Sample records for detailed numerical modeling

  1. Large Eddy Simulation of wind turbine wakes: detailed comparisons of two codes focusing on effects of numerics and subgrid modeling

    NASA Astrophysics Data System (ADS)

    Martínez-Tossas, Luis A.; Churchfield, Matthew J.; Meneveau, Charles

    2015-06-01

    In this work we report on results from a detailed comparative numerical study from two Large Eddy Simulation (LES) codes using the Actuator Line Model (ALM). The study focuses on prediction of wind turbine wakes and their breakdown when subject to uniform inflow. Previous studies have shown relative insensitivity to subgrid modeling in the context of a finite-volume code. The present study uses the low dissipation pseudo-spectral LES code from Johns Hopkins University (LESGO) and the second-order, finite-volume OpenFOAMcode (SOWFA) from the National Renewable Energy Laboratory. When subject to uniform inflow, the loads on the blades are found to be unaffected by subgrid models or numerics, as expected. The turbulence in the wake and the location of transition to a turbulent state are affected by the subgrid-scale model and the numerics.

  2. Large Eddy Simulation of Wind Turbine Wakes. Detailed Comparisons of Two Codes Focusing on Effects of Numerics and Subgrid Modeling

    DOE PAGES

    Martinez-Tossas, Luis A.; Churchfield, Matthew J.; Meneveau, Charles

    2015-06-18

    In this work we report on results from a detailed comparative numerical study from two Large Eddy Simulation (LES) codes using the Actuator Line Model (ALM). The study focuses on prediction of wind turbine wakes and their breakdown when subject to uniform inflow. Previous studies have shown relative insensitivity to subgrid modeling in the context of a finite-volume code. The present study uses the low dissipation pseudo-spectral LES code from Johns Hopkins University (LESGO) and the second-order, finite-volume OpenFOAMcode (SOWFA) from the National Renewable Energy Laboratory. When subject to uniform inflow, the loads on the blades are found to bemore » unaffected by subgrid models or numerics, as expected. The turbulence in the wake and the location of transition to a turbulent state are affected by the subgrid-scale model and the numerics.« less

  3. Science Support for Space-Based Droplet Combustion: Drop Tower Experiments and Detailed Numerical Modeling

    NASA Technical Reports Server (NTRS)

    Marchese, Anthony J.; Dryer, Frederick L.

    1997-01-01

    This program supports the engineering design, data analysis, and data interpretation requirements for the study of initially single component, spherically symmetric, isolated droplet combustion studies. Experimental emphasis is on the study of simple alcohols (methanol, ethanol) and alkanes (n-heptane, n-decane) as fuels with time dependent measurements of drop size, flame-stand-off, liquid-phase composition, and finally, extinction. Experiments have included bench-scale studies at Princeton, studies in the 2.2 and 5.18 drop towers at NASA-LeRC, and both the Fiber Supported Droplet Combustion (FSDC-1, FSDC-2) and the free Droplet Combustion Experiment (DCE) studies aboard the shuttle. Test matrix and data interpretation are performed through spherically-symmetric, time-dependent numerical computations which embody detailed sub-models for physical and chemical processes. The computed burning rate, flame stand-off, and extinction diameter are compared with the respective measurements for each individual experiment. In particular, the data from FSDC-1 and subsequent space-based experiments provide the opportunity to compare all three types of data simultaneously with the computed parameters. Recent numerical efforts are extending the computational tools to consider time dependent, axisymmetric 2-dimensional reactive flow situations.

  4. Detailed numerical simulations of laser cooling processes

    NASA Technical Reports Server (NTRS)

    Ramirez-Serrano, J.; Kohel, J.; Thompson, R.; Yu, N.

    2001-01-01

    We developed a detailed semiclassical numerical code of the forces applied on atoms in optical and magnetic fields to increase the understanding of the different roles that light, atomic collisions, background pressure, and number of particles play in experiments with laser cooled and trapped atoms.

  5. Detailed numerical investigation of the dissipative stochastic mechanics based neuron model.

    PubMed

    Güler, Marifi

    2008-10-01

    Recently, a physical approach for the description of neuronal dynamics under the influence of ion channel noise was proposed in the realm of dissipative stochastic mechanics (Güler, Phys Rev E 76:041918, 2007). Led by the presence of a multiple number of gates in an ion channel, the approach establishes a viewpoint that ion channels are exposed to two kinds of noise: the intrinsic noise, associated with the stochasticity in the movement of gating particles between the inner and the outer faces of the membrane, and the topological noise, associated with the uncertainty in accessing the permissible topological states of open gates. Renormalizations of the membrane capacitance and of a membrane voltage dependent potential function were found to arise from the mutual interaction of the two noisy systems. The formalism therein was scrutinized using a special membrane with some tailored properties giving the Rose-Hindmarsh dynamics in the deterministic limit. In this paper, the resultant computational neuron model of the above approach is investigated in detail numerically for its dynamics using time-independent input currents. The following are the major findings obtained. The intrinsic noise gives rise to two significant coexisting effects: it initiates spiking activity even in some range of input currents for which the corresponding deterministic model is quiet and causes bursting in some other range of input currents for which the deterministic model fires tonically. The renormalization corrections are found to augment the above behavioral transitions from quiescence to spiking and from tonic firing to bursting, and, therefore, the bursting activity is found to take place in a wider range of input currents for larger values of the correction coefficients. Some findings concerning the diffusive behavior in the voltage space are also reported.

  6. Numerical Modeling of Ablation Heat Transfer

    NASA Technical Reports Server (NTRS)

    Ewing, Mark E.; Laker, Travis S.; Walker, David T.

    2013-01-01

    A unique numerical method has been developed for solving one-dimensional ablation heat transfer problems. This paper provides a comprehensive description of the method, along with detailed derivations of the governing equations. This methodology supports solutions for traditional ablation modeling including such effects as heat transfer, material decomposition, pyrolysis gas permeation and heat exchange, and thermochemical surface erosion. The numerical scheme utilizes a control-volume approach with a variable grid to account for surface movement. This method directly supports implementation of nontraditional models such as material swelling and mechanical erosion, extending capabilities for modeling complex ablation phenomena. Verifications of the numerical implementation are provided using analytical solutions, code comparisons, and the method of manufactured solutions. These verifications are used to demonstrate solution accuracy and proper error convergence rates. A simple demonstration of a mechanical erosion (spallation) model is also provided to illustrate the unique capabilities of the method.

  7. Modeling Biodegradation and Reactive Transport: Analytical and Numerical Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Y; Glascoe, L

    The computational modeling of the biodegradation of contaminated groundwater systems accounting for biochemical reactions coupled to contaminant transport is a valuable tool for both the field engineer/planner with limited computational resources and the expert computational researcher less constrained by time and computer power. There exists several analytical and numerical computer models that have been and are being developed to cover the practical needs put forth by users to fulfill this spectrum of computational demands. Generally, analytical models provide rapid and convenient screening tools running on very limited computational power, while numerical models can provide more detailed information with consequent requirementsmore » of greater computational time and effort. While these analytical and numerical computer models can provide accurate and adequate information to produce defensible remediation strategies, decisions based on inadequate modeling output or on over-analysis can have costly and risky consequences. In this chapter we consider both analytical and numerical modeling approaches to biodegradation and reactive transport. Both approaches are discussed and analyzed in terms of achieving bioremediation goals, recognizing that there is always a tradeoff between computational cost and the resolution of simulated systems.« less

  8. Numerical FEM modeling in dental implantology

    NASA Astrophysics Data System (ADS)

    Roateşi, Iulia; Roateşi, Simona

    2016-06-01

    This paper is devoted to a numerical approach of the stress and displacement calculation of a system made up of dental implant, ceramic crown and surrounding bone. This is the simulation of a clinical situation involving both biological - the bone tissue, and non-biological - the implant and the crown, materials. On the other hand this problem deals with quite fine technical structure details - the threads, tapers, etc with a great impact in masticatory force transmission. Modeling the contact between the implant and the bone tissue is important to a proper bone-implant interface model and implant design. The authors proposed a three-dimensional numerical model to assess the biomechanical behaviour of this complex structure in order to evaluate its stability by determining the risk zones. A comparison between this numerical analysis and clinical cases is performed and a good agreement is obtained.

  9. A stepwise approach for introducing numerical modeling in Environmental Engineering MSc unit: The impact of clear assessment criteria and detailed feedback

    NASA Astrophysics Data System (ADS)

    Rosolem, R.; Pritchard, J.

    2017-12-01

    An important aspect for the new generation of hydrologists and water resources managers is the understanding of hydrological processes through the application of numerical environmental models. Despite its importance, teaching numerical modeling subjects to young students in our MSc Water and Environment Management programme has been difficult, for instance, due to the wide range of student background and lack or poor contact with numerical modeling tools in the past. In previous years, this numerical skills concept has been introduced as a project assignment in our Terrestrial Hydrometeorology unit. However, previous efforts have shown non-optimal engagement by students with often signs of lack of interest or anxiety. Given our initial experience with this unit, we decided to make substantial changes to the coursework format with the aim to introduce a more efficient learning environment to the students. The proposed changes include: (1) a clear presentation and discussion of the assessment criteria at the beginning of the unit, (2) a stepwise approach in which students use our learning environment to acquire knowledge for individual components of the model step-by-step, and (3) access to timely and detailed feedback allowing for particular steps to be retraced or retested. In order to understand the overall impact on assessment and feedback, we carried out two surveys at the beginning and end of the module. Our results indicate a positive impact to student learning experience, as the students have clearly benefited from the early discussion on assignment criteria and appeared to have correctly identified the skills and knowledge required to carry out the assignment. In addition, we have observed a substantial increase in the quality of the reports. Our results results support that student engagement has increased since changes to the format of the coursework were introduced. Interestingly, we also observed a positive impact on the assignment to the final exam

  10. Numerical models of salt marsh evolution: ecological, geomorphic, and climatic factors

    USGS Publications Warehouse

    Fagherazzi, Sergio; Kirwan, Matthew L.; Mudd, Simon M.; Guntenspergen, Glenn R.; Temmerman, Stijn; D'Alpaos, Andrea; van de Koppel, Johan; Rybczyk, John; Reyes, Enrique; Craft, Chris; Clough, Jonathan

    2012-01-01

    Salt marshes are delicate landforms at the boundary between the sea and land. These ecosystems support a diverse biota that modifies the erosive characteristics of the substrate and mediates sediment transport processes. Here we present a broad overview of recent numerical models that quantify the formation and evolution of salt marshes under different physical and ecological drivers. In particular, we focus on the coupling between geomorphological and ecological processes and on how these feedbacks are included in predictive models of landform evolution. We describe in detail models that simulate fluxes of water, organic matter, and sediments in salt marshes. The interplay between biological and morphological processes often produces a distinct scarp between salt marshes and tidal flats. Numerical models can capture the dynamics of this boundary and the progradation or regression of the marsh in time. Tidal channels are also key features of the marsh landscape, flooding and draining the marsh platform and providing a source of sediments and nutrients to the marsh ecosystem. In recent years, several numerical models have been developed to describe the morphogenesis and long-term dynamics of salt marsh channels. Finally, salt marshes are highly sensitive to the effects of long-term climatic change. We therefore discuss in detail how numerical models have been used to determine salt marsh survival under different scenarios of sea level rise.

  11. Numerical models of salt marsh evolution: Ecological, geomorphic, and climatic factors

    USGS Publications Warehouse

    Fagherazzi, S.; Kirwan, M.L.; Mudd, S.M.; Guntenspergen, G.R.; Temmerman, S.; D'Alpaos, A.; Van De Koppel, J.; Rybczyk, J.M.; Reyes, E.; Craft, C.; Clough, J.

    2012-01-01

    Salt marshes are delicate landforms at the boundary between the sea and land. These ecosystems support a diverse biota that modifies the erosive characteristics of the substrate and mediates sediment transport processes. Here we present a broad overview of recent numerical models that quantify the formation and evolution of salt marshes under different physical and ecological drivers. In particular, we focus on the coupling between geomorphological and ecological processes and on how these feedbacks are included in predictive models of landform evolution. We describe in detail models that simulate fluxes of water, organic matter, and sediments in salt marshes. The interplay between biological and morphological processes often produces a distinct scarp between salt marshes and tidal flats. Numerical models can capture the dynamics of this boundary and the progradation or regression of the marsh in time. Tidal channels are also key features of the marsh landscape, flooding and draining the marsh platform and providing a source of sediments and nutrients to the marsh ecosystem. In recent years, several numerical models have been developed to describe the morphogenesis and long-term dynamics of salt marsh channels. Finally, salt marshes are highly sensitive to the effects of long-term climatic change. We therefore discuss in detail how numerical models have been used to determine salt marsh survival under different scenarios of sea level rise. Copyright 2012 by the American Geophysical Union.

  12. Numerical Modeling in Geodynamics: Success, Failure and Perspective

    NASA Astrophysics Data System (ADS)

    Ismail-Zadeh, A.

    2005-12-01

    tuning model variables are greater than two, test carefully the effect of each of the variables on the modeled phenomenon. Remember: With four exponents I can fit an elephant (E. Fermi, physicist). (vii) Make your numerical model as accurate as possible, but never put the aim to reach a great accuracy: Undue precision of computations is the first symptom of mathematical illiteracy (N. Krylov, mathematician). How complex should be a numerical model? A model which images any detail of the reality is as useful as a map of scale 1:1 (J. Robinson, economist). This message is quite important for geoscientists, who study numerical models of complex geodynamical processes. I believe that geoscientists will never create a model of the real Earth dynamics, but we should try to model the dynamics such a way to simulate basic geophysical processes and phenomena. Does a particular model have a predictive power? Each numerical model has a predictive power, otherwise the model is useless. The predictability of the model varies with its complexity. Remember that a solution to the numerical model is an approximate solution to the equations, which have been chosen in believe that they describe dynamic processes of the Earth. Hence a numerical model predicts dynamics of the Earth as well as the mathematical equations describe this dynamics. What methodological advances are still needed for testable geodynamic modeling? Inverse (time-reverse) numerical modeling and data assimilation are new methodologies in geodynamics. The inverse modeling can allow to test geodynamic models forward in time using restored (from present-day observations) initial conditions instead of unknown conditions.

  13. Numerical modelling of bedload sediment transport

    NASA Astrophysics Data System (ADS)

    Langlois, Vincent J.

    2010-05-01

    We present a numerical study of sediment transport in the bedload regime. Classical bedload transport laws only describe the variation of the vertically integrated flux of grains as a function of the Shields number. However, these relations are only valid if the moving layer of the bed is at equilibrium with the external flow. Besides, they do not contain enough information for many geomorphological applications. For instance, understanding inertial effects in the moving bed requires models that are able to account for the variability of hydrodynamical conditions, and the discrete nature of the sediment material. We developped a numerical modelling of the behaviour of a three-dimensional bed of grains sheared by a unidirectional fluid flow. These simulations are based on a combination of discrete and continuum approaches: sediment particles are modelled by hard spheres interacting through simple contact forces, whereas the fluid flow is described by a 'mean field' model. Both the drag exerted on grains by the fluid and the retroactive effect of the presence of grains on the flow are accounted for, allowing the system to converge to its equilibrium state (no assumption is made on the fluid velocity profile inside the layer of moving grains). Above the motion threshold, the variation of the flux of grains in the steady state is found to vary like the cube of the Shields number (as predicted by Bagnold). Besides, our simulations allow us to obtain new insights into the detailed mechanisms of bedload transport, by giving access to non-integral quantities, such as the trajectories of each individual grains, the detailed velocity and packing fraction profiles inside the granular bed, etc. It is therefore possible to investigate some effects that are not accounted for in usual continuum models, such as the polydispersity of grains, the ageing of the bed, the response to a variation of the flowrate, etc.

  14. Numerical modeling of runback water on ice protected aircraft surfaces

    NASA Technical Reports Server (NTRS)

    Al-Khalil, Kamel M.; Keith, Theo G., Jr.; Dewitt, Kenneth J.

    1992-01-01

    A numerical simulation for 'running wet' aircraft anti-icing systems is developed. The model includes breakup of the water film, which exists in regions of direct impingement, into individual rivulets. The wetness factor distribution resulting from the film breakup and the rivulet configuration on the surface are predicted in the numerical solution procedure. The solid wall is modeled as a multilayer structure and the anti-icing system used is of the thermal type utilizing hot air and/or electrical heating elements embedded with the layers. Details of the calculation procedure and the methods used are presented.

  15. Numerical Modeling of Ultra Wideband Combined Antennas

    NASA Astrophysics Data System (ADS)

    Zorkal'tseva, M. Yu.; Koshelev, V. I.; Petkun, A. A.

    2017-12-01

    With the help of a program we developed, based on the finite difference method in the time domain, we have investigated the characteristics of ultra wideband combined antennas in detail. The antennas were developed to radiate bipolar pulses with durations in the range 0.5-3 ns. Data obtained by numerical modeling are compared with the data of experimental studies on antennas and have been used in the synthesis of electromagnetic pulses with maximum field strength.

  16. Numerical optimization of conical flow waveriders including detailed viscous effects

    NASA Technical Reports Server (NTRS)

    Bowcutt, Kevin G.; Anderson, John D., Jr.; Capriotti, Diego

    1987-01-01

    A family of optimized hypersonic waveriders is generated and studied wherein detailed viscous effects are included within the optimization process itself. This is in contrast to previous optimized waverider work, wherein purely inviscid flow is used to obtain the waverider shapes. For the present waveriders, the undersurface is a streamsurface of an inviscid conical flowfield, the upper surface is a streamsurface of the inviscid flow over a tapered cylinder (calculated by the axisymmetric method of characteristics), and the viscous effects are treated by integral solutions of the boundary layer equations. Transition from laminar to turbulent flow is included within the viscous calculations. The optimization is carried out using a nonlinear simplex method. The resulting family of viscous hypersonic waveriders yields predicted high values of lift/drag, high enough to break the L/D barrier based on experience with other hypersonic configurations. Moreover, the numerical optimization process for the viscous waveriders results in distinctly different shapes compared to previous work with inviscid-designed waveriders. Also, the fine details of the viscous solution, such as how the shear stress is distributed over the surface, and the location of transition, are crucial to the details of the resulting waverider geometry. Finally, the moment coefficient variations and heat transfer distributions associated with the viscous optimized waveriders are studied.

  17. Modelling Detailed-Chemistry Effects on Turbulent Diffusion Flames using a Parallel Solution-Adaptive Scheme

    NASA Astrophysics Data System (ADS)

    Jha, Pradeep Kumar

    Capturing the effects of detailed-chemistry on turbulent combustion processes is a central challenge faced by the numerical combustion community. However, the inherent complexity and non-linear nature of both turbulence and chemistry require that combustion models rely heavily on engineering approximations to remain computationally tractable. This thesis proposes a computationally efficient algorithm for modelling detailed-chemistry effects in turbulent diffusion flames and numerically predicting the associated flame properties. The cornerstone of this combustion modelling tool is the use of parallel Adaptive Mesh Refinement (AMR) scheme with the recently proposed Flame Prolongation of Intrinsic low-dimensional manifold (FPI) tabulated-chemistry approach for modelling complex chemistry. The effect of turbulence on the mean chemistry is incorporated using a Presumed Conditional Moment (PCM) approach based on a beta-probability density function (PDF). The two-equation k-w turbulence model is used for modelling the effects of the unresolved turbulence on the mean flow field. The finite-rate of methane-air combustion is represented here by using the GRI-Mech 3.0 scheme. This detailed mechanism is used to build the FPI tables. A state of the art numerical scheme based on a parallel block-based solution-adaptive algorithm has been developed to solve the Favre-averaged Navier-Stokes (FANS) and other governing partial-differential equations using a second-order accurate, fully-coupled finite-volume formulation on body-fitted, multi-block, quadrilateral/hexahedral mesh for two-dimensional and three-dimensional flow geometries, respectively. A standard fourth-order Runge-Kutta time-marching scheme is used for time-accurate temporal discretizations. Numerical predictions of three different diffusion flames configurations are considered in the present work: a laminar counter-flow flame; a laminar co-flow diffusion flame; and a Sydney bluff-body turbulent reacting flow

  18. Simple Numerical Modelling for Gasdynamic Design of Wave Rotors

    NASA Astrophysics Data System (ADS)

    Okamoto, Koji; Nagashima, Toshio

    The precise estimation of pressure waves generated in the passages is a crucial factor in wave rotor design. However, it is difficult to estimate the pressure wave analytically, e.g. by the method of characteristics, because the mechanism of pressure-wave generation and propagation in the passages is extremely complicated as compared to that in a shock tube. In this study, a simple numerical modelling scheme was developed to facilitate the design procedure. This scheme considers the three dominant factors in the loss mechanism —gradual passage opening, wall friction and leakage— for simulating the pressure waves precisely. The numerical scheme itself is based on the one-dimensional Euler equations with appropriate source terms to reduce the calculation time. The modelling of these factors was verified by comparing the results with those of a two-dimensional numerical simulation, which were previously validated by the experimental data in our previous study. Regarding wave rotor miniaturization, the leakage flow effect, which involves the interaction between adjacent cells, was investigated extensively. A port configuration principle was also examined and analyzed in detail to verify the applicability of the present numerical modelling scheme to the wave rotor design.

  19. Numerical Modelling of Ground Penetrating Radar Antennas

    NASA Astrophysics Data System (ADS)

    Giannakis, Iraklis; Giannopoulos, Antonios; Pajewski, Lara

    2014-05-01

    Numerical methods are needed in order to solve Maxwell's equations in complicated and realistic problems. Over the years a number of numerical methods have been developed to do so. Amongst them the most popular are the finite element, finite difference implicit techniques, frequency domain solution of Helmontz equation, the method of moments, transmission line matrix method. However, the finite-difference time-domain method (FDTD) is considered to be one of the most attractive choice basically because of its simplicity, speed and accuracy. FDTD first introduced in 1966 by Kane Yee. Since then, FDTD has been established and developed to be a very rigorous and well defined numerical method for solving Maxwell's equations. The order characteristics, accuracy and limitations are rigorously and mathematically defined. This makes FDTD reliable and easy to use. Numerical modelling of Ground Penetrating Radar (GPR) is a very useful tool which can be used in order to give us insight into the scattering mechanisms and can also be used as an alternative approach to aid data interpretation. Numerical modelling has been used in a wide range of GPR applications including archeology, geophysics, forensic, landmine detection etc. In engineering, some applications of numerical modelling include the estimation of the effectiveness of GPR to detect voids in bridges, to detect metal bars in concrete, to estimate shielding effectiveness etc. The main challenges in numerical modelling of GPR for engineering applications are A) the implementation of the dielectric properties of the media (soils, concrete etc.) in a realistic way, B) the implementation of the geometry of the media (soils inhomogeneities, rough surface, vegetation, concrete features like fractures and rock fragments etc.) and C) the detailed modelling of the antenna units. The main focus of this work (which is part of the COST Action TU1208) is the accurate and realistic implementation of GPR antenna units into the FDTD

  20. Numerical Modeling of Ocean Circulation

    NASA Astrophysics Data System (ADS)

    Miller, Robert N.

    2007-01-01

    The modelling of ocean circulation is important not only for its own sake, but also in terms of the prediction of weather patterns and the effects of climate change. This book introduces the basic computational techniques necessary for all models of the ocean and atmosphere, and the conditions they must satisfy. It describes the workings of ocean models, the problems that must be solved in their construction, and how to evaluate computational results. Major emphasis is placed on examining ocean models critically, and determining what they do well and what they do poorly. Numerical analysis is introduced as needed, and exercises are included to illustrate major points. Developed from notes for a course taught in physical oceanography at the College of Oceanic and Atmospheric Sciences at Oregon State University, this book is ideal for graduate students of oceanography, geophysics, climatology and atmospheric science, and researchers in oceanography and atmospheric science. Features examples and critical examination of ocean modelling and results Demonstrates the strengths and weaknesses of different approaches Includes exercises to illustrate major points and supplement mathematical and physical details

  1. Modeling of Passive Acoustic Liners from High Fidelity Numerical Simulations

    NASA Astrophysics Data System (ADS)

    Ferrari, Marcello do Areal Souto

    Noise reduction in aviation has been an important focus of study in the last few decades. One common solution is setting up acoustic liners in the internal walls of the engines. However, measurements in the laboratory with liners are expensive and time consuming. The present work proposes a nonlinear physics-based time domain model to predict the acoustic behavior of a given liner in a defined flow condition. The parameters of the model are defined by analysis of accurate numerical solutions of the flow obtained from a high-fidelity numerical code. The length of the cavity is taken into account by using an analytical procedure to account for internal reflections in the interior of the cavity. Vortices and jets originated from internal flow separations are confirmed to be important mechanisms of sound absorption, which defines the overall efficiency of the liner. Numerical simulations at different frequency, geometry and sound pressure level are studied in detail to define the model parameters. Comparisons with high-fidelity numerical simulations show that the proposed model is accurate, robust, and can be used to define a boundary condition simulating a liner in a high-fidelity code.

  2. The numerical modelling of falling film thickness flow on horizontal tubes

    NASA Astrophysics Data System (ADS)

    Hassan, I. A.; Sadikin, A.; Isa, N. Mat

    2017-04-01

    This paper presents a computational modelling of water falling film flowing over horizontal tubes. The objective of this study is to use numerical predictions for comparing the film thickness along circumferential direction of tube on 2-D CFD models. The results are then validated with a theoretical result in previous literatures. A comprehensive design of 2-D models have been developed according to the real application and actual configuration of the falling film evaporator as well as previous experimental parameters. A computational modelling of the water falling film is presented with the aid of Ansys Fluent software. The Volume of Fluid (VOF) technique is adapted in this analysis since its capabilities of determining the film thickness on tubes surface is highly reliable. The numerical analysis is carried out under influence of ambient pressures at temperature of 27 °C. Three types of CFD numerical models were analyzed in this simulation with inter tube spacing of 30 mm, 20 mm and 10 mm respectively. The use of a numerical simulation tool on water falling film has resulted in a detailed investigation of film thickness. Based on the numerical simulated results, it is found that the average values of water film thickness for each model are 0.53 mm, 0.58 mm, and 0.63 mm.

  3. Clinical professional governance for detailed clinical models.

    PubMed

    Goossen, William; Goossen-Baremans, Anneke

    2013-01-01

    This chapter describes the need for Detailed Clinical Models for contemporary Electronic Health Systems, data exchange and data reuse. It starts with an explanation of the components related to Detailed Clinical Models with a brief summary of knowledge representation, including terminologies representing clinic relevant "things" in the real world, and information models that abstract these in order to let computers process data about these things. Next, Detailed Clinical Models are defined and their purpose is described. It builds on existing developments around the world and accumulates in current work to create a technical specification at the level of the International Standards Organization. The core components of properly expressed Detailed Clinical Models are illustrated, including clinical knowledge and context, data element specification, code bindings to terminologies and meta-information about authors, versioning among others. Detailed Clinical Models to date are heavily based on user requirements and specify the conceptual and logical levels of modelling. It is not precise enough for specific implementations, which requires an additional step. However, this allows Detailed Clinical Models to serve as specifications for many different kinds of implementations. Examples of Detailed Clinical Models are presented both in text and in Unified Modelling Language. Detailed Clinical Models can be positioned in health information architectures, where they serve at the most detailed granular level. The chapter ends with examples of projects that create and deploy Detailed Clinical Models. All have in common that they can often reuse materials from earlier projects, and that strict governance of these models is essential to use them safely in health care information and communication technology. Clinical validation is one point of such governance, and model testing another. The Plan Do Check Act cycle can be applied for governance of Detailed Clinical Models

  4. Numerical modeling of reflux solar receivers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogan, R.E. Jr.

    1993-05-01

    Using reflux solar receivers to collect solar energy for dish-Stirling electric power generation systems is presently being investigated by several organizations, including Sandia National Laboratories, Albuquerque, N. Mex. In support of this program, Sandia has developed two numerical models describing the thermal performance of pool-boiler and heat-pipe reflux receivers. Both models are applicable to axisymmetric geometries and they both consider the radiative and convective energy transfer within the receiver cavity, the conductive and convective energy transfer from the receiver housing, and the energy transfer to the receiver working fluid. The primary difference between the models is the level of detailmore » in modeling the heat conduction through the receiver walls. The more detailed model uses a two-dimensional finite control volume method, whereas the simpler model uses a one-dimensional thermal resistance approach. The numerical modeling concepts presented are applicable to conventional tube-type solar receivers, as well as to reflux receivers. Good agreement between the two models is demonstrated by comparing the predicted and measured performance of a pool-boiler reflux receiver being tested at Sandia. For design operating conditions, the receiver thermal efficiencies agree within 1 percent and the average receiver cavity temperature within 1.3 percent. The thermal efficiency and receiver temperatures predicted by the simpler thermal resistance model agree well with experimental data from on-sun tests of the Sandia reflux pool-boiler receiver. An analysis of these comparisons identifies several plausible explanations for the differences between the predicted results and the experimental data.« less

  5. Ensemble-type numerical uncertainty information from single model integrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rauser, Florian, E-mail: florian.rauser@mpimet.mpg.de; Marotzke, Jochem; Korn, Peter

    2015-07-01

    We suggest an algorithm that quantifies the discretization error of time-dependent physical quantities of interest (goals) for numerical models of geophysical fluid dynamics. The goal discretization error is estimated using a sum of weighted local discretization errors. The key feature of our algorithm is that these local discretization errors are interpreted as realizations of a random process. The random process is determined by the model and the flow state. From a class of local error random processes we select a suitable specific random process by integrating the model over a short time interval at different resolutions. The weights of themore » influences of the local discretization errors on the goal are modeled as goal sensitivities, which are calculated via automatic differentiation. The integration of the weighted realizations of local error random processes yields a posterior ensemble of goal approximations from a single run of the numerical model. From the posterior ensemble we derive the uncertainty information of the goal discretization error. This algorithm bypasses the requirement of detailed knowledge about the models discretization to generate numerical error estimates. The algorithm is evaluated for the spherical shallow-water equations. For two standard test cases we successfully estimate the error of regional potential energy, track its evolution, and compare it to standard ensemble techniques. The posterior ensemble shares linear-error-growth properties with ensembles of multiple model integrations when comparably perturbed. The posterior ensemble numerical error estimates are of comparable size as those of a stochastic physics ensemble.« less

  6. Toward Scientific Numerical Modeling

    NASA Technical Reports Server (NTRS)

    Kleb, Bil

    2007-01-01

    Ultimately, scientific numerical models need quantified output uncertainties so that modeling can evolve to better match reality. Documenting model input uncertainties and verifying that numerical models are translated into code correctly, however, are necessary first steps toward that goal. Without known input parameter uncertainties, model sensitivities are all one can determine, and without code verification, output uncertainties are simply not reliable. To address these two shortcomings, two proposals are offered: (1) an unobtrusive mechanism to document input parameter uncertainties in situ and (2) an adaptation of the Scientific Method to numerical model development and deployment. Because these two steps require changes in the computational simulation community to bear fruit, they are presented in terms of the Beckhard-Harris-Gleicher change model.

  7. Role of sediment transport model to improve the tsunami numerical simulation

    NASA Astrophysics Data System (ADS)

    Sugawara, D.; Yamashita, K.; Takahashi, T.; Imamura, F.

    2015-12-01

    Are we overlooking an important factor for improved numerical prediction of tsunamis in shallow sea to onshore? In this presentation, several case studies on numerical modeling of tsunami-induced sediment transport are reviewed, and the role of sediment transport models for tsunami inundation simulation is discussed. Large-scale sediment transport and resulting geomorphological change occurred in the coastal areas of Tohoku, Japan, due to the 2011 Tohoku Earthquake Tsunami. Datasets obtained after the tsunami, including geomorphological and sedimentological data as well as hydrodynamic records, allows us to validate the numerical model in detail. The numerical modeling of the sediment transport by the 2011 tsunami depicted the severest erosion of sandy beach, as well as characteristic spatial patterns of erosion and deposition on the seafloor, which have taken place in Hirota Bay, Sanriku Coast. Quantitative comparisons of observation and simulation of the geomorphological changes in Sanriku Coast and Sendai Bay showed that the numerical model can predict the volumes of erosion and deposition with a right order. In addition, comparison of the simulation with aerial video footages demonstrated the numerical model is capable of tracking the overall processes of tsunami sediment transport. Although tsunami-induced sediment erosion and deposition sometimes cause significant geomorphological change, and may enhance tsunami hydrodynamic impact to the coastal zones, most tsunami simulations do not include sediment transport modeling. A coupled modeling of tsunami hydrodynamics and sediment transport draws a different picture of tsunami hazard, comparing with simple hydrodynamic modeling of tsunami inundation. Since tsunami-induced erosion, deposition and geomorphological change sometimes extend more than several kilometers across the coastline, two-dimensional horizontal model are typically used for the computation of tsunami hydrodynamics and sediment transport

  8. AEETES - A solar reflux receiver thermal performance numerical model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogan, R.E. Jr.

    1994-02-01

    Reflux solar receivers for dish-Stirling electric power generation systems are currently being investigated by several companies and laboratories. In support of these efforts, the AEETES thermal performance numerical model has been developed to predict thermal performance of pool-boiler and heat-pipe reflux receivers. The formulation of the AEETES numerical model, which is applicable to axisymmetric geometries with asymmetric incident fluxes, is presented in detail. Thermal efficiency predictions agree to within 4.1% with test data from on-sun tests of a pool-boiler reflux receiver. Predicted absorber and sidewall temperatures agree with thermocouple data to within 3.3 and 7.3%, respectively. The importance of accountingmore » for the asymmetric incident fluxes is demonstrated in comparisons with predictions using azimuthally averaged variables. The predicted receiver heat losses are characterized in terms of convective, solar radiative, and infrared radiative, and conductive heat transfer mechanisms.« less

  9. On the numerical modeling of sliding beams: A comparison of different approaches

    NASA Astrophysics Data System (ADS)

    Steinbrecher, Ivo; Humer, Alexander; Vu-Quoc, Loc

    2017-11-01

    The transient analysis of sliding beams represents a challenging problem of structural mechanics. Typically, the sliding motion superimposed by large flexible deformation requires numerical methods as, e.g., finite elements, to obtain approximate solutions. By means of the classical sliding spaghetti problem, the present paper provides a guideline to the numerical modeling with conventional finite element codes. For this purpose, two approaches, one using solid elements and one using beam elements, respectively, are employed in the analysis, and the characteristics of each approach are addressed. The contact formulation realizing the interaction of the beam with its support demands particular attention in the context of sliding structures. Additionally, the paper employs the sliding-beam formulation as a third approach, which avoids the numerical difficulties caused by the large sliding motion through a suitable coordinate transformation. The present paper briefly outlines the theoretical fundamentals of the respective approaches for the modeling of sliding structures and gives a detailed comparison by means of the sliding spaghetti serving as a representative example. The specific advantages and limitations of the different approaches with regard to accuracy and computational efficiency are discussed in detail. Through the comparison, the sliding-beam formulation, which proves as an effective approach for the modeling, can be validated for the general problem of a sliding structure subjected to large deformation.

  10. An improved numerical model for wave rotor design and analysis

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.; Wilson, Jack

    1993-01-01

    A numerical model has been developed which can predict both the unsteady flows within a wave rotor and the steady averaged flows in the ports. The model is based on the assumptions of one-dimensional, unsteady, and perfect gas flow. Besides the dominant wave behavior, it is also capable of predicting the effects of finite tube opening time, leakage from the tube ends, and viscosity. The relative simplicity of the model makes it useful for design, optimization, and analysis of wave rotor cycles for any application. This paper discusses some details of the model and presents comparisons between the model and two laboratory wave rotor experiments.

  11. An improved numerical model for wave rotor design and analysis

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.; Wilson, Jack

    1992-01-01

    A numerical model has been developed which can predict both the unsteady flows within a wave rotor and the steady averaged flows in the ports. The model is based on the assumptions of one-dimensional, unsteady, and perfect gas flow. Besides the dominant wave behavior, it is also capable of predicting the effects of finite tube opening time, leakage from the tube ends, and viscosity. The relative simplicity of the model makes it useful for design, optimization, and analysis of wave rotor cycles for any application. This paper discusses some details of the model and presents comparisons between the model and two laboratory wave rotor experiments.

  12. A Two-Zone Multigrid Model for SI Engine Combustion Simulation Using Detailed Chemistry

    DOE PAGES

    Ge, Hai-Wen; Juneja, Harmit; Shi, Yu; ...

    2010-01-01

    An efficient multigrid (MG) model was implemented for spark-ignited (SI) engine combustion modeling using detailed chemistry. The model is designed to be coupled with a level-set-G-equation model for flame propagation (GAMUT combustion model) for highly efficient engine simulation. The model was explored for a gasoline direct-injection SI engine with knocking combustion. The numerical results using the MG model were compared with the results of the original GAMUT combustion model. A simpler one-zone MG model was found to be unable to reproduce the results of the original GAMUT model. However, a two-zone MG model, which treats the burned and unburned regionsmore » separately, was found to provide much better accuracy and efficiency than the one-zone MG model. Without loss in accuracy, an order of magnitude speedup was achieved in terms of CPU and wall times. To reproduce the results of the original GAMUT combustion model, either a low searching level or a procedure to exclude high-temperature computational cells from the grouping should be applied to the unburned region, which was found to be more sensitive to the combustion model details.« less

  13. Analytical and Numerical solutions of a nonlinear alcoholism model via variable-order fractional differential equations

    NASA Astrophysics Data System (ADS)

    Gómez-Aguilar, J. F.

    2018-03-01

    In this paper, we analyze an alcoholism model which involves the impact of Twitter via Liouville-Caputo and Atangana-Baleanu-Caputo fractional derivatives with constant- and variable-order. Two fractional mathematical models are considered, with and without delay. Special solutions using an iterative scheme via Laplace and Sumudu transform were obtained. We studied the uniqueness and existence of the solutions employing the fixed point postulate. The generalized model with variable-order was solved numerically via the Adams method and the Adams-Bashforth-Moulton scheme. Stability and convergence of the numerical solutions were presented in details. Numerical examples of the approximate solutions are provided to show that the numerical methods are computationally efficient. Therefore, by including both the fractional derivatives and finite time delays in the alcoholism model studied, we believe that we have established a more complete and more realistic indicator of alcoholism model and affect the spread of the drinking.

  14. Sensitivity of a numerical wave model on wind re-analysis datasets

    NASA Astrophysics Data System (ADS)

    Lavidas, George; Venugopal, Vengatesan; Friedrich, Daniel

    2017-03-01

    Wind is the dominant process for wave generation. Detailed evaluation of metocean conditions strengthens our understanding of issues concerning potential offshore applications. However, the scarcity of buoys and high cost of monitoring systems pose a barrier to properly defining offshore conditions. Through use of numerical wave models, metocean conditions can be hindcasted and forecasted providing reliable characterisations. This study reports the sensitivity of wind inputs on a numerical wave model for the Scottish region. Two re-analysis wind datasets with different spatio-temporal characteristics are used, the ERA-Interim Re-Analysis and the CFSR-NCEP Re-Analysis dataset. Different wind products alter results, affecting the accuracy obtained. The scope of this study is to assess different available wind databases and provide information concerning the most appropriate wind dataset for the specific region, based on temporal, spatial and geographic terms for wave modelling and offshore applications. Both wind input datasets delivered results from the numerical wave model with good correlation. Wave results by the 1-h dataset have higher peaks and lower biases, in expense of a high scatter index. On the other hand, the 6-h dataset has lower scatter but higher biases. The study shows how wind dataset affects the numerical wave modelling performance, and that depending on location and study needs, different wind inputs should be considered.

  15. GEOSIM: A numerical model for geophysical fluid flow simulation

    NASA Technical Reports Server (NTRS)

    Butler, Karen A.; Miller, Timothy L.; Lu, Huei-Iin

    1991-01-01

    A numerical model which simulates geophysical fluid flow in a wide range of problems is described in detail, and comparisons of some of the model's results are made with previous experimental and numerical studies. The model is based upon the Boussinesq Navier-Stokes equations in spherical coordinates, which can be reduced to a cylindrical system when latitudinal walls are used near the pole and the ratio of latitudinal length to the radius of the sphere is small. The equations are approximated by finite differences in the meridional plane and spectral decomposition in the azimuthal direction. The user can specify a variety of boundary and initial conditions, and there are five different spectral truncation options. The results of five validation cases are presented: (1) the transition between axisymmetric flow and baroclinic wave flow in the side heated annulus; (2) the steady baroclinic wave of the side heated annulus; (3) the wave amplitude vacillation of the side heated annulus; (4) transition to baroclinic wave flow in a bottom heated annulus; and (5) the Spacelab Geophysical Fluid Flow Cell (spherical) experiment.

  16. A delta-rule model of numerical and non-numerical order processing.

    PubMed

    Verguts, Tom; Van Opstal, Filip

    2014-06-01

    Numerical and non-numerical order processing share empirical characteristics (distance effect and semantic congruity), but there are also important differences (in size effect and end effect). At the same time, models and theories of numerical and non-numerical order processing developed largely separately. Currently, we combine insights from 2 earlier models to integrate them in a common framework. We argue that the same learning principle underlies numerical and non-numerical orders, but that environmental features determine the empirical differences. Implications for current theories on order processing are pointed out. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  17. The Finer Details: Climate Modeling

    NASA Technical Reports Server (NTRS)

    2000-01-01

    If you want to know whether you will need sunscreen or an umbrella for tomorrow's picnic, you can simply read the local weather report. However, if you are calculating the impact of gas combustion on global temperatures, or anticipating next year's rainfall levels to set water conservation policy, you must conduct a more comprehensive investigation. Such complex matters require long-range modeling techniques that predict broad trends in climate development rather than day-to-day details. Climate models are built from equations that calculate the progression of weather-related conditions over time. Based on the laws of physics, climate model equations have been developed to predict a number of environmental factors, for example: 1. Amount of solar radiation that hits the Earth. 2. Varying proportions of gases that make up the air. 3. Temperature at the Earth's surface. 4. Circulation of ocean and wind currents. 5. Development of cloud cover. Numerical modeling of the climate can improve our understanding of both the past and, the future. A model can confirm the accuracy of environmental measurements taken. in, the past and can even fill in gaps in those records. In addition, by quantifying the relationship between different aspects of climate, scientists can estimate how a future change in one aspect may alter the rest of the world. For example, could an increase in the temperature of the Pacific Ocean somehow set off a drought on the other side of the world? A computer simulation could lead to an answer for this and other questions. Quantifying the chaotic, nonlinear activities that shape our climate is no easy matter. You cannot run these simulations on your desktop computer and expect results by the time you have finished checking your morning e-mail. Efficient and accurate climate modeling requires powerful computers that can process billions of mathematical calculations in a single second. The NCCS exists to provide this degree of vast computing capability.

  18. Implementation of a numerical holding furnace model in foundry and construction of a reduced model

    NASA Astrophysics Data System (ADS)

    Loussouarn, Thomas; Maillet, Denis; Remy, Benjamin; Dan, Diane

    2016-09-01

    Vacuum holding induction furnaces are used for the manufacturing of turbine blades by loss wax foundry process. The control of solidification parameters is a key factor for the manufacturing of these parts in according to geometrical and structural expectations. The definition of a reduced heat transfer model with experimental identification through an estimation of its parameters is required here. In a further stage this model will be used to characterize heat exchanges using internal sensors through inverse techniques to optimize the furnace command and the optimization of its design. Here, an axisymmetric furnace and its load have been numerically modelled using FlexPDE, a finite elements code. A detailed model allows the calculation of the internal induction heat source as well as transient radiative transfer inside the furnace. A reduced lumped body model has been defined to represent the numerical furnace. The model reduction and the estimation of the parameters of the lumped body have been made using a Levenberg-Marquardt least squares minimization algorithm with Matlab, using two synthetic temperature signals with a further validation test.

  19. Numerical Modeling of River Ice Processes on the Lower Nelson River

    NASA Astrophysics Data System (ADS)

    Malenchak, Jarrod Joseph

    Water resource infrastructure in cold regions of the world can be significantly impacted by the existence of river ice. Major engineering concerns related to river ice include ice jam flooding, the design and operation of hydropower facilities and other hydraulic structures, water supplies, as well as ecological, environmental, and morphological effects. The use of numerical simulation models has been identified as one of the most efficient means by which river ice processes can be studied and the effects of river ice be evaluated. The continued advancement of these simulation models will help to develop new theories and evaluate potential mitigation alternatives for these ice issues. In this thesis, a literature review of existing river ice numerical models, of anchor ice formation and modeling studies, and of aufeis formation and modeling studies is conducted. A high level summary of the two-dimensional CRISSP numerical model is presented as well as the developed freeze-up model with a focus specifically on the anchor ice and aufeis growth processes. This model includes development in the detailed heat transfer calculations, an improved surface ice mass exchange model which includes the rapids entrainment process, and an improved dry bed treatment model along with the expanded anchor ice and aufeis growth model. The developed sub-models are tested in an ideal channel setting as somewhat of a model confirmation. A case study of significant anchor ice and aufeis growth on the Nelson River in northern Manitoba, Canada, will be the primary field test case for the anchor ice and aufeis model. A second case study on the same river will be used to evaluate the surface ice components of the model in a field setting. The results from these cases studies will be used to highlight the capabilities and deficiencies in the numerical model and to identify areas of further research and model development.

  20. Boosting flood warning schemes with fast emulator of detailed hydrodynamic models

    NASA Astrophysics Data System (ADS)

    Bellos, V.; Carbajal, J. P.; Leitao, J. P.

    2017-12-01

    Floods are among the most destructive catastrophic events and their frequency has incremented over the last decades. To reduce flood impact and risks, flood warning schemes are installed in flood prone areas. Frequently, these schemes are based on numerical models which quickly provide predictions of water levels and other relevant observables. However, the high complexity of flood wave propagation in the real world and the need of accurate predictions in urban environments or in floodplains hinders the use of detailed simulators. This sets the difficulty, we need fast predictions that meet the accuracy requirements. Most physics based detailed simulators although accurate, will not fulfill the speed demand. Even if High Performance Computing techniques are used (the magnitude of required simulation time is minutes/hours). As a consequence, most flood warning schemes are based in coarse ad-hoc approximations that cannot take advantage a detailed hydrodynamic simulation. In this work, we present a methodology for developing a flood warning scheme using an Gaussian Processes based emulator of a detailed hydrodynamic model. The methodology consists of two main stages: 1) offline stage to build the emulator; 2) online stage using the emulator to predict and generate warnings. The offline stage consists of the following steps: a) definition of the critical sites of the area under study, and the specification of the observables to predict at those sites, e.g. water depth, flow velocity, etc.; b) generation of a detailed simulation dataset to train the emulator; c) calibration of the required parameters (if measurements are available). The online stage is carried on using the emulator to predict the relevant observables quickly, and the detailed simulator is used in parallel to verify key predictions of the emulator. The speed gain given by the emulator allows also to quantify uncertainty in predictions using ensemble methods. The above methodology is applied in real

  1. Realistic numerical modelling of human head tissue exposure to electromagnetic waves from cellular phones

    NASA Astrophysics Data System (ADS)

    Scarella, Gilles; Clatz, Olivier; Lanteri, Stéphane; Beaume, Grégory; Oudot, Steve; Pons, Jean-Philippe; Piperno, Sergo; Joly, Patrick; Wiart, Joe

    2006-06-01

    The ever-rising diffusion of cellular phones has brought about an increased concern for the possible consequences of electromagnetic radiation on human health. Possible thermal effects have been investigated, via experimentation or simulation, by several research projects in the last decade. Concerning numerical modeling, the power absorption in a user's head is generally computed using discretized models built from clinical MRI data. The vast majority of such numerical studies have been conducted using Finite Differences Time Domain methods, although strong limitations of their accuracy are due to heterogeneity, poor definition of the detailed structures of head tissues (staircasing effects), etc. In order to propose numerical modeling using Finite Element or Discontinuous Galerkin Time Domain methods, reliable automated tools for the unstructured discretization of human heads are also needed. Results presented in this article aim at filling the gap between human head MRI images and the accurate numerical modeling of wave propagation in biological tissues and its thermal effects. To cite this article: G. Scarella et al., C. R. Physique 7 (2006).

  2. Numerical comparisons of ground motion predictions with kinematic rupture modeling

    NASA Astrophysics Data System (ADS)

    Yuan, Y. O.; Zurek, B.; Liu, F.; deMartin, B.; Lacasse, M. D.

    2017-12-01

    Recent advances in large-scale wave simulators allow for the computation of seismograms at unprecedented levels of detail and for areas sufficiently large to be relevant to small regional studies. In some instances, detailed information of the mechanical properties of the subsurface has been obtained from seismic exploration surveys, well data, and core analysis. Using kinematic rupture modeling, this information can be used with a wave propagation simulator to predict the ground motion that would result from an assumed fault rupture. The purpose of this work is to explore the limits of wave propagation simulators for modeling ground motion in different settings, and in particular, to explore the numerical accuracy of different methods in the presence of features that are challenging to simulate such as topography, low-velocity surface layers, and shallow sources. In the main part of this work, we use a variety of synthetic three-dimensional models and compare the relative costs and benefits of different numerical discretization methods in computing the seismograms of realistic-size models. The finite-difference method, the discontinuous-Galerkin method, and the spectral-element method are compared for a range of synthetic models having different levels of complexity such as topography, large subsurface features, low-velocity surface layers, and the location and characteristics of fault ruptures represented as an array of seismic sources. While some previous studies have already demonstrated that unstructured-mesh methods can sometimes tackle complex problems (Moczo et al.), we investigate the trade-off between unstructured-mesh methods and regular-grid methods for a broad range of models and source configurations. Finally, for comparison, our direct simulation results are briefly contrasted with those predicted by a few phenomenological ground-motion prediction equations, and a workflow for accurately predicting ground motion is proposed.

  3. Benchmark for Numerical Models of Stented Coronary Bifurcation Flow.

    PubMed

    García Carrascal, P; García García, J; Sierra Pallares, J; Castro Ruiz, F; Manuel Martín, F J

    2018-09-01

    In-stent restenosis ails many patients who have undergone stenting. When the stented artery is a bifurcation, the intervention is particularly critical because of the complex stent geometry involved in these structures. Computational fluid dynamics (CFD) has been shown to be an effective approach when modeling blood flow behavior and understanding the mechanisms that underlie in-stent restenosis. However, these CFD models require validation through experimental data in order to be reliable. It is with this purpose in mind that we performed particle image velocimetry (PIV) measurements of velocity fields within flows through a simplified coronary bifurcation. Although the flow in this simplified bifurcation differs from the actual blood flow, it emulates the main fluid dynamic mechanisms found in hemodynamic flow. Experimental measurements were performed for several stenting techniques in both steady and unsteady flow conditions. The test conditions were strictly controlled, and uncertainty was accurately predicted. The results obtained in this research represent readily accessible, easy to emulate, detailed velocity fields and geometry, and they have been successfully used to validate our numerical model. These data can be used as a benchmark for further development of numerical CFD modeling in terms of comparison of the main flow pattern characteristics.

  4. Risk assessment based on a combination of historical analysis, a detailed field study and numerical modeling on the alluvial fan Gadeinerbach as a basis for a risk management concept

    NASA Astrophysics Data System (ADS)

    Moser, M.

    2009-04-01

    The catchment Gadeinerbach in the District of Lungau/Salzburg/Austria is prone to debris flows. Large debris flow events dates back from the years 1934 and 1953. In the upper catchment large mass movements represent debris sources. A field study shows the debris potential and the catchment looks like a "sleeping torrential giant". To carry out mitigation measures a detailed risk management concept, based on a risk assessment in combination of historical analysis, field study and numerical modeling on the alluvial fan was conducted. Human activities have partly altered the surface of the alluvial fan Gadeinerbach but nevertheless some important hazard indicators could be found. With the hazard indicators and photo analysis from the large debris flow event 1934 the catchment character could be pointed out. With the help of these historical data sets (hazard indicators, sediment and debris amount...) it is possible to calibrate the provided numerical models and to win useful knowledge over the pro and cons and their application. The results were used to simulate the design event and furthermore to derive mitigation measures. Therefore the most effective protection against debris with a reduction of the high energy level to a lower level under particular energy change in combination with a debris/bedload deposition place has been carried out. Expert opinion, the study of historical data and a field work is in addition to numerical simulation techniques very necessary for the work in the field of natural hazard management.

  5. Numerical implementation of the S-matrix algorithm for modeling of relief diffraction gratings

    NASA Astrophysics Data System (ADS)

    Yaremchuk, Iryna; Tamulevičius, Tomas; Fitio, Volodymyr; Gražulevičiūte, Ieva; Bobitski, Yaroslav; Tamulevičius, Sigitas

    2013-11-01

    A new numerical implementation is developed to calculate the diffraction efficiency of relief diffraction gratings. In the new formulation, vectors containing the expansion coefficients of electric and magnetic fields on boundaries of the grating layer are expressed by additional constants. An S-matrix algorithm has been systematically described in detail and adapted to a simple matrix form. This implementation is suitable for the study of optical characteristics of periodic structures by using modern object-oriented programming languages and different standard mathematical software. The modeling program has been developed on the basis of this numerical implementation and tested by comparison with other commercially available programs and experimental data. Numerical examples are given to show the usefulness of the new implementation.

  6. Transient Numerical Modeling of Catalytic Channels

    NASA Technical Reports Server (NTRS)

    Struk, Peter M.; Dietrich, Daniel L.; Miller, Fletcher J.; T'ien, James S.

    2007-01-01

    This paper presents a transient model of catalytic combustion suitable for isolated channels and monolith reactors. The model is a lumped two-phase (gas and solid) model where the gas phase is quasi-steady relative to the transient solid. Axial diffusion is neglected in the gas phase; lateral diffusion, however, is accounted for using transfer coefficients. The solid phase includes axial heat conduction and external heat loss due to convection and radiation. The combustion process utilizes detailed gas and surface reaction models. The gas-phase model becomes a system of stiff ordinary differential equations while the solid phase reduces, after discretization, into a system of stiff ordinary differential-algebraic equations. The time evolution of the system came from alternating integrations of the quasi-steady gas and transient solid. This work outlines the numerical model and presents some sensitivity studies on important parameters including internal transfer coefficients, catalytic surface site density, and external heat-loss (if applicable). The model is compared to two experiments using CO fuel: (1) steady-state conversion through an isothermal platinum (Pt) tube and (2) transient propagation of a catalytic reaction inside a small Pt tube. The model requires internal mass-transfer resistance to match the experiments at lower residence times. Under mass-transport limited conditions, the model reasonably predicted exit conversion using global mass-transfer coefficients. Near light-off, the model results did not match the experiment precisely even after adjustment of mass-transfer coefficients. Agreement improved for the first case after adjusting the surface kinetics such that the net rate of CO adsorption increased compared to O2. The CO / O2 surface mechanism came from a sub-set of reactions in a popular CH4 / O2 mechanism. For the second case, predictions improved for lean conditions with increased external heat loss or adjustment of the kinetics as in the

  7. Transient Catalytic Combustor Model With Detailed Gas and Surface Chemistry

    NASA Technical Reports Server (NTRS)

    Struk, Peter M.; Dietrich, Daniel L.; Mellish, Benjamin P.; Miller, Fletcher J.; Tien, James S.

    2005-01-01

    In this work, we numerically investigate the transient combustion of a premixed gas mixture in a narrow, perfectly-insulated, catalytic channel which can represent an interior channel of a catalytic monolith. The model assumes a quasi-steady gas-phase and a transient, thermally thin solid phase. The gas phase is one-dimensional, but it does account for heat and mass transfer in a direction perpendicular to the flow via appropriate heat and mass transfer coefficients. The model neglects axial conduction in both the gas and in the solid. The model includes both detailed gas-phase reactions and catalytic surface reactions. The reactants modeled so far include lean mixtures of dry CO and CO/H2 mixtures, with pure oxygen as the oxidizer. The results include transient computations of light-off and system response to inlet condition variations. In some cases, the model predicts two different steady-state solutions depending on whether the channel is initially hot or cold. Additionally, the model suggests that the catalytic ignition of CO/O2 mixtures is extremely sensitive to small variations of inlet equivalence ratios and parts per million levels of H2.

  8. Between simplicity and accuracy: Effect of adding modeling details on quarter vehicle model accuracy.

    PubMed

    Soong, Ming Foong; Ramli, Rahizar; Saifizul, Ahmad

    2017-01-01

    Quarter vehicle model is the simplest representation of a vehicle that belongs to lumped-mass vehicle models. It is widely used in vehicle and suspension analyses, particularly those related to ride dynamics. However, as much as its common adoption, it is also commonly accepted without quantification that this model is not as accurate as many higher-degree-of-freedom models due to its simplicity and limited degrees of freedom. This study investigates the trade-off between simplicity and accuracy within the context of quarter vehicle model by determining the effect of adding various modeling details on model accuracy. In the study, road input detail, tire detail, suspension stiffness detail and suspension damping detail were factored in, and several enhanced models were compared to the base model to assess the significance of these details. The results clearly indicated that these details do have effect on simulated vehicle response, but to various extents. In particular, road input detail and suspension damping detail have the most significance and are worth being added to quarter vehicle model, as the inclusion of these details changed the response quite fundamentally. Overall, when it comes to lumped-mass vehicle modeling, it is reasonable to say that model accuracy depends not just on the number of degrees of freedom employed, but also on the contributions from various modeling details.

  9. Between simplicity and accuracy: Effect of adding modeling details on quarter vehicle model accuracy

    PubMed Central

    2017-01-01

    Quarter vehicle model is the simplest representation of a vehicle that belongs to lumped-mass vehicle models. It is widely used in vehicle and suspension analyses, particularly those related to ride dynamics. However, as much as its common adoption, it is also commonly accepted without quantification that this model is not as accurate as many higher-degree-of-freedom models due to its simplicity and limited degrees of freedom. This study investigates the trade-off between simplicity and accuracy within the context of quarter vehicle model by determining the effect of adding various modeling details on model accuracy. In the study, road input detail, tire detail, suspension stiffness detail and suspension damping detail were factored in, and several enhanced models were compared to the base model to assess the significance of these details. The results clearly indicated that these details do have effect on simulated vehicle response, but to various extents. In particular, road input detail and suspension damping detail have the most significance and are worth being added to quarter vehicle model, as the inclusion of these details changed the response quite fundamentally. Overall, when it comes to lumped-mass vehicle modeling, it is reasonable to say that model accuracy depends not just on the number of degrees of freedom employed, but also on the contributions from various modeling details. PMID:28617819

  10. Automatic network coupling analysis for dynamical systems based on detailed kinetic models.

    PubMed

    Lebiedz, Dirk; Kammerer, Julia; Brandt-Pollmann, Ulrich

    2005-10-01

    We introduce a numerical complexity reduction method for the automatic identification and analysis of dynamic network decompositions in (bio)chemical kinetics based on error-controlled computation of a minimal model dimension represented by the number of (locally) active dynamical modes. Our algorithm exploits a generalized sensitivity analysis along state trajectories and subsequent singular value decomposition of sensitivity matrices for the identification of these dominant dynamical modes. It allows for a dynamic coupling analysis of (bio)chemical species in kinetic models that can be exploited for the piecewise computation of a minimal model on small time intervals and offers valuable functional insight into highly nonlinear reaction mechanisms and network dynamics. We present results for the identification of network decompositions in a simple oscillatory chemical reaction, time scale separation based model reduction in a Michaelis-Menten enzyme system and network decomposition of a detailed model for the oscillatory peroxidase-oxidase enzyme system.

  11. Multigrid Method for Modeling Multi-Dimensional Combustion with Detailed Chemistry

    NASA Technical Reports Server (NTRS)

    Zheng, Xiaoqing; Liu, Chaoqun; Liao, Changming; Liu, Zhining; McCormick, Steve

    1996-01-01

    A highly accurate and efficient numerical method is developed for modeling 3-D reacting flows with detailed chemistry. A contravariant velocity-based governing system is developed for general curvilinear coordinates to maintain simplicity of the continuity equation and compactness of the discretization stencil. A fully-implicit backward Euler technique and a third-order monotone upwind-biased scheme on a staggered grid are used for the respective temporal and spatial terms. An efficient semi-coarsening multigrid method based on line-distributive relaxation is used as the flow solver. The species equations are solved in a fully coupled way and the chemical reaction source terms are treated implicitly. Example results are shown for a 3-D gas turbine combustor with strong swirling inflows.

  12. Analysis Model and Numerical Simulation of Thermoelectric Response of CFRP Composites

    NASA Astrophysics Data System (ADS)

    Lin, Yueguo

    2018-05-01

    An electric current generates Joule heating, and under steady state conditions, a sample exhibits a balance between the strength dissipated by the Joule effect and the heat exchange with the environment by radiation and convection. In the present paper, theoretical model, numerical FEM and experimental methods have been used to analyze the radiation and free convection properties in CFRP composite samples heated by an electric current. The materials employed in these samples have applications in many aeronautic devices. This study addresses two types of composite materials, UD [0]8 and QI [45/90/-45/0]S, which were prepared for thermoelectric experiments. A DC electric current (ranging from 1A to 8A) was injected through the specimen ends to find the coupling effect between the electric current and temperature. An FE model and simplified thermoelectric analysis model are presented in detail to represent the thermoelectric data. These are compared with the experimental results. All of the test equipments used to obtain the experimental data and the numerical simulations are characterized, and we find that the numerical simulations correspond well with the experiments. The temperature of the surface of the specimen is almost proportional to the electric current. The simplified analysis model was used to calculate the balance time of the temperature, which is consistent throughout all of the experimental investigations.

  13. Performance testing of a vertical Bridgman furnace using experiments and numerical modeling

    NASA Astrophysics Data System (ADS)

    Rosch, W. R.; Fripp, A. L.; Debnam, W. J.; Pendergrass, T. K.

    1997-04-01

    This paper details a portion of the work performed in preparation for the growth of lead tin telluride crystals during a Space Shuttle flight. A coordinated effort of experimental measurements and numerical modeling was completed to determine the optimum growth parameters and the performance of the furnace. This work was done using NASA's Advanced Automated Directional Solidification Furnace, but the procedures used should be equally valid for other vertical Bridgman furnaces.

  14. Detailed clinical models: a review.

    PubMed

    Goossen, William; Goossen-Baremans, Anneke; van der Zel, Michael

    2010-12-01

    Due to the increasing use of electronic patient records and other health care information technology, we see an increase in requests to utilize these data. A highly level of standardization is required during the gathering of these data in the clinical context in order to use it for analyses. Detailed Clinical Models (DCM) have been created toward this purpose and several initiatives have been implemented in various parts of the world to create standardized models. This paper presents a review of DCM. Two types of analyses are presented; one comparing DCM against health care information architectures and a second bottom up approach from concept analysis to representation. In addition core parts of the draft ISO standard 13972 on DCM are used such as clinician involvement, data element specification, modeling, meta information, and repository and governance. SIX INITIATIVES WERE SELECTED: Intermountain Healthcare, 13606/OpenEHR Archetypes, Clinical Templates, Clinical Contents Models, Health Level 7 templates, and Dutch Detailed Clinical Models. Each model selected was reviewed for their overall development, involvement of clinicians, use of data types, code bindings, expressing semantics, modeling, meta information, use of repository and governance. Using both a top down and bottom up approach to comparison reveals many commonalties and differences between initiatives. Important differences include the use of or lack of a reference model and expressiveness of models. Applying clinical data element standards facilitates the use of conceptual DCM models in different technical representations.

  15. Numerical modeling of aquifer thermal energy storage

    NASA Astrophysics Data System (ADS)

    Tsang, C. F.; Doughty, C.; Kincaid, C. T.

    1982-12-01

    During 1981 and 1982, Auburn University has been performing a three cycle ATES field experiment in Mobile County, Alabama. Details of the experiment are described elsewhere in this volume. Concurrent with the first two cycles (59 C and 82 C), Lawrence Berkeley Laboratory (LBL) did numerical simulations based on field operating conditions to predict the outcome of each cycle before its conclusion. Prior to the third cycle, a series of numerical simulations were made to aid in the design of an experiment that would yield the highest recovery factor possible.

  16. Advanced Combustion Numerics and Modeling - FY18 First Quarter Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitesides, R. A.; Killingsworth, N. J.; McNenly, M. J.

    This project is focused on early stage research and development of numerical methods and models to improve advanced engine combustion concepts and systems. The current focus is on development of new mathematics and algorithms to reduce the time to solution for advanced combustion engine design using detailed fuel chemistry. The research is prioritized towards the most time-consuming workflow bottlenecks (computer and human) and accuracy gaps that slow ACS program members. Zero-RK, the fast and accurate chemical kinetics solver software developed in this project, is central to the research efforts and continues to be developed to address the current and emergingmore » needs of the engine designers, engine modelers and fuel mechanism developers.« less

  17. Numerical Study of Periodic Traveling Wave Solutions for the Predator-Prey Model with Landscape Features

    NASA Astrophysics Data System (ADS)

    Yun, Ana; Shin, Jaemin; Li, Yibao; Lee, Seunggyu; Kim, Junseok

    We numerically investigate periodic traveling wave solutions for a diffusive predator-prey system with landscape features. The landscape features are modeled through the homogeneous Dirichlet boundary condition which is imposed at the edge of the obstacle domain. To effectively treat the Dirichlet boundary condition, we employ a robust and accurate numerical technique by using a boundary control function. We also propose a robust algorithm for calculating the numerical periodicity of the traveling wave solution. In numerical experiments, we show that periodic traveling waves which move out and away from the obstacle are effectively generated. We explain the formation of the traveling waves by comparing the wavelengths. The spatial asynchrony has been shown in quantitative detail for various obstacles. Furthermore, we apply our numerical technique to the complicated real landscape features.

  18. Numerical model of spray combustion in a single cylinder diesel engine

    NASA Astrophysics Data System (ADS)

    Acampora, Luigi; Sequino, Luigi; Nigro, Giancarlo; Continillo, Gaetano; Vaglieco, Bianca Maria

    2017-11-01

    A numerical model is developed for predicting the pressure cycle from Intake Valve Closing (IVC) to the Exhaust Valve Opening (EVO) events. The model is based on a modified one-dimensional (1D) Musculus and Kattke spray model, coupled with a zero-dimensional (0D) non-adiabatic transient Fed-Batch reactor model. The 1D spray model provides an estimate of the fuel evaporation rate during the injection phenomenon, as a function of time. The 0D Fed-Batch reactor model describes combustion. The main goal of adopting a 0D (perfectly stirred) model is to use highly detailed reaction mechanisms for Diesel fuel combustion in air, while keeping the computational cost as low as possible. The proposed model is validated by comparing its predictions with experimental data of pressure obtained from an optical single cylinder Diesel engine.

  19. An Experimental and Numerical Study of a Supersonic Burner for CFD Model Development

    NASA Technical Reports Server (NTRS)

    Magnotti, G.; Cutler, A. D.

    2008-01-01

    A laboratory scale supersonic burner has been developed for validation of computational fluid dynamics models. Detailed numerical simulations were performed for the flow inside the combustor, and coupled with finite element thermal analysis to obtain more accurate outflow conditions. A database of nozzle exit profiles for a wide range of conditions of interest was generated to be used as boundary conditions for simulation of the external jet, or for validation of non-intrusive measurement techniques. A set of experiments was performed to validate the numerical results. In particular, temperature measurements obtained by using an infrared camera show that the computed heat transfer was larger than the measured value. Relaminarization in the convergent part of the nozzle was found to be responsible for this discrepancy, and further numerical simulations sustained this conclusion.

  20. Receiving water quality assessment: comparison between simplified and detailed integrated urban modelling approaches.

    PubMed

    Mannina, Giorgio; Viviani, Gaspare

    2010-01-01

    Urban water quality management often requires use of numerical models allowing the evaluation of the cause-effect relationship between the input(s) (i.e. rainfall, pollutant concentrations on catchment surface and in sewer system) and the resulting water quality response. The conventional approach to the system (i.e. sewer system, wastewater treatment plant and receiving water body), considering each component separately, does not enable optimisation of the whole system. However, recent gains in understanding and modelling make it possible to represent the system as a whole and optimise its overall performance. Indeed, integrated urban drainage modelling is of growing interest for tools to cope with Water Framework Directive requirements. Two different approaches can be employed for modelling the whole urban drainage system: detailed and simplified. Each has its advantages and disadvantages. Specifically, detailed approaches can offer a higher level of reliability in the model results, but can be very time consuming from the computational point of view. Simplified approaches are faster but may lead to greater model uncertainty due to an over-simplification. To gain insight into the above problem, two different modelling approaches have been compared with respect to their uncertainty. The first urban drainage integrated model approach uses the Saint-Venant equations and the 1D advection-dispersion equations, for the quantity and for the quality aspects, respectively. The second model approach consists of the simplified reservoir model. The analysis used a parsimonious bespoke model developed in previous studies. For the uncertainty analysis, the Generalised Likelihood Uncertainty Estimation (GLUE) procedure was used. Model reliability was evaluated on the basis of capacity of globally limiting the uncertainty. Both models have a good capability to fit the experimental data, suggesting that all adopted approaches are equivalent both for quantity and quality. The

  1. Global detailed geoid computation and model analysis

    NASA Technical Reports Server (NTRS)

    Marsh, J. G.; Vincent, S.

    1974-01-01

    Comparisons and analyses were carried out through the use of detailed gravimetric geoids which we have computed by combining models with a set of 26,000 1 deg x 1 deg mean free air gravity anomalies. The accuracy of the detailed gravimetric geoid computed using the most recent Goddard earth model (GEM-6) in conjunction with the set of 1 deg x 1 deg mean free air gravity anomalies is assessed at + or - 2 meters on the continents of North America, Europe, and Australia, 2 to 5 meters in the Northeast Pacific and North Atlantic areas, and 5 to 10 meters in other areas where surface gravity data are sparse. The R.M.S. differences between this detailed geoid and the detailed geoids computed using the other satellite gravity fields in conjuction with same set of surface data range from 3 to 7 meters.

  2. Numerical models as interactive art

    NASA Astrophysics Data System (ADS)

    Donchyts, G.; Baart, F.; van de Pas, B.; Joling, A.

    2017-12-01

    We capture our understanding of the environment in advanced computer models. We use these numerical models to simulate the growth of deltas, meandering rivers, dune erosion, river floodings, effects of interventions. If presented with care, models can help understand the complexity of our environment and show the beautiful patterns of nature. While the topics are relevant and appealing to the general public the use of numerical models has been limited to technical users. Not many people have appreciations for the pluriform of options, esoteric user interfaces, manual editing of configuration files and extensive jargon. The models are static, you can start them, but then you have to wait, usually hours or more, for the results to become available, not something that you could imagine resulting in an immersive, interactive experience for the general public. How can we go beyond just using results? How can we adapt existing numerical models so they can be used in an interactive environment? How can we touch them and feel them? Here we show how we adapted existing models (Delft3D, Lisflood, XBeach) and reused them in as the basis for interactive exhibitions in museums with an educative goal. We present our structured approach which consists of combining a story, inspiration, a canvas, colors, shapes and interactive elements. We show how the progression from simple presentation forms to interactive art installations.

