pt] [1] Kurtz, R.J., et. al. 2009 J Nucl Mater 386-388[0pt] [2] Bergerson, W., et. al. 2008 Phys Rev Lett 101[0pt] [3] Kurita, G., et. al. 2003 Nucl Fus 43 949-954

  12. SU-C-BRA-04: Use of Esophageal Wall Thickness in Evaluation of the Response to Chemoradiation Therapy for Esophageal Cancer

    SciTech Connect

    Wang, J; Kligerman, S; Lu, W; Kang, M

    2015-06-15

    Purpose: To quantitatively evaluate the esophageal cancer response to chemoradiation therapy (CRT) by measuring the esophageal wall thickness in CT. Method: Two datasets were used in this study. The first dataset is composed of CT scans of 15 esophageal cancer patients and 15 normal controls. The second dataset is composed of 20 esophageal cancer patients who underwent PET/CT scans before (Pre-CRT) and after CRT (Post-CRT). We first segmented the esophagus using a multi-atlas-based algorithm. The esophageal wall thickness was then computed, on each slice, as the equivalent circle radius of the segmented esophagus excluding the lumen. To evaluate the changes of wall thickness, we computed the standard deviation (SD), coefficient of variation (COV, SD/Mean), and flatness [(Max–Min)/Mean] of wall thickness along the entire esophagus. Results: For the first dataset, the mean wall thickness of cancer patients and normal controls were 6.35 mm and 6.03 mm, respectively. The mean SD, COV, and flatness of the wall thickness were 2.59, 0.21, and 1.27 for the cancer patients and 1.99, 0.16, and 1.13 for normal controls. Statistically significant differences (p < 0.05) were identified in SD and flatness. For the second dataset, the mean wall thickness of pre-CRT and post-CRT patients was 7.13 mm and 6.84 mm, respectively. The mean SD, COV, and flatness were 1.81, 0.26, and 1.06 for pre-CRT and 1.69, 0.26, and 1.06 for post-CRT. Statistically significant difference was not identified for these measurements. Current results are based on the entire esophagus. We believe significant differences between pre- and post-CRT scans could be obtained, if we conduct the measurements at tumor sites. Conclusion: Results show thicker wall thickness in pre-CRT scans and differences in wall thickness changes between normal and abnormal esophagus. This demonstrated the potential of esophageal wall thickness as a marker in the tumor CRT response evaluation. This work was supported in part by

  13. Space station integrated wall design and penetration damage control

    NASA Technical Reports Server (NTRS)

    Coronado, A. R.; Gibbins, M. N.; Wright, M. A.; Stern, P. H.

    1987-01-01

    A methodology was developed to allow a designer to optimize the pressure wall, insulation, and meteoroid/debris shield system of a manned spacecraft for a given spacecraft configuration and threat environment. The threat environment consists of meteoroids and orbital debris, as specified for an arbitrary orbit and expected lifetime. An overall probability of no penetration is calculated, as well as contours of equal threat that take into account spacecraft geometry and orientation. Techniques, tools, and procedures for repairing an impacted and penetrated pressure wall were developed and tested. These techniques are applied from the spacecraft interior and account for the possibility of performing the repair in a vacuum. Hypervelocity impact testing was conducted to: (1) develop and refine appropriate penetration functions, and (2) determine the internal effects of a penetration on personnel and equipment.

  14. Resistive wall mode active control physics design for KSTAR

    SciTech Connect

    Park, Y. S. Sabbagh, S. A.; Bialek, J. M.; Berkery, J. W.; Bak, J. G.; Lee, S. G.; Oh, Y. K.

