Science.gov

Sample records for detect dysthyroid optic

  1. Dysthyroid optic neuropathy (DON).

    PubMed

    Ebner, Roberto

    2002-03-01

    Dysthyroid Optic Neuropathy (DON) affects a small percentage of patients with Graves disease, but, when it occurs, it can cause significant and permanent loss of vision. DON is treatable if recognized early. Systemic steroids can be effective, but may cause side affects. Orbital injection of steroids may play a role in selected patients. Orbital radiation has a more permanent effect and has gained wide acceptance as a relatively non-invasive method of reversing DON. Surgery to decompress crowded orbits has been used for years and continues to be a viable approach for those patients with optic neuropathy, especially when there is significant proptosis. Optic nerve decompression can also be achieved through a transethmoidal approach. PMID:15513451

  2. Color Doppler imaging of orbital venous flow in dysthyroid optic neuropathy.

    PubMed

    Nakase, Y; Osanai, T; Yoshikawa, K; Inoue, Y

    1994-01-01

    Color Doppler imaging was performed to evaluate the venous stasis in 39 orbits, including 9 optic neuropathy orbits, of 20 patients with dysthyroid ophthalmopathy and 22 orbits of 11 healthy subjects. The superior ophthalmic vein (SOV) was detected in 26 dysthyroid ophthalmopathy orbits and in 13 control orbits. The blood flow in the SOV was in the anteroposterior direction in 20 dysthyroid ophthalmopathy orbits and in 13 control orbits. Reversed flow, ie, the flow in the posteroanterior direction, was seen in 6 dysthyroid ophthalmopathy orbits and in none of the control orbits. In dysthyroid ophthalmopathy orbits, the blood flow in the SOV was reversed in 5 (36%) of the 14 orbits with apical orbital crowding observed on computed tomography, which means there was compression of the optic nerve by enlarged extraocular muscles, as compared to in 1 (4%) of the 25 orbits without apical orbital crowding (P < 0.05). The percentage of the orbits having reversed flow in SOV was 44% of dysthyroid ophthalmopathy orbits with optic neuropathy as opposed to 7% of those without optic neuropathy (P < 0.05). Reversed blood flow in the SOV strongly supported the existence of severe venous stasis in the orbits, which may be related to the development of dysthyroid optic neuropathy. PMID:7933702

  3. Methylprednisolone pulse therapy in severe dysthyroid optic neuropathy

    SciTech Connect

    Guy, J.R.; Fagien, S.; Donovan, J.P.; Rubin, M.L. )

    1989-07-01

    Five patients with severe dysthyroid optic neuropathy were treated with intravenous methylprednisolone (1 g daily for 3 consecutive days). Before administration, visual acuity of the more severely affected eyes of each patient was counting fingers at 5 feet, 8/200, 20/400, 20/200, and 20/80. Immediately after completion of pulse therapy, visual acuity improved to 20/25 in four patients and 20/30 in one. Remissions were maintained with oral prednisone and external beam irradiation of the orbit. Pulse methylprednisolone therapy appears to be beneficial in the initial management of severe dysthyroid optic neuropathy.

  4. Dysthyroid optic neuropathy. The crowded orbital apex syndrome.

    PubMed

    Neigel, J M; Rootman, J; Belkin, R I; Nugent, R A; Drance, S M; Beattie, C W; Spinelli, J A

    1988-11-01

    The authors have reviewed the clinical presentation, visual fields, color vision testing, visual-evoked potentials, and computed tomographic (CT) findings of 58 patients (95 eyes) with dysthyroid optic neuropathy. The authors compared these findings to a control group of 60 patients (119 eyes) with thyroid eye disease who underwent CT scanning and did not exhibit evidence of optic neuropathy. Clinically, dysthyroid optic neuropathy is an insidious disease; when compared with the usual Graves' orbitopathy patient, the optic neuropathy group presented at a later age and with a later onset of thyroid eye disease. The patients in this group were more likely to be male and/or diabetic, and often presented with desaturation of color vision. Asymmetrical extraocular muscle restriction and vertical tropias were more frequent in the optic neuropathy group. The most sensitive indicators of optic nerve dysfunction appeared to be visual-evoked potentials and color vision. Computed tomographic studies confirmed that apical orbital crowding was a characteristic feature of optic neuropathy. These findings should alert the clinician to a more aggressive approach to these patients. PMID:3211460

  5. A retrospective review of 26 cases of dysthyroid optic neuropathy

    SciTech Connect

    Panzo, G.J.; Tomsak, R.L.

    1983-08-01

    Sixteen patients (14 women and two men) with dysthyroid optic neuropathy (26 involved eyes) were treated with either oral corticosteroids, orbital irradiation, surgical orbital decompression, combined corticosteroids and irradiation, or combined corticosteroids and surgical decompression. Thirteen of 16 eyes responded favorably to corticosteroid therapy but eight of the 13 relapsed upon discontinuation of treatment. Two of four eyes responded to irradiation initially but later relapsed. The response to orbital decompression was almost uniformly beneficial (eight of nine eyes responded) and lasting in all. Combined modes of therapy offered no additional advantage.

  6. Imaging studies for diagnosing Graves' orbitopathy and dysthyroid optic neuropathy

    PubMed Central

    Gonçalves, Allan C. Pieroni; Gebrim, Eloísa M. M. S.; Monteiro, Mário L. R.

    2012-01-01

    Although the diagnosis of Graves' orbitopathy is primarily made clinically based on laboratory tests indicative of thyroid dysfunction and autoimmunity, imaging studies, such as computed tomography, magnetic resonance imaging, ultrasound and color Doppler imaging, play an important role both in the diagnosis and follow-up after clinical or surgical treatment of the disease. Imaging studies can be used to evaluate morphological abnormalities of the orbital structures during the diagnostic workup when a differential diagnosis versus other orbital diseases is needed. Imaging may also be useful to distinguish the inflammatory early stage from the inactive stage of the disease. Finally, imaging studies can be of great help in identifying patients prone to develop dysthyroid optic neuropathy and therefore enabling the timely diagnosis and treatment of the condition, avoiding permanent visual loss. In this paper, we review the imaging modalities that aid in the diagnosis and management of Graves' orbitopathy, with special emphasis on the diagnosis of optic nerve dysfunction in this condition. PMID:23184212

  7. Orbital Volumetry in Graves' Orbitopathy: Muscle and Fat Involvement in relation to Dysthyroid Optic Neuropathy.

    PubMed

    Al-Bakri, Moug; Rasmussen, Ase Krogh; Thomsen, Carsten; Toft, Peter Bjerre

    2014-01-01

    Purpose. We wanted to investigate the relative significance of fat and muscle enlargement in the development of dysthyroid optic neuropathy (DON) in Graves' orbitopathy (GO). Methods. Preoperative coronal CT scans of 13 patients with and without DON who subsequently underwent orbital decompression were retrospectively analyzed. Thirteen patients imaged for unilateral orbital fractures served as controls. Results. The retrobulbar muscle volume was 2.1 ± 0.5 cm(3) (mean ± SD) in controls, 4.3 ± 1.5 cm(3) in GO without DON, and 4.7 ± 1.7 cm(3) in GO with DON. The retrobulbar fat volume was 5.4 ± 1.6 cm(3) in controls, 8.7 ± 8.0 cm(3) in GO without DON, and 9.4 ± 3.1 cm(3) in GO with DON. The muscle and fat volumes were higher in patients with GO than in controls (P < 0.001), but the volumes in orbits with and without DON were not significantly different. The volume of the optic nerve were similar in the 3 groups. The number of apical, coronal 2 mm thick slices with no fat was 2.9 ± 0.9 in normal orbits, it was 4.1 ± 1.0 in GO orbits without DON and 5.3 ± 0.8 in GO orbits with DON (P = 0.007). Conclusion. Apical muscle enlargement may be more important than orbital fat enlargement in the development of DON. However, the fact that apical crowding and muscle enlargement also occur in orbits without DON suggests that other factors also play a role in the development of DON. PMID:25101183

  8. [Dysthyroidism with anti-VEGF treatment, a class effect? about one case report].

    PubMed

    Khouri, Charles; Jean Bart, Elodie; Logerot, Sophie; Decker-Bellaton, Amandine; Bontemps, Hervé; Mallaret, Michel

    2014-01-01

    Tyrosine-kinase inhibitors are recent therapy used in different neoplastic diseases. Dysthyroidism seems to be a class effect of these drugs with a potentially cross cumulative effect. We describe here the case of a man who first developed dysthyroidism with sunitinib, then a deep and permanent hypothyroidism when axitinib was introduced. PMID:25293486

  9. Optical Detection of Formaldehyde

    NASA Technical Reports Server (NTRS)

    Patty, Kira D.; Gregory, Don A.

    2008-01-01

    The potential for buildup .of formaldehyde in closed space environments poses a direct health hazard to personnel. The National Aeronautic Space Agency (NASA) has established a maximum permitted concentration of 0.04 ppm for 7 to 180 days for all space craft. Early detection is critical to ensure that formaldehyde levels do not accumulate. above these limits. New sensor technologies are needed to enable real time,in situ detection in a compact and reusable form factor. Addressing this need,research into the use of reactive fluorescent dyes which reversibly bind to formaldehyde (liquid or gas) has been conducted to support the development of a formaldehyde.sensor. In the presence of formaldehyde the dyes' characteristic fluorescence peaks shift providing the basis for an optical detection. Dye responses to formaldehyde exposure were characterized; demonstrating the optical detection of formaldehyde in under 10 seconds and down to concentrations of 0.5 ppm. To .incorporate the dye .in.an optical sensor device requires. a means of containing and manipulating the dye. Multiple form factors using two dissimilar sbstrates were considered to determine a suitable configuration. A prototype sensor was demonstrated and considerations for a field able sensor were presented. This research provides a necessary first step toward the development of a compact, reusable; real time optical formaldehyde sensor suitable for use in the U.S. space program,

  10. HIV detection by optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Joshi, Narahari V.; Doria, M.; Medina, Honorio

    2001-10-01

    Reliable and economical Human Immnodeficiency Virus (HIV) testing was achieved by optical absorption spectroscopy of the core of the hair in the range of 400 nm to 800 nm. In HIV+ patients, extra optical active material is deposited in the core and optical absorption spectra, recorded in polarized radiation reveal special features, which can be used for guidance, detection, monitoring and control.

  11. Optical Detection of Tunneling Ionization

    SciTech Connect

    Verhoef, Aart J.; Mitrofanov, Alexander V.; Kartashov, Daniil V.; Baltuska, Andrius

    2010-04-23

    We have experimentally detected optical harmonics that are generated due to a tunneling-ionization-induced modulation of the electron density. The optical signature of electron tunneling can be isolated from concomitant optical responses by using a noncollinear pump-probe setup. Whereas previously demonstrated tools for attosecond metrology of gases, plasmas, and surfaces rely on direct detection of charged particles, detection of the background-free time-resolved optical signal, which uniquely originates from electron tunneling, offers an interesting alternative that is especially suited for systems in which free electrons cannot be directly measured.

  12. Hanle Detection for Optical Clocks

    PubMed Central

    Zhang, Xiaogang; Zhang, Shengnan; Pan, Duo; Chen, Peipei; Xue, Xiaobo; Zhuang, Wei; Chen, Jingbiao

    2015-01-01

    Considering the strong inhomogeneous spatial polarization and intensity distribution of spontaneous decay fluorescence due to the Hanle effect, we propose and demonstrate a universe Hanle detection configuration of electron-shelving method for optical clocks. Experimental results from Ca atomic beam optical frequency standard with electron-shelving method show that a designed Hanle detection geometry with optimized magnetic field direction, detection laser beam propagation and polarization direction, and detector position can improve the fluorescence collection rate by more than one order of magnitude comparing with that of inefficient geometry. With the fixed 423 nm fluorescence, the improved 657 nm optical frequency standard signal intensity is presented. The potential application of the Hanle detection geometry designed for facilitating the fluorescence collection for optical lattice clock with a limited solid angle of the fluorescence collection has been discussed. The Hanle detection geometry is also effective for ion detection in ion optical clock and quantum information experiments. Besides, a cylinder fluorescence collection structure is designed to increase the solid angle of the fluorescence collection in Ca atomic beam optical frequency standard. PMID:25734183

  13. Hanle detection for optical clocks.

    PubMed

    Zhang, Xiaogang; Zhang, Shengnan; Pan, Duo; Chen, Peipei; Xue, Xiaobo; Zhuang, Wei; Chen, Jingbiao

    2015-01-01

    Considering the strong inhomogeneous spatial polarization and intensity distribution of spontaneous decay fluorescence due to the Hanle effect, we propose and demonstrate a universe Hanle detection configuration of electron-shelving method for optical clocks. Experimental results from Ca atomic beam optical frequency standard with electron-shelving method show that a designed Hanle detection geometry with optimized magnetic field direction, detection laser beam propagation and polarization direction, and detector position can improve the fluorescence collection rate by more than one order of magnitude comparing with that of inefficient geometry. With the fixed 423 nm fluorescence, the improved 657 nm optical frequency standard signal intensity is presented. The potential application of the Hanle detection geometry designed for facilitating the fluorescence collection for optical lattice clock with a limited solid angle of the fluorescence collection has been discussed. The Hanle detection geometry is also effective for ion detection in ion optical clock and quantum information experiments. Besides, a cylinder fluorescence collection structure is designed to increase the solid angle of the fluorescence collection in Ca atomic beam optical frequency standard. PMID:25734183

  14. Schlieren optics for leak detection

    NASA Technical Reports Server (NTRS)

    Peale, Robert E.; Ruffin, Alranzo B.

    1995-01-01

    The purpose of this research was to develop an optical method of leak detection. Various modifications of schlieren optics were explored with initial emphasis on leak detection of the plumbing within the orbital maneuvering system of the space shuttle (OMS pod). The schlieren scheme envisioned for OMS pod leak detection was that of a high contrast pattern on flexible reflecting material imaged onto a negative of the same pattern. We find that the OMS pod geometry constrains the characteristic length scale of the pattern to the order of 0.001 inch. Our experiments suggest that optical modulation transfer efficiency will be very low for such patterns, which will limit the sensitivity of the technique. Optical elements which allow a negative of the scene to be reversibly recorded using light from the scene itself were explored for their potential in adaptive single-ended schlieren systems. Elements studied include photochromic glass, bacteriorhodopsin, and a transmissive liquid crystal display. The dynamics of writing and reading patterns were studied using intensity profiles from recorded images. Schlieren detection of index gradients in air was demonstrated.

  15. Optically detected magnetic resonance imaging

    SciTech Connect

    Blank, Aharon; Shapiro, Guy; Fischer, Ran; London, Paz; Gershoni, David

    2015-01-19

    Optically detected magnetic resonance provides ultrasensitive means to detect and image a small number of electron and nuclear spins, down to the single spin level with nanoscale resolution. Despite the significant recent progress in this field, it has never been combined with the power of pulsed magnetic resonance imaging techniques. Here, we demonstrate how these two methodologies can be integrated using short pulsed magnetic field gradients to spatially encode the sample. This result in what we denote as an 'optically detected magnetic resonance imaging' technique. It offers the advantage that the image is acquired in parallel from all parts of the sample, with well-defined three-dimensional point-spread function, and without any loss of spectroscopic information. In addition, this approach may be used in the future for parallel but yet spatially selective efficient addressing and manipulation of the spins in the sample. Such capabilities are of fundamental importance in the field of quantum spin-based devices and sensors.

  16. Optical Detection of Blade Flutter

    NASA Technical Reports Server (NTRS)

    Nieberding, W. C.; Pollack, J. L.

    1977-01-01

    Dynamic strain gages mounted on rotor blades are used as the primary instrumentation for detecting the onset of flutter and defining the vibratory mode and frequency. Optical devices are evaluated for performing the same measurements as well as providing supplementary information on the vibratory characteristics. Two separate methods are studied: stroboscopic imagery of the blade tip and photoelectric scanning of blade tip motion. Both methods give visual data in real time as well as video tape records. The optical systems are described, and representative results are presented. The potential of this instrumentation in flutter research is discussed.

  17. Fiber optic hydrogen detection system

    NASA Astrophysics Data System (ADS)

    Kazemi, Alex A.; Larson, David B.; Wuestling, Mark D.

    1999-12-01

    Commercial and military launch vehicles are designed to use hydrogen as the main propellant, which is very volatile, extremely flammable, and highly explosive. Current detection systems uses Teflon transfer tubes at a large number of vehicle locations through which gas samples are drawn and the stream analyzed by a mass spectrometer. A concern with this approach is the high cost of the system. Also, the current system does not provide leak location and is not in real-time. This system is very complex and cumbersome for production and ground support measurement personnel. The fiber optic micromirror sensor under development for cryogenic environment relies on a reversible chemical interaction causing a change in reflectivity of a thin film of coated Palladium. The magnitude of the reflectivity change is correlated to hydrogen concentration. The sensor uses only a tiny light beam, with no electricity whatsoever at the sensor, leading to devices that is intrinsically safe from explosive ignition. The sensor, extremely small in size and weight detects, hydrogen concentration using a passive element consisting of chemically reactive microcoatings deposited on the surface of a glass microlens, which is then bonded to an optical fiber. The system uses a multiplexing technique with a fiber optic driver-receiver consisting of a modulated LED source that is launched into the sensor, and a photodiode detector that synchronously measures the reflected signal. The system incorporates a microprocessor (or PC) to perform the data analysis and storage, as well as trending and set alarm function. As it is a low cost system with a fast response, many more detection sensors can be used that will be extremely helpful in determining leak location for safety of crew and vehicles during launch operations.

  18. Capillary Electrophoresis - Optical Detection Systems

    SciTech Connect

    Sepaniak, M. J.

    2001-08-06

    Molecular recognition systems are developed via molecular modeling and synthesis to enhance separation performance in capillary electrophoresis and optical detection methods for capillary electrophoresis. The underpinning theme of our work is the rational design and development of molecular recognition systems in chemical separations and analysis. There have been, however, some subtle and exciting shifts in our research paradigm during this period. Specifically, we have moved from mostly separations research to a good balance between separations and spectroscopic detection for separations. This shift is based on our perception that the pressing research challenges and needs in capillary electrophoresis and electrokinetic chromatography relate to the persistent detection and flow rate reproducibility limitations of these techniques (see page 1 of the accompanying Renewal Application for further discussion). In most of our work molecular recognition reagents are employed to provide selectivity and enhance performance. Also, an emerging trend is the use of these reagents with specially-prepared nano-scale materials. Although not part of our DOE BES-supported work, the modeling and synthesis of new receptors has indirectly supported the development of novel microcantilevers-based MEMS for the sensing of vapor and liquid phase analytes. This fortuitous overlap is briefly covered in this report. Several of the more significant publications that have resulted from our work are appended. To facilitate brevity we refer to these publications liberally in this progress report. Reference is also made to very recent work in the Background and Preliminary Studies Section of the Renewal Application.

  19. Effects of adult dysthyroidism on the morphology of hippocampal granular cells in rats.

    PubMed

    Martí-Carbonell, Maria Assumpció; Garau, Adriana; Sala-Roca, Josefina; Balada, Ferran

    2012-01-01

    Thyroid hormones are essential for normal brain development and very important in the normal functioning of the brain. Thyroid hormones action in the adult brain has not been widely studied. The effects of adult hyperthyroidism are not as well understood as adult hypothyroidism, mainly in hippocampal granular cells. The purpose of the present study is to assess the consequences of adult hormone dysthyroidism (excess/deficiency of TH) on the morphology of dentate granule cells in the hippocampus by performing a quantitative study of dendritic arborizations and dendritic spines using Golgi impregnated material. Hypo-and hyperthyroidism were induced in rats by adding 0.02 percent methimazole and 1 percent L-thyroxine, respectively, to drinking water from 40 days of age. At 89 days, the animals' brains were removed and stained by a modified Golgi method and blood samples were collected in order to measure T4 serum levels. Neurons were selected and drawn using a camera lucida. Our results show that both methimazole and thyroxine treatment affect granule cell morphology. Treatments provoke alterations in the same direction, namely, reduction of certain dendritic-branching parameters that are more evident in the methimazole than in the thyroxine group. We also observe a decrease in spine density in both the methimazole and thyroxine groups. PMID:23093010

  20. Fiber optic sensors for corrosion detection

    NASA Technical Reports Server (NTRS)

    Smith, Alphonso C.

    1993-01-01

    The development of fiber optic sensors for the detection of a variety of material parameters has grown tremendously over the past several years. Additionally, the potential for analytical applications of fiber optic sensors have become more widely used. New pH sensors have also been developed using fiber optic techniques to detect fluorescence characteristics from immobilized fluorogenic reagent chemicals. The primary purpose of this research was to investigate the feasibility of using fiber optic sensors to detect the presence of Al(sup 3+) ions made in the process of environmental corrosion of aluminum materials. The Al(sup 3+) ions plus a variety of other type of metal ions can be detected using analytical techniques along with fiber optic sensors.

  1. Optical detection of pores in adipocyte membrane

    NASA Astrophysics Data System (ADS)

    Yanina, I. Yu.; Doubrovski, V. A.; Tuchin, V. V.

    2013-08-01

    Structures that can be interpreted as cytoplasm droplets leaking through the membrane are experimentally detected on the membranes of adipocytes using optical digital microscopy. The effect of an aqueous alcohol solution of brilliant green on the amount and sizes of structures is studied. It is demonstrated that the optical irradiation of the adipocytes that are sensitized with the aid of the brilliant green leads to an increase in the amount of structures (pores) after the irradiation. The experimental results confirm the existence of an earlier-proposed effect of photochemical action on the sensitized cells of adipose tissue that involves additional formation of pores in the membrane of the sensitized cell under selective optical irradiation. The proposed method for the detection of micropores in the membrane of adipose tissue based on the detection of the cytoplasm droplets leaking from the cell can be considered as a method for the optical detection of nanosized pores.

  2. Optical Detection Of Flameout In A Combustor

    NASA Technical Reports Server (NTRS)

    Borg, Stephen E.; West, James W.; Harper, Samuel E.; Alderfer, David W.; Lawrence, Robert M.

    1994-01-01

    Fuel supply shut down in time to prevent explosion. Optical flameout detector designed to signal control system of facility to cut off supply of fuel into combustion chamber if flame goes out. Combustor which optical flameout detector designed burns methane in air to provide hot gases for 8-ft high-temperature test chamber. Acoustical flameout detector for same combustor described in "Acoustical Detection of Flameout in Combustor" (LAR-14900). Fiber optic probes mounted to fuel-spray bar upstream of flame. No focusing optics used, and probes aimed across flow of gases at spot on combustion chamber wall downstream from spray bar. Arrangement enables flameout detection system to respond quickly to potential loss of flame since it detects movement of flame front away from spray bar face. Overall response time of detection system under 10 milliseconds.

  3. Optical Detection Of Cryogenic Leaks

    NASA Technical Reports Server (NTRS)

    Wyett, Lynn M.

    1988-01-01

    Conceptual system identifies leakage without requiring shutdown for testing. Proposed device detects and indicates leaks of cryogenic liquids automatically. Detector makes it unnecessary to shut equipment down so it can be checked for leakage by soap-bubble or helium-detection methods. Not necessary to mix special gases or other materials with cryogenic liquid flowing through equipment.

  4. Combined hostile fire and optics detection

    NASA Astrophysics Data System (ADS)

    Brännlund, Carl; Tidström, Jonas; Henriksson, Markus; Sjöqvist, Lars

    2013-10-01

    Snipers and other optically guided weapon systems are serious threats in military operations. We have studied a SWIR (Short Wave Infrared) camera-based system with capability to detect and locate snipers both before and after shot over a large field-of-view. The high frame rate SWIR-camera allows resolution of the temporal profile of muzzle flashes which is the infrared signature associated with the ejection of the bullet from the rifle. The capability to detect and discriminate sniper muzzle flashes with this system has been verified by FOI in earlier studies. In this work we have extended the system by adding a laser channel for optics detection. A laser diode with slit-shaped beam profile is scanned over the camera field-of-view to detect retro reflection from optical sights. The optics detection system has been tested at various distances up to 1.15 km showing the feasibility to detect rifle scopes in full daylight. The high speed camera gives the possibility to discriminate false alarms by analyzing the temporal data. The intensity variation, caused by atmospheric turbulence, enables discrimination of small sights from larger reflectors due to aperture averaging, although the targets only cover a single pixel. It is shown that optics detection can be integrated in combination with muzzle flash detection by adding a scanning rectangular laser slit. The overall optics detection capability by continuous surveillance of a relatively large field-of-view looks promising. This type of multifunctional system may become an important tool to detect snipers before and after shot.

  5. Developments in distributed optical fiber detection technology

    NASA Astrophysics Data System (ADS)

    Ye, Wei; Zhu, Qianxia; You, Tianrong

    2014-12-01

    The distributed optical fiber detection technology plays an important role in many fields, such as key regional security monitoring, pipeline maintenance and communication cable protection. It is superior to the traditional detector, and has a good prospect. This paper presents an overview of various distributed optical fiber sensors. At first, some related technologies of the optical fiber detection schemes are introduced in respect of sensing distance, real-time ability, signal strength, and system complexity; and the advantages and limitations of fiber gratings sensors, reflection-based optical fiber sensors, and interference- based optical fiber sensors are discussed. Then some advanced distributed optical fiber detection systems are mentioned. And the double-loop Sagnac distributed system is improved by adding photoelectric modulators and depolarizers. In order to denoise and enhance the original signal, a spectral subtraction-likelihood ratio method is improved. The experiment results show the spatial resolution is +/-15m per kilometer. Finally, based on the development trends of optical fiber detection technology at home and abroad, development tendency and application fields are predicted.

  6. Optical Detection of Lightning from Space

    NASA Technical Reports Server (NTRS)

    Christian, H. J.

    1999-01-01

    Two primary detection techniques (optical and RF) have a proven capability for detecting lightning from low earth orbit. However, the lightning processes that generate the optical and RF signals are vastly different providing significantly different information content from each sensor type. Because of the intervening ionosphere, low frequency RF components do not reach satellite altitudes. As a consequence, many of the processes associated with the major energy release of a lightning event (i.e. return strokes, k-changes, recoil streamers, etc), in all likelihood contribute little to the RF signal arriving at the satellite. The optical output from lighting, on the other hand, has been shown to be highly correlated with the energetic, charge-transferring processes mentioned above. On the down side, the optical energy, while essentially unaffected by the atmosphere once it emerges from the cloud, is heavily scattered within the cloud. While there is little absorption by the cloud, the great optical depth makes the total light energy emerging from the cloud to be dependent on where in the cloud the lightning occurred. Analyses suggest that when lightning is confined to the lowest regions of the cloud, the light is strongly attenuated and detection becomes problematic. Fortunately, the vast majority of lightning flashes are comprised of channels that propagate through the middle of the cloud and higher. These flashes produce bright signals at the top of a cloud and are readily detectable. Presently, we have two optical instruments in orbit. The Optical Transient Detector (OTD) has been orbiting the earth since April, 1995, while the Lightning Imaging Sensor (LIS) was launched on the Tropical Rainfall Measuring Mission (TRMM) in November of 1997. Both instruments are relatively small, solid state optical imagers, designed specifically to detect and locate lightning activity from low earth orbit with high detection efficiency and location accuracy.

  7. Crowd Event Detection on Optical Flow Manifolds.

    PubMed

    Rao, Aravinda S; Gubbi, Jayavardhana; Marusic, Slaven; Palaniswami, Marimuthu

    2016-07-01

    Analyzing crowd events in a video is key to understanding the behavioral characteristics of people (humans). Detecting crowd events in videos is challenging because of articulated human movements and occlusions. The aim of this paper is to detect the events in a probabilistic framework for automatically interpreting the visual crowd behavior. In this paper, crowd event detection and classification in optical flow manifolds (OFMs) are addressed. A new algorithm to detect walking and running events has been proposed, which uses optical flow vector lengths in OFMs. Furthermore, a new algorithm to detect merging and splitting events has been proposed, which uses Riemannian connections in the optical flow bundle (OFB). The longest vector from the OFB provides a key feature for distinguishing walking and running events. Using a Riemannian connection, the optical flow vectors are parallel transported to localize the crowd groups. The geodesic lengths among the groups provide a criterion for merging and splitting events. Dispersion and evacuation events are jointly modeled from the walking/running and merging/splitting events. Our results show that the proposed approach delivers a comparable model to detect crowd events. Using the performance evaluation of tracking and surveillance 2009 dataset, the proposed method is shown to produce the best results in merging, splitting, and dispersion events, and comparable results in walking, running, and evacuation events when compared with other methods. PMID:26219100

  8. Optical Detection of Lightning from Space

    NASA Technical Reports Server (NTRS)

    Boccippio, Dennis J.; Christian, Hugh J.

    1998-01-01

    Optical sensors have been developed to detect lightning from space during both day and night. These sensors have been fielded in two existing satellite missions and may be included on a third mission in 2002. Satellite-hosted, optically-based lightning detection offers three unique capabilities: (1) the ability to reliably detect lightning over large, often remote, spatial regions, (2) the ability to sample all (IC and CG) lightning, and (3) the ability to detect lightning with uniform (i.e., not range-dependent) sensitivity or detection efficiency. These represent significant departures from conventional RF-based detection techniques, which typically have strong range dependencies (biases) or range limitations in their detection capabilities. The atmospheric electricity team of the NASA Marshall Space Flight Center's Global Hydrology and Climate Center has implemented a three-step satellite lightning research program which includes three phases: proof-of-concept/climatology, science algorithm development, and operational application. The first instrument in the program, the Optical Transient Detector (OTD), is deployed on a low-earth orbit (LEO) satellite with near-polar inclination, yielding global coverage. The sensor has a 1300 x 1300 sq km field of view (FOV), moderate detection efficiency, moderate localization accuracy, and little data bias. The OTD is a proof-of-concept instrument and its mission is primarily a global lightning climatology. The limited spatial accuracy of this instrument makes it suboptimal for use in case studies, although significant science knowledge has been gained from the instrument as deployed.

  9. Optical detection dental disease using polarized light

    DOEpatents

    Everett, Matthew J.; Colston, Jr., Billy W.; Sathyam, Ujwal S.; Da Silva, Luiz B.; Fried, Daniel

    2003-01-01

    A polarization sensitive optical imaging system is used to detect changes in polarization in dental tissues to aid the diagnosis of dental disease such as caries. The degree of depolarization is measured by illuminating the dental tissue with polarized light and measuring the polarization state of the backscattered light. The polarization state of this reflected light is analyzed using optical polarimetric imaging techniques. A hand-held fiber optic dental probe is used in vivo to direct the incident beam to the dental tissue and collect the reflected light. To provide depth-resolved characterization of the dental tissue, the polarization diagnostics may be incorporated into optical coherence domain reflectometry and optical coherence tomography (OCDR/OCT) systems, which enables identification of subsurface depolarization sites associated with demineralization of enamel or bone.

  10. Spectral efficiency of optical direct detection

    NASA Astrophysics Data System (ADS)

    Martinez, Alfonso

    2007-04-01

    The spectral efficiency (channel capacity) of the optical direct-detection channel is studied. The modeling of the optical direct-detection channel as a discrete-time Poisson channel is reviewed. Closed-form integral representations for the entropy of random variables with Poisson and negative binomial distributions are derived. The spectral efficiency achievable with an arbitrary input gamma density is expressed in closed integral form. Simple, nonasymptotic upper and lower bounds to the channel capacity are computed. Numerical results are presented and compared with previous bounds and approximations.

  11. Fibre optic sensors for mine hazard detection

    NASA Astrophysics Data System (ADS)

    Liu, T.; Wang, C.; Wei, Y.; Zhao, Y.; Huo, D.; Shang, Y.; Wang, Z.; Ning, Y.

    2009-07-01

    We report the development of a comprehensive safety monitoring solution for coal mines. A number of fibre optic sensors have been developed and deployed for safety monitoring of mine roof integrity and hazardous gases. The FOS-based mine hazard detection system offers unique advantages of intrinsic safety, multi-location and multi-parameter monitoring. They can be potentially used to build expert systems for mine hazard early detection and prevention.

  12. Integrated Micro-Optics for Microfluidic Detection.

    PubMed

    Kazama, Yuto; Hibara, Akihide

    2016-01-01

    A method of embedding micro-optics into a microfluidic device was proposed and demonstrated. First, the usefulness of embedded right-angle prisms was demonstrated in microscope observation. Lateral-view microscopic observation of an aqueous dye flow in a 100-μm-sized microchannel was demonstrated. Then, the embedded right-angle prisms were utilized for multi-beam laser spectroscopy. Here, crossed-beam thermal lens detection of a liquid sample was applied to glucose detection. PMID:26753713

  13. OPAD data analysis. [Optical Plumes Anomaly Detection

    NASA Technical Reports Server (NTRS)

    Buntine, Wray L.; Kraft, Richard; Whitaker, Kevin; Cooper, Anita E.; Powers, W. T.; Wallace, Tim L.