  3. A human body model for efficient numerical characterization of UWB signal propagation in wireless body area networks.

    PubMed

    Lim, Hooi Been; Baumann, Dirk; Li, Er-Ping

    2011-03-01

    Wireless body area network (WBAN) is a new enabling system with promising applications in areas such as remote health monitoring and interpersonal communication. Reliable and optimum design of a WBAN system relies on a good understanding and in-depth studies of the wave propagation around a human body. However, the human body is a very complex structure and is computationally demanding to model. This paper aims to investigate the effects of the numerical model's structure complexity and feature details on the simulation results. Depending on the application, a simplified numerical model that meets desired simulation accuracy can be employed for efficient simulations. Measurements of ultra wideband (UWB) signal propagation along a human arm are performed and compared to the simulation results obtained with numerical arm models of different complexity levels. The influence of the arm shape and size, as well as tissue composition and complexity is investigated.

  4. Numerical Modeling of the Lake Mary Road Bridge for Foundation Reuse Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sitek, M. A.; Bojanowski, C.; Lottes, S. A.

    This project uses numerical techniques to assess the structural integrity and capacity of the bridge foundations and, as a result, reduces the risk associated with reusing the same foundation for a new superstructure. Nondestructive test methods of different types were used in combination with the numerical modeling and analysis. The onsite tests included visual inspection, tomography, ground penetrating radar, drilling boreholes and coreholes, and the laboratory tests on recovered samples. The results were utilized to identify the current geometry of the structure with foundation, including the hidden geometry of the abutments and piers, and soil and foundation material properties. Thismore » data was used to build the numerical models and run computational analyses on a high performance computer cluster to assess the structural integrity of the bridge and foundations including the suitability of the foundation for reuse with a new superstructure and traffic that will increase the load on the foundations. Computational analysis is more cost-effective and gives an advantage of getting more detailed knowledge about the structural response. It also enables to go beyond non-destructive testing and find the failure conditions without destroying the structure under consideration.« less

  5. Ferrofluids: Modeling, numerical analysis, and scientific computation

    NASA Astrophysics Data System (ADS)

    Tomas, Ignacio

    This dissertation presents some developments in the Numerical Analysis of Partial Differential Equations (PDEs) describing the behavior of ferrofluids. The most widely accepted PDE model for ferrofluids is the Micropolar model proposed by R.E. Rosensweig. The Micropolar Navier-Stokes Equations (MNSE) is a subsystem of PDEs within the Rosensweig model. Being a simplified version of the much bigger system of PDEs proposed by Rosensweig, the MNSE are a natural starting point of this thesis. The MNSE couple linear velocity u, angular velocity w, and pressure p. We propose and analyze a first-order semi-implicit fully-discrete scheme for the MNSE, which decouples the computation of the linear and angular velocities, is unconditionally stable and delivers optimal convergence rates under assumptions analogous to those used for the Navier-Stokes equations. Moving onto the much more complex Rosensweig's model, we provide a definition (approximation) for the effective magnetizing field h, and explain the assumptions behind this definition. Unlike previous definitions available in the literature, this new definition is able to accommodate the effect of external magnetic fields. Using this definition we setup the system of PDEs coupling linear velocity u, pressure p, angular velocity w, magnetization m, and magnetic potential ϕ We show that this system is energy-stable and devise a numerical scheme that mimics the same stability property. We prove that solutions of the numerical scheme always exist and, under certain simplifying assumptions, that the discrete solutions converge. A notable outcome of the analysis of the numerical scheme for the Rosensweig's model is the choice of finite element spaces that allow the construction of an energy-stable scheme. Finally, with the lessons learned from Rosensweig's model, we develop a diffuse-interface model describing the behavior of two-phase ferrofluid flows and present an energy-stable numerical scheme for this model. For a

  6. Numerical modeling for dilute and dense sprays

    NASA Technical Reports Server (NTRS)

    Chen, C. P.; Kim, Y. M.; Shang, H. M.; Ziebarth, J. P.; Wang, T. S.

    1992-01-01

    We have successfully implemented a numerical model for spray-combustion calculations. In this model, the governing gas-phase equations in Eulerian coordinate are solved by a time-marching multiple pressure correction procedure based on the operator-splitting technique. The droplet-phase equations in Lagrangian coordinate are solved by a stochastic discrete particle technique. In order to simplify the calculation procedure for the circulating droplets, the effective conductivity model is utilized. The k-epsilon models are utilized to characterize the time and length scales of the gas phase in conjunction with turbulent modulation by droplets and droplet dispersion by turbulence. This method entails random sampling of instantaneous gas flow properties and the stochastic process requires a large number of computational parcels to produce the satisfactory dispersion distributions even for rather dilute sprays. Two major improvements in spray combustion modelings were made. Firstly, we have developed a probability density function approach in multidimensional space to represent a specific computational particle. Secondly, we incorporate the Taylor Analogy Breakup (TAB) model for handling the dense spray effects. This breakup model is based on the reasonable assumption that atomization and drop breakup are indistinguishable processes within a dense spray near the nozzle exit. Accordingly, atomization is prescribed by injecting drops which have a characteristic size equal to the nozzle exit diameter. Example problems include the nearly homogeneous and inhomogeneous turbulent particle dispersion, and the non-evaporating, evaporating, and burning dense sprays. Comparison with experimental data will be discussed in detail.

  7. a Numerical Model for Flue Gas Desulfurization System.

    NASA Astrophysics Data System (ADS)

    Kim, Sung Joon

    The purpose of this work is to develop a reliable numerical model for spray dryer desulfurization systems. The shape of the spray dryer requires that a body fitted orthogonal coordinate system be used for the numerical model. The governing equations are developed in the general orthogonal coordinates and discretized to yield a system of algebraic equations. A turbulence model is also included in the numerical program. A new second order numerical scheme is developed and included in the numerical model. The trajectory approach is used to simulate the flow of the dispersed phase. Two-way coupling phenomena is modeled by this scheme. The absorption of sulfur dioxide into lime slurry droplets is simulated by a model based on gas -phase mass transfer. The program is applied to a typical spray dryer desulfurization system. The results show the capability of the program to predict the sensitivity of system performance to changes in operational parameters.

  8. Tides in the Black Sea: Observations and Numerical Modelling

    NASA Astrophysics Data System (ADS)

    Medvedev, Igor P.

    2018-05-01

    Longterm hourly data from 28 tide gauges were used to examine the main features of tides in the Black Sea. The tides in this basin are directly caused by tide-generating forces and the semidiurnal tides prevail over diurnal tides. Based on the Princeton Ocean Model (POM), a numerical model of tides in the Black Sea and adjacent Sea of Azov was developed and found to be in good agreement with tide gauge observations. Detailed tidal charts for amplitudes and phase lags of the major tidal harmonics in these two seas were constructed. The results of the numerical modelling and observations reveal for the semidiurnal tides the presence of an amphidromy with clockwise rotation and another one with counterclockwise rotation for the diurnal tides, both located in the central part of the sea near the Crimean Peninsula. Therefore, for this part of the sea the amplitudes of harmonics M 2 and K 1 are less than 0.1 cm. Relatively larger M 2 amplitudes are observed on the east and west coasts of the sea (2-3 cm). The maximum amplitude of the harmonic M 2 was found at Karkinit Bay—up to 4.5 cm—while the maximum tidal range varies from 1 cm near the Crimean Peninsula to 18-19 cm in the Dnieper-Bug Estuary and Karkinit Bay. Radiational tides, initiated mainly by sea breezes, make an important contribution to the formation of tidal oscillations in the Dnieper-Bug Estuary.

  9. Spurious Numerical Solutions Of Differential Equations

    NASA Technical Reports Server (NTRS)

    Lafon, A.; Yee, H. C.

    1995-01-01

    Paper presents detailed study of spurious steady-state numerical solutions of differential equations that contain nonlinear source terms. Main objectives of this study are (1) to investigate how well numerical steady-state solutions of model nonlinear reaction/convection boundary-value problem mimic true steady-state solutions and (2) to relate findings of this investigation to implications for interpretation of numerical results from computational-fluid-dynamics algorithms and computer codes used to simulate reacting flows.

  10. Nonspinning numerical relativity waveform surrogates: assessing the model

    NASA Astrophysics Data System (ADS)

    Field, Scott; Blackman, Jonathan; Galley, Chad; Scheel, Mark; Szilagyi, Bela; Tiglio, Manuel

    2015-04-01

    Recently, multi-modal gravitational waveform surrogate models have been built directly from data numerically generated by the Spectral Einstein Code (SpEC). I will describe ways in which the surrogate model error can be quantified. This task, in turn, requires (i) characterizing differences between waveforms computed by SpEC with those predicted by the surrogate model and (ii) estimating errors associated with the SpEC waveforms from which the surrogate is built. Both pieces can have numerous sources of numerical and systematic errors. We make an attempt to study the most dominant error sources and, ultimately, the surrogate model's fidelity. These investigations yield information about the surrogate model's uncertainty as a function of time (or frequency) and parameter, and could be useful in parameter estimation studies which seek to incorporate model error. Finally, I will conclude by comparing the numerical relativity surrogate model to other inspiral-merger-ringdown models. A companion talk will cover the building of multi-modal surrogate models.

  11. GO2OGS 1.0: a versatile workflow to integrate complex geological information with fault data into numerical simulation models

    NASA Astrophysics Data System (ADS)

    Fischer, T.; Naumov, D.; Sattler, S.; Kolditz, O.; Walther, M.

    2015-11-01

    We offer a versatile workflow to convert geological models built with the ParadigmTM GOCAD© (Geological Object Computer Aided Design) software into the open-source VTU (Visualization Toolkit unstructured grid) format for usage in numerical simulation models. Tackling relevant scientific questions or engineering tasks often involves multidisciplinary approaches. Conversion workflows are needed as a way of communication between the diverse tools of the various disciplines. Our approach offers an open-source, platform-independent, robust, and comprehensible method that is potentially useful for a multitude of environmental studies. With two application examples in the Thuringian Syncline, we show how a heterogeneous geological GOCAD model including multiple layers and faults can be used for numerical groundwater flow modeling, in our case employing the OpenGeoSys open-source numerical toolbox for groundwater flow simulations. The presented workflow offers the chance to incorporate increasingly detailed data, utilizing the growing availability of computational power to simulate numerical models.

  12. Geometric Modelling of Tree Roots with Different Levels of Detail

    NASA Astrophysics Data System (ADS)

    Guerrero Iñiguez, J. I.

    2017-09-01

    This paper presents a geometric approach for modelling tree roots with different Levels of Detail, suitable for analysis of the tree anchoring, potentially occupied underground space, interaction with urban elements and damage produced and taken in the built-in environment. Three types of tree roots are considered to cover several species: tap root, heart shaped root and lateral roots. Shrubs and smaller plants are not considered, however, a similar approach can be considered if the information is available for individual species. The geometrical approach considers the difficulties of modelling the actual roots, which are dynamic and almost opaque to direct observation, proposing generalized versions. For each type of root, different geometric models are considered to capture the overall shape of the root, a simplified block model, and a planar or surface projected version. Lower detail versions are considered as compatibility version for 2D systems while higher detail models are suitable for 3D analysis and visualization. The proposed levels of detail are matched with CityGML Levels of Detail, enabling both analysis and aesthetic views for urban modelling.

  13. Numerical model SMODERP

    NASA Astrophysics Data System (ADS)

    Kavka, P.; Jeřábek, J.; Strouhal, L.

    2016-12-01

    The contribution presents a numerical model SMODERP that is used for calculation and prediction of surface runoff and soil erosion from agricultural land. The physically based model includes the processes of infiltration (Phillips equation), surface runoff routing (kinematic wave based equation), surface retention, surface roughness and vegetation impact on runoff. The model is being developed at the Department of Irrigation, Drainage and Landscape Engineering, Civil Engineering Faculty, CTU in Prague. 2D version of the model was introduced in last years. The script uses ArcGIS system tools for data preparation. The physical relations are implemented through Python scripts. The main computing part is stand alone in numpy arrays. Flow direction is calculated by Steepest Descent algorithm and in multiple flow algorithm. Sheet flow is described by modified kinematic wave equation. Parameters for five different soil textures were calibrated on the set of hundred measurements performed on the laboratory and filed rainfall simulators. Spatially distributed models enable to estimate not only surface runoff but also flow in the rills. Development of the rills is based on critical shear stress and critical velocity. For modelling of the rills a specific sub model was created. This sub model uses Manning formula for flow estimation. Flow in the ditches and streams are also computed. Numerical stability of the model is controled by Courant criterion. Spatial scale is fixed. Time step is dynamic and depends on the actual discharge. The model is used in the framework of the project "Variability of Short-term Precipitation and Runoff in Small Czech Drainage Basins and its Influence on Water Resources Management". Main goal of the project is to elaborate a methodology and online utility for deriving short-term design precipitation series, which could be utilized by a broad community of scientists, state administration as well as design planners. The methodology will account for

  14. Review of numerical models of cavitating flows with the use of the homogeneous approach

    NASA Astrophysics Data System (ADS)

    Niedźwiedzka, Agnieszka; Schnerr, Günter H.; Sobieski, Wojciech

    2016-06-01

    The focus of research works on cavitation has changed since the 1960s; the behaviour of a single bubble is no more the area of interest for most scientists. Its place was taken by the cavitating flow considered as a whole. Many numerical models of cavitating flows came into being within the space of the last fifty years. They can be divided into two groups: multi-fluid and homogeneous (i.e., single-fluid) models. The group of homogenous models contains two subgroups: models based on transport equation and pressure based models. Several works tried to order particular approaches and presented short reviews of selected studies. However, these classifications are too rough to be treated as sufficiently accurate. The aim of this paper is to present the development paths of numerical investigations of cavitating flows with the use of homogeneous approach in order of publication year and with relatively detailed description. Each of the presented model is accompanied by examples of the application area. This review focuses not only on the list of the most significant existing models to predict sheet and cloud cavitation, but also on presenting their advantages and disadvantages. Moreover, it shows the reasons which inspired present authors to look for new ways of more accurate numerical predictions and dimensions of cavitation. The article includes also the division of source terms of presented models based on the transport equation with the use of standardized symbols.

  15. Simplified method for numerical modeling of fiber lasers.

    PubMed

    Shtyrina, O V; Yarutkina, I A; Fedoruk, M P

    2014-12-29

    A simplified numerical approach to modeling of dissipative dispersion-managed fiber lasers is examined. We present a new numerical iteration algorithm for finding the periodic solutions of the system of nonlinear ordinary differential equations describing the intra-cavity dynamics of the dissipative soliton characteristics in dispersion-managed fiber lasers. We demonstrate that results obtained using simplified model are in good agreement with full numerical modeling based on the corresponding partial differential equations.

  16. Numerical model updating technique for structures using firefly algorithm

    NASA Astrophysics Data System (ADS)

    Sai Kubair, K.; Mohan, S. C.

    2018-03-01

    Numerical model updating is a technique used for updating the existing experimental models for any structures related to civil, mechanical, automobiles, marine, aerospace engineering, etc. The basic concept behind this technique is updating the numerical models to closely match with experimental data obtained from real or prototype test structures. The present work involves the development of numerical model using MATLAB as a computational tool and with mathematical equations that define the experimental model. Firefly algorithm is used as an optimization tool in this study. In this updating process a response parameter of the structure has to be chosen, which helps to correlate the numerical model developed with the experimental results obtained. The variables for the updating can be either material or geometrical properties of the model or both. In this study, to verify the proposed technique, a cantilever beam is analyzed for its tip deflection and a space frame has been analyzed for its natural frequencies. Both the models are updated with their respective response values obtained from experimental results. The numerical results after updating show that there is a close relationship that can be brought between the experimental and the numerical models.

  17. Two-dimensional atmospheric transport and chemistry model - Numerical experiments with a new advection algorithm

    NASA Technical Reports Server (NTRS)

    Shia, Run-Lie; Ha, Yuk Lung; Wen, Jun-Shan; Yung, Yuk L.

    1990-01-01

    Extensive testing of the advective scheme proposed by Prather (1986) has been carried out in support of the California Institute of Technology-Jet Propulsion Laboratory two-dimensional model of the middle atmosphere. The original scheme is generalized to include higher-order moments. In addition, it is shown how well the scheme works in the presence of chemistry as well as eddy diffusion. Six types of numerical experiments including simple clock motion and pure advection in two dimensions have been investigated in detail. By comparison with analytic solutions, it is shown that the new algorithm can faithfully preserve concentration profiles, has essentially no numerical diffusion, and is superior to a typical fourth-order finite difference scheme.

  18. Modeling Long-Term Fluvial Incision : Shall we Care for the Details of Short-Term Fluvial Dynamics?

    NASA Astrophysics Data System (ADS)

    Lague, D.; Davy, P.

    2008-12-01

    Fluvial incision laws used in numerical models of coupled climate, erosion and tectonics systems are mainly based on the family of stream power laws for which the rate of local erosion E is a power function of the topographic slope S and the local mean discharge Q : E = K Qm Sn. The exponents m and n are generally taken as (0.35, 0.7) or (0.5, 1), and K is chosen such that the predicted topographic elevation given the prevailing rates of precipitation and tectonics stay within realistic values. The resulting topographies are reasonably realistic, and the coupled system dynamics behaves somehow as expected : more precipitation induces increased erosion and localization of the deformation. Yet, if we now focus on smaller scale fluvial dynamics (the reach scale), recent advances have suggested that discharge variability, channel width dynamics or sediment flux effects may play a significant role in controlling incision rates. These are not factored in the simple stream power law model. In this work, we study how these short- term details propagate into long-term incision dynamics within the framework of surface/tectonics coupled numerical models. To upscale the short term dynamics to geological timescales, we use a numerical model of a trapezoidal river in which vertical and lateral incision processes are computed from fluid shear stress at a daily timescale, sediment transport and protection effects are factored in, as well as a variable discharge. We show that the stream power law model might still be a valid model but that as soon as realistic effects are included such as a threshold for sediment transport, variable discharge and dynamic width the resulting exponents m and n can be as high as 2 and 4. This high non-linearity has a profound consequence on the sensitivity of fluvial relief to incision rate. We also show that additional complexity does not systematically translates into more non-linear behaviour. For instance, considering only a dynamical width

  19. E-detailing: information technology applied to pharmaceutical detailing.

    PubMed

    Montoya, Isaac D

    2008-11-01

    E-detailing can be best described as the use of information technology in the field of pharmaceutical detailing. It is becoming highly popular among pharmaceutical companies because it maximizes the time of the sales force, cuts down the cost of detailing and increases physician prescribing. Thus, the application of information technology is proving to be beneficial to both physicians and pharmaceutical companies. When e-detailing was introduced in 1996, it was limited to the US; however, numerous other countries soon adopted this novel approach to detailing and now it is popular in many developed nations. The objective of this paper is to demonstrate the rapid growth of e-detailing in the field of pharmaceutical marketing. A review of e-detailing literature was conducted in addition to personal conversations with physicians. E-detailing has the potential to reduce marketing costs, increase accessibility to physicians and offer many of the advantages of face-to-face detailing. E-detailing is gaining acceptance among physicians because they can access the information of a pharmaceutical product at their own time and convenience. However, the drug safety aspect of e-detailing has not been examined and e-detailing remains a supplement to traditional detailing and is not yet a replacement to it.

  20. Numerical modeling of a finned PCM heat sink

    NASA Astrophysics Data System (ADS)

    Kozak, Y.; Ziskind, G.

    2012-09-01

    Phase-change materials (PCMs) can absorb large amounts of heat without significant rise of their temperature during the melting process. This effect is attractive for using in thermal energy storage and passive thermal management. One of the techniques enhance the rate of heat transfer into PCMs is by using fins made of a thermally high conductive material. This paper deals with numerical modeling of a finned PCM-based heat sink. Heat is dissipated on the heat sink base and may be either absorbed by the PCM stored in compartments with conducting walls, or dissipated to the air using fins, or both. A detailed analysis had been done by means of a complete solution of the governing multi-dimensional conservation equations, taking into account convection in the melt, density and volume change due to phase change and temperature variation, motion of solid in the liquid, and other associated phenomena.

  1. Modeling and numerical simulations of the influenced Sznajd model

    NASA Astrophysics Data System (ADS)

    Karan, Farshad Salimi Naneh; Srinivasan, Aravinda Ramakrishnan; Chakraborty, Subhadeep

    2017-08-01

    This paper investigates the effects of independent nonconformists or influencers on the behavioral dynamic of a population of agents interacting with each other based on the Sznajd model. The system is modeled on a complete graph using the master equation. The acquired equation has been numerically solved. Accuracy of the mathematical model and its corresponding assumptions have been validated by numerical simulations. Regions of initial magnetization have been found from where the system converges to one of two unique steady-state PDFs, depending on the distribution of influencers. The scaling property and entropy of the stationary system in presence of varying level of influence have been presented and discussed.

  2. Modeling and numerical simulations of the influenced Sznajd model.

    PubMed

    Karan, Farshad Salimi Naneh; Srinivasan, Aravinda Ramakrishnan; Chakraborty, Subhadeep

    2017-08-01

    This paper investigates the effects of independent nonconformists or influencers on the behavioral dynamic of a population of agents interacting with each other based on the Sznajd model. The system is modeled on a complete graph using the master equation. The acquired equation has been numerically solved. Accuracy of the mathematical model and its corresponding assumptions have been validated by numerical simulations. Regions of initial magnetization have been found from where the system converges to one of two unique steady-state PDFs, depending on the distribution of influencers. The scaling property and entropy of the stationary system in presence of varying level of influence have been presented and discussed.

  3. Role of hybridization in the superconducting properties of an extended d p Hubbard model: a detailed numerical study

    NASA Astrophysics Data System (ADS)

    Calegari, E. J.; Magalhães, S. G.; Gomes, A. A.

    2005-04-01

    The Roth's two-pole approximation has been used by the present authors to study the effects of the hybridization in the superconducting properties of a strongly correlated electron system. The model used is the extended Hubbard model which includes the d-p hybridization, the p-band and a narrow d-band. The present work is an extension of our previous work (J. Mod. Phys. B 18(2) (2004) 241). Nevertheless, some important correlation functions necessary to estimate the Roth's band shift, are included together with the temperature T and the Coulomb interaction U to describe the superconductivity. The superconducting order parameter of a cuprate system, is obtained following Beenen and Edwards formalism. Here, we investigate in detail the change of the order parameter associated to temperature, Coulomb interaction and Roth's band shift effects on superconductivity. The phase diagram with Tc versus the total occupation number nT, shows the difference respect to the previous work.

  4. Multiscale Numerical Methods for Non-Equilibrium Plasma

    DTIC Science & Technology

    2015-08-01

    current paper reports on the implementation of a numerical solver on the Graphic Processing Units (GPUs) to model reactive gas mixtures with detailed...Governing equations The flow ismodeled as amixture of gas specieswhile neglecting viscous effects. The chemical reactions taken place between the gas ...components are to be modeled in great detail. The set of the Euler equations for a reactive gas mixture can be written as: ∂Q ∂t + ∇ · F̄ = Ω̇ (1) where Q

  5. Numerical model for learning concepts of streamflow simulation

    USGS Publications Warehouse

    DeLong, L.L.; ,

    1993-01-01

    Numerical models are useful for demonstrating principles of open-channel flow. Such models can allow experimentation with cause-and-effect relations, testing concepts of physics and numerical techniques. Four PT is a numerical model written primarily as a teaching supplement for a course in one-dimensional stream-flow modeling. Four PT options particularly useful in training include selection of governing equations, boundary-value perturbation, and user-programmable constraint equations. The model can simulate non-trivial concepts such as flow in complex interconnected channel networks, meandering channels with variable effective flow lengths, hydraulic structures defined by unique three-parameter relations, and density-driven flow.The model is coded in FORTRAN 77, and data encapsulation is used extensively to simplify maintenance and modification and to enhance the use of Four PT modules by other programs and programmers.

  6. Physical and numerical studies of a fracture system model

    NASA Astrophysics Data System (ADS)

    Piggott, Andrew R.; Elsworth, Derek

    1989-03-01

    Physical and numerical studies of transient flow in a model of discretely fractured rock are presented. The physical model is a thermal analogue to fractured media flow consisting of idealized disc-shaped fractures. The numerical model is used to predict the behavior of the physical model. The use of different insulating materials to encase the physical model allows the effects of differing leakage magnitudes to be examined. A procedure for determining appropriate leakage parameters is documented. These parameters are used in forward analysis to predict the thermal response of the physical model. Knowledge of the leakage parameters and of the temporal variation of boundary conditions are shown to be essential to an accurate prediction. Favorable agreement is illustrated between numerical and physical results. The physical model provides a data source for the benchmarking of alternative numerical algorithms.

  7. An Analytical-Numerical Model for Two-Phase Slug Flow through a Sudden Area Change in Microchannels

    DOE PAGES

    Momen, A. Mehdizadeh; Sherif, S. A.; Lear, W. E.

    2016-01-01

    In this article, two new analytical models have been developed to calculate two-phase slug flow pressure drop in microchannels through a sudden contraction. Even though many studies have been reported on two-phase flow in microchannels, considerable discrepancies still exist, mainly due to the difficulties in experimental setup and measurements. Numerical simulations were performed to support the new analytical models and to explore in more detail the physics of the flow in microchannels with a sudden contraction. Both analytical and numerical results were compared to the available experimental data and other empirical correlations. Results show that models, which were developed basedmore » on the slug and semi-slug assumptions, agree well with experiments in microchannels. Moreover, in contrast to the previous empirical correlations which were tuned for a specific geometry, the new analytical models are capable of taking geometrical parameters as well as flow conditions into account.« less

  8. Benefits of detailed models of muscle activation and mechanics

    NASA Technical Reports Server (NTRS)

    Lehman, S. L.; Stark, L.

    1981-01-01

    Recent biophysical and physiological studies identified some of the detailed mechanisms involved in excitation-contraction coupling, muscle contraction, and deactivation. Mathematical models incorporating these mechanisms allow independent estimates of key parameters, direct interplay between basic muscle research and the study of motor control, and realistic model behaviors, some of which are not accessible to previous, simpler, models. The existence of previously unmodeled behaviors has important implications for strategies of motor control and identification of neural signals. New developments in the analysis of differential equations make the more detailed models feasible for simulation in realistic experimental situations.

  9. Advanced Numerical Model for Irradiated Concrete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giorla, Alain B.

    In this report, we establish a numerical model for concrete exposed to irradiation to address these three critical points. The model accounts for creep in the cement paste and its coupling with damage, temperature and relative humidity. The shift in failure mode with the loading rate is also properly represented. The numerical model for creep has been validated and calibrated against different experiments in the literature [Wittmann, 1970, Le Roy, 1995]. Results from a simplified model are shown to showcase the ability of numerical homogenization to simulate irradiation effects in concrete. In future works, the complete model will be appliedmore » to the analysis of the irradiation experiments of Elleuch et al. [1972] and Kelly et al. [1969]. This requires a careful examination of the experimental environmental conditions as in both cases certain critical information are missing, including the relative humidity history. A sensitivity analysis will be conducted to provide lower and upper bounds of the concrete expansion under irradiation, and check if the scatter in the simulated results matches the one found in experiments. The numerical and experimental results will be compared in terms of expansion and loss of mechanical stiffness and strength. Both effects should be captured accordingly by the model to validate it. Once the model has been validated on these two experiments, it can be applied to simulate concrete from nuclear power plants. To do so, the materials used in these concrete must be as well characterized as possible. The main parameters required are the mechanical properties of each constituent in the concrete (aggregates, cement paste), namely the elastic modulus, the creep properties, the tensile and compressive strength, the thermal expansion coefficient, and the drying shrinkage. These can be either measured experimentally, estimated from the initial composition in the case of cement paste, or back-calculated from mechanical tests on concrete. If

  10. Numerical bifurcation analysis of immunological models with time delays

    NASA Astrophysics Data System (ADS)

    Luzyanina, Tatyana; Roose, Dirk; Bocharov, Gennady

    2005-12-01

    In recent years, a large number of mathematical models that are described by delay differential equations (DDEs) have appeared in the life sciences. To analyze the models' dynamics, numerical methods are necessary, since analytical studies can only give limited results. In turn, the availability of efficient numerical methods and software packages encourages the use of time delays in mathematical modelling, which may lead to more realistic models. We outline recently developed numerical methods for bifurcation analysis of DDEs and illustrate the use of these methods in the analysis of a mathematical model of human hepatitis B virus infection.

  11. Numerical model for thermodynamical behaviors of unsaturated soil

    NASA Astrophysics Data System (ADS)

    Miyamoto, Yuji; Yamada, Mitsuhide; Sako, Kazunari; Araki, Kohei; Kitamura, Ryosuke

    Kitamura et al. have proposed the numerical models to establish the unsaturated soil mechanics aided by probability theory and statistics, and to apply the unsaturated soil mechanics to the geo-simulator, where the numerical model for the thermodynamical behaviors of unsaturated soil are essential. In this paper the thermodynamics is introduced to investigate the heat transfer through unsaturated soil and the evaporation of pore water in soil based on the first and second laws of thermodynamics, i.e., the conservation of energy, and increasing entropy. On the other hand the lysimeter equipment is used to obtain the data for the evaporation of pore water during fine days and seepage of rain water during rainy days. The numerical simulation is carried out by using the proposed numerical model and the results are compared with those obtained from the lysimeter test.

  12. Evaluation of wave runup predictions from numerical and parametric models

    USGS Publications Warehouse

    Stockdon, Hilary F.; Thompson, David M.; Plant, Nathaniel G.; Long, Joseph W.

    2014-01-01

    Wave runup during storms is a primary driver of coastal evolution, including shoreline and dune erosion and barrier island overwash. Runup and its components, setup and swash, can be predicted from a parameterized model that was developed by comparing runup observations to offshore wave height, wave period, and local beach slope. Because observations during extreme storms are often unavailable, a numerical model is used to simulate the storm-driven runup to compare to the parameterized model and then develop an approach to improve the accuracy of the parameterization. Numerically simulated and parameterized runup were compared to observations to evaluate model accuracies. The analysis demonstrated that setup was accurately predicted by both the parameterized model and numerical simulations. Infragravity swash heights were most accurately predicted by the parameterized model. The numerical model suffered from bias and gain errors that depended on whether a one-dimensional or two-dimensional spatial domain was used. Nonetheless, all of the predictions were significantly correlated to the observations, implying that the systematic errors can be corrected. The numerical simulations did not resolve the incident-band swash motions, as expected, and the parameterized model performed best at predicting incident-band swash heights. An assimilated prediction using a weighted average of the parameterized model and the numerical simulations resulted in a reduction in prediction error variance. Finally, the numerical simulations were extended to include storm conditions that have not been previously observed. These results indicated that the parameterized predictions of setup may need modification for extreme conditions; numerical simulations can be used to extend the validity of the parameterized predictions of infragravity swash; and numerical simulations systematically underpredict incident swash, which is relatively unimportant under extreme conditions.

  13. Numerical human models for accident research and safety - potentials and limitations.

    PubMed

    Praxl, Norbert; Adamec, Jiri; Muggenthaler, Holger; von Merten, Katja

    2008-01-01

    The method of numerical simulation is frequently used in the area of automotive safety. Recently, numerical models of the human body have been developed for the numerical simulation of occupants. Different approaches in modelling the human body have been used: the finite-element and the multibody technique. Numerical human models representing the two modelling approaches are introduced and the potentials and limitations of these models are discussed.

  14. Numerical modeling of experimental observations on gas formation and multi-phase flow of carbon dioxide in subsurface formations

    NASA Astrophysics Data System (ADS)

    Pawar, R.; Dash, Z.; Sakaki, T.; Plampin, M. R.; Lassen, R. N.; Illangasekare, T. H.; Zyvoloski, G.

    2011-12-01

    One of the concerns related to geologic CO2 sequestration is potential leakage of CO2 and its subsequent migration to shallow groundwater resources leading to geochemical impacts. Developing approaches to monitor CO2 migration in shallow aquifer and mitigate leakage impacts will require improving our understanding of gas phase formation and multi-phase flow subsequent to CO2 leakage in shallow aquifers. We are utilizing an integrated approach combining laboratory experiments and numerical simulations to characterize the multi-phase flow of CO2 in shallow aquifers. The laboratory experiments involve a series of highly controlled experiments in which CO2 dissolved water is injected in homogeneous and heterogeneous soil columns and tanks. The experimental results are used to study the effects of soil properties, temperature, pressure gradients and heterogeneities on gas formation and migration. We utilize the Finite Element Heat and Mass (FEHM) simulator (Zyvoloski et al, 2010) to numerically model the experimental results. The numerical models capture the physics of CO2 exsolution, multi-phase fluid flow as well as sand heterogeneity. Experimental observations of pressure, temperature and gas saturations are used to develop and constrain conceptual models for CO2 gas-phase formation and multi-phase CO2 flow in porous media. This talk will provide details of development of conceptual models based on experimental observation, development of numerical models for laboratory experiments and modelling results.

  15. A Numerical Study of Cirrus Clouds. Part I: Model Description.

    NASA Astrophysics Data System (ADS)

    Liu, Hui-Chun; Wang, Pao K.; Schlesinger, Robert E.

    2003-04-01

    This article, the first of a two-part series, presents a detailed description of a two-dimensional numerical cloud model directed toward elucidating the physical processes governing the evolution of cirrus clouds. The two primary scientific purposes of this work are (a) to determine the evolution and maintenance mechanisms of cirrus clouds and try to explain why some cirrus can persist for a long time; and (b) to investigate the influence of certain physical factors such as radiation, ice crystal habit, latent heat, ventilation effects, and aggregation mechanisms on the evolution of cirrus. The second part will discuss sets of model experiments that were run to address objectives (a) and (b), respectively.As set forth in this paper, the aforementioned two-dimensional numerical model, which comprises the research tool for this study, is organized into three modules that embody dynamics, microphysics, and radiation. The dynamic module develops a set of equations to describe shallow moist convection, also parameterizing turbulence by using a 1.5-order closure scheme. The microphysical module uses a double-moment scheme to simulate the evolution of the size distribution of ice particles. Heterogeneous and homogeneous nucleation of haze particles are included, along with other ice crystal processes such as diffusional growth, sedimentation, and aggregation. The radiation module uses a two-stream radiative transfer scheme to determine the radiative fluxes and heating rates, while the cloud optical properties are determined by the modified anomalous diffraction theory (MADT) for ice particles. One of the main advantages of this cirrus model is its explicit formulation of the microphysical and radiative properties as functions of ice crystal habit.

  16. Numerical Study of Splash Detail Due to Grain Impact on Granular Bed

    NASA Astrophysics Data System (ADS)

    Tanabe, Takahiro; Niiya, Hirofumi; Awazu, Akinori; Nishimori, Hiraku

    2017-04-01

    Massive sediment transport phenomena, such as sand storm and drifting snow, pose a considerable threat to human life. Further, the formation of geomorphological patterns on sand-desert and snowfield surfaces as a result of sediment transport, such as dunes and ripples, is of considerable research interest. Because the major component of the grain entrainment into the air is caused by both the collision and ejection, it is necessary to focus on the collisions between wind-blown grains and surface of sand field along with the resultant ejection grains from the surfaces, which processes are, as a whole, called a splash process. However, because of complexity of jumping grains over the ground surface, detailed measurement is very hard. Therefore, to investigate the splash process, we simulate detailed process of splash caused by 1-grain impact onto a randomly packed granular bed using discrete element method. As a result, we obtained good correspondence between our numerical results and the findings of previous experiments for the movement of ejected grains. Furthermore, the distributions of the ejection angle and the vertical ejection speed for individual grains vary depending on the relative timing at which the grains are ejected after the initial impact. Obvious differences are observed between the distributions of grains ejected during the earlier and later splash periods: the form of the vertical ejection-speed distribution varies from a power-law form to a lognormal form with time, and this difference is related to the grain trajectory after ejection [1]. In addition, we focus on the bulk dynamics inside the granular bed to relate the ejected grains behavior to the force propagations from the first impact to the ejection of each grain. [1] T. Tanabe, T. Shimada, N. Ito, and, H. Nishimori, (submitted)

  17. Non-robust numerical simulations of analogue extension experiments

    NASA Astrophysics Data System (ADS)

    Naliboff, John; Buiter, Susanne

    2016-04-01

    Numerical and analogue models of lithospheric deformation provide significant insight into the tectonic processes that lead to specific structural and geophysical observations. As these two types of models contain distinct assumptions and tradeoffs, investigations drawing conclusions from both can reveal robust links between first-order processes and observations. Recent studies have focused on detailed comparisons between numerical and analogue experiments in both compressional and extensional tectonics, sometimes involving multiple lithospheric deformation codes and analogue setups. While such comparisons often show good agreement on first-order deformation styles, results frequently diverge on second-order structures, such as shear zone dip angles or spacing, and in certain cases even on first-order structures. Here, we present finite-element experiments that are designed to directly reproduce analogue "sandbox" extension experiments at the cm-scale. We use material properties and boundary conditions that are directly taken from analogue experiments and use a Drucker-Prager failure model to simulate shear zone formation in sand. We find that our numerical experiments are highly sensitive to numerous numerical parameters. For example, changes to the numerical resolution, velocity convergence parameters and elemental viscosity averaging commonly produce significant changes in first- and second-order structures accommodating deformation. The sensitivity of the numerical simulations to small parameter changes likely reflects a number of factors, including, but not limited to, high angles of internal friction assigned to sand, complex, unknown interactions between the brittle sand (used as an upper crust equivalent) and viscous silicone (lower crust), highly non-linear strain weakening processes and poor constraints on the cohesion of sand. Our numerical-analogue comparison is hampered by (a) an incomplete knowledge of the fine details of sand failure and sand

  18. WOCE Working Group on Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Nowlin, Worth

    A U.S. WOCE (World Ocean Circulation Experiment) Working Group on Numerical Modeling has been established to serve as a forum for the discussion of progress in numerical general circulation modeling and its relationship to WOCE design and data analysis and as an advisory body on resource and manpower requirements for large-scale ocean modeling. The first meeting of this working group was held at the National Center for Atmospheric Research in Boulder, Colo., on Monday, December 10, 1984. The working group members who attended were K. Bryan, Y.-J. Han, D. Haidvogel (chairman), W. Holland, H. Hurlburt, J. O'Brien, A. Robinson, B. Semtner, and J. Sarmiento. Observers included F. Bretherton, A. Colin de Verdiere, C. Collins, L. Hua, P. Rizzoli, T. Spence, R. Wall, and S. Wilson.

  19. A Fully Nonlinear, Dynamically Consistent Numerical Model for Solid-Body Ship Motion. I. Ship Motion with Fixed Heading

    NASA Technical Reports Server (NTRS)

    Lin, Ray-Quing; Kuang, Weijia

    2011-01-01

    In this paper, we describe the details of our numerical model for simulating ship solidbody motion in a given environment. In this model, the fully nonlinear dynamical equations governing the time-varying solid-body ship motion under the forces arising from ship wave interactions are solved with given initial conditions. The net force and moment (torque) on the ship body are directly calculated via integration of the hydrodynamic pressure over the wetted surface and the buoyancy effect from the underwater volume of the actual ship hull with a hybrid finite-difference/finite-element method. Neither empirical nor free parametrization is introduced in this model, i.e. no a priori experimental data are needed for modelling. This model is benchmarked with many experiments of various ship hulls for heave, roll and pitch motion. In addition to the benchmark cases, numerical experiments are also carried out for strongly nonlinear ship motion with a fixed heading. These new cases demonstrate clearly the importance of nonlinearities in ship motion modelling.

  20. The effects of detailed chemistry and transport on microgravity droplet combustion

    NASA Technical Reports Server (NTRS)

    Marchese, A. J.; Lee, J. C.; Held, T. J.; Dryer, F. L.

    1995-01-01

    A brief overview of recent advances in the theoretical study of microgravity droplet combustion is presented. Much of this work has centered on the development and utilization of sphero-symmetric transient numerical models which consider detailed gas phase chemistry and transport as well as energy and/or species transport within a regressing condensed phase. Numerical results for microgravity combustion and vaporization of methanol, methanol/water, heptane, and heptane/hexadecane droplets are summarized along with refinements in chemical kinetics and the development of a new two-dimensional axi-symmetric model.

  1. Numerical modelling in biosciences using delay differential equations

    NASA Astrophysics Data System (ADS)

    Bocharov, Gennadii A.; Rihan, Fathalla A.

    2000-12-01

    Our principal purposes here are (i) to consider, from the perspective of applied mathematics, models of phenomena in the biosciences that are based on delay differential equations and for which numerical approaches are a major tool in understanding their dynamics, (ii) to review the application of numerical techniques to investigate these models. We show that there are prima facie reasons for using such models: (i) they have a richer mathematical framework (compared with ordinary differential equations) for the analysis of biosystem dynamics, (ii) they display better consistency with the nature of certain biological processes and predictive results. We analyze both the qualitative and quantitative role that delays play in basic time-lag models proposed in population dynamics, epidemiology, physiology, immunology, neural networks and cell kinetics. We then indicate suitable computational techniques for the numerical treatment of mathematical problems emerging in the biosciences, comparing them with those implemented by the bio-modellers.

  2. Numerical modeling of NO formation in laminar Bunsen flames -- A flamelet approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, C.P.; Chen, J.Y.; Yam, C.G.

    1998-08-01

    Based on the flamelet concept, a numerical model has been developed for fast predictions of NO{sub x} and CO emissions from laminar flames. The model is applied to studying NO formation in the secondary nonpremixed flame zone of fuel-rich methane Bunsen flames. By solving the steady-state flamelet equations with the detailed GR12.1 methane-air mechanism, a flamelet library is generated containing thermochemical information for a range of scalar dissipation rates at the ambient pressure condition. Modeling of NO formation is made by solving its conservation equation with chemical source term evaluated based on flamelet library using the extended Zeldovich mechanism andmore » NO reburning reactions. The optically-thin radiation heat transfer model is used to explore the potential effect of heat loss on thermal NO formation. The numerical scheme solves the two-dimensional Navier-Stokes equations as well as three additional equations: the mixture fraction, the NO mass fraction, and the enthalpy deficit due to radiative heat loss. With an established flamelet library, typical computing times are about 5 hours per calculation on a DEC-3000 300LX workstation. The predicted mixing field, radial temperature profiles, and NO distributions compare favorably with recent experimental data obtained by Nguyen et al. The dependence of NO{sub x} emission on equivalence ratio is studied numerically and the predictions are found to agree reasonably well with the measurements by Muss. The computed results show a decreasing trend of NO{sub x} emission with the equivalence ratio but an increasing trend in the CO emission index. By examining this trade-off between NO{sub x} and CO, an optimal equivalence ratio of 1.4 is found to yield the lowest combined emission.« less

  3. Numerical Simulations of Single Flow Element in a Nuclear Thermal Thrust Chamber

    NASA Technical Reports Server (NTRS)

    Cheng, Gary; Ito, Yasushi; Ross, Doug; Chen, Yen-Sen; Wang, Ten-See

    2007-01-01

    The objective of this effort is to develop an efficient and accurate computational methodology to predict both detailed and global thermo-fluid environments of a single now element in a hypothetical solid-core nuclear thermal thrust chamber assembly, Several numerical and multi-physics thermo-fluid models, such as chemical reactions, turbulence, conjugate heat transfer, porosity, and power generation, were incorporated into an unstructured-grid, pressure-based computational fluid dynamics solver. The numerical simulations of a single now element provide a detailed thermo-fluid environment for thermal stress estimation and insight for possible occurrence of mid-section corrosion. In addition, detailed conjugate heat transfer simulations were employed to develop the porosity models for efficient pressure drop and thermal load calculations.

  4. Cosmological perturbations in the DGP braneworld: Numeric solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardoso, Antonio; Koyama, Kazuya; Silva, Fabio P.

    2008-04-15

    We solve for the behavior of cosmological perturbations in the Dvali-Gabadadze-Porrati (DGP) braneworld model using a new numerical method. Unlike some other approaches in the literature, our method uses no approximations other than linear theory and is valid on large scales. We examine the behavior of late-universe density perturbations for both the self-accelerating and normal branches of DGP cosmology. Our numerical results can form the basis of a detailed comparison between the DGP model and cosmological observations.

  5. Automated Calibration For Numerical Models Of Riverflow

    NASA Astrophysics Data System (ADS)

    Fernandez, Betsaida; Kopmann, Rebekka; Oladyshkin, Sergey

    2017-04-01

    Calibration of numerical models is fundamental since the beginning of all types of hydro system modeling, to approximate the parameters that can mimic the overall system behavior. Thus, an assessment of different deterministic and stochastic optimization methods is undertaken to compare their robustness, computational feasibility, and global search capacity. Also, the uncertainty of the most suitable methods is analyzed. These optimization methods minimize the objective function that comprises synthetic measurements and simulated data. Synthetic measurement data replace the observed data set to guarantee an existing parameter solution. The input data for the objective function derivate from a hydro-morphological dynamics numerical model which represents an 180-degree bend channel. The hydro- morphological numerical model shows a high level of ill-posedness in the mathematical problem. The minimization of the objective function by different candidate methods for optimization indicates a failure in some of the gradient-based methods as Newton Conjugated and BFGS. Others reveal partial convergence, such as Nelder-Mead, Polak und Ribieri, L-BFGS-B, Truncated Newton Conjugated, and Trust-Region Newton Conjugated Gradient. Further ones indicate parameter solutions that range outside the physical limits, such as Levenberg-Marquardt and LeastSquareRoot. Moreover, there is a significant computational demand for genetic optimization methods, such as Differential Evolution and Basin-Hopping, as well as for Brute Force methods. The Deterministic Sequential Least Square Programming and the scholastic Bayes Inference theory methods present the optimal optimization results. keywords: Automated calibration of hydro-morphological dynamic numerical model, Bayesian inference theory, deterministic optimization methods.

  6. On numerical modeling of one-dimensional geothermal histories

    USGS Publications Warehouse

    Haugerud, R.A.

    1989-01-01

    Numerical models of one-dimensional geothermal histories are one way of understanding the relations between tectonics and transient thermal structure in the crust. Such models can be powerful tools for interpreting geochronologic and thermobarometric data. A flexible program to calculate these models on a microcomputer is available and examples of its use are presented. Potential problems with this approach include the simplifying assumptions that are made, limitations of the numerical techniques, and the neglect of convective heat transfer. ?? 1989.

  7. Numerical modeling of rapidly varying flows using HEC-RAS and WSPG models.

    PubMed

    Rao, Prasada; Hromadka, Theodore V

    2016-01-01

    The performance of two popular hydraulic models (HEC-RAS and WSPG) for modeling hydraulic jump in an open channel is investigated. The numerical solutions are compared with a new experimental data set obtained for varying channel bottom slopes and flow rates. Both the models satisfactorily predict the flow depths and location of the jump. The end results indicate that the numerical models output is sensitive to the value of chosen roughness coefficient. For this application, WSPG model is easier to implement with few input variables.

  8. Urban pluvial flood prediction: a case study evaluating radar rainfall nowcasts and numerical weather prediction models as model inputs.

    PubMed

    Thorndahl, Søren; Nielsen, Jesper Ellerbæk; Jensen, David Getreuer

    2016-12-01

    Flooding produced by high-intensive local rainfall and drainage system capacity exceedance can have severe impacts in cities. In order to prepare cities for these types of flood events - especially in the future climate - it is valuable to be able to simulate these events numerically, both historically and in real-time. There is a rather untested potential in real-time prediction of urban floods. In this paper, radar data observations with different spatial and temporal resolution, radar nowcasts of 0-2 h leadtime, and numerical weather models with leadtimes up to 24 h are used as inputs to an integrated flood and drainage systems model in order to investigate the relative difference between different inputs in predicting future floods. The system is tested on the small town of Lystrup in Denmark, which was flooded in 2012 and 2014. Results show it is possible to generate detailed flood maps in real-time with high resolution radar rainfall data, but rather limited forecast performance in predicting floods with leadtimes more than half an hour.

  9. Improved numerical solutions for chaotic-cancer-model

    NASA Astrophysics Data System (ADS)

    Yasir, Muhammad; Ahmad, Salman; Ahmed, Faizan; Aqeel, Muhammad; Akbar, Muhammad Zubair

    2017-01-01

    In biological sciences, dynamical system of cancer model is well known due to its sensitivity and chaoticity. Present work provides detailed computational study of cancer model by counterbalancing its sensitive dependency on initial conditions and parameter values. Cancer chaotic model is discretized into a system of nonlinear equations that are solved using the well-known Successive-Over-Relaxation (SOR) method with a proven convergence. This technique enables to solve large systems and provides more accurate approximation which is illustrated through tables, time history maps and phase portraits with detailed analysis.

  10. Influences on physicians' adoption of electronic detailing (e-detailing).

    PubMed

    Alkhateeb, Fadi M; Doucette, William R

    2009-01-01

    E-detailing means using digital technology: internet, video conferencing and interactive voice response. There are two types of e-detailing: interactive (virtual) and video. Currently, little is known about what factors influence physicians' adoption of e-detailing. The objectives of this study were to test a model of physicians' adoption of e-detailing and to describe physicians using e-detailing. A mail survey was sent to a random sample of 2000 physicians practicing in Iowa. Binomial logistic regression was used to test the model of influences on physician adoption of e-detailing. On the basis of Rogers' model of adoption, the independent variables included relative advantage, compatibility, complexity, peer influence, attitudes, years in practice, presence of restrictive access to traditional detailing, type of specialty, academic affiliation, type of practice setting and control variables. A total of 671 responses were received giving a response rate of 34.7%. A total of 141 physicians (21.0%) reported using of e-detailing. The overall adoption model for using either type of e-detailing was found to be significant. Relative advantage, peer influence, attitudes, type of specialty, presence of restrictive access and years of practice had significant influences on physician adoption of e-detailing. The model of adoption of innovation is useful to explain physicians' adoption of e-detailing.

  11. Development of numerical model for predicting heat generation and temperatures in MSW landfills.

    PubMed

    Hanson, James L; Yeşiller, Nazli; Onnen, Michael T; Liu, Wei-Lien; Oettle, Nicolas K; Marinos, Janelle A

    2013-10-01

    A numerical modeling approach has been developed for predicting temperatures in municipal solid waste landfills. Model formulation and details of boundary conditions are described. Model performance was evaluated using field data from a landfill in Michigan, USA. The numerical approach was based on finite element analysis incorporating transient conductive heat transfer. Heat generation functions representing decomposition of wastes were empirically developed and incorporated to the formulation. Thermal properties of materials were determined using experimental testing, field observations, and data reported in literature. The boundary conditions consisted of seasonal temperature cycles at the ground surface and constant temperatures at the far-field boundary. Heat generation functions were developed sequentially using varying degrees of conceptual complexity in modeling. First a step-function was developed to represent initial (aerobic) and residual (anaerobic) conditions. Second, an exponential growth-decay function was established. Third, the function was scaled for temperature dependency. Finally, an energy-expended function was developed to simulate heat generation with waste age as a function of temperature. Results are presented and compared to field data for the temperature-dependent growth-decay functions. The formulations developed can be used for prediction of temperatures within various components of landfill systems (liner, waste mass, cover, and surrounding subgrade), determination of frost depths, and determination of heat gain due to decomposition of wastes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Numerical modeling techniques for flood analysis

    NASA Astrophysics Data System (ADS)

    Anees, Mohd Talha; Abdullah, K.; Nawawi, M. N. M.; Ab Rahman, Nik Norulaini Nik; Piah, Abd. Rahni Mt.; Zakaria, Nor Azazi; Syakir, M. I.; Mohd. Omar, A. K.

    2016-12-01

    Topographic and climatic changes are the main causes of abrupt flooding in tropical areas. It is the need to find out exact causes and effects of these changes. Numerical modeling techniques plays a vital role for such studies due to their use of hydrological parameters which are strongly linked with topographic changes. In this review, some of the widely used models utilizing hydrological and river modeling parameters and their estimation in data sparse region are discussed. Shortcomings of 1D and 2D numerical models and the possible improvements over these models through 3D modeling are also discussed. It is found that the HEC-RAS and FLO 2D model are best in terms of economical and accurate flood analysis for river and floodplain modeling respectively. Limitations of FLO 2D in floodplain modeling mainly such as floodplain elevation differences and its vertical roughness in grids were found which can be improve through 3D model. Therefore, 3D model was found to be more suitable than 1D and 2D models in terms of vertical accuracy in grid cells. It was also found that 3D models for open channel flows already developed recently but not for floodplain. Hence, it was suggested that a 3D model for floodplain should be developed by considering all hydrological and high resolution topographic parameter's models, discussed in this review, to enhance the findings of causes and effects of flooding.

  13. Numerical determination of Paris law constants for carbon steel using a two-scale model

    NASA Astrophysics Data System (ADS)

    Mlikota, M.; Staib, S.; Schmauder, S.; Božić, Ž.

    2017-05-01

    For most engineering alloys, the long fatigue crack growth under a certain stress level can be described by the Paris law. The law provides a correlation between the fatigue crack growth rate (FCGR or da/dN), the range of stress intensity factor (ΔK), and the material constants C and m. A well-established test procedure is typically used to determine the Paris law constants C and m, considering standard specimens, notched and pre-cracked. Definition of all the details necessary to obtain feasible and comparable Paris law constants are covered by standards. However, these cost-expensive tests can be replaced by appropriate numerical calculations. In this respect, this paper deals with the numerical determination of Paris law constants for carbon steel using a two-scale model. A micro-model containing the microstructure of a material is generated using the Finite Element Method (FEM) to calculate the fatigue crack growth rate at a crack tip. The model is based on the Tanaka-Mura equation. On the other side, a macro-model serves for the calculation of the stress intensity factor. The analysis yields a relationship between the crack growth rates and the stress intensity factors for defined crack lengths which is then used to determine the Paris law constants.

  14. Piecewise Polynomial Aggregation as Preprocessing for Data Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Dobronets, B. S.; Popova, O. A.

    2018-05-01

    Data aggregation issues for numerical modeling are reviewed in the present study. The authors discuss data aggregation procedures as preprocessing for subsequent numerical modeling. To calculate the data aggregation, the authors propose using numerical probabilistic analysis (NPA). An important feature of this study is how the authors represent the aggregated data. The study shows that the offered approach to data aggregation can be interpreted as the frequency distribution of a variable. To study its properties, the density function is used. For this purpose, the authors propose using the piecewise polynomial models. A suitable example of such approach is the spline. The authors show that their approach to data aggregation allows reducing the level of data uncertainty and significantly increasing the efficiency of numerical calculations. To demonstrate the degree of the correspondence of the proposed methods to reality, the authors developed a theoretical framework and considered numerical examples devoted to time series aggregation.

  15. Numerical modelling of the flow in the resin infusion process on the REV scale: A feasibility study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jabbari, M.; Spangenberg, J.; Hattel, J. H.

    2016-06-08

    The resin infusion process (RIP) has developed as a low cost method for manufacturing large fibre reinforced plastic parts. However, the process still presents some challenges to industry with regards to reliability and repeatability, resulting in expensive and inefficient trial and error development. In this paper, we show the implementation of 2D numerical models for the RIP using the open source simulator DuMu{sup X}. The idea of this study is to present a model which accounts for the interfacial forces coming from the capillary pressure on the so-called representative elementary volume (REV) scale. The model is described in detail andmore » three different test cases — a constant and a tensorial permeability as well as a preform/Balsa domain — are investigated. The results show that the developed model is very applicable for the RIP for manufacturing of composite parts. The idea behind this study is to test the developed model for later use in a real application, in which the preform medium has numerous layers with different material properties.« less

  16. Numerical Model of Flame Spread Over Solids in Microgravity: A Supplementary Tool for Designing a Space Experiment

    NASA Technical Reports Server (NTRS)

    Shih, Hsin-Yi; Tien, James S.; Ferkul, Paul (Technical Monitor)

    2001-01-01

    The recently developed numerical model of concurrent-flow flame spread over thin solids has been used as a simulation tool to help the designs of a space experiment. The two-dimensional and three-dimensional, steady form of the compressible Navier-Stokes equations with chemical reactions are solved. With the coupled multi-dimensional solver of the radiative heat transfer, the model is capable of answering a number of questions regarding the experiment concept and the hardware designs. In this paper, the capabilities of the numerical model are demonstrated by providing the guidance for several experimental designing issues. The test matrix and operating conditions of the experiment are estimated through the modeling results. The three-dimensional calculations are made to simulate the flame-spreading experiment with realistic hardware configuration. The computed detailed flame structures provide the insight to the data collection. In addition, the heating load and the requirements of the product exhaust cleanup for the flow tunnel are estimated with the model. We anticipate that using this simulation tool will enable a more efficient and successful space experiment to be conducted.

  17. Numerical modelling of hydrologically-driven slope instability by means of porous media mechanics

    NASA Astrophysics Data System (ADS)

    Kakogiannou, Evanthia; Sanavia, Lorenzo; Lora, Marco; Schrefler, Bernhard

    2015-04-01

    Heavy rainfall can trigger slope failure which generally involves shallow soil deposit of different grading and origin usually in a state of partial saturation. In this case of slope instability, the behaviour of the soil slope is closely related not only to the distribution of pore-water pressure but also to the stress state during rainfall infiltration involving both mechanical and hydrological processes. In order to understand better these physical key processes, in this research work, the modelling of rainfall induced slope failure is considered as a coupled variably saturated hydro-mechanical problem. Therefore, the geometrically linear finite element code Comes-Geo for non-isothermal elasto-plastic multiphase solid porous materials is used, as developed by B.A. Schrefler and his co-workers. In this context, a detailed numerical analysis of an experimental slope stability test due to rainfall infiltration is presented. The main goals of this work are to understand the triggering mechanisms during the progressive failure, the effect of using different constitutive models of the mechanical soil behavior on the numerical results and the use of the second order work criterion on the detection of slope instability.

  18. ATLAS - A new Lagrangian transport and mixing model with detailed stratospheric chemistry

    NASA Astrophysics Data System (ADS)

    Wohltmann, I.; Rex, M.; Lehmann, R.

    2009-04-01

    We present a new global Chemical Transport Model (CTM) with full stratospheric chemistry and Lagrangian transport and mixing called ATLAS. Lagrangian models have some crucial advantages over Eulerian grid-box based models, like no numerical diffusion, no limitation of the time step of the model by the CFL criterion, conservation of mixing ratios by design and easy parallelization of code. The transport module is based on a trajectory code developed at the Alfred Wegener Institute. The horizontal and vertical resolution, the vertical coordinate system (pressure, potential temperature, hybrid coordinate) and the time step of the model are flexible, so that the model can be used both for process studies and long-time runs over several decades. Mixing of the Lagrangian air parcels is parameterized based on the local shear and strain of the flow with a method similar to that used in the CLaMS model, but with some modifications like a triangulation that introduces no vertical layers. The stratospheric chemistry module was developed at the Institute and includes 49 species and 170 reactions and a detailed treatment of heterogenous chemistry on polar stratospheric clouds. We present an overview over the model architecture, the transport and mixing concept and some validation results. Comparison of model results with tracer data from flights of the ER2 aircraft in the stratospheric polar vortex in 1999/2000 which are able to resolve fine tracer filaments show that excellent agreement with observed tracer structures can be achieved with a suitable mixing parameterization.

  19. Numerical study of a stochastic particle algorithm solving a multidimensional population balance model for high shear granulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braumann, Andreas; Kraft, Markus, E-mail: mk306@cam.ac.u; Wagner, Wolfgang

    2010-10-01

    This paper is concerned with computational aspects of a multidimensional population balance model of a wet granulation process. Wet granulation is a manufacturing method to form composite particles, granules, from small particles and binders. A detailed numerical study of a stochastic particle algorithm for the solution of a five-dimensional population balance model for wet granulation is presented. Each particle consists of two types of solids (containing pores) and of external and internal liquid (located in the pores). Several transformations of particles are considered, including coalescence, compaction and breakage. A convergence study is performed with respect to the parameter that determinesmore » the number of numerical particles. Averaged properties of the system are computed. In addition, the ensemble is subdivided into practically relevant size classes and analysed with respect to the amount of mass and the particle porosity in each class. These results illustrate the importance of the multidimensional approach. Finally, the kinetic equation corresponding to the stochastic model is discussed.« less

  20. An integrated approach to flood hazard assessment on alluvial fans using numerical modeling, field mapping, and remote sensing

    USGS Publications Warehouse

    Pelletier, J.D.; Mayer, L.; Pearthree, P.A.; House, P.K.; Demsey, K.A.; Klawon, J.K.; Vincent, K.R.

    2005-01-01

    Millions of people in the western United States live near the dynamic, distributary channel networks of alluvial fans where flood behavior is complex and poorly constrained. Here we test a new comprehensive approach to alluvial-fan flood hazard assessment that uses four complementary methods: two-dimensional raster-based hydraulic modeling, satellite-image change detection, fieldbased mapping of recent flood inundation, and surficial geologic mapping. Each of these methods provides spatial detail lacking in the standard method and each provides critical information for a comprehensive assessment. Our numerical model simultaneously solves the continuity equation and Manning's equation (Chow, 1959) using an implicit numerical method. It provides a robust numerical tool for predicting flood flows using the large, high-resolution Digital Elevation Models (DEMs) necessary to resolve the numerous small channels on the typical alluvial fan. Inundation extents and flow depths of historic floods can be reconstructed with the numerical model and validated against field- and satellite-based flood maps. A probabilistic flood hazard map can also be constructed by modeling multiple flood events with a range of specified discharges. This map can be used in conjunction with a surficial geologic map to further refine floodplain delineation on fans. To test the accuracy of the numerical model, we compared model predictions of flood inundation and flow depths against field- and satellite-based flood maps for two recent extreme events on the southern Tortolita and Harquahala piedmonts in Arizona. Model predictions match the field- and satellite-based maps closely. Probabilistic flood hazard maps based on the 10 yr, 100 yr, and maximum floods were also constructed for the study areas using stream gage records and paleoflood deposits. The resulting maps predict spatially complex flood hazards that strongly reflect small-scale topography and are consistent with surficial geology. In

  1. Gas Core Reactor Numerical Simulation Using a Coupled MHD-MCNP Model

    NASA Technical Reports Server (NTRS)

    Kazeminezhad, F.; Anghaie, S.

    2008-01-01

    Analysis is provided in this report of using two head-on magnetohydrodynamic (MHD) shocks to achieve supercritical nuclear fission in an axially elongated cylinder filled with UF4 gas as an energy source for deep space missions. The motivation for each aspect of the design is explained and supported by theory and numerical simulations. A subsequent report will provide detail on relevant experimental work to validate the concept. Here the focus is on the theory of and simulations for the proposed gas core reactor conceptual design from the onset of shock generations to the supercritical state achieved when the shocks collide. The MHD model is coupled to a standard nuclear code (MCNP) to observe the neutron flux and fission power attributed to the supercritical state brought about by the shock collisions. Throughout the modeling, realistic parameters are used for the initial ambient gaseous state and currents to ensure a resulting supercritical state upon shock collisions.

  2. Towards cleaner combustion engines through groundbreaking detailed chemical kinetic models

    PubMed Central

    Battin-Leclerc, Frédérique; Blurock, Edward; Bounaceur, Roda; Fournet, René; Glaude, Pierre-Alexandre; Herbinet, Olivier; Sirjean, Baptiste; Warth, V.

    2013-01-01

    In the context of limiting the environmental impact of transportation, this paper reviews new directions which are being followed in the development of more predictive and more accurate detailed chemical kinetic models for the combustion of fuels. In the first part, the performance of current models, especially in terms of the prediction of pollutant formation, is evaluated. In the next parts, recent methods and ways to improve these models are described. An emphasis is given on the development of detailed models based on elementary reactions, on the production of the related thermochemical and kinetic parameters, and on the experimental techniques available to produce the data necessary to evaluate model predictions under well defined conditions. PMID:21597604

  3. Theoretical and numerical study of axisymmetric lattice Boltzmann models

    NASA Astrophysics Data System (ADS)

    Huang, Haibo; Lu, Xi-Yun

    2009-07-01

    The forcing term in the lattice Boltzmann equation (LBE) is usually used to mimic Navier-Stokes equations with a body force. To derive axisymmetric model, forcing terms are incorporated into the two-dimensional (2D) LBE to mimic the additional axisymmetric contributions in 2D Navier-Stokes equations in cylindrical coordinates. Many axisymmetric lattice Boltzmann D2Q9 models were obtained through the Chapman-Enskog expansion to recover the 2D Navier-Stokes equations in cylindrical coordinates [I. Halliday , Phys. Rev. E 64, 011208 (2001); K. N. Premnath and J. Abraham, Phys. Rev. E 71, 056706 (2005); T. S. Lee, H. Huang, and C. Shu, Int. J. Mod. Phys. C 17, 645 (2006); T. Reis and T. N. Phillips, Phys. Rev. E 75, 056703 (2007); J. G. Zhou, Phys. Rev. E 78, 036701 (2008)]. The theoretical differences between them are discussed in detail. Numerical studies were also carried out by simulating two different flows to make a comparison on these models’ accuracy and τ sensitivity. It is found all these models are able to obtain accurate results and have the second-order spatial accuracy. However, the model C [J. G. Zhou, Phys. Rev. E 78, 036701 (2008)] is the most stable one in terms of τ sensitivity. It is also found that if density of fluid is defined in its usual way and not directly relevant to source terms, the lattice Boltzmann model seems more stable.

  4. A time dependent anatomically detailed model of cardiac conduction

    NASA Technical Reports Server (NTRS)

    Saxberg, B. E.; Grumbach, M. P.; Cohen, R. J.

    1985-01-01

    In order to understand the determinants of transitions in cardiac electrical activity from normal patterns to dysrhythmias such as ventricular fibrillation, we are constructing an anatomically and physiologically detailed finite element simulation of myocardial electrical propagation. A healthy human heart embedded in paraffin was sectioned to provide a detailed anatomical substrate for model calculations. The simulation of propagation includes anisotropy in conduction velocity due to fiber orientation as well as gradients in conduction velocities, absolute and relative refractory periods, action potential duration and electrotonic influence of nearest neighbors. The model also includes changes in the behaviour of myocardial tissue as a function of the past local activity. With this model, we can examine the significance of fiber orientation and time dependence of local propagation parameters on dysrhythmogenesis.

  5. Uncertain viscoelastic models with fractional order: A new spectral tau method to study the numerical simulations of the solution

    NASA Astrophysics Data System (ADS)

    Ahmadian, A.; Ismail, F.; Salahshour, S.; Baleanu, D.; Ghaemi, F.

    2017-12-01

    The analysis of the behaviors of physical phenomena is important to discover significant features of the character and the structure of mathematical models. Frequently the unknown parameters involve in the models are assumed to be unvarying over time. In reality, some of them are uncertain and implicitly depend on several factors. In this study, to consider such uncertainty in variables of the models, they are characterized based on the fuzzy notion. We propose here a new model based on fractional calculus to deal with the Kelvin-Voigt (KV) equation and non-Newtonian fluid behavior model with fuzzy parameters. A new and accurate numerical algorithm using a spectral tau technique based on the generalized fractional Legendre polynomials (GFLPs) is developed to solve those problems under uncertainty. Numerical simulations are carried out and the analysis of the results highlights the significant features of the new technique in comparison with the previous findings. A detailed error analysis is also carried out and discussed.

  6. Introducing DeBRa: a detailed breast model for radiological studies

    NASA Astrophysics Data System (ADS)

    Ma, Andy K. W.; Gunn, Spencer; Darambara, Dimitra G.

    2009-07-01

    Currently, x-ray mammography is the method of choice in breast cancer screening programmes. As the mammography technology moves from 2D imaging modalities to 3D, conventional computational phantoms do not have sufficient detail to support the studies of these advanced imaging systems. Studies of these 3D imaging systems call for a realistic and sophisticated computational model of the breast. DeBRa (Detailed Breast model for Radiological studies) is the most advanced, detailed, 3D computational model of the breast developed recently for breast imaging studies. A DeBRa phantom can be constructed to model a compressed breast, as in film/screen, digital mammography and digital breast tomosynthesis studies, or a non-compressed breast as in positron emission mammography and breast CT studies. Both the cranial-caudal and mediolateral oblique views can be modelled. The anatomical details inside the phantom include the lactiferous duct system, the Cooper ligaments and the pectoral muscle. The fibroglandular tissues are also modelled realistically. In addition, abnormalities such as microcalcifications, irregular tumours and spiculated tumours are inserted into the phantom. Existing sophisticated breast models require specialized simulation codes. Unlike its predecessors, DeBRa has elemental compositions and densities incorporated into its voxels including those of the explicitly modelled anatomical structures and the noise-like fibroglandular tissues. The voxel dimensions are specified as needed by any study and the microcalcifications are embedded into the voxels so that the microcalcification sizes are not limited by the voxel dimensions. Therefore, DeBRa works with general-purpose Monte Carlo codes. Furthermore, general-purpose Monte Carlo codes allow different types of imaging modalities and detector characteristics to be simulated with ease. DeBRa is a versatile and multipurpose model specifically designed for both x-ray and γ-ray imaging studies.

  7. Lattice Boltzmann model for numerical relativity.

    PubMed

    Ilseven, E; Mendoza, M

    2016-02-01

    In the Z4 formulation, Einstein equations are written as a set of flux conservative first-order hyperbolic equations that resemble fluid dynamics equations. Based on this formulation, we construct a lattice Boltzmann model for numerical relativity and validate it with well-established tests, also known as "apples with apples." Furthermore, we find that by increasing the relaxation time, we gain stability at the cost of losing accuracy, and by decreasing the lattice spacings while keeping a constant numerical diffusivity, the accuracy and stability of our simulations improve. Finally, in order to show the potential of our approach, a linear scaling law for parallelization with respect to number of CPU cores is demonstrated. Our model represents the first step in using lattice kinetic theory to solve gravitational problems.

  8. Numerical modelling of river morphodynamics: Latest developments and remaining challenges

    NASA Astrophysics Data System (ADS)

    Siviglia, Annunziato; Crosato, Alessandra

    2016-07-01

    Numerical morphodynamic models provide scientific frameworks for advancing our understanding of river systems. The research on involved topics is an important and socially relevant undertaking regarding our environment. Nowadays numerical models are used for different purposes, from answering questions about basic morphodynamic research to managing complex river engineering problems. Due to increasing computer power and the development of advanced numerical techniques, morphodynamic models are now more and more used to predict the bed patterns evolution to a broad spectrum of spatial and temporal scales. The development and the success of application of such models are based upon a wide range of disciplines from applied mathematics for the numerical solution of the equations to geomorphology for the physical interpretation of the results. In this light we organized this special issue (SI) soliciting multidisciplinary contributions which encompass any aspect needed for the development and applications of such models. Most of the papers in the SI stem from contributions to session HS9.5/GM7.11 on numerical modelling and experiments in river morphodynamics at the European Geosciences Union (EGU) General Assembly held in Vienna, April 27th to May 2nd 2014.

