Science.gov

Sample records for detect early universe

  1. Universal Pulse Oximetry Screening for Early Detection of Critical Congenital Heart Disease

    PubMed Central

    Kumar, Praveen

    2016-01-01

    Critical congenital heart disease (CCHD) is a major cause of infant death and morbidity worldwide. An early diagnosis and timely intervention can significantly reduce the likelihood of an adverse outcome. However, studies from the United States and other developed countries have shown that as many as 30%–50% of infants with CCHD are discharged after birth without being identified. This diagnostic gap is likely to be even higher in low-resource countries. Several large randomized trials have shown that the use of universal pulse-oximetry screening (POS) at the time of discharge from birth hospital can help in early diagnosis of these infants. The objective of this review is to share data to show that the use of POS for early detection of CCHD meets the criteria necessary for inclusion to the universal newborn screening panel and could be adopted worldwide. PMID:27279759

  2. X-RED: a satellite mission concept to detect early universe gamma ray bursts

    NASA Astrophysics Data System (ADS)

    Krumpe, Mirko; Coffey, Deirdre; Egger, Georg; Vilardell, Francesc; Lefever, Karolien; Liermann, Adriane; Hoffmann, Agnes I.; Steiper, Joerg; Cherix, Marc; Albrecht, Simon; Russo, Pedro; Strodl, Thomas; Wahlin, Rurik; Deroo, Pieter; Parmar, Arvind; Lund, Niels; Hasinger, Gunther

    2005-01-01

    Gamma ray bursts (GRBs) are the most energetic eruptions known in the Universe. Instruments such as Compton-GRO/BATSE and the GRB monitor on BeppoSAX have detected more than 2700 GRBs and, although observational confirmation is still required, it is now generally accepted that many of these bursts are associated with the collapse of rapidly spinning massive stars to form black holes. Consequently, since first generation stars are expected to be very massive, GRBs are likely to have occurred in significant numbers at early epochs. X-red is a space mission concept designed to detect these extremely high redshifted GRBs, in order to probe the nature of the first generation of stars and hence the time of reionisation of the early Universe. We demonstrate that the gamma and x-ray luminosities of typical GRBs render them detectable up to extremely high redshifts (z ~ 10to30), but that current missions such as HETES and SWIFT operate outside the observational range for detection of high redshift GRB afterglows. Therefore, to redress this, we present a complete mission design from teh science case to the mission architecture and payload, the latter comprising three instruments, namely wide field x-ray cameras to detect high redshift gamma-rays, an x-ray focussing telescope to determine accurate coordinates and extract spectra, and an infrared spectrograph to observe the high redshift optical afterglow. The mission is expected to detect and identify for the first time GRBs with z > 10, thereby providing constraints on properties of the first generation of stars and the history of the early Universe.

  3. X-RED: a satellite mission concept to detect early universe gamma ray bursts

    NASA Astrophysics Data System (ADS)

    Krumpe, Mirko; Coffey, Deirdre; Egger, Georg; Vilardell, Francesc; Lefever, Karolien; Liermann, Adriane; Hoffmann, Agnes I.; Steiper, Joerg; Cherix, Marc; Albrecht, Simon; Russo, Pedro; Strodl, Thomas; Wahlin, Rurik; Deroo, Pieter; Parmar, Arvind; Lund, Niels; Hasinger, Gunther

    2005-08-01

    Gamma ray bursts (GRBs) are the most energetic eruptions known in the Universe. Instruments such as Compton-GRO/BATSE and the GRB monitor on BeppoSAX have detected more than 2700 GRBs and, although observational confirmation is still required, it is now generally accepted that many of these bursts are associated with the collapse of rapidly spinning massive stars to form black holes. Consequently, since first generation stars are expected to be very massive, GRBs are likely to have occurred in significant numbers at early epochs. X-red is a space mission concept designed to detect these extremely high redshifted GRBs, in order to probe the nature of the first generation of stars and hence the time of reionisation of the early Universe. We demonstrate that the gamma and x-ray luminosities of typical GRBs render them detectable up to extremely high redshifts (z ~ 10to30), but that current missions such as HETES and SWIFT operate outside the observational range for detection of high redshift GRB afterglows. Therefore, to redress this, we present a complete mission design from teh science case to the mission architecture and payload, the latter comprising three instruments, namely wide field x-ray cameras to detect high redshift gamma-rays, an x-ray focussing telescope to determine accurate coordinates and extract spectra, and an infrared spectrograph to observe the high redshift optical afterglow. The mission is expected to detect and identify for the first time GRBs with z > 10, thereby providing constraints on properties of the first generation of stars and the history of the early Universe.

  4. Laser Interferometric Gravitational Wave Detection in Space and Structure Formation in the Early Universe

    NASA Astrophysics Data System (ADS)

    Xue-Fei, Gong; Sheng-Nian, Xu; Ye-Fei, Yuan; Shan, Bai; Xing, Bian; Zhou-Jian, Cao; Ge-Rui, Chen; Peng, Dong; Tian-Shu, Gao; Wei, Gao; Shuang-Lin, Huang; Yu-Long, Li; Ying, Liu; Zi-Ren, Luo; Ming-Xue, Shao; Bao-San, Sun; Wen-Lin, Tang; Pin, Yu; Peng, Xu; Yun-Long, Zang; Hai-Peng, Zhang; Yun-Kau, Lau

    2015-10-01

    Laser interferometric gravitational wave detection in space holds the promise of being a new window to probe and address certain key problems in astronomy and cosmology, such as stellar evolution and galaxy formation in the early Universe, co-evolution of black holes and galaxies, etc. After two phases of feasibility study commissioned by Chinese Academy of Sciences and under the support of the Pioneer Explorer (Xiandao) Program, by considering relative merits between scientific significance and technological viability, a preliminary Chinese mission design with measurement waveband from mHz to 0.1 Hz is put forward, with the primary drivers being intermediate and supermassive black hole binaries at high redshift as well as intermediate mass ratio inspirals within dense star clusters in our local Universe. On the basis of the mission design, the scientific significance of gravitational wave detection in space as a possible new probe in astronomy is briefiy discussed. The primary science drivers together with the potential detection capability of the Chinese mission design will also be touched upon.

  5. Levels of Evidence: Universal Newborn Hearing Screening (UNHS) and Early Hearing Detection and Intervention Systems (EHDI)

    ERIC Educational Resources Information Center

    Yoshinaga-Itano, Christine

    2004-01-01

    Levels of evidence differ according to the audience addressed. Implementation of universal newborn hearing screening requires responses to a complex myriad of diverse groups: the general public, families with children who are deaf or hard of hearing, the deaf and hard of hearing communities, hospital administrators, physicians (pediatricians,…

  6. Imaging the early universe

    SciTech Connect

    Krupa, Tyler J.

    2000-07-01

    An international team of cosmologists has released the first detailed images of the universe in its infancy. The images reveal the structure that existed when the universe was a tiny fraction of its current age and 1,000 times smaller and hotter than it is today. Research carried out as part of this project is shedding light on some of cosmology's long-standing mysteries, such as the nature of the matter and energy that dominate intergalactic space and whether space is ''curved'' or ''flat.''(c) 2000 Optical Society of America.

  7. An Early Cyclic Universe

    NASA Astrophysics Data System (ADS)

    Duhe, William; Biswas, Tirthibir

    2014-03-01

    We provide a comprehensive numerical study of the Emergent Cyclic Inflation scenario. This is a scenario where instead of traditional monotonic slow roll inflation, the universe expands over numerous short asymmetric cycles due to the production of entropy via interactions among different species. This is one of the very few scenarios of inflation which provides a nonsingular geodesically complete space-time and does not require any ``reheating'' mechanism. A special thanks to Loyola University for an excellent community to help this project grow.

  8. WMAP - A Glimpse of the Early Universe

    NASA Technical Reports Server (NTRS)

    Wollack, Edward

    2009-01-01

    The early Universe was incredibly hot, dense, and homogeneous. A powerful probe of this time is provided by the relic radiation which we refer to today as the Cosmic Microwave Background (CMB). Images produced from this light contain the earliest glimpse of the Universe after the "Big Bang" and the signature of the evolution of its contents. By exploiting these clues, precise constraints on the age, mass density, and geometry of the early Universe can be derived. The history of this intriguing cosmological detective story will be reviewed. Recent results from NASA's Wilkinson Microwave Anisotropy Probe (WMAP) will be presented.

  9. "WMAP -A Glimpse of the Early Universe"

    NASA Technical Reports Server (NTRS)

    Wollack, Edward J.

    2006-01-01

    The early Universe was incredibly hot, dense, and homogeneous. A powerful probe of this time is provided by the relic radiation which we refer to today as the Cosmic Microwave Background (CMB). Images produced from this light contain the earliest glimpse of the Universe after the "Big Bang" and the signature of the evolution of its contents. By exploiting these clues, precise constraints on the age, mass density, and geometry of the early Universe can be derived. The present state of this intriguing cosmological detective story will be reviewed. Recent results from NASA's Wilkinson Microwave Anisotropy Probe (WMAP) will be presented.

  10. Improving Early Seizure Detection

    PubMed Central

    Jouny, Christophe C.; Franaszczuk, Piotr J.; Bergey, Gregory K.

    2011-01-01

    Over the last decade, the search for a method able to reliably predict seizures hours in advance has been largely replaced by a more realistic goal of very early detection of seizure onset which would allow therapeutic or warning devices to be triggered prior to the onset of disabling clinical symptoms. We explore in this article the steps along the pathway from data acquisition to closed loop applications that can and should be considered to design the most efficient early seizure detection. Microelectrodes, high-frequency oscillations, high sampling rate, high-density arrays, and modern analysis techniques are all elements of the recording and detection process that in combination with modeling studies can provide new insights into the dynamics of seizure onsets. Each of these step needs to be considered if one wants to implement improved detection devices that will favorably impact the quality of life of patients. PMID:22078518

  11. Dust in the Early Universe

    NASA Astrophysics Data System (ADS)

    Gall, Christa

    2012-07-01

    Dust grains are an essential component influencing the formation and evolution history of stars and galaxies in the early Universe. Large amounts of dust detected in sub-millimeter galaxies and quasars at high redshift, where the epoch of cosmic evolution was only about 1 Gyr, bear witness to a rapid production of dust. However, the origin of these large dust masses remains unclear. Massive stars ending their lives as either asymptotic giant branch stars or supernovae have been contemplated as the prime sources of dust. Stars more massive than ~3 Msun are short-lived but whether their dust production efficiency is sufficient to account for the large dust masses is unknown. I shall address the challenge of reproducing current dust mass estimates arising from the strong sensitivity to the overall dust productivity of the sources involved, the initial mass function and star formation history. I will discuss the contribution of the stellar dust sources and alternatives, such as grain growth in the interstellar medium, to the dust budget in the high redshift as well as Local Group galaxies.

  12. Inflation in the early universe.

    NASA Astrophysics Data System (ADS)

    Carmeli, M.

    1998-04-01

    In this talk it will be assumed that gravitation is negligible. Under this assumption, the receding velocities of galaxies and the distances between them in the Hubble expansion are united into a four-dimensional pseudo-Euclidean manifold, similarly to space and time in ordinary special relativity. The Hubble law is assumed and is written in an invariant way that enables one to derive a four-dimensional transformation which is similar to the Lorentz transformation. The parameter in the new transformation is the ratio between the cosmic time to the Hubble time. Accordingly, the new transformation relates physical quantities at different cosmic times in the limit of weak or negligible gravitation. The transformation is then applied to the problem of the expansion of the Universe at the very early stage when gravity was negligible and thus the transformation is applicable. The author calculates the ratio of the volumes of the Universe at two different times T1 and T2 after the big bang. The result conforms with the standard inflationary universe theory, but now it is obtained without assuming that the Universe is propelled by antigravity.

  13. Artist's Concept of Early Universe

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This is an artist's impression of how the very early universe (less than one billion years old) might have looked when it went through a voracious onset of star formation, converting primordial hydrogen into myriad stars at an unprecedented rate. The deepest views of the cosmos from the Hubble Space Telescope (HST) yield clues that the very first stars may have burst into the universe as brilliantly and spectacularly as a firework finale. Except in this case, the finale came first, long before Earth, the Sun ,and the Milky Way Galaxy formed. Studies of HST's deepest views of the heavens lead to the preliminary conclusion that the universe made a significant portion of its stars in a torrential firestorm of star birth, which abruptly lit up the pitch-dark heavens just a few hundred million years after the 'big bang,' the tremendous explosion that created the cosmos. Within the starburst galaxies, bright knots of hot blue stars come and go like bursting fireworks shells. Regions of new starbirth glow intensely red under torrent of ultraviolet radiation. The most massive stars self-detonate as supernovas, which explode across the sky like a string of firecrackers. A foreground starburst galaxy at lower right is sculpted with hot bubbles from supernova explosions and torrential stellar winds. Unlike today there is very little dust in these galaxies, because the heavier elements have not yet been cooked up through nucleosynthesis in stars. Recent analysis of HST deep sky images supports the theory that the first stars in the universe appeared in an abrupt eruption of star formation, rather than at a gradual pace. Science Credit: NASA and K. Lanzetta (SUNY). Artwork Credit: Adolf Schaller for STScI.

  14. Early detection and rapid response

    USGS Publications Warehouse

    Westbrooks, Randy G.; Eplee, Robert E.

    2011-01-01

    Prevention is the first line of defense against introduced invasive species - it is always preferable to prevent the introduction of new invaders into a region or country. However, it is not always possible to detect all alien hitchhikers imported in cargo, or to predict with any degree of certainty which introduced species will become invasive over time. Fortunately, the majority of introduced plants and animals don't become invasive. But, according to scientists at Cornell University, costs and losses due to species that do become invasive are now estimated to be over $137 billion/year in the United States. Early detection and rapid response (EDRR) is the second line of defense against introduced invasive species - EDRR is the preferred management strategy for preventing the establishment and spread of invasive species. Over the past 50 years, there has been a gradual shift away from large and medium scale federal/state single-agency-led weed eradication programs in the United States, to smaller interagency-led projects involving impacted and potential stakeholders. The importance of volunteer weed spotters in detecting and reporting suspected new invasive species has also been recognized in recent years.

  15. Inhomogeneities in the early universe

    NASA Technical Reports Server (NTRS)

    Canuto, V.

    1976-01-01

    The paper investigates certain nonlinear processes that are viable candidates for the mechanisms which produced large-scale inhomogeneities in the early Universe. Several nonlinear Lagrangians are presented for matter, the Korteweg-de Vries equation is analyzed, and the existence of solitons among its solutions is noted. A model based on the possibility of generating a cascade of solitons from an initial perturbation is proposed, and it is shown how large-scale inhomogeneities can be generated when an initial soliton fragments into many others through the nonlinear action of the terms in the Korteweg-de Vries equation. A second model is examined which is based on the interaction of matter with a strong radiation field (an almost monochromatic photon gas) and which involves changes in the refractive index of the vacuum. It is found that matter and radiation will not mix if the radiation field has a nonuniform intensity and that the matter will separate into dense portions or 'cosmological protogalaxies'. The evolution of these portions of matter is studied, and it is found that conditions would be appropriate for the interface between them and the surrounding radiation field to become unstable, giving rise to a turbulent layer.

  16. First Detections of the [NII] 122 Micrometer Line at High Redshift: Demonstrating the Utility of the Line for Studying Galaxies in the Early Universe

    NASA Technical Reports Server (NTRS)

    Ferkinhoff, Carl; Brisbin, Drew; Nikola, Thomas; Parshley, Stephen C.; Stacey, Gordon J.; Phillips, Thomas G.; Falgarone, Edith; Benford, Dominic J.; Staguhn, Johannes G.; Tucker, Carol E.

    2011-01-01

    We report the first detections of the [NIl] 122 {\\mu} m line from a high redshift galaxy. The line was strongly (> 6{\\sigma}) detected from SMMJ02399-0136, and HI413+ 117 (the Cloverleaf QSO) using the Redshift(z) and Early Universe Spectrometer (ZEUS) on the CSO. The lines from both sources are quite bright with line-to-FIR continuum luminosity ratios that are approx.7.0x10(exp -4) (Cloverleaf) and 2.1x10(exp -3) (SMMJ02399). With ratios 2-10 times larger than the average value for nearby galaxies, neither source exhibits the line-to-continuum deficits seen in nearby sources. The line strengths also indicate large ionized gas fractions, approx.8 to 17% of the molecular gas mass. The [OIII]/[NII] line ratio is very sensitive to the effective temperature of ionizing stars and the ionization parameter for emission arising in the narrow-line region (NLR) of an AGN. Using our previous detection of the [01II] 88 {\\mu}m line, the [OIII]/ [NIl] line ratio for SMMJ02399-0136 indicates the dominant source of the line emission is either stellar HII regions ionized by 09.5 stars, or the NLR of the AGN with ionization parameter 10g(U) = -3.3 to -4.0. A composite system, where 30 to 50% of the FIR lines arise in the NLR also matches the data. The Cloverleaf is best modeled by a superposition of approx.200 M82like starbursts accounting for all of the FIR emission and 43% of the [NIl] line. The remainder may come from the NLR. This work demonstrates the utility of the [NIl] and [OIII] lines in constraining properties of the ionized medium.

  17. First Detections of the [N II] 122 micron Line at High Redshift: Demonstrating the Utility of the Line for Studying Galaxies in the Early Universe

    NASA Technical Reports Server (NTRS)

    Ferkinhoff, Carl; Brisbin, Drew; Nikola, Thomas; Parshley, Stephen C.; Stacey, Gordon J.; Phillips, Thomas G.; Falgarone, Edith; Benford, Dominic J.; Staguhn, Johannes G.; Tucker, Carol E.

    2011-01-01

    We report the first detections of the [N II] 122 micron line from a high-redshift galaxy. The line was strongly (>6(sigma)) detected from SMMJ02399-0136, and H1413 + 117 (the Cloverleaf QSO) using the Redshift (zeta) and Early Universe Spectrometer on the Caltech Submillimeter Observatory. The lines from both sources are quite bright with line to far-infrared (FIR) continuum luminosity ratios that are approx.7.0 x 10(exp -4) (Cloverleaf) and 2.1 x 10(exo -3) (SMMJ02399). With ratios 2-10 times larger than the average value for nearby galaxies, neither source exhibits the line to continuum deficits seen in nearby sources. The line strengths also indicate large ionized gas fractions, approx.8%-17% of the molecUlar gas mass. The [O III]/[N II] line ratio is very sensitive to the effective temperature of ionizing stars and the ionization parameter for emission arising in the narrow-line region (NLR) of an active galactic nucleus (AGN). Using Our previous detection of the [O III] 88 micron line, the [O III]/[N II]line ratio for SMMJ02399-0136 indicates that the dominant source of the line emission is either stellar H II regions ionized by O9.5 stars, or the NLR of the AGN with ionization parameter log(U) = -3.3 to -4.0. A composite system, where 30%-50% of the FIR lines arise in the NLR also matches the data. The Cloverleaf is best modeled by a superposition of approx.200 M82-like starbursts accounting for all of the FIR emission and 43% of the [N II]line. The remainder may come from the NLR. This war!< demonstrates the utility of the [N II] and [O III] lines in constraining properties of the ionized medium.

  18. The Early Retirees of Canadian Universities.

    ERIC Educational Resources Information Center

    Jefferson, Anne L.

    Because an option for early retirement in Canadian Universities has created a need to know more about the vacancies early retirement creates and the potential to fill these vacancies, a survey of 15 representative universities was conducted. The sample included institutions of faculty numbering less than 100 to institutions of faculty numbering…

  19. Early Retirement: The Cost to Canadian Universities.

    ERIC Educational Resources Information Center

    Jefferson, Anne L.

    A study examined effects of early retirement plans (ERP) at Canadian Universities. In response to current conditions within Canadian universities and a Canadian Supreme Court decision upholding mandatory retirement requirements, many universities have sought to encourage faculty retirement through ERPs. In order to study the cost of such programs,…

  20. Early Universe with CMB polarization

    NASA Astrophysics Data System (ADS)

    Souradeep, Tarun

    2011-12-01

    The Universe is the grandest conceivable scale on which the human mind can strive to understand nature. The amazing aspect of cosmology, the branch of science that attempts to understand the origin and evolution of the Universe, is that it is largely comprehensible by applying the same basic laws of physics that we use for other branches of physics. The observed cosmic microwave background (CMB) is understood by applying the basic laws of radiative processes and transfer, masterfully covered in the classic text by S. Chandrasekhar, in the cosmological context. In addition to the now widely acclaimed temperature anisotropy, there is also linear polarization information imprinted on the observed Cosmic Microwave background. CMB polarization already has addressed, and promises to do a lot more to unravel the deepest fundamental queries about physics operating close to the origin of the Universe.

  1. Nanotechnology for Early Cancer Detection

    PubMed Central

    Choi, Young-Eun; Kwak, Ju-Won; Park, Joon Won

    2010-01-01

    Vast numbers of studies and developments in the nanotechnology area have been conducted and many nanomaterials have been utilized to detect cancers at early stages. Nanomaterials have unique physical, optical and electrical properties that have proven to be very useful in sensing. Quantum dots, gold nanoparticles, magnetic nanoparticles, carbon nanotubes, gold nanowires and many other materials have been developed over the years, alongside the discovery of a wide range of biomarkers to lower the detection limit of cancer biomarkers. Proteins, antibody fragments, DNA fragments, and RNA fragments are the base of cancer biomarkers and have been used as targets in cancer detection and monitoring. It is highly anticipated that in the near future, we might be able to detect cancer at a very early stage, providing a much higher chance of treatment. PMID:22315549

  2. Nanotechnology for early cancer detection.

    PubMed

    Choi, Young-Eun; Kwak, Ju-Won; Park, Joon Won

    2010-01-01

    Vast numbers of studies and developments in the nanotechnology area have been conducted and many nanomaterials have been utilized to detect cancers at early stages. Nanomaterials have unique physical, optical and electrical properties that have proven to be very useful in sensing. Quantum dots, gold nanoparticles, magnetic nanoparticles, carbon nanotubes, gold nanowires and many other materials have been developed over the years, alongside the discovery of a wide range of biomarkers to lower the detection limit of cancer biomarkers. Proteins, antibody fragments, DNA fragments, and RNA fragments are the base of cancer biomarkers and have been used as targets in cancer detection and monitoring. It is highly anticipated that in the near future, we might be able to detect cancer at a very early stage, providing a much higher chance of treatment. PMID:22315549

  3. Particle physics in the very early universe

    NASA Technical Reports Server (NTRS)

    Schramm, D. N.

    1981-01-01

    Events in the very early big bang universe in which elementary particle physics effects may have been dominant are discussed, with attention to the generation of a net baryon number by way of grand unification theory, and emphasis on the possible role of massive neutrinos in increasing current understanding of various cosmological properties and of the constraints placed on neutrino properties by cosmology. It is noted that when grand unification theories are used to describe very early universe interactions, an initially baryon-symmetrical universe can evolve a net baryon excess of 10 to the -9th to 10 to the -11th per photon, given reasonable parameters. If neutrinos have mass, the bulk of the mass of the universe may be in the form of leptons, implying that the form of matter most familiar to physical science may not be the dominant form of matter in the universe.

  4. Disorder in the early universe

    NASA Astrophysics Data System (ADS)

    Green, Daniel

    2015-03-01

    Little is known about the microscopic physics that gave rise to inflation in our universe. There are many reasons to wonder if the underlying description requires a careful arrangement of ingredients or if inflation was the result of an essentially random process. At a technical level, randomness in the microphysics of inflation is closely related to disorder in solids. We develop the formalism of disorder for inflation and investigate the observational consequences of quenched disorder. We find that a common prediction is the presence of additional noise in the power spectrum or bispectrum. At a phenomenological level, these results can be recast in terms of a modulating field, allowing us to write the quadratic maximum likelihood estimator for this noise. Preliminary constraints on disorder can be derived from existing analyses but significant improvements should be possible with a dedicated treatment.

  5. Energy density fluctuations in early universe

    SciTech Connect

    Guardo, G. L.; Ruggieri, M.; Greco, V.

    2014-05-09

    The primordial nucleosinthesys of the element can be influenced by the transitions of phase that take place after the Big Bang, such as the QCD transition. In order to study the effect of this phase transition, in this work we compute the time evolution of thermodynamical quantities of the early universe, focusing on temperature and energy density fluctuations, by solving the relevant equations of motion using as input the lattice QCD equation of state to describe the strongly interacting matter in the early universe plasma. We also study the effect of a primordial strong magnetic field by means of a phenomenological equation of state. Our results show that small inhomogeneities of strongly interacting matter in the early Universe are moderately damped during the crossover.

  6. Quantum coherent oscillations in the early universe

    NASA Astrophysics Data System (ADS)

    Pikovski, Igor; Loeb, Abraham

    2016-05-01

    Cosmic inflation is commonly assumed to be driven by quantum fields. Quantum mechanics predicts phenomena such as quantum fluctuations and tunneling of the field. Here, we show an example of a quantum interference effect which goes beyond the semiclassical treatment and which may be of relevance in the early Universe. We study the quantum coherent dynamics for a tilted, periodic potential, which results in genuine quantum oscillations of the inflaton field, analogous to Bloch oscillations in condensed matter and atomic systems. The underlying quantum superpositions are typically very fragile but may persist in the early Universe giving rise to quantum interference phenomena in cosmology.

  7. Sterile neutrinos in the early universe

    SciTech Connect

    Malaney, R.A. ); Fuller, G.M. . Dept. of Physics)

    1990-11-14

    We discuss the role played by right-handed sterile neutrinos in the early universe. We show how well known {sup 4}He constraint on the number of relativistic degrees of freedom at early times limits the equilibration of the right handed neutrino sea with the background plasma. We discuss how this allows interesting constraints to be placed on neutrino properties. In particular, a new limit on the Dirac mass of the neutrino is presented. 12 refs.

  8. The Deuterium Chemistry of the Early Universe

    SciTech Connect

    Stancil, P.C.; Lepp, S.; Dalgarno, A.

    1998-12-01

    The chemistry of deuterium, as well as that of hydrogen and helium, in the postrecombination era of the expanding early universe is presented. A thorough survey of all potentially important gas-phase reactions involving the primordial elements produced in the Big Bang, with a particular emphasis on deuterium, is given. The reaction set, consisting of 144 processes, is used in a nonequilibrium chemistry model to follow the production of primordial molecules in the postrecombination era. It is found that significant deuterium fractionation occurs for HD{sup +}, HD, and H{sub 2}D{sup +}, while the abundance of D{sup +} is reduced compared to the proton abundance. Even with the enhanced fractionation of H{sub 2}D{sup +}, its abundance is predicted to be too small to cause any interesting cosmological consequences, such as possible attenuation of spatial anisotropies in the cosmic background radiation field, detections of the epochs of reionization and reheating, or constraints on the primordial deuterium abundance. HD, being the second most abundant primordial molecule after H{sub 2}, may play a role in subsequent structure formation because of its cooling radiation. {copyright} {ital {copyright} 1998.} {ital The American Astronomical Society}

  9. The California State University Early Assessment Program

    ERIC Educational Resources Information Center

    Knudson, Ruth E.; Zitzer-Comfort, Carol; Quirk, Matthew; Alexander, Pia

    2008-01-01

    The California State University (CSU) requires entering freshmen to be proficient in English reading and writing, as demonstrated on proficiency measures. Currently, approximately 46 percent of incoming college freshmen need remediation in English reading and writing. To assist these students, CSU instituted an Early Assessment Program (EAP),…

  10. Early Detection | Division of Cancer Prevention

    Cancer.gov

    This group supports research that seeks to determine the effectiveness, operating characteristics and clinical impact (harms as well as benefits) of cancer early detection technolog | Research on the effectiveness and clinical impact of early detection technologies and practices.

  11. WMAP - A Portrait of the Early Universe

    NASA Technical Reports Server (NTRS)

    Wollack, Edward J.

    2008-01-01

    A host of astrophysical observations suggest that early Universe was incredibly hot, dense, and homogeneous. A powerful probe of this time is provided by the relic radiation which we refer to today as the Cosmic Microwave Background (CMB). Images produced from this light contain the earliest glimpse of the Universe after the 'Big Bang' and the signature of the evolution of its contents. By exploiting these clues, constraints on the age, mass density, and geometry of the early Universe can be derived. A brief history of the evolution of the microwave radiometer systems and map making approaches used in advancing these aspects our understanding of cosmological will be reviewed. In addition, an overview of the results from NASA's Wilkinson Microwave Anisotropy (WMAP) will be presented.

  12. Early detection of pancreatic cancer

    PubMed Central

    Ahuja, Nita

    2015-01-01

    Pancreatic adenocarcinoma is a low-incident but highly mortal disease. It accounts for only 3% of estimated new cancer cases each year but is currently the fourth common cause of cancer mortality. By 2030, it is expected to be the 2nd leading cause of cancer death. There is a clear need to diagnose and classify pancreatic cancer at earlier stages in order to give patients the best chance at a definitive cure through surgery. Three precursor lesions that distinctly lead to pancreatic adenocarcinoma have been identified, and we have increasing understanding the non-genetic and genetic risk factors for the disease. With increased understanding about the risk factors, the familial patters, and associated accumulation of genetic mutations involved in pancreatic cancer, we know that there are mutations that occur early in the development of pancreatic cancer and that improved genetic risk-based strategies in screening for pancreatic cancer may be possible and successful at saving or prolonging lives. The remaining challenge is that current standards for diagnosing pancreatic cancer remain too invasive and too costly for widespread screening for pancreatic cancer. Furthermore, the promises of noninvasive methods of detection such as blood, saliva, and stool remain underdeveloped or lack robust testing. However, significant progress has been made, and we are drawing closer to a strategy for the screening and early detection of pancreatic cancer. PMID:26361402

  13. Early detection of lung cancer.

    PubMed

    Midthun, David E

    2016-01-01

    Most patients with lung cancer are diagnosed when they present with symptoms, they have advanced stage disease, and curative treatment is no longer an option. An effective screening test has long been desired for early detection with the goal of reducing mortality from lung cancer. Sputum cytology, chest radiography, and computed tomography (CT) scan have been studied as potential screening tests. The National Lung Screening Trial (NLST) demonstrated a 20% reduction in mortality with low-dose CT (LDCT) screening, and guidelines now endorse annual LDCT for those at high risk. Implementation of screening is underway with the desire that the benefits be seen in clinical practice outside of a research study format. Concerns include management of false positives, cost, incidental findings, radiation exposure, and overdiagnosis. Studies continue to evaluate LDCT screening and use of biomarkers in risk assessment and diagnosis in attempt to further improve outcomes for patients with lung cancer. PMID:27158468

  14. Early detection of lung cancer

    PubMed Central

    Midthun, David E.