    1993-01-01

    Data obtained in the framework of an Optical Plume Anomaly Detection (OPAD) program intended to create a rocket engine health monitor based on spectrometric detections of anomalous atomic and molecular species in the exhaust plume are analyzed. The major results include techniques for handling data noise, methods for registration of spectra to wavelength, and a simple automatic process for estimating the metallic component of a spectrum.

  14. Detectivity comparison of bolometric optical antennas

    NASA Astrophysics Data System (ADS)

    Cuadrado, Alexander; López-Alonso, José M.; Martínez-Antón, Juan C.; Ezquerro, Jose M.; González, Francisco J.; Alda, Javier

    2015-08-01

    The practical application of optical antennas in detection devices strongly depends on its ability to produce an acceptable signal-to-noise ratio for the given task. It is known that, due to the intrinsic problems arising from its sub-wavelength dimensions, optical antennas produce very small signals. The quality of these signals depends on the involved transduction mechanism. The contribution of different types of noise should be adapted to the transducer and to the signal extraction regime. Once noise is evaluated and measured, the specific detectivity, D*, becomes the parameter of interest when comparing the performance of antenna coupled devices with other detectors. However, this parameter involves some magnitudes that can be defined in several ways for optical antennas. In this contribution we are interested in the evaluation and comparison of D_ values for several bolometric optical antennas working in the infrared and involving two materials. At the same time, some material and geometrical parameters involved in the definition of noise and detectivity will be discussed to analyze the suitability of D_ to properly account for the performance of optical antennas.

  15. Reset Tree-Based Optical Fault Detection

    PubMed Central

    Lee, Dong-Geon; Choi, Dooho; Seo, Jungtaek; Kim, Howon

    2013-01-01

    In this paper, we present a new reset tree-based scheme to protect cryptographic hardware against optical fault injection attacks. As one of the most powerful invasive attacks on cryptographic hardware, optical fault attacks cause semiconductors to misbehave by injecting high-energy light into a decapped integrated circuit. The contaminated result from the affected chip is then used to reveal secret information, such as a key, from the cryptographic hardware. Since the advent of such attacks, various countermeasures have been proposed. Although most of these countermeasures are strong, there is still the possibility of attack. In this paper, we present a novel optical fault detection scheme that utilizes the buffers on a circuit's reset signal tree as a fault detection sensor. To evaluate our proposal, we model radiation-induced currents into circuit components and perform a SPICE simulation. The proposed scheme is expected to be used as a supplemental security tool. PMID:23698267

  16. Reset tree-based optical fault detection.

    PubMed

    Lee, Dong-Geon; Choi, Dooho; Seo, Jungtaek; Kim, Howon

    2013-01-01

    In this paper, we present a new reset tree-based scheme to protect cryptographic hardware against optical fault injection attacks. As one of the most powerful invasive attacks on cryptographic hardware, optical fault attacks cause semiconductors to misbehave by injecting high-energy light into a decapped integrated circuit. The contaminated result from the affected chip is then used to reveal secret information, such as a key, from the cryptographic hardware. Since the advent of such attacks, various countermeasures have been proposed. Although most of these countermeasures are strong, there is still the possibility of attack. In this paper, we present a novel optical fault detection scheme that utilizes the buffers on a circuit's reset signal tree as a fault detection sensor. To evaluate our proposal, we model radiation-induced currents into circuit components and perform a SPICE simulation. The proposed scheme is expected to be used as a supplemental security tool. PMID:23698267

  17. Optical detection of radon decay in air

    PubMed Central

    Sand, Johan; Ihantola, Sakari; Peräjärvi, Kari; Toivonen, Harri; Toivonen, Juha

    2016-01-01

    An optical radon detection method is presented. Radon decay is directly measured by observing the secondary radiolumines cence light that alpha particles excite in air, and the selectivity of coincident photon detection is further enhanced with online pulse-shape analysis. The sensitivity of a demonstration device was 6.5 cps/Bq/l and the minimum detectable concentration was 12 Bq/m3 with a 1 h integration time. The presented technique paves the way for optical approaches in rapid radon detec tion, and it can be applied beyond radon to the analysis of any alpha-active sample which can be placed in the measurement chamber. PMID:26867800

  18. Optical detection of radon decay in air

    NASA Astrophysics Data System (ADS)

    Sand, Johan; Ihantola, Sakari; Peräjärvi, Kari; Toivonen, Harri; Toivonen, Juha

    2016-02-01

    An optical radon detection method is presented. Radon decay is directly measured by observing the secondary radiolumines cence light that alpha particles excite in air, and the selectivity of coincident photon detection is further enhanced with online pulse-shape analysis. The sensitivity of a demonstration device was 6.5 cps/Bq/l and the minimum detectable concentration was 12 Bq/m3 with a 1 h integration time. The presented technique paves the way for optical approaches in rapid radon detec tion, and it can be applied beyond radon to the analysis of any alpha-active sample which can be placed in the measurement chamber.

  19. Optical sensor for rapid microbial detection

    NASA Astrophysics Data System (ADS)

    Al-Adhami, Mustafa; Tilahun, Dagmawi; Rao, Govind; Kostov, Yordan

    2016-05-01

    In biotechnology, the ability to instantly detect contaminants is key to running a reliable bioprocess. Bioprocesses are prone to be contaminated by cells that are abundant in our environment; detection and quantification of these cells would aid in the preservation of the bioprocess product. This paper discusses the design and development of a portable kinetics fluorometer which acts as a single-excitation, single-emission photometer that continuously measures fluorescence intensity of an indicator dye, and plots it. Resazurin is used as an indicator dye since the viable contaminant cells reduce Resazurin toResorufin, the latter being strongly fluorescent. A photodiode detects fluorescence change by generating current proportional to the intensity of the light that reached it, and a trans-impedance differential op-amp ensures amplification of the photodiodes' signal. A microfluidic chip was designed specifically for the device. It acts as a fully enclosed cuvette, which enhances the Resazurin reduction rate. E. coli in LB media, along with Resazurin were injected into the microfluidic chip. The optical sensor detected the presence of E. coli in the media based on the fluorescence change that occurred in the indicator dye in concentrations as low as 10 CFU/ml. A method was devised to detect and determine an approximate amount of contamination with this device. This paper discusses application of this method to detect and estimate sample contamination. This device provides fast, accurate, and inexpensive means to optically detect the presence of viable cells.

  20. Distributed fiber optic fuel leak detection system

    NASA Astrophysics Data System (ADS)

    Mendoza, Edgar; Kempen, C.; Esterkin, Yan; Sun, Sonjian

    2013-05-01

    With the increase worldwide demand for hydrocarbon fuels and the vast development of new fuel production and delivery infrastructure installations around the world, there is a growing need for reliable fuel leak detection technologies to provide safety and reduce environmental risks. Hydrocarbon leaks (gas or liquid) pose an extreme danger and need to be detected very quickly to avoid potential disasters. Gas leaks have the greatest potential for causing damage due to the explosion risk from the dispersion of gas clouds. This paper describes progress towards the development of a fast response, high sensitivity, distributed fiber optic fuel leak detection (HySenseTM) system based on the use of an optical fiber that uses a hydrocarbon sensitive fluorescent coating to detect the presence of fuel leaks present in close proximity along the length of the sensor fiber. The HySenseTM system operates in two modes, leak detection and leak localization, and will trigger an alarm within seconds of exposure contact. The fast and accurate response of the sensor provides reliable fluid leak detection for pipelines, tanks, airports, pumps, and valves to detect and minimize any potential catastrophic damage.

  1. Distributed fiber optic fuel leak detection system

    NASA Astrophysics Data System (ADS)

    Mendoza, Edgar; Kempen, C.; Esterkin, Yan; Sun, Sunjian

    2013-05-01

    With the increase worldwide demand for hydrocarbon fuels and the vast development of new fuel production and delivery infrastructure installations around the world, there is a growing need for reliable fuel leak detection technologies to provide safety and reduce environmental risks. Hydrocarbon leaks (gas or liquid) pose an extreme danger and need to be detected very quickly to avoid potential disasters. Gas leaks have the greatest potential for causing damage due to the explosion risk from the dispersion of gas clouds. This paper describes progress towards the development of a fast response, high sensitivity, distributed fiber optic fuel leak detection (HySensTM) system based on the use of an optical fiber that uses a hydrocarbon sensitive fluorescent coating to detect the presence of fuel leaks present in close proximity along the length of the sensor fiber. The HySenseTM system operates in two modes, leak detection and leak localization, and will trigger an alarm within seconds of exposure contact. The fast and accurate response of the sensor provides reliable fluid leak detection for pipelines, tanks, airports, pumps, and valves to detect and minimize any potential catastrophic damage.

  2. Target discrimination strategies in optics detection

    NASA Astrophysics Data System (ADS)

    Sjöqvist, Lars; Allard, Lars; Henriksson, Markus; Jonsson, Per; Pettersson, Magnus

    2013-10-01

    Detection and localisation of optical assemblies used for weapon guidance or sniper rifle scopes has attracted interest for security and military applications. Typically a laser system is used to interrogate a scene of interest and the retro-reflected radiation is detected. Different system approaches for area coverage can be realised ranging from flood illumination to step-and-stare or continuous scanning schemes. Independently of the chosen approach target discrimination is a crucial issue, particularly if a complex scene such as in an urban environment and autonomous operation is considered. In this work target discrimination strategies in optics detection are discussed. Typical parameters affecting the reflected laser radiation from the target are the wavelength, polarisation properties, temporal effects and the range resolution. Knowledge about the target characteristics is important to predict the target discrimination capability. Two different systems were used to investigate polarisation properties and range resolution information from targets including e.g. road signs, optical reflexes, rifle sights and optical references. The experimental results and implications on target discrimination will be discussed. If autonomous operation is required target discrimination becomes critical in order to reduce the number of false alarms.

  3. Frequency skewed optical pulses for range detection

    NASA Astrophysics Data System (ADS)

    Ozharar, Sarper; Gee, Sangyoun; Quinlan, Franklyn; Delfyett, Peter J., Jr.

    2007-04-01

    Frequency skewed optical pulses are generated via both a composite cavity structure in a fiberized semiconductor optical amplifier ring laser and a frequency skew loop outside the laser cavity. The composite cavity technique is similar to rational harmonic mode-locking, however it is based on cavity detuning rather than frequency detuning. These frequency skewed pulses are ideal for range detection applications since their interference results in a range dependent RF signal. The intracavity frequency skewed pulse train showed superior performance in both stability and signal quality.

  4. Gaseous hydrogen leakage optical fibre detection system

    NASA Astrophysics Data System (ADS)

    Trouillet, Alain; Veillas, Colette; Sigronde, E.; Gagnaire, Henri; Clement, Michel

    2004-06-01

    Liquid hydrogen has been intensively used in aerospace applications during the past forty years and is of great interest for fuel cells technologies and future automotive applications. Following upon major explosive risks due to the use of hydrogen in air, previous studies were carried out in our laboratory in order to develop optical fiber sensors for the detection of hydrogen leakage. This communication is aimed towards a prototype optical fiber system designed for the detection of gaseous hydrogen leakage near the conecting flanges of the liquid hydrogen pipes on the test bench of the engine Vulcain of the rocket ARIANE V. Depending on the configuration, the prototype sensor provides a two-level alarm signal and the detection of gaseous hydrogen leakage is possible for concentrations lower than the lower explosive limit in air (between 0.1 and 4%) with alarm response times lower than 10 seconds in a wide range of temperatures between -35°C and 300°C. The sensing principle based on palladium-hydrogen interaction is presented as well as the detection system composed of an optical fiber probe and an optoelectronic device.

  5. Optical imaging module for astigmatic detection system.

    PubMed

    Wang, Wei-Min; Cheng, Chung-Hsiang; Molnar, Gabor; Hwang, Ing-Shouh; Huang, Kuang-Yuh; Danzebrink, Hans-Ulrich; Hwu, En-Te

    2016-05-01

    In this paper, an optical imaging module design for an astigmatic detection system (ADS) is presented. The module is based on a commercial optical pickup unit (OPU) and it contains a coaxial illuminant for illuminating a specimen. Furthermore, the imaging module facilitates viewing the specimen and the detection laser spot of the ADS with a lateral resolution of approximately 1 μm without requiring the removal of an element of the OPU. Two polarizers and one infrared filter are used to eliminate stray laser light in the OPU and stray light produced by the illuminant. Imaging modules designed for digital versatile disks (DVDs) and Blu-ray DVDs were demonstrated. Furthermore, the module can be used for imaging a small cantilever with approximate dimensions of 2 μm (width) × 5 μm (length), and therefore, it has the potential to be used in high-speed atomic force microscopy. PMID:27250434

  6. Optic disc detection using ant colony optimization

    NASA Astrophysics Data System (ADS)

    Dias, Marcy A.; Monteiro, Fernando C.

    2012-09-01

    The retinal fundus images are used in the treatment and diagnosis of several eye diseases, such as diabetic retinopathy and glaucoma. This paper proposes a new method to detect the optic disc (OD) automatically, due to the fact that the knowledge of the OD location is essential to the automatic analysis of retinal images. Ant Colony Optimization (ACO) is an optimization algorithm inspired by the foraging behaviour of some ant species that has been applied in image processing for edge detection. Recently, the ACO was used in fundus images to detect edges, and therefore, to segment the OD and other anatomical retinal structures. We present an algorithm for the detection of OD in the retina which takes advantage of the Gabor wavelet transform, entropy and ACO algorithm. Forty images of the retina from DRIVE database were used to evaluate the performance of our method.

  7. Fiber optic hydrophones for acoustic neutrino detection

    NASA Astrophysics Data System (ADS)

    Buis, E. J.; Doppenberg, E. J. J.; Lahmann, R.; Toet, P. M.; de Vreugd, J.

    2016-04-01

    Cosmic neutrinos with ultra high energies can be detected acoustically using hydrophones. The detection of these neutrinos may provide crucial information about then GZK mechanism. The flux of these neutrinos, however, is expected to be low, so that a detection volume is required more than a order of magnitude larger than what has presently been realized. With a large detection volume and a large number of hydrophones, there is a need for technology that is cheap and easy to deploy. Fiber optics provide a natural way for distributed sensing. In addition, a sensor has been designed and manufactured that can be produced cost-effectively on an industrial scale. Sensitivity measurements show that the sensor is able to reach the required sea-state zero level. For a proper interpretation of the expected bipolar signals, filtering techniques should be applied to remove the effects of the unwanted resonance peaks.

  8. Optical Detection of Life on Exoplanets

    NASA Technical Reports Server (NTRS)

    Heap, Sara

    2009-01-01

    We describe what is known about the atmospheric properties (Teff, lob g, [FelH]) and fundamental properties (mass, age, and metal content) of nearby stars and how they influence the habitable zones and habitable eras of these stars. We then take an observer's point of view to assess the ability of optical telescopes to detect photosynthetic or methanogenic life on planets orbiting these stars.

  9. Renewable Surface Biosensors with Optical Detection

    SciTech Connect

    Bruckner-Lea, Cindy J.; Ackerman, Eric J.; Dockendorff, Brian P.; Holman, David A.; Grate, Jay W.

    2001-04-30

    One major challenge in the development of biosensors is the limited lifetime of a chemically selective surface that includes biomolecules. Renewable surface biosensors address this issue by using fresh aliquots of derivatized microbeads for each analysis. The analyte detection can then occur on the microbeads, or downstream from the microbeads. In this paper, we will describe two types of renewable surface biosensors. The first renewable biosensor system includes on-column optical detection for monitoring the binding of biomolecules onto protein or DNA-derivatized Sepharose beads. The second renewable biosensor system includes detection downstream from the microparticles and is based on the use of derivatized magnetic particles for selective binding. The magnetic particles are fluidically captured and released in a sequential injection system to allow the automation of an Enzyme Linked ImmunoSorbent Assay.

  10. Renewable Surface Biosensors With Optical Detection

    SciTech Connect

    Bruckner-Lea, Cynthia J.; Ackerman, Eric J.; Dockendorff, Brian P.; Holman, David A.; Grate, Jay W.

    2001-12-01

    One major challenge in the development of biosensors is the limited lifetime of a chemically selective surface that includes biomolecules. Renewable surface biosensors address this issue by using fresh aliquots of derivatized microbeads for each analysis. The analyte detection can then occur on the microbeads, or downstream from the microbeads. In this paper, we will describe two types of renewable surface biosensors. The first renewable biosensor system includes on-column optical detection for monitoring the binding of biomolecules onto protein or DNA-derivatized Sepharose beads. The second renewable biosensor system includes detection downstream from the microparticles and is based on the use of derivatized magnetic particles for selective binding. The magnetic particles are fluidically captured and released in a sequential injection system to allow the automation of an Enzyme Linked ImmunoSorbent Assay.

  11. Detecting multiatomic composite states in optical lattices

    NASA Astrophysics Data System (ADS)

    Kuklov, Anatoly; Moritz, Henning

    2007-01-01

    We propose and discuss methods for detecting quasimolecular complexes which are expected to form in strongly interacting optical lattice systems. Particular emphasis is placed on the detection of composite fermions forming in Bose-Fermi mixtures. We argue that, as an indirect indication of the composite fermions and a generic consequence of strong interactions, periodic correlations must appear in the atom shot noise of bosonic absorption images, similar to the bosonic Mott insulator [S. Fölling , Nature (London) 434, 481 (2005)]. The composites can also be detected directly and their quasimomentum distribution measured. This method—an extension of the technique of noise correlation interferometry [E. Altman , Phys. Rev. A 79, 013603 (2004)]—relies on measuring higher order correlations between the bosonic and fermionic shot noise in the absorption images. However, it fails above a certain number of the constituents due to a dramatic increase of uncorrelated noise.

  12. Fiber Optic Thermal Detection of Composite Delaminations

    NASA Technical Reports Server (NTRS)

    Wu, Meng-Chou; Winfree, William P.

    2011-01-01

    A recently developed technique is presented for thermographic detection of delaminations in composites by performing temperature measurements with fiber optic Bragg gratings. A single optical fiber with multiple Bragg gratings employed as surface temperature sensors was bonded to the surface of a composite with subsurface defects. The investigated structure was a 10-ply composite specimen with prefabricated delaminations of various sizes and depths. Both during and following the application of a thermal heat flux to the surface, the individual Bragg grating sensors measured the temporal and spatial temperature variations. The data obtained from grating sensors were analyzed with thermal modeling techniques of conventional thermography to reveal particular characteristics of the interested areas. Results were compared and found to be consistent with the calculations using numerical simulation techniques. Also discussed are methods including various heating sources and patterns, and their limitations for performing in-situ structural health monitoring.

  13. Trace elements profile is associated with insulin resistance syndrome and oxidative damage in thyroid disorders: Manganese and selenium interest in Algerian participants with dysthyroidism.

    PubMed

    Maouche, Naima; Meskine, Djamila; Alamir, Barkahoum; Koceir, Elhadj-Ahmed

    2015-10-01

    The relationship between dysthyroidism and antioxidant trace elements (ATE) status is very subtle during oxidative stress (OS). This relationship is mediated by thyroid hormone (TH) disorder, insulin resistance syndrome (IRS) and inflammation. The aim of this study was to investigate ATE such as selenium (Se), manganese (Mn), zinc (Zn) and copper (Cu) status on thyroid dysfunction, and their interaction with antioxidant enzyme activities, mainly, superoxide dismutase (SOD) and glutathione peroxidase (GPx), TH profile (TSH, T(3), T(4)) and IRS clusters. The study was undertaken on 220 Algerian adults (30-50 years), including 157 women and 63 men who were divided to 4 groups: subclinical hypothyroidism (n = 50), overt hypothyroidism (n = 60), Graves's disease hyperthyroidism (n = 60) and euthyroid controls (n = 50). The IRS was confirmed according to NCEP (National Cholesterol Education Program). Insulin resistance was evaluated by HOMA-IR model. Trace elements were determined by the Flame Atomic Absorption Spectrometry (Flame-AAS) technique. The antioxidant enzymes activity and metabolic parameters were determined by biochemical methods. The TH profile and anti-Thyroperoxidase Antibodies (anti-TPO-Ab) were evaluated by radioimmunoassay. Results showed that the plasma manganese levels were significantly increased in all dysthyroidism groups (p ≤ 0.01). However, the plasma copper and zinc concentrations were maintained normal or not very disturbed vs control group. In contrast, the plasma selenium levels were highly decreased (p ≤ 0.001) and positively correlated with depletion of glutathione peroxidase activity; and associated both with anti-TPO-Ab overexpression and fulminant HS-CRP levels. This study confirms the oxidative stress-inflammation relationship in the dysthyroidism. The thyroid follicles antioxidant protection appears preserved in the cytosol (Cu/Zn-SOD), while it is altered in the mitochondria (Mn-SOD), which gives this cell organelle, a status of

  14. Enhancement of optical detectability with polarization

    NASA Astrophysics Data System (ADS)

    Egan, Walter G.

    1999-07-01

    Low detectability is a major consideration for combat platforms. Exposed surfaces are painted or coated black to minimize optical or near infrared detectability; this is a fallacy in regard to polarization. The percent polarization of a diffuse (non specular) surface is inversely proportional to the surface reflectance (also known as albedo). Thus a dark surface with a reflectance of 2% can have a percent polarization of approximately 100%. (The percent polarization is the ratio of the difference between two orthogonal polarized measurements ratioed to the sum multiplied by 100). Experimental measurements of diffuse surfaces with albedos between 2% and 90% show this inverse relationship to be obeyed from the ultraviolet to the near infrared. Imagery has been obtained on various aircraft coatings that verify the inverse relationship between surface albedo and percent polarization in the green, red and near infrared wavelength bands. The imagery was obtained in the three bands with the Kodak digital cameras, which downloaded on to CD ROMs. Imagery has also been obtained on laboratory samples that verify the inverse relationship between albedo and polarization. The conclusion is that very high polarization of a dark aircraft enhances the detectability such that it is easily recognized optically using polarization. This effect has not been recognized in signature reduction. Imagery will be presented and the inverse relationship between surface albedo and percent polarization will be demonstrated.

  15. Optical and infrared detection using microcantilevers

    SciTech Connect

    Oden, P.I.; Datskos, P.G.; Warmack, R.J. |; Wachter, E.A.; Thundat, T.

    1996-05-01

    The feasibility of micromechanical optical and infrared (IR) detection using microcantilevers is demonstrated. Microcantilevers provide a simple means for developing single- and multi-element sensors for visible and infrared radiation that are smaller, more sensitive and lower in cost than quantum or thermal detectors. Microcantilevers coated with a heat absorbing layer undergo bending due to the differential stress originating from the bimetallic effect. Bending is proportional to the amount of heat absorbed and can be detected using optical or electrical methods such as resistance changes in piezoresistive cantilevers. The microcantilever sensors exhibit two distinct thermal responses: a fast one ({theta}{sub 1}{sup thermal} < ms) and a slower one ({tau}{sub 2}{sup thermal} {approximately} 10 ms). A noise equivalent temperature difference, NEDT = 90 mK was measured. When uncoated microcantilevers were irradiated by a low-power diode laser ({lambda} = 786 nm) the noise equivalent power, NEP, was found to be 3.5nW/{radical}Hz which corresponds to a specific detectivity, D*, of 3.6 {times} 10{sup 7} cm {center_dot} {radical}Hz/W at a modulation frequency of 20 Hz.

  16. Ultraviolet light detection using an optical microcavity.

    PubMed

    Harker, Audrey; Mehrabani, Simin; Armani, Andrea M

    2013-09-01

    Ultraviolet (UV) light exposure is connected to both physical and psychological diseases. As such, there is significant interest in developing sensors that can detect UV light in the mW/cm2 intensity range with a high signal-to-noise ratio. In this Letter, we demonstrate a UV sensor based on a silica integrated optical microcavity that has a linear operating response in both the forward and backward directions from 14 to 53 mW/cm2. The sensor response agrees with the developed predictive theory based on a thermodynamic model. Additionally, the signal-to-noise ratio is above 100 at physiologically relevant intensity levels. PMID:23988974

  17. Flexible detection optics for light scattering

    NASA Astrophysics Data System (ADS)

    Taratuta, Victor G.; Hurd, Alan J.; Meyer, Robert B.

    1984-05-01

    We have designed and built a compact, modular apparatus for the collection, viewing, and detection of scattered light for less than 1200, based on a commercially available optical bench. The novelty of our instrument is that it has the flexibility of modular design while allowing the user to see exactly what is happening: both the real image of the sample and the spatial coherence of the scattered light can be examined. There is built-in control over polarization, filtering, magnification, and other parameters.

  18. Optical detection of microcystin produced by cyanobacteria

    NASA Astrophysics Data System (ADS)

    Al-Ammar, R.; Nabok, A.; Hashim, A.; Smith, T.

    2013-06-01

    Microcystin (MC-LR) produced by cyanobacteria (blue-green algae) was detected in direct immunoassay with specific monoclonal antibody MC10E7 using an optical method of Total Internal Reflection Ellipsometry (TIRE). The minimal detected concentration of MC-LR of 0.1 ng/ml is a remarkable achievement for direct immunoassay against such low molecular weight analyte molecule. The study of binding kinetics of MC-LR to MC10E7 antibody allowed the evaluation of the association constant KA of about 108 (l/Mol) typical for highly specific immune reactions. Concentration of MC-LR in aqueous solutions was reduced using an absorbent made of polyelectrolyte-coated microparticles functionalized with MC10E7 antibodies.

  19. Ionizing radiation detection using microstructured optical fiber

    NASA Astrophysics Data System (ADS)

    DeHaven, Stanton

    Ionizing radiation detecting microstructured optical fibers are fabricated, modeled and experimentally measured for X-ray detection in the 10-40 keV energy range. These fibers operate by containing a scintillator material which emits visible light when exposed to ionizing radiation. An X-ray source characterized with a CdTe spectrometer is used to quantify the X-ray detection efficiency of the fibers. The solid state CdTe detector is considered 100% efficient in this energy range. A liquid filled microstructured optical fiber (MOF) is presented where numerical analysis and experimental observation leads to a geometric theory of photon transmission using total internal reflection. The model relates the quantity and energy of absorbed X-rays to transmitted and measured visible light photons. Experimental measurement of MOF photon counts show good quantitative agreement with calculated theoretical values. This work is extended to a solid organic scintillator, anthracene, which shows improved light output due to its material properties. A detailed description of the experimental approach used to fabricate anthracene MOF is presented. The fabrication technique uses a modified Bridgman-Stockbarger crystal growth technique to grow anthracene single crystals inside MOF. The anthracene grown in the MOF is characterized using spectrophotometry, Raman spectroscopy, and X-ray diffraction. These results show the anthracene grown is a high purity crystal with a structure similar to anthracene grown from the liquid, vapor and melt techniques. The X-ray measurement technique uses the same approach as that for liquid filled MOF for efficiency comparison. A specific fiber configuration associated with the crystal growth allows an order of magnitude improvement in X-ray detection efficiency. The effect of thin film external coatings on the measured efficiency is presented and related to the fiber optics. Lastly, inorganic alkali halide scintillator materials of CsI(Tl), CsI(Na), and

  20. On event-based optical flow detection

    PubMed Central

    Brosch, Tobias; Tschechne, Stephan; Neumann, Heiko

    2015-01-01

    Event-based sensing, i.e., the asynchronous detection of luminance changes, promises low-energy, high dynamic range, and sparse sensing. This stands in contrast to whole image frame-wise acquisition by standard cameras. Here, we systematically investigate the implications of event-based sensing in the context of visual motion, or flow, estimation. Starting from a common theoretical foundation, we discuss different principal approaches for optical flow detection ranging from gradient-based methods over plane-fitting to filter based methods and identify strengths and weaknesses of each class. Gradient-based methods for local motion integration are shown to suffer from the sparse encoding in address-event representations (AER). Approaches exploiting the local plane like structure of the event cloud, on the other hand, are shown to be well suited. Within this class, filter based approaches are shown to define a proper detection scheme which can also deal with the problem of representing multiple motions at a single location (motion transparency). A novel biologically inspired efficient motion detector is proposed, analyzed and experimentally validated. Furthermore, a stage of surround normalization is incorporated. Together with the filtering this defines a canonical circuit for motion feature detection. The theoretical analysis shows that such an integrated circuit reduces motion ambiguity in addition to decorrelating the representation of motion related activations. PMID:25941470

  1. Parallel Optical and Electrochemical DNA Detection

    NASA Astrophysics Data System (ADS)

    Knoll, Wolfgang; Liu, Jianyun; Niu, Lifang; Nielsen, Peter Eigil; Tiefenauer, Louis

    This contribution introduces strategies for the sensitive detection of oligonucleotides as bio-analytes binding from solution to a variety of probe architectures assembled at the (Au-) sensor surface. Detection principles based on surface plasmon optics and electrochemical techniques are compared. In particular, cyclic- and square wave voltammetry (SWV) are applied for the read-out of ferrocene redox labels conjugated to streptavidin that binds to the (biotinylated) DNA targets after hybridizing to the interfacial probe matrix of either DNA or peptide nucleic acid (PNA) strands. By employing streptavidin modified with fluorophores the identical sensor architecture can be used for the recording of hybridization reactions by surface plasmon fluorescence spectroscopy (SPFS). The Langmuir isotherms determined by both techniques, i.e., by SWV and SPFS, give virtually identical affinity constants KA, confirming that the mode of detection has no influence on the hybridization reaction. By using semiconducting nanoparticles as luminescence labels that can be tuned in their bandgap energies over a wide range of emission wavelengths surface plasmon fluorescence microscopy allows for the parallel read-out of multiple analyte binding events simultaneously.

  2. Detection of Optically Faint GEO Debris

    NASA Technical Reports Server (NTRS)

    Seitzer, P.; Lederer, S.; Barker, E.; Cowardin, H.; Abercromby, K.; Silha, J.; Burkhardt, A.

    2014-01-01

    There have been extensive optical surveys for debris at geosynchronous orbit (GEO) conducted with meter-class telescopes, such as those conducted with MODEST (the Michigan Orbital DEbris Survey Telescope, a 0.6-m telescope located at Cerro Tololo in Chile), and the European Space Agency's 1.0-m space debris telescope (SDT) in the Canary Islands. These surveys have detection limits in the range of 18th or 19th magnitude, which corresponds to sizes larger than 10 cm assuming an albedo of 0.175. All of these surveys reveal a substantial population of objects fainter than R = 15th magnitude that are not in the public U.S. Satellite Catalog. To detect objects fainter than 20th magnitude (and presumably smaller than 10 cm) in the visible requires a larger telescope and excellent imaging conditions. This combination is available in Chile. NASA's Orbital Debris Program Office has begun collecting orbital debris observations with the 6.5-m (21.3-ft diameter) "Walter Baade" Magellan telescope at Las Campanas Observatory. The goal is to detect objects as faint as possible from a ground-based observatory and begin to understand the brightness distribution of GEO debris fainter than R = 20th magnitude.

  3. Detecting eavesdropping activity in fiber optic networks

    NASA Astrophysics Data System (ADS)

    MacDonald, Gregory G.

    The secure transmission of data is critical to governments, military organizations, financial institutions, health care providers and other enterprises. The primary method of securing in-transit data is though data encryption. A number of encryption methods exist but the fundamental approach is to assume an eavesdropper has access to the encrypted message but does not have the computing capability to decrypt the message in a timely fashion. Essentially, the strength of security depends on the complexity of the encryption method and the resources available to the eavesdropper. The development of future technologies, most notably quantum computers and quantum computing, is often cited as a direct threat to traditional encryption schemes. It seems reasonable that additional effort should be placed on prohibiting the eavesdropper from coming into possession of the encrypted message in the first place. One strategy for denying possession of the encrypted message is to secure the physical layer of the communications path. Because the majority of transmitted information is over fiber-optic networks, it seems appropriate to consider ways of enhancing the integrity and security of the fiber-based physical layer. The purpose of this research is to investigate the properties of light, as they are manifested in single mode fiber, as a means of insuring the integrity and security of the physical layer of a fiber-optic based communication link. Specifically, the approach focuses on the behavior of polarization in single mode fiber, as it is shown to be especially sensitive to fiber geometry. Fiber geometry is necessarily modified during the placement of optical taps. The problem of detecting activity associated with the placement of an optical tap is herein approached as a supervised machine learning anomaly identification task. The inputs include raw polarization measurements along with additional features derived from various visualizations of the raw data (the inputs are

  4. Optical detection of the superconducting proximity effect

    SciTech Connect

    Greene, L.H.; Abeyta, A.C.; Roshchin, I.V.; Robinson, I.K.; Dorsten, J.F.; Tanzer, T.A.; Bohn, P.W.