  9. Detailed Aerodynamic Analysis of a Shrouded Tail Rotor Using an Unstructured Mesh Flow Solver

    NASA Astrophysics Data System (ADS)

    Lee, Hee Dong; Kwon, Oh Joon

    The detailed aerodynamics of a shrouded tail rotor in hover has been numerically studied using a parallel inviscid flow solver on unstructured meshes. The numerical method is based on a cell-centered finite-volume discretization and an implicit Gauss-Seidel time integration. The calculation was made for a single blade by imposing a periodic boundary condition between adjacent rotor blades. The grid periodicity was also imposed at the periodic boundary planes to avoid numerical inaccuracy resulting from solution interpolation. The results were compared with available experimental data and those from a disk vortex theory for validation. It was found that realistic three-dimensional modeling is important for the prediction of detailed aerodynamics of shrouded rotors including the tip clearance gap flow.

  10. Fold-related-fracturing at the Livingstone River anticline (AB; Canada) by coupling field surveying and numerical modelling

    NASA Astrophysics Data System (ADS)

    Humair, Florian; Epard, Jean-Luc; Bauville, Arthur; Jaboyedoff, Michel; Pana, Dinu; Kaus, Boris; Schmalholz, Stefan

    2016-04-01

    The interpretation of fold-related joints and faults is of primary importance in terms of fluids prospection (e.g. water, oil, gas, C02) since anticlines are potential structural trap while fracturing can strongly influence the storage capacity as well as the migration pathways. Located at the front of the Foothills of the Rocky Mountains in Alberta (Canada), the Livingstone Range (LRA) is analogous to hydrocarbon reservoir that occur elsewhere in the Foothills (Cooley et al., 2011). The Livingstone Range fold system is related to the development of the Livingstone thrust that cuts around 1000m up-section from a regional decollement in the Palliser Formation (Devonian) to another in the Fernie Formation (Jurassic). Our study focuses on the detailed structural investigation of the Livingstone River anticline (northern part of the LRA). It aims at characterizing the anticline geometry as well as the fracturing pattern (orientation, mode, infilling, spacing, trace length, density, and cross-cutting relationships) in order to propose a kinematic interpretation of the fold-related fracturing genesis. The study area is investigated at different scales by combining field surveys with remote sensing (HR-Digital Elevation Model, Ground-based LiDAR, Gigapixel photography) and thin-sections analyses. In a second step we performed finite difference 3D numerical simulations in order to compute the evolution of local principal stress orientation during folding. We compared the fracture (or plastic bands) distribution in the field with 1) a dynamic numerical model of detachment folding; and 2) an instantaneous numerical model based on the final fold geometry. Cooley, M.A., Price, R.A., Dixon, J.M., Kyser, T.K. 2011. Along-strike variations and internal details of chevron-style flexural slip thrust-propagation folds within the southern Livingstone Range anticlinorium, a paleo-hydrocarbon reservoir in southern Alberta Foothills, Canada. AAPG bulletin, 95 (11), 1821-1849.

  11. A detailed model for simulation of catchment scale subsurface hydrologic processes

    NASA Technical Reports Server (NTRS)

    Paniconi, Claudio; Wood, Eric F.

    1993-01-01

    A catchment scale numerical model is developed based on the three-dimensional transient Richards equation describing fluid flow in variably saturated porous media. The model is designed to take advantage of digital elevation data bases and of information extracted from these data bases by topographic analysis. The practical application of the model is demonstrated in simulations of a small subcatchment of the Konza Prairie reserve near Manhattan, Kansas. In a preliminary investigation of computational issues related to model resolution, we obtain satisfactory numerical results using large aspect ratios, suggesting that horizontal grid dimensions may not be unreasonably constrained by the typically much smaller vertical length scale of a catchment and by vertical discretization requirements. Additional tests are needed to examine the effects of numerical constraints and parameter heterogeneity in determining acceptable grid aspect ratios. In other simulations we attempt to match the observed streamflow response of the catchment, and we point out the small contribution of the streamflow component to the overall water balance of the catchment.

  12. Numeric stratigraphic modeling: Testing sequence Numeric stratigraphic modeling: Testing sequence stratigraphic concepts using high resolution geologic examples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armentrout, J.M.; Smith-Rouch, L.S.; Bowman, S.A.

    1996-08-01

    Numeric simulations based on integrated data sets enhance our understanding of depositional geometry and facilitate quantification of depositional processes. Numeric values tested against well-constrained geologic data sets can then be used in iterations testing each variable, and in predicting lithofacies distributions under various depositional scenarios using the principles of sequence stratigraphic analysis. The stratigraphic modeling software provides a broad spectrum of techniques for modeling and testing elements of the petroleum system. Using well-constrained geologic examples, variations in depositional geometry and lithofacies distributions between different tectonic settings (passive vs. active margin) and climate regimes (hothouse vs. icehouse) can provide insight tomore » potential source rock and reservoir rock distribution, maturation timing, migration pathways, and trap formation. Two data sets are used to illustrate such variations: both include a seismic reflection profile calibrated by multiple wells. The first is a Pennsylvanian mixed carbonate-siliciclastic system in the Paradox basin, and the second a Pliocene-Pleistocene siliciclastic system in the Gulf of Mexico. Numeric simulations result in geometry and facies distributions consistent with those interpreted using the integrated stratigraphic analysis of the calibrated seismic profiles. An exception occurs in the Gulf of Mexico study where the simulated sediment thickness from 3.8 to 1.6 Ma within an upper slope minibasin was less than that mapped using a regional seismic grid. Regional depositional patterns demonstrate that this extra thickness was probably sourced from out of the plane of the modeled transect, illustrating the necessity for three-dimensional constraints on two-dimensional modeling.« less

  13. Numerical simulation of asphalt mixtures fracture using continuum models

    NASA Astrophysics Data System (ADS)

    Szydłowski, Cezary; Górski, Jarosław; Stienss, Marcin; Smakosz, Łukasz

    2018-01-01

    The paper considers numerical models of fracture processes of semi-circular asphalt mixture specimens subjected to three-point bending. Parameter calibration of the asphalt mixture constitutive models requires advanced, complex experimental test procedures. The highly non-homogeneous material is numerically modelled by a quasi-continuum model. The computational parameters are averaged data of the components, i.e. asphalt, aggregate and the air voids composing the material. The model directly captures random nature of material parameters and aggregate distribution in specimens. Initial results of the analysis are presented here.

  14. Numerical modelling of orthogonal cutting: application to woodworking with a bench plane.

    PubMed

    Nairn, John A

    2016-06-06

    A numerical model for orthogonal cutting using the material point method was applied to woodcutting using a bench plane. The cutting process was modelled by accounting for surface energy associated with wood fracture toughness for crack growth parallel to the grain. By using damping to deal with dynamic crack propagation and modelling all contact between wood and the plane, simulations could initiate chip formation and proceed into steady-state chip propagation including chip curling. Once steady-state conditions were achieved, the cutting forces became constant and could be determined as a function of various simulation variables. The modelling details included a cutting tool, the tool's rake and grinding angles, a chip breaker, a base plate and a mouth opening between the base plate and the tool. The wood was modelled as an anisotropic elastic-plastic material. The simulations were verified by comparison to an analytical model and then used to conduct virtual experiments on wood planing. The virtual experiments showed interactions between depth of cut, chip breaker location and mouth opening. Additional simulations investigated the role of tool grinding angle, tool sharpness and friction.

  15. Evaluation of ground-penetrating radar to detect free-phase hydrocarbons in fractured rocks - Results of numerical modeling and physical experiments

    USGS Publications Warehouse

    Lane, J.W.; Buursink, M.L.; Haeni, F.P.; Versteeg, R.J.

    2000-01-01

    The suitability of common-offset ground-penetrating radar (GPR) to detect free-phase hydrocarbons in bedrock fractures was evaluated using numerical modeling and physical experiments. The results of one- and two-dimensional numerical modeling at 100 megahertz indicate that GPR reflection amplitudes are relatively insensitive to fracture apertures ranging from 1 to 4 mm. The numerical modeling and physical experiments indicate that differences in the fluids that fill fractures significantly affect the amplitude and the polarity of electromagnetic waves reflected by subhorizontal fractures. Air-filled and hydrocarbon-filled fractures generate low-amplitude reflections that are in-phase with the transmitted pulse. Water-filled fractures create reflections with greater amplitude and opposite polarity than those reflections created by air-filled or hydrocarbon-filled fractures. The results from the numerical modeling and physical experiments demonstrate it is possible to distinguish water-filled fracture reflections from air- or hydrocarbon-filled fracture reflections, nevertheless subsurface heterogeneity, antenna coupling changes, and other sources of noise will likely make it difficult to observe these changes in GPR field data. This indicates that the routine application of common-offset GPR reflection methods for detection of hydrocarbon-filled fractures will be problematic. Ideal cases will require appropriately processed, high-quality GPR data, ground-truth information, and detailed knowledge of subsurface physical properties. Conversely, the sensitivity of GPR methods to changes in subsurface physical properties as demonstrated by the numerical and experimental results suggests the potential of using GPR methods as a monitoring tool. GPR methods may be suited for monitoring pumping and tracer tests, changes in site hydrologic conditions, and remediation activities.The suitability of common-offset ground-penetrating radar (GPR) to detect free-phase hydrocarbons

  16. Numerical modelling for quantitative environmental risk assessment for the disposal of drill cuttings and mud

    NASA Astrophysics Data System (ADS)

    Wahab, Mohd Amirul Faiz Abdul; Shaufi Sokiman, Mohamad; Parsberg Jakobsen, Kim

    2017-10-01

    To investigate the fate of drilling waste and their impacts towards surrounding environment, numerical models were generated using an environmental software; MIKE by DHI. These numerical models were used to study the transportation of suspended drill waste plumes in the water column and its deposition on seabed in South China Sea (SCS). A random disposal site with the model area of 50 km × 25 km was selected near the Madalene Shoal in SCS and the ambient currents as well as other meteorological conditions were simulated in details at the proposed location. This paper was focusing on sensitivity study of different drill waste particle characteristics on impacts towards marine receiving environment. The drilling scenarios were obtained and adapted from the oil producer well at offshore Sabah (Case 1) and data from actual exploration drilling case at Pumbaa location (PL 469) in the Norwegian Sea (Case 2). The two cases were compared to study the effect of different drilling particle characteristics and their behavior in marine receiving environment after discharged. Using the Hydrodynamic and Sediment Transport models simulated in MIKE by DHI, the variation of currents and the behavior of the drilling waste particles can be analyzed and evaluated in terms of multiple degree zones of impacts.

  17. Numerical investigation of the pseudopotential lattice Boltzmann modeling of liquid-vapor for multi-phase flows

    NASA Astrophysics Data System (ADS)

    Nemati, Maedeh; Shateri Najaf Abady, Ali Reza; Toghraie, Davood; Karimipour, Arash

    2018-01-01

    The incorporation of different equations of state into single-component multiphase lattice Boltzmann model is considered in this paper. The original pseudopotential model is first detailed, and several cubic equations of state, the Redlich-Kwong, Redlich-Kwong-Soave, and Peng-Robinson are then incorporated into the lattice Boltzmann model. A comparison of the numerical simulation achievements on the basis of density ratios and spurious currents is used for presentation of the details of phase separation in these non-ideal single-component systems. The paper demonstrates that the scheme for the inter-particle interaction force term as well as the force term incorporation method matters to achieve more accurate and stable results. The velocity shifting method is demonstrated as the force term incorporation method, among many, with accuracy and stability results. Kupershtokh scheme also makes it possible to achieve large density ratio (up to 104) and to reproduce the coexistence curve with high accuracy. Significant reduction of the spurious currents at vapor-liquid interface is another observation. High-density ratio and spurious current reduction resulted from the Redlich-Kwong-Soave and Peng-Robinson EOSs, in higher accordance with the Maxwell construction results.

  18. Numerical Modelling and Prediction of Erosion Induced by Hydrodynamic Cavitation

    NASA Astrophysics Data System (ADS)

    Peters, A.; Lantermann, U.; el Moctar, O.

    2015-12-01

    The present work aims to predict cavitation erosion using a numerical flow solver together with a new developed erosion model. The erosion model is based on the hypothesis that collapses of single cavitation bubbles near solid boundaries form high velocity microjets, which cause sonic impacts with high pressure amplitudes damaging the surface. The erosion model uses information from a numerical Euler-Euler flow simulation to predict erosion sensitive areas and assess the erosion aggressiveness of the flow. The obtained numerical results were compared to experimental results from tests of an axisymmetric nozzle.

  19. 3 Lectures: "Lagrangian Models", "Numerical Transport Schemes", and "Chemical and Transport Models"

    NASA Technical Reports Server (NTRS)

    Douglass, A.

    2005-01-01

    The topics for the three lectures for the Canadian Summer School are Lagrangian Models, numerical transport schemes, and chemical and transport models. In the first lecture I will explain the basic components of the Lagrangian model (a trajectory code and a photochemical code), the difficulties in using such a model (initialization) and show some applications in interpretation of aircraft and satellite data. If time permits I will show some results concerning inverse modeling which is being used to evaluate sources of tropospheric pollutants. In the second lecture I will discuss one of the core components of any grid point model, the numerical transport scheme. I will explain the basics of shock capturing schemes, and performance criteria. I will include an example of the importance of horizontal resolution to polar processes. We have learned from NASA's global modeling initiative that horizontal resolution matters for predictions of the future evolution of the ozone hole. The numerical scheme will be evaluated using performance metrics based on satellite observations of long-lived tracers. The final lecture will discuss the evolution of chemical transport models over the last decade. Some of the problems with assimilated winds will be demonstrated, using satellite data to evaluate the simulations.

  20. A general numerical model for wave rotor analysis

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel W.

    1992-01-01

    Wave rotors represent one of the promising technologies for achieving very high core temperatures and pressures in future gas turbine engines. Their operation depends upon unsteady gas dynamics and as such, their analysis is quite difficult. This report describes a numerical model which has been developed to perform such an analysis. Following a brief introduction, a summary of the wave rotor concept is given. The governing equations are then presented, along with a summary of the assumptions used to obtain them. Next, the numerical integration technique is described. This is an explicit finite volume technique based on the method of Roe. The discussion then focuses on the implementation of appropriate boundary conditions. Following this, some results are presented which first compare the numerical approximation to the governing differential equations and then compare the overall model to an actual wave rotor experiment. Finally, some concluding remarks are presented concerning the limitations of the simplifying assumptions and areas where the model may be improved.

  1. Numerical model for mapping of complex hydrogeological conditions: the Chmielnik area (South Poland) case study

    NASA Astrophysics Data System (ADS)

    Buszta, Kamila; Szklarczyk, Tadeusz; Malina, Grzegorz

    2017-04-01

    Detailed analysis of hydrogeological conditions at a study area is the basis for characterising adjacent groundwater circulation systems. It is also an essential element during executing hydrogeological documentations. The goal of this work was to reconstruct on a numerical model natural groundwater circulation systems of the studied area located within the municipality of Chmielnik in the region of Kielce (South Poland). The area is characterized by a complex geological structure, which along with the existing hydrographic network, makes the scheme of groundwater circulation complicated and difficult to map on a numerical model. The studied area is situated at the border of three geological units: on the North - the extended portion of the Palaeozoic Swietokrzyskie Mountains (mainly Devonian and Permian), in the center - the S-W part of the Mesozoic Margin of the Swietokrzyskie Mountains, and on the South - a marginal zone of the Carpathian Foredeep. The whole area belongs to the Vistula river basin, and it includes catchments of its left tributaries: the Nida and Czarna Staszowska rivers. Based on the collected field and archival hydrogeological, hydrological and sozological data a conceptual model was built, under which a numerical model of groundwater flow was developed using the specialized software - Visual MODFLOW. The numerical model maps the five-layer groundwater circulation system in conjunction with surface watercourses. Such division reflects appropriately the variability of hydrogeological parameters within the geological structures. Two principal and exploited aquifers comprise: a fractured-porous Neogene and fractured Upper Jurassic formations. The external model borders are based primarily on surface watercourses and locally on watersheds. The modelled area of 130 km2 was divided into square grids of 50 m. The model consists of 275 rows and 277 columns. Each of five layers was simulated with the same number of active blocks. In the construction of

  2. Parallel 3-D numerical simulation of dielectric barrier discharge plasma actuators

    NASA Astrophysics Data System (ADS)

    Houba, Tomas

    Dielectric barrier discharge plasma actuators have shown promise in a range of applications including flow control, sterilization and ozone generation. Developing numerical models of plasma actuators is of great importance, because a high-fidelity parallel numerical model allows new design configurations to be tested rapidly. Additionally, it provides a better understanding of the plasma actuator physics which is useful for further innovation. The physics of plasma actuators is studied numerically. A loosely coupled approach is utilized for the coupling of the plasma to the neutral fluid. The state of the art in numerical plasma modeling is advanced by the development of a parallel, three-dimensional, first-principles model with detailed air chemistry. The model incorporates 7 charged species and 18 reactions, along with a solution of the electron energy equation. To the author's knowledge, a parallel three-dimensional model of a gas discharge with a detailed air chemistry model and the solution of electron energy is unique. Three representative geometries are studied using the gas discharge model. The discharge of gas between two parallel electrodes is used to validate the air chemistry model developed for the gas discharge code. The gas discharge model is then applied to the discharge produced by placing a dc powered wire and grounded plate electrodes in a channel. Finally, a three-dimensional simulation of gas discharge produced by electrodes placed inside a riblet is carried out. The body force calculated with the gas discharge model is loosely coupled with a fluid model to predict the induced flow inside the riblet.

  3. Numerical flow simulation and efficiency prediction for axial turbines by advanced turbulence models

    NASA Astrophysics Data System (ADS)

    Jošt, D.; Škerlavaj, A.; Lipej, A.

    2012-11-01

    Numerical prediction of an efficiency of a 6-blade Kaplan turbine is presented. At first, the results of steady state analysis performed by different turbulence models for different operating regimes are compared to the measurements. For small and optimal angles of runner blades the efficiency was quite accurately predicted, but for maximal blade angle the discrepancy between calculated and measured values was quite large. By transient analysis, especially when the Scale Adaptive Simulation Shear Stress Transport (SAS SST) model with zonal Large Eddy Simulation (ZLES) in the draft tube was used, the efficiency was significantly improved. The improvement was at all operating points, but it was the largest for maximal discharge. The reason was better flow simulation in the draft tube. Details about turbulent structure in the draft tube obtained by SST, SAS SST and SAS SST with ZLES are illustrated in order to explain the reasons for differences in flow energy losses obtained by different turbulence models.

  4. Comparison of Speed-Up Over Hills Derived from Wind-Tunnel Experiments, Wind-Loading Standards, and Numerical Modelling

    NASA Astrophysics Data System (ADS)

    Safaei Pirooz, Amir A.; Flay, Richard G. J.

    2018-03-01

    We evaluate the accuracy of the speed-up provided in several wind-loading standards by comparison with wind-tunnel measurements and numerical predictions, which are carried out at a nominal scale of 1:500 and full-scale, respectively. Airflow over two- and three-dimensional bell-shaped hills is numerically modelled using the Reynolds-averaged Navier-Stokes method with a pressure-driven atmospheric boundary layer and three different turbulence models. Investigated in detail are the effects of grid size on the speed-up and flow separation, as well as the resulting uncertainties in the numerical simulations. Good agreement is obtained between the numerical prediction of speed-up, as well as the wake region size and location, with that according to large-eddy simulations and the wind-tunnel results. The numerical results demonstrate the ability to predict the airflow over a hill with good accuracy with considerably less computational time than for large-eddy simulation. Numerical simulations for a three-dimensional hill show that the speed-up and the wake region decrease significantly when compared with the flow over two-dimensional hills due to the secondary flow around three-dimensional hills. Different hill slopes and shapes are simulated numerically to investigate the effect of hill profile on the speed-up. In comparison with more peaked hill crests, flat-topped hills have a lower speed-up at the crest up to heights of about half the hill height, for which none of the standards gives entirely satisfactory values of speed-up. Overall, the latest versions of the National Building Code of Canada and the Australian and New Zealand Standard give the best predictions of wind speed over isolated hills.

  5. Lessons learned from combined experimental and numerical modelling of urban floods

    NASA Astrophysics Data System (ADS)

    Archambeau, Pierre; Bruwier, Martin; Finaud-Guyot, Pascal; Erpicum, Sébastien; Pirotton, Michel; Dewals, Benjamin

    2017-04-01

    Field data for validating hydraulic models remain scarce. They are often limited to inundation extents and water marks, which provide little insights into the dynamic features of the flow in urbanized floodplains, such as the discharge partition in-between the streets and the velocity fields. To address this issue, a unique experimental setup representing a whole urban district was built in the laboratory ICube in Strasbourg and the state-of-the-art shallow-water model Wolf 2D was tested against the experimental measurements (Arrault et al. 2016). The numerical model was also used to extend and refine the analysis of the laboratory observations. The experimental model (5 m × 5 m) represents a square urban district with a total of 14 streets of different widths and 49 intersections (crossroads). The inflow discharge can be controlled in each street individually and the outflow discharges were measured downstream of each street. The numerical model Wolf was developed at the University of Liege and has been extensively used in flood risk research (Beckers et al. 2013, Bruwier et al. 2015, Detrembleur et al. 2015). Several lessons could be learned from this combined experimental and numerical analysis. First, we found that the discharge partition in-between the streets is primarily controlled by the street widths. Second, although the standard shallow-water equations reproduce satisfactorily most of the flow characteristics, adding a turbulence model improves the prediction of the shape and length of the flow recirculations in the streets. Yet, this has little influence on the discharge partition because the computed recirculation widths are hardly affected by the turbulence model. The experiments and the numerical model also show that the water depths in the streets remain fairly constant in-between two intersections, while they drop suddenly downstream of each intersection as a result of complex flow interactions at the intersections. This hints that friction has

  6. Wind laws for shockless initialization. [numerical forecasting model

    NASA Technical Reports Server (NTRS)

    Ghil, M.; Shkoller, B.

    1976-01-01

    A system of diagnostic equations for the velocity field, or wind laws, was derived for each of a number of models of large-scale atmospheric flow. The derivation in each case is mathematically exact and does not involve any physical assumptions not already present in the prognostic equations, such as nondivergence or vanishing of derivatives of the divergence. Therefore, initial states computed by solving these diagnostic equations should be compatible with the type of motion described by the prognostic equations of the model and should not generate initialization shocks when inserted into the model. Numerical solutions of the diagnostic system corresponding to a barotropic model are exhibited. Some problems concerning the possibility of implementing such a system in operational numerical weather prediction are discussed.

  7. Numerical considerations for Lagrangian stochastic dispersion models: Eliminating rogue trajectories, and the importance of numerical accuracy

    USDA-ARS?s Scientific Manuscript database

    When Lagrangian stochastic models for turbulent dispersion are applied to complex flows, some type of ad hoc intervention is almost always necessary to eliminate unphysical behavior in the numerical solution. This paper discusses numerical considerations when solving the Langevin-based particle velo...

  8. Numerical Validation of Chemical Compositional Model for Wettability Alteration Processes

    NASA Astrophysics Data System (ADS)

    Bekbauov, Bakhbergen; Berdyshev, Abdumauvlen; Baishemirov, Zharasbek; Bau, Domenico

    2017-12-01

    Chemical compositional simulation of enhanced oil recovery and surfactant enhanced aquifer remediation processes is a complex task that involves solving dozens of equations for all grid blocks representing a reservoir. In the present work, we perform a numerical validation of the newly developed mathematical formulation which satisfies the conservation laws of mass and energy and allows applying a sequential solution approach to solve the governing equations separately and implicitly. Through its application to the numerical experiment using a wettability alteration model and comparisons with existing chemical compositional model's numerical results, the new model has proven to be practical, reliable and stable.

  9. Avoiding numerical pitfalls in social force models

    NASA Astrophysics Data System (ADS)

    Köster, Gerta; Treml, Franz; Gödel, Marion

    2013-06-01

    The social force model of Helbing and Molnár is one of the best known approaches to simulate pedestrian motion, a collective phenomenon with nonlinear dynamics. It is based on the idea that the Newtonian laws of motion mostly carry over to pedestrian motion so that human trajectories can be computed by solving a set of ordinary differential equations for velocity and acceleration. The beauty and simplicity of this ansatz are strong reasons for its wide spread. However, the numerical implementation is not without pitfalls. Oscillations, collisions, and instabilities occur even for very small step sizes. Classic solution ideas from molecular dynamics do not apply to the problem because the system is not Hamiltonian despite its source of inspiration. Looking at the model through the eyes of a mathematician, however, we realize that the right hand side of the differential equation is nondifferentiable and even discontinuous at critical locations. This produces undesirable behavior in the exact solution and, at best, severe loss of accuracy in efficient numerical schemes even in short range simulations. We suggest a very simple mollified version of the social force model that conserves the desired dynamic properties of the original many-body system but elegantly and cost efficiently resolves several of the issues concerning stability and numerical resolution.

  10. Numerical Modeling of Gas Turbine Combustor Utilizing One-Dimensional Acoustics

    NASA Astrophysics Data System (ADS)

    Caley, Thomas M.

    This study focuses on the numerical modeling of a gas turbine combustor set-up with known regions of thermoacoustic instability. The proposed model takes the form of a hybrid thermoacoustic network, with lumped elements representing boundary conditions and the flame, and 3-dimensional geometry volumes representing the geometry. The model is analyzed using a commercial 3-D finite element method (FEM) software, COMSOL Multiphysics. A great deal of literature is available covering thermoacoustic modeling, but much of it utilizes more computationally expensive techniques such as Large-Eddy Simulations, or relies on analytical modeling that is limited to specific test cases or proprietary software. The present study models the 3-D geometry of a high-pressure combustion chamber accurately, and uses the lumped elements of a thermoacoustic network to represent parts of the combustor system that can be experimentally tested under stable conditions, ensuring that the recorded acoustic responses can be attributed to that element alone. The numerical model has been tested against the experimental model with and without an experimentally-determined impedance boundary condition. Eigenfrequency studies are used to compare the frequency and growth rates (and from that, the thermoacoustic stability) of resonant modes in the combustor. The flame in the combustor is modeled with a flame transfer function that was determined from experimental testing using frequency forcing. The effect of flow rate on the impedance boundary condition is also examined experimentally and numerically to qualify the practice of modeling an orifice plate as an acoustically-closed boundary. Using the experimental flame transfer function and boundary conditions in the numerical model produced results that closely matched previous experimental tests in frequency, but not in stability characteristics. The lightweight nature of the numerical model means additional lumped elements can be easily added when

  11. Numerical model for healthy and injured ankle ligaments.

    PubMed

    Forestiero, Antonella; Carniel, Emanuele Luigi; Fontanella, Chiara Giulia; Natali, Arturo Nicola

    2017-06-01

    The aim of this work is to provide a computational tool for the investigation of ankle mechanics under different loading conditions. The attention is focused on the biomechanical role of ankle ligaments that are fundamental for joints stability. A finite element model of the human foot is developed starting from Computed Tomography and Magnetic Resonance Imaging, using particular attention to the definition of ankle ligaments. A refined fiber-reinforced visco-hyperelastic constitutive model is assumed to characterize the mechanical response of ligaments. Numerical analyses that interpret anterior drawer and the talar tilt tests reported in literature are performed. The numerical results are in agreement with the range of values obtained by experimental tests confirming the accuracy of the procedure adopted. The increase of the ankle range of motion after some ligaments rupture is also evaluated, leading to the capability of the numerical models to interpret the damage conditions. The developed computational model provides a tool for the investigation of foot and ankle functionality in terms of stress-strain of the tissues and in terms of ankle motion, considering different types of damage to ankle ligaments.

  12. A Numerical Model for Trickle Bed Reactors

    NASA Astrophysics Data System (ADS)

    Propp, Richard M.; Colella, Phillip; Crutchfield, William Y.; Day, Marcus S.

    2000-12-01

    Trickle bed reactors are governed by equations of flow in porous media such as Darcy's law and the conservation of mass. Our numerical method for solving these equations is based on a total-velocity splitting, sequential formulation which leads to an implicit pressure equation and a semi-implicit mass conservation equation. We use high-resolution finite-difference methods to discretize these equations. Our solution scheme extends previous work in modeling porous media flows in two ways. First, we incorporate physical effects due to capillary pressure, a nonlinear inlet boundary condition, spatial porosity variations, and inertial effects on phase mobilities. In particular, capillary forces introduce a parabolic component into the recast evolution equation, and the inertial effects give rise to hyperbolic nonconvexity. Second, we introduce a modification of the slope-limiting algorithm to prevent our numerical method from producing spurious shocks. We present a numerical algorithm for accommodating these difficulties, show the algorithm is second-order accurate, and demonstrate its performance on a number of simplified problems relevant to trickle bed reactor modeling.

  13. Numerical modeling of carrier gas flow in atomic layer deposition vacuum reactor: A comparative study of lattice Boltzmann models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Dongqing; Chien Jen, Tien; Li, Tao

    2014-01-15

    This paper characterizes the carrier gas flow in the atomic layer deposition (ALD) vacuum reactor by introducing Lattice Boltzmann Method (LBM) to the ALD simulation through a comparative study of two LBM models. Numerical models of gas flow are constructed and implemented in two-dimensional geometry based on lattice Bhatnagar–Gross–Krook (LBGK)-D2Q9 model and two-relaxation-time (TRT) model. Both incompressible and compressible scenarios are simulated and the two models are compared in the aspects of flow features, stability, and efficiency. Our simulation outcome reveals that, for our specific ALD vacuum reactor, TRT model generates better steady laminar flow features all over the domainmore » with better stability and reliability than LBGK-D2Q9 model especially when considering the compressible effects of the gas flow. The LBM-TRT is verified indirectly by comparing the numerical result with conventional continuum-based computational fluid dynamics solvers, and it shows very good agreement with these conventional methods. The velocity field of carrier gas flow through ALD vacuum reactor was characterized by LBM-TRT model finally. The flow in ALD is in a laminar steady state with velocity concentrated at the corners and around the wafer. The effects of flow fields on precursor distributions, surface absorptions, and surface reactions are discussed in detail. Steady and evenly distributed velocity field contribute to higher precursor concentration near the wafer and relatively lower particle velocities help to achieve better surface adsorption and deposition. The ALD reactor geometry needs to be considered carefully if a steady and laminar flow field around the wafer and better surface deposition are desired.« less

  14. Pore water pressure variations in Subpermafrost groundwater : Numerical modeling compared with experimental modeling

    NASA Astrophysics Data System (ADS)

    Rivière, Agnès.; Goncalves, Julio; Jost, Anne; Font, Marianne

    2010-05-01

    Development and degradation of permafrost directly affect numerous hydrogeological processes such as thermal regime, exchange between river and groundwater, groundwater flows patterns and groundwater recharge (Michel, 1994). Groundwater in permafrost area is subdivided into two zones: suprapermafrost and subpermafrost which are separated by permafrost. As a result of the volumetric expansion of water upon freezing and assuming ice lenses and frost heave do not form freezing in a saturated aquifer, the progressive formation of permafrost leads to the pressurization of the subpermafrost groundwater (Wang, 2006). Therefore disappearance or aggradation of permafrost modifies the confined or unconfined state of subpermafrost groundwater. Our study focuses on modifications of pore water pressure of subpermafrost groundwater which could appear during thawing and freezing of soil. Numerical simulation allows elucidation of some of these processes. Our numerical model accounts for phase changes for coupled heat transport and variably saturated flow involving cycles of freezing and thawing. The flow model is a combination of a one-dimensional channel flow model which uses Manning-Strickler equation and a two-dimensional vertically groundwater flow model using Richards equation. Numerical simulation of heat transport consisted in a two dimensional model accounting for the effects of latent heat of phase change of water associated with melting/freezing cycles which incorporated the advection-diffusion equation describing heat-transfer in porous media. The change of hydraulic conductivity and thermal conductivity are considered by our numerical model. The model was evaluated by comparing predictions with data from laboratory freezing experiments. Experimental design was undertaken at the Laboratory M2C (Univesité de Caen-Basse Normandie, CNRS, France). The device consisted of a Plexiglas box insulated on all sides except on the top. Precipitation and ambient temperature are

  15. Detailed numerical investigation of the Bohm limit in cosmic ray diffusion theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hussein, M.; Shalchi, A., E-mail: m_hussein@physics.umanitoba.ca, E-mail: andreasm4@yahoo.com

    2014-04-10

    A standard model in cosmic ray diffusion theory is the so-called Bohm limit in which the particle mean free path is assumed to be equal to the Larmor radius. This type of diffusion is often employed to model the propagation and acceleration of energetic particles. However, recent analytical and numerical work has shown that standard Bohm diffusion is not realistic. In the present paper, we perform test-particle simulations to explore particle diffusion in the strong turbulence limit in which the wave field is much stronger than the mean magnetic field. We show that there is indeed a lower limit ofmore » the particle mean free path along the mean field. In this limit, the mean free path is directly proportional to the unperturbed Larmor radius like in the traditional Bohm limit, but it is reduced by the factor δB/B {sub 0} where B {sub 0} is the mean field and δB the turbulent field. Although we focus on parallel diffusion, we also explore diffusion across the mean field in the strong turbulence limit.« less

  16. Numerical modelling of vehicular pollution dispersion: The application of computational fluid dynamics techniques, a case study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanderheyden, M.D.; Dajka, S.C.; Sinclair, R.

    1997-12-31

    Numerical modelling of vehicular emissions using the United States Environmental Protection Agency`s CALINE4 and CAL3QHC dispersion models to predict air quality impacts in the vicinity of roadways is a widely accepted means of evaluating vehicular emissions impacts. The numerical models account for atmospheric dispersion in both open or suburban terrains. When assessing roadways in urban areas with numerous large buildings, however, the models are unable to account for the complex airflows and therefore do not provide satisfactory estimates of pollutant concentrations. Either Wind Tunnel Modelling or Computational Fluid Dynamics (CFD) techniques can be used to assess the impact of vehiclemore » emissions in an urban core. This paper presents a case study where CFD is used to predict worst-case air quality impacts for two development configurations: an existing roadway configuration and a proposed configuration with an elevated pedestrian walkway. In assessing these configurations, worst-case meteorology and traffic conditions are modeled to allow for the prediction of pollutant concentrations due to vehicular emissions on two major streets in Hong Kong. The CFD modelling domain is divided up into thousands of control volumes. Each of these control volumes has a central point called a node where velocities, pollutant concentration and other auxiliary variables are calculated. The region of interest, the pedestrian link and its immediate surroundings, has a denser distribution of nodes in order to give a better resolution of local flow details. Separate CFD modelling runs were undertaken for each development configuration for wind direction increments of 15 degrees. For comparison of the development scenarios, pollutant concentrations (carbon monoxide, nitrogen dioxide and particulate matter) are predicted at up to 99 receptor nodes representing sensitive locations.« less

  17. Numerical modeling process of embolization arteriovenous malformation

    NASA Astrophysics Data System (ADS)

    Cherevko, A. A.; Gologush, T. S.; Petrenko, I. A.; Ostapenko, V. V.

    2017-10-01

    Cerebral arteriovenous malformation is a difficult, dangerous, and most frequently encountered vascular failure of development. It consists of vessels of very small diameter, which perform a discharge of blood from the artery to the vein. In this regard it can be adequately modeled using porous medium. Endovascular embolization of arteriovenous malformation is effective treatment of such pathologies. However, the danger of intraoperative rupture during embolization still exists. The purpose is to model this process and build an optimization algorithm for arteriovenous malformation embolization. To study the different embolization variants, the initial-boundary value problems, describing the process of embolization, were solved numerically by using a new modification of CABARET scheme. The essential moments of embolization process were modeled in our numerical experiments. This approach well reproduces the essential features of discontinuous two-phase flows, arising in the embolization problems. It can be used for further study on the process of embolization.

  18. Numerical modeling of subsurface communication

    NASA Astrophysics Data System (ADS)

    Burke, G. J.; Dease, C. G.; Didwall, E. M.; Lytle, R. J.

    1985-02-01

    Techniques are described for numerical modeling of through-the-Earth communication. The basic problem considered is evaluation of the field at a surface or airborne station due to an antenna buried in the Earth. Equations are given for the field of a point source in a homogeneous or stratified earth. These expressions involve infinite integrals over wave number, sometimes known as Sommerfield integrals. Numerical techniques used for evaluating these integrals are outlined. The problem of determining the current on a real antenna in the Earth, including the effect of insulation, is considered. Results are included for the fields of a point source in homogeneous and stratified earths and the field of a finite insulated dipole. The results are for electromagnetic propagation in the ELF-VLF range, but the codes also can address propagation problems at higher frequencies.

  19. Numerical equilibrium analysis for structured consumer resource models.

    PubMed

    de Roos, A M; Diekmann, O; Getto, P; Kirkilionis, M A

    2010-02-01

    In this paper, we present methods for a numerical equilibrium and stability analysis for models of a size structured population competing for an unstructured resource. We concentrate on cases where two model parameters are free, and thus existence boundaries for equilibria and stability boundaries can be defined in the (two-parameter) plane. We numerically trace these implicitly defined curves using alternatingly tangent prediction and Newton correction. Evaluation of the maps defining the curves involves integration over individual size and individual survival probability (and their derivatives) as functions of individual age. Such ingredients are often defined as solutions of ODE, i.e., in general only implicitly. In our case, the right-hand sides of these ODE feature discontinuities that are caused by an abrupt change of behavior at the size where juveniles are assumed to turn adult. So, we combine the numerical solution of these ODE with curve tracing methods. We have implemented the algorithms for "Daphnia consuming algae" models in C-code. The results obtained by way of this implementation are shown in the form of graphs.

  20. Optimization methods and silicon solar cell numerical models

    NASA Technical Reports Server (NTRS)

    Girardini, K.; Jacobsen, S. E.

    1986-01-01

    An optimization algorithm for use with numerical silicon solar cell models was developed. By coupling an optimization algorithm with a solar cell model, it is possible to simultaneously vary design variables such as impurity concentrations, front junction depth, back junction depth, and cell thickness to maximize the predicted cell efficiency. An optimization algorithm was developed and interfaced with the Solar Cell Analysis Program in 1 Dimension (SCAP1D). SCAP1D uses finite difference methods to solve the differential equations which, along with several relations from the physics of semiconductors, describe mathematically the performance of a solar cell. A major obstacle is that the numerical methods used in SCAP1D require a significant amount of computer time, and during an optimization the model is called iteratively until the design variables converge to the values associated with the maximum efficiency. This problem was alleviated by designing an optimization code specifically for use with numerically intensive simulations, to reduce the number of times the efficiency has to be calculated to achieve convergence to the optimal solution.

  1. Numerical approaches to combustion modeling. Progress in Astronautics and Aeronautics. Vol. 135

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oran, E.S.; Boris, J.P.

    1991-01-01

    Various papers on numerical approaches to combustion modeling are presented. The topics addressed include; ab initio quantum chemistry for combustion; rate coefficient calculations for combustion modeling; numerical modeling of combustion of complex hydrocarbons; combustion kinetics and sensitivity analysis computations; reduction of chemical reaction models; length scales in laminar and turbulent flames; numerical modeling of laminar diffusion flames; laminar flames in premixed gases; spectral simulations of turbulent reacting flows; vortex simulation of reacting shear flow; combustion modeling using PDF methods. Also considered are: supersonic reacting internal flow fields; studies of detonation initiation, propagation, and quenching; numerical modeling of heterogeneous detonations, deflagration-to-detonationmore » transition to reactive granular materials; toward a microscopic theory of detonations in energetic crystals; overview of spray modeling; liquid drop behavior in dense and dilute clusters; spray combustion in idealized configurations: parallel drop streams; comparisons of deterministic and stochastic computations of drop collisions in dense sprays; ignition and flame spread across solid fuels; numerical study of pulse combustor dynamics; mathematical modeling of enclosure fires; nuclear systems.« less

  2. Modern Perspectives on Numerical Modeling of Cardiac Pacemaker Cell

    PubMed Central

    Maltsev, Victor A.; Yaniv, Yael; Maltsev, Anna V.; Stern, Michael D.; Lakatta, Edward G.

    2015-01-01

    Cardiac pacemaking is a complex phenomenon that is still not completely understood. Together with experimental studies, numerical modeling has been traditionally used to acquire mechanistic insights in this research area. This review summarizes the present state of numerical modeling of the cardiac pacemaker, including approaches to resolve present paradoxes and controversies. Specifically we discuss the requirement for realistic modeling to consider symmetrical importance of both intracellular and cell membrane processes (within a recent “coupled-clock” theory). Promising future developments of the complex pacemaker system models include the introduction of local calcium control, mitochondria function, and biochemical regulation of protein phosphorylation and cAMP production. Modern numerical and theoretical methods such as multi-parameter sensitivity analyses within extended populations of models and bifurcation analyses are also important for the definition of the most realistic parameters that describe a robust, yet simultaneously flexible operation of the coupled-clock pacemaker cell system. The systems approach to exploring cardiac pacemaker function will guide development of new therapies, such as biological pacemakers for treating insufficient cardiac pacemaker function that becomes especially prevalent with advancing age. PMID:24748434

  3. Numerical Algorithms for Acoustic Integrals - The Devil is in the Details

    NASA Technical Reports Server (NTRS)

    Brentner, Kenneth S.

    1996-01-01

    The accurate prediction of the aeroacoustic field generated by aerospace vehicles or nonaerospace machinery is necessary for designers to control and reduce source noise. Powerful computational aeroacoustic methods, based on various acoustic analogies (primarily the Lighthill acoustic analogy) and Kirchhoff methods, have been developed for prediction of noise from complicated sources, such as rotating blades. Both methods ultimately predict the noise through a numerical evaluation of an integral formulation. In this paper, we consider three generic acoustic formulations and several numerical algorithms that have been used to compute the solutions to these formulations. Algorithms for retarded-time formulations are the most efficient and robust, but they are difficult to implement for supersonic-source motion. Collapsing-sphere and emission-surface formulations are good alternatives when supersonic-source motion is present, but the numerical implementations of these formulations are more computationally demanding. New algorithms - which utilize solution adaptation to provide a specified error level - are needed.

  4. Numerical dissipation vs. subgrid-scale modelling for large eddy simulation

    NASA Astrophysics Data System (ADS)

    Dairay, Thibault; Lamballais, Eric; Laizet, Sylvain; Vassilicos, John Christos

    2017-05-01

    This study presents an alternative way to perform large eddy simulation based on a targeted numerical dissipation introduced by the discretization of the viscous term. It is shown that this regularisation technique is equivalent to the use of spectral vanishing viscosity. The flexibility of the method ensures high-order accuracy while controlling the level and spectral features of this purely numerical viscosity. A Pao-like spectral closure based on physical arguments is used to scale this numerical viscosity a priori. It is shown that this way of approaching large eddy simulation is more efficient and accurate than the use of the very popular Smagorinsky model in standard as well as in dynamic version. The main strength of being able to correctly calibrate numerical dissipation is the possibility to regularise the solution at the mesh scale. Thanks to this property, it is shown that the solution can be seen as numerically converged. Conversely, the two versions of the Smagorinsky model are found unable to ensure regularisation while showing a strong sensitivity to numerical errors. The originality of the present approach is that it can be viewed as implicit large eddy simulation, in the sense that the numerical error is the source of artificial dissipation, but also as explicit subgrid-scale modelling, because of the equivalence with spectral viscosity prescribed on a physical basis.

  5. Lessons learned in detailed clinical modeling at Intermountain Healthcare

    PubMed Central

    Oniki, Thomas A; Coyle, Joseph F; Parker, Craig G; Huff, Stanley M

    2014-01-01

    Background and objective Intermountain Healthcare has a long history of using coded terminology and detailed clinical models (DCMs) to govern storage of clinical data to facilitate decision support and semantic interoperability. The latest iteration of DCMs at Intermountain is called the clinical element model (CEM). We describe the lessons learned from our CEM efforts with regard to subjective decisions a modeler frequently needs to make in creating a CEM. We present insights and guidelines, but also describe situations in which use cases conflict with the guidelines. We propose strategies that can help reconcile the conflicts. The hope is that these lessons will be helpful to others who are developing and maintaining DCMs in order to promote sharing and interoperability. Methods We have used the Clinical Element Modeling Language (CEML) to author approximately 5000 CEMs. Results Based on our experience, we have formulated guidelines to lead our modelers through the subjective decisions they need to make when authoring models. Reported here are guidelines regarding precoordination/postcoordination, dividing content between the model and the terminology, modeling logical attributes, and creating iso-semantic models. We place our lessons in context, exploring the potential benefits of an implementation layer, an iso-semantic modeling framework, and ontologic technologies. Conclusions We assert that detailed clinical models can advance interoperability and sharing, and that our guidelines, an implementation layer, and an iso-semantic framework will support our progress toward that goal. PMID:24993546

  6. Numerical Model Studies of the Martian Mesoscale Circulations

    NASA Technical Reports Server (NTRS)

    Segal, Moti; Arritt, Raymond W.

    1997-01-01

    The study objectives were to evaluate by numerical modeling various possible mesoscale circulation on Mars and related atmospheric boundary layer processes. The study was in collaboration with J. Tillman of the University of Washington (who supported the study observationally). Interaction has been made with J. Prusa of Iowa State University in numerical modeling investigation of dynamical effects of topographically-influenced flow. Modeling simulations included evaluations of surface physical characteristics on: (i) the Martian atmospheric boundary layer and (ii) their impact on thermally and dynamically forced mesoscale flows. Special model evaluations were made in support of selection of the Pathfinder landing sites. J. Tillman's finding of VL-2 inter-annual temperature difference was followed by model simulations attempting to point out the forcing for this feature. Publication of the results in the reviewed literature in pending upon completion of the manuscripts in preparation as indicated later.

  7. Testing numerical models for boulder transport due to high energy marine wave events: examples from the Saurashtra coast, Western India

    NASA Astrophysics Data System (ADS)

    Chavare, Kushal; Bhatt, Nilesh; Prizomwala, Siddharth

    2017-04-01

    The boulder deposits on the coasts are interpreted and evaluated as high energy marine wave events like tsunami. Several numerical models are now available to estimate wave height and/or run up of the tsunami wave. The coast of Saurashtra, facing the Arabian Sea on its west hosts such deposits in younger ( 1 and 6 ka) and older ( 35 ka) coastal records. The dimensions, characteristics and morphology of these boulders were studied with different numeric models and were applied with reference to submerged, sub-aerial and joint bounded boulder scenarios which were combined with the local control variables like roughness coefficient, slope of platforms, fractures, shoaling effect, etc. The application of these models indicated a significant role of local control variables in boulder dislodgment, transport and final emplacement on shore platform. Examples from three different sites from the coast of Saurashtra, western India are reported and discussed in detail.

  8. Application of 2D numerical model to unsteady performance evaluation of vertical-axis tidal current turbine

    NASA Astrophysics Data System (ADS)

    Liu, Zhen; Qu, Hengliang; Shi, Hongda; Hu, Gexing; Hyun, Beom-Soo

    2016-12-01

    Tidal current energy is renewable and sustainable, which is a promising alternative energy resource for the future electricity supply. The straight-bladed vertical-axis turbine is regarded as a useful tool to capture the tidal current energy especially under low-speed conditions. A 2D unsteady numerical model based on Ansys-Fluent 12.0 is established to conduct the numerical simulation, which is validated by the corresponding experimental data. For the unsteady calculations, the SST model, 2×105 and 0.01 s are selected as the proper turbulence model, mesh number, and time step, respectively. Detailed contours of the velocity distributions around the rotor blade foils have been provided for a flow field analysis. The tip speed ratio (TSR) determines the azimuth angle of the appearance of the torque peak, which occurs once for a blade in a single revolution. It is also found that simply increasing the incident flow velocity could not improve the turbine performance accordingly. The peaks of the averaged power and torque coefficients appear at TSRs of 2.1 and 1.8, respectively. Furthermore, several shapes of the duct augmentation are proposed to improve the turbine performance by contracting the flow path gradually from the open mouth of the duct to the rotor. The duct augmentation can significantly enhance the power and torque output. Furthermore, the elliptic shape enables the best performance of the turbine. The numerical results prove the capability of the present 2D model for the unsteady hydrodynamics and an operating performance analysis of the vertical tidal stream turbine.

  9. Numerical simulations of a reduced model for blood coagulation

    NASA Astrophysics Data System (ADS)

    Pavlova, Jevgenija; Fasano, Antonio; Sequeira, Adélia

    2016-04-01

    In this work, the three-dimensional numerical resolution of a complex mathematical model for the blood coagulation process is presented. The model was illustrated in Fasano et al. (Clin Hemorheol Microcirc 51:1-14, 2012), Pavlova et al. (Theor Biol 380:367-379, 2015). It incorporates the action of the biochemical and cellular components of blood as well as the effects of the flow. The model is characterized by a reduction in the biochemical network and considers the impact of the blood slip at the vessel wall. Numerical results showing the capacity of the model to predict different perturbations in the hemostatic system are discussed.

  10. A Combined Remote Sensing-Numerical Modelling Approach to the Stability Analysis of Delabole Slate Quarry, Cornwall, UK

    NASA Astrophysics Data System (ADS)

    Havaej, Mohsen; Coggan, John; Stead, Doug; Elmo, Davide

    2016-04-01

    Rock slope geometry and discontinuity properties are among the most important factors in realistic rock slope analysis yet they are often oversimplified in numerical simulations. This is primarily due to the difficulties in obtaining accurate structural and geometrical data as well as the stochastic representation of discontinuities. Recent improvements in both digital data acquisition and incorporation of discrete fracture network data into numerical modelling software have provided better tools to capture rock mass characteristics, slope geometries and digital terrain models allowing more effective modelling of rock slopes. Advantages of using improved data acquisition technology include safer and faster data collection, greater areal coverage, and accurate data geo-referencing far exceed limitations due to orientation bias and occlusion. A key benefit of a detailed point cloud dataset is the ability to measure and evaluate discontinuity characteristics such as orientation, spacing/intensity and persistence. This data can be used to develop a discrete fracture network which can be imported into the numerical simulations to study the influence of the stochastic nature of the discontinuities on the failure mechanism. We demonstrate the application of digital terrestrial photogrammetry in discontinuity characterization and distinct element simulations within a slate quarry. An accurately geo-referenced photogrammetry model is used to derive the slope geometry and to characterize geological structures. We first show how a discontinuity dataset, obtained from a photogrammetry model can be used to characterize discontinuities and to develop discrete fracture networks. A deterministic three-dimensional distinct element model is then used to investigate the effect of some key input parameters (friction angle, spacing and persistence) on the stability of the quarry slope model. Finally, adopting a stochastic approach, discrete fracture networks are used as input for 3D

  11. An Overview of Numerical Weather Prediction on Various Scales

    NASA Astrophysics Data System (ADS)

    Bao, J.-W.

    2009-04-01

    The increasing public need for detailed weather forecasts, along with the advances in computer technology, has motivated many research institutes and national weather forecasting centers to develop and run global as well as regional numerical weather prediction (NWP) models at high resolutions (i.e., with horizontal resolutions of ~10 km or higher for global models and 1 km or higher for regional models, and with ~60 vertical levels or higher). The need for running NWP models at high horizontal and vertical resolutions requires the implementation of non-hydrostatic dynamic core with a choice of horizontal grid configurations and vertical coordinates that are appropriate for high resolutions. Development of advanced numerics will also be needed for high resolution global and regional models, in particular, when the models are applied to transport problems and air quality applications. In addition to the challenges in numerics, the NWP community is also facing the challenges of developing physics parameterizations that are well suited for high-resolution NWP models. For example, when NWP models are run at resolutions of ~5 km or higher, the use of much more detailed microphysics parameterizations than those currently used in NWP model will become important. Another example is that regional NWP models at ~1 km or higher only partially resolve convective energy containing eddies in the lower troposphere. Parameterizations to account for the subgrid diffusion associated with unresolved turbulence still need to be developed. Further, physically sound parameterizations for air-sea interaction will be a critical component for tropical NWP models, particularly for hurricane predictions models. In this review presentation, the above issues will be elaborated on and the approaches to address them will be discussed.

  12. A numerical study of linear and nonlinear kinematic models in fish swimming with the DSD/SST method

    NASA Astrophysics Data System (ADS)

    Tian, Fang-Bao

    2015-03-01

    Flow over two fish (modeled by two flexible plates) in tandem arrangement is investigated by solving the incompressible Navier-Stokes equations numerically with the DSD/SST method to understand the differences between the geometrically linear and nonlinear models. In the simulation, the motions of the plates are reconstructed from a vertically flowing soap film tunnel experiment with linear and nonlinear kinematic models. Based on the simulations, the drag, lift, power consumption, vorticity and pressure fields are discussed in detail. It is found that the linear and nonlinear models are able to reasonably predict the forces and power consumption of a single plate in flow. Moreover, if multiple plates are considered, these two models yield totally different results, which implies that the nonlinear model should be used. The results presented in this work provide a guideline for future studies in fish swimming.

  13. Tracing the source of numerical climate model uncertainties in precipitation simulations using a feature-oriented statistical model

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Jones, A. D.; Rhoades, A.

    2017-12-01

    Precipitation is a key component in hydrologic cycles, and changing precipitation regimes contribute to more intense and frequent drought and flood events around the world. Numerical climate modeling is a powerful tool to study climatology and to predict future changes. Despite the continuous improvement in numerical models, long-term precipitation prediction remains a challenge especially at regional scales. To improve numerical simulations of precipitation, it is important to find out where the uncertainty in precipitation simulations comes from. There are two types of uncertainty in numerical model predictions. One is related to uncertainty in the input data, such as model's boundary and initial conditions. These uncertainties would propagate to the final model outcomes even if the numerical model has exactly replicated the true world. But a numerical model cannot exactly replicate the true world. Therefore, the other type of model uncertainty is related the errors in the model physics, such as the parameterization of sub-grid scale processes, i.e., given precise input conditions, how much error could be generated by the in-precise model. Here, we build two statistical models based on a neural network algorithm to predict long-term variation of precipitation over California: one uses "true world" information derived from observations, and the other uses "modeled world" information using model inputs and outputs from the North America Coordinated Regional Downscaling Project (NA CORDEX). We derive multiple climate feature metrics as the predictors for the statistical model to represent the impact of global climate on local hydrology, and include topography as a predictor to represent the local control. We first compare the predictors between the true world and the modeled world to determine the errors contained in the input data. By perturbing the predictors in the statistical model, we estimate how much uncertainty in the model's final outcomes is accounted for

  14. Modeling seismic wave propagation across the European plate: structural models and numerical techniques, state-of-the-art and prospects

    NASA Astrophysics Data System (ADS)

    Morelli, Andrea; Danecek, Peter; Molinari, Irene; Postpischl, Luca; Schivardi, Renata; Serretti, Paola; Tondi, Maria Rosaria

    2010-05-01

    Together with the building and maintenance of observational and data banking infrastructures - i.e. an integrated organization of coordinated sensor networks, in conjunction with connected data banks and efficient data retrieval tools - a strategic vision for bolstering the future development of geophysics in Europe should also address the essential issue of improving our current ability to model coherently the propagation of seismic waves across the European plate. This impacts on fundamental matters, such as correctly locating earthquakes, imaging detailed earthquake source properties, modeling ground shaking, inferring geodynamic processes. To this extent, we both need detailed imaging of shallow and deep earth structure, and accurate modeling of seismic waves by numerical methods. Our current abilities appear somewhat limited, but emerging technologies may enable soon a significant leap towards better accuracy and reliability. To contribute to this debate, we present here the state-of-the-art of knowledge of earth structure and numerical wave modeling in the European plate, as the result of a comprehensive study towards the definition of a continental-scale reference model. Our model includes a description of crustal structure (EPcrust) merging information deriving from previous studies - large-scale compilations, seismic prospection, receiver functions, inversion of surface wave dispersion measurements and Green functions from noise correlation. We use a simple description of crustal structure, with laterally-varying sediment and cristalline layers thickness, density, and seismic parameters. This a priori crustal model improves the overall fit to observed Bouguer anomaly maps over CRUST2.0. The new crustal model is then used as a constraint in the inversion for mantle shear wave speed, based on fitting Love and Rayleigh surface wave dispersion. The new mantle model sensibly improves over global S models in the imaging of shallow asthenospheric (slow) anomalies

  15. Numerical modeling of fluid migration in subduction zones

    NASA Astrophysics Data System (ADS)

    Walter, M. J.; Quinteros, J.; Sobolev, S. V.

    2015-12-01

    It is well known that fluids play a crucial role in subduction evolution. For example, mechanical weakening along tectonic interfaces, due to high fluid pressure, may enable oceanic subduction. Hence, the fluid content seems to be a critical parameter for subduction initiation. Studies have also shown a correlation between the location of slab dehydration and intermediate seismic activity. Furthermore, expelled fluids from the subduction slab affect the melting temperature, consequently, contributing to partial melting in the wedge above the down-going plate and extensive volcanism. In summary, fluids have a great impact on tectonic processes and therefore should be incorporated into geodynamic numerical models. Here we use existing approaches to couple and solve fluid flow equations in the SLIM-3D thermo-mechanical code. SLIM-3D is a three-dimensional thermo-mechanical code capable of simulating lithospheric deformation with elasto-visco-plastic rheology. It has been successfully applied to model geodynamic processes at different tectonic settings, including subduction zones. However, although SLIM-3D already includes many features, fluid migration has not been incorporated into the model yet. To this end, we coupled solid and fluid flow assuming that fluids flow through a porous and deformable solid. Thereby, we introduce a two-phase flow into the model, in which the Stokes flow is coupled with the Darcy law for fluid flow. Ultimately, the evolution of porosity is governed by a compaction pressure and the advection of the porous solid. We show the details of our implementation of the fluid flow into the existing thermo-mechanical finite element code and present first results of benchmarks and experiments. We are especially interested in the coupling of subduction processes and the evolution of the magmatic arc. Thereby, we focus on the key factors controlling magma emplacement and its influence on subduction processes.

  16. Numerical fatigue 3D-FE modeling of indirect composite-restored posterior teeth.

    PubMed

    Ausiello, Pietro; Franciosa, Pasquale; Martorelli, Massimo; Watts, David C

    2011-05-01

    In restored teeth, stresses at the tooth-restoration interface during masticatory processes may fracture the teeth or the restoration and cracks may grow and propagate. The aim was to apply numerical methodologies to simulate the behavior of a restored tooth and to evaluate fatigue lifetimes before crack failure. Using a CAD-FEM procedure and fatigue mechanic laws, the fatigue damage of a restored molar was numerically estimated. Tessellated surfaces of enamel and dentin were extracted by applying segmentation and classification algorithms, to sets of 2D image data. A user-friendly GUI, which enables selection and visualization of 3D tessellated surfaces, was developed in a MatLab(®) environment. The tooth-boundary surfaces of enamel and dentin were then created by sweeping operations through cross-sections. A class II MOD cavity preparation was then added into the 3D model and tetrahedral mesh elements were generated. Fatigue simulation was performed by combining a preliminary static FEA simulation with classical fatigue mechanical laws. Regions with the shortest fatigue-life were located around the fillets of the class II MOD cavity, where the static stress was highest. The described method can be successfully adopted to generate detailed 3D-FE models of molar teeth, with different cavities and restorative materials. This method could be quickly implemented for other dental or biomechanical applications. Copyright © 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  17. Numerical Weather Prediction Models on Linux Boxes as tools in meteorological education in Hungary

    NASA Astrophysics Data System (ADS)

    Gyongyosi, A. Z.; Andre, K.; Salavec, P.; Horanyi, A.; Szepszo, G.; Mille, M.; Tasnadi, P.; Weidiger, T.

    2012-04-01

    computer resources needed for the integration of both WRF and ALADIN/CHAPEAU models will be briefly described. The software developments performed for the evaluation and comparison of the different modeling systems will be demonstrated. The main objectives of the education program on the practical numerical weather modeling will be introduced, as well as its detailed thematics and the structure of the labs.

  18. Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part I: Numerical Modeling and Baseline Model Analysis

    NASA Astrophysics Data System (ADS)

    Kumar, Sumeet; Heister, Stephen D.; Xu, Xianfan; Salvador, James R.; Meisner, Gregory P.

    2013-04-01

    A numerical model has been developed to simulate coupled thermal and electrical energy transfer processes in a thermoelectric generator (TEG) designed for automotive waste heat recovery systems. This model is capable of computing the overall heat transferred, the electrical power output, and the associated pressure drop for given inlet conditions of the exhaust gas and the available TEG volume. Multiple-filled skutterudites and conventional bismuth telluride are considered for thermoelectric modules (TEMs) for conversion of waste heat from exhaust into usable electrical power. Heat transfer between the hot exhaust gas and the hot side of the TEMs is enhanced with the use of a plate-fin heat exchanger integrated within the TEG and using liquid coolant on the cold side. The TEG is discretized along the exhaust flow direction using a finite-volume method. Each control volume is modeled as a thermal resistance network which consists of integrated submodels including a heat exchanger and a thermoelectric device. The pressure drop along the TEG is calculated using standard pressure loss correlations and viscous drag models. The model is validated to preserve global energy balances and is applied to analyze a prototype TEG with data provided by General Motors. Detailed results are provided for local and global heat transfer and electric power generation. In the companion paper, the model is then applied to consider various TEG topologies using skutterudite and bismuth telluride TEMs.

  19. Tsunami-induced morphological change of a coastal lake: comparing hydraulic experiment with numerical modeling

    NASA Astrophysics Data System (ADS)

    Sugawara, D.; Imai, K.; Mitobe, Y.; Takahashi, T.

    2016-12-01

    the numerical modeling will be compared in detail, including temporal evolution of the morphological change. In addition, model applicability and future improvements will be discussed.

  20. Numerical modeling of oil shale fragmentation experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuszmaul, J.S.

    The economic development of modified in situ oil shale retorting will benefit from the ability to design a blasting scheme that creates a rubble bed of uniform permeability. Preparing such a design depends upon successfully predicting how a given explosive charge and firing sequence will fracture the oil shale. Numerical models are used to predict the extent of damage caused by a particular explosive charge. Recent single-blastwell cratering tests provided experimental measurements of the extent of damage induced by an explosion. Measuring rock damage involved crater excavation, rubble screening, crater elevation surveys, and posttest extraction of cores. These measurements weremore » compared to the damage calculated by the numerical model. Core analyses showed that the damage varied greatly from layer to layer. The numerical results also show this effect, indicating that rock damage is highly dependent on oil shale grade. The computer simulation also calculated particle velocities and dynamic stress amplitudes in the rock; predicted values agree with experimental measurements. Calculated rock fragmentation compared favorably with fragmentation measured by crater excavation and by core analysis. Because coring provides direct inspection of rock fragmentation, the use of posttest coring in future experiments is recommended.« less

  1. Numerical models for fluid-grains interactions: opportunities and limitations

    NASA Astrophysics Data System (ADS)

    Esteghamatian, Amir; Rahmani, Mona; Wachs, Anthony

    2017-06-01

    In the framework of a multi-scale approach, we develop numerical models for suspension flows. At the micro scale level, we perform particle-resolved numerical simulations using a Distributed Lagrange Multiplier/Fictitious Domain approach. At the meso scale level, we use a two-way Euler/Lagrange approach with a Gaussian filtering kernel to model fluid-solid momentum transfer. At both the micro and meso scale levels, particles are individually tracked in a Lagrangian way and all inter-particle collisions are computed by a Discrete Element/Soft-sphere method. The previous numerical models have been extended to handle particles of arbitrary shape (non-spherical, angular and even non-convex) as well as to treat heat and mass transfer. All simulation tools are fully-MPI parallel with standard domain decomposition and run on supercomputers with a satisfactory scalability on up to a few thousands of cores. The main asset of multi scale analysis is the ability to extend our comprehension of the dynamics of suspension flows based on the knowledge acquired from the high-fidelity micro scale simulations and to use that knowledge to improve the meso scale model. We illustrate how we can benefit from this strategy for a fluidized bed, where we introduce a stochastic drag force model derived from micro-scale simulations to recover the proper level of particle fluctuations. Conversely, we discuss the limitations of such modelling tools such as their limited ability to capture lubrication forces and boundary layers in highly inertial flows. We suggest ways to overcome these limitations in order to enhance further the capabilities of the numerical models.

  2. Numerical Modeling of Flow Distribution in Micro-Fluidics Systems

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok; Cole, Helen; Chen, C. P.

    2005-01-01

    This paper describes an application of a general purpose computer program, GFSSP (Generalized Fluid System Simulation Program) for calculating flow distribution in a network of micro-channels. GFSSP employs a finite volume formulation of mass and momentum conservation equations in a network consisting of nodes and branches. Mass conservation equation is solved for pressures at the nodes while the momentum conservation equation is solved at the branches to calculate flowrate. The system of equations describing the fluid network is solved by a numerical method that is a combination of the Newton-Raphson and successive substitution methods. The numerical results have been compared with test data and detailed CFD (computational Fluid Dynamics) calculations. The agreement between test data and predictions is satisfactory. The discrepancies between the predictions and test data can be attributed to the frictional correlation which does not include the effect of surface tension or electro-kinetic effect.

  3. Numerical modeling of reverse recovery characteristic in silicon pin diodes

    NASA Astrophysics Data System (ADS)

    Yamashita, Yusuke; Tadano, Hiroshi

    2018-07-01

    A new numerical reverse recovery model of silicon pin diode is proposed by the approximation of the reverse recovery waveform as a simple shape. This is the first model to calculate the reverse recovery characteristics using numerical equations without adjusted by fitting equations and fitting parameters. In order to verify the validity and the accuracy of the numerical model, the calculation result from the model is verified through the device simulation result. In 1980, he joined Toyota Central R&D Labs, Inc., where he was involved in the research and development of power devices such as SIT, IGBT, diodes and power MOSFETs. Since 2013 he has been a professor at the Graduate School of Pure and Applied Science, University of Tsukuba, Tsukuba, Japan. His current research interest is high-efficiency power conversion circuits for electric vehicles using advanced power devices.

  4. 42. MISSISSIPPI BASIN MODEL AT CLINTON SUBSTATION. DETAIL OF 200 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. MISSISSIPPI BASIN MODEL AT CLINTON SUBSTATION. DETAIL OF 200 GALLON PER MINUTE INFLOW CONTROLLER WITH NEW PROGRAMMER, LOCATED ALONG THE NATCHEZ SECTION OF THE MODEL. - Waterways Experiment Station, Hydraulics Laboratory, Halls Ferry Road, 2 miles south of I-20, Vicksburg, Warren County, MS

  5. The challenges of numerically simulating analogue brittle thrust wedges

    NASA Astrophysics Data System (ADS)

    Buiter, Susanne; Ellis, Susan

    2017-04-01

    Fold-and-thrust belts and accretionary wedges form when sedimentary and crustal rocks are compressed into thrusts and folds in the foreland of an orogen or at a subduction trench. For over a century, analogue models have been used to investigate the deformation characteristics of such brittle wedges. These models predict wedge shapes that agree with analytical critical taper theory and internal deformation structures that well resemble natural observations. In a series of comparison experiments for thrust wedges, called the GeoMod2004 (1,2) and GeoMod2008 (3,4) experiments, it was shown that different numerical solution methods successfully reproduce sandbox thrust wedges. However, the GeoMod2008 benchmark also pointed to the difficulties of representing frictional boundary conditions and sharp velocity discontinuities with continuum numerical methods, in addition to the well-known challenges of numerical plasticity. Here we show how details in the numerical implementation of boundary conditions can substantially impact numerical wedge deformation. We consider experiment 1 of the GeoMod2008 brittle thrust wedge benchmarks. This experiment examines a triangular thrust wedge in the stable field of critical taper theory that should remain stable, that is, without internal deformation, when sliding over a basal frictional surface. The thrust wedge is translated by lateral displacement of a rigid mobile wall. The corner between the mobile wall and the subsurface is a velocity discontinuity. Using our finite-element code SULEC, we show how different approaches to implementing boundary friction (boundary layer or contact elements) and the velocity discontinuity (various smoothing schemes) can cause the wedge to indeed translate in a stable manner or to undergo internal deformation (which is a fail). We recommend that numerical studies of sandbox setups not only report the details of their implementation of boundary conditions, but also document the modelling attempts that

  6. Numerical Modeling of Inclusion Behavior in Liquid Metal Processing

    NASA Astrophysics Data System (ADS)

    Bellot, Jean-Pierre; Descotes, Vincent; Jardy, Alain

    2013-09-01

    Thermomechanical performance of metallic alloys is directly related to the metal cleanliness that has always been a challenge for metallurgists. During liquid metal processing, particles can grow or decrease in size either by mass transfer with the liquid phase or by agglomeration/fragmentation mechanisms. As a function of numerical density of inclusions and of the hydrodynamics of the reactor, different numerical modeling approaches are proposed; in the case of an isolated particle, the Lagrangian technique coupled with a dissolution model is applied, whereas in the opposite case of large inclusion phase concentration, the population balance equation must be solved. Three examples of numerical modeling studies achieved at Institut Jean Lamour are discussed. They illustrate the application of the Lagrangian technique (for isolated exogenous inclusion in titanium bath) and the Eulerian technique without or with the aggregation process: for precipitation and growing of inclusions at the solidification front of a Maraging steel, and for endogenous inclusions in the molten steel bath of a gas-stirred ladle, respectively.

  7. A constitutive model and numerical simulation of sintering processes at macroscopic level

    NASA Astrophysics Data System (ADS)

    Wawrzyk, Krzysztof; Kowalczyk, Piotr; Nosewicz, Szymon; Rojek, Jerzy

    2018-01-01

    This paper presents modelling of both single and double-phase powder sintering processes at the macroscopic level. In particular, its constitutive formulation, numerical implementation and numerical tests are described. The macroscopic constitutive model is based on the assumption that the sintered material is a continuous medium. The parameters of the constitutive model for material under sintering are determined by simulation of sintering at the microscopic level using a micro-scale model. Numerical tests were carried out for a cylindrical specimen under hydrostatic and uniaxial pressure. Results of macroscopic analysis are compared against the microscopic model results. Moreover, numerical simulations are validated by comparison with experimental results. The simulations and preparation of the model are carried out by Abaqus FEA - a software for finite element analysis and computer-aided engineering. A mechanical model is defined by the user procedure "Vumat" which is developed by the first author in Fortran programming language. Modelling presented in the paper can be used to optimize and to better understand the process.