    2014-01-15

    As KSTAR H-mode operation approaches the region where the resistive wall mode (RWM) can be unstable, an important issue for future long pulse, high beta plasma operation is to evaluate RWM active feedback control performance using a planned active/passive RWM stabilization system on the device. In particular, an optimal design of feedback sensors allows mode stabilization up to the highest achievable β{sub N} close to the ideal with-wall limit, β{sub N}{sup wall}, with reduced control power requirements. The computed ideal n = 1 mode structure from the DCON code has been input to the VALEN-3D code to calculate the projected performance of an active RWM control system in the KSTAR three-dimensional conducting structure device geometry. Control performance with the midplane locked mode detection sensors, off-midplane saddle loops, and magnetic pickup coils is examined. The midplane sensors measuring the radial component of the mode perturbation is found to be strongly affected by the wall eddy current. The off-axis saddle loops with proper compensation of the prompt applied field are computed to provide stabilization at β{sub N} up to 86% of β{sub N}{sup wall} but the low RWM amplitude computed in the off-axis regions near the sensors can produce a low signal-to-noise ratio. The required control power and bandwidth are also estimated with varied noise levels in the feedback sensors. Further improvements have been explored by examining a new RWM sensor design motivated by the off-midplane poloidal magnetic field sensors in NSTX. The new sensors mounted off of the copper passive stabilizer plates near the device midplane show a clear advantage in control performance corresponding to achieving 99% of β{sub N}{sup wall} without the need of compensation of the prompt field. The result shows a significant improvement of RWM feedback stabilization using the new sensor set which motivates a future feedback sensor upgrade.

  15. Thick growing multilayer nanobrick wall thin films: super gas barrier with very few layers.

    PubMed

    Guin, Tyler; Krecker, Michelle; Hagen, David Austin; Grunlan, Jaime C

    2014-06-24

    Recent work with multilayer nanocoatings composed of polyelectrolytes and clay has demonstrated the ability to prepare super gas barrier layers from water that rival inorganic CVD-based films (e.g., SiOx). In an effort to reduce the number of layers required to achieve a very low oxygen transmission rate (OTR (<0.01 cc/m(2)·day·atm)) in these nanocoatings, buffered cationic chitosan (CH) and vermiculite clay (VMT) were deposited using layer-by-layer (LbL) assembly. Buffering the chitosan solution and its rinse with 50 mM Trizma base increased the thickness of these films by an order of magnitude. The OTR of a 1.6-μm-thick, six-bilayer film was 0.009 cc/m(2)·day·atm, making this the best gas barrier reported for such a small number of layers. This simple modification to the LbL process could likely be applied more universally to produce films with the desired properties much more quickly. PMID:24914613

  16. Thermoacoustic Oscillations (He-4 Taconis Modes) inside a Thick-Walled Tube.

    NASA Astrophysics Data System (ADS)

    Williamson, J. J.; Toshida, S.; Ravikumar, R. V.; Frederking, T. H. K.

    The equations describing thermoacoustic (Taconis) oscillations inside a liquid-level finder do not have a gravitational dependence term. Therefore, examining these oscillatory modes has potential applications for low boiling cryoliquids in micro-gravity environments, particularly in covered, wall-adjacent domains, like cryoliquids in storage containers aboard spacecraft. Because of capillary action, these liquids tend to cling to the walls of the container. We have continued proceeding work (ICEC 16) using a heavy-walled liquid-level finder for cryogenic helium-4 in 1-g experiments. The apparatus used to observe Taconis oscillations is described by Gaffney and Clement, where a long, hollow tube is immersed, open end down, into a tank of liquid helium-4. The oscillations were measured by fitting the closed end of the tube with a rubber membrane having a small permanent magnet attached. Acoustic oscillations in the tube cause vibrations in the membrane-magnet system which were sensed by a pick-up coil, converting the oscillations into an electrical voltage. The oscillations were measured as a function of voltage (i.e., magnet displacement) versus time, i.e., a time series. The immersion length of the Taconis tube in liquid helium was varied from a finite length to "zero" (tube end touching liquid) and beyond "zero" in the gas phase. The purpose was to characterize the dynamics of the Taconis oscillations and examine usage of the Taconis tube as a liquid-level finder for liquid helium in storage tanks in microgravity environments. In order to characterize the underlying dynamics causing the oscillations, Nonlinear Dynamical Analysis (i.e., "Chaos" analysis) of the oscillations was performed. "Chaotic" behavior is summarized as: an erratic-looking system is in fact deterministic and governed by a set of nonlinear differential equations which are highly sensitive to the system's initial conditions. From the time series, a number of characterizations of the underlying

  17. The impact of transcatheter aortic valve implantation on left ventricular performance and wall thickness – single-centre experience