    1996-12-31

    The authors present the first detection of a superconducting proximity effect by optical techniques. Raman scattering on n{sup +}-InAs is performed through very thin, high-quality, superconducting Nb films grown directly on the (100) InAs surface. The 6 to 10 nm thick Nb films exhibit {Tc}`s of 2.5 to 5.5 K, as measured by electronic transport, and are flat to {approximately}0.5 nm, as measured by x-ray reflectivity. As the Nb/InAs structure is cooled below the superconducting transition temperature, the magnitude of the unscreened LO phonon mode, associated with the surface charge accumulation layer in the InAs, is observed to be enhanced by more than 40%. This reversible change is observed only when the Nb is in good electrical contact with the InAs.

  5. Submerged turbulence detection with optical satellites

    NASA Astrophysics Data System (ADS)

    Gibson, Carl H.; Keeler, R. Norris; Bondur, Valery G.; Leung, Pak T.; Prandke, H.; Vithanage, D.

    2007-09-01

    During fall periods in 2002, 2003 and 2004 three major oceanographic expeditions were carried out in Mamala Bay, Hawaii. These were part of the RASP Remote Anthropogenic Sensing Program. Ikonos and Quickbird optical satellite images of sea surface glint revealed ~100 m spectral anomalies in km2 averaging patches in regions leading from the Honolulu Sand Island Municipal Outfall diffuser to distances up to 20 km. To determine the mechanisms behind this phenomenon, the RASP expeditions monitored the waters adjacent to the outfall with an array of hydrographic, optical and turbulence microstructure sensors in anomaly and ambient background regions. Drogue tracks and mean turbulence parameters for 2 × 10 4 microstructure patches were analyzed to understand complex turbulence, fossil turbulence and zombie turbulence near-vertical internal wave transport processes. The dominant mechanism appears to be generic to stratified natural fluids including planet and star atmospheres and is termed beamed zombie turbulence maser action (BZTMA). Most of the bottom turbulent kinetic energy is converted to ~ 100 m fossil turbulence waves. These activate secondary (zombie) turbulence in outfall fossil turbulence patches that transmit heat, mass, chemical species, momentum and information vertically to the sea surface for detection in an efficient maser action. The transport is beamed in intermittent mixing chimneys.

  6. Submerged turbulence detection with optical satellites

    NASA Astrophysics Data System (ADS)

    Gibson, Carl H.; Keeler, R. Norris; Bondur, Valery G.; Leung, Pak T.; Prandke, H.; Vithanage, D.

    2013-01-01

    During fall periods in 2002, 2003 and 2004 three major oceanographic expeditions were carried out in Mamala Bay, Hawaii. These were part of the RASP Remote Anthropogenic Sensing Program. Ikonos and Quickbird optical satellite images of sea surface glint revealed !100 m spectral anomalies in km2 averaging patches in regions leading from the Honolulu Sand Island Municipal Outfall diffuser to distances up to 20 km. To determine the mechanisms behind this phenomenon, the RASP expeditions monitored the waters adjacent to the outfall with an array of hydrographic, optical and turbulence microstructure sensors in anomaly and ambient background regions. Drogue tracks and mean turbulence parameters for 2 ! 104 microstructure patches were analyzed to understand complex turbulence, fossil turbulence and zombie turbulence near-vertical internal wave transport processes. The dominant mechanism appears to be generic to stratified natural fluids including planet and star atmospheres and is termed beamed zombie turbulence maser action (BZTMA). Most of the bottom turbulent kinetic energy is converted to ! 100 m fossil turbulence waves. These activate secondary (zombie) turbulence in outfall fossil turbulence patches that transmit heat, mass, chemical species, momentum and information vertically to the sea surface for detection in an efficient maser action. The transport is beamed in intermittent mixing chimneys.

  7. Multimodal optical imaging for detecting breast cancer

    NASA Astrophysics Data System (ADS)

    Patel, Rakesh; Khan, Ashraf; Wirth, Dennis; Kamionek, Michal; Kandil, Dina; Quinlan, Robert; Yaroslavsky, Anna N.

    2012-06-01

    The goal of the study was to evaluate wide-field and high-resolution multimodal optical imaging, including polarization, reflectance, and fluorescence for the intraoperative detection of breast cancer. Lumpectomy specimens were stained with 0.05 mg/ml aqueous solution of methylene blue (MB) and imaged. Wide-field reflectance images were acquired between 390 and 750 nm. Wide-field fluorescence images were excited at 640 nm and registered between 660 and 750 nm. High resolution confocal reflectance and fluorescence images were excited at 642 nm. Confocal fluorescence images were acquired between 670 nm and 710 nm. After imaging, the specimens were processed for hematoxylin and eosin (H&E) histopathology. Histological slides were compared with wide-field and high-resolution optical images to evaluate correlation of tumor boundaries and cellular morphology, respectively. Fluorescence polarization imaging identified the location, size, and shape of the tumor in all the cases investigated. Averaged fluorescence polarization values of tumor were higher as compared to normal tissue. Statistical analysis confirmed the significance of these differences. Fluorescence confocal imaging enabled cellular-level resolution. Evaluation and statistical analysis of MB fluorescence polarization values registered from single tumor and normal cells demonstrated higher fluorescence polarization from cancer. Wide-field high-resolution fluorescence and fluorescence polarization imaging shows promise for intraoperative delineation of breast cancers.

  8. Coherent detection in optical fiber systems.

    PubMed

    Ip, Ezra; Lau, Alan Pak Tao; Barros, Daniel J F; Kahn, Joseph M

    2008-01-21

    The drive for higher performance in optical fiber systems has renewed interest in coherent detection. We review detection methods, including noncoherent, differentially coherent, and coherent detection, as well as a hybrid method. We compare modulation methods encoding information in various degrees of freedom (DOF). Polarization-multiplexed quadrature-amplitude modulation maximizes spectral efficiency and power efficiency, by utilizing all four available DOF, the two field quadratures in the two polarizations. Dual-polarization homodyne or heterodyne downconversion are linear processes that can fully recover the received signal field in these four DOF. When downconverted signals are sampled at the Nyquist rate, compensation of transmission impairments can be performed using digital signal processing (DSP). Linear impairments, including chromatic dispersion and polarization-mode dispersion, can be compensated quasi-exactly using finite impulse response filters. Some nonlinear impairments, such as intra-channel four-wave mixing and nonlinear phase noise, can be compensated partially. Carrier phase recovery can be performed using feedforward methods, even when phase-locked loops may fail due to delay constraints. DSP-based compensation enables a receiver to adapt to time-varying impairments, and facilitates use of advanced forward-error-correction codes. We discuss both single- and multi-carrier system implementations. For a given modulation format, using coherent detection, they offer fundamentally the same spectral efficiency and power efficiency, but may differ in practice, because of different impairments and implementation details. With anticipated advances in analog-to-digital converters and integrated circuit technology, DSP-based coherent receivers at bit rates up to 100 Gbit/s should become practical within the next few years. PMID:18542153

  9. Polarization sensitive optical coherence tomography detection method

    SciTech Connect

    Everett, M J; Sathyam, U S; Colston, B W; DaSilva, L B; Fried, D; Ragadio, J N; Featherstone, J D B

    1999-05-12

    This study demonstrates the potential of polarization sensitive optical coherence tomography (PS-OCT) for non-invasive in vivo detection and characterization of early, incipient caries lesions. PS-OCT generates cross-sectional images of biological tissue while measuring the effect of the tissue on the polarization state of incident light. Clear discrimination between regions of normal and demineralized enamel is first shown in PS-OCT images of bovine enamel blocks containing well-characterized artificial lesions. High-resolution, cross-sectional images of extracted human teeth are then generated that clearly discriminate between the normal and carious regions on both the smooth and occlusal surfaces. Regions of the teeth that appeared to be demineralized in the PS-OCT images were verified using histological thin sections examined under polarized light microscopy. The PS-OCT system discriminates between normal and carious regions by measuring the polarization state of the back-scattered 1310 nm light, which is affected by the state of demineralization of the enamel. Demineralization of enamel increases the scattereing coefficient, thus depolarizing the incident light. This study shows that PS-OCT has great potential for the detection, characterization, and monitoring of incipient caries lesions.

  10. Degradation points detection in optical fiber

    NASA Astrophysics Data System (ADS)

    Salikhov, Aydar I.

    2015-03-01

    In this paper, we propose a new algorithm for monitoring the state of the fiber-optic link using polarization effects. The necessity of this work is because currently in operation is a very large number of fiber-optic cables with expired or expiring operation. This means that they are actively developing microcracks and other local defects. In this paper we propose a method for continuous monitoring of optical fiber communication cables.

  11. Leakage detection using fiber optics distributed temperature monitoring

    NASA Astrophysics Data System (ADS)

    Nikles, Marc; Vogel, Bernhard H.; Briffod, Fabien; Grosswig, Stephan; Sauser, Florian; Luebbecke, Steffen; Bals, Andre; Pfeiffer, Thomas

    2004-07-01

    The monitoring of temperature profiles over long distance by means of optical fibers represents a highly efficient way to perform leakage detection along pipelines, in dams, dykes, or tanks... Different techniques have been developed taking advantages of the fiber geometry and of optical time domain analysis for the localization of the information. Among fiber optics distributed temperature sensing techniques, Brillouin-based systems have demonstrated to have the best potential for applications over distances up to several tens of kilometers. The key features and performances are reviewed in the present article and a 55km pipeline equipped with a fiber optics leakage detection system is presented as a case study.

  12. Fiber-optic testing system having a detection circuit

    NASA Astrophysics Data System (ADS)

    Needham, Francis L.

    1992-05-01

    A system for testing a fiber-optic component with infrared radiation is provided. The testing system has a source of infrared radiation, an optic coupler, a detecting circuit, and an analog tape recorder. The optic coupler directs the infrared radiation onto the fiber-optic component. The detection circuit is electrically connected to the tape recorder. The detection circuit has an amplifier, a potentiometer connected in parallel to the amplifier, and a photoelectric transducer connected in series to the amplifier. These components are mounted on a non-conductive board. A power source supplies voltage and is connected to the amplifier. The circuit operates by having the photoelectric transducer sense the infrared radiation emitted from the tested fiber-optic component and convert the radiation into an electrical signal. The amplifier then amplifies the electrical signal to the voltage necessary for driving the tape recorder.

  13. Fiber-optical testing system having a detection circuit

    NASA Astrophysics Data System (ADS)

    Needham, Francis L.

    1994-01-01

    A system for testing a fiber-optic component with infrared radiation is provided. The testing system has a source of infrared radiation, an optic coupler, a detecting circuit, and an analog tape recorder. The optic coupler directs the infrared radiation onto the fiber-optic component. The detection circuit is electrically connected to the tape recorder. The detection circuit has an amplifier, a potentiometer connected in parallel to the amplifier, and a photoelectric transducer connected in series to the amplifier. These components are mounted on a non-conductive board. A power source supplies voltage and is connected to the amplifier. The circuit operates by having the photoelectric transducer sense the infrared radiation emitted from the tested fiber-optic component and convert the radiation into an electrical signal. The amplifier then amplifies the electrical signal to the voltage necessary for driving the tape recorder.

  14. Chemical detection demonstrated using an evanescent wave graphene optical sensor

    NASA Astrophysics Data System (ADS)

    Maliakal, Ashok; Reith, Leslie; Cabot, Steve

    2016-04-01

    Graphene devices have been constructed on silicon mirrors, and the graphene is optically probed through an evanescent wave interaction in an attenuated total reflectance configuration using an infrared spectrometer. The graphene is electrically biased in order to tune its optical properties. Exposure of the device to the chemicals iodine and ammonia causes observable and reversible changes to graphene's optical absorption spectra in the mid to near infrared range which can be utilized for the purpose of sensing. Electrical current measurements through the graphene are made simultaneously with optical measurements allowing for simultaneous sensing using two separate detection modalities. Our current results reveal sub-ppm detection limits for iodine and approximately 100 ppm detection limits for ammonia. We have also demonstrated that this approach will work at 1.55 μm, which opens up the possibility for graphene optical sensors that leverage commercial telecom light sources.

  15. Adaptive optics assisted Fourier domain OCT with balanced detection

    NASA Astrophysics Data System (ADS)

    Meadway, A.; Bradu, A.; Hathaway, M.; Van der Jeught, S.; Rosen, R. B.; Podoleanu, A. Gh.

    2011-03-01

    Two factors are of importance to optical coherence tomography (OCT), resolution and sensitivity. Adaptive optics improves the resolution of a system by correcting for aberrations causing distortions in the wave-front. Balanced detection has been used in time domain OCT systems by removing excess photon noise, however it has not been used in Fourier domain systems, as the cameras used in the spectrometers saturated before excess photon noise becomes a problem. Advances in camera technology mean that this is no longer the case and balanced detection can now be used to improve the signal to noise ratio in a Fourier domain (FD) OCT system. An FD-OCT system, enhanced with adaptive optics, is presented and is used to show the improvement that balanced detection can provide. The signal to noise ratios of single camera detection and balanced detection are assessed and in-vivo retinal images are acquired to demonstrate better image quality when using balance detection.

  16. Electro-Optical Detection of Single λ-DNA†

    PubMed Central

    Liu, Shuo; Wall, Thomas A.; Ozcelik, Damla; Parks, Joshua W.; Hawkins, Aaron R.; Schmidt, Holger

    2015-01-01

    Single λ-DNA molecules are detected on a nanopore-gated optofluidic chip electrically and optically. Statistical variations in the single particle trajectories are used to predict the intensity distribution of the fluorescence signals. PMID:25533516

  17. Lamb wave detection with a fiber optic angular displacement sensor

    NASA Astrophysics Data System (ADS)

    Garcia, Marlon R.; Sakamoto, João. M. S.; Higuti, Ricardo T.; Kitano, Cláudio

    2015-09-01

    In this work we show that the fiber optic angular displacement sensor is capable of Lamb wave detection, with results comparable to a piezoelectric transducer. Therefore, the fiber optic sensor has a great potential to be used as the Lamb wave ultrasonic receiver and to perform non-destructive and non-contact testing.

  18. Integrated optical biosensor for detection of multivalent proteins

    SciTech Connect

    Kelly, Dan; Grace, Karen M.; Song, Xuedong; Swanson, Basil I.; Frayer, Daniel; Mendes, Sergio B.; Peyghambarian, Nasser

    1999-12-01

    We have developed a simple, highly sensitive and specific optical waveguide sensor for the detection of multivalent proteins. The optical biosensor is based on optically tagged glycolipid receptors embedded within a fluid phospholipid bilayer membrane formed upon the surface of a planar optical waveguide. Binding of multivalent cholera toxin triggers a fluorescence resonance energy transfer that results in a two-color optical change that is monitored by measurement of emitted luminescence above the waveguide surface. The sensor approach is highly sensitive and specific and requires no additional reagents and washing steps. Demonstration of protein-receptor recognition by use of planar optical waveguides provides a path forward for the development of fieldable miniaturized biosensor arrays. (c) 1999 Optical Society of America.

  19. Optical Detection of Anomalous Nitrogen in Comets

    NASA Astrophysics Data System (ADS)

    2003-12-01

    VLT Opens New Window towards Our Origins Summary A team of European astronomers [1] has used the UVES spectrograph on the 8.2-m VLT KUEYEN telescope to perform a uniquely detailed study of Comet LINEAR (C/2000 WM1) . This is the first time that this powerful instrument has been employed to obtain high-resolution spectra of a comet. At the time of the observations in mid-March 2002, Comet LINEAR was about 180 million km from the Sun, moving outwards after its perihelion passage in January. As comets are believed to carry "pristine" material - left-overs from the formation of the solar system, about 4,600 million years ago - studies of these objects are important to obtain clues about the origins of the solar system and the Earth in particular. The high quality of the data obtained of this moving 9th-magnitude object has permitted a determination of the cometary abundance of various elements and their isotopes [2]. Of particular interest is the unambiguous detection and measurement of the nitrogen-15 isotope. The only other comet in which this isotope has been observed is famous Comet Hale-Bopp - this was during the passage in 1997, when it was much brighter than Comet LINEAR. Most interestingly, Comet LINEAR and Comet Hale-Bopp display the same isotopic abundance ratio, about 1 nitrogen-15 atom for each 140 nitrogen-14 atoms ( 14 N/ 15 N = 140 ± 30) . That is about half of the terrestrial value (272). It is also very different from the result obtained by means of radio measurements of Comet Hale-Bopp ( 14 N/ 15 N = 330 ± 75). Optical and radio measurements concern different molecules (CN and HCN, respectively), and this isotopic anomaly must be explained by some differentiation mechanism. The astronomers conclude that part of the cometary nitrogen is trapped in macromolecules attached to dust particles . The successful entry of UVES into cometary research now opens eagerly awaited opportunities for similiar observations in other, comparatively faint comets. These

  20. Optical detection of oil on water

    NASA Technical Reports Server (NTRS)

    Millard, J. P.; Arvesen, J. C.

    1973-01-01

    Three radiometric techniques utilizing sunlight reflected and backscattered from water bodies have potential application for remote sensing of oil spills. Oil on water can be detected by viewing perpendicular polarization component of reflected light or difference between polarization components. Best detection is performed in ultraviolet or far-red portions of spectrum and in azimuth directions toward or opposite sun.

  1. Leakage detection of oil pipeline using distributed fiber optic sensor

    NASA Astrophysics Data System (ADS)

    Shan, Song; Wang, Li; Zhou, Jinfeng

    2007-07-01

    A system of distributed optical fiber sensor has presented based on the optical fiber sensor technology and detected the oil pipeline leakage using Mach-Zehnder optical interferometer. There are two interferential signals from sensor and reference light to put in computer has been analyzed using the analysis software LabVIEW of National Instruments' that can operate for the cross-correlation function, then compare the correlation peak to obtain the disturbance of oil leakage location, the detection precision 200m at around 50km for pipeline in the high speed sampling and data signal processing has obtained.

  2. An Optical Biosensor for Bacillus Cereus Spore Detection

    NASA Astrophysics Data System (ADS)

    Li, Chengquan; Tom, Harry W. K.

    2005-03-01

    We demonstrate a new transduction scheme for optical biosensing. Bacillus cereus is a pathogen that may be found in food and dairy products and is able to produce toxins and cause food poisoning. It is related to Bacillus anthracis (anthrax). A CCD array covered with micro-structured glass coverslip is used to detect the optical resonant shift due to the binding of the antigen (bacillus cereus spore) to the antibody (polyclonal antibody). This novel optical biosensor scheme has the potential for detecting 10˜100 bioagents in a single device as well as the potential to test for antigens with multiple antibody tests to avoid ``false positives.''

  3. Detection of Laser Optic Defects Using Gradient Direction Matching

    SciTech Connect

    Chen, B Y; Kegelmeyer, L M; Liebman, J A; Salmon, J T; Tzeng, J; Paglieroni, D W

    2005-12-14

    That National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) will be the world's largest and most energetic laser. It has thousands of optics and depends heavily on the quality and performance of these optics. Over the past several years, we have developed the NIF Optics Inspection Analysis System that automatically finds defects in a specific optic by analyzing images taken of that optic. This paper describes a new and complementary approach for the automatic detection of defects based on detecting the diffraction ring patterns in downstream optic images caused by defects in upstream optics. Our approach applies a robust pattern matching algorithm for images called Gradient Direction Matching (GDM). GDM compares the gradient directions (the direction of flow from dark to light) of pixels in a test image to those of a specified model and identifies regions in the test image whose gradient directions are most in line with those of the specified model. For finding rings, we use luminance disk models whose pixels have gradient directions all pointing toward the center of the disk. After GDM identifies potential rings locations, we rank these rings by how well they fit the theoretical diffraction ring pattern equation. We perform false alarm mitigation by throwing out rings of low fit. A byproduct of this fitting procedure is an estimate of the size of the defect and its distance from the image plane. We demonstrate the potential effectiveness of this approach by showing examples of rings detected in real images of NIF optics.

  4. Portable multichannel fiber optic biosensor for field detection

    NASA Astrophysics Data System (ADS)

    Golden, Joel P.; Saaski, Elric W.; Shriver-Lake, Lisa C.; Anderson, George P.; Ligler, Frances S.

    1997-04-01

    A compact, portable fiber optic biosensor is developed that enables monitoring of up to four fiber optic probes simultaneously. The sensor employs a novel optical fiber bundle jumper for exciting and collecting fluorescence emission from the evanescent wave fiber optic probes. A single fiber in the center of the bundle couples laser excitation into the sensor probe, while the surrounding fibers collect the returning fluorescent emission light. This design requires no beamsplitter, enabling the detection optics and control circuitry to be reduced to a 4 X 6 in. circuit card. Four of these cards are integrated into a single portable system. Results from detection assays for hazardous biological agents and an environmental pollutant are shown.

  5. Optical detection system for MEMS-type pressure sensor

    NASA Astrophysics Data System (ADS)

    Sareło, K.; Górecka-Drzazga, A.; Dziuban, J. A.

    2015-07-01

    In this paper a special optical detection system designed for a MEMS-type (micro-electro-mechanical system) silicon pressure sensor is presented. The main part of the optical system—a detection unit with a perforated membrane—is bonded to the silicon sensor, and placed in a measuring system. An external light source illuminates the membrane of the pressure sensor. Owing to the light reflected from the deflected membrane sensor, the optical pattern consisting of light points is visible, and pressure can be estimated. The optical detection unit (20   ×   20   ×   20.4 mm3) is fabricated using microengineering techniques. Its dimensions are adjusted to the dimensions of the pressure sensor (5   ×   5 mm2 silicon membrane). Preliminary tests of the optical detection unit integrated with the silicon pressure sensor are carried out. For the membrane sensor from 15 to 60 µm thick, a repeatable detection of the differential pressure in the range of 0 to 280 kPa is achieved. The presented optical microsystem is especially suitable for the pressure measurements in a high radiation environment.

  6. Analysis of quantitative phase detection based on optical information processing

    NASA Astrophysics Data System (ADS)

    Tao, Wang; Tu, Jiang-Chen; Chun, Kuang-Tao; Yu, Han-Wang; Xin, Du

    2009-07-01

    Phase object exists widely in nature, such as biological cells, optical components, atmospheric flow field and so on. The phase detection of objects has great significance in the basic research, nondestructive testing, aerospace, military weapons and other areas. The usual methods of phase object detection include interference method, grating method, schlieren method, and phase-contrast method etc. These methods have their own advantages, but they also have some disadvantages on detecting precision, environmental requirements, cost, detection rate, detection range, detection linearity in various applications, even the most sophisticated method-phase contrast method mainly used in microscopic structure, lacks quantitative analysis of the size of the phase of the object and the relationship between the image contrast and the optical system. In this paper, various phase detection means and the characteristics of different applications are analyzed based on the optical information processing, and a phase detection system based on optical filtering is formed. Firstly the frequency spectrum of the phase object is achieved by Fourier transform lens in the system, then the frequency spectrum is changed reasonably by the filter, at last the image which can represent the phase distribution through light intensity is achieved by the inverse Fourier transform. The advantages and disadvantages of the common used filters such as 1/4 wavelength phase filter, high-pass filter and edge filter are analyzed, and their phase resolution is analyzed in the same optical information processing system, and the factors impacting phase resolution are pointed out. The paper draws a conclusion that there exists an optimal filter which makes the detect accuracy best for any application. At last, we discussed how to design an optimal filter through which the ability of the phase testing of optical information processing system can be improved most.

  7. Simultaneous detection and intensity estimation of an optical image

    NASA Technical Reports Server (NTRS)

    Wang, L.

    1979-01-01

    A statistical model for simultaneous detection and single parameter estimation of a stochastic signal against background noise is obtained. Two strategies, Bayes and maximum likelihood, are discussed. The detection of an optical point source imaged on a photosensitive surface and the estimation of its intensity based on such strategies are examined. An almost optimum estimate is also proposed and its statistical properties are studied.

  8. Improvement of optical systems for detection of smokes

    NASA Astrophysics Data System (ADS)

    Panin, V. F.; Dashkovskii, A. G.

    2015-04-01

    The theory of electromagnetic radiation dispersion by polydisperse particles is analyzed. Methods of reliable optical indication of smokes to identify Fire Danger are considered. The conventional method of optical smoke detection implies measuring optical characteristics of the environment under control. After that the results obtained are converted into microphysical parameters which can be compared to the known microphysical properties of smokes.The calculated optical portrait of smokes is offered. The portrait of smokes is the field of representation points in coordinates of the degree of diffusion radiation polarization for two diffusion angles. Each of the spots indicates one of the numerous realizations of smokes. The direct match of the representation spots in the optical increases the probability of smoke A different way to protect optical system is to use the device with mutually orthogonal polarizers of the light source and detector. If hindrance is nonspherical aerosol, the signal from the device is used to correct the signals from smoke detectors.

  9. Fiber optic approach for detecting corrosion

    NASA Astrophysics Data System (ADS)

    Kostecki, Roman; Ebendorff-Heidepriem, Heike; Davis, Claire; McAdam, Grant; Wang, Tianyu; Monro, Tanya M.

    2016-04-01

    Corrosion is a multi-billion dollar problem faced by industry. The ability to monitor the hidden metallic structure of an aircraft for corrosion could result in greater availability of existing aircraft fleets. Silica exposed-core microstructured optical fiber sensors are inherently suited towards this application, as they are extremely lightweight, robust, and suitable both for distributed measurements and for embedding in otherwise inaccessible corrosion-prone areas. By functionalizing the fiber with chemosensors sensitive to corrosion by-products, we demonstrate in-situ kinetic measurements of accelerated corrosion in simulated aluminum aircraft joints.

  10. Optic disc detection and boundary extraction in retinal images.

    PubMed

    Basit, A; Fraz, Muhammad Moazam

    2015-04-10

    With the development of digital image processing, analysis and modeling techniques, automatic retinal image analysis is emerging as an important screening tool for early detection of ophthalmologic disorders such as diabetic retinopathy and glaucoma. In this paper, a robust method for optic disc detection and extraction of the optic disc boundary is proposed to help in the development of computer-assisted diagnosis and treatment of such ophthalmic disease. The proposed method is based on morphological operations, smoothing filters, and the marker controlled watershed transform. Internal and external markers are used to first modify the gradient magnitude image and then the watershed transformation is applied on this modified gradient magnitude image for boundary extraction. This method has shown significant improvement over existing methods in terms of detection and boundary extraction of the optic disc. The proposed method has optic disc detection success rate of 100%, 100%, 100% and 98.9% for the DRIVE, Shifa, CHASE_DB1, and DIARETDB1 databases, respectively. The optic disc boundary detection achieved an average spatial overlap of 61.88%, 70.96%, 45.61%, and 54.69% for these databases, respectively, which are higher than currents methods. PMID:25967336

  11. Optically selective, acoustically resonant gas detecting transducer

    NASA Technical Reports Server (NTRS)

    Dimeff, J. (Inventor)

    1977-01-01

    A gas analyzer is disclosed which responds to the resonant absorption or emission spectrum of a specific gas by producing an acoustic resonance in a chamber containing a sample of that gas, and which measures the amount of that emission or absorption by measuring the strength of that acoustic resonance, e.g., the maximum periodic pressure, velocity or density achieved. In the preferred embodiment, a light beam is modulated periodically at the acoustical resonance frequency of a closed chamber which contains an optically dense sample of the gas of interest. Periodic heating of the absorbing gas by the light beam causes a cyclic expansion, movement, and pressure within the gas. An amplitude is reached where the increased losses were the cyclic radiation energy received. A transducing system is inclined for converting the pressure variations of the resonant gas into electronic readout signals.

  12. Amplifier Noise Based Optical Steganography with Coherent Detection

    NASA Astrophysics Data System (ADS)

    Wu, Ben; Chang, Matthew P.; Caldwell, Naomi R.; Caldwell, Myles E.; Prucnal, Paul R.

    2014-12-01

    We summarize the principle and experimental setup of optical steganography based on amplified spontaneous emission (ASE) noise. Using ASE noise as the signal carrier, optical steganography effectively hides a stealth channel in both the time domain and the frequency domain. Coherent detection is used at the receiver of the stealth channel. Because ASE noise has short coherence length and random phase, it only interferes with itself within a very short range. Coherent detection requires the stealth transmitter and stealth receiver to precisely match the optical delay,which generates a large key space for the stealth channel. Several methods to further improve optical steganography, signal to noise ratio, compatibility with the public channel, and applications of the stealth channel are also summarized in this review paper.

  13. Pyridine Vapors Detection by an Optical Fibre Sensor

    PubMed Central

    Elosua, Cesar; Bariain, Candido; Matias, Ignacio R.; Rodriguez, Antonio; Colacio, Enriquie; Salinas-Castillo, Alfonso; Segura-Carretero, Antonio; Fernandez-Gutiérrez, Alberto

    2008-01-01

    An optical fibre sensor has been implemented towards pyridine vapors detection; to achieve this, a novel vapochromic material has been used, which, in solid state, suffers a change in colour from blue to pink-white in presence of pyridine vapours. This complex is added to a solution of PVC (Poly Vinyl Chloride), TBP (Tributylphosphate) and tetrahydrofuran (THF), forming a plasticized matrix; by dip coating technique, the sensing material is fixed onto a cleaved ended optical fibre. The fabrication process was optimized in terms of number of dips and dipping speed, evaluating the final devices by dynamic range. Employing a reflection set up, the absorbance spectra and changes in the reflected optical power of the sensors were registered to determine their response. A linear relation between optical power versus vapor concentration was obtained, with a detection limit of 1 ppm (v/v).

  14. LLNL electro-optical mine detection program

    SciTech Connect

    Anderson, C.; Aimonetti, W.; Barth, M.; Buhl, M.; Bull, N.; Carter, M.; Clark, G.; Fields, D.; Fulkerson, S.; Kane, R.

    1994-09-30

    Under funding from the Advanced Research Projects Agency (ARPA) and the US Marine Corps (USMC), Lawrence Livermore National Laboratory (LLNL) has directed a program aimed at improving detection capabilities against buried mines and munitions. The program has provided a national test facility for buried mines in arid environments, compiled and distributed an extensive data base of infrared (IR), ground penetrating radar (GPR), and other measurements made at that site, served as a host for other organizations wishing to make measurements, made considerable progress in the use of ground penetrating radar for mine detection, and worked on the difficult problem of sensor fusion as applied to buried mine detection. While the majority of our effort has been concentrated on the buried mine problem, LLNL has worked with the U.S.M.C. on surface mine problems as well, providing data and analysis to support the COBRA (Coastal Battlefield Reconnaissance and Analysis) program. The original aim of the experimental aspect of the program was the utilization of multiband infrared approaches for the detection of buried mines. Later the work was extended to a multisensor investigation, including sensors other than infrared imagers. After an early series of measurements, it was determined that further progress would require a larger test facility in a natural environment, so the Buried Object Test Facility (BOTF) was constructed at the Nevada Test Site. After extensive testing, with sensors spanning the electromagnetic spectrum from the near ultraviolet to radio frequencies, possible paths for improvement were: improved spatial resolution providing better ground texture discrimination; analysis which involves more complicated spatial queueing and filtering; additional IR bands using imaging spectroscopy; the use of additional sensors other than IR and the use of data fusion techniques with multi-sensor data; and utilizing time dependent observables like temperature.

  15. Tumor margin detection using optical biopsy techniques

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Liu, Cheng-hui; Li, Jiyou; Li, Zhongwu; Zhou, Lixin; Chen, Ke; Pu, Yang; He, Yong; Zhu, Ke; Li, Qingbo; Alfano, Robert R.

    2014-03-01

    The aim of this study is to use the Resonance Raman (RR) and fluorescence spectroscopic technique for tumor margin detection with high accuracy based on native molecular fingerprints of breast and gastrointestinal (GI) tissues. This tumor margins detection method utilizes advantages of RR spectroscopic technique in situ and in real-time to diagnose tumor changes providing powerful tools for clinical guiding intraoperative margin assessments and postoperative treatments. The tumor margin detection procedures by RR spectroscopy were taken by scanning lesion from center or around tumor region in ex-vivo to find the changes in cancerous tissues with the rim of normal tissues using the native molecular fingerprints. The specimens used to analyze tumor margins include breast and GI carcinoma and normal tissues. The sharp margin of the tumor was found by the changes of RR spectral peaks within 2 mm distance. The result was verified using fluorescence spectra with 300 nm, 320 nm and 340 nm excitation, in a typical specimen of gastric cancerous tissue within a positive margin in comparison with normal gastric tissues. This study demonstrates the potential of RR and fluorescence spectroscopy as new approaches with labeling free to determine the intraoperative margin assessment.