  8. Influence of Network Model Detail on Estimated Health Effects of Drinking Water Contamination Events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Michael J.; Janke, Robert

    Network model detail can influence the accuracy of results from analyses of water distribution systems. Some previous work has shown the limitations of skeletonized network models when considering water quality and hydraulic effects. Loss of model detail is potentially less important for aggregated effects such as the systemwide health effects associated with a contamination event, but has received limited attention. The influence of model detail on such effects is examined here by comparing results obtained for contamination events using three large network models and several skeletonized versions of the models. Loss of model detail decreases the accuracy of estimated aggregatedmore » adverse effects related to contamination events. It has the potential to have a large negative influence on the results of consequence assessments and the design of contamination warning systems. But, the adverse influence on analysis results can be minimized by restricting attention to high percentile effects (i.e., 95th percentile or higher).« less

  9. Influence of Network Model Detail on Estimated Health Effects of Drinking Water Contamination Events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Michael J.; Janke, Robert

    Network model detail can influence the accuracy of results from analyses of water distribution systems. Previous work has shown the limitations of skeletonized network models when considering water quality and hydraulic effects. Loss of model detail is potentially less important for aggregated effects such as the systemwide health effects associated with a contamination event, but has received limited attention. The influence of model detail on such effects is examined here by comparing results obtained for contamination events using three large network models and several skeletonized versions of the models. Loss of model detail decreases the accuracy of estimated aggregated adversemore » effects related to contamination events. It has the potential to have a large negative influence on the results of consequence assessments and the design of contamination warning systems. However, the adverse influence on analysis results can be minimized by restricting attention to high percentile effects (i.e., 95th percentile or higher).« less

  10. Influence of Network Model Detail on Estimated Health Effects of Drinking Water Contamination Events

    DOE PAGES

    Davis, Michael J.; Janke, Robert

    2015-01-01

    Network model detail can influence the accuracy of results from analyses of water distribution systems. Some previous work has shown the limitations of skeletonized network models when considering water quality and hydraulic effects. Loss of model detail is potentially less important for aggregated effects such as the systemwide health effects associated with a contamination event, but has received limited attention. The influence of model detail on such effects is examined here by comparing results obtained for contamination events using three large network models and several skeletonized versions of the models. Loss of model detail decreases the accuracy of estimated aggregatedmore » adverse effects related to contamination events. It has the potential to have a large negative influence on the results of consequence assessments and the design of contamination warning systems. But, the adverse influence on analysis results can be minimized by restricting attention to high percentile effects (i.e., 95th percentile or higher).« less

  11. Problems in Catalytic Oxidation of Hydrocarbons and Detailed Simulation of Combustion Processes

    NASA Astrophysics Data System (ADS)

    Xin, Yuxuan

    This dissertation research consists of two parts, with Part I on the kinetics of catalytic oxidation of hydrocarbons and Part II on aspects on the detailed simulation of combustion processes. In Part I, the catalytic oxidation of C1--C3 hydrocarbons, namely methane, ethane, propane and ethylene, was investigated for lean hydrocarbon-air mixtures over an unsupported Pd-based catalyst, from 600 to 800 K and under atmospheric pressure. In Chapter 2, the experimental facility of wire microcalorimetry and simulation configuration were described in details. In Chapter 3 and 4, the oxidation rate of C1--C 3 hydrocarbons is demonstrated to be determined by the dissociative adsorption of hydrocarbons. A detailed surface kinetics model is proposed with deriving the rate coefficient of hydrocarbon dissociative adsorption from the wire microcalorimetry data. In Part II, four fundamental studies were conducted through detailed combustion simulations. In Chapter 5, self-accelerating hydrogen-air flames are studied via two-dimensional detailed numerical simulation (DNS). The increase in the global flame velocity is shown to be caused by the increase of flame surface area, and the fractal structure of the flame front is demonstrated by the box-counting method. In Chapter 6, skeletal reaction models for butane combustion are derived by using directed relation graph (DRG) and DRG-aided sensitivity analysis (DRGASA), and uncertainty minimization by polynomial chaos expansion (MUM-PCE) mothodes. The dependence of model uncertainty is subjected to the completeness of the model. In Chapter 7, a systematic strategy is proposed to reduce the cost of the multicomponent diffusion model by accurately accounting for the species whose diffusivity is important to the global responses of the combustion systems, and approximating those of less importance by the mixture-averaged model. The reduced model is validated in an n-heptane mechanism with 88 species. In Chapter 8, the influence of Soret

  12. THE EMERGENCE OF NUMERICAL AIR QUALITY FORECASTING MODELS AND THEIR APPLICATION

    EPA Science Inventory

    In recent years the U.S. and other nations have begun programs for short-term local through regional air quality forecasting based upon numerical three-dimensional air quality grid models. These numerical air quality forecast (NAQF) models and systems have been developed and test...

  13. THE EMERGENCE OF NUMERICAL AIR QUALITY FORCASTING MODELS AND THEIR APPLICATIONS

    EPA Science Inventory

    In recent years the U.S. and other nations have begun programs for short-term local through regional air quality forecasting based upon numerical three-dimensional air quality grid models. These numerical air quality forecast (NAQF) models and systems have been developed and test...

  14. Numerical model for the thermal behavior of thermocline storage tanks

    NASA Astrophysics Data System (ADS)

    Ehtiwesh, Ismael A. S.; Sousa, Antonio C. M.

    2018-03-01

    Energy storage is a critical factor in the advancement of solar thermal power systems for the sustained delivery of electricity. In addition, the incorporation of thermal energy storage into the operation of concentrated solar power systems (CSPs) offers the potential of delivering electricity without fossil-fuel backup even during peak demand, independent of weather conditions and daylight. Despite this potential, some areas of the design and performance of thermocline systems still require further attention for future incorporation in commercial CSPs, particularly, their operation and control. Therefore, the present study aims to develop a simple but efficient numerical model to allow the comprehensive analysis of thermocline storage systems aiming better understanding of their dynamic temperature response. The validation results, despite the simplifying assumptions of the numerical model, agree well with the experiments for the time evolution of the thermocline region. Three different cases are considered to test the versatility of the numerical model; for the particular type of a storage tank with top round impingement inlet, a simple analytical model was developed to take into consideration the increased turbulence level in the mixing region. The numerical predictions for the three cases are in general good agreement against the experimental results.

  15. acme: The Amendable Coal-Fire Modeling Exercise. A C++ Class Library for the Numerical Simulation of Coal-Fires

    NASA Astrophysics Data System (ADS)

    Wuttke, Manfred W.

    2017-04-01

    At LIAG, we use numerical models to develop and enhance understanding of coupled transport processes and to predict the dynamics of the system under consideration. Topics include geothermal heat utilization, subrosion processes, and spontaneous underground coal fires. Although the details make it inconvenient if not impossible to apply a single code implementation to all systems, their investigations go along similar paths: They all depend on the solution of coupled transport equations. We thus saw a need for a modular code system with open access for the various communities to maximize the shared synergistic effects. To this purpose we develop the oops! ( open object-oriented parallel solutions) - toolkit, a C++ class library for the numerical solution of mathematical models of coupled thermal, hydraulic and chemical processes. This is used to develop problem-specific libraries like acme( amendable coal-fire modeling exercise), a class library for the numerical simulation of coal-fires and applications like kobra (Kohlebrand, german for coal-fire), a numerical simulation code for standard coal-fire models. Basic principle of the oops!-code system is the provision of data types for the description of space and time dependent data fields, description of terms of partial differential equations (pde), their discretisation and solving methods. Coupling of different processes, described by their particular pde is modeled by an automatic timescale-ordered operator-splitting technique. acme is a derived coal-fire specific application library, depending on oops!. If specific functionalities of general interest are implemented and have been tested they will be assimilated into the main oops!-library. Interfaces to external pre- and post-processing tools are easily implemented. Thus a construction kit which can be arbitrarily amended is formed. With the kobra-application constructed with acme we study the processes and propagation of shallow coal seam fires in particular in

  16. 43. MISSISSIPPI BASIN MODEL AT CLINTON SUBSTATION. DETAIL OF 200 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    43. MISSISSIPPI BASIN MODEL AT CLINTON SUBSTATION. DETAIL OF 200 GALLON PER MINUTE INFLOW CONTROLLER WITH NEW PROGRAMMER, LOCATED ALONG THE NATCHEZ SECTION OF THE MODEL. NOTE CONTROL BUILDING AT LEFT. - Waterways Experiment Station, Hydraulics Laboratory, Halls Ferry Road, 2 miles south of I-20, Vicksburg, Warren County, MS

  17. Detailed Modeling of Distillation Technologies for Closed-Loop Water Recovery Systems

    NASA Technical Reports Server (NTRS)

    Allada, Rama Kumar; Lange, Kevin E.; Anderson, Molly S.

    2011-01-01

    Detailed chemical process simulations are a useful tool in designing and optimizing complex systems and architectures for human life support. Dynamic and steady-state models of these systems help contrast the interactions of various operating parameters and hardware designs, which become extremely useful in trade-study analyses. NASA?s Exploration Life Support technology development project recently made use of such models to compliment a series of tests on different waste water distillation systems. This paper presents efforts to develop chemical process simulations for three technologies: the Cascade Distillation System (CDS), the Vapor Compression Distillation (VCD) system and the Wiped-Film Rotating Disk (WFRD) using the Aspen Custom Modeler and Aspen Plus process simulation tools. The paper discusses system design, modeling details, and modeling results for each technology and presents some comparisons between the model results and recent test data. Following these initial comparisons, some general conclusions and forward work are discussed.

  18. How to Overcome Numerical Challenges to Modeling Stirling Engines

    NASA Technical Reports Server (NTRS)

    Dyson, Rodger W.; Wilson, Scott D.; Tew, Roy C.

    2004-01-01

    Nuclear thermal to electric power conversion carries the promise of longer duration missions and higher scientific data transmission rates back to Earth for a range of missions, including both Mars rovers and deep space missions. A free-piston Stirling convertor is a candidate technology that is considered an efficient and reliable power conversion device for such purposes. While already very efficient, it is believed that better Stirling engines can be developed if the losses inherent in current designs could be better understood. However, they are difficult to instrument and so efforts are underway to simulate a complete Stirling engine numerically. This has only recently been attempted and a review of the methods leading up to and including such computational analysis is presented. And finally it is proposed that the quality and depth of Stirling loss understanding may be improved by utilizing the higher fidelity and efficiency of recently developed numerical methods. One such method, the Ultra HI-FI technique is presented in detail.

  19. Hydroforming Of Patchwork Blanks — Numerical Modeling And Experimental Validation

    NASA Astrophysics Data System (ADS)

    Lamprecht, Klaus; Merklein, Marion; Geiger, Manfred

    2005-08-01

    In comparison to the commonly applied technology of tailored blanks the concept of patchwork blanks offers a number of additional advantages. Potential application areas for patchwork blanks in automotive industry are e.g. local reinforcements of automotive closures, structural reinforcements of rails and pillars as well as shock towers. But even if there is a significant application potential for patchwork blanks in automobile production, industrial realization of this innovative technique is decelerated due to a lack of knowledge regarding the forming behavior and the numerical modeling of patchwork blanks. Especially for the numerical simulation of hydroforming processes, where one part of the forming tool is replaced by a fluid under pressure, advanced modeling techniques are required to ensure an accurate prediction of the blanks' forming behavior. The objective of this contribution is to provide an appropriate model for the numerical simulation of patchwork blanks' forming processes. Therefore, different finite element modeling techniques for patchwork blanks are presented. In addition to basic shell element models a combined finite element model consisting of shell and solid elements is defined. Special emphasis is placed on the modeling of the weld seam. For this purpose the local mechanical properties of the weld metal, which have been determined by means of Martens-hardness measurements and uniaxial tensile tests, are integrated in the finite element models. The results obtained from the numerical simulations are compared to experimental data from a hydraulic bulge test. In this context the focus is laid on laser- and spot-welded patchwork blanks.

  20. Numerical modeling and model updating for smart laminated structures with viscoelastic damping

    NASA Astrophysics Data System (ADS)

    Lu, Jun; Zhan, Zhenfei; Liu, Xu; Wang, Pan

    2018-07-01

    This paper presents a numerical modeling method combined with model updating techniques for the analysis of smart laminated structures with viscoelastic damping. Starting with finite element formulation, the dynamics model with piezoelectric actuators is derived based on the constitutive law of the multilayer plate structure. The frequency-dependent characteristics of the viscoelastic core are represented utilizing the anelastic displacement fields (ADF) parametric model in the time domain. The analytical model is validated experimentally and used to analyze the influencing factors of kinetic parameters under parametric variations. Emphasis is placed upon model updating for smart laminated structures to improve the accuracy of the numerical model. Key design variables are selected through the smoothing spline ANOVA statistical technique to mitigate the computational cost. This updating strategy not only corrects the natural frequencies but also improves the accuracy of damping prediction. The effectiveness of the approach is examined through an application problem of a smart laminated plate. It is shown that a good consistency can be achieved between updated results and measurements. The proposed method is computationally efficient.

  1. Numerical model of two-dimensional heterogeneous combustion in porous media under natural convection or forced filtration

    NASA Astrophysics Data System (ADS)

    Lutsenko, Nickolay A.

    2018-03-01

    A novel mathematical model and original numerical method for investigating the two-dimensional waves of heterogeneous combustion in porous media are proposed and described in detail. The mathematical model is constructed within the framework of the model of interacting interpenetrating continua and includes equations of state, continuity, momentum conservation and energy for solid and gas phases. Combustion, considered in the paper, is due to the exothermic reaction between fuel in the porous solid medium and oxidiser contained in the gas flowing through the porous object. The original numerical method is based on a combination of explicit and implicit finite-difference schemes. A distinctive feature of the proposed model is that the gas velocity at the open boundaries (inlet and outlet) of the porous object is unknown and has to be found from the solution of the problem, i.e. the flow rate of the gas regulates itself. This approach allows processes to be modelled not only under forced filtration, but also under free convection, when there is no forced gas input in porous objects, which is typical for many natural or anthropogenic disasters (burning of peatlands, coal dumps, landfills, grain elevators). Some two-dimensional time-dependent problems of heterogeneous combustion in porous objects have been solved using the proposed numerical method. It is shown that two-dimensional waves of heterogeneous combustion in porous media can propagate in two modes with different characteristics, as in the case of one-dimensional combustion, but the combustion front can move in a complex manner, and gas dynamics within the porous objects can be complicated. When natural convection takes place, self-sustaining combustion waves can go through the all parts of the object regardless of where an ignition zone was located, so the all combustible material in each part of the object is burned out, in contrast to forced filtration.

  2. Axisymmetric Numerical Modeling of Pulse Detonation Rocket Engines

    NASA Technical Reports Server (NTRS)

    Morris, Christopher I.

    2005-01-01

    Pulse detonation rocket engines (PDREs) have generated research interest in recent years as a chemical propulsion system potentially offering improved performance and reduced complexity compared to conventional rocket engines. The detonative mode of combustion employed by these devices offers a thermodynamic advantage over the constant-pressure deflagrative combustion mode used in conventional rocket engines and gas turbines. However, while this theoretical advantage has spurred considerable interest in building PDRE devices, the unsteady blowdown process intrinsic to the PDRE has made realistic estimates of the actual propulsive performance problematic. The recent review article by Kailasanath highlights some of the progress that has been made in comparing the available experimental measurements with analytical and numerical models. In recent work by the author, a quasi-one-dimensional, finite rate chemistry CFD model was utilized to study the gasdynamics and performance characteristics of PDREs over a range of blowdown pressure ratios from 1-1000. Models of this type are computationally inexpensive, and enable first-order parametric studies of the effect of several nozzle and extension geometries on PDRE performance over a wide range of conditions. However, the quasi-one-dimensional approach is limited in that it cannot properly capture the multidimensional blast wave and flow expansion downstream of the PDRE, nor can it resolve nozzle flow separation if present. Moreover, the previous work was limited to single-pulse calculations. In this paper, an axisymmetric finite rate chemistry model is described and utilized to study these issues in greater detail. Example Mach number contour plots showing the multidimensional blast wave and nozzle exhaust plume are shown. The performance results are compared with the quasi-one-dimensional results from the previous paper. Both Euler and Navier-Stokes solutions are calculated in order to determine the effect of viscous

  3. Coastal Modeling System: Mathematical Formulations and Numerical Methods

    DTIC Science & Technology

    2014-03-01

    sediment transport , and morphology change. The CMS was designed and developed for coastal inlets and navigation applications, including channel...numerical methods of hydrodynamic, salinity and sediment transport , and morphology change model CMS-Flow. The CMS- Flow uses the Finite Volume...and the influence of coastal structures. The implicit hydrodynamic model is coupled to a nonequilibrium transport model of multiple-sized total

  4. Numerical modeling of divergent detonation wave

    NASA Astrophysics Data System (ADS)

    Li, Zhiwei; Liu, Bangdi

    1987-11-01

    The indefinite nature of divergent detonations under the assumption of instantaneous stable detonation is described. In the numerical modeling method for divergent detonation, the artificial cohesiveness was improved and the Cochran reaction rate and the JWL equations of state were used to describe the ignition process of the explosion. Several typical divergent detonation problems were computed obtaining rather satisfying results.

  5. Numerical Cerebrospinal System Modeling in Fluid-Structure Interaction.

    PubMed

    Garnotel, Simon; Salmon, Stéphanie; Balédent, Olivier

    2018-01-01

    Cerebrospinal fluid (CSF) stroke volume in the aqueduct is widely used to evaluate CSF dynamics disorders. In a healthy population, aqueduct stroke volume represents around 10% of the spinal stroke volume while intracranial subarachnoid space stroke volume represents 90%. The amplitude of the CSF oscillations through the different compartments of the cerebrospinal system is a function of the geometry and the compliances of each compartment, but we suspect that it could also be impacted be the cardiac cycle frequency. To study this CSF distribution, we have developed a numerical model of the cerebrospinal system taking into account cerebral ventricles, intracranial subarachnoid spaces, spinal canal and brain tissue in fluid-structure interactions. A numerical fluid-structure interaction model is implemented using a finite-element method library to model the cerebrospinal system and its interaction with the brain based on fluid mechanics equations and linear elasticity equations coupled in a monolithic formulation. The model geometry, simplified in a first approach, is designed in accordance with realistic volume ratios of the different compartments: a thin tube is used to mimic the high flow resistance of the aqueduct. CSF velocity and pressure and brain displacements are obtained as simulation results, and CSF flow and stroke volume are calculated from these results. Simulation results show a significant variability of aqueduct stroke volume and intracranial subarachnoid space stroke volume in the physiological range of cardiac frequencies. Fluid-structure interactions are numerous in the cerebrospinal system and difficult to understand in the rigid skull. The presented model highlights significant variations of stroke volumes under cardiac frequency variations only.

  6. A review of laboratory and numerical modelling in volcanology

    NASA Astrophysics Data System (ADS)

    Kavanagh, Janine L.; Engwell, Samantha L.; Martin, Simon A.

    2018-04-01

    Modelling has been used in the study of volcanic systems for more than 100 years, building upon the approach first applied by Sir James Hall in 1815. Informed by observations of volcanological phenomena in nature, including eye-witness accounts of eruptions, geophysical or geodetic monitoring of active volcanoes, and geological analysis of ancient deposits, laboratory and numerical models have been used to describe and quantify volcanic and magmatic processes that span orders of magnitudes of time and space. We review the use of laboratory and numerical modelling in volcanological research, focussing on sub-surface and eruptive processes including the accretion and evolution of magma chambers, the propagation of sheet intrusions, the development of volcanic flows (lava flows, pyroclastic density currents, and lahars), volcanic plume formation, and ash dispersal. When first introduced into volcanology, laboratory experiments and numerical simulations marked a transition in approach from broadly qualitative to increasingly quantitative research. These methods are now widely used in volcanology to describe the physical and chemical behaviours that govern volcanic and magmatic systems. Creating simplified models of highly dynamical systems enables volcanologists to simulate and potentially predict the nature and impact of future eruptions. These tools have provided significant insights into many aspects of the volcanic plumbing system and eruptive processes. The largest scientific advances in volcanology have come from a multidisciplinary approach, applying developments in diverse fields such as engineering and computer science to study magmatic and volcanic phenomena. A global effort in the integration of laboratory and numerical volcano modelling is now required to tackle key problems in volcanology and points towards the importance of benchmarking exercises and the need for protocols to be developed so that models are routinely tested against real world data.

  7. Citygml and the Streets of New York - a Proposal for Detailed Street Space Modelling

    NASA Astrophysics Data System (ADS)

    Beil, C.; Kolbe, T. H.

    2017-10-01

    Three-dimensional semantic city models are increasingly used for the analysis of large urban areas. Until now the focus has mostly been on buildings. Nonetheless many applications could also benefit from detailed models of public street space for further analysis. However, there are only few guidelines for representing roads within city models. Therefore, related standards dealing with street modelling are examined and discussed. Nearly all street representations are based on linear abstractions. However, there are many use cases that require or would benefit from the detailed geometrical and semantic representation of street space. A variety of potential applications for detailed street space models are presented. Subsequently, based on related standards as well as on user requirements, a concept for a CityGML-compliant representation of street space in multiple levels of detail is developed. In the course of this process, the CityGML Transportation model of the currently valid OGC standard CityGML2.0 is examined to discover possibilities for further developments. Moreover, a number of improvements are presented. Finally, based on open data sources, the proposed concept is implemented within a semantic 3D city model of New York City generating a detailed 3D street space model for the entire city. As a result, 11 thematic classes, such as roadbeds, sidewalks or traffic islands are generated and enriched with a large number of thematic attributes.

  8. Comparison of Numerical Modeling Methods for Soil Vibration Cutting

    NASA Astrophysics Data System (ADS)

    Jiang, Jiandong; Zhang, Enguang

    2018-01-01

    In this paper, we studied the appropriate numerical simulation method for vibration soil cutting. Three numerical simulation methods, commonly used for uniform speed soil cutting, Lagrange, ALE and DEM, are analyzed. Three models of vibration soil cutting simulation model are established by using ls-dyna.The applicability of the three methods to this problem is analyzed in combination with the model mechanism and simulation results. Both the Lagrange method and the DEM method can show the force oscillation of the tool and the large deformation of the soil in the vibration cutting. Lagrange method shows better effect of soil debris breaking. Because of the poor stability of ALE method, it is not suitable to use soil vibration cutting problem.

  9. CoFlame: A refined and validated numerical algorithm for modeling sooting laminar coflow diffusion flames

    NASA Astrophysics Data System (ADS)

    Eaves, Nick A.; Zhang, Qingan; Liu, Fengshan; Guo, Hongsheng; Dworkin, Seth B.; Thomson, Murray J.

    2016-10-01

    Mitigation of soot emissions from combustion devices is a global concern. For example, recent EURO 6 regulations for vehicles have placed stringent limits on soot emissions. In order to allow design engineers to achieve the goal of reduced soot emissions, they must have the tools to so. Due to the complex nature of soot formation, which includes growth and oxidation, detailed numerical models are required to gain fundamental insights into the mechanisms of soot formation. A detailed description of the CoFlame FORTRAN code which models sooting laminar coflow diffusion flames is given. The code solves axial and radial velocity, temperature, species conservation, and soot aggregate and primary particle number density equations. The sectional particle dynamics model includes nucleation, PAH condensation and HACA surface growth, surface oxidation, coagulation, fragmentation, particle diffusion, and thermophoresis. The code utilizes a distributed memory parallelization scheme with strip-domain decomposition. The public release of the CoFlame code, which has been refined in terms of coding structure, to the research community accompanies this paper. CoFlame is validated against experimental data for reattachment length in an axi-symmetric pipe with a sudden expansion, and ethylene-air and methane-air diffusion flames for multiple soot morphological parameters and gas-phase species. Finally, the parallel performance and computational costs of the code is investigated.

  10. Numerical modelling of flow through foam's node.

    PubMed

    Anazadehsayed, Abdolhamid; Rezaee, Nastaran; Naser, Jamal

    2017-10-15

    In this work, for the first time, a three-dimensional model to describe the dynamics of flow through geometric Plateau border and node components of foam is presented. The model involves a microscopic-scale structure of one interior node and four Plateau borders with an angle of 109.5 from each other. The majority of the surfaces in the model make a liquid-gas interface where the boundary condition of stress balance between the surface and bulk is applied. The three-dimensional Navier-Stoke equation, along with continuity equation, is solved using the finite volume approach. The numerical results are validated against the available experimental results for the flow velocity and resistance in the interior nodes and Plateau borders. A qualitative illustration of flow in a node in different orientations is shown. The scaled resistance against the flow for different liquid-gas interface mobility is studied and the geometrical characteristics of the node and Plateau border components of the system are compared to investigate the Plateau border and node dominated flow regimes numerically. The findings show the values of the resistance in each component, in addition to the exact point where the flow regimes switch. Furthermore, a more accurate effect of the liquid-gas interface on the foam flow, particularly in the presence of a node in the foam network is obtained. The comparison of the available numerical results with our numerical results shows that the velocity of the node-PB system is lower than the velocity of single PB system for mobile interfaces. That is owing to the fact that despite the more relaxed geometrical structure of the node, constraining effect of merging and mixing of flow and increased viscous damping in the node component result in the node-dominated regime. Moreover, we obtain an accurate updated correlation for the dependence of the scaled average velocity of the node-Plateau border system on the liquid-gas interface mobility described by

  11. Numerical modeling of suspended sediment tansfers at the catchment scale with TELEMAC

    NASA Astrophysics Data System (ADS)

    Taccone, Florent; Antoine, Germain; Delestre, Olivier; Goutal, Nicole

    2017-04-01

    In the mountainous regions, the filling of reservoirs is an important issue in terms of efficiency and environmental acceptability for producing hydro-electricity. Thus, the modelling of the sediment transfers on highly erodible watershed is a key challenge from both economic and scientific points of view. The sediment transfers at the watershed scale involve different local flow regimes due to the complex topography of the field and the time and space variability of the meteorological conditions, as well as several physical processes, because of the heterogeneity of the soil composition and cover. A physically-based modelling approach, associated with a fine discretization of the domain, provides an explicit representation of the hydraulic and sedimentary variables, and gives the opportunity to river managers to simulate the global effects of local solutions for decreasing erosion. On the other hand, this approach is time consuming, and needs both detailed data set for validation and robust numerical schemes for simulating various hydraulic and sediment transport conditions. The erosion processes being heavily reliant on the flow characteristics, this paper focus on a robust and accurate numerical resolution of the Shallow Water equations using TELEMAC 2D (www.opentelemac.org). One of the main difficulties is to have a numerical scheme able to represent correctly the hydraulic transfers, preserving the positivity of the water depths, dealing with the wet/dry interface and being well-balanced. Few schemes verifying these properties exist, and their accuracy still needs to be evaluated in the case of rain induced runoff on steep slopes. First, a straight channel test case with a variable slope (Kirstetter et al., 2015) is used to qualify the properties of several Finite Volume numerical schemes. For this test case, a steady rain applied on a dry domain has been performed experimentally in laboratory, and this configuration gives an analytical solution of the Shallow

  12. Numerical weather prediction model tuning via ensemble prediction system

    NASA Astrophysics Data System (ADS)

    Jarvinen, H.; Laine, M.; Ollinaho, P.; Solonen, A.; Haario, H.

    2011-12-01

    This paper discusses a novel approach to tune predictive skill of numerical weather prediction (NWP) models. NWP models contain tunable parameters which appear in parameterizations schemes of sub-grid scale physical processes. Currently, numerical values of these parameters are specified manually. In a recent dual manuscript (QJRMS, revised) we developed a new concept and method for on-line estimation of the NWP model parameters. The EPPES ("Ensemble prediction and parameter estimation system") method requires only minimal changes to the existing operational ensemble prediction infra-structure and it seems very cost-effective because practically no new computations are introduced. The approach provides an algorithmic decision making tool for model parameter optimization in operational NWP. In EPPES, statistical inference about the NWP model tunable parameters is made by (i) generating each member of the ensemble of predictions using different model parameter values, drawn from a proposal distribution, and (ii) feeding-back the relative merits of the parameter values to the proposal distribution, based on evaluation of a suitable likelihood function against verifying observations. In the presentation, the method is first illustrated in low-order numerical tests using a stochastic version of the Lorenz-95 model which effectively emulates the principal features of ensemble prediction systems. The EPPES method correctly detects the unknown and wrongly specified parameters values, and leads to an improved forecast skill. Second, results with an atmospheric general circulation model based ensemble prediction system show that the NWP model tuning capacity of EPPES scales up to realistic models and ensemble prediction systems. Finally, a global top-end NWP model tuning exercise with preliminary results is published.

  13. Numerical modeling anti-personnel blast mines coupled to a deformable leg structure

    NASA Astrophysics Data System (ADS)

    Cronin, Duane; Worswick, Mike; Williams, Kevin; Bourget, Daniel; Pageau, Gilles

    2001-06-01

    The development of improved landmine protective footwear requires an understanding of the physics and damage mechanisms associated with a close proximity blast event. Numerical models have been developed to model surrogate mines buried in soil using the Arbitrary Lagrangian Eulerian (ALE) technique to model the explosive and surrounding air, while the soil is modeled as a deformable Lagrangian solid. The advantage of the ALE model is the ability to model large deformations, such as the expanding gases of a high explosive. This model has been validated using the available experimental data [1]. The effect of varying depth of burial and soil conditions has been investigated with these numerical models and compares favorably to data in the literature. The surrogate landmine model has been coupled to a numerical model of a Simplified Lower Leg (SLL), which is designed to mimic the response and failure mechanisms of a human leg. The SLL consists of a bone and tissue simulant arranged as concentric cylinders. A new strain-rate dependant hyperelastic material model for the tissue simulant, ballistic gelatin, has been developed to model the tissue simulant response. The polymeric bone simulant material has been characterized and implemented as a strain-rate dependent material in the numerical model. The numerical model results agree with the measured response of the SLL during experimental blast tests [2]. The numerical model results are used to explain the experimental data. These models predict that, for a surface or sub-surface buried anti-personnel mine, the coupling between the mine and SLL is an important effect. In addition, the soil properties have a significant effect on the load transmitted to the leg. [1] Bergeron, D., Walker, R. and Coffey, C., 1998, “Detonation of 100-Gram Anti-Personnel Mine Surrogate Charges in Sand”, Report number SR 668, Defence Research Establishment Suffield, Canada. [2] Bourget, D., Williams, K., Pageau, G., and Cronin, D.,

  14. Numerical modelling of soot formation and oxidation in laminar coflow non-smoking and smoking ethylene diffusion flames

    NASA Astrophysics Data System (ADS)

    Liu, Fengshan; Guo, Hongsheng; Smallwood, Gregory J.; Gülder, Ömer L.

    2003-06-01

    A numerical study of soot formation and oxidation in axisymmetric laminar coflow non-smoking and smoking ethylene diffusion flames was conducted using detailed gas-phase chemistry and complex thermal and transport properties. A modified two-equation soot model was employed to describe soot nucleation, growth and oxidation. Interaction between the gas-phase chemistry and soot chemistry was taken into account. Radiation heat transfer by both soot and radiating gases was calculated using the discrete-ordinates method coupled with a statistical narrow-band correlated-k based band model, and was used to evaluate the simple optically thin approximation. The governing equations in fully elliptic form were solved. The current models in the literature describing soot oxidation by O2 and OH have to be modified in order to predict the smoking flame. The modified soot oxidation model has only moderate effects on the calculation of the non-smoking flame, but dramatically affects the soot oxidation near the flame tip in the smoking flame. Numerical results of temperature, soot volume fraction and primary soot particle size and number density were compared with experimental data in the literature. Relatively good agreement was found between the prediction and the experimental data. The optically thin approximation radiation model significantly underpredicts temperatures in the upper portion of both flames, seriously affecting the soot prediction.

  15. Numerical experiments in homogeneous turbulence

    NASA Technical Reports Server (NTRS)

    Rogallo, R. S.

    1981-01-01

    The direct simulation methods developed by Orszag and Patternson (1972) for isotropic turbulence were extended to homogeneous turbulence in an incompressible fluid subjected to uniform deformation or rotation. The results of simulations for irrotational strain (plane and axisymmetric), shear, rotation, and relaxation toward isotropy following axisymmetric strain are compared with linear theory and experimental data. Emphasis is placed on the shear flow because of its importance and because of the availability of accurate and detailed experimental data. The computed results are used to assess the accuracy of two popular models used in the closure of the Reynolds-stress equations. Data from a variety of the computed fields and the details of the numerical methods used in the simulation are also presented.

  16. Three-dimensional direct numerical simulation of turbulent lean premixed methane combustion with detailed kinetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aspden, A. J.; Day, M. S.; Bell, J. B.

    The interaction of maintained homogeneous isotropic turbulence with lean premixed methane flames is investigated using direct numerical simulation with detailed chemistry. The conditions are chosen to be close to those found in atmospheric laboratory experiments. As the Karlovitz number is increased from 1 to 36, the preheat zone becomes thickened, while the reaction zone remains largely unaffected. A negative correlation of fuel consumption with mean flame surface curvature is observed. With increasing turbulence intensity, the chemical composition in the preheat zone tends towards that of an idealised unity Lewis number flame, which we argue is the onset of the transitionmore » to distributed burning, and the response of the various chemical species is shown to fall into broad classes. Smaller-scale simulations are used to isolate the specific role of species diffusion at high turbulent intensities. Diffusion of atomic hydrogen is shown to be related to the observed curvature correlations, but does not have significant consequential impact on the thickening of the preheat zone. It is also shown that susceptibility of the preheat zone to thickening by turbulence is related to the 'global' Lewis number (the Lewis number of the deficient reactant); higher global Lewis number flames tend to be more prone to thickening.« less

  17. Three-dimensional direct numerical simulation of turbulent lean premixed methane combustion with detailed kinetics

    DOE PAGES

    Aspden, A. J.; Day, M. S.; Bell, J. B.

    2016-02-18

    The interaction of maintained homogeneous isotropic turbulence with lean premixed methane flames is investigated using direct numerical simulation with detailed chemistry. The conditions are chosen to be close to those found in atmospheric laboratory experiments. As the Karlovitz number is increased from 1 to 36, the preheat zone becomes thickened, while the reaction zone remains largely unaffected. A negative correlation of fuel consumption with mean flame surface curvature is observed. With increasing turbulence intensity, the chemical composition in the preheat zone tends towards that of an idealised unity Lewis number flame, which we argue is the onset of the transitionmore » to distributed burning, and the response of the various chemical species is shown to fall into broad classes. Smaller-scale simulations are used to isolate the specific role of species diffusion at high turbulent intensities. Diffusion of atomic hydrogen is shown to be related to the observed curvature correlations, but does not have significant consequential impact on the thickening of the preheat zone. It is also shown that susceptibility of the preheat zone to thickening by turbulence is related to the 'global' Lewis number (the Lewis number of the deficient reactant); higher global Lewis number flames tend to be more prone to thickening.« less

  18. A numerical model simulation of the regional air pollution meteorology of the greater Chesapeake Bay area - Summer day case study

    NASA Technical Reports Server (NTRS)

    Segal, M.; Pielke, R. A.; Mcnider, R. T.; Mcdougal, D. S.

    1982-01-01

    The mesoscale numerical model of the University of Virginia (UVMM), has been applied to the greater Chesapeake Bay area in order to provide a detailed description of the air pollution meteorology during a typical summer day. This model provides state of the art simulations for land-sea thermally induced circulations. The model-predicted results agree favorably with available observed data. The effects of synoptic flow and sea breeze coupling on air pollution meteorological characteristics in this region, are demonstrated by a spatial and temporal presentation of various model predicted fields. A transport analysis based on predicted wind velocities indicated possible recirculation of pollutants back onto the Atlantic coast due to the sea breeze circulation.

  19. Cost model relationships between textile manufacturing processes and design details for transport fuselage elements

    NASA Technical Reports Server (NTRS)

    Metschan, Stephen L.; Wilden, Kurtis S.; Sharpless, Garrett C.; Andelman, Rich M.

    1993-01-01

    Textile manufacturing processes offer potential cost and weight advantages over traditional composite materials and processes for transport fuselage elements. In the current study, design cost modeling relationships between textile processes and element design details were developed. Such relationships are expected to help future aircraft designers to make timely decisions on the effect of design details and overall configurations on textile fabrication costs. The fundamental advantage of a design cost model is to insure that the element design is cost effective for the intended process. Trade studies on the effects of processing parameters also help to optimize the manufacturing steps for a particular structural element. Two methods of analyzing design detail/process cost relationships developed for the design cost model were pursued in the current study. The first makes use of existing databases and alternative cost modeling methods (e.g. detailed estimating). The second compares design cost model predictions with data collected during the fabrication of seven foot circumferential frames for ATCAS crown test panels. The process used in this case involves 2D dry braiding and resin transfer molding of curved 'J' cross section frame members having design details characteristic of the baseline ATCAS crown design.

  20. Integration of snow management practices into a detailed snow pack model

    NASA Astrophysics Data System (ADS)

    Spandre, Pierre; Morin, Samuel; Lafaysse, Matthieu; Lejeune, Yves; François, Hugues; George-Marcelpoil, Emmanuelle

    2016-04-01

    The management of snow on ski slopes is a key socio-economic and environmental issue in mountain regions. Indeed the winter sports industry has become a very competitive global market although this economy remains particularly sensitive to weather and snow conditions. The understanding and implementation of snow management in detailed snowpack models is a major step towards a more realistic assessment of the evolution of snow conditions in ski resorts concerning past, present and future climate conditions. Here we describe in a detailed manner the integration of snow management processes (grooming, snowmaking) into the snowpack model Crocus (Spandre et al., Cold Reg. Sci. Technol., in press). The effect of the tiller is explicitly taken into account and its effects on snow properties (density, snow microstructure) are simulated in addition to the compaction induced by the weight of the grooming machine. The production of snow in Crocus is carried out with respect to specific rules and current meteorological conditions. Model configurations and results are described in detail through sensitivity tests of the model of all parameters related to snow management processes. In-situ observations were carried out in four resorts in the French Alps during the 2014-2015 winter season considering for each resort natural, groomed only and groomed plus snowmaking conditions. The model provides realistic simulations of the snowpack properties with respect to these observations. The main uncertainty pertains to the efficiency of the snowmaking process. The observed ratio between the mass of machine-made snow on ski slopes and the water mass used for production was found to be lower than was expected from the literature, in every resort. The model now referred to as "Crocus-Resort" has been proven to provide realistic simulations of snow conditions on ski slopes and may be used for further investigations. Spandre, P., S. Morin, M. Lafaysse, Y. Lejeune, H. François and E. George

  1. Global Tectonics of Enceladus: Numerical Model

    NASA Astrophysics Data System (ADS)

    Czechowski, Leszek

    2016-10-01

    Introduction: Enceladus, a satellite of Saturn, is the smallest celestial body in the Solar System where volcanic and tectonic activities are observed. Every second, the mass of 200 kg is ejected into space from the South Polar Terrain (SPT) - [1]. The loss of matter from the body's interior should lead to global compression of the crust. Typical effects of compression are: thrust faults, folding and subduction. However, such forms are not dominant on Enceladus. We propose here special tectonic process that could explain this paradox. Our hypotheses states that the mass loss from SPT is the main driving mechanism of the following tectonic processes: subsidence of SPT, flow in the mantle and motion of adjacent tectonic plates. The hypotheses is presented in [2], [3] and[4].We suggest that the loss of the volatiles results in a void, an instability, and motion of solid matter to fill the void. The motion is presented at the Fig.1 and includes:Subsidence of the 'lithosphere' of SPT.Flow of the matter in the mantle.Motion of plates adjacent to SPT towards the active regionMethods and results: The numerical model of processes presented is developed. It is based on the equations of continuous media..If emerging void is being filled by the subsidence of SPT only, then the velocity of subsidence is 0.05 mmyr-1. However, numerical calculations indicate that all three types of motion are usually important. The role of a given motion depends on the viscosity distribution. Generally, for most of the models the subsidence is 0.02 mmyr-1, but mantle flow and plates' motion also play a role in filling the void. The preliminary results of the numerical model indicate also that the velocity of adjacent plates could be 0.02 mmyr-1 for the Newtonian rheology.Note that in our model the reduction of the crust area is not a result of compression but it is a result of the plate sinking. Therefore the compressional surface features do not have to be dominant. The SPT does not have to be

  2. Unsteady numerical simulations of the stability and dynamics of flames

    NASA Technical Reports Server (NTRS)

    Kailasanath, K.; Patnaik, G.; Oran, E. S.

    1995-01-01

    In this report we describe the research performed at the Naval Research Laboratory in support of the NASA Microgravity Science and Applications Program over the past three years (from Feb. 1992) with emphasis on the work performed since the last microgravity combustion workshop. The primary objective of our research is to develop an understanding of the differences in the structure, stability, dynamics and extinction of flames in earth gravity and in microgravity environments. Numerical simulations, in which the various physical and chemical processes can be independently controlled, can significantly advance our understanding of these differences. Therefore, our approach is to use detailed time-dependent, multi-dimensional, multispecies numerical models to perform carefully designed computational experiments. The basic issues we have addressed, a general description of the numerical approach, and a summary of the results are described in this report. More detailed discussions are available in the papers published which are referenced herein. Some of the basic issues we have addressed recently are (1) the relative importance of wall losses and gravity on the extinguishment of downward-propagating flames; (2) the role of hydrodynamic instabilities in the formation of cellular flames; (3) effects of gravity on burner-stabilized flames, and (4) effects of radiative losses and chemical-kinetics on flames near flammability limits. We have also expanded our efforts to include hydrocarbon flames in addition to hydrogen flames and to perform simulations in support of other on-going efforts in the microgravity combustion sciences program. Modeling hydrocarbon flames typically involves a larger number of species and a much larger number of reactions when compared to hydrogen. In addition, more complex radiation models may also be needed. In order to efficiently compute such complex flames recent developments in parallel computing have been utilized to develop a state

  3. A survey of numerical models for wind prediction

    NASA Technical Reports Server (NTRS)

    Schonfeld, D.

    1980-01-01

    A literature review is presented of the work done in the numerical modeling of wind flows. Pertinent computational techniques are described, as well as the necessary assumptions used to simplify the governing equations. A steady state model is outlined, based on the data obtained at the Deep Space Communications complex at Goldstone, California.

  4. Ancient numerical daemons of conceptual hydrological modeling: 2. Impact of time stepping schemes on model analysis and prediction

    NASA Astrophysics Data System (ADS)

    Kavetski, Dmitri; Clark, Martyn P.

    2010-10-01

    Despite the widespread use of conceptual hydrological models in environmental research and operations, they remain frequently implemented using numerically unreliable methods. This paper considers the impact of the time stepping scheme on model analysis (sensitivity analysis, parameter optimization, and Markov chain Monte Carlo-based uncertainty estimation) and prediction. It builds on the companion paper (Clark and Kavetski, 2010), which focused on numerical accuracy, fidelity, and computational efficiency. Empirical and theoretical analysis of eight distinct time stepping schemes for six different hydrological models in 13 diverse basins demonstrates several critical conclusions. (1) Unreliable time stepping schemes, in particular, fixed-step explicit methods, suffer from troublesome numerical artifacts that severely deform the objective function of the model. These deformations are not rare isolated instances but can arise in any model structure, in any catchment, and under common hydroclimatic conditions. (2) Sensitivity analysis can be severely contaminated by numerical errors, often to the extent that it becomes dominated by the sensitivity of truncation errors rather than the model equations. (3) Robust time stepping schemes generally produce "better behaved" objective functions, free of spurious local optima, and with sufficient numerical continuity to permit parameter optimization using efficient quasi Newton methods. When implemented within a multistart framework, modern Newton-type optimizers are robust even when started far from the optima and provide valuable diagnostic insights not directly available from evolutionary global optimizers. (4) Unreliable time stepping schemes lead to inconsistent and biased inferences of the model parameters and internal states. (5) Even when interactions between hydrological parameters and numerical errors provide "the right result for the wrong reason" and the calibrated model performance appears adequate, unreliable

  5. Multi-scale image segmentation and numerical modeling in carbonate rocks

    NASA Astrophysics Data System (ADS)

    Alves, G. C.; Vanorio, T.

    2016-12-01

    Numerical methods based on computational simulations can be an important tool in estimating physical properties of rocks. These can complement experimental results, especially when time constraints and sample availability are a problem. However, computational models created at different scales can yield conflicting results with respect to the physical laboratory. This problem is exacerbated in carbonate rocks due to their heterogeneity at all scales. We developed a multi-scale approach performing segmentation of the rock images and numerical modeling across several scales, accounting for those heterogeneities. As a first step, we measured the porosity and the elastic properties of a group of carbonate samples with varying micrite content. Then, samples were imaged by Scanning Electron Microscope (SEM) as well as optical microscope at different magnifications. We applied three different image segmentation techniques to create numerical models from the SEM images and performed numerical simulations of the elastic wave-equation. Our results show that a multi-scale approach can efficiently account for micro-porosities in tight micrite-supported samples, yielding acoustic velocities comparable to those obtained experimentally. Nevertheless, in high-porosity samples characterized by larger grain/micrite ratio, results show that SEM scale images tend to overestimate velocities, mostly due to their inability to capture macro- and/or intragranular- porosity. This suggests that, for high-porosity carbonate samples, optical microscope images would be more suited for numerical simulations.

  6. Numerical modeling of the strain of elastic rubber elements

    NASA Astrophysics Data System (ADS)

    Moskvichev, E. N.; Porokhin, A. V.; Shcherbakov, I. V.

    2017-11-01

    A comparative analysis of the results of experimental investigation of mechanical behavior of the rubber sample during biaxial compression testing and numerical simulation results obtained by the finite element method was carried out to determine the correctness of the model applied in the engineering calculations of elastic structural elements made of the rubber. The governing equation represents the five-parameter Mooney-Rivlin model with the constants determined from experimental data. The investigation results showed that these constants reliably describe the mechanical behavior of the material under consideration. The divergence of experimental and numerical results does not exceed 15%.

  7. Numerical Modelling of Femur Fracture and Experimental Validation Using Bone Simulant.

    PubMed

    Marco, Miguel; Giner, Eugenio; Larraínzar-Garijo, Ricardo; Caeiro, José Ramón; Miguélez, María Henar

    2017-10-01

    Bone fracture pattern prediction is still a challenge and an active field of research. The main goal of this article is to present a combined methodology (experimental and numerical) for femur fracture onset analysis. Experimental work includes the characterization of the mechanical properties and fracture testing on a bone simulant. The numerical work focuses on the development of a model whose material properties are provided by the characterization tests. The fracture location and the early stages of the crack propagation are modelled using the extended finite element method and the model is validated by fracture tests developed in the experimental work. It is shown that the accuracy of the numerical results strongly depends on a proper bone behaviour characterization.

  8. 46. MISSISSIPPI BASIN MODEL AT CLINTON SUBSTATION. DETAIL OF INFLOW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    46. MISSISSIPPI BASIN MODEL AT CLINTON SUBSTATION. DETAIL OF INFLOW CONTROLLER WITH ORIGINAL CAPACITOR BANK. - Waterways Experiment Station, Hydraulics Laboratory, Halls Ferry Road, 2 miles south of I-20, Vicksburg, Warren County, MS

  9. Numerical and experimental investigation of the 3D free surface flow in a model Pelton turbine

    NASA Astrophysics Data System (ADS)

    Fiereder, R.; Riemann, S.; Schilling, R.

    2010-08-01

    This investigation focuses on the numerical and experimental analysis of the 3D free surface flow in a Pelton turbine. In particular, two typical flow conditions occurring in a full scale Pelton turbine - a configuration with a straight inlet as well as a configuration with a 90 degree elbow upstream of the nozzle - are considered. Thereby, the effect of secondary flow due to the 90 degree bending of the upstream pipe on the characteristics of the jet is explored. The hybrid flow field consists of pure liquid flow within the conduit and free surface two component flow of the liquid jet emerging out of the nozzle into air. The numerical results are validated against experimental investigations performed in the laboratory of the Institute of Fluid Mechanics (FLM). For the numerical simulation of the flow the in-house unstructured fully parallelized finite volume solver solver3D is utilized. An advanced interface capturing model based on the classic Volume of Fluid method is applied. In order to ensure sharp interface resolution an additional convection term is added to the transport equation of the volume fraction. A collocated variable arrangement is used and the set of non-linear equations, containing fluid conservation equations and model equations for turbulence and volume fraction, are solved in a segregated manner. For pressure-velocity coupling the SIMPLE and PISO algorithms are implemented. Detailed analysis of the observed flow patterns in the jet and of the jet geometry are presented.

  10. Numerical modelling of distributed vibration sensor based on phase-sensitive OTDR

    NASA Astrophysics Data System (ADS)

    Masoudi, A.; Newson, T. P.

    2017-04-01

    A Distributed Vibration Sensor Based on Phase-Sensitive OTDR is numerically modeled. The advantage of modeling the building blocks of the sensor individually and combining the blocks to analyse the behavior of the sensing system is discussed. It is shown that the numerical model can accurately imitate the response of the experimental setup to dynamic perturbations a signal processing procedure similar to that used to extract the phase information from sensing setup.

  11. Computational Models of Laryngeal Aerodynamics: Potentials and Numerical Costs.

    PubMed

    Sadeghi, Hossein; Kniesburges, Stefan; Kaltenbacher, Manfred; Schützenberger, Anne; Döllinger, Michael

    2018-02-07

    Human phonation is based on the interaction between tracheal airflow and laryngeal dynamics. This fluid-structure interaction is based on the energy exchange between airflow and vocal folds. Major challenges in analyzing the phonatory process in-vivo are the small dimensions and the poor accessibility of the region of interest. For improved analysis of the phonatory process, numerical simulations of the airflow and the vocal fold dynamics have been suggested. Even though most of the models reproduced the phonatory process fairly well, development of comprehensive larynx models is still a subject of research. In the context of clinical application, physiological accuracy and computational model efficiency are of great interest. In this study, a simple numerical larynx model is introduced that incorporates the laryngeal fluid flow. It is based on a synthetic experimental model with silicone vocal folds. The degree of realism was successively increased in separate computational models and each model was simulated for 10 oscillation cycles. Results show that relevant features of the laryngeal flow field, such as glottal jet deflection, develop even when applying rather simple static models with oscillating flow rates. Including further phonatory components such as vocal fold motion, mucosal wave propagation, and ventricular folds, the simulations show phonatory key features like intraglottal flow separation and increased flow rate in presence of ventricular folds. The simulation time on 100 CPU cores ranged between 25 and 290 hours, currently restricting clinical application of these models. Nevertheless, results show high potential of numerical simulations for better understanding of phonatory process. Copyright © 2018 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  12. Efficient numerical methods for the random-field Ising model: Finite-size scaling, reweighting extrapolation, and computation of response functions.

    PubMed

    Fytas, Nikolaos G; Martín-Mayor, Víctor

    2016-06-01

    It was recently shown [Phys. Rev. Lett. 110, 227201 (2013)PRLTAO0031-900710.1103/PhysRevLett.110.227201] that the critical behavior of the random-field Ising model in three dimensions is ruled by a single universality class. This conclusion was reached only after a proper taming of the large scaling corrections of the model by applying a combined approach of various techniques, coming from the zero- and positive-temperature toolboxes of statistical physics. In the present contribution we provide a detailed description of this combined scheme, explaining in detail the zero-temperature numerical scheme and developing the generalized fluctuation-dissipation formula that allowed us to compute connected and disconnected correlation functions of the model. We discuss the error evolution of our method and we illustrate the infinite limit-size extrapolation of several observables within phenomenological renormalization. We present an extension of the quotients method that allows us to obtain estimates of the critical exponent α of the specific heat of the model via the scaling of the bond energy and we discuss the self-averaging properties of the system and the algorithmic aspects of the maximum-flow algorithm used.

  13. Joint numerical study of the 2011 Tohoku-Oki tsunami: comparative propagation simulations and high resolution coastal models

    NASA Astrophysics Data System (ADS)

    Loevenbruck, Anne; Arpaia, Luca; Ata, Riadh; Gailler, Audrey; Hayashi, Yutaka; Hébert, Hélène; Heinrich, Philippe; Le Gal, Marine; Lemoine, Anne; Le Roy, Sylvestre; Marcer, Richard; Pedreros, Rodrigo; Pons, Kevin; Ricchiuto, Mario; Violeau, Damien

    2017-04-01

    This study is part of the joint actions carried out within TANDEM (Tsunamis in northern AtlaNtic: Definition of Effects by Modeling). This French project, mainly dedicated to the appraisal of coastal effects due to tsunami waves on the French coastlines, was initiated after the catastrophic 2011 Tohoku-Oki tsunami. This event, which tragically struck Japan, drew the attention to the importance of tsunami risk assessment, in particular when nuclear facilities are involved. As a contribution to this challenging task, the TANDEM partners intend to provide guidance for the French Atlantic area based on numerical simulation. One of the identified objectives consists in designing, adapting and validating simulation codes for tsunami hazard assessment. Besides an integral benchmarking workpackage, the outstanding database of the 2011 event offers the TANDEM partners the opportunity to test their numerical tools with a real case. As a prerequisite, among the numerous published seismic source models arisen from the inversion of the various available records, a couple of coseismic slip distributions have been selected to provide common initial input parameters for the tsunami computations. After possible adaptations or specific developments, the different codes are employed to simulate the Tohoku-Oki tsunami from its source to the northeast Japanese coastline. The results are tested against the numerous tsunami measurements and, when relevant, comparisons of the different codes are carried out. First, the results related to the oceanic propagation phase are compared with the offshore records. Then, the modeled coastal impacts are tested against the onshore data. Flooding at a regional scale is considered, but high resolution simulations are also performed with some of the codes. They allow examining in detail the runup amplitudes and timing, as well as the complexity of the tsunami interaction with the coastal structures. The work is supported by the Tandem project in the

  14. Overview of High-Fidelity Modeling Activities in the Numerical Propulsion System Simulations (NPSS) Project

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.

    2002-01-01

    A high-fidelity simulation of a commercial turbofan engine has been created as part of the Numerical Propulsion System Simulation Project. The high-fidelity computer simulation utilizes computer models that were developed at NASA Glenn Research Center in cooperation with turbofan engine manufacturers. The average-passage (APNASA) Navier-Stokes based viscous flow computer code is used to simulate the 3D flow in the compressors and turbines of the advanced commercial turbofan engine. The 3D National Combustion Code (NCC) is used to simulate the flow and chemistry in the advanced aircraft combustor. The APNASA turbomachinery code and the NCC combustor code exchange boundary conditions at the interface planes at the combustor inlet and exit. This computer simulation technique can evaluate engine performance at steady operating conditions. The 3D flow models provide detailed knowledge of the airflow within the fan and compressor, the high and low pressure turbines, and the flow and chemistry within the combustor. The models simulate the performance of the engine at operating conditions that include sea level takeoff and the altitude cruise condition.

  15. A statistical approach to develop a detailed soot growth model using PAH characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raj, Abhijeet; Celnik, Matthew; Shirley, Raphael

    A detailed PAH growth model is developed, which is solved using a kinetic Monte Carlo algorithm. The model describes the structure and growth of planar PAH molecules, and is referred to as the kinetic Monte Carlo-aromatic site (KMC-ARS) model. A detailed PAH growth mechanism based on reactions at radical sites available in the literature, and additional reactions obtained from quantum chemistry calculations are used to model the PAH growth processes. New rates for the reactions involved in the cyclodehydrogenation process for the formation of 6-member rings on PAHs are calculated in this work based on density functional theory simulations. Themore » KMC-ARS model is validated by comparing experimentally observed ensembles on PAHs with the computed ensembles for a C{sub 2}H{sub 2} and a C{sub 6}H{sub 6} flame at different heights above the burner. The motivation for this model is the development of a detailed soot particle population balance model which describes the evolution of an ensemble of soot particles based on their PAH structure. However, at present incorporating such a detailed model into a population balance is computationally unfeasible. Therefore, a simpler model referred to as the site-counting model has been developed, which replaces the structural information of the PAH molecules by their functional groups augmented with statistical closure expressions. This closure is obtained from the KMC-ARS model, which is used to develop correlations and statistics in different flame environments which describe such PAH structural information. These correlations and statistics are implemented in the site-counting model, and results from the site-counting model and the KMC-ARS model are in good agreement. Additionally the effect of steric hindrance in large PAH structures is investigated and correlations for sites unavailable for reaction are presented. (author)« less

  16. The numerical modelling of MHD astrophysical flows with chemistry

    NASA Astrophysics Data System (ADS)

    Kulikov, I.; Chernykh, I.; Protasov, V.

    2017-10-01

    The new code for numerical simulation of magnetic hydrodynamical astrophysical flows with consideration of chemical reactions is given in the paper. At the heart of the code - the new original low-dissipation numerical method based on a combination of operator splitting approach and piecewise-parabolic method on the local stencil. The chemodynamics of the hydrogen while the turbulent formation of molecular clouds is modeled.

  17. Temperature sensitivity of a numerical pollen forecast model

    NASA Astrophysics Data System (ADS)

    Scheifinger, Helfried; Meran, Ingrid; Szabo, Barbara; Gallaun, Heinz; Natali, Stefano; Mantovani, Simone

    2016-04-01

    Allergic rhinitis has become a global health problem especially affecting children and adolescence. Timely and reliable warning before an increase of the atmospheric pollen concentration means a substantial support for physicians and allergy suffers. Recently developed numerical pollen forecast models have become means to support the pollen forecast service, which however still require refinement. One of the problem areas concerns the correct timing of the beginning and end of the flowering period of the species under consideration, which is identical with the period of possible pollen emission. Both are governed essentially by the temperature accumulated before the entry of flowering and during flowering. Phenological models are sensitive to a bias of the temperature. A mean bias of -1°C of the input temperature can shift the entry date of a phenological phase for about a week into the future. A bias of such an order of magnitude is still possible in case of numerical weather forecast models. If the assimilation of additional temperature information (e.g. ground measurements as well as satellite-retrieved air / surface temperature fields) is able to reduce such systematic temperature deviations, the precision of the timing of phenological entry dates might be enhanced. With a number of sensitivity experiments the effect of a possible temperature bias on the modelled phenology and the pollen concentration in the atmosphere is determined. The actual bias of the ECMWF IFS 2 m temperature will also be calculated and its effect on the numerical pollen forecast procedure presented.

  18. Numerical modelling and experimental study of liquid evaporation during gel formation

    NASA Astrophysics Data System (ADS)

    Pokusaev, B. G.; Khramtsov, D. P.

    2017-11-01

    Gels are promising materials in biotechnology and medicine as a medium for storing cells for bioprinting applications. Gel is a two-phase system consisting of solid medium and liquid phase. Understanding of a gel structure evolution and gel aging during liquid evaporation is a crucial step in developing new additive bioprinting technologies. A numerical and experimental study of liquid evaporation was performed. In experimental study an evaporation process of an agarose gel layer located on Petri dish was observed and mass difference was detected using electronic scales. Numerical model was based on a smoothed particle hydrodynamics method. Gel in a model was represented as a solid-liquid system and liquid evaporation was modelled due to capillary forces and heat transfer. Comparison of experimental data and numerical results demonstrated that model can adequately represent evaporation process in agarose gel.

  19. Numerical Modeling of Airblast.

    DTIC Science & Technology

    1987-06-01

    OIL . > L 3 4X4, Z, 8 W~ 0 N § I E L 4 CM0u5 L OF L L 0 0V00E0 01U 0 0 00 C C L 4...0 . . . .8 1- 12 𔃾 .6I~ 2. 22 .4 .62. 1. 3-21. 94 Lj UU LUV NOS >, , , , I ~ 4 j ~ 3 5 j 4 j I I JI ’ .LiI 4- ZAz 4-r:0 P. w 9- 0I1’ f *K I u V1 96...CHARI JR~Atj_ 49 w gI&’ I ~II OIICFILE Copy 0 NUMERICAL MODELING OF AIRLAST 1ST YEAR FINAL REPORT SAIC 87!/7Ol JUNE 1987 *dne4. -m~ca bilm i

  20. Numerical modeling of consolidation processes in hydraulically deposited soils

    NASA Astrophysics Data System (ADS)

    Brink, Nicholas Robert

    Hydraulically deposited soils are encountered in many common engineering applications including mine tailing and geotextile tube fills, though the consolidation process for such soils is highly nonlinear and requires the use of advanced numerical techniques to provide accurate predictions. Several commercially available finite element codes poses the ability to model soil consolidation, and it was the goal of this research to assess the ability of two of these codes, ABAQUS and PLAXIS, to model the large-strain, two-dimensional consolidation processes which occur in hydraulically deposited soils. A series of one- and two-dimensionally drained rectangular models were first created to assess the limitations of ABAQUS and PLAXIS when modeling consolidation of highly compressible soils. Then, geotextile tube and TSF models were created to represent actual scenarios which might be encountered in engineering practice. Several limitations were discovered, including the existence of a minimum preconsolidation stress below which numerical solutions become unstable.

  1. A NUMERICAL ALGORITHM FOR MODELING MULTIGROUP NEUTRINO-RADIATION HYDRODYNAMICS IN TWO SPATIAL DIMENSIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swesty, F. Douglas; Myra, Eric S.

    It is now generally agreed that multidimensional, multigroup, neutrino-radiation hydrodynamics (RHD) is an indispensable element of any realistic model of stellar-core collapse, core-collapse supernovae, and proto-neutron star instabilities. We have developed a new, two-dimensional, multigroup algorithm that can model neutrino-RHD flows in core-collapse supernovae. Our algorithm uses an approach similar to the ZEUS family of algorithms, originally developed by Stone and Norman. However, this completely new implementation extends that previous work in three significant ways: first, we incorporate multispecies, multigroup RHD in a flux-limited-diffusion approximation. Our approach is capable of modeling pair-coupled neutrino-RHD, and includes effects of Pauli blocking inmore » the collision integrals. Blocking gives rise to nonlinearities in the discretized radiation-transport equations, which we evolve implicitly in time. We employ parallelized Newton-Krylov methods to obtain a solution of these nonlinear, implicit equations. Our second major extension to the ZEUS algorithm is the inclusion of an electron conservation equation that describes the evolution of electron-number density in the hydrodynamic flow. This permits calculating deleptonization of a stellar core. Our third extension modifies the hydrodynamics algorithm to accommodate realistic, complex equations of state, including those having nonconvex behavior. In this paper, we present a description of our complete algorithm, giving sufficient details to allow others to implement, reproduce, and extend our work. Finite-differencing details are presented in appendices. We also discuss implementation of this algorithm on state-of-the-art, parallel-computing architectures. Finally, we present results of verification tests that demonstrate the numerical accuracy of this algorithm on diverse hydrodynamic, gravitational, radiation-transport, and RHD sample problems. We believe our methods to be of general use in

  2. Numerical modeling of eastern connecticut's visual resources

    Treesearch

    Daniel L. Civco

    1979-01-01

    A numerical model capable of accurately predicting the preference for landscape photographs of selected points in eastern Connecticut is presented. A function of the social attitudes expressed toward thirty-two salient visual landscape features serves as the independent variable in predicting preferences. A technique for objectively assigning adjectives to landscape...

  3. Numerical Modeling of the Hall Thruster Discharge

    DTIC Science & Technology

    2005-04-01

    This collection of seven previously published papers performed under Grant No. FA8655-04-1-3003 provide the background for the development of a new version of the HPHall hybrid code (HPHallv.2) for the numerical modeling of Hall Thruster discharge and new insights on discharge physics obtained during the development.

  4. Validated numerical simulation model of a dielectric elastomer generator

    NASA Astrophysics Data System (ADS)

    Foerster, Florentine; Moessinger, Holger; Schlaak, Helmut F.

    2013-04-01

    Dielectric elastomer generators (DEG) produce electrical energy by converting mechanical into electrical energy. Efficient operation requires homogeneous deformation of each single layer. However, by different internal and external influences like supports or the shape of a DEG the deformation will be inhomogeneous and hence negatively affect the amount of the generated electrical energy. Optimization of the deformation behavior leads to improved efficiency of the DEG and consequently to higher energy gain. In this work a numerical simulation model of a multilayer dielectric elastomer generator is developed using the FEM software ANSYS. The analyzed multilayer DEG consists of 49 active dielectric layers with layer thicknesses of 50 μm. The elastomer is silicone (PDMS) while the compliant electrodes are made of graphite powder. In the simulation the real material parameters of the PDMS and the graphite electrodes need to be included. Therefore, the mechanical and electrical material parameters of the PDMS are determined by experimental investigations of test samples while the electrode parameters are determined by numerical simulations of test samples. The numerical simulation of the DEG is carried out as coupled electro-mechanical simulation for the constant voltage energy harvesting cycle. Finally, the derived numerical simulation model is validated by comparison with analytical calculations and further simulated DEG configurations. The comparison of the determined results show good accordance with regard to the deformation of the DEG. Based on the validated model it is now possible to optimize the DEG layout for improved deformation behavior with further simulations.

  5. 3. DETAIL VIEW OF DIRECT DRIVE STERLING 'DOLPHIN T' MODEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. DETAIL VIEW OF DIRECT DRIVE STERLING 'DOLPHIN T' MODEL 4 CYLINDER, GASOLINE TRACTOR-TYPE ENGINE WITH FALKBIBBY FLEXIBLE COUPLING - Central Railroad of New Jersey, Newark Bay Lift Bridge, Spanning Newark Bay, Newark, Essex County, NJ

  6. Detail view of lamp in law library; Jennewein modeled symbols ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of lamp in law library; Jennewein modeled symbols of the four seasons on the lamp's aluminum supports - United States Department of Justice, Constitution Avenue between Ninth & Tenth Streets, Northwest, Washington, District of Columbia, DC

  7. 21. INTERIOR, DOUBLE STAIRWAY LEADING TO MODEL HALL, DETAIL OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. INTERIOR, DOUBLE STAIRWAY LEADING TO MODEL HALL, DETAIL OF ONE FLIGHT (5 x 7 negative; 8 x 10 print) - Patent Office Building, Bounded by Seventh, Ninth, F & G Streets, Northwest, Washington, District of Columbia, DC

  8. Numerical models of laser fusion of intestinal tissues.

    PubMed

    Pearce, John A

    2009-01-01

    Numerical models of continuous wave Tm:YAG thermal fusion in rat intestinal tissues were compared to experiment. Optical and thermal FDM models that included tissue damage based on Arrhenius kinetics were used to predict birefringence loss in collagen as the standard of comparison. The models also predicted collagen shrinkage, jellification and water loss. The inclusion of variable optical and thermal properties is essential to achieve favorable agreement between predicted and measured damage boundaries.

  9. Numerically pricing American options under the generalized mixed fractional Brownian motion model

    NASA Astrophysics Data System (ADS)

    Chen, Wenting; Yan, Bowen; Lian, Guanghua; Zhang, Ying

    2016-06-01

    In this paper, we introduce a robust numerical method, based on the upwind scheme, for the pricing of American puts under the generalized mixed fractional Brownian motion (GMFBM) model. By using portfolio analysis and applying the Wick-Itô formula, a partial differential equation (PDE) governing the prices of vanilla options under the GMFBM is successfully derived for the first time. Based on this, we formulate the pricing of American puts under the current model as a linear complementarity problem (LCP). Unlike the classical Black-Scholes (B-S) model or the generalized B-S model discussed in Cen and Le (2011), the newly obtained LCP under the GMFBM model is difficult to be solved accurately because of the numerical instability which results from the degeneration of the governing PDE as time approaches zero. To overcome this difficulty, a numerical approach based on the upwind scheme is adopted. It is shown that the coefficient matrix of the current method is an M-matrix, which ensures its stability in the maximum-norm sense. Remarkably, we have managed to provide a sharp theoretic error estimate for the current method, which is further verified numerically. The results of various numerical experiments also suggest that this new approach is quite accurate, and can be easily extended to price other types of financial derivatives with an American-style exercise feature under the GMFBM model.

  10. SToRM: A numerical model for environmental surface flows

    USGS Publications Warehouse

    Simoes, Francisco J.

    2009-01-01

    SToRM (System for Transport and River Modeling) is a numerical model developed to simulate free surface flows in complex environmental domains. It is based on the depth-averaged St. Venant equations, which are discretized using unstructured upwind finite volume methods, and contains both steady and unsteady solution techniques. This article provides a brief description of the numerical approach selected to discretize the governing equations in space and time, including important aspects of solving natural environmental flows, such as the wetting and drying algorithm. The presentation is illustrated with several application examples, covering both laboratory and natural river flow cases, which show the model’s ability to solve complex flow phenomena.

  11. Detailed Primitive-Based 3d Modeling of Architectural Elements

    NASA Astrophysics Data System (ADS)

    Remondino, F.; Lo Buglio, D.; Nony, N.; De Luca, L.

    2012-07-01

    The article describes a pipeline, based on image-data, for the 3D reconstruction of building façades or architectural elements and the successive modeling using geometric primitives. The approach overcome some existing problems in modeling architectural elements and deliver efficient-in-size reality-based textured 3D models useful for metric applications. For the 3D reconstruction, an opensource pipeline developed within the TAPENADE project is employed. In the successive modeling steps, the user manually selects an area containing an architectural element (capital, column, bas-relief, window tympanum, etc.) and then the procedure fits geometric primitives and computes disparity and displacement maps in order to tie visual and geometric information together in a light but detailed 3D model. Examples are reported and commented.

  12. Mathematical, Constitutive and Numerical Modelling of Catastrophic Landslides and Related Phenomena

    NASA Astrophysics Data System (ADS)

    Pastor, M.; Fernández Merodo, J. A.; Herreros, M. I.; Mira, P.; González, E.; Haddad, B.; Quecedo, M.; Tonni, L.; Drempetic, V.

    2008-02-01

    Mathematical and numerical models are a fundamental tool for predicting the behaviour of geostructures and their interaction with the environment. The term “mathematical model” refers to a mathematical description of the more relevant physical phenomena which take place in the problem being analyzed. It is indeed a wide area including models ranging from the very simple ones for which analytical solutions can be obtained to those more complicated requiring the use of numerical approximations such as the finite element method. During the last decades, mathematical, constitutive and numerical models have been very much improved and today their use is widespread both in industry and in research. One special case is that of fast catastrophic landslides, for which simplified methods are not able to provide accurate solutions in many occasions. Moreover, many finite element codes cannot be applied for propagation of the mobilized mass. The purpose of this work is to present an overview of the different alternative mathematical and numerical models which can be applied to both the initiation and propagation mechanisms of fast catastrophic landslides and other related problems such as waves caused by landslides.

  13. Standards and Guidelines for Numerical Models for Tsunami Hazard Mitigation

    NASA Astrophysics Data System (ADS)

    Titov, V.; Gonzalez, F.; Kanoglu, U.; Yalciner, A.; Synolakis, C. E.