    PubMed Central

    Szymański, Piotr; Dąbrowski, Maciej; Zakrzewski, Dariusz; Michałek, Piotr; Orłowska-Baranowska, Ewa; El-Hassan, Kamal; Chmielak, Zbigniew; Witkowski, Adam; Hryniewiecki, Tomasz

    2015-01-01

    Introduction Transcatheter aortic valve implantation (TAVI) is a treatment alternative for the elderly population with severe symptomatic aortic stenosis (AS) at high risk for surgical aortic valve replacement (SAVR). Aim To assess the impact of TAVI on echocardiographic parameters of left ventricular (LV) performance and wall thickness in patients subjected to the procedure in a single-centre between 2009 and 2013. Material and methods The initial group consisted of 170 consecutive patients with severe AS unsuitable for SAVR. Logistic European System for Cardiac Operative Risk Evaluation (EuroSCORE) was 21.73 ±12.42% and mean age was 79.9 ±7.5 years. Results The TAVI was performed in 167 (98.2%) patients. Mean aortic gradient decreased significantly more rapidly after the procedure (from 58.6 ±16.7 mm Hg to 11.9 ±4.9 mm Hg, p < 0.001). The LV ejection fraction (LVEF) significantly increased in both short-term and long-term follow-up (57 ±14% vs. 59 ±13%, p < 0.001 and 56 ±14% vs. 60 ±12%, p < 0.001, respectively). Significant regression of interventricular septum diameter at end-diastole (IVSDD) and end-diastolic posterior wall thickness (EDPWth) was noted in early (15.0 ±2.4 mm vs. 14.5 ±2.3 mm, p < 0.001 and 12.7 ±2.1 mm vs. 12.4 ±1.9 mm, p < 0.028, respectively) and late post-TAVI period (15.1 ±2.5 mm to 14.3 ±2.5 mm, p < 0.001 and 12.8 ±2.0 mm to 12.4 ±1.9 mm, p < 0.007, respectively). Significant paravalvular leak (PL) was noted in 21 (13.1%) patients immediately after TAVI and in 13 (9.6%) patients in follow-up (p < 0.001). Moderate or severe mitral regurgitation (msMR) was seen in 24 (14.9%) patients from the initial group and in 19 (11.8%) patients after TAVI (p < 0.001). Conclusions The TAVI had an immediate beneficial effect on LVEF, LV walls thickness, and the incidence of msMR. The results of the procedure are comparable with those described in other centres. PMID:25848369

  18. Application of Internal Fusible Chills in Thick-Walled Castings Made of EN-GJS with an Optimized Microstructure

    NASA Astrophysics Data System (ADS)

    Krupa, Wojciech; Tonn, Babette

    2011-01-01

    The degeneration of graphite in thick-walled components made of ductile iron due to slower solidification affects the mechanical properties and is unacceptable for all safety-relevant components. The inoculation of the melt no longer leads to a fine microstructure. After exceeding the critical solidification time, degenerated shapes of graphite are to be expected. The external cooling with a chill-mould does not eliminate graphite degeneration in the thermal centres. The positive effect of these chills is also limited by the wall thickness. The aim of this study was to increase the heat dissipation of the melt by positioning the internal fusible chills in the thermal centre of the mould cavity. This should lead to accelerated solidification. The plate-shaped chills were placed in the middle of rectangular samples. The solidification processes were first simulated with Magmasoft in order to optimize the size and shape of the fusible chills and to thus guarantee a complete dissolving of the chills. A reduction in the solidification time of approximately 15% was achieved. In the experiments thick-walled samples were cast with and without internal fusible chills and compared. Areas with degenerated graphite, including chunky graphite, were found in the centres of the cast samples without internal cooling. Placing fusible chills in castings increased the number of graphite spheroids in the microstructure and exhibited no graphite degeneration. A homogenous microstructure was developed—no residues of the chills were found. Differences in microstructure and mechanical properties between the edges and centres of the casting could be nullified. The optimized graphite morphology of the casting with internal cooling led to an increase in tensile strength in the thermal centre of about 30 MPa (8%). This process was successfully implemented in an industrial environment. Blocks out of EN-GJS-400 for use in hydraulic engineering with a total weight of eight tonnes were cast in

  19. Environmentally-controlled fracture of an overstrained A723 steel thick-walled cylinder

    NASA Astrophysics Data System (ADS)

    Underwood, J. H.; Olmstead, V. J.; Askew, J. C.; Kapusta, A. A.; Young, G. A.