  16. Spectrally balanced detection for optical frequency domain imaging.

    PubMed

    Chen, Yueli; de Bruin, Daniel M; Kerbage, Charles; de Boer, Johannes F

    2007-12-10

    In optical frequency domain imaging (OFDI) or swept-source optical coherence tomography, balanced detection is required to suppress relative intensity noise (RIN). A regular implementation of balanced detection by combining reference and sample arm signal in a 50/50 coupler and detecting the differential output with a balanced receiver is however, not perfect. Since the splitting ratio of the 50/50 coupler is wavelength dependent, RIN is not optimally canceled at the edges of the wavelength sweep. The splitting ratio has a nearly linear shift of 0.4% per nanometer. This brings as much as +/-12% deviation at the margins of wavelength-swept range centered at 1060nm. We demonstrate a RIN suppression of 33dB by spectrally corrected balanced detection, 11dB more that regular balanced detection. PMID:19550929

  17. Multicolor Fluorescence Detection for Droplet Microfluidics Using Optical Fibers.

    PubMed

    Cole, Russell H; Gartner, Zev J; Abate, Adam R

    2016-01-01

    Fluorescence assays are the most common readouts used in droplet microfluidics due to their bright signals and fast time response. Applications such as multiplex assays, enzyme evolution, and molecular biology enhanced cell sorting require the detection of two or more colors of fluorescence. Standard multicolor detection systems that couple free space lasers to epifluorescence microscopes are bulky, expensive, and difficult to maintain. In this paper, we describe a scheme to perform multicolor detection by exciting discrete regions of a microfluidic channel with lasers coupled to optical fibers. Emitted light is collected by an optical fiber coupled to a single photodetector. Because the excitation occurs at different spatial locations, the identity of emitted light can be encoded as a temporal shift, eliminating the need for more complicated light filtering schemes. The system has been used to detect droplet populations containing four unique combinations of dyes and to detect sub-nanomolar concentrations of fluorescein. PMID:27214249

  18. Spin microscope based on optically detected magnetic resonance

    DOEpatents

    Berman, Gennady P.; Chernobrod, Boris M.

    2007-12-11

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  19. The optical detection unit for Baikal-GVD neutrino telescope

    NASA Astrophysics Data System (ADS)

    Avrorin, A. D.; Avrorin, A. V.; Aynutdinov, V. M.; Bannash, R.; Belolaptikov, I. A.; Bogorodsky, D. Yu.; Brudanin, V. B.; Budnev, N. M.; Danilchenko, I. A.; Domogatsky, G. V.; Doroshenko, A. A.; Dyachok, A. N.; Dzhilkibaev, Zh.-A. M.; Fialkovsky, S. V.; Gafarov, A. R.; Gaponenko, O. N.; Golubkov, K. V.; Gress, T. I.; Honz, Z.; Kebkal, K. G.; Kebkal, O. G.; Konischev, K. V.; Konstantinov, E. N.; Korobchenko, A. V.; Koshechkin, A. P.; Koshel, F. K.; Kozhin, A. V.; Kulepov, V. F.; Kuleshov, D. A.; Ljashuk, V. I.; Milenin, M. B.; Mirgazov, R. A.; Osipova, E. R.; Panfilov, A. I.; Pan'kov, L. V.; Perevalov, A. A.; Pliskovsky, E. N.; Rozanov, M. I.; Rubtzov, V. Yu.; Rjabov, E. V.; Shaybonov, B. A.; Sheifler, A. A.; Skurihin, A. V.; Smagina, A. A.; Suvorova, O. V.; Tabolenko, V. A.; Tarashansky, B. A.; Yakovlev, S. A.; Zagorodnikov, A. V.; Zhukov, V. A.; Zurbanov, V. L.

    2016-07-01

    The first stage of the GVD-cluster composed of five strings was deployed in April 2014. Each string consists of two sections with 12 optical modules per section. A section is the basic detection unit of the Baikal neutrino telescope. We will describe the section design, review its basic elements - optical modules, FADC readout units, slow control and calibration systems, and present selected results for section in-situ tests in Lake Baikal.

  20. Spin microscope based on optically detected magnetic resonance

    SciTech Connect

    Berman, Gennady P.; Chernobrod, Boris M.

    2009-11-10

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of impaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  1. Spin microscope based on optically detected magnetic resonance

    SciTech Connect

    Berman, Gennady P.; Chernobrod, Boris M.

    2010-06-29

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  2. Spin microscope based on optically detected magnetic resonance

    SciTech Connect

    Berman, Gennady P.; Chernobrod, Boris M.

    2010-07-13

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  3. Spin microscope based on optically detected magnetic resonance

    SciTech Connect

    Berman, Gennady P.; Chernobrod, Boris M.

    2009-10-27

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  4. Detection of optical properties in small region by diffuse reflectance

    NASA Astrophysics Data System (ADS)

    Wang, Lijun; Li, Shengcai; Wang, Kai; Zhu, Zongping; Wang, Wei

    2015-11-01

    The optical properties of small and highly absorbing tissues can be determined by measurement of spatially resolved diffuse reflectance at short source-detector separations. Spatial resolution and number of measuring point influence the inverting precision of optical property directly from the experimental diffuse reflectance. To increase spatial resolution and number of measuring point, a high-resolution and multiple points detection system is designed. A special optical fiber array probe is employed. Its spatial resolution is 0.125mm. The system is proved to be reliable by comparing the experimental result of diffuse reflectance from small region 0.125mm-1.25mm with that of numerical simulation. The inverting method based on Monte Carlo simulation is designed, by which optical properties can be achieved by building optical parameter date base and training artificial neural network (ANN).

  5. MICROSTRUCTURED OPTICAL FIBER FOR X-RAY DETECTION

    SciTech Connect

    DeHaven, S. L.

    2010-02-22

    A novel scintillating optical fiber is presented using a composite micro-structured quartz optical fiber. Scintillating materials are introduced into the multiple inclusions of the fiber. This creates a composite optical fiber having quartz as a cladding with an organic scintillating material core. X-ray detection using these fibers is compared to a collimated cadmium telluride (CdTe) detector over an energy range from 10 to 40 keV. Results show a good correlation between the fiber count rate trend and that of the CdTe detector.

  6. Microstructured Optical Fiber for X-ray Detection

    NASA Technical Reports Server (NTRS)

    DeHaven, Stanton L.

    2009-01-01

    A novel scintillating optical fiber is presented using a composite micro-structured quartz optical fiber. Scintillating materials are introduced into the multiple inclusions of the fiber. This creates a composite optical fiber having quartz as a cladding with an organic scintillating material core. X-ray detection using these fibers is compared to a collimated cadmium telluride (CdTe) detector over an energy range from 10 to 40 keV. Results show a good correlation between the fiber count rate trend and that of the CdTe detector.

  7. Airborne optical detection of oil on water.

    NASA Technical Reports Server (NTRS)

    Millard, J. P.; Arvesen, J. C.

    1972-01-01

    Airborne measurements were made over controlled oil-spill test sites to evaluate various techniques, utilizing reflected sunlight, for detecting oil on water. The results of these measurements show that (1) maximum contrast between oil and water is in the UV and red portions of the spectrum; (2) minimum contrast is in the blue-green; (3) differential polarization appears to be a very promising technique; (4) no characteristic absorption bands, which would permit one oil to be distinguished from another, were discovered in the spectral regions measured; (5) sky conditions greatly influence the contrast between oil and water; and (6) highest contrast was achieved under overcast sky conditions.

  8. Approximate nearest neighbour field based optic disk detection.

    PubMed

    Ramakanth, S Avinash; Babu, R Venkatesh

    2014-01-01

    Approximate Nearest Neighbour Field maps are commonly used by computer vision and graphics community to deal with problems like image completion, retargetting, denoising, etc. In this paper, we extend the scope of usage of ANNF maps to medical image analysis, more specifically to optic disk detection in retinal images. In the analysis of retinal images, optic disk detection plays an important role since it simplifies the segmentation of optic disk and other retinal structures. The proposed approach uses FeatureMatch, an ANNF algorithm, to find the correspondence between a chosen optic disk reference image and any given query image. This correspondence provides a distribution of patches in the query image that are closest to patches in the reference image. The likelihood map obtained from the distribution of patches in query image is used for optic disk detection. The proposed approach is evaluated on five publicly available DIARETDB0, DIARETDB1, DRIVE, STARE and MESSIDOR databases, with total of 1540 images. We show, experimentally, that our proposed approach achieves an average detection accuracy of 99% and an average computation time of 0.2 s per image. PMID:24290957

  9. Pipeline leakage detection using distributed fibre optical temperature sensing

    NASA Astrophysics Data System (ADS)

    Grosswig, S.; Hurtig, E.; Luebbecke, S.; Vogel, B.

    2005-05-01

    The leakage detection system based on the distributed fibre optical temperature measurement method is an analysing method for continuous detection and localization of leakages at pipelines in the steady and unsteady operation states according to the German rules for pipelines TRbF 301/TRFL which is valid in Germany since April 2003. The leakage detection system is useable under the precondition that there is a sufficient large temperature gradient between the leakage area and the unaffected environment. This can be caused by the medium itself or through a physical effect due to the leakage, e.g. gas expansion, evaporation. It's a very sensitive method, so also creeping leakages can be detected.

  10. Fingerprint fake detection by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Meissner, Sven; Breithaupt, Ralph; Koch, Edmund

    2013-03-01

    The most established technique for the identification at biometric access control systems is the human fingerprint. While every human fingerprint is unique, fingerprints can be faked very easily by using thin layer fakes. Because commercial fingerprint scanners use only a two-dimensional image acquisition of the finger surface, they can only hardly differentiate between real fingerprints and fingerprint fakes applied on thin layer materials. A Swept Source OCT system with an A-line rate of 20 kHz and a lateral and axial resolution of approximately 13 μm, a centre wavelength of 1320 nm and a band width of 120 nm (FWHM) was used to acquire fingerprints and finger tips with overlying fakes. Three-dimensional volume stacks with dimensions of 4.5 mm x 4 mm x 2 mm were acquired. The layering arrangement of the imaged finger tips and faked finger tips was analyzed and subsequently classified into real and faked fingerprints. Additionally, sweat gland ducts were detected and consulted for the classification. The manual classification between real fingerprints and faked fingerprints results in almost 100 % correctness. The outer as well as the internal fingerprint can be recognized in all real human fingers, whereby this was not possible in the image stacks of the faked fingerprints. Furthermore, in all image stacks of real human fingers the sweat gland ducts were detected. The number of sweat gland ducts differs between the test persons. The typical helix shape of the ducts was observed. In contrast, in images of faked fingerprints we observe abnormal layer arrangements and no sweat gland ducts connecting the papillae of the outer fingerprint and the internal fingerprint. We demonstrated that OCT is a very useful tool to enhance the performance of biometric control systems concerning attacks by thin layer fingerprint fakes.

  11. Optical biopsy - a new armamentarium to detect disease using light

    NASA Astrophysics Data System (ADS)

    Pu, Yang; Alfano, Robert R.

    2015-03-01

    Optical spectroscopy has been considered a promising method for cancer detection for past thirty years because of its advantages over the conventional diagnostic methods of no tissue removal, minimal invasiveness, rapid diagnoses, less time consumption and reproducibility since the first use in 1984. It offers a new armamentarium. Human tissue is mainly composed of extracellular matrix of collagen fiber, proteins, fat, water, and epithelial cells with key molecules in different structures. Tissues contain a number of key fingerprint native endogenous fluorophore molecules, such as tryptophan, collagen, elastin, reduced nicotinamide adenine dinucleotide (NADH), flavin adenine dinucleotide (FAD) and porphyrins. It is well known that abnormalities in metabolic activity precede the onset of a lot of main diseases: carcinoma, diabetes mellitus, atherosclerosis, Alzheimer, and Parkinson's disease, etc. Optical spectroscopy may help in detecting various disorders. Conceivably the biochemical or morphologic changes that cause the spectra variations would appear earlier than the histological aberration. Therefore, "optical biopsy" holds a great promise as clinical tool for diagnosing early stage of carcinomas and other deceases by combining with available photonic technology (e.g. optical fibers, photon detectors, spectrographs spectroscopic ratiometer, fiber-optic endomicroscope and nasopharyngoscope) for in vivo use. This paper focuses on various methods available to detect spectroscopic changes in tissues, for example to distinguish cancerous prostate tissues and/or cells from normal prostate tissues and/or cells. The methods to be described are fluorescence, stokes shift, scattering, Raman, and time-resolved spectroscopy will be reviewed. The underlying physical and biological basis for these optical approaches will be discussed with examples. The idea is to present some of the salient works to show the usefulness and methods of Optical Biopsy for cancer detection and

  12. Optical and SAR data integration for automatic change pattern detection

    NASA Astrophysics Data System (ADS)

    Mishra, B.; Susaki, J.

    2014-09-01

    Automatic change pattern mapping in urban and sub-urban area is important but challenging due to the diversity of urban land use pattern. With multi-sensor imagery, it is possible to generate multidimensional unique information of Earth surface features that allow developing a relationship between a response of each feature to synthetic aperture radar (SAR) and optical sensors to track the change automatically. Thus, a SAR and optical data integration framework for change detection and a relationship for automatic change pattern detection were developed. It was carried out in three steps: (i) Computation of indicators from SAR and optical images, namely: normalized difference ratio (NDR) from multi-temporal SAR images and the normalized difference vegetation index difference (NDVI) from multi-temporal optical images, (ii) computing the change magnitude image from NDR and ΔNDVI and delineating the change area and (iii) the development of an empirical relationship, for automatic change pattern detection. The experiment was carried out in an outskirts part of Ho Chi Minh City, one of the fastest growing cities in the world. The empirical relationship between the response of surface feature to optical and SAR imagery has successfully delineated six changed classes in a very complex urban sprawl area that was otherwise impossible with multi-spectral imagery. The improvement of the change detection results by making use of the unique information on both sensors, optical and SAR, is also noticeable with a visual inspection and the kappa index was increased by 0.13 (0.75 to 0.88) in comparison to only optical images.

  13. Detection of Abnormal Events via Optical Flow Feature Analysis

    PubMed Central

    Wang, Tian; Snoussi, Hichem

    2015-01-01

    In this paper, a novel algorithm is proposed to detect abnormal events in video streams. The algorithm is based on the histogram of the optical flow orientation descriptor and the classification method. The details of the histogram of the optical flow orientation descriptor are illustrated for describing movement information of the global video frame or foreground frame. By combining one-class support vector machine and kernel principal component analysis methods, the abnormal events in the current frame can be detected after a learning period characterizing normal behaviors. The difference abnormal detection results are analyzed and explained. The proposed detection method is tested on benchmark datasets, then the experimental results show the effectiveness of the algorithm. PMID:25811227

  14. Assessments of phenomenologies for multi-optical mine detection

    NASA Astrophysics Data System (ADS)

    Letalick, Dietmar; Sjökvist, Stefan; Uppsäll, Magnus; Menning, Dennis; Andersson, Pierre; Grönwall, Christina

    2007-04-01

    This paper presents the Swedish land mine and UXO detection project "Multi Optical Mine Detection System," MOMS, and the research carried out so far. The goal for MOMS is to provide knowledge and competence for fast detection of mines, especially surface laid mines, by the use of both active and passive optical sensors. A main activity was to collect information and gain knowledge about phenomenology; i.e. features or characteristics that can give a detectable signature or contrast between object and background, and to carry out a phenomenology assessment. A large effort has also been put into a scene description to support phenomenology assessment and provide a framework for further experimental campaigns. Also, some preliminary experimental results are presented and discussed.

  15. Violence detection based on histogram of optical flow orientation

    NASA Astrophysics Data System (ADS)

    Yang, Zhijie; Zhang, Tao; Yang, Jie; Wu, Qiang; Bai, Li; Yao, Lixiu

    2013-12-01

    In this paper, we propose a novel approach for violence detection and localization in a public scene. Currently, violence detection is considerably under-researched compared with the common action recognition. Although existing methods can detect the presence of violence in a video, they cannot precisely locate the regions in the scene where violence is happening. This paper will tackle the challenge and propose a novel method to locate the violence location in the scene, which is important for public surveillance. The Gaussian Mixed Model is extended into the optical flow domain in order to detect candidate violence regions. In each region, a new descriptor, Histogram of Optical Flow Orientation (HOFO), is proposed to measure the spatial-temporal features. A linear SVM is trained based on the descriptor. The performance of the method is demonstrated on the publicly available data sets, BEHAVE and CAVIAR.

  16. New Optical Methods for Liveness Detection on Fingers

    PubMed Central

    Dolezel, Michal; Vana, Jan; Brezinova, Eva; Yim, Jaegeol; Shim, Kyubark

    2013-01-01

    This paper is devoted to new optical methods, which are supposed to be used for liveness detection on fingers. First we describe the basics about fake finger use in fingerprint recognition process and the possibilities of liveness detection. Then we continue with introducing three new liveness detection methods, which we developed and tested in the scope of our research activities—the first one is based on measurement of the pulse, the second one on variations of optical characteristics caused by pressure change, and the last one is based on reaction of skin to illumination with different wavelengths. The last part deals with the influence of skin diseases on fingerprint recognition, especially on liveness detection. PMID:24151584

  17. Surface-bonded fiber optic Sagnac sensors for ultrasound detection.

    PubMed

    Jang, Tae Seong; Lee, Seung Seok; Kim, Young Gil

    2004-04-01

    This paper describes a fiber optic sensor suitable for remote sensing and multi-point detection of ultrasound. This ultrasound sensor is based on the surface-bonded fiber optic Sagnac interferometer with the output fringe visibility of 1; it consists of a laser source, an ordinary single mode fiber delay line, a fiber coupler, a phase modulator and polarization controllers. For the validation of the sensor, surface acoustic waves and Lamb waves are excited by illuminating a steel specimen with an array of Q-switched Nd:YAG laser-generated line sources and the measurement of laser-generated ultrasonic waves are performed on the specimen surface using the surface-mounting fiber optic Sagnac sensor. The surface-bonded fiber optic sensor developed in this study has a simple configuration for detection of ultrasonic waves. Effectiveness of surface-bonded fiber optic Sagnac sensors for remote sensing of ultrasound and in situ monitoring of structures is investigated. The capability of multi-point detection of ultrasound by this Sagnac sensor is also discussed. PMID:15047393

  18. Integrated optical biosensor for rapid detection of bacteria

    NASA Astrophysics Data System (ADS)

    Mathesz, Anna; Valkai, Sándor; Újvárosy, Attila; Aekbote, Badri; Sipos, Orsolya; Stercz, Balázs; Kocsis, Béla; Szabó, Dóra; Dér, András

    2016-02-01

    In medical diagnostics, rapid detection of pathogenic bacteria from body fluids is one of the basic issues. Most state-of-the-art methods require optical labeling, increasing the complexity, duration and cost of the analysis. Therefore, there is a strong need for developing selective sensory devices based on label-free techniques, in order to increase the speed, and reduce the cost of detection. In a recent paper, we have shown that an integrated optical Mach-Zehnder interferometer, a highly sensitive all-optical device made of a cheap photopolymer, can be used as a powerful lab-on-a-chip tool for specific, labelfree detection of proteins. By proper modifications of this technique, our interferometric biosensor was combined with a microfluidic system allowing the rapid and specific detection of bacteria from solutions, having the surface of the sensor functionalized by bacterium-specific antibodies. The experiments proved that the biosensor was able to detect Escherichia coli bacteria at concentrations of 106 cfu/ml within a few minutes, that makes our device an appropriate tool for fast, label-free detection of bacteria from body fluids such as urine or sputum. On the other hand, possible applications of the device may not be restricted to medical microbiology, since bacterial identification is an important task in microbial forensics, criminal investigations, bio-terrorism threats and in environmental studies, as well.

  19. Contactless ultrasound detection using an optical ring resonator

    NASA Astrophysics Data System (ADS)

    Kim, Kyu Hyun; Luo, Wei; Zhang, Cheng; Guo, L. Jay; Fan, Xudong

    2016-03-01

    We develop an air-couple ultrasound detector based on an optical fluidic ring resonator (OFRR) suspended on a Ushaped holder. The OFRR is a glass capillary with an outer diameter of approximately 130 μm and a wall thickness in the order of 1~10 μm. The circular cross section of the OFRR supports the high-Q whispering gallery mode (WGM) that circulates along the circumference. Incoming ultrasound pressure results in a small refractive index change in the glass wall and geometrical change in the OFRR shape, both of which in turn lead to a spectral shift in the WGM that can be sensitively detected owing to WGM with high optical Q-factors (>107). Due to the suspension nature of the OFRR, the ultrasound detection can be carried out in air, which is advantageous in comparison with other ultrasound detections that require acoustic coupling media such water, gel or solid. The sensitivity can be tuned and optimized by changing the diameter and wall thickness. Besides the optical detection, we also demonstrate optomechanical ultrasound mixing, in which optomechanical vibration is first excited within the OFRR that subsequently modulates the ultrasound wave. Our work will lead to the development of a new type of air-coupled ultrasound detector that can be used for photo-acoustic imaging, non-invasive ultrasound detection of external objects, and ultrasound detection/characterization of internal objects (such as particles and liquids) flowing inside the capillary.

  20. Capillary electrophoresis microchip detecting system based on embedded optical fiber

    NASA Astrophysics Data System (ADS)

    Yan, Weiping; Li, Yuanyuan; Ma, Lingzhi

    2007-12-01

    Microchip capillary electrophoresis(CE) has been recognized as a powerful tool for biochemical analyses due to its smaller size, faster separation and lower sample requirement. According to the principle of laser-induced fluorescence, the detecting system of CE microchip embedded optical fiber is discussed in this paper as well as its small volume and simple detection optical circuit. The system was composed with semiconductor laser (532nm), high voltage control system, photon counter, PC and CE chip embedded optical fibers. With the constructed detection system, different samples and different concentrations were detected, including Rhodamine B, Rhodamine 6G, and mingling solution of Rhodamine B and Rhodamine 6G. The lowest detected concentration is 1×10 -6mol/L for Rhodamine B, and 1×10 -5mol/L for Rhodamine 6G, respectively. The separation of the mingling solution of Rhodamine B and Rhodamine 6G was completed, whose concentration were both about 1×10 -4mol/L. The results show that the constructed detection system possesses some advantages, such as compact structure, higher sensitivity and repetition, which are beneficial to the development of microminiaturization and integration of micro CE chip.

  1. Integrated optical biosensor for rapid detection of bacteria

    NASA Astrophysics Data System (ADS)

    Mathesz, Anna; Valkai, Sándor; Újvárosy, Attila; Aekbote, Badri; Sipos, Orsolya; Stercz, Balázs; Kocsis, Béla; Szabó, Dóra; Dér, András

    2015-12-01

    In medical diagnostics, rapid detection of pathogenic bacteria from body fluids is one of the basic issues. Most state-of-the-art methods require optical labeling, increasing the complexity, duration and cost of the analysis. Therefore, there is a strong need for developing selective sensory devices based on label-free techniques, in order to increase the speed, and reduce the cost of detection. In a recent paper, we have shown that an integrated optical Mach-Zehnder interferometer, a highly sensitive all-optical device made of a cheap photopolymer, can be used as a powerful lab-on-a-chip tool for specific, labelfree detection of proteins. By proper modifications of this technique, our interferometric biosensor was combined with a microfluidic system allowing the rapid and specific detection of bacteria from solutions, having the surface of the sensor functionalized by bacterium-specific antibodies. The experiments proved that the biosensor was able to detect Escherichia coli bacteria at concentrations of 106 cfu/ml within a few minutes, that makes our device an appropriate tool for fast, label-free detection of bacteria from body fluids such as urine or sputum. On the other hand, possible applications of the device may not be restricted to medical microbiology, since bacterial identification is an important task in microbial forensics, criminal investigations, bio-terrorism threats and in environmental studies, as well.

  2. Characterization of fiber optic Cerenkov radiation sensor for detecting neutrons

    NASA Astrophysics Data System (ADS)

    Jang, K. W.; Yagi, T.; Pyeon, C. H.; Shin, S. H.; Yoo, W. J.; Misawa, T.; Lee, B.

    2013-09-01

    Cerenkov radiation can be observed easily as a shimmer of blue light from the water in boiling- and pressurized-water reactors, or spent fuel storage pools. In this research, we fabricated the fiber-optic Cerenkov radiation sensor using a Gdfoil, rutile crystal and optical fiber for detecting neutrons. Also, the reference sensor for measuring background gammarays was fabricated with the rutile crystal and optical fiber. The neutron fluxes could be obtained by measuring the signal difference between two sensors. To characterize the fiber-optic Cerenkov radiation sensor, we measured neutron fluxes using a Cf-252 neutron source according to depths of polyethylene. As the results, the counts of fiber-optic Cerenkov radiation sensor were higher than those of reference sensor due to additional interactions between Gd-foil and neutrons. Also, the counts of Cerenkov radiation decreased with increasing polyethylene thickness. It is anticipated that the novel and simple fiber-optic Cerenkov radiation sensor using the Cerenkov effect can be widely used to detect the neutrons in hazardous nuclear facilities.

  3. Automated detection of optical counterparts to GRBs with RAPTOR

    SciTech Connect

    Wozniak, P. R.; Vestrand, W. T.; Evans, S.; White, R.; Wren, J.

    2006-05-19

    The RAPTOR system (RAPid Telescopes for Optical Response) is an array of several distributed robotic telescopes that automatically respond to GCN localization alerts. Raptor-S is a 0.4-m telescope with 24 arc min. field of view employing a 1k x 1k Marconi CCD detector, and has already detected prompt optical emission from several GRBs within the first minute of the explosion. We present a real-time data analysis and alert system for automated identification of optical transients in Raptor-S GRB response data down to the sensitivity limit of {approx} 19 mag. Our custom data processing pipeline is designed to minimize the time required to reliably identify transients and extract actionable information. The system utilizes a networked PostgreSQL database server for catalog access and distributes email alerts with successful detections.

  4. Optical detection of nanoparticle-enhanced human papillomavirus genotyping microarrays.

    PubMed

    Li, Xue Zhe; Kim, Sookyung; Cho, Wonhyung; Lee, Seung-Yop

    2013-02-01

    In this study, we propose a new detection method of nanoparticle-enhanced human papillomavirus genotyping microarrays using a DVD optical pick-up with a photodiode. The HPV genotyping DNA chip was labeled using Au/Ag core-shell nanoparticles, prepared on a treatment glass substrate. Then, the bio information of the HPV genotyping target DNA was detected by measuring the difference of the optical signals between the DNA spots and the background parts for cervical cancer diagnosis. Moreover the approximate linear relationship between the concentration of the HPV genotyping target DNA and the optical signal depending on the density of Au/Ag core-shell nanoparticles was obtained by performing a spot finding algorithm. It is shown that the nanoparticle-labeled HPV genotyping target DNA can be measured and quantified by collecting the low-cost photodiode signal on the treatment glass chip, replacing high-cost fluorescence microarray scanners using a photomultiplier tube. PMID:23413051

  5. Real-Time Detection of Optical Transients with RAPTOR

    NASA Astrophysics Data System (ADS)

    Borozdin, Konstantin N.; Brumby, Steven P.; Galassi, Mark C.; McGowan, Katherine; Starr, Daniel; Vestrand, Thomas; White, Robert; Wozniak, Przemek; Wren, James A.

    2002-12-01

    Fast variability of optical objects is an interesting though poorly explored subject in modern astronomy. Real-time data processing and identification of transient celestial events in the images is very important for such study as it allows rapid follow-up with more sensitive instruments. We discuss an approach which we have developed for the RAPTOR project, a pioneering closed-loop system combining real-time transient detection with rapid follow-up. RAPTOR's data processing pipeline is able to identify and localize an optical transient within seconds after the observation. The testing we performed so far have been confirming the effectiveness of our method for the optical transient detection. The software pipeline we have developed for RAPTOR can easily be applied to the data from other experiments.

  6. A synchronous phase detection system for an optical interferometric sensor

    NASA Astrophysics Data System (ADS)

    Bush, I. J.

    1982-05-01

    A system has been developed to accurately detect phase produced in optical interferometric sensors. The system employs optical heterodyning, and it synchronously detects optical phase by feeding an error signal back to a phase modulator in the reference leg of the interferometer. This system is seen to have properties similar to a phase-locked loop used for the demodulation of FM signals. The system model is second order and nonlinear, but a linear approximation serves to accurately describe the system in synchronous operation and is corroborated with well-matched empirical data. The complete model is simulated via computer techniques and is needed to describe the system's parameters that lead to loss and reacquisition of synchronization.

  7. Channel simulation for direct-detection optical communication systems

    NASA Technical Reports Server (NTRS)

    Tycz, M.; Fitzmaurice, M. W.

    1974-01-01

    A technique is described for simulating the random modulation imposed by atmospheric scintillation and transmitter pointing jitter on a direct-detection optical communication system. The system is capable of providing signal fading statistics which obey log-normal, beta, Rayleigh, Ricean, or chi-square density functions. Experimental tests of the performance of the channel simulator are presented.

  8. Channel simulation for direct detection optical communication systems

    NASA Technical Reports Server (NTRS)

    Tycz, M.; Fitzmaurice, M. W.

    1974-01-01

    A technique is described for simulating the random modulation imposed by atmospheric scintillation and transmitter pointing jitter on a direct detection optical communication system. The system is capable of providing signal fading statistics which obey log normal, beta, Rayleigh, Ricean or chi-squared density functions. Experimental tests of the performance of the Channel Simulator are presented.

  9. Optical Detection of Organic Chemical Biosignatures at Hydrothermal Vents

    NASA Technical Reports Server (NTRS)

    Conrad, P. G.; Lane, A. L.; Bhartia, R.; Hug, W. H.

    2004-01-01

    We have developed a non-contact, optical life detection instrument that can detect organic chemical biosignatures in a number of different environments, including dry land, shallow aqueous, deep marine or in ice. Hence, the instrument is appropriate as a biosignature survey tool both for Mars exploration or in situ experiments in an ice-covered ocean such as one might wish to explore on Europa. Here, we report the results we obtained on an expedition aboard the Russian oceanographic vessel Akademik Mstislav Keldysh to hydrothermal vent sites in the Pacific Ocean using our life detection instrument MCDUVE, a multichannel, deep ultraviolet excitation fluorescence detector. MCDUVE detected organic material distribution on rocks near the vent, as well as direct detection of organisms, both microbial and microscopic. We also were able to detect organic material issuing directly from vent chimneys, measure the organic signature of the water column as we ascended, and passively observe the emission of light directly from some vents.

  10. Optical protein detection based on magnetic clusters rotation.

    PubMed

    Ramiandrisoa, Donatien; Brient-Litzler, Elodie; Daynes, Aurélien; Compain, Eric; Bibette, Jérôme; Baudry, Jean

    2015-09-25

    In this paper we present a simple method to quantify aggregates of 200nm magnetic particles. This method relies on the optical and magnetic anisotropy of particle aggregates, whereas dispersed particles are optically isotropic. We orientate aggregates by applying short pulses of a magnetic field, and we measure optical density variation directly linked to this reorientation. By computing the scattering efficiency of doublets and singlets, we demonstrate the absolute quantification of a few % of doublets in a well dispersed suspension. More generally, these optical variations are related to the aggregation state of the sample. This method can be easily applied to an agglutination assay, where target proteins induce aggregation of colloidal particles. By observing only aligned clusters, we increase sensitivity and we reduce the background noise as compared to a classical agglutination assay: we obtain a detection limit on the C-reactive protein of less than 3pM for a total assay time of 10min. PMID:25849116

  11. Multivariate optical element platform for compressed detection of fluorescence markers

    NASA Astrophysics Data System (ADS)

    Priore, Ryan J.; Swanstrom, Joseph A.

    2014-05-01

    The success of a commercial fluorescent diagnostic assay is dependent on the selection of a fluorescent biomarker; due to the broad nature of fluorescence biomarker emission profiles, only a small number of fluorescence biomarkers may be discriminated from each other as a function of excitation source. Multivariate Optical Elements (MOEs) are thin-film devices that encode a broad band, spectroscopic pattern allowing a simple broadband detector to generate a highly sensitive and specific detection for a target analyte. MOEs have historically been matched 1:1 to a discrete analyte or class prediction; however, MOE filter sets are capable of sensing projections of the original sparse spectroscopic space enabling a small set of MOEs to discriminate a multitude of target analytes. This optical regression can offer real-time measurements with relatively high signal-to-noise ratios that realize the advantages of multiplexed detection and pattern recognition in a simple optical instrument. The specificity advantage of MOE-based sensors allows fluorescent biomarkers that were once incapable of discrimination from one another via optical band pass filters to be employed in a common assay panel. A simplified MOE-based sensor may ultimately reduce the requirement for highly trained operators as well as move certain life science applications like disease prognostication from the laboratory to the point of care. This presentation will summarize the design and fabrication of compressed detection MOE filter sets for detecting multiple fluorescent biomarkers simultaneously with strong spectroscopic interference as well as comparing the detection performance of the MOE sensor with traditional optical band pass filter methodologies.

