Science.gov

Sample records for detectable pulmonary inflammation

  1. Exposure to ultrafine carbon particles at levels below detectable pulmonary inflammation affects cardiovascular performance in spontaneously hypertensive rats

    PubMed Central

    Upadhyay, Swapna; Stoeger, Tobias; Harder, Volkar; Thomas, Ronald F; Schladweiler, Mette C; Semmler-Behnke, Manuela; Takenaka, Shinji; Karg, Erwin; Reitmeir, Peter; Bader, Michael; Stampfl, Andreas; Kodavanti, Urmila P; Schulz, Holger

    2008-01-01

    Background Exposure to particulate matter is a risk factor for cardiopulmonary disease but the underlying molecular mechanisms remain poorly understood. In the present study we sought to investigate the cardiopulmonary responses on spontaneously hypertensive rats (SHRs) following inhalation of UfCPs (24 h, 172 μg·m-3), to assess whether compromised animals (SHR) exhibit a different response pattern compared to the previously studied healthy rats (WKY). Methods Cardiophysiological response in SHRs was analyzed using radiotelemetry. Blood pressure (BP) and its biomarkers plasma renin-angiotensin system were also assessed. Lung and cardiac mRNA expressions for markers of oxidative stress (hemeoxygenase-1), blood coagulation (tissue factor, plasminogen activator inhibitor-1), and endothelial function (endothelin-1, and endothelin receptors A and B) were analyzed following UfCPs exposure in SHRs. UfCPs-mediated inflammatory responses were assessed from broncho-alveolar-lavage fluid (BALF). Results Increased BP and heart rate (HR) by about 5% with a lag of 1–3 days were detected in UfCPs exposed SHRs. Inflammatory markers of BALF, lung (pulmonary) and blood (systemic) were not affected. However, mRNA expression of hemeoxygenase-1, endothelin-1, endothelin receptors A and B, tissue factor, and plasminogen activator inhibitor showed a significant induction (~2.5-fold; p < 0.05) with endothelin 1 being the maximally induced factor (6-fold; p < 0.05) on the third recovery day in the lungs of UfCPs exposed SHRs; while all of these factors – except hemeoxygenase-1 – were not affected in cardiac tissues. Strikingly, the UfCPs-mediated altered BP is paralleled by the induction of renin-angiotensin system in plasma. Conclusion Our finding shows that UfCPs exposure at levels which does not induce detectable pulmonary neutrophilic inflammation, triggers distinct effects in the lung and also at the systemic level in compromised SHRs. These effects are characterized by

  2. Physicochemical characteristics of nanomaterials that affect pulmonary inflammation

    PubMed Central

    2014-01-01

    The increasing manufacture and use of products based on nanotechnology raises concerns for both workers and consumers. Various studies report induction of pulmonary inflammation after inhalation exposure to nanoparticles, which can vary in aspects such as size, shape, charge, crystallinity, chemical composition, and dissolution rate. Each of these aspects can affect their toxicity, although it is largely unknown to what extent. The aim of the current review is to analyse published data on inhalation of nanoparticles to identify and evaluate the contribution of their physicochemical characteristics to the onset and development of pulmonary inflammation. Many physicochemical characteristics of nanoparticles affect their lung deposition, clearance, and pulmonary response that, in combination, ultimately determine whether pulmonary inflammation will occur and to what extent. Lung deposition is mainly determined by the physical properties of the aerosol (size, density, shape, hygroscopicity) in relation to airflow and the anatomy of the respiratory system, whereas clearance and translocation of nanoparticles are mainly determined by their geometry and surface characteristics. Besides size and chemical composition, other physicochemical characteristics influence the induction of pulmonary inflammation after inhalation. As some nanoparticles dissolve, they can release toxic ions that can damage the lung tissue, making dissolution rate an important characteristic that affects lung inflammation. Fibre-shaped materials are more toxic to the lungs compared to spherical shaped nanoparticles of the same chemical composition. In general, cationic nanoparticles are more cytotoxic than neutral or anionic nanoparticles. Finally, surface reactivity correlates well with observed pulmonary inflammation. With all these characteristics affecting different stages of the events leading to pulmonary inflammation, no unifying dose metric could be identified to describe pulmonary

  3. Nitric Oxide, Oxidative Stress and Inflammation in Pulmonary Arterial Hypertension

    PubMed Central

    Crosswhite, Patrick; Sun, Zhongjie

    2010-01-01

    Pulmonary arterial hypertension (PAH) is a chronic and progressive disease characterized by a persistent elevation of pulmonary artery pressure accompanied by right ventricular hypertrophy (RVH). The current treatment for pulmonary hypertension is limited and only provides symptomatic relief due to unknown etiology and pathogenesis of the disease. Both vasoconstriction and structural remodeling (enhanced proliferation of VSMC) of the pulmonary arteries contribute to the progressive course of PAH, irrespective of different underlying causes. The exact molecular mechanism of PAH, however, is not fully understood. The purpose of this review is to provide recent advances in the mechanistic investigation of PAH. Specifically, this review focuses on nitric oxide (NO), oxidative stress and inflammation and how these factors contribute to the development and progression of PAH. This review also discusses recent and potential therapeutic advancements for the treatment of PAH. PMID:20051913

  4. Effect of acute airway inflammation on the pulmonary antioxidant status.

    PubMed

    Deaton, Christopher M; Marlin, David J; Smith, Nicola C; Harris, Patricia A; Dagleish, Mark P; Schroter, Robert C; Kelly, Frank J

    2005-09-01

    Effects of acute airway inflammation induced by organic dust inhalation on pulmonary antioxidant status were investigated in healthy horses and horses affected by recurrent airway obstruction. Exposure to organic dust induced acute airway neutrophilia, which was associated with increases in elastase and decreases in ascorbic acid concentrations in bronchoalveolar lavage fluid. However, markers of oxidative stress were unaffected, as was hydrogen peroxide in breath condensate. Decreases in ascorbic acid correlated with increased respiratory resistance (P = .001) when both groups were combined. In conclusion, acute neutrophilic airway inflammation does not result in significant evidence of oxidative stress in horses affected by recurrent airway obstruction. PMID:16203621

  5. Multi-walled carbon nanotube physicochemical properties predict pulmonary inflammation and genotoxicity.

    PubMed

    Poulsen, Sarah S; Jackson, Petra; Kling, Kirsten; Knudsen, Kristina B; Skaug, Vidar; Kyjovska, Zdenka O; Thomsen, Birthe L; Clausen, Per Axel; Atluri, Rambabu; Berthing, Trine; Bengtson, Stefan; Wolff, Henrik; Jensen, Keld A; Wallin, Håkan; Vogel, Ulla

    2016-11-01

    Lung deposition of multi-walled carbon nanotubes (MWCNT) induces pulmonary toxicity. Commercial MWCNT vary greatly in physicochemical properties and consequently in biological effects. To identify determinants of MWCNT-induced toxicity, we analyzed the effects of pulmonary exposure to 10 commercial MWCNT (supplied in three groups of different dimensions, with one pristine and two/three surface modified in each group). We characterized morphology, chemical composition, surface area and functionalization levels. MWCNT were deposited in lungs of female C57BL/6J mice by intratracheal instillation of 0, 6, 18 or 54 μg/mouse. Pulmonary inflammation (neutrophil influx in bronchoalveolar lavage (BAL)) and genotoxicity were determined on day 1, 28 or 92. Histopathology of the lungs was performed on day 28 and 92. All MWCNT induced similar histological changes. Lymphocytic aggregates were detected for all MWCNT on day 28 and 92. Using adjusted, multiple regression analyses, inflammation and genotoxicity were related to dose, time and physicochemical properties. The specific surface area (BET) was identified as a positive predictor of pulmonary inflammation on all post-exposure days. In addition, length significantly predicted pulmonary inflammation, whereas surface oxidation (-OH and -COOH) was predictor of lowered inflammation on day 28. BET surface area, and therefore diameter, significantly predicted genotoxicity in BAL fluid cells and lung tissue such that lower BET surface area or correspondingly larger diameter was associated with increased genotoxicity. This study provides information on possible toxicity-driving physicochemical properties of MWCNT. The results may contribute to safe-by-design manufacturing of MWCNT, thereby minimizing adverse effects. PMID:27323647

  6. Pulmonary CD103 expression regulates airway inflammation in asthma.

    PubMed

    Bernatchez, Emilie; Gold, Matthew J; Langlois, Anick; Lemay, Anne-Marie; Brassard, Julyanne; Flamand, Nicolas; Marsolais, David; McNagny, Kelly M; Blanchet, Marie-Renee

    2015-04-15

    Although CD103(+) cells recently emerged as key regulatory cells in the gut, the role of CD103 ubiquitous expression in the lung and development of allergic airway disease has never been studied. To answer this important question, we evaluated the response of Cd103(-/-) mice in two separate well-described mouse models of asthma (ovalbumin and house dust mite extract). Pulmonary inflammation was assessed by analysis of bronchoalveolar lavage content, histology, and cytokine response. CD103 expression was analyzed on lung dendritic cells and T cell subsets by flow cytometry. Cd103(-/-) mice exposed to antigens developed exacerbated lung inflammation, characterized by increased eosinophilic infiltration, severe tissue inflammation, and altered cytokine response. In wild-type mice exposed to house dust mite, CD103(+) dendritic cells are increased in the lung and an important subset of CD4(+) T cells, CD8(+) T cells, and T regulatory cells express CD103. Importantly, Cd103(-/-) mice presented a deficiency in the resolution phase of inflammation, which supports an important role for this molecule in the control of inflammation severity. These results suggest an important role for CD103 in the control of airway inflammation in asthma. PMID:25681437

  7. Intercellular Adhesion Molecule 1 Knockout Abrogates Radiation Induced Pulmonary Inflammation

    NASA Astrophysics Data System (ADS)

    Hallahan, Dennis E.; Virudachalam, Subbulakshmi

    1997-06-01

    Increased expression of intercellular adhesion molecule 1 (ICAM-1; CD54) is induced by exposure to ionizing radiation. The lung was used as a model to study the role of ICAM-1 in the pathogenesis of the radiation-induced inflammation-like response. ICAM-1 expression increased in the pulmonary microvascular endothelium and not in the endothelium of larger pulmonary vessels following treatment of mice with thoracic irradiation. To quantify radiation-induced ICAM-1 expression, we utilized fluorescence-activated cell sorting analysis of anti-ICAM-1 antibody labeling of pulmonary microvascular endothelial cells from human cadaver donors (HMVEC-L cells). Fluorochrome conjugates and UV microscopy were used to quantify the fluorescence intensity of ICAM in the irradiated lung. These studies showed a dose- and time-dependent increase in ICAM-1 expression in the pulmonary microvascular endothelium. Peak expression occurred at 24 h, while threshold dose was as low as 2 Gy. To determine whether ICAM-1 is required for inflammatory cell infiltration into the irradiated lung, the anti-ICAM-1 blocking antibody was administered by tail vein injection to mice following thoracic irradiation. Inflammatory cells were quantified by immunofluorescence for leukocyte common antigen (CD45). Mice treated with the anti-ICAM-1 blocking antibody showed attenuation of inflammatory cell infiltration into the lung in response to ionizing radiation exposure. To verify the requirement of ICAM-1 in the inflammation-like radiation response, we utilized the ICAM-1 knockout mouse. ICAM-1 was not expressed in the lungs of ICAM-1-deficient mice following treatment with thoracic irradiation. ICAM-1 knockout mice had no increase in the inflammatory cell infiltration into the lung in response to thoracic irradiation. These studies demonstrate a radiation dose-dependent increase in ICAM-1 expression in the pulmonary microvascular endothelium, and show that ICAM-1 is required for inflammatory cell infiltration

  8. Intercellular adhesion molecule 1 knockout abrogates radiation induced pulmonary inflammation.

    PubMed

    Hallahan, D E; Virudachalam, S

    1997-06-10

    Increased expression of intercellular adhesion molecule 1 (ICAM-1; CD54) is induced by exposure to ionizing radiation. The lung was used as a model to study the role of ICAM-1 in the pathogenesis of the radiation-induced inflammation-like response. ICAM-1 expression increased in the pulmonary microvascular endothelium and not in the endothelium of larger pulmonary vessels following treatment of mice with thoracic irradiation. To quantify radiation-induced ICAM-1 expression, we utilized fluorescence-activated cell sorting analysis of anti-ICAM-1 antibody labeling of pulmonary microvascular endothelial cells from human cadaver donors (HMVEC-L cells). Fluorochrome conjugates and UV microscopy were used to quantify the fluorescence intensity of ICAM in the irradiated lung. These studies showed a dose- and time-dependent increase in ICAM-1 expression in the pulmonary microvascular endothelium. Peak expression occurred at 24 h, while threshold dose was as low as 2 Gy. To determine whether ICAM-1 is required for inflammatory cell infiltration into the irradiated lung, the anti-ICAM-1 blocking antibody was administered by tail vein injection to mice following thoracic irradiation. Inflammatory cells were quantified by immunofluorescence for leukocyte common antigen (CD45). Mice treated with the anti-ICAM-1 blocking antibody showed attenuation of inflammatory cell infiltration into the lung in response to ionizing radiation exposure. To verify the requirement of ICAM-1 in the inflammation-like radiation response, we utilized the ICAM-1 knockout mouse. ICAM-1 was not expressed in the lungs of ICAM-1-deficient mice following treatment with thoracic irradiation. ICAM-1 knockout mice had no increase in the inflammatory cell infiltration into the lung in response to thoracic irradiation. These studies demonstrate a radiation dose-dependent increase in ICAM-1 expression in the pulmonary microvascular endothelium, and show that ICAM-1 is required for inflammatory cell infiltration

  9. Chronic Thromboembolic Pulmonary Hypertension Associated with Chronic Inflammation.

    PubMed

    Kuse, Naoyuki; Abe, Shinji; Kuribayashi, Hidehiko; Fukuda, Asami; Kusunoki, Yuji; Narato, Ritsuko; Saito, Hitoshi; Gemma, Akihiko

    2016-01-01

    Chronic thromboembolic pulmonary hypertension (CTEPH) is one of the leading causes of severe pulmonary hypertension. According to previously reported studies in the pertinent literature, chronic inflammatory conditions may be implicated in the development of CTEPH. We herein describe the case of a 56-year-old woman who was diagnosed with CTEPH in association with chronic infection. The patient had experienced five episodes of pneumonia in the five years prior to the diagnosis of CTEPH. Blood tests from the previous five years of outpatient follow-up demonstrated that the C-reactive protein level was slightly elevated. This case suggests that a relationship exists between chronic inflammation and CTEPH, and furthermore, may contribute towards elucidating the pathophysiology of CTEPH. PMID:27250055

  10. Systemic inflammation after inspiratory loading in chronic obstructive pulmonary disease

    PubMed Central

    Fuster, Antonia; Sauleda, Jaume; Sala, Ernest; Barceló, Bernardí; Pons, Jaume; Carrera, Miguel; Noguera, Aina; Togores, Bernat; Agustí, Alvar GN

    2008-01-01

    Objective Patients with chronic obstructive pulmonary disease (COPD) present systemic inflammation. Strenuous resistive breathing induces systemic inflammation in healthy subjects. We hypothesized that the increased respiratory load that characterizes COPD can contribute to systemic inflammation in these patients. Patients and methods To test this hypothesis, we compared leukocyte numbers and levels of circulating cytokines (tumor necrosis factor alpha [TNFα], interleukin-1β [IL-1β], IL-6, IL-8, and IL-10), before and 1 hour after maximal incremental inspiratory loading in 13 patients with stable COPD (forced expiratory volume in one second [FEV1] 29 ± 2.5% ref) and in 8 healthy sedentary subjects (FEV1 98 ± 5% ref). Results We found that: (1) at baseline, patients with COPD showed higher leukocyte counts and IL-8 levels than controls (p < 0.01); and, (2) one hour after maximal inspiratory loading these values were unchanged, except for IL-10, which increased in controls (p < 0.05) but not in patients with COPD. Conclusions This study confirms the presence of systemic inflammation in COPD, shows that maximal inspiratory loading does not increase the levels of pro-inflammatory cytokines (IL-1β, IL-8) in COPD patients or controls, but suggests that the former may be unable to mount an appropriate systemic anti-inflammatory response to exercise. PMID:18488438

  11. CFTR-regulated MAPK/NF-κB signaling in pulmonary inflammation in thermal inhalation injury

    PubMed Central

    Dong, Zhi Wei; Chen, Jing; Ruan, Ye Chun; Zhou, Tao; Chen, Yu; Chen, YaJie; Tsang, Lai Ling; Chan, Hsiao Chang; Peng, Yi Zhi

    2015-01-01

    The mechanism underlying pulmonary inflammation in thermal inhalation injury remains elusive. Cystic fibrosis, also hallmarked with pulmonary inflammation, is caused by mutations in CFTR, the expression of which is temperature-sensitive. We investigated whether CFTR is involved in heat-induced pulmonary inflammation. We applied heat-treatment in 16HBE14o- cells with CFTR knockdown or overexpression and heat-inhalation in rats in vivo. Heat-treatment caused significant reduction in CFTR and, reciprocally, increase in COX-2 at early stages both in vitro and in vivo. Activation of ERK/JNK, NF-κB and COX-2/PGE2 were detected in heat-treated cells, which were mimicked by knockdown, and reversed by overexpression of CFTR or VX-809, a reported CFTR mutation corrector. JNK/ERK inhibition reversed heat-/CFTR-knockdown-induced NF-κB activation, whereas NF-κB inhibitor showed no effect on JNK/ERK. IL-8 was augmented by heat-treatment or CFTR-knockdown, which was abolished by inhibition of NF-κB, JNK/ERK or COX-2. Moreover, in vitro or in vivo treatment with curcumin, a natural phenolic compound, significantly enhanced CFTR expression and reversed the heat-induced increases in COX-2/PGE2/IL-8, neutrophil infiltration and tissue damage in the airway. These results have revealed a CFTR-regulated MAPK/NF-κB pathway leading to COX-2/PGE2/IL-8 activation in thermal inhalation injury, and demonstrated therapeutic potential of curcumin for alleviating heat-induced pulmonary inflammation. PMID:26515683

  12. CFTR-regulated MAPK/NF-κB signaling in pulmonary inflammation in thermal inhalation injury.

    PubMed

    Dong, Zhi Wei; Chen, Jing; Ruan, Ye Chun; Zhou, Tao; Chen, Yu; Chen, YaJie; Tsang, Lai Ling; Chan, Hsiao Chang; Peng, Yi Zhi

    2015-01-01

    The mechanism underlying pulmonary inflammation in thermal inhalation injury remains elusive. Cystic fibrosis, also hallmarked with pulmonary inflammation, is caused by mutations in CFTR, the expression of which is temperature-sensitive. We investigated whether CFTR is involved in heat-induced pulmonary inflammation. We applied heat-treatment in 16HBE14o- cells with CFTR knockdown or overexpression and heat-inhalation in rats in vivo. Heat-treatment caused significant reduction in CFTR and, reciprocally, increase in COX-2 at early stages both in vitro and in vivo. Activation of ERK/JNK, NF-κB and COX-2/PGE2 were detected in heat-treated cells, which were mimicked by knockdown, and reversed by overexpression of CFTR or VX-809, a reported CFTR mutation corrector. JNK/ERK inhibition reversed heat-/CFTR-knockdown-induced NF-κB activation, whereas NF-κB inhibitor showed no effect on JNK/ERK. IL-8 was augmented by heat-treatment or CFTR-knockdown, which was abolished by inhibition of NF-κB, JNK/ERK or COX-2. Moreover, in vitro or in vivo treatment with curcumin, a natural phenolic compound, significantly enhanced CFTR expression and reversed the heat-induced increases in COX-2/PGE2/IL-8, neutrophil infiltration and tissue damage in the airway. These results have revealed a CFTR-regulated MAPK/NF-κB pathway leading to COX-2/PGE2/IL-8 activation in thermal inhalation injury, and demonstrated therapeutic potential of curcumin for alleviating heat-induced pulmonary inflammation. PMID:26515683

  13. Systemic Microvascular Dysfunction and Inflammation after Pulmonary Particulate Matter Exposure

    PubMed Central

    Nurkiewicz, Timothy R.; Porter, Dale W.; Barger, Mark; Millecchia, Lyndell; Rao, K. Murali K.; Marvar, Paul J.; Hubbs, Ann F.; Castranova, Vincent; Boegehold, Matthew A.