    1992-08-01

    A through-wall, 1.7 m long crack grew suddenly from a notch in a 285 mm outer diameter (OD) of an A723 steel overstrained tube that was undergoing plating operations with no externally applied loads. The fracture mechanics tests and analyses and the fractography performed to characterize the cracking are described. The tube had a yield strength of 1200 MPa, fracture toughness of 150 MPavm, and a tensile residual stress at the OD of about 600 MPa. The composition was typical of an air-melt A723 steel, and the electropolishing bath, consisting of sulfuric and phosphoric acids, was held at 54 C. The bolt-loaded test for the threshold stress intensity factor for environmentally controlled cracking described by Wei and Novak was used here with two significant modifications. Some tests included only a notch with the radius matching that of the tube, and a new expression for K in terms of crack-mouth displacement was developed and used. Scanning electron microscope fractography and energy dispersive x ray spectra were used to identify crack mechanisms. Results of the study include: (1) a measured threshold of hydrogen stress cracking for the material/environment below 20 MPavm; (2) da/dt versus K behavior typical of classic environmental control; and (3) an improved K/v expression for the bolt-loaded specimen and associated criteria for determining plane-strain test conditions in relation to the Irwin plastic zone.

  20. Quantum confinement effect in Bi anti-dot thin films with tailored pore wall widths and thicknesses

    SciTech Connect

    Park, Y.; Hirose, Y.; Fukumura, T.; Hasegawa, T.; Nakao, S.; Xu, J.

    2014-01-13

    We investigated quantum confinement effects in Bi anti-dot thin films grown on anodized aluminium oxide templates. The pore wall widths (w{sub Bi}) and thickness (t) of the films were tailored to have values longer or shorter than Fermi wavelength of Bi (λ{sub F} = ∼40 nm). Magnetoresistance measurements revealed a well-defined weak antilocalization effect below 10 K. Coherence lengths (L{sub ϕ}) as functions of temperature were derived from the magnetoresistance vs field curves by assuming the Hikami-Larkin-Nagaoka model. The anti-dot thin film with w{sub Bi} and t smaller than λ{sub F} showed low dimensional electronic behavior at low temperatures where L{sub ϕ}(T) exceed w{sub Bi} or t.

  1. The use of thick-walled hollow cylinder creep tests for evaluating flow criteria for rock salt

    SciTech Connect

    Morgan, H.S.; Wawersik, W.R.

    1990-01-01

    Finite element simulations of two laboratory creep tests on thick-walled hollow cylinders of rock salt are evaluated to determine if such bench-scale experiments can be used to establish applicability of either von Mises or Tresca stress measures and associated flow conditions. In the tests, the cylinders were loaded axially and pressurized both internally and externally to produce stress fields similar to those found around underground excavations in rock salt. Several different loading stages were used in each test. The simulations show that for each of two creep models studied, quite different deformations of the cylinders are predicted with the Mises and Tresca flow criteria, especially if friction between the cylinders and axial loading platens is ignored. When friction is included in the simulations, the differences in deformation are changed but are sill clearly distinguishable. 10 refs., 10 figs.

  2. Fracture behavior of shallow cracks in full-thickness clad beams from an RPV wall section

    SciTech Connect

    Keeney, J.A.; Bass, B.R.; McAfee, W.J.

    1995-04-01

    A testing program is described that utilizes full-thickness clad beam specimens to quantify fracture toughness for shallow cracks in weld material for which metallurgical conditions are prototypic of those found in reactor pressure vessels (RPVs). The beam specimens are fabricated from an RPV shell segment that includes weld, plate and clad material. Metallurgical factors potentially influencing fracture toughness for shallow cracks in the beam specimens include material gradients and material inhomogeneities in welded regions. The shallow-crack clad beam specimens showed a significant loss of constraint similar to that of other shallow-crack single-edge notch bend (SENB) specimens. The stress-based Dodds-Anderson scaling model appears to be effective in adjusting the test data to account for in-plane loss of constraint for uniaxially tested beams, but cannot predict the observed effects of out-of-plane biaxial loading on shallow-crack fracture toughness. A strain-based dual-parameter fracture toughness correlation (based on plastic zone width) performed acceptably when applied to the uniaxial and biaxial shallow-crack fracture toughness data.