    2006-12-01

    An increased number of nations around the workd need to develop tsunami mitigation plans which invariably involve inundation maps for warning guidance and evacuation planning. There is the risk that inundation maps may be produced with older or untested methodology, as there are currently no standards for modeling tools. In the aftermath of the 2004 megatsunami, some models were used to model inundation for Cascadia events with results much larger than sediment records and existing state-of-the-art studies suggest leading to confusion among emergency management. Incorrectly assessing tsunami impact is hazardous, as recent events in 2006 in Tonga, Kythira, Greece and Central Java have suggested (Synolakis and Bernard, 2006). To calculate tsunami currents, forces and runup on coastal structures, and inundation of coastlines one must calculate the evolution of the tsunami wave from the deep ocean to its target site, numerically. No matter what the numerical model, validation (the process of ensuring that the model solves the parent equations of motion accurately) and verification (the process of ensuring that the model used represents geophysical reality appropriately) both are an essential. Validation ensures that the model performs well in a wide range of circumstances and is accomplished through comparison with analytical solutions. Verification ensures that the computational code performs well over a range of geophysical problems. A few analytic solutions have been validated themselves with laboratory data. Even fewer existing numerical models have been both validated with the analytical solutions and verified with both laboratory measurements and field measurements, thus establishing a gold standard for numerical codes for inundation mapping. While there is in principle no absolute certainty that a numerical code that has performed well in all the benchmark tests will also produce correct inundation predictions with any given source motions, validated codes

  14. A New, Two-layer Canopy Module For The Detailed Snow Model SNOWPACK

    NASA Astrophysics Data System (ADS)

    Gouttevin, I.; Lehning, M.; Jonas, T.; Gustafsson, D.; Mölder, M.

    2014-12-01

    A new, two-layer canopy module with thermal inertia for the detailed snow model SNOWPACK is presented. Compared to the old, one-layered canopy formulation with no heat mass, this module now offers a level of physical detail consistent with the detailed snow and soil representation in SNOWPACK. The new canopy model is designed to reproduce the difference in thermal regimes between leafy and woody canopy elements and their impact on the underlying snowpack energy balance. The new model is validated against data from an Alpine and a boreal site. Comparisons of modelled sub-canopy thermal radiations to stand-scale observations at Alptal, Switzerland, demonstrate the improvements induced by our new parameterizations. The main effect is a more realistic simulation of the canopy night-time drop in temperatures. The lower drop is induced by both thermal inertia and the two-layer representation. A specific result is that such a performance cannot be achieved by a single-layered canopy model. The impact of the new parameterizations on the modelled dynamics of the sub-canopy snowpack is analysed and yields consistent results, but the frequent occurrence of mixed-precipitation events at Alptal prevents a conclusive assessment of model performances against snow data.Without specific tuning, the model is also able to reproduce the measured summertime tree trunk temperatures and biomass heat storage at the boreal site of Norunda, Sweden, with an increased accuracy in amplitude and phase. Overall, the SNOWPACK model with its enhanced canopy module constitutes a unique (in its physical process representation) atmosphere-to-soil-through-canopy-and-snow modelling chain.

  15. Numerical modeling tools for chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Jasinski, Thomas J.; Childs, Edward P.

    1992-01-01

    Development of general numerical simulation tools for chemical vapor deposition (CVD) was the objective of this study. Physical models of important CVD phenomena were developed and implemented into the commercial computational fluid dynamics software FLUENT. The resulting software can address general geometries as well as the most important phenomena occurring with CVD reactors: fluid flow patterns, temperature and chemical species distribution, gas phase and surface deposition. The physical models are documented which are available and examples are provided of CVD simulation capabilities.

  16. A numerical study of axisymmetric compressible non-isothermal and reactive swirling flow

    NASA Astrophysics Data System (ADS)

    Tavernetti, William E.; Hafez, Mohamed M.

    2017-09-01

    Non-linear dynamical phenomena in combustion processes is an active area of experimental and theoretical research. This is in large part due to increasingly strict environmental pressures to make gas turbine engines and industrial burners more efficient. Using numerical methods, for steady and unsteady confined and unconfined compressible flow, this study examines the modeling influence of compressibility for axisymmetric swirling flow. The compressible reactive Navier-Stokes equations in terms of stream function, vorticity, circulation are used. Results, details of the numerical algorithms, as well as numerical verification techniques and validation with sources from the literature will be presented. Understanding how vortex breakdown phenomena are affected by modeling reactant consumption with compressibility effect is the main goal of this study.

  17. Numerical modeling and analytical modeling of cryogenic carbon capture in a de-sublimating heat exchanger

    NASA Astrophysics Data System (ADS)

    Yu, Zhitao; Miller, Franklin; Pfotenhauer, John M.

    2017-12-01

    Both a numerical and analytical model of the heat and mass transfer processes in a CO2, N2 mixture gas de-sublimating cross-flow finned duct heat exchanger system is developed to predict the heat transferred from a mixture gas to liquid nitrogen and the de-sublimating rate of CO2 in the mixture gas. The mixture gas outlet temperature, liquid nitrogen outlet temperature, CO2 mole fraction, temperature distribution and de-sublimating rate of CO2 through the whole heat exchanger was computed using both the numerical and analytic model. The numerical model is built using EES [1] (engineering equation solver). According to the simulation, a cross-flow finned duct heat exchanger can be designed and fabricated to validate the models. The performance of the heat exchanger is evaluated as functions of dimensionless variables, such as the ratio of the mass flow rate of liquid nitrogen to the mass flow rate of inlet flue gas.

  18. Direct numerical simulation and reduced-order modeling of the sound-induced flow through a cavity-backed circular under a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Bodony, Daniel

    2014-11-01

    Commercial jet aircraft generate undesirable noise from several sources, with the engines being the most dominant sources at take-off and major contributors at all other stages of flight. Acoustic liners, which are perforated sheets of metal or composite mounted within the engine, have been an effective means of reducing internal engine noise from the fan, compressor, combustor, and turbine but their performance suffers when subjected to a turbulent grazing flow or to high-amplitude incident sound due to poorly understood interactions between the liner orifices and the exterior flow. Through the use of direct numerical simulations, the flow-orifice interaction is examined numerically, quantified, and modeled over a range of conditions that includes current and envisioned uses of acoustic liners and with detail that exceeds experimental capabilities. A new time-domain model of acoustic liners is developed that extends currently-available reduced-order models to more complex flow conditions but is still efficient for use at the design stage.

  19. Mathematical and Numerical Techniques in Energy and Environmental Modeling

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Ewing, R. E.

    Mathematical models have been widely used to predict, understand, and optimize many complex physical processes, from semiconductor or pharmaceutical design to large-scale applications such as global weather models to astrophysics. In particular, simulation of environmental effects of air pollution is extensive. Here we address the need for using similar models to understand the fate and transport of groundwater contaminants and to design in situ remediation strategies. Three basic problem areas need to be addressed in the modeling and simulation of the flow of groundwater contamination. First, one obtains an effective model to describe the complex fluid/fluid and fluid/rock interactions that control the transport of contaminants in groundwater. This includes the problem of obtaining accurate reservoir descriptions at various length scales and modeling the effects of this heterogeneity in the reservoir simulators. Next, one develops accurate discretization techniques that retain the important physical properties of the continuous models. Finally, one develops efficient numerical solution algorithms that utilize the potential of the emerging computing architectures. We will discuss recent advances and describe the contribution of each of the papers in this book in these three areas. Keywords: reservoir simulation, mathematical models, partial differential equations, numerical algorithms

  20. A nested numerical tidal model of the southern New England bight

    NASA Technical Reports Server (NTRS)

    Gordon, R. B.; Spaulding, M. L.

    1979-01-01

    Efforts were focused on the development and application of a three-dimensional numerical model for predicting pollutant and sediment transport in estuarine and coastal environments. To successfully apply the pollutant and sediment transport model to Rhode Island coastal waters, it was determined that the flow field in this region had to be better described through the use of existing numerical circulation models. A nested, barotropic numerical tidal model was applied to the southern New England Bight (Long Island, Block Island, Rhode Island Sounds, Buzzards Bay, and the shelf south of Block Island). Forward time and centered spatial differences were employed with the bottom friction term evaluated at both time levels. Using existing tide records on the New England shelf, adequate information was available to specify the tide height boundary condition further out on the shelf. Preliminary results are within the accuracy of the National Ocean Survey tide table data.

  1. Numerical Simulation of Two Phase Flows

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing

    2001-01-01

    Two phase flows can be found in broad situations in nature, biology, and industry devices and can involve diverse and complex mechanisms. While the physical models may be specific for certain situations, the mathematical formulation and numerical treatment for solving the governing equations can be general. Hence, we will require information concerning each individual phase as needed in a single phase. but also the interactions between them. These interaction terms, however, pose additional numerical challenges because they are beyond the basis that we use to construct modern numerical schemes, namely the hyperbolicity of equations. Moreover, due to disparate differences in time scales, fluid compressibility and nonlinearity become acute, further complicating the numerical procedures. In this paper, we will show the ideas and procedure how the AUSM-family schemes are extended for solving two phase flows problems. Specifically, both phases are assumed in thermodynamic equilibrium, namely, the time scales involved in phase interactions are extremely short in comparison with those in fluid speeds and pressure fluctuations. Details of the numerical formulation and issues involved are discussed and the effectiveness of the method are demonstrated for several industrial examples.

  2. Oscillation characteristics of endodontic files: numerical model and its validation.

    PubMed

    Verhaagen, Bram; Lea, Simon C; de Bruin, Gerrit J; van der Sluis, Luc W M; Walmsley, A Damien; Versluis, Michel

    2012-11-01

    During a root canal treatment, an antimicrobial fluid is injected into the root canal to eradicate all bacteria from the root canal system. Agitation of the fluid using an ultrasonically vibrating miniature file results in a significant improvement in the cleaning efficacy over conventional syringe irrigation. Numerical analysis of the oscillation characteristics of the file, modeled as a tapered, driven rod, shows a sinusoidal wave pattern with an increase in amplitude and decrease in wavelength toward the free end of the file. Measurements of the file oscillation with a scanning laser vibrometer show good agreement with the numerical simulation. The numerical model of endodontic file oscillation has the potential for predicting the oscillation pattern and fracture likeliness of various file types and the acoustic streaming they induce during passive ultrasonic irrigation.

  3. Numerical evaluation of heating in the human head due to magnetic resonance imaging (MRI)

    NASA Astrophysics Data System (ADS)

    Nguyen, Uyen; Brown, Steve; Chang, Isaac; Krycia, Joe; Mirotznik, Mark S.

    2003-06-01

    In this paper we present a numerical model for evaluating tissue heating during magnetic resonance imaging (MRI). Our method, which included a detailed anatomical model of a human head, calculated both the electromagnetic power deposition and the associated temperature elevations during a MRI head examination. Numerical studies were conducted using a realistic birdcage coil excited at frequencies ranging from 63 MHz to 500 MHz. The model was validated both experimentally and analytically. The experimental validation was performed at the MR test facility located at the FDA's Center for Devices and Radiological Health (CDRH).

  4. Two-dimensional numerical model for the high electron mobility transistor

    NASA Astrophysics Data System (ADS)

    Loret, Dany

    1987-11-01

    A two-dimensional numerical drift-diffusion model for the High Electron Mobility Transistor (HEMT) is presented. Special attention is paid to the modeling of the current flow over the heterojunction. A finite difference scheme is used to solve the equations, and a variable mesh spacing was implemented to cope with the strong variations of functions near the heterojunction. Simulation results are compared to experimental data for a 0.7 μm gate length device. Small-signal transconductances and cut-off frequency obtained from the 2-D model agree well with the experimental values from S-parameter measurements. It is shown that the numerical models give good insight into device behaviour, including important parasitic effects such as electron injection into the bulk GaAs.

  5. Numerical 3D modelling of oil dispersion in the sea due to different accident scenarios

    NASA Astrophysics Data System (ADS)

    Guandalini, Roberto; Agate, Giordano; Moia, Fabio

    2017-04-01

    The purpose of the study has been the development of a methodology, based on a numerical 3D approach, for the analysis of oil dispersion in the sea, in order to simulate with a high level of accuracy the dynamic behavior of the oil plume and its displacement in the environment. As a matter of fact, the numerical simulation is the only approach currently able to analyse in detail possible accident scenarios, even with an high degree of complexity, of different type and intensity, allowing to follow their evolution both in time and space, and to evaluate the effectiveness of suggested prevention or recovery actions. The software for these calculations is therefore an essential tool in order to simulate the impact effects in the short, medium and long period, able to account for the complexity of the sea system involved in the dispersion process and its dependency on the meteorological, marine and morphological local conditions. This software, generally based on fluid dynamic 3D simulators and modellers, is therefore extremely specialized and requires expertise for an appropriate usage, but at the same time it allows detailed scenario analyses and design verifications. It takes into account different parameters as the sea current field and its turbulence, the wind acting on the sea surface, the salinity and temperature gradients, the local coastal morphology, the seabed bathymetry and the tide. The applied methodology is based on the Integrated Fluid Dynamic Simulation System HyperSuite developed by RSE. This simulation system includes the consideration of all the parameters previously listed, in the frame of a 3D Eulerian finite element fluid dynamic model, which accuracy is guaranteed by a very detailed spatial mesh and by an automatically optimized time step management. In order to assess the methodology features, an area of more than 2500 km2 and depth of 200 m located in the middle Adriatic Sea has been modelled. The information required for the simulation in

  6. Adaptive Modeling of Details for Physically-Based Sound Synthesis and Propagation

    DTIC Science & Technology

    2015-03-21

    the interface that ensures the consistency and validity of the solution given by the two methods. Transfer functions are used to model two-way...release; distribution is unlimited. Adaptive modeling of details for physically-based sound synthesis and propagation The views, opinions and/or...Research Triangle Park, NC 27709-2211 Applied sciences, Adaptive modeling , Physcially-based, Sound synthesis, Propagation, Virtual world REPORT

  7. Observation and numerical modeling of tidal dune dynamics

    NASA Astrophysics Data System (ADS)

    Doré, Arnaud; Bonneton, Philippe; Marieu, Vincent; Garlan, Thierry

    2018-05-01

    Tidal sand dune dynamics is observed for two tidal cycles in the Arcachon tidal inlet, southwest France. An array of instruments is deployed to measure bathymetric and current variations along dune profiles. Based on the measurements, dune crest horizontal and vertical displacements are quantified and show important dynamics in phase with tidal currents. We observed superimposed ripples on the dune stoss side and front, migrating and changing polarity as tidal currents reverse. A 2D RANS numerical model is used to simulate the morphodynamic evolution of a flat non-cohesive sand bed submitted to a tidal current. The model reproduces the bed evolution until a field of sand bedforms is obtained that are comparable with observed superimposed ripples in terms of geometrical dimensions and dynamics. The model is then applied to simulate the dynamics of a field of large sand dunes of similar size as the dunes observed in situ. In both cases, simulation results compare well with measurements qualitatively and quantitatively. This research allows for a better understanding of tidal sand dune and superimposed ripple morphodynamics and opens new perspectives for the use of numerical models to predict their evolution.

  8. Challenges to Applying a Metamodel for Groundwater Flow Beyond Underlying Numerical Model Boundaries

    NASA Astrophysics Data System (ADS)

    Reeves, H. W.; Fienen, M. N.; Feinstein, D.

    2015-12-01

    Metamodels of environmental behavior offer opportunities for decision support, adaptive management, and increased stakeholder engagement through participatory modeling and model exploration. Metamodels are derived from calibrated, computationally demanding, numerical models. They may potentially be applied to non-modeled areas to provide screening or preliminary analysis tools for areas that do not yet have the benefit of more comprehensive study. In this decision-support mode, they may be fulfilling a role often accomplished by application of analytical solutions. The major challenge to transferring a metamodel to a non-modeled area is how to quantify the spatial data in the new area of interest in such a way that it is consistent with the data used to derive the metamodel. Tests based on transferring a metamodel derived from a numerical groundwater-flow model of the Lake Michigan Basin to other glacial settings across the northern U.S. show that the spatial scale of the numerical model must be appropriately scaled to adequately represent different settings. Careful GIS analysis of the numerical model, metamodel, and new area of interest is required for successful transfer of results.

  9. Numerical Model of Transitory Flood Flow in 2005 on River Timis

    NASA Astrophysics Data System (ADS)

    Ghitescu, Marie-Alice; Lazar, Gheorghe; Titus Constantin, Albert; Nicoara, Serban-Vlad

    2017-10-01

    The paper presents numerical modelling of fluid flow transiting on the Timis River, downstream Lugoj section - N.H. COSTEIU, the occurrence of accidental flood waves from 4 April to 11 April 2005. Numerical simulation aims to estimate water levels on the route pattern on some areas and areas associated respectively floodplain adjacent construction site on the right bank of Timis river, on existing conditions in 2005. The model simulation from 2005 flood event shows that the model can be used for future inundation studies in this locality.

  10. A numerical multi-scale model to predict macroscopic material anisotropy of multi-phase steels from crystal plasticity material definitions

    NASA Astrophysics Data System (ADS)

    Ravi, Sathish Kumar; Gawad, Jerzy; Seefeldt, Marc; Van Bael, Albert; Roose, Dirk

    2017-10-01

    A numerical multi-scale model is being developed to predict the anisotropic macroscopic material response of multi-phase steel. The embedded microstructure is given by a meso-scale Representative Volume Element (RVE), which holds the most relevant features like phase distribution, grain orientation, morphology etc., in sufficient detail to describe the multi-phase behavior of the material. A Finite Element (FE) mesh of the RVE is constructed using statistical information from individual phases such as grain size distribution and ODF. The material response of the RVE is obtained for selected loading/deformation modes through numerical FE simulations in Abaqus. For the elasto-plastic response of the individual grains, single crystal plasticity based plastic potential functions are proposed as Abaqus material definitions. The plastic potential functions are derived using the Facet method for individual phases in the microstructure at the level of single grains. The proposed method is a new modeling framework and the results presented in terms of macroscopic flow curves are based on the building blocks of the approach, while the model would eventually facilitate the construction of an anisotropic yield locus of the underlying multi-phase microstructure derived from a crystal plasticity based framework.

  11. Materials processing in a centrifuge - Numerical modeling of macrogravity effects

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Downey, J. P.; Jones, J. C.; Curreri, P. A.

    1992-01-01

    The fluid mechanics associated with crystal growth processes on a centrifuge is investigated. A simple scaling analysis is used to examine the relative magnitudes of the forces acting on the system and good agreement is obtained with previous studies. A two-dimensional model of crystal growth on a centrifuge is proposed and calculations are undertaken to help in understanding the fundamental transport processes within the crystal growth cell. Results from three-dimensional calculations of actual centrifuge-based crystal growth systems are presented both for the thermodynamically stable and unstable configurations. The calculations show the existence of flow bifurcations in certain configurations but not in all instances. The numerical simulations also show that the centrifugal force is the dominant stabilizing force on fluid convection in the stable configuration. The stabilizing influence of the Coriolis force is found to be only secondary in nature. No significant impact of gravity gradient is found in the calculations. Simulations of unstable configurations show that the Coriolis force has a stabilizing influence on fluid motion by delaying the onset of unsteady convection. Detailed flow and thermal field characteristics are presented for all the different cases that are simulated.

  12. Detailed Physical Modeling Reveals the Magnetar Nature of a Transient Anomalous X-ray Pulsar

    NASA Technical Reports Server (NTRS)

    Guever, T.; Oezel, F.; Goegues, E.; Kouveliotou, C.

    2007-01-01

    Anomalous X-ray Pulsars (AXPs) belong to a class of neutron stars believed to harbor the strongest magnetic fields in the universe, as indicated by their energetic bursts and their rapid spindowns. However, a direct measurement of their surface field strengths has not been made to date. It is also not known whether AXP outbursts result from changes in the neutron star magnetic field or crust properties. Here we report the first, spectroscopic measurement of the surface magnetic field strength of an AXP, XTE J1810-197, and solidify its magnetar nature. The field strength obtained from detailed spectral analysis and modeling is remarkably close to the value inferred from the rate of spindown of this source and remains nearly constant during numerous observations spanning over two orders of magnitude in source flux. The surface temperature, on the other hand, declines steadily and dramatically following the 2003 outburst of this source. Our findings demonstrate that heating occurs in the upper neutron star crust during an outburst and sheds light on the transient behaviour of AXPs.

  13. The generation and use of numerical shape models for irregular Solar System objects

    NASA Technical Reports Server (NTRS)

    Simonelli, Damon P.; Thomas, Peter C.; Carcich, Brian T.; Veverka, Joseph

    1993-01-01

    We describe a procedure that allows the efficient generation of numerical shape models for irregular Solar System objects, where a numerical model is simply a table of evenly spaced body-centered latitudes and longitudes and their associated radii. This modeling technique uses a combination of data from limbs, terminators, and control points, and produces shape models that have some important advantages over analytical shape models. Accurate numerical shape models make it feasible to study irregular objects with a wide range of standard scientific analysis techniques. These applications include the determination of moments of inertia and surface gravity, the mapping of surface locations and structural orientations, photometric measurement and analysis, the reprojection and mosaicking of digital images, and the generation of albedo maps. The capabilities of our modeling procedure are illustrated through the development of an accurate numerical shape model for Phobos and the production of a global, high-resolution, high-pass-filtered digital image mosaic of this Martian moon. Other irregular objects that have been modeled, or are being modeled, include the asteroid Gaspra and the satellites Deimos, Amalthea, Epimetheus, Janus, Hyperion, and Proteus.

  14. Numerical Modelling of Foundation Slabs with use of Schur Complement Method

    NASA Astrophysics Data System (ADS)

    Koktan, Jiří; Brožovský, Jiří

    2017-10-01

    The paper discusses numerical modelling of foundation slabs with use of advanced numerical approaches, which are suitable for parallel processing. The solution is based on the Finite Element Method with the slab-type elements. The subsoil is modelled with use of Winklertype contact model (as an alternative a multi-parameter model can be used). The proposed modelling approach uses the Schur Complement method to speed-up the computations of the problem. The method is based on a special division of the analyzed model to several substructures. It adds some complexity to the numerical procedures, especially when subsoil models are used inside the finite element method solution. In other hand, this method makes possible a fast solution of large models but it introduces further problems to the process. Thus, the main aim of this paper is to verify that such method can be successfully used for this type of problem. The most suitable finite elements will be discussed, there will be also discussion related to finite element mesh and limitations of its construction for such problem. The core approaches of the implementation of the Schur Complement Method for this type of the problem will be also presented. The proposed approach was implemented in the form of a computer program, which will be also briefly introduced. There will be also presented results of example computations, which prove the speed-up of the solution - there will be shown important speed-up of solution even in the case of on-parallel processing and the ability of bypass size limitations of numerical models with use of the discussed approach.

  15. Chemical transport in a fissured rock: Verification of a numerical model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rasmuson, A.; Narasimhan, T. N.; Neretnieks, I.

    1982-10-01

    Numerical models for simulating chemical transport in fissured rocks constitute powerful tools for evaluating the acceptability of geological nuclear waste repositories. Due to the very long-term, high toxicity of some nuclear waste products, the models are required to predict, in certain cases, the spatial and temporal distribution of chemical concentration less than 0.001% of the concentration released from the repository. Whether numerical models can provide such accuracies is a major question addressed in the present work. To this end, we have verified a numerical model, TRUMP, which solves the advective diffusion equation in general three dimensions with or without decaymore » and source terms. The method is based on an integrated finite-difference approach. The model was verified against known analytic solution of the one-dimensional advection-diffusion problem as well as the problem of advection-diffusion in a system of parallel fractures separated by spherical particles. The studies show that as long as the magnitude of advectance is equal to or less than that of conductance for the closed surface bounding any volume element in the region (that is, numerical Peclet number <2), the numerical method can indeed match the analytic solution within errors of ±10{sup -3} % or less. The realistic input parameters used in the sample calculations suggest that such a range of Peclet numbers is indeed likely to characterize deep groundwater systems in granitic and ancient argillaceous systems. Thus TRUMP in its present form does provide a viable tool for use in nuclear waste evaluation studies. A sensitivity analysis based on the analytic solution suggests that the errors in prediction introduced due to uncertainties in input parameters is likely to be larger than the computational inaccuracies introduced by the numerical model. Currently, a disadvantage in the TRUMP model is that the iterative method of solving the set of simultaneous equations is rather slow when

  16. Chemical Transport in a Fissured Rock: Verification of a Numerical Model

    NASA Astrophysics Data System (ADS)

    Rasmuson, A.; Narasimhan, T. N.; Neretnieks, I.

    1982-10-01

    Numerical models for simulating chemical transport in fissured rocks constitute powerful tools for evaluating the acceptability of geological nuclear waste repositories. Due to the very long-term, high toxicity of some nuclear waste products, the models are required to predict, in certain cases, the spatial and temporal distribution of chemical concentration less than 0.001% of the concentration released from the repository. Whether numerical models can provide such accuracies is a major question addressed in the present work. To this end we have verified a numerical model, TRUMP, which solves the advective diffusion equation in general three dimensions, with or without decay and source terms. The method is based on an integrated finite difference approach. The model was verified against known analytic solution of the one-dimensional advection-diffusion problem, as well as the problem of advection-diffusion in a system of parallel fractures separated by spherical particles. The studies show that as long as the magnitude of advectance is equal to or less than that of conductance for the closed surface bounding any volume element in the region (that is, numerical Peclet number <2), the numerical method can indeed match the analytic solution within errors of ±10-3% or less. The realistic input parameters used in the sample calculations suggest that such a range of Peclet numbers is indeed likely to characterize deep groundwater systems in granitic and ancient argillaceous systems. Thus TRUMP in its present form does provide a viable tool for use in nuclear waste evaluation studies. A sensitivity analysis based on the analytic solution suggests that the errors in prediction introduced due to uncertainties in input parameters are likely to be larger than the computational inaccuracies introduced by the numerical model. Currently, a disadvantage in the TRUMP model is that the iterative method of solving the set of simultaneous equations is rather slow when time

  17. Numerical Study of Mixing Thermal Conductivity Models for Nanofluid Heat Transfer Enhancement

    NASA Astrophysics Data System (ADS)

    Pramuanjaroenkij, A.; Tongkratoke, A.; Kakaç, S.

    2018-01-01

    Researchers have paid attention to nanofluid applications, since nanofluids have revealed their potentials as working fluids in many thermal systems. Numerical studies of convective heat transfer in nanofluids can be based on considering them as single- and two-phase fluids. This work is focused on improving the single-phase nanofluid model performance, since the employment of this model requires less calculation time and it is less complicated due to utilizing the mixing thermal conductivity model, which combines static and dynamic parts used in the simulation domain alternately. The in-house numerical program has been developed to analyze the effects of the grid nodes, effective viscosity model, boundary-layer thickness, and of the mixing thermal conductivity model on the nanofluid heat transfer enhancement. CuO-water, Al2O3-water, and Cu-water nanofluids are chosen, and their laminar fully developed flows through a rectangular channel are considered. The influence of the effective viscosity model on the nanofluid heat transfer enhancement is estimated through the average differences between the numerical and experimental results for the nanofluids mentioned. The nanofluid heat transfer enhancement results show that the mixing thermal conductivity model consisting of the Maxwell model as the static part and the Yu and Choi model as the dynamic part, being applied to all three nanofluids, brings the numerical results closer to the experimental ones. The average differences between those results for CuO-water, Al2O3-water, and CuO-water nanofluid flows are 3.25, 2.74, and 3.02%, respectively. The mixing thermal conductivity model has been proved to increase the accuracy of the single-phase nanofluid simulation and to reveal its potentials in the single-phase nanofluid numerical studies.

  18. Verification of Exciton Effects in Organic Solar Cells at Low Temperatures Based on a Modified Numerical Model

    NASA Astrophysics Data System (ADS)

    Xiong, Chun-Hua; Sun, Jiu-Xun; Wang, Dai-Peng; Dong, Yan

    2018-02-01

    There are many models for researching charge transport in semiconductors and improving their performance. Most of them give good descriptions of the experimental data at room temperature. But it is still an open question which model is correct. In this paper, numerical calculations based on three modified versions of a classical model were made, and compared with experimental data for typical devices at room or low temperatures. Although their results are very similar to each other at room temperatures, only the version considering exciton effects by using a hydrogen-like model can give qualitative descriptions to recent experimental data at low temperatures. Moreover, the mobility was researched in detail by comparing the constant model and temperature dependence model. Then, we found the performance increases with the mobility of each charge carrier type being independent to the mobility of the other one. This paper provides better insight into understanding the physical mechanism of carrier transport in semiconductors, and the results show that exciton effects should be considered in modeling organic solar cells.

  19. Black-hole kicks from numerical-relativity surrogate models

    NASA Astrophysics Data System (ADS)

    Gerosa, Davide; Hébert, François; Stein, Leo C.

    2018-05-01

    Binary black holes radiate linear momentum in gravitational waves as they merge. Recoils imparted to the black-hole remnant can reach thousands of km /s , thus ejecting black holes from their host galaxies. We exploit recent advances in gravitational waveform modeling to quickly and reliably extract recoils imparted to generic, precessing, black-hole binaries. Our procedure uses a numerical-relativity surrogate model to obtain the gravitational waveform given a set of binary parameters; then, from this waveform we directly integrate the gravitational-wave linear momentum flux. This entirely bypasses the need for fitting formulas which are typically used to model black-hole recoils in astrophysical contexts. We provide a thorough exploration of the black-hole kick phenomenology in the parameter space, summarizing and extending previous numerical results on the topic. Our extraction procedure is made publicly available as a module for the Python programming language named surrkick. Kick evaluations take ˜0.1 s on a standard off-the-shelf machine, thus making our code ideal to be ported to large-scale astrophysical studies.

  20. Collision and Break-off : Numerical models and surface observables

    NASA Astrophysics Data System (ADS)

    Bottrill, Andrew; van Hunen, Jeroen; Allen, Mark

    2013-04-01

    The process of continental collision and slab break-off has been explored by many authors using a number of different numerical models and approaches (Andrews and Billen, 2009; Gerya et al., 2004; van Hunen and Allen, 2011). One of the challenges of using numerical models to explore collision and break-off is relating model predictions to real observables from current collision zones. Part of the reason for this is that collision zones by their nature destroy a lot of potentially useful surface evidence of deep dynamics. One observable that offers the possibility for recording mantle dynamics at collision zones is topography. Here we present topography predictions from numerical models and show how these can be related to actual topography changes recoded in the sedimentary record. Both 2D and 3D numerical simulation of the closure of a small oceanic basin are presented (Bottrill et al., 2012; van Hunen and Allen, 2011). Topography is calculated from the normal stress at the surface applied to an elastic beam, to give a more realist prediction of topography by accounting for the expected elasticity of the lithosphere. Predicted model topography showed a number of interesting features on the overriding plate. The first is the formation of a basin post collision at around 300km from the suture. Our models also showed uplift postdating collision between the suture and this basin, caused by subduction of buoyant material. Once break-off has occurred we found that this uplift moved further into the overriding plate due to redistribution of stresses from the subducted plate. With our 3D numerical models we simulate a collision that propagates laterally along a subduction system. These models show that a basin forms, similar to that found in our 2D models, which propagates along the system at the same rate as collision. The apparent link between collision and basin formation leads to the investigation into the stress state in the overriding lithosphere. Preliminary

  1. PROGRESS IN DETAILED KINETIC MODELING OF THE COMBUSTION OF OXYGENATED COMPONENTS OF BIOFUELS

    PubMed Central

    Sy Tran, Luc; Sirjean, Baptiste; Glaude, Pierre-Alexandre; Fournet, René; Battin-Leclerc, Frédérique

    2013-01-01

    Due to growing environmental concerns and diminishing petroleum reserves, a wide range of oxygenated species has been proposed as possible substitutes to fossil fuels: alcohols, methyl esters, acyclic and cyclic ethers. After a short review the major detailed kinetic models already proposed in the literature for the combustion of these molecules, the specific classes of reactions considered for modeling the oxidation of acyclic and cyclic oxygenated molecules respectively, are detailed. PMID:23700355

  2. A simplified model for TIG-dressing numerical simulation

    NASA Astrophysics Data System (ADS)

    Ferro, P.; Berto, F.; James, M. N.

    2017-04-01

    Irrespective of the mechanical properties of the alloy to be welded, the fatigue strength of welded joints is primarily controlled by the stress concentration associated with the weld toe or weld root. In order to reduce the effects of such notch defects in welds, which are influenced by tensile properties of the alloy, post-weld improvement techniques have been developed. The two most commonly used techniques are weld toe grinding and TIG dressing, which are intended to both remove toe defects such as non-metallic intrusions and to re-profile the weld toe region to give a lower stress concentration. In the case of TIG dressing the weld toe is re-melted to provide a smoother transition between the plate and the weld crown and to beneficially modify the residual stress redistribution. Assessing the changes to weld stress state arising from TIG-dressing is most easily accomplished through a complex numerical simulation that requires coupled thermo-fluid dynamics and solid mechanics. However, this can be expensive in terms of computational cost and time needed to reach a solution. The present paper therefore proposes a simplified numerical model that overcomes such drawbacks and which simulates the remelted toe region by means of the activation and deactivation of elements in the numerical model.

  3. The HIRLAM fast radiation scheme for mesoscale numerical weather prediction models

    NASA Astrophysics Data System (ADS)

    Rontu, Laura; Gleeson, Emily; Räisänen, Petri; Pagh Nielsen, Kristian; Savijärvi, Hannu; Hansen Sass, Bent

    2017-07-01

    This paper provides an overview of the HLRADIA shortwave (SW) and longwave (LW) broadband radiation schemes used in the HIRLAM numerical weather prediction (NWP) model and available in the HARMONIE-AROME mesoscale NWP model. The advantage of broadband, over spectral, schemes is that they can be called more frequently within the model, without compromising on computational efficiency. In mesoscale models fast interactions between clouds and radiation and the surface and radiation can be of greater importance than accounting for the spectral details of clear-sky radiation; thus calling the routines more frequently can be of greater benefit than the deterioration due to loss of spectral details. Fast but physically based radiation parametrizations are expected to be valuable for high-resolution ensemble forecasting, because as well as the speed of their execution, they may provide realistic physical perturbations. Results from single-column diagnostic experiments based on CIRC benchmark cases and an evaluation of 10 years of radiation output from the FMI operational archive of HIRLAM forecasts indicate that HLRADIA performs sufficiently well with respect to the clear-sky downwelling SW and longwave LW fluxes at the surface. In general, HLRADIA tends to overestimate surface fluxes, with the exception of LW fluxes under cold and dry conditions. The most obvious overestimation of the surface SW flux was seen in the cloudy cases in the 10-year comparison; this bias may be related to using a cloud inhomogeneity correction, which was too large. According to the CIRC comparisons, the outgoing LW and SW fluxes at the top of atmosphere are mostly overestimated by HLRADIA and the net LW flux is underestimated above clouds. The absorption of SW radiation by the atmosphere seems to be underestimated and LW absorption seems to be overestimated. Despite these issues, the overall results are satisfying and work on the improvement of HLRADIA for the use in HARMONIE-AROME NWP system

  4. Estimating the Numerical Diapycnal Mixing in the GO5.0 Ocean Model

    NASA Astrophysics Data System (ADS)

    Megann, A.; Nurser, G.

    2014-12-01

    Constant-depth (or "z-coordinate") ocean models such as MOM4 and NEMO have become the de facto workhorse in climate applications, and have attained a mature stage in their development and are well understood. A generic shortcoming of this model type, however, is a tendency for the advection scheme to produce unphysical numerical diapycnal mixing, which in some cases may exceed the explicitly parameterised mixing based on observed physical processes, and this is likely to have effects on the long-timescale evolution of the simulated climate system. Despite this, few quantitative estimations have been made of the magnitude of the effective diapycnal diffusivity due to numerical mixing in these models. GO5.0 is the latest ocean model configuration developed jointly by the UK Met Office and the National Oceanography Centre (Megann et al, 2014), and forms part of the GC1 and GC2 climate models. It uses version 3.4 of the NEMO model, on the ORCA025 ¼° global tripolar grid. We describe various approaches to quantifying the numerical diapycnal mixing in this model, and present results from analysis of the GO5.0 model based on the isopycnal watermass analysis of Lee et al (2002) that indicate that numerical mixing does indeed form a significant component of the watermass transformation in the ocean interior.

  5. Validation of numerical model for cook stove using Reynolds averaged Navier-Stokes based solver

    NASA Astrophysics Data System (ADS)

    Islam, Md. Moinul; Hasan, Md. Abdullah Al; Rahman, Md. Mominur; Rahaman, Md. Mashiur

    2017-12-01

    Biomass fired cook stoves, for many years, have been the main cooking appliance for the rural people of developing countries. Several researches have been carried out to the find efficient stoves. In the present study, numerical model of an improved household cook stove is developed to analyze the heat transfer and flow behavior of gas during operation. The numerical model is validated with the experimental results. Computation of the numerical model is executed the using non-premixed combustion model. Reynold's averaged Navier-Stokes (RaNS) equation along with the κ - ɛ model governed the turbulent flow associated within the computed domain. The computational results are in well agreement with the experiment. Developed numerical model can be used to predict the effect of different biomasses on the efficiency of the cook stove.

  6. Recommendations for Achieving Accurate Numerical Simulation of Tip Clearance Flows in Transonic Compressor Rotors

    NASA Technical Reports Server (NTRS)

    VanZante, Dale E.; Strazisar, Anthony J.; Wood, Jerry R,; Hathaway, Michael D.; Okiishi, Theodore H.

    2000-01-01

    The tip clearance flows of transonic compressor rotors are important because they have a significant impact on rotor and stage performance. While numerical simulations of these flows are quite sophisticated. they are seldom verified through rigorous comparisons of numerical and measured data because these kinds of measurements are rare in the detail necessary to be useful in high-speed machines. In this paper we compare measured tip clearance flow details (e.g. trajectory and radial extent) with corresponding data obtained from a numerical simulation. Recommendations for achieving accurate numerical simulation of tip clearance flows are presented based on this comparison. Laser Doppler Velocimeter (LDV) measurements acquired in a transonic compressor rotor, NASA Rotor 35, are used. The tip clearance flow field of this transonic rotor was simulated using a Navier-Stokes turbomachinery solver that incorporates an advanced k-epsilon turbulence model derived for flows that are not in local equilibrium. Comparison between measured and simulated results indicates that simulation accuracy is primarily dependent upon the ability of the numerical code to resolve important details of a wall-bounded shear layer formed by the relative motion between the over-tip leakage flow and the shroud wall. A simple method is presented for determining the strength of this shear layer.

  7. Estimating the numerical diapycnal mixing in an eddy-permitting ocean model

    NASA Astrophysics Data System (ADS)

    Megann, Alex

    2018-01-01

    Constant-depth (or "z-coordinate") ocean models such as MOM4 and NEMO have become the de facto workhorse in climate applications, having attained a mature stage in their development and are well understood. A generic shortcoming of this model type, however, is a tendency for the advection scheme to produce unphysical numerical diapycnal mixing, which in some cases may exceed the explicitly parameterised mixing based on observed physical processes, and this is likely to have effects on the long-timescale evolution of the simulated climate system. Despite this, few quantitative estimates have been made of the typical magnitude of the effective diapycnal diffusivity due to numerical mixing in these models. GO5.0 is a recent ocean model configuration developed jointly by the UK Met Office and the National Oceanography Centre. It forms the ocean component of the GC2 climate model, and is closely related to the ocean component of the UKESM1 Earth System Model, the UK's contribution to the CMIP6 model intercomparison. GO5.0 uses version 3.4 of the NEMO model, on the ORCA025 global tripolar grid. An approach to quantifying the numerical diapycnal mixing in this model, based on the isopycnal watermass analysis of Lee et al. (2002), is described, and the estimates thereby obtained of the effective diapycnal diffusivity in GO5.0 are compared with the values of the explicit diffusivity used by the model. It is shown that the effective mixing in this model configuration is up to an order of magnitude higher than the explicit mixing in much of the ocean interior, implying that mixing in the model below the mixed layer is largely dominated by numerical mixing. This is likely to have adverse consequences for the representation of heat uptake in climate models intended for decadal climate projections, and in particular is highly relevant to the interpretation of the CMIP6 class of climate models, many of which use constant-depth ocean models at ¼° resolution

  8. Numerical Modeling of Turbulent Combustion

    NASA Technical Reports Server (NTRS)

    Ghoneim, A. F.; Chorin, A. J.; Oppenheim, A. K.

    1983-01-01

    The work in numerical modeling is focused on the use of the random vortex method to treat turbulent flow fields associated with combustion while flame fronts are considered as interfaces between reactants and products, propagating with the flow and at the same time advancing in the direction normal to themselves at a prescribed burning speed. The latter is associated with the generation of specific volume (the flame front acting, in effect, as the locus of volumetric sources) to account for the expansion of the flow field due to the exothermicity of the combustion process. The model was applied to the flow in a channel equipped with a rearward facing step. The results obtained revealed the mechanism of the formation of large scale turbulent structure in the wake of the step, while it showed the flame to stabilize on the outer edges of these eddies.

  9. Numerical Demons in Monte Carlo Estimation of Bayesian Model Evidence with Application to Soil Respiration Models

    NASA Astrophysics Data System (ADS)

    Elshall, A. S.; Ye, M.; Niu, G. Y.; Barron-Gafford, G.

    2016-12-01

    Bayesian multimodel inference is increasingly being used in hydrology. Estimating Bayesian model evidence (BME) is of central importance in many Bayesian multimodel analysis such as Bayesian model averaging and model selection. BME is the overall probability of the model in reproducing the data, accounting for the trade-off between the goodness-of-fit and the model complexity. Yet estimating BME is challenging, especially for high dimensional problems with complex sampling space. Estimating BME using the Monte Carlo numerical methods is preferred, as the methods yield higher accuracy than semi-analytical solutions (e.g. Laplace approximations, BIC, KIC, etc.). However, numerical methods are prone the numerical demons arising from underflow of round off errors. Although few studies alluded to this issue, to our knowledge this is the first study that illustrates these numerical demons. We show that the precision arithmetic can become a threshold on likelihood values and Metropolis acceptance ratio, which results in trimming parameter regions (when likelihood function is less than the smallest floating point number that a computer can represent) and corrupting of the empirical measures of the random states of the MCMC sampler (when using log-likelihood function). We consider two of the most powerful numerical estimators of BME that are the path sampling method of thermodynamic integration (TI) and the importance sampling method of steppingstone sampling (SS). We also consider the two most widely used numerical estimators, which are the prior sampling arithmetic mean (AS) and posterior sampling harmonic mean (HM). We investigate the vulnerability of these four estimators to the numerical demons. Interesting, the most biased estimator, namely the HM, turned out to be the least vulnerable. While it is generally assumed that AM is a bias-free estimator that will always approximate the true BME by investing in computational effort, we show that arithmetic underflow can

  10. Numerical built-in method for the nonlinear JRC/JCS model in rock joint.

    PubMed

    Liu, Qunyi; Xing, Wanli; Li, Ying

    2014-01-01

    The joint surface is widely distributed in the rock, thus leading to the nonlinear characteristics of rock mass strength and limiting the effectiveness of the linear model in reflecting characteristics. The JRC/JCS model is the nonlinear failure criterion and generally believed to describe the characteristics of joints better than other models. In order to develop the numerical program for JRC/JCS model, this paper established the relationship between the parameters of the JRC/JCS and Mohr-Coulomb models. Thereafter, the numerical implement method and implementation process of the JRC/JCS model were discussed and the reliability of the numerical method was verified by the shear tests of jointed rock mass. Finally, the effect of the JRC/JCS model parameters on the shear strength of the joint was analyzed.

  11. Smoldering of porous media: numerical model and comparison of calculations with experiment

    NASA Astrophysics Data System (ADS)

    Lutsenko, N. A.; Levin, V. A.

    2017-10-01

    Numerical modelling of smoldering in porous media under natural convection is considered. Smoldering can be defined as a flameless exothermic surface reaction; it is a type of heterogeneous combustion which can propagate in porous media. Peatbogs, landfills and other natural or man-made porous objects can sustain smoldering under natural (or free) convection, when the flow rate of gas passed through the porous object is unknown a priori. In the present work a numerical model is proposed for investigating smoldering in porous media under natural convection. The model is based on the assumption of interacting interpenetrating continua using classical approaches of the theory of filtration combustion and includes equations of state, continuity, momentum conservation and energy for solid and gas phases. Computational results obtained by means of the numerical model in one-dimensional case are compared with the experimental data of the smoldering combustion in polyurethane foam under free convection in the gravity field, which were described in literature. Calculations shows that when simulating both co-current combustion (when the smoldering wave moves upward) and counter-current combustion (when the smoldering wave moves downward), the numerical model can provide a good quantitative agreement with experiment if the parameters of the model are well defined.

  12. A review of numerical techniques approaching microstructures of crystalline rocks

    NASA Astrophysics Data System (ADS)

    Zhang, Yahui; Wong, Louis Ngai Yuen

    2018-06-01

    The macro-mechanical behavior of crystalline rocks including strength, deformability and failure pattern are dominantly influenced by their grain-scale structures. Numerical technique is commonly used to assist understanding the complicated mechanisms from a microscopic perspective. Each numerical method has its respective strengths and limitations. This review paper elucidates how numerical techniques take geometrical aspects of the grain into consideration. Four categories of numerical methods are examined: particle-based methods, block-based methods, grain-based methods, and node-based methods. Focusing on the grain-scale characters, specific relevant issues including increasing complexity of micro-structure, deformation and breakage of model elements, fracturing and fragmentation process are described in more detail. Therefore, the intrinsic capabilities and limitations of different numerical approaches in terms of accounting for the micro-mechanics of crystalline rocks and their phenomenal mechanical behavior are explicitly presented.

  13. A model and numerical method for compressible flows with capillary effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidmayer, Kevin, E-mail: kevin.schmidmayer@univ-amu.fr; Petitpas, Fabien, E-mail: fabien.petitpas@univ-amu.fr; Daniel, Eric, E-mail: eric.daniel@univ-amu.fr

    2017-04-01

    A new model for interface problems with capillary effects in compressible fluids is presented together with a specific numerical method to treat capillary flows and pressure waves propagation. This new multiphase model is in agreement with physical principles of conservation and respects the second law of thermodynamics. A new numerical method is also proposed where the global system of equations is split into several submodels. Each submodel is hyperbolic or weakly hyperbolic and can be solved with an adequate numerical method. This method is tested and validated thanks to comparisons with analytical solutions (Laplace law) and with experimental results onmore » droplet breakup induced by a shock wave.« less

  14. Utilization of satellite data and regional scale numerical models in short range weather forecasting

    NASA Technical Reports Server (NTRS)

    Kreitzberg, C. W.

    1985-01-01

    Overwhelming evidence was developed in a number of studies of satellite data impact on numerical weather prediction that it is unrealistic to expect satellite temperature soundings to improve detailed regional numerical weather prediction. It is likely that satellite data over the United States would substantially impact mesoscale dynamical predictions if the effort were made to develop a composite moisture analysis system. The horizontal variability of moisture, most clearly depicited in images from satellite water vapor channels, would not be determined from conventional rawinsondes even if that network were increased by a doubling of both the number of sites and the time frequency.

  15. Testing and numerical modeling of hypervelocity impact damaged Space Station multilayer insulation

    NASA Technical Reports Server (NTRS)

    Rule, William K.

    1992-01-01

    Results are presented of experiments measuring the degradation of the insulating capabilities of the multilayer insulation (MLI) of the Space Station Freedom, when subjected to hypervelocity impact damage. A simple numerical model was developed for use in an engineering design environment for quick assessment of thermal effect of the impact. The model was validated using results from thermal vacuum tests on MLI with simulated damage. The numerical model results agreed with experimental data.

  16. Preliminary numerical analysis of improved gas chromatograph model

    NASA Technical Reports Server (NTRS)

    Woodrow, P. T.

    1973-01-01

    A mathematical model for the gas chromatograph was developed which incorporates the heretofore neglected transport mechanisms of intraparticle diffusion and rates of adsorption. Because a closed-form analytical solution to the model does not appear realizable, techniques for the numerical solution of the model equations are being investigated. Criteria were developed for using a finite terminal boundary condition in place of an infinite boundary condition used in analytical solution techniques. The class of weighted residual methods known as orthogonal collocation is presently being investigated and appears promising.

  17. Integration of Evidence into a Detailed Clinical Model-based Electronic Nursing Record System

    PubMed Central

    Park, Hyeoun-Ae; Jeon, Eunjoo; Chung, Eunja

    2012-01-01

    Objectives The purpose of this study was to test the feasibility of an electronic nursing record system for perinatal care that is based on detailed clinical models and clinical practice guidelines in perinatal care. Methods This study was carried out in five phases: 1) generating nursing statements using detailed clinical models; 2) identifying the relevant evidence; 3) linking nursing statements with the evidence; 4) developing a prototype electronic nursing record system based on detailed clinical models and clinical practice guidelines; and 5) evaluating the prototype system. Results We first generated 799 nursing statements describing nursing assessments, diagnoses, interventions, and outcomes using entities, attributes, and value sets of detailed clinical models for perinatal care which we developed in a previous study. We then extracted 506 recommendations from nine clinical practice guidelines and created sets of nursing statements to be used for nursing documentation by grouping nursing statements according to these recommendations. Finally, we developed and evaluated a prototype electronic nursing record system that can provide nurses with recommendations for nursing practice and sets of nursing statements based on the recommendations for guiding nursing documentation. Conclusions The prototype system was found to be sufficiently complete, relevant, useful, and applicable in terms of content, and easy to use and useful in terms of system user interface. This study has revealed the feasibility of developing such an ENR system. PMID:22844649

  18. Impacts into quartz sand: Crater formation, shock metamorphism, and ejecta distribution in laboratory experiments and numerical models

    NASA Astrophysics Data System (ADS)

    Wünnemann, Kai; Zhu, Meng-Hua; Stöffler, Dieter

    2016-10-01

    We investigated the ejection mechanics by a complementary approach of cratering experiments, including the microscopic analysis of material sampled from these experiments, and 2-D numerical modeling of vertical impacts. The study is based on cratering experiments in quartz sand targets performed at the NASA Ames Vertical Gun Range. In these experiments, the preimpact location in the target and the final position of ejecta was determined by using color-coded sand and a catcher system for the ejecta. The results were compared with numerical simulations of the cratering and ejection process to validate the iSALE shock physics code. In turn the models provide further details on the ejection velocities and angles. We quantify the general assumption that ejecta thickness decreases with distance according to a power-law and that the relative proportion of shocked material in the ejecta increase with distance. We distinguish three types of shock metamorphic particles (1) melt particles, (2) shock lithified aggregates, and (3) shock-comminuted grains. The agreement between experiment and model was excellent, which provides confidence that the models can predict ejection angles, velocities, and the degree of shock loading of material expelled from a crater accurately if impact parameters such as impact velocity, impactor size, and gravity are varied beyond the experimental limitations. This study is relevant for a quantitative assessment of impact gardening on planetary surfaces and the evolution of regolith layers on atmosphereless bodies.

  19. A numerical projection technique for large-scale eigenvalue problems

    NASA Astrophysics Data System (ADS)

    Gamillscheg, Ralf; Haase, Gundolf; von der Linden, Wolfgang

    2011-10-01

    We present a new numerical technique to solve large-scale eigenvalue problems. It is based on the projection technique, used in strongly correlated quantum many-body systems, where first an effective approximate model of smaller complexity is constructed by projecting out high energy degrees of freedom and in turn solving the resulting model by some standard eigenvalue solver. Here we introduce a generalization of this idea, where both steps are performed numerically and which in contrast to the standard projection technique converges in principle to the exact eigenvalues. This approach is not just applicable to eigenvalue problems encountered in many-body systems but also in other areas of research that result in large-scale eigenvalue problems for matrices which have, roughly speaking, mostly a pronounced dominant diagonal part. We will present detailed studies of the approach guided by two many-body models.

  20. Indepth diagnosis of a secondary clarifier by the application of radiotracer technique and numerical modeling.

    PubMed

    Kim, H S; Shin, M S; Jang, D S; Jung, S H

    2006-01-01

    To make an indepth diagnosis of a full-scale rectangular secondary clarifier, an experimental and numerical study has been performed in a wastewater treatment facility. Calculation results by the numerical model with the adoption of the SIMPLE algorithm of Patankar are validated with radiotracer experiments. Emphasis is given to the prediction of residence time distribution (RTD) curves. The predicted RTD profiles are in good agreement with the experimental RTD curves at the upstream and center sections except for the withdrawal zone of the complex effluent weir structure. The simulation results predict successfully the well-known flow characteristics of each stage such as the waterfall phenomenon at the front of the clarifier, the bottom density current and the surface return flow in the settling zone, and the upward flow in the exit zone. The detailed effects of density current are thoroughly investigated in terms of high SS loading and temperature difference between influent and ambient fluid. The program developed in this study shows the high potential to assist in the design and determination of optimal operating conditions to improve effluent quality in a full-scale secondary clarifier.

  1. Nonlinear dispersion effects in elastic plates: numerical modelling and validation

    NASA Astrophysics Data System (ADS)

    Kijanka, Piotr; Radecki, Rafal; Packo, Pawel; Staszewski, Wieslaw J.; Uhl, Tadeusz; Leamy, Michael J.

    2017-04-01

    Nonlinear features of elastic wave propagation have attracted significant attention recently. The particular interest herein relates to complex wave-structure interactions, which provide potential new opportunities for feature discovery and identification in a variety of applications. Due to significant complexity associated with wave propagation in nonlinear media, numerical modeling and simulations are employed to facilitate design and development of new measurement, monitoring and characterization systems. However, since very high spatio- temporal accuracy of numerical models is required, it is critical to evaluate their spectral properties and tune discretization parameters for compromise between accuracy and calculation time. Moreover, nonlinearities in structures give rise to various effects that are not present in linear systems, e.g. wave-wave interactions, higher harmonics generation, synchronism and | recently reported | shifts to dispersion characteristics. This paper discusses local computational model based on a new HYBRID approach for wave propagation in nonlinear media. The proposed approach combines advantages of the Local Interaction Simulation Approach (LISA) and Cellular Automata for Elastodynamics (CAFE). The methods are investigated in the context of their accuracy for predicting nonlinear wavefields, in particular shifts to dispersion characteristics for finite amplitude waves and secondary wavefields. The results are validated against Finite Element (FE) calculations for guided waves in copper plate. Critical modes i.e., modes determining accuracy of a model at given excitation frequency - are identified and guidelines for numerical model parameters are proposed.

  2. Numerical modeling of wind turbine aerodynamic noise in the time domain.

    PubMed

    Lee, Seunghoon; Lee, Seungmin; Lee, Soogab

    2013-02-01

    Aerodynamic noise from a wind turbine is numerically modeled in the time domain. An analytic trailing edge noise model is used to determine the unsteady pressure on the blade surface. The far-field noise due to the unsteady pressure is calculated using the acoustic analogy theory. By using a strip theory approach, the two-dimensional noise model is applied to rotating wind turbine blades. The numerical results indicate that, although the operating and atmospheric conditions are identical, the acoustical characteristics of wind turbine noise can be quite different with respect to the distance and direction from the wind turbine.

  3. Numerical modeling of a nonmonotonic separation hydrocyclone curve

    NASA Astrophysics Data System (ADS)

    Min'kov, L. L.; Dueck, J. H.

    2012-11-01

    In the context of the mechanics of interpenetrating continua, numerical modeling of separation of a polydisperse suspension in a hydrocyclone is carried out. The so-called "mixture model" valid for a low volume fraction of particles and low Stokes numbers is used for description of the suspension and particle motion. It is shown that account taken of the interaction between large and small particles can explain the nonmonotonic behavior of the separation curve.

  4. Proceedings of the Numerical Modeling for Underground Nuclear Test Monitoring Symposium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, S.R.; Kamm, J.R.

    1993-11-01

    The purpose of the meeting was to discuss the state-of-the-art in numerical simulations of nuclear explosion phenomenology with applications to test ban monitoring. We focused on the uniqueness of model fits to data, the measurement and characterization of material response models, advanced modeling techniques, and applications of modeling to monitoring problems. The second goal of the symposium was to establish a dialogue between seismologists and explosion-source code calculators. The meeting was divided into five main sessions: explosion source phenomenology, material response modeling, numerical simulations, the seismic source, and phenomenology from near source to far field. We feel the symposium reachedmore » many of its goals. Individual papers submitted at the conference are indexed separately on the data base.« less

  5. Standards for detailed clinical models as the basis for medical data exchange and decision support.

    PubMed

    Coyle, Joseph F; Mori, Angelo Rossi; Huff, Stanley M

    2003-03-01

    Detailed clinical models are necessary to exchange medical data between heterogeneous computer systems and to maintain consistency in a longitudinal electronic medical record system. At Intermountain Health Care (IHC), we have a history of designing detailed clinical models. The purpose of this paper is to share our experience and the lessons we have learned over the last 5 years. IHC's newest model is implemented using eXtensible Markup Language (XML) Schema as the formalism, and conforms to the Health Level Seven (HL7) version 3 data types. The centerpiece of the new strategy is the Clinical Event Model, which is a flexible name-value pair data structure that is tightly linked to a coded terminology. We describe IHC's third-generation strategy for representing and implementing detailed clinical models, and discuss the reasons for this design.

  6. A Framework for Evaluating Regional-Scale Numerical Photochemical Modeling Systems

    EPA Science Inventory

    This paper discusses the need for critically evaluating regional-scale (~ 200-2000 km) three dimensional numerical photochemical air quality modeling systems to establish a model's credibility in simulating the spatio-temporal features embedded in the observations. Because of li...

  7. Numerical analysis for the fractional diffusion and fractional Buckmaster equation by the two-step Laplace Adam-Bashforth method

    NASA Astrophysics Data System (ADS)

    Jain, Sonal

    2018-01-01

    In this paper, we aim to use the alternative numerical scheme given by Gnitchogna and Atangana for solving partial differential equations with integer and non-integer differential operators. We applied this method to fractional diffusion model and fractional Buckmaster models with non-local fading memory. The method yields a powerful numerical algorithm for fractional order derivative to implement. Also we present in detail the stability analysis of the numerical method for solving the diffusion equation. This proof shows that this method is very stable and also converges very quickly to exact solution and finally some numerical simulation is presented.

  8. Development and Application of Numerical Models for Reactive Flows

    DTIC Science & Technology

    1990-08-15

    Shear Layers: Ill. Effect of Convective Mach number Raafat H. Guirguis Abstract Model This paper addresses some of the fundamental We have made the...OTIC FILE COPY / 0 00 DTIC N~l 9 ELECTE D CbBA9-OI Development and Application of Numerical Models for Reactive Flows Berkeley Research Associates...Laboratory for Computa- tional Physics (LCP), hav focused on developing mathematical and computational models which accurately and efficiently describe the

  9. Numerical Modeling of Propellant Boiloff in Cryogenic Storage Tank

    NASA Technical Reports Server (NTRS)

    Majumdar, A. K.; Steadman, T. E.; Maroney, J. L.

    2007-01-01

    This Technical Memorandum (TM) describes the thermal modeling effort undertaken at Marshall Space Flight Center to support the Cryogenic Test Laboratory at Kennedy Space Center (KSC) for a study of insulation materials for cryogenic tanks in order to reduce propellant boiloff during long-term storage. The Generalized Fluid System Simulation program has been used to model boiloff in 1,000-L demonstration tanks built for testing the thermal performance of glass bubbles and perlite insulation. Numerical predictions of boiloff rate and ullage temperature have been compared with the measured data from the testing of demonstration tanks. A satisfactory comparison between measured and predicted data has been observed for both liquid nitrogen and hydrogen tests. Based on the experience gained with the modeling of the demonstration tanks, a numerical model of the liquid hydrogen storage tank at launch complex 39 at KSC was built. The predicted boiloff rate of hydrogen has been found to be in good agreement with observed field data. This TM describes three different models that have been developed during this period of study (March 2005 to June 2006), comparisons with test data, and results of parametric studies.

  10. Numerical modeling of fluid migration in subduction zones

    NASA Astrophysics Data System (ADS)

    Walter, Marius J.; Quinteros, Javier; Sobolev, Stephan V.

    2015-04-01

    It is well known that fluids play a crucial role in subduction evolution. For example, excess mechanical weakening along tectonic interfaces, due to excess fluid pressure, may enable oceanic subduction. Hence, the fluid content seems to be a critical parameter for subduction initiation. Studies have also shown a correlation between the location of slab dehydration and intermediate seismic activity. Furthermore, expelled fluids from the subduction slab affect the melting temperature, consequently, contributing to partial melting in the wedge above the downgoing plate, and resulting in chemical changes in earth interior and extensive volcanism. In summary, fluids have a great impact on tectonic processes and therefore should be incorporated into geodynamic numerical models. Here we use existing approaches to couple and solve fluid flow equations in the SLIM-3D thermo-mechanical code. SLIM-3D is a three-dimensional thermo-mechanical code capable of simulating lithospheric deformation with elasto-visco-plastic rheology. It incorporates an arbitrary Lagrangian Eulerian formulation, free surface, and changes in density and viscosity, due to endothermic and exothermic phase transitions. It has been successfully applied to model geodynamic processes at different tectonic settings, including subduction zones. However, although SLIM-3D already includes many features, fluid migration has not been incorporated into the model yet. To this end, we coupled solid and fluid flow assuming that fluids flow through a porous and deformable solid. Thereby, we introduce a two-phase flow into the model, in which the Stokes flow is coupled with the Darcy law for fluid flow. This system of equations becomes, however, nonlinear, because the rheology and permeability are depended on the porosity (fluid fraction of the matrix). Ultimately, the evolution of porosity is governed by the compaction pressure and the advection of the porous solid. We show the details of our implementation of the

  11. Numerical Modeling of Nanoelectronic Devices

    NASA Technical Reports Server (NTRS)

    Klimeck, Gerhard; Oyafuso, Fabiano; Bowen, R. Chris; Boykin, Timothy

    2003-01-01

    Nanoelectronic Modeling 3-D (NEMO 3-D) is a computer program for numerical modeling of the electronic structure properties of a semiconductor device that is embodied in a crystal containing as many as 16 million atoms in an arbitrary configuration and that has overall dimensions of the order of tens of nanometers. The underlying mathematical model represents the quantummechanical behavior of the device resolved to the atomistic level of granularity. The system of electrons in the device is represented by a sparse Hamiltonian matrix that contains hundreds of millions of terms. NEMO 3-D solves the matrix equation on a Beowulf-class cluster computer, by use of a parallel-processing matrix vector multiplication algorithm coupled to a Lanczos and/or Rayleigh-Ritz algorithm that solves for eigenvalues. In a recent update of NEMO 3-D, a new strain treatment, parameterized for bulk material properties of GaAs and InAs, was developed for two tight-binding submodels. The utility of the NEMO 3-D was demonstrated in an atomistic analysis of the effects of disorder in alloys and, in particular, in bulk In(x)Ga(l-x)As and in In0.6Ga0.4As quantum dots.

  12. Numerical modelling of the effect of dry air traces in a helium parallel plate dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Lazarou, C.; Belmonte, T.; Chiper, A. S.; Georghiou, G. E.

    2016-10-01

    A validated numerical model developed for the study of helium barrier discharges in the presence of dry air impurities is presented in this paper. The model was used to numerically investigate the influence of air traces on the evolution of the helium dielectric barrier discharge (DBD). The level of dry air used as impurity was in the range from 0 to 1500 ppm, which corresponds to the most commonly encountered range in atmospheric pressure discharge experiments. The results presented in this study clearly show that the plasma chemistry and consequently the discharge evolution is highly affected by the concentration level of impurities in the mixture. In particular, it was observed that air traces assist the discharge ignition at low concentration levels (~55 ppm), while on the other hand, they increase the burning voltage at higher concentration levels (~1000 ppm). Furthermore, it was found that the discharge symmetry during the voltage cycle highly depends on the concentration of air. For the interpretation of the results, a detailed analysis of the processes that occur in the discharge gap is performed and the main reaction pathways of ion production are described. Thanks to this approach, useful insight into the physics behind the evolution of the discharge is obtained.

  13. Ambient vibrations of unstable rock slopes - insights from numerical modeling

    NASA Astrophysics Data System (ADS)

    Burjanek, Jan; Kleinbrod, Ulrike; Fäh, Donat

    2017-04-01

    The recent events in Nepal (2015 M7.8 Gorkha) and New Zealand (2016 M7.8 Kaikoura) highlighted the importance of earthquake-induced landslides, which caused significant damages. Moreover, landslide created dams present a potential developing hazard. In order to reduce the costly consequences of such events it is important to detect and characterize earthquake susceptible rock slope instabilities before an event, and to take mitigation measures. For the characterisation of instable slopes, acquisition of ambient vibrations might be a new alternative to the already existing methods. We present both observations and 3D numerical simulations of the ambient vibrations of unstable slopes. In particular, models of representative real sites have been developed based on detailed terrain mapping and used for the comparison between synthetics and observations. A finite-difference code has been adopted for the seismic wave propagation in a 3D inhomogeneous visco-elastic media with irregular free surface. It utilizes a curvilinear grid for a precise modeling of curved topography and local mesh refinement to make computational mesh finer near the free surface. Topographic site effects, controlled merely by the shape of the topography, do not explain the observed seismic response. In contrast, steeply-dipping compliant fractures have been found to play a key role in fitting observations. Notably, the synthetized response is controlled by inertial mass of the unstable rock, and by stiffness, depth and network density of the fractures. The developed models fit observed extreme amplification levels (factors of 70!) and show directionality as well. This represents a possibility to characterize slope structure and infer depth or volume of the slope instability from the ambient noise recordings in the future.

  14. Numerical modeling of subsurface communication, revision 1

    NASA Astrophysics Data System (ADS)

    Burke, G. J.; Dease, C. G.; Didwall, E. M.; Lytle, R. J.

    1985-08-01

    Techniques are described for numerical modeling of through-the-Earth communication. The basic problem considered is evaluation of the field at a surface or airborne station due to an antenna buried in the earth. Equations are given for the field of a point source in a homogeneous or stratified Earth. These expressions involve infinite integrals over wave number, sometimes known as Sommerfeld integrals. Numerical techniques used for evaluating these integrals are outlined. The problem of determining the current on a real antenna in the Earth, including the effect of insulation, is considered. Results are included for the fields of a point source in homogeneous and stratified earths and the field of a finite insulated dipole. The results are for electromagnetic propagation in the ELF-VLF range, but the codes also can address propagation problems at higher frequencies.

  15. Do along-strike tectonic variations in the Nepal Himalaya reflect different stages in the accretion cycle? Insights from numerical modeling

    NASA Astrophysics Data System (ADS)

    Mercier, Jonathan; Braun, Jean; van der Beek, Peter

    2017-08-01

    Whereas the large-scale morphology and dynamics of orogenic wedges are well explained by critical-taper theory, many questions remain unanswered regarding the details of how deformation is accommodated internally. Here, we investigate the dynamics of a collisional orogenic wedge bounded by an over-thickened continental plateau, using two-dimensional thermo-mechanical numerical models. These models, applied to the Himalayan orogen and compared with reference cross-sections, lead us to propose a new hypothesis to explain along-strike variations in tectonic style, topography and exhumation patterns observed along the Himalayan range by a combination of two mechanisms. First, numerical models produce a cycle of crustal ramp formation and advection toward the rear of the wedge. The asynchronous evolution of this cycle along different segments of the range may account for the well-documented lateral variations in the geometry of the Main Himalayan Thrust (MHT) and for the existence of a well-defined topographic transition in some segments of the range. Second, the models suggest that the formation of duplexes leading to the isolation of klippen along the range front may be controlled by rheological contrasts between the Tibetan plateau and/or the Greater Himalayan Sequence and the colliding Indian plate.

  16. The virtual dissecting room: Creating highly detailed anatomy models for educational purposes.

    PubMed

    Zilverschoon, Marijn; Vincken, Koen L; Bleys, Ronald L A W

    2017-01-01

    Virtual 3D models are powerful tools for teaching anatomy. At the present day, there are a lot of different digital anatomy models, most of these commercial applications are based on a 3D model of a human body reconstructed from images with a 1mm intervals. The use of even smaller intervals may result in more details and more realistic appearances of 3D anatomy models. The aim of this study was to create a realistic and highly detailed 3D model of the hand and wrist based on small interval cross-sectional images, suitable for undergraduate and postgraduate teaching purposes with the possibility to perform a virtual dissection in an educational application. In 115 transverse cross-sections from a human hand and wrist, segmentation was done by manually delineating 90 different structures. With the use of Amira the segments were imported and a surface model/polygon model was created, followed by smoothening of the surfaces in Mudbox. In 3D Coat software the smoothed polygon models were automatically retopologied into a quadrilaterals formation and a UV map was added. In Mudbox, the textures from 90 structures were depicted in a realistic way by using photos from real tissue and afterwards height maps, gloss and specular maps were created to add more level of detail and realistic lightning on every structure. Unity was used to build a new software program that would support all the extra map features together with a preferred user interface. A 3D hand model has been created, containing 100 structures (90 at start and 10 extra structures added along the way). The model can be used interactively by changing the transparency, manipulating single or grouped structures and thereby simulating a virtual dissection. This model can be used for a variety of teaching purposes, ranging from undergraduate medical students to residents of hand surgery. Studying the hand and wrist anatomy using this model is cost-effective and not hampered by the limited access to real dissecting

  17. Detailed Characterization of Nearshore Processes During NCEX

    NASA Astrophysics Data System (ADS)

    Holland, K.; Kaihatu, J. M.; Plant, N.

    2004-12-01

    Recent technology advances have allowed the coupling of remote sensing methods with advanced wave and circulation models to yield detailed characterizations of nearshore processes. This methodology was demonstrated as part of the Nearshore Canyon EXperiment (NCEX) in La Jolla, CA during Fall 2003. An array of high-resolution, color digital cameras was installed to monitor an alongshore distance of nearly 2 km out to depths of 25 m. This digital imagery was analyzed over the three-month period through an automated process to produce hourly estimates of wave period, wave direction, breaker height, shoreline position, sandbar location, and bathymetry at numerous locations during daylight hours. Interesting wave propagation patterns in the vicinity of the canyons were observed. In addition, directional wave spectra and swash / surf flow velocities were estimated using more computationally intensive methods. These measurements were used to provide forcing and boundary conditions for the Delft3D wave and circulation model, giving additional estimates of nearshore processes such as dissipation and rip currents. An optimal approach for coupling these remotely sensed observations to the numerical model was selected to yield accurate, but also timely characterizations. This involved assimilation of directional spectral estimates near the offshore boundary to mimic forcing conditions achieved under traditional approaches involving nested domains. Measurements of breaker heights and flow speeds were also used to adaptively tune model parameters to provide enhanced accuracy. Comparisons of model predictions and video observations show significant correlation. As compared to nesting within larger-scale and coarser resolution models, the advantages of providing boundary conditions data using remote sensing is much improved resolution and fidelity. For example, rip current development was both modeled and observed. These results indicate that this approach to data-model coupling

  18. Numerical modeling and experimental testing of a solar grill

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olwi, I.; Khalifa, A.