    2016-01-01

    Most patients with lung cancer are diagnosed when they present with symptoms, they have advanced stage disease, and curative treatment is no longer an option. An effective screening test has long been desired for early detection with the goal of reducing mortality from lung cancer. Sputum cytology, chest radiography, and computed tomography (CT) scan have been studied as potential screening tests. The National Lung Screening Trial (NLST) demonstrated a 20% reduction in mortality with low-dose CT (LDCT) screening, and guidelines now endorse annual LDCT for those at high risk. Implementation of screening is underway with the desire that the benefits be seen in clinical practice outside of a research study format. Concerns include management of false positives, cost, incidental findings, radiation exposure, and overdiagnosis. Studies continue to evaluate LDCT screening and use of biomarkers in risk assessment and diagnosis in attempt to further improve outcomes for patients with lung cancer. PMID:27158468

  15. Protostar formation in the early universe.

    PubMed

    Yoshida, Naoki; Omukai, Kazuyuki; Hernquist, Lars

    2008-08-01

    The nature of the first generation of stars in the universe remains largely unknown. Observations imply the existence of massive primordial stars early in the history of the universe, and the standard theory for the growth of cosmic structure predicts that structures grow hierarchically through gravitational instability. We have developed an ab initio computer simulation of the formation of primordial stars that follows the relevant atomic and molecular processes in a primordial gas in an expanding universe. The results show that primeval density fluctuations left over from the Big Bang can drive the formation of a tiny protostar with a mass 1% that of the Sun. The protostar is a seed for the subsequent formation of a massive primordial star. PMID:18669856

  16. Exploring the Early Universe on Mobile Devices

    NASA Astrophysics Data System (ADS)

    Kocevski, Dale; McGrath, E. J.; CANDELS Collaboration

    2014-01-01

    The widespread adoption of smart phones and tablet computers has the potential to revolutionize the way in which educational material is shared with the general public. As part of the outreach effort for the CANDELS survey, we have developed a free interactive astronomy education application named Hubble Universe for iPad and iPhone devices. The application focuses on extragalactic science topics related to the CANDELS legacy survey, which is documenting galaxy evolution in the early universe. I will provide an overview of the application, which contains a wide range of interactive content, including 3D models of astrophysical phenomenon, informative diagrams and computer simulations. I will discuss how the application can be used to enhance classroom learning both by providing a database of interactive media and by encouraging students to explore astronomical topics away from traditional settings like the classroom or the desktop computer.

  17. Vorticity from Isocurvature in the Early Universe

    NASA Astrophysics Data System (ADS)

    Christopherson, Adam J.; Malik, Karim A.

    2015-01-01

    Vorticity is ubiquitous in nature however, to date, studies of vorticity in cosmology and the early universe have been quite rare. In this paper, based on a talk in session CM1 of the 13th Marcel Grossmann Meeting, we consider vorticity generation from scalar cosmological perturbations of a perfect fluid system. We show that, at second order in perturbation theory, vorticity is sourced by a coupling between energy density and entropy gradients, thus extending a well-known feature of classical fluid dynamics to a relativistic cosmological framework. This induced vorticity, sourced by isocurvature perturbations, may prove useful in the future as an additional discriminator between inflationary models.

  18. Electrical conductivity in the early universe

    NASA Astrophysics Data System (ADS)

    Baym, Gordon; Heiselberg, Henning

    1997-10-01

    We calculate the electrical conductivity in the early universe at temperatures below as well as above the electroweak vacuum scale, Tc~=100 GeV. Debye and dynamical screening of electric and magnetic interactions leads to a finite conductivity, σel~T/α ln(1/α), at temperatures well below Tc. At temperatures above, W+/- charge-exchange processes-analogous to color exchange through gluons in QCD-effectively stop left-handed charged leptons. However, right-handed leptons can carry current, resulting in σel/T being only a factor ~cos4 θW smaller than at temperatures below Tc.

  19. Early universe thermostatistics in curved momentum spaces

    NASA Astrophysics Data System (ADS)

    Gorji, M. A.; Hosseinzadeh, V.; Nozari, K.; Vakili, B.

    2016-03-01

    The theories known as doubly special relativity are introduced in order to take into account an observer-independent length scale and the speed of light in the framework of special relativity. These theories can be generally formulated on the de Sitter and also recently proposed anti-de Sitter momentum spaces. In the context of these theories, we study the statistical mechanics, and to do this, we consider the natural measure on the corresponding extended phase space. The invariant measure on the space of distinct microstates is obtained by restriction of the natural measure of the extended phase space to the physical phase space through the disintegration theorem. Having the invariant measure, one can study the statistical mechanics in an arbitrary ensemble for any doubly special relativity theory. We use the constructed setup to study the statistical properties of four doubly special relativity models. Applying the results to the case of early universe thermodynamics, we show that one of these models that is defined by the cosmological coordinatization of anti-de Sitter momentum space implies a finite total number of microstates. Therefore, without attribution to any ensemble density, and quite generally, we obtain entropy and internal energy bounds for the early radiation dominated universe. We find that while these results cannot be supported by the standard Friedmann equations, they indeed are in complete agreement with the nonsingular effective Friedmann equations that arise in the context of loop quantum cosmology.

  20. Elementary particles in the early Universe

    NASA Astrophysics Data System (ADS)

    Gromov, N. A.

    2016-03-01

    The high-temperature limit of the Standard Model generated by the contractions of gauge groups is discussed. Contraction parameters of gauge group SU(2) of the Electroweak Model and gauge group SU(3) of Quantum Chromodynamics are taken identical and tending to zero when the temperature increases. Properties of the elementary particles change drastically at the infinite temperature limit: all particles lose masses, all quarks are monochromatic. Electroweak interactions become long-range and are mediated by neutral currents. Particles of different kind do not interact. It looks like some stratification with only one sort of particles in each stratum. The Standard Model passes in this limit through several stages, which are distinguished by the powers of the contraction parameter. For any stage intermediate models are constructed and the exact expressions for the respective Lagrangians are presented. The developed approach describes the evolution of the Standard Model in the early Universe from the Big Bang up to the end of several nanoseconds.

  1. Clustering fossils from the early universe.

    PubMed

    Jeong, Donghui; Kamionkowski, Marc

    2012-06-22

    Many inflationary theories introduce new scalar, vector, or tensor degrees of freedom that may then affect the generation of primordial density perturbations. Here we show how to search a galaxy (or 21-cm) survey for the imprint of primordial scalar, vector, and tensor fields. These new fields induce local departures to an otherwise statistically isotropic two-point correlation function, or equivalently, nontrivial four-point correlation functions (or trispectra, in Fourier space), that can be decomposed into scalar, vector, and tensor components. We write down the optimal estimators for these various components and show how the sensitivity to these modes depends on the galaxy-survey parameters. New probes of parity-violating early-Universe physics are also presented. PMID:23004582

  2. Camera for Quasars in Early Universe (CQUEAN)

    NASA Astrophysics Data System (ADS)

    Park, Won-Kee; Pak, Soojong; Im, Myungshin; Choi, Changsu; Jeon, Yiseul; Chang, Seunghyuk; Jeong, Hyeonju; Lim, Juhee; Kim, Eunbin

    2012-08-01

    We describe the overall characteristics and the performance of an optical CCD camera system, Camera for Quasars in Early Universe (CQUEAN), which has been used at the 2.1 m Otto Struve Telescope of the McDonald Observatory since 2010 August. CQUEAN was developed for follow-up imaging observations of red sources such as high-redshift quasar candidates (z gsim 5), gamma-ray bursts, brown dwarfs, and young stellar objects. For efficient observations of the red objects, CQUEAN has a science camera with a deep-depletion CCD chip, which boasts a higher quantum efficiency at 0.7-1.1 μm than conventional CCD chips. The camera was developed in a short timescale (~1 yr) and has been working reliably. By employing an autoguiding system and a focal reducer to enhance the field of view on the classical Cassegrain focus, we achieve a stable guiding in 20 minute exposures, an imaging quality with FWHM>=0.6'' over the whole field (4.8' × 4.8'), and a limiting magnitude of z = 23.4 AB mag at 5-σ with 1 hr total integration time. This article includes data taken at the McDonald Observatory of The University of Texas at Austin.

  3. Nuclear matter in the early universe

    NASA Astrophysics Data System (ADS)

    Barros, Celso de Camargo; da Cunha, Ivan Eugênio

    2015-12-01

    Recently, extreme conditions have been obtained in ultra-relativistic heavy ion collisions at RHIC and at the Large Hadron collider. It is believed that these conditions are similar to the ones of the early Universe, in the time between 10-6s and 1s, approximately. In this work, the hadrons produced in this range of time will be studied, considering some aspects of the systems produced in the heavy-ion collisions. We will study a phase posterior to the phase transition (in fact it is believed to be a crossover) from the quark-gluon plasma, that is the hadronic phase of the Universe. We will show the model proposed in [1], considering the hadronic matter described by a relativistic model (similar to the Walecka model), considering particles described by quantum equations in a curved spacetime. This curvature is due to the mass and to the strong interactions that appears in the energy-momentum tensor. The set of the equations is proposed in the Robertson-Walker metric, and some approximate solutions are obtained.

  4. Nuclear matter in the early universe

    SciTech Connect

    Barros, Celso de Camargo; Cunha, Ivan Eugênio da

    2015-12-17

    Recently, extreme conditions have been obtained in ultra-relativistic heavy ion collisions at RHIC and at the Large Hadron collider. It is believed that these conditions are similar to the ones of the early Universe, in the time between 10{sup −6}s and 1s, approximately. In this work, the hadrons produced in this range of time will be studied, considering some aspects of the systems produced in the heavy-ion collisions. We will study a phase posterior to the phase transition (in fact it is believed to be a crossover) from the quark-gluon plasma, that is the hadronic phase of the Universe. We will show the model proposed in [1], considering the hadronic matter described by a relativistic model (similar to the Walecka model), considering particles described by quantum equations in a curved spacetime. This curvature is due to the mass and to the strong interactions that appears in the energy-momentum tensor. The set of the equations is proposed in the Robertson-Walker metric, and some approximate solutions are obtained.

  5. Early Detection of Huntington Disease

    PubMed Central

    Paulsen, Jane S.

    2013-01-01

    SUMMARY Huntington disease (HD) is a devastating illness, although its autosomal dominant genetic transmission allows a unique opportunity to study apparently healthy individuals before manifest disease. Attempts to study early disease are not unique in neurology (e.g., Mild Cognitive Impairment, Vascular Cognitive Impairment), but studying otherwise-healthy appearing individuals who will go on with nearly 99% certainty to manifest the symptoms of brain disease does provide distinct but valuable information about the true natural history of the disease. The field has witnessed an explosion of research examining possible early indicators of HD during what is now referred to as the “prodrome” of HD. A NIH study in its ninth year (PREDICT-HD) has offered a glimpse into the transition from an apparently healthy state to an obviously diseased state, and can serve as a model for many other genetic diseases, both neurological and non-neurological. PMID:24348095

  6. Early Detection of Sporadic Pancreatic Cancer

    PubMed Central

    Chari, Suresh T.; Kelly, Kimberly; Hollingsworth, Michael A.; Thayer, Sarah P.; Ahlquist, David A.; Andersen, Dana K.; Batra, Surinder K.; Brentnall, Teresa A.; Canto, Marcia; Cleeter, Deborah F.; Firpo, Matthew A.; Gambhir, Sanjiv Sam; Go, Vay Liang W.; Hines, O. Joe; Kenner, Barbara J.; Klimstra, David S.; Lerch, Markus M.; Levy, Michael J.; Maitra, Anirban; Mulvihill, Sean J.; Petersen, Gloria M.; Rhim, Andrew D.; Simeone, Diane M.; Srivastava, Sudhir; Tanaka, Masao; Vinik, Aaron I.; Wong, David

    2015-01-01

    Abstract Pancreatic cancer (PC) is estimated to become the second leading cause of cancer death in the United States by 2020. Early detection is the key to improving survival in PC. Addressing this urgent need, the Kenner Family Research Fund conducted the inaugural Early Detection of Sporadic Pancreatic Cancer Summit Conference in 2014 in conjunction with the 45th Anniversary Meeting of the American Pancreatic Association and Japan Pancreas Society. This seminal convening of international representatives from science, practice, and clinical research was designed to facilitate challenging interdisciplinary conversations to generate innovative ideas leading to the creation of a defined collaborative strategic pathway for the future of the field. An in-depth summary of current efforts in the field, analysis of gaps in specific areas of expertise, and challenges that exist in early detection is presented within distinct areas of inquiry: Case for Early Detection: Definitions, Detection, Survival, and Challenges; Biomarkers for Early Detection; Imaging; and Collaborative Studies. In addition, an overview of efforts in familial PC is presented in an addendum to this article. It is clear from the summit deliberations that only strategically designed collaboration among investigators, institutions, and funders will lead to significant progress in early detection of sporadic PC. PMID:25931254

  7. Kidney Disease: Early Detection and Treatment

    MedlinePlus

    ... Bar Home Current Issue Past Issues Special Section Kidney Disease: Early Detection and Treatment Past Issues / Winter ... called a "urine albumin-to-creatinine ratio." Treating Kidney Disease Kidney disease is usually a progressive disease, ...

  8. Kidney Disease: Early Detection and Treatment

    MedlinePlus

    ... Bar Home Current Issue Past Issues Special Section Kidney Disease: Early Detection and Treatment Past Issues / Winter 2008 ... called a "urine albumin-to-creatinine ratio." Treating Kidney Disease Kidney disease is usually a progressive disease, which ...

  9. Breast Cancer Prevention and Early Detection

    MedlinePlus

    ... saved articles window. My Saved Articles » My ACS » Breast Cancer Prevention and Early Detection Download Printable Version [PDF] » ( ... the factors that may affect your risk for breast cancer, and find out what you can do to ...

  10. Early detection of contagious diseases

    DOEpatents

    Colston, Jr., Billy W.; Milanovich, Fred P.; Estacio, Pedro; Chang, John

    2011-08-09

    This invention provides an electronic proximity apparatus and a surveillance method using such an apparatus for alerting individuals that are exposed to a contagious disease. When a person becomes symptomatic and is diagnosed as positive for a given contagious agent, individuals that have recently maintained a threshold proximity with respect to an infected individual are notified and advised to seek immediate medial care. Treatment of individuals in the very early phases of infection (pre-symptomatic) significantly reduces contagiousness of the infected population first exposed to the contagious disease, thus preventing spread of the disease throughout the general population.

  11. Phonological universals in early childhood: Evidence from sonority restrictions

    PubMed Central

    Berent, Iris; Harder, Katherine; Lennertz, Tracy

    2012-01-01

    Across languages, onsets with large sonority distances are preferred to those with smaller distances (e.g., bw>bd>lb; Greenberg, 1978). Optimality theory (Prince & Smolensky, 2004) attributes such facts to grammatical restrictions that are universally active in all grammars. To test this hypothesis, here, we examine whether children extend putatively universal sonority restrictions to onsets unattested in their language. Participants (M=4;04 years) were presented with pairs of auditory words—either identical (e.g., lbif→lbif) or epenthetically related (e.g., lbif→lebif)—and asked to judge their identity. Results showed that, like adults, children’s ability to detect epenthetic distortions was monotonically related to sonority distance (bw>bd>lb), and their performance was inexplicable by several statistical and phonetic factors. These findings suggest that sonority restrictions are active in early childhood and their scope is broad. PMID:22328807

  12. GRB Probes of the Early Universe with EXIST

    SciTech Connect

    Grindlay, Jonathan E.

    2010-10-15

    With the Swift detection of GRB090423 at z = 8.2, it was confirmed that GRBs are now detectable at (significantly) larger redshifts than AGN, and so can indeed be used as probes of the Early Universe. The Energetic X-ray Imaging Survey Telescope (EXIST) mission has been designed to detect and promptly measure redshifts and both soft X-ray (0.1-10 keV) and simultaneous nUV-nIR (0.3-2.3 microns) imaging and spectra for GRBs out to redshifts z{approx}18, which encompasses (or even exceeds) current estimates for Pop III stars that are expected to be massive and possibly GRB sources. Scaling from Swift for the {approx}10X greater sensitivity of EXIST, more than 100 GRBs at z{>=} 8 may be detected and would provide direct constraints on the formation and evolution of the first stars and galaxies. For GRBs at redshifts z{>=} 8, with Lyman breaks at greater than 1.12 microns, spectra at resolution R = 30 or R = 3000 for afterglows with AB magnitudes brighter than 24 or 20 (respectively) within {approx}3000 sec of trigger will directly probe the Epoch of Reionization, formation of galaxies, and cosmic star formation rate. The proposed EXIST mission can probe these questions, and many others, given its unparalleled combination of sensitivity and spatial-spectral-temporal coverage and resolution. Here we provide an overview of the key science objectives for GRBs as probes of the early Universe and of extreme physics, and the mission plan and technical readiness to bring this to EXIST.

  13. Black holes in the early Universe.

    PubMed

    Volonteri, Marta; Bellovary, Jillian

    2012-12-01

    The existence of massive black holes (MBHs) was postulated in the 1960s, when the first quasars were discovered. In the late 1990s their reality was proven beyond doubt in the Milky way and a handful nearby galaxies. Since then, enormous theoretical and observational efforts have been made to understand the astrophysics of MBHs. We have discovered that some of the most massive black holes known, weighing billions of solar masses, powered luminous quasars within the first billion years of the Universe. The first MBHs must therefore have formed around the time the first stars and galaxies formed. Dynamical evidence also indicates that black holes with masses of millions to billions of solar masses ordinarily dwell in the centers of today's galaxies. MBHs populate galaxy centers today, and shone as quasars in the past; the quiescent black holes that we detect now in nearby bulges are the dormant remnants of this fiery past. In this review we report on basic, but critical, questions regarding the cosmological significance of MBHs. What physical mechanisms led to the formation of the first MBHs? How massive were the initial MBH seeds? When and where did they form? How is the growth of black holes linked to that of their host galaxy? The answers to most of these questions are works in progress, in the spirit of these reports on progress in physics. PMID:23099537

  14. Universal HbA1c Measurement in Early Pregnancy to Detect Type 2 Diabetes Reduces Ethnic Disparities in Antenatal Diabetes Screening: A Population-Based Observational Study

    PubMed Central

    2016-01-01

    In response to the type 2 diabetes epidemic, measuring HbA1c with the first-antenatal blood screen was recently recommended in NZ. This would enable prompt treatment of women with unrecognised type 2 diabetes, who may otherwise go undetected until the gestational diabetes (GDM) screen. We compare inter-ethnic antenatal screening practices to examine whether the HbA1c test would be accessed by ethnicities most at risk of diabetes, and we determined the prevalence of unrecognised type 2 diabetes and prediabetes in our pregnant population. This is an observational study of pregnancies in Christchurch NZ during 2008–2010. Utilising electronic databases, we matched maternal characteristics to first-antenatal bloods, HbA1c, and GDM screens (glucose challenge tests and oral glucose tolerance tests). Overall uptake of the first-antenatal bloods versus GDM screening was 83.1% and 53.8% respectively in 11,580 pregnancies. GDM screening was lowest in Māori 39.3%, incidence proportion ratio (IPR) 0.77 (0.71, 0.84) compared with Europeans. By including HbA1c with the first-antenatal bloods, the number screened for diabetes increases by 28.5% in Europeans, 40.0% in Māori, 28.1% in Pacific People, and 26.7% in ‘Others’ (majority of Asian descent). The combined prevalence of unrecognised type 2 diabetes and prediabetes by NZ criteria, HbA1c ≥5.9% (41mmol/mol), was 2.1% in Europeans, Māori 4.7% IPR 2.59 (1.71, 3.93), Pacific People 9.5% IPR 4.76 (3.10, 7.30), and ‘Others’ 6.2% IPR 2.99 (2.19, 4.07). Applying these prevalence data to 2013 NZ national births data, routine antenatal HbA1c testing could have identified type 2 diabetes in 0.44% and prediabetes in 3.96% of women. Routine HbA1c measurement in early pregnancy is an ideal screening opportunity, particularly benefitting vulnerable groups, reducing ethnic disparities in antenatal diabetes screening. This approach is likely to have world-wide relevance and applicability. Further research is underway to establish

  15. Love and Work: The Legacy of Early University Entrance

    ERIC Educational Resources Information Center

    Noble, Kathleen D.; Vaughan, Robert C.; Chan, Christina; Childers, Sarah; Chow, Bryan; Federow, Ariel; Hughes, Sean

    2007-01-01

    This is the second follow-up study of the Early Entrance Program at the University of Washington. Ninety-five individuals (45%) participated. Respondents overwhelmingly chose early university entrance because they were excited to learn; many also praised the peer group, intellectual stimulation, and faculty and staff support. Some reported feeling…

  16. Cosmic Radiation Fields: Sources in the early Universe

    NASA Astrophysics Data System (ADS)

    Raue, Martin; Kneiske, Tanja; Horns, Dieter; Elsaesser, Dominik; Hauschildt, Peter

    The workshop "Cosmic Radiation Fields - Sources in the Early Universe" (CRF 2010) focuses on the connection between the extragalactic infrared background and sources in the early universe, in particular stars powered by dark matter burning (Dark Stars; DS). The workshop covers the following topics: the cosmic infrared background, formation of early stars, dark stars, effect of dark matter in the early universe, dark matter halos, primordial star formation rate, and reionization. Further information can be found on the conference webpage: http://www.desy.de/crf2010/. Organizing committee: Tanja Kneiske, Martin Raue, Dominik Elsaesser, Alexander Gewering-Peine, Peter Hausschildt, Dieter Horns, and Andreas Maurer.

  17. Early Detection of Sporadic Pancreatic Cancer

    PubMed Central

    Kenner, Barbara J.; Chari, Suresh T.; Cleeter, Deborah F.; Go, Vay Liang W.

    2015-01-01

    Abstract Innovation leading to significant advances in research and subsequent translation to clinical practice is urgently necessary in early detection of sporadic pancreatic cancer. Addressing this need, the Early Detection of Sporadic Pancreatic Cancer Summit Conference was conducted by Kenner Family Research Fund in conjunction with the 2014 American Pancreatic Association and Japan Pancreas Society Meeting. International interdisciplinary scientific representatives engaged in strategic facilitated conversations based on distinct areas of inquiry: Case for Early Detection: Definitions, Detection, Survival, and Challenges; Biomarkers for Early Detection; Imaging; and Collaborative Studies. Ideas generated from the summit have led to the development of a Strategic Map for Innovation built upon 3 components: formation of an international collaborative effort, design of an actionable strategic plan, and implementation of operational standards, research priorities, and first-phase initiatives. Through invested and committed efforts of leading researchers and institutions, philanthropic partners, government agencies, and supportive business entities, this endeavor will change the future of the field and consequently the survival rate of those diagnosed with pancreatic cancer. PMID:25938853

  18. Detection and Characterization of Early Atherosclerosis

    PubMed Central

    Barnes, R. W.; Bond, M. G.; Riley, W. A.; Czapla, L.; Mazzola, C. J.; Birdwell, J. D.

    1983-01-01

    Early stages of atherosclerosis in human subjects can be detected by lumen diameter and the pressure-strain elastic modulus. Results from non-human primate studies show that the intima thickens increasing the area enclosed by the elastic lamina. During this time the artery dilates so that the lumen area remains essentially constant. Only after the artery reaches its elastic limit does the lumen area decrease. Accurate measurements of arterial wall thickness and lumen diameter at diastole are important to the early detection of atherosclerosis. Axial resolutions of less than 0.1mm are required to detect tissue layers within the arterial wall itself. Two approaches and results of high axial resolution, deconvolution and high axial pulse generation, meeting range resolution requirements are presented.

  19. Generation and amplification of magnetic fields in the early Universe

    NASA Astrophysics Data System (ADS)

    Stone, James M.

    A very brief review is given of processes that may be responsible for the generation of initial seed magnetic fields in the early Universe, and that can amplify those fields to the levels observed in galaxies in the current epoch.

  20. Blast from the Past Gives Clues About Early Universe

    NASA Astrophysics Data System (ADS)

    2009-10-01

    Astronomers using the National Science Foundation's Very Large Array (VLA) radio telescope have gained tantalizing insights into the nature of the most distant object ever observed in the Universe -- a gigantic stellar explosion known as a Gamma Ray Burst (GRB). The explosion was detected on April 23 by NASA's Swift satellite, and scientists soon realized that it was more than 13 billion light-years from Earth. It represents an event that occurred 630 million years after the Big Bang, when the Universe was only four percent of its current age of 13.7 billion years. This explosion provides an unprecedented look at an era when the Universe was very young and also was undergoing drastic changes. The primal cosmic darkness was being pierced by the light of the first stars and the first galaxies were beginning to form. The star that exploded in this event was a member of one of these earliest generations of stars," said Dale Frail of the National Radio Astronomy Observatory. Astronomers turned telescopes from around the world to study the blast, dubbed GRB 090423. The VLA first looked for the object the day after the discovery, detected the first radio waves from the blast a week later, then recorded changes in the object until it faded from view more than two months later. "It's important to study these explosions with many kinds of telescopes. Our research team combined data from the VLA with data from X-ray and infrared telescopes to piece together some of the physical conditions of the blast," said Derek Fox of Pennsylvania State University. "The result is a unique look into the very early Universe that we couldn't have gotten any other way," he added. The scientists concluded that the explosion was more energetic than most GRBs, was a nearly-spherical blast, and that it expanded into a tenuous and relatively uniform gaseous medium surrounding the star. Astronomers suspect that the very first stars in the Universe were very different -- brighter, hotter, and more

  1. [Screening programs for early detection of psychosis?].

    PubMed

    Cougnard, Audrey; Verdoux, Hélène

    2006-03-01

    Programs for the early detection of psychosis are currently underway in most developed countries. Their aim is to improve the outcome of subjects with psychotic disorders, but neither their feasibility nor their usefulness was assessed before their implementation. The postulate underlying these programs - that early treatment improves the prognosis of psychosis - has not yet been demonstrated. The absence of effective and adequately specific screening tests implies that a substantial number of the subjects evaluated may be incorrectly diagnosed with and treated for psychoses (false positives). Development of facilities specializing in the assessment and care of subjects with early psychosis often implies a decrease in funding for facilities caring for patients with chronic psychoses. Educational and information campaigns aimed at the general public and health professionals, on the other hand, may help reduce the stigma associated with psychosis and improve access to care for subjects in early stages of psychosis. Risk/benefit and cost/benefit analyses of programs for the early detection of psychosis must be evaluated before promoting their development. PMID:16550146

  2. Inflationary gravitational waves and the evolution of the early universe

    SciTech Connect

    Jinno, Ryusuke; Moroi, Takeo; Nakayama, Kazunori E-mail: moroi@hep-th.phys.s.u-tokyo.ac.jp

    2014-01-01

    We study the effects of various phenomena which may have happened in the early universe on the spectrum of inflationary gravitational waves. The phenomena include phase transitions, entropy productions from non-relativistic matter, the production of dark radiation, and decoupling of dark matter/radiation from thermal bath. These events can create several characteristic signatures in the inflationary gravitational wave spectrum, which may be direct probes of the history of the early universe and the nature of high-energy physics.

  3. A Universal Early Childhood Education System

    ERIC Educational Resources Information Center

    Brown, Christopher P.

    2006-01-01

    In this article, the author demonstrates how the current emphasis on viewing early childhood education (ECE) as an investment keeps ECE at the margins of U.S. political debates as well as in other discussions around the world. Historically, the field of ECE in the United States has struggled, and continues to struggle, for political positioning.…

  4. Universal fieldable assay with unassisted visual detection

    NASA Technical Reports Server (NTRS)

    Chelyapov, Nicolas (Inventor)

    2012-01-01

    A universal detection system based on allosteric aptamers, signal amplification cascade, and eye-detectable phrase transition. A broadly applicable homogeneous detection system is provided. It utilizes components of the blood coagulation cascade in the presence of polystyrene microspheres (MS) as a signal amplifier. Russell's viper venom factor X activator (RVV-X) triggers the cascade, which results in an eye-visible phase transition--precipitation of MS bound to clotted fibrin. An allosteric RNA aptamer, RNA132, with affinity for RVV-X and human vascular endothelial growth factor (VEGF.sub.165) was created. RNA132 inhibits enzymatic activity of RVV-X. The effector molecule, VEGF.sub.165, reverses the inhibitory activity of RNA132 on RVV-X and restores its enzymatic activity, thus triggering the cascade and enabling the phase transition. Similar results were obtained for another allosteric aptamer modulated by a protein tyrosine phosphatase. The assay is instrumentation-free for both processing and readout.

  5. Australian Early Childhood Educators: From Government Policy to University Practice

    ERIC Educational Resources Information Center

    Davies, Sharon; Trinidad, Sue

    2013-01-01

    This article provides an overview of the Australian Federal Government initiatives in the area of early childhood with regard to the provision of early childhood education and care. These changes have influenced a Western Australian university to develop an innovative birth to 8 years preservice educator education curriculum. Using an ecological…

  6. Nuclear processes in the early Universe

    NASA Astrophysics Data System (ADS)

    Reeves, H.

    PART I The thermal history of matter Cosmic densities Reaching for the past Cosmic time scales The expansion time scale The reaction time scales Primordial nucleosynthesis Nucleosynthetic yields Testing cosmological models Proliferation of particle families Evidence from the width of the Z Evidence from mass renormalization Evidence from primordial nucleosynthesis A multidimensional universe PART II The cosmic quark-haron phase transition Recipes for the glue The phase diagram Exploring the phase diagram The bag models Following the path of the stars

  7. [Early detection and treatment of strabismus].

    PubMed

    Mojon, Daniel

    2016-01-01

    An early diagnosis of strabismus is important in order to rule out treatable organic causes and in children, if indicated, to start as early as possible with an amblyopia treatment. Early detection will also decrease the risk for accidents secondary to diplopia, to the loss of binocular vision and to the restriction of the binocular visual field in case of esodeviations. The following therapeutic options exist: in some cases the prescription of the correct refraction will be sufficient, for small deviations a prismatic correction may allow a longstanding treatment, for larger or incomitant deviations strabismus surgery will be necessary, which nowadays can be performed using minimal-invasive technique on an outpatient base. PMID:26982644

  8. Prevention and early detection of prostate cancer.

    PubMed

    Cuzick, Jack; Thorat, Mangesh A; Andriole, Gerald; Brawley, Otis W; Brown, Powel H; Culig, Zoran; Eeles, Rosalind A; Ford, Leslie G; Hamdy, Freddie C; Holmberg, Lars; Ilic, Dragan; Key, Timothy J; La Vecchia, Carlo; Lilja, Hans; Marberger, Michael; Meyskens, Frank L; Minasian, Lori M; Parker, Chris; Parnes, Howard L; Perner, Sven; Rittenhouse, Harry; Schalken, Jack; Schmid, Hans-Peter; Schmitz-Dräger, Bernd J; Schröder, Fritz H; Stenzl, Arnulf; Tombal, Bertrand; Wilt, Timothy J; Wolk, Alicja

    2014-10-01

    Prostate cancer is a common malignancy in men and the worldwide burden of this disease is rising. Lifestyle modifications such as smoking cessation, exercise, and weight control offer opportunities to reduce the risk of developing prostate cancer. Early detection of prostate cancer by prostate-specific antigen (PSA) screening is controversial, but changes in the PSA threshold, frequency of screening, and the use of other biomarkers have the potential to minimise the overdiagnosis associated with PSA screening. Several new biomarkers for individuals with raised PSA concentrations or those diagnosed with prostate cancer are likely to identify individuals who can be spared aggressive treatment. Several pharmacological agents such as 5α-reductase inhibitors and aspirin could prevent development of prostate cancer. In this Review, we discuss the present evidence and research questions regarding prevention, early detection of prostate cancer, and management of men either at high risk of prostate cancer or diagnosed with low-grade prostate cancer. PMID:25281467

  9. Cosmic microwave background and first molecules in the early universe

    NASA Astrophysics Data System (ADS)

    Signore, Monique; Puy, Denis

    2009-01-01

    Besides the Hubble expansion of the universe, the main evidence in favor of the big-bang theory was the discovery, by Penzias and Wilson, of the cosmic microwave background (hereafter CMB) radiation. In 1990, the COBE satellite (Cosmic Background Explorer) revealed an accurate black-body behavior with a temperature around 2.7 K. Although the microwave background is very smooth, the COBE satellite did detect small variations—at the level of one part in 100 000—in the temperature of the CMB from place to place in the sky. These ripples are caused by acoustic oscillations in the primordial plasma. While COBE was only sensitive to long-wavelength waves, the Wilkinson Microwave Anisotropy Probe (WMAP)—with its much higher resolution—reveals that the CMB temperature variations follow the distinctive pattern predicted by cosmological theory. Moreover, the existence of the microwave background allows cosmologists to deduce the conditions present in the early stages of the big bang and, in particular, helps to account for the chemistry of the universe. This report summarizes the latest measurements and studies of the CMB with the new calculations about the formation of primordial molecules. The PLANCK mission—planned to be launched in 2009—is also presented.