  3. Examination of Cell Shape in Wall Thickness Direction for Foamed Polyurethane Resin

    NASA Astrophysics Data System (ADS)

    Kono, Tsutomu; Matsuoka, Shin-Ichi; Araki, Kuninari; Iseki, Takashi

    The foaming flow process of polyurethane resin is difficult because temperature, density and thermal conductivity are changed greatly by heat generation resulting from the mixing reaction of polyol and polyisocyanate resin. It is thought that thermal conductivity and strength are influenced by cell shape after the foaming process. In this study, we evaluate three-dimensional cell shapes by quantitatively observation of the ratio of the diameter of the parallel and the perpendicular section to flow direction, the ratio of the major axis and the minor axis, and direction of the major axis of cells for closed cell shapes in foamed polyurethane resin. It is thought that cell shapes are mainly deformed by shear stress and pressure of adjacent cells. It becomes obvious by cell shape evaluation that cells in the skin layer are compressed in the thickness direction by pressure of adjacent cells, cells between the skin layer and the core layer are stretched perpendicular to the flow direction by shear stress, and cells in the core layer are similar to the sphere shape.

  4. Design of first walls and beam dumps for Tandem Mirror Experiment Upgrade

    SciTech Connect

    Drake, R.P.; Lang, D.D.; Hunt, A.L.; Pickles, W.L.; Simonen, T.C.; Stack, T.P.; Wilson, K.L.; Baskes, M.I.; Haggmark, L.G.; Malinowski, M.E.

    1982-04-01

    Neutral reflux from the first walls and beam dumps of the Tandem Mirror Experiment (TMX) Upgrade could erode the neutral-beam-fueled end-cell plasma or cool the neutral-beam-heated central-cell plasma. To allow the TMX Upgrade to meet its design parameters, the neutral reflux to the plasma must be much less than the fluxes of both charge-exchange neutral products to the first walls and transmitted neutral-beam atoms to the beam dumps. To achieve this, we intend to evaporate titanium as a getter on the first wall and install vanadium-foil beam dumps. The vanadium beam dumps will be heated by the neutral beam during the shot, releasing most of the implanted hydrogen as they cool radiatively after the shot. The deposited titanium will be thick enough to retain the implanted charge-exchange neutral products. We describe our design of these components, report our estimates of their performance, and compare their performance to the needs of TMX Upgrade.

  5. Application of the new Section XI, A-3000 method for stress intensity factor calculation to thick-walled pressure vessels

    SciTech Connect

    Kendall, D.P.

    1996-12-01

    The ASME Boiler and Pressure Vessel Code, Section XI, Appendix A, Article A-3000 has been recently revised to include a more accurate method for calculating stress intensity factors. It is based on fitting the distribution of the stress normal to the plane of the crack in the uncracked body, over the depth of the crack, with a cubic equation. The coefficients of this equation are used with correction factors given in the code to calculate the stress intensity factors at the deepest point of the crack and near the free surface. Correction factors are given for a range of values of relative crack depth and crack shape. In a pressurized thick-walled cylinder the stresses of interest are the tangential stresses due to internal pressure as given by the Lame Equations, plus the effect of the pressure in the crack. This paper shows that the Lame stresses, as a function of distance from the inner surface, can be accurately fitted with a simple set of cubic equations over the full wall thickness for a wide range of diameter ratios. The coefficients of these equations, combined with the correction factors, are used to calculate stress intensity factors for a range of diameter ratios and at both the deepest point of the crack and near the free surface. The results are compared with stress intensity factors calculated using the linearized stress method proposed by Kendall and Perez. The effect of the plastic zone correction given in the new method is reported. The stress intensity factors due to autofrettage residual stresses calculated by the new method are also reported.