  12. Fiber-Optic Based Compact Gas Leak Detection System

    NASA Technical Reports Server (NTRS)

    deGroot, Wim A.

    1995-01-01

    A propellant leak detection system based on Raman scattering principles is introduced. The proposed system is flexible and versatile as the result of the use of optical fibers. It is shown that multiple species can be monitored simultaneously. In this paper oxygen, nitrogen, carbon monoxide, and hydrogen are detected and monitored. The current detection sensitivity for both hydrogen and carbon monoxide is 1% partial pressure at ambient conditions. The sensitivity for oxygen and nitrogen is 0.5% partial pressure. The response time to changes in species concentration is three minutes. This system can be used to monitor multiple species at several locations.

  13. MEMS-based extreme adaptive optics for planet detection

    NASA Astrophysics Data System (ADS)

    Macintosh, Bruce; Graham, James; Oppenheimer, Ben; Poyneer, Lisa; Sivaramakrishnan, Anand; Veran, Jean-Pierre

    2006-01-01

    The next major step in the study of extrasolar planets will be the direct detection, resolved from their parent star, of a significant sample of Jupiter-like extrasolar giant planets. Such detection will open up new parts of the extrasolar planet distribution and allow spectroscopic characterization of the planets themselves. Detecting Jovian planets at 5-50 AU scale orbiting nearby stars requires adaptive optics systems and coronagraphs an order of magnitude more powerful than those available today - the realm of "Extreme" adaptive optics. We present the basic requirements and design for such a system, the Gemini Planet Imager (GPI.) GPI will require a MEMS-based deformable mirror with good surface quality, 2-4 micron stroke (operated in tandem with a conventional low-order "woofer" mirror), and a fully-functional 48-actuator-diameter aperture.

  14. Spectrally efficient optical transmission based on Stokes vector direct detection.

    PubMed

    Li, An; Che, Di; Chen, Vivian; Shieh, William

    2014-06-30

    We propose a novel detection scheme called Stokes vector direct detection (SV-DD) to realize high electrical spectral efficiency and cost-effective optical communication for short and medium reach. With SV-DD, the signal is modulated in only one polarization and combined with the carrier in the orthogonal polarization for fiber transmission. At reception, the combined signal is detected in Stokes space by three or four photo-detectors. Compared with conventional DD technique, SV-DD is resilient to both chromatic dispersion and signal-to-signal beat noise. Furthermore, SV-DD does not require polarization tracking or narrow band optical filtering for carrier extraction. In this paper, we present for the first time the numerical analysis and experimental demonstration of single-carrier SV-DD. We report 62.5-Gb/s data rate single-carrier SV-DD transmission over 160-km SSMF using 12.5-Gbaud 32-QAM modulation. PMID:24977825

  15. MEMS-based extreme adaptive optics for planet detection

    SciTech Connect

    Macintosh, B A; Graham, J R; Oppenheimer, B; Poyneer, L; Sivaramakrishnan, A; Veran, J

    2005-11-18

    The next major step in the study of extrasolar planets will be the direct detection, resolved from their parent star, of a significant sample of Jupiter-like extrasolar giant planets. Such detection will open up new parts of the extrasolar planet distribution and allow spectroscopic characterization of the planets themselves. Detecting Jovian planets at 5-50 AU scale orbiting nearby stars requires adaptive optics systems and coronagraphs an order of magnitude more powerful than those available today--the realm of ''Extreme'' adaptive optics. We present the basic requirements and design for such a system, the Gemini Planet Imager (GPI.) GPI will require a MEMS-based deformable mirror with good surface quality, 2-4 micron stroke (operated in tandem with a conventional low-order ''woofer'' mirror), and a fully-functional 48-actuator-diameter aperture.

  16. Planet detectability by an adaptive optics stellar coronagraph

    NASA Astrophysics Data System (ADS)

    Nakajima, T.

    1994-04-01

    We show the possibilities for imaging Jupiter-like planets around nearby bright stars, assuming the availability of stellar coronagraphs coupled with modest adaptive optics mounted on large ground-based telescopes. The adaptive optics sharpens the point-spread function (PSF) of the planet, permits the use of an occulting disk smaller than the seeing disk, reduces the PSF envelope of the bright star, and therefore enhances the contrast between the planet and background. We have generated the PSF of the planet and the PSF envelope of the main star, using Monte Carlo simulations based on the Kolmogorov theory of turbulence. We calculate the signal-to-noise ratio of a model planet as a function of the angular separation based on photon statistics and realistic assumptions on the system performance. We have derived a criterion for optimizing the combination of the degree of adaptive compensation and the telescope diameter. It is found that a stellar coronagraph with modest adaptive optics mounted on a large ground-based telescope will be capable of detecting Jupiter-like planets around nearby bright stars such as alpha Cen, Sirius, and Procyon at wavelengths between 0.7 and 2.2 micrometers. Near-infrared observations are preferred because usable telescopes and isoplanatic angles are larger at infrared wavelengths than optical wavelengths for a given adaptive optics system. We have also found seven other target stars around which planets will be above the detection limit.

  17. Ultrafast Radiation Detection by Modulation of an Optical Probe Beam

    SciTech Connect

    Vernon, S P; Lowry, M E

    2006-02-22

    We describe a new class of radiation sensor that utilizes optical interferometry to measure radiation-induced changes in the optical refractive index of a semiconductor sensor medium. Radiation absorption in the sensor material produces a transient, non-equilibrium, electron-hole pair distribution that locally modifies the complex, optical refractive index of the sensor medium. Changes in the real (imaginary) part of the local refractive index produce a differential phase shift (absorption) of an optical probe used to interrogate the sensor material. In contrast to conventional radiation detectors where signal levels are proportional to the incident energy, signal levels in these optical sensors are proportional to the incident radiation energy flux. This allows for reduction of the sensor form factor with no degradation in detection sensitivity. Furthermore, since the radiation induced, non-equilibrium electron-hole pair distribution is effectively measured ''in place'' there is no requirement to spatially separate and collect the generated charges; consequently, the sensor risetime is of the order of the hot-electron thermalization time {le} 10 fs and the duration of the index perturbation is determined by the carrier recombination time which is of order {approx} 600 fs in, direct-bandgap semiconductors, with a high density of recombination defects; consequently, the optical sensors can be engineered with sub-ps temporal response. A series of detectors were designed, and incorporated into Mach Zehnder and Fabry-Perot interferometer-based detection systems: proof of concept, lower detection sensitivity, Mach-Zehnder detectors were characterized at beamline 6.3 at SSRL; three generations of high sensitivity single element and imaging Fabry-Perot detectors were measured at the LLNL Europa facility. Our results indicate that this technology can be used to provide x-ray detectors and x-ray imaging systems with single x-ray sensitivity and S/N {approx} 30 at x

  18. Periodic optical variability of radio-detected ultracool dwarfs

    SciTech Connect

    Harding, L. K.; Golden, A.; Singh, Navtej; Sheehan, B.; Butler, R. F.; Hallinan, G.; Boyle, R. P.; Zavala, R. T.

    2013-12-20

    A fraction of very low mass stars and brown dwarfs are known to be radio active, in some cases producing periodic pulses. Extensive studies of two such objects have also revealed optical periodic variability, and the nature of this variability remains unclear. Here, we report on multi-epoch optical photometric monitoring of six radio-detected dwarfs, spanning the ∼M8-L3.5 spectral range, conducted to investigate the ubiquity of periodic optical variability in radio-detected ultracool dwarfs. This survey is the most sensitive ground-based study carried out to date in search of periodic optical variability from late-type dwarfs, where we obtained 250 hr of monitoring, delivering photometric precision as low as ∼0.15%. Five of the six targets exhibit clear periodicity, in all cases likely associated with the rotation period of the dwarf, with a marginal detection found for the sixth. Our data points to a likely association between radio and optical periodic variability in late-M/early-L dwarfs, although the underlying physical cause of this correlation remains unclear. In one case, we have multiple epochs of monitoring of the archetype of pulsing radio dwarfs, the M9 TVLM 513–46546, spanning a period of 5 yr, which is sufficiently stable in phase to allow us to establish a period of 1.95958 ± 0.00005 hr. This phase stability may be associated with a large-scale stable magnetic field, further strengthening the correlation between radio activity and periodic optical variability. Finally, we find a tentative spin-orbit alignment of one component of the very low mass binary, LP 349–25.

  19. Automated spoof-detection for fingerprints using optical coherence tomography.

    PubMed

    Darlow, Luke Nicholas; Webb, Leandra; Botha, Natasha

    2016-05-01

    Fingerprint recognition systems are prevalent in high-security applications. As a result, the act of spoofing these systems with artificial fingerprints is of increasing concern. This research presents an automatic means for spoof-detection using optical coherence tomography (OCT). This technology is able to capture a 3D representation of the internal structure of the skin and is thus not limited to a 2D surface scan. The additional information afforded by this representation means that accurate spoof-detection can be achieved. Two features were extracted to detect the presence of (1) an additional thin layer on the surface of the skin and (2) a thicker additional layer or a complete artificial finger. An analysis of these features showed that they are highly separable, resulting in 100% accuracy regarding spoof-detection, with no false rejections of real fingers. This is the first attempt at fully automated spoof-detection using OCT. PMID:27140346

  20. Plastic optical fiber sensor for gastric ph detection

    NASA Astrophysics Data System (ADS)

    Baldini, Francesco; Bracci, Susanna; Cosi, Franco

    1994-02-01

    An optical fiber sensor for gastric pH detection is described, making use of plastic fibers as light carriers and a proper electronic system for both source driving and signal processing. The use of a suitable microprocessor and an internal buffer allows the realization of a portable and reliable device, fed by batteries. The indicators, bromophenol blue (BPB) or thymol blue (TB), are immobilized on controlled pore glass (CPG) fixed at the end of plastic optical fibers following a proprietary process. The realized optrode, satisfying clinical requirements, was tested `in vitro.' A precision of

  1. Distributed fiber optic system for oil pipeline leakage detection

    NASA Astrophysics Data System (ADS)

    Paranjape, R.; Liu, N.; Rumple, C.; Hara, Elmer H.

    2003-02-01

    We present a novel approach for the detection of leakage in oil pipelines using methods of fiber optic distributed sensors, a presence-of-oil based actuator, and Optical Time Domain Reflectometry (OTDR). While the basic concepts of our approach are well understood, the integration of the components into a complete system is a real world engineering design problem. Our focus has been on the development of the actuator design and testing using installed dark fiber. Initial results are promising, however environmental studies into the long term effects of exposure to the environment are still pending.

  2. Jade detection and analysis based on optical coherence tomography images

    NASA Astrophysics Data System (ADS)

    Chang, Shoude; Mao, Youxin; Chang, Guangming; Flueraru, Costel

    2010-06-01

    Optical coherence tomography is a fundamentally new type of optical sensing technology that can perform high-resolution, cross sectional sensing of the internal structure of materials and biological samples. This work briefly describes its capability of exploring and analyzing the internal structures and textures of various jades. With a depth resolution of 4 μm in jade and penetration range of 5 mm in jade, swept-source OCT could be used as a new powerful instrument to generate 3-D volume data of jade, which is important for applications in jade industry and artwork, particularly for jade detection and classification, counterfeit recognition, and guided artistic carving.

  3. Optical detection of magnetic nanoparticles in colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Gimenez, Alejandro J.; Ramirez-Wong, Diana G.; Favela-Camacho, Sarai E.; Sanchez, Isaac C.; Yáñez-Limón, J. M.; Luna-Bárcenas, Gabriel

    2016-03-01

    This study reports the change of light transmittance and light scattering dispersion by colloidal suspensions of magnetic nanoparticles. Optical changes were observed during the application of transversal magnetic fields to magnetic nanoparticles and nanowires at concentrations spanning from 20 μg/mL to 2 ng/mL. Results show that light scattering modulation is a simple, fast and inexpensive method for detection of magnetic nanoparticles at low concentrations. Frequency and time response of the optical modulation strongly depends on the geometry of the particles. In this regard, light transmittance and scattering measurements may prove useful in characterizing the morphology of suspended nanoparticles.

  4. A fibre optic chemical sensor for the detection of cocaine

    NASA Astrophysics Data System (ADS)

    Nguyen, T. Hien; Sun, Tong; Grattan, Kenneth T. V.; Hardwick, S. A.

    2010-09-01

    A fibre-optic chemical sensor for the detection of cocaine has been developed, based on a molecularly imprinted polymer (MIP) containing a fluorescein moiety as the signalling group. The fluorescent MIP was formed and covalently attached to the distal end of an optical fibre. The sensor exhibited an increase in fluorescence intensity in response to cocaine in the concentration range of 0 - 500 μM in aqueous acetonitrile mixtures with good reproducibility over 24 h. Selectivity for cocaine over others drugs has also been demonstrated.

  5. Optical fiber null coupler sensor for damage detection using ultrasonic

    NASA Astrophysics Data System (ADS)

    Xuan, HaiFeng; Liao, Yanbiao; Zhang, Ming; Lai, Shu R.

    2005-02-01

    A novel optical fiber null coupler (OFNC) sensor based on acousto-optic interaction is developed, which can be used in the structure health monitoring of the medical materials. The OFNC sensors can be response to 10MHz supersonic wave, and their signal-to noise ratio are higher then Piezo Ceramic Transducers(PZT). A kind of Perspex with a 1mm hole is employed as the sample, where the OFNC sensor is glued on, and the reflected signal of ultrasonic wave by the hole is detected .

  6. Detecting ionizing radiation with optical fibers down to biomedical doses

    NASA Astrophysics Data System (ADS)

    Avino, S.; D'Avino, V.; Giorgini, A.; Pacelli, R.; Liuzzi, R.; Cella, L.; De Natale, P.; Gagliardi, G.

    2013-10-01

    We report on a passive ionizing radiation sensor based on a fiber-optic resonant cavity interrogated by a high resolution interferometric technique. After irradiation in clinical linear accelerators, we observe significant variations of the fiber thermo-optic coefficient. Exploiting this effect, we demonstrate an ultimate detection limit of 160 mGy with an interaction volume of only 6 × 10-4 mm3. Thanks to its reliability, compactness, and sensitivity at biomedical dose levels, our system lends itself to real applications in radiation therapy procedures as well as in radiation monitoring and protection in medicine, aerospace, and nuclear power plants.

  7. Optical spectroscopy for the detection of ischemic tissue injury

    DOEpatents

    Demos, Stavros; Fitzgerald, Jason; Troppmann, Christoph; Michalopoulou, Andromachi

    2009-09-08

    An optical method and apparatus is utilized to quantify ischemic tissue and/or organ injury. Such a method and apparatus is non-invasive, non-traumatic, portable, and can make measurements in a matter of seconds. Moreover, such a method and apparatus can be realized through optical fiber probes, making it possible to take measurements of target organs deep within a patient's body. Such a technology provides a means of detecting and quantifying tissue injury in its early stages, before it is clinically apparent and before irreversible damage has occurred.

  8. Method and means for detecting optically transmitted signals and establishing optical interference pattern between electrodes

    DOEpatents

    Kostenbauder, A.G.

    1988-06-28

    A photodetector for detecting signal pulses transmitted in an optical carrier signal relies on the generation of electron-hole pairs and the diffusion of the generated electrons and holes to the electrodes on the surface of the semiconductor detector body for generating photovoltaic pulses. The detector utilizes the interference of optical waves for generating an electron-hole grating within the semiconductor body, and, by establishing an electron-hole pair maximum at one electrode and a minimum at the other electrode, a detectable voltaic pulse is generated across the electrode. 4 figs.

  9. Method and means for detecting optically transmitted signals and establishing optical interference pattern between electrodes

    DOEpatents

    Kostenbauder, Adnah G.

    1988-01-01

    A photodetector for detecting signal pulses transmitted in an optical carrier signal relies on the generation of electron-hole pairs and the diffusion of the generated electrons and holes to the electrodes on the surface of the semiconductor detector body for generating photovoltaic pulses. The detector utilizes the interference of optical waves for generating an electron-hole grating within the semiconductor body, and, by establishing an electron-hole pair maximum at one electrode and a minimum at the other electrode, a detectable voltaic pulse is generated across the electrode.

  10. Optical detection of radio waves through a nanomechanical transducer.

    PubMed

    Bagci, T; Simonsen, A; Schmid, S; Villanueva, L G; Zeuthen, E; Appel, J; Taylor, J M; Sørensen, A; Usami, K; Schliesser, A; Polzik, E S

    2014-03-01

    Low-loss transmission and sensitive recovery of weak radio-frequency and microwave signals is a ubiquitous challenge, crucial in radio astronomy, medical imaging, navigation, and classical and quantum communication. Efficient up-conversion of radio-frequency signals to an optical carrier would enable their transmission through optical fibres instead of through copper wires, drastically reducing losses, and would give access to the set of established quantum optical techniques that are routinely used in quantum-limited signal detection. Research in cavity optomechanics has shown that nanomechanical oscillators can couple strongly to either microwave or optical fields. Here we demonstrate a room-temperature optoelectromechanical transducer with both these functionalities, following a recent proposal using a high-quality nanomembrane. A voltage bias of less than 10 V is sufficient to induce strong coupling between the voltage fluctuations in a radio-frequency resonance circuit and the membrane's displacement, which is simultaneously coupled to light reflected off its surface. The radio-frequency signals are detected as an optical phase shift with quantum-limited sensitivity. The corresponding half-wave voltage is in the microvolt range, orders of magnitude less than that of standard optical modulators. The noise of the transducer--beyond the measured 800 pV Hz-1/2 Johnson noise of the resonant circuit--consists of the quantum noise of light and thermal fluctuations of the membrane, dominating the noise floor in potential applications in radio astronomy and nuclear magnetic imaging. Each of these contributions is inferred to be 60 pV Hz-1/2 when balanced by choosing an electromechanical cooperativity of ~150 with an optical power of 1 mW. The noise temperature of the membrane is divided by the cooperativity. For the highest observed cooperativity of 6,800, this leads to a projected noise temperature of 40 mK and a sensitivity limit of 5 pV Hz-1/2. Our approach to

  11. Fiber-optic radiation sensor for detection of tritium

    NASA Astrophysics Data System (ADS)

    Jang, K. W.; Cho, D. H.; Yoo, W. J.; Seo, J. K.; Heo, J. Y.; Park, J.-Y.; Lee, B.

    2011-10-01

    The objective of this study is to develop the radiation sensor, which is composed of a scintillator, an optical fiber bundle and a light measuring device to detect the tritium in real-time. In this study, we have fabricated fiber-optic radiation sensors using inorganic scintillators and plastic optical fiber bundles. Each scintillator interacts with electron or beta ray and generates 455-550 nm wavelength of scintillation photons. An optical fiber bundle is usually made of plastic or glass, which is used to guide the light signal from a scintillating probe to light measuring device. For the purpose of selecting the best scintillator with a high efficiency, fiber-optic sensors manufactured using three kinds of inorganic scintillator such as Gd 2O 2S:Tb, Y 3Al 5O 12:Ce and CsI:Tl, and they are tested with a metal hydride type of tritium source. In addition, the scintillation photons are measured as a function of distance between a fiber-optic sensor and source. Finally, we have measured the amounts of scintillation photon with different activities of tritium source and compared the measured results with those obtained using a surface activity monitor.

  12. A two-level detection algorithm for optical fiber vibration

    NASA Astrophysics Data System (ADS)

    Bi, Fukun; Ren, Xuecong; Qu, Hongquan; Jiang, Ruiqing

    2015-09-01

    Optical fiber vibration is detected by the coherent optical time domain reflection technique. In addition to the vibration signals, the reflected signals include clutters and noises, which lead to a high false alarm rate. The "cell averaging" constant false alarm rate algorithm has a high computing speed, but its detection performance will be declined in nonhomogeneous environments such as multiple targets. The "order statistics" constant false alarm rate algorithm has a distinct advantage in multiple target environments, but it has a lower computing speed. An intelligent two-level detection algorithm is presented based on "cell averaging" constant false alarm rate and "order statistics" constant false alarm rate which work in serial way, and the detection speed of "cell averaging" constant false alarm rate and performance of "order statistics" constant false alarm rate are conserved, respectively. Through the adaptive selection, the "cell averaging" is applied in homogeneous environments, and the two-level detection algorithm is employed in nonhomogeneous environments. Our Monte Carlo simulation results demonstrate that considering different signal noise ratios, the proposed algorithm gives better detection probability than that of "order statistics".

  13. Partially Nondestructive Continuous Detection of Individual Traveling Optical Photons

    NASA Astrophysics Data System (ADS)

    Hosseini, Mahdi; Beck, Kristin M.; Duan, Yiheng; Chen, Wenlan; Vuletić, Vladan

    2016-01-01

    We report the continuous and partially nondestructive measurement of optical photons. For a weak light pulse traveling through a slow-light optical medium (signal), the associated atomic-excitation component is detected by another light beam (probe) with the aid of an optical cavity. We observe strong correlations of gsp (2 )=4.4 (5 ) between the transmitted signal and probe photons. The observed (intrinsic) conditional nondestructive quantum efficiency ranges between 13% and 1% (65% and 5%) for a signal transmission range of 2% to 35%, at a typical time resolution of 2.5 μ s . The maximal observed (intrinsic) device nondestructive quantum efficiency, defined as the product of the conditional nondestructive quantum efficiency and the signal transmission, is 0.5% (2.4%). The normalized cross-correlation function violates the Cauchy-Schwarz inequality, confirming the nonclassical character of the correlations.

  14. Real-time detection of optical transients with RAPTOR

    SciTech Connect

    Borozdin, K. N.; Brumby, Steven P.; Galassi, M. C.; McGowan, K. E.; Starr, D. L.; Vestrand, W. T.; White, R. R.; Wozniak, P. R.; Wren, J.

    2002-01-01

    Fast variability of optical objects is an interesting though poorly explored subject in modern astronomy. Real-time data processing and identification of transient, celestial events in the images is very important, for such study as it allows rapid follow-up with more sensitive instruments, We discuss an approach which we have chosen for the RAPTOR project which is a pioneering close-loop system combining real-time transient detection with rapid follow-up. Our data processing pipeline is able to identify and localize an optical transient within seconds after the observation. We describe the challenges we met, solutions we found and some results obtained in our search for fast optical transients. The software pipeline we have developed for RAPTOR can easily be applied to the data from other experiments.

  15. Improvements in NDIR gas detection within the same optical chamber

    NASA Astrophysics Data System (ADS)

    Martinez-Anton, Juan Carlos; Silva-Lopez, Manuel

    2011-10-01

    Non-dispersive infrared (NDIR) is a well known technique for gas concentration monitoring. Lead salt photoconductors and thermopile detectors are typically used. Together with gas filter correlation (GFC) they are the basis for a reference standard in environmental gas monitoring like carbon monoxide determination and other gas species. To increase gas sensitivity, a multi-pass optical cavity is often used. In this contribution we propose a new optical design that allows for auto-reference multiple gas detection. It basically consists of an array of White's cell multi-pass camera that allows multiple channels with independent lengths inside the same volume. We explore its performance for carbon monoxide detection and based on recent commercial developments in infrared detector and emitter technologies.

  16. Optical detection of parasitic protozoa in sol-gel matrices

    NASA Astrophysics Data System (ADS)

    Livage, Jacques; Barreau, J. Y.; Da Costa, J. M.; Desportes, I.

    1994-10-01

    Whole cell parasitic protozoa have been entrapped within sol-gel porous silica matrices. Stationary phase promastigote cells of Leishmania donovani infantum are mixed with a silica sol before gelation occurs. They remain trapped within the growing oxide network and their cellular organization appears to be well preserved. Moreover protozoa retain their antigenic properties in the porous gel. They are still able to detect parasite specific antibodies in serum samples from infected patients via an enzyme linked immunosorbent assay (ELISA). Antigen- antibody associations occurring in the gel are optically detected via the reactions of a peroxidase conjugate with ortho-phenylenediamine leading to the formation of a yellow coloration. A clear-cut difference in optical density is measured between positive and negative sera. Such an entrapment of antigenic species into porous sol-gel matrices avoids the main problems due to non specific binding and could be advantageously used in diagnostic kits.

  17. Resonant optical transducers for in-situ gas detection

    DOEpatents

    Bond, Tiziana C; Cole, Garrett; Goddard, Lynford

    2016-06-28

    Configurations for in-situ gas detection are provided, and include miniaturized photonic devices, low-optical-loss, guided-wave structures and state-selective adsorption coatings. High quality factor semiconductor resonators have been demonstrated in different configurations, such as micro-disks, micro-rings, micro-toroids, and photonic crystals with the properties of very narrow NIR transmission bands and sensitivity up to 10.sup.-9 (change in complex refractive index). The devices are therefore highly sensitive to changes in optical properties to the device parameters and can be tunable to the absorption of the chemical species of interest. Appropriate coatings applied to the device enhance state-specific molecular detection.

  18. Detection of small-amplitude optical variability in galactic nuclei

    NASA Astrophysics Data System (ADS)

    McNeil, Stephen R.

    2004-10-01

    A new photometry technique is developed for the detection of small-amplitude optical variability in galactic nuclei. This technique utilizes the surface brightness profiles of galaxies and checks for nuclear variations by matching up the bulge profiles (assumed to be constant). With this method optical variability is measured down to two hundredths of a magnitude. The method is tested on the following six galaxies using a B-Johnson and an R- Cousins filter: M51, M101, M81, M94, NGC4395, and NGC3982. These galaxies constitute a sampling of normal, LINER, and Seyfert galaxies. Although normal and LINER galaxies are thought to have no optical variability in their nucleus, our study concludes that most galaxies show some optical variability over the timescales of months and years. A study on deconvolution is also carried out as a possible way to improve the new technique. However, none of the tested algorithms improved the ability to detect small-amplitude nuclear variations down to hundredths of a magnitude.

  19. Optical detection of meteoroidal impacts on the Moon

    PubMed

    Ortiz; Sada; Bellot Rubio LR; Aceituno; Aceituno; Gutierrez; Thiele

    2000-06-22

    Impacts of meteoroids on the Moon should cause detectable optical flashes, but the population of objects that are big enough is very low, and hitherto no unambiguous impact flashes have been recorded. The flux of meteoroids associated with the Leonid meteor shower of 18 November 1999 was predicted to produce observable flashes on the night side of the Moon. Here we report the unambiguous detection of five such impact flashes, three of which were seen simultaneously by other observers. We also observed a possible impact flash on 16 July 1999. All of the flashes were of very brief duration (<0.02 s), as expected for high-speed impacts. PMID:10879526

  20. Automated choroidal neovascularization detection algorithm for optical coherence tomography angiography

    PubMed Central

    Liu, Li; Gao, Simon S.; Bailey, Steven T.; Huang, David; Li, Dengwang; Jia, Yali

    2015-01-01

    Optical coherence tomography angiography has recently been used to visualize choroidal neovascularization (CNV) in participants with age-related macular degeneration. Identification and quantification of CNV area is important clinically for disease assessment. An automated algorithm for CNV area detection is presented in this article. It relies on denoising and a saliency detection model to overcome issues such as projection artifacts and the heterogeneity of CNV. Qualitative and quantitative evaluations were performed on scans of 7 participants. Results from the algorithm agreed well with manual delineation of CNV area. PMID:26417524

  1. Passive optical detection of meteorological parameters in launch vehicle environments.

    PubMed

    Krause, F R; Su, M Y; Klugman, E H

    1970-05-01

    New optical detection systems are being developed which combine conventional passive photometry with advanced data processing and statistical analysis methods. These crossed-beam detection systems can continuously monitor meteorological parameters in rocket or aircraft environments. The outputs from several photometers are analyzed by cross correlation techniques to retrieve the transit times or transit distance of light emitting, absorbing, or scattering particles between the photometer lines of sight. These transit times and distances are then transformed into wind components and turbulence levels for preselected altitudes. A continuous near real time display of these meteorological parameters is also under development. PMID:20076328

  2. Coherent optical ultrasound detection with rare-earth ion dopants.

    PubMed

    Tay, Jian Wei; Ledingham, Patrick M; Longdell, Jevon J

    2010-08-10

    We describe theoretical and experimental demonstration for optical detection of ultrasound using a spectral hole engraved in cryogenically cooled rare-earth ion-doped solids. Our method utilizes the dispersion effects due to the spectral hole to perform phase-to-amplitude modulation conversion. Like previous approaches using spectral holes, it has the advantage of detection with large étendue. The method also has the benefit that high sensitivity can be obtained with moderate absorption contrast for the spectral holes. PMID:20697433

  3. Development of optical automatic positioning and wafer defect detection system

    NASA Astrophysics Data System (ADS)

    Tien, Chuen-Lin; Lai, Qun-Huang; Lin, Chern-Sheng

    2016-02-01

    The data of a wafer with defects can provide engineers with very important information and clues to improve the yield rate and quality in manufacturing. This paper presents a microscope automatic positioning and wafer detection system with human-machine interface based on image processing and fuzzy inference algorithms. In the proposed system, a XY table is used to move the position of each die on 6 inch or 8 inch wafers. Then, a high-resolution CCD and one set of two-axis optical linear encoder are used to accurately measure the position on the wafer. Finally, the developed human-machine interface is used to display the current position of an actual wafer in order to complete automatic positioning, and a wafer map database can be created. In the process of defect detection, CCD is used for image processing, and during preprocessing, it is required to filter noise, acquire the defect characteristics, define the defective template, and then take the characteristic points of the defective template as the reference input for fuzzy inference. A high-accuracy optical automatic positioning and wafer defect detection system is thus constructed. This study focused on automatic detection of spots, scratches, and bruises, and attempted to reduce the time to detect defective die and improve the accuracy of determining the defects of semiconductor devices.

  4. Optical sensors for the detection of trace chloroform.

    PubMed

    Fong, Jonathan K; Pena, Justin K; Xue, Zi-Ling; Alam, Maksudul M; Sampathkumaran, Uma; Goswami, Kisholoy

    2015-02-01

    Optical thin film sensors have been developed to detect chloroform in aqueous and nonaqueous solutions. These sensors utilize a modified Fujiwara reaction, one of the only known methods for detecting halogenated hydrocarbons in the visible spectrum. The modified Fujiwara reagents, 2,2'-dipyridyl and tetra-n-butyl ammonium hydroxide (n-Bu4NOH or TBAH), are encapsulated in an ethyl cellulose (EC) or sol-gel film. Upon exposure of the EC sensor film to HCCl3 in petroleum ether, a colored product is produced within the film, which is analyzed spectroscopically, yielding a detection limit of 0.830 ppm (parts per million v/v or μL/L hereinafter) and a quantification limit of 2.77 ppm. When the chloroform concentration in pentane is ≥5 ppm, the color change of the EC sensor is visible to the naked eye. In aqueous chloroform solution, reaction in the sol-gel sensor film turns the sensor from colorless to dark yellow/brown, also visible to the naked eye, with a detection limit of 500 ppm. This is well below the solubility of chloroform in water (ca. 5,800 ppm). To our knowledge, these are the first optical quality thin film sensors using Fujiwara reactions for halogenated hydrocarbon detection. PMID:25549694

  5. Detection of biological molecules using chemical amplification and optical sensors

    DOEpatents

    Van Antwerp, William Peter; Mastrototaro, John Joseph

    2004-10-12

    Methods are provided for the determination of the concentration of biological levels of polyhydroxylated compounds, particularly glucose. The methods utilize an amplification system that is an analyte transducer immobilized in a polymeric matrix, where the system is implantable and biocompatible. Upon interrogation by an optical system, the amplification system produces a signal capable of detection external to the skin of the patient. Quantitation of the analyte of interest is achieved by measurement of the emitted signal.

  6. Optical detection of the Casimir force between macroscopic objects.

    PubMed

    Petrov, Victor; Petrov, Mikhail; Bryksin, Valeriy; Petter, Juergen; Tschudi, Theo

    2006-11-01

    We report the optical detection of mechanical deformation of a macroscopic object induced by the Casimir force. An adaptive holographic interferometer based on a photorefractive BaTiO3:Co crystal was used to measure periodical nonlinear deformations of a thin pellicle caused by an oscillating Casimir force. A reasonable agreement between the experimental and calculated values of the first and second harmonics of the Casimir force oscillations has been obtained. PMID:17041670

  7. Detection of biological molecules using chemical amplification and optical sensors

    SciTech Connect

    Antwerp, W.P. van; Mastrototaro, J.J.