    2006-01-01

    The epidemiologic association between pulmonary exposure to ambient particulate matter (PM) and cardiovascular dysfunction is well known, but the systemic mechanisms that drive this effect remain unclear. We have previously shown that acute pulmonary exposure to PM impairs or abolishes endothelium-dependent arteriolar dilation in the rat spinotrapezius muscle. The purpose of this study was to further characterize the effect of pulmonary PM exposure on systemic microvascular function and to identify local inflammatory events that may contribute to these effects. Rats were intratracheally instilled with residual oil fly ash (ROFA) or titanium dioxide at 0.1 or 0.25 mg/rat 24 hr before measurement of pulmonary and systemic microvascular responses. In vivo microscopy of the spinotrapezius muscle was used to study systemic arteriolar responses to intraluminal infusion of the Ca2+ ionophore A23187 or iontophoretic abluminal application of the adrenergic agonist phenylephrine (PHE). Leukocyte rolling and adhesion were quantified in venules paired with the studied arterioles. Histologic techniques were used to assess pulmonary inflammation, characterize the adherence of leukocytes to systemic venules, verify the presence of myeloperoxidase (MPO) in the systemic microvascular wall, and quantify systemic microvascular oxidative stress. In the lungs of rats exposed to ROFA or TiO2, changes in some bronchoalveolar lavage markers of inflammation were noted, but an indication of cellular damage was not found. In rats exposed to 0.1 mg ROFA, focal alveolitis was evident, particularly at sites of particle deposition. Exposure to either ROFA or TiO2 caused a dose-dependent impairment of endothelium-dependent arteriolar dilation. However, exposure to these particles did not affect microvascular constriction in response to PHE. ROFA and TiO2 exposure significantly increased leukocyte rolling and adhesion in paired venules, and these cells were positively identified as

  14. Systemic microvascular dysfunction and inflammation after pulmonary particulate matter exposure.

    PubMed

    Nurkiewicz, Timothy R; Porter, Dale W; Barger, Mark; Millecchia, Lyndell; Rao, K Murali K; Marvar, Paul J; Hubbs, Ann F; Castranova, Vincent; Boegehold, Matthew A

    2006-03-01

    The epidemiologic association between pulmonary exposure to ambient particulate matter (PM) and cardiovascular dysfunction is well known, but the systemic mechanisms that drive this effect remain unclear. We have previously shown that acute pulmonary exposure to PM impairs or abolishes endothelium-dependent arteriolar dilation in the rat spinotrapezius muscle. The purpose of this study was to further characterize the effect of pulmonary PM exposure on systemic microvascular function and to identify local inflammatory events that may contribute to these effects. Rats were intratracheally instilled with residual oil fly ash (ROFA) or titanium dioxide at 0.1 or 0.25 mg/rat 24 hr before measurement of pulmonary and systemic microvascular responses. In vivo microscopy of the spinotrapezius muscle was used to study systemic arteriolar responses to intraluminal infusion of the Ca2+ ionophore A23187 or iontophoretic abluminal application of the adrenergic agonist phenylephrine (PHE). Leukocyte rolling and adhesion were quantified in venules paired with the studied arterioles. Histologic techniques were used to assess pulmonary inflammation, characterize the adherence of leukocytes to systemic venules, verify the presence of myeloperoxidase (MPO) in the systemic microvascular wall, and quantify systemic microvascular oxidative stress. In the lungs of rats exposed to ROFA or TiO2, changes in some bronchoalveolar lavage markers of inflammation were noted, but an indication of cellular damage was not found. In rats exposed to 0.1 mg ROFA, focal alveolitis was evident, particularly at sites of particle deposition. Exposure to either ROFA or TiO2 caused a dose-dependent impairment of endothelium-dependent arteriolar dilation. However, exposure to these particles did not affect microvascular constriction in response to PHE. ROFA and TiO2 exposure significantly increased leukocyte rolling and adhesion in paired venules, and these cells were positively identified as

  15. An epithelial circadian clock controls pulmonary inflammation and glucocorticoid action

    PubMed Central

    Gibbs, Julie; Ince, Louise; Matthews, Laura; Mei, Junjie; Bell, Thomas; Yang, Nan; Saer, Ben; Begley, Nicola; Poolman, Toryn; Pariollaud, Marie; Farrow, Stuart; Demayo, Francesco; Hussell, Tracy; Worthen, G Scott; Ray, David; Loudon, Andrew

    2014-01-01

    The circadian system is as an important regulator of immune function. Human inflammatory lung diseases frequently show time-of-day variation in symptom severity and lung function, but the mechanisms and cell types that are underlying these effects remain unclear. We show that pulmonary antibacterial responses are modulated by a circadian clock within epithelial club (Clara) cells. These drive circadian neutrophil recruitment to the lung via the chemokine CXCL5. Genetic ablation of the clock gene Bmal1 (also called Arntl or MOP3) in bronchiolar cells disrupts rhythmic Cxcl5 expression, resulting in exaggerated inflammatory responses to lipopolysaccharide and bacterial infection. Adrenalectomy blocks rhythmic inflammatory responses and the circadian regulation of CXCL5, suggesting a key role for the adrenal axis in driving CXCL5 expression and pulmonary neutrophil recruitment. Glucocorticoid receptor occupancy at the Cxcl5 locus shows circadian oscillations, but this is disrupted in mice with bronchiole-specific ablation of Bmal1, leading to enhanced CXCL5 expression despite normal corticosteroid secretion. In clock-gene disrupted mice the synthetic glucocorticoid dexamethasone loses anti-inflammatory efficacy. We now define a regulatory mechanism that links the circadian clock and glucocorticoid hormones to control both time-of-day variation and also the magnitude of pulmonary inflammation and responses to bacterial infection. PMID:25064128

  16. Grouping nanomaterials to predict their potential to induce pulmonary inflammation.

    PubMed

    Braakhuis, Hedwig M; Oomen, Agnes G; Cassee, Flemming R

    2016-05-15

    The rapidly expanding manufacturing, production and use of nanomaterials have raised concerns for both worker and consumer safety. Various studies have been published in which induction of pulmonary inflammation after inhalation exposure to nanomaterials has been described. Nanomaterials can vary in aspects such as size, shape, charge, crystallinity, chemical composition, and dissolution rate. Currently, efforts are made to increase the knowledge on the characteristics of nanomaterials that can be used to categorise them into hazard groups according to these characteristics. Grouping helps to gather information on nanomaterials in an efficient way with the aim to aid risk assessment. Here, we discuss different ways of grouping nanomaterials for their risk assessment after inhalation. Since the relation between single intrinsic particle characteristics and the severity of pulmonary inflammation is unknown, grouping of nanomaterials by their intrinsic characteristics alone is not sufficient to predict their risk after inhalation. The biokinetics of nanomaterials should be taken into account as that affects the dose present at a target site over time. The parameters determining the kinetic behaviour are not the same as the hazard-determining parameters. Furthermore, characteristics of nanomaterials change in the life-cycle, resulting in human exposure to different forms and doses of these nanomaterials. As information on the biokinetics and in situ characteristics of nanomaterials is essential but often lacking, efforts should be made to include these in testing strategies. Grouping nanomaterials will probably be of the most value to risk assessors when information on intrinsic characteristics, life-cycle, biokinetics and effects are all combined. PMID:26603513

  17. Immune Inflammation and Disease Progression in Idiopathic Pulmonary Fibrosis

    PubMed Central

    Balestro, Elisabetta; Calabrese, Fiorella; Turato, Graziella; Lunardi, Francesca; Bazzan, Erica; Marulli, Giuseppe; Biondini, Davide; Rossi, Emanuela; Sanduzzi, Alessandro; Rea, Federico; Rigobello, Chiara; Gregori, Dario; Baraldo, Simonetta; Spagnolo, Paolo

    2016-01-01

    The clinical course in idiopathic pulmonary fibrosis (IPF) is highly heterogeneous, with some patients having a slow progression and others an accelerated clinical and functional decline. This study aims to clinically characterize the type of progression in IPF and to investigate the pathological basis that might account for the observed differences in disease behavior. Clinical and functional data were analyzed in 73 IPF patients, followed long-time as candidates for lung transplantation. The forced vital capacity (FVC) change/year (< or ≥10% predicted) was used to define “slow” or “rapid” disease progression. Pathological abnormalities were quantified in the explanted lung of 41 out of 73 patients undergoing lung transplantation. At diagnosis, slow progressors (n = 48) showed longer duration of symptoms and lower FVC than rapid progressors (n = 25). Eleven slow and 3 rapid progressors developed an acute exacerbation (AE) during follow-up. Quantitative lung pathology showed a severe innate and adaptive inflammatory infiltrate in rapid progressors, markedly increased compared to slow progressors and similar to that observed in patients experiencing AE. The extent of inflammation was correlated with the yearly FVC decline (r = 0.52, p = 0.005). In conclusion an innate and adaptive inflammation appears to be a prominent feature in the lung of patients with IPF and could contribute to determining of the rate of disease progression. PMID:27159038

  18. Inhalation of Carbon Black Nanoparticles Aggravates Pulmonary Inflammation in Mice

    PubMed Central

    Saputra, Devina; Yoon, Jin-ha; Park, Hyunju; Heo, Yongju; Yang, Hyoseon; Lee, Eun Ji; Lee, Sangjin; Song, Chang-Woo; Lee, Kyuhong

    2014-01-01

    An increasing number of recent studies have focused on the impact of particulate matter on human health. As a model for atmospheric particulate inhalation, we investigated the effects of inhaled carbon black nanoparticles (CBNP) on mice with bleomycin-induced pulmonary fibrosis. The CNBPs were generated by a novel aerosolization process, and the mice were exposed to the aerosol for 4 hours. We found that CBNP inhalation exacerbated lung inflammation, as evidenced by histopathology analysis and by the expression levels of interleukin-6 protein, fibronectin, and interferon-γ mRNAs in lung tissues. Notably, fibronectin mRNA expression showed a statistically significant increase in expression after CBNP exposure. These data suggest that the concentration of CBNPs delivered (calculated to be 12.5 μg/m3) can aggravate lung inflammation in mice. Our results also suggest that the inhalation of ultrafine particles like PM 2.5 is an impactful environmental risk factor for humans, particularly in susceptible populations with predisposing lung conditions. PMID:25071917

  19. Establishment of a mouse model for pulmonary inflammation and fibrosis by intratracheal instillation of polyhexamethyleneguanidine phosphate

    PubMed Central

    Lee, Sang Jin; Park, Jong-Hwan; Lee, Jun-Young; Jeong, Yu-Jin; Song, Jeong Ah; Lee, Kyuhong; Kim, Dong-Jae

    2016-01-01

    Although several animal models have been developed to study human pulmonary fibrosis, lack of a perfect model has raised the need for various animal models of pulmonary fibrosis. In this study, we evaluated the pulmonary effect of polyhexamethyleneguanidine phosphate instillation into the lungs of mice to determine the potential of these mice as a murine model of pulmonary fibrosis. Intratracheal instillation of polyhexamethyleneguanidine phosphate induced severe lung inflammation manifested by the infiltration of mononuclear cells and neutrophils and increased production of IL-6, TNF-α, CCL2 and CXCL1. The lung inflammation gradually increased until 28 days after polyhexamethyleneguanidine phosphate exposure, and increases of collagen deposition and TGF-β production, which are indicators of pulmonary fibrosis, were seen. Our study showed that intratracheal instillation of polyhexamethyleneguanidine phosphate induces pulmonary inflammation and fibrosis in mice. PMID:27182113

  20. Dihydroartemisinin supresses inflammation and fibrosis in bleomycine-induced pulmonary fibrosis in rats

    PubMed Central

    Yang, Dongxia; Yuan, Wendan; Lv, Changjun; Li, Naie; Liu, Tongshen; Wang, Liang; Sun, Yufei; Qiu, Xueshan; Fu, Qiang

    2015-01-01

    Pulmonary fibrosis is a respiratory disease with a high mortality rate and its pathogenesis involves multiple mechanisms including epithelial cell injury, fibroblast proliferation, inflammation, and collagen coagulation. The treatment regimens still fail to recover this disease. We have previously found that dihydroartemisinin inhibits the development of pulmonary fibrosis in rats. This study aimed to determine the mechanisms of dihydroartemisinin in bleomycin-induced pulmonary fibrosis. The experimental rats were divided into six groups as normal saline control group (NS group), bleomycin group (BLM group), dihydroartemisinin-1, -2, or -3 group (DHA-1, DHA-2 and DHA-3 group) and dexamethasone group (DXM group). In BLM group, rats were treated with intratracheal instillation of bleomycin. NS group received the same volume of saline instead of bleomycin. In DHA-1, DHA-2 and DHA-3 group, in addition to intratracheal instillation of bleomycin, respectively, dihydroartemisinin (25 mg/kg, 50 mg/kg, 100 mg/kg daily) was administrated by intraperitoneal instillation. In DXM group, rats were treated with intraperitoneal instillation of dexamethasone as control. Immunocytochemical assay, reverse transcription PCR and western blot were used for detecting the expression of TGF-β1, TNF-α, α-SMA and NF-κB in lung tissues. What’s more, morphological change and collagen deposition were analyzed by hematoxylin-eosin staining and Masson staining. Collagen synthesis was detected by hydroxyproline chromatometry. Results showed that dihydroartemisinin significantly decreased the amount of inflammatory cytokines and collagen synthesis, and inhibited fibroblast proliferation in bleomycin-induced pulmonary fibrosis (P < 0.001). This study provides experimental evidence that dihydroartemisinin could decrease cytokines, alveolar inflammation and attenuates lung injury and fibrosis. PMID:25973011

  1. Familial idiopathic pulmonary fibrosis. Evidence of lung inflammation in unaffected family members

    SciTech Connect

    Bitterman, P.B.; Rennard, S.I.; Keogh, B.A.; Wewers, M.D.; Adelberg, S.; Crystal, R.G.

    1986-05-22

    We evaluated 17 clinically unaffected members of three families with an autosomal dominant form of idiopathic pulmonary fibrosis for evidence of alveolar inflammation. Each person in the study was examined by gallium-67 scanning for a general estimate of pulmonary inflammation, and by bronchoalveolar lavage for characterization of the types of recovered cells and their state of activation. Eight of the 17 subjects had evidence of alveolar inflammation on the lavage studies. Supporting data included increased numbers of neutrophils and activated macrophages that released one or more neutrophil chemoattractants, and growth factors for lung fibroblasts--findings similar to those observed in patients with overt idiopathic pulmonary fibrosis. Four of these eight also had a positive gallium scan; in all the other clinically unaffected subjects the scan was normal. During a follow-up of two to four years in seven of the eight subjects who had evidence of inflammation, no clinical evidence of pulmonary fibrosis has appeared. These results indicate that alveolar inflammation occurs in approximately half the clinically unaffected family members at risk of inheriting autosomal dominant idiopathic pulmonary fibrosis. Whether these persons with evidence of pulmonary inflammation but no fibrosis will proceed to have clinically evident pulmonary fibrosis is not yet known.

  2. Protective role of interleukin-10 in Ozone-induced pulmonary inflammation**

    EPA Science Inventory

    Background: The mechanisms underlying ozone (03)-induced pulmonary inflammation remain unclear. Interleukin-10 (IL-10) is an anti-inflammatory cytokine that is known to inhibit inflammatory mediators. Objectives: We investigated the molecular mechanisms underlying interleuken-10...

  3. Pulmonary oxidative stress, inflammation and dysregulated iron homeostatis in rat models of cardiovascular disease

    EPA Science Inventory

    Underlying cardiovascular disease (CVD) is considered a risk factor for the exacerbation of air pollution health effects. Therefore, rodent models of CVD are increasingly used to examine mechanisms ofvariation in susceptibility. Pulmonary oxidative stress, inflammation and altere...

  4. Ozone-Induced Pulmonary Injury and Inflammation are Modulated by Adrenal-Derived Stress Hormones

    EPA Science Inventory

    Ozone exposure promotes pulmonary injury and inflammation. Previously we have characterized systemic changes that occur immediately after acute ozone exposure and are mediated by neuro-hormonal stress response pathway. Both HPA axis and sympathetic tone alterations induce the rel...

  5. Immune Modulatory Effects of IL-22 on Allergen-Induced Pulmonary Inflammation

    PubMed Central

    Fang, Ping; Zhou, Li; Zhou, Yuqi; Kolls, Jay K.; Zheng, Tao; Zhu, Zhou

    2014-01-01

    IL-22 is a Th17/Th22 cytokine that is increased in asthma. However, recent animal studies showed controversial findings in the effects of IL-22 in allergic asthma. To determine the role of IL-22 in ovalbumin-induced allergic inflammation we generated inducible lung-specific IL-22 transgenic mice. Transgenic IL-22 expression and signaling activity in the lung were determined. Ovalbumin (OVA)-induced pulmonary inflammation, immune responses, and airway hyperresponsiveness (AHR) were examined and compared between IL-22 transgenic mice and wild type controls. Following doxycycline (Dox) induction, IL-22 protein was readily detected in the large (CC10 promoter) and small (SPC promoter) airway epithelial cells. IL-22 signaling was evidenced by phosphorylated STAT3. After OVA sensitization and challenge, compared to wild type littermates, IL-22 transgenic mice showed decreased eosinophils in the bronchoalveolar lavage (BAL), and in lung tissue, decreased mucus metaplasia in the airways, and reduced AHR. Among the cytokines and chemokines examined, IL-13 levels were reduced in the BAL fluid as well as in lymphocytes from local draining lymph nodes of IL-22 transgenic mice. No effect was seen on the levels of serum total or OVA-specific IgE or IgG. These findings indicate that IL-22 has immune modulatory effects on pulmonary inflammatory responses in allergen-induced asthma. PMID:25254361

  6. Arginase inhibition prevents inflammation and remodeling in a guinea pig model of chronic obstructive pulmonary disease.

    PubMed

    Pera, T; Zuidhof, A B; Smit, M; Menzen, M H; Klein, T; Flik, G; Zaagsma, J; Meurs, H; Maarsingh, H

    2014-05-01

    Airway inflammation and remodeling are major features of chronic obstructive pulmonary disease (COPD), whereas pulmonary hypertension is a common comorbidity associated with a poor disease prognosis. Recent studies in animal models have indicated that increased arginase activity contributes to features of asthma, including allergen-induced airway eosinophilia and mucus hypersecretion. Although cigarette smoke and lipopolysaccharide (LPS), major risk factors for COPD, may increase arginase expression, the role of arginase in COPD is unknown. This study aimed to investigate the role of arginase in pulmonary inflammation and remodeling using an animal model of COPD. Guinea pigs were instilled intranasally with LPS or saline twice weekly for 12 weeks and pretreated by inhalation of the arginase inhibitor 2(S)-amino-6-boronohexanoic acid (ABH) or vehicle. Repeated LPS exposure increased lung arginase activity, resulting in increased l-ornithine/l-arginine and l-ornithine/l-citrulline ratios. Both ratios were reversed by ABH. ABH inhibited the LPS-induced increases in pulmonary IL-8, neutrophils, and goblet cells as well as airway fibrosis. Remarkably, LPS-induced right ventricular hypertrophy, indicative of pulmonary hypertension, was prevented by ABH. Strong correlations were found between arginase activity and inflammation, airway remodeling, and right ventricular hypertrophy. Increased arginase activity contributes to pulmonary inflammation, airway remodeling, and right ventricular hypertrophy in a guinea pig model of COPD, indicating therapeutic potential for arginase inhibitors in this disease. PMID:24563530

  7. Exposure to nickel oxide nanoparticles induces pulmonary inflammation through NLRP3 inflammasome activation in rats.

    PubMed

    Cao, Zhengwang; Fang, Yiliang; Lu, Yonghui; Qian, Fenghua; Ma, Qinglong; He, Mingdi; Pi, Huifeng; Yu, Zhengping; Zhou, Zhou

    2016-01-01

    With recent advances in the manufacture and application of nickel oxide nanoparticles (NiONPs), concerns about their adverse effects on the respiratory system are increasing. However, the underlying cellular and molecular mechanisms of NiONP-induced pulmonary toxicity remain unclear. In this study, we focused on the impacts of NiONPs on pulmonary inflammation and investigated whether the NLRP3 inflammasome is involved in NiONP-induced pulmonary inflammation and injury. NiONP suspensions were administered by single intratracheal instillation to rats, and inflammatory responses were evaluated at 3 days, 7 days, or 28 days after treatment. NiONP exposure resulted in sustained pulmonary inflammation accompanied by inflammatory cell infiltration, alveolar proteinosis, and cytokine secretion. Expression of Nlrp3 was markedly upregulated by the NiONPs, which was accompanied by overexpression of the active form of caspase-1 (p20) and interleukin (IL)-1β secretion in vivo. NiONP-induced IL-1β secretion was partially prevented by co-treatment with a caspase-1 inhibitor in macrophages. Moreover, siRNA-mediated Nlrp3 knockdown completely attenuated NiONP-induced cytokine release and caspase-1 activity in macrophages in vitro. In addition, NiONP-induced NLRP3 inflammasome activation requires particle uptake and reactive oxygen species production. Collectively, our findings suggest that the NLRP3 inflammasome participates in NiONP-induced pulmonary inflammation and offer new strategies to combat the pulmonary toxicity induced by NiONPs. PMID:27524893

  8. Exposure to nickel oxide nanoparticles induces pulmonary inflammation through NLRP3 inflammasome activation in rats

    PubMed Central

    Cao, Zhengwang; Fang, Yiliang; Lu, Yonghui; Qian, Fenghua; Ma, Qinglong; He, Mingdi; Pi, Huifeng; Yu, Zhengping; Zhou, Zhou

    2016-01-01

    With recent advances in the manufacture and application of nickel oxide nanoparticles (NiONPs), concerns about their adverse effects on the respiratory system are increasing. However, the underlying cellular and molecular mechanisms of NiONP-induced pulmonary toxicity remain unclear. In this study, we focused on the impacts of NiONPs on pulmonary inflammation and investigated whether the NLRP3 inflammasome is involved in NiONP-induced pulmonary inflammation and injury. NiONP suspensions were administered by single intratracheal instillation to rats, and inflammatory responses were evaluated at 3 days, 7 days, or 28 days after treatment. NiONP exposure resulted in sustained pulmonary inflammation accompanied by inflammatory cell infiltration, alveolar proteinosis, and cytokine secretion. Expression of Nlrp3 was markedly upregulated by the NiONPs, which was accompanied by overexpression of the active form of caspase-1 (p20) and interleukin (IL)-1β secretion in vivo. NiONP-induced IL-1β secretion was partially prevented by co-treatment with a caspase-1 inhibitor in macrophages. Moreover, siRNA-mediated Nlrp3 knockdown completely attenuated NiONP-induced cytokine release and caspase-1 activity in macrophages in vitro. In addition, NiONP-induced NLRP3 inflammasome activation requires particle uptake and reactive oxygen species production. Collectively, our findings suggest that the NLRP3 inflammasome participates in NiONP-induced pulmonary inflammation and offer new strategies to combat the pulmonary toxicity induced by NiONPs. PMID:27524893

  9. Negative feedback on IL-23 exerted by IL-17A during pulmonary inflammation.

    PubMed

    Silverpil, Elin; Wright, Adam K A; Hansson, Marit; Jirholt, Pernilla; Henningsson, Louise; Smith, Margaretha E; Gordon, Stephen B; Iwakura, Yoichiro; Gjertsson, Inger; Glader, Pernilla; Lindén, Anders

    2013-10-01

    It is now established that IL-17 has a broad pro-inflammatory potential in mammalian host defense, in inflammatory disease and in autoimmunity, whereas little is known about its anti-inflammatory potential and inhibitory feedback mechanisms. Here, we examined whether IL-17A can inhibit the extracellular release of IL-23 protein, the upstream regulator of IL-17A producing lymphocyte subsets, that is released from macrophages during pulmonary inflammation. We characterized the effect of IL-17A on IL-23 release in several models of pulmonary inflammation, evaluated the presence of IL-17 receptor A (RA) and C (RC) on human alveolar macrophages and assessed the role of the Rho family GTPase Rac1 as a mediator of the effect of IL-17A on the release of IL-23 protein. In a model of sepsis-induced pneumonia, intravenous exposure to Staphylococcus aureus caused higher IL-23 protein concentrations in cell-free bronchoalveolar lavage (BAL) samples from IL-17A knockout (KO) mice, compared with wild type (WT) control mice. In a model of Gram-negative airway infection, pre-treatment with a neutralizing anti-IL-17A Ab and subsequent intranasal (i.n.) exposure to LPS caused higher IL-23 and IL-17A protein concentrations in BAL samples compared with mice exposed to LPS, but pre-treated with an isotype control Ab. Moreover, i.n. exposure with IL-17A protein per se decreased IL- 23 protein concentrations in BAL samples. We detected IL-17RA and IL-17RC on human alveolar macrophages, and found that in vitro stimulation of these cells with IL-17A protein, after exposure to LPS, decreased IL-23 protein in conditioned medium, but not IL-23 p19 or p40 mRNA. This study indicates that IL-17A can partially inhibit the release of IL-23 protein during pulmonary inflammation, presumably by stimulating the here demonstrated receptor units IL-17RA and IL-17RC on alveolar macrophages. Hypothetically, the demonstrated mechanism may serve as negative feedback to protect from excessive IL-17A

  10. Effects of inhaled therapy on biomarkers of systemic inflammation in stable chronic obstructive pulmonary disease.

    PubMed

    Antoniu, Sabina A

    2010-03-01

    In chronic obstructive pulmonary disease (COPD) airways inflammation is associated in more advanced stages with systemic inflammation. COPD-associated systemic inflammation syndrome is defined currently with rather non-specific biomarkers such as C-reactive protein (CRP) but there are also other 'organ-specific' biomarkers such as surfactant protein-D which are still not well characterized but might represent more appropriate and reliable alternatives to the non-specific biomarkers. Inhaled therapies are the mainstay in stable COPD and they were demonstrated to reduce airway inflammation and more recently in the case of inhaled corticosteroids alone or combined with long-acting beta-2 agonists to reduce systemic inflammation as well. This paper focuses on current and potential biomarkers of systemic inflammation in COPD and on the systemic anti-inflammatory effects of inhaled therapies in stable COPD. PMID:19929747

  11. Reducing hypoxia and inflammation during invasive pulmonary aspergillosis by targeting the Interleukin-1 receptor

    PubMed Central

    Gresnigt, Mark S.; Rekiki, Abdessalem; Rasid, Orhan; Savers, Amélie; Jouvion, Grégory; Dannaoui, Eric; Parlato, Marianna; Fitting, Catherine; Brock, Matthias; Cavaillon, Jean-Marc; van de Veerdonk, Frank L.; Ibrahim-Granet, Oumaïma

    2016-01-01

    Hypoxia as a result of pulmonary tissue damage due to unresolved inflammation during invasive pulmonary aspergillosis (IPA) is associated with a poor outcome. Aspergillus fumigatus can exploit the hypoxic microenvironment in the lung, but the inflammatory response required for fungal clearance can become severely disregulated as a result of hypoxia. Since severe inflammation can be detrimental to the host, we investigated whether targeting the interleukin IL-1 pathway could reduce inflammation and tissue hypoxia, improving the outcome of IPA. The interplay between hypoxia and inflammation was investigated by in vivo imaging of hypoxia and measurement of cytokines in the lungs in a model of corticosteroid immunocompromised and in Cxcr2 deficient mice. Severe hypoxia was observed following Aspergillus infection in both models and correlated with development of pulmonary inflammation and expression of hypoxia specific transcripts. Treatment with IL-1 receptor antagonist reduced hypoxia and slightly, but significantly reduced mortality in immunosuppressed mice, but was unable to reduce hypoxia in Cxcr2−/− mice. Our data provides evidence that the inflammatory response during invasive pulmonary aspergillosis, and in particular the IL-1 axis, drives the development of hypoxia. Targeting the inflammatory IL-1 response could be used as a potential immunomodulatory therapy to improve the outcome of aspergillosis. PMID:27215684

  12. Reducing hypoxia and inflammation during invasive pulmonary aspergillosis by targeting the Interleukin-1 receptor.

    PubMed

    Gresnigt, Mark S; Rekiki, Abdessalem; Rasid, Orhan; Savers, Amélie; Jouvion, Grégory; Dannaoui, Eric; Parlato, Marianna; Fitting, Catherine; Brock, Matthias; Cavaillon, Jean-Marc; van de Veerdonk, Frank L; Ibrahim-Granet, Oumaïma

    2016-01-01

    Hypoxia as a result of pulmonary tissue damage due to unresolved inflammation during invasive pulmonary aspergillosis (IPA) is associated with a poor outcome. Aspergillus fumigatus can exploit the hypoxic microenvironment in the lung, but the inflammatory response required for fungal clearance can become severely disregulated as a result of hypoxia. Since severe inflammation can be detrimental to the host, we investigated whether targeting the interleukin IL-1 pathway could reduce inflammation and tissue hypoxia, improving the outcome of IPA. The interplay between hypoxia and inflammation was investigated by in vivo imaging of hypoxia and measurement of cytokines in the lungs in a model of corticosteroid immunocompromised and in Cxcr2 deficient mice. Severe hypoxia was observed following Aspergillus infection in both models and correlated with development of pulmonary inflammation and expression of hypoxia specific transcripts. Treatment with IL-1 receptor antagonist reduced hypoxia and slightly, but significantly reduced mortality in immunosuppressed mice, but was unable to reduce hypoxia in Cxcr2(-/-) mice. Our data provides evidence that the inflammatory response during invasive pulmonary aspergillosis, and in particular the IL-1 axis, drives the development of hypoxia. Targeting the inflammatory IL-1 response could be used as a potential immunomodulatory therapy to improve the outcome of aspergillosis. PMID:27215684

  13. Tiotropium inhibits pulmonary inflammation and remodelling in a guinea pig model of COPD.

    PubMed

    Pera, T; Zuidhof, A; Valadas, J; Smit, M; Schoemaker, R G; Gosens, R; Maarsingh, H; Zaagsma, J; Meurs, H

    2011-10-01

    Airway remodelling and emphysema are major structural abnormalities in chronic obstructive pulmonary disease (COPD). In addition, pulmonary vascular remodelling may occur and contribute to pulmonary hypertension, a comorbidity of COPD. Increased cholinergic activity in COPD contributes to airflow limitation and, possibly, to inflammation and airway remodelling. This study aimed to investigate the role of acetylcholine in pulmonary inflammation and remodelling using an animal model of COPD. To this aim, guinea pigs were instilled intranasally with lipopolysaccharide (LPS) twice weekly for 12 weeks and were treated, by inhalation, with the long-acting muscarinic receptor antagonist tiotropium. Repeated LPS exposure induced airway and parenchymal neutrophilia, and increased goblet cell numbers, lung hydroxyproline content, airway wall collagen and airspace size. Furthermore, LPS increased the number of muscularised microvessels in the adventitia of cartilaginous airways. Tiotropium abrogated the LPS-induced increase in neutrophils, goblet cells, collagen deposition and muscularised microvessels, but had no effect on emphysema. In conclusion, tiotropium inhibits remodelling of the airways as well as pulmonary inflammation in a guinea pig model of COPD, suggesting that endogenous acetylcholine plays a major role in the pathogenesis of this disease. PMID:21349917

  14. Global analysis of gene expression in pulmonary fibrosis reveals distinct programs regulating lung inflammation and fibrosis

    NASA Astrophysics Data System (ADS)

    Kaminski, Naftali; Allard, John D.; Pittet, Jean F.; Zuo, Fengrong; Griffiths, Mark J. D.; Morris, David; Huang, Xiaozhu; Sheppard, Dean; Heller, Renu A.

    2000-02-01

    The molecular mechanisms of pulmonary fibrosis are poorly understood. We have used oligonucleotide arrays to analyze the gene expression programs that underlie pulmonary fibrosis in response to bleomycin, a drug that causes lung inflammation and fibrosis, in two strains of susceptible mice (129 and C57BL/6). We then compared the gene expression patterns in these mice with 129 mice carrying a null mutation in the epithelial-restricted integrin 6 subunit (6/-), which develop inflammation but are protected from pulmonary fibrosis. Cluster analysis identified two distinct groups of genes involved in the inflammatory and fibrotic responses. Analysis of gene expression at multiple time points after bleomycin administration revealed sequential induction of subsets of genes that characterize each response. The availability of this comprehensive data set should accelerate the development of more effective strategies for intervention at the various stages in the development of fibrotic diseases of the lungs and other organs.

  15. The role of inflammation in hypoxic pulmonary hypertension: from cellular mechanisms to clinical phenotypes

    PubMed Central

    Poth, Jens M.; Fini, Mehdi A.; Olschewski, Andrea; El Kasmi, Karim C.; Stenmark, Kurt R.

    2014-01-01

    Hypoxic pulmonary hypertension (PH) comprises a heterogeneous group of diseases sharing the common feature of chronic hypoxia-induced pulmonary vascular remodeling. The disease is usually characterized by mild to moderate pulmonary vascular remodeling that is largely thought to be reversible compared with the progressive irreversible disease seen in World Health Organization (WHO) group I disease. However, in these patients, the presence of PH significantly worsens morbidity and mortality. In addition, a small subset of patients with hypoxic PH develop “out-of-proportion” severe pulmonary hypertension characterized by pulmonary vascular remodeling that is irreversible and similar to that in WHO group I disease. In all cases of hypoxia-related vascular remodeling and PH, inflammation, particularly persistent inflammation, is thought to play a role. This review focuses on the effects of hypoxia on pulmonary vascular cells and the signaling pathways involved in the initiation and perpetuation of vascular inflammation, especially as they relate to vascular remodeling and transition to chronic irreversible PH. We hypothesize that the combination of hypoxia and local tissue factors/cytokines (“second hit”) antagonizes tissue homeostatic cellular interactions between mesenchymal cells (fibroblasts and/or smooth muscle cells) and macrophages and arrests these cells in an epigenetically locked and permanently activated proremodeling and proinflammatory phenotype. This aberrant cellular cross-talk between mesenchymal cells and macrophages promotes transition to chronic nonresolving inflammation and vascular remodeling, perpetuating PH. A better understanding of these signaling pathways may lead to the development of specific therapeutic targets, as none are currently available for WHO group III disease. PMID:25416383

  16. Fas-activated serine/threonine phosphoprotein promotes immune-mediated pulmonary inflammation

    PubMed Central

    Simarro, Maria; Giannattasio, Giorgio; De la Fuente, Miguel A; Benarafa, Charaf; Subramanian, Kulandayan K.; Ishizawar, Rumey; Balestrieri, Barbara; Andersson, Emma M; Luo, Hongbo R.; Orduña, Antonio; Boyce, Joshua; Anderson, Paul

    2010-01-01

    We have generated Fas activated serine threonine phosphoprotein-deficient mice (FAST−/−) to study the in vivo role of FAST in immune system function. In a model of house dust mite (HDM)-induced allergic pulmonary inflammation, wild type mice develop a mixed cellular infiltrate composed of eosinophils, lymphocytes and neutrophils. FAST−/− mice develop airway inflammation that is distinguished by the near absence of neutrophils. Similarly, LPS-induced alveolar neutrophil recruitment is markedly reduced in FAST−/− mice compared to wild type controls. This is accompanied by reduced concentrations of cytokines (TNF-α, IL-6 and IL-23) and chemoattractants (MIP-2 and KC) in bronchoalveolar lavage fluids. As FAST−/− neutrophils exhibit normal chemotaxis and survival, impaired neutrophil recruitment is likely to be due to reduced production of chemoattractants within the pulmonary parenchyma. Studies using bone marrow chimeras implicate lung resident hematopoietic cells (e.g. pulmonary dendritic cells and/or alveolar macrophages) in this process. In conclusion, our results introduce FAST as a pro-inflammatory factor that modulates the function of lung resident hematopoietic cells to promote neutrophil recruitment and pulmonary inflammation. PMID:20363972

  17. Lung Neutrophilia in Myeloperoxidase Deficient Mice during the Course of Acute Pulmonary Inflammation.

    PubMed

    Kremserova, Silvie; Perecko, Tomas; Soucek, Karel; Klinke, Anna; Baldus, Stephan; Eiserich, Jason P; Kubala, Lukas

    2016-01-01

    Systemic inflammation accompanying diseases such as sepsis affects primarily lungs and induces their failure. This remains the most common cause of sepsis induced mortality. While neutrophils play a key role in pulmonary failure, the mechanisms remain incompletely characterized. We report that myeloperoxidase (MPO), abundant enzyme in neutrophil granules, modulates the course of acute pulmonary inflammatory responses induced by intranasal application of lipopolysaccharide. MPO deficient mice had significantly increased numbers of airway infiltrated neutrophils compared to wild-type mice during the whole course of lung inflammation. This was accompanied by higher levels of RANTES in bronchoalveolar lavage fluid from the MPO deficient mice. Other markers of lung injury and inflammation, which contribute to recruitment of neutrophils into the inflamed lungs, including total protein and other selected proinflammatory cytokines did not significantly differ in bronchoalveolar lavage fluid from the wild-type and the MPO deficient mice. Interestingly, MPO deficient neutrophils revealed a decreased rate of cell death characterized by phosphatidylserine surface expression. Collectively, the importance of MPO in regulation of pulmonary inflammation, independent of its putative microbicidal functions, can be potentially linked to MPO ability to modulate the life span of neutrophils and to affect accumulation of chemotactic factors at the inflammatory site. PMID:26998194

  18. Lung Neutrophilia in Myeloperoxidase Deficient Mice during the Course of Acute Pulmonary Inflammation

    PubMed Central

    Kremserova, Silvie; Perecko, Tomas; Soucek, Karel; Klinke, Anna; Baldus, Stephan; Eiserich, Jason P.; Kubala, Lukas

    2016-01-01

    Systemic inflammation accompanying diseases such as sepsis affects primarily lungs and induces their failure. This remains the most common cause of sepsis induced mortality. While neutrophils play a key role in pulmonary failure, the mechanisms remain incompletely characterized. We report that myeloperoxidase (MPO), abundant enzyme in neutrophil granules, modulates the course of acute pulmonary inflammatory responses induced by intranasal application of lipopolysaccharide. MPO deficient mice had significantly increased numbers of airway infiltrated neutrophils compared to wild-type mice during the whole course of lung inflammation. This was accompanied by higher levels of RANTES in bronchoalveolar lavage fluid from the MPO deficient mice. Other markers of lung injury and inflammation, which contribute to recruitment of neutrophils into the inflamed lungs, including total protein and other selected proinflammatory cytokines did not significantly differ in bronchoalveolar lavage fluid from the wild-type and the MPO deficient mice. Interestingly, MPO deficient neutrophils revealed a decreased rate of cell death characterized by phosphatidylserine surface expression. Collectively, the importance of MPO in regulation of pulmonary inflammation, independent of its putative microbicidal functions, can be potentially linked to MPO ability to modulate the life span of neutrophils and to affect accumulation of chemotactic factors at the inflammatory site. PMID:26998194

  19. Hyaluronan fragments as mediators of inflammation in allergic pulmonary disease.

    PubMed

    Ghosh, Sumit; Hoselton, Scott A; Dorsam, Glenn P; Schuh, Jane M

    2015-05-01

    Asthma is frequently caused and/or exacerbated by sensitization to allergens, which are ubiquitous in many indoor and outdoor environments. Severe asthma is characterized by airway hyperresponsiveness and bronchial constriction in response to an inhaled allergen, leading to a disease course that is often very difficult to treat with standard asthma therapies. As a result of interactions among inflammatory cells, structural cells, and the intercellular matrix of the allergic lung, patients with sensitization to allergens may experience a greater degree of tissue injury followed by airway wall remodeling and progressive, accumulated pulmonary dysfunction as part of the disease sequela. In addition, turnover of extracellular matrix (ECM) components is a hallmark of tissue injury and repair. This review focuses on the role of the glycosaminoglycan hyaluronan (HA), a component of the ECM, in pulmonary injury and repair with an emphasis on allergic asthma. Both the synthesis and degradation of the ECM are critical contributors to tissue repair and remodeling. Fragmented HA accumulates during tissue injury and functions in ways distinct from the larger native polymer. There is gathering evidence that HA degradation products are active participants in stimulating the expression of inflammatory genes in a variety of immune cells at the injury site. In this review, we will consider recent advances in the understanding of the mechanisms that are associated with HA accumulation and inflammatory cell recruitment in the asthmatic lung. PMID:25582403

  20. Hyaluronan fragments as mediators of inflammation in allergic pulmonary disease

    PubMed Central

    Ghosh, Sumit; Hoselton, Scott A.; Dorsam, Glenn P.; Schuh, Jane M.

    2015-01-01

    Asthma is frequently caused and/or exacerbated by sensitization to allergens, which are ubiquitous in many indoor and outdoor environments. Severe asthma is characterized by airway hyperresponsiveness and bronchial constriction in response to an inhaled allergen, leading to a disease course that is often very difficult to treat with standard asthma therapies. As a result of interactions among inflammatory cells, structural cells, and the intercellular matrix of the allergic lung, patients with sensitization to allergens may experience a greater degree of tissue injury followed by airway wall remodeling and progressive, accumulated pulmonary dysfunction as part of the disease sequela. In addition, turnover of extracellular matrix (ECM) components is a hallmark of tissue injury and repair. This review focuses on the role of the glycosaminoglycan hyaluronan (HA), a component of the ECM, in pulmonary injury and repair with an emphasis on allergic asthma. Both the synthesis and degradation of the ECM are critical contributors to tissue repair and remodeling. Fragmented HA accumulates during tissue injury and functions in ways distinct from the larger native polymer. There is gathering evidence that HA degradation products are active participants in stimulating the expression of inflammatory genes in a variety of immune cells at the injury site. In this review, we will consider recent advances in the understanding of the mechanisms that are associated with HA accumulation and inflammatory cell recruitment in the asthmatic lung. PMID:25582403

  1. Hepatic versus pulmonary uptake of particles injected into the portal circulation in sheep. Endotoxin escapes hepatic clearance causing pulmonary inflammation.

    PubMed

    DeCamp, M M; Warner, A E; Molina, R M; Brain, J D

    1992-07-01

    Removal of circulating particulates (bacteria, cell debris, endotoxin) is accomplished in most species by macrophages resident in the liver and spleen. We have shown that sheep and other species have phagocytic macrophages resident in their pulmonary capillaries. Moreover, these pulmonary intravascular macrophages accomplish the bulk of uptake of injected tracer particles, bacteria, or endotoxin (LPS). Because bacteria or LPS of intestinal origin enter the portal circulation, they would first encounter hepatic mononuclear phagocytes. We sought to determine the extent to which particulates injected into the portal circulation of sheep would be taken up by liver or by lung macrophages. Sheep (four per group) were injected via a mesenteric vein with radiolabeled gold colloid, magnetic iron oxide particles, live Pseudomonas aeruginosa, or 125I E. coli endotoxin. For each, the uptake pattern was determined 1 h after injection. Lung and liver were also fixed to determine the cells responsible for uptake and subsequent inflammatory changes. We found that for circulating gold colloid, iron oxide particles, or bacteria, hepatic uptake predominated, and Kupffer cells were responsible. After hepatic uptake of bacteria, inflammatory changes were confined to the liver. In contrast, nearly 50% of endotoxin escaped hepatic clearance and was subsequently removed by the lungs. We then saw inflammatory changes in both lungs and liver. Thus, hepatic macrophages are active in species with pulmonary intravascular macrophages, partially sparing the lungs from uptake and acute inflammation. Endotoxin, however, may elude hepatic uptake, be sequestered in the lungs, and initiate inflammation there. PMID:1320819

  2. The long-acting β2-adrenoceptor agonist olodaterol attenuates pulmonary inflammation

    PubMed Central

    Wex, Eva; Kollak, Ines; Duechs, Matthias J; Naline, Emmanuel; Wollin, Lutz; Devillier, Philippe

    2015-01-01

    Background and Purpose β2-adrenoceptor agonists are widely used in the management of obstructive airway diseases. Besides their bronchodilatory effect, several studies suggest inhibitory effects on various aspects of inflammation. The aim of our study was to determine the efficacy of the long-acting β2-adrenoceptor agonist olodaterol to inhibit pulmonary inflammation and to elucidate mechanism(s) underlying its anti-inflammatory actions. Experimental Approach Olodaterol was tested in murine and guinea pig models of cigarette smoke- and LPS-induced lung inflammation. Furthermore, effects of olodaterol on the LPS-induced pro-inflammatory mediator release from human parenchymal explants, CD11b adhesion molecule expression on human granulocytes TNF-α release from human whole blood and on the IL-8-induced migration of human peripheral blood neutrophils were investigated. Key Results Olodaterol dose-dependently attenuated cell influx and pro-inflammatory mediator release in murine and guinea pig models of pulmonary inflammation. These anti-inflammatory effects were observed at doses relevant to their bronchodilatory efficacy. Mechanistically, olodaterol attenuated pro-inflammatory mediator release from human parenchymal explants and whole blood and reduced expression of CD11b adhesion molecules on granulocytes, but without direct effects on IL-8-induced neutrophil transwell migration. Conclusions and Implications This is the first evidence for the anti-inflammatory efficacy of a β2-adrenoceptor agonist in models of lung inflammation induced by cigarette smoke. The long-acting β2-adrenoceptor agonist olodaterol attenuated pulmonary inflammation through mechanisms that are separate from direct inhibition of bronchoconstriction. Furthermore, the in vivo data suggest that the anti-inflammatory properties of olodaterol are maintained after repeated dosing for 4 days. PMID:25824824

  3. Vanadium pentoxide induces pulmonary inflammation and tumor promotion in a strain-dependent manner

    PubMed Central

    2010-01-01

    Background Elevated levels of air pollution are associated with increased risk of lung cancer. Particulate matter (PM) contains transition metals that may potentiate neoplastic development through the induction of oxidative stress and inflammation, a lung cancer risk factor. Vanadium pentoxide (V2O5) is a component of PM derived from fuel combustion as well as a source of occupational exposure in humans. In the current investigation we examined the influence of genetic background on susceptibility to V2O5-induced inflammation and evaluated whether V2O5 functions as a tumor promoter using a 2-stage (initiation-promotion) model of pulmonary neoplasia in mice. Results A/J, BALB/cJ (BALB), and C57BL/6J (B6) mice were treated either with the initiator 3-methylcholanthrene (MCA; 10 μg/g; i.p.) or corn oil followed by 5 weekly aspirations of V2O5 or PBS and pulmonary tumors were enumerated 20 weeks following MCA treatment. Susceptibility to V2O5-induced pulmonary inflammation was assessed in bronchoalveolar lavage fluid (BALF), and chemokines, transcription factor activity, and MAPK signaling were quantified in lung homogenates. We found that treatment of animals with MCA followed by V2O5 promoted lung tumors in both A/J (10.3 ± 0.9 tumors/mouse) and BALB (2.2 ± 0.36) mice significantly above that observed with MCA/PBS or V2O5 alone (P < 0.05). No tumors were observed in the B6 mice in any of the experimental groups. Mice sensitive to tumor promotion by V2O5 were also found to be more susceptible to V2O5-induced pulmonary inflammation and hyperpermeability (A/J>BALB>B6). Differential strain responses in inflammation were positively associated with elevated levels of the chemokines KC and MCP-1, higher NFκB and c-Fos binding activity, as well as sustained ERK1/2 activation in lung tissue. Conclusions In this study we demonstrate that V2O5, an occupational and environmentally relevant metal oxide, functions as an in vivo lung tumor promoter among different inbred

  4. Impact of interleukin-6 on hypoxia-induced pulmonary hypertension and lung inflammation in mice

    PubMed Central

    Savale, Laurent; Tu, Ly; Rideau, Dominique; Izziki, Mohamed; Maitre, Bernard; Adnot, Serge; Eddahibi, Saadia

    2009-01-01

    Background Inflammation may contribute to the pathogenesis of various forms of pulmonary hypertension (PH). Recent studies in patients with idiopathic PH or PH associated with underlying diseases suggest a role for interleukin-6 (IL-6). Methods To determine whether endogenous IL-6 contributes to mediate hypoxic PH and lung inflammation, we studied IL-6-deficient (IL-6-/-) and wild-type (IL-6+/+) mice exposed to hypoxia for 2 weeks. Results Right ventricular systolic pressure, right ventricle hypertrophy, and the number and media thickness of muscular pulmonary vessels were decreased in IL-6-/- mice compared to wild-type controls after 2 weeks' hypoxia, although the pressure response to acute hypoxia was similar in IL-6+/+ and IL-6-/- mice. Hypoxia exposure of IL-6+/+ mice led to marked increases in IL-6 mRNA and protein levels within the first week, with positive IL-6 immunostaining in the pulmonary vessel walls. Lung IL-6 receptor and gp 130 (the IL-6 signal transducer) mRNA levels increased after 1 and 2 weeks' hypoxia. In vitro studies of cultured human pulmonary-artery smooth-muscle-cells (PA-SMCs) and microvascular endothelial cells revealed prominent synthesis of IL-6 by PA-SMCs, with further stimulation by hypoxia. IL-6 also markedly stimulated PA-SMC migration without affecting proliferation. Hypoxic IL-6-/- mice showed less inflammatory cell recruitment in the lungs, compared to hypoxic wild-type mice, as assessed by lung protein levels and immunostaining for the specific macrophage marker F4/80, with no difference in lung expression of adhesion molecules or cytokines. Conclusion These data suggest that IL-6 may be actively involved in hypoxia-induced lung inflammation and pulmonary vascular remodeling in mice. PMID:19173740

  5. Impaired respiratory function and heightened pulmonary inflammation in episodic binge ethanol intoxication and burn injury.

    PubMed

    Shults, Jill A; Curtis, Brenda J; Chen, Michael M; O'Halloran, Eileen B; Ramirez, Luis; Kovacs, Elizabeth J

    2015-11-01

    Clinical data indicate that cutaneous burn injuries covering greater than 10% of the total body surface area are associated with significant morbidity and mortality, in which pulmonary complications, including acute respiratory distress syndrome (ARDS), contribute to nearly half of all patient deaths. Approximately 50% of burn patients are intoxicated at the time of hospital admission, which increases days on ventilators by 3-fold, and doubles the length of hospitalization, compared to non-intoxicated burn patients. The most common drinking pattern in the United States is binge drinking, where an individual rapidly consumes alcoholic beverages (4 for women, 5 for men) in 2 h. An estimated 38 million Americans binge drink, often several times per month. Experimental data demonstrate that a single binge-ethanol exposure, prior to scald injury, impairs innate and adaptive immune responses, thereby enhancing infection susceptibility and amplifying pulmonary inflammation, neutrophil infiltration, and edema, and is associated with increased mortality. Since these characteristics are similar to those observed in ARDS burn patients, our study objective was to determine whether ethanol intoxication and burn injury and the subsequent pulmonary congestion affect physiological parameters of lung function, using non-invasive and unrestrained plethysmography in a murine model system. Furthermore, to mirror young adult binge-drinking patterns, and to determine the effect of multiple ethanol exposures on pulmonary inflammation, we utilized an episodic binge-ethanol exposure regimen, where mice were exposed to ethanol for a total of 6 days (3 days ethanol, 4 days rest, 3 days ethanol) prior to burn injury. Our analyses demonstrate mice exposed to episodic binge ethanol and burn injury have higher mortality, increased pulmonary congestion and neutrophil infiltration, elevated neutrophil chemoattractants, and respiratory dysfunction, compared to burn or ethanol intoxication alone

  6. Pulmonary and pleural inflammation after intratracheal instillation of short single-walled and multi-walled carbon nanotubes.

    PubMed

    Fujita, Katsuhide; Fukuda, Makiko; Endoh, Shigehisa; Maru, Junko; Kato, Haruhisa; Nakamura, Ayako; Shinohara, Naohide; Uchino, Kanako; Honda, Kazumasa

    2016-08-22

    Relationships between the physical properties of carbon nanotubes (CNTs) and their toxicities have been studied. However, little research has been conducted to investigate the pulmonary and pleural inflammation caused by short-fiber single-walled CNTs (SWCNTs) and multi-walled CNTs (MWCNTs). This study was performed to characterize differences in rat pulmonary and pleural inflammation caused by intratracheal instillation with doses of 0.15 or 1.5mg/kg of either short-sized SWCNTs or MWCNTs. Data from bronchoalveolar lavage fluid analysis, histopathological findings, and transcriptional profiling of rat lungs obtained over a 90-day period indicated that short SWCNTs caused persistent pulmonary inflammation. In addition, the short MWCNTs markedly impacted alveoli immediately after instillation, with the levels of pulmonary inflammation following MWCNT instillation being reduced in a time-dependent manner. MWCNT instillation induced greater levels of pleural inflammation than did short SWCNTs. SWCNTs and MWCNTs translocated in mediastinal lymph nodes were observed, suggesting that SWCNTs and MWCNTs underwent lymphatic drainage to the mediastinal lymph nodes after pleural penetration. Our results suggest that short SWCNTs and MWCNTs induced pulmonary and pleural inflammation and that they might be transported throughout the body after intratracheal instillation. The extent of changes in inflammation differed following SWCNT and MWCNT instillation in a time-dependent manner. PMID:27259835

  7. Systemic inflammation, depression and obstructive pulmonary function: a population-based study

    PubMed Central

    2013-01-01

    Background Levels of Interleukin-6 (IL-6) and C-creative protein (CRP) indicating systemic inflammation are known to be elevated in chronic diseases including chronic obstructive pulmonary disease (COPD) and depression. Comorbid depression is common in patients with COPD, but no studies have investigated whether proinflammatory cytokines mediate the association between pulmonary function and depressive symptoms in healthy individuals with no known history of obstructive pulmonary diseases. Methods In a population-based sample (n = 2077) of individuals aged 55 and above with no known history of obstructive pulmonary disease in the Singapore Longitudinal Ageing Study (SLAS), we analyzed the relationships between IL-6 and CRP, depressive symptoms (GDS-15 ≥5) and obstructive pulmonary function (FEV1% predicted and FEV1/FVC% predicted). Results High serum levels of IL-6 and CRP were associated with greater prevalence of depressive symptoms (p < 0.05). High IL-6, high CRP and depressive symptoms were independently associated with decreased FEV1% predicted and FEV1/FVC% predicted after adjusting for smoking status, BMI and number of chronic inflammatory diseases. Increasing grades of combination of inflammatory markers and/or depressive symptoms was associated with progressive increases in pulmonary obstruction. In hierarchical models, the significant association of depressive symptoms with pulmonary obstruction was reduced by the presence of IL-6 and CRP. Conclusions This study found for the first time an association of depressive symptoms and pulmonary function in older adults which appeared to be partly mediated by proinflammatory cytokines. Further studies should be conducted to investigate proinflammatory immune markers and depressive symptoms as potential phenotypic indicators for chronic obstructive airway disorders in older adults. PMID:23676005

  8. Non-invasive biomarkers of pulmonary damage and inflammation: Application to children exposed to ozone and trichloramine

    SciTech Connect

    Bernard, Alfred . E-mail: bernard@toxi.ucl.ac.be; Carbonnelle, Sylviane; Nickmilder, Marc; Burbure, Claire de

    2005-08-07

    To date, airways injury or inflammation caused by air pollutants has been evaluated mainly by analysis of bronchoalveolar lavage, an invasive technique totally unsuitable to children. The assessment of respiratory risks in this particularly vulnerable population has thus for a long time relied on spirometric tests and self-reported symptoms which are relatively late and inaccurate indicators of lung damage. Research in the field of biomarkers is now opening new perspectives with the development of non-invasive tests allowing to monitor inflammation and damage in the deep lung. Blood tests measuring lung-specific proteins (pneumoproteins) such as Clara cell protein (CC16) and surfactant-associated proteins (A, B or D) are now available to evaluate the permeability and/or the cellular integrity of the pulmonary epithelium. The application of these tests to children has recently led to the discovery of a lung epithelium hyperpermeability caused by trichloramine (nitrogen trichloride), an irritant gas contaminating the air of indoor-chlorinated pools. Serum CC16 can also serve to detect increases of airway permeability during short-term exposures to ambient ozone. Indicators measurable in exhaled air such as nitric oxide (NO) appear more useful to detect airway inflammation. By applying the exhaled NO test to children attending summer camps, we recently found that ambient ozone produces an acute inflammatory response in children from levels slightly lower than current air quality guidelines. In a study exploring the links between atopy, asthma, and exposure to chlorination products in indoor pools, we also found that the exhaled NO test can serve to detect the chronic airway inflammation associated with excessive exposure to trichloramine. Lung-specific proteins measurable in serum and markers in exhaled air represent sensitive tools that can be used to assess non-invasively the effects of air pollutants on the respiratory tract of children.

  9. Non-invasive biomarkers of pulmonary damage and inflammation: Application to children exposed to ozone and trichloramine.

    PubMed

    Bernard, Alfred; Carbonnelle, Sylviane; Nickmilder, Marc; de Burbure, Claire

    2005-08-01

    To date, airways injury or inflammation caused by air pollutants has been evaluated mainly by analysis of bronchoalveolar lavage, an invasive technique totally unsuitable to children. The assessment of respiratory risks in this particularly vulnerable population has thus for a long time relied on spirometric tests and self-reported symptoms which are relatively late and inaccurate indicators of lung damage. Research in the field of biomarkers is now opening new perspectives with the development of non-invasive tests allowing to monitor inflammation and damage in the deep lung. Blood tests measuring lung-specific proteins (pneumoproteins) such as Clara cell protein (CC16) and surfactant-associated proteins (A, B or D) are now available to evaluate the permeability and/or the cellular integrity of the pulmonary epithelium. The application of these tests to children has recently led to the discovery of a lung epithelium hyperpermeability caused by trichloramine (nitrogen trichloride), an irritant gas contaminating the air of indoor-chlorinated pools. Serum CC16 can also serve to detect increases of airway permeability during short-term exposures to ambient ozone. Indicators measurable in exhaled air such as nitric oxide (NO) appear more useful to detect airway inflammation. By applying the exhaled NO test to children attending summer camps, we recently found that ambient ozone produces an acute inflammatory response in children from levels slightly lower than current air quality guidelines. In a study exploring the links between atopy, asthma, and exposure to chlorination products in indoor pools, we also found that the exhaled NO test can serve to detect the chronic airway inflammation associated with excessive exposure to trichloramine. Lung-specific proteins measurable in serum and markers in exhaled air represent sensitive tools that can be used to assess non-invasively the effects of air pollutants on the respiratory tract of children. PMID:15967207

  10. Combined radiation and burn injury results in exaggerated early pulmonary inflammation

    PubMed Central

    Palmer, Jessica L.; Deburghgraeve, Cory R.; Bird, Melanie D.; Hauer-Jensen, Martin; Chen, Michael M.; Yong, Sherri; Kovacs, Elizabeth J.

    2014-01-01

    Events such as a nuclear meltdown accident or nuclear attack have potential for severe radiation injuries. Radiation injury frequently occurs in combination with other forms of trauma, most often burns. Thus far, combined injury studies have focused mainly on skin wound healing and damage to the gut. Since both radiation exposure and remote burn have pulmonary consequences, we examined the early effects of combined injury on the lung. C57BL/6 male mice were subjected to 5 Gy of total body irradiation followed by a 15% total body surface area scald burn. Lungs from surviving animals were examined for evidence of inflammation and pneumonitis. At 48 hours post-injury, pathology of the lungs from combined injury mice showed greater inflammation compared to all other treatment groups, with marked red blood cell and leukocyte congestion of the pulmonary vasculature. There was excessive leukocyte accumulation, primarily neutrophils, in the vasculature and interstitium, with occasional cells in the alveolar space. At 24 and 48 hours post-injury, myeloperoxidase levels in lungs of mice given combined injury were elevated compared to all other treatment groups (p<0.01), confirming histological evidence of neutrophil accumulation. Pulmonary levels of the neutrophil chemoattractant KC (CXCL1) were 3 times above that of either injury alone (p<0.05). Further, monocyte chemotactic protein-1 (MCP-1, CCL2) was increased 2-fold and 3-fold compared to burn injury or radiation injury, respectively (p<0.05). Together, these data suggest that combined radiation and burn injury augments early pulmonary congestion and inflammation.. Currently, countermeasures for this unique type of injury are extremely limited. Further research is needed to elucidate the mechanisms behind the synergistic effects of combined injury in order to develop appropriate treatments. PMID:23899376

  11. Neutrophilic oxidative stress mediates organic dust-induced pulmonary inflammation and airway hyperresponsiveness.

    PubMed

    McGovern, Toby K; Chen, Michael; Allard, Benoit; Larsson, Kjell; Martin, James G; Adner, Mikael

    2016-01-15

    Airway exposure to organic dust (OD) from swine confinement facilities induces airway inflammation dominated by neutrophils and airway hyperresponsiveness (AHR). One important neutrophilic innate defense mechanism is the induction of oxidative stress. Therefore, we hypothesized that neutrophils exacerbate airway dysfunction following OD exposure by increasing oxidant burden. BALB/C mice were given intranasal challenges with OD or PBS (1/day for 3 days). Mice were untreated or treated with a neutrophil-depleting antibody, anti-Ly6G, or the antioxidant dimethylthiourea (DMTU) prior to OD exposure. Twenty-four hours after the final exposure, we measured airway responsiveness in response to methacholine (MCh) and collected bronchoalveolar lavage fluid to assess pulmonary inflammation and total antioxidant capacity. Lung tissue was harvested to examine the effect of OD-induced antioxidant gene expression and the effect of anti-Ly6G or DMTU. OD exposure induced a dose-dependent increase of airway responsiveness, a neutrophilic pulmonary inflammation, and secretion of keratinocyte cytokine. Depletion of neutrophils reduced OD-induced AHR. DMTU prevented pulmonary inflammation involving macrophages and neutrophils. Neutrophil depletion and DMTU were highly effective in preventing OD-induced AHR affecting large, conducting airways and tissue elastance. OD induced an increase in total antioxidant capacity and mRNA levels of NRF-2-dependent antioxidant genes, effects that are prevented by administration of DMTU and neutrophil depletion. We conclude that an increase in oxidative stress and neutrophilia is critical in the induction of OD-induced AHR. Prevention of oxidative stress diminishes neutrophil influx and AHR, suggesting that mechanisms driving OD-induced AHR may be dependent on neutrophil-mediated oxidant pathways. PMID:26545900

  12. Lung inflammation does not affect the clearance kinetics of lipid nanocapsules following pulmonary administration.

    PubMed

    Patel, Aateka; Woods, A; Riffo-Vasquez, Yanira; Babin-Morgan, Anna; Jones, Marie-Christine; Jones, Stuart; Sunassee, Kavitha; Clark, Stephen; T M de Rosales, Rafael; Page, Clive; Spina, Domenico; Forbes, Ben; Dailey, Lea Ann

    2016-08-10

    Lipid nanocapsules (LNCs) are semi-rigid spherical capsules with a triglyceride core that present a promising formulation option for the pulmonary delivery of drugs with poor aqueous solubility. Whilst the biodistribution of LNCs of different size has been studied following intravenous administration, the fate of LNCs following pulmonary delivery has not been reported. We investigated quantitatively whether lung inflammation affects the clearance of 50nm lipid nanocapsules, or is exacerbated by their pulmonary administration. Studies were conducted in mice with lipopolysaccharide-induced lung inflammation compared to healthy controls. Particle deposition and nanocapsule clearance kinetics were measured by single photon emission computed tomography/computed tomography (SPECT/CT) imaging over 48 h. A significantly lower lung dose of (111)In-LNC50 was achieved in the lipopolysaccharide (LPS)-treated animals compared with healthy controls (p<0.001). When normalised to the delivered lung dose, the clearance kinetics of (111)In-LNC50 from the lungs fit a first order model with an elimination half-life of 10.5±0.9h (R(2)=0.995) and 10.6±0.3h (R(2)=1.000) for healthy and inflamed lungs respectively (n=3). In contrast, (111)In-diethylene triamine pentaacetic acid (DTPA), a small hydrophilic molecule, was cleared rapidly from the lungs with the majority of the dose absorbed within 20min of administration. Biodistribution to lungs, stomach-intestine, liver, trachea-throat and blood at the end of the imaging period was unaltered by lung inflammation. This study demonstrated that lung clearance and whole body distribution of lipid nanocapsules were unaffected by the presence of acute lung inflammation. PMID:27180635

  13. Pulmonary function testing: detection of invalid performance.

    PubMed

    Schuldheisz, S; Phillips, B A; Berry, D T

    1998-05-01

    We surveyed physician members of the American Thoracic Society and their technicians regarding indicators of the validity of PFTs. Surveys were returned by 50 physicians and 52 technicians. Both groups felt that consistency of effort and the shape/slope of the curve were important indicators, with behavioral observations rated slightly lower. Approximately 38% of physicians and 19% of technicians felt that they detected 75% or fewer of individuals giving inadequate effort during PFTs. Twenty percent of physicians and 29% of technicians were using quantitative criteria other than those recommended by the 1979 "Snowbird" technical paper to determine acceptability of PFTs. Twenty-eight percent of physicians and 31% of technicians spontaneously indicated that patients pursuing compensation or disability claims for pulmonary disorders were most likely to give suboptimal effort. Empirical research into the impact and detection of suboptimal effort on PFTs is encouraged. PMID:9613044

  14. Inhibition of chlorine-induced pulmonary inflammation and edema by mometasone and budesonide

    SciTech Connect

    Chen, Jing; Mo, Yiqun; Schlueter, Connie F.; Hoyle, Gary W.

    2013-10-15

    Chlorine gas is a widely used industrial compound that is highly toxic by inhalation and is considered a chemical threat agent. Inhalation of high levels of chlorine results in acute lung injury characterized by pneumonitis, pulmonary edema, and decrements in lung function. Because inflammatory processes can promote damage in the injured lung, anti-inflammatory therapy may be of potential benefit for treating chemical-induced acute lung injury. We previously developed a chlorine inhalation model in which mice develop epithelial injury, neutrophilic inflammation, pulmonary edema, and impaired pulmonary function. This model was used to evaluate nine corticosteroids for the ability to inhibit chlorine-induced neutrophilic inflammation. Two of the most potent corticosteroids in this assay, mometasone and budesonide, were investigated further. Mometasone or budesonide administered intraperitoneally 1 h after chlorine inhalation caused a dose-dependent inhibition of neutrophil influx in lung tissue sections and in the number of neutrophils in lung lavage fluid. Budesonide, but not mometasone, reduced the levels of the neutrophil attractant CXCL1 in lavage fluid 6 h after exposure. Mometasone or budesonide also significantly inhibited pulmonary edema assessed 1 day after chlorine exposure. Chlorine inhalation resulted in airway hyperreactivity to inhaled methacholine, but neither mometasone nor budesonide significantly affected this parameter. The results suggest that mometasone and budesonide may represent potential treatments for chemical-induced lung injury. - Highlights: • Chlorine causes lung injury when inhaled and is considered a chemical threat agent. • Corticosteroids may inhibit lung injury through their anti-inflammatory actions. • Corticosteroids inhibited chlorine-induced pneumonitis and pulmonary edema. • Mometasone and budesonide are potential rescue treatments for chlorine lung injury.

  15. Matrikines are key regulators in modulating the amplitude of lung inflammation in acute pulmonary infection

    PubMed Central

    Akthar, Samia; Patel, Dhiren F.; Beale, Rebecca C.; Peiró, Teresa; Xu, Xin; Gaggar, Amit; Jackson, Patricia L.; Blalock, J. Edwin; Lloyd, Clare M.; Snelgrove, Robert J.

    2015-01-01

    Bioactive matrix fragments (matrikines) have been identified in a myriad of disorders, but their impact on the evolution of airway inflammation has not been demonstrated. We recently described a pathway where the matrikine and neutrophil chemoattractant proline–glycine–proline (PGP) could be degraded by the enzyme leukotriene A4 hydrolase (LTA4H). LTA4H classically functions in the generation of pro-inflammatory leukotriene B4, thus LTA4H exhibits opposing pro- and anti-inflammatory activities. The physiological significance of this secondary anti-inflammatory activity remains unknown. Here we show, using readily resolving pulmonary inflammation models, that loss of this secondary activity leads to more pronounced and sustained inflammation and illness owing to PGP accumulation. PGP elicits an exacerbated neutrophilic inflammation and protease imbalance that further degrades the extracellular matrix, generating fragments that perpetuate inflammation. This highlights a critical role for the secondary anti-inflammatory activity of LTA4H and thus has consequences for the generation of global LTA4H inhibitors currently being developed. PMID:26400771

  16. Matrikines are key regulators in modulating the amplitude of lung inflammation in acute pulmonary infection.

    PubMed

    Akthar, Samia; Patel, Dhiren F; Beale, Rebecca C; Peiró, Teresa; Xu, Xin; Gaggar, Amit; Jackson, Patricia L; Blalock, J Edwin; Lloyd, Clare M; Snelgrove, Robert J

    2015-01-01

    Bioactive matrix fragments (matrikines) have been identified in a myriad of disorders, but their impact on the evolution of airway inflammation has not been demonstrated. We recently described a pathway where the matrikine and neutrophil chemoattractant proline-glycine-proline (PGP) could be degraded by the enzyme leukotriene A4 hydrolase (LTA4H). LTA4H classically functions in the generation of pro-inflammatory leukotriene B4, thus LTA4H exhibits opposing pro- and anti-inflammatory activities. The physiological significance of this secondary anti-inflammatory activity remains unknown. Here we show, using readily resolving pulmonary inflammation models, that loss of this secondary activity leads to more pronounced and sustained inflammation and illness owing to PGP accumulation. PGP elicits an exacerbated neutrophilic inflammation and protease imbalance that further degrades the extracellular matrix, generating fragments that perpetuate inflammation. This highlights a critical role for the secondary anti-inflammatory activity of LTA4H and thus has consequences for the generation of global LTA4H inhibitors currently being developed. PMID:26400771

  17. Impact of agglomeration state of nano- and submicron sized gold particles on pulmonary inflammation

    PubMed Central

    2010-01-01

    Background Nanoparticle (NP) toxicity testing comes with many challenges. Characterization of the test substance is of crucial importance and in the case of NPs, agglomeration/aggregation state in physiological media needs to be considered. In this study, we have addressed the effect of agglomerated versus single particle suspensions of nano- and submicron sized gold on the inflammatory response in the lung. Rats were exposed to a single dose of 1.6 mg/kg body weight (bw) of spherical gold particles with geometric diameters of 50 nm or 250 nm diluted either by ultrapure water or by adding phosphate buffered saline (PBS). A single dose of 1.6 mg/kg bw DQ12 quartz was used as a positive control for pulmonary inflammation. Extensive characterization of the particle suspensions has been performed by determining the zetapotential, pH, gold concentration and particle size distribution. Primary particle size and particle purity has been verified using transmission electron microscopy (TEM) techniques. Pulmonary inflammation (total cell number, differential cell count and pro-inflammatory cytokines), cell damage (total protein and albumin) and cytotoxicity (alkaline phosphatase and lactate dehydrogenase) were determined in bronchoalveolar lavage fluid (BALF) and acute systemic effects in blood (total cell number, differential cell counts, fibrinogen and C-reactive protein) 3 and 24 hours post exposure. Uptake of gold particles in alveolar macrophages has been determined by TEM. Results Particles diluted in ultrapure water are well dispersed, while agglomerates are formed when diluting in PBS. The particle size of the 50 nm particles was confirmed, while the 250 nm particles appear to be 200 nm using tracking analysis and 210 nm using TEM. No major differences in pulmonary and systemic toxicity markers were observed after instillation of agglomerated versus single gold particles of different sizes. Both agglomerated as well as single nanoparticles were taken up by

  18. Attenuation of pulmonary inflammation after exposure to blast overpressure by N-acetylcysteine amide.

    PubMed

    Chavko, Mikulas; Adeeb, Saleena; Ahlers, Stephen T; McCarron, Richard M

    2009-09-01

    Lung contusion is a common problem from blunt chest trauma caused by mechanical forces and by exposure to blast overpressure, often with fatal consequences. Lung contusion is also a risk factor for the development of pneumonia, severe clinical acute lung injury (ALI), and acute respiratory distress syndrome (ARDS). Infiltrating neutrophils are considered to be central mediators of lung injuries after blunt trauma. Recent studies have demonstrated that antioxidants reduced pulmonary inflammation in different models of lung damage. This study examined the effect of antioxidant N-acetylcysteine amide (NACA) on the progression of lung inflammation after exposure to a moderate level of blast overpressure (140 kPa). Rats were administered with NACA (i.p. 100 mg/kg) or placebo (PBS) 30, 60 min and 24 h after exposure. Nonblasted sham-injected animals served as controls. Neutrophil infiltration measured by myeloperoxidase (MPO) activity in the lung was significantly increased at 2 days after blast and returned to controls at 8 days. This increase corresponded with activation of integrin CD11b mRNA and lung inflammatory chemokine mRNA expression; macrophage inflammatory protein-1 (MIP-1), monocyte chemotactic peptide-1 (MCP-1), and cytokine-induced neutrophil chemoattractant-1 (CINC-1). At 8 days, all inflammatory mediators returned to control levels. In addition, expression of heme oxygenase-1 (HO-1) mRNA increased at 2 days after exposure. No changes were detected in the lung manganase superoxide dismutase (MnSOD) or glutathione reductase (GR) mRNA expression after blast. N-Acetylcysteine amide significantly reduced infiltration of neutrophils and CD11b mRNA activation in lungs, and completely blocked activation of MIP-1, MCP-1 and CINC-1 mRNA. The relatively higher inhibition of chemokine mRNAs compared with reduction in MPO activity and CD11b is in accordance with an antioxidant effect of NACA on reactive oxygen species (ROS) accumulation, rather than by an effect on

  19. Cell- and isoform-specific increases in arginase expression in acute silica-induced pulmonary inflammation.

    PubMed

    Poljakovic, Mirjana; Porter, Dale W; Millecchia, Lyndell; Kepka-Lenhart, Diane; Beighley, Christopher; Wolfarth, Michael G; Castranova, Vincent; Morris, Sidney M

    2007-01-15

    Arginase induction was reported in several inflammatory lung diseases, suggesting that this may be a common feature underlying the pathophysiology of such diseases. As little is known regarding arginase expression in silicosis, the induction and cellular localization of arginase were elucidated in lungs of Sprague-Dawley rats 24 h following exposure to varying doses of silica by intratracheal instillation. Arginase expression was evaluated by activity assay, quantification of arginase I and arginase II mRNA levels using real-time polymerase chain reaction (PCR), and immunohistochemistry. Analyses of cells and fluid obtained by bronchoalveolar lavage (BAL) showed that markers of pulmonary inflammation, tissue damage, activation of alveolar macrophages (AM) and NO production were significantly increased by all silica doses. Arginase activity was increased also in AMs isolated from BAL fluid of silica-treated rats. Silica produced two- and three-fold increases in arginase activity of whole lung at doses of 1 and 5 mg/100 g body weight, respectively. Levels of arginase I mRNA, but not of arginase II mRNA, were similarly elevated. In control lungs, arginase I immunoreactivity was observed only in AMs sparsely dispersed throughout the lung; no inducible nitric oxide synthase (iNOS) immunoreactivity was detected. In silica-treated lungs, arginase I and iNOS were co-expressed in most AMs that were abundantly clustered at inflammatory foci. The rapid induction of arginase I expression in inflammatory lung cells, similar to induction of arginase in other inflammatory lung diseases, implicates elevated arginase activity as a factor in the development of lung damage following exposure to silica. PMID:17365572

  20. Cell- and Isoform-specific Increases in Arginase Expression in Acute Silica-induced Pulmonary Inflammation

    PubMed Central

    Poljakovic, Mirjana; Porter, Dale W.; Millecchia, Lyndell; Kepka-Lenhart, Diane; Beighley, Christopher; Wolfarth, Michael G.; Castranova, Vincent; Morris, Sidney M.

    2009-01-01

    Arginase induction was reported in several inflammatory lung diseases, suggesting that this may be a common feature underlying the pathophysiology of such diseases. As little is known regarding arginase expression in silicosis, the induction and cellular localization of arginase was elucidated in lungs of Sprague-Dawley rats 24 hr following exposure to varying doses of silica by intratracheal instillation. Arginase expression was evaluated by activity assay, quantification of arginase I and arginase II mRNA levels using real-time PCR, and immunohistochemistry. Analyses of cells and fluid obtained by bronchoalveolar lavage (BAL) showed that markers of pulmonary inflammation, tissue damage, activation of alveolar macrophages (AM) and NO production were significantly increased by all silica doses. Arginase activity was increased also in AMs isolated from BAL fluid of silica-treated rats. Silica produced 2- and 3-fold increases in arginase activity of whole lung at doses of 1 and 5 mg/100g body weight, respectively. Levels of arginase I mRNA, but not of arginase II mRNA, were similarly elevated. In control lungs, arginase I immunoreactivity was observed only in AMs sparsely dispersed throughout the lung; no iNOS immunoreactivity was detected. In silica-treated lungs, arginase I and iNOS were co-expressed in most AMs that were abundantly clustered at inflammatory foci. The rapid induction of arginase I expression in inflammatory lung cells, similar to induction of arginase in other inflammatory lung diseases, implicates elevated arginase activity as a factor in the development of lung damage following exposure to silica. PMID:17365572

  1. Secretory leukoprotease inhibitor: partnering alpha 1-proteinase inhibitor to combat pulmonary inflammation.

    PubMed Central

    Bingle, L.; Tetley, T. D.

    1996-01-01

    Secretory leukoprotease inhibitor (SLPI) is a low molecular weight serine proteinase inhibitor, notably of neutrophil elastase (NE), which is synthesised and secreted by the pulmonary epithelium. SLPI plays an important role in limiting NE-induced pulmonary inflammation and, significantly, it also possesses anti-HIV activity. SLPI is a significant component of the anti-NE shield in the lung which has different reactivity from, and is therefore complementary to, the anti-NE action of alpha 1-proteinase inhibitor (alpha 1-PI). Inhaled recombinant SLPI (rSLPI) could prove beneficial in partnership with alpha 1-PI in the treatment of a number of inflammatory lung disorders including emphysema, chronic bronchitis, cystic fibrosis, and adult respiratory distress syndrome. PMID:8994529

  2. Silver Nanoparticles: A study of dissolution, kinetics, and factors affecting pulmonary inflammation

    NASA Astrophysics Data System (ADS)

    Saunders, Eric L.

    The growing use of silver (Ag) nanoparticles (NP) in consumer and industrial goods has led to an increase in interest in the health effects associated with exposure, both occupationally and environmentally. The aim of this research is to examine the contribution of size, shape, and dissolution of AgNP, with its corresponding effect on pulmonary inflammation and clearance. In addition this study looks at metallothionein (MT) and the role it plays as an inflammatory modulator. A nose only exposure method was used to expose three strains of mouse (two inbred, one knockout) to two different sizes of AgNP (˜25 nm and ˜100 nm). This research demonstrates that size, chemistry, and dissolution play key roles in NP deposition and inflammatory response, while no conclusions could be drawn about shape. Additionally, this study found that the main factors affecting the deposition of NP in mice both acutely and sub-chronically are particle size and mouse strain. The results of this study also indicate a relationship between MT2 and inflammation. It was found that the mRNA levels of MT2 were greatly up-regulated in the livers and lungs of mice exposed to AgNP, while MT protein levels were not significantly altered to correlate with the altered regulation of mRNA. Finally, this study showed that, for AgNP, the mechanisms of pulmonary clearance and dissolution happened rapidly and that they, combined, likely represent a major pathway of AgNP transport out of the lung. Taken as a whole, the data in this study show that dissolution, coupled with protein interaction, is a significant mediator of pulmonary inflammation and translocation of AgNP.

  3. Eosinophilic airway inflammation: role in asthma and chronic obstructive pulmonary disease

    PubMed Central

    George, Leena; Brightling, Christopher E.

    2016-01-01

    The chronic lung diseases, asthma and chronic obstructive pulmonary disease (COPD), are common affecting over 500 million people worldwide and causing substantial morbidity and mortality. Asthma is typically associated with Th2-mediated eosinophilic airway inflammation, in contrast to neutrophilic inflammation observed commonly in COPD. However, there is increasing evidence that the eosinophil might play an important role in 10–40% of patients with COPD. Consistently in both asthma and COPD a sputum eosinophilia is associated with a good response to corticosteroid therapy and tailored strategies aimed to normalize sputum eosinophils reduce exacerbation frequency and severity. Advances in our understanding of the multistep paradigm of eosinophil recruitment to the airway, and the consequence of eosinophilic inflammation, has led to the development of new therapies to target these molecular pathways. In this article we discuss the mechanisms of eosinophilic trafficking, the tools to assess eosinophilic airway inflammation in asthma and COPD during stable disease and exacerbations and review current and novel anti-eosinophilic treatments. PMID:26770668

  4. Eosinophilic airway inflammation: role in asthma and chronic obstructive pulmonary disease.

    PubMed

    George, Leena; Brightling, Christopher E

    2016-01-01

    The chronic lung diseases, asthma and chronic obstructive pulmonary disease (COPD), are common affecting over 500 million people worldwide and causing substantial morbidity and mortality. Asthma is typically associated with Th2-mediated eosinophilic airway inflammation, in contrast to neutrophilic inflammation observed commonly in COPD. However, there is increasing evidence that the eosinophil might play an important role in 10-40% of patients with COPD. Consistently in both asthma and COPD a sputum eosinophilia is associated with a good response to corticosteroid therapy and tailored strategies aimed to normalize sputum eosinophils reduce exacerbation frequency and severity. Advances in our understanding of the multistep paradigm of eosinophil recruitment to the airway, and the consequence of eosinophilic inflammation, has led to the development of new therapies to target these molecular pathways. In this article we discuss the mechanisms of eosinophilic trafficking, the tools to assess eosinophilic airway inflammation in asthma and COPD during stable disease and exacerbations and review current and novel anti-eosinophilic treatments. PMID:26770668

  5. Stanniocalcin-1 ameliorates lipopolysaccharide-induced pulmonary oxidative stress, inflammation, and apoptosis in mice.

    PubMed

    Tang, Shih-En; Wu, Chin-Pyng; Wu, Shu-Yu; Peng, Chung-Kan; Perng, Wann-Cherng; Kang, Bor-Hwang; Chu, Shi-Jye; Huang, Kun-Lun

    2014-06-01

    Stanniocalcin-1 (STC1) is an endogenous glycoprotein whose anti-inflammatory effects occur through induction of uncoupling proteins to reduce oxidative stress. In this study, we tested the hypothesis that exogenous recombinant human STC1 (rhSTC1) protects against lipopolysaccharide (LPS)-induced acute lung injury in mice. Anesthetized C57BL/6 mice underwent intratracheal spraying of LPS (20 µg/10 g body wt), and lung injury was assessed 24h later by analyzing pulmonary edema, bronchoalveolar lavage fluid, and lung histopathology. Lung inflammation, oxidative stress, and expression of STC1 and its downstream uncoupling protein 2 (UCP2) were analyzed at specific time points. Expression of UCP2 was suppressed initially but was subsequently upregulated after STC1 elevation in response to intratracheal administration of LPS. Intratracheal rhSTC1 treatment 1h before or after LPS spraying significantly attenuated pulmonary inflammation, oxidative stress, cell apoptosis, and acute lung injury. Pretreatment with STC1 short interfering RNA 48 h before LPS spraying inhibited the expression of STC1 and UCP2 and significantly increased the extent of lung injury. These findings suggest that STC1 is an endogenous stress protein that may counteract LPS-induced lung injury by inhibiting the inflammatory cascade and inducing antioxidant and antiapoptotic mechanisms. However, the potential clinical application of STC1 and the direct linkage between UCP2 and LPS-induced lung injury remain to be further investigated. PMID:24685991

  6. IKK NBD peptide inhibits LPS induced pulmonary inflammation and alters sphingolipid metabolism in a murine model.

    PubMed

    von Bismarck, Philipp; Winoto-Morbach, Supandi; Herzberg, Mona; Uhlig, Ulrike; Schütze, Stefan; Lucius, Ralph; Krause, Martin F

    2012-06-01

    Airway epithelial NF-κB is a key regulator of host defence in bacterial infections and has recently evolved as a target for therapeutical approaches. Evidence is accumulating that ceramide, generated by acid sphingomyelinase (aSMase), and sphingosine-1-phosphate (S1-P) are important mediators in host defence as well as in pathologic processes of acute lung injury. Little is known about the regulatory mechanisms of pulmonary sphingolipid metabolism in bacterial infections of the lung. The objective of this study was to evaluate the influence of NF-κB on sphingolipid metabolism in Pseudomonas aeruginosa LPS-induced pulmonary inflammation. In a murine acute lung injury model with intranasal Pseudomonas aeruginosa LPS we investigated TNF-α, KC (murine IL-8), IL-6, MCP-1 and neutrophilic infiltration next to aSMase activity and ceramide and S1-P lung tissue concentrations. Airway epithelial NF-κB was inhibited by topically applied IKK NBD, a cell penetrating NEMO binding peptide. This treatment resulted in significantly reduced inflammation and suppression of aSMase activity along with decreased ceramide and S1-P tissue concentrations down to levels observed in healthy animals. In conclusion our results confirm that changes in sphingolipid metabolim due to Pseudomonas aeruginosa LPS inhalation are regulated by NF-κB translocation. This confirms the critical role of airway epithelial NF-κB pathway for the inflammatory response to bacterial pathogens and underlines the impact of sphingolipids in inflammatory host defence mechanisms. PMID:22469869

  7. TRPV4 inhibition counteracts edema and inflammation and improves pulmonary function and oxygen saturation in chemically induced acute lung injury

    PubMed Central

    Balakrishna, Shrilatha; Song, Weifeng; Achanta, Satyanarayana; Doran, Stephen F.; Liu, Boyi; Kaelberer, Melanie M.; Yu, Zhihong; Sui, Aiwei; Cheung, Mui; Leishman, Emma; Eidam, Hilary S.; Ye, Guosen; Willette, Robert N.; Thorneloe, Kevin S.; Bradshaw, Heather B.; Matalon, Sadis

    2014-01-01

    The treatment of acute lung injury caused by exposure to reactive chemicals remains challenging because of the lack of mechanism-based therapeutic approaches. Recent studies have shown that transient receptor potential vanilloid 4 (TRPV4), an ion channel expressed in pulmonary tissues, is a crucial mediator of pressure-induced damage associated with ventilator-induced lung injury, heart failure, and infarction. Here, we examined the effects of two novel TRPV4 inhibitors in mice exposed to hydrochloric acid, mimicking acid exposure and acid aspiration injury, and to chlorine gas, a severe chemical threat with frequent exposures in domestic and occupational environments and in transportation accidents. Postexposure treatment with a TRPV4 inhibitor suppressed acid-induced pulmonary inflammation by diminishing neutrophils, macrophages, and associated chemokines and cytokines, while improving tissue pathology. These effects were recapitulated in TRPV4-deficient mice. TRPV4 inhibitors had similar anti-inflammatory effects in chlorine-exposed mice and inhibited vascular leakage, airway hyperreactivity, and increase in elastance, while improving blood oxygen saturation. In both models of lung injury we detected increased concentrations of N-acylamides, a class of endogenous TRP channel agonists. Taken together, we demonstrate that TRPV4 inhibitors are potent and efficacious countermeasures against severe chemical exposures, acting against exaggerated inflammatory responses, and protecting tissue barriers and cardiovascular function. PMID:24838754

  8. TRPV4 inhibition counteracts edema and inflammation and improves pulmonary function and oxygen saturation in chemically induced acute lung injury.

    PubMed

    Balakrishna, Shrilatha; Song, Weifeng; Achanta, Satyanarayana; Doran, Stephen F; Liu, Boyi; Kaelberer, Melanie M; Yu, Zhihong; Sui, Aiwei; Cheung, Mui; Leishman, Emma; Eidam, Hilary S; Ye, Guosen; Willette, Robert N; Thorneloe, Kevin S; Bradshaw, Heather B; Matalon, Sadis; Jordt, Sven-Eric

    2014-07-15

    The treatment of acute lung injury caused by exposure to reactive chemicals remains challenging because of the lack of mechanism-based therapeutic approaches. Recent studies have shown that transient receptor potential vanilloid 4 (TRPV4), an ion channel expressed in pulmonary tissues, is a crucial mediator of pressure-induced damage associated with ventilator-induced lung injury, heart failure, and infarction. Here, we examined the effects of two novel TRPV4 inhibitors in mice exposed to hydrochloric acid, mimicking acid exposure and acid aspiration injury, and to chlorine gas, a severe chemical threat with frequent exposures in domestic and occupational environments and in transportation accidents. Postexposure treatment with a TRPV4 inhibitor suppressed acid-induced pulmonary inflammation by diminishing neutrophils, macrophages, and associated chemokines and cytokines, while improving tissue pathology. These effects were recapitulated in TRPV4-deficient mice. TRPV4 inhibitors had similar anti-inflammatory effects in chlorine-exposed mice and inhibited vascular leakage, airway hyperreactivity, and increase in elastance, while improving blood oxygen saturation. In both models of lung injury we detected increased concentrations of N-acylamides, a class of endogenous TRP channel agonists. Taken together, we demonstrate that TRPV4 inhibitors are potent and efficacious countermeasures against severe chemical exposures, acting against exaggerated inflammatory responses, and protecting tissue barriers and cardiovascular function. PMID:24838754

  9. Airway epithelial SPDEF integrates goblet cell differentiation and pulmonary Th2 inflammation.

    PubMed

    Rajavelu, Priya; Chen, Gang; Xu, Yan; Kitzmiller, Joseph A; Korfhagen, Thomas R; Whitsett, Jeffrey A

    2015-05-01

    Epithelial cells that line the conducting airways provide the initial barrier and innate immune responses to the abundant particles, microbes, and allergens that are inhaled throughout life. The transcription factors SPDEF and FOXA3 are both selectively expressed in epithelial cells lining the conducting airways, where they regulate goblet cell differentiation and mucus production. Moreover, these transcription factors are upregulated in chronic lung disorders, including asthma. Here, we show that expression of SPDEF or FOXA3 in airway epithelial cells in neonatal mice caused goblet cell differentiation, spontaneous eosinophilic inflammation, and airway hyperresponsiveness to methacholine. SPDEF expression promoted DC recruitment and activation in association with induction of Il33, Csf2, thymic stromal lymphopoietin (Tslp), and Ccl20 transcripts. Increased Il4, Il13, Ccl17, and Il25 expression was accompanied by recruitment of Th2 lymphocytes, group 2 innate lymphoid cells, and eosinophils to the lung. SPDEF was required for goblet cell differentiation and pulmonary Th2 inflammation in response to house dust mite (HDM) extract, as both were decreased in neonatal and adult Spdef(-/-) mice compared with control animals. Together, our results indicate that SPDEF causes goblet cell differentiation and Th2 inflammation during postnatal development and is required for goblet cell metaplasia and normal Th2 inflammatory responses to HDM aeroallergen. PMID:25866971

  10. Pulmonary Inflammation Triggered by Ricin Toxin Requires Macrophages and IL-1 Signaling1

    PubMed Central

    Lindauer, Meghan L.; Wong, John; Iwakura, Yoichiro; Magun, Bruce E.

    2015-01-01

    Ricin is a potent ribotoxin considered to be a potentially dangerous bioterrorist agent due to its wide availability and the possibility of aerosol delivery to human populations. Studies in rodents and nonhuman primates have demonstrated that ricin delivered to the pulmonary system leads to acute lung injury and symptoms resembling acute respiratory distress syndrome. Increasing evidence suggests that the inflammatory effects triggered by ricin are responsible for its lethality. We demonstrated previously that ricin administered to the lungs of mice causes death of pulmonary macrophages and the release of proinflammatory cytokines, suggesting macrophages may be a primary target of ricin. Here we examined the requirement for macrophages in the development of ricinmediated pulmonary inflammation by employing transgenic (MAFIA) mice that express an inducible gene driven by the c-fms promoter for Fas-mediated apoptosis of macrophages upon injection of a synthetic dimerizer, AP20187. Administration of aerosolized ricin to macrophage-depleted mice led to reduced inflammatory responses, including recruitment of neutrophils, expression of proinflammatory transcripts, and microvascular permeability. When compared with control mice treated with ricin, macrophage-depleted mice treated with ricin displayed a reduction in pulmonary IL-1/3. Employing mice deficient in IL-1, we found that ricin-induced inflammatory responses were suppressed, including neutrophilia. Neutrophilia could be restored by co-administering ricin and exogenous IL-1β to IL-1α/β−/− mice. Furthermore, IL1Ra/anakinra cotreatment inhibited ricin-mediated inflammatory responses, including recruitment of neutrophils, expression of proinflammatory genes, and histopathology. These data suggest a central role for macrophages and IL-1 signaling in the inflammatory process triggered by ricin. PMID:19561099

  11. Effect of Treatment of Cystic Fibrosis Pulmonary Exacerbations on Systemic Inflammation

    PubMed Central

    Thompson, Valeria; Chmiel, James F.; Montgomery, Gregory S.; Nasr, Samya Z.; Perkett, Elizabeth; Saavedra, Milene T.; Slovis, Bonnie; Anthony, Margaret M.; Emmett, Peggy; Heltshe, Sonya L.

    2015-01-01

    Rationale: In cystic fibrosis (CF), pulmonary exacerbations present an opportunity to define the effect of antibiotic therapy on systemic measures of inflammation. Objectives: Investigate whether plasma inflammatory proteins demonstrate and predict a clinical response to antibiotic therapy and determine which proteins are associated with measures of clinical improvement. Methods: In this multicenter study, a panel of 15 plasma proteins was measured at the onset and end of treatment for pulmonary exacerbation and at a clinically stable visit in patients with CF who were 10 years of age or older. Measurements and Main Results: Significant reductions in 10 plasma proteins were observed in 103 patients who had paired blood collections during antibiotic treatment for pulmonary exacerbations. Plasma C-reactive protein, serum amyloid A, calprotectin, and neutrophil elastase antiprotease complexes correlated most strongly with clinical measures at exacerbation onset. Reductions in C-reactive protein, serum amyloid A, IL-1ra, and haptoglobin were most associated with improvements in lung function with antibiotic therapy. Having higher IL-6, IL-8, and α1-antitrypsin (α1AT) levels at exacerbation onset were associated with an increased risk of being a nonresponder (i.e., failing to recover to baseline FEV1). Baseline IL-8, neutrophil elastase antiprotease complexes, and α1AT along with changes in several plasma proteins with antibiotic treatment, in combination with FEV1 at exacerbation onset, were predictive of being a treatment responder. Conclusions: Circulating inflammatory proteins demonstrate and predict a response to treatment of CF pulmonary exacerbations. A systemic biomarker panel could speed up drug discovery, leading to a quicker, more efficient drug development process for the CF community. PMID:25714657

  12. Airway inflammation in cadmium-exposed rats is associated with pulmonary oxidative stress and emphysema.

    PubMed

    Kirschvink, Nathalie; Martin, Nathalie; Fievez, Laurence; Smith, Nicola; Marlin, David; Gustin, Pascal

    2006-03-01

    The aim of this study was to test the hypothesis that pulmonary inflammation and emphysema induced by cadmium (Cd) inhalation are associated with pulmonary oxidative stress. Two groups of Sprague Dawley rats were used: one vehicle-exposed group undergoing inhalation of NaCl (0.9%, n = 24) and one Cd-exposed group undergoing inhalation of CdCl(2) (0.1%, n = 24). The animals in the vehicle-and Cd-exposed groups were divided into 4 subgroups (n = 6 per group), which underwent either a single exposure (D2) of 1H or repeated exposures 3 times/week for 1H for a period of 3 weeks (3W), 5 weeks (5W) or 5 weeks followed by 2 weeks without exposure (5W + 2). At sacrifice, the left lung was fixed for histomorphometric analysis (median inter-wall distance, MIWD), whilst bronchoalveolar lavage fluid (BALF) was collected from the right lung. Cytological analysis of BALF was performed and BALF was analysed for oxidant markers 8-iso-PGF(2a), uric acid (UA), reduced (AA) and oxidised ascorbic acid (DHA) and reduced (GSH) and oxidised glutathione (GSSG). Cd-exposure induced a significant increase of BALF macrophages and neutrophils. 8-iso-PGF(2a), UA, GSH and GSSG were significantly increased at D2. At 5W and 5W + 2, AA and GSH were significantly lower in Cd-exposed rats, indicating antioxidant depletion. MIWD significantly increased in all repeatedly Cd-exposed groups, suggesting development of pulmonary emphysema. 8-iso-PGF(2a) and UA were positively correlated with macrophage and neutrophil counts. GSH, GSSG and 8-iso-PGF(2a) were negatively correlated with MIWD, indicating that Cd-induced emphysema could be associated with pulmonary oxidative stress. PMID:16484040

  13. Measurement of Pulmonary Flow Reserve and Pulmonary Index of Microcirculatory Resistance for Detection of Pulmonary Microvascular Obstruction

    PubMed Central

    Ilsar, Rahn; Chawantanpipat, Chirapan; Chan, Kim H.; Dobbins, Timothy A.; Waugh, Richard; Hennessy, Annemarie; Celermajer, David S.; Ng, Martin K. C.

    2010-01-01

    increased PIMR (5.7±0.6, 6.3±1.0, 6.8±0.6 & 7.6±0.6 mmHg.sec; p = 0.0048). Conclusions Thermodilution-derived mean transit time can be accurately and reproducibly measured in the pulmonary circulation using TPSG. Mean transit time-derived PFR and PIMR can be assessed using a TPSG and adenosine or papaverine as hyperemic agents. These novel indices detect progressive pulmonary microvascular obstruction and thus have with a potential role for pulmonary microcirculatory assessment in humans. PMID:20231900

  14. CD14 contributes to pulmonary inflammation and mortality during murine tuberculosis

    PubMed Central

    Wieland, Catharina W; van der Windt, Gerritje J W; Wiersinga, W Joost; Florquin, Sandrine; van der Poll, Tom

    2008-01-01

    Toll-like receptors play an essential role in the innate recognition of micro-organisms by the host. CD14 is one of the extracellular adaptor proteins required for recognition of Gram-negative bacteria and possibly also Mycobacterium tuberculosis. Therefore, we intranasally infected wild-type (WT) and CD14 knock-out (KO) mice with virulent M. tuberculosis H37Rv. We found no differences in bacterial load in the main target organ lung up to 32 weeks after infection. From 20 weeks onward 57% of WT mice succumbed, whereas all CD14 KO mice survived. The improved outcome of CD14 KO mice was accompanied by reduced pulmonary inflammation; lung cell counts and percentage of inflamed lung tissue were reduced in CD14 WT mice. These data suggest that during chronic infection CD14 KO mice are protected from lethality caused by lung tuberculosis because of a reduction of the inflammatory response. PMID:18393969

  15. Edge density based automatic detection of inflammation in colonoscopy videos.

    PubMed

    Ševo, I; Avramović, A; Balasingham, I; Elle, O J; Bergsland, J; Aabakken, L

    2016-05-01

    Colon cancer is one of the deadliest diseases where early detection can prolong life and can increase the survival rates. The early stage disease is typically associated with polyps and mucosa inflammation. The often used diagnostic tools rely on high quality videos obtained from colonoscopy or capsule endoscope. The state-of-the-art image processing techniques of video analysis for automatic detection of anomalies use statistical and neural network methods. In this paper, we investigated a simple alternative model-based approach using texture analysis. The method can easily be implemented in parallel processing mode for real-time applications. A characteristic texture of inflamed tissue is used to distinguish between inflammatory and healthy tissues, where an appropriate filter kernel was proposed and implemented to efficiently detect this specific texture. The basic method is further improved to eliminate the effect of blood vessels present in the lower part of the descending colon. Both approaches of the proposed method were described in detail and tested in two different computer experiments. Our results show that the inflammatory region can be detected in real-time with an accuracy of over 84%. Furthermore, the experimental study showed that it is possible to detect certain segments of video frames containing inflammations with the detection accuracy above 90%. PMID:27043856

  16. Pulmonary inflammation and crystalline silica in respirable coal mine dust: dose-response.

    PubMed

    Kuempel, E D; Attfield, M D; Vallyathan, V; Lapp, N L; Hale, J M; Smith, R J; Castranova, V

    2003-02-01

    This study describes the quantitative relationships between early pulmonary responses and the estimated lung-burden or cumulative exposure of respirable-quartz or coal mine dust. Data from a previous bronchoalveolar lavage (BAL) study in coal miners (n = 20) and nonminers (n = 16) were used including cell counts of alveolar macrophages (AMs) and polymorphonuclear leukocytes (PMNs), and the antioxidant superoxide dismutase (SOD) levels. Miners' individual working lifetime particulate exposures were estimated from work histories and mine air sampling data, and quartz lung-burdens were estimated using a lung dosimetry model. Results show that quartz, as either cumulative exposure or estimated lung-burden, was a highly statistically significant predictor of PMN response (P < 0.0001); however cumulative coal dust exposure did not significantly add to the prediction of PMNs (P = 0.2) above that predicted by cumulative quartz exposure (P < 0.0001). Despite the small study size, radiographic category was also significantly related to increasing levels of both PMNs and quartz lung burden (P-values < 0.04). SOD in BAL fluid rose linearly with quartz lung burden (P < 0.01), but AM count in BAL fluid did not (P > 0.4). This study demonstrates dose-response relationships between respirable crystalline silica in coal mine dust and pulmonary inflammation, antioxidant production, and radiographic small opacities. PMID:12682426

  17. Coincident Helminth Infection Modulates Systemic Inflammation and Immune Activation in Active Pulmonary Tuberculosis

    PubMed Central

    George, Parakkal Jovvian; Kumar, Nathella Pavan; Sridhar, Rathinam; Hanna, Luke E.; Nair, Dina; Banurekha, Vaithilingam V.; Nutman, Thomas B.; Babu, Subash

    2014-01-01

    Background Helminth infections are known to modulate innate and adaptive immune responses in active and latent tuberculosis (TB). However, the role of helminth infections in modulating responses associated with inflammation and immune activation (reflecting disease activity and/or severity) in TB is not known. Methodology We measured markers of inflammation and immune activation in active pulmonary TB individuals (ATB) with co-incidental Strongyloides stercoralis (Ss) infection. These included systemic levels of acute phase proteins, matrix metalloproteinases and their endogenous inhibitors and immune activation markers. As a control, we measured the systemic levels of the same molecules in TB-uninfected individuals (NTB) with or without Ss infection. Principal Findings Our data confirm that ATB is associated with elevated levels of the various measured molecules when compared to those seen in NTB. Our data also reveal that co-incident Ss infection in ATB individuals is associated with significantly decreased circulating levels of acute phase proteins, matrix metalloproteinases, tissue inhibitors of matrix metalloproteinases as well as the systemic immune activation markers, sCD14 and sCD163. These changes are specific to ATB since they are absent in NTB individuals with Ss infection. Conclusions Our data therefore reveal a profound effect of Ss infection on the markers associated with TB disease activity and severity and indicate that co-incidental helminth infections might dampen the severity of TB disease. PMID:25375117

  18. Overexpression of RORγt Enhances Pulmonary Inflammation after Infection with Mycobacterium Avium.

    PubMed

    Matsuyama, Masashi; Ishii, Yukio; Sakurai, Hirofumi; Ano, Satoshi; Morishima, Yuko; Yoh, Keigyou; Takahashi, Satoru; Ogawa, Kenji; Hizawa, Nobuyuki