  6. Uncertainty induced by chest wall thickness assessment methods on lung activity estimation for plutonium and americium: a large population-based study.

    PubMed

    Broggio, D; Lechaftois, X; Franck, D

    2015-03-01

    In vivo lung counting aims at assessing the retained activity in the lungs. The calibration factor relating the measured counts to the worker's specific retained lung activity can be obtained by several means and strongly depends on the chest wall thickness. Here we compare, for 374 male nuclear workers, the activity assessed with a reference protocol, where the material equivalent chest wall thickness is known from ultrasound measurements, with two other protocols. The counting system is an array of four germanium detectors.It is found that non site-specific equations for the assessment of the chest wall thickness induce large biases in the assessment of activity. For plutonium isotopes or (241)Am the proportion of workers for whom the retained activity is within ± 10% of the reference one is smaller than 10%.The use of site-specific equations raises this proportion to 20% and 58% for plutonium and (241)Am, respectively.Finally, for the studied population, when site-specific equations are used for the chest wall thickness, the standard uncertainties for the lung activity are 42% and 12.5%, for plutonium and (241)Am, respectively. Due to the relatively large size of the studied population, these values are a relatively robust estimate of the uncertainties due to the assessment of the chest wall thickness for the current practice at this site. PMID:25517347

  7. Wall irregularity rather than intima-media thickness is associated with nearby atherosclerosis.

    PubMed

    Graf, Iulia M; Schreuder, Floris H B M; Hameleers, Jeroen M; Mess, Werner H; Reneman, Robert S; Hoeks, Arnold P G

    2009-06-01

    In addition to intima-media thickness (IMT), IMT inhomogeneity may carry information about atherosclerosis progression. In 147 vascular diseased patients (mean 66 y, 48% male), we determined the carotid bulb stenosis degree based on local Doppler blood flow velocities. Common carotid artery (CCA) morphologic characteristics, i.e. IMT, IMT-inhomogeneity (intraregistration variation) and IMT uni- and bilateral intrasubject variation (DeltaIMT), were measured using multiple M-mode. Associations of morphologic characteristics, stenosis degree and Framingham score were evaluated with Pearson correlation (r) and multiple regression analysis. The IMT distributions for subjects without and with stenosis were not similar. The stenosis degree score correlated significantly to unilateral (r=0.68) and bilateral DeltaIMT (r=0.62), IMT (r=0.41) and IMT-inhomogeneity (r=0.45). The averaged IMT and IMT-inhomogeneity increased slightly for singular stenosis and abruptly for multiple stenoses. Mean uni- and bilateral DeltaIMT per stenosis degree increased linearly with this degree, reaching a correlation close to 1 (r=0.98 and r=0.97). Interestingly, the majority of the subjects with a moderate to severe bulb stenosis exhibited a carotid IMT lower than the considered critical threshold of 0.9 mm. In conclusion, although CCA is not prone to plaques, its morphologic characteristics are positively correlated with stenosis degree score and other risk scores. DeltaIMT can be more reliable derived from inter-registration rather than from intra-registration variation. In the CCA, DeltaIMT substantiates vascular alteration better than IMT. PMID:19251354

  8. Estimation of PSD Shifts for High-Resolution Metrology of Thickness Micro-Changes with Possible Applications in Vessel Walls and Biological Membrane Characterization

    PubMed Central

    Ramos, Antonio; Bazán, Ivonne; Negreira, Carlos; Brum, Javier; Gómez, Tomás; Calás, Héctor; Ruiz, Abelardo; de la Rosa, José Manuel