    1993-02-01

    The sun provides a free, nonpolluting and everlasting source of energy. Considerable research has been carried out to utilize solar energy for purposes such as water heating, high temperature ovens, and conversion to electrical energy. One of the interesting forms for utilizing solar energy is cooking. The main disadvantage of solar energy systems has been the low efficiency attained in most of its practical applications. It is expected, however, that due to continuing decreases in the availability of other energy sources such as oil and coal, along with the safety problems associated with nuclear energy, man's need for utilization ofmore » solar energy will increase, thus leading him to find the ways and means to develop adequate and efficient solar-powered systems. In camps, where tents are used to accommodate people, cooking is done via conventional gas stoves. This usually takes place in extremely crowded areas which become highly fireprone. Solar oven cookers seem to be a viable alternative considering both economy and safety. Among the various forms of solar cookers, the oven-type solar cooker is known to be the best in terms of efficiency. One of the most practical and efficient forms of solar oven cookers is the outdoor portable solar grill (Bar-B-Q), developed by Khalifa et al. The solar grill is a light and portable unit that utilizes solar energy to grill meat. One of the best types of grilling with this cooker is the well-known Shish Kebab or Bar-B-Q. A detailed description for the design of the solar grill is provided as follows. This paper is aimed at providing experimental results and formulating a numerical model for the solar grill. Results of the two approaches are then compared to verify the validity of the numerical simulation. An experimental and theoretical investigation was conducted on the solar grill in order to study the factors that affect its design and performance.« less

  19. Ice phase in altocumulus clouds over Leipzig: remote sensing observations and detailed modeling

    NASA Astrophysics Data System (ADS)

    Simmel, M.; Bühl, J.; Ansmann, A.; Tegen, I.

    2015-09-01

    The present work combines remote sensing observations and detailed cloud modeling to investigate two altocumulus cloud cases observed over Leipzig, Germany. A suite of remote sensing instruments was able to detect primary ice at rather high temperatures of -6 °C. For comparison, a second mixed phase case at about -25 °C is introduced. To further look into the details of cloud microphysical processes, a simple dynamics model of the Asai-Kasahara (AK) type is combined with detailed spectral microphysics (SPECS) forming the model system AK-SPECS. Vertical velocities are prescribed to force the dynamics, as well as main cloud features, to be close to the observations. Subsequently, sensitivity studies with respect to ice microphysical parameters are carried out with the aim to quantify the most important sensitivities for the cases investigated. For the cases selected, the liquid phase is mainly determined by the model dynamics (location and strength of vertical velocity), whereas the ice phase is much more sensitive to the microphysical parameters (ice nucleating particle (INP) number, ice particle shape). The choice of ice particle shape may induce large uncertainties that are on the same order as those for the temperature-dependent INP number distribution.

  20. Ice phase in altocumulus clouds over Leipzig: remote sensing observations and detailed modelling

    NASA Astrophysics Data System (ADS)

    Simmel, M.; Bühl, J.; Ansmann, A.; Tegen, I.

    2015-01-01

    The present work combines remote sensing observations and detailed cloud modeling to investigate two altocumulus cloud cases observed over Leipzig, Germany. A suite of remote sensing instruments was able to detect primary ice at rather warm temperatures of -6 °C. For comparison, a second mixed phase case at about -25 °C is introduced. To further look into the details of cloud microphysical processes a simple dynamics model of the Asai-Kasahara type is combined with detailed spectral microphysics forming the model system AK-SPECS. Vertical velocities are prescribed to force the dynamics as well as main cloud features to be close to the observations. Subsequently, sensitivity studies with respect to ice microphysical parameters are carried out with the aim to quantify the most important sensitivities for the cases investigated. For the cases selected, the liquid phase is mainly determined by the model dynamics (location and strength of vertical velocity) whereas the ice phase is much more sensitive to the microphysical parameters (ice nuclei (IN) number, ice particle shape). The choice of ice particle shape may induce large uncertainties which are in the same order as those for the temperature-dependent IN number distribution.

  1. Ancient numerical daemons of conceptual hydrological modeling: 1. Fidelity and efficiency of time stepping schemes

    NASA Astrophysics Data System (ADS)

    Clark, Martyn P.; Kavetski, Dmitri

    2010-10-01

    A major neglected weakness of many current hydrological models is the numerical method used to solve the governing model equations. This paper thoroughly evaluates several classes of time stepping schemes in terms of numerical reliability and computational efficiency in the context of conceptual hydrological modeling. Numerical experiments are carried out using 8 distinct time stepping algorithms and 6 different conceptual rainfall-runoff models, applied in a densely gauged experimental catchment, as well as in 12 basins with diverse physical and hydroclimatic characteristics. Results show that, over vast regions of the parameter space, the numerical errors of fixed-step explicit schemes commonly used in hydrology routinely dwarf the structural errors of the model conceptualization. This substantially degrades model predictions, but also, disturbingly, generates fortuitously adequate performance for parameter sets where numerical errors compensate for model structural errors. Simply running fixed-step explicit schemes with shorter time steps provides a poor balance between accuracy and efficiency: in some cases daily-step adaptive explicit schemes with moderate error tolerances achieved comparable or higher accuracy than 15 min fixed-step explicit approximations but were nearly 10 times more efficient. From the range of simple time stepping schemes investigated in this work, the fixed-step implicit Euler method and the adaptive explicit Heun method emerge as good practical choices for the majority of simulation scenarios. In combination with the companion paper, where impacts on model analysis, interpretation, and prediction are assessed, this two-part study vividly highlights the impact of numerical errors on critical performance aspects of conceptual hydrological models and provides practical guidelines for robust numerical implementation.

  2. Numerical modeling of the 2017 active seismic infrasound balloon experiment

    NASA Astrophysics Data System (ADS)

    Brissaud, Q.; Komjathy, A.; Garcia, R.; Cutts, J. A.; Pauken, M.; Krishnamoorthy, S.; Mimoun, D.; Jackson, J. M.; Lai, V. H.; Kedar, S.; Levillain, E.

    2017-12-01

    We have developed a numerical tool to propagate acoustic and gravity waves in a coupled solid-fluid medium with topography. It is a hybrid method between a continuous Galerkin and a discontinuous Galerkin method that accounts for non-linear atmospheric waves, visco-elastic waves and topography. We apply this method to a recent experiment that took place in the Nevada desert to study acoustic waves from seismic events. This experiment, developed by JPL and its partners, wants to demonstrate the viability of a new approach to probe seismic-induced acoustic waves from a balloon platform. To the best of our knowledge, this could be the only way, for planetary missions, to perform tomography when one faces challenging surface conditions, with high pressure and temperature (e.g. Venus), and thus when it is impossible to use conventional electronics routinely employed on Earth. To fully demonstrate the effectiveness of such a technique one should also be able to reconstruct the observed signals from numerical modeling. To model the seismic hammer experiment and the subsequent acoustic wave propagation, we rely on a subsurface seismic model constructed from the seismometers measurements during the 2017 Nevada experiment and an atmospheric model built from meteorological data. The source is considered as a Gaussian point source located at the surface. Comparison between the numerical modeling and the experimental data could help future mission designs and provide great insights into the planet's interior structure.

  3. Numerical modelling of multi-vane expander operating conditions in ORC system

    NASA Astrophysics Data System (ADS)

    Rak, Józef; Błasiak, Przemysław; Kolasiński, Piotr

    2017-11-01

    Multi-vane expanders are positive displacement volumetric machines which are nowadays considered for application in micro-power domestic ORC systems as promising alternative to micro turbines and other volumetric expanders. The multi-vane expander features very simple design, low gas flow capacity, low expansion ratios, an advantageous ratio of the power output to the external dimensions and are insensitive to the negative influence of the gas-liquid mixture expansion. Moreover, the multi-vane expander can be easily hermetically sealed, which is one of the key issues in the ORC system design. A literature review indicates that issues concerning the application of multi-vane expanders in such systems, especially related to operating of multi-vane expander with different low-boiling working fluids, are innovative, not fully scientifically described and have the potential for practical implementation. In this paper the results of numerical investigations on multi-vane expander operating conditions are presented. The analyses were performed on three-dimensional numerical model of the expander in ANSYS CFX software. The numerical model of the expander was validated using the data obtained from the experiment carried out on a lab test-stand. Then a series of computational analysis were performed using expanders' numerical model in order to determine its operating conditions under various flow conditions of different working fluids.

  4. Numerical Modeling of the Global Atmosphere

    NASA Technical Reports Server (NTRS)

    Arakawa, Akio; Mechoso, Carlos R.

    1996-01-01

    Under this grant, we continued development and evaluation of the updraft downdraft model for cumulus parameterization. The model includes the mass, rainwater and vertical momentum budget equations for both updrafts and downdrafts. The rainwater generated in an updraft falls partly inside and partly outside the updraft. Two types of stationary solutions are identified for the coupled rainwater budget and vertical momentum equations: (1) solutions for small tilting angles, which are unstable; (2) solutions for large tilting angles, which are stable. In practical applications, we select the smallest stable tilting angle as an optimum value. The model has been incorporated into the Arakawa-Schubert (A-S) cumulus parameterization. The results of semi-prognostic and single-column prognostic tests of the revised A-S parameterization show drastic improvement in predicting the humidity field. Cheng and Arakawa presents the rationale and basic design of the updraft-downdraft model, together with these test results. Cheng and Arakawa, on the other hand gives technical details of the model as implemented in current version of the UCLA GCM.

  5. On vertical advection truncation errors in terrain-following numerical models: Comparison to a laboratory model for upwelling over submarine canyons

    NASA Astrophysics Data System (ADS)

    Allen, S. E.; Dinniman, M. S.; Klinck, J. M.; Gorby, D. D.; Hewett, A. J.; Hickey, B. M.

    2003-01-01

    Submarine canyons which indent the continental shelf are frequently regions of steep (up to 45°), three-dimensional topography. Recent observations have delineated the flow over several submarine canyons during 2-4 day long upwelling episodes. Thus upwelling episodes over submarine canyons provide an excellent flow regime for evaluating numerical and physical models. Here we compare a physical and numerical model simulation of an upwelling event over a simplified submarine canyon. The numerical model being evaluated is a version of the S-Coordinate Rutgers University Model (SCRUM). Careful matching between the models is necessary for a stringent comparison. Results show a poor comparison for the homogeneous case due to nonhydrostatic effects in the laboratory model. Results for the stratified case are better but show a systematic difference between the numerical results and laboratory results. This difference is shown not to be due to nonhydrostatic effects. Rather, the difference is due to truncation errors in the calculation of the vertical advection of density in the numerical model. The calculation is inaccurate due to the terrain-following coordinates combined with a strong vertical gradient in density, vertical shear in the horizontal velocity and topography with strong curvature.

  6. Numerical Ordering Ability Mediates the Relation between Number-Sense and Arithmetic Competence

    ERIC Educational Resources Information Center

    Lyons, Ian M.; Beilock, Sian L.

    2011-01-01

    What predicts human mathematical competence? While detailed models of number representation in the brain have been developed, it remains to be seen exactly how basic number representations link to higher math abilities. We propose that representation of ordinal associations between numerical symbols is one important factor that underpins this…

  7. Integrated Use of Remote Sensed Data and Numerical Cartography for the Generation of 3d City Models

    NASA Astrophysics Data System (ADS)

    Bitelli, G.; Girelli, V. A.; Lambertini, A.

    2018-05-01

    3D city models are becoming increasingly popular and important, because they constitute the base for all the visualization, planning, management operations regarding the urban infrastructure. These data are however not available in the majority of cities: in this paper, the possibility to use geospatial data of various kinds with the aim to generate 3D models in urban environment is investigated. In 3D modelling works, the starting data are frequently the 3D point clouds, which are nowadays possible to collect by different sensors mounted on different platforms: LiDAR, imagery from satellite, airborne or unmanned aerial vehicles, mobile mapping systems that integrate several sensors. The processing of the acquired data and consequently the obtainability of models able to provide geometric accuracy and a good visual impact is limited by time, costs and logistic constraints. Nowadays more and more innovative hardware and software solutions can offer to the municipalities and the public authorities the possibility to use available geospatial data, acquired for diverse aims, for the generation of 3D models of buildings and cities, characterized by different level of detail. In the paper two cases of study are presented, both regarding surveys carried out in Emilia Romagna region, Italy, where 2D or 2.5D numerical maps are available. The first one is about the use of oblique aerial images realized by the Municipality for a systematic documentation of the built environment, the second concerns the use of LiDAR data acquired for other purposes; in the two tests, these data were used in conjunction with large scale numerical maps to produce 3D city models.

  8. Numerical Modeling of the Nearshore Region.

    DTIC Science & Technology

    1982-06-01

    Model 10 f = 0.01 i0 _ -- 2 Linear’Model f = 0.015 - 3 Linear Modelf 0 .02 EN 41 Data Set 1 600- U 40 4 -C 20 T Longshore Current Velocity V (r/sec...IX CZ Oxn 0 00 Cw LU 39’L 0f C:1- 3 LU x 4 3 00 0~ ~ -L U - 3 0 0 f, c0 ID - ox (9 o. 0 o4, n -i u x --- C- 0 cc 1*j.i Ix~ > A a, 0 r- w-0 4 1 En 00U...r AD-AL1A 518 DELAWARE UN IV NEWARK DEPT OF CIVIL ENGINEERING F/G 8/ 3 NUMER ICAL MODELI NG OF THE NEARS" ORE REGION U) JUN 82 j T KIRBY, R A OALR

  9. surrkick: Black-hole kicks from numerical-relativity surrogate models

    NASA Astrophysics Data System (ADS)

    Gerosa, Davide; Hébert, François; Stein, Leo C.

    2018-04-01

    surrkick quickly and reliably extract recoils imparted to generic, precessing, black hole binaries. It uses a numerical-relativity surrogate model to obtain the gravitational waveform given a set of binary parameters, and from this waveform directly integrates the gravitational-wave linear momentum flux. This entirely bypasses the need of fitting formulae which are typically used to model black-hole recoils in astrophysical contexts.

  10. Stochastic porous media modeling and high-resolution schemes for numerical simulation of subsurface immiscible fluid flow transport

    NASA Astrophysics Data System (ADS)

    Brantson, Eric Thompson; Ju, Binshan; Wu, Dan; Gyan, Patricia Semwaah

    2018-04-01

    This paper proposes stochastic petroleum porous media modeling for immiscible fluid flow simulation using Dykstra-Parson coefficient (V DP) and autocorrelation lengths to generate 2D stochastic permeability values which were also used to generate porosity fields through a linear interpolation technique based on Carman-Kozeny equation. The proposed method of permeability field generation in this study was compared to turning bands method (TBM) and uniform sampling randomization method (USRM). On the other hand, many studies have also reported that, upstream mobility weighting schemes, commonly used in conventional numerical reservoir simulators do not accurately capture immiscible displacement shocks and discontinuities through stochastically generated porous media. This can be attributed to high level of numerical smearing in first-order schemes, oftentimes misinterpreted as subsurface geological features. Therefore, this work employs high-resolution schemes of SUPERBEE flux limiter, weighted essentially non-oscillatory scheme (WENO), and monotone upstream-centered schemes for conservation laws (MUSCL) to accurately capture immiscible fluid flow transport in stochastic porous media. The high-order schemes results match well with Buckley Leverett (BL) analytical solution without any non-oscillatory solutions. The governing fluid flow equations were solved numerically using simultaneous solution (SS) technique, sequential solution (SEQ) technique and iterative implicit pressure and explicit saturation (IMPES) technique which produce acceptable numerical stability and convergence rate. A comparative and numerical examples study of flow transport through the proposed method, TBM and USRM permeability fields revealed detailed subsurface instabilities with their corresponding ultimate recovery factors. Also, the impact of autocorrelation lengths on immiscible fluid flow transport were analyzed and quantified. A finite number of lines used in the TBM resulted into visual

  11. Numerical modelling techniques of soft soil improvement via stone columns: A brief review

    NASA Astrophysics Data System (ADS)

    Zukri, Azhani; Nazir, Ramli

    2018-04-01

    There are a number of numerical studies on stone column systems in the literature. Most of the studies found were involved with two-dimensional analysis of the stone column behaviour, while only a few studies used three-dimensional analysis. The most popular software utilised in those studies was Plaxis 2D and 3D. Other types of software that used for numerical analysis are DIANA, EXAMINE, ZSoil, ABAQUS, ANSYS, NISA, GEOSTUDIO, CRISP, TOCHNOG, CESAR, GEOFEM (2D & 3D), FLAC, and FLAC 3. This paper will review the methodological approaches to model stone column numerically, both in two-dimensional and three-dimensional analyses. The numerical techniques and suitable constitutive model used in the studies will also be discussed. In addition, the validation methods conducted were to verify the numerical analysis conducted will be presented. This review paper also serves as a guide for junior engineers through the applicable procedures and considerations when constructing and running a two or three-dimensional numerical analysis while also citing numerous relevant references.

  12. Numerical and Experimental Modeling of the Recirculating Melt Flow Inside an Induction Crucible Furnace

    NASA Astrophysics Data System (ADS)

    Asad, Amjad; Bauer, Katrin; Chattopadhyay, Kinnor; Schwarze, Rüdiger

    2018-06-01

    In the paper, a new water model of the turbulent recirculating flow in an induction furnace is introduced. The water model was based on the principle of the stirred vessel used in process engineering. The flow field in the water model was measured by means of particle image velocimetry in order to verify the model's performance. Here, it is indicated that the flow consists of two toroidal vortices similar to the flow in the induction crucible furnace. Furthermore, the turbulent flow in the water model is investigated numerically by adopting eddy-resolving turbulence modeling. The two toroidal vortices occur in the simulations as well. The numerical approaches provide identical time-averaged flow patterns. Moreover, a good qualitative agreement is observed on comparing the experimental and numerical results. In addition, a numerical simulation of the melt flow in a real induction crucible furnace was performed. The turbulent kinetic energy spectrum of the flow in the water model was compared to that of the melt flow in the induction crucible furnace to show the similarity in the nature of turbulence.

  13. Laser-optical and numerical Research of the flow inside the lubricating gap of a journal bearing model

    NASA Astrophysics Data System (ADS)

    Nobis, M.; Stücke, P.; Schmidt, M.; Riedel, M.

    2013-04-01

    The laser-optical research of the flow inside the lubricating gap of a journal bearing model is one important task in a larger overall project. The long-term objective is the development of an easy-to-work calculation tool which delivers information about the causes and consequences of cavitation processes in hydrodynamically lubricated journal bearings. Hence, it will be possible to find statements for advantageous and disadvantageous geometrical shapes of the bushings. In conclusion such a calculation tool can provide important insights for the construction and design of future journal bearings. Current design programs are based on a two-dimensional approach for the lubricating gap. The first dimension is the breath of the bearing and the second dimension is the circumferential direction of the bearing. The third dimension, the expansion of the gap in radial direction, will be neglected. Instead of an exact resolution of the flow pattern inside the gap, turbulence models are in use. Past studies on numerical and experimental field have shown that inside the lubricating gap clearly organized and predominantly laminar flow structures can be found. Thus, for a detailed analysis of the reasons and effects of cavitation bubbles, a three-dimensional resolution of the lubricating gap is inevitable. In addition to the qualitative evaluation of the flow with visualization experiments it is possible to perform angle-based velocity measurements inside the gap with the help of a triggered Laser-Doppler- Velocimeter (LDV). The results of these measurements are used to validate three-dimensional CFD flow simulations, and to optimize the numerical mesh structure and the boundary conditions. This paper will present the experimental setup of the bearing model, some exemplary results of the visualization experiments and LDV measurements as well as a comparison between experimental and numerical results.

  14. Public-domain-software solution to data-access problems for numerical modelers

    USGS Publications Warehouse

    Jenter, Harry; Signell, Richard

    1992-01-01

    Unidata's network Common Data Form, netCDF, provides users with an efficient set of software for scientific-data-storage, retrieval, and manipulation. The netCDF file format is machine-independent, direct-access, self-describing, and in the public domain, thereby alleviating many problems associated with accessing output from large hydrodynamic models. NetCDF has programming interfaces in both the Fortran and C computer language with an interface to C++ planned for release in the future. NetCDF also has an abstract data type that relieves users from understanding details of the binary file structure; data are written and retrieved by an intuitive, user-supplied name rather than by file position. Users are aided further by Unidata's inclusion of the Common Data Language, CDL, a printable text-equivalent of the contents of a netCDF file. Unidata provides numerous operators and utilities for processing netCDF files. In addition, a number of public-domain and proprietary netCDF utilities from other sources are available at this time or will be available later this year. The U.S. Geological Survey has produced and is producing a number of public-domain netCDF utilities.

  15. Characterizing observed circulation patterns within a bay using HF radar and numerical model simulations

    NASA Astrophysics Data System (ADS)

    O'Donncha, Fearghal; Hartnett, Michael; Nash, Stephen; Ren, Lei; Ragnoli, Emanuele

    2015-02-01

    In this study, High Frequency Radar (HFR), observations in conjunction with numerical model simulations investigate surface flow dynamics in a tidally-active, wind-driven bay; Galway Bay situated on the West coast of Ireland. Comparisons against ADCP sensor data permit an independent assessment of HFR and model performance, respectively. Results show root-mean-square (rms) differences in the range 10 - 12cm/s while model rms equalled 12 - 14cm/s. Subsequent analysis focus on a detailed comparison of HFR and model output. Harmonic analysis decompose both sets of surface currents based on distinct flow process, enabling a correlation analysis between the resultant output and dominant forcing parameters. Comparisons of barotropic model simulations and HFR tidal signal demonstrate consistently high agreement, particularly of the dominant M2 tidal signal. Analysis of residual flows demonstrate considerably poorer agreement, with the model failing to replicate complex flows. A number of hypotheses explaining this discrepancy are discussed, namely: discrepancies between regional-scale, coastal-ocean models and globally-influenced bay-scale dynamics; model uncertainties arising from highly-variable wind-driven flows across alarge body of water forced by point measurements of wind vectors; and the high dependence of model simulations on empirical wind-stress coefficients. The research demonstrates that an advanced, widely-used hydro-environmental model does not accurately reproduce aspects of surface flow processes, particularly with regards wind forcing. Considering the significance of surface boundary conditions in both coastal and open ocean dynamics, the viability of using a systematic analysis of results to improve model predictions is discussed.

  16. On a turbulent wall model to predict hemolysis numerically in medical devices

    NASA Astrophysics Data System (ADS)

    Lee, Seunghun; Chang, Minwook; Kang, Seongwon; Hur, Nahmkeon; Kim, Wonjung

    2017-11-01

    Analyzing degradation of red blood cells is very important for medical devices with blood flows. The blood shear stress has been recognized as the most dominant factor for hemolysis in medical devices. Compared to laminar flows, turbulent flows have higher shear stress values in the regions near the wall. In case of predicting hemolysis numerically, this phenomenon can require a very fine mesh and large computational resources. In order to resolve this issue, the purpose of this study is to develop a turbulent wall model to predict the hemolysis more efficiently. In order to decrease the numerical error of hemolysis prediction in a coarse grid resolution, we divided the computational domain into two regions and applied different approaches to each region. In the near-wall region with a steep velocity gradient, an analytic approach using modeled velocity profile is applied to reduce a numerical error to allow a coarse grid resolution. We adopt the Van Driest law as a model for the mean velocity profile. In a region far from the wall, a regular numerical discretization is applied. The proposed turbulent wall model is evaluated for a few turbulent flows inside a cannula and centrifugal pumps. The results present that the proposed turbulent wall model for hemolysis improves the computational efficiency significantly for engineering applications. Corresponding author.

  17. Generating Neuron Geometries for Detailed Three-Dimensional Simulations Using AnaMorph.

    PubMed

    Mörschel, Konstantin; Breit, Markus; Queisser, Gillian

    2017-07-01

    Generating realistic and complex computational domains for numerical simulations is often a challenging task. In neuroscientific research, more and more one-dimensional morphology data is becoming publicly available through databases. This data, however, only contains point and diameter information not suitable for detailed three-dimensional simulations. In this paper, we present a novel framework, AnaMorph, that automatically generates water-tight surface meshes from one-dimensional point-diameter files. These surface triangulations can be used to simulate the electrical and biochemical behavior of the underlying cell. In addition to morphology generation, AnaMorph also performs quality control of the semi-automatically reconstructed cells coming from anatomical reconstructions. This toolset allows an extension from the classical dimension-reduced modeling and simulation of cellular processes to a full three-dimensional and morphology-including method, leading to novel structure-function interplay studies in the medical field. The developed numerical methods can further be employed in other areas where complex geometries are an essential component of numerical simulations.

  18. Numerical modeling of an enhanced very early time electromagnetic (VETEM) prototype system

    USGS Publications Warehouse

    Cui, T.J.; Chew, W.C.; Aydiner, A.A.; Wright, D.L.; Smith, D.V.; Abraham, J.D.

    2000-01-01

    In this paper, two numerical models are presented to simulate an enhanced very early time electromagnetic (VETEM) prototype system, which is used for buried-object detection and environmental problems. Usually, the VETEM system contains a transmitting loop antenna and a receiving loop antenna, which run on a lossy ground to detect buried objects. In the first numerical model, the loop antennas are accurately analyzed using the Method of Moments (MoM) for wire antennas above or buried in lossy ground. Then, Conjugate Gradient (CG) methods, with the use of the fast Fourier transform (FFT) or MoM, are applied to investigate the scattering from buried objects. Reflected and scattered magnetic fields are evaluated at the receiving loop to calculate the output electric current. However, the working frequency for the VETEM system is usually low and, hence, two magnetic dipoles are used to replace the transmitter and receiver in the second numerical model. Comparing these two models, the second one is simple, but only valid for low frequency or small loops, while the first modeling is more general. In this paper, all computations are performed in the frequency domain, and the FFT is used to obtain the time-domain responses. Numerical examples show that simulation results from these two models fit very well when the frequency ranges from 10 kHz to 10 MHz, and both results are close to the measured data.

  19. Untangling Slab Dynamics Using 3-D Numerical and Analytical Models

    NASA Astrophysics Data System (ADS)

    Holt, A. F.; Royden, L.; Becker, T. W.

    2016-12-01

    Increasingly sophisticated numerical models have enabled us to make significant strides in identifying the key controls on how subducting slabs deform. For example, 3-D models have demonstrated that subducting plate width, and the related strength of toroidal flow around the plate edge, exerts a strong control on both the curvature and the rate of migration of the trench. However, the results of numerical subduction models can be difficult to interpret, and many first order dynamics issues remain at least partially unresolved. Such issues include the dominant controls on trench migration, the interdependence of asthenospheric pressure and slab dynamics, and how nearby slabs influence each other's dynamics. We augment 3-D, dynamically evolving finite element models with simple, analytical force-balance models to distill the physics associated with subduction into more manageable parts. We demonstrate that for single, isolated subducting slabs much of the complexity of our fully numerical models can be encapsulated by simple analytical expressions. Rates of subduction and slab dip correlate strongly with the asthenospheric pressure difference across the subducting slab. For double subduction, an additional slab gives rise to more complex mantle pressure and flow fields, and significantly extends the range of plate kinematics (e.g., convergence rate, trench migration rate) beyond those present in single slab models. Despite these additional complexities, we show that much of the dynamics of such multi-slab systems can be understood using the physics illuminated by our single slab study, and that a force-balance method can be used to relate intra-plate stress to viscous pressure in the asthenosphere and coupling forces at plate boundaries. This method has promise for rapid modeling of large systems of subduction zones on a global scale.

  20. Numerical Propulsion System Simulation (NPSS) 1999 Industry Review

    NASA Technical Reports Server (NTRS)

    Lytle, John; Follen, Greg; Naiman, Cynthia; Evans, Austin

    2000-01-01

    The technologies necessary to enable detailed numerical simulations of complete propulsion systems are being developed at the NASA Glenn Research Center in cooperation with industry, academia, and other government agencies. Large scale, detailed simulations will be of great value to the nation because they eliminate some of the costly testing required to develop and certify advanced propulsion systems. In addition, time and cost savings will be achieved by enabling design details to be evaluated early in the development process before a commitment is made to a specific design. This concept is called the Numerical Propulsion System Simulation (NPSS). NPSS consists of three main elements: (1) engineering models that enable multidisciplinary analysis of large subsystems and systems at various levels of detail, (2) a simulation environment that maximizes designer productivity, and (3) a cost-effective, high-performance computing platform. A fundamental requirement of the concept is that the simulations must be capable of overnight execution on easily accessible computing platforms. This will greatly facilitate the use of large-scale simulations in a design environment. This paper describes the current status of the NPSS with specific emphasis on the progress made over the past year on air breathing propulsion applications. In addition, the paper contains a summary of the feedback received from industry partners in the development effort and the actions taken over the past year to respond to that feedback. The NPSS development was supported in FY99 by the High Performance Computing and Communications Program.

  1. A software tool for modeling and simulation of numerical P systems.

    PubMed

    Buiu, Catalin; Arsene, Octavian; Cipu, Corina; Patrascu, Monica

    2011-03-01

    A P system represents a distributed and parallel bio-inspired computing model in which basic data structures are multi-sets or strings. Numerical P systems have been recently introduced and they use numerical variables and local programs (or evolution rules), usually in a deterministic way. They may find interesting applications in areas such as computational biology, process control or robotics. The first simulator of numerical P systems (SNUPS) has been designed, implemented and made available to the scientific community by the authors of this paper. SNUPS allows a wide range of applications, from modeling and simulation of ordinary differential equations, to the use of membrane systems as computational blocks of cognitive architectures, and as controllers for autonomous mobile robots. This paper describes the functioning of a numerical P system and presents an overview of SNUPS capabilities together with an illustrative example. SNUPS is freely available to researchers as a standalone application and may be downloaded from a dedicated website, http://snups.ics.pub.ro/, which includes an user manual and sample membrane structures. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  2. Reprint of: A numerical modelling of gas exchange mechanisms between air and turbulent water with an aquarium chemical reaction

    NASA Astrophysics Data System (ADS)

    Nagaosa, Ryuichi S.

    2014-08-01

    This paper proposes a new numerical modelling to examine environmental chemodynamics of a gaseous material exchanged between the air and turbulent water phases across a gas-liquid interface, followed by an aquarium chemical reaction. This study uses an extended concept of a two-compartment model, and assumes two physicochemical substeps to approximate the gas exchange processes. The first substep is the gas-liquid equilibrium between the air and water phases, A(g)⇌A(aq), with Henry's law constant H. The second is a first-order irreversible chemical reaction in turbulent water, A(aq)+H2O→B(aq)+H+ with a chemical reaction rate κA. A direct numerical simulation (DNS) technique has been employed to obtain details of the gas exchange mechanisms and the chemical reaction in the water compartment, while zero velocity and uniform concentration of A is considered in the air compartment. The study uses the different Schmidt numbers between 1 and 8, and six nondimensional chemical reaction rates between 10(≈0) to 101 at a fixed Reynolds number. It focuses on the effects of the Schmidt number and the chemical reaction rate on fundamental mechanisms of the gas exchange processes across the interface.

  3. Numerical modeling of the radionuclide water pathway with HYDRUS and comparison with the IAEA model of SR 44.

    PubMed

    Merk, Rainer

    2012-02-01

    This study depicts a theoretical experiment in which the radionuclide transport through the porous material of a landfill consisting of concrete rubble (e.g., from the decommissioning of nuclear power plants) and the subsequent migration through the vadose zone and aquifer to a model well is calculated by means of the software HYDRUS-1D (Simunek et al., 2008). The radionuclides originally contained within the rubble become dissolved due to leaching caused by infiltrated rainwater. The resulting well-water contamination (in Bq/L) is calculated numerically as a function of time and location and compared with the outcome of a simplified analytic model for the groundwater pathway published by the IAEA (2005). Identical model parameters are considered. The main objective of the present work is to evaluate the predictive capacity of the more simple IAEA model using HYDRUS-1D as a reference. For most of the radionuclides considered (e.g., ¹²⁹I, and ²³⁹Pu), results from applying the IAEA model were found to be comparable to results from the more elaborate HYDRUS modeling, provided the underlying parameter values are comparable. However, the IAEA model appears to underestimate the effects resulting from, for example, high nuclide mobility, short half-life, or short-term variations in the water infiltration. The present results indicate that the IAEA model is suited for screening calculations and general recommendation purposes. However, the analysis of a specific site should be accompanied by detailed HYDRUS computer simulations. In all models considered, the calculation outcome largely depends on the choice of the sorption parameter K(d). Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Numerical modelling of effective thermal conductivity for modified geomaterial using lattice element method

    NASA Astrophysics Data System (ADS)

    Rizvi, Zarghaam Haider; Shrestha, Dinesh; Sattari, Amir S.; Wuttke, Frank

    2018-02-01

    Macroscopic parameters such as effective thermal conductivity (ETC) is an important parameter which is affected by micro and meso level behaviour of particulate materials, and has been extensively examined in the past decades. In this paper, a new lattice based numerical model is developed to predict the ETC of sand and modified high thermal backfill material for energy transportation used for underground power cables. 2D and 3D simulations are performed to analyse and detect differences resulting from model simplification. The thermal conductivity of the granular mixture is determined numerically considering the volume and the shape of the each constituting portion. The new numerical method is validated with transient needle measurements and the existing theoretical and semi empirical models for thermal conductivity prediction sand and the modified backfill material for dry condition. The numerical prediction and the measured values are in agreement to a large extent.

  5. Systems Operation Studies for Automated Guideway Transit Systems : Detailed Station Model Functional Specifications

    DOT National Transportation Integrated Search

    1981-07-01

    The Detailed Station Model (DSM) is a discrete event model representing the interrelated queueing processes associated with vehicle and passenger activities in an AGT station. The DSM will provide operational and performance measures of alternative s...

  6. System Operations Studies for Automated Guideway Transit Systems : Detailed Station Model User's Manual

    DOT National Transportation Integrated Search

    1981-07-01

    The Detailed Station Model (DSM) is a discrete event model representing the interrelated queueing processes associated with vehicle and passenger activities in an AGT station. The DSM will provide operational and performance measures of alternative s...

  7. First principles numerical model of avalanche-induced arc discharges in electron-irradiated dielectrics

    NASA Technical Reports Server (NTRS)

    Beers, B. L.; Pine, V. W.; Hwang, H. C.; Bloomberg, H. W.; Lin, D. L.; Schmidt, M. J.; Strickland, D. J.

    1979-01-01

    The model consists of four phases: single electron dynamics, single electron avalanche, negative streamer development, and tree formation. Numerical algorithms and computer code implementations are presented for the first three phases. An approach to developing a code description of fourth phase is discussed. Numerical results are presented for a crude material model of Teflon.

  8. A new numerical theory of Earth rotation

    NASA Astrophysics Data System (ADS)

    Gerlach, Enrico; Klioner, Sergei; Soffel, Michael

    2012-08-01

    Nowadays the rotation of the Earth can be observed with an accuracy of about 0.01 milliarcseconds (mas ), while theoretical models are able to describe this motion at a level of 1 mas. This mismatch is partly due to the enormous complexity of the involved processes, operating on different time scales and driven by a large variety of physical effects. But al so partly due to the used models, which often use simplified and linearized equations to obtain the solution analytically. In this work we present our new numerical theory of the rotation of the Earth. The model underlying the theory is fully compatible with the post - Newtonian approximation of general relativity and is formulated using ordinary differential equations for the angles describing the orientation of the Earth (or its particular layers) in the GCRS. These equations are then solved numerically to describe the rotational motion with highest accuracy. Being initially developed for a rigid Earth our theory was extended towards a more realistic Earth model. In particular, we included 3 different layers (crust, fluid outer core and solid inner core) and all important coupling torques between them as well as all important effects of non - rigidity, such as elastic deformation, relative angular momenta due to atmosphere and ocean etc. In our presentation we will describe the details of our work and compare i t to the currently used models of Earth rotation. Further, we discuss possible applications of our numerical theory to obtain high - accuracy models of rotational motion of other celestial bodies such as Mercury.

  9. The Numerical Propulsion System Simulation: An Overview

    NASA Technical Reports Server (NTRS)

    Lytle, John K.

    2000-01-01

    Advances in computational technology and in physics-based modeling are making large-scale, detailed simulations of complex systems possible within the design environment. For example, the integration of computing, communications, and aerodynamics has reduced the time required to analyze major propulsion system components from days and weeks to minutes and hours. This breakthrough has enabled the detailed simulation of major propulsion system components to become a routine part of designing systems, providing the designer with critical information about the components early in the design process. This paper describes the development of the numerical propulsion system simulation (NPSS), a modular and extensible framework for the integration of multicomponent and multidisciplinary analysis tools using geographically distributed resources such as computing platforms, data bases, and people. The analysis is currently focused on large-scale modeling of complete aircraft engines. This will provide the product developer with a "virtual wind tunnel" that will reduce the number of hardware builds and tests required during the development of advanced aerospace propulsion systems.

  10. Numerical Modelling of Tertiary Tides

    NASA Astrophysics Data System (ADS)

    Gao, Yan; Correia, Alexandre C. M.; Eggleton, Peter P.; Han, Zhanwen

    2018-06-01

    Stellar systems consisting of multiple stars tend to undergo tidal interactions when the separations between the stars are short. While tidal phenomena have been extensively studied, a certain tidal effect exclusive to hierarchical triples (triples in which one component star has a much wider orbit than the others) has hardly received any attention, mainly due to its complexity and consequent resistance to being modelled. This tidal effect is the tidal perturbation of the tertiary by the inner binary, which in turn depletes orbital energy from the inner binary, causing the inner binary separation to shrink. In this paper, we develop a fully numerical simulation of these "tertiary tides" by modifying established tidal models. We also provide general insight as to how close a hierarchical triple needs to be in order for such an effect to take place, and demonstrate that our simulations can effectively retrieve the orbital evolution for such systems. We conclude that tertiary tides are a significant factor in the evolution of close hierarchical triples, and strongly influence at least ˜1% of all multiple star systems.

  11. Influence of a detailed model of man on proton depth/dose calculation

    NASA Technical Reports Server (NTRS)

    Kase, P. G.

    1972-01-01

    The development of a detailed radiation shielding model of man is discussed. This model will be used to plan for manned space missions in which sensitive human tissues may be subjected to excessive radiation. The model has two configurations: standing and seated. More than 2500 individual elements were used to depict the external conformation, skeleton, and principal organs. The model is briefly described and several examples of its application to mission planning are given.

  12. Modeling the source of GW150914 with targeted numerical-relativity simulations

    NASA Astrophysics Data System (ADS)

    Lovelace, Geoffrey; Lousto, Carlos O.; Healy, James; Scheel, Mark A.; Garcia, Alyssa; O'Shaughnessy, Richard; Boyle, Michael; Campanelli, Manuela; Hemberger, Daniel A.; Kidder, Lawrence E.; Pfeiffer, Harald P.; Szilágyi, Béla; Teukolsky, Saul A.; Zlochower, Yosef

    2016-12-01

    In fall of 2015, the two LIGO detectors measured the gravitational wave signal GW150914, which originated from a pair of merging black holes (Abbott et al Virgo, LIGO Scientific 2016 Phys. Rev. Lett. 116 061102). In the final 0.2 s (about 8 gravitational-wave cycles) before the amplitude reached its maximum, the observed signal swept up in amplitude and frequency, from 35 Hz to 150 Hz. The theoretical gravitational-wave signal for merging black holes, as predicted by general relativity, can be computed only by full numerical relativity, because analytic approximations fail near the time of merger. Moreover, the nearly-equal masses, moderate spins, and small number of orbits of GW150914 are especially straightforward and efficient to simulate with modern numerical-relativity codes. In this paper, we report the modeling of GW150914 with numerical-relativity simulations, using black-hole masses and spins consistent with those inferred from LIGO’s measurement (Abbott et al LIGO Scientific Collaboration, Virgo Collaboration 2016 Phys. Rev. Lett. 116 241102). In particular, we employ two independent numerical-relativity codes that use completely different analytical and numerical methods to model the same merging black holes and to compute the emitted gravitational waveform; we find excellent agreement between the waveforms produced by the two independent codes. These results demonstrate the validity, impact, and potential of current and future studies using rapid-response, targeted numerical-relativity simulations for better understanding gravitational-wave observations.

  13. Combining existing numerical models with data assimilation using weighted least-squares finite element methods.

    PubMed

    Rajaraman, Prathish K; Manteuffel, T A; Belohlavek, M; Heys, Jeffrey J

    2017-01-01

    A new approach has been developed for combining and enhancing the results from an existing computational fluid dynamics model with experimental data using the weighted least-squares finite element method (WLSFEM). Development of the approach was motivated by the existence of both limited experimental blood velocity in the left ventricle and inexact numerical models of the same flow. Limitations of the experimental data include measurement noise and having data only along a two-dimensional plane. Most numerical modeling approaches do not provide the flexibility to assimilate noisy experimental data. We previously developed an approach that could assimilate experimental data into the process of numerically solving the Navier-Stokes equations, but the approach was limited because it required the use of specific finite element methods for solving all model equations and did not support alternative numerical approximation methods. The new approach presented here allows virtually any numerical method to be used for approximately solving the Navier-Stokes equations, and then the WLSFEM is used to combine the experimental data with the numerical solution of the model equations in a final step. The approach dynamically adjusts the influence of the experimental data on the numerical solution so that more accurate data are more closely matched by the final solution and less accurate data are not closely matched. The new approach is demonstrated on different test problems and provides significantly reduced computational costs compared with many previous methods for data assimilation. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Numerical Modeling of Transport of Biomass Burning Emissions on South America

    NASA Technical Reports Server (NTRS)

    RibeirodeFreitas, Saulo

    2001-01-01

    Our research efforts have addressed theoretical and numerical modeling of sources emissions and transport processes of trace gases and aerosols emitted by biomass burning on the central of Brazil and Amazon basin. For this effort we coupled all Eulerian transport model with the mesoscale atmospheric model RAMS (Regional Atmospheric Modeling System).

  15. Model reduction of the numerical analysis of Low Impact Developments techniques

    NASA Astrophysics Data System (ADS)

    Brunetti, Giuseppe; Šimůnek, Jirka; Wöhling, Thomas; Piro, Patrizia

    2017-04-01

    Mechanistic models have proven to be accurate and reliable tools for the numerical analysis of the hydrological behavior of Low Impact Development (LIDs) techniques. However, their widespread adoption is limited by their complexity and computational cost. Recent studies have tried to address this issue by investigating the application of new techniques, such as surrogate-based modeling. However, current results are still limited and fragmented. One of such approaches, the Model Order Reduction (MOR) technique, can represent a valuable tool for reducing the computational complexity of a numerical problems by computing an approximation of the original model. While this technique has been extensively used in water-related problems, no studies have evaluated its use in LIDs modeling. Thus, the main aim of this study is to apply the MOR technique for the development of a reduced order model (ROM) for the numerical analysis of the hydrologic behavior of LIDs, in particular green roofs. The model should be able to correctly reproduce all the hydrological processes of a green roof while reducing the computational cost. The proposed model decouples the subsurface water dynamic of a green roof in a) one-dimensional (1D) vertical flow through a green roof itself and b) one-dimensional saturated lateral flow along the impervious rooftop. The green roof is horizontally discretized in N elements. Each element represents a vertical domain, which can have different properties or boundary conditions. The 1D Richards equation is used to simulate flow in the substrate and drainage layers. Simulated outflow from the vertical domain is used as a recharge term for saturated lateral flow, which is described using the kinematic wave approximation of the Boussinesq equation. The proposed model has been compared with the mechanistic model HYDRUS-2D, which numerically solves the Richards equation for the whole domain. The HYDRUS-1D code has been used for the description of vertical flow

  16. Detailed kinetic modeling study of n-pentanol oxidation

    DOE PAGES

    Heufer, K. Alexander; Sarathy, S. Mani; Curran, Henry J.; ...

    2012-09-28

    To help overcome the world’s dependence upon fossil fuels, suitable biofuels are promising alternatives that can be used in the transportation sector. Recent research on internal combustion engines shows that short alcoholic fuels (e.g., ethanol or n-butanol) have reduced pollutant emissions and increased knock resistance compared to fossil fuels. Although higher molecular weight alcohols (e.g., n-pentanol and n-hexanol) exhibit higher reactivity that lowers their knock resistance, they are suitable for diesel engines or advanced engine concepts, such as homogeneous charge compression ignition (HCCI), where higher reactivity at lower temperatures is necessary for engine operation. The present study presents a detailedmore » kinetic model for n-pentanol based on modeling rules previously presented for n-butanol. This approach was initially validated using quantum chemistry calculations to verify the most stable n-pentanol conformation and to obtain C–H and C–C bond dissociation energies. In addition, the proposed model has been validated against ignition delay time data, speciation data from a jet-stirred reactor, and laminar flame velocity measurements. Overall, the model shows good agreement with the experiments and permits a detailed discussion of the differences between alcohols and alkanes.« less

  17. The runout of granular material: from analogue to numerical modelling

    NASA Astrophysics Data System (ADS)

    Longchamp, Celine; Caspar, Olivier; Gygax, Remo; Podladchikov, Yury; Jaboyedoff, Michel

    2014-05-01

    Rock avalanches are catastrophic events in which important granular rock masses (>106 m3) travel at velocities up to ten meters per second. The mobilized rock mass travel long distances, which in exceptional cases can reach up to tens of kilometers. Those highly destructive and uncontrollable events, give important insight to understand the interactions between the displaced masses and landscape conditions. However, as those events are not frequent, analogue and numerical modelling plays a fundamental role to better understand their behaviour. The objective of the research is to explore the propagation of rock avalanches and to compare a simple numerical model with analogue modelling. The laboratory experiments investigate the fluidlike flow of a granular mass down a slope. The flow is unconfined, following a 45° slope and spreading freely on a horizontal depositional surface. Different grainsize of calibrate material (115, 545 and 2605 μm) and substratum roughness (simulate by aluminium and sandpapers with grainsize from 16 to 425 μm) were used in order to understand their influence on the motion of a granular mass. High speed movies are recorded to analyse the behaviour of the mass during the whole experiment. The numerical model is based on the continuum mechanics approach and solving the shallow water equations. The avalanche is described from an eulerian point of view within a continuum framework as single phase of incompressible granular material following Mohr-Coulomb friction law. The combination of the fluid dynamic equation with the frictional law enables the self-channelization of the mass without any topographic constraints or special border conditions. The results obtained with the numerical model are similar to those observed with the analogue. In both cases, based on similar initial condition (slope, volume, basal friction, height of fall and initial velocity), the runout of the mass is of comparable size and the shape of the deposit matches well

  18. Isogeometric analysis: a powerful numerical tool for the elastic analysis of historical masonry arches

    NASA Astrophysics Data System (ADS)

    Cazzani, Antonio; Malagù, Marcello; Turco, Emilio

    2016-03-01

    We illustrate a numerical tool for analyzing plane arches such as those frequently used in historical masonry heritage. It is based on a refined elastic mechanical model derived from the isogeometric approach. In particular, geometry and displacements are modeled by means of non-uniform rational B-splines. After a brief introduction, outlining the basic assumptions of this approach and the corresponding modeling choices, several numerical applications to arches, which are typical of masonry structures, show the performance of this novel technique. These are discussed in detail to emphasize the advantage and potential developments of isogeometric analysis in the field of structural analysis of historical masonry buildings with complex geometries.

  19. Numerical Solution of the Extended Nernst-Planck Model.

    PubMed

    Samson; Marchand

    1999-07-01

    The main features of a numerical model aiming at predicting the drift of ions in an electrolytic solution upon a chemical potential gradient are presented. The mechanisms of ionic diffusion are described by solving the extended Nernst-Planck system of equations. The electrical coupling between the various ionic fluxes is accounted for by the Poisson equation. Furthermore, chemical activity effects are considered in the model. The whole system of nonlinear equations is solved using the finite-element method. Results yielded by the model for simple test cases are compared to those obtained using an analytical solution. Applications of the model to more complex problems are also presented and discussed. Copyright 1999 Academic Press.

  20. Modeling Nutrient Loading to Watersheds in the Great Lakes Basin: A Detailed Source Model at the Regional Scale

    NASA Astrophysics Data System (ADS)

    Luscz, E.; Kendall, A. D.; Martin, S. L.; Hyndman, D. W.

    2011-12-01

    Watershed nutrient loading models are important tools used to address issues including eutrophication, harmful algal blooms, and decreases in aquatic species diversity. Such approaches have been developed to assess the level and source of nutrient loading across a wide range of scales, yet there is typically a tradeoff between the scale of the model and the level of detail regarding the individual sources of nutrients. To avoid this tradeoff, we developed a detailed source nutrient loading model for every watershed in Michigan's lower peninsula. Sources considered include atmospheric deposition, septic tanks, waste water treatment plants, combined sewer overflows, animal waste from confined animal feeding operations and pastured animals, as well as fertilizer from agricultural, residential, and commercial sources and industrial effluents . Each source is related to readily-available GIS inputs that may vary through time. This loading model was used to assess the importance of sources and landscape factors in nutrient loading rates to watersheds, and how these have changed in recent decades. The results showed the value of detailed source inputs, revealing regional trends while still providing insight to the existence of variability at smaller scales.

  1. Adaptive Numerical Algorithms in Space Weather Modeling

    NASA Technical Reports Server (NTRS)

    Toth, Gabor; vanderHolst, Bart; Sokolov, Igor V.; DeZeeuw, Darren; Gombosi, Tamas I.; Fang, Fang; Manchester, Ward B.; Meng, Xing; Nakib, Dalal; Powell, Kenneth G.; hide

    2010-01-01

    Space weather describes the various processes in the Sun-Earth system that present danger to human health and technology. The goal of space weather forecasting is to provide an opportunity to mitigate these negative effects. Physics-based space weather modeling is characterized by disparate temporal and spatial scales as well as by different physics in different domains. A multi-physics system can be modeled by a software framework comprising of several components. Each component corresponds to a physics domain, and each component is represented by one or more numerical models. The publicly available Space Weather Modeling Framework (SWMF) can execute and couple together several components distributed over a parallel machine in a flexible and efficient manner. The framework also allows resolving disparate spatial and temporal scales with independent spatial and temporal discretizations in the various models. Several of the computationally most expensive domains of the framework are modeled by the Block-Adaptive Tree Solar wind Roe Upwind Scheme (BATS-R-US) code that can solve various forms of the magnetohydrodynamics (MHD) equations, including Hall, semi-relativistic, multi-species and multi-fluid MHD, anisotropic pressure, radiative transport and heat conduction. Modeling disparate scales within BATS-R-US is achieved by a block-adaptive mesh both in Cartesian and generalized coordinates. Most recently we have created a new core for BATS-R-US: the Block-Adaptive Tree Library (BATL) that provides a general toolkit for creating, load balancing and message passing in a 1, 2 or 3 dimensional block-adaptive grid. We describe the algorithms of BATL and demonstrate its efficiency and scaling properties for various problems. BATS-R-US uses several time-integration schemes to address multiple time-scales: explicit time stepping with fixed or local time steps, partially steady-state evolution, point-implicit, semi-implicit, explicit/implicit, and fully implicit numerical

  2. A numerically efficient finite element hydroelastic analysis. Volume 2: Implementation in NASTRAN, part 1

    NASA Technical Reports Server (NTRS)

    Coppolino, R. N.

    1974-01-01

    Details are presented of the implementation of the new formulation into NASTRAN including descriptions of the DMAP statements required for conversion of the program and details pertaining to problem definition and bulk data considerations. Details of the current 1/8-scale space shuttle external tank mathematical model, numerical results and analysis/test comparisons are also presented. The appendices include a description and listing of a FORTRAN program used to develop harmonic transformation bulk data (multipoint constraint statements) and sample bulk data information for a number of hydroelastic problems.

  3. Numerical modelling of multimode fibre-optic communication lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sidelnikov, O S; Fedoruk, M P; Sygletos, S

    The results of numerical modelling of nonlinear propagation of an optical signal in multimode fibres with a small differential group delay are presented. It is found that the dependence of the error vector magnitude (EVM) on the differential group delay can be reduced by increasing the number of ADC samples per symbol in the numerical implementation of the differential group delay compensation algorithm in the receiver. The possibility of using multimode fibres with a small differential group delay for data transmission in modern digital communication systems is demonstrated. It is shown that with increasing number of modes the strong couplingmore » regime provides a lower EVM level than the weak coupling one. (fibre-optic communication lines)« less

  4. Numerical modeling and experimental validation of thermoplastic composites induction welding

    NASA Astrophysics Data System (ADS)

    Palmieri, Barbara; Nele, Luigi; Galise, Francesco

    2018-05-01

    In this work, a numerical simulation and experimental test of the induction welding of continuous fibre-reinforced thermoplastic composites (CFRTPCs) was provided. The thermoplastic Polyamide 66 (PA66) with carbon fiber fabric was used. Using a dedicated software (JMag Designer), the influence of the fundamental process parameters such as temperature, current and holding time was investigated. In order to validate the results of the simulations, and therefore the numerical model used, experimental tests were carried out, and the temperature values measured during the tests were compared with the aid of an optical pyrometer, with those provided by the numerical simulation. The mechanical properties of the welded joints were evaluated by single lap shear tests.

  5. Numerically solving the relativistic Grad-Shafranov equation in Kerr spacetimes: numerical techniques

    NASA Astrophysics Data System (ADS)

    Mahlmann, J. F.; Cerdá-Durán, P.; Aloy, M. A.

    2018-07-01

    The study of the electrodynamics of static, axisymmetric, and force-free Kerr magnetospheres relies vastly on solutions of the so-called relativistic Grad-Shafranov equation (GSE). Different numerical approaches to the solution of the GSE have been introduced in the literature, but none of them has been fully assessed from the numerical point of view in terms of efficiency and quality of the solutions found. We present a generalization of these algorithms and give a detailed background on the algorithmic implementation. We assess the numerical stability of the implemented algorithms and quantify the convergence of the presented methodology for the most established set-ups (split-monopole, paraboloidal, BH disc, uniform).

  6. Numerically solving the relativistic Grad-Shafranov equation in Kerr spacetimes: Numerical techniques

    NASA Astrophysics Data System (ADS)

    Mahlmann, J. F.; Cerdá-Durán, P.; Aloy, M. A.

    2018-04-01

    The study of the electrodynamics of static, axisymmetric and force-free Kerr magnetospheres relies vastly on solutions of the so called relativistic Grad-Shafranov equation (GSE). Different numerical approaches to the solution of the GSE have been introduced in the literature, but none of them has been fully assessed from the numerical point of view in terms of efficiency and quality of the solutions found. We present a generalization of these algorithms and give detailed background on the algorithmic implementation. We assess the numerical stability of the implemented algorithms and quantify the convergence of the presented methodology for the most established setups (split-monopole, paraboloidal, BH-disk, uniform).

  7. Implementing a GPU-based numerical algorithm for modelling dynamics of a high-speed train

    NASA Astrophysics Data System (ADS)

    Sytov, E. S.; Bratus, A. S.; Yurchenko, D.

    2018-04-01

    This paper discusses the initiative of implementing a GPU-based numerical algorithm for studying various phenomena associated with dynamics of a high-speed railway transport. The proposed numerical algorithm for calculating a critical speed of the bogie is based on the first Lyapunov number. Numerical algorithm is validated by analytical results, derived for a simple model. A dynamic model of a carriage connected to a new dual-wheelset flexible bogie is studied for linear and dry friction damping. Numerical results obtained by CPU, MPU and GPU approaches are compared and appropriateness of these methods is discussed.

  8. A dynamic spar numerical model for passive shape change

    NASA Astrophysics Data System (ADS)

    Calogero, J. P.; Frecker, M. I.; Hasnain, Z.; Hubbard, J. E., Jr.

    2016-10-01

    A three-dimensional constraint-driven dynamic rigid-link numerical model of a flapping wing structure with compliant joints (CJs) called the dynamic spar numerical model is introduced and implemented. CJs are modeled as spherical joints with distributed mass and spring-dampers with coupled nonlinear spring and damping coefficients, which models compliant mechanisms spatially distributed in the structure while greatly reducing computation time compared to a finite element model. The constraints are established, followed by the formulation of a state model used in conjunction with a forward time integrator, an experiment to verify a rigid-link assumption and determine a flapping angle function, and finally several example runs. Modeling the CJs as coupled bi-linear springs shows the wing is able to flex more during upstroke than downstroke. Coupling the spring stiffnesses allows an angular deformation about one axis to induce an angular deformation about another axis, where the magnitude is proportional to the coupling term. Modeling both the leading edge and diagonal spars shows that the diagonal spar changes the kinematics of the leading edge spar verses only considering the leading edge spar, causing much larger axial rotations in the leading edge spar. The kinematics are very sensitive to CJ location, where moving the CJ toward the wing root causes a stronger response, and adding multiple CJs on the leading edge spar with a CJ on the diagonal spar allows the wing to deform with larger magnitude in all directions. This model lays a framework for a tool which can be used to understand flapping wing flight.

  9. High accuracy mantle convection simulation through modern numerical methods - II: realistic models and problems

    NASA Astrophysics Data System (ADS)

    Heister, Timo; Dannberg, Juliane; Gassmöller, Rene; Bangerth, Wolfgang

    2017-08-01

    Computations have helped elucidate the dynamics of Earth's mantle for several decades already. The numerical methods that underlie these simulations have greatly evolved within this time span, and today include dynamically changing and adaptively refined meshes, sophisticated and efficient solvers, and parallelization to large clusters of computers. At the same time, many of the methods - discussed in detail in a previous paper in this series - were developed and tested primarily using model problems that lack many of the complexities that are common to the realistic models our community wants to solve today. With several years of experience solving complex and realistic models, we here revisit some of the algorithm designs of the earlier paper and discuss the incorporation of more complex physics. In particular, we re-consider time stepping and mesh refinement algorithms, evaluate approaches to incorporate compressibility, and discuss dealing with strongly varying material coefficients, latent heat, and how to track chemical compositions and heterogeneities. Taken together and implemented in a high-performance, massively parallel code, the techniques discussed in this paper then allow for high resolution, 3-D, compressible, global mantle convection simulations with phase transitions, strongly temperature dependent viscosity and realistic material properties based on mineral physics data.

  10. Landslide Kinematical Analysis through Inverse Numerical Modelling and Differential SAR Interferometry

    NASA Astrophysics Data System (ADS)

    Castaldo, R.; Tizzani, P.; Lollino, P.; Calò, F.; Ardizzone, F.; Lanari, R.; Guzzetti, F.; Manunta, M.

    2015-11-01

    The aim of this paper is to propose a methodology to perform inverse numerical modelling of slow landslides that combines the potentialities of both numerical approaches and well-known remote-sensing satellite techniques. In particular, through an optimization procedure based on a genetic algorithm, we minimize, with respect to a proper penalty function, the difference between the modelled displacement field and differential synthetic aperture radar interferometry (DInSAR) deformation time series. The proposed methodology allows us to automatically search for the physical parameters that characterize the landslide behaviour. To validate the presented approach, we focus our analysis on the slow Ivancich landslide (Assisi, central Italy). The kinematical evolution of the unstable slope is investigated via long-term DInSAR analysis, by exploiting about 20 years of ERS-1/2 and ENVISAT satellite acquisitions. The landslide is driven by the presence of a shear band, whose behaviour is simulated through a two-dimensional time-dependent finite element model, in two different physical scenarios, i.e. Newtonian viscous flow and a deviatoric creep model. Comparison between the model results and DInSAR measurements reveals that the deviatoric creep model is more suitable to describe the kinematical evolution of the landslide. This finding is also confirmed by comparing the model results with the available independent inclinometer measurements. Our analysis emphasizes that integration of different data, within inverse numerical models, allows deep investigation of the kinematical behaviour of slow active landslides and discrimination of the driving forces that govern their deformation processes.

  11. Experimental And Numerical Investigation Of Aerothermal Characteristics Of The IXV Hypersonic Vehicle

    NASA Astrophysics Data System (ADS)

    Paris, S.; Charbonnier, D.; Tran, D.

    2011-05-01

    The main results of the aerothermodynamic hypersonic characterization of Intermediate eXperimental Vehicle (IXV), by means of both CFD simulations and wind tunnel measurements, have been reported and analyzed. In the framework of ESA FLPP Program, the VKI (Von Karman Institute) was in charge of an experimental test campaign for the consolidation of the aerothermal database in cold hypersonic regime. The tests campaign has been carried out at VKI Free Piston Longshot wind tunnel at mach 14. The numerical simulations have been performed for VKI wind tunnel conditions by CFSE with the in-house NSMB flow solver (Navier-Stokes Multi-Blocks 3D), the goal being to support the procedure of extrapolation-to-flight of the measurements and the general aerothermal characterization. Laminar, transitional and fully turbulent flows have been computed, with air considered as an ideal gas, for the wind tunnel tests numerical rebuilding. A detailed comparison of all measured and predicted hypersonic relevant phenomena and parameters (surface pressure and heat flux) is reported in the paper, together with a detailed description of configuration, freestream conditions, model attitude effects and flap deflection effect. The detailed analyze of the experimental and numerical data gives information on the nature of the flow on the body and on the flaps for the most critical configuration

  12. Reevaluating the two-representation model of numerical magnitude processing.

    PubMed

    Jiang, Ting; Zhang, Wenfeng; Wen, Wen; Zhu, Haiting; Du, Han; Zhu, Xiangru; Gao, Xuefei; Zhang, Hongchuan; Dong, Qi; Chen, Chuansheng

    2016-01-01

    One debate in mathematical cognition centers on the single-representation model versus the two-representation model. Using an improved number Stroop paradigm (i.e., systematically manipulating physical size distance), in the present study we tested the predictions of the two models for number magnitude processing. The results supported the single-representation model and, more importantly, explained how a design problem (failure to manipulate physical size distance) and an analytical problem (failure to consider the interaction between congruity and task-irrelevant numerical distance) might have contributed to the evidence used to support the two-representation model. This study, therefore, can help settle the debate between the single-representation and two-representation models.

  13. A SPATIO-TEMPORAL DOWNSCALER FOR OUTPUT FROM NUMERICAL MODELS

    EPA Science Inventory

    Often, in environmental data collection, data arise from two sources: numerical models and monitoring networks. The first source provides predictions at the level of grid cells, while the second source gives measurements at points. The first is characterized by full spatial cove...

  14. Seismic behavior of an Italian Renaissance Sanctuary: Damage assessment by numerical modelling

    NASA Astrophysics Data System (ADS)

    Clementi, Francesco; Nespeca, Andrea; Lenci, Stefano

    2016-12-01

    The paper deals with modelling and analysis of architectural heritage through the discussion of an illustrative case study: the Medieval Sanctuary of Sant'Agostino (Offida, Italy). Using the finite element technique, a 3D numerical model of the sanctuary is built, and then used to identify the main sources of the damages. The work shows that advanced numerical analyses could offer significant information for the understanding of the causes of existing damage and, more generally, on the seismic vulnerability.

  15. Numerical Implementation of the Cohesive Soil Bounding Surface Plasticity Model. Volume I.

    DTIC Science & Technology

    1983-02-01

    AD-R24 866 NUMERICAL IMPLEMENTATION OF THE COHESIVE SOIL BOUNDING 1/2 SURFACE PLASTICITY ..(U) CALIFORNIA UNIV DAVIS DEPT OF CIVIL ENGINEERING L R...a study of various numerical means for implementing the bounding surface plasticity model for cohesive soils is presented. A comparison is made of... Plasticity Models 17 3.4 Selection Of Methods For Comparison 17 3.5 Theory 20 3.5.1 Solution Methods 20 3.5.2 Reduction Of The Number Of Equation

  16. A numerical and experimental study of confined swirling jets

    NASA Technical Reports Server (NTRS)

    Nikjooy, M.; Mongia, H. C.; Samuelsen, G. S.; Mcdonell, V. G.

    1989-01-01

    A numerical and experimental study of a confined strong swirling flow is presented. Detailed velocity measurements are made using a two-component laser Doppler velocimeter (LDV) technique. Computations are performed using a differential second-moment (DSM) closure. The effect of inlet dissipation rate on calculated mean and turbulence fields is investigated. Various model constants are employed in the pressure-strain model to demonstrate their influences on the predicted results. Finally, comparison of the DSM calculations with the algebraic second-monent (ASM) closure results shows that the DSM is better suited for complex swirling flow analysis.

  17. Detailed and reduced chemical-kinetic descriptions for hydrocarbon combustion

    NASA Astrophysics Data System (ADS)

    Petrova, Maria V.

    Numerical and theoretical studies of autoignition processes of fuels such as propane are in need of realistic simplified chemical-kinetic descriptions that retain the essential features of the detailed descriptions. These descriptions should be computationally feasible and cost-effective. Such descriptions are useful for investigating ignition processes that occur, for example, in homogeneous-charge compression-ignition engines, for studying the structures and dynamics of detonations and in fields such as multi-dimensional Computational Fluid Dynamics (CFD). Reduced chemistry has previously been developed successfully for a number of other hydrocarbon fuels, however, propane has not been considered in this manner. This work focuses on the fuels of propane, as well propene, allene and propyne, for several reasons. The ignition properties of propane resemble those of other higher hydrocarbons but are different from those of the lower hydrocarbons (e.g. ethylene and acetylene). Propane, therefore, may be the smallest hydrocarbon that is representative of higher hydrocarbons in ignition and detonation processes. Since the overall activation energy and ignition times for propane are similar to those of other higher hydrocarbons, including liquid fuels that are suitable for many applications, propane has been used as a model fuel for several numerical and experimental studies. The reason for studying elementary chemistry of propene and C3H4 (allene or propyne) is that during the combustion process, propane breaks down to propene and C3H4 before proceeding to products. Similarly, propene combustion includes C3H4 chemistry. In studying propane combustion, it is therefore necessary to understand the underlying combustion chemistry of propene as well as C3H 4. The first part of this thesis focuses on obtaining and testing a detailed chemical-kinetic description for autoignition of propane, propene and C 3H4, by comparing predictions obtained with this detailed mechanism

  18. Detailed Modeling and Analysis of the CPFM Dataset

    NASA Technical Reports Server (NTRS)

    Swartz, William H.; Lloyd, Steven A.; DeMajistre, Robert

    2004-01-01

    A quantitative understanding of photolysis rate coefficients (or "j-values") is essential to determining the photochemical reaction rates that define ozone loss and other crucial processes in the atmosphere. j-Values can be calculated with radiative transfer models, derived from actinic flux observations, or inferred from trace gas measurements. The principal objective of this study is to cross-validate j-values from the Composition and Photodissociative Flux Measurement (CPFM) instrument during the Photochemistry of Ozone Loss in the Arctic Region In Summer (POLARIS) and SAGE I11 Ozone Loss and Validation Experiment (SOLVE) field campaigns with model calculations and other measurements and to use this detailed analysis to improve our ability to determine j-values. Another objective is to analyze the spectral flux from the CPFM (not just the j-values) and, using a multi-wavelength/multi-species spectral fitting technique, determine atmospheric composition.

  19. Detailed modeling analysis for soot formation and radiation in microgravity gas jet diffusion flames

    NASA Technical Reports Server (NTRS)

    Ku, Jerry C.; Tong, LI; Greenberg, Paul S.

    1995-01-01

    Radiation heat transfer in combustion systems has been receiving increasing interest. In the case of hydrocarbon fuels, a significant portion of the radiation comes from soot particles, justifying the need for detailed soot formation model and radiation transfer calculations. For laminar gas jet diffusion flames, results from this project (4/1/91 8/22/95) and another NASA study show that flame shape, soot concentration, and radiation heat fluxes are substantially different under microgravity conditions. Our emphasis is on including detailed soot transport models and a detailed solution for radiation heat transfer, and on coupling them with the flame structure calculations. In this paper, we will discuss the following three specific areas: (1) Comparing two existing soot formation models, and identifying possible improvements; (2) A simple yet reasonably accurate approach to calculating total radiative properties and/or fluxes over the spectral range; and (3) Investigating the convergence of iterations between the flame structure solver and the radiation heat transfer solver.

  20. Numerical modeling of transverse mode competition in strongly pumped multimode fiber lasers and amplifiers.

    PubMed

    Gong, Mali; Yuan, Yanyang; Li, Chen; Yan, Ping; Zhang, Haitao; Liao, Suying

    2007-03-19

    A model based on propagation-rate equations with consideration of transverse gain distribution is built up to describe the transverse mode competition in strongly pumped multimode fiber lasers and amplifiers. An approximate practical numerical algorithm by multilayer method is presented. Based on the model and the numerical algorithm, the behaviors of multitransverse mode competition are demonstrated and individual transverse modes power distributions of output are simulated numerically for both fiber lasers and amplifiers under various conditions.

  1. Real time wave forecasting using wind time history and numerical model

    NASA Astrophysics Data System (ADS)

    Jain, Pooja; Deo, M. C.; Latha, G.; Rajendran, V.

    Operational activities in the ocean like planning for structural repairs or fishing expeditions require real time prediction of waves over typical time duration of say a few hours. Such predictions can be made by using a numerical model or a time series model employing continuously recorded waves. This paper presents another option to do so and it is based on a different time series approach in which the input is in the form of preceding wind speed and wind direction observations. This would be useful for those stations where the costly wave buoys are not deployed and instead only meteorological buoys measuring wind are moored. The technique employs alternative artificial intelligence approaches of an artificial neural network (ANN), genetic programming (GP) and model tree (MT) to carry out the time series modeling of wind to obtain waves. Wind observations at four offshore sites along the east coast of India were used. For calibration purpose the wave data was generated using a numerical model. The predicted waves obtained using the proposed time series models when compared with the numerically generated waves showed good resemblance in terms of the selected error criteria. Large differences across the chosen techniques of ANN, GP, MT were not noticed. Wave hindcasting at the same time step and the predictions over shorter lead times were better than the predictions over longer lead times. The proposed method is a cost effective and convenient option when a site-specific information is desired.