    2000-01-04

    Methods are provided for the determination of the concentration of biological levels of polyhydroxylated compounds, particularly glucose. The methods utilize an amplification system that is an analyte transducer immobilized in a polymeric matrix, where the system is implantable and biocompatible. Upon interrogation by an optical system, the amplification system produces a signal capable of detection external to the skin of the patient. Quantitation of the analyte of interest is achieved by measurement of the emitted signal.

  8. Detection of biological molecules using chemical amplification and optical sensors

    DOEpatents

    Van Antwerp, William Peter; Mastrototaro, John Joseph

    2000-01-01

    Methods are provided for the determination of the concentration of biological levels of polyhydroxylated compounds, particularly glucose. The methods utilize an amplification system that is an analyte transducer immobilized in a polymeric matrix, where the system is implantable and biocompatible. Upon interrogation by an optical system, the amplification system produces a signal capable of detection external to the skin of the patient. Quantitation of the analyte of interest is achieved by measurement of the emitted signal.

  9. Optical Detection of Preneoplastic Lesions of the Central Airways

    PubMed Central

    van der Leest, C.; Amelink, A.; van Klaveren, R. J.; Hoogsteden, H. C.; Sterenborg, H. J. C. M.; Aerts, J. G. J. V.

    2012-01-01

    Current routine diagnosis of premalignant lesions of the central airways is hampered due to a limited sensitivity (white light bronchoscopy) and resolution (computer tomography (CT), positron emission tomography (PET)) of currently used techniques. To improve the detection of these subtle mucosal abnormalities, novel optical imaging bronchoscopic techniques have been developed over the past decade. In this review we highlight the technological developments in the field of endoscopic imaging, and describe their advantages and disadvantages in clinical use. PMID:22550600

  10. Integrated optic/nanofluidic fluorescent detection device with plasmonic excitation

    NASA Astrophysics Data System (ADS)

    Varsanik, J. S.; Bernstein, J. J.

    2013-09-01

    Integrated optic/microfluidic devices have proven to be useful tools in many sensing applications. However, the resolution and sensitivity of existing devices is limited by the processes and materials chosen for their fabrication. A procedure for the production of a new family of low-noise, high-resolution integrated microfluidic optical detection devices is presented, along with results from a prototype device. The device architecture is presented, highlighting design choices made in fluidics and optical integration to minimize scattered light. Diffused waveguides were fabricated, characterized, and modeled. A plasmonic resonator is designed, simulated, and integrated into the system to achieve electric field enhancement and localization to sub-micron dimensions. The device was tested to demonstrate both field enhancement and localization. The procedure that was developed enables the creation of integrated devices capable of high-resolution detection of fluorescent samples. The interrogation region was 200 nm long in the direction of flow, achieving sub-wavelength resolution in an integrated device. Furthermore, discrete fluorescent particles 20 nm in diameter were individually detected, demonstrating the high resolution and sensitivity capabilities of this family of devices.

  11. Optical Path Switching Based Differential Absorption Radiometry for Substance Detection

    NASA Technical Reports Server (NTRS)

    Sachse, Glen W. (Inventor)

    2000-01-01

    A system and method are provided for detecting one or more substances. An optical path switch divides sample path radiation into a time series of alternating first polarized components and second polarized components. The first polarized components are transmitted along a first optical path and the second polarized components along a second optical path. A first gasless optical filter train filters the first polarized components to isolate at least a first wavelength band thereby generating first filtered radiation. A second gasless optical filter train filters the second polarized components to isolate at least a second wavelength band thereby generating second filtered radiation. The first wavelength band and second wavelength band are unique. Further, spectral absorption of a substance of interest is different at the first wavelength band as compared to the second wavelength band. A beam combiner combines the first and second filtered radiation to form a combined beam of radiation. A detector is disposed to monitor magnitude of at least a portion of the combined beam alternately at the first wavelength band and the second wavelength band as an indication of the concentration of the substance in the sample path.

  12. A Novel Optical Biosensing System Using Mach-Zehnder-Type Optical Waveguide for Influenza Virus Detection.

    PubMed

    Sakamoto, Hiroaki; Minpou, Yuma; Sawai, Takayuki; Enami, Yasufumi; Suye, Shin-Ichiro

    2016-02-01

    In order to minimize the damage from viral epidemics, early detection of the causative agent of a viral epidemic and prevention of its immediate spread are urgent social demands. Therefore, in this study, we evaluated the utility of a Mach-Zehnder-type optical waveguide as a sensing device for influenza virus detection. However, it is impossible to detect a 100-nm-size virus using a sol-gel optical biosensor because sol-gel glass has a pore size of only a few nanometers, which makes it impossible for the virus to diffuse into the silica thin film. In order to construct the influenza-specific Mach-Zehnder optical biosensor for influenza detection, a stable antibody immobilization method with resulting high density on the sol-gel surface is strongly required. In this study, the sol-gel glass surface was modified with amino and carboxyl groups, and an anti-H1N1/HA1 antibody was covalently immobilized using a cross-linking agent. We successfully prepared a carboxyl-modified sol-gel surface, using NHS/EDC as the cross-linker, for antibody immobilization, and confirmed the detection of influenza virus using the antibody-immobilized sol-gel glass. After treatment with a 100 μg/mL influenza virus solution for 15 min, a peak wavelength shift (~24 nm) was observed in the output light spectrum. PMID:26498024

  13. A survey on object detection in optical remote sensing images

    NASA Astrophysics Data System (ADS)

    Cheng, Gong; Han, Junwei

    2016-07-01

    Object detection in optical remote sensing images, being a fundamental but challenging problem in the field of aerial and satellite image analysis, plays an important role for a wide range of applications and is receiving significant attention in recent years. While enormous methods exist, a deep review of the literature concerning generic object detection is still lacking. This paper aims to provide a review of the recent progress in this field. Different from several previously published surveys that focus on a specific object class such as building and road, we concentrate on more generic object categories including, but are not limited to, road, building, tree, vehicle, ship, airport, urban-area. Covering about 270 publications we survey (1) template matching-based object detection methods, (2) knowledge-based object detection methods, (3) object-based image analysis (OBIA)-based object detection methods, (4) machine learning-based object detection methods, and (5) five publicly available datasets and three standard evaluation metrics. We also discuss the challenges of current studies and propose two promising research directions, namely deep learning-based feature representation and weakly supervised learning-based geospatial object detection. It is our hope that this survey will be beneficial for the researchers to have better understanding of this research field.

  14. Comparison of direct and heterodyne detection optical intersatellite communication links

    NASA Technical Reports Server (NTRS)

    Chen, C. C.; Gardner, C. S.

    1987-01-01

    The performance of direct and heterodyne detection optical intersatellite communication links are evaluated and compared. It is shown that the performance of optical links is very sensitive to the pointing and tracking errors at the transmitter and receiver. In the presence of random pointing and tracking errors, optimal antenna gains exist that will minimize the required transmitter power. In addition to limiting the antenna gains, random pointing and tracking errors also impose a power penalty in the link budget. This power penalty is between 1.6 to 3 dB for a direct detection QPPM link, and 3 to 5 dB for a heterodyne QFSK system. For the heterodyne systems, the carrier phase noise presents another major factor of performance degradation that must be considered. In contrast, the loss due to synchronization error is small. The link budgets for direct and heterodyne detection systems are evaluated. It is shown that, for systems with large pointing and tracking errors, the link budget is dominated by the spatial tracking error, and the direct detection system shows a superior performance because it is less sensitive to the spatial tracking error. On the other hand, for systems with small pointing and tracking jitters, the antenna gains are in general limited by the launch cost, and suboptimal antenna gains are often used in practice. In which case, the heterodyne system has a slightly higher power margin because of higher receiver sensitivity.

  15. Flow cytometer using a fiber optic detection system

    NASA Astrophysics Data System (ADS)

    Kanda, Masahiko; Nakata, Motomi; Osoegawa, Misako; Niwa, Shinichirou; Yamashita, Tatsuo; Suzuki, Shingo; Murayama, Koji

    2001-05-01

    A flow cytometer with a new hybrid flow cell has been developed. The hybrid flow cell was constructed closed-type quarts curvets which produces a parabolic profile of flow velocities. It was involved a fiber-optic detecting unit for a high sensitivity collection and had a jet nozzle and a PZT device for droplet formation aimed to cell sorting. A optical fiber that consists of a glass core and have a core diameter of 200 micrometers with NA of 0.5 have been successfully used for the collection of side scatter and fluorescent signals. Two detecting fibers mounted in a hybrid flow cell with pith of 250 micrometers are designed to individually detect fluorescent signals excited by 2 lasers, which are a compact air-cooled AR laser (488 nm: 20 mW) and a semiconductor laser (640 nm: 15 mW). As a result, a sensitivity of our flow cytometer is 300 MESF determined using fluorescein-labeled beads and 2 scatter and 6 fluorescent signals could successfully be detected. Typical patterns of cell cycle were observed with Daudi human Burkitt Lymphoma cell lines stained with PL. Furthermore, the alignment requirements are more simplified because of a hybrid flow cell stably mounted.

  16. Optical Fiber Nanotips Coated with Molecular Beacons for DNA Detection

    PubMed Central

    Giannetti, Ambra; Barucci, Andrea; Cosi, Franco; Pelli, Stefano; Tombelli, Sara; Trono, Cosimo; Baldini, Francesco

    2015-01-01

    Optical fiber sensors, thanks to their compactness, fast response and real-time measurements, have a large impact in the fields of life science research, drug discovery and medical diagnostics. In recent years, advances in nanotechnology have resulted in the development of nanotools, capable of entering the single cell, resulting in new nanobiosensors useful for the detection of biomolecules inside living cells. In this paper, we provide an application of a nanotip coupled with molecular beacons (MBs) for the detection of DNA. The MBs were characterized by hybridization studies with a complementary target to prove their functionality both free in solution and immobilized onto a solid support. The solid support chosen as substrate for the immobilization of the MBs was a 30 nm tapered tip of an optical fiber, fabricated by chemical etching. With this set-up promising results were obtained and a limit of detection (LOD) of 0.57 nM was reached, opening up the possibility of using the proposed nanotip to detect mRNAs inside the cytoplasm of living cells. PMID:25919369

  17. Reusable fiber optic immunofluorosensor for rapid detection of pesticides

    NASA Astrophysics Data System (ADS)

    Anis, Nabil A.; Valdes, James J.; Thompson, Roy G.; Menking, Darrell E.; Wong, Rosie B.; Eldefrawi, Mohyee E.

    1993-05-01

    Quartz fibers coated with acetylcholinesterase (AChE) or antibody (Ab) are used as biosensors utilizing total reflectance fluorescence for the rapid detection of pesticides. The enzyme biosensor was constructed by immobilizing fluorescein isothiocyanate (FITC)-tagged eel electric organ AChE on quartz fibers. The fluorescent signal was generated by hydrolysis of acetylcholine (ACh) that is present in the perfusate. Organophosphate (OP) and carbamate anticholinesterase (AntiChE) insecticides inhibited AChE and reduced the fluorescent quenching resulting from AChE hydrolysis. A parathion biosensor was constructed by immobilizing casein-parathion on the quartz fibers, that bound rabbit antiparathion antibody. The optical signal was generated by perfusing the fibers with fluorescein-labeled goat antirabbit IgG. Free parathion inhibited the binding of antiparathion Abs and reduced the optical signal and provided the basis for detection of parathion. Another immunosensor developed detected the herbicide PursuitR by utilizing the reversible binding of a fluorescein-Pursuit derivative to antiPursuit Abs immobilized on the fiber. Unlabeled Pursuit competed effectively and displaced the bound fluorescent compound in a dose-dependent manner. The sensor discriminated effectively between Pursuit-like and structurally unrelated herbicides. The immunosensor offers the advantage of continuous monitoring, ease of operation, speed of detection, low cost, stability, specificity, matrix transparency, and reusability.

  18. Optically Resonant Nanophotonic Devices for Label-Free Biomolecular Detection

    NASA Astrophysics Data System (ADS)

    Goddard, Julie; Mandal, Sudeep; Erickson, David

    Optical devices, such as surface plasmon resonance chips and waveguide-based Mach-Zehnder interferometers, have long been successfully used as label-free biomolecular sensors. Recently, however, there has been increased interest in developing new approaches to biomolecular detection that can improve on the limit of detection, specificity, and multiplexibility of these early devices and address emerging challenges in pathogen detection, disease diagnosis, and drug discovery. As we describe in this chapter, planar optically resonant nanophotonic devices (such as ring resonators, whispering gallery modes, and photonic crystal cavities) are one method that shows promise in significantly advancing the technology. Here we first provide a short review of these devices focusing on a handful of approaches illustrative of the state of the art. We then frame the major challenge to improving the technology as being the ability to provide simultaneously spatial localization of the electromagnetic energy and biomolecular binding events. We then introduce our “Nanoscale Optofluidic Sensor Arrays” which represents our approach to addressing this challenge. It is demonstrated how these devices serve to enable multiplexed detection while localizing the electromagnetic energy to a volume as small as a cubic wavelength. Challenges involved in the targeted immobilization of biomolecules over such a small area are discussed and our solutions presented. In general, we have tried to write this chapter with the novice in mind, providing details on the fabrication and immobilization methods that we have used and how one might adapt our approach to their designs.

  19. Coherent Detection of High-Rate Optical PPM Signals

    NASA Technical Reports Server (NTRS)

    Vilnrotter, Victor; Fernandez, Michela Munoz

    2006-01-01

    A method of coherent detection of high-rate pulse-position modulation (PPM) on a received laser beam has been conceived as a means of reducing the deleterious effects of noise and atmospheric turbulence in free-space optical communication using focal-plane detector array technologies. In comparison with a receiver based on direct detection of the intensity modulation of a PPM signal, a receiver based on the present method of coherent detection performs well at much higher background levels. In principle, the coherent-detection receiver can exhibit quantum-limited performance despite atmospheric turbulence. The key components of such a receiver include standard receiver optics, a laser that serves as a local oscillator, a focal-plane array of photodetectors, and a signal-processing and data-acquisition assembly needed to sample the focal-plane fields and reconstruct the pulsed signal prior to detection. The received PPM-modulated laser beam and the local-oscillator beam are focused onto the photodetector array, where they are mixed in the detection process. The two lasers are of the same or nearly the same frequency. If the two lasers are of different frequencies, then the coherent detection process is characterized as heterodyne and, using traditional heterodyne-detection terminology, the difference between the two laser frequencies is denoted the intermediate frequency (IF). If the two laser beams are of the same frequency and remain aligned in phase, then the coherent detection process is characterized as homodyne (essentially, heterodyne detection at zero IF). As a result of the inherent squaring operation of each photodetector, the output current includes an IF component that contains the signal modulation. The amplitude of the IF component is proportional to the product of the local-oscillator signal amplitude and the PPM signal amplitude. Hence, by using a sufficiently strong local-oscillator signal, one can make the PPM-modulated IF signal strong enough to

  20. Biomimetic/Optical Sensors for Detecting Bacterial Species

    NASA Technical Reports Server (NTRS)

    Homer, Margie; Ksendzov, Alexander; Yen, Shiao-Pin; Ryan, Margaret; Lazazzera, Beth

    2006-01-01

    Biomimetic/optical sensors have been proposed as means of real-time detection of bacteria in liquid samples through real-time detection of compounds secreted by the bacteria. Bacterial species of interest would be identified through detection of signaling compounds unique to those species. The best-characterized examples of quorum-signaling compounds are acyl-homoserine lactones and peptides. Each compound, secreted by each bacterium of an affected species, serves as a signal to other bacteria of the same species to engage in a collective behavior when the population density of that species reaches a threshold level analogous to a quorum. A sensor according to the proposal would include a specially formulated biomimetic film, made of a molecularly imprinted polymer (MIP), that would respond optically to the signaling compound of interest. The MIP film would be integrated directly onto an opticalwaveguide- based ring resonator for optical readout. Optically, the sensor would resemble the one described in Chemical Sensors Based on Optical Ring Resonators (NPO-40601), NASA Tech Briefs, Vol. 29, No. 10 (October 2005), page 32. MIPs have been used before as molecular- recognition compounds, though not in the manner of the present proposal. Molecular imprinting is an approach to making molecularly selective cavities in a polymer matrix. These cavities function much as enzyme receptor sites: the chemical functionality and shape of a cavity in the polymer matrix cause the cavity to bind to specific molecules. An MIP matrix is made by polymerizing monomers in the presence of the compound of interest (template molecule). The polymer forms around the template. After the polymer solidifies, the template molecules are removed from the polymer matrix by decomplexing them from their binding sites and then dissolving them, leaving cavities that are matched to the template molecules in size, shape, and chemical functionality. The cavities thus become molecular-recognition sites

  1. Integration of waveguides for optical detection in microfabricated analytical devices

    NASA Astrophysics Data System (ADS)

    Kutter, Joerg P.; Mogensen, Klaus B.; Friis, Peter; Jorgensen, Anders M.; Petersen, Nickolaj J.; Telleman, Pieter; Huebner, Joerg

    2000-08-01

    Buried optical channel waveguides integrated with a fluidic channel network on a planar microdevice are presented. The waveguides were fabricated using silica-on-silicon technology with the goal to replace bulk optical elements and facilitate various optical detection techniques for miniaturized total analysis systems or lab-on-a-chip systems. Waveguide structures with core layers doped with germanium were employed for fluorescence measurements, while waveguides with nitrogen- only doped core layers were used for absorbance measurements. By the elimination of germanium oxygen deficiency centers transmission of light down to 210nm was possible, allowing absorance measurements in the mid and far UV region (210 to 280nm), which is the region where a large number of different molecules absorb light. Robust, alignment-free microdevices, which can easily be hooked up to a number of light sources and detectors were used for fluorescence measurements of two dyes, fluorescein and Bodipy, and absorbance measurements of a stres-reducing drug, propranolol. The lowest detected concentrations were 250pM for fluorescein, 100nM for Bodipy and 12(mu) M for propranolol.

  2. Optical flow estimation for flame detection in videos.

    PubMed

    Mueller, Martin; Karasev, Peter; Kolesov, Ivan; Tannenbaum, Allen

    2013-07-01

    Computational vision-based flame detection has drawn significant attention in the past decade with camera surveillance systems becoming ubiquitous. Whereas many discriminating features, such as color, shape, texture, etc., have been employed in the literature, this paper proposes a set of motion features based on motion estimators. The key idea consists of exploiting the difference between the turbulent, fast, fire motion, and the structured, rigid motion of other objects. Since classical optical flow methods do not model the characteristics of fire motion (e.g., non-smoothness of motion, non-constancy of intensity), two optical flow methods are specifically designed for the fire detection task: optimal mass transport models fire with dynamic texture, while a data-driven optical flow scheme models saturated flames. Then, characteristic features related to the flow magnitudes and directions are computed from the flow fields to discriminate between fire and non-fire motion. The proposed features are tested on a large video database to demonstrate their practical usefulness. Moreover, a novel evaluation method is proposed by fire simulations that allow for a controlled environment to analyze parameter influences, such as flame saturation, spatial resolution, frame rate, and random noise. PMID:23613042

  3. Fault analysis and detection in large active optical systems

    NASA Astrophysics Data System (ADS)

    Cox, Charles D.; Furber, Mark E.; Jordan, David C.; Blaszak, David D.

    1995-05-01

    Active optical systems are complex systems that may be expected to operate in hostile environments such as space. The ability of such a system either to tolerate failures of components or to reconfigure to accommodate failed components could significantly increase the useful lifetime of the system. Active optical systems often contain hundreds of actuators and sensor channels but have an inherent redundancy, i.e., more actuators or sensor channels than the minimum needed to achieve the required performance. A failure detection and isolation system can be used to find and accommodate failures. One type of failure is the failure of an actuator. The effect of actuator failure on the ability of a deformable mirror to correct aberrations is analyzed using a finite-element model of the deformable mirror, and a general analytical procedure for determining the effect of actuator failures on system performance is given. The application of model-based failure detection, isolation and identification algorithms to active optical systems is outlined.

  4. Miniature endoscopic optical coherence tomography for calculus detection.

    PubMed

    Kao, Meng-Chun; Lin, Chun-Li; Kung, Che-Yen; Huang, Yi-Fung; Kuo, Wen-Chuan

    2015-08-20

    The effective treatment of periodontitis involves the detection and removal of subgingival dental calculus. However, subgingival calculus is more difficult to detect than supragingival calculus because it is firmly attached to root surfaces within periodontal pockets. To achieve a smooth root surface, clinicians often remove excessive amounts of root structure because of decreased visibility. In addition, enamel pearl, a rare type of ectopic enamel formation on the root surface, can easily be confused with dental calculus in the subgingival environment. In this study, we developed a fiber-probe swept-source optical coherence tomography (SSOCT) technique and combined it with the quantitative measurement of an optical parameter [standard deviation (SD) of the optical coherence tomography (OCT) intensity] to differentiate subgingival calculus from sound enamel, including enamel pearl. Two-dimensional circumferential images were constructed by rotating the miniprobe (0.9 mm diameter) while acquiring image lines, and the adjacent lines in each rotation were stacked to generate a three-dimensional volume. In OCT images, compared to sound enamel and enamel pearls, dental calculus showed significant differences (P<0.001) in SD values. Finally, the receiver operating characteristic curve had a high capacity (area under the curve=0.934) for discriminating between healthy regions (including enamel pearl) and dental calculus. PMID:26368780

  5. Optical Flow Estimation for Flame Detection in Videos

    PubMed Central

    Mueller, Martin; Karasev, Peter; Kolesov, Ivan; Tannenbaum, Allen

    2014-01-01

    Computational vision-based flame detection has drawn significant attention in the past decade with camera surveillance systems becoming ubiquitous. Whereas many discriminating features, such as color, shape, texture, etc., have been employed in the literature, this paper proposes a set of motion features based on motion estimators. The key idea consists of exploiting the difference between the turbulent, fast, fire motion, and the structured, rigid motion of other objects. Since classical optical flow methods do not model the characteristics of fire motion (e.g., non-smoothness of motion, non-constancy of intensity), two optical flow methods are specifically designed for the fire detection task: optimal mass transport models fire with dynamic texture, while a data-driven optical flow scheme models saturated flames. Then, characteristic features related to the flow magnitudes and directions are computed from the flow fields to discriminate between fire and non-fire motion. The proposed features are tested on a large video database to demonstrate their practical usefulness. Moreover, a novel evaluation method is proposed by fire simulations that allow for a controlled environment to analyze parameter influences, such as flame saturation, spatial resolution, frame rate, and random noise. PMID:23613042

  6. Detecting single DNA molecule interactions with optical microcavities (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Vollmer, Frank

    2015-09-01

    Detecting molecules and their interactions lies at the heart of all biosensor devices, which have important applications in health, environmental monitoring and biomedicine. Achieving biosensing capability at the single molecule level is, moreover, a particularly important goal since single molecule biosensors would not only operate at the ultimate detection limit by resolving individual molecular interactions, but they could also monitor biomolecular properties which are otherwise obscured in ensemble measurements. For example, a single molecule biosensor could resolve the fleeting interaction kinetics between a molecule and its receptor, with immediate applications in clinical diagnostics. We have now developed a label-free biosensing platform that is capable of monitoring single DNA molecules and their interaction kinetics[1], hence achieving an unprecedented sensitivity in the optical domain, Figure 1. We resolve the specific contacts between complementary oligonucleotides, thereby detecting DNA strands with less than 2.4 kDa molecular weight. Furthermore we can discern strands with single nucleotide mismatches by monitoring their interaction kinetics. Our device utilizes small glass microspheres as optical transducers[1,2, 3], which are capable of increasing the number of interactions between a light beam and analyte molecules. A prism is used to couple the light beam into the microsphere. Ourr biosensing approach resolves the specific interaction kinetics between single DNA fragments. The optical transducer is assembled in a simple three-step protocol, and consists of a gold nanorod attached to a glass microsphere, where the surface of the nanorod is further modified with oligonucleotide receptors. The interaction kinetics of an oligonucleotide receptor with DNA fragments in the surrounding aqueous solution is monitored at the single molecule level[1]. The light remains confined inside the sphere where it is guided by total internal reflections along a

  7. A Fiber Optic Probe for the Detection of Cataracts

    NASA Technical Reports Server (NTRS)

    Ansari, Rafat R.; Dhadwal, Harbans S.

    1993-01-01

    A compact fiber optic probe developed for on-orbit science experiments was used to detect the onset of cataracts, a capability that could eliminate physicians' guesswork and result in new drugs to 'dissolve' or slow down the cataract formation before surgery is necessary. The probe is based upon dynamic light scattering (DLS) principles. It has no moving parts, no apertures, and requires no optical alignment. It is flexible and easy to use. Results are presented for excised but intact human eye lenses. In a clinical setting, the device can be easily incorporated into a slit-lamp apparatus (ophthalmoscope) for complete eye diagnostics. In this set-up, the integrated fiber optic probe, the size of a pencil, delivers a low power cone of laser light into the eye of a patient and guides the light which is backscattered by the protein molecules of the lens through a receiving optical fiber to a photo detector. The non-invasive DLS measurements provide rapid determination of protein crystalline size and its size distribution in the eye lens.

  8. Research on key problems for LAMOST optical fiber detection system

    NASA Astrophysics Data System (ADS)

    Wang, Mengxin; Chen, Jianjun; Luo, Ali; Chen, Xiaoran

    2014-07-01

    The large sky area multi-object fiber spectroscopic telescope (LAMOST) is an innovative reflecting schmidt telescope, promising a very high spectrum acquiring rate of several ten-thousands of spectra per night. By using the parallel controllable fiber positioning technique, LAMOST makes reconfiguration of fibers accurately according to the positions of objects in minutes and fine adjusting the fibers. During telescope observation period, each optical fiber unit positional accuracy directly determines the quality of subsequent spectrum acqusition, yet for real-time optical fiber positional accuracy, there only exists an internal information feedback which focus on the corresponding stepper motor driving conditions, however, this available information is not comprehensive, it can not offer the actual positional information for each fiber unit. Considering the LAMOST on-site environment, a novel real-time optical fiber positional accuracy detection system which can be integrated in the existing observation and control system need to be developed to solve this problem. During the observation interval, this system can offer a comprehensive and effective information feedback about the focal optical fiber positional accuracy. Based on this feedback, the observation assistants can properly adjust the observation strategies to ensure the effectiveness and accuracy of acquired spectrum. Furthermore, this fiber positional accuracy feedback can provide prior spectral quality information to the spectral processing personnel and optimal the spectrum processing efficiency.

  9. High resolution underwater fiber optic threat detection system

    NASA Astrophysics Data System (ADS)

    Berger, Alexander; Hermesh, Shalmon; Durets, Eugene; Kempen, Lothar U.

    2006-10-01

    Current underwater protection systems are complex expensive devices consisting of multiple electronic sensing elements. The detection and identification of divers and small submerged watercraft requires very high image resolution. The high price of an array of conventional piezoelectric transducers and associated electronic components makes this solution feasible for localized implementations, but the protection of large stretches of coastline requires a different approach. We present a novel multichannel sonar design that augments current active sonar transducers with a passive fiber-optic multichannel acoustic emission sensing array. The system provides continuous monitoring of the acoustic wave reflections emitted by a single projector, yielding information about the size and shape of approaching objects. A novel fiber hydrophone enclosure is utilized to dramatically enhance the sensor response to the sonar frequency, while suppressing out-of-band sound sources and noise. The ability of a fiber hydrophone to respond to acoustic emissions is based on established fiber Bragg grating sensing techniques. In this approach, the energy of an acoustic wave is converted into the modulation of the in-fiber optical transducer's optical properties. The obtained results demonstrate significant response of the designed fiber optic hydrophone to the incident acoustic wave over the frequency domain from 1-80 kHz. Our approach allows selective tuning of the sensor to a particular acoustic frequency, as well as potential extension of the spectral response to 300- 400kHz.2

  10. Optical cloud detection from a disposable airborne sensor

    NASA Astrophysics Data System (ADS)

    Nicoll, Keri; Harrison, R. Giles; Brus, David

    2016-04-01

    In-situ measurement of cloud droplet microphysical properties is most commonly made from manned aircraft platforms due to the size and weight of the instrumentation, which is both costly and typically limited to sampling only a few clouds. This work describes the development of a small, lightweight (<200g), disposable, optical cloud sensor which is designed for use on routine radiosonde balloon flights and also small unmanned aerial vehicle (UAV) platforms. The sensor employs the backscatter principle, using an ultra-bright LED as the illumination source, with a photodiode detector. Scattering of the LED light by cloud droplets generates a small optical signal which is separated from background light fluctuations using a lock-in technique. The signal to noise obtained permits cloud detection using the scattered LED light, even in daytime. During recent field tests in Pallas, Finland, the retrieved optical sensor signal has been compared with the DMT Cloud and Aerosol Spectrometer (CAS) which measures cloud droplets in the size range from 0.5 to 50 microns. Both sensors were installed at the hill top observatory of Sammaltunturi during a field campaign in October and November 2015, which experienced long periods of immersion inside cloud. Preliminary analysis shows very good agreement between the CAPS and the disposable cloud sensor for cloud droplets >5micron effective diameter. Such data and calibration of the sensor will be discussed here, as will simultaneous balloon launches of the optical cloud sensor through the same cloud layers.

  11. Extended linear detection range for optical tweezers using image-plane detection scheme

    NASA Astrophysics Data System (ADS)

    Hajizadeh, Faegheh; Masoumeh Mousavi, S.; Khaksar, Zeinab S.; Reihani, S. Nader S.

    2014-10-01

    Ability to measure pico- and femto-Newton range forces using optical tweezers (OT) strongly relies on the sensitivity of its detection system. We show that the commonly used back-focal-plane detection method provides a linear response range which is shorter than that of the restoring force of OT for large beads. This limits measurable force range of OT. We show, both theoretically and experimentally, that utilizing a second laser beam for tracking could solve the problem. We also propose a new detection scheme in which the quadrant photodiode is positioned at the plane optically conjugate to the object plane (image plane). This method solves the problem without need for a second laser beam for the bead sizes that are commonly used in force spectroscopy applications of OT, such as biopolymer stretching.

  12. Spatially resolved detection of complex ferromagnetic dynamics using optically detected nitrogen-vacancy spins

    NASA Astrophysics Data System (ADS)

    Wolfe, C. S.; Manuilov, S. A.; Purser, C. M.; Teeling-Smith, R.; Dubs, C.; Hammel, P. C.; Bhallamudi, V. P.

    2016-06-01

    We demonstrate optical detection of a broad spectrum of ferromagnetic excitations using nitrogen-vacancy (NV) centers in an ensemble of nanodiamonds. Our recently developed approach exploits a straightforward CW detection scheme using readily available diamond detectors, making it easily implementable. The NV center is a local detector, giving the technique spatial resolution, which here is defined by our laser spot, but in principle can be extended far into the nanoscale. Among the excitations, we observe the propagating dipolar and dipolar-exchange spinwaves, as well as dynamics associated with the multi-domain state of the ferromagnet at low fields. These results offer an approach, distinct from commonly used optically detected magnetic resonance techniques, for spatially resolved spectroscopic study of magnetization dynamics at the nanoscale.

  13. Generation and detection of atomic spin entanglement in optical lattices

    NASA Astrophysics Data System (ADS)

    Dai, Han-Ning; Yang, Bing; Reingruber, Andreas; Xu, Xiao-Fan; Jiang, Xiao; Chen, Yu-Ao; Yuan, Zhen-Sheng; Pan, Jian-Wei

    2016-08-01

    Ultracold atoms in optical lattices hold promise for the creation of entangled states for quantum technologies. Here we report on the generation, manipulation and detection of atomic spin entanglement in an optical superlattice. Using a spin-dependent superlattice, atomic spins in the left or right sites can be individually addressed and coherently manipulated with near-unity fidelities by microwave pulses. The spin entanglement of the two atoms in the double wells of the superlattice is generated via the dynamical evolution governed by spin superexchange. By monitoring the collisional atom loss with in situ absorption imaging we measure the spin correlations of the atoms inside the double wells and obtain a lower bound on the entanglement fidelity of 0.79 +/- 0.06, and a violation of a Bell's inequality S = 2.21 +/- 0.08.

  14. Optical detection of blade flutter. [in YF-100 turbofan engine

    NASA Technical Reports Server (NTRS)

    Nieberding, W. C.; Pollack, J. L.