    2012-01-01

    Achieving accurate measurements of inflammation levels in tissues or thickness changes in biological membranes (e.g., amniotic sac, parietal pleura) and thin biological walls (e.g., blood vessels) from outside the human body, is a promising research line in the medical area. It would provide a technical basis to study the options for early diagnosis of some serious diseases such as hypertension, atherosclerosis or tuberculosis. Nevertheless, achieving the aim of non-invasive measurement of those scarcely-accessible parameters on patient internal tissues, currently presents many difficulties. The use of high-frequency ultrasonic transducer systems appears to offer a possible solution. Previous studies using conventional ultrasonic imaging have shown this, but the spatial resolution was not sufficient so as to permit a thickness evaluation with clinical significance, which requires an accuracy of a few microns. In this paper a broadband ultrasonic technique, that was recently developed by the authors to address other non-invasive medical detection problems (by integrating a piezoelectric transducer into a spectral measuring system), is extended to our new objective; the aim is its application to the thickness measurement of sub-millimeter membranes or layers made of materials similar to some biological tissues (phantoms). The modeling and design rules of such a transducer system are described, and various methods of estimating overtones location in the power spectral density (PSD) are quantitatively assessed with transducer signals acquired using piezoelectric systems and also generated from a multi-echo model. Their effects on the potential resolution of the proposed thickness measuring tool, and their capability to provide accuracies around the micron are studied in detail. Comparisons are made with typical tools for extracting spatial parameters in laminar samples from echo-waveforms acquired with ultrasonic transducers. Results of this advanced measurement

  9. Estimation of PSD shifts for high-resolution metrology of thickness micro-changes with possible applications in vessel walls and biological membrane characterization.

    PubMed

    Ramos, Antonio; Bazán, Ivonne; Negreira, Carlos; Brum, Javier; Gómez, Tomás; Calás, Héctor; Ruiz, Abelardo; de la Rosa, José Manuel

    2012-01-01

    Achieving accurate measurements of inflammation levels in tissues or thickness changes in biological membranes (e.g., amniotic sac, parietal pleura) and thin biological walls (e.g., blood vessels) from outside the human body, is a promising research line in the medical area. It would provide a technical basis to study the options for early diagnosis of some serious diseases such as hypertension, atherosclerosis or tuberculosis. Nevertheless, achieving the aim of non-invasive measurement of those scarcely-accessible parameters on patient internal tissues, currently presents many difficulties. The use of high-frequency ultrasonic transducer systems appears to offer a possible solution. Previous studies using conventional ultrasonic imaging have shown this, but the spatial resolution was not sufficient so as to permit a thickness evaluation with clinical significance, which requires an accuracy of a few microns. In this paper a broadband ultrasonic technique, that was recently developed by the authors to address other non-invasive medical detection problems (by integrating a piezoelectric transducer into a spectral measuring system), is extended to our new objective; the aim is its application to the thickness measurement of sub-millimeter membranes or layers made of materials similar to some biological tissues (phantoms). The modeling and design rules of such a transducer system are described, and various methods of estimating overtones location in the power spectral density (PSD) are quantitatively assessed with transducer signals acquired using piezoelectric systems and also generated from a multi-echo model. Their effects on the potential resolution of the proposed thickness measuring tool, and their capability to provide accuracies around the micron are studied in detail. Comparisons are made with typical tools for extracting spatial parameters in laminar samples from echo-waveforms acquired with ultrasonic transducers. Results of this advanced measurement

  10. Liquid Wall Chambers

    SciTech Connect

    Meier, W R

    2011-02-24

    The key feature of liquid wall chambers is the use of a renewable liquid layer to protect chamber structures from target emissions. Two primary options have been proposed and studied: wetted wall chambers and thick liquid wall (TLW) chambers. With wetted wall designs, a thin layer of liquid shields the structural first wall from short ranged target emissions (x-rays, ions and debris) but not neutrons. Various schemes have been proposed to establish and renew the liquid layer between shots including flow-guiding porous fabrics (e.g., Osiris, HIBALL), porous rigid structures (Prometheus) and thin film flows (KOYO). The thin liquid layer can be the tritium breeding material (e.g., flibe, PbLi, or Li) or another liquid metal such as Pb. TLWs use liquid jets injected by stationary or oscillating nozzles to form a neutronically thick layer (typically with an effective thickness of {approx}50 cm) of liquid between the target and first structural wall. In addition to absorbing short ranged emissions, the thick liquid layer degrades the neutron flux and energy reaching the first wall, typically by {approx}10 x x, so that steel walls can survive for the life of the plant ({approx}30-60 yrs). The thick liquid serves as the primary coolant and tritium breeding material (most recent designs use flibe, but the earliest concepts used Li). In essence, the TLW places the fusion blanket inside the first wall instead of behind the first wall.