  2. Automated smoother for the numerical decoupling of dynamics models.

    PubMed

    Vilela, Marco; Borges, Carlos C H; Vinga, Susana; Vasconcelos, Ana Tereza R; Santos, Helena; Voit, Eberhard O; Almeida, Jonas S

    2007-08-21

    Structure identification of dynamic models for complex biological systems is the cornerstone of their reverse engineering. Biochemical Systems Theory (BST) offers a particularly convenient solution because its parameters are kinetic-order coefficients which directly identify the topology of the underlying network of processes. We have previously proposed a numerical decoupling procedure that allows the identification of multivariate dynamic models of complex biological processes. While described here within the context of BST, this procedure has a general applicability to signal extraction. Our original implementation relied on artificial neural networks (ANN), which caused slight, undesirable bias during the smoothing of the time courses. As an alternative, we propose here an adaptation of the Whittaker's smoother and demonstrate its role within a robust, fully automated structure identification procedure. In this report we propose a robust, fully automated solution for signal extraction from time series, which is the prerequisite for the efficient reverse engineering of biological systems models. The Whittaker's smoother is reformulated within the context of information theory and extended by the development of adaptive signal segmentation to account for heterogeneous noise structures. The resulting procedure can be used on arbitrary time series with a nonstationary noise process; it is illustrated here with metabolic profiles obtained from in-vivo NMR experiments. The smoothed solution that is free of parametric bias permits differentiation, which is crucial for the numerical decoupling of systems of differential equations. The method is applicable in signal extraction from time series with nonstationary noise structure and can be applied in the numerical decoupling of system of differential equations into algebraic equations, and thus constitutes a rather general tool for the reverse engineering of mechanistic model descriptions from multivariate experimental

  3. Climate Prediction for Brazil's Nordeste: Performance of Empirical and Numerical Modeling Methods.

    NASA Astrophysics Data System (ADS)

    Moura, Antonio Divino; Hastenrath, Stefan

    2004-07-01

    Comparisons of performance of climate forecast methods require consistency in the predictand and a long common reference period. For Brazil's Nordeste, empirical methods developed at the University of Wisconsin use preseason (October January) rainfall and January indices of the fields of meridional wind component and sea surface temperature (SST) in the tropical Atlantic and the equatorial Pacific as input to stepwise multiple regression and neural networking. These are used to predict the March June rainfall at a network of 27 stations. An experiment at the International Research Institute for Climate Prediction, Columbia University, with a numerical model (ECHAM4.5) used global SST information through February to predict the March June rainfall at three grid points in the Nordeste. The predictands for the empirical and numerical model forecasts are correlated at +0.96, and the period common to the independent portion of record of the empirical prediction and the numerical modeling is 1968 99. Over this period, predicted versus observed rainfall are evaluated in terms of correlation, root-mean-square error, absolute error, and bias. Performance is high for both approaches. Numerical modeling produces a correlation of +0.68, moderate errors, and strong negative bias. For the empirical methods, errors and bias are small, and correlations of +0.73 and +0.82 are reached between predicted and observed rainfall.


  4. Comments of statistical issue in numerical modeling for underground nuclear test monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicholson, W.L.; Anderson, K.K.

    1993-03-01

    The Symposium concluded with prepared summaries by four experts in the involved disciplines. These experts made no mention of statistics and/or the statistical content of issues. The first author contributed an extemporaneous statement at the Symposium because there are important issues associated with conducting and evaluating numerical modeling that are familiar to statisticians and often treated successfully by them. This note expands upon these extemporaneous remarks. Statistical ideas may be helpful in resolving some numerical modeling issues. Specifically, we comment first on the role of statistical design/analysis in the quantification process to answer the question ``what do we know aboutmore » the numerical modeling of underground nuclear tests?`` and second on the peculiar nature of uncertainty analysis for situations involving numerical modeling. The simulations described in the workshop, though associated with topic areas, were basically sets of examples. Each simulation was tuned towards agreeing with either empirical evidence or an expert`s opinion of what empirical evidence would be. While the discussions were reasonable, whether the embellishments were correct or a forced fitting of reality is unclear and illustrates that ``simulation is easy.`` We also suggest that these examples of simulation are typical and the questions concerning the legitimacy and the role of knowing the reality are fair, in general, with respect to simulation. The answers will help us understand why ``prediction is difficult.``« less

  5. Three-dimensional representation of the human cochlea using micro-computed tomography data: presenting an anatomical model for further numerical calculations.

    PubMed

    Braun, Katharina; Böhnke, Frank; Stark, Thomas

    2012-06-01

    We present a complete geometric model of the human cochlea, including the segmentation and reconstruction of the fluid-filled chambers scala tympani and scala vestibuli, the lamina spiralis ossea and the vibrating structure (cochlear partition). Future fluid-structure coupled simulations require a reliable geometric model of the cochlea. The aim of this study was to present an anatomical model of the human cochlea, which can be used for further numerical calculations. Using high resolution micro-computed tomography (µCT), we obtained images of a cut human temporal bone with a spatial resolution of 5.9 µm. Images were manually segmented to obtain the three-dimensional reconstruction of the cochlea. Due to the high resolution of the µCT data, a detailed examination of the geometry of the twisted cochlear partition near the oval and the round window as well as the precise illustration of the helicotrema was possible. After reconstruction of the lamina spiralis ossea, the cochlear partition and the curved geometry of the scala vestibuli and the scala tympani were presented. The obtained data sets were exported as standard lithography (stl) files. These files represented a complete framework for future numerical simulations of mechanical (acoustic) wave propagation on the cochlear partition in the form of mathematical mechanical cochlea models. Additional quantitative information concerning heights, lengths and volumes of the scalae was found and compared with previous results.

  6. Numerical modeling of polar mesocyclones generation mechanisms

    NASA Astrophysics Data System (ADS)

    Sergeev, Dennis; Stepanenko, Victor

    2013-04-01

    parameters, lateral boundary conditions are varied in the typically observed range. The approach is fully nonlinear: we use a three-dimensional non-hydrostatic mesoscale model NH3D_MPI [1] coupled with one-dimensional water body model LAKE. A key method used in the present study is the analysis of eddy kinetic and available potential energy budgets. References 1. Mikushin, D.N., and Stepanenko, V.M., The implementation of regional atmospheric model numerical algorithms for CBEA-based clusters. Lecture Notes in Computer Science, Parallel Processing and Applied Mathematics, 2010, vol. 6067, p. 525-534. 2. Rasmussen, E., and Turner, J. (eds), Polar Lows: Mesoscale Weather Systems in the Polar Regions. Cambridge: Cambridge University Press, 2003, 612 pp. 3. Yanase, W., and Niino, H., Dependence of Polar Low Development on Baroclinicity and Physical Processes: An Idealized High-Resolution Experiment, J. Atmos. Sci., 2006, vol. 64, p. 3044-3067.

  7. A Numerical Model of Anisotropic Mass Transport Through Grain Boundary Networks

    NASA Astrophysics Data System (ADS)

    Wang, Yibo

    Tin (Sn) thin films are commonly used in electronic circuit applications as coatings on contacts and solders for joining components. It is widely observed, for some such system, that whiskers---long, thin crystalline structures---emerge and grow from the film. The Sn whisker phenomenon has become a highly active research area since Sn whiskers have caused a large amount of damage and loss in manufacturing, military, medical and power industries. Though lead (Pb) addition to Sn has been used to solve this problem for over five decades, the adverse environmental and health effects of Pb have motivated legislation to severely constrain Pb use in society. People are researching and seeking the reasons which cause whiskers and corresponding methods to solve the problem. The contributing factors to cause a Sn whisker are potentially many and much still remains unknown. Better understanding of fundamental driving forces should point toward strategies to improve (a) the accuracy with which we can predict whisker formation, and (b) our ability to mitigate the phenomenon. This thesis summarizes recent important research achievements in understanding Sn whisker formation and growth, both experimentally and theoretically. Focus is then placed on examining the role that anisotropy in grain boundary diffusivity plays in determining whisker characteristics (specifically, whether they form and, if so, where on a surface). To study this aspect of the problem and to enable future studies on stress driven grain boundary diffusion, this thesis presents a numerical anisotropic mass transport model. In addition to presenting details of the model and implementation, model predictions for a set of increasingly complex grain boundary networks are discussed. Preliminary results from the model provide evidence that anisotropic grain boundary diffusion may be a primary driving mechanism in whisker formation.

  8. Numerical Modelling of Solitary Wave Experiments on Rubble Mound Breakwaters

    NASA Astrophysics Data System (ADS)

    Guler, H. G.; Arikawa, T.; Baykal, C.; Yalciner, A. C.

    2016-12-01

    Performance of a rubble mound breakwater protecting Haydarpasa Port, Turkey, has been tested under tsunami attack by physical model tests conducted at Port and Airport Research Institute (Guler et al, 2015). It is aimed to understand dynamic force of the tsunami by conducting solitary wave tests (Arikawa, 2015). In this study, the main objective is to perform numerical modelling of solitary wave tests in order to verify accuracy of the CFD model IHFOAM, developed in OpenFOAM environment (Higuera et al, 2013), by comparing results of the numerical computations with the experimental results. IHFOAM is the numerical modelling tool which is based on VARANS equations with a k-ω SST turbulence model including realistic wave generation, and active wave absorption. Experiments are performed using a Froude scale of 1/30, measuring surface elevation and flow velocity at several locations in the wave channel, and wave pressure around the crown wall of the breakwater. Solitary wave tests with wave heights of H=7.5 cm and H=10 cm are selected which represent the results of the experiments. The first test (H=7.5 cm) is the case that resulted in no damage whereas the second case (H=10 cm) resulted in total damage due to the sliding of the crown wall. After comparison of the preliminary results of numerical simulations with experimental data for both cases, it is observed that solitary wave experiments could be accurately modeled using IHFOAM focusing water surface elevations, flow velocities, and wave pressures on the crown wall of the breakwater (Figure, result of sim. at t=29.6 sec). ACKNOWLEDGEMENTSThe authors acknowledge developers of IHFOAM, further extend their acknowledgements for the partial supports from the research projects MarDiM, ASTARTE, RAPSODI, and TUBITAK 213M534. REFERENCESArikawa (2015) "Consideration of Characteristics of Pressure on Seawall by Solitary Waves Based on Hydraulic Experiments", Jour. of Japan. Soc. of Civ. Eng. Ser. B2 (Coast. Eng.), Vol 71, p I

  9. A numerical study of mixing in supersonic combustors with hypermixing injectors

    NASA Technical Reports Server (NTRS)

    Lee, J.

    1993-01-01

    A numerical study was conducted to evaluate the performance of wall mounted fuel-injectors designed for potential Supersonic Combustion Ramjet (SCRAM-jet) engine applications. The focus of this investigation was to numerically simulate existing combustor designs for the purpose of validating the numerical technique and the physical models developed. Three different injector designs of varying complexity were studied to fully understand the computational implications involved in accurate predictions. A dual transverse injection system and two streamwise injector designs were studied. The streamwise injectors were designed with swept ramps to enhance fuel-air mixing and combustion characteristics at supersonic speeds without the large flow blockage and drag contribution of the transverse injection system. For this study, the Mass-Average Navier-Stokes equations and the chemical species continuity equations were solved. The computations were performed using a finite-volume implicit numerical technique and multiple block structured grid system. The interfaces of the multiple block structured grid systems were numerically resolved using the flux-conservative technique. Detailed comparisons between the computations and existing experimental data are presented. These comparisons show that numerical predictions are in agreement with the experimental data. These comparisons also show that a number of turbulence model improvements are needed for accurate combustor flowfield predictions.

  10. A numerical study of mixing in supersonic combustors with hypermixing injectors

    NASA Technical Reports Server (NTRS)

    Lee, J.

    1992-01-01

    A numerical study was conducted to evaluate the performance of wall mounted fuel-injectors designed for potential Supersonic Combustion Ramjet (SCRAM-jet) engine applications. The focus of this investigation was to numerically simulate existing combustor designs for the purpose of validating the numerical technique and the physical models developed. Three different injector designs of varying complexity were studied to fully understand the computational implications involved in accurate predictions. A dual transverse injection system and two streamwise injector designs were studied. The streamwise injectors were designed with swept ramps to enhance fuel-air mixing and combustion characteristics at supersonic speeds without the large flow blockage and drag contribution of the transverse injection system. For this study, the Mass-Averaged Navier-Stokes equations and the chemical species continuity equations were solved. The computations were performed using a finite-volume implicit numerical technique and multiple block structured grid system. The interfaces of the multiple block structured grid systems were numerically resolved using the flux-conservative technique. Detailed comparisons between the computations and existing experimental data are presented. These comparisons show that numerical predictions are in agreement with the experimental data. These comparisons also show that a number of turbulence model improvements are needed for accurate combustor flowfield predictions.

  11. Landslide-generated tsunamis in a perialpine lake: Historical events and numerical models

    NASA Astrophysics Data System (ADS)

    Hilbe, Michael; Anselmetti, Flavio S.

    2014-05-01

    Many of the perialpine lakes in Central Europe - the large, glacier-carved basins formed during the Pleistocene glaciations of the Alps - have proven to be environments prone to subaquatic landsliding. Among these, Lake Lucerne (Switzerland) has a particularly well-established record of subaquatic landslides and related tsunamis. Its sedimentary archive documents numerous landslides over the entire Holocene, which have either been triggered by earthquakes, or which occurred apparently spontaneously, possibly due to rapid sediment accumulation on delta slopes. Due to their controlled boundary conditions and the possibility to be investigated on a complete basinal scale, such lacustrine tsunamis may be used as textbook analogons for their marine counterparts. Two events in the 17th century illustrate these processes and their consequences: In AD 1601, an earthquake (Mw ~ 5.9) led to widespread failure of the sediment drape covering the lateral slopes in several basins. The resulting landslides generated tsunami waves that reached a runup of several metres, as reported in historical accounts. The waves caused widespread damage as well as loss of lives in communities along the shores. In AD 1687, the apparently spontaneous collapse of a river delta in the lake led to similar waves that damaged nearby villages. Based on detailed information on topography, bathymetry and the geometry of the landslide deposits, numerical simulations combining two-dimensional, depth-averaged models for landslide propagation, as well as for tsunami generation, propagation and inundation, are able to reproduce most of the reported tsunami effects for these events. Calculated maximum runup of the waves is 6 to >10 m in the directly affected lake basins, but significantly less in neighbouring basins. Flat alluvial plains adjacent to the most heavily affected areas are inundated over distances of several hundred metres. Taken as scenarios for possible future events, these past events suggest

  12. Improving the seismic small-scale modelling by comparison with numerical methods

    NASA Astrophysics Data System (ADS)

    Pageot, Damien; Leparoux, Donatienne; Le Feuvre, Mathieu; Durand, Olivier; Côte, Philippe; Capdeville, Yann

    2017-10-01

    The potential of experimental seismic modelling at reduced scale provides an intermediate step between numerical tests and geophysical campaigns on field sites. Recent technologies such as laser interferometers offer the opportunity to get data without any coupling effects. This kind of device is used in the Mesures Ultrasonores Sans Contact (MUSC) measurement bench for which an automated support system makes possible to generate multisource and multireceivers seismic data at laboratory scale. Experimental seismic modelling would become a great tool providing a value-added stage in the imaging process validation if (1) the experimental measurement chain is perfectly mastered, and thus if the experimental data are perfectly reproducible with a numerical tool, as well as if (2) the effective source is reproducible along the measurement setup. These aspects for a quantitative validation concerning devices with piezoelectrical sources and a laser interferometer have not been yet quantitatively studied in published studies. Thus, as a new stage for the experimental modelling approach, these two key issues are tackled in the proposed paper in order to precisely define the quality of the experimental small-scale data provided by the bench MUSC, which are available in the scientific community. These two steps of quantitative validation are dealt apart any imaging techniques in order to offer the opportunity to geophysicists who want to use such data (delivered as free data) of precisely knowing their quality before testing any imaging technique. First, in order to overcome the 2-D-3-D correction usually done in seismic processing when comparing 2-D numerical data with 3-D experimental measurement, we quantitatively refined the comparison between numerical and experimental data by generating accurate experimental line sources, avoiding the necessity of geometrical spreading correction for 3-D point-source data. The comparison with 2-D and 3-D numerical modelling is based on

  13. Effects of artificial hypolimnetic oxygenation in a shallow lake. Part 2: numerical modelling.

    PubMed

    Toffolon, Marco; Serafini, Michele

    2013-01-15

    A three-dimensional numerical model is used to simulate the thermal destratification caused by hypolimnetic jets releasing oxygen-rich water for lake restoration. Focussing on the case study described in the companion paper (Toffolon et al., 2013), i.e. the small, relatively shallow Lake Serraia (Trentino, Italy), a specific simplified sub-grid model is developed in the numerical model to reproduce jet entrainment with reduced computational costs, with the aim to simulate the whole lake dynamics along several weeks. The noticeable agreement between numerical results and available measurements suggests that the model can be used to understand the main effects of the hypolimnetic oxygenation in different scenarios. Therefore, different options can be evaluated and guidelines can be proposed for lake management, with the aim to preserve the typical thermal stratification while providing sufficient oxygen mass to proceed with the restoration phase. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Numerical modeling of bubble dynamics in viscoelastic media with relaxation

    NASA Astrophysics Data System (ADS)

    Warnez, M. T.; Johnsen, E.

    2015-06-01

    Cavitation occurs in a variety of non-Newtonian fluids and viscoelastic materials. The large-amplitude volumetric oscillations of cavitation bubbles give rise to high temperatures and pressures at collapse, as well as induce large and rapid deformation of the surroundings. In this work, we develop a comprehensive numerical framework for spherical bubble dynamics in isotropic media obeying a wide range of viscoelastic constitutive relationships. Our numerical approach solves the compressible Keller-Miksis equation with full thermal effects (inside and outside the bubble) when coupled to a highly generalized constitutive relationship (which allows Newtonian, Kelvin-Voigt, Zener, linear Maxwell, upper-convected Maxwell, Jeffreys, Oldroyd-B, Giesekus, and Phan-Thien-Tanner models). For the latter two models, partial differential equations (PDEs) must be solved in the surrounding medium; for the remaining models, we show that the PDEs can be reduced to ordinary differential equations. To solve the general constitutive PDEs, we present a Chebyshev spectral collocation method, which is robust even for violent collapse. Combining this numerical approach with theoretical analysis, we simulate bubble dynamics in various viscoelastic media to determine the impact of relaxation time, a constitutive parameter, on the associated physics. Relaxation time is found to increase bubble growth and permit rebounds driven purely by residual stresses in the surroundings. Different regimes of oscillations occur depending on the relaxation time.

  15. Numerical modeling of bubble dynamics in viscoelastic media with relaxation

    PubMed Central

    Warnez, M. T.; Johnsen, E.

    2015-01-01

    Cavitation occurs in a variety of non-Newtonian fluids and viscoelastic materials. The large-amplitude volumetric oscillations of cavitation bubbles give rise to high temperatures and pressures at collapse, as well as induce large and rapid deformation of the surroundings. In this work, we develop a comprehensive numerical framework for spherical bubble dynamics in isotropic media obeying a wide range of viscoelastic constitutive relationships. Our numerical approach solves the compressible Keller–Miksis equation with full thermal effects (inside and outside the bubble) when coupled to a highly generalized constitutive relationship (which allows Newtonian, Kelvin–Voigt, Zener, linear Maxwell, upper-convected Maxwell, Jeffreys, Oldroyd-B, Giesekus, and Phan-Thien-Tanner models). For the latter two models, partial differential equations (PDEs) must be solved in the surrounding medium; for the remaining models, we show that the PDEs can be reduced to ordinary differential equations. To solve the general constitutive PDEs, we present a Chebyshev spectral collocation method, which is robust even for violent collapse. Combining this numerical approach with theoretical analysis, we simulate bubble dynamics in various viscoelastic media to determine the impact of relaxation time, a constitutive parameter, on the associated physics. Relaxation time is found to increase bubble growth and permit rebounds driven purely by residual stresses in the surroundings. Different regimes of oscillations occur depending on the relaxation time. PMID:26130967

  16. Numerical and experimental modelling of the radial compressor stage

    NASA Astrophysics Data System (ADS)

    Syka, Tomáš; Matas, Richard; LuÅáček, Ondřej

    2016-06-01

    This article deals with the description of the numerical and experimental model of the new compressor stage designed for process centrifugal compressors. It's the first member of the new stages family developed to achieve the state of the art thermodynamic parameters. This stage (named RTK01) is designed for high flow coefficient with 3D shaped impeller blades. Some interesting findings were gained during its development. The article is focused mainly on some interesting aspects of the development methodology and numerical simulations improvement, not on the specific stage properties. Conditions and experimental equipment, measured results and their comparison with ANSYS CFX and NUMECA FINE/Turbo CFD simulations are described.

  17. Experimental and numerical studies of burning velocities and kinetic modeling for practical and surrogate fuels

    NASA Astrophysics Data System (ADS)

    Zhao, Zhenwei

    To help understand the fuel oxidation process in practical combustion environments, laminar flame speeds and high temperature chemical kinetic models were studied for several practical fuels and "surrogate" fuels, such as propane, dimethyl ether (DME), and primary reference fuel (PRF) mixtures, gasoline and n-decane. The PIV system developed for the present work is described. The general principles for PIV measurements are outlined and the specific considerations are also reported. Laminar flame speeds were determined for propane/air over a range of equivalence ratios at initial temperature of 298 K, 500 K and 650 K and atmospheric pressure. Several data sets for propane/air laminar flame speeds with N 2 dilution are also reported. These results are compared to the literature data collected at the same conditions. The propane flame speed is also numerically calculated with a detailed kinetic model and multi component diffusion, including Soret effects. This thesis also presents experimentally determined laminar flame speeds for primary reference fuel (PRF) mixtures of n-heptane/iso-octane and real gasoline fuel at different initial temperature and at atmospheric pressure. Nitrogen dilution effects on the laminar flame speed are also studied for selected equivalence ratios at the same conditions. A minimization of detailed kinetic model for PRF mixtures on laminar flame speed conditions was performed and the measured flame speeds were compared with numerical predictions using this model. The measured laminar flame speeds of n-decane/air mixtures at 500 K and at atmospheric pressure with and without dilution were determined. The measured flame speeds are significantly different that those predicted using existing published kinetic models, including a model validated previously against high temperature data from flow reactor, jet-stirred reactor, shock tube ignition delay, and burner stabilized flame experiments. A significant update of this model is described which

  18. Dust Storm Monitoring Using Satellite Observatory and Numerical Modeling Analysis

    NASA Astrophysics Data System (ADS)

    Taghavi, Farahnaz

    In recent years, the frequency of dust pollution events in the Iran Southwest are increased which caused huge damage and imposed a negative impacts on air quality, airport traffic and people daily life in local areas. Dust storms in this area usually start with the formation of a low-pressure center over the Arabian Peninsula. The main objectives of this study is to asses and monitor the movement of aerosols and pollutions from origin source to local areas using satellite imagery and numerical modeling analysis. Observational analyses from NCEP such as synoptic data (Uwind,Vwind,Vorticity and Divergence Fields), upper air radiosonde, measured visibility distributions, land cover data are also used in model comparisons to show differences in occurrence of dust events. The evolution and dynamics of this phenomena are studied on the based a method to modify the initial state of NWP output using discrepancies between dynamic fields and WV imagery in a grid. Results show that satellite images offers a means to control the behavior of numeric models and also the model using land cover data improving the wind-blown dust modeling.

  19. Two decades of numerical modelling to understand long term fluvial archives: Advances and future perspectives

    NASA Astrophysics Data System (ADS)

    Veldkamp, A.; Baartman, J. E. M.; Coulthard, T. J.; Maddy, D.; Schoorl, J. M.; Storms, J. E. A.; Temme, A. J. A. M.; van Balen, R.; van De Wiel, M. J.; van Gorp, W.; Viveen, W.; Westaway, R.; Whittaker, A. C.

    2017-06-01

    The development and application of numerical models to investigate fluvial sedimentary archives has increased during the last decades resulting in a sustained growth in the number of scientific publications with keywords, 'fluvial models', 'fluvial process models' and 'fluvial numerical models'. In this context we compile and review the current contributions of numerical modelling to the understanding of fluvial archives. In particular, recent advances, current limitations, previous unexpected results and future perspectives are all discussed. Numerical modelling efforts have demonstrated that fluvial systems can display non-linear behaviour with often unexpected dynamics causing significant delay, amplification, attenuation or blurring of externally controlled signals in their simulated record. Numerical simulations have also demonstrated that fluvial records can be generated by intrinsic dynamics without any change in external controls. Many other model applications demonstrate that fluvial archives, specifically of large fluvial systems, can be convincingly simulated as a function of the interplay of (palaeo) landscape properties and extrinsic climate, base level and crustal controls. All discussed models can, after some calibration, produce believable matches with real world systems suggesting that equifinality - where a given end state can be reached through many different pathways starting from different initial conditions and physical assumptions - plays an important role in fluvial records and their modelling. The overall future challenge lies in the development of new methodologies for a more independent validation of system dynamics and research strategies that allow the separation of intrinsic and extrinsic record signals using combined fieldwork and modelling.

  20. Improved numerical methods for turbulent viscous flows aerothermal modeling program, phase 2

    NASA Technical Reports Server (NTRS)

    Karki, K. C.; Patankar, S. V.; Runchal, A. K.; Mongia, H. C.

    1988-01-01

    The details of a study to develop accurate and efficient numerical schemes to predict complex flows are described. In this program, several discretization schemes were evaluated using simple test cases. This assessment led to the selection of three schemes for an in-depth evaluation based on two-dimensional flows. The scheme with the superior overall performance was incorporated in a computer program for three-dimensional flows. To improve the computational efficiency, the selected discretization scheme was combined with a direct solution approach in which the fluid flow equations are solved simultaneously rather than sequentially.

  1. Numerical solutions of the semiclassical Boltzmann ellipsoidal-statistical kinetic model equation

    PubMed Central

    Yang, Jaw-Yen; Yan, Chin-Yuan; Huang, Juan-Chen; Li, Zhihui

    2014-01-01

    Computations of rarefied gas dynamical flows governed by the semiclassical Boltzmann ellipsoidal-statistical (ES) kinetic model equation using an accurate numerical method are presented. The semiclassical ES model was derived through the maximum entropy principle and conserves not only the mass, momentum and energy, but also contains additional higher order moments that differ from the standard quantum distributions. A different decoding procedure to obtain the necessary parameters for determining the ES distribution is also devised. The numerical method in phase space combines the discrete-ordinate method in momentum space and the high-resolution shock capturing method in physical space. Numerical solutions of two-dimensional Riemann problems for two configurations covering various degrees of rarefaction are presented and various contours of the quantities unique to this new model are illustrated. When the relaxation time becomes very small, the main flow features a display similar to that of ideal quantum gas dynamics, and the present solutions are found to be consistent with existing calculations for classical gas. The effect of a parameter that permits an adjustable Prandtl number in the flow is also studied. PMID:25104904

  2. The effect of numerical methods on the simulation of mid-ocean ridge hydrothermal models

    NASA Astrophysics Data System (ADS)

    Carpio, J.; Braack, M.

    2012-01-01

    This work considers the effect of the numerical method on the simulation of a 2D model of hydrothermal systems located in the high-permeability axial plane of mid-ocean ridges. The behavior of hot plumes, formed in a porous medium between volcanic lava and the ocean floor, is very irregular due to convective instabilities. Therefore, we discuss and compare two different numerical methods for solving the mathematical model of this system. In concrete, we consider two ways to treat the temperature equation of the model: a semi-Lagrangian formulation of the advective terms in combination with a Galerkin finite element method for the parabolic part of the equations and a stabilized finite element scheme. Both methods are very robust and accurate. However, due to physical instabilities in the system at high Rayleigh number, the effect of the numerical method is significant with regard to the temperature distribution at a certain time instant. The good news is that relevant statistical quantities remain relatively stable and coincide for the two numerical schemes. The agreement is larger in the case of a mathematical model with constant water properties. In the case of a model with nonlinear dependence of the water properties on the temperature and pressure, the agreement in the statistics is clearly less pronounced. Hence, the presented work accentuates the need for a strengthened validation of the compatibility between numerical scheme (accuracy/resolution) and complex (realistic/nonlinear) models.

  3. Numerical Modeling of Electromagnetic Radiation Within a Particulate Medium.

    NASA Astrophysics Data System (ADS)

    Noe Dobrea, E. Z.

    2017-12-01

    Numerical modeling of electromagnetic radiation with a particulate medium. Understanding the effect of particulate media and coatings on electromagnetic radiation is key to understanding the effects of multiple scattering on the spectra of geologic materials. Multiple radiative transfer theories have been developed that provide a good approximation to these effects [1,2]. However, approximations regarding particle size, distribution, shape, and other parameters need to be made and in some cases, the theory is limited to specific geometries [2]. In this work, we seek to develop an numerical radiative transfer algorithm to simulate the passage of light through a particulate medium. The code allows arbitrary particle size distributions (uniform, bimodal, trimodal, composition dependent), compositions, and viewing geometries, as well as arbitrary coating thicknesses and compositions. Here, we report on the the status of our model and present comparisons of model predictions with the spectra of well-characterize minerals and mixtures. Future work will include particle size-dependent effects of diffraction as well as particle emittance due to fluorescence and Raman excitation. [1] Hapke, B. (2012). Theory of reflectance and emittance spectroscopy. Cambridge University Press, 2nd edition, 528 p. [2] Shkuratov et al. (1999) Icarus 137

  4. Numerical method based on the lattice Boltzmann model for the Fisher equation.

    PubMed

    Yan, Guangwu; Zhang, Jianying; Dong, Yinfeng

    2008-06-01

    In this paper, a lattice Boltzmann model for the Fisher equation is proposed. First, the Chapman-Enskog expansion and the multiscale time expansion are used to describe higher-order moment of equilibrium distribution functions and a series of partial differential equations in different time scales. Second, the modified partial differential equation of the Fisher equation with the higher-order truncation error is obtained. Third, comparison between numerical results of the lattice Boltzmann models and exact solution is given. The numerical results agree well with the classical ones.

  5. Prize of the best thesis 2015: Study of debris discs through state-of-the-art numerical modelling

    NASA Astrophysics Data System (ADS)

    Kral, Q.; Thébault, P.

    2015-12-01

    This proceeding summarises the thesis entitled ``Study of debris discs with a new generation numerical model'' by Quentin Kral, for which he obtained the prize of the best thesis in 2015. The thesis brought major contributions to the field of debris disc modelling. The main achievement is to have created, almost ex-nihilo, the first truly self-consistent numerical model able to simultaneously follow the coupled collisional and dynamical evolutions of debris discs. Such a code has been thought as being the ``Holy Grail'' of disc modellers for the past decade, and while several codes with partial dynamics/collisions coupling have been presented, the code developed in this thesis, called ``LIDT-DD'' is the first to achieve a full coupling. The LIDT-DD model, which is the first of a new-generation of fully self-consistent debris disc models is able to handle both planetesimals and dust and create new fragments after each collision. The main idea of LIDT-DD development was to merge into one code two approaches that were so far used separately in disc modelling, that is, an N-body algorithm to investigate the dynamics, and a statistical scheme to explore the collisional evolution. This complex scheme is not straightforward to develop as there are major difficulties to overcome: 1) collisions in debris discs are highly destructive and produce clouds of small fragments after each single impact, 2) the smallest (and most numerous) of these fragments have a strongly size-dependent dynamics because of the radiation pressure, and 3) the dust usually observed in discs is precisely these smallest grains. These extreme constraints had so far prevented all previous attempts at developing self-consistent disc models to succeed. The thesis contains many examples of the use of LIDT-DD that are not yet published but the case of the collision between two asteroid-like bodies is studied in detail. In particular, LIDT-DD is able to predict the different stages that should be observed

  6. Flute-like musical instruments: A toy model investigated through numerical continuation

    NASA Astrophysics Data System (ADS)

    Terrien, Soizic; Vergez, Christophe; Fabre, Benoît

    2013-07-01

    Self-sustained musical instruments (bowed string, woodwind and brass instruments) can be modelled by nonlinear lumped dynamical systems. Among these instruments, flutes and flue organ pipes present the particularity to be modelled as a delay dynamical system. In this paper, such a system, a toy model of flute-like instruments, is studied using numerical continuation. Equilibrium and periodic solutions are explored with respect to the blowing pressure, with focus on amplitude and frequency evolutions along the different solution branches, as well as "jumps" between periodic solution branches. The influence of a second model parameter (namely the inharmonicity) on the behaviour of the system is addressed. It is shown that harmonicity plays a key role in the presence of hysteresis or quasiperiodic regime. Throughout the paper, experimental results on a real instrument are presented to illustrate various phenomena, and allow some qualitative comparisons with numerical results.

  7. Particle-in-cell numerical simulations of a cylindrical Hall thruster with permanent magnets

    NASA Astrophysics Data System (ADS)

    Miranda, Rodrigo A.; Martins, Alexandre A.; Ferreira, José L.

    2017-10-01

    The cylindrical Hall thruster (CHT) is a propulsion device that offers high propellant utilization and performance at smaller dimensions and lower power levels than traditional Hall thrusters. In this paper we present first results of a numerical model of a CHT. This model solves particle and field dynamics self-consistently using a particle-in-cell approach. We describe a number of techniques applied to reduce the execution time of the numerical simulations. The specific impulse and thrust computed from our simulations are in agreement with laboratory experiments. This simplified model will allow for a detailed analysis of different thruster operational parameters and obtain an optimal configuration to be implemented at the Plasma Physics Laboratory at the University of Brasília.

  8. Experimental & Numerical Modeling of Non-combusting Model Firebrands' Transport

    NASA Astrophysics Data System (ADS)

    Tohidi, Ali; Kaye, Nigel

    2016-11-01

    Fire spotting is one of the major mechanisms of wildfire spread. Three phases of this phenomenon are firebrand formation and break-off from burning vegetation, lofting and downwind transport of firebrands through the velocity field of the wildfire, and spot fire ignition upon landing. The lofting and downwind transport phase is modeled by conducting large-scale wind tunnel experiments. Non-combusting rod-like model firebrands with different aspect ratios are released within the velocity field of a jet in a boundary layer cross-flow that approximates the wildfire velocity field. Characteristics of the firebrand dispersion are quantified by capturing the full trajectory of the model firebrands using the developed image processing algorithm. The results show that the lofting height has a direct impact on the maximum travel distance of the model firebrands. Also, the experimental results are utilized for validation of a highly scalable coupled stochastic & parametric firebrand flight model that, couples the LES-resolved velocity field of a jet-in-nonuniform-cross-flow (JINCF) with a 3D fully deterministic 6-degrees-of-freedom debris transport model. The validation results show that the developed numerical model is capable of estimating average statistics of the firebrands' flight. Authors would like to thank support of the National Science Foundation under Grant No. 1200560. Also, the presenter (Ali Tohid) would like to thank Dr. Michael Gollner from the University of Maryland College Park for the conference participation support.

  9. A numerical model of gravity wave breaking and stress in the mesosphere

    NASA Technical Reports Server (NTRS)

    Schoeberl, M. R.; Strobel, D. F.; Apruzese, J. P.

    1983-01-01

    The goal of the study is to calculate numerically the deceleration and heating caused by breaking gravity waves. The effect of the radiative dissipation of the wave is included as vertical-wavelength-dependent Newtonian cooling. The parameterization for zonal deceleration is extended by breaking gravity waves (Lindzen, 1981) to include the turbulent diffusion of heat and momentum. After describing the numerical model, the numerical results are presented and compared with the parameterizations in a noninteractive model of the mean zonal wind. Attention is then given to the transport of constituents by gravity waves and the attendant turbulent zone. It is noted that if gravity wave breaking were not an intermittent process, gravity wave stresses would produce an adiabatic mesosphere with a zonal mean velocity close to the phase speed of the breaking wave.

  10. Quantitative assessment of key parameters in qualitative vulnerability methods applied in karst systems based on an integrated numerical modelling approach

    NASA Astrophysics Data System (ADS)

    Doummar, Joanna; Kassem, Assaad

    2017-04-01

    In the framework of a three-year PEER (USAID/NSF) funded project, flow in a Karst system in Lebanon (Assal) dominated by snow and semi arid conditions was simulated and successfully calibrated using an integrated numerical model (MIKE-She 2016) based on high resolution input data and detailed catchment characterization. Point source infiltration and fast flow pathways were simulated by a bypass function and a high conductive lens respectively. The approach consisted of identifying all the factors used in qualitative vulnerability methods (COP, EPIK, PI, DRASTIC, GOD) applied in karst systems and to assess their influence on recharge signals in the different hydrological karst compartments (Atmosphere, Unsaturated zone and Saturated zone) based on the integrated numerical model. These parameters are usually attributed different weights according to their estimated impact on Groundwater vulnerability. The aim of this work is to quantify the importance of each of these parameters and outline parameters that are not accounted for in standard methods, but that might play a role in the vulnerability of a system. The spatial distribution of the detailed evapotranspiration, infiltration, and recharge signals from atmosphere to unsaturated zone to saturated zone was compared and contrasted among different surface settings and under varying flow conditions (e.g., in varying slopes, land cover, precipitation intensity, and soil properties as well point source infiltration). Furthermore a sensitivity analysis of individual or coupled major parameters allows quantifying their impact on recharge and indirectly on vulnerability. The preliminary analysis yields a new methodology that accounts for most of the factors influencing vulnerability while refining the weights attributed to each one of them, based on a quantitative approach.

  11. Theoretical and Numerical Modeling of Transport of Land Use-Specific Fecal Source Identifiers

    NASA Astrophysics Data System (ADS)

    Bombardelli, F. A.; Sirikanchana, K. J.; Bae, S.; Wuertz, S.

    2008-12-01

    Microbial contamination in coastal and estuarine waters is of particular concern to public health officials. In this work, we advocate that well-formulated and developed mathematical and numerical transport models can be combined with modern molecular techniques in order to predict continuous concentrations of microbial indicators under diverse scenarios of interest, and that they can help in source identification of fecal pollution. As a proof of concept, we present initially the theory, numerical implementation and validation of one- and two-dimensional numerical models aimed at computing the distribution of fecal source identifiers in water bodies (based on Bacteroidales marker DNA sequences) coming from different land uses such as wildlife, livestock, humans, dogs or cats. These models have been developed to allow for source identification of fecal contamination in large bodies of water. We test the model predictions using diverse velocity fields and boundary conditions. Then, we present some preliminary results of an application of a three-dimensional water quality model to address the source of fecal contamination in the San Pablo Bay (SPB), United States, which constitutes an important sub-embayment of the San Francisco Bay. The transport equations for Bacteroidales include the processes of advection, diffusion, and decay of Bacteroidales. We discuss the validation of the developed models through comparisons of numerical results with field campaigns developed in the SPB. We determine the extent and importance of the contamination in the bay for two decay rates obtained from field observations, corresponding to total host-specific Bacteroidales DNA and host-specific viable Bacteroidales cells, respectively. Finally, we infer transport conditions in the SPB based on the numerical results, characterizing the fate of outflows coming from the Napa, Petaluma and Sonoma rivers.

  12. An Object Model for a Rocket Engine Numerical Simulator

    NASA Technical Reports Server (NTRS)

    Mitra, D.; Bhalla, P. N.; Pratap, V.; Reddy, P.

    1998-01-01

    Rocket Engine Numerical Simulator (RENS) is a packet of software which numerically simulates the behavior of a rocket engine. Different parameters of the components of an engine is the input to these programs. Depending on these given parameters the programs output the behaviors of those components. These behavioral values are then used to guide the design of or to diagnose a model of a rocket engine "built" by a composition of these programs simulating different components of the engine system. In order to use this software package effectively one needs to have a flexible model of a rocket engine. These programs simulating different components then should be plugged into this modular representation. Our project is to develop an object based model of such an engine system. We are following an iterative and incremental approach in developing the model, as is the standard practice in the area of object oriented design and analysis of softwares. This process involves three stages: object modeling to represent the components and sub-components of a rocket engine, dynamic modeling to capture the temporal and behavioral aspects of the system, and functional modeling to represent the transformational aspects. This article reports on the first phase of our activity under a grant (RENS) from the NASA Lewis Research center. We have utilized Rambaugh's object modeling technique and the tool UML for this purpose. The classes of a rocket engine propulsion system are developed and some of them are presented in this report. The next step, developing a dynamic model for RENS, is also touched upon here. In this paper we will also discuss the advantages of using object-based modeling for developing this type of an integrated simulator over other tools like an expert systems shell or a procedural language, e.g., FORTRAN. Attempts have been made in the past to use such techniques.

  13. Crack propagation modelling for high strength steel welded structural details

    NASA Astrophysics Data System (ADS)

    Mecséri, B. J.; Kövesdi, B.

    2017-05-01

    Nowadays the barrier of applying HSS (High Strength Steel) material in bridge structures is their low fatigue strength related to yield strength. This paper focuses on the fatigue behaviour of a structural details (a gusset plate connection) made from NSS and HSS material, which is frequently used in bridges in Hungary. An experimental research program is carried out at the Budapest University of Technology and Economics to investigate the fatigue lifetime of this structural detail type through the same test specimens made from S235 and S420 steel grades. The main aim of the experimental research program is to study the differences in the crack propagation and the fatigue lifetime between normal and high strength steel structures. Based on the observed fatigue crack pattern the main direction and velocity of the crack propagation is determined. In parallel to the tests finite element model (FEM) are also developed, which model can handle the crack propagation. Using the measured strain data in the tests and the calculated values from the FE model, the approximation of the material parameters of the Paris law are calculated step-by-step, and their calculated values are evaluated. The same material properties are determined for NSS and also for HSS specimens as well, and the differences are discussed. In the current paper, the results of the experiments, the calculation method of the material parameters and the calculated values are introduced.

  14. Numerical simulations to the nonlinear model of interpersonal relationships with time fractional derivative

    NASA Astrophysics Data System (ADS)

    Gencoglu, Muharrem Tuncay; Baskonus, Haci Mehmet; Bulut, Hasan

    2017-01-01

    The main aim of this manuscript is to obtain numerical solutions for the nonlinear model of interpersonal relationships with time fractional derivative. The variational iteration method is theoretically implemented and numerically conducted only to yield the desired solutions. Numerical simulations of desired solutions are plotted by using Wolfram Mathematica 9. The authors would like to thank the reviewers for their comments that help improve the manuscript.

  15. Quantifying alluvial fan sensitivity to climate in Death Valley, California, from field observations and numerical models

    NASA Astrophysics Data System (ADS)

    Brooke, Sam; Whittaker, Alexander; Armitage, John; D'Arcy, Mitch; Watkins, Stephen

    2017-04-01

    A quantitative understanding of landscape sensitivity to climate change remains a key challenge in the Earth Sciences. The stream-flow deposits of coupled catchment-fan systems offer one way to decode past changes in external boundary conditions as they comprise simple, closed systems that can be represented effectively by numerical models. Here we combine the collection and analysis of grain size data on well-dated alluvial fan surfaces in Death Valley, USA, with numerical modelling to address the extent to which sediment routing systems record high-frequency, high-magnitude climate change. We compile a new database of Holocene and Late-Pleistocene grain size trends from 11 alluvial fans in Death Valley, capturing high-resolution grain size data ranging from the Recent to 100 kyr in age. We hypothesise the observed changes in average surface grain size and fining rate over time are a record of landscape response to glacial-interglacial climatic forcing. With this data we are in a unique position to test the predictions of landscape evolution models and evaluate the extent to which climate change has influenced the volume and calibre of sediment deposited on alluvial fans. To gain insight into our field data and study area, we employ an appropriately-scaled catchment-fan model that calculates an eroded volumetric sediment budget to be deposited in a subsiding basin according to mass balance where grain size trends are predicted by a self-similarity fining model. We use the model to compare predicted trends in alluvial fan stratigraphy as a function of boundary condition change for a range of model parameters and input grain size distributions. Subsequently, we perturb our model with a plausible glacial-interglacial magnitude precipitation change to estimate the requisite sediment flux needed to generate observed field grain size trends in Death Valley. Modelled fluxes are then compared with independent measurements of sediment supply over time. Our results

  16. Numerical modelling of strain in lava tubes

    NASA Astrophysics Data System (ADS)

    Merle, Olivier

    The strain within lava tubes is described in terms of pipe flow. Strain is partitioned into three components: (a) two simple shear components acting from top to bottom and from side to side of a rectangular tube in transverse section; and (b) a pure shear component corresponding to vertical shortening in a deflating flow and horizontal compression in an inflating flow. The sense of shear of the two simple shear components is reversed on either side of a central zone of no shear. Results of numerical simulations of strain within lava tubes reveal a concentric pattern of flattening planes in section normal to the flow direction. The central node is a zone of low strain, which increases toward the lateral borders. Sections parallel to the flow show obliquity of the flattening plane to the flow axis, constituting an imbrication. The strain ellipsoid is generally of plane strain type, but can be of constriction or flattening type if thinning (i.e. deflating flow) or thickening (i.e. inflating flow) is superimposed on the simple shear regime. The strain pattern obtained from numerical simulation is then compared with several patterns recently described in natural lava flows. It is shown that the strain pattern revealed by AMS studies or crystal preferred orientations is remarkably similar to the numerical simulation. However, some departure from the model is found in AMS measurements. This may indicate inherited strain recorded during early stages of the flow or some limitation of the AMS technique.

  17. Numerical simulations of turbulent jet ignition and combustion

    NASA Astrophysics Data System (ADS)

    Validi, Abdoulahad; Irannejad, Abolfazl; Jaberi, Farhad

    2013-11-01

    The ignition and combustion of a homogeneous lean hydrogen-air mixture by a turbulent jet flow of hot combustion products injected into a colder gas mixture are studied by a high fidelity numerical model. Turbulent jet ignition can be considered as an efficient method for starting and controlling the reaction in homogeneously charged combustion systems used in advanced internal combustion and gas turbine engines. In this work, we study in details the physics of turbulent jet ignition in a fundamental flow configuration. The flow and combustion are modeled with the hybrid large eddy simulation/filtered mass density function (LES/FMDF) approach, in which the filtered form the compressible Navier-Stokes equations are solved with a high-order finite difference scheme for the turbulent velocity and the FMDF transport equations are solved with a Lagrangian stochastic method to obtain the scalar (temperature and species mass fractions) field. The hydrogen oxidation is described by a detailed reaction mechanism with 37 elementary reactions and 9 species.

  18. Numerical Modeling of Electroacoustic Logging Including Joule Heating

    NASA Astrophysics Data System (ADS)

    Plyushchenkov, Boris D.; Nikitin, Anatoly A.; Turchaninov, Victor I.

    It is well known that electromagnetic field excites acoustic wave in a porous elastic medium saturated with fluid electrolyte due to electrokinetic conversion effect. Pride's equations describing this process are written in isothermal approximation. Update of these equations, which allows to take influence of Joule heating on acoustic waves propagation into account, is proposed here. This update includes terms describing the initiation of additional acoustic waves excited by thermoelastic stresses and the heat conduction equation with right side defined by Joule heating. Results of numerical modeling of several problems of propagation of acoustic waves excited by an electric field source with and without consideration of Joule heating effect in their statements are presented. From these results, it follows that influence of Joule heating should be taken into account at the numerical simulation of electroacoustic logging and at the interpretation of its log data.

  19. Atmospheric numerical modeling resource enhancement and model convective parameterization/scale interaction studies

    NASA Technical Reports Server (NTRS)

    Cushman, Paula P.

    1993-01-01

    Research will be undertaken in this contract in the area of Modeling Resource and Facilities Enhancement to include computer, technical and educational support to NASA investigators to facilitate model implementation, execution and analysis of output; to provide facilities linking USRA and the NASA/EADS Computer System as well as resident work stations in ESAD; and to provide a centralized location for documentation, archival and dissemination of modeling information pertaining to NASA's program. Additional research will be undertaken in the area of Numerical Model Scale Interaction/Convective Parameterization Studies to include implementation of the comparison of cloud and rain systems and convective-scale processes between the model simulations and what was observed; and to incorporate the findings of these and related research findings in at least two refereed journal articles.

  20. Numerical simulations to model laser-driven coil-capacitor targets for generation of kilo-Tesla magnetic fields

    NASA Astrophysics Data System (ADS)

    Schillaci, F.; De Marco, M.; Giuffrida, L.; Fujioka, S.; Zhang, Z.; Korn, G.; Margarone, D.

    2018-02-01

    A coil-capacitor target is modeled using FEM simulations and analytical calculations, which allow to explain the time evolution of such complex target during magnetic field production driven by the flow of an extremely high current generated through the interaction with a high power laser. The numerical model includes a detailed study of the magnetic field produced by the coil-capacitor target, both in the static and transient cases, as well as magnetic force and Joule heating. The model is validated by experimental data reported in literature and can be of interest for several applications. As an example, the combination of two synchronized nanosecond lasers with the purpose of producing a plasma responsible of the proton-boron (p+ + 11B → 8.5 MeV + 3α) fusion reaction, and energizing two multi-turn coils with the main purpose of confining such a plasma could enhance the reaction rate. The preliminary conceptual design of a magnetic mirror configuration to be used for confining protons and boron ions up to a few MeV/u in a region of less than 1 mm2 is briefly reported.

  1. Numerical Modeling of Cavitating Venturi: A Flow Control Element of Propulsion System

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok; Saxon, Jeff (Technical Monitor)

    2002-01-01

    In a propulsion system, the propellant flow and mixture ratio could be controlled either by variable area flow control valves or by passive flow control elements such as cavitating venturies. Cavitating venturies maintain constant propellant flowrate for fixed inlet conditions (pressure and temperature) and wide range of outlet pressures, thereby maintain constant, engine thrust and mixture ratio. The flowrate through the venturi reaches a constant value and becomes independent of outlet pressure when the pressure at throat becomes equal to vapor pressure. In order to develop a numerical model of propulsion system, it is necessary to model cavitating venturies in propellant feed systems. This paper presents a finite volume model of flow network of a cavitating venturi. The venturi was discretized into a number of control volumes and mass, momentum and energy conservation equations in each control volume are simultaneously solved to calculate one-dimensional pressure, density, and flowrate and temperature distribution. The numerical model predicts cavitations at the throat when outlet pressure was gradually reduced. Once cavitation starts, with further reduction of downstream pressure, no change in flowrate is found. The numerical predictions have been compared with test data and empirical equation based on Bernoulli's equation.

  2. The Bean model in suprconductivity: Variational formulation and numerical solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prigozhin, L.

    The Bean critical-state model describes the penetration of magnetic field into type-II superconductors. Mathematically, this is a free boundary problem and its solution is of interest in applied superconductivity. We derive a variational formulation for the Bean model and use it to solve two-dimensional and axially symmetric critical-state problems numerically. 25 refs., 9 figs., 1 tab.

  3. Benchmark problems for numerical implementations of phase field models

    DOE PAGES

    Jokisaari, A. M.; Voorhees, P. W.; Guyer, J. E.; ...

    2016-10-01

    Here, we present the first set of benchmark problems for phase field models that are being developed by the Center for Hierarchical Materials Design (CHiMaD) and the National Institute of Standards and Technology (NIST). While many scientific research areas use a limited set of well-established software, the growing phase field community continues to develop a wide variety of codes and lacks benchmark problems to consistently evaluate the numerical performance of new implementations. Phase field modeling has become significantly more popular as computational power has increased and is now becoming mainstream, driving the need for benchmark problems to validate and verifymore » new implementations. We follow the example set by the micromagnetics community to develop an evolving set of benchmark problems that test the usability, computational resources, numerical capabilities and physical scope of phase field simulation codes. In this paper, we propose two benchmark problems that cover the physics of solute diffusion and growth and coarsening of a second phase via a simple spinodal decomposition model and a more complex Ostwald ripening model. We demonstrate the utility of benchmark problems by comparing the results of simulations performed with two different adaptive time stepping techniques, and we discuss the needs of future benchmark problems. The development of benchmark problems will enable the results of quantitative phase field models to be confidently incorporated into integrated computational materials science and engineering (ICME), an important goal of the Materials Genome Initiative.« less

  4. On the validation of cloud parametrization schemes in numerical atmospheric models with satellite data from ISCCP

    NASA Astrophysics Data System (ADS)

    Meinke, I.

    2003-04-01

    A new method is presented to validate cloud parametrization schemes in numerical atmospheric models with satellite data of scanning radiometers. This method is applied to the regional atmospheric model HRM (High Resolution Regional Model) using satellite data from ISCCP (International Satellite Cloud Climatology Project). Due to the limited reliability of former validations there has been a need for developing a new validation method: Up to now differences between simulated and measured cloud properties are mostly declared as deficiencies of the cloud parametrization scheme without further investigation. Other uncertainties connected with the model or with the measurements have not been taken into account. Therefore changes in the cloud parametrization scheme based on such kind of validations might not be realistic. The new method estimates uncertainties of the model and the measurements. Criteria for comparisons of simulated and measured data are derived to localize deficiencies in the model. For a better specification of these deficiencies simulated clouds are classified regarding their parametrization. With this classification the localized model deficiencies are allocated to a certain parametrization scheme. Applying this method to the regional model HRM the quality of forecasting cloud properties is estimated in detail. The overestimation of simulated clouds in low emissivity heights especially during the night is localized as model deficiency. This is caused by subscale cloudiness. As the simulation of subscale clouds in the regional model HRM is described by a relative humidity parametrization these deficiencies are connected with this parameterization.

  5. Random element method for numerical modeling of diffusional processes

    NASA Technical Reports Server (NTRS)

    Ghoniem, A. F.; Oppenheim, A. K.

    1982-01-01

    The random element method is a generalization of the random vortex method that was developed for the numerical modeling of momentum transport processes as expressed in terms of the Navier-Stokes equations. The method is based on the concept that random walk, as exemplified by Brownian motion, is the stochastic manifestation of diffusional processes. The algorithm based on this method is grid-free and does not require the diffusion equation to be discritized over a mesh, it is thus devoid of numerical diffusion associated with finite difference methods. Moreover, the algorithm is self-adaptive in space and explicit in time, resulting in an improved numerical resolution of gradients as well as a simple and efficient computational procedure. The method is applied here to an assortment of problems of diffusion of momentum and energy in one-dimension as well as heat conduction in two-dimensions in order to assess its validity and accuracy. The numerical solutions obtained are found to be in good agreement with exact solution except for a statistical error introduced by using a finite number of elements, the error can be reduced by increasing the number of elements or by using ensemble averaging over a number of solutions.

  6. Analogue and numerical modelling in Volcanology: Development, evolution and future challenges

    NASA Astrophysics Data System (ADS)

    Kavanagh, Janine; Annen, Catherine

    2015-04-01

    Since the inception of volcanology as a science, analogue modelling has been an important methodology to study the formation and evolution of the volcanic system. With the development of computing capacities numerical modelling has become a widely used tool to explore magmatic process quantitatively and try to predict eruptive behaviour. Processes of interest include the development and establishment of the volcanic plumbing system, the propagation of magma to the surface to feed eruptions, the construction of a volcanic edifice and the dynamics of eruptive processes. An important ultimate aim is to characterise and measure the experimental volcanic and magmatic phenomena, to inform and improve eruption forecasting for hazard assessments. In nature, volcanic activity is often unpredictable and in an environment that is highly changeable and forbidding. Volcanic or magmatic activity cannot be repeated at will and has many (often unconstrained) variables. The processes of interest are frequently hidden from view, for example occurring beneath the Earth's surface or within a pyroclastic flow or plume. The challenges of working in volcanic terrains and gathering 'real' volcano data mean that analogue and numerical models have gained significant importance as a method to study the geometrics, kinematics, and dynamics of volcano growth and eruption. A huge variety of analogue materials have been used in volcanic modelling, often bringing out the more creative side of the scientific mind. As with all models, the choice of appropriate materials and boundary conditions are critical for assessing the relevance and usefulness of the experimental results. Numerical simulation has proved a useful tool to test the physical plausibility of conceptual models and presents the advantage of being applicable at different scales. It is limited however in its predictive power by the number of free parameters needed to describe geological systems. In this special symposium we will

  7. A multiple hypotheses uncertainty analysis in hydrological modelling: about model structure, landscape parameterization, and numerical integration

    NASA Astrophysics Data System (ADS)

    Pilz, Tobias; Francke, Till; Bronstert, Axel

    2016-04-01

    Until today a large number of competing computer models has been developed to understand hydrological processes and to simulate and predict streamflow dynamics of rivers. This is primarily the result of a lack of a unified theory in catchment hydrology due to insufficient process understanding and uncertainties related to model development and application. Therefore, the goal of this study is to analyze the uncertainty structure of a process-based hydrological catchment model employing a multiple hypotheses approach. The study focuses on three major problems that have received only little attention in previous investigations. First, to estimate the impact of model structural uncertainty by employing several alternative representations for each simulated process. Second, explore the influence of landscape discretization and parameterization from multiple datasets and user decisions. Third, employ several numerical solvers for the integration of the governing ordinary differential equations to study the effect on simulation results. The generated ensemble of model hypotheses is then analyzed and the three sources of uncertainty compared against each other. To ensure consistency and comparability all model structures and numerical solvers are implemented within a single simulation environment. First results suggest that the selection of a sophisticated numerical solver for the differential equations positively affects simulation outcomes. However, already some simple and easy to implement explicit methods perform surprisingly well and need less computational efforts than more advanced but time consuming implicit techniques. There is general evidence that ambiguous and subjective user decisions form a major source of uncertainty and can greatly influence model development and application at all stages.

  8. Comparison of Laboratory Experimental Data to XBeach Numerical Model Output

    NASA Astrophysics Data System (ADS)

    Demirci, Ebru; Baykal, Cuneyt; Guler, Isikhan; Sogut, Erdinc

    2016-04-01

    Coastal zones are living and constantly changing environments where both the natural events and the human-interaction results come into picture regarding to the shoreline behavior. Both the nature of the coastal zone and the human activities shape together the resultants of the interaction with oceans and coasts. Natural extreme events may result in the need of human interference, such as building coastal structures in order to prevent from disasters or any man-made structure throughout a coastline may affect the hydrodynamics and morphology in the nearshore. In order to understand and cope with this cycle of cause and effect relationship, the numerical models developed. XBeach is an open-source, 2DH, depth average numerical model including the hydrodynamic processes of short wave transformation (refraction, shoaling and breaking), long wave (infragravity wave) transformation (generation, propagation and dissipation), wave-induced setup and unsteady currents, as well as overwash and inundation and morphodynamic processes of bed load and suspended sediment transport, dune face avalanching, bed update and breaching (Roelvink et al., 2010). Together with XBeach numerical model, it is possible to both verify and visualize the resultant external effects to the initial shorelines in coastal zones. Recently, Baykal et al. (2015) modelled the long term morphology changes with XBeach near Kızılırmak river mouth consisting of one I-shaped and one Y-shaped groins. In order to investigate the nature of the shoreline and near shore hydrodynamic conditions and morphology, the five laboratory experiments are conducted in the Largescale Sediment Transport Facility at the U.S. Army Engineer Research and Development Center in order to be used to improve longshore sand transport relationships under the combined influence of waves and currents and the enhancement of predictive numerical models of beach morphology evolution. The first series of the experiments were aimed at

  9. A new numerical approximation of the fractal ordinary differential equation

    NASA Astrophysics Data System (ADS)

    Atangana, Abdon; Jain, Sonal

    2018-02-01

    The concept of fractal medium is present in several real-world problems, for instance, in the geological formation that constitutes the well-known subsurface water called aquifers. However, attention has not been quite devoted to modeling for instance, the flow of a fluid within these media. We deem it important to remind the reader that the concept of fractal derivative is not to represent the fractal sharps but to describe the movement of the fluid within these media. Since this class of ordinary differential equations is highly complex to solve analytically, we present a novel numerical scheme that allows to solve fractal ordinary differential equations. Error analysis of the method is also presented. Application of the method and numerical approximation are presented for fractal order differential equation. The stability and the convergence of the numerical schemes are investigated in detail. Also some exact solutions of fractal order differential equations are presented and finally some numerical simulations are presented.

  10. TRAC-P1: an advanced best estimate computer program for PWR LOCA analysis. I. Methods, models, user information, and programming details

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-05-01

    The Transient Reactor Analysis Code (TRAC) is being developed at the Los Alamos Scientific Laboratory (LASL) to provide an advanced ''best estimate'' predictive capability for the analysis of postulated accidents in light water reactors (LWRs). TRAC-Pl provides this analysis capability for pressurized water reactors (PWRs) and for a wide variety of thermal-hydraulic experimental facilities. It features a three-dimensional treatment of the pressure vessel and associated internals; two-phase nonequilibrium hydrodynamics models; flow-regime-dependent constitutive equation treatment; reflood tracking capability for both bottom flood and falling film quench fronts; and consistent treatment of entire accident sequences including the generation of consistent initial conditions.more » The TRAC-Pl User's Manual is composed of two separate volumes. Volume I gives a description of the thermal-hydraulic models and numerical solution methods used in the code. Detailed programming and user information is also provided. Volume II presents the results of the developmental verification calculations.« less

  11. A VAS-numerical model impact study using the Gal-Chen variational approach

    NASA Technical Reports Server (NTRS)

    Aune, Robert M.; Tuccillo, James J.; Uccellini, Louis W.; Petersen, Ralph A.

    1987-01-01

    A numerical study based on the use of a variational assimilation technique of Gal-Chen (1983, 1986) was conducted to assess the impact of incorporating temperature data from the VISSR Atmospheric Sounder (VAS) into a regional-scale numerical model. A comparison with the results of a control forecast using only conventional data indicated that the assimilation technique successfully combines actual VAS temperature observations with the dynamically balanced model fields without destabilizing the model during the assimilation cycle. Moreover, increasing the temporal frequency of VAS temperature insertions during the assimilation cycle was shown to enhance the impact on the model forecast through successively longer forecast periods. The incorporation of a nudging technique, whereby the model temperature field is constrained toward the VAS 'updated' values during the assimilation cycle, further enhances the impact of the VAS temperature data.

  12. Numerical model of solar dynamic radiator for parametric analysis

    NASA Technical Reports Server (NTRS)

    Rhatigan, Jennifer L.

    1989-01-01

    Growth power requirements for Space Station Freedom will be met through addition of 25 kW solar dynamic (SD) power modules. The SD module rejects waste heat from the power conversion cycle to space through a pumped-loop, multi-panel, deployable radiator. The baseline radiator configuration was defined during the Space Station conceptual design phase and is a function of the state point and heat rejection requirements of the power conversion unit. Requirements determined by the overall station design such as mass, system redundancy, micrometeoroid and space debris impact survivability, launch packaging, costs, and thermal and structural interaction with other station components have also been design drivers for the radiator configuration. Extensive thermal and power cycle modeling capabilities have been developed which are powerful tools in Station design and analysis, but which prove cumbersome and costly for simple component preliminary design studies. In order to aid in refining the SD radiator to the mature design stage, a simple and flexible numerical model was developed. The model simulates heat transfer and fluid flow performance of the radiator and calculates area mass and impact survivability for many combinations of flow tube and panel configurations, fluid and material properties, and environmental and cycle variations. A brief description and discussion of the numerical model, it's capabilities and limitations, and results of the parametric studies performed is presented.

  13. Centrifugal and Numerical Modeling of Buried Structures. Volume 2. Dynamic Soil-Structure Interaction.

    DTIC Science & Technology

    1987-07-14

    RD-RISE 368 CENTRIFUGAL AND NUMERICAL MODELING OF BURIED STRUCTURES 1/3 VOLUME 2 DYNAMIC..(U) COLORADO UNIV AT BOULDER DEPT OF CIVIL ENVIRONMENTAL...20332-6448 ELEMENT NO NO. NO ACCESSION NO 61102F 2302 Cl 11 TITLE (Include Security Classification) (U) Centrifugal and Numerical Modeling of Buried ...were buried in a dry sand and tested in the centrifuge to simulate the effects of gravity-induced overburden stresses which played a major role in

  14. A guide to modelling cardiac electrical activity in anatomically detailed ventricles.

    PubMed

    Clayton, R H; Panfilov, A V

    2008-01-01

    One of the most recent trends in cardiac electrophysiology is the development of integrative anatomically accurate models of the heart, which include description of cardiac activity from sub-cellular and cellular level to the level of the whole organ. In order to construct this type of model, a researcher needs to collect a wide range of information from books and journal articles on various aspects of biology, physiology, electrophysiology, numerical mathematics and computer programming. The aim of this methodological article is to survey recent developments in integrative modelling of electrical activity in the ventricles of the heart, and to provide a practical guide to the resources and tools that are available for work in this exciting and challenging area.

  15. Numerical analysis of field-scale transport of bromacil

    NASA Astrophysics Data System (ADS)

    Russo, David; Tauber-Yasur, Inbar; Laufer, Asher; Yaron, Bruno

    Field-scale transport of bromacil (5-bromo-3- sec-butyl-6-methyluracil) was analyzed using two different model processes for local description of the transport. The first was the classical, one-region convection dispersion equation (CDE) model while the second was the two-region, mobile-immobile (MIM) model. The analyses were performed by means of detailed three-dimensional, numerical simulations of the flow and the transport [Russo, D., Zaidel, J. and Laufer, A., Numerical analysis of flow and transport in a three-dimensional partially saturated heterogeneous soil. Water Resour. Res., 1998, in press], employing local soil hydraulic properties parameters from field measurements and local adsorption/desorption coefficients and the first-order degradation rate coefficient from laboratory measurements. Results of the analyses suggest that for a given flow regime, mass exchange between the mobile and the immobile regions retards the bromacil degradation, considerably affects the distribution of the bromacil resident concentration, c, at relatively large travel times, slightly affects the spatial moments of the distribution of c, and increases the skewing of the bromacil breakthrough and the uncertainty in its prediction, compared with the case in which the soil contained only a single (mobile) region. Mean and standard deviation of the simulated concentration profiles at various elapsed times were compared with measurements from a field-scale transport experiment [Tauber-Yasur, I., Hadas, A., Russo, D. and Yaron, B., Leaching of terbuthylazine and bromacil through field soils. Water, Air Soil Poln., 1998, in press] conducted at the Bet Dagan site. Given the limitations of the present study (e.g. the lack of detailed field data on the spatial variability of the soil chemical properties) the main conclusion of the present study is that the field-scale transport of bromacil at the Bet Dagan site is better quantified with the MIM model than the CDE model.

  16. Further Studies of the NRL Collective Particle Accelerator VIA Numerical Modeling with the MAGIC Code.

    DTIC Science & Technology

    1984-08-01

    COLLFCTIVF PAPTTCLE ACCELERATOR VIA NUMERICAL MODFLINC WITH THF MAGIC CODE Robert 1. Darker Auqust 19F4 Final Report for Period I April. qI84 - 30...NUMERICAL MODELING WITH THE MAGIC CODE Robert 3. Barker August 1984 Final Report for Period 1 April 1984 - 30 September 1984 Prepared for: Scientific...Collective Final Report Particle Accelerator VIA Numerical Modeling with April 1 - September-30, 1984 MAGIC Code. 6. PERFORMING ORG. REPORT NUMBER MRC/WDC-R

  17. Objective biofidelity rating of a numerical human occupant model in frontal to lateral impact.

    PubMed

    de Lange, Ronald; van Rooij, Lex; Mooi, Herman; Wismans, Jac

    2005-11-01

    Both hardware crash dummies and mathematical human models have been developed largely using the same biomechanical data. For both, biofidelity is a main requirement. Since numerical modeling is not bound to hardware crash dummy design constraints, it allows more detailed modeling of the human and offering biofidelity for multiple directions. In this study the multi-directional biofidelity of the MADYMO human occupant model is assessed, to potentially protect occupants under various impact conditions. To evaluate the model's biofidelity, generally accepted requirements were used for frontal and lateral impact: tests proposed by EEVC and NHTSA and tests specified by ISO TR9790, respectively. A subset of the specified experiments was simulated with the human model. For lateral impact, the results were objectively rated according to the ISO protocol. Since no rating protocol was available for frontal impact, the ISO rating scheme for lateral was used for frontal, as far as possible. As a result, two scores show the overall model biofidelity for frontal and lateral impact, while individual ratings provide insight in the quality on body segment level. The results were compared with the results published for the THOR and WorldSID dummies, showing that the mathematical model exhibits a high level of multi-directional biofidelity. In addition, the performance of the human model in the NBDL 11G oblique test indicates a valid behavior of the model in intermediate directions as well. A new aspect of this study is the objective assessment of the multi-directional biofidelity of the mathematical human model according to accepted requirements. Although hardware dummies may always be used in regulations, it is expected that virtual testing with human models will serve in extrapolating outside the hardware test environment. This study was a first step towards simulating a wider range of impact conditions, such as angled impact and rollover.

  18. Active numerical model of human body for reconstruction of falls from height.

    PubMed

    Milanowicz, Marcin; Kędzior, Krzysztof

    2017-01-01

    Falls from height constitute the largest group of incidents out of approximately 90,000 occupational accidents occurring each year in Poland. Reconstruction of the exact course of a fall from height is generally difficult due to lack of sufficient information from the accident scene. This usually results in several contradictory versions of an incident and impedes, for example, determination of the liability in a judicial process. In similar situations, in many areas of human activity, researchers apply numerical simulation. They use it to model physical phenomena to reconstruct their real course over time; e.g. numerical human body models are frequently used for investigation and reconstruction of road accidents. However, they are validated in terms of specific road traffic accidents and are considerably limited when applied to the reconstruction of other types of accidents. The objective of the study was to develop an active numerical human body model to be used for reconstruction of accidents associated with falling from height. Development of the model involved extension and adaptation of the existing Pedestrian human body model (available in the MADYMO package database) for the purposes of reconstruction of falls from height by taking into account the human reaction to the loss of balance. The model was developed by using the results of experimental tests of the initial phase of the fall from height. The active numerical human body model covering 28 sets of initial conditions related to various human reactions to the loss of balance was developed. The application of the model was illustrated by using it to reconstruct a real fall from height. From among the 28 sets of initial conditions, those whose application made it possible to reconstruct the most probable version of the incident was selected. The selection was based on comparison of the results of the reconstruction with information contained in the accident report. Results in the form of estimated

  19. Experimental investigation and numerical modelling of positive corona discharge: ozone generation

    NASA Astrophysics Data System (ADS)

    Yanallah, K; Pontiga, F; Fernández-Rueda, A; Castellanos, A

    2009-03-01

    The spatial distribution of the species generated in a wire-cylinder positive corona discharge in pure oxygen has been computed using a plasma chemistry model that includes the most significant reactions between electrons, ions, atoms and molecules. The plasma chemistry model is included in the continuity equations of each species, which are coupled with Poisson's equation for the electric field and the energy conservation equation for the gas temperature. The current-voltage characteristic measured in the experiments has been used as an input data to the numerical simulation. The numerical model is able to reproduce the basic structure of the positive corona discharge and highlights the importance of Joule heating on ozone generation. The average ozone density has been computed as a function of current intensity and compared with the experimental measurements of ozone concentration determined by UV absorption spectroscopy.

  20. WEC-SIM Phase 1 Validation Testing -- Numerical Modeling of Experiments: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruehl, Kelley; Michelen, Carlos; Bosma, Bret

    2016-08-01

    The Wave Energy Converter Simulator (WEC-Sim) is an open-source code jointly developed by Sandia National Laboratories and the National Renewable Energy Laboratory. It is used to model wave energy converters subjected to operational and extreme waves. In order for the WEC-Sim code to be beneficial to the wave energy community, code verification and physical model validation is necessary. This paper describes numerical modeling of the wave tank testing for the 1:33-scale experimental testing of the floating oscillating surge wave energy converter. The comparison between WEC-Sim and the Phase 1 experimental data set serves as code validation. This paper is amore » follow-up to the WEC-Sim paper on experimental testing, and describes the WEC-Sim numerical simulations for the floating oscillating surge wave energy converter.« less

  1. Numerical modelling of bifurcation and localisation in cohesive-frictional materials

    NASA Astrophysics Data System (ADS)

    de Borst, René

    1991-12-01

    Methods are reviewed for analysing highly localised failure and bifurcation modes in discretised mechanical systems as typically arise in numerical simulations of failure in soils, rocks, metals and concrete. By the example of a plane-strain biaxial test it is shown that strain softening and lack of normality in elasto-plastic constitutive equations and the ensuing loss of ellipticity of the governing field equations cause a pathological mesh dependence of numerical solutions for such problems, thus rendering the results effectively meaningless. The need for introduction of higher-order continuum models is emphasised to remedy this shortcoming of the conventional approach. For one such a continuum model, namely the unconstrained Cosserat continuum, it is demonstrated that meaningful and convergent solutions (in the sense that a finite width of the localisation zone is computed upon mesh refinement) can be obtained.

  2. Numerical Modeling of Pulse Detonation Rocket Engine Gasdynamics and Performance

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This paper presents viewgraphs on the numerical modeling of pulse detonation rocket engines (PDRE), with an emphasis on the Gasdynamics and performance analysis of these engines. The topics include: 1) Performance Analysis of PDREs; 2) Simplified PDRE Cycle; 3) Comparison of PDRE and Steady-State Rocket Engines (SSRE) Performance; 4) Numerical Modeling of Quasi 1-D Rocket Flows; 5) Specific PDRE Geometries Studied; 6) Time-Accurate Thrust Calculations; 7) PDRE Performance (Geometries A B C and D); 8) PDRE Blowdown Gasdynamics (Geom. A B C and D); 9) PDRE Geometry Performance Comparison; 10) PDRE Blowdown Time (Geom. A B C and D); 11) Specific SSRE Geometry Studied; 12) Effect of F-R Chemistry on SSRE Performance; 13) PDRE/SSRE Performance Comparison; 14) PDRE Performance Study; 15) Grid Resolution Study; and 16) Effect of F-R Chemistry on SSRE Exit Species Mole Fractions.

  3. Optimum employment of satellite indirect soundings as numerical model input

    NASA Technical Reports Server (NTRS)

    Horn, L. H.; Derber, J. C.; Koehler, T. L.; Schmidt, B. D.

    1981-01-01

    The characteristics of satellite-derived temperature soundings that would significantly affect their use as input for numerical weather prediction models were examined. Independent evaluations of satellite soundings were emphasized to better define error characteristics. Results of a Nimbus-6 sounding study reveal an underestimation of the strength of synoptic scale troughs and ridges, and associated gradients in isobaric height and temperature fields. The most significant errors occurred near the Earth's surface and the tropopause. Soundings from the TIROS-N and NOAA-6 satellites were also evaluated. Results again showed an underestimation of upper level trough amplitudes leading to weaker thermal gradient depictions in satellite-only fields. These errors show a definite correlation to the synoptic flow patterns. In a satellite-only analysis used to initialize a numerical model forecast, it was found that these synoptically correlated errors were retained in the forecast sequence.

  4. Direct numerical simulations and modeling of a spatially-evolving turbulent wake

    NASA Technical Reports Server (NTRS)

    Cimbala, John M.

    1994-01-01

    Understanding of turbulent free shear flows (wakes, jets, and mixing layers) is important, not only for scientific interest, but also because of their appearance in numerous practical applications. Turbulent wakes, in particular, have recently received increased attention by researchers at NASA Langley. The turbulent wake generated by a two-dimensional airfoil has been selected as the test-case for detailed high-resolution particle image velocimetry (PIV) experiments. This same wake has also been chosen to enhance NASA's turbulence modeling efforts. Over the past year, the author has completed several wake computations, while visiting NASA through the 1993 and 1994 ASEE summer programs, and also while on sabbatical leave during the 1993-94 academic year. These calculations have included two-equation (K-omega and K-epsilon) models, algebraic stress models (ASM), full Reynolds stress closure models, and direct numerical simulations (DNS). Recently, there has been mutually beneficial collaboration of the experimental and computational efforts. In fact, these projects have been chosen for joint presentation at the NASA Turbulence Peer Review, scheduled for September 1994. DNS calculations are presently underway for a turbulent wake at Re(sub theta) = 1000 and at a Mach number of 0.20. (Theta is the momentum thickness, which remains constant in the wake of a two dimensional body.) These calculations utilize a compressible DNS code written by M. M. Rai of NASA Ames, and modified for the wake by J. Cimbala. The code employs fifth-order accurate upwind-biased finite differencing for the convective terms, fourth-order accurate central differencing for the viscous terms, and an iterative-implicit time-integration scheme. The computational domain for these calculations starts at x/theta = 10, and extends to x/theta = 610. Fully developed turbulent wake profiles, obtained from experimental data from several wake generators, are supplied at the computational inlet, along with

  5. Meshless collocation methods for the numerical solution of elliptic boundary valued problems the rotational shallow water equations on the sphere

    NASA Astrophysics Data System (ADS)

    Blakely, Christopher D.

    This dissertation thesis has three main goals: (1) To explore the anatomy of meshless collocation approximation methods that have recently gained attention in the numerical analysis community; (2) Numerically demonstrate why the meshless collocation method should clearly become an attractive alternative to standard finite-element methods due to the simplicity of its implementation and its high-order convergence properties; (3) Propose a meshless collocation method for large scale computational geophysical fluid dynamics models. We provide numerical verification and validation of the meshless collocation scheme applied to the rotational shallow-water equations on the sphere and demonstrate computationally that the proposed model can compete with existing high performance methods for approximating the shallow-water equations such as the SEAM (spectral-element atmospheric model) developed at NCAR. A detailed analysis of the parallel implementation of the model, along with the introduction of parallel algorithmic routines for the high-performance simulation of the model will be given. We analyze the programming and computational aspects of the model using Fortran 90 and the message passing interface (mpi) library along with software and hardware specifications and performance tests. Details from many aspects of the implementation in regards to performance, optimization, and stabilization will be given. In order to verify the mathematical correctness of the algorithms presented and to validate the performance of the meshless collocation shallow-water model, we conclude the thesis with numerical experiments on some standardized test cases for the shallow-water equations on the sphere using the proposed method.

  6. Time-domain simulation of damped impacted plates. II. Numerical model and results.

    PubMed

    Lambourg, C; Chaigne, A; Matignon, D

    2001-04-01

    A time-domain model for the flexural vibrations of damped plates was presented in a companion paper [Part I, J. Acoust. Soc. Am. 109, 1422-1432 (2001)]. In this paper (Part II), the damped-plate model is extended to impact excitation, using Hertz's law of contact, and is solved numerically in order to synthesize sounds. The numerical method is based on the use of a finite-difference scheme of second order in time and fourth order in space. As a consequence of the damping terms, the stability and dispersion properties of this scheme are modified, compared to the undamped case. The numerical model is used for the time-domain simulation of vibrations and sounds produced by impact on isotropic and orthotropic plates made of various materials (aluminum, glass, carbon fiber and wood). The efficiency of the method is validated by comparisons with analytical and experimental data. The sounds produced show a high degree of similarity with real sounds and allow a clear recognition of each constitutive material of the plate without ambiguity.

  7. Investigation of Turbulent Entrainment-Mixing Processes With a New Particle-Resolved Direct Numerical Simulation Model

    DOE PAGES

    Gao, Zheng; Liu, Yangang; Li, Xiaolin; ...

    2018-02-19

    Here, a new particle-resolved three dimensional direct numerical simulation (DNS) model is developed that combines Lagrangian droplet tracking with the Eulerian field representation of turbulence near the Kolmogorov microscale. Six numerical experiments are performed to investigate the processes of entrainment of clear air and subsequent mixing with cloudy air and their interactions with cloud microphysics. The experiments are designed to represent different combinations of three configurations of initial cloudy area and two turbulence modes (decaying and forced turbulence). Five existing measures of microphysical homogeneous mixing degree are examined, modified, and compared in terms of their ability as a unifying measuremore » to represent the effect of various entrainment-mixing mechanisms on cloud microphysics. Also examined and compared are the conventional Damköhler number and transition scale number as a dynamical measure of different mixing mechanisms. Relationships between the various microphysical measures and dynamical measures are investigated in search for a unified parameterization of entrainment-mixing processes. The results show that even with the same cloud water fraction, the thermodynamic and microphysical properties are different, especially for the decaying cases. Further analysis confirms that despite the detailed differences in cloud properties among the six simulation scenarios, the variety of turbulent entrainment-mixing mechanisms can be reasonably represented with power-law relationships between the microphysical homogeneous mixing degrees and the dynamical measures.« less

  8. Investigation of Turbulent Entrainment-Mixing Processes With a New Particle-Resolved Direct Numerical Simulation Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Zheng; Liu, Yangang; Li, Xiaolin

    Here, a new particle-resolved three dimensional direct numerical simulation (DNS) model is developed that combines Lagrangian droplet tracking with the Eulerian field representation of turbulence near the Kolmogorov microscale. Six numerical experiments are performed to investigate the processes of entrainment of clear air and subsequent mixing with cloudy air and their interactions with cloud microphysics. The experiments are designed to represent different combinations of three configurations of initial cloudy area and two turbulence modes (decaying and forced turbulence). Five existing measures of microphysical homogeneous mixing degree are examined, modified, and compared in terms of their ability as a unifying measuremore » to represent the effect of various entrainment-mixing mechanisms on cloud microphysics. Also examined and compared are the conventional Damköhler number and transition scale number as a dynamical measure of different mixing mechanisms. Relationships between the various microphysical measures and dynamical measures are investigated in search for a unified parameterization of entrainment-mixing processes. The results show that even with the same cloud water fraction, the thermodynamic and microphysical properties are different, especially for the decaying cases. Further analysis confirms that despite the detailed differences in cloud properties among the six simulation scenarios, the variety of turbulent entrainment-mixing mechanisms can be reasonably represented with power-law relationships between the microphysical homogeneous mixing degrees and the dynamical measures.« less

  9. Numerical modeling of the dynamic response of a bioluminescent bacterial biosensor.

    PubMed

    Affi, Mahmoud; Solliec, Camille; Legentilhomme, Patrick; Comiti, Jacques; Legrand, Jack; Jouanneau, Sulivan; Thouand, Gérald

    2016-12-01

    Water quality and water management are worldwide issues. The analysis of pollutants and in particular, heavy metals, is generally conducted by sensitive but expensive physicochemical methods. Other alternative methods of analysis, such as microbial biosensors, have been developed for their potential simplicity and expected moderate cost. Using a biosensor for a long time generates many changes in the growth of the immobilized bacteria and consequently alters the robustness of the detection. This work simulated the operation of a biosensor for the long-term detection of cadmium and improved our understanding of the bioluminescence reaction dynamics of bioreporter bacteria inside an agarose matrix. The choice of the numerical tools is justified by the difficulty to measure experimentally in every condition the biosensor functioning during a long time (several days). The numerical simulation of a biomass profile is made by coupling the diffusion equation and the consumption/reaction of the nutrients by the bacteria. The numerical results show very good agreement with the experimental profiles. The growth model verified that the bacterial growth is conditioned by both the diffusion and the consumption of the nutrients. Thus, there is a high bacterial density in the first millimeter of the immobilization matrix. The growth model has been very useful for the development of the bioluminescence model inside the gel and shows that a concentration of oxygen greater than or equal to 22 % of saturation is required to maintain a significant level of bioluminescence. A continuous feeding of nutrients during the process of detection of cadmium leads to a biofilm which reduces the diffusion of nutrients and restricts the presence of oxygen from the first layer of the agarose (1 mm) and affects the intensity of the bioluminescent reaction. The main advantage of this work is to link experimental works with numerical models of growth and bioluminescence in order to provide a

  10. Numerical simulation of a lattice polymer model at its integrable point

    NASA Astrophysics Data System (ADS)

    Bedini, A.; Owczarek, A. L.; Prellberg, T.

    2013-07-01

    We revisit an integrable lattice model of polymer collapse using numerical simulations. This model was first studied by Blöte and Nienhuis (1989 J. Phys. A: Math. Gen. 22 1415) and it describes polymers with some attraction, providing thus a model for the polymer collapse transition. At a particular set of Boltzmann weights the model is integrable and the exponents ν = 12/23 ≈ 0.522 and γ = 53/46 ≈ 1.152 have been computed via identification of the scaling dimensions xt = 1/12 and xh = -5/48. We directly investigate the polymer scaling exponents via Monte Carlo simulations using the pruned-enriched Rosenbluth method algorithm. By simulating this polymer model for walks up to length 4096 we find ν = 0.576(6) and γ = 1.045(5), which are clearly different from the predicted values. Our estimate for the exponent ν is compatible with the known θ-point value of 4/7 and in agreement with very recent numerical evaluation by Foster and Pinettes (2012 J. Phys. A: Math. Theor. 45 505003).

  11. Discrimination of numerical proportions: A comparison of binomial and Gaussian models.

    PubMed

    Raidvee, Aire; Lember, Jüri; Allik, Jüri

    2017-01-01

    Observers discriminated the numerical proportion of two sets of elements (N = 9, 13, 33, and 65) that differed either by color or orientation. According to the standard Thurstonian approach, the accuracy of proportion discrimination is determined by irreducible noise in the nervous system that stochastically transforms the number of presented visual elements onto a continuum of psychological states representing numerosity. As an alternative to this customary approach, we propose a Thurstonian-binomial model, which assumes discrete perceptual states, each of which is associated with a certain visual element. It is shown that the probability β with which each visual element can be noticed and registered by the perceptual system can explain data of numerical proportion discrimination at least as well as the continuous Thurstonian-Gaussian model, and better, if the greater parsimony of the Thurstonian-binomial model is taken into account using AIC model selection. We conclude that Gaussian and binomial models represent two different fundamental principles-internal noise vs. using only a fraction of available information-which are both plausible descriptions of visual perception.

  12. Numerical Modelling of a Bidirectional Long Ring Raman Fiber Laser Dynamics

    NASA Astrophysics Data System (ADS)

    Sukhanov, S. V.; Melnikov, L. A.; Mazhirina, Yu A.

    2017-11-01

    The numerical model for the simulation of the dynamics of a bidirectional long ring Raman fiber laser is proposed. The model is based on the transport equations and Courant-Isaacson-Rees method. Different regimes of a bidirectional long ring Raman fiber laser and long time-domain realizations are investigated.

  13. Detailed modeling of the statistical uncertainty of Thomson scattering measurements

    NASA Astrophysics Data System (ADS)

    Morton, L. A.; Parke, E.; Den Hartog, D. J.

    2013-11-01

    The uncertainty of electron density and temperature fluctuation measurements is determined by statistical uncertainty introduced by multiple noise sources. In order to quantify these uncertainties precisely, a simple but comprehensive model was made of the noise sources in the MST Thomson scattering system and of the resulting variance in the integrated scattered signals. The model agrees well with experimental and simulated results. The signal uncertainties are then used by our existing Bayesian analysis routine to find the most likely electron temperature and density, with confidence intervals. In the model, photonic noise from scattered light and plasma background light is multiplied by the noise enhancement factor (F) of the avalanche photodiode (APD). Electronic noise from the amplifier and digitizer is added. The amplifier response function shapes the signal and induces correlation in the noise. The data analysis routine fits a characteristic pulse to the digitized signals from the amplifier, giving the integrated scattered signals. A finite digitization rate loses information and can cause numerical integration error. We find a formula for the variance of the scattered signals in terms of the background and pulse amplitudes, and three calibration constants. The constants are measured easily under operating conditions, resulting in accurate estimation of the scattered signals' uncertainty. We measure F ≈ 3 for our APDs, in agreement with other measurements for similar APDs. This value is wavelength-independent, simplifying analysis. The correlated noise we observe is reproduced well using a Gaussian response function. Numerical integration error can be made negligible by using an interpolated characteristic pulse, allowing digitization rates as low as the detector bandwidth. The effect of background noise is also determined.

  14. Revisiting the use of hyperdiffusivities in numerical dynamo models

    NASA Astrophysics Data System (ADS)

    Fournier, A.; Aubert, J.

    2012-04-01

    The groundbreaking numerical dynamo models of Glatzmaier & Roberts (1995) and Kuang & Bloxham (1997) received some criticism due to their use of hyperdiffusivities, whereby small scale processes artificially experience much stronger dissipation than large scale processes. This stronger dissipation they chose was anisotropic, in that it was only effective in the horizontal direction, and parameterized in spectral space using the following generic formula for any diffusive parameter ν ν(l) = ν0 ifl ≤ l0, ν(l) = ν0[1 + a(l- l0)n] ifl > l0, in which l is the spherical harmonic degree, ν0 is a reference value, l0 is the degree above which hyperdiffusivities start operating, and a and n are real numbers. Following the same choice as the studies mentioned above (which had most notably l0 = 0), Grote & Busse (2000) showed in a fully nonlinear context that the usage of hyperdiffusivities could lead to substantially different dynamics and magnetic field generation mechanisms. Without questioning the physical relevance of this parameterization of subgrid scale processes, we wish here to revisit the use of hyperdiffusivities (as defined mathematically above), on the account of the observation that today's models are run with a truncation at much larger spherical harmonic degree than early models. Consequently, they do not require hyperdiffusivities to kick in at the largest scales (l0 can be set to several tens). An exploration of those regions of parameter space less accessible to numerical models could therefore benefit from their use, provided they do not alter noticeably the largest scales of the dynamo (which are the ones expressing themselves in the record of the geomagnetic secular variation). We compare the statistics of a direct numerical simulation with the statistics of several hyperdiffusive simulations. In the prospect of exploring the parameter space and constructing statistics for their subsequent use for geomagnetic data assimilation practice, we

  15. Calibration of numerical models for small debris flows in Yosemite Valley, California, USA

    USGS Publications Warehouse

    Bertolo, P.; Wieczorek, G.F.

    2005-01-01

    This study compares documented debris flow runout distances with numerical simulations in the Yosemite Valley of California, USA, where about 15% of historical events of slope instability can be classified as debris flows and debris slides (Wieczorek and Snyder, 2004). To model debris flows in the Yosemite Valley, we selected six streams with evidence of historical debris flows; three of the debris flow deposits have single channels, and the other three split their pattern in the fan area into two or more channels. From field observations all of the debris flows involved coarse material, with only very small clay content. We applied the one dimensional DAN (Dynamic ANalysis) model (Hungr, 1995) and the two-dimensional FLO2D model (O'Brien et al., 1993) to predict and compare the runout distance and the velocity of the debris flows observed in the study area. As a first step, we calibrated the parameters for the two softwares through the back analysis of three debris- flows channels using a trial-and-error procedure starting with values suggested in the literature. In the second step we applied the selected values to the other channels, in order to evaluate their predictive capabilities. After parameter calibration using three debris flows we obtained results similar to field observations We also obtained a good agreement between the two models for velocities. Both models are strongly influenced by topography: we used the 30 m cell size DTM available for the study area, that is probably not accurate enough for a highly detailed analysis, but it can be sufficient for a first screening. European Geosciences Union ?? 2005 Author(s). This work is licensed under a Creative Commons License.

  16. Direct numerical simulations in solid mechanics for quantifying the macroscale effects of microstructure and material model-form error

    DOE PAGES

    Bishop, Joseph E.; Emery, John M.; Battaile, Corbett C.; ...

    2016-03-16

    Two fundamental approximations in macroscale solid-mechanics modeling are (1) the assumption of scale separation in homogenization theory and (2) the use of a macroscopic plasticity material model that represents, in a mean sense, the multitude of inelastic processes occurring at the microscale. With the goal of quantifying the errors induced by these approximations on engineering quantities of interest, we perform a set of direct numerical simulations (DNS) in which polycrystalline microstructures are embedded throughout a macroscale structure. The largest simulations model over 50,000 grains. The microstructure is idealized using a randomly close-packed Voronoi tessellation in which each polyhedral Voronoi cellmore » represents a grain. An face centered cubic crystal-plasticity model is used to model the mechanical response of each grain. The overall grain structure is equiaxed, and each grain is randomly oriented with no overall texture. The detailed results from the DNS simulations are compared to results obtained from conventional macroscale simulations that use homogeneous isotropic plasticity models. The macroscale plasticity models are calibrated using a representative volume element of the idealized microstructure. Furthermore, we envision that DNS modeling will be used to gain new insights into the mechanics of material deformation and failure.« less

  17. A numerical model for the solution of the Shallow Water equations in composite channels with movable bed

    NASA Astrophysics Data System (ADS)

    minatti, L.

    2013-12-01

    the last fifteen years, most of them related to the occurrence of high flow rates. The employment of the model allowed to perform a detailed flood hazard assessment where potential risks associated to bedload transport,such as sediments filling of manufacts, excessive erosion or aggradation rates have been evaluated, together with the more 'classical' evaluation of water levels. The whole process also led to the identification of sensitive reaches of the river that require monitoring thus allowing better management practices of the public money allocated for river maintenance. Solution of the Riemann problem for a 10 m wide rectangular XS. The dotted lines represent the numerical solution, while the continuous ones represent the analytical solution

  18. Constraints on the rheology of the partially molten mantle from numerical models of laboratory experiments

    NASA Astrophysics Data System (ADS)

    Rudge, J. F.; Alisic Jewell, L.; Rhebergen, S.; Katz, R. F.; Wells, G. N.

    2015-12-01

    One of the fundamental components in any dynamical model of melt transport is the rheology of partially molten rock. This rheology is poorly understood, and one way in which a better understanding can be obtained is by comparing the results of laboratory deformation experiments to numerical models. Here we present a comparison between numerical models and the laboratory setup of Qi et al. 2013 (EPSL), where a cylinder of partially molten rock containing rigid spherical inclusions was placed under torsion. We have replicated this setup in a finite element model which solves the partial differential equations describing the mechanical process of compaction. These computationally-demanding 3D simulations are only possible due to the recent development of a new preconditioning method for the equations of magma dynamics. The experiments show a distinct pattern of melt-rich and melt-depleted regions around the inclusions. In our numerical models, the pattern of melt varies with key rheological parameters, such as the ratio of bulk to shear viscosity, and the porosity- and strain-rate-dependence of the shear viscosity. These observed melt patterns therefore have the potential to constrain rheological properties. While there are many similarities between the experiments and the numerical models, there are also important differences, which highlight the need for better models of the physics of two-phase mantle/magma dynamics. In particular, the laboratory experiments display more pervasive melt-rich bands than is seen in our numerics.

  19. Validation of numerical models for flow simulation in labyrinth seals

    NASA Astrophysics Data System (ADS)

    Frączek, D.; Wróblewski, W.

    2016-10-01

    CFD results were compared with the results of experiments for the flow through the labyrinth seal. RANS turbulence models (k-epsilon, k-omega, SST and SST-SAS) were selected for the study. Steady and transient results were analyzed. ANSYS CFX was used for numerical computation. The analysis included flow through sealing section with the honeycomb land. Leakage flows and velocity profiles in the seal were compared. In addition to the comparison of computational models, the divergence of modeling and experimental results has been determined. Tips for modeling these problems were formulated.

  20. A numerical cloud model for the support of laboratory experimentation

    NASA Technical Reports Server (NTRS)

    Hagen, D. E.

    1979-01-01

    A numerical cloud model is presented which can describe the evolution of a cloud starting from moist aerosol-laden air through the diffusional growth regime. The model is designed for the direct support of cloud chamber laboratory experimentation, i.e., experiment preparation, real-time control and data analysis. In the model the thermodynamics is uncoupled from the droplet growth processes. Analytic solutions for the cloud droplet growth equations are developed which can be applied in most laboratory situations. The model is applied to a variety of representative experiments.

  1. Predicting debris-flow initiation and run-out with a depth-averaged two-phase model and adaptive numerical methods

    NASA Astrophysics Data System (ADS)

    George, D. L.; Iverson, R. M.

    2012-12-01

    much higher resolution grids evolve with the flow. The reduction in computational cost, due to AMR, makes very large-scale problems tractable on personal computers. Model accuracy can be tested by comparison of numerical predictions and empirical data. These comparisons utilize controlled experiments conducted at the USGS debris-flow flume, which provide detailed data about flow mobilization and dynamics. Additionally, we have simulated historical large-scale debris flows, such as the (≈50 million m^3) debris flow that originated on Mt. Meager, British Columbia in 2010. This flow took a very complex route through highly variable topography and provides a valuable benchmark for testing. Maps of the debris flow deposit and data from seismic stations provide evidence regarding flow initiation, transit times and deposition. Our simulations reproduce many of the complex patterns of the event, such as run-out geometry and extent, and the large-scale nature of the flow and the complex topographical features demonstrate the utility of AMR in flow simulations.

  2. Numerical Propulsion System Simulation Architecture

    NASA Technical Reports Server (NTRS)

    Naiman, Cynthia G.

    2004-01-01

    The Numerical Propulsion System Simulation (NPSS) is a framework for performing analysis of complex systems. Because the NPSS was developed using the object-oriented paradigm, the resulting architecture is an extensible and flexible framework that is currently being used by a diverse set of participants in government, academia, and the aerospace industry. NPSS is being used by over 15 different institutions to support rockets, hypersonics, power and propulsion, fuel cells, ground based power, and aerospace. Full system-level simulations as well as subsystems may be modeled using NPSS. The NPSS architecture enables the coupling of analyses at various levels of detail, which is called numerical zooming. The middleware used to enable zooming and distributed simulations is the Common Object Request Broker Architecture (CORBA). The NPSS Developer's Kit offers tools for the developer to generate CORBA-based components and wrap codes. The Developer's Kit enables distributed multi-fidelity and multi-discipline simulations, preserves proprietary and legacy codes, and facilitates addition of customized codes. The platforms supported are PC, Linux, HP, Sun, and SGI.

  3. A DGTD method for the numerical modeling of the interaction of light with nanometer scale metallic structures taking into account non-local dispersion effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmitt, Nikolai; Technische Universitaet Darmstadt, Institut fuer Theorie Elektromagnetischer Felder; Scheid, Claire

    2016-07-01

    The interaction of light with metallic nanostructures is increasingly attracting interest because of numerous potential applications. Sub-wavelength metallic structures, when illuminated with a frequency close to the plasma frequency of the metal, present resonances that cause extreme local field enhancements. Exploiting the latter in applications of interest requires a detailed knowledge about the occurring fields which can actually not be obtained analytically. For the latter mentioned reason, numerical tools are thus an absolute necessity. The insight they provide is very often the only way to get a deep enough understanding of the very rich physics at play. For the numericalmore » modeling of light-structure interaction on the nanoscale, the choice of an appropriate material model is a crucial point. Approaches that are adopted in a first instance are based on local (i.e. with no interaction between electrons) dispersive models, e.g. Drude or Drude–Lorentz models. From the mathematical point of view, when a time-domain modeling is considered, these models lead to an additional system of ordinary differential equations coupled to Maxwell's equations. However, recent experiments have shown that the repulsive interaction between electrons inside the metal makes the response of metals intrinsically non-local and that this effect cannot generally be overlooked. Technological achievements have enabled the consideration of metallic structures in a regime where such non-localities have a significant influence on the structures' optical response. This leads to an additional, in general non-linear, system of partial differential equations which is, when coupled to Maxwell's equations, significantly more difficult to treat. Nevertheless, dealing with a linearized non-local dispersion model already opens the route to numerous practical applications of plasmonics. In this work, we present a Discontinuous Galerkin Time-Domain (DGTD) method able to solve the system of

  4. Numerical modeling for an electric-field hyperthermia applicator

    NASA Technical Reports Server (NTRS)

    Wu, Te-Kao; Chou, C. K.; Chan, K. W.; Mcdougall, J.

    1993-01-01

    Hyperthermia, in conjunction with radiation and chemotherapy for treatment of cancers, is an area of current concern. Experiments have shown that hyperthermia can increase the potency of many chemotherapy drugs and the effectiveness of radiation for treating cancer. A combination of whole body or regional hyperthermia with chemotherapy or radiation should improve treatment results. Conventional methods for inducing whole body hyperthermia, such as exposing a patient in a radiant cabinet or under a hot water blanket, conduct heat very slowly from the skin to the body core. Thus a more efficient system, such as the three-plate electric-field hyperthermia applicator (EHA), is developed. This three-plate EHA has one top plate over and two lower plates beneath the patient. It is driven at 27.12 MHz with 500 Watts through a matching circuit. Using this applicator, a 50 kg pig was successfully heated to 42 C within 45 minutes. However, phantom and animal studies have indicated non-uniform heating near the side of the body. In addition, changes in the size and distance between the electrode plates can affect the heating (or electromagnetic field) pattern. Therefore, numerical models using the method of moments (MOM) or the finite difference time domain (FDTD) technique are developed to optimize the heating pattern of this EHA before it is used for human trials. The accuracy of the numerical modeling has been achieved by the good agreement between the MOM and FDTD results for the three-plate EHA without a biological body. The versatile FDTD technique is then applied to optimize the EHA design with a human body. Both the numerical and measured data in phantom blocks will be presented. The results of this study will be used to design an optimized system for whole body or regional hyperthermia.

  5. Numerical Modeling of Saturated Boiling in a Heated Tube

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok; LeClair, Andre; Hartwig, Jason

    2017-01-01

    This paper describes a mathematical formulation and numerical solution of boiling in a heated tube. The mathematical formulation involves a discretization of the tube into a flow network consisting of fluid nodes and branches and a thermal network consisting of solid nodes and conductors. In the fluid network, the mass, momentum and energy conservation equations are solved and in the thermal network, the energy conservation equation of solids is solved. A pressure-based, finite-volume formulation has been used to solve the equations in the fluid network. The system of equations is solved by a hybrid numerical scheme which solves the mass and momentum conservation equations by a simultaneous Newton-Raphson method and the energy conservation equation by a successive substitution method. The fluid network and thermal network are coupled through heat transfer between the solid and fluid nodes which is computed by Chen's correlation of saturated boiling heat transfer. The computer model is developed using the Generalized Fluid System Simulation Program and the numerical predictions are compared with test data.

  6. Current status of one- and two-dimensional numerical models: Successes and limitations

    NASA Technical Reports Server (NTRS)

    Schwartz, R. J.; Gray, J. L.; Lundstrom, M. S.

    1985-01-01

    The capabilities of one and two-dimensional numerical solar cell modeling programs (SCAP1D and SCAP2D) are described. The occasions when a two-dimensional model is required are discussed. The application of the models to design, analysis, and prediction are presented along with a discussion of problem areas for solar cell modeling.

  7. Numerical simulation and nasal air-conditioning

    PubMed Central

    Keck, Tilman; Lindemann, Jörg

    2011-01-01

    Heating and humidification of the respiratory air are the main functions of the nasal airways in addition to cleansing and olfaction. Optimal nasal air conditioning is mandatory for an ideal pulmonary gas exchange in order to avoid desiccation and adhesion of the alveolar capillary bed. The complex three-dimensional anatomical structure of the nose makes it impossible to perform detailed in vivo studies on intranasal heating and humidification within the entire nasal airways applying various technical set-ups. The main problem of in vivo temperature and humidity measurements is a poor spatial and time resolution. Therefore, in vivo measurements are feasible only to a restricted extent, solely providing single temperature values as the complete nose is not entirely accessible. Therefore, data on the overall performance of the nose are only based on one single measurement within each nasal segment. In vivo measurements within the entire nose are not feasible. These serious technical issues concerning in vivo measurements led to a large number of numerical simulation projects in the last few years providing novel information about the complex functions of the nasal airways. In general, numerical simulations merely calculate predictions in a computational model, e.g. a realistic nose model, depending on the setting of the boundary conditions. Therefore, numerical simulations achieve only approximations of a possible real situation. The aim of this review is the synopsis of the technical expertise on the field of in vivo nasal air conditioning, the novel information of numerical simulations and the current state of knowledge on the influence of nasal and sinus surgery on nasal air conditioning. PMID:22073112

  8. Numerical Simulation of Thin Film Breakup on Nonwettable Surfaces

    NASA Astrophysics Data System (ADS)

    Suzzi, N.; Croce, G.

    2017-01-01

    When a continuous film flows on a nonwettable substrate surface, it may break up, with the consequent formation of a dry-patch. The actual shape of the resulting water layer is of great interest in several engineering applications, from in-flight icing simulation to finned dehumidifier behavior modeling. Here, a 2D numerical solver for the prediction of film flow behavior is presented. The effect of the contact line is introduced via the disjoining pressure terms, and both gravity and shear are included in the formulation. The code is validated with literature experimental data for the case of a stationary dry-patch on an inclined plane. Detailed numerical results are compared with literature simplified model prediction. Numerical simulation are then performed in order to predict the threshold value of the film thickness allowing for film breakup and to analyze the dependence of the dynamic contact angle on film velocity and position along the contact line. Those informations will be useful in order to efficiently predict more complex configuration involving multiple breakups on arbitrarily curved substrate surfaces (as those involved in in-flight icing phenomena on aircraft).

  9. Numerical evidence of liquid crystalline mesophases of a lollipop shaped model in two dimensions

    NASA Astrophysics Data System (ADS)

    Pérez-Lemus, G. R.; Armas-Pérez, J. C.; Chapela, G. A.; Quintana-H., J.

    2017-12-01

    Small alterations in the molecular details may produce noticeable changes in the symmetry of the resulting phase behavior. It is possible to produce morphologies having different n-fold symmetries by manipulating molecular features such as chirality, polarity or anisotropy. In this paper, a two dimensional hard molecular model is introduced to study the formation of liquid crystalline phases in low dimensionality. The model is similar to that reported by Julio C. Armas-Pérez and Jacqueline Quintana-H., Phys. Rev. E 83, 051709 (2011). The main difference is the lack of chirality in the model proposed, although they share some characteristics like the geometrical polarity. Our model is called a lollipop model, because its shape is constructed by a rounded section attached to the end of a stick. Contrary to what happens in three dimensions where chiral nematogens produce interesting and complex phases such as blue phases, the lack of molecular chirality of our model generates a richer phase diagram compared to the chiral system. We show numerical and some geometrical evidences that the lack of laterality of the non chiral model seems to provide more routes of molecular self-assembly, producing triatic, a random cluster and possibly a tetratic phase behavior which were not presented in the previous work. We support our conclusions using results obtained from isobaric and isochoric Monte Carlo simulations. Properties as the n-fold order parameters such as the nematic, tetratic and triatic as well as their correlation functions were used to characterize the phases. We also provide the Fourier transform of equilibrium configurations to analyze the n-fold symmetry characteristic of each phase.

  10. Numerical modeling of severe convective storms occurring in the Carpathian Basin

    NASA Astrophysics Data System (ADS)

    Horváth, Á.; Geresdi, I.; Németh, P.; Csirmaz, K.; Dombai, F.

    Squall lines often cause serious damages due to the strong surface outflow, hail, or heavy precipitation in Hungary every summer. Squall lines in the Carpathian Basin can be classified into two main categories: pre-frontal squall-lines and frontal convective lines. In this paper, these two types of severe mesoscale phenomena are investigated using the high resolution numerical weather prediction model, the MM5. The case study for the first type of convective systems occurred on 18th May 2005 when two main convective lines with their embedded severe storms formed daytime and caused high-velocity wind events and extensive damages in the eastern part of Hungary. The second case study is a frontal squall line that hit Budapest on 20th August 2006 and the associated high precipitation (HP) supercells reached the capital of Hungary at same time when the traditional Constitution Day firework began. The consequences were catastrophic: five people were killed and more than one thousand were injured due to the extreme weather. The non-hydrostatic high resolution MM5 model was able to simulate and catch the severe weather events occurred on the days under discussion. Moreover, the model was able to compute the detailed structure of the supercells embedded in thunderstorm lines. By studying the equivalent potential temperature (EPT) fields at lower levels, we state that in the prefrontal case, there is a competition between the supercell thunderstorms for the wet and warm air. A thunderstorm that can collect the wet and warm air from larger area will have longer lifetime and more intense updraft. In the second case, the frontal squall lines, the movement and the behavior of the supercell storms embedded in the line was highly determined by the synoptic-scale motions and less affected by the EPT field of the prefrontal masses.

  11. Numerical relativity waveform surrogate model for generically precessing binary black hole mergers

    NASA Astrophysics Data System (ADS)

    Blackman, Jonathan; Field, Scott E.; Scheel, Mark A.; Galley, Chad R.; Ott, Christian D.; Boyle, Michael; Kidder, Lawrence E.; Pfeiffer, Harald P.; Szilágyi, Béla

    2017-07-01

    A generic, noneccentric binary black hole (BBH) system emits gravitational waves (GWs) that are completely described by seven intrinsic parameters: the black hole spin vectors and the ratio of their masses. Simulating a BBH coalescence by solving Einstein's equations numerically is computationally expensive, requiring days to months of computing resources for a single set of parameter values. Since theoretical predictions of the GWs are often needed for many different source parameters, a fast and accurate model is essential. We present the first surrogate model for GWs from the coalescence of BBHs including all seven dimensions of the intrinsic noneccentric parameter space. The surrogate model, which we call NRSur7dq2, is built from the results of 744 numerical relativity simulations. NRSur7dq2 covers spin magnitudes up to 0.8 and mass ratios up to 2, includes all ℓ≤4 modes, begins about 20 orbits before merger, and can be evaluated in ˜50 ms . We find the largest NRSur7dq2 errors to be comparable to the largest errors in the numerical relativity simulations, and more than an order of magnitude smaller than the errors of other waveform models. Our model, and more broadly the methods developed here, will enable studies that were not previously possible when using highly accurate waveforms, such as parameter inference and tests of general relativity with GW observations.

  12. Dynamics of the Antarctic Circumpolar Current. Evidence for Topographic Effects from Altimeter Data and Numerical Model Output

    NASA Technical Reports Server (NTRS)

    Gille, Sarah T.

    1995-01-01

    Geosat altimeter data and numerical model output are used to examine the circulation and dynamics of the Antarctic Circumpolar Current (ACC). The mean sea surface height across the ACC has been reconstructed from height variability measured by the altimeter, without assuming prior knowledge of the geoid. The results indicate locations for the Subantarctic and Polar Fronts which are consistent with in situ observations and indicate that the fronts are substantially steered by bathymetry. Detailed examination of spatial and temporal variability indicates a spatial decorrelation scale of 85 km and a temporal e-folding scale of 34 days. Empirical Orthogonal Function analysis suggests that the scales of motion are relatively short, occuring on 1000 km length-scales rather than basin or global scales. The momentum balance of the ACC has been investigated using output from the high resolution primitive equation model in combination with altimeter data. In the Semtner-Chervin quarter-degree general circulation model topographic form stress is the dominant process balancing the surface wind forcing. In stream coordinates, the dominant effect transporting momentum across the ACC is bibarmonic friction. Potential vorticity is considered on Montgomery streamlines in the model output and along surface streamlines in model and altimeter data. (AN)

  13. Towards high fidelity numerical wave tanks for modelling coastal and ocean engineering processes

    NASA Astrophysics Data System (ADS)

    Cozzuto, G.; Dimakopoulos, A.; de Lataillade, T.; Kees, C. E.

    2017-12-01

    With the increasing availability of computational resources, the engineering and research community is gradually moving towards using high fidelity Comutational Fluid Mechanics (CFD) models to perform numerical tests for improving the understanding of physical processes pertaining to wave propapagation and interaction with the coastal environment and morphology, either physical or man-made. It is therefore important to be able to reproduce in these models the conditions that drive these processes. So far, in CFD models the norm is to use regular (linear or nonlinear) waves for performing numerical tests, however, only random waves exist in nature. In this work, we will initially present the verification and validation of numerical wave tanks based on Proteus, an open-soruce computational toolkit based on finite element analysis, with respect to the generation, propagation and absorption of random sea states comprising of long non-repeating wave sequences. Statistical and spectral processing of results demonstrate that the methodologies employed (including relaxation zone methods and moving wave paddles) are capable of producing results of similar quality to the wave tanks used in laboratories (Figure 1). Subsequently cases studies of modelling complex process relevant to coastal defences and floating structures such as sliding and overturning of composite breakwaters, heave and roll response of floating caissons are presented. Figure 1: Wave spectra in the numerical wave tank (coloured symbols), compared against the JONSWAP distribution

  14. Numerical modeling of the thin shallow solar dynamo

    NASA Astrophysics Data System (ADS)

    O'Bryan, J. B.; Jarboe, T. R.

    2017-10-01

    Nonlinear, numerical computation with the NIMROD code is used to explore and validate the thin shallow solar dynamo model [T.R. Jarboe et al. 2017], which explains the observed global temporal evolution (e.g. magnetic field reversal) and local surface structures (e.g. sunspots) of the sun. The key feature of this model is the presence and magnetic self-organization of global magnetic structures (GMS) lying just below the surface of the sun, which resemble 1D radial Taylor states of size comparable to the supergranule convection cells. First, we seek to validate the thin shallow solar dynamo model by reproducing the 11 year timescale for reversal of the solar magnetic field. Then, we seek to model formation of GMS from convection zone turbulence. Our computations simulate a slab covering a radial depth 3Mm and include differential rotation and gravity. Density, temperature, and resistivity profiles are taken from the Christensen-Dalsgaard model.

  15. Numerical modeling and simulation studies for the M4 adaptive mirror of the E-ELT

    NASA Astrophysics Data System (ADS)

    Carbillet, Marcel; Riccardi, Armando; Xompero, Marco

    2012-07-01

    We report in this paper on the progress of numerical modeling and simulation studies of the M4 adaptive mirror, a representative of the "adaptive secondary mirrors" technology, for the European Extremely Large Telescope (E-ELT). This is based on both dedicated routines and the existing code of the Software Package CADS. The points approached are basically the specific problems encountered with this particular type of voice-coil adaptive mirrors on the E-ELT: (*) the segmentation of the adaptive mirror, implying a fitting error due also to the edges of its six petals, as well as possible co-phasing problems to be evaluated in terms of interaction with the wavefront sensor (a pyramid here); (**) the necessary presence of "master" and "slave" actuators which management, in terms of wavefront reconstruction, implies to consider different strategies. The on-going work being performed for the two above points is described in details, and some preliminary results are given.

  16. Using 3-D Numerical Weather Data in Piloted Simulations

    NASA Technical Reports Server (NTRS)

    Daniels, Taumi S.

    2016-01-01

    This report describes the process of acquiring and using 3-D numerical model weather data sets in NASA Langley's Research Flight Deck (RFD). A set of software tools implement the process and can be used for other purposes as well. Given time and location information of a weather phenomenon of interest, the user can download associated numerical weather model data. These data are created by the National Oceanic and Atmospheric Administration (NOAA) High Resolution Rapid Refresh (HRRR) model, and are then processed using a set of Mathworks' Matlab(TradeMark) scripts to create the usable 3-D weather data sets. Each data set includes radar re ectivity, water vapor, component winds, temperature, supercooled liquid water, turbulence, pressure, altitude, land elevation, relative humidity, and water phases. An open-source data processing program, wgrib2, is available from NOAA online, and is used along with Matlab scripts. These scripts are described with sucient detail to make future modi cations. These software tools have been used to generate 3-D weather data for various RFD experiments.

  17. Numerical Modeling of Crystal of ZnSe by Physical Vapor Transport - Towards a more Comprehensive Formulations

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.

    1999-01-01

    Crystal growth from the vapor phase has various advantages over melt growth. The main advantage is from a lower processing temperature which makes the process more amenable in instances where the melting temperature of the crystal is high. Other benefits stem from the inherent purification mechanism in the process due to differences in the vapor pressures of the native elements and impurities, and the enhanced interfacial morphological stability during the growth process. Further, the implementation of PVT growth in closed ampoules affords experimental simplicity with minimal needs for complex process control which makes it an ideal candidate for space investigations in systems where gravity tends to have undesirable effects on the growth process. Bulk growth of wide band gap II-VI semiconductors by physical vapor transport has been developed and refined over the past several years at NASA MSFC. Results from a modeling study of PVT crystal growth of ZnSe are reported in this paper. The PVT process is numerically investigated using both two-dimensional and fully three-dimensional formulation of the governing equations and associated boundary conditions. Both the incompressible Boussinesq approximation and the compressible model are tested to determine the influence of gravity on the process and to discern the differences between the two approaches. The influence of a residual gas is included in the models. The results show that both the incompressible and compressible approximations provide comparable results and the presence of a residual gas tends to measurably reduce the mass flux in the system. Detailed flow, thermal and concentration profiles will be provided in the final manuscript along with computed heat and mass transfer rates. Comparisons with the 1-D model will also be provided. The effect of gravity on the process from numerical computations shows subtle effects although experimental evidence from vertically and horizontally grown samples show dramatic

  18. Quantification of the electrical anisotropy in the pro­cess of numerical modelling for hydrogeological characterization

    NASA Astrophysics Data System (ADS)

    Gernez, S.; Bouchedda, A.; Gloaguen, E.; Paradis, D.

    2017-12-01

    In order to understand groundwater flow and contaminant transport in the subsurface, it is important to characterize accurately its permeability. Hydrogeophysics, which involves the use of geophysical data to infer the hydraulic properties of the subsurface, is a relatively new geoscience field that is promising to improve hydrogeological characterization. Amongst existing geophysical methods, Electrical Resistivity Tomography (ERT), that can cover a large continuous underground surface or volume, has been widely applied. The inversed electrical resistivities obtained are related to the permeabilities by different means and the resistivity anisotropy should theoretically be a proxy to the permeability anisotropy. However, the existing hydrogeophysical inversion tools usually do not take into account anisotropy. In this paper, we present an anisotropic forward- and inverse-problem 2.5D finite-differences electrical study, which allows to produce improved anisotropic permeability characterization models. We first detail the theoretical basis of the anisotropic ERT, which introduces a resistivity tensor in place of a scalar, and its numerical implementation. After that, we build a synthetic case presenting a simple but representative geological structure in two horizontal homogeneous and anisotropic beds: the numerical forward modelling shows a difference of less than 1% with the analytical solution; the inverse modelling is able to reproduce the initial structure well, with resistivity values close to the initial synthetic model (see attached figure). We show that by using both surface and single-borehole arrays, we overcome the equivalence principle making sure that a unique solution arises. The latter cannot be obtained when considering the media isotropic as typically assumed with existing inversion tools. Finally, we discuss the consequences of the integration of anisotropy in the data-integrated characterization of the permeability. We show that it has a

  19. A Numerical Study on Toppling Failure of a Jointed Rock Slope by Using the Distinct Lattice Spring Model

    NASA Astrophysics Data System (ADS)

    Lian, Ji-Jian; Li, Qin; Deng, Xi-Fei; Zhao, Gao-Feng; Chen, Zu-Yu

    2018-02-01

    In this work, toppling failure of a jointed rock slope is studied by using the distinct lattice spring model (DLSM). The gravity increase method (GIM) with a sub-step loading scheme is implemented in the DLSM to mimic the loading conditions of a centrifuge test. A classical centrifuge test for a jointed rock slope, previously simulated by the finite element method and the discrete element model, is simulated by using the GIM-DLSM. Reasonable boundary conditions are obtained through detailed comparisons among existing numerical solutions with experimental records. With calibrated boundary conditions, the influences of the tensional strength of the rock block, cohesion and friction angles of the joints, as well as the spacing and inclination angles of the joints, on the flexural toppling failure of the jointed rock slope are investigated by using the GIM-DLSM, leading to some insight into evaluating the state of flexural toppling failure for a jointed slope and effectively preventing the flexural toppling failure of jointed rock slopes.

  20. History of Binary and Other Nondecimal Numeration.

    ERIC Educational Resources Information Center

    Glaser, Anton

    This study traces the development of nondecimal numeration from the 16th century to the present. The first six chapters detail the contributions of mathematicians as well as people from other fields. Applications to computers are covered in one chapter, while another chapter discusses the coverage of numeration systems in college textbooks for…

  1. Numerical model a graphene component for the sensing of weak electromagnetic signals

    NASA Astrophysics Data System (ADS)

    Nasswettrova, A.; Fiala, P.; Nešpor, D.; Drexler, P.; Steinbauer, M.

    2015-05-01

    The paper discusses a numerical model and provides an analysis of a graphene coaxial line suitable for sub-micron sensors of magnetic fields. In relation to the presented concept, the target areas and disciplines include biology, medicine, prosthetics, and microscopic solutions for modern actuators or SMART elements. The proposed numerical model is based on an analysis of a periodic structure with high repeatability, and it exploits a graphene polymer having a basic dimension in nanometers. The model simulates the actual random motion in the structure as the source of spurious signals and considers the pulse propagation along the structure; furthermore, the model also examines whether and how the pulse will be distorted at the beginning of the line, given the various ending versions. The results of the analysis are necessary for further use of the designed sensing devices based on graphene structures.

  2. A review of numerical models to predict the atmospheric dispersion of radionuclides.

    PubMed

    Leelőssy, Ádám; Lagzi, István; Kovács, Attila; Mészáros, Róbert

    2018-02-01

    The field of atmospheric dispersion modeling has evolved together with nuclear risk assessment and emergency response systems. Atmospheric concentration and deposition of radionuclides originating from an unintended release provide the basis of dose estimations and countermeasure strategies. To predict the atmospheric dispersion and deposition of radionuclides several numerical models are available coupled with numerical weather prediction (NWP) systems. This work provides a review of the main concepts and different approaches of atmospheric dispersion modeling. Key processes of the atmospheric transport of radionuclides are emission, advection, turbulent diffusion, dry and wet deposition, radioactive decay and other physical and chemical transformations. A wide range of modeling software are available to simulate these processes with different physical assumptions, numerical approaches and implementation. The most appropriate modeling tool for a specific purpose can be selected based on the spatial scale, the complexity of meteorology, land surface and physical and chemical transformations, also considering the available data and computational resource. For most regulatory and operational applications, offline coupled NWP-dispersion systems are used, either with a local scale Gaussian, or a regional to global scale Eulerian or Lagrangian approach. The dispersion model results show large sensitivity on the accuracy of the coupled NWP model, especially through the description of planetary boundary layer turbulence, deep convection and wet deposition. Improvement of dispersion predictions can be achieved by online coupling of mesoscale meteorology and atmospheric transport models. The 2011 Fukushima event was the first large-scale nuclear accident where real-time prognostic dispersion modeling provided decision support. Dozens of dispersion models with different approaches were used for prognostic and retrospective simulations of the Fukushima release. An unknown

  3. Numerics and subgrid‐scale modeling in large eddy simulations of stratocumulus clouds

    PubMed Central

    Mishra, Siddhartha; Schneider, Tapio; Kaul, Colleen M.; Tan, Zhihong

    2017-01-01

    Abstract Stratocumulus clouds are the most common type of boundary layer cloud; their radiative effects strongly modulate climate. Large eddy simulations (LES) of stratocumulus clouds often struggle to maintain fidelity to observations because of the sharp gradients occurring at the entrainment interfacial layer at the cloud top. The challenge posed to LES by stratocumulus clouds is evident in the wide range of solutions found in the LES intercomparison based on the DYCOMS‐II field campaign, where simulated liquid water paths for identical initial and boundary conditions varied by a factor of nearly 12. Here we revisit the DYCOMS‐II RF01 case and show that the wide range of previous LES results can be realized in a single LES code by varying only the numerical treatment of the equations of motion and the nature of subgrid‐scale (SGS) closures. The simulations that maintain the greatest fidelity to DYCOMS‐II observations are identified. The results show that using weighted essentially non‐oscillatory (WENO) numerics for all resolved advective terms and no explicit SGS closure consistently produces the highest‐fidelity simulations. This suggests that the numerical dissipation inherent in WENO schemes functions as a high‐quality, implicit SGS closure for this stratocumulus case. Conversely, using oscillatory centered difference numerical schemes for momentum advection, WENO numerics for scalars, and explicitly modeled SGS fluxes consistently produces the lowest‐fidelity simulations. We attribute this to the production of anomalously large SGS fluxes near the cloud tops through the interaction of numerical error in the momentum field with the scalar SGS model. PMID:28943997

  4. Numerics and subgrid-scale modeling in large eddy simulations of stratocumulus clouds.

    PubMed

    Pressel, Kyle G; Mishra, Siddhartha; Schneider, Tapio; Kaul, Colleen M; Tan, Zhihong

    2017-06-01

    Stratocumulus clouds are the most common type of boundary layer cloud; their radiative effects strongly modulate climate. Large eddy simulations (LES) of stratocumulus clouds often struggle to maintain fidelity to observations because of the sharp gradients occurring at the entrainment interfacial layer at the cloud top. The challenge posed to LES by stratocumulus clouds is evident in the wide range of solutions found in the LES intercomparison based on the DYCOMS-II field campaign, where simulated liquid water paths for identical initial and boundary conditions varied by a factor of nearly 12. Here we revisit the DYCOMS-II RF01 case and show that the wide range of previous LES results can be realized in a single LES code by varying only the numerical treatment of the equations of motion and the nature of subgrid-scale (SGS) closures. The simulations that maintain the greatest fidelity to DYCOMS-II observations are identified. The results show that using weighted essentially non-oscillatory (WENO) numerics for all resolved advective terms and no explicit SGS closure consistently produces the highest-fidelity simulations. This suggests that the numerical dissipation inherent in WENO schemes functions as a high-quality, implicit SGS closure for this stratocumulus case. Conversely, using oscillatory centered difference numerical schemes for momentum advection, WENO numerics for scalars, and explicitly modeled SGS fluxes consistently produces the lowest-fidelity simulations. We attribute this to the production of anomalously large SGS fluxes near the cloud tops through the interaction of numerical error in the momentum field with the scalar SGS model.

  5. Polyhedral meshing in numerical analysis of conjugate heat transfer

    NASA Astrophysics Data System (ADS)

    Sosnowski, Marcin; Krzywanski, Jaroslaw; Grabowska, Karolina; Gnatowska, Renata

    2018-06-01

    Computational methods have been widely applied in conjugate heat transfer analysis. The very first and crucial step in such research is the meshing process which consists in dividing the analysed geometry into numerous small control volumes (cells). In Computational Fluid Dynamics (CFD) applications it is desirable to use the hexahedral cells as the resulting mesh is characterized by low numerical diffusion. Unfortunately generating such mesh can be a very time-consuming task and in case of complicated geometry - it may not be possible to generate cells of good quality. Therefore tetrahedral cells have been implemented into commercial pre-processors. Their advantage is the ease of its generation even in case of very complex geometry. On the other hand tetrahedrons cannot be stretched excessively without decreasing the mesh quality factor, so significantly larger number of cells has to be used in comparison to hexahedral mesh in order to achieve a reasonable accuracy. Moreover the numerical diffusion of tetrahedral elements is significantly higher. Therefore the polyhedral cells are proposed within the paper in order to combine the advantages of hexahedrons (low numerical diffusion resulting in accurate solution) and tetrahedrons (rapid semi-automatic generation) as well as to overcome the disadvantages of both the above mentioned mesh types. The major benefit of polyhedral mesh is that each individual cell has many neighbours, so gradients can be well approximated. Polyhedrons are also less sensitive to stretching than tetrahedrons which results in better mesh quality leading to improved numerical stability of the model. In addition, numerical diffusion is reduced due to mass exchange over numerous faces. This leads to a more accurate solution achieved with a lower cell count. Therefore detailed comparison of numerical modelling results concerning conjugate heat transfer using tetrahedral and polyhedral meshes is presented in the paper.

  6. System Operations Studies for Automated Gateway Transit Systems - Detailed Station Model Programmer's Manual.

    DOT National Transportation Integrated Search

    1982-01-01

    The Detailed Station Model (DSM) provides operational and performance measures of alternative station configurations and management policies with respect to vehicle and passenger capabilities. It provides an analytic tool to support tradeoff studies ...

  7. Numerical modelling to assess maintenance strategy management options for a small tidal inlet

    NASA Astrophysics Data System (ADS)

    Shaeri, Saeed; Tomlinson, Rodger; Etemad-Shahidi, Amir; Strauss, Darrell

    2017-03-01

    Small tidal inlets are found to be more sensitive to anthropogenic alteration than their larger counterparts. Such alterations, although typically supported by technical design reports, sometimes require amendments or modification. One of the most suitable tools to conduct the necessary studies in this regard is numerical modelling, since the behaviour of the inlet system in response to proposed remedial actions, can easily be identified. In this paper, various alternative proposals are investigated to determine the most practical and viable option to mitigate the need for ongoing maintenance at a typical small, jettied tidal inlet. The main tool to investigate the alternatives is the hydro-sedimentological modelling of the inlet system, which was performed using the Delft3D software package. The proposed alternative entrance modifications were based upon structural alterations of the inlet system (such as a jetty extension or submerged weir) and non-structural scenarios (such as a change of the time of the dredging campaign or the deposition location of the dredged material). It was concluded that whilst a detailed study is inevitable in order to achieve a comprehensive design plan, based upon the results of this study the construction of a submerged weir at the entrance channel can satisfy the needs of most of the stakeholders, with justifiable costs over a longer period.

  8. Statistical palaeomagnetic field modelling and dynamo numerical simulation

    NASA Astrophysics Data System (ADS)

    Bouligand, C.; Hulot, G.; Khokhlov, A.; Glatzmaier, G. A.

    2005-06-01

    By relying on two numerical dynamo simulations for which such investigations are possible, we test the validity and sensitivity of a statistical palaeomagnetic field modelling approach known as the giant gaussian process (GGP) modelling approach. This approach is currently used to analyse palaeomagnetic data at times of stable polarity and infer some information about the way the main magnetic field (MF) of the Earth has been behaving in the past and has possibly been influenced by core-mantle boundary (CMB) conditions. One simulation has been run with homogeneous CMB conditions, the other with more realistic non-homogeneous symmetry breaking CMB conditions. In both simulations, it is found that, as required by the GGP approach, the field behaves as a short-term memory process. Some severe non-stationarity is however found in the non-homogeneous case, leading to very significant departures of the Gauss coefficients from a Gaussian distribution, in contradiction with the assumptions underlying the GGP approach. A similar but less severe non-stationarity is found in the case of the homogeneous simulation, which happens to display a more Earth-like temporal behaviour than the non-homogeneous case. This suggests that a GGP modelling approach could nevertheless be applied to try and estimate the mean μ and covariance matrix γ(τ) (first- and second-order statistical moments) of the field produced by the geodynamo. A detailed study of both simulations is carried out to assess the possibility of detecting statistical symmetry breaking properties of the underlying dynamo process by inspection of estimates of μ and γ(τ). As expected (because of the role of the rotation of the Earth in the dynamo process), those estimates reveal spherical symmetry breaking properties. Equatorial symmetry breaking properties are also detected in both simulations, showing that such symmetry breaking properties can occur spontaneously under homogeneous CMB conditions. By contrast axial

  9. Rivers on Titan - numerical modelling of sedimentary structures

    NASA Astrophysics Data System (ADS)

    Misiura, Katarzyna; Czechowski, Leszek

    2016-07-01

    On Titan surface we can expect a few different geomorphological forms, e.g. fluvial valley and river channels. In our research we use numerical model of the river to determine the limits of different fluvial parameters that play important roles in evolution of the rivers on Titan and on Earth. We have found that transport of sediments as suspended load is the main way of transport for Titan [1]. We also determined the range of the river's parameters for which braided river is developed rather than meandering river. Similar, parallel simulations for rivers deltas are presented in [2]. Introduction Titan is a very special body in the Solar System. It is the only moon that has dense atmosphere and flowing liquid on its surface. The Cassini-Huygens mission has found on Titan meandering rivers, and indicated processes of erosion, transport of solid material and its sedimentation. This work is aimed to investigate the similarity and differences between these processes on Titan and the Earth. Numerical model The dynamical analysis of the considered rivers is performed using the package CCHE modified for the specific conditions on Titan. The package is based on the Navier-Stokes equations for depth-integrated two dimensional, turbulent flow and three dimensional convection-diffusion equation of sediment transport. For more information about equations see [1]. Parameters of the model We considered our model for a few different parameters of liquid and material transported by a river. For Titan we consider liquid corresponding to a Titan's rain (75% methane, 25% nitrogen), for Earth, of course, the water. Material transported in rivers on Titan is water ice, for Earth - quartz. Other parameters of our model are: inflow discharge, outflow level, grain size of sediments etc. For every calculation performed for Titan's river similar calculations are performed for terrestrial ones. Results and Conclusions The results of our simulation show the differences in behaviour of the

  10. Numerical modelling of electrochemical polarization around charged metallic particles

    NASA Astrophysics Data System (ADS)

    Bücker, Matthias; Undorf, Sabine; Flores Orozco, Adrián; Kemna, Andreas

    2017-04-01

    We extend an existing analytical model and carry out numerical simulations to study the polarization process around charged metallic particles immersed in an electrolyte solution. Electro-migration and diffusion processes in the electrolyte are described by the Poisson-Nernst-Planck system of partial differential equations. To model the surface charge density, we consider a time- and frequency-invariant electric potential at the particle surface, which leads to the build-up of a static electrical double layer (EDL). Upon excitation by an external electric field at low frequencies, we observe the superposition of two polarization processes. On the one hand, the induced dipole moment on the metallic particle leads to the accumulation of opposite charges in the electrolyte. This charge polarization corresponds to the long-known response of uncharged metallic particles. On the other hand, the unequal cation and anion concentrations in the EDL give rise to a salinity gradient between the two opposite sides of the metallic particle. The resulting concentration polarization enhances the magnitude of the overall polarization response. Furthermore, we use our numerical model to study the effect of relevant model parameters such as surface charge density and ionic strength of the electrolyte on the resulting spectra of the effective conductivity of the composite model system. Our results do not only give interesting new insight into the time-harmonic variation of electric potential and ion concentrations around charged metallic particle. They are also able to reduce incongruities between earlier model predictions and geophysical field and laboratory measurements. Our model thereby improves the general understanding of IP signatures of metallic particles and represents the next step towards a quantitative interpretation of IP imaging results. Part of this research is funded by the Austrian Federal Ministry of Science, Research and Economy under the Raw Materials Initiative.

  11. Numerical Modeling of Unsteady Thermofluid Dynamics in Cryogenic Systems

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok

    2003-01-01

    A finite volume based network analysis procedure has been applied to model unsteady flow without and with heat transfer. Liquid has been modeled as compressible fluid where the compressibility factor is computed from the equation of state for a real fluid. The modeling approach recognizes that the pressure oscillation is linked with the variation of the compressibility factor; therefore, the speed of sound does not explicitly appear in the governing equations. The numerical results of chilldown process also suggest that the flow and heat transfer are strongly coupled. This is evident by observing that the mass flow rate during 90-second chilldown process increases by factor of ten.

  12. Numerical model of solar dynamic radiator for parametric analysis

    NASA Technical Reports Server (NTRS)

    Rhatigan, Jennifer L.

    1989-01-01

    Growth power requirements for Space Station Freedom will be met through addition of 25 kW solar dynamic (SD) power modules. Extensive thermal and power cycle modeling capabilities have been developed which are powerful tools in Station design and analysis, but which prove cumbersome and costly for simple component preliminary design studies. In order to aid in refining the SD radiator to the mature design stage, a simple and flexible numerical model was developed. The model simulates heat transfer and fluid flow performance of the radiator and calculates area mass and impact survivability for many combinations of flow tube and panel configurations, fluid and material properties, and environmental and cycle variations.

  13. An extended continuum model considering optimal velocity change with memory and numerical tests

    NASA Astrophysics Data System (ADS)

    Qingtao, Zhai; Hongxia, Ge; Rongjun, Cheng

    2018-01-01

    In this paper, an extended continuum model of traffic flow is proposed with the consideration of optimal velocity changes with memory. The new model's stability condition and KdV-Burgers equation considering the optimal velocities change with memory are deduced through linear stability theory and nonlinear analysis, respectively. Numerical simulation is carried out to study the extended continuum model, which explores how optimal velocity changes with memory affected velocity, density and energy consumption. Numerical results show that when considering the effects of optimal velocity changes with memory, the traffic jams can be suppressed efficiently. Both the memory step and sensitivity parameters of optimal velocity changes with memory will enhance the stability of traffic flow efficiently. Furthermore, numerical results demonstrates that the effect of optimal velocity changes with memory can avoid the disadvantage of historical information, which increases the stability of traffic flow on road, and so it improve the traffic flow stability and minimize cars' energy consumptions.

  14. Numerical Modeling of Propellant Boil-Off in a Cryogenic Storage Tank

    NASA Technical Reports Server (NTRS)

    Majumdar, A. K.; Steadman, T. E.; Maroney, J. L.; Sass, J. P.; Fesmire, J. E.

    2007-01-01

    A numerical model to predict boil-off of stored propellant in large spherical cryogenic tanks has been developed. Accurate prediction of tank boil-off rates for different thermal insulation systems was the goal of this collaboration effort. The Generalized Fluid System Simulation Program, integrating flow analysis and conjugate heat transfer for solving complex fluid system problems, was used to create the model. Calculation of tank boil-off rate requires simultaneous simulation of heat transfer processes among liquid propellant, vapor ullage space, and tank structure. The reference tank for the boil-off model was the 850,000 gallon liquid hydrogen tank at Launch Complex 39B (LC- 39B) at Kennedy Space Center, which is under study for future infrastructure improvements to support the Constellation program. The methodology employed in the numerical model was validated using a sub-scale model and tank. Experimental test data from a 1/15th scale version of the LC-39B tank using both liquid hydrogen and liquid nitrogen were used to anchor the analytical predictions of the sub-scale model. Favorable correlations between sub-scale model and experimental test data have provided confidence in full-scale tank boil-off predictions. These methods are now being used in the preliminary design for other cases including future launch vehicles

  15. Comprehensive Numerical Simulation of Filling and Solidification of Steel Ingots

    PubMed Central

    Pola, Annalisa; Gelfi, Marcello; La Vecchia, Giovina Marina

    2016-01-01

    In this paper, a complete three-dimensional numerical model of mold filling and solidification of steel ingots is presented. The risk of powder entrapment and defects formation during filling is analyzed in detail, demonstrating the importance of using a comprehensive geometry, with trumpet and runner, compared to conventional simplified models. By using a case study, it was shown that the simplified model significantly underestimates the defects sources, reducing the utility of simulations in supporting mold and process design. An experimental test was also performed on an instrumented mold and the measurements were compared to the calculation results. The good agreement between calculation and trial allowed validating the simulation. PMID:28773890

  16. Dynamics of Numerics & Spurious Behaviors in CFD Computations. Revised

    NASA Technical Reports Server (NTRS)

    Yee, Helen C.; Sweby, Peter K.

    1997-01-01

    The global nonlinear behavior of finite discretizations for constant time steps and fixed or adaptive grid spacings is studied using tools from dynamical systems theory. Detailed analysis of commonly used temporal and spatial discretizations for simple model problems is presented. The role of dynamics in the understanding of long time behavior of numerical integration and the nonlinear stability, convergence, and reliability of using time-marching approaches for obtaining steady-state numerical solutions in computational fluid dynamics (CFD) is explored. The study is complemented with examples of spurious behavior observed in steady and unsteady CFD computations. The CFD examples were chosen to illustrate non-apparent spurious behavior that was difficult to detect without extensive grid and temporal refinement studies and some knowledge from dynamical systems theory. Studies revealed the various possible dangers of misinterpreting numerical simulation of realistic complex flows that are constrained by available computing power. In large scale computations where the physics of the problem under study is not well understood and numerical simulations are the only viable means of solution, extreme care must be taken in both computation and interpretation of the numerical data. The goal of this paper is to explore the important role that dynamical systems theory can play in the understanding of the global nonlinear behavior of numerical algorithms and to aid the identification of the sources of numerical uncertainties in CFD.

  17. Dynamic NMR under nonstationary conditions: Theoretical model, numerical calculation, and potential of application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babailov, S. P., E-mail: babajlov@niic.nsc.ru; National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk 634050; Purtov, P. A.

    An expression has been derived for the time dependence of the NMR line shape for systems with multi-site chemical exchange in the absence of spin-spin coupling, in a zero saturation limit. The dynamics of variation of the NMR line shape with time is considered in detail for the case of two-site chemical exchange. Mathematical programs have been designed for numerical simulation of the NMR spectra of chemical exchange systems. The analytical expressions obtained are useful for NMR line shape simulations for systems with photoinduced chemical exchange.

  18. Automatic Generation of Building Models with Levels of Detail 1-3

    NASA Astrophysics Data System (ADS)

    Nguatem, W.; Drauschke, M.; Mayer, H.

    2016-06-01

    We present a workflow for the automatic generation of building models with levels of detail (LOD) 1 to 3 according to the CityGML standard (Gröger et al., 2012). We start with orienting unsorted image sets employing (Mayer et al., 2012), we compute depth maps using semi-global matching (SGM) (Hirschmüller, 2008), and fuse these depth maps to reconstruct dense 3D point clouds (Kuhn et al., 2014). Based on planes segmented from these point clouds, we have developed a stochastic method for roof model selection (Nguatem et al., 2013) and window model selection (Nguatem et al., 2014). We demonstrate our workflow up to the export into CityGML.

  19. Numerical studies of nonspherical carbon combustion models

    NASA Astrophysics Data System (ADS)

    Mueller, E.; Arnett, W. D.

    1982-10-01

    First results of axisymmetric numerical studies of the final evolution of degenerate C + O cores are reported. The two-dimensional convective flow is treated without a phenomenological theory of convection. The computations show that, in the beginning, the nuclear burning propagates slowly outward from the center of the star in a spherical combustion front. Small-scale eddies form, giving rise to bumps in the front. The bumps grow into blobs and eventually into fingers, which steadily elongate relative to the rest of the combustion front. This behavior is not well described by either the detonation or deflagration models, being more complex than either.

  20. Numerical Modeling in Problems of Near-Earth Object Dynamics

    NASA Astrophysics Data System (ADS)

    Aleksandrova, A. G.; Bordovitsyna, T. V.; Chuvashov, I. N.

    2017-05-01

    A method of numerical modeling is used to solve three most interesting problems of artificial Earth satellite (AES) dynamics. Orbital evolution of an ensemble of near-Earth objects at altitudes in the range from 1 500 to 60 000 km is considered, chaoticity of motion of objects in the geosynchronous zone is studied by the MEGNOanalysis, the parameters of AES motion are determined, and the models of forces are considered from measurements for GLONASS satellites. The recent versions of algorithms and programs used to perform investigations are briefly described.