  10. Early detection of Alzheimer's disease using neuroimaging.

    PubMed

    Mosconi, Lisa; Brys, Miroslaw; Glodzik-Sobanska, Lidia; De Santi, Susan; Rusinek, Henry; de Leon, Mony J

    2007-01-01

    Neuroimaging is being increasingly used to complement clinical assessments in the early detection of Alzheimer's disease (AD). Structural magnetic resonance imaging (MRI) and metabolic positron emission tomography (FDG-PET) are the most clinically used and promising modalities to detect brain abnormalities in individuals who might be at risk for AD but who have not yet developed symptoms. The knowledge of established risk factors for AD enabled investigators to develop enrichment strategies for longitudinal imaging studies to reduce the sample sizes and study duration. The present review focuses on the results obtained by MRI and FDG-PET studies that examined the preclinical AD stages in several at risk populations: (1) individuals from families with autosomal dominant early-onset AD (FAD), (2) patients with mild cognitive impairment (MCI), particularly in memory, who are at very high risk for declining to AD with an estimated decline rate of 10-30% per year, (3) normal young and middle-age subjects carriers of known susceptibility genes for late-onset AD such as the Apolipoprotein E (ApoE) E4 allele, and (4) as age is the main risk factor for AD, normal elderly individuals followed to the onset of MCI and AD. Overall, these studies show that the use of imaging for the early detection of AD is successful even in the earlier stages of disease when clinical symptoms are not fully expressed and the regional brain damage may be limited. PMID:16839732

  11. Early neuropsychological detection of Alzheimer's disease.

    PubMed

    Bastin, C; Salmon, E

    2014-11-01

    Lifestyle modification offers a promising way of preventing or delaying Alzheimer's disease (AD). In particular, nutritional interventions can contribute to decrease the risk of dementia. The efficacy of such interventions should be assessed in individuals thought to be prone to AD. It is therefore necessary to identify markers that may help detecting AD as early as possible. This review will focus on subtle neuropsychological changes that may already exist in the predementia phase, and that could point to individuals at risk of dementia. Episodic memory decline appears consistently as the earliest sign of incipient typical AD. An episodic memory test that ensures deep encoding of information and assesses retrieval with free as well as cued recall appears as a useful tool to detect patients at an early stage of AD. Beyond the memory domain, category verbal fluency has been shown to decline early and to predict progression to AD. Moreover, in line with current diagnosis criteria for prodromal AD, combining neuropsychological scores and neuroimaging data allows a better discrimination of future AD patients than neuroimaging or neuropsychological data alone. Altogether, the detection of cognitive changes that are predictive of the typical form of probable AD already in the predementia stage points to at risk people who are the best target for therapeutic interventions, such as nutrition or physical exercise counseling or dietary interventions. PMID:25182019

  12. The spatially flat Friedmann equation for early rainbow universe

    NASA Astrophysics Data System (ADS)

    Ch'Ng, Han Siong; Gopir, Geri; Radiman, Shahidan

    2015-08-01

    We derive the spatially flat rainbow-Friedmann equation from de Broglie-Bohm interpretation in canonical quantum cosmology. Our result shows that the spatially flat rainbow-Friedmann equations of early and late-time universe are having different forms. The spatially flat rainbow-Friedmann equation of early universe which is obtained in this paper is quite different from the one which was initially derived by Magueijo and Smolin [Class. Quantum Grav. 21, 1725 (2004)]. However, the spatially flat rainbow-Friedmann equation for late-time universe obtained in this paper is found to be the same as the one derived by Magueijo and Smolin (for the case k = 0 and Newton’s gravitational constant G(E) = G0). The new spatially flat rainbow-Friedmann equation obtained in this paper could provide an alternative way in understanding the evolution of the early rainbow universe.

  13. Mortality modeling of early detection programs.

    PubMed

    Lee, Sandra J; Zelen, Marvin

    2008-06-01

    Consider a group of subjects who are offered an opportunity to receive a sequence of periodic special examinations for the purpose of diagnosing a chronic disease earlier relative to usual care. The mortality for the early detection group is to be compared with a group receiving usual care. Benefit is reflected in a potential reduction in mortality. This article develops a general probability model that can be used to predict cumulative mortality for each of these groups. The elements of the model assume (i) a four-state progressive disease model in which a subject may be in a disease-free state (or a disease state that cannot be detected), preclinical disease state (capable of being diagnosed by a special exam), clinical state (diagnosis by usual care), and a death state; (ii) age-dependent transitions into the states; (iii) age-dependent examination sensitivity; (iv) age-dependent sojourn time in each state; and (v) the distribution of disease stages on diagnosis conditional on modality of detection. The model may be used to (i) compare mortality rates for different screening schedules; (ii) explore potential benefit of subpopulations; and (iii) compare relative reductions in disease-specific mortality due to advances and dissemination of both treatment and early detection screening programs. PMID:17725809

  14. Dust-free quasars in the early Universe.

    PubMed

    Jiang, Linhua; Fan, Xiaohui; Brandt, W N; Carilli, Chris L; Egami, Eiichi; Hines, Dean C; Kurk, Jaron D; Richards, Gordon T; Shen, Yue; Strauss, Michael A; Vestergaard, Marianne; Walter, Fabian

    2010-03-18

    The most distant quasars known, at redshifts z approximately 6, generally have properties indistinguishable from those of lower-redshift quasars in the rest-frame ultraviolet/optical and X-ray bands. This puzzling result suggests that these distant quasars are evolved objects even though the Universe was only seven per cent of its current age at these redshifts. Recently one z approximately 6 quasar was shown not to have any detectable emission from hot dust, but it was unclear whether that indicated different hot-dust properties at high redshift or if it is simply an outlier. Here we report the discovery of a second quasar without hot-dust emission in a sample of 21 z approximately 6 quasars. Such apparently hot-dust-free quasars have no counterparts at low redshift. Moreover, we demonstrate that the hot-dust abundance in the 21 quasars builds up in tandem with the growth of the central black hole, whereas at low redshift it is almost independent of the black hole mass. Thus z approximately 6 quasars are indeed at an early evolutionary stage, with rapid mass accretion and dust formation. The two hot-dust-free quasars are likely to be first-generation quasars born in dust-free environments and are too young to have formed a detectable amount of hot dust around them. PMID:20237563

  15. Method for early detection of infectious mononucleosis

    DOEpatents

    Willard, K.E.

    1982-08-10

    Early detection of infectious mononucleosis is carried out using a sample of human blood by isolating and identifying the presence of Inmono proteins in the sample from a two-dimensional protein map with the proteins being characterized by having isoelectric banding as measured in urea of about -16 to -17 with respect to certain isoelectric point standards and molecular mass of about 70 to 75 K daltons as measured in the presence of sodium dodecylsulfate containing polyacrylamide gels, the presence of the Inmono proteins being correlated with the existence of infectious mononucleosis.

  16. Star formation in the early universe

    NASA Astrophysics Data System (ADS)

    Bromm, Volker

    We investigate the formation of the first stars in the universe. In the context of hierarchical models of structure formation, these Population III stars are expected to form in high or peaks of mass ˜106 M⊙ , collapsing at redshifts ≃20-30. We present an exploratory survey, based on numerical simulations using the SPH method. The main results are: (1) Just before the onset of gravitational instability, the primordial gas attains a characteristic temperature of a few 100 K, and a density of 103-104cm-3, with corresponding Jeans mass MJ of ˜10 3 M⊙ . These characteristic values have robust explanation in the microphysics of H2 cooling, related to the minimum temperature that can be reached with the H2 coolant, and to the critical density at which the transition takes place between levels being populated according to NLTE, and according to LTE. The gas fragments into clumps with initial masses close to MJ. This result is remarkably insensitive to the initial conditions, and suggests that the first stars might have been quite massive. (2) The later evolutionary stages, during which the clumps grow in mass due to accretion and merging with other clumps, are quite sensitive to the initial conditions. The key process in building up very massive clumps, with masses up to a few times 104 M⊙ , is merging. (3) We follow the collapse of a clump up to central densities of ˜1014cm-3. Three-body reactions are very efficient in converting the hydrogen into fully molecular form. A central core of ˜102 M⊙ is in a state of free-fall, leaving behind an extended envelope with an isothermal profile. No further subfragmentation is seen. (4) We calculate the generic spectral signature of a population of massive stars at high redshifts. The production rate of ionizing radiation per stellar mass by stars more massive than ˜100 M⊙ is larger by ˜1 order of magnitude for hydrogen and He I, and by ˜2 orders of magnitude for He II, than the emission from a Salpeter IMF.

  17. Noninvasive strategies for breast cancer early detection.

    PubMed

    Trecate, Giovanna; Sinues, Pablo Martinez-Lozano; Orlandi, Rosaria

    2016-06-01

    Breast cancer screening and presurgical diagnosis are currently based on mammography, ultrasound and more sensitive imaging technologies; however, noninvasive biomarkers represent both a challenge and an opportunity for early detection of cancer. An extensive number of potential breast cancer biomarkers have been discovered by microarray hybridization or sequencing of circulating DNA, noncoding RNA and blood cell RNA; multiplex analysis of immune-related molecules and mass spectrometry-based approaches for high-throughput detection of protein, endogenous peptides, circulating and volatile metabolites. However, their medical relevance and their translation to clinics remain to be exploited. Once they will be fully validated, cancer biomarkers, used in combination with the current and emerging imaging technologies, represent an avenue to a personalized breast cancer diagnosis. PMID:27044539

  18. About the Early Detection Research Group | Division of Cancer Prevention

    Cancer.gov

    The Early Detection Research Group supports research that seeks to determine the effectiveness, operating characteristics and clinical impact (harms as well as benefits) of cancer early detection technologies and practices, such as imaging and molecular biomarker approaches.  The group ran two large-scale early detection trials for which data and biospecimens are available for additional research: |

  19. Life Detection on the Early Earth

    NASA Technical Reports Server (NTRS)

    Runnegar, B.

    2004-01-01

    Finding evidence for first the existence, and then the nature of life on the early Earth or early Mars requires both the recognition of subtle biosignatures and the elimination of false positives. The history of the search for fossils in increasingly older Precambrian strata illustrates these difficulties very clearly, and new observational and theoretical approaches are both needed and being developed. At the microscopic level of investigation, three-dimensional morphological characterization coupled with in situ chemical (isotopic, elemental, structural) analysis is the desirable first step. Geological context is paramount, as has been demonstrated by the controversies over AH84001, the Greenland graphites, and the Apex chert microfossils . At larger scales, the nature of sedimentary bedforms and the structures they display becomes crucial, and here the methods of condensed matter physics prove most useful in discriminating between biological and non-biological constructions. Ultimately, a combination of geochemical, morphological, and contextural evidence may be required for certain life detection on the early Earth or elsewhere.

  20. Prevention and Early Detection of Prostate Cancer

    PubMed Central

    Cuzick, Jack; Thorat, Mangesh A.; Andriole, Gerald; Brawley, Otis W.; Brown, Powel H.; Culig, Zoran; Eeles, Rosalind A.; Ford, Leslie G.; Hamdy, Freddie C.; Holmberg, Lars; Ilic, Dragan; Key, Timothy J.; La Vecchia, Carlo; Lilja, Hans; Marberger, Michael; Meyskens, Frank L.; Minasian, Lori M.; Parker, Chris; Parnes, Howard L.; Perner, Sven; Rittenhouse, Harry; Schalken, Jack; Schmid, Hans-Peter; Schmitz-Dräger, Bernd J.; Schröder, Fritz H.; Stenzl, Arnulf; Tombal, Bertrand; Wilt, Timothy J.; Wolk, Alicja

    2014-01-01

    Prostate cancer is one of the most common cancers in men and the global burden of this disease is rising. Lifestyle modifications like smoking cessation, exercise and weight control offer opportunities to decrease the risk of developing prostate cancer. Early detection of prostate cancer by PSA screening remains controversial; yet, changes in PSA threshold, frequency of screening, and addition of other biomarkers have potential to minimise overdiagnosis associated with PSA screening. Several new biomarkers appear promising in individuals with elevated PSA levels or those diagnosed with prostate cancer, these are likely to guide in separating individuals who can be spared of aggressive treatment from those who need it. Several pharmacological agents like 5α-reductase inhibitors, aspirin etc. have a potential to prevent development of prostate cancer. In this review, we discuss the current evidence and research questions regarding prevention, early detection of prostate cancer and management of men either at high risk of prostate cancer or diagnosed with low-grade prostate cancer. PMID:25281467

  1. Malignant external otitis: early scintigraphic detection

    SciTech Connect

    Strashun, A.M.; Nejatheim, M.; Goldsmith, S.J.

    1984-02-01

    Pseudomonas otitis externa in elderly diabetics may extend aggressively to adjacent bone, cranial nerves, meninges, and vessels, leading to a clinical diagnosis of ''malignant'' external otitis. Early diagnosis is necessary for successful treatment. This study compares the findings of initial radiographs, thin-section tomography of temporal bone, CT scans of head and neck, technetium-99m methylene diphosphonate (MDP) and gallium-67 citrate scintigraphy, and single-photon emission computed tomography (SPECT) for detection of temporal bone osteomylitis in ten patients fulfilling the clinical diagnostic criteria of malignant external otitis. Skull radiographs were negative in all of the eight patients studied. Thin-section tomography was positive in one of the seven patients studied using this modality. CT scanning suggested osteomyelitis in three of nine patients. Both Tc-99m and Ga-67 citrate scintigraphy were positive in 10 of 10 patients. These results suggest that technetium and gallium scintigraphy are more sensitive than radiographs and CT scans for early detection of malignant external otitis.

  2. Early Detection of Tsunami Scales using GPS

    NASA Astrophysics Data System (ADS)

    Song, Y.

    2013-12-01

    This talk reviews how tsunamis form from earthquakes and how GPS technologies can be used to detect tsunami energy scales in real time. Most tsunami fatalities occur in near-field communities of earthquakes at offshore faults. Tsunami early warning is key for reducing the number of fatalities. Unfortunately, an earthquake's magnitude often does not gauge the resulting tsunami power. Here we show that real-time GPS stations along coastlines are able to detect seafloor motions due to big earthquakes, and that the detected seafloor displacements are able to determine tsunami energy and scales instantaneously for early warnings. Our method focuses on estimating tsunami energy directly from seafloor motions because a tsunami's potential or scale, no matter how it is defined, has to be proportional to the tsunami energy. Since seafloor motions are the only source of a tsunami, their estimation directly relates to the mechanism that generates tsunamis; therefore, it is a proper way of identifying earthquakes that are capable of triggering tsunamis, while being able to discriminate those particular earthquakes from false alarms. Examples of detecting the tsunami energy scales for the 2004 Sumatra M9.1 earthquake, the 2005 Nias M8.7 earthquake, the 2010 M8.8 Chilean earthquake, and the 2011 M9.0 Tohoku-Oki earthquake will be presented. Related reference: 1. Xu, Z. and Y. T. Song (2013), Combining the all-source Green's functions and the GPS-derived source for fast tsunami prediction - illustrated by the March 2011 Japan tsunami, J. Atmos. Oceanic Tech., jtechD1200201. 2. Song, Y. T., I. Fukumori, C. K. Shum, and Y. Yi (2012), Merging tsunamis of the 2011 Tohoku-Oki earthquake detected over the open ocean, Geophys. Res. Lett., doi:10.1029/2011GL050767. 3. Song, Y. T. and S.C. Han (2011) Satellite observations defying the long-held tsunami genesis theory, D.L. Tang (ed.), Remote Sensing of the Changing Oceans, DOI 10.1007/978-3-642-16541-2, Springer-Verlag Berlin Heidelberg

  3. Fate of Yang-Mills black hole in early Universe

    SciTech Connect

    Nakonieczny, Lukasz; Rogatko, Marek

    2013-02-21

    According to the Big Bang Theory as we go back in time the Universe becomes progressively hotter and denser. This leads us to believe that the early Universe was filled with hot plasma of elementary particles. Among many questions concerning this phase of history of the Universe there are questions of existence and fate of magnetic monopoles and primordial black holes. Static solution of Einstein-Yang-Mills system may be used as a toy model for such a black hole. Using methods of field theory we will show that its existence and regularity depend crucially on the presence of fermions around it.

  4. Early Childhood Development and E-Learning in Africa: The Early Childhood Development Virtual University Programme

    ERIC Educational Resources Information Center

    Pence, Alan

    2007-01-01

    This article explores the development and evaluation of the graduate-level Early Childhood Development Virtual University (ECDVU) programme in Sub-Saharan Africa from 2001 through to 2004. It outlines the history of the ECDVU and the establishing of a Sub-Saharan programme for future leaders in the early childhood field guided by the key principle…

  5. University-Qualified Indigenous Early Childhood Teachers Voices of Resilience

    ERIC Educational Resources Information Center

    Fleet, Alama; Kitson, Ros; Cassady, Bevan; Hughes, Ross

    2007-01-01

    Demonstrating persistence and resilience, increasing numbers of Aboriginal and Torres Strait Islander early childhood teachers are gaining university qualifications. This paper explores factors that support and constrain these students on the path to their degrees. Investigated through a cycle of interviews and focus groups, otherwise perceived as…

  6. CMB spectral distortions and energy release in the early universe

    NASA Astrophysics Data System (ADS)

    Tashiro, Hiroyuki

    2014-06-01

    Measuring the spectral deviation of the cosmic microwave background (CMB) from the blackbody spectrum has become a focus of attention as a probe of the thermal history of the Universe. It has been more than 20 years since COBE/FIRAS's measurement, which showed excellent agreement between the CMB spectrum and a perfect blackbody spectrum. Significant developments in the technology since then have allowed us to improve the sensitivity of the absolute spectrum measurement by a factor of {˜ }10^4. Therefore, the physics related to the generation of CMB spectral distortions should now be investigated in greater detail. To probe the physics in the early universe and to open an observational window for new physics, various energy release mechanisms both in and beyond standard cosmology need to be studied. In this paper, we provide a review of the physics of CMB distortions and the energy release that creates CMB distortions in the early universe.

  7. Prevention and early detection of cancer

    SciTech Connect

    Shanmugaratnam, K.

    1985-01-01

    The axiom that prevention is better than cure is especially true for a serious disease such as cancer for which therapy is expensive and seldom fully effective. However, it is only for some cancers that the major determinants are known and for which primary prevention programs are likely to result in substantial reduction in incidence. Past efforts at primary prevention have not been very successful where avoidance of cancer determinants involves changing pleasurable personal habits or has major economic effects. Control of the disease is now largely based on therapy. Because successful therapy is influenced by the stage of the disease at diagnosis there is increasing interest in early detection through the application of various screening techniques. Only some of these have been demonstrably effective in reducing cancer mortality. The introduction of any mass screening program should be based on an assessment of its costs, risks, and effectiveness in reducing mortality from the disease.

  8. Screening and early detection of lung cancer.

    PubMed

    Vansteenkiste, J; Dooms, C; Mascaux, C; Nackaerts, K

    2012-09-01

    The greatest news of the past year in this field was the first large-scale early detection trial that could prove a 20% reduction in lung cancer-related mortality by screening high-risk individuals with low-dose computed tomography (LDCT). Several expert groups and medical societies have assessed the data and concluded that LDCT screening for lung cancer is, however, not ready for large-scale population-based implementation. Too many open questions remain, such as definition of the at-risk population, timing and intervals of screening, optimal method of acquisition and interpretation of the images, how to handle (false) positive findings, and especially cost-effectiveness in relation to other lung cancer prevention strategies, mainly smoking cessation. Further analyses and several ongoing European trials are eagerly awaited. Much hope also resides in the use of biomarkers, as their use in, e.g., blood or exhaled air may provide more easy-to-use tests to better stratify high-risk populations for screening studies. While exciting research is ongoing in this domain--e.g. with microRNAs--none of the tests has yet reached sufficient validation for clinical use. Early central lung cancers are more difficult to visualise by CT. For these patients, standard bronchoscopy, complemented by autofluoresence endoscopy, has been studied in different screening and follow-up settings. PMID:22987984

  9. Probing the Early Universe with the SZ Effect

    NASA Technical Reports Server (NTRS)

    Joy, M. K.; Carlstrom, J. E.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    The Cosmic Microwave Background Radiation (CMBR) which we observe today is relic radiation which last interacted with matter more than 10 billion years ago, when the expanding universe cooled to the point that free electrons and ionized nuclei recombined to form atoms. Prior to recombination, scattering between photons and free electrons was a very frequent occurrence, and the distance light could penetrate was small; afterwards, with free electrons out of circulation, the universe became largely transparent to light. Thus, the CMBR photons we observe today give us a clear view of the state of the early universe. Measured deviations in the intensity of the CMBR trace the small perturbations in the primordial matter density, which have been amplified by gravitational forces to form the magnificent, complex structures which comprise the present-day universe.

  10. Camera for Quasars in the Early Universe (CQUEAN)

    NASA Astrophysics Data System (ADS)

    Kim, Eunbin; Park, W.; Lim, J.; Jeong, H.; Kim, J.; Oh, H.; Pak, S.; Im, M.; Kuehne, J.

    2010-05-01

    The early universe of z ɳ is where the first stars, galaxies, and quasars formed, starting the re-ionization of the universe. The discovery and the study of quasars in the early universe allow us to witness the beginning of history of astronomical objects. In order to perform a medium-deep, medium-wide, imaging survey of quasars, we are developing an optical CCD camera, CQUEAN (Camera for QUasars in EArly uNiverse) which uses a 1024*1024 pixel deep-depletion CCD. It has an enhanced QE than conventional CCD at wavelength band around 1μm, thus it will be an efficient tool for observation of quasars at z > 7. It will be attached to the 2.1m telescope at McDonald Observatory, USA. A focal reducer is designed to secure a larger field of view at the cassegrain focus of 2.1m telescope. For long stable exposures, auto-guiding system will be implemented by using another CCD camera viewing an off-axis field. All these instruments will be controlled by the software written in python on linux platform. CQUEAN is expected to see the first light during summer in 2010.

  11. Shedding New Light on Early Caries Detection

    PubMed Central

    Choo-Smith, Lin-P'ing; Dong, Cecilia C.S.; Cleghorn, Blaine; Hewko, Mark

    2009-01-01

    Dental caries continues to be a common chronic disease among various population groups. Patient care can be improved with detection at the earliest stage. However, current techniques do not have sufficient sensitivity and specificity. We discuss 2 new methods — optical coherence tomography (OCT) and polarized Raman spectroscopy (PRS) — that are potentially useful for early caries detection and monitoring. OCT produces morphologic depth images of near-surface tissue structures with a resolution that is an order of magnitude greater than ultrasound imaging. Based on measurement of back-scattered near infrared light, OCT shows that sound enamel causes high-intensity back-scattering at the tooth surface that decreases rapidly with depth. In contrast, incipient lesions cause higher light back-scattering at the tooth surface and subsurface scattering indicative of porosity caused by demineralization. The scatter region within the enamel correlates well with the classical triangular shape of subsurface lesions observed in histologic sections. OCT imaging not only allows identification of incipient lesions, but also provides information on surface integrity and lesion depth. PRS furnishes biochemical information about the tooth's composition, mineral content and crystallinity. The depolarization ratio derived from the dominant phosphate peak of hydroxyapatite in sound teeth is consistently lower than that from incipient caries. This difference is attributed to the change in enamel crystallite morphology or orientation that occurs with acid demineralization. Thus, PRS can be used to confirm suspect lesions determined by OCT and rule out false-positive signals from non-carious anomalies. The combination of OCT and PRS provides a new detection method with high sensitivity and specificity that will improve caries management and patient care. Future studies are aimed at developing intraoral probes to validate the findings in vivo. PMID:19126361

  12. The Early Universe: Searching for Evidence of Cosmic Inflation

    NASA Technical Reports Server (NTRS)

    Chuss, David T.

    2012-01-01

    In the past two decades, our understanding of the evolution and fate of the universe has increased dramatically. This "Age of Precision Cosmology" has been ushered in by measurements that have both elucidated the details of the Big Bang cosmology and set the direction for future lines of inquiry. Our universe appears to consist of 5% baryonic matter; 23% of the universe's energy content is dark matter which is responsible for the observed structure in the universe; and 72% of the energy density is so-called "dark energy" that is currently accelerating the expansion of the universe. In addition, our universe has been measured to be geometrically flat to 1 %. These observations and related details of the Big Bang paradigm have hinted that the universe underwent an epoch of accelerated expansion known as "inflation" early in its history. In this talk, I will review the highlights of modern cosmology, focusing on the contributions made by measurements of the cosmic microwave background, the faint afterglow of the Big Bang. I will also describe new instruments designed to measure the polarization of the cosmic microwave background in order to search for evidence of cosmic inflation.

  13. The Michigan State University Cyclotron Laboratory: Its Early Years

    NASA Astrophysics Data System (ADS)

    Austin, Sam M.

    2016-01-01

    The Michigan State University Cyclotron Laboratory was founded in 1958 and over the years grew in stature, becoming the highest-ranked university-based program in nuclear science. Its K50 cyclotron had unmatched capability as a light-ion accelerator and helped to define what a modern cyclotron could do to advance our understanding of nuclei. This paper describes the first twenty years of the Cyclotron Laboratory's evolution and gives some insight into the cultural characteristics of the laboratory, and of its early members, that led it to thrive.

  14. Enhanced X-ray Emission from Early Universe Analog Galaxies

    NASA Astrophysics Data System (ADS)

    Brorby, Matthew; Kaaret, Philip; Prestwich, Andrea H.; Mirabel, I. Felix; Feng, Hua

    2016-04-01

    X-rays from binaries containing compact objects may have played an important role in heating the early Universe. Here we discuss our findings from X-ray studies of blue compact dwarf galaxies (BCDs), Lyman break analogs (LBAs), and Green Pea galaxies (GP), all of which are considered local analogs to high redshift galaxies. We find enhanced X-ray emission per unit star-formation rate which strongly correlates with decreasing metallicity. We find evidence for the existence of a L_X-SFR-Metallicity plane for star-forming galaxies. The exact properties of X-ray emission in the early Universe affects the timing and morphology of reionization, both being observable properties of current and future radio observations of the redshifted 21cm signal from neutral hydrogen.

  15. Early detection of ovarian cancer: background, rationale, and structure of the Yale Early Detection Program.

    PubMed Central

    Schwartz, P. E.; Chambers, J. T.; Taylor, K. J.; Pellerito, J.; Hammers, L.; Cole, L. A.; Yang-Feng, T. L.; Smith, P.; Mayne, S. T.; Makuch, R.

    1991-01-01

    Ovarian cancer has received national attention as a highly virulent disease. Its lack of early warning symptoms and the failure to develop highly sensitive screening tests have led some physicians to recommend prophylactic oophorectomies to women with relatives who have had ovarian cancer. Others have recommended routine screening of otherwise normal women for CA 125, a circulating tumor marker, and ultrasound examinations. Each of these techniques is associated with substantial false-positive rates that could lead to unnecessary surgery. A review of epidemiologic data suggests that familial ovarian cancer kindreds are rare, but women with first-degree relatives who have had ovarian cancer have a significant risk themselves for developing ovarian cancer. In addition, women with a great number of ovulatory cycles are at an increased risk for the disease. Circulating tumor markers are frequently elevated in women with advanced ovarian cancer, but their value in early detection of ovarian cancer has yet to be established. Advances in endovaginal ultrasound and color Doppler flow technology have significantly improved our ability to assess pelvic organs. This article presents the background, rationale, and structure of the Yale Early Detection Program for ovarian cancer, whose goals are to identify the best techniques for diagnosing ovarian cancer in an early stage, to determine the frequency with which such tests should be employed, to assess false-positive results, and to identify women who might benefit from prophylactic oophorectomies. PMID:1810100

  16. Models of universe with a polytropic equation of state: I. The early universe

    NASA Astrophysics Data System (ADS)

    Chavanis, Pierre-Henri

    2014-02-01

    We construct models of universe with a generalized equation of state having a linear component and a polytropic component. Concerning the linear equation of state , we assume . This equation of state describes radiation ( or pressureless matter (. Concerning the polytropic equation of state , we remain very general allowing the polytropic constant k and the polytropic index n to have arbitrary values. In this paper, we consider positive indices n > 0 . In that case, the polytropic component dominates the linear component in the early universe where the density is high. For , n = 1 and , where g/m3 is the Planck density, we obtain a model of early universe describing the transition from the vacuum energy era to the radiation era. The universe exists at any time in the past and there is no primordial singularity. However, for t < 0 , its size is less than the Planck length m. In this model, the universe undergoes an inflationary expansion with the Planck density g/m3 (vacuum energy) that brings it from the Planck size m at t = 0 to a size m at s (corresponding to about 23.3 Planck times s). For , n = 1 and , we obtain a model of early universe with a new form of primordial singularity: The universe starts at t = 0 with an infinite density and a finite radius a = a 1 . Actually, this universe becomes physical at a time s from which the velocity of sound is less than the speed of light. When , the universe enters in the radiation era and evolves like in the standard model. We describe the transition from the vacuum energy era to the radiation era by analogy with a second-order phase transition where the Planck constant ℏ plays the role of finite-size effects (the standard Big Bang theory is recovered for ℏ = 0.