    2016-01-01

    Mycobacterium avium complex (MAC) is the most common cause of nontuberculous mycobacterial disease in humans. The role of Th17 immunity in the pathogenesis of intracellular bacteria, such as MAC, is not currently understood. Transcription factor RAR-related orphan receptor gamma t (RORγt) is known as the master regulator for Th17 cell development. Here, we investigated the role of RORγt in host responses against MAC infection. Wild-type (WT) mice and RORγt-overexpressing mice were infected with MAC via intratracheal inoculation. Systemic MAC growth was not different between WT mice and RORγt-overexpressing mice. However, neutrophilic pulmonary inflammation following MAC infection was enhanced in RORγt-overexpressing mice compared with that in WT mice. The cytokine expression shifted toward a Th17 phenotype in the lungs of RORγt-overexpressing mice following MAC infection; the levels of IL-6 and IL-17 were significantly higher in the lung of these mice than in WT mice. In addition to the increase in IL-17 single-positive T cells, T cells producing both IL-17 and interferon-γ were elevated in the lung of RORγt-overexpressing mice following MAC infection. These findings suggest that RORγt overexpression-mediated Th17 bias contributes to local inflammation rather than systemic responses, by regulating neutrophil recruitment into the sites of infection during MAC infection. PMID:26784959

  19. Systemic biomarkers of inflammation and haemostasis in patients with chronic necrotizing pulmonary aspergillosis

    PubMed Central

    2012-01-01

    Background The purpose of this study was to investigate mediators of inflammation and haemostasis in patients with chronic necrotizing pulmonary aspergillosis (CNPA), a locally, destructive process of the lung due to invasion by Aspergillus species. Methods Measurements of selected biomarkers in 10 patients with CNPA and 19 healthy, matched controls were performed with enzyme-linked immunosorbent assay (ELISA) and multiplex methodology. The gene expressions of relevant biomarkers were analyzed with real-time quantitative RT-PCR. Results Increased concentrations of circulating mediators of inflammation interleukin (IL)-6, IL-8, RANTES, TNF-α, ICAM-1 and mediators involved in endothelial activation and thrombosis (vWF, TF and PAI-1) were observed in patients with CNPA. The concentration of the anti-inflammatory cytokine IL-10 was increased both in plasma and in PBMC in the patient population. The gene expression of CD40L was decreased in PBMC from the patient group, accompanied by decreased concentrations of soluble (s) CD40L in the circulation. Conclusions The proinflammatory response against Aspergillus may be counteracted by reduced CD40L and sCD40L, as well as increased IL-10, which may compromise the immune response against Aspergillus in patients with CNPA. PMID:22731696

  20. Restrictive pulmonary deficit is associated with inflammation in sub-optimally controlled obese diabetics

    PubMed Central

    Seemungal, Terence A. R.; Teelucksingh, Surujpal; Nayak, B. Shivananda

    2013-01-01

    Caribbean data linking inflammation, pulmonary dysfunction and diabetes is unavailable. Spirometry, acanthosis nigricans, hs-CRP were assessed in 109 type 2 diabetics (43% males) mean age=55.6 years, BMI=29.29 kg/m2, waist circumference=103.86 cm. Residual FEV1/FVC increased with age (P=0.005), BMI (P=0.011) and waist circumference (P=0.003). Residual FVC related inversely to hs-CRP (–0.178), P<0.06) systolic (–0.028, P<0.031), diastolic (–0.247, P<0.010) pressure and weight (–0.25, P<0.009). Residual FEV1 related inversely to diastolic pressure (–0.219, P<0.023), hs-CRP (–0.234, P<0.015), acanthosis nigricans (–0.029, P<0.029). HbA1C and residual FEV1 predict high hs-CRP (P=0.011, P=0.046). Low FVC with inflammation presents in poorly controlled obese diabetics. PMID:23825761

  1. Molecular MRI approaches to the detection of CNS inflammation.

    PubMed

    Sibson, Nicola R; Anthony, Daniel C; van Kasteren, Sander; Dickens, Alex; Perez-Balderas, Francisco; McAteer, Martina A; Choudhury, Robin P; Davis, Benjamin G

    2011-01-01

    Inflammation is a key component of many neurological diseases, yet our understanding of the contribution of these processes to tissue damage remains poor. For many such diseases, magnetic resonance imaging (MRI) has become the method of choice for clinical diagnosis. However, many of the MRI parameters that enable disease detection, such as passive contrast enhancement across a compromised blood-brain barrier, are weighted towards late-stage disease. Moreover, whilst these methods may report on disease severity, they are not able to provide information on either disease activity or the underlying molecular processes. There is a need, therefore, to develop methods that enable earlier disease detection, potentially long before clinical symptoms become apparent, together with identification of specific molecular processes that may guide specific therapy. This chapter describes the methodology for the synthesis and validation of two novel, functional MRI-detectable probes, based on microparticles of iron oxide (MPIO), which target endothelial adhesion molecules. These contrast agents enable the detection of acute brain inflammation in vivo, at a time when pathology is undetectable by conventional MRI. Such molecular MRI methods are opening new vistas for the acute diagnosis of CNS disease, together with the possibility for individually tailored therapy and earlier, more sensitive assessment of the efficacy of novel therapies. PMID:21279613

  2. Montelukast versus Dexamethasone Treatment in a Guinea Pig Model of Chronic Pulmonary Neutrophilic Inflammation.

    PubMed

    Abdel Kawy, Hala S

    2016-08-01

    Airway inflammation in chronic obstructive pulmonary disease (COPD) is refractory to corticosteroids and hence COPD treatment is hindered and insufficient. This study assessed the effects of oral treatment with Montelukast (10 and 30 mg/kg) or dexamethasone (20 mg/kg) for 20 days on COPD model induced by chronic exposure to lipopolysaccharide (LPS). Six groups of male guinea pigs were studied. Group 1: naïve group, group 2: exposed to saline nebulization. Groups 3, 4, 5, and 6: exposed to 9 nebulizations of LPS (30 μg/ml) for 1 hour, 48 hours apart with or without treatment with Montelukast or dexamethasone. Airway hyperreactivity (AHR) to methacholine (MCh), histopathological study and bronchoalveolar lavage fluid (BALF) as well as lung tissue analyses were performed 48 hours after the final exposure to LPS (day 20). LPS-induced pulmonary dysfunction was associated with increased neutrophil count, leukotriene (LT) B4, and tumor necrosis factor (TNF)-α in BALF. Moreover, there was an increase in malondialdehyde (MDA) level and a decrease in histone deacetylases(HDAC) activity in the lung tissue. Both Montelukast (10 or 30 mg /kg) and dexamethasone significantly reduced neutrophil count in BALF and inflammatory cells in lung parenchyma as well as TNF-α, and MDA levels. However, dexamethasone was more effective (p < 0.05). Montelukast, at a dose of 30 mg /kg, significantly reduced specific airway resistance after the 9th LPS exposure, attenuated AHR to MCh, decreased LTB4 and increased HDAC activity in comparison to dexamethasone. These results suggest that treatment with Montelukast can be useful in chronic airway inflammatory diseases including COPD poorly responsive to glucocorticoids. PMID:26751767

  3. Metabolic reprogramming and inflammation act in concert to control vascular remodeling in hypoxic pulmonary hypertension.

    PubMed

    Stenmark, Kurt R; Tuder, Rubin M; El Kasmi, Karim C

    2015-11-15

    Pulmonary hypertension (PH) is a complex, multifactorial syndrome that remains poorly understood despite decades of research. PH is characterized by profound pulmonary artery (PA) remodeling that includes significant fibro-proliferative and inflammatory changes of the PA adventitia. In line with the emerging concept that PH shares key features with cancer, recent work centers on the idea that PH results from a multistep process driven by reprogramming of gene-expression patterns that govern changes in cell metabolism, inflammation, and proliferation. Data demonstrate that in addition to PA endothelial cells and smooth muscle cells, adventitial fibroblasts from animals with experimental hypoxic PH and from humans with PH (hereafter, termed PH-Fibs) exhibit proinflammatory activation, increased proliferation, and apoptosis resistance, all in the context of metabolic reprogramming to aerobic glycolysis. PH-Fibs can also recruit, retain, and activate naïve macrophages (Mϕ) toward a proinflammatory/proremodeling phenotype through secretion of chemokines, cytokines, and glycolytic metabolites, among which IL-6 and lactate play key roles. Furthermore, these fibroblast-activated Mϕ (hereafter, termed FAMϕ) exhibit aerobic glycolysis together with high expression of arginase 1, Vegfa, and I1lb, all of which require hypoxia-inducible factor 1α and STAT3 signaling. Strikingly, in situ, the adventitial Mϕ phenotype in the remodeled PA closely resembles the Mϕ phenotype induced by fibroblasts in vitro (FAMϕ), suggesting that FAMϕ crosstalk involving metabolic and inflammatory signals is a critical, pathogenetic component of vascular remodeling. This review discusses metabolic and inflammatory changes in fibroblasts and Mϕ in PH with the goal of raising ideas about new interventions to abrogate remodeling in hypoxic forms of PH. PMID:25930027

  4. Cardiac inflammation contributes to right ventricular dysfunction following experimental pulmonary embolism in rats.

    PubMed

    Watts, John A; Zagorski, John; Gellar, Michael A; Stevinson, Brad G; Kline, Jeffrey A

    2006-08-01

    Acute right ventricular (RV) failure following pulmonary embolism (PE) is a strong predictor of poor clinical outcome. Present studies test for an association between RV failure from experimental PE, inflammation, and upregulated chemokine expression. Additional experiments test if neutrophil influx contributes to RV dysfunction. PE was induced in male rats by infusing 24 microm microspheres (right jugular vein) producing mild hypertension (1.3 million beads/100 g, PE1.3), or moderately severe hypertension (2.0 million beads/100 g, PE2.0). Additional rats served as vehicle sham (0.01% Tween 20, Veh). In vivo RV peak systolic pressures (RVPSP) increased significantly, and then declined following PE2.0 (51 +/- 1 mm Hg 2 h; 49 +/- 1, 6 h; 44 +/- 1, 18 h). RV generated pressure of isolated, perfused hearts was significantly reduced in PE2.0 compared with PE1.3 or Veh. MCP-1 protein (ELISA) was elevated 21-fold and myeloperoxidase activity 95-fold in RV of PE2.0 compared with Veh or PE1.3. CINC-1, CINC-2, MIP-2, MCP-1, and MIP-1alpha mRNA also increased in RV of PE2.0. Histological analysis revealed massive accumulation of neutrophils (selective esterase stain) and monocyte/macrophages (CD68, ED-1) in RV of PE2.0 hearts in regions of myocyte damage. Electron microscopy showed myocyte necrosis and phagocytosis by inflammatory cells. LV function was normal and did not show increased inflammation after PE2.0. Treatment with anti-PMN antibody reduced RV MPO activity and prevented RV dysfunction. Conclusions-PE with moderately severe pulmonary hypertension (PE2.0) resulted in selective RV dysfunction, which was associated with increased chemokine expression, and infiltration of both neutrophils and monocyte/macrophages, indicating that a robust immune response occurred with RV damage following experimental PE. Experimental agranulocytosis reduced RV, suggesting that neutrophil influx contributed to RV damage. PMID:16814320

  5. The effect of siRNA-mediated lymphocyte-specific protein tyrosine kinase (Lck) inhibition on pulmonary inflammation in a mouse model of asthma

    PubMed Central

    Zhang, Shikui; Yang, Rongjia; Zheng, Yonghua

    2015-01-01

    Objective: To explore the effect of siRNA-mediated inhibition of lymphocyte-specific protein tyrosine kinase (Lck) on pulmonary inflammation in a mouse model of asthma. Methods: A total of 32 female BABL/c mice were used in the study. The mouse asthma model was established with ovabumin (OVA), and Lck specific siRNA or nonspecific siRNA was transfected through the tail vein before the first OVA challenge. Two days after the last challenge, mice were sacrificed and bronchoalveolar lavage fluid (BALF), plasma and lung tissue were collected. Levels of Lck mRNA and protein in lung were detected by quantitative real-time PCR and western blot. The levels of IL-4 and IgE in BALF and plasma were detected with ELISA. Results: Lck specific siRNA significantly inhibited expression of Lck mRNA and protein in T cells. In vivo transfection of Lck siRNA down regulated the expression of Lck mRNA and protein in lung parenchymal homogenates. Sensitized mice treated with Lck siRNA prior to OVA challenge had fewer eosinophils in BALF and in lung sections and lower levels of IL-4 and IgE in BALF and plasma compared to those treated with nonspecific siRNA. Conclusions: Pretreatment of OVA sensitized mice with Lck siRNA results in attenuation of pulmonary inflammation following OVA challenge. Inhibition of Lck gene expression should be investigated further as a potential therapy for asthma. PMID:26628998

  6. Syndecan-4 Regulates Early Neutrophil Migration and Pulmonary Inflammation in Response to Lipopolysaccharide

    PubMed Central

    Chang, Mary Y.; Wang, Xintao; Gill, Sean E.; Skerrett, Shawn; McGuire, John K.; Sato, Suguru; Nikaido, Takefumi; Kojima, Tetsuhito; Munakata, Mitsuru; Mongovin, Steve; Parks, William C.; Martin, Thomas R.; Wight, Thomas N.; Frevert, Charles W.

    2012-01-01

    Proteoglycans (PGs) and their associated glycosaminoglycan side chains are effectors of inflammation, but little is known about changes to the composition of PGs in response to lung infection or injury. The goals of this study were to identify changes to heparan sulfate PGs in a mouse model of gram-negative pneumonia, to identify the Toll-like receptor adaptor molecules responsible for these changes, and to determine the role of the heparan sulfate PG in the innate immune response in the lungs. We treated mice with intratracheal LPS, a component of the cell wall of gram-negative bacteria, to model gram-negative pneumonia. Mice treated with intratracheal LPS had a rapid and selective increase in syndecan-4 mRNA that was regulated through MyD88-dependent mechanisms, whereas expression of several other PGs was not affected. To determine the role of syndecan-4 in the inflammatory response, we exposed mice deficient in syndecan-4 to LPS and found a significant increase in neutrophil numbers and amounts of CXC-chemokines and total protein in bronchoalveolar lavage fluid. In studies performed in vitro, macrophages and epithelial cells treated with LPS had increased expression of syndecan-4. Studies performed using BEAS-2B cells showed that pretreatment with heparin and syndecan-4 decreased the expression of CXCL8 mRNA in response to LPS and TNF-α. These findings indicate that the early inflammatory response to LPS involves marked up-regulation of syndecan-4, which functions to limit the extent of pulmonary inflammation and lung injury. PMID:22427536

  7. Phosphoinositide 3-kinase γ plays a critical role in bleomycin-induced pulmonary inflammation and fibrosis in mice.

    PubMed

    Russo, Remo C; Garcia, Cristiana C; Barcelos, Lucíola S; Rachid, Milene A; Guabiraba, Rodrigo; Roffê, Ester; Souza, Adriano L S; Sousa, Lirlândia P; Mirolo, Massimiliano; Doni, Andrea; Cassali, Geovanni D; Pinho, Vanessa; Locati, Massimo; Teixeira, Mauro M

    2011-02-01

    PI3Kγ is central in signaling diverse arrays of cellular functions and inflammation. Pulmonary fibrosis is associated with pulmonary inflammation, angiogenesis, and deposition of collagen and is modeled by instillation of bleomycin. The role of PI3Kγ in mediating bleomycin-induced pulmonary inflammation and fibrosis in mice and potential mechanisms involved was investigated here. WT or PI3Kγ KO mice were instilled with bleomycin and leukocyte subtype influx, cytokine and chemokine levels, and angiogenesis and tissue fibrosis evaluated. The activation of lung-derived leukocytes and fibroblasts was evaluated in vitro. The relevance of PI3Kγ for endothelial cell function was evaluated in HUVECs. PI3Kγ KO mice had greater survival and weight recovery and less fibrosis than WT mice after bleomycin instillation. This was associated with decreased production of TGF-β(1) and CCL2 and increased production of IFN-γ and IL-10. There was reduced expression of collagen, fibronectin, α-SMA, and von Willebrand factor and decreased numbers and activation of leukocytes and phosphorylation of AKT and IκB-α. PI3Kγ KO mice had a reduced number and area of blood vessels in the lungs. In vitro, treatment of human endothelial cells with the PI3Kγ inhibitor AS605240 decreased proliferation, migration, and formation of capillary-like structures. AS605240 also decreased production of collagen by murine lung-derived fibroblasts. PI3Kγ deficiency confers protection against bleomycin-induced pulmonary injury, angiogenesis, and fibrosis through the modulation of leukocyte, fibroblast, and endothelial cell functions. Inhibitors of PI3Kγ may be beneficial for the treatment of pulmonary fibrosis. PMID:21048214

  8. Hirsutella sinensis mycelium attenuates bleomycin-induced pulmonary inflammation and fibrosis in vivo.

    PubMed

    Huang, Tsung-Teng; Lai, Hsin-Chih; Ko, Yun-Fei; Ojcius, David M; Lan, Ying-Wei; Martel, Jan; Young, John D; Chong, Kowit-Yu

    2015-01-01

    Hirsutella sinensis mycelium (HSM), the anamorph of Cordyceps sinensis, is a traditional Chinese medicine that has been shown to possess various pharmacological properties. We previously reported that this fungus suppresses interleukin-1β and IL-18 secretion by inhibiting both canonical and non-canonical inflammasomes in human macrophages. However, whether HSM may be used to prevent lung fibrosis and the mechanism underlying this activity remain unclear. Our results show that pretreatment with HSM inhibits TGF-β1-induced expression of fibronectin and α-SMA in lung fibroblasts. HSM also restores superoxide dismutase expression in TGF-β1-treated lung fibroblasts and inhibits reactive oxygen species production in lung epithelial cells. Furthermore, HSM pretreatment markedly reduces bleomycin-induced lung injury and fibrosis in mice. Accordingly, HSM reduces inflammatory cell accumulation in bronchoalveolar lavage fluid and proinflammatory cytokines levels in lung tissues. The HSM extract also significantly reduces TGF-β1 in lung tissues, and this effect is accompanied by decreased collagen 3α1 and α-SMA levels. Moreover, HSM reduces expression of the NLRP3 inflammasome and P2X7R in lung tissues, whereas it enhances expression of superoxide dismutase. These findings suggest that HSM may be used for the treatment of pulmonary inflammation and fibrosis. PMID:26497260

  9. Hirsutella sinensis mycelium attenuates bleomycin-induced pulmonary inflammation and fibrosis in vivo

    PubMed Central

    Huang, Tsung-Teng; Lai, Hsin-Chih; Ko, Yun-Fei; Ojcius, David M.; Lan, Ying-Wei; Martel, Jan; Young, John D.; Chong, Kowit-Yu

    2015-01-01

    Hirsutella sinensis mycelium (HSM), the anamorph of Cordyceps sinensis, is a traditional Chinese medicine that has been shown to possess various pharmacological properties. We previously reported that this fungus suppresses interleukin-1β and IL-18 secretion by inhibiting both canonical and non-canonical inflammasomes in human macrophages. However, whether HSM may be used to prevent lung fibrosis and the mechanism underlying this activity remain unclear. Our results show that pretreatment with HSM inhibits TGF-β1–induced expression of fibronectin and α-SMA in lung fibroblasts. HSM also restores superoxide dismutase expression in TGF-β1–treated lung fibroblasts and inhibits reactive oxygen species production in lung epithelial cells. Furthermore, HSM pretreatment markedly reduces bleomycin–induced lung injury and fibrosis in mice. Accordingly, HSM reduces inflammatory cell accumulation in bronchoalveolar lavage fluid and proinflammatory cytokines levels in lung tissues. The HSM extract also significantly reduces TGF-β1 in lung tissues, and this effect is accompanied by decreased collagen 3α1 and α-SMA levels. Moreover, HSM reduces expression of the NLRP3 inflammasome and P2X7R in lung tissues, whereas it enhances expression of superoxide dismutase. These findings suggest that HSM may be used for the treatment of pulmonary inflammation and fibrosis. PMID:26497260

  10. Endothelial targeting of liposomes encapsulating SOD/catalase mimetic EUK-134 alleviates acute pulmonary inflammation.

    PubMed

    Howard, Melissa D; Greineder, Colin F; Hood, Elizabeth D; Muzykantov, Vladimir R

    2014-03-10

    Production of excessive levels of reactive oxygen species (ROS) in the vascular endothelium is a common pathogenic pathway in many dangerous conditions, including acute lung injury, ischemia-reperfusion, and inflammation. Ineffective delivery of antioxidants to the endothelium limits their utility for management of these conditions. In this study, we devised a novel translational antioxidant intervention targeted to the vascular endothelium using PEG-liposomes loaded with EUK-134 (EUK), a potent superoxide dismutase/catalase mimetic. EUK loaded into antibody-coated liposomes (size 197.8±4.5 nm diameter, PDI 0.179±0.066) exerted partial activity in the intact carrier, while full activity was recovered upon liposome disruption. For targeting we used antibodies (Abs) to platelet-endothelial cell adhesion molecule (PECAM-1). Both streptavidin-biotin and SATA/SMCC conjugation chemistries provided binding of 125-150 Ab molecules per liposome. Ab/EUK/liposomes, but not IgG/EUK/liposomes: i) bound to endothelial cells and inhibited cytokine-induced inflammatory activation in vitro; and, ii) accumulated in lungs after intravascular injection, providing >60% protection against pulmonary edema in endotoxin-challenged mice (vs <6% protection afforded by IgG/liposome/EUK counterpart). Since the design elements of this drug delivery system are already in clinical use (PEG-liposomes, antibodies, SATA/SMCC conjugation), it is an attractive candidate for translational interventions using antioxidant molecules such as EUK and other clinically acceptable drugs. PMID:24412573

  11. Therapeutic expansion of CD4+FoxP3+ regulatory T cells limits allergic airway inflammation during pulmonary fungal infection.

    PubMed

    Schulze, Bianca; Piehler, Daniel; Eschke, Maria; Heyen, Laura; Protschka, Martina; Köhler, Gabriele; Alber, Gottfried

    2016-06-01

    Allergic asthma can be frequently caused and exacerbated by sensitization to ubiquitous fungal allergens associated with pulmonary mucus production, airway hyperresponsiveness and bronchial constriction, resulting in a complex disease that is often difficult to treat. Fungal infections are frequently complicated by the development of a type 2 immune response that prevents successful elimination of the fungal pathogen. Furthermore, production of type 2 cytokines triggers allergic airway inflammation. Following intranasal infection of BALB/c mice with the fungusCryptococcus neoformans, we recently described a more pronounced type 2 immune response in the absence of regulatory T (Treg) cells. To determine whether Treg cell expansion is able to suppress type 2-related fungal allergic inflammation, we increased Treg cell numbers during pulmonaryC. neoformansinfection by administration of an interleukin (IL)-2/anti-IL-2 complex. Expansion of Treg cells resulted in reduced immunoglobulin E production and decreased allergic airway inflammation including reduced production of pulmonary mucus and type 2 cytokines as well as production of immunosuppressive cytokines such as IL-10 and transforming growth factor-β1. From our data we conclude that Treg cells and/or their suppressive mediators represent potential targets for therapeutic intervention during allergic fungal airway disease. PMID:27001975

  12. Human metapneumovirus infection activates the TSLP pathway that drives excessive pulmonary inflammation and viral replication in mice.

    PubMed

    Lay, Margarita K; Céspedes, Pablo F; Palavecino, Christian E; León, Miguel A; Díaz, Rodrigo A; Salazar, Francisco J; Méndez, Gonzalo P; Bueno, Susan M; Kalergis, Alexis M

    2015-06-01

    Human metapneumovirus (hMPV) is a leading cause of acute respiratory tract infections in children and the elderly. The mechanism by which this virus triggers an inflammatory response still remains unknown. Here, we evaluated whether the thymic stromal lymphopoietin (TSLP) pathway contributes to lung inflammation upon hMPV infection. We found that hMPV infection promotes TSLP expression both in human airway epithelial cells and in the mouse lung. hMPV infection induced lung infiltration of OX40L(+) CD11b(+) DCs. Mice lacking the TSLP receptor deficient mice (tslpr(-/-) ) showed reduced lung inflammation and hMPV replication. These mice displayed a decreased number of neutrophils as well a reduction in levels of thymus and activation-regulated chemokine/CCL17, IL-5, IL-13, and TNF-α in the airways upon hMPV infection. Furthermore, a higher frequency of CD4(+) and CD8(+) T cells was found in tslpr(-/-) mice compared to WT mice, which could contribute to controlling viral spread. Depletion of neutrophils in WT and tslpr(-/-) mice decreased inflammation and hMPV replication. Remarkably, blockage of TSLP or OX40L with specific Abs reduced lung inflammation and viral replication following hMPV challenge in mice. Altogether, these results suggest that activation of the TSLP pathway is pivotal in the development of pulmonary pathology and pulmonary hMPV replication. PMID:25763996

  13. Nerve growth factor and neurotrophin-3 mediate survival of pulmonary plasma cells during the allergic airway inflammation.

    PubMed

    Abram, Melanie; Wegmann, Michael; Fokuhl, Verena; Sonar, Sanchaita; Luger, Elke Olga; Kerzel, Sebastian; Radbruch, Andreas; Renz, Harald; Zemlin, Michael

    2009-04-15

    Allergen-specific Abs play a pivotal role in the induction and maintenance of allergic airway inflammation. During secondary immune responses, plasma cell survival and Ab production is mediated by extrinsic factors provided by the local environment (survival niches). It is unknown whether neurotrophins, a characteristic marker of allergic airway inflammation, influence plasma cell survival in the lung. Using a mouse model of allergic asthma, we found that plasma cells from the lung and spleen are distinct subpopulations exhibiting differential expression patterns of neurotrophins and their receptors (Trks). In vitro, the nerve growth factor (NGF) and neurotrophin-3 (NT3) led to a dose-dependent increase in viability of isolated pulmonary plasma cells due to up-regulation of the antiapoptotic Bcl2 pathway. In parallel, the expression of transcription factors that stimulate the production of immunoglobulins (X-box binding protein 1 and NF-kappaB subunit RelA) was enhanced in plasma cells treated with NGF and NT3. These findings were supported in vivo. When the NGF pathway was blocked by intranasal application of a selective TrkA inhibitor, sensitized mice showed reduced numbers of pulmonary plasma cells and developed lower levels of allergen-specific and total serum IgE in response to OVA inhalation. This suggests that in the allergic airway inflammation, NGF/TrkA-mediated pulmonary IgE production contributes significantly to serum-IgE levels. We conclude that the neurotrophins NGF and NT3 act as survival factors for pulmonary plasma cells and thus are important regulators of the local Ab production in the allergic airway disease. PMID:19342646

  14. Systemic interleukin-2 administration improves lung function and modulates chorioamnionitis-induced pulmonary inflammation in the ovine fetus.

    PubMed

    Willems, Monique G M; Ophelders, Daan R M G; Nikiforou, Maria; Jellema, Reint K; Butz, Anke; Delhaas, Tammo; Kramer, Boris W; Wolfs, Tim G A M

    2016-01-01

    Chorioamnionitis, an inflammatory reaction of the fetal membranes to microbes, is an important cause of preterm birth and associated with inflammation-driven lung injury. However, inflammation in utero overcomes immaturity of the premature lung by inducing surfactant lipids and lung gas volume. Previously, we found that lipopolysaccharide (LPS)-induced chorioamnionitis resulted in pulmonary inflammation with increased effector T cells and decreased regulatory T cell (Treg) numbers. Because Tregs are crucial for immune regulation, we assessed the effects of interleukin (IL)-2-driven selective Treg expansion on the fetal lung in an ovine chorioamnionitis model. Instrumented fetuses received systemic prophylactic IL-2 treatment [118 days gestational age (dGA)] with or without subsequent exposure to intra-amniotic LPS (122 dGA). Following delivery at 129 dGA (term 147 dGA), pulmonary and systemic inflammation, morphological changes, lung gas volume, and phospholipid concentration were assessed. IL-2 pretreatment increased the FoxP3(+)/CD3(+) ratio, which was associated with reduced CD3-positive cells in the fetal lungs of LPS-exposed animals. Prophylactic IL-2 treatment did not prevent pulmonary accumulation of myeloperoxidase- and PU.1-positive cells or elevation of bronchoalveolar lavage fluid IL-8 and systemic IL-6 concentrations in LPS-exposed animals. Unexpectedly, IL-2 treatment improved fetal lung function of control lambs as indicated by increased disaturated phospholipids and improved lung gas volume. In conclusion, systemic IL-2 treatment in utero preferentially expanded Tregs and improved lung gas volume and disaturated phospholipids. These beneficial effects on lung function were maintained despite the moderate immunomodulatory effects of prophylactic IL-2 in the course of chorioamnionitis. PMID:26519206

  15. Prolonged B Cell Depletion With Rituximab is Effective in Treating Refractory Pulmonary Granulomatous Inflammation in Granulomatosis With Polyangiitis (GPA)

    PubMed Central

    Henderson, Scott R.; Copley, Susan J.; Pusey, Charles D.; Ind, Philip W.; Salama, Alan D.

    2014-01-01

    Abstract Pulmonary nodule formation is a frequent feature of granulomatosis with polyangiitis (GPA). Traditional induction therapy includes methotrexate or cyclophosphamide, however, pulmonary nodules generally respond slower than vasculitic components of disease. Efficacy of rituximab (RTX) solely for the treatment of pulmonary nodules has not been assessed. In this observational cohort study, we report patient outcomes with RTX in GPA patients with pulmonary nodules who failed to achieve remission following conventional immunosuppression. Patients (n = 5) with persistent pulmonary nodules were identified from our clinic database and retrospectively evaluated. Systemic manifestations, inflammatory markers, disease activity, concurrent immunosuppression, and absolute B cell numbers were recorded pre-RTX and at 6 monthly intervals following treatment. Chest radiographs at each time point were scored by an experienced radiologist, blinded to clinical details. Five patients with GPA and PR3-ANCA were evaluated (2 male, 3 female), mean age 34 (22–52) years. Pulmonary nodules (median 4, range 2–6), with or without cavitation were present in all patients. RTX induced initial B cell depletion (<5 cells/μL) in all patients but re-population was observed in 3 patients. Repeated RTX treatment in these 3 and persistent B cell depletion in the whole cohort was associated with further significant radiological improvement. Radiographic scoring at each time interval showed reduction in both number of nodules (P = <0.0001) and largest nodule diameter (P = <0.0001) in all patients for at least 18 months following B cell depletion. In summary, RTX therapy induces resolution of pulmonary granulomatous inflammation in GPA following prolonged B cell depletion. PMID:25501085

  16. Functional characterisation of human pulmonary monocyte-like cells in lipopolysaccharide-mediated acute lung inflammation

    PubMed Central

    2014-01-01

    Background We have previously reported the presence of novel subpopulations of pulmonary monocyte-like cells (PMLC) in the human lung; resident PMLC (rPMLC, HLA-DR+CD14++CD16+cells) and inducible PMLC (iPMLC, HLA-DR+CD14++CD16- cells). iPMLC are significantly increased in bronchoalveolar lavage (BAL) fluid following inhalation of lipopolysaccharide (LPS). We have carried out the first functional evaluation of PMLC subpopulations in the inflamed lung, following the isolation of these cells, and other lineages, from BAL fluid using novel and complex protocols. Methods iPMLC, rPMLC, alveolar macrophages (AM), neutrophils, and regulatory T cells were quantified in BAL fluid of healthy subjects at 9 hours post-LPS inhalation (n = 15). Cell surface antigen expression by iPMLC, rPMLC and AM and the ability of each lineage to proliferate and to undergo phagocytosis were investigated using flow cytometry. Basal cytokine production by iPMLC compared to AM following their isolation from BAL fluid and the responsiveness of both cell types following in vitro treatment with the synthetic corticosteroid dexamethasone were assessed. Results rPMLC have a significantly increased expression of mature macrophage markers and of the proliferation antigen Ki67, compared to iPMLC. Our cytokine data revealed a pro-inflammatory, corticosteroid-resistant phenotype of iPMLC in this model. Conclusions These data emphasise the presence of functionally distinct subpopulations of the monocyte/macrophage lineage in the human lung in experimental acute lung inflammation. PMID:24684897

  17. Tiotropium Attenuates Virus-Induced Pulmonary Inflammation in Cigarette Smoke-Exposed Mice.

    PubMed

    Bucher, Hannes; Duechs, Matthias J; Tilp, Cornelia; Jung, Birgit; Erb, Klaus J

    2016-06-01

    Viral infections trigger exacerbations in chronic obstructive pulmonary disease (COPD), and tiotropium, a M3 receptor antagonist, reduces exacerbations in patients by unknown mechanisms. In this report, we investigated whether tiotropium has anti-inflammatory effects in mice exposed to cigarette smoke (CS) and infected with influenza virus A/PR/8/34 (H1N1) or respiratory syncytial virus (RSV) and compared these effects with those of steroid fluticasone and PDE4-inhibitor roflumilast. Mice were exposed to CS; infected with H1N1 or RSV; and treated with tiotropium, fluticasone, or roflumilast. The amount of cells and cytokine levels in the airways, lung function, and viral load was determined. NCI-H292 cells were infected with H1N1 or RSV and treated with the drugs. In CS/H1N1-exposed mice, tiotropium reduced neutrophil and macrophage numbers and levels of interleukin-6 (IL-6) and interferon-γ (IFN-γ) in the airways and improved lung function. In contrast, fluticasone increased the loss of body weight; failed to reduce neutrophil or macrophage numbers; increased IL-6, KC, and tumor necrosis factor-α (TNF-α) in the lungs; and worsened lung function. Treatment with roflumilast reduced macrophage numbers, IL-6, and KC in the lungs but had no effect on neutrophil numbers or lung function. In CS/RSV-exposed mice, treatment with tiotropium, but not fluticasone or roflumilast, reduced neutrophil numbers and IL-6 and TNF-α levels in the lungs. Viral load of H1N1 and RSV was significantly elevated in CS/virus-exposed mice and NCI-H292 cells after fluticasone treatment, whereas tiotropium and roflumilast had no effect. In conclusion, tiotropium has anti-inflammatory effects on CS/virus-induced inflammation in mice that are superior to the effects of roflumilast and fluticasone. This finding might help to explain the observed reduction of exacerbation rates in COPD patients. PMID:27016458

  18. Local and systemic neutrophilic inflammation in patients with lung cancer and chronic obstructive pulmonary disease

    PubMed Central

    2013-01-01

    Background Recent investigations suggest that neutrophils play an important role in the immune response to lung cancer as well as chronic obstructive pulmonary disease (COPD). The aim of this study was to evaluate the amount of neutrophils and markers of their activity in lung cancer and COPD and in coexistence of these two diseases. Methods In total, 267 persons were included in the study: 139 patients with lung cancer, 55 patients with lung cancer and COPD, 40 patients with COPD, and 33 healthy subjects. Peripheral blood and BAL fluid samples were obtained for cell count analysis and determination of NE, MPO levels and ROS production. NE and MPO levels in the serum and BAL fluid were determined by ELISA. ROS production was analyzed by flow cytometer. Results The percentage, cell count of neutrophils and neutrophil to lymphocyte ratio in the peripheral blood were significantly higher in lung cancer patients with or without COPD compared to COPD patients or healthy individuals (P < 0.05). The percentage and cell count of neutrophils in BAL fluid were significantly lower in patients with lung cancer with or without COPD than in patients with COPD (P < 0.05). However, BAL fluid and serum levels of both NE and MPO were significantly higher in patients with lung cancer than COPD patients or healthy individuals (P < 0.05). Neutrophils produced higher amounts of ROS in patients with lung cancer with or without COPD compared with COPD patients or healthy individuals (P < 0.05). Conclusions The results from this study demonstrate higher degree of local and systemic neutrophilic inflammation in patients with lung cancer (with or without COPD) than in patients with COPD. PMID:23919722

  19. Tiotropium Attenuates Virus-Induced Pulmonary Inflammation in Cigarette Smoke–Exposed Mice

    PubMed Central

    Bucher, Hannes; Duechs, Matthias J.; Tilp, Cornelia; Jung, Birgit

    2016-01-01

    Viral infections trigger exacerbations in chronic obstructive pulmonary disease (COPD), and tiotropium, a M3 receptor antagonist, reduces exacerbations in patients by unknown mechanisms. In this report, we investigated whether tiotropium has anti-inflammatory effects in mice exposed to cigarette smoke (CS) and infected with influenza virus A/PR/8/34 (H1N1) or respiratory syncytial virus (RSV) and compared these effects with those of steroid fluticasone and PDE4-inhibitor roflumilast. Mice were exposed to CS; infected with H1N1 or RSV; and treated with tiotropium, fluticasone, or roflumilast. The amount of cells and cytokine levels in the airways, lung function, and viral load was determined. NCI-H292 cells were infected with H1N1 or RSV and treated with the drugs. In CS/H1N1-exposed mice, tiotropium reduced neutrophil and macrophage numbers and levels of interleukin-6 (IL-6) and interferon-γ (IFN-γ) in the airways and improved lung function. In contrast, fluticasone increased the loss of body weight; failed to reduce neutrophil or macrophage numbers; increased IL-6, KC, and tumor necrosis factor-α (TNF-α) in the lungs; and worsened lung function. Treatment with roflumilast reduced macrophage numbers, IL-6, and KC in the lungs but had no effect on neutrophil numbers or lung function. In CS/RSV-exposed mice, treatment with tiotropium, but not fluticasone or roflumilast, reduced neutrophil numbers and IL-6 and TNF-α levels in the lungs. Viral load of H1N1 and RSV was significantly elevated in CS/virus-exposed mice and NCI-H292 cells after fluticasone treatment, whereas tiotropium and roflumilast had no effect. In conclusion, tiotropium has anti-inflammatory effects on CS/virus-induced inflammation in mice that are superior to the effects of roflumilast and fluticasone. This finding might help to explain the observed reduction of exacerbation rates in COPD patients. PMID:27016458

  20. An alteration of the gut-liver axis drives pulmonary inflammation after intoxication and burn injury in mice.

    PubMed

    Chen, Michael M; Zahs, Anita; Brown, Mary M; Ramirez, Luis; Turner, Jerrold R; Choudhry, Mashkoor A; Kovacs, Elizabeth J

    2014-10-01

    Approximately half of all adult burn patients are intoxicated at the time of their injury and have worse clinical outcomes than those without prior alcohol exposure. This study tested the hypothesis that intoxication alters the gut-liver axis, leading to increased pulmonary inflammation mediated by burn-induced IL-6 in the liver. C57BL/6 mice were given 1.2 g/kg ethanol 30 min prior to a 15% total body surface area burn. To restore gut barrier function, the specific myosin light chain kinase inhibitor membrane-permeant inhibitor of kinase (PIK), which we have demonstrated to reduce bacterial translocation from the gut, was administered 30 min after injury. Limiting bacterial translocation with PIK attenuated hepatic damage as measured by a 47% reduction in serum alanine aminotransferase (P < 0.05), as well as a 33% reduction in hepatic IL-6 mRNA expression (P < 0.05), compared with intoxicated and burn-injured mice without PIK. This mitigation of hepatic damage was associated with a 49% decline in pulmonary neutrophil infiltration (P < 0.05) and decreased alveolar wall thickening compared with matched controls. These results were reproduced by prophylactic reduction of the bacterial load in the intestines with oral antibiotics before intoxication and burn injury. Overall, these data suggest that the gut-liver axis is deranged when intoxication precedes burn injury and that limiting bacterial translocation in this setting attenuates hepatic damage and pulmonary inflammation. PMID:25104501

  1. Oxidative stress–induced mitochondrial dysfunction drives inflammation and airway smooth muscle remodeling in patients with chronic obstructive pulmonary disease

    PubMed Central

    Wiegman, Coen H.; Michaeloudes, Charalambos; Haji, Gulammehdi; Narang, Priyanka; Clarke, Colin J.; Russell, Kirsty E.; Bao, Wuping; Pavlidis, Stelios; Barnes, Peter J.; Kanerva, Justin; Bittner, Anton; Rao, Navin; Murphy, Michael P.; Kirkham, Paul A.; Chung, Kian Fan; Adcock, Ian M.; Brightling, Christopher E.; Davies, Donna E.; Finch, Donna K.; Fisher, Andrew J.; Gaw, Alasdair; Knox, Alan J.; Mayer, Ruth J.; Polkey, Michael; Salmon, Michael; Singh, David

    2015-01-01

    Background Inflammation and oxidative stress play critical roles in patients with chronic obstructive pulmonary disease (COPD). Mitochondrial oxidative stress might be involved in driving the oxidative stress–induced pathology. Objective We sought to determine the effects of oxidative stress on mitochondrial function in the pathophysiology of airway inflammation in ozone-exposed mice and human airway smooth muscle (ASM) cells. Methods Mice were exposed to ozone, and lung inflammation, airway hyperresponsiveness (AHR), and mitochondrial function were determined. Human ASM cells were isolated from bronchial biopsy specimens from healthy subjects, smokers, and patients with COPD. Inflammation and mitochondrial function in mice and human ASM cells were measured with and without the presence of the mitochondria-targeted antioxidant MitoQ. Results Mice exposed to ozone, a source of oxidative stress, had lung inflammation and AHR associated with mitochondrial dysfunction and reflected by decreased mitochondrial membrane potential (ΔΨm), increased mitochondrial oxidative stress, and reduced mitochondrial complex I, III, and V expression. Reversal of mitochondrial dysfunction by the mitochondria-targeted antioxidant MitoQ reduced inflammation and AHR. ASM cells from patients with COPD have reduced ΔΨm, adenosine triphosphate content, complex expression, basal and maximum respiration levels, and respiratory reserve capacity compared with those from healthy control subjects, whereas mitochondrial reactive oxygen species (ROS) levels were increased. Healthy smokers were intermediate between healthy nonsmokers and patients with COPD. Hydrogen peroxide induced mitochondrial dysfunction in ASM cells from healthy subjects. MitoQ and Tiron inhibited TGF-β–induced ASM cell proliferation and CXCL8 release. Conclusions Mitochondrial