    1977-01-01

    The paper examines the capabilities of photoelectric scanning (PES) and stroboscopic imagery (SI) as optical monitoring tools for detection of the onset of flutter in the fan blades of an aircraft gas turbine engine. Both optical techniques give visual data in real time as well as video-tape records. PES is shown to be an ideal flutter monitor, since a single cathode ray tube displays the behavior of all the blades in a stage simultaneously. Operation of the SI system continuously while searching for a flutter condition imposes severe demands on the flash tube and affects its reliability, thus limiting its use as a flutter monitor. A better method of operation is to search for flutter with the PES and limit the use of SI to those times when the PES indicates interesting blade activity.

  15. Detection of defects in optics based on scanning

    NASA Astrophysics Data System (ADS)

    Zhou, Bin; Bai, Jian; Liang, Yiyong; Wang, Kaiwei; Lu, Qianbo; Zhang, Sai

    2015-08-01

    In this paper, a method to detect internal pocks and bubbles of optical elements based on laser line source scanning is proposed. In dark field environment, a laser line source is used to illuminate from one side of the glass under test, a high-resolution CCD camera is used to take pictures in front of the glass sample. Images which contain information of defects are acquired through rough scanning and accurate scanning. Accurate three-dimensional coordinates of the internal defects are acquired after image processing, which descript the characteristic information of internal defects quantificationally. Compared with the microscope imaging measurement, this proposed detection of defects in optics based on laser line source scanning has a relative aberration smaller than 2%. In addition, the detection time is approximately reduced to 20 minutes from 1 hour dramatically. The analysis indicates that the error of the position of defects is much smaller than the size of them, which means the position of the defects can be acquired accurately by this approach.

  16. Optical solid-state detection of organophosphates using organophosphorus hydrolase.

    PubMed

    White, Brandy J; Harmon, H James

    2005-04-15

    We have developed a sensor surface for optical detection of organophosphates based on reversible inhibition of organophosphorus hydrolase (OPH) by copper complexed meso-tri(4-sulfonato phenyl) mono(4-carboxy phenyl) porphyrin (CuC1TPP). OPH immobilized onto glass microscope slides retains catalytic activity for more than 232 days. CuC1TPP is a reversible, competitive inhibitor of OPH, binding at the active site of the immobilized enzyme. The absorbance spectrum of the porphyrin-enzyme complex is measured via planar waveguide evanescent wave absorbance spectroscopy using a blue LED as a light source and an Ocean Optics USB2000 as the spectrophotometer. The characteristics of the absorbance spectrum of CuC1TPP are specific and different when the porphyrin is bound to the enzyme or is bound non-specifically to the surface of the slide. Addition of a substrate of OPH such as one of the organophosphates paraoxon, coumaphos, diazinon, or malathion displaces the porphyrin from the enzyme resulting in reduced absorbance intensity at 412 nm. Absorbance changes at 412 nm show log-linear dependence on substrate concentration. Paraoxon concentrations between 7 parts per trillion (ppt) and 14 parts per million (ppm) were investigated and a 3:1 S/N detection limit of 7 ppt was determined. Concentrations of 700 ppt to 40 ppm were investigated for diazinon, malathion, and coumaphos with detection limits of 800 ppt, 1 part per billion, and 250 ppt, respectively. This optical technique does not require the addition of reagents or solutions other than the sample and absorbance spectra can be collected in less than 6 s. PMID:15741066

  17. Optical biosensors for bacteria detection by a peptidomimetic antimicrobial compound.

    PubMed

    Tenenbaum, Elena; Segal, Ester

    2015-11-21

    In this work we present a label-free optical biosensor for rapid bacteria detection using a novel peptide-mimetic compound, as the recognition element. The biosensor design is based on an oxidized porous silicon (PSiO2) nanostructure used as the optical transducer, functionalized with the sequence K-[C12K]7 (referred to as K-7α12), which is a synthetic antimicrobial peptide. This compound is a member of a family of oligomers of acylated lysines (OAKs), mimicking the hydrophobicity and charge of natural antimicrobial peptides. The OAK is tethered to the PSiO2 film and the changes in the reflectivity spectrum are monitored upon exposure to Escherichia coli (E. coli) bacterial suspensions and their lysates. We show that capture of bacterial cell fragments induces predictable changes in the reflectivity spectrum, proportional to E. coli concentrations, thereby enabling rapid, sensitive and reproducible detection of E. coli at concentrations as low as 10(3) cells per mL. While for intact bacterial cells, the K-7α12-tethered PSiO2 shows a poor capturing ability, resulting in an insignificant optical response. The biosensor performance is also studied upon exposure to model Gram positive and negative bacterial lysates, suggesting preferential capture of E. coli cell fragments in the presented scheme. These OAK-based biosensors offer significant advantages in comparison with conventional antibody-based assays, in terms of their simple and cost-effective production, while providing numerous possible sequence combinations for designing new detection schemes. PMID:26456237

  18. Dental caries detection by optical spectroscopy: a polarized Raman approach with fibre-optic coupling

    NASA Astrophysics Data System (ADS)

    Ko, A. C.-T.; Choo-Smith, L.-P.; Werner, J.; Hewko, M.; Sowa, M. G.; Dong, C.; Cleghorn, B.

    2006-09-01

    Incipient dental caries lesions appear as white spots on the tooth surface; however, accurate detection of early approximal lesions is difficult due to limited sensitivity of dental radiography and other traditional diagnostic tools. A new fibre-optic coupled spectroscopic method based on polarized Raman spectroscopy (P-RS) with near-IR laser excitation is introduced which provides contrast for detecting and characterizing incipient caries. Changes in polarized Raman spectra are observed in PO 4 3- vibrations arising from hydroxyapatite of mineralized tooth tissue. Demineralization-induced morphological/orientational alteration of enamel crystallites is believed to be responsible for the reduction of Raman polarization anisotropy observed in the polarized Raman spectra of caries lesions. Supporting evidence obtained by polarized Raman spectral imaging is presented. A specially designed fibre-optic coupled setup for simultaneous measurement of parallel- and cross-polarized tooth Raman spectra is demonstrated in this study.

  19. Spectral domain optical coherence tomography with dual-balanced detection

    NASA Astrophysics Data System (ADS)

    Bo, En; Liu, Xinyu; Chen, Si; Luo, Yuemei; Wang, Nanshuo; Wang, Xianghong; Liu, Linbo

    2016-03-01

    We developed a spectral domain optical coherence tomography (SD-OCT) system employing dual-balanced detection (DBD) for direct current term suppression and SNR enhancement, especially for auto-autocorrelation artifacts reduction. The DBD was achieved by using a beam splitter to building a free-space Michelson interferometer, which generated two interferometric spectra with a phase difference of π. These two phase-opposed spectra were guided to the spectrometer through two single mode fibers of the 8 fiber v-groove array and acquired by ultizing the upper two lines of a three-line CCD camera. We rotated this fiber v-groove array by 1.35 degrees to focus two spectra onto the first and second line of the CCD camera. Two spectra were aligned by optimum spectrum matching algorithm. By subtracting one spectrum from the other, this dual-balanced detection system achieved a direct current term suppression of ~30 dB, SNR enhancement of ~3 dB, and auto-autocorrelation artifacts reduction of ~10 dB experimentally. Finally we respectively validated the feasibility and performance of dual-balanced detection by imaging a glass plate and swine corneal tissue ex vivo. The quality of images obtained using dual-balanced detection was significantly improved with regard to the conventional single-detection (SD) images.

  20. A Method of Detecting Fire Smoke by Using Optical Flow

    NASA Astrophysics Data System (ADS)

    Terada, Kenji; Miyahara, Hiroyuki; Nii, Yasutoshi

    In this paper, the authors propose a method for detecting fire smoke by using the optical flow. This method is not influenced against the image obtainment environment. About 60,000 fires have occurred every year in Japan. To be most important to the fires is an early period fire fighting. At present, the automatic devices of detectiong fires is needed. The alarms which can detect smoke and heat are utilized to house fires. However, these alarms are not useful for the outside of house such as the incendiary or woodland fire. This method is able to detect such a flame that becomes a fire is the early period. First, the region of the flame in the images obtained from the observation camera is detected. Next, the characteristic quantity that expresses the smoke is extracted. This characteristic is not influenced to the motion such as the cloud, leaf and moving objects. In other words, the only smoke can be detected, from the range which looks like the flame in the image.

  1. Magneto-optical contrast in liquid-state optically detected NMR spectroscopy.

    PubMed

    Pagliero, Daniela; Meriles, Carlos A

    2011-12-01

    We use optical Faraday rotation (OFR) to probe nuclear spins in real time at high-magnetic field in a range of diamagnetic sample fluids. Comparison of OFR-detected NMR spectra reveals a correlation between the relative signal amplitude and the fluid Verdet constant, which we interpret as a manifestation of the variable detuning between the probe beam and the sample optical transitions. The analysis of chemical-shift-resolved, optically detected spectra allows us to set constraints on the relative amplitudes of hyperfine coupling constants, both for protons at chemically distinct sites and other lower-gyromagnetic-ratio nuclei including carbon, fluorine, and phosphorous. By considering a model binary mixture we observe a complex dependence of the optical response on the relative concentration, suggesting that the present approach is sensitive to the solvent-solute dynamics in ways complementary to those known in inductive NMR. Extension of these experiments may find application in solvent suppression protocols, sensitivity-enhanced NMR of metalloproteins in solution, the investigation of solvent-solute interactions, or the characterization of molecular orbitals in diamagnetic systems. PMID:22100736

  2. Optical beat interference noise reduction in OFDMA optical access link using self-homodyne balanced detection

    NASA Astrophysics Data System (ADS)

    Jung, Sang-Min; Won, Yong-Yuk; Han, Sang-Kook

    2013-12-01

    A Novel technique for reducing the OBI noise in optical OFDMA-PON uplink is presented. OFDMA is a multipleaccess/ multiplexing scheme that can provide multiplexing operation of user data streams onto the downlink sub-channels and uplink multiple access by means of dividing OFDM subcarriers as sub-channels. The main issue of high-speed, single-wavelength upstream OFDMA-PON arises from optical beating interference noise. Because the sub-channels are allocated dynamically to multiple access users over same nominal wavelength, it generates the optical beating interference among upstream signals. In this paper, we proposed a novel scheme using self-homodyne balanced detection in the optical line terminal (OLT) to reduce OBI noise which is generated in the uplink transmission of OFDMA-PON system. When multiple OFDMA sub-channels over the same nominal wavelength are received at the same time in the proposed architecture, OBI noises can be removed using balanced detection. Using discrete multitone modulation (DMT) to generate real valued OFDM signals, the proposed technique is verified through experimental demonstration.

  3. Dual collection mode optical microscope with single-pixel detection

    NASA Astrophysics Data System (ADS)

    Rodríguez, A. D.; Clemente, P.; Fernández-Alonso, Mercedes; Tajahuerce, E.; Lancis, J.

    2015-07-01

    In this work we have developed a single-pixel optical microscope that provides both re ection and transmission images of the sample under test by attaching a diamond pixel layout DMD to a commercial inverted microscope. Our system performs simultaneous measurements of re ection and transmission modes. Besides, in contrast with a conventional system, in our single-element detection system both images belong, unequivocally, to the same plane of the sample. Furthermore, we have designed an algorithm to modify the shape of the projected patterns that improves the resolution and prevents the artifacts produced by the diamond pixel architecture.

  4. Depth resolved detection of lipid using spectroscopic optical coherence tomography

    PubMed Central

    Fleming, Christine P.; Eckert, Jocelyn; Halpern, Elkan F.; Gardecki, Joseph A.; Tearney, Guillermo J.

    2013-01-01

    Optical frequency domain imaging (OFDI) can identify key components related to plaque vulnerability but can suffer from artifacts that could prevent accurate identification of lipid rich regions. In this paper, we present a model of depth resolved spectral analysis of OFDI data for improved detection of lipid. A quadratic Discriminant analysis model was developed based on phantom compositions known chemical mixtures and applied to a tissue phantom of a lipid-rich plaque. We demonstrate that a combined spectral and attenuation model can be used to predict the presence of lipid in OFDI images. PMID:24009991

  5. Optical frequency standards for gravitational wave detection using satellite velocimetry

    NASA Astrophysics Data System (ADS)

    Vutha, Amar

    2015-04-01

    Satellite Doppler velocimetry, building on the work of Kaufmann and Estabrook and Wahlquist, is a complementary technique to interferometric methods of gravitational wave detection. This method is based on the fact that the gravitational wave amplitude appears in the apparent Doppler shift of photons propagating from an emitter to a receiver. This apparent Doppler shift can be resolved provided that a frequency standard, capable of quickly averaging down to a high stability, is available. We present a design for a space-capable optical atomic frequency standard, and analyze the sensitivity of satellite Doppler velocimetry for gravitational wave astronomy in the milli-hertz frequency band.

  6. Fiber Optic Thermographic Detection of Flaws in Composites

    NASA Technical Reports Server (NTRS)

    Wu, Meng-Chou; Winfree, William P.

    2009-01-01

    Optical fibers with multiple Bragg gratings bonded to surfaces of structures were used for thermographic detection of subsurface defects in structures. The investigated structures included a 10-ply composite specimen with subsurface delaminations of various sizes and depths. Both during and following the application of a thermal heat flux to the surface, the individual Bragg grating sensors measured the temporal and spatial temperature variations. The obtained data were analyzed with thermal modeling to reveal particular characteristics of the interested areas. These results were found to be consistent with the simulation results.

  7. Detection of biological molecules using chemical amplification and optical sensors

    DOEpatents

    Van Antwerp, William Peter; Mastrototaro, John Joseph

    2001-01-01

    Methods are provided for the determination of the concentration of biological levels of polyhydroxylated compounds, particularly glucose. The methods utilize an amplification system that is an analyte transducer immobilized in a polymeric matrix, where the system is implantable and biocompatible. Upon interrogation by an optical system, the amplification system produces a signal capable of detection external to the skin of the patient. Quantitation of the analyte of interest is achieved by measurement of the emitted signal. Specifically, the analyte transducer immobilized in a polymeric matrix can be a boronic acid moiety.

  8. Detecting single DNA molecule interactions with optical microcavities (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Vollmer, Frank

    2015-09-01

    Detecting molecules and their interactions lies at the heart of all biosensor devices, which have important applications in health, environmental monitoring and biomedicine. Achieving biosensing capability at the single molecule level is, moreover, a particularly important goal since single molecule biosensors would not only operate at the ultimate detection limit by resolving individual molecular interactions, but they could also monitor biomolecular properties which are otherwise obscured in ensemble measurements. For example, a single molecule biosensor could resolve the fleeting interaction kinetics between a molecule and its receptor, with immediate applications in clinical diagnostics. We have now developed a label-free biosensing platform that is capable of monitoring single DNA molecules and their interaction kinetics[1], hence achieving an unprecedented sensitivity in the optical domain, Figure 1. We resolve the specific contacts between complementary oligonucleotides, thereby detecting DNA strands with less than 2.4 kDa molecular weight. Furthermore we can discern strands with single nucleotide mismatches by monitoring their interaction kinetics. Our device utilizes small glass microspheres as optical transducers[1,2, 3], which are capable of increasing the number of interactions between a light beam and analyte molecules. A prism is used to couple the light beam into the microsphere. Ourr biosensing approach resolves the specific interaction kinetics between single DNA fragments. The optical transducer is assembled in a simple three-step protocol, and consists of a gold nanorod attached to a glass microsphere, where the surface of the nanorod is further modified with oligonucleotide receptors. The interaction kinetics of an oligonucleotide receptor with DNA fragments in the surrounding aqueous solution is monitored at the single molecule level[1]. The light remains confined inside the sphere where it is guided by total internal reflections along a

  9. Amylin Detection with a Miniature Optical-Fiber Based Sensor

    NASA Astrophysics Data System (ADS)

    Liu, Zhaowen; Ann, Matsko; Hughes, Adam; Reeves, Mark

    We present results of a biosensor based on shifts in the localized surface plasmon resonance of gold nanoparticles self-assembled on the end of an optical fiber. This system allows for detection of protein expression in low sensing volumes and for scanning in cell cultures and tissue samples. Positive and negative controls were done using biotin/avidin and the BSA/Anti-BSA system. These demonstrate that detection is specific and sensitive to nanomolar levels. Sensing of amylin, an important protein for pancreatic function, was performed with polyclonal and monoclonal antibodies. The measured data demonstrates the difference in sensitivity to the two types of antibodies, and titration experiments establish the sensitivity of the sensor. Further experiments demonstrate that the sensor can be regenerated and then reused.

  10. Optical leak detection of oxygen using IR-laser diodes

    NASA Technical Reports Server (NTRS)

    Disimile, P. J.; Fox, C.; Toy, N.

    1991-01-01

    The ability to accurately measure the concentration of gaseous oxygen and its corresponding flow rate is becoming of greater importance. The technique being presented is based on the principal of light attenuation due to the absorption of radiation by the A-band of oxygen which is located in the 759-770 nm wavelength range. With an ability to measure the change in the light transmission to 0.05 percent, a sensitive optical leak detection system which has a rapid time response is possible. In this research program, the application of laser diode technology and its ability to be temperature tuned to a selected oxygen absorption spectral peak has allowed oxygen concentrations as low as 16,000 ppm to be detected.

  11. Detection of tunnel excavation using fiber optic reflectometry: experimental validation

    NASA Astrophysics Data System (ADS)

    Linker, Raphael; Klar, Assaf

    2013-06-01

    Cross-border smuggling tunnels enable unmonitored movement of people and goods, and pose a severe threat to homeland security. In recent years, we have been working on the development of a system based on fiber- optic Brillouin time domain reflectometry (BOTDR) for detecting tunnel excavation. In two previous SPIE publications we have reported the initial development of the system as well as its validation using small-scale experiments. This paper reports, for the first time, results of full-scale experiments and discusses the system performance. The results confirm that distributed measurement of strain profiles in fiber cables buried at shallow depth enable detection of tunnel excavation, and by proper data processing, these measurements enable precise localization of the tunnel, as well as reasonable estimation of its depth.

  12. Detecting high-frequency gravitational waves with optically levitated sensors.

    PubMed

    Arvanitaki, Asimina; Geraci, Andrew A

    2013-02-15

    We propose a tunable resonant sensor to detect gravitational waves in the frequency range of 50-300 kHz using optically trapped and cooled dielectric microspheres or microdisks. The technique we describe can exceed the sensitivity of laser-based gravitational wave observatories in this frequency range, using an instrument of only a few percent of their size. Such a device extends the search volume for gravitational wave sources above 100 kHz by 1 to 3 orders of magnitude, and could detect monochromatic gravitational radiation from the annihilation of QCD axions in the cloud they form around stellar mass black holes within our galaxy due to the superradiance effect. PMID:25166367

  13. A remote fiber optic dosimeter network for detecting hydrazine vapor

    SciTech Connect

    Klimcak, C.; Radhakrishnan, G.; Jaduszliwer, B.

    1995-12-31

    A fiber optic chemical dosimeter has been developed for use in the remote detection of vapors of toxic amine rocket fuels (hydrazine and its substituted derivatives) that are used as Air Force and civilian launch sites. The dosimeter employs a colorimetric indicating reagent immobilized in a porous sol-gel cladding on multimode fiber. This reagent reacts selectively with the fuel vapor to produce a strongly absorbing cladding that introduces light propagation losses in the fiber; these losses indicate the presence of hydrazine (N{sub 2}H{sub 4}) vapor. The absorption occurs over a broad spectral range ideally suited for interrogation by semiconductor diode lasers. The authors have shown that the dosimeter yields an average hydrazine detectivity of 2.3 exposures of the dosimeter to laboratory air have not adversely affected the dosimeter. Additionally, its response to ammonia vapor has been determined to be 9,200 times smaller than its response to hydrazine vapor.

  14. A porous silicon optical microcavity for sensitive bacteria detection

    NASA Astrophysics Data System (ADS)

    Li, Sha; Huang, Jianfeng; Cai, Lintao

    2011-10-01

    A porous silicon microcavity (PSM) is highly sensitive to subtle interface changes due to its high surface area, capillary condensation ability and a narrow resonance peak (~10 nm). Based on the well-defined optical properties of a PSM, we successfully fabricated a bacteria detection chip for molecular or subcellular analysis by surface modification using undecylenic acid (UA), and the specific recognition binding of vancomycin to the D-alanyl-D-alanine of bacteria. The red shift of the PSM resonance peak showed a good linear relationship with bacteria concentration ranging from 100 to 1000 bacteria ml - 1 at the level of relative standard deviation of 0.994 and detection limit of 20 bacteria ml - 1. The resulting PSM sensors demonstrated high sensitivity, good reproducibility, fast response and low cost for biosensing.

  15. UV LED fiber optic detection System for DNA and protein

    NASA Astrophysics Data System (ADS)

    Belz, Mathias; Klein, Felix A.; Habhegger, Heidi

    2007-02-01

    Concentrations of DNA and proteins are traditionally detected at 260/280nm using laboratory spectrophotometers. Recently, AlGaN/GaN ultraviolet Light Emitting Diodes (LED) became available in the 250 nm to 350 nm wavelength region. An inexpensive fiber optic detection system based on these UV LEDs and photodiodes has been developed. It allows concentration measurements of such popular biochemistry samples. Measurement stability and noise will be discussed. The performance of the system in comparison to a standard spectrophotometer will be evaluated. In particular, the effect of decreasing the spectral resolution from usually used 2-3 nm to 10-20 nm Full Width Half Maximum (FWHM) is simulated and experimentally confirmed.

  16. Ultrasensitive detection of mode splitting in active optical microcavities

    SciTech Connect

    He, Lina; Oezdemir, Sahin Kaya; Zhu Jiangang; Yang Lan

    2010-11-15

    Scattering-induced mode splitting in active microcavities is demonstrated. Below the lasing threshold, quality factor enhancement by optical gain allows resolving, in the wavelength-scanning transmission spectrum, of resonance dips of the split modes which otherwise would not be detected in a passive resonator. In the lasing regime, mode splitting manifests itself as two lasing modes with extremely narrow linewidths. Mixing these lasing modes in a detector leads to a heterodyne beat signal whose frequency corresponds to the mode-splitting amount. Lasing regime not only allows ultra-high sensitivity for mode-splitting measurements but also provides an easily accessible scheme by eliminating the need for wavelength scanning around resonant modes. Mode splitting in active microcavities has an immediate impact in enhancing the sensitivity of subwavelength scatterer detection and in studying light-matter interactions in a strong-coupling regime.

  17. Detection alternatives for pulse position modulation (PPM) optical communication

    NASA Astrophysics Data System (ADS)

    Mecherle, G. Stephen

    1986-01-01

    An analysis is conducted for alternative optical communication detection strategies employing pulse position modulation (PPM). In cases without error correcting codes, the M-ary maximum count strategy is noted to furnish the best performance on the basis of its maximum a posteriori character. In cases with error correcting codes, the decoder has the additional option of hard or soft decisioning and each of the unencoded detection schemes can interface directly with a hard decision decoder. Illustrative hard decision coding gains are evaluated for M-ary Reed-Solomon and binary BCH codes with an APD receiver. The performance of rate-1/2 Reed-Solomon codes is compared for Delta-max and threshold soft decision strategies with an APD receiver.

  18. TiO2 optical sensor for amino acid detection

    NASA Astrophysics Data System (ADS)

    Tereshchenko, Alla; Viter, Roman; Konup, Igor; Ivanitsa, Volodymyr; Geveliuk, Sergey; Ishkov, Yuriy; Smyntyna, Valentyn

    2013-11-01

    A novel optical sensor based on TiO2 nanoparticles for Valine detection has been developed. In the presented work, commercial TiO2 nanoparticles (Sigma Aldrich, particle size 32 nm) were used as sensor templates. The sensitive layer was formed by a porphyrin coating on a TiO2 nanostructured surface. As a result, an amorphous layer between the TiO2 nanostructure and porphyrin was formed. Photoluminescence (PL) spectra were measured in the range of 370-900 nm before and after porphyrin application. Porphyrin adsorption led to a decrease of the main TiO2 peak at 510 nm and the emergence of an additional peak of high intensity at 700 nm. Absorption spectra (optical density vs. wavelenght, measured from 300 to 1100 nm) showed IR shift Sorret band of prophiryn after deposition on metal oxide. Adsorption of amino acid quenched PL emission, related to porphyrin and increased the intensity of the TiO2 emission. The interaction between the sensor surface and the amino acid leads to the formation of new complexes on the surface and results in a reduction of the optical activity of porphyrin. Sensitivity of the sensor to different concentrations of Valine was calculated. The developed sensor can determine the concentration of Valine in the range of 0.04 to 0.16 mg/ml.

  19. Optical Cluster Detection in the Post-SDSS Era

    NASA Astrophysics Data System (ADS)

    Koester, Benjamin

    2011-01-01

    Near the conclusion of the first Sloan Digital Sky Survey, the development of optical cluster detection algorithms, quantification of their selection functions, and mass and redshift calibration hit full swing. Catalogs typically include thousands of massive (>1x1014 Msun) clusters reaching z 0.5, with selection functions that are routinely calibrated with realistic mock galaxy simulations, and cluster mass proxies that are cross-calibrated against X-ray, weak-lensing, dynamical, and SZ observations. All of this is folded into analyses that offer cosmological constraints competitive with catalogs created at other wavelengths. In this talk, these developments are reviewed from the perspective of the MaxBCG cluster catalog. The lessons learned from optical cluster-finding efforts are then turned to the next generation of optical/NIR surveys soon to come online, using the Dark Energy Survey (DES) as an example. In DES, this past experience guides the coordination of vast resources that will culminate in well-understood cluster catalogs specifically tailored to cosmological applications reaching z 1.

  20. Breast cancer detection using phase contrast diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Liang, Xiaoping; Zhang, Qizhi; Li, Changqing; Grobmyer, Stephen R.; Fajardo, Laurie L.; Jiang, Huabei

    2007-02-01

    In this report, a phase-contrast diffuse optical tomography system, which can measure the refractive indices of human breast masses in vivo, is described. To investigate the utility of phase-contrast diffuse optical tomography (PCDOT) for differentiation of malignant and benign breast masses in humans, and to compare PCDOT with conventional diffuse optical tomography (DOT) for analysis of breast masses in humans. 35 breast masses were imaged in 33 patients (mean age = 51 years; range 22-80 years) using PCDOT. Images characterizing the tissue refractive index, absorption and scattering of breast masses were obtained with a finite element-based reconstruction algorithm. The accuracies of absorption and scattering images were compared with images of refractive index in light of the pathology results. Absorption and scattering images were unable to accurately discriminate benign from malignant lesions. Malignant lesions tended to have decreased refractive index allowing them to discriminate from benign lesions in most cases. The sensitivity, specificity, false positive value, and overall accuracy for refractive index were 81.8%, 70.8%, 29.2%, and 74.3%, respectively. Overall we show that benign and malignant breast masses in humans demonstrate different refractive index and differences in refractive index properties can be used to discriminate benign from malignant masses in patients with high accuracy. This opens up a new avenue for improved breast cancer detection using NIR diffusing light.

  1. Fiber optic confocal microscope: In vivo precancer detection

    NASA Astrophysics Data System (ADS)

    Carlson, Kristen Dawn

    Cancer is a significant public health problem worldwide. Many cancers originate as precancerous lesions in the epithelium which, when removed in sufficient time, can prevent progression to cancer. However, current detection techniques are typically time-consuming and expensive, limiting their acceptance and accessibility. Optical techniques, such as confocal microscopy, have significant potential to provide clinicians with real-time, high-resolution images of cells and tissue without tissue removal. These images of cell morphology and tissue architecture can be used to characterize tissue and determine the presence or extent of precancer and cancer. This dissertation explores the instrumentation and application of fiber optic reflectance confocal microscopy for in vivo precancer detection. The first part of the dissertation presents in vivo imaging of suspicious lesions in the human uterine cervix and oral mucosa using a fiber bundle based confocal microscope with a complex glass miniature objective lens. Images are analyzed quantitatively and qualitatively to determine the potential of this technology in vivo. An analysis of nuclear density from images of 30 cervical epithelium sites shows differentiation between normal and precancerous sites. Similarly, images from 20 oral mucosa sites demonstrate changes in nuclear density and tissue architecture indicative of progression of precancer and cancer. In addition to this multi-fiber confocal microscope used with a glass objective lens for the clinical studies, imaging of tissue samples has been accomplished with the same confocal system using an injection molded plastic miniature objective lens demonstrating comparable optical quality for a significantly less expensive optical component. Finally, a benchtop prototype of a single fiber confocal microscope using a gimbaled two-axis MEMS scanner has been designed and constructed. Imaging of a resolution target and cellular samples demonstrates sufficient resolution and

  2. Optical techniques for millimeter-wave detection and imaging

    NASA Astrophysics Data System (ADS)

    Schuetz, Christopher Arnim

    The benefits of imaging using regions of the electromagnetic spectrum outside the visible range have been known for decades. Infrared and radio frequency imaging techniques have achieved great successes in both military and civilian applications. However, there remains a range of the spectrum between these two regimes that remains relatively unexplored. Millimeter waves, or the range of wavelengths between one millimeter and one centimeter, have remained relatively unexplored as an imaging technology, largely due to the lack of sufficiently sensitive, practical detectors for passive imaging in this regime. At these short wavelengths, the diffraction limit imposed by the limited extent of the imaging aperture significantly limits attainable image resolution. Recent developments in semiconductor low-noise amplifiers have demonstrated many desirable applications for such imaging technology, but have, as yet, not been able to demonstrate the economical, small-format imagers necessary to make such imagers practical in most of the conceived applications. In this regard, I present a new approach to millimeter-wave detection based on optical modulation with subsequent carrier suppression. This approach demonstrates promise in achieving the goal of economical, high-resolution imagers with sufficient sensitivity for passive millimeter-wave imaging. In this thesis, I explain the operational requirements of such detectors, provide theoretical background for their operation, and describe current experimental results obtained using commercially available components in the 35 GHz. In addition, I describe successful efforts to fabricate modulators with improved modulation bandwidths for detection in the 95 GHz atmospheric window. These demonstration systems have attained sufficient single pixel performance to detect thermal emission with a noise equivalent temperature difference (NETD) approaching 1K/ Hz at both 35 and 95 GHz. The NETDs attained correspond to sub-picowatt noise

  3. Single-target molecule detection with nonbleaching multicolor optical immunolabels.

    PubMed

    Schultz, S; Smith, D R; Mock, J J; Schultz, D A

    2000-02-01

    We introduce and demonstrate the use of colloidal silver plasmon-resonant particles (PRPs) as optical reporters in typical biological assays. PRPs are ultrabright, nanosized optical scatterers, which scatter light elastically and can be prepared with a scattering peak at any color in the visible spectrum. PRPs are readily observed individually with a microscope configured for dark-field microscopy, with white-light illumination of typical power. Here we illustrate the use of PRPs, surface coated with standard ligands, as target-specific labels in an in situ hybridization and an immunocytology assay. We propose that PRPs can replace or complement established labels, such as those based on radioactivity, fluorescence, chemiluminescence, or enzymatic/colorimetric detection that are used routinely in biochemistry, cell biology, and medical diagnostic applications. Moreover, because PRP labels are nonbleaching and bright enough to be rapidly identified and counted, an ultrasensitive assay format based on single-target molecule detection is now practical. We also present the results of a model sandwich immunoassay for goat anti-biotin antibody, in which the number of PRP labels counted in an image constitutes the measured signal. PMID:10655473

  4. A dual-detector optical receiver for PDM signals detection

    NASA Astrophysics Data System (ADS)

    Chen, Guanyu; Yu, Yu; Zhang, Xinliang

    2016-05-01

    We propose and fabricate a silicon based dual-detector optical receiver, which consists of a two dimensional (2D) grating coupler (GC) and two separate germanium photodetectors (Ge PDs). The 2D GC performs polarization diversity, and thus demultiplexing and detection for polarization division multiplexed (PDM) signals can be achieved. Through a specific design with double-sides illumination, the space charge density can be reduced and the responsivity and saturation power can be improved significantly. The measured dark current, responsivity and bandwidth are 0.86 μA, 1.06 A/W and 36 GHz under 3 V reverse biased voltage, respectively. Both DC currents and eye diagrams are measured for the proposed device and the results validate its performance successfully. The power penalty between the single and dual polarized signals is about 1.9 dB under 10 and 20 Gb/s cases for both the two Ge PDs. The proposed direct detection (DD) for PDM signals with high speed, high responsivity and large saturation power is cost-effective and promising for short reach optical communication.