  17. A Glimpse of the Very Early Universal Web

    NASA Astrophysics Data System (ADS)

    2001-05-01

    important ingredient in the cosmological models is the dark matter that is believed to contribute about 95% of the mass of the universe. The present confirmation of the predictions of the models therefore also indirectly confirms that it is the dark matter that controls the formation of structures in the universe. However, there is still a long way to go before it will be possible to make a more detailed comparison between observations and predictions, e.g., from PR Photo 19e/01 to PR Photo 19a/01 ! Asked about what they consider the most important consequence of their observations, the team responds: " We have shown that we now have an observational method with which we may study the cosmic web in the early universe, and the VLT is a great tool for such studies. The way forward is now pretty clear - we just have to find those faint and distant LEGOs and then do the spectral observations from which we may determine how they are distributed in space ". More information The research described in this press release is the subject of a scientific article by the team, "Detection of a redshift 3.04 filament" , to appear as a Letter to the Editor in the European journal Astronomy & Astrophysics. Notes [1] The team consists of Palle Møller , Johan Fynbo (both at ESO, Garching) and Bjarne Thomsen (Institute of Physics and Astronomy, Aarhus, Denmark). [2] In astronomy, the redshift denotes the fraction by which the lines in the spectrum of an object are shifted towards longer wavelengths. The observed redshift of a distant hydrogen cloud or galaxy gives a direct estimate of the apparent recession velocity as caused by the universal expansion. Since the expansion rate increases with the distance, the velocity is itself a function (the Hubble relation) of the distance to the object. The higher the redshift of an object, the more distant it is and the longer is the look-back time, i.e. the earlier is the corresponding epoch. [3] See also ESO Press Release 13/99 and ESO Press Release 08

  18. Early detection and monitoring of Malaria

    NASA Astrophysics Data System (ADS)

    Rahman, Md Z.; Roytman, Leonid; Kadik, Abdelhamid; Miller, Howard; Rosy, Dilara A.

    2015-05-01

    Global Earth Observation Systems of Systems (GEOSS) are bringing vital societal benefits to people around the globe. In this research article, we engage undergraduate students in the exciting area of space exploration to improve the health of millions of people globally. The goal of the proposed research is to place students in a learning environment where they will develop their problem solving skills in the context of a world crisis (e.g., malaria). Malaria remains one of the greatest threats to public health, particularly in developing countries. The World Health Organization has estimated that over one million die of Malaria each year, with more than 80% of these found in Sub-Saharan Africa. The mosquitoes transmit malaria. They breed in the areas of shallow surface water that are suitable to the mosquito and parasite development. These environmental factors can be detected with satellite imagery, which provide high spatial and temporal coverage of the earth's surface. We investigate on moisture, thermal and vegetation stress indicators developed from NOAA operational environmental satellite data. Using these indicators and collected epidemiological data, it is possible to produce a forecast system that can predict the risk of malaria for a particular geographical area with up to four months lead time. This valuable lead time information provides an opportunity for decision makers to deploy the necessary preventive measures (spraying, treated net distribution, storing medications and etc) in threatened areas with maximum effectiveness. The main objective of the proposed research is to study the effect of ecology on human health and application of NOAA satellite data for early detection of malaria.

  19. Dynamical CP violation in the early universe and leptogenesis

    SciTech Connect

    Balaji, K.R.S.; Biswas, Tirthabir; Brandenberger, Robert H.; London, David

    2005-09-01

    In a recent publication, we suggested a mechanism for obtaining dynamical CP violation in the early universe based on the out-of-equilibrium evolution of complex scalar fields. In this paper, we suggest several ways of transferring the CP asymmetry from the scalar sector to the leptonic sector. In particular, we point out how a 'transient Maki-Nakagawa-Sakata (Pontecorvo) matrix' can generate an asymmetry between fermions and antifermions directly.

  20. The Transient High Energy Sky and Early Universe Surveyor

    NASA Astrophysics Data System (ADS)

    O'Brien, P. T.

    2016-04-01

    The Transient High Energy Sky and Early Universe Surveyor is a mission which will be proposed for the ESA M5 call. THESEUS will address multiple components in the Early Universe ESA Cosmic Vision theme:4.1 Early Universe,4.2 The Universe taking shape, and4.3 The evolving violent Universe.THESEUS aims at vastly increasing the discovery space of the high energy transient phenomena over the entire cosmic history. This is achieved via a unique payload providing an unprecedented combination of: (i) wide and deep sky monitoring in a broad energy band(0.3 keV-20 MeV; (ii) focusing capabilities in the soft X-ray band granting large grasp and high angular resolution; and (iii) on board near-IR capabilities for immediate transient identification and first redshift estimate.The THESEUS payload consists of: (i) the Soft X--ray Imager (SXI), a set of Lobster Eye (0.3--6 keV) telescopes with CCD detectors covering a total FOV of 1 sr; (ii) the X--Gamma-rays spectrometer (XGS), a non-imaging spectrometer (XGS) based on SDD+CsI, covering the same FOV than the Lobster telescope extending the THESEUS energy band up to 20 MeV; and (iii) a 70cm class InfraRed Telescope (IRT) observing up to 2 microns with imaging and moderate spectral capabilities.The main scientific goals of THESEUS are to:(a) Explore the Early Universe (cosmic dawn and reionization era) by unveiling the Gamma--Ray Burst (GRBs) population in the first billion years}, determining when did the first stars form, and investigating the re-ionization epoch, the interstellar medium (ISM) and the intergalactic medium (IGM) at high redshifts.(b) Perform an unprecedented deep survey of the soft X-ray transient Universe in order to fill the present gap in the discovery space of new classes of transient; provide a fundamental step forward in the comprehension of the physics of various classes of Galactic and extra--Galactic transients, and provide real time trigger and accurate locations of transients for follow-up with next

  1. Early lung cancer: detection, treatment outcome

    SciTech Connect

    Balchum, O.J.; Huth, G.C.; Saccomanno, G.

    1984-01-01

    The performance of a room temperature mercuric iodide x-ray detector was investigated as a function of detector bias, amplifier time constant, and detector temperature. A Mn K/sub ..cap alpha../ line of 200 eV FWHM was obtained by using low noise electronics developed for Si(Li) detectors, including a cooled input FET. Measurements of the detector's resolution at various x-ray energies result in a Fano factor of 0.20. Fluorescence bronchoscopy with a violet laser and image intensifier has been developed for imaging the red fluorescence of a tumor-specific agent, hematoporphyrin derivative, that has been injected before the examination. The instrument was developed to localize carcinoma in situ and early, small bronchogenic tumors diagnosed by sputum cytology but invisible on chest x-ray and conventional bronchoscopy, in underground uranium miners and others at risk for lung cancer. In addition to the imaging devices, a video system including a processor and electronics for digital background image subtraction has been developed to enhance contrast. A ratio fluorometer and a rapid-scan spectrum analyzer have been designed for quantitative measurements of fluorescence intensity and dependence on dosage and time after injection of the fluorescent agent. Clinical trials demonstrate detection of carcinoma in situ, and the true positive rate should be improved by the new instrumentation and optimization of time delay and dosage.

  2. Feedback in low-mass galaxies in the early Universe.

    PubMed

    Erb, Dawn K

    2015-07-01

    The formation, evolution and death of massive stars release large quantities of energy and momentum into the gas surrounding the sites of star formation. This process, generically termed 'feedback', inhibits further star formation either by removing gas from the galaxy, or by heating it to temperatures that are too high to form new stars. Observations reveal feedback in the form of galactic-scale outflows of gas in galaxies with high rates of star formation, especially in the early Universe. Feedback in faint, low-mass galaxies probably facilitated the escape of ionizing radiation from galaxies when the Universe was about 500 million years old, so that the hydrogen between galaxies changed from neutral to ionized-the last major phase transition in the Universe. PMID:26156371

  3. Do we have a theory of early universe cosmology?

    NASA Astrophysics Data System (ADS)

    Brandenberger, Robert

    2014-05-01

    The inflationary scenario has become the paradigm of early universe cosmology, and - in conjunction with ideas from superstring theory-has led to speculations about an "inflationary multiverse". From a point of view of phenomenology, the inflationary universe scenario has been very successful. However, the scenario suffers from some conceptual problems, and thus it does not (yet) have the status of a solid theory. There are alternative ideas for the evolution of the very early universe which do not involve inflation but which agree with most current cosmological observations as well as inflation does. In this lecture I will outline the conceptual problems of inflation and introduce two alternative pictures - the "matter bounce" and "string gas cosmology", the latter being a realization of the "emergent universe" scenario based on some key principles of superstring theory. I will demonstrate that these two alternative pictures lead to the same predictions for the power spectrum of the observed large-scale structure and for the angular power spectrum of cosmic microwave background anisotropies as the inflationary scenario, and I will mention predictions for future observations with which the three scenarios can be observationally teased apart.

  4. Stars and black holes from the very early universe

    NASA Astrophysics Data System (ADS)

    Dolgov, A. D.; Blinnikov, S. I.

    2014-01-01

    A mechanism of the creation of stellarlike objects in the very early universe, from the QCD phase transition until big bang nucleosynthesis and somewhat later, is studied. It is argued that in the considered process, primordial black holes with masses above a few solar masses up to superheavy ones could be created. This may explain an early quasar creation with evolved chemistry in surrounding medium and the low mass cutoff of the observed black holes. It is also shown that dense primordial stars can be created at the considered epoch. Such stars could later become very early supernovae and, in particular, high redshift gamma bursters. In a version of the model, some of the created objects can consist of antimatter.

  5. New constraints on the early expansion history of the universe.

    PubMed

    Hojjati, Alireza; Linder, Eric V; Samsing, Johan

    2013-07-26

    Cosmic microwave background measurements have pushed to higher resolution, lower noise, and more sky coverage. These data enable a unique test of the early Universe's expansion rate and constituents such as effective number of relativistic degrees of freedom and dark energy. Using the most recent data from Planck and WMAP9, we constrain the expansion history in a model-independent manner from today back to redshift z=10(5). The Hubble parameter is mapped to a few percent precision, limiting early dark energy and extra relativistic degrees of freedom within a model-independent approach to 2%-16% and 0.71 equivalent neutrino species, respectively (95% C.L.). Within dark radiation, barotropic ether, and Doran-Robbers models, the early dark energy constraints are 3.3%, 1.9%, and 1.2%, respectively. PMID:23931352

  6. Early forest fire detection using radio-acoustic sounding system.

    PubMed

    Sahin, Yasar Guneri; Ince, Turker

    2009-01-01

    Automated early fire detection systems have recently received a significant amount of attention due to their importance in protecting the global environment. Some emergent technologies such as ground-based, satellite-based remote sensing and distributed sensor networks systems have been used to detect forest fires in the early stages. In this study, a radio-acoustic sounding system with fine space and time resolution capabilities for continuous monitoring and early detection of forest fires is proposed. Simulations show that remote thermal mapping of a particular forest region by the proposed system could be a potential solution to the problem of early detection of forest fires. PMID:22573967

  7. Early Forest Fire Detection Using Radio-Acoustic Sounding System

    PubMed Central

    Sahin, Yasar Guneri; Ince, Turker

    2009-01-01

    Automated early fire detection systems have recently received a significant amount of attention due to their importance in protecting the global environment. Some emergent technologies such as ground-based, satellite-based remote sensing and distributed sensor networks systems have been used to detect forest fires in the early stages. In this study, a radio-acoustic sounding system with fine space and time resolution capabilities for continuous monitoring and early detection of forest fires is proposed. Simulations show that remote thermal mapping of a particular forest region by the proposed system could be a potential solution to the problem of early detection of forest fires. PMID:22573967

  8. X-ray Emission from Early Universe Analog Galaxies

    NASA Astrophysics Data System (ADS)

    Brorby, Matthew; Kaaret, Philip; Prestwich, Andrea H.; Mirabel, I. Felix; Feng, Hua

    2016-01-01

    Around 300,000 years after the Big Bang, the Universe had cooled enough to combine and form neutral atoms. This signified the beginning of a time known as the Dark Ages. Neutral matter began to fall into the dark matter gravitational wells that were seeded after the initial moments of the Big Bang. As the first stars and galaxies formed within these gravitational wells, the surrounding baryonic matter was heated and started to ionize. The source of energetic photons that heated and reionized the early Universe remains uncertain. Early galaxies had low metallicity and recent population synthesis calculations suggest that the number and luminosity of high-mass X-ray binaries are enhanced in star-forming galaxies with low metallicity, offering a potentially important and previously overlooked source of heating and reionization. Here we examine two types of local galaxies that have been shown to be good analogs to the early galaxies in the Universe: Blue compact dwarf galaxies (BCDs) and Lyman Break Analogs (LBAs).A BCD is defined by its blue optical colors, low metallicities, and physically small size. This makes BCDs the best available local analogs for early star formation. We analyzed data from a sample of 25 metal-poor BCDs and compared our results with those of near-solar metallicity galaxies. Using a Bayesian approach, we showed that the X-ray luminosity function for the low-metallicity BCDs is significantly elevated relative to the XLF for near-solar metallicity galaxies.Larger, gas-rich galaxies may have formed shortly after these first galaxies. These larger galaxies would be similar in their properties to the high-redshift Lyman break galaxies (LBGs). LBAs provide the best local comparison to the LBGs. We studied a sample of 10 LBAs in order to measure the relation between star formation rate and X-ray luminosity for these galaxies. We found that for LBAs with intermediate sub-solar metallicities, there is enhanced X-ray emission relative to the expected

  9. Gravitino condensates in the early universe and inflation

    NASA Astrophysics Data System (ADS)

    Mavromatos, Nick E.

    2015-05-01

    We review work on the formation of gravitino condensates via the super-Higgs effect in the early Universe. This is a scenario for both inflating the early universe and breaking local super-symmetry (supergravity), entirely independent of any coupling to external matter. The goldstino mode associated with the breaking of (global) super-symmetry is "eaten" by the gravitino field, which becomes massive (via its own vacuum condensation) and breaks the local supersymmetry (supergravity) dynamically. The most natural association of gravitino condensates with inflation proceeds in an indirect way, via a Starobinsky-inflation-type phase. The higher-order curvature corrections of the (quantum) effective action of gravitino condensates induced by integrating out massive gravitino degrees of freedom in a curved space-time background, in the broken-supergravity phase, are responsible for inducing a scalar mode which inflates the Universe. The scenario is in agreement with Planck data phenomenology in a natural and phenomenologically-relevant range of parameters, namely Grand-Unified-Theory values for the super-symmetry breaking energy scale and dynamically-induced gravitino mass.

  10. Early detection of non-native fishes using fish larvae

    EPA Science Inventory

    Our objective was to evaluate the use of fish larvae for early detection of non-native fishes, comparing traditional and molecular taxonomy approaches to investigate potential efficiencies. Fish larvae present an interesting opportunity for non-native fish early detection. First,...

  11. [Pros and cons of early cancer detection in breast carcinoma].

    PubMed

    Callies, R; Oberhoff, C

    2005-04-01

    Mammography is an appropriate method for the detection of early forms of cancer of the breast, and for reducing mortality. Whether this actually succeeds depends upon the quality of the early detection strategies employed. Currently the data on reduction of mortality by mammographic screening remain ambivalent. PMID:15887680

  12. Numerical Relativity as a tool for studying the Early Universe

    NASA Astrophysics Data System (ADS)

    Garrison, David

    2013-04-01

    Numerical simulations are becoming a more effective tool for conducting detailed investigations into the evolution of our universe. In this presentation, I show how the framework of numerical relativity can be used for studying cosmological models. We are working to develop a large-scale simulation of the dynamical processes in the early universe. These take into account interactions of dark matter, scalar perturbations, gravitational waves, magnetic fields and a turbulent plasma. The code described in this report is a GRMHD code based on the Cactus framework and is structured to utilize one of several different differencing methods chosen at run-time. It is being developed and tested on the Texas Learning and Computation Center's Xanadu cluster.

  13. CP-Violating solitons in the early universe

    SciTech Connect

    Tornkvist, O., Riotto, A.

    1997-07-01

    Solitons in extensions of the Standard Model can serve as localized sources of CP violation. Depending on their stability properties, they may serve either to create or to deplete the baryon asymmetry. The conditions for existence of a particular soliton candidate, the membrane solution of the two-Higgs model, are presented. In the generic case, investigated by Bachas and Tomaras, membranes exist and are metastable for a wide range of parameters. For the more viable supersymmetric case, it is shown that the present-day existence of CP-violating membranes is experimentally excluded, but preliminary studies suggest that they may have existed in the early universe soon after the electroweak phase transition, with important consequences for the baryon asymmetry of the universe.

  14. Hypermagnetic helicity evolution in early universe: leptogenesis and hypermagnetic diffusion

    SciTech Connect

    Semikoz, V.B.; Smirnov, A.Yu.; Sokoloff, D.D. E-mail: smirnoff.alexandr@gmail.com

    2013-10-01

    We study hypermagnetic helicity and lepton asymmetry evolution in plasma of the early Universe before the electroweak phase transition (EWPT) accounting for chirality flip processes via inverse Higgs decays and sphaleron transitions which violate the left lepton number and wash out the baryon asymmetry of the Universe (BAU). In the scenario where the right electron asymmetry supports the BAU alone through the conservation law B/3−L{sub eR} = const at temperatures T > T{sub RL} ≅ 10 TeV the following universe cooling leads to the production of a non-zero left lepton (electrons and neutrinos) asymmetry. This is due to the Higgs decays becoming more faster when entering the equilibrium at T = T{sub RL} with the universe expansion, Γ{sub RL} ∼ T > H ∼ T{sup 2}, resulting in the parallel evolution of both the right and the left electron asymmetries at T < T{sub RL} through the corresponding Abelian anomalies in SM in the presence of a seed hypermagnetic field. The hypermagnetic helicity evolution proceeds in a self-consistent way with the lepton asymmetry growth. The role of sphaleron transitions decreasing the left lepton number turns out to be negligible in given scenario. The hypermagnetic helicity can be a supply for the magnetic one in Higgs phase assuming a strong seed hypermagnetic field in symmetric phase.

  15. Generation of hypermagnetic helicity and leptogenesis in the early Universe

    NASA Astrophysics Data System (ADS)

    Semikoz, V. B.; Smirnov, A. Yu.; Sokoloff, D. D.

    2016-05-01

    We study hypermagnetic helicity and lepton asymmetry evolution in the plasma of the early Universe before the electroweak phase transition accounting for chirality flip processes via inverse Higgs decays and sphaleron transitions which violate the left lepton number and wash out the baryon asymmetry of the Universe (BAU). In the scenario where the right electron asymmetry supports the BAU alone through the conservation law B /3 -Le R=const at temperatures T >TRL≃10 TeV , the following Universe cooling leads to the production of a nonzero left lepton (electrons and neutrinos) asymmetry. This is due to the Higgs decays becoming faster when entering the equilibrium at T =TRL, with the Universe expansion, ΓRL˜T >H ˜T2 , resulting in the parallel evolution of the right and left electron asymmetries at T

  16. Viscous FRW Models with Particle Creation in Early Universe

    NASA Astrophysics Data System (ADS)

    Singh, C. P.

    2012-05-01

    We discuss the dynamical effects of bulk viscosity and particle creation on the early evolution of the Friedmann-Robertson-Walker model in the framework of open thermodynamical systems. We consider bulk viscosity and particle creation as separate irreversible processes. Exact solutions of the Einstein field equations are obtained by using the "gamma-law" equation of state p = (γ-1)ρ, where the adiabatic parameter γ varies with scale factor of the metric. We consider the cosmological model to study the early phases of the evolution of the universe as it goes from an inflationary phase to a radiation-dominated era in the presence of bulk viscosity and particle creation. Analytical solutions are obtained for particle number density and entropy for all models. It is found that, by choosing appropriate functions for particle creation rate and bulk viscous coefficient, the models exhibit singular and non-singular beginnings.

  17. Evolution of entanglement entropy in the early universe

    SciTech Connect

    Chen, Pisin; Hsin, Po-Shen; Niu, Yuezhen E-mail: r01222031@ntu.edu.tw

    2014-02-01

    We investigate the entropy evolution in the early universe by computing the change of the entanglement entropy in Freedmann-Robertson-Walker quantum cosmology in the presence of particle horizon. The matter is modeled by a Chaplygin gas so as to provide a smooth interpolation between inflationary and radiation epochs, rendering the evolution of entropy from early time to late time trackable. We found that soon after the onset of the inflation, the total entanglement entropy rapidly decreases to a minimum. It then rises monotonically in the remainder of the inflation epoch as well as the radiation epoch. Our result is in qualitative agreement with the area law of Ryu and Takayanagi including the logarithmic correction. We comment on the possible implication of our finding to the cosmological entropy problem.

  18. Early universe constraints on time variation of fundamental constants

    SciTech Connect

    Landau, Susana J.; Mosquera, Mercedes E.; Scoccola, Claudia G.; Vucetich, Hector

    2008-10-15

    We study the time variation of fundamental constants in the early Universe. Using data from primordial light nuclei abundances, cosmic microwave background, and the 2dFGRS power spectrum, we put constraints on the time variation of the fine structure constant {alpha} and the Higgs vacuum expectation value without assuming any theoretical framework. A variation in leads to a variation in the electron mass, among other effects. Along the same line, we study the variation of {alpha} and the electron mass m{sub e}. In a purely phenomenological fashion, we derive a relationship between both variations.

  19. Resonant Production of Sterile Neutrinos in the Early Universe

    NASA Astrophysics Data System (ADS)

    Gilbert, Lauren; Grohs, Evan; Fuller, George M.

    2016-06-01

    This study examines the cosmological impacts of a light resonantly produced sterile neutrino in the early universe. Such a neutrino could be produced through lepton number-driven Mikheyev-Smirnov-Wolfenstein (MSW) conversion of active neutrinos around big bang nucleosynthesis (BBN), resulting in a non-thermal spectrum of both sterile and electron neutrinos. During BBN, the neutron-proton ratio depends sensitively on the electron neutrino flux. If electron neutrinos are being converted to sterile neutrinos, this makes the n/p ratio a probe of possible new physics. We use observations of primordial Yp and D/H to place limits on this process.

  20. The Origin of Dust in the Early Universe

    NASA Technical Reports Server (NTRS)

    Dwek, Eli

    2011-01-01

    In this talk I will describe the origin of dust in the early universe. I will be presenting observations of the spectral energy distribution of the galaxy J1148+5251, and present estimates of the dust mass in this high redshift (z=6.4) object. I will then discuss the origin of this dust, and the role of SN and AGB stars as dust sources, and the effect of SNRs on the destruction of dust in the interstellar medium of this galaxy.

  1. The Origin of Dust in the Early Universe

    NASA Technical Reports Server (NTRS)

    Dwek, Eliahu

    2010-01-01

    In this talk I will describe the origin of dust in the early universe. I will be presenting observations of the spectral energy distribution of the galaxy J1148+5251, and present estimates of the dust mass in this high redshift (z=6.4) object. I will then discuss the origin of this dust, and the role of SN and AGB stars as dust sources, and the effect of SNRs on the destruction of dust in the interstellar medium of this galaxy.

  2. Fluctuation-driven electroweak phase transition. [in early universe

    NASA Technical Reports Server (NTRS)

    Gleiser, Marcelo; Kolb, Edward W.

    1992-01-01

    We examine the dynamics of the electroweak phase transition in the early Universe. For Higgs masses in the range 46 less than or = M sub H less than or = 150 GeV and top quark masses less than 200 GeV, regions of symmetric and asymmetric vacuum coexist to below the critical temperature, with thermal equilibrium between the two phases maintained by fluctuations of both phases. We propose that the transition to the asymmetric vacuum is completed by percolation of these subcritical fluctuations. Our results are relevant to scenarios of baryogenesis that invoke a weakly first-order phase transition at the electroweak scale.

  3. A Glimpse of the Very Early Universal Web

    NASA Astrophysics Data System (ADS)

    2001-05-01

    The VLT Maps Extremely Distant Galaxies Summary New, trailblazing observations with the ESO Very Large Telescope (VLT) at Paranal lend strong support to current computer models of the early universe: It is "spongy", with galaxies forming along filaments, like droplets along the strands of a spiders web. A group of astronomers at ESO and in Denmark [1] determined the distances to some very faint galaxies in the neighbourhood of a distant quasar. Plotting their positions in a three-dimensional map, they found that these objects are located within a narrow "filament", exactly as predicted by the present theories for the development of the first structures in the young universe . The objects are most likely "building blocks" from which galaxies and clusters of galaxies assemble. This observation shows a very useful way forward for the study of the early evolution of the universe and the emergence of structures soon after the Big Bang. At the same time, it provides yet another proof of the great power of the new class of giant optical telescopes for cosmological studies. PR Photo 19a/01 : Web-like structures in the young Universe (computer model). PR Photo 19b/01 : A group of objects at redshift 3.04 . PR Photo 19c/01 : Animated view of sky field and distant filament . PR Photo 19d/01 : The shape of the filament . PR Photo 19e/01 : Artist's impression of the very distant filament. PR Video Clip 04/01 : Video animation of the very distant filament. The computers are ahead of the telescopes For the past two decades cosmologists have been in the somewhat odd situation that their computers were "ahead" of their telescopes. The rapid evolution of powerful computer hardware and sophisticated software has provided theorists with the ability to build almost any sort of virtual universe they can imagine. Starting with different initial conditions just after the Big Bang, they can watch such fictional worlds evolve over billions of years in their supercomputers - and do so in a

  4. Dark Matter Production in Non-Standard Early Universe Cosmologies

    NASA Astrophysics Data System (ADS)

    Rehagen, Thomas Joseph

    Many dark matter candidates, including asymmetric Weakly Interacting Massive Particles (WIMPs) and sterile neutrinos, are produced in the very early Universe, prior to Big Bang Nucleosynthesis (BBN). We show that the relic abundance of asymmetric WIMPs and sterile neutrinos can be very sensitive to the expansion rate of the Universe prior to BBN. In particular, we find that if the production of asymmetric WIMPs occurs during a non-standard cosmological phase, a larger WIMP annihilation cross section is required to produce the present dark matter density than if the WIMPs were produced during a standard, radiation dominated phase. Because of this, the present dark matter annihilation rate could be larger than that of symmetric dark matter produced in the standard cosmology. We also show that if the production of sterile neutrinos occurs during a non-standard cosmological phase, the relic number density of sterile neutrinos could be reduced with respect to the number expected in the standard cosmology, consequently relaxing current bounds on active-sterile neutrino mixing. Finally, we examine whether low reheating temperature cosmologies are allowed by current Cosmic Microwave Background measurements. We find the allowed range of reheating temperatures using monomial and binomial inflationary potentials, and a variety of reheating models. We show that an inflationary model with a φ1 potential and canonical reheating allows the possibility that dark matter could be produced during the reheating epoch, instead of when the Universe is radiation dominated.

  5. The early universe as a probe of new physics

    NASA Astrophysics Data System (ADS)

    Bird, Christopher Shane

    The Standard Model of Particle Physics has been verified to unprecedented precision in the last few decades. However there are still phenomena in nature which cannot be explained, and as such new theories will be required. Since terrestrial experiments are limited in both the energy and precision that can be probed, new methods are required to search for signs of physics beyond the Standard Model. In this dissertation, I demonstrate how these theories can be probed by searching for remnants of their effects in the early Universe. In particular I focus on three possible extensions of the Standard Model: the addition of massive neutral particles as dark matter, the addition of charged massive particles, and the existence of higher dimensions. For each new model, I review the existing experimental bounds and the potential for discovering new physics in the next generation of experiments. For dark matter, I introduce six simple models which I have developed, and which involve a minimum amount of new physics, as well as reviewing one existing model of dark matter. For each model I calculate the latest constraints from astrophysics experiments, nuclear recoil experiments, and collider experiments. I also provide motivations for studying sub-GeV mass dark matter, and propose the possibility of searching for light WIMPs in the decay of B-mesons and other heavy particles. For charged massive relics, I introduce and review the recently proposed model of catalyzed Big Bang nucleosynthesis. In particular I review the production of 6Li by this mechanism, and calculate the abundance of 7Li after destruction of 7Be by charged relics. The result is that for certain natural relics CBBN is capable of removing tensions between the predicted and observed 6Li and 7Li abundances which are present in the standard model of BBN. For extra dimensions, I review the constraints on the ADD model from both astrophysics and collider experiments. I then calculate the constraints on this model

  6. Early detection of sporadic pancreatic cancer: summative review.

    PubMed

    Chari, Suresh T; Kelly, Kimberly; Hollingsworth, Michael A; Thayer, Sarah P; Ahlquist, David A; Andersen, Dana K; Batra, Surinder K; Brentnall, Teresa A; Canto, Marcia; Cleeter, Deborah F; Firpo, Matthew A; Gambhir, Sanjiv Sam; Go, Vay Liang W; Hines, O Joe; Kenner, Barbara J; Klimstra, David S; Lerch, Markus M; Levy, Michael J; Maitra, Anirban; Mulvihill, Sean J; Petersen, Gloria M; Rhim, Andrew D; Simeone, Diane M; Srivastava, Sudhir; Tanaka, Masao; Vinik, Aaron I; Wong, David

    2015-07-01

    Pancreatic cancer (PC) is estimated to become the second leading cause of cancer death in the United States by 2020. Early detection is the key to improving survival in PC. Addressing this urgent need, the Kenner Family Research Fund conducted the inaugural Early Detection of Sporadic Pancreatic Cancer Summit Conference in 2014 in conjunction with the 45th Anniversary Meeting of the American Pancreatic Association and Japan Pancreas Society. This seminal convening of international representatives from science, practice, and clinical research was designed to facilitate challenging interdisciplinary conversations to generate innovative ideas leading to the creation of a defined collaborative strategic pathway for the future of the field. An in-depth summary of current efforts in the field, analysis of gaps in specific areas of expertise, and challenges that exist in early detection is presented within distinct areas of inquiry: Case for Early Detection: Definitions, Detection, Survival, and Challenges; Biomarkers for Early Detection; Imaging; and Collaborative Studies. In addition, an overview of efforts in familial PC is presented in an addendum to this article. It is clear from the summit deliberations that only strategically designed collaboration among investigators, institutions, and funders will lead to significant progress in early detection of sporadic PC. PMID:25931254

  7. BOOK REVIEW: The Physics of the Early Universe

    NASA Astrophysics Data System (ADS)

    Scott, Douglas

    2007-11-01

    The physics of the very small and the very large were successfully brought together in the 1980s through the idea of 'the universe as a particle accelerator'. The manifesto of this new campaign was laid out in the book 'The Early Universe' by Kolb and Turner in 1990. For at least the next decade that book was to be found on the shelves of every theorist (and many experimentalists) who professed an interest in this topic. But science marches on, and the last 10 15 years has seen an explosion in our understanding of the physics of the very earliest times and the very largest scales. Experimentally our world-view has changed utterly, through exquisitely precise measurements of the cosmic microwave background, galaxy clustering and supernova distances, with a refinement of the basic inflationary big bang paradigm into the new 'standard cosmological model'. And in tandem with these changes has been the development of new theoretical ideas, particularly involving dark energy and connections between string/brane theory and cosmology. So what is the new book for the shelves of today's cohort of young Rockys and Mikes? Despite a recent number of promising-sounding cosmology books, there is nothing at the advanced level which is broad enough to be a general introduction to the 'early universe' topic. Perhaps the best of the bunch is 'The Physics of the Early Universe', edited by E Papantonopoulos as part of Springer's series 'Lecture notes in physics'. This is a set of 9 review articles given as part of a 2003 summer school on Syros Island, Greece. Although far from perfect, the core of this book provides a solid introduction to current research in early universe physics, which should be useful for PhD students or postdoctoral researchers who want the real thing. The book starts with a competent introduction by Kyriakos Tamvakis, serving essentially as a summary of where we were in Kolb and Turner's text. We have learned since then, however, that inflation is really all

  8. Coverage methods for early groundwater contamination detection.

    PubMed

    Nunes, Luís Miguel; da Conceição Cunha, Maria; Ribeiro, Luís

    2013-05-01

    A method based on space-filling coverage designs to optimize groundwater monitoring networks for plume detection and quantification is proposed. Space-filling objective functions are then compared with more classical functions. The method was applied to a hypothetical case-study with 160 candidate locations, resulting in final optimal design monitoring networks with 40 locations. Results show that the method is superior to those based strictly on the probability of contamination detection for quantifying maximum and mean values. In the light of these results fractal properties of space-filling coverage methods and of simulated annealing are also discussed. PMID:23435904

  9. Innovative design for early detection of invasive species

    EPA Science Inventory

    Non-native aquatic species impose significant ecological impacts and rising financial costs in marine and freshwater ecosystems worldwide. Early detection of invasive species, as they enter a vulnerable ecosystem, is critical to successful containment and eradication. ORD, at t...

  10. Raman association of H2 in the early universe.

    PubMed

    van der Loo, Mark P J; Groenenboom, Gerrit C; Jamieson, Michael J; Dalgarno, Alex

    2006-01-01

    We investigate the contribution made by Raman scattering to the formation of molecular hydrogen in astrophysical environments characteristic of the early stages of the evolution of the universe. In the Raman process that we study, a photon is scattered by a pair of colliding hydrogen atoms leaving a hydrogen molecule that is stabilized by the transfer of kinetic and binding energy to the photon. We use a formulation for calculating the photon scattering cross section in which an infinite sum of matrix elements over rovibrational levels of dipole accessible electronic states is replaced by a single matrix element of a Green's function. We evaluate this matrix element by using a discrete variable representation. PMID:17191441

  11. THE HIGHLY DEUTERATED CHEMISTRY OF THE EARLY UNIVERSE

    SciTech Connect

    Gay, C. D.; Stancil, P. C.; Lepp, S.; Dalgarno, A. E-mail: stancil@physast.uga.edu E-mail: adalgarno@cfa.harvard.edu

    2011-08-10

    A comprehensive chemistry of the highly deuterated species D{sub 2}, D{sup +}{sub 2}, D{sub 2}H{sup +}, and D{sup +}{sub 3} in the early universe is presented. Fractional abundances for each are calculated as a function of redshift z in the recombination era. The abundances of the isotopologues are found to display similar behavior. Fractionation enhances the abundances of most of the more highly deuterated species as the redshift decreases due to the closing of some reaction channels as the gas temperature cools. Rate coefficients for the majority of the reactions involving the deuterated species are uncertain resulting in a corresponding uncertainty in their predicted abundances.

  12. Probing early-universe phase transitions with CMB spectral distortions

    NASA Astrophysics Data System (ADS)

    Amin, Mustafa A.; Grin, Daniel

    2014-10-01

    Global, symmetry-breaking phase transitions in the early universe can generate scaling seed networks which lead to metric perturbations. The acoustic waves in the photon-baryon plasma sourced by these metric perturbations, when Silk damped, generate spectral distortions of the cosmic microwave background (CMB). In this work, the chemical potential distortion (μ ) due to scaling seed networks is computed and the accompanying Compton y -type distortion is estimated. The specific model of choice is the O (N ) nonlinear σ -model for N ≫1 , but the results remain the same order of magnitude for other scaling seeds. If CMB anisotropy constraints to the O (N ) model are saturated, the resulting chemical potential distortion μ ≲2 ×1 0-9 .

  13. Universal explosive detection system for homeland security applications

    NASA Astrophysics Data System (ADS)

    Lee, Vincent Y.; Bromberg, Edward E. A.

    2010-04-01

    L-3 Communications CyTerra Corporation has developed a high throughput universal explosive detection system (PassPort) to automatically screen the passengers in airports without requiring them to remove their shoes. The technical approach is based on the patented energetic material detection (EMD) technology. By analyzing the results of sample heating with an infrared camera, one can distinguish the deflagration or decomposition of an energetic material from other clutters such as flammables and general background substances. This becomes the basis of a universal explosive detection system that does not require a library and is capable of detecting trace levels of explosives with a low false alarm rate. The PassPort is a simple turnstile type device and integrates a non-intrusive aerodynamic sampling scheme that has been shown capable of detecting trace levels of explosives on shoes. A detailed description of the detection theory and the automated sampling techniques, as well as the field test results, will be presented.

  14. Multisensor configurations for early sniper detection

    NASA Astrophysics Data System (ADS)

    Lindgren, D.; Bank, D.; Carlsson, L.; Dulski, R.; Duval, Y.; Fournier, G.; Grasser, R.; Habberstad, H.; Jacquelard, C.; Kastek, M.; Otterlei, R.; Piau, G.-P.; Pierre, F.; Renhorn, I.; Sjöqvist, L.; Steinvall, O.; Trzaskawka, P.

    2011-11-01

    This contribution reports some of the fusion results from the EDA SNIPOD project, where different multisensor configurations for sniper detection and localization have been studied. A project aim has been to cover the whole time line from sniper transport and establishment to shot. To do so, different optical sensors with and without laser illumination have been tested, as well as acoustic arrays and solid state projectile radar. A sensor fusion node collects detections and background statistics from all sensors and employs hypothesis testing and multisensor estimation programs to produce unified and reliable sniper alarms and accurate sniper localizations. Operator interfaces that connect to the fusion node should be able to support both sniper countermeasures and the guidance of personnel to safety. Although the integrated platform has not been actually built, sensors have been evaluated at common field trials with military ammunitions in the caliber range 5.56 to 12.7 mm, and at sniper distances up to 900 m. It is concluded that integrating complementary sensors for pre- and postshot sniper detection in a common system with automatic detection and fusion will give superior performance, compared to stand alone sensors. A practical system is most likely designed with a cost effective subset of available complementary sensors.

  15. Early detection of CLas infections in citrus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    “Early” detection of CLas infection is essential to minimize the risk of Huanglongbing (HLB) epidemics in areas where the pathogen has been recently introduced. Any delay in confirmation of CLas infection results in delays of regulatory and management actions, and increased spread of the pathogen ev...

  16. Quantitative spectroscopic imaging for non-invasive early cancer detection.

    PubMed

    Yu, Chung-Chieh; Lau, Condon; O'Donoghue, Geoffrey; Mirkovic, Jelena; McGee, Sasha; Galindo, Luis; Elackattu, Alphi; Stier, Elizabeth; Grillone, Gregory; Badizadegan, Kamran; Dasari, Ramachandra R; Feld, Michael S

    2008-09-29

    We report a fully quantitative spectroscopy imaging instrument for wide area detection of early cancer (dysplasia). This instrument provides quantitative maps of tissue biochemistry and morphology, making it a potentially powerful surveillance tool for objective early cancer detection. We describe the design, construction, calibration, and first clinical application of this new system. We demonstrate its accuracy using physical tissue models. We validate its diagnostic ability on a resected colon adenoma, and demonstrate feasibility of in vivo imaging in the oral cavity. PMID:18825262

  17. Lemierre's syndrome: the importance of early detection.

    PubMed

    Hawes, Dorothy; Linney, Michael John; Wilkinson, Rachel; Paul, Siba Prosad

    Sore throat is a common complaint, generally thought to be viral in origin, for which there may be a reluctance to prescribe antibiotics. This, combined with the emergence of antibiotic resistance, may explain the recent rise in the number of reports of Lemierre's syndrome (LS). LS characterises a postanginal septicaemia that is associated with significant morbidity and mortality if not recognised and treated early. This article describes the management of a 17-year-old boy diagnosed with LS to illustrate its classical presentation, common pitfalls in diagnosis and optimal management. PMID:24121852

  18. The early universe and clustering of the relic neutrinos

    SciTech Connect

    Sato, H.

    1981-12-29

    The astronomical consequences of a neutrino mass on the order of 10 eV are assessed. According to big bang cosmology, the neutrino blackbody radiation was excited in the early universe and, in the case of a neutrino mass of less than 1 MeV, would remain until now in the form of relic neutrinos without undergoing pair annihilation. These neutrinos may contribute to the average density of the universe, and may also be the main source of gravity in astronomical objects such as galactic clusters. While it is understood that neutrino-bound systems with masses on the order of galactic clusters are formed through a growth of the primordial density fluctuation in the relic neutrino distribution, there is as yet no explanation of how the protocluster fragments form individual galaxies and the massive halos of neutrinos around them. If the neutrino mass is larger than 10 eV, the missing mass in those galactic systems could be explained by the rest mass of the neutrino.

  19. STELLAR 'FIREWORKS FINALE' CAME FIRST IN EARLY UNIVERSE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This is an artist's impression of how the very early universe (less than 1 billion years old) might have looked when it went through a voracious onset of star formation, converting primordial hydrogen into myriad stars at an unprecedented rate. Back then the sky would have looked markedly different from the sea of quiescent galaxies around us today. The sky is ablaze with primeval starburst galaxies; giant elliptical and spiral galaxies have yet to form. Within the starburst galaxies, bright knots of hot blue stars come and go like bursting fireworks shells. Regions of new starbirth glow intensely red under a torrent of ultraviolet radiation. The most massive stars self-detonate as supernovas, which explode across the sky like a string of firecrackers. A foreground starburst galaxy at lower right is sculpted with hot bubbles from supernova explosions and torrential stellar winds. Unlike today there is very little dust in these galaxies, because the heavier elements have not yet been cooked up through nucleosynthesis in stars. Recent analysis of Hubble Space Telescope deep sky images supports the theory that the first stars in the universe appeared in an abrupt eruption of star formation, rather than at a gradual pace. Painting Credit: Adolf Schaller for STScI

  20. Theory of Elementary Waves (TEW) -- Structure of the Early Universe

    NASA Astrophysics Data System (ADS)

    Boyd, Jeffrey

    2011-04-01

    A new theory of physics, the Theory of Elementary Waves (TEW), starts with the idea that wave particle duality is wrong. Although this may sound at first like a crackpot idea, there is more experimental evidence supporting the validity of TEW than supporting the validity theory of wave particle duality. This has obvious implications for study of the early universe. TEW is a theory that is so symmetrical with wave particle duality that either theory can equally well explain almost all quantum experiments, such as the double slit experiment. The mathematics is the same with either theory. According to TEW waves are ubiquitous in nature, traveling in all directions at the speed of light, at all wavelengths, 24 hours a day 7 days a week. The intensity of elementary waves impinging on a particle source, determines the likelihood that a particle will be emitted following that specific wave. If a particle follows a wave (backwards), the particle has a trajectory, is not in a superposition, and the probability of remaining attached to that specific wave is one. So these elementary waves apparently form the structure of the universe, perhaps all the way back to the Big Bang. Could they be primordial? See http://Elwave.org

  1. A Local Perspective on HMXB Populations in the Early Universe

    NASA Astrophysics Data System (ADS)

    Basu-Zych, Antara; Lehmer, Bret; Hornschemeier, Ann E.; Fragos, Tassos; Zezas, Andreas; Yukita, Mihoko; Ptak, Andrew

    2016-04-01

    Deep studies of X-ray emission from galaxies, such as the Chandra Deep Field-South 4 Ms (soon to be 7Ms) survey, have allowed us to peer back in history at X-ray binary formation and evolution over cosmic timescales. X-ray stacking observations of z=1-4 star-forming galaxies reveal that the metallicity evolution of the Universe drives the evolution of the 2-10 keV X-ray luminosity per star formation rate (SFR), which is dominated by high mass X-ray binaries (HMXBs). By studying local (z=0.02-0.2), rare, analogs of these high redshift galaxies, we have found further evidence that the X-ray emission per SFR is elevated compared to typical local star-forming galaxies and this appears to be due to the lower metallicities of these galaxies. Theoretically, metal poor stars produce weaker stellar winds, which results in higher numbers of more massive binaries and therefore leads to higher X-ray luminosities in metal poor populations. We have performed an in-depth study of the only two local analogs that have spatially-resolved 2-10 keV emission with Chandra to present the bright end of the X-ray luminosity distribution of HMXBs. Based on this study, we conclude that the X-ray luminosity functions in these metal-poor galaxies differ from that of local star-forming galaxies. Since galaxies at high redshifts (and their binaries) formed in a more pristine universe, with few metals, the analogs that we have been studying offer cosmological insight about the heating of the early Universe by HMXBs.

  2. Enhanced endoscopic detection of early colon cancer

    NASA Astrophysics Data System (ADS)

    Balachandar, Gowra; Trowers, Eugene A.

    1999-06-01

    Enhanced endoscopic detection of small flat adenomas is becoming increasingly important as they have a reported 14 percent incidence of dysplasia when compared with 5% incidence in polypod adenomas of the same size. These lesions even when invasive do not show up against the translucent surrounding mucosa making endoscopic detection difficult. Dye spraying with indigo carmine makes their morphology clear, with well-circumscribed borders. Dye spraying and magnifying endoscopes can be used to observe pit patterns on the surface of the bowel. Combining dye spraying and high-resolution video endoscopy demonstrates well the colorectal epithelial surface. Scanning immersion video endoscopy visualizes the epithelial surface of the colorectal mucosa by high-resolution endoscopy after filling the lumen with water. Endoscopic ultrasound can be used to see if the lesion is intramucosal or not and assess the depth of invasion if malignancy is presented. Laser induced fluorescence spectroscopy has the potential to detect colonic dysplasia in vivo. Combining such technologies with conventional colonoscopy can help in the surveillance of large areas of colonic mucosa for the presence of dysplasia. Guided biopsy can replace random biopsy based on information provided at the time of colonoscopic examination.

  3. Radiation detection and wireless networked early warning

    NASA Astrophysics Data System (ADS)

    Burns, David A.; Litz, Marc S.; Carroll, James J.; Katsis, Dimosthenis

    2012-06-01

    We have designed a compact, wireless, GPS-enabled array of inexpensive radiation sensors based on scintillation counting. Each sensor has a scintillator, photomultiplier tube, and pulse-counting circuit that includes a comparator, digital potentiometer and microcontroller. This design provides a high level of sensitivity and reliability. A 0.2 m2 PV panel powers each sensor providing a maintenance-free 24/7 energy source. The sensor can be mounted within a roadway light-post and monitor radiological activity along transport routes. Each sensor wirelessly transmits real-time data (as counts per second) up to 2 miles with a XBee radio module, and the data is received by a XBee receive-module on a computer. Data collection software logs the information from all sensors and provides real-time identification of radiation events. Measurements performed to-date demonstrate the ability of a sensor to detect a 20 μCi source at 3.5 meters when packaged with a PVT (plastic) scintillator, and 7 meters for a sensor with a CsI crystal (more expensive but ~5 times more sensitive). It is calculated that the sensor-architecture can detect sources moving as fast as 130 km/h based on the current data rate and statistical bounds of 3-sigma threshold detection. The sensor array is suitable for identifying and tracking a radiation threat from a dirty bomb along roadways.

  4. Automated System for Early Breast Cancer Detection in Mammograms

    NASA Technical Reports Server (NTRS)

    Bankman, Isaac N.; Kim, Dong W.; Christens-Barry, William A.; Weinberg, Irving N.; Gatewood, Olga B.; Brody, William R.

    1993-01-01

    The increasing demand on mammographic screening for early breast cancer detection, and the subtlety of early breast cancer signs on mammograms, suggest an automated image processing system that can serve as a diagnostic aid in radiology clinics. We present a fully automated algorithm for detecting clusters of microcalcifications that are the most common signs of early, potentially curable breast cancer. By using the contour map of the mammogram, the algorithm circumvents some of the difficulties encountered with standard image processing methods. The clinical implementation of an automated instrument based on this algorithm is also discussed.

  5. Early detection of dental caries using photoacoustics

    NASA Astrophysics Data System (ADS)

    Kim, K.; Witte, R.; Koh, I.; Ashkenazi, S.; O'Donnell, M.

    2006-02-01

    For decades, visual, tactile and radiographic examinations have been the standard for diagnosing caries. Nonetheless, the extent of variation in the diagnosis of dental caries is substantial among dental practitioners using these traditional techniques. Therefore, a more reliable standard for detecting incipient caries would be desirable. Using photoacoustics, near-infrared (NIR) optical contrast between sound and carious dental tissues can be relatively easily and accurately detected at ultrasound resolution. In this paper, a pulsed laser (Nd:YAG, Quanta-Ray) was used to probe extracted human molars at different disease stages determined from periapical radiographs. Both fundamental (1064nm) and first harmonic (532nm) pulses (15ns pulse length, 100mJ at fundamental and 9mJ at first harmonic , 10Hz pulse repetition rate) were used to illuminate the occlusal surface of tooth samples placed in a water tank. The photoacoustic signal was recorded with an unfocused wideband single-element piezoelectric transducer (centered at 12 MHz, bandwidth 15 MHz) positioned at small angle (less than 30 degrees) to the laser beam close to the occlusal surface. At the fundamental wavelength, total photoacoustic energy increases from normal to incipient stage disease by as much as a factor of 10. Differences between photoacoustic energy at the fundamental and first harmonic wavelength further indicate spectral absorption changes of the underlying structure with disease progression. Using a focused laser beam, an extracted molar with suspected incipient caries was scanned along the occulusal surface to help localize the caries inside enamel and dentin. The significantly increasing photoacoustic signal at a specific scan line both at fundamental and first harmonic indicates the local development of the incipient caries. The photoacoustic results compare well with visual inspection after layer by layer dissection. Preliminary results demonstrate the feasibility of detecting incipient

  6. EARLY DETECTION AND PROGRAMING FOR CHILDREN WITH SCHOOL ADJUSTMENT PROBLEMS.

    ERIC Educational Resources Information Center

    MCGAHAN, F.E.

    THE GALENA PARK SPECIAL PROGRAM IS AN EFFORT ON THE PART OF THE SCHOOL ADMINISTRATION TO DETECT, AT THE EARLIEST TIME, ANY STUDENT PROBLEM WHICH MAY LEAD TO DIFFICULTIES IN SCHOOL ADJUSTMENT. ALL PHASES OF PUPIL PERSONNEL SERVICES ARE PLACED UNDER ONE COORDINATOR TO EXPEDITE SERVICES TO THE CHILD IN DIFFICULTY. EARLY DETECTION OF POTENTIAL PROBLEM…

  7. Detection and minimally invasive treatment of early squamous lung cancer

    PubMed Central

    Sutedja, Thomas G.

    2013-01-01

    Non-small cell lung cancer (NSCLC) is the most common cause of cancer deaths worldwide. The majority of patents presenting with NSCLC have advanced disease, which precludes curative treatment. Early detection and treatment might result in the identification of more patients with early central lung cancer and improve survival. In addition, the study of early lung cancer improves understanding of lung carcinogenesis and might also reveal new treatment targets for advanced lung cancer. Bronchoscopic investigation of the central airways can reveal both early central lung cancer in situ (stage 0) and other preinvasive lesions such as dysplasia. In the current review we discuss the detection of early squamous lung cancer, the natural history of preinvasive lesions and whether biomarkers can be used to predict progression to cancer. Finally we will review the staging and management of preinvasive lung cancer lesions and the different therapeutic modalities that are available. PMID:23858332

  8. Ultrasonography for early detection of ovarian carcinoma.

    PubMed

    Andolf, E; Svalenius, E; Astedt, B

    1986-12-01

    Ultrasound scan for detection of ovarian enlargements was performed in a target group of out-patients attending the clinic for various reasons in the 40-70 years range. Overall 805 women were examined, in 99% of whom the ovaries and/or their vessels could be identified. Pathological findings were suspected in 83 patients at the first scan, and were confirmed in 50 after a repeat scan, 39 of whom subsequently underwent surgery. Various ovarian lesions were found in 35 women, including five mucinous and serous cystadenomas, one carcinoma, two borderline tumours, and a cancer of the caecum. None of the borderline or malignant ovarian lesions were found by manual pelvic examination. Ultrasound screening appears to be a useful diagnostic aid, though its usefulness might be further improved if other risk factors such as heredity and period of ovulatory activity are taken into consideration. PMID:3542015

  9. Epidemiology and Early Detection of Cervical Cancer.

    PubMed

    Hillemanns, Peter; Soergel, Phillip; Hertel, Hermann; Jentschke, Matthias

    2016-01-01

    The new German S3 guideline 'Prevention of Cervical Cancer' published in 2016 is based on the latest available evidence about cervical cancer screening and treatment of cervical precancer. Large randomized controlled trials indicate that human papillomavirus (HPV)-based screening may provide better protection against cervical cancer than cytology alone through improved detection of premalignant disease in the first screening round prior to progression. Therefore, women aged 30 years and older should preferably be screened with HPV testing every 3-5 years (cytology alone every 2 years is an acceptable alternative). Co-testing is not recommended. Screening should start at 25 years using cytology alone every 2 years. The preferred triage test after a positive HPV screening test is cytology. Women positive for HPV 16 and HPV 18 should receive immediate colposcopy. Another alternative triage method is p16/Ki-67 dual stain cytology. The mean yearly participation rate in Germany is between 45 and 50%. Offering devices for HPV self-sampling has the potential to increase participation rates in those women who are at higher risk of developing cervical cancer. Regarding primary prevention, the 9-valent vaccine may provide protection against up to 85% of cervical intraepithelial neoplasia (CIN) 3 and 90% of cervical cancer, and is available in Europe as a 2-dose schedule from May 2016. PMID:27614953

  10. Using prefrailty to detect early disability

    PubMed Central

    Acosta-Benito, Miguel A.; Sevilla-Machuca, Ignacio

    2016-01-01

    Introduction: In an aging population, new strategies are required to identify individuals at risk of adverse health outcomes. Frailty syndrome is related to negative health events. This increased risk may be used to identify individuals in which interventions can delay the onset of physical and functional complications. The aim of the study was to determine the relationship between the onset of frailty and the beginning of functional disability. Materials and Methods: This was a cross-sectional observational study with consecutive sampling to analyze 146 patients aged seventy and older who come to the primary care center. The level of frailty was registered according to fatigue, resistance, ambulation, illnesses, and loss of weight scale. Disability for Instrumental Activities of Daily Live dependency, comorbidity, and social risk factors was registered too. Results: The prevalence of frailty and prefrailty was 17.8% and 39%, respectively, and were associated with age, level of disability, and the presence of gastrointestinal disease. Prefrail patients had initial levels of dependency, while those who were not frail were mostly independent. Conclusion: Frailty syndrome is easily detectable. The intermediate stage known as prefrailty is related to the start of the functional disability. The syndrome screening identifies individuals at risk in whom we can potentially intervene to delay the onset of the syndrome and delay functional disability. Control of comorbidity in frail patients must be studied. Screening age could be set in patients between 75 and 81 years old.

  11. Stability of the early universe in bigravity theory

    NASA Astrophysics Data System (ADS)

    Aoki, Katsuki; Maeda, Kei-ichi; Namba, Ryo

    2015-08-01

    We study the stability of a spherically symmetric perturbation around the flat Friedmann-Lemaître-Robertson-Walker spacetime in the ghost-free bigravity theory, retaining nonlinearities of the helicity-0 mode of the massive graviton. It has been known that, when the graviton mass is smaller than the Hubble parameter, homogeneous and isotropic spacetimes suffer from the Higuchi-type ghost or the gradient instability against the linear perturbation in the bigravity. Hence, the bigravity theory has no healthy massless limit for cosmological solutions at linear level. In this paper we show that the instabilities can be resolved by taking into account nonlinear effects of the scalar graviton mode for an appropriate parameter space of coupling constants. The growth history in the bigravity can be restored to the result in general relativity in the early stage of the Universe, in which the Stückelberg fields are nonlinear and there is neither ghost nor gradient instability. Therefore, the bigravity theory has the healthy massless limit, and cosmology based on it is viable even when the graviton mass is smaller than the Hubble parameter.

  12. Antimatter regions in the early universe and big bang nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Kurki-Suonio, Hannu; Sihvola, Elina

    2000-11-01

    We have studied big bang nucleosynthesis in the presence of regions of antimatter. Depending on the distance scale of the antimatter region, and thus the epoch of their annihilation, the amount of antimatter in the early universe is constrained by the observed abundances. Small regions, which annihilate after weak freezeout but before nucleosynthesis, lead to a reduction in the 4He yield, because of neutron annihilation. Large regions, which annihilate after nucleosynthesis, lead to an increased 3He yield. Deuterium production is also affected but not as much. The three most important production mechanisms of 3He are (1) photodisintegration of 4He by the annihilation radiation, (2) p¯4He annihilation, and (3) n¯4He annihilation by ``secondary'' antineutrons produced in 4He¯ annihilation. Although p¯4He annihilation produces more 3He than the secondary n¯4He annihilation, the products of the latter survive later annihilation much better, since they are distributed further away from the annihilation zone. Our results are in qualitative agreement with similar work by Rehm and Jedamzik, but we get a larger 3He yield.

  13. Early universe cosmology, effective supergravity, and invariants of algebraic forms

    NASA Astrophysics Data System (ADS)

    Sinha, Kuver

    2015-09-01

    The presence of light scalars can have profound effects on early universe cosmology, influencing its thermal history as well as paradigms like inflation and baryogenesis. Effective supergravity provides a framework to make quantifiable, model-independent studies of these effects. The Riemannian curvature of the Kähler manifold spanned by scalars belonging to chiral superfields, evaluated along supersymmetry breaking directions, provides an order parameter (in the sense that it must necessarily take certain values) for phenomena as diverse as slow roll modular inflation, nonthermal cosmological histories, and the viability of Affleck-Dine baryogenesis. Within certain classes of UV completions, the order parameter for theories with n scalar moduli is conjectured to be related to invariants of n -ary cubic forms (for example, for models with three moduli, the order parameter is given by a function on the ring of invariants spanned by the Aronhold invariants). Within these completions, and under the caveats spelled out, this may provide an avenue to obtain necessary conditions for the above phenomena that are in principle calculable given nothing but the intersection numbers of a Calabi-Yau compactification geometry. As an additional result, abstract relations between holomorphic sectional and bisectional curvatures are utilized to constrain Affleck-Dine baryogenesis on a wide class of Kähler geometries.

  14. Early result of heart transplantation in Japan: Osaka University experience.

    PubMed

    Fukushima, Norihide; Miyamoto, Yuji; Ohtake, Shigeaki; Sawa, Yoshiki; Takahashi, Toshiki; Nishimura, Motonobu

    2004-06-01

    Since the new organ transplantation law was established in 1997, 17 heart transplantations have been performed in Japan, 7 of which were carried out at Osaka University Hospital. Recipient diagnosis was dilated cardiomyopathy in 2, dilated phase of hypertrophic cardiomyopathy in 4, and post-myocarditis cardiomyopathy in 1. Ages ranged from 8 to 49 years with a mean of 35.3 years. Five patients were bridged with a left ventricular assist device. The waiting period was 182-977 days (mean, 643 days). There was no early or late death during follow-up of 1-4.8 years. Under a standard triple-drug regimen using mycophenolate, there were 3 rejection episodes greater than grade 3 in 2 patients, and humoral rejection requiring plasmapheresis in one. A young boy whose donor was a hemodynamically compromised adult developed neurological sequelae after resuscitation following ventricular tachycardia. All patients were discharged and went back to work or their regular daily life. Although the donor shortage is still severe in Japan, the resumption of heart transplantation has been satisfactory, and left ventricular assist devices have played a crucial role. PMID:15213084

  15. GUTs and supersymmetric GUTs in the very early universe

    SciTech Connect

    Ellis, J.

    1982-10-01

    This talk is intended as background material for many of the other talks treating the possible applications of GUTs to the very early universe. I start with a review of the present theoretical and phenomenological status of GUTs before going on to raise some new issues for their prospective cosmological applications which arise in supersymmetric (susy) GUTs. The first section is an update on conventional GUTs, which is followed by a reminder of some of the motivations for going supersymmetric. There then follows a simple primer on susy and a discussion of the structure and phenomenology of simple sysy GUTs. Finally we come to the cosmological issues, including problems arising from the degeneracy of susy minima, baryosynthesis and supersymmetric inflation, the possibility that gravity is an essential complication in constructing susy GUTs and discussing their cosmology, and the related question of what mass range is allowed for the gravitino. Several parts of this write-up contain new material which has emerged either during the Workshop or subsequently. They are included here for completeness and the convenience of the prospective reader. Wherever possible, these anachronisms will be flagged so as to keep straight the historical record.

  16. Anicteric early bile duct carcinoma detection with magnetic resonance cholangiopancreatography.

    PubMed

    Oshikiri, Taro; Morita, Takayuki; Fujita, Miyoshi; Miyasaka, Yuji; Senmaru, Naoto; Yamada, Hidehisa; Kondo, Satoshi; Katoh, Hiroyuki

    2005-01-01

    The poor prognosis of extrahepatic bile duct carcinoma makes early detection and diagnosis essential for positive patient outcomes. We describe 2 cases of jaundice-free early extrahepatic bile duct carcinoma detected by magnetic resonance cholangiopancreatography. Extrahepatic bile duct carcinoma was discovered incidentally in patient 1 by magnetic resonance cholangiopancreatography during evaluation of a gallbladder stone. In patient 2, extrahepatic bile duct carcinoma was found during a routine health maintenance exam. Both patients underwent radical surgical intervention. Both patient 1 and 2 have remained in good health for over one year, 3.5 and one year, respectively, and have not exhibited any signs or symptoms of relapse or cancer recurrence. Based on these cases, it appears that magnetic resonance cholangiopancreatography can play a significant role in the early detection of extrahepatic bile duct carcinoma and improve disease prognosis. PMID:15816438

  17. Development of an assisting detection system for early infarct diagnosis

    SciTech Connect

    Sim, K. S.; Nia, M. E.; Ee, C. S.

    2015-04-24

    In this paper, a detection assisting system for early infarct detection is developed. This new developed method is used to assist the medical practitioners to diagnose infarct from computed tomography images of brain. Using this assisting system, the infarct could be diagnosed at earlier stages. The non-contrast computed tomography (NCCT) brain images are the data set used for this system. Detection module extracts the pixel data from NCCT brain images, and produces the colourized version of images. The proposed method showed great potential in detecting infarct, and helps medical practitioners to make earlier and better diagnoses.

  18. Preventing neonaticide by early detection and intervention in student pregnancy. .

    PubMed

    Platt, Lois M

    2014-11-01

    Pregnant students are the population group most likely to commit neonaticide, murder of an infant younger than 24 hours old. Denial by the student, lack of early pregnancy detection, and poor social support contribute to this disorder. As the health care professionals with whom the student has the most contact, school nurses are in an excellent position to prevent neonaticide through provision of health education, early detection of pregnancy, and intervention with students and their families to assist them in making healthy choices. PMID:25417331

  19. Early Detection Research Network (EDRN) | Division of Cancer Prevention

    Cancer.gov

    http://edrn.nci.nih.gov/EDRN is a collaborative network that maintains comprehensive infrastructure and resources critical to the discovery, development and validation of biomarkers for cancer risk and early detection. The program comprises a public/private sector consortium to accelerate the development of biomarkers that will change medical practice, ensure data reproducibility, and adapt to the changing landscape of biomarker science.  | Comprehensive infrastructure and resources critical to discovery, development and validation of biomarkers for cancer risk and early detection.

  20. Observational Constraints on the Nature of the First Supermassive Black Holes Seeds in the Early Universe

    NASA Astrophysics Data System (ADS)

    Treister, Ezequiel; Schawinski, Kevin; Natarajan, Priyamvada; Weigel, Anna

    2015-08-01

    We constrain the total accreted mass density in supermassive black holes at z>6, as inferred from the integrated X-ray emission in a sample of galaxy candidates selected using observed-frame optical and near-IR dropout techniques. Combining galaxy samples acquired in the Hubble Ultra Deep Field with recent deep Hubble observations of the CANDELS fields and Chandra 4 Msec observations we obtain the most restrictive current constraints on total black hole growth in the early Universe, estimating a mass density <1000M⊙Mpc-3. We further carry out a detailed study of all the individually-detected X-ray sources in the Chandra Deep Field South, finding that none of them is a good candidate to be at z>5.These results place interesting constraints on growth by accretion and imply one or more of the following: only ~20% luminous galaxies at this epoch are seeded with BHs - so seeding is inefficient; most black hole growth at early epochs happens in dusty - as yet undetected - host galaxies and/or in less-massive - also as yet undetected - galaxies; therefore a large fraction of the early black hole buildup is heavily obscured or that either most of the growth is due to radiatively inefficient accretion or due to black hole mergers at these early times. Not seeing a signal from growing black holes in high-redshift galaxies suggests that if their black holes are growing they are doing so in a veiled fashion, or they are simply not growing or perhaps most galaxies do not harbor black holes at their centers at all. These possibilities offer novel insights for high redshift seed formation models.Finally, we present the prospects to constrain the nature of the first black hole seeds in the early Universe using existing and planned space-based facilities.

  1. A model of spacetime emergence in the early universe

    NASA Astrophysics Data System (ADS)

    Tysanner, Martin W.

    This thesis proposes and develops much of the groundwork for a model of emergent physics, posited to describe the initial condition and early evolution of a universe. Two different considerations motivate the model. First, the spacetime manifold underlying general relativity and quantum theory is a complex object with much structure, but its origin is unexplained by the standard picture. Second, it is argued, the usual assumption of the preexistence of this manifold leads to possibly intractable theoretical (not observational) difficulties with the usual cosmological inflation idea. Consistent with both considerations, the assumption of a manifold that precedes a big bang cosmology is dropped; instead, a spacetime manifold with metric, Lorentz symmetry, and manifestation of standard quantum fields propagating on the spacetime all emerge in the model from a simpler, statistically scale invariant underlying structure, driven by an inflation-like process. The basic structural components of the model are a stochastic (not quantum or classical) scalar field on a general metric space, plus a collection of quantum fields that supply the matter content once spacetime begins to emerge. Importantly, standard quantum fields cannot be defined on the pre-emergent space; this is addressed by assuming quantum theory exists a priori, and then postulating that quantum fields can begin to manifest once an approximate spacetime has emerged. Atypical fluctuations in the scalar field transiently break the statistical scale invariance in a localized region of the general metric space; a very small subset have field configurations of approximate spacetimes which can potentially evolve into an initial condition for a universe. Spacetime structure and geometry then arise from the dependence of propagation speeds and spatial/temporal distances on variations in the scalar field; these variations are seeded by the matter (quantum) fields. The thesis develops the mathematics of the basic

  2. Signals of Early-Universe Physics in Cosmology

    NASA Astrophysics Data System (ADS)

    Cuadburn, Sarah Elizabeth

    This is a thesis on theoretical cosmology. The first and largest part is a study of cosmic strings, in particular their dynamics and signals in higher dimensional spacetimes. The second part is a study of black holes in a quintessence background. Cosmic strings are predicted by models of the early universe. They were thought to arise, originally, from Grand Unified Theories, and more recently from brane inflationary models based in string theory. In Chapter 3 we find exact solutions for cosmic string loop trajectories in higher dimensions, and find the regions of parameter space for which cusps exist. We find that winding the internal dimensions slows the average velocity of string loops, and conjecture that the periodicity of internal space may contribute to self-intersections. In Chapter 4, we calculate the gravitational wave signal from cosmic string cusps in higher dimensions, and find it is much reduced relative to the 4D case. The main reason for this is the large reduction in the probability of cusps occurring on loops in higher dimensions, as well as a slight reduction in signal from individual cusps. In Chapter 5, we study cosmic string trajectories in warped spacetimes, such as may be found in realistic brane inflation models. We find that contrary to claims in the literature, the warping of the internal space does not prevent the internal motion of strings. The energy associated with the warping of spacetime means that the energy of a loop appears to change over time from our 4D perspective. Finally, in Chapter 6, we find an analytic, general-relativistic solution describing a black hole in a quintessence universe. Quintessence is a model of late-time cosmic acceleration in which expansion is sourced by a scalar field. Our solution shows the interaction between this scalar field and a black hole. The scalar field is shown to continue its cosmological "rolling" behaviour everywhere, including on the black hole event horizon, and the black hole is shown

  3. Detection of early caries by laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Sasazawa, Shuhei; Kakino, Satoko; Matsuura, Yuji

    2015-07-01

    To improve sensitivity of dental caries detection by laser-induced breakdown spectroscopy (LIBS) analysis, it is proposed to utilize emission peaks in the ultraviolet. We newly focused on zinc whose emission peaks exist in ultraviolet because zinc exists at high concentration in the outer layer of enamel. It was shown that by using ratios between heights of an emission peak of Zn and that of Ca, the detection sensitivity and stability are largely improved. It was also shown that early caries are differentiated from healthy part by properly setting a threshold in the detected ratios. The proposed caries detection system can be applied to dental laser systems such as ones based on Er:YAG-lasers. When ablating early caries part by laser light, the system notices the dentist that the ablation of caries part is finished. We also show the intensity of emission peaks of zinc decreased with ablation with Er:YAG laser light.

  4. Becoming the University: Early Presidential Discourses of Gordon Gee

    ERIC Educational Resources Information Center

    Rishell, Michael W.

    2011-01-01

    The author explores Gordon Gee's career as a university president. There is a special focus on the journey Gee made between 1990, when he first became president of The Ohio State University, to 2007, when he returned to Ohio State for another term as university president ten years later. During this time away from Ohio State, he served as the…

  5. Multistatic adaptive microwave imaging for early breast cancer detection.

    PubMed

    Xie, Yao; Guo, Bin; Xu, Luzhou; Li, Jian; Stoica, Petre

    2006-08-01

    We propose a new multistatic adaptive microwave imaging (MAMI) method for early breast cancer detection. MAMI is a two-stage robust Capon beamforming (RCB) based image formation algorithm. MAMI exhibits higher resolution, lower sidelobes, and better noise and interference rejection capabilities than the existing approaches. The effectiveness of using MAMI for breast cancer detection is demonstrated via a simulated 3-D breast model and several numerical examples. PMID:16916099

  6. NEARBY MASSIVE STAR CLUSTER YIELDS INSIGHTS INTO EARLY UNIVERSE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A NASA Hubble Space Telescope 'family portrait' of young, ultra-bright stars nested in their embryonic cloud of glowing gases. The celestial maternity ward, called N81, is located 200,000 light-years away in the Small Magellanic Cloud (SMC), a small irregular satellite galaxy of our Milky Way. Hubble's exquisite resolution allows astronomers to pinpoint 50 separate stars tightly packed in the nebula's core within a 10 light-year diameter - slightly more than twice the distance between earth and the nearest star to our sun. The closest pair of stars is only 1/3 of a light-year apart (0.3 arcseconds in the sky). This furious rate of mass loss from these super-hot stars is evident in the Hubble picture that reveals dramatic shapes sculpted in the nebula's wall of glowing gases by violent stellar winds and shock waves. A pair of bright stars in the center of the nebula is pouring out most of the ultraviolet radiation to make the nebula glow. Just above them, a small dark knot is all that's left of the cold cloud of molecular hydrogen and dust the stars were born from. Dark absorption lanes of residual dust trisect the nebula. The nebula offers a unique opportunity for a close-up glimpse at the 'firestorm' accompanying the birth of extremely massive stars, each blazing with the brilliance of 300,000 of our suns. Such galactic fireworks were much more common billions of years ago in the early universe, when most star formation took place. The 'natural-color' view was assembled from separate images taken with the Wide Field and Planetary Camera 2, in ultraviolet light and two narrow emission lines of ionized Hydrogen (H-alpha, H-beta). The picture was taken on September 4, 1997. Credit: Mohammad Heydari-Malayeri (Paris Observatory, France), NASA/ESA

  7. Teaching Early Childhood Assessment Online: A State-Wide Multi-University Collaboration

    ERIC Educational Resources Information Center

    Murray, Ann D.; McDonald, Angie; York, Marti A.

    2006-01-01

    This paper describes an online early childhood assessment course that was developed through a multi-university collaboration with support from a state improvement grant. Collaborators from three universities developed the course to address a new early childhood unified license (birth to age 8, regular and special education) in the state of Kansas.…

  8. Design Choices: Universal Financing for Early Care and Education. Human Services Policy Center Policy Brief.

    ERIC Educational Resources Information Center

    Brandon, Richard N.; Kagan, Sharon Lynn; Joesch, Jutta M.

    This policy brief describes the components of a computer model to compare different financing approaches for universal early care and education programs as developed by the Financing Universal Early Care and Education (ECE) for America's Children Project. The brief also discusses lessons learned from analyzing key features of existing…

  9. Innovation in observation: a vision for early outbreak detection

    PubMed Central

    Fefferman, NH; Naumova, EN

    2010-01-01

    The emergence of new infections and resurgence of old ones—health threats stemming from environmental contamination or purposeful acts of bioterrorism—call for a worldwide effort in improving early outbreak detection, with the goal of ameliorating current and future risks. In some cases, the problem of outbreak detection is logistically straightforward and mathematically easy: a single case of a disease of great concern can constitute an outbreak. However, for the vast majority of maladies, a simple analytical solution does not exist. Furthermore, each step in developing reliable, sensitive, effective surveillance systems demonstrates enormous complexities in the transmission, manifestation, detection, and control of emerging health threats. In this communication, we explore potential future innovations in early outbreak detection systems that can overcome the pitfalls of current surveillance. We believe that modern advances in assembling data, techniques for collating and processing information, and technology that enables integrated analysis will facilitate a new paradigm in outbreak definition and detection. We anticipate that moving forward in this direction will provide the highly desired sensitivity and specificity in early detection required to meet the emerging challenges of global disease surveillance. PMID:22460396

  10. Genesis and evolution of dust in the early Universe

    NASA Astrophysics Data System (ADS)

    Gall, Christa

    2010-10-01

    The most fascinating aspect of studying dust is the fact that small dust particles of a few micrometer which we cannot see with our naked eyes are a fundamentally important component in a Universe whose dimension we hardly can imagine. Dust grains impact the evolution of the Universe in many ways. For example they are known as the main formation site of molecular hydrogen which acts as important coolant by the formation of stars similar to our Sun. Dust is essential for the formation of planets and plays an important role in the end stages of life of most stars. Large amounts of dust have been discovered in quasars (QSOs) at high redshift where the epoch of cosmic evolution was ! 1 Gyr, but the origin and evolution of these remains elusive. Supernovae (SNe) and asymptotic giant branch (AGB) stars have been contemplated as prime dust sources due to their potential ability of generating sufficiently high amounts of dust. Though AGB stars are in fact known as the main dust source in the present Universe, their partially (too) long lifetimes questions their significance as dust contributers in the early Universe. SNe are sufficiently short-lived, but there exists a discrepancy between observationally and theoretically ascertained dust yields. The principal aim of this thesis is to elucidate the astrophysical conditions required for generating these large amounts of dust in massive starburst galaxies and QSOs at high redshift. We first intend to identify the mass ranges of the most efficient dust producing stars at high redshift. We ascertain the dust production efficiency of stars in the mass range 3-40 M⊙ using observed and theoretical dust yields of AGB stars and SNe. Based on these efficiencies we determine the total dust productivity for different stellar sources and investigate its dependency on the initial mass function (IMF). It is found that the dust production efficiency generally decreases with increasing progenitor mass. The total dust production strongly

  11. Potentially Missing Physics of the Early Universe: Nonlinear Vacuum Polarization in Intense Blackbody Radiation

    SciTech Connect

    Wu, S Q; Hartemann, F V

    2010-04-13

    The standard Big Bang universe model is mainly based on linear interactions, except during exotic periods such as inflation. The purpose of the present proposal is to explore the effects, if any, of vacuum polarization in the very high energy density environment of the early universe. These conditions can be found today in astrophysical settings and may also be emulated in the laboratory using high intensity advanced lasers. Shortly after the Big Bang, there once existed a time when the energy density of the universe corresponded to a temperature in the range 10{sup 8} - 10{sup 9} K, sufficient to cause vacuum polarization effects. During this period, the nonlinear vacuum polarization may have had significant modifications on the propagation of radiation. Thus the thermal spectrum of the early universe may have been starkly non-Planckian. Measurements of the cosmic microwave background today show a spectrum relatively close to an ideal blackbody. Could the early universe have shown spectral deviations due to nonlinear vacuum effects? If so, is it possible to detect traces of those relic photons in the universe today? Found in galactic environments, compact objects such as blazars and magnetars can possess astronomically large energy densities that far exceed anything that can be created in the laboratory. Their field strengths are known to reach energy levels comparable to or surpassing the energy corresponding to the Schwinger critical field E {approx} 10{sup 18} V/m. Nonlinear vacuum effects become prominent under these conditions and have garnered much interest from the astronomical and theoretical physics communities. The effects of a nonlinear vacuum may be of crucial importance for our understanding of these objects. At energies of the order of the electron rest mass, the most important interactions are described by quantum electrodynamics (QED). It is predicted that nonlinear photon-photon interactions will occur at energies approaching the Schwinger

  12. [Prevention, early detection and monitoring of cutaneous melanoma].

    PubMed

    Thomas, Luc

    2016-03-01

    In parallel to the development of new treatments, considerable work remains to be done with regard on the one hand to early detection, and on the other, to the prevention of the main extrinsic risk factor, namely ultraviolet rays. Caregivers have an important educational role to play with patients and their families concerning these different aspects. PMID:26944640

  13. Illumina Spin-off to Develop Early-Detection Test.

    PubMed

    Colwell, Janet

    2016-04-01

    DNA-sequencing giant Illumina has formed a new company, called Grail, to develop liquid biopsies capable of spotting cancer before symptoms arise. The start-up is working on a low-cost "pan-cancer" test that can detect multiple cancer types early, which it hopes to introduce by 2019. PMID:26873346

  14. American Cancer Society Recommendations for Prostate Cancer Early Detection

    MedlinePlus

    ... Research Get Involved Find Local ACS Learn About Cancer » Prostate Cancer » More Information » Prostate Cancer Early Detection » American ... Causes Cancer? Breast Cancer Colon/Rectum Cancer Lung Cancer Prostate Cancer Skin Cancer Show All Cancer Types News ...

  15. Constraints on standard and non-standard early universe models from CMB B-mode polarization

    SciTech Connect

    Ma, Yin-Zhe; Brown, Michael L.; Zhao, Wen E-mail: Wen.Zhao@astro.cf.ac.uk

    2010-10-01

    We investigate the observational signatures of three models of the early Universe in the B-mode polarization of the Cosmic Microwave Background (CMB) radiation. In addition to the standard single field inflationary model, we also consider the constraints obtainable on the loop quantum cosmology model (from Loop Quantum Gravity) and on cosmic strings, expected to be copiously produced during the latter stages of Brane inflation. We first examine the observational features of the three models, and then use current B-mode polarization data from the BICEP and QUaD experiments to constrain their parameters. We also examine the detectability of the primordial B-mode signal predicted by these models and forecast the parameter constraints achievable with future CMB polarization experiments. We find that: (a) since B-mode polarization measurements are mostly unaffected by parameter degeneracies, they provide the cleanest probe of these early Universe models; (b) using the BICEP and QUaD data we obtain the following parameter constraints: r = 0.02{sup +0.31}{sub −0.26} (1σ for the tensor-to-scalar ratio in the single field inflationary model); m < 1.36 × 10{sup −8}M{sub pl} and k{sub *} < 2.43 × 10{sup −4} Mpc{sup −1} (1σ for the mass and scale parameters in the loop quantum cosmology model); and Gμ < 5.77 × 10{sup −7} (1σ for the cosmic string tension); (c) future CMB observations (both satellite missions and forthcoming sub-orbital experiments) will provide much more rigorous tests of these early Universe models.

  16. Early detection of occult atrial fibrillation and stroke prevention.

    PubMed

    Keach, Joseph Walker; Bradley, Steven M; Turakhia, Mintu P; Maddox, Thomas M

    2015-07-01

    Atrial fibrillation (AF) is a very common arrhythmia and significantly increases stroke risk. This risk can be mitigated with oral anticoagulation, but AF is often asymptomatic, or occult, preventing timely detection and treatment. Accordingly, occult AF may cause stroke before it is clinically diagnosed. Currently, guidelines for the early detection and treatment of occult AF are limited. This review addresses recent advancements in occult AF detection methods, identification of populations at high risk for occult AF, the treatment of occult AF with oral anticoagulation, as well as ongoing trials that may answer critically important questions regarding occult AF screening. PMID:25935765

  17. A University Lab School for the 21st Century: The Early Childhood Development Center.

    ERIC Educational Resources Information Center

    Cassidy, Jack; Sanders, Jana

    This chapter is part of a book that recounts the year's work at the Early Childhood Development Center (ECDC) at Texas A & M University-Corpus Christi. Rather than an "elitist" laboratory school for the children of university faculty, the ECDC is a collaboration between the Corpus Christi Independent School District and the university with an…

  18. [From early detection to early care: intervention strategies based on prospective screening].

    PubMed

    Canal-Bedia, Ricardo; García-Primo, Patricia; Hernández-Fabián, Aránzazu; Magán-Maganto, María; Sánchez, Ana B; Posada-De la Paz, Manuel

    2015-02-25

    INTRODUCTION. The challenge of early detection can be tackled from an evolutionary perspective. Early intervention treatments have shown themselves to be effective provided that they are applied systematically as part of the strategic planning of the treatment. AIMS. The aim of this study is to provide an updated review in response to the criticism targeted towards early detection and to offer some considerations on the intervention strategy. Our research is based on a review of the early care techniques that are commonly used within the field of autism and it intends to reflect the most significant aspects that can be deduced from the experiments and studies carried out to date. CONCLUSIONS. From the findings of the review it can be concluded that early detection may be more efficient if carried out within the framework of developmental surveillance, which also offers the opportunity to provide guidance on the child's development. Early care is an effective resource for attending to the needs of children with autism. Professionals have the duty to assess the work they do on available treatments with a reflexive, judicious attitude, taking into account the values and preferences of the families. Programmes must focus on the core symptoms and apply the active ingredients of the treatment. PMID:25726819

  19. Views of oral cancer prevention and early detection: Maryland physicians.

    PubMed

    Canto, Maria Teresa; Horowitz, Alice M; Child, Wendy L

    2002-06-01

    The purpose of this study was to obtain in-depth information on Maryland physicians' knowledge, opinions and practices about oral cancer examinations. The qualitative descriptive study used one focus group conducted in a conference facility and nine one-on-one interviews at private medical offices. A criterion-purposeful sampling was used for selection of participants. Generally, we found low awareness of, and surprise about, Maryland's high oral cancer mortality rates. Physicians were not surprised that they detect more lesions than dentists, although most physicians did not provide oral cancer examinations on a routine basis. Physicians were interested in attending continuing medical education (CME) courses on oral cancer prevention and early detection but only if worked into other CME programs on cancer. They were very interested in having hands-on training on performing an oral cancer examination. These findings will be used to implement educational interventions for Maryland physicians to help increase early detection of oral cancers. PMID:12076702

  20. Early detection of rogue waves by the wavelet transforms

    NASA Astrophysics Data System (ADS)

    Bayındır, Cihan

    2016-01-01

    We discuss the possible advantages of using the wavelet transform over the Fourier transform for the early detection of rogue waves. We show that the triangular wavelet spectra of the rogue waves can be detected at early stages of the development of rogue waves in a chaotic wave field. Compared to the Fourier spectra, the wavelet spectra are capable of detecting not only the emergence of a rogue wave but also its possible spatial (or temporal) location. Due to this fact, wavelet transform is also capable of predicting the characteristic distances between successive rogue waves. Therefore multiple simultaneous breaking of the successive rogue waves on ships or on the offshore structures can be predicted and avoided by smart designs and operations.

  1. Early Years of the Ohio State University Leadership Studies.

    ERIC Educational Resources Information Center

    Shartle, Carroll L.; And Others

    1979-01-01

    These papers commemorate Ralph M. Stogdill's contributions to the history of ideas in the area of leadership research. They deal with his work and the Ohio State University Leadership Studies and leadership research at the University of Michigan. Edwin Hollander comments on his association with Stogdill who furthered Hollander's work. (Author/BEF)

  2. A concept for early cancer detection and therapy

    NASA Astrophysics Data System (ADS)

    Waynant, Ronald W.; Ilev, Ilko K.; Mitra, Kunal

    2003-06-01

    Early detection and treatment of breast cancer is least costly in terms of dollars, morbidity and mortality. With new early detection x-ray technology, tumors can be found, diagnosed and treated at a much smaller size than is currently possible. This paper proposes the development of a high resolution, high quality imaging system. It is a laser-driven x-ray system with time-gated detection that removes scattering noise in the image and produces resolution on the order of 10 μm. This higher resolution and higher image quality will enable the detection of one or two millimeter tumors hopefully detecting them before metastasis. We also propose that tumor detection should be followed by an immediate needle-directed, optical fiber biopsy to instantly determine if cancer is present and, if present, the tumor should immediately be given a lethal treatment of laser or x-radiation through the same needle using fiber optics or hollow waveguides. This technology will help prevent multiple interventions resulting in both the lowest overall cost and a more efficacious therapy. The approach can be stopped at the first negative (benign) indication and will help forestall repeated examination as well as reduce patient anxiety.

  3. Molecular MRI enables early and sensitive detection of brain metastases.

    PubMed

    Serres, Sébastien; Soto, Manuel Sarmiento; Hamilton, Alastair; McAteer, Martina A; Carbonell, W Shawn; Robson, Matthew D; Ansorge, Olaf; Khrapitchev, Alexandre; Bristow, Claire; Balathasan, Lukxmi; Weissensteiner, Thomas; Anthony, Daniel C; Choudhury, Robin P; Muschel, Ruth J; Sibson, Nicola R

    2012-04-24

    Metastasis to the brain is a leading cause of cancer mortality. The current diagnostic method of gadolinium-enhanced MRI is sensitive only to larger tumors, when therapeutic options are limited. Earlier detection of brain metastases is critical for improved treatment. We have developed a targeted MRI contrast agent based on microparticles of iron oxide that enables imaging of endothelial vascular cell adhesion molecule-1 (VCAM-1). Our objectives here were to determine whether VCAM-1 is up-regulated on vessels associated with brain metastases, and if so, whether VCAM-1-targeted MRI enables early detection of these tumors. Early up-regulation of cerebrovascular VCAM-1 expression was evident on tumor-associated vessels in two separate murine models of brain metastasis. Metastases were detectable in vivo using VCAM-1-targeted MRI 5 d after induction (<1,000 cells). At clinical imaging resolutions, this finding is likely to translate to detection at tumor volumes two to three orders of magnitude smaller (0.3-3 × 10(5) cells) than those volumes detectable clinically (10(7)-10(8) cells). VCAM-1 expression detected by MRI increased significantly (P < 0.0001) with tumor progression, and tumors showed no gadolinium enhancement. Importantly, expression of VCAM-1 was shown in human brain tissue containing both established metastases and micrometastases. Translation of this approach to the clinic could increase therapeutic options and change clinical management in a substantial number of cancer patients. PMID:22451897

  4. Molecular MRI enables early and sensitive detection of brain metastases

    PubMed Central

    Serres, Sébastien; Soto, Manuel Sarmiento; Hamilton, Alastair; McAteer, Martina A.; Carbonell, W. Shawn; Robson, Matthew D.; Ansorge, Olaf; Khrapitchev, Alexandre; Bristow, Claire; Balathasan, Lukxmi; Weissensteiner, Thomas; Anthony, Daniel C.; Choudhury, Robin P.; Muschel, Ruth J.; Sibson, Nicola R.

    2012-01-01

    Metastasis to the brain is a leading cause of cancer mortality. The current diagnostic method of gadolinium-enhanced MRI is sensitive only to larger tumors, when therapeutic options are limited. Earlier detection of brain metastases is critical for improved treatment. We have developed a targeted MRI contrast agent based on microparticles of iron oxide that enables imaging of endothelial vascular cell adhesion molecule-1 (VCAM-1). Our objectives here were to determine whether VCAM-1 is up-regulated on vessels associated with brain metastases, and if so, whether VCAM-1–targeted MRI enables early detection of these tumors. Early up-regulation of cerebrovascular VCAM-1 expression was evident on tumor-associated vessels in two separate murine models of brain metastasis. Metastases were detectable in vivo using VCAM-1–targeted MRI 5 d after induction (<1,000 cells). At clinical imaging resolutions, this finding is likely to translate to detection at tumor volumes two to three orders of magnitude smaller (0.3–3 × 105 cells) than those volumes detectable clinically (107–108 cells). VCAM-1 expression detected by MRI increased significantly (P < 0.0001) with tumor progression, and tumors showed no gadolinium enhancement. Importantly, expression of VCAM-1 was shown in human brain tissue containing both established metastases and micrometastases. Translation of this approach to the clinic could increase therapeutic options and change clinical management in a substantial number of cancer patients. PMID:22451897

  5. A New Methodology for Early Anomaly Detection of BWR Instabilities

    SciTech Connect

    Ivanov, K. N.

    2005-11-27

    The objective of the performed research is to develop an early anomaly detection methodology so as to enhance safety, availability, and operational flexibility of Boiling Water Reactor (BWR) nuclear power plants. The technical approach relies on suppression of potential power oscillations in BWRs by detecting small anomalies at an early stage and taking appropriate prognostic actions based on an anticipated operation schedule. The research utilizes a model of coupled (two-phase) thermal-hydraulic and neutron flux dynamics, which is used as a generator of time series data for anomaly detection at an early stage. The model captures critical nonlinear features of coupled thermal-hydraulic and nuclear reactor dynamics and (slow time-scale) evolution of the anomalies as non-stationary parameters. The time series data derived from this nonlinear non-stationary model serves as the source of information for generating the symbolic dynamics for characterization of model parameter changes that quantitatively represent small anomalies. The major focus of the presented research activity was on developing and qualifying algorithms of pattern recognition for power instability based on anomaly detection from time series data, which later can be used to formulate real-time decision and control algorithms for suppression of power oscillations for a variety of anticipated operating conditions. The research being performed in the framework of this project is essential to make significant improvement in the capability of thermal instability analyses for enhancing safety, availability, and operational flexibility of currently operating and next generation BWRs.

  6. Testing Early Universe Theories Using Large Scale Structure: Moving Beyond Phenomenology

    NASA Astrophysics Data System (ADS)

    Shandera, Sarah

    Current observational evidence favors inflation, a very early era of accelerated expansion, as the origin of the Large Scale Structure of the universe. Although compelling, this evidence comes mainly from the amplitude of primordial perturbations as a function of scale. More detailed and definitive information is contained in higher order statistics, collectively labelled `non- Gaussianity', which is of unparalleled importance to theorists who study inflation or its competitors. Analogously to collider physics studies, non-Gaussianity probes the interactions of the fields active in the very early universe and so will allow us to uncover the particle physics identity of the components that give rise to the very early pattern of density fluctuations. Primordial non-Gaussianity generates many non-trivial signals in Large Scale Structure, thanks largely to the non-linear evolution of the primordial perturbations. The distribution of objects in mass and redshift and their spatial clustering together contain information about the complete set of statistics of the primordial fluctuations. Predictions for those observables rely on numerical simulations of the dark matter evolution, which so far have been carried out almost entirely for a simple phenomenological model of primordial non-Gaussianity. However, it is now clear that interesting constraints or detection of non-Gaussianity are possible with next generation surveys: to use this data to its fullest extent we must understand clearly what those constraints will mean for fundamental theories of the origin of the perturbations. We propose to make a direct connection between theoretical ideas for the primordial fluctuations, including non-Gaussianity, and predictions from those theories for details of the Large Scale Structure of the Universe. Our goal is to find a prescription for setting up initial conditions for N-body simulations that match as closely as possible the predictions from a variety of particle physics

  7. Segue 1: An Unevolved Fossil Galaxy from the Early Universe

    NASA Astrophysics Data System (ADS)

    Frebel, Anna; Simon, Joshua D.; Kirby, Evan N.

    2014-05-01

    We present Magellan/MIKE and Keck/HIRES high-resolution spectra of six red giant stars in the dwarf galaxy Segue 1. Including one additional Segue 1 star observed by Norris et al., high-resolution spectra have now been obtained for every red giant in Segue 1. Remarkably, three of these seven stars have metallicities below [Fe/H] = -3.5, suggesting that Segue 1 is the least chemically evolved galaxy known. We confirm previous medium-resolution analyses demonstrating that Segue 1 stars span a metallicity range of more than 2 dex, from [Fe/H] = -1.4 to [Fe/H] = -3.8. All of the Segue 1 stars are α-enhanced, with [α/Fe] ~ 0.5. High α-element abundances are typical for metal-poor stars, but in every previously studied galaxy [α/Fe] declines for more metal-rich stars, which is typically interpreted as iron enrichment from supernova Ia. The absence of this signature in Segue 1 indicates that it was enriched exclusively by massive stars. Other light element abundance ratios in Segue 1, including carbon enhancement in the three most metal-poor stars, closely resemble those of metal-poor halo stars. Finally, we classify the most metal-rich star as a CH star given its large overabundances of carbon and s-process elements. The other six stars show remarkably low neutron-capture element abundances of [Sr/H] < -4.9 and [Ba/H] < -4.2, which are comparable to the lowest levels ever detected in halo stars. This suggests minimal neutron-capture enrichment, perhaps limited to a single r-process or weak s-process synthesizing event. Altogether, the chemical abundances of Segue 1 indicate no substantial chemical evolution, supporting the idea that it may be a surviving first galaxy that experienced only one burst of star formation. This paper includes data gathered with the 6.5 meter Magellan Telescopes located at Las Campanas Observatory, Chile. Data herein were also obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California

  8. Early detection of drillstring washouts reduces fishing jobs

    SciTech Connect

    Dudleson, B. ); Arnold, M.; McCann, D. )

    1990-10-01

    Rapid detection of unexpected drilling events requires continuous monitoring of drilling parameters. A major R and D program by a drilling contractor has led to the introduction of a computerized monitoring system on its offshore rigs. System includes advanced color graphics displays and new smart alarms to help both contractor and operator personnel detect and observe drilling events before they would normally be apparent with conventional rig instrumentation. This article describes a module of this monitoring system, which uses expert system technology to detect the earliest stages of drillstring washouts. Field results demonstrate the effectiveness of the smart alarm incorporated in the system. Early detection allows the driller to react before a twist-off results in expensive fishing operations.

  9. The importance of early detection of lip cancer risk groups

    NASA Astrophysics Data System (ADS)

    Fratila, M.; Rosu, S.

    2014-03-01

    in frequency as well as in the therapeutic problems raised. In the face and oral cavity cancer catagory, lip represents 2% of all cases and 19-25% of the total facial cancer area. Lip cancer is one of the localizations that, when detected early, can benefit from an effective therapy with high chances of healing. In order to achieve a complex treatment, interdisciplinary collaboration is required, only thus being able to determine both the therapeutic methods as well as their association.

  10. Particle creation in the early Universe: Achievements and problems

    NASA Astrophysics Data System (ADS)

    Grib, A. A.; Pavlov, Yu. V.

    2016-04-01

    Results on particle creation from vacuum by the gravitational field of the expanding Friedmann Universe are presented. Finite results for the density of particles and the energy density for created particles are given for different exact solutions for different regimes of the expansion of the Universe. The results are obtained as for conformal as for nonconformal particles. The hypothesis of the origination of visible matter from the decay of created from vacuum superheavy particles identified with the dark matter is discussed.

  11. Early-universe thermal production of not-so-invisible axions

    NASA Technical Reports Server (NTRS)

    Turner, Michael S.

    1987-01-01

    It is found that, for Peccei-Quinn symmetry-breaking scales of less than about 4 x 10 to the 8th GeV (corresponding to axion masses of greater than about 0.03 eV) thermal production of axions in the early universe (via the Primakoff and photoproduction processes) dominates coherent production by a factor of about 1200/m sub a/(1 eV)/ exp 2.175. The photon luminosity from the decays of these relic axions leads to an upper limit to the axion mass of order 2-5 eV. If the axion mass saturates this bound, relic axion decays may well be detectable.

  12. A Virtual Bioinformatics Knowledge Environment for Early Cancer Detection

    NASA Technical Reports Server (NTRS)

    Crichton, Daniel; Srivastava, Sudhir; Johnsey, Donald

    2003-01-01

    Discovery of disease biomarkers for cancer is a leading focus of early detection. The National Cancer Institute created a network of collaborating institutions focused on the discovery and validation of cancer biomarkers called the Early Detection Research Network (EDRN). Informatics plays a key role in enabling a virtual knowledge environment that provides scientists real time access to distributed data sets located at research institutions across the nation. The distributed and heterogeneous nature of the collaboration makes data sharing across institutions very difficult. EDRN has developed a comprehensive informatics effort focused on developing a national infrastructure enabling seamless access, sharing and discovery of science data resources across all EDRN sites. This paper will discuss the EDRN knowledge system architecture, its objectives and its accomplishments.

  13. Universal Prekindergarten and Early Childhood Education Act of 2011

    THOMAS, 112th Congress

    Rep. Norton, Eleanor Holmes [D-DC-At Large

    2011-11-17

    03/29/2012 Referred to the Subcommittee on Early Childhood, Elementary, and Secondary Education. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  14. Universal Prekindergarten and Early Childhood Education Act of 2013

    THOMAS, 113th Congress

    Rep. Norton, Eleanor Holmes [D-DC-At Large

    2013-02-27

    04/23/2013 Referred to the Subcommittee on Early Childhood, Elementary, and Secondary Education. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  15. Detection of early seizures by diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Hajihashemi, M. Reza; Zhou, Junli; Carney, Paul R.; Jiang, Huabei

    2015-03-01

    In epilepsy it has been challenging to detect early changes in brain activity that occurs prior to seizure onset and to map their origin and evolution for possible intervention. Besides, preclinical seizure experiments need to be conducted in awake animals with images reconstructed and displayed in real-time. We demonstrate using a rat model of generalized epilepsy that diffuse optical tomography (DOT) provides a unique functional neuroimaging modality for noninvasively and continuously tracking brain activities with high spatiotemporal resolution. We developed methods to conduct seizure experiments in fully awake rats using a subject-specific helmet and a restraining mechanism. For the first time, we detected early hemodynamic responses with heterogeneous patterns several minutes preceding the electroencephalographic seizure onset, supporting the presence of a "pre-seizure" state both in anesthetized and awake rats. Using a novel time-series analysis of scattering images, we show that the analysis of scattered diffuse light is a sensitive and reliable modality for detecting changes in neural activity associated with generalized seizure. We found widespread hemodynamic changes evolving from local regions of the bilateral cortex and thalamus to the entire brain, indicating that the onset of generalized seizures may originate locally rather than diffusely. Together, these findings suggest DOT represents a powerful tool for mapping early seizure onset and propagation pathways.

  16. [Early detection of pancreatic cancer by novel proteomic technique].

    PubMed

    Honda, Kazufumi; Ono, Masaya; Shitashige, Miki; Yamada, Tesshi

    2006-09-01

    Pancreatic cancer is the fifth leading cause of cancer-related mortality in Japan. Early detection in pancreatic cancer is one of the most feasible strategies to improve outcome. We compared plasma proteome between pancreatic cancer patients and healthy controls using surface-enhanced laser desorption/ionization coupled with hybrid quadrupole time-of-flight mass spectrometry. Proteomic spectra were generated from a total of 245 plasma samples obtained from two institutes. A discriminating proteomic pattern was built from training cohort using machine learning algorithm and was applied two validation cohorts. This set discriminating cancer patients in the first validation cohort with a sensitivity of 90.9% and a specificity of 91.9%, and was further validated in an independent cohort at a second institution. When combined with CA19-9, 100% tumor of pancreatic cancers, including early stage tumors, were detected. In this report, we describe a possible detection of early pancreatic cancer using novel proteomic technique. PMID:16972690

  17. Detectable Blood Lead Level and Body Size in Early Childhood.

    PubMed

    Cassidy-Bushrow, Andrea E; Havstad, Suzanne; Basu, Niladri; Ownby, David R; Park, Sung Kyun; Ownby, Dennis R; Johnson, Christine Cole; Wegienka, Ganesa

    2016-05-01

    Rates of childhood obesity have risen at the same time rates of high blood lead levels (BLLs) have fallen. Recent studies suggest that higher BLL is inversely associated with body size in older children (ages 3-19 years). No contemporaneous studies have examined if having a detectable BLL is associated with body size in very early childhood. We examined if detectable BLL is associated with body size in early childhood. A total of 299 birth cohort participants completed a study visit at ages 2-3 years with weight and height measurements; prior to this clinic visit, a BLL was drawn as part of routine clinical care. Body mass index (BMI) percentile and Z-score were calculated; children with BMI ≥85th percentile were considered overweight/obese at age of 2 years. Detectable BLL was defined as BLL ≥1 μg/dL. A total of 131 (43.8 %) children had a detectable BLL measured at mean aged 15.4 ± 5.5 months. Mean age at body size assessment was 2.2 ± 0.3 years (53.2 % male, 68.6 % African-American). After adjusting for race, sex, and birth weight, children with a detectable BLL had a 43 % lower risk of BMI ≥85th percentile (P = 0.041) and a 0.35-unit lower BMI Z-score (P = 0.008) compared to children without a detectable BLL. Neither race nor sex modified this association (all interactions P > 0.21). Consistent with recent studies in older children, having a detectable BLL was associated with smaller body size at ages 2-3 years. Additional research on the mechanism of this association is needed but may include mechanisms of appetite suppression via lead. PMID:26358768

  18. Genetics and Early Detection in Idiopathic Pulmonary Fibrosis

    PubMed Central

    Putman, Rachel K.; Rosas, Ivan O.

    2014-01-01

    Genetic studies hold promise in helping to identify patients with early idiopathic pulmonary fibrosis (IPF). Recent studies using chest computed tomograms (CTs) in smokers and in the general population have demonstrated that imaging abnormalities suggestive of an early stage of pulmonary fibrosis are not uncommon and are associated with respiratory symptoms, physical examination abnormalities, and physiologic decrements expected, but less severe than those noted in patients with IPF. Similarly, recent genetic studies have demonstrated strong and replicable associations between a common promoter polymorphism in the mucin 5B gene (MUC5B) and both IPF and the presence of abnormal imaging findings in the general population. Despite these findings, it is important to note that the definition of early-stage IPF remains unclear, limited data exist to definitively connect abnormal imaging findings to IPF, and genetic studies assessing early-stage pulmonary fibrosis remain in their infancy. In this perspective we provide updated information on interstitial lung abnormalities and their connection to IPF. We summarize information on the genetics of pulmonary fibrosis by focusing on the recent genetic findings of MUC5B. Finally, we discuss the implications of these findings and suggest a roadmap for the use of genetics in the detection of early IPF. PMID:24547893

  19. High Energy Colliders as Tools to Understand the Early Universe

    SciTech Connect

    Tait, Tim

    2008-08-16

    Cosmological observations have reached a new era of precision, and reveal many interesting and puzzling features of the Universe. I will briefly review two of the most exciting mysteries: the nature of the dark components of the Universe, and the origin of the asymmetry between matter and anti-matter. I will argue that our best hope of unraveling these questions will need to combine information from the heavens with measurements in the lab at high energy particle accelerators. The end of run II of the Tevatron, the up-coming Large Hadron Collider and proposed International Linear Collider all have great potential to help us answer these questions in the near future.

  20. Early Universe evolution in presence of magnetic fields

    NASA Astrophysics Data System (ADS)

    Delgado Gaspar, I.; Pérez Martínez, A.; Piccinelli, G.; Sussman, R. A.

    2015-11-01

    We analyse the evolution of a magnetised Universe in a stage between the leptonic era and the beginning of the radiation-dominated epoch using an anisotropic Bianchi I model. In our description the cosmic fluid is made of primordial radiation, neutrinos, magnetic field, non-interacting already decoupled dark matter (WIMPS), baryons, electrons, and positrons. The interaction of the field with the electron-positron gas is taken into account, resulting in anisotropic equations of state for these constituents. Numerical simulations reveal some differences between the behaviour of magnetised Bianchi I Universes and that of first order perturbations on an FLRW background.

  1. James Gregory, the University observatory and the early acquisition of scientific instruments at the University of St Andrews

    PubMed Central

    Rawson, Helen C.

    2015-01-01

    James Gregory, inventor of the reflecting telescope and Fellow of the Royal Society, was the first Regius Professor of Mathematics of the University of St Andrews, 1668–74. He attempted to establish in St Andrews what would, if completed, have been the first purpose-built observatory in the British Isles. He travelled to London in 1673 to purchase instruments for equipping the observatory and improving the teaching and study of natural philosophy and mathematics in the university, seeking the advice of John Flamsteed, later the first Astronomer Royal. This paper considers the observatory initiative and the early acquisition of instruments at the University of St Andrews, with reference to Gregory's correspondence, inventories made ca. 1699–ca. 1718 and extant instruments themselves, some of which predate Gregory's time. It examines the structure and fate of the university observatory, the legacy of Gregory's teaching and endeavours, and the meridian line laid down in 1748 in the University Library.

  2. Connecticut's new comprehensive and universal early childhood health assessment form.

    PubMed

    Crowley, Angela A; Whitney, Grace-Ann C

    2005-10-01

    Health assessments are required for entrance into child care, Head Start, and preschool programs. However, state and federal screening and documentation mandates vary, and programs create their own forms for keeping required data on file. Inconsistent recording formats present challenges for primary care providers who must document each child's health status and for program administrators who wish to collect data across groups of children. This article describes how the passage of new legislation in Connecticut establishing a statewide prekindergarten program presented the opportunity to develop a comprehensive early childhood health form for all early childhood programs, which promotes children's access to health services and coordination of care among health care professionals, early childhood providers, and families. PMID:16179077

  3. Differential neural mechanisms for early and late prediction error detection.

    PubMed

    Malekshahi, Rahim; Seth, Anil; Papanikolaou, Amalia; Mathews, Zenon; Birbaumer, Niels; Verschure, Paul F M J; Caria, Andrea

    2016-01-01

    Emerging evidence indicates that prediction, instantiated at different perceptual levels, facilitate visual processing and enable prompt and appropriate reactions. Until now, the mechanisms underlying the effect of predictive coding at different stages of visual processing have still remained unclear. Here, we aimed to investigate early and late processing of spatial prediction violation by performing combined recordings of saccadic eye movements and fast event-related fMRI during a continuous visual detection task. Psychophysical reverse correlation analysis revealed that the degree of mismatch between current perceptual input and prior expectations is mainly processed at late rather than early stage, which is instead responsible for fast but general prediction error detection. Furthermore, our results suggest that conscious late detection of deviant stimuli is elicited by the assessment of prediction error's extent more than by prediction error per se. Functional MRI and functional connectivity data analyses indicated that higher-level brain systems interactions modulate conscious detection of prediction error through top-down processes for the analysis of its representational content, and possibly regulate subsequent adaptation of predictive models. Overall, our experimental paradigm allowed to dissect explicit from implicit behavioral and neural responses to deviant stimuli in terms of their reliance on predictive models. PMID:27079423

  4. Early detection of local buckling in composite bars

    NASA Astrophysics Data System (ADS)

    Sundaresan, Mannur J.; Ali, Bashir; Ferguson, Frederick; Schulz, Mark J.

    2002-11-01

    Most structural health monitoring analyses to date have focused on the determination of damage in the form of crack growth in metallic materials or delamination or other types of damage growth in composite materials. However, in many applications local instability in the form of buckling can be the precursor to more extensive damage and unstable failure of the structure. If buckling could be detected in the very early stages, there is a possibility of taking preventive measures to stabilize and save the structure. Relatively few investigations have addressed this type of damage initiation in structures. Recently, during the structural health monitoring of wind turbine blades, local buckling was identified as the cause of premature failure. Results from this investigation suggested that stress waves could be used for detecting the early signs of change in the local curvature that precedes buckling type of failure in this structure. These conditions have been replicated in the laboratory and detailed investigation on the ability of low frequency vibrations to detect the buckling displacement has been carried out. The experiment was performed on a composite bar. The results clearly show that low frequency vibrations could be used to detect the onset of buckling in which the local deflection is only of the order of 0.25 inches.

  5. Differential neural mechanisms for early and late prediction error detection

    PubMed Central

    Malekshahi, Rahim; Seth, Anil; Papanikolaou, Amalia; Mathews, Zenon; Birbaumer, Niels; Verschure, Paul F. M. J.; Caria, Andrea

    2016-01-01

    Emerging evidence indicates that prediction, instantiated at different perceptual levels, facilitate visual processing and enable prompt and appropriate reactions. Until now, the mechanisms underlying the effect of predictive coding at different stages of visual processing have still remained unclear. Here, we aimed to investigate early and late processing of spatial prediction violation by performing combined recordings of saccadic eye movements and fast event-related fMRI during a continuous visual detection task. Psychophysical reverse correlation analysis revealed that the degree of mismatch between current perceptual input and prior expectations is mainly processed at late rather than early stage, which is instead responsible for fast but general prediction error detection. Furthermore, our results suggest that conscious late detection of deviant stimuli is elicited by the assessment of prediction error’s extent more than by prediction error per se. Functional MRI and functional connectivity data analyses indicated that higher-level brain systems interactions modulate conscious detection of prediction error through top-down processes for the analysis of its representational content, and possibly regulate subsequent adaptation of predictive models. Overall, our experimental paradigm allowed to dissect explicit from implicit behavioral and neural responses to deviant stimuli in terms of their reliance on predictive models. PMID:27079423

  6. Optimizing the Detection of Circulating Markers to Aid in Early Lung Cancer Detection

    PubMed Central

    Murlidhar, Vasudha; Ramnath, Nithya; Nagrath, Sunitha; Reddy, Rishindra M.

    2016-01-01

    Improving early detection of lung cancer is critical to improving lung cancer survival. Studies have shown that computerized tomography (CT) screening can reduce mortality from lung cancer, but this involves risks of radiation exposure and can identify non-cancer lung nodules that lead to unnecessary interventions for some. There is a critical need to develop alternative, less invasive methods to identify patients who have early-stage lung cancer. The detection of circulating tumor cells (CTCs) are a promising area of research, but current technology is limited by a low yield of CTCs. Alternate studies are investigating circulating nucleic acids and proteins as possible tumor markers. It is critical to develop innovative methods for early lung cancer detection that may include CTCs or other markers that are low-risk and low-cost, yet specific and sensitive, to facilitate improved survival by diagnosing the disease when it is surgically curable. PMID:27367729

  7. Optimizing the Detection of Circulating Markers to Aid in Early Lung Cancer Detection.

    PubMed

    Murlidhar, Vasudha; Ramnath, Nithya; Nagrath, Sunitha; Reddy, Rishindra M

    2016-01-01

    Improving early detection of lung cancer is critical to improving lung cancer survival. Studies have shown that computerized tomography (CT) screening can reduce mortality from lung cancer, but this involves risks of radiation exposure and can identify non-cancer lung nodules that lead to unnecessary interventions for some. There is a critical need to develop alternative, less invasive methods to identify patients who have early-stage lung cancer. The detection of circulating tumor cells (CTCs) are a promising area of research, but current technology is limited by a low yield of CTCs. Alternate studies are investigating circulating nucleic acids and proteins as possible tumor markers. It is critical to develop innovative methods for early lung cancer detection that may include CTCs or other markers that are low-risk and low-cost, yet specific and sensitive, to facilitate improved survival by diagnosing the disease when it is surgically curable. PMID:27367729

  8. Development of a Universal RNA Beacon for Exogenous Gene Detection

    PubMed Central

    Guo, Yuanjian; Lu, Zhongju; Cohen, Ira Stephen

    2015-01-01

    Stem cell therapy requires a nontoxic and high-throughput method to achieve a pure cell population to prevent teratomas that can occur if even one cell in the implant has not been transformed. A promising method to detect and separate cells expressing a particular gene is RNA beacon technology. However, developing a successful, specific beacon to a particular transfected gene can take months to develop and in some cases is impossible. Here, we report on an off-the-shelf universal beacon that decreases the time and cost of applying beacon technology to select any living cell population transfected with an exogenous gene. PMID:25769653

  9. Melanoma screening: A plan for improving early detection.

    PubMed

    Shellenberger, Richard; Nabhan, Mohammed; Kakaraparthi, Sweta

    2016-05-01

    Malignant melanoma ranks fifth in the number of new cases annually in the United States (US). Despite increasing incidence and lack of recent improvement in mortality, national melanoma screening guidelines are currently not in existence. Our purpose was to review the evidence regarding screening whole-body skin examinations for early detection and a possible mortality benefit for malignant melanoma. Data sources for our review were MEDLINE Complete, PubMed, Cochrane Library, Cochrane Database of Systematic Reviews, and ClinicalTrials.gov. Study selection included: epidemiologic data from the US and European cancer surveillance registries, population-based case-control screening trials, computer-simulated Markov model trials, and survey trials. Studies were limited to those published in the English language. Data was extracted using a dual extraction method. Data from studies have shown that the mortality of malignant melanoma is highly predicated on the tumor thickness at the time of diagnosis. Our data review is in support of the implementation of whole-body skin examinations, performed by primary care physicians, for the purpose of early detection of melanoma. A large national population-based, case-control, skin cancer screening trial in Germany has shown a reduction in melanoma-specific mortality. In conclusion, our review of the evidence supports physicians performed whole-body skin examination can lead to the detection of earlier stage melanomas as well as to a reduction in disease-specific mortality. We found a paucity of randomized trials to be a limitation of screening studies for many cancers, including melanoma. To improve screening rates and early detection of malignant melanoma, we propose making skin cancer education part of the curriculum in US primary care residency programs to become the genesis for widespread melanoma screening. Our study had no funding. Key messages Malignant melanoma is the fifth leading cancer in the United States (US). In the

  10. The Early Universe and High-Energy Physics.

    ERIC Educational Resources Information Center

    Schramm, David N.

    1983-01-01

    Many properties of new particle field theories can only be tested by comparing their predictions about the physical conditions immediately after the big bang with what can be reconstructed about this event from astronomical data. Facts/questions about big bang, unified field theories, and universe epochs/mass are among the topics discussed. (JN)

  11. Predictors of Early Termination in a University Counseling Training Clinic

    ERIC Educational Resources Information Center

    Lampropoulos, Georgios K.; Schneider, Mercedes K.; Spengler, Paul M.

    2009-01-01

    Despite the existence of counseling dropout research, there are limited predictive data for counseling in training clinics. Potential predictor variables were investigated in this archival study of 380 client files in a university counseling training clinic. Multinomial logistic regression, predictive discriminant analysis, and classification and…

  12. Phonological Universals in Early Childhood: Evidence from Sonority Restrictions

    ERIC Educational Resources Information Center

    Berent, Iris; Harder, Katherine; Lennertz, Tracy

    2011-01-01

    Across languages, onsets with large sonority distances are preferred to those with smaller distances (e.g., "bw greater than bd greater than lb"; Greenberg 1978). Optimality Theory (Prince & Smolensky 2004) attributes such facts to grammatical restrictions that are universally active in all grammars. To test this hypothesis, here we examine…

  13. Identification of Circulating Tumor DNA for the Early Detection of Small-cell Lung Cancer.

    PubMed

    Fernandez-Cuesta, Lynnette; Perdomo, Sandra; Avogbe, Patrice H; Leblay, Noemie; Delhomme, Tiffany M; Gaborieau, Valerie; Abedi-Ardekani, Behnoush; Chanudet, Estelle; Olivier, Magali; Zaridze, David; Mukeria, Anush; Vilensky, Marta; Holcatova, Ivana; Polesel, Jerry; Simonato, Lorenzo; Canova, Cristina; Lagiou, Pagona; Brambilla, Christian; Brambilla, Elisabeth; Byrnes, Graham; Scelo, Ghislaine; Le Calvez-Kelm, Florence; Foll, Matthieu; McKay, James D; Brennan, Paul

    2016-08-01

    Circulating tumor DNA (ctDNA) is emerging as a key potential biomarker for post-diagnosis surveillance but it may also play a crucial role in the detection of pre-clinical cancer. Small-cell lung cancer (SCLC) is an excellent candidate for early detection given there are no successful therapeutic options for late-stage disease, and it displays almost universal inactivation of TP53. We assessed the presence of TP53 mutations in the cell-free DNA (cfDNA) extracted from the plasma of 51 SCLC cases and 123 non-cancer controls. We identified mutations using a pipeline specifically designed to accurately detect variants at very low fractions. We detected TP53 mutations in the cfDNA of 49% SCLC patients and 11.4% of non-cancer controls. When stratifying the 51 initial SCLC cases by stage, TP53 mutations were detected in the cfDNA of 35.7% early-stage and 54.1% late-stage SCLC patients. The results in the controls were further replicated in 10.8% of an independent series of 102 non-cancer controls. The detection of TP53 mutations in 11% of the 225 non-cancer controls suggests that somatic mutations in cfDNA among individuals without any cancer diagnosis is a common occurrence, and poses serious challenges for the development of ctDNA screening tests. PMID:27377626

  14. Video comparator system for early detection of cutaneous malignant melanoma

    NASA Astrophysics Data System (ADS)

    Craine, Eric R.; Craine, Brian L.

    1992-05-01

    The recognized incidence of cutaneous malignant melanoma in the United States is now rising faster than any other cancer, increasing by 83% from 1980 to 1987. Recent revelations that depletion of the earth's ozone layer is accelerating at a more rapid rate than previously believed can only exacerbate current projections for the increased incidence of this deadly disease. Because there is no good treatment for metastatic melanoma even small cancers often prove fatal if not detected early. Melanoma allowed to invade the subcutaneous tissue is associated with a five-year survival rate of only 44%. Ironically, few cancers provide a greater opportunity for early discovery and cure. Cutaneous melanoma is not only located where it is readily observed, but typically undergoes a `radial growth' phase prior to metastasis. During this phase the net growth is superficial and circumferential, gradually increasing the area of the lesion and changing its coloration. Screening measures for the early detection of melanoma must concentrate on two primary tasks: (1) detection of lesion changes indicative of the radial growth stage of malignancy and (2) alerting the patient and physician to the existence of a new or changed lesion on the skin. To accomplish these goals we have experimented with the applicability of a microcomputer based video imaging system which stores an image archive of historical reference images for each patient. With the acquisition of new images of the patient, easily registered with the archival images through a technique we have developed we are able to perform a blink comparison of the image pairs. This technique appears to be far more effective than currently used techniques for detecting changed lesions on a comprehensive basis.

  15. Training for Cooperating Teachers and University Supervisors in Their Role as Evaluators in Early Field Experiences.

    ERIC Educational Resources Information Center

    Ramanathan, Hema; Wilkins-Canter, Elizabeth

    This study investigated perceptions of cooperating teachers, university supervisors, and early field experience directors who were involved in supervising and evaluating preservice elementary teachers. It also addressed whether cooperating teachers and university supervisors were properly trained to be evaluators. Eight cooperating teachers, eight…

  16. Multicomponent solution in a modified theory of gravity in the early universe

    SciTech Connect

    Mohseni Sadjadi, H.

    2008-05-15

    We study the modified theory of gravity in the Friedmann-Robertson-Walker universe composed of several perfect fluids. We consider the power law inflation and determine the equation of state parameters in terms of the parameters of modified gravity's Lagrangian in the early universe. We also briefly discuss the gravitational baryogenesis in this model.

  17. Strategic Programming for Early University Entrants: Creating Support for Socio-Emotional Needs

    ERIC Educational Resources Information Center

    Lancour, Julie A.

    2011-01-01

    This article introduces "Resiliency Training," a program designed to support early university entrants as they take on the challenges and adventures of their sophomore and junior year at the University of Washington (UW). As the Academic Counselor and Counseling Services Coordinator for the Robinson Center, watching the students engage with the…

  18. Social Strategies during University Studies Predict Early Career Work Burnout and Engagement: 18-Year Longitudinal Study

    ERIC Educational Resources Information Center

    Salmela-Aro, Katariina; Tolvanen, Asko; Nurmi, Jari-Erik

    2011-01-01

    This longitudinal study spanning 18 years examined the role of social strategies in early career adaptation. The aim was to find out whether individuals' social strategies measured during their university studies had an impact on work burnout and work engagement measured 10-18 years later. A sample of 292 university students completed the SAQ…

  19. Universal Design for Learning: Cognitive Theory into Practice for Facilitating Comprehension in Early Literacy

    ERIC Educational Resources Information Center

    Brand, Susan Trostle; Dalton, Elizabeth M.

    2012-01-01

    Addressing the unique needs of children of all ages and abilities, Universal Design for Learning (UDL) is gaining momentum in schools and preschools around the nation and the globe. This article explores Universal Design for Learning and its promising applications to a variety of reading and language arts experiences in the Early Childhood…

  20. Early Identification of Behavioral and Emotional Problems in Youth: Universal Screening versus Teacher-Referral Identification

    ERIC Educational Resources Information Center

    Eklund, Katie; Renshaw, Tyler L.; Dowdy, Erin; Jimerson, Shane R.; Hart, Shelley R.; Jones, Camille N.; Earhart, James

    2009-01-01

    Universal screening is one strategy to enhance the early identification of behavioral and emotional problems among youth. Although it appears to be effective, it is unclear if universal screening is more or less effective than current teacher referral practices. Thus, the purpose of this study was to compare the effectiveness of a teacher-rated,…

  1. Strategies for detecting the missing hot baryons in the universe

    NASA Astrophysics Data System (ADS)

    Bregman, Joel N.; Alves, Guilherme Camargo; Miller, Matthew J.; Hodges-Kluck, Edmund

    2015-10-01

    About 30% to 50% of the baryons in the local universe are unaccounted for and are likely in a hot phase, 105.5 to 108 K. A hot halo (106.3 K) is detected around the Milky Way through the O VII and O VIII resonance absorption and emission lines in the soft x-ray band. Current instruments are not sensitive enough to detect this gas in absorption around other galaxies and galaxy groups, the two most likely sites. We show that resonant line absorption by this hot gas can be detected with current technology, with a collecting area exceeding ˜300 cm2 and a spectral resolution R>2000. For a few notional x-ray telescope configurations that could be constructed as Explorer or Probe missions, we calculate the differential number of O VII and O VIII absorbers as a function of equivalent width through redshift space, dN/dz. The hot halos of individual external galaxies produce absorption that should be detectable out to about their virial radii. For the Milky Way, one can determine the radial distribution of density, temperature, and metallicity after making optical depth corrections. Spectroscopic observations can determine the rotation of a hot gaseous halo.

  2. Feasibility for EGRET detection of antimatter concentrations in the universe

    NASA Technical Reports Server (NTRS)

    Hartman, R. C.

    1990-01-01

    Although the Grand Unified Theories of elementary particle dynamics have to some extent reduced the aesthetic attraction of matter-antimatter symmetry in the Universe, the idea is still not ruled out. Although first introduced by Alfven (1965), most of the theoretical development related to gamma-ray astronomy was carried out by Stecker, who has proposed (Stecker, Morgan, and Bredekamp, 1971) matter-antimatter annihilation extending back to large redshifts as a possible explanation of the apparently extragalactic diffuse gamma radiation. Other candidate explanations were also proposed, such as superposition of extragalactic discrete sources. Clearly, the existence of significant amounts of antimatter in the universe would be of great cosmological importance; its detection, however, is not simple. Since the photon is its own antiparticle, it carries no signature identifying whether it originated in a matter or an antimatter process; even aggregates of photons (spectra) are expected to be identical from matter and antimatter processes. The only likely indicator of the presence of concentrations of antimatter is evidence of its annihilation with normal matter, assuming there is some region of contact or overlap. The EGRET (Energetic Gamma-Ray Experimental Telescope) on the Gamma Ray Observatory, with a substantial increase in sensitivity compared with earlier high energy gamma ray telescopes, may be able to address this issue. The feasibility of using EGRET in such a search for antimatter annihilation in the Universe is considered.

  3. Rationale for an early detection program for bladder cancer

    PubMed Central

    Khochikar, Makarand V.

    2011-01-01

    Introduction: A total of 356,557 new cases were diagnosed annually worldwide in 2009, it was estimated that 52,810 new patients were to be diagnosed with bladder cancer and there were 10,180 projected deaths from the disease in the USA. Despite being the fourth commonest cancer in men, we do not have an early detection/screening program for bladder cancer. The review was aimed at looking at the evidence for the rationale for an early detection program for bladder cancer. Materials and Methods: A detailed search on bladder cancer epidemiology, diagnosis, pathology, tumor markers, treatment outcomes, screening, morbidity and mortality of bladder cancer was carried out on Pubmed central/Medline. Original articles, review articles, monograms, book chapters on bladder cancer, text books on urological oncology, oncology and urology were reviewed. The latest information for new articles before publication was last accessed in June 2010. Discussion and Conclusions: Bladder cancer is the fourth commonest cancer in men, the annual death rate from this disease is significant and every year there is an increase in its incidence globally. The prognosis of bladder cancer is stage and grade dependent; the lower the stage (T2 or less) the better is the survival. Delay in the diagnosis and treatment does alter the overall outcome. Therefore, there is a clear need for early detection of bladder cancer and screening program. Although we do not have an ideal marker for bladder cancer, it is time we maximize the potential of markers such as UroVysion, NMP22 along with cytology to start such a program. May be as a first step the early detection and screening program could be started in high-risk population. It is not worth waiting till we find the best marker as it would be unfair to our patients. The fear of unnecessary tests and treatment in bladder cancer after its detection in screening program is without any substance. The cost-effectiveness of such a program is certainly

  4. Coaching to Quality: Increasing Quality in Early Care and Education Programmes through Community-University Partnership

    ERIC Educational Resources Information Center

    Gilbert, Jaesook Lee; Harte, Helene Arbouet

    2013-01-01

    This paper describes efforts to increase the quality in early care and education through targeted coaching. A collaborative including several community agencies and a university developed a framework of support for early care and education providers, using coaching as its foundational basis, called Coaching to Quality (CTQ). This paper provides a…

  5. Nuclear and particle physics in the early universe

    NASA Technical Reports Server (NTRS)

    Schramm, D. N.

    1981-01-01

    Basic principles and implications of Big Bang cosmology are reviewed, noting the physical evidence of a previous universe temperature of 10,000 K and theoretical arguments such as grand unification decoupling indicating a primal temperature of 10 to the 15th eV. The Planck time of 10 to the -43rd sec after the Big Bang is set as the limit before which gravity was quantized and nothing is known. Gauge theories of elementary particle physics are reviewed for successful predictions of similarity in weak and electromagnetic interactions and quantum chromodynamic predictions for strong interactions. The large number of photons in the universe relative to the baryons is considered and the grand unified theories are cited as showing the existence of baryon nonconservation as an explanation. Further attention is given to quark-hadron phase transition, the decoupling for the weak interaction and relic neutrinos, and Big Bang nucleosynthesis.

  6. FUMEPOC: Early detection of chronic obstructive pulmonary disease in smokers

    PubMed Central

    2011-01-01

    Background Currently is not feasible using conventional spirometry as a screening method in Primary Care especially among smoking population to detect chronic obstructive pulmonary disease in early stages. Therefore, the FUMEPOC study protocol intends to analyze the validity and reliability of Vitalograph COPD-6 spirometer as simpler tool to aid screening and diagnosis of this disease in early stages in primary care surgery. Methods / Design Study design: An observational, descriptive study of diagnostic tests, undertaken in Primary Care and Pneumology Outpatient Care Centre at San Juan Hospital and Elda Hospital. All smokers attending the primary care surgery and consent to participate in the study will undergo a test with Vitalograph COPD-6 spirometer. Subsequently, a conventional spirometry will be performed in the hospital and the results will be compared with those of the Vitalograph COPD-6 test. Discussion It is difficult to use the spirometry as screening for early diagnose test in real conditions of primary care clinical practice. The use of a simpler tool, Vitalograph COPD-6 spirometer, can help in the early diagnose and therefore, it could improve the clinical management of the disease. PMID:21627787

  7. Dynamic linear models using the Kalman filter for early detection and early warning of malaria outbreaks

    NASA Astrophysics Data System (ADS)

    Merkord, C. L.; Liu, Y.; DeVos, M.; Wimberly, M. C.

    2015-12-01

    Malaria early detection and early warning systems are important tools for public health decision makers in regions where malaria transmission is seasonal and varies from year to year with fluctuations in rainfall and temperature. Here we present a new data-driven dynamic linear model based on the Kalman filter with time-varying coefficients that are used to identify malaria outbreaks as they occur (early detection) and predict the location and timing of future outbreaks (early warning). We fit linear models of malaria incidence with trend and Fourier form seasonal components using three years of weekly malaria case data from 30 districts in the Amhara Region of Ethiopia. We identified past outbreaks by comparing the modeled prediction envelopes with observed case data. Preliminary results demonstrated the potential for improved accuracy and timeliness over commonly-used methods in which thresholds are based on simpler summary statistics of historical data. Other benefits of the dynamic linear modeling approach include robustness to missing data and the ability to fit models with relatively few years of training data. To predict future outbreaks, we started with the early detection model for each district and added a regression component based on satellite-derived environmental predictor variables including precipitation data from the Tropical Rainfall Measuring Mission (TRMM) and land surface temperature (LST) and spectral indices from the Moderate Resolution Imaging Spectroradiometer (MODIS). We included lagged environmental predictors in the regression component of the model, with lags chosen based on cross-correlation of the one-step-ahead forecast errors from the first model. Our results suggest that predictions of future malaria outbreaks can be improved by incorporating lagged environmental predictors.

  8. On early detection of strong infections in complex networks

    NASA Astrophysics Data System (ADS)

    Yu, Yi; Xiao, Gaoxi

    2014-02-01

    Various complex systems are exposed to different kinds of infections ranging from computer viruses to rumors. An intuitive solution for limiting the damages caused by such infections is to detect the infection spreading as early as possible and then take necessary actions. In this paper, we study on how much we may expect to achieve in infection control by deploying a number of monitors in complex networks for detecting the outbreak of a strong infection at its early stage. Specifically, we consider the problem of finding the optimal locations for a given number of monitors in order to minimize the worst-case infection size. The NP-hardness of the problem is proved and a heuristic algorithm is proposed. Extensive simulations on both synthetic and real-life networks show that the worst-case infection size may be put under control by deploying a moderate number of monitors in a large complex network. Effects of a few different factors, including transmissibility of the infection, network topology and probability of detection failure, are also evaluated.

  9. Detection of early plant stress responses in hyperspectral images

    NASA Astrophysics Data System (ADS)

    Behmann, Jan; Steinrücken, Jörg; Plümer, Lutz

    2014-07-01

    Early stress detection in crop plants is highly relevant, but hard to achieve. We hypothesize that close range hyperspectral imaging is able to uncover stress related processes non-destructively in the early stages which are invisible to the human eye. We propose an approach which combines unsupervised and supervised methods in order to identify several stages of progressive stress development from series of hyperspectral images. Stress of an entire plant is detected by stress response levels at pixel scale. The focus is on drought stress in barley (Hordeum vulgare). Unsupervised learning is used to separate hyperspectral signatures into clusters related to different stages of stress response and progressive senescence. Whereas all such signatures may be found in both, well watered and drought stressed plants, their respective distributions differ. Ordinal classification with Support Vector Machines (SVM) is used to quantify and visualize the distribution of progressive stages of senescence and to separate well watered from drought stressed plants. For each senescence stage a distinctive set of most relevant Vegetation Indices (VIs) is identified. The method has been applied on two experiments involving potted barley plants under well watered and drought stress conditions in a greenhouse. Drought stress is detected up to ten days earlier than using NDVI. Furthermore, it is shown that some VIs have overall relevance, while others are specific to particular senescence stages. The transferability of the method to the field is illustrated by an experiment on maize (Zea mays).

  10. Early detection of local buckling in structural members

    NASA Astrophysics Data System (ADS)

    Ali, Bashir; Sundaresan, Mannur J.; Schulz, Mark J.; Hughes, Derke

    2005-05-01

    Most structural health monitoring analyses to date have focused on the determination of damage in the form of crack growth in metallic materials or delamination or other types of damage growth in composite materials. However, in many applications, local instability in the form of buckling can be the precursor to more extensive damage and unstable failure of the structure. If buckling could be detected in the very early stages, there is a possibility of taking preventive measures to stabilize and save the structure. Relatively few investigations have addressed this type of damage initiation in structures. Recently, during the structural health monitoring of a wind turbine blade, local buckling was identified as the cause of premature failure. A stress wave propagation technique was used in this test to detect the precursor to the buckling failure in the form of early changes in the local curvature of the blade. These conditions have also been replicated in the laboratory and results are reported in this paper. A composite column was subjected to axial compression to induce various levels of buckling deformation. Two different techniques were used to detect the precursors to buckling in this column. The first identifier is the change in the vibration shapes and natural frequencies of the column. The second is the change in the characteristics of diagnostic Lamb waves during the buckling deformation. Experiments indicate that very small changes in curvature during the initial stages of buckling are detectable using the structural health monitoring techniques. The experimental vibration characteristics of the column with slight initial curvatures compared qualitatively with finite element results. The finite element analysis is used to identify the frequencies that are most sensitive to buckling deformation, and to select suitable locations for the placement of sensors that can detect even small changes in the local curvature.

  11. Early Attempts to Detect the Neutrino at the Cavendish Laboratory

    NASA Astrophysics Data System (ADS)

    Navarro, Jaume

    2006-03-01

    In the 1920s and early 1930s the Cavendish Laboratory in Cambridge was preeminent in experimental research on radioactivity and nuclear physics, with theoretical physics playing a subsidiary role in guiding, but not determining the course of experimental research. Soon after Wolfgang Pauli (1900 1958) proposed his neutrino hypothesis in 1930 to preserve conservation of energy and momentum in beta decay, experiments the first of their kind were carried out in the Cavendish Laboratory to detect Pauli’s elusive particle, but they were abandoned in 1936. I trace these early attempts and suggest reasons for their abandonment, which may contribute to an understanding of the complex way in which theoretical entities are accepted by physicists.

  12. The Cosmic Microwave Background Radiation - A Unique Window on the Early Universe

    NASA Technical Reports Server (NTRS)

    Hinshaw, Gary F.

    2009-01-01

    The cosmic microwave background radiation is the remnant heat from the Big Bang. It provides us with a unique probe of conditions in the early universe, long before any organized structures had yet formed. The anisotropy in the radiation's brightness yields important clues about primordial structure and additionally provides a wealth of information about the physics of the early universe. Within the framework of inflationary dark matter models, observations of the anisotropy on sub-degree angular scales reveals the signatures of acoustic oscillations of the photon-baryon fluid at a redshift of approximately 1100. Data from the first five years of operation of the Wilkinson Microwave Anisotropy Probe (WMAP) satellite provide detailed full-sky maps of the cosmic microwave background temperature and polarization anisotropy. Together, the data provide a wealth of cosmological information, including the age of the universe, the epoch when the first stars formed, and the overall composition of baryonic matter, dark matter, and dark energy. The results also provide constraints on the period of inflationary expansion in the very first moments of time. WMAP, part of NASA's Explorers program, was launched on June 30, 2001. The WMAP satellite was produced in a partnership between the Goddard Space Flight Center and Princeton University. The WMAP team also includes researchers at the Johns Hopkins University; the Canadian Institute of Theoretical Astrophysics; University of Texas; Oxford University; University of Chicago; Brown University; University of British Columbia; and University of California, Los Angeles.

  13. The Cosmic Microwave Background Radiation-A Unique Window on the Early Universe

    NASA Technical Reports Server (NTRS)

    Hinshaw, Gary

    2010-01-01

    The cosmic microwave background radiation is the remnant heat from the Big Bang. It provides us with a unique probe of conditions in the early universe, long before any organized structures had yet formed. The anisotropy in the radiation's brightness yields important clues about primordial structure and additionally provides a wealth of information about the physics of the early universe. Within the framework of inflationary dark matter models, observations of the anisotropy on sub-degree angular scales reveals the signatures of acoustic oscillations of the photon-baryon fluid at a redshift of 11 00. Data from the first seven years of operation of the Wilkinson Microwave Anisotropy Probe (WMAP) satellite provide detailed full-sky maps of the cosmic microwave background temperature and polarization anisotropy. Together, the data provide a wealth of cosmological information, including the age of the universe, the epoch when the first stars formed, and the overall composition of baryonic matter, dark matter, and dark energy. The results also provide constraints on the period of inflationary expansion in the very first moments of time. WMAP, part of NASA's Explorers program, was launched on June 30, 2001. The WMAP satellite was produced in a partnership between the Goddard Space Flight Center and Princeton University. The WMAP team also includes researchers at the Johns Hopkins University; the Canadian Institute of Theoretical Astrophysics; University of Texas; Oxford University; University of Chicago; Brown University; University of British Columbia; and University of California, Los Angeles.

  14. The Cosmic Microwave Background Radiation - A Unique Window on the Early Universe

    NASA Technical Reports Server (NTRS)

    Hinshaw, Gary F.

    2008-01-01

    The cosmic microwave background radiation is the remnant heat from the Big Bang. It provides us with a unique probe of conditions in the early universe, long before any organized structures had yet formed. The anisotropy in the radiation's brightness yields important clues about primordial structure and additionally provides a wealth of information about the physics of the early universe. Within the framework of inflationary dark matter models, observations of the anisotropy on sub-degree angular scales reveals the signatures of acoustic oscillations of the photon-baryon fluid at a redshift of approximately 1100. Data from the first five years of operation of the Wilkinson Microwave Anisotropy Probe (WMAP) satellite provide detailed full-sky maps of the cosmic microwave background temperature and polarization anisotropy. Together, the data provide a wealth of cosmological information, including the age of the universe, the epoch when the first stars formed, and the overall composition of baryonic matter, dark matter, and dark energy. The results also provide constraints on the period of inflationary expansion in the very first moments of time. WMAP, part of NASA's Explorers program, was launched on June 30, 2001. The WMAP satellite was produced in a partnership between the Goddard Space Flight Center and Princeton University. The WMAP team also includes researchers at Johns Hopkins University; the Canadian Institute of Theoretical Astrophysics; University of Texas; Oxford University; University of Chicago; Brown university; University of British Columbia; and University of California, Los Angeles.

  15. Black hole growth in the early Universe is self-regulated and largely hidden from view.

    PubMed

    Treister, Ezequiel; Schawinski, Kevin; Volonteri, Marta; Natarajan, Priyamvada; Gawiser, Eric

    2011-06-16

    The formation of the first massive objects in the infant Universe remains impossible to observe directly and yet it sets the stage for the subsequent evolution of galaxies. Although some black holes with masses more than 10(9) times that of the Sun have been detected in luminous quasars less than one billion years after the Big Bang, these individual extreme objects have limited utility in constraining the channels of formation of the earliest black holes; this is because the initial conditions of black hole seed properties are quickly erased during the growth process. Here we report a measurement of the amount of black hole growth in galaxies at redshift z = 6-8 (0.95-0.7 billion years after the Big Bang), based on optimally stacked, archival X-ray observations. Our results imply that black holes grow in tandem with their host galaxies throughout cosmic history, starting from the earliest times. We find that most copiously accreting black holes at these epochs are buried in significant amounts of gas and dust that absorb most radiation except for the highest-energy X-rays. This suggests that black holes grew significantly more during these early bursts than was previously thought, but because of the obscuration of their ultraviolet emission they did not contribute to the re-ionization of the Universe. PMID:21677753

  16. Entropy Growth in the Early Universe and Confirmation of Initial Big Bang Conditions

    NASA Astrophysics Data System (ADS)

    Beckwith, Andrew

    2009-09-01

    This paper shows how increased entropy values from an initially low big bang level can be measured experimentally by counting relic gravitons. Furthermore the physical mechanism of this entropy increase is explained via analogies with early-universe phase transitions. The role of Jack Ng's (2007, 2008a, 2008b) revised infinite quantum statistics in the physics of gravitational wave detection is acknowledged. Ng's infinite quantum statistics can be used to show that ΔS~ΔNgravitons is a startmg point to the increasing net universe cosmological entropy. Finally, in a nod to similarities AS ZPE analysis, it is important to note that the resulting ΔS~ΔNgravitons ≠ 1088, that in fact it is much lower, allowing for evaluating initial graviton production as an emergent field phenomena, which may be similar to how ZPE states can be used to extract energy from a vacuum if entropy is not maximized. The rapid increase in entropy so alluded to without near sudden increases to 1088 may be enough to allow successful modeling of relic graviton production for entropy in a manner similar to ZPE energy extraction from a vacuum state.

  17. Early detection of invasive plants: principles and practices

    USGS Publications Warehouse

    Welch, Bradley A.; Geissler, Paul H.; Latham, Penelope

    2014-01-01

    Invasive plants infest an estimated 2.6 million acres of the 83 million acres managed by the National Park Service (NPS) in the United States. The consequences of these invasions present a significant challenge for the NPS to manage the agency’s natural resources “unimpaired for the enjoyment of future generations.” More NPS lands are infested daily despite diligent efforts to curtail the problem. Impacts from invasive species have been realized in most parks, resulting in an expressed need to control existing infestations and restore affected ecosystems. There is a growing urgency in the NPS and other resource management organizations to be proactive. The NPS I&M Program, in collaboration with the U.S. Geological Survey (USGS) Status and Trends Program, compiled this document to provide guidance and insight to parks and other natural areas engaged in developing early-detection monitoring protocols for invasive plants. While several rapid response frameworks exist, there is no consistent or comprehensive guidance informing the active detection of nonnative plants early in the invasion process. Early-detection was selected as a primary focus for invasive-species monitoring because, along with rapid response, it is a key strategy for successful management of invasive species. Eradication efforts are most successful on small infestations (that is less than 1 hectare) and become less successful as infestation size increases, to the point that eradication is unlikely for large (that is greater than 1,000 hectares) populations of invasive plants. This document provides guidance for natural resource managers wishing to detect invasive plants early through an active, directed monitoring program. It has a Quick-Start Guide to direct readers to specific chapters and text relevant to their needs. Decision trees and flow charts assist the reader in deciding what methods to choose and when to use them. This document is written in a modular format to accommodate use of

  18. CEMP stars: possible hosts to carbon planets in the early Universe

    NASA Astrophysics Data System (ADS)

    Mashian, Natalie; Loeb, Abraham

    2016-08-01

    We explore the possibility of planet formation in the carbon-rich protoplanetary disks of carbon-enhanced metal-poor (CEMP) stars, possible relics of the early Universe. The chemically anomalous abundance patterns ([C/Fe] $\\geq$ 0.7) in this subset of low-mass stars suggest pollution by primordial core-collapsing supernovae (SNe) ejecta that are particularly rich in carbon dust grains. By comparing the dust-settling timescale in the protoplanetary disks of CEMP stars to the expected disk lifetime (assuming dissipation via photoevaporation), we determine the maximum distance $r_{max}$ from the host CEMP star at which carbon-rich planetesimal formation is possible, as a function of the host star's [C/H] abundance. We then use our linear relation between $r_{max}$ and [C/H], along with the theoretical mass-radius relation derived for a solid, pure carbon planet, to characterize potential planetary transits across host CEMP stars. Given that the related transits are detectable with current and upcoming space-based transit surveys, we suggest initiating an observational program to search for carbon planets around CEMP stars in hopes of shedding light on the question of how early planetary systems may have formed after the Big Bang.

  19. CEMP stars: possible hosts to carbon planets in the early universe

    NASA Astrophysics Data System (ADS)

    Mashian, Natalie; Loeb, Abraham

    2016-05-01

    We explore the possibility of planet formation in the carbon-rich protoplanetary disks of carbon-enhanced metal-poor (CEMP) stars, possible relics of the early Universe. The chemically anomalous abundance patterns ([C/Fe] ≥ 0.7) in this subset of low-mass stars suggest pollution by primordial core-collapsing supernovae (SNe) ejecta that are particularly rich in carbon dust grains. By comparing the dust-settling timescale in the protoplanetary disks of CEMP stars to the expected disk lifetime (assuming dissipation via photoevaporation), we determine the maximum distance rmax from the host CEMP star at which carbon-rich planetesimal formation is possible, as a function of the host star's [C/H] abundance. We then use our linear relation between rmax and [C/H], along with the theoretical mass-radius relation derived for a solid, pure carbon planet, to characterize potential planetary transits across host CEMP stars. Given that the related transits are detectable with current and upcoming space-based transit surveys, we suggest initiating an observational program to search for carbon planets around CEMP stars in hopes of shedding light on the question of how early planetary systems may have formed after the Big Bang.

  20. CEMP stars: possible hosts to carbon planets in the early Universe

    NASA Astrophysics Data System (ADS)

    Mashian, Natalie; Loeb, Abraham

    2016-08-01

    We explore the possibility of planet formation in the carbon-rich protoplanetary discs of carbon-enhanced metal-poor (CEMP) stars, possible relics of the early Universe. The chemically anomalous abundance patterns ([C/Fe] ≥ 0.7) in this subset of low-mass stars suggest pollution by primordial core-collapsing supernovae ejecta that are particularly rich in carbon dust grains. By comparing the dust-settling time-scale in the protoplanetary discs of CEMP stars to the expected disc lifetime (assuming dissipation via photoevaporation), we determine the maximum distance rmax from the host CEMP star at which carbon-rich planetesimal formation is possible, as a function of the host star's [C/H] abundance. We then use our linear relation between rmax and [C/H], along with the theoretical mass-radius relation derived for a solid, pure carbon planet, to characterize potential planetary transits across host CEMP stars. Given that the related transits are detectable with current and upcoming space-based transit surveys, we suggest initiating an observational programme to search for carbon planets around CEMP stars in hopes of shedding light on the question of how early planetary systems may have formed after the big bang.

  1. Early detection of Alzheimer disease: methods, markers, and misgivings.

    PubMed

    Green, R C; Clarke, V C; Thompson, N J; Woodard, J L; Letz, R

    1997-01-01

    There is at present no reliable predictive test for most forms of Alzheimer disease (AD). Although some information about future risk for disease is available in theory through ApoE genotyping, it is of limited accuracy and utility. Once neuroprotective treatments are available for AD, reliable early detection will become a key component of the treatment strategy. We recently conducted a pilot survey eliciting attitudes and beliefs toward an unspecified and hypothetical predictive test for AD. The survey was completed by a convenience sample of 176 individuals, aged 22-77, which was 75% female, 30% African-American, and of which 33% had a family member with AD. The survey revealed that 69% of this sample would elect to obtain predictive testing for AD if the test were 100% accurate. Individuals were more likely to desire predictive testing if they had an a priori belief that they would develop AD (p = 0.0001), had a lower educational level (p = 0.003), were worried that they would develop AD (p = 0.02), had a self-defined history of depression (p = 0.04), and had a family member with AD (p = 0.04). However, the desire for predictive testing was not significantly associated with age, gender, ethnicity, or income. The desire to obtain predictive testing for AD decreased as the assumed accuracy of the hypothetical test decreased. A better short-term strategy for early detection of AD may be computer-based neuropsychological screening of at-risk (older aged) individuals to identify very early cognitive impairment. Individuals identified in this manner could be referred for diagnostic evaluation and early cases of AD could be identified and treated. A new self-administered, touch-screen, computer-based, neuropsychological screening instrument called Neurobehavioral Evaluation System-3 is described, which may facilitate this type of screening. PMID:9348421

  2. Detection of smoke plume for a land-based early forest fire detection system

    NASA Astrophysics Data System (ADS)

    Saghri, John; Jacobs, John; Davenport, Tim; Garges, David

    2015-09-01

    A promising daytime smoke plume detection for a land-based early forest fire detection system is proposed. The visible video imagery from a land-based monitoring camera is processed to detect the smoke which likely rises in an early stage of a forest fire. Unlike the fire core and its surrounding heat which are detected via day/night infrared imaging, the relatively cold smoke plume can only be captured in the visible spectrum of light. The smoke plume is detected via exploitation of its temporal signature. This is accomplished via Principal Component Transformation (PCT) operations on consecutive sequences of visible video frames followed by spatial filtering of one of the resulting low-order Principal Component (PC) images. It is shown that the blue channel of the Red, Green, Blue (RGB) color camera is most effective in detecting the smoke plume. Smoke plume is clearly detected and isolated via simple blurring, thresholding, and median filtering of one of the resulting low-order principle component (PC) images. The robustness of this PCA-based method relative to simple temporal frame differencing and use of color, i.e., visible spectral signature of smoke, are discussed. Various parameters of the system including the required observation time and number of frames to retain for PCT, selection of which low-order PC to use, and types and sizes of the filters applied to the selected PC image to detect and isolate the smoke plume, are discussed.

  3. Growth monitoring as an early detection tool: a systematic review.

    PubMed

    Scherdel, Pauline; Dunkel, Leo; van Dommelen, Paula; Goulet, Olivier; Salaün, Jean-François; Brauner, Raja; Heude, Barbara; Chalumeau, Martin

    2016-05-01

    Growth monitoring of apparently healthy children aims at early detection of serious underlying disorders. However, existing growth-monitoring practices are mainly based on suboptimal methods, which can result in delayed diagnosis of severe diseases and inappropriate referrals. We did a systematic review to address two key and interconnected questions underlying growth monitoring: which conditions should be targeted, and how should abnormal growth be defined? We systematically searched for studies reporting algorithms for growth monitoring in children and studies comparing the performance of new WHO growth charts with that of other growth charts. Among 1556 identified citations, 69 met the inclusion criteria. Six target conditions have mainly been studied: Turner syndrome, coeliac disease, cystic fibrosis, growth hormone deficiency, renal tubular acidosis, and small for gestational age with no catch-up after 2 or 3 years. Seven algorithms to define abnormal growth have been proposed in the past 20 years, but their level of validation is low, and their overall sensitivities and specificities vary substantially; however, the Grote and Saari clinical decision rules seem the most promising. Two studies reported that WHO growth charts had poorer performance compared with other existing growth charts for early detection of target conditions. Available data suggest a large gap between the widespread implementation of growth monitoring and its level of evidence or the clinical implications of early detection of serious disorders in children. Further investigations are needed to standardise the practice of growth monitoring, with a consensus on a few priority target conditions and with internationally validated clinical decision rules to define abnormal growth, including the selection of appropriate growth charts. PMID:26777129

  4. Exosomes: potential for early detection in pancreatic cancer.

    PubMed

    Lu, Lingeng; Risch, Harvey A

    2016-01-01

    Progress in the treatment of patients with pancreatic cancer at earlier stages has motivated research in identifying novel noninvasive or minimally invasive biomarkers for early detection. Exosomes, which contain bioactive molecules (such as proteins, RNAs and lipids), are membrane-structured nanovesicles that are secreted from living cells and are found in human body fluids. As functional mediators, exosomes play key roles in cell-cell communications, regulating diverse biological processes. Here we aim to examine recent findings in the potential diagnostic value of serum exosomes in pancreatic cancer. PMID:26860951

  5. Method for early detection of cooling-loss events

    SciTech Connect

    Bermudez, Sergio A.; Hamann, Hendrik; Marianno, Fernando J.

    2015-06-30

    A method of detecting cooling-loss event early is provided. The method includes defining a relative humidity limit and change threshold for a given space, measuring relative humidity in the given space, determining, with a processing unit, whether the measured relative humidity is within the defined relative humidity limit, generating a warning in an event the measured relative humidity is outside the defined relative humidity limit and determining whether a change in the measured relative humidity is less than the defined change threshold for the given space and generating an alarm in an event the change is greater than the defined change threshold.

  6. Detection of Treponema pallidum in early syphilis by DNA amplification.

    PubMed Central

    Wicher, K; Noordhoek, G T; Abbruscato, F; Wicher, V

    1992-01-01

    By using experimentally infected rabbits as a model for early syphilis, the applicability of in vitro DNA amplification was explored for detection of Treponema pallidum. It was determined that whole blood in heparin or EDTA (but not serum), lesion exudate, and punch biopsy as well as swabs of lesions are useful specimens for examination by the polymerase chain reaction. Swabs do not require special diluents, and the specimens, whether kept at room temperature or frozen, are well suited for use in the polymerase chain reaction. Images PMID:1537923

  7. Early Oscillation Detection Technique for Hybrid DC/DC Converters

    NASA Technical Reports Server (NTRS)

    Wang, Bright L.

    2011-01-01

    Oscillation or instability is a situation that must be avoided for reliable hybrid DC/DC converters. A real-time electronics measurement technique was developed to detect catastrophic oscillations at early stages for hybrid DC/DC converters. It is capable of identifying low-level oscillation and determining the degree of the oscillation at a unique frequency for every individual model of the converters without disturbing their normal operations. This technique is specially developed for space-used hybrid DC/DC converters, but it is also suitable for most of commercial and military switching-mode power supplies. This is a weak-electronic-signal detection technique to detect hybrid DC/DC converter oscillation presented as a specific noise signal at power input pins. It is based on principles of feedback control loop oscillation and RF signal modulations, and is realized by using signal power spectral analysis. On the power spectrum, a channel power amplitude at characteristic frequency (CPcf) and a channel power amplitude at switching frequency (CPsw) are chosen as oscillation level indicators. If the converter is stable, the CPcf is a very small pulse and the CPsw is a larger, clear, single pulse. At early stage of oscillation, the CPcf increases to a certain level and the CPsw shows a small pair of sideband pulses around it. If the converter oscillates, the CPcf reaches to a higher level and the CPsw shows more high-level sideband pulses. A comprehensive stability index (CSI) is adopted as a quantitative measure to accurately assign a degree of stability to a specific DC/DC converter. The CSI is a ratio of normal and abnormal power spectral density, and can be calculated using specified and measured CPcf and CPsw data. The novel and unique feature of this technique is the use of power channel amplitudes at characteristic frequency and switching frequency to evaluate stability and identify oscillations at an early stage without interfering with a DC/DC converter s

  8. Method for early detection of cooling-loss events

    SciTech Connect

    Bermudez, Sergio A.; Hamann, Hendrik F.; Marianno, Fernando J.

    2015-12-22

    A method of detecting cooling-loss event early is provided. The method includes defining a relative humidity limit and change threshold for a given space, measuring relative humidity in the given space, determining, with a processing unit, whether the measured relative humidity is within the defined relative humidity limit, generating a warning in an event the measured relative humidity is outside the defined relative humidity limit and determining whether a change in the measured relative humidity is less than the defined change threshold for the given space and generating an alarm in an event the change is greater than the defined change threshold.

  9. Connecting early and late universe by f(R) gravity

    NASA Astrophysics Data System (ADS)

    Capozziello, Salvatore; de Laurentis, Mariafelicia; Luongo, Orlando

    2015-12-01

    Inflation and dark energy are two of the most relevant aspects of modern cosmology. These different epochs provide the universe is passing through accelerated phases soon after the Big-Bang and at present stage of its evolution. In this review paper, we discuss that both eras can be, in principle, described by a geometric picture, under the standard of f(R) gravity. We give the fundamental physics motivations and outline the main ingredients of f(R) inflation, quintessence and cosmography. This wants to be a quick summary of f(R) paradigm without claiming of completeness.

  10. Early detection of fatigue damage in composite materials

    NASA Technical Reports Server (NTRS)

    Salkind, M. J.

    1975-01-01

    Early detection of fatigue damage in composite materials by nondestructive inspection (NDI) techniques has been demonstrated for glass/epoxy, graphite/glass/epoxy, and graphite/epoxy composites. Modulus and temperature were monitored and a correlation between them observed. Axial modulus and torsional modulus changes were a function of the laminate orientation. Torsional modulus measurements and coin tap tests were performed at 0, 1 million, 5 million, and 10 million cycles, on axial fatigue specimens. Three distinct regions were noted. In the primary region a small but rapid change in stiffness was noted in the first few thousand cycles. This was followed by a secondary region of little or no stiffness change. The tertiary region was characterized by an increasing rate of stiffness change leading to fracture. NDI procedures including holographic interferometry, ultrasonics, penetrant, and X-ray radiography were evaluated for fatigue damage detection.