  5. A dual-detector optical receiver for PDM signals detection.

    PubMed

    Chen, Guanyu; Yu, Yu; Zhang, Xinliang

    2016-01-01

    We propose and fabricate a silicon based dual-detector optical receiver, which consists of a two dimensional (2D) grating coupler (GC) and two separate germanium photodetectors (Ge PDs). The 2D GC performs polarization diversity, and thus demultiplexing and detection for polarization division multiplexed (PDM) signals can be achieved. Through a specific design with double-sides illumination, the space charge density can be reduced and the responsivity and saturation power can be improved significantly. The measured dark current, responsivity and bandwidth are 0.86 μA, 1.06 A/W and 36 GHz under 3 V reverse biased voltage, respectively. Both DC currents and eye diagrams are measured for the proposed device and the results validate its performance successfully. The power penalty between the single and dual polarized signals is about 1.9 dB under 10 and 20 Gb/s cases for both the two Ge PDs. The proposed direct detection (DD) for PDM signals with high speed, high responsivity and large saturation power is cost-effective and promising for short reach optical communication. PMID:27198501

  6. Pressure and Temperature Spin Crossover Sensors with Optical Detection

    PubMed Central

    Linares, Jorge; Codjovi, Epiphane; Garcia, Yann

    2012-01-01

    Iron(II) spin crossover molecular materials are made of coordination centres switchable between two states by temperature, pressure or a visible light irradiation. The relevant macroscopic parameter which monitors the magnetic state of a given solid is the high-spin (HS) fraction denoted nHS, i.e., the relative population of HS molecules. Each spin crossover material is distinguished by a transition temperature T1/2 where 50% of active molecules have switched to the low-spin (LS) state. In strongly interacting systems, the thermal spin switching occurs abruptly at T1/2. Applying pressure induces a shift from HS to LS states, which is the direct consequence of the lower volume for the LS molecule. Each material has thus a well defined pressure value P1/2. In both cases the spin state change is easily detectable by optical means thanks to a thermo/piezochromic effect that is often encountered in these materials. In this contribution, we discuss potential use of spin crossover molecular materials as temperature and pressure sensors with optical detection. The ones presenting smooth transitions behaviour, which have not been seriously considered for any application, are spotlighted as potential sensors which should stimulate a large interest on this well investigated class of materials. PMID:22666041

  7. Design and study on optic fiber sensor detection system

    NASA Astrophysics Data System (ADS)

    Jiang, Xuemei; Liu, Quan; Liang, Xiaoyu; Lin, Haiyan

    2005-11-01

    With the development of industry and agriculture, the environmental pollution becomes more and more serious. Various kinds of poisonous gas are the important pollution sources. Various kinds of poisonous gas, such as the carbon monoxide, sulfureted hydrogen, sulfur dioxide, methane, acetylene are threatening human normal life and production seriously especially today when industry and various kinds of manufacturing industries develop at full speed. The acetylene is a kind of gas with very lively chemical property, extremely apt to burn, resolve and explode, and it is great to destroy things among these poisonous gases. Comparing with other inflammable and explosive gas, the explosion range of the acetylene is heavier. Therefore carrying on monitoring acetylene pollution sources scene in real time, grasping the state of pollution taking place and development in time, have very important meanings. Aim at the above problems, a set of optical fiber detection system of acetylene gas based on the characteristic of spectrum absorption of acetylene is presented in this paper, which has reference channel and is for on-line and real-time detection. In order to eliminate the effect of other factors on measurement precision, the double light sources, double light paths and double cells are used in this system. Because of the use of double wavelength compensating method, this system can eliminate the disturbance in the optical paths, the problem of instability is solved and the measurement precision is greatly enhanced. Some experimental results are presented at the end of this paper.

  8. A dual-detector optical receiver for PDM signals detection

    PubMed Central

    Chen, Guanyu; Yu, Yu; Zhang, Xinliang

    2016-01-01

    We propose and fabricate a silicon based dual-detector optical receiver, which consists of a two dimensional (2D) grating coupler (GC) and two separate germanium photodetectors (Ge PDs). The 2D GC performs polarization diversity, and thus demultiplexing and detection for polarization division multiplexed (PDM) signals can be achieved. Through a specific design with double-sides illumination, the space charge density can be reduced and the responsivity and saturation power can be improved significantly. The measured dark current, responsivity and bandwidth are 0.86 μA, 1.06 A/W and 36 GHz under 3 V reverse biased voltage, respectively. Both DC currents and eye diagrams are measured for the proposed device and the results validate its performance successfully. The power penalty between the single and dual polarized signals is about 1.9 dB under 10 and 20 Gb/s cases for both the two Ge PDs. The proposed direct detection (DD) for PDM signals with high speed, high responsivity and large saturation power is cost-effective and promising for short reach optical communication. PMID:27198501

  9. Organic vapor detection with fiber optic bead arrays

    NASA Astrophysics Data System (ADS)

    Stitzel, Shannon E.; Albert, Keith J.; Walt, David R.

    1999-12-01

    The need for small, fast responding detection systems is growing and fiber-optic bead arrays offer a different approach to small sensor design. Sensor arrays are fabricated by inserting self-encoded microspheres into microwells etched into the distal face of an imaging fiber. Each imaging fiber is 0.5 - 1 mm in outer diameter and consists of 5,000 - 10,000 individually clad, 3 - 4 micrometers diameter optical fibers bundled together. The bundles are coherent, allowing each microsphere in a well to be addressed as an individual sensor. Microsphere sensors are silica or polymer beads (approximately 3 micrometers in diameter) impregnated with solvatochromic dyes. These dyes alter their fluorescence emission spectra in response to changes in vapor polarity, allowing analytes to be discriminated based on their signature fluorescence response over time. A computational network is trained to recognize these response patterns for each sensor type, allowing for identification of specific organic vapors. Each sensor type is cross- reactive, and has unique fluorescence response patterns to different analytes. The sensor types can be identified based on their unique responses, allowing their position to be registered by observing the identity of the response pattern toward a known standard. Such encoding enables array fabrication to be simplified since sensors can be randomly dispersed throughout the array, instead of specifically patterned within the array. Possible applications for bead array detectors include environmental and industrial monitoring, land mine detection, and medical diagnostics.

  10. Optical beamforming networks employing phase modulation and direct detection

    NASA Astrophysics Data System (ADS)

    Xue, Xiaoxiao; Zheng, Xiaoping; Zhang, Hanyi; Zhou, Bingkun

    2011-06-01

    We propose a novel dispersion-based optical beamforming network scheme employing phase modulation and direct detection. Optical phase modulators have the advantages of simple-structure, low loss and absence of bias. Dispersion-induced phase-to-intensity conversion is utilized to facilitate direct detection. A structure of wideband dispersive device (WDD) cascaded with periodic dispersive device (PDD) is introduced to enhance the system flexibility, so that the delay adjustability and RF response can be properly designed respectively by choosing appropriate dispersions of the WDD and PDD. A concept-proof system with a wideband chirped fiber grating (CFG) as the WDD and two multiband CFGs (MCFG1 and MCFG2) as the PDD separately is built to demonstrate the basic idea. The delay tuning range is 0-1.8 ns with increment of 164.2 ps. The passband center is 30 GHz for MCFG1 and 20 GHz for MCFG2, and the fractional bandwidth is 51.8%. The shot-noise-limited spurious-free dynamic range is also analyzed and measured to be 105.7 dB ṡ Hz2/3 when the average photocurrent is 2.7 mA.

  11. Optical Monitoring and Detection of Spinal Cord Ischemia

    PubMed Central

    Mesquita, Rickson C.; D’Souza, Angela; Bilfinger, Thomas V.; Galler, Robert M.; Emanuel, Asher; Schenkel, Steven S.; Yodh, Arjun G.; Floyd, Thomas F.

    2013-01-01

    Spinal cord ischemia can lead to paralysis or paraparesis, but if detected early it may be amenable to treatment. Current methods use evoked potentials for detection of spinal cord ischemia, a decades old technology whose warning signs are indirect and significantly delayed from the onset of ischemia. Here we introduce and demonstrate a prototype fiber optic device that directly measures spinal cord blood flow and oxygenation. This technical advance in neurological monitoring promises a new standard of care for detection of spinal cord ischemia and the opportunity for early intervention. We demonstrate the probe in an adult Dorset sheep model. Both open and percutaneous approaches were evaluated during pharmacologic, physiological, and mechanical interventions designed to induce variations in spinal cord blood flow and oxygenation. The induced variations were rapidly and reproducibly detected, demonstrating direct measurement of spinal cord ischemia in real-time. In the future, this form of hemodynamic spinal cord diagnosis could significantly improve monitoring and management in a broad range of patients, including those undergoing thoracic and abdominal aortic revascularization, spine stabilization procedures for scoliosis and trauma, spinal cord tumor resection, and those requiring management of spinal cord injury in intensive care settings. PMID:24358279

  12. Liquid crystals as optical amplifiers for bacterial detection.

    PubMed

    Zafiu, C; Hussain, Z; Küpcü, S; Masutani, A; Kilickiran, P; Sinner, E-K

    2016-06-15

    Interactions of bacteria with target molecules (e.g. antibiotics) or other microorganisms are of growing interest. The first barrier for targeting gram-negative bacteria is layer of a Lipopolysaccharides (LPS). Liquid crystal (LC) based sensors covered with LPS monolayers, as presented in this study, offer a simple model to study and make use of this type of interface for detection and screening. This work describes in detail the production and application of such sensors based on three different LPS that have been investigated regarding their potential to serve as sensing layer to detect bacteria. The LPS O127:B8 in combination with a LC based sensor was identified to be most useful as biomimetic sensing surface. This LPS/LC combination interacts with three different bacteria species, one gram-positive and two gram-negative species, allowing the detection of bacterial presence regardless from their viability. It could be shown that even very low bacterial cell numbers (minimum 500 cell ml(-1)) could be detected within minutes (maximum 15 min). The readout mechanism is the adsorption of bacterial entities on surface bond LPS molecules with the LC serving as an optical amplifier. PMID:26827146

  13. Optical weed detection and evaluation using reflection measurements

    NASA Astrophysics Data System (ADS)

    Vrindts, Els; De Baerdemaeker, Josse

    1999-01-01

    For the site-specific application of herbicides, the automatic detection and evaluation of weeds is necessary. Since reflectance of crop, weeds and soil differs in visual and near IR wavelengths, there is a potential for using reflection measurements at different wavelengths to distinguish between them. Diffuse reflectance spectra of crop and weed leaves were used to evaluate the possibilities of weed detection with reflection measurements. Fourteen different weed species and four crops were included in the dataset. Classification of the spectra in crop, weeds and soil is possible, based on 3 to 7 narrow wavelength bands. The spectral analysis was repeated for reflectance measurements of canopies. Sugarbeet and Maize and 7 weed species were included in the measurements. The classification into crop and weeds was still possible, suing a limited number of wavelength band ratios. This suggest that reflection measurements at a limited number of wavelength bands could be used to detect and treat weeds in a field. This is a great environmental benefit, as agrochemicals will only be used where they are needed. The possibilities of using optical reflectance for weed detection and treatment in the field are discussed.

  14. Configuration of electro-optic fire source detection system

    NASA Astrophysics Data System (ADS)

    Fabian, Ram Z.; Steiner, Zeev; Hofman, Nir

    2007-04-01

    The recent fighting activities in various parts of the world have highlighted the need for accurate fire source detection on one hand and fast "sensor to shooter cycle" capabilities on the other. Both needs can be met by the SPOTLITE system which dramatically enhances the capability to rapidly engage hostile fire source with a minimum of casualties to friendly force and to innocent bystanders. Modular system design enable to meet each customer specific requirements and enable excellent future growth and upgrade potential. The design and built of a fire source detection system is governed by sets of requirements issued by the operators. This can be translated into the following design criteria: I) Long range, fast and accurate fire source detection capability. II) Different threat detection and classification capability. III) Threat investigation capability. IV) Fire source data distribution capability (Location, direction, video image, voice). V) Men portability. ) In order to meet these design criteria, an optimized concept was presented and exercised for the SPOTLITE system. Three major modular components were defined: I) Electro Optical Unit -Including FLIR camera, CCD camera, Laser Range Finder and Marker II) Electronic Unit -including system computer and electronic. III) Controller Station Unit - Including the HMI of the system. This article discusses the system's components definition and optimization processes, and also show how SPOTLITE designers successfully managed to introduce excellent solutions for other system parameters.

  15. Fiber optic system design for vehicle detection and analysis

    NASA Astrophysics Data System (ADS)

    Nedoma, Jan; Zboril, Ondrej; Fajkus, Marcel; Zavodny, Petr; Kepak, Stanislav; Bednarek, Lukas; Martinek, Radek; Vasinek, Vladimir

    2016-04-01

    Fiber optic interferometers belong to a group of highly sensitive and precise devices enabling to measure small changes in the deformation shapes, changes in pressure, temperature, vibration and so on. The basis of their activity is to evaluate the number of fringes over time, not changes in the intensity of the optical signal. The methodology described in the article is based on using the interferometer to monitor traffic density. The base of the solution is a Mach-Zehnder interferometer operating with single-mode G.652 optical fiber at the wavelength of 1550 nm excited by a DFB laser. The power distribution of the laser light into the individual arms of the interferometer is in the ratio 1:1. Realized measuring scheme was terminated by an optical receiver including InGaAs PIN photodiode. Registered signal from the photodetector was through 8 Hz high pass filter fed to the measuring card that captures the analog input voltage using an application written in LabView development environment. The interferometer was stored in a waterproof box and placed at the side of the road. Here panned individual transit of cars in his environs. Vertically across the road was placed in contact removable belt simulating a retarder, which was used when passing cars to create sufficient vibration response detecting interferometer. The results demonstrated that the individual vehicles passing around boxing showed characteristic amplitude spectra, which was unique for each object, and had sufficient value signal to noise ratio (SNR). The signal was processed by applications developed for the amplitude-frequency spectrum. Evaluated was the maximum amplitude of the signal and compared to the noise. The results were verified by repeated transit of the different types of cars.

  16. Detection of plasmonic nanoparticles with full field-OCT: optical and photothermal detection

    PubMed Central

    Nahas, Amir; Varna, Mariana; Fort, Emmanuel; Boccara, A. Claude

    2014-01-01

    Detecting the signal backscattered by nanoparticles immersed in highly scattering media such as biological tissue remains a challenge. In this article we report on the use of Full Field OCT (FF-OCT) to slice in depth in phantoms and in tissues in order a) to selectively observe the particles through the backscattered light at suitable wavelengths, and b) to detect the effects of the time-dependent response to full field optical heating through the strong absorption cross-section of these plasmonic nanoparticles. The analysis of the thermal wave behavior leads to the localization of the heat sources even when FF-OCT signals cannot reach the heated area. PMID:25360370

  17. Optical system and method for gas detection and monitoring

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A. (Inventor); Korman, Valentin (Inventor); Witherow, William K. (Inventor); Hendrickson, Adam Gail (Inventor); Sinko, John Elihu (Inventor)

    2011-01-01

    A free-space optical path of an optical interferometer is disposed in an environment of interest. A light beam is guided to the optical interferometer using a single-mode optical fiber. The light beam traverses the interferometer's optical path. The light beam guided to the optical path is combined with the light beam at the end of the optical path to define an output light. A temporal history of the output light is recorded.

  18. Streak detection and analysis pipeline for optical images

    NASA Astrophysics Data System (ADS)

    Virtanen, J.; Granvik, M.; Torppa, J.; Muinonen, K.; Poikonen, J.; Lehti, J.; Säntti, T.; Komulainen, T.; Flohrer, T.

    2014-07-01

    We describe a novel data processing and analysis pipeline for optical observations of moving objects, either of natural (asteroids, meteors) or artificial origin (satellites, space debris). The monitoring of the space object populations requires reliable acquisition of observational data to support the development and validation of population models, and to build and maintain catalogues of orbital elements. The orbital catalogues are, in turn, needed for the assessment of close approaches (for asteroids, with the Earth; for satellites, with each other) and for the support of contingency situations or launches. For both types of populations, there is also increasing interest to detect fainter objects corresponding to the small end of the size distribution. We focus on the low signal-to-noise (SNR) detection of objects with high angular velocities, resulting in long and faint object trails, or streaks, in the optical images. The currently available, mature image processing algorithms for detection and astrometric reduction of optical data cover objects that cross the sensor field-of-view comparably slowly, and, particularly for satellites, within a rather narrow, predefined range of angular velocities. By applying specific tracking techniques, the objects appear point-like or as short trails in the exposures. However, the general survey scenario is always a 'track-before-detect' problem, resulting in streaks of arbitrary lengths. Although some considerations for low-SNR processing of streak-like features are available in the current image processing and computer vision literature, algorithms are not readily available yet. In the ESA-funded StreakDet (Streak detection and astrometric reduction) project, we develop and evaluate an automated processing pipeline applicable to single images (as compared to consecutive frames of the same field) obtained with any observing scenario, including space-based surveys and both low- and high-altitude populations. The algorithmic

  19. Research on fiber-optic sensors for methane detection based on Harmonic detection

    NASA Astrophysics Data System (ADS)

    Wang, Shutao; Huang, Liang; Zhou, Zhishuang; Zhu, Zhihui

    2010-10-01

    In this paper, a sylstem of fiber-optic gas sensor based methane absorption spectra is studied. The system have made great improvement and in-depth analysis in methane spectral absorption,a weak optical signal extraction and processing and gas measurement accuracy.The system consists of light source, Photonic Crystal Fiber, air chamber, photoelectric detectors and signal processing components and so on. According to the Lambert-Beer law, spectrum absorption intensity is closely relate with the concentration of the gas. In order to ensure the system at a high resolution and sensitivity,The system used distributed feedback semiconductor laser (DFBLD) as a light source .It bring useful information of the optical signal to PIN Photodetector which then convert the optical signal to electrical signals after optical interacting with the methane gas,then send the electrical signal to lock-in amplifier.the harmonic detection of gas concentration was achieved by the light modulator, And then compared the harmonic component. Finally, the signal expected was produced through the A / D converter digital in the computer.

  20. Optical detection of sepsis markers using liquid crystal based biosensors

    NASA Astrophysics Data System (ADS)

    McCamley, Maureen K.; Artenstein, Andrew W.; Opal, Steven M.; Crawford, Gregory P.

    2007-02-01

    A liquid crystal based biosensor for the detection and diagnosis of sepsis is currently in development. Sepsis, a major clinical syndrome with a significant public health burden in the US due to a large elderly population, is the systemic response of the body to a localized infection and is defined as the combination of pathologic infection and physiological changes. Bacterial infections are responsible for 90% of cases of sepsis in the US. Currently there is no bedside diagnostic available to positively identify sepsis. The basic detection scheme employed in a liquid crystal biosensor contains attributes that would find value in a clinical setting, especially for the early detection of sepsis. Utilizing the unique properties of liquid crystals, such as birefringence, a bedside diagnostic is in development which will optically report the presence of biomolecules. In a septic patient, an endotoxin known as lipopolysaccharide (LPS) is released from the outer membrane of Gram-negative bacteria and can be found in the blood stream. It is hypothesized that this long chained molecule will cause local disruptions to the open surface of a sensor containing aligned liquid crystal. The bulk liquid crystal ampli.es these local changes at the surface due to the presence of the sepsis marker, providing an optical readout through polarizing microscopy images. Liquid crystal sensors consisting of both square and circular grids, 100-200 μm in size, have been fabricated and filled with a common liquid crystal material, 5CB. Homeotropic alignment was confirmed using polarizing microscopy. The grids were then contacted with either saline only (control), or saline with varying concentrations of LPS. Changes in the con.guration of the nematic director of the liquid crystal were observed through the range of concentrations tested (5mg/mL - 1pg/mL) which have been confirmed by a consulting physician as clinically relevant levels.

  1. Damage detection and characterization using fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Glisic, Branko; Sigurdardottir, Dorotea; Yao, Yao; Hubbell, David

    2013-04-01

    Fiber optic sensors (FOS) have significantly evolved and have reached their market maturity during the last decade. Their widely recognized advantages are high precision, long-term stability, and durability. But in addition to these advantageous performances, FOS technologies allow for affordable instrumentation of large areas of structure enabling global large-scale monitoring based on long-gauge sensors and integrity monitoring based on distributed sensors. These two approaches are particularly suitable for damage detection and characterization, i.e., damage localization and to certain extent quantification and propagation, as illustrated by two applications presented in detail in this paper: post-tensioned concrete bridge and segmented concrete pipeline. Early age cracking was detected, localized and quantified in the concrete deck of a pedestrian bridge using embedded long-gauge FOS. Post-tensioning of deck closed the cracks; however, permanent weakening in a bridge joint occurred due to cracking and it was identified and quantified. The damage was confirmed using embedded distributed FOS and a separate load test of the bridge. Real-size concrete pipeline specimens and surrounding soil were equipped with distributed FOS and exposed to permanent ground displacement in a large-scale testing facility. Two tests were performed on different pipeline specimens. The sensors bonded on the pipeline specimens successfully detected and localized rupture of pipeline joints, while the sensors embedded in the soil were able to detect and localize the failure plane. Comparison with strain-gauges installed on the pipeline and visual inspection after the test confirmed accurate damage detection and characterization.

  2. Noninvasive detection of plant nutrient stress using fiber optic spectrophotometry

    NASA Astrophysics Data System (ADS)

    Chen, Jun-Wei; Asundi, Anand K.; Liew, Oi Wah; Boey, William S. L.

    2001-05-01

    In a previous paper, we described the use of fiber optic spectrophotometry as a non-destructive and sensitive method to detect early symptoms of plant nutrient deficiency. We report further developments of our work on Brassica chinensis var parachinensis (Bailey) showing reproducibility of our data collected at a different seasonal period. Plants at the mid-log growth phase were subjected to nutrient stress by transferring them to nitrate- and calcium- deficient nutrient solution in a standing aerated hydroponic system. After tracking changes in leaf reflectance by FOSpectr for nine days, the plants were returned to complete nutrient solution and their recovery was monitored for a further nine days. The responses of nutrient stressed plants were compared with those grown under complete nutrient solution over the 18-day trial period. We also compared the sensitivity of FOSpectr detection against plant growth measurements vis-a-vis average leaf number and leaf width and show that the former method gave an indication of nutrient stress much earlier than the latter. In addition, this work indicated that while normal and nutrient-stressed plants could not be distinguished within the first 7 days by tracking plant growth indicators, stressed plants did show a clear decline in average leaf number and leaf width in later stages of growth even after the plants were returned to complete nutrient solution. The results further reinforce the need for early detection of nutrient stress, as late remedial action could not reverse the loss in plant growth in later stages of plant development.

  3. Detection of atherosclerotic vascular tissue from optical coherence tomography images

    NASA Astrophysics Data System (ADS)

    Prakash, Ammu; Hewko, Mark; Sowa, Mike; Sherif, Sherif

    2012-10-01

    Atherosclerotic coronary artery disease continues to be one of the major causes of mortality. Prevention, diagnosis and treatment of atherosclerotic coronary artery disease are dependent on the detection of high risk atherosclerotic plaque. As age is one of the most important risk factors, atherosclerosis worsens steadily with increasing age. Automatic characterization of atherosclerotic plaque using the optical coherence tomography (OCT) images provides a powerful tool to classify patients with high risk plaque. In this study we develop an automatic classifier to detect atherosclerotic plaque in young and old Watanabe heritable hyperlipidemic (WHHL) rabbits, using OCT images without reliance on visual inspection. Our classifier based on texture analysis technique may provide an efficient tool for detecting invisible changes in tissue structure. We extracted a set of 22 statistical textural features for each image using the spatial gray level dependence matrix (SGLDM) method. An optimal scalar feature selection process was carried to select the best discriminating features that employ the Fisher discriminant ratio (FDR) criterion, and cross correlation measure between the pairs of features. Using these optimal features, we formed a combination of 5 best classification features using an exhaustive search method. A combined feature set was finally employed for the classification of plaque. We obtained correct classification rate and validation of 76.67% and 75% respectively.

  4. Detection of early seizures by diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Hajihashemi, M. Reza; Zhou, Junli; Carney, Paul R.; Jiang, Huabei

    2015-03-01

    In epilepsy it has been challenging to detect early changes in brain activity that occurs prior to seizure onset and to map their origin and evolution for possible intervention. Besides, preclinical seizure experiments need to be conducted in awake animals with images reconstructed and displayed in real-time. We demonstrate using a rat model of generalized epilepsy that diffuse optical tomography (DOT) provides a unique functional neuroimaging modality for noninvasively and continuously tracking brain activities with high spatiotemporal resolution. We developed methods to conduct seizure experiments in fully awake rats using a subject-specific helmet and a restraining mechanism. For the first time, we detected early hemodynamic responses with heterogeneous patterns several minutes preceding the electroencephalographic seizure onset, supporting the presence of a "pre-seizure" state both in anesthetized and awake rats. Using a novel time-series analysis of scattering images, we show that the analysis of scattered diffuse light is a sensitive and reliable modality for detecting changes in neural activity associated with generalized seizure. We found widespread hemodynamic changes evolving from local regions of the bilateral cortex and thalamus to the entire brain, indicating that the onset of generalized seizures may originate locally rather than diffusely. Together, these findings suggest DOT represents a powerful tool for mapping early seizure onset and propagation pathways.

  5. Passive radiation detection using optically active CMOS sensors

    NASA Astrophysics Data System (ADS)

    Dosiek, Luke; Schalk, Patrick D.

    2013-05-01

    Recently, there have been a number of small-scale and hobbyist successes in employing commodity CMOS-based camera sensors for radiation detection. For example, several smartphone applications initially developed for use in areas near the Fukushima nuclear disaster are capable of detecting radiation using a cell phone camera, provided opaque tape is placed over the lens. In all current useful implementations, it is required that the sensor not be exposed to visible light. We seek to build a system that does not have this restriction. While building such a system would require sophisticated signal processing, it would nevertheless provide great benefits. In addition to fulfilling their primary function of image capture, cameras would also be able to detect unknown radiation sources even when the danger is considered to be low or non-existent. By experimentally profiling the image artifacts generated by gamma ray and β particle impacts, algorithms are developed to identify the unique features of radiation exposure, while discarding optical interaction and thermal noise effects. Preliminary results focus on achieving this goal in a laboratory setting, without regard to integration time or computational complexity. However, future work will seek to address these additional issues.

  6. A portable cell-based optical detection device for rapid detection of Listeria and Bacillus toxins

    NASA Astrophysics Data System (ADS)

    Banerjee, Pratik; Banada, Padmapriya P.; Rickus, Jenna L.; Morgan, Mark T.; Bhunia, Arun K.

    2005-11-01

    A mammalian cell-based optical biosensor was built to detect pathogenic Listeria and Bacillus species. This sensor measures the ability of the pathogens to infect and induce cytotoxicity on hybrid lymphocyte cell line (Ped-2E9) resulting in the release of alkaline phosphatase (ALP) that can be detected optically using a portable spectrophotometer. The Ped-2E9 cells were encapsulated in collagen gel matrices and grown in 48-well plates or in specially designed filtration tube units. Toxin preparations or bacterial cells were introduced and ALP release was assayed after 3-5 h. Pathogenic L. monocytogenes strains or the listeriolysin toxins preparation showed cytotoxicity ranging from 55% - 92%. Toxin preparations (~20 μg/ml) from B. cereus strains showed 24 - 98% cytotoxicity. In contrast, a non-pathogenic L. innocua (F4247) and a B. substilis induced only 2% and 8% cytotoxicity, respectively. This cell-based detection device demonstrates its ability to detect the presence of pathogenic Listeria and Bacillus species and can potentially be used onsite for food safety or in biosecurity application.

  7. Detection of crevice corrosion of metallic alloys by optical interferometry

    SciTech Connect

    Habib, K.

    1999-11-01

    In the present investigation, an optical corrosion-meter has been developed for materials testing and evaluation of different corrosion phenomena. The idea of the optical corrosion-meter was established based on principles of 3D-holographic interferometry for measuring microsurface dissolution, i.e. mass loss, and on those of electrochemistry for measuring the bulk electronic current, i.e. corrosion current of metallic samples in aqueous solutions. In the present work, an early stage of crevice corrosion of a titanium alloy, a carbon steel and a pure aluminum in seawater was monitored in situ by the optical corrosion-meter during the cyclic polarization test. The observations of crevice corrosion were basically interferometric perturbations detected only on the surface of the titanium alloy and the carbon steel underneath a crevice assembly, made of Teflon bolt, Teflon nut, and Teflon washer. The crevice assembly used on all tested samples to create a differential aeration cell between the surface of the sample and areas underneath the crevice assembly in seawater. Each Teflon washer contained radial grooves and had 20 plateaus which formed crevices ( shield areas) when pressed against the surface of the sample. The interferometric perturbations interpreted as a localized corrosion in a form of an early crevice corrosion of a depth ranged between 0.3 pm to several micrometers. Consequently, results of the present work indicate that holographic interferometry is very useful technique as a 3D-interferometric microscope for monitoring crevice corrosion at the initiation stage of the phenomenon for different metallic samples in aqueous solutions.

  8. Super Smooth Optics for Extra-Solar Planet Detection

    NASA Technical Reports Server (NTRS)

    Terrile, Richard J.; Ftaclas, Christ

    1989-01-01

    The goal of imaging planets around the nearby stars has important scientific significance but requires the use of advanced methods of controlling diffracted and scattered light. Over the last three years we have undertaken a study of coronagraphic methods of controlling diffracted light and of figuring hyper-contrast optics. Progress in these two general areas have led to a proposed space-based, 1.9 meter diameter coronagraphic telescope designed specifically for very high performance in the imaging of faint objects near bright sources. This instrument, called the Circumstellar Imaging Telescope (CIT), relies on a new high efficiency coronagraph design and the careful control of scattered light by extremely smooth optics. The high efficiency coronagraph uses focal plane apodization in order to concentrate diffracted light more efficiently in the pupil. This allows convenient removal of the diffracted light by masking off parts of the telescope pupil while not sacrificing the center of the field. Reductions of diffracted light by factors exceeding 1000 are not only possible but are required in order to detect extra-solar planets. Laboratory experiments with this new design have confirmed the theoretical diffraction reductions to the limits of the optics used (factors of about 300) . The extremely high efficiency of this coronagraph puts strong constraints on the narrow angle scattered light due to figure errors in the telescope mirror. Since planets orbiting nearby stars are expected at angular distances of about 1 arcsecond, it is in this small angular range in which scattering must be controlled. The figure errors responsible for scattering in this range come from mid-spatial frequencies corresponding to correlation lengths of about 10 cm on the primary mirror. A primary mirror about 15 times smoother than the Hubble Space Telescope mirror is required for the CIT. Laboratory experiments indicate that small test mirrors can be fabricated with existing technology

  9. Optical Confirmation of a Neutrino-Detected Supernova

    NASA Astrophysics Data System (ADS)

    Robinson, L. J.; Roth, J.; Sky Publishing Corp. Team

    1999-12-01

    The next nearby supernova is likely to be first detected by neutrino observatories. At best, they will determine its position to within some tens of square degrees. Since the supernova has a 50:50 chance of being mv < 6, even at maximum, a thorough optical search for the putative star will almost certainly be needed. To aid in the immediate search for the supernova, Sky Publishing Corp. has established AstroAlert, a worldwide e-mail network of some 2,000 amateur and other small-telescope users. The announcement of a probable supernova will be made by the Supernova Neutrino Early Warning System and automatically forwarded to participants through AstroAlert. Details of the AstroAlert network will be described as well as protocols for validating the ``guest" star and obtaining its precise position.

  10. Multi-optical mine detection: results from a field trial

    NASA Astrophysics Data System (ADS)

    Letalick, Dietmar; Tolt, Gustav; Sjökvist, Stefan K.; Nyberg, Sten; Grönwall, Christina; Andersson, Pierre; Linderhed, Anna; Forssell, Göran; Larsson, Håkan; Uppsäll, Magnus

    2006-05-01

    As a part of the Swedish mine detection project MOMS, an initial field trial was conducted at the Swedish EOD and Demining Centre (SWEDEC). The purpose was to collect data on surface-laid mines, UXO, submunitions, IED's, and background with a variety of optical sensors, for further use in the project. Three terrain types were covered: forest, gravel road, and an area which had recovered after total removal of all vegetation some years before. The sensors used in the field trial included UV, VIS, and NIR sensors as well as thermal, multi-spectral, and hyper-spectral sensors, 3-D laser radar and polarization sensors. Some of the sensors were mounted on an aerial work platform, while others were placed on tripods on the ground. This paper describes the field trial and the presents some initial results obtained from the subsequent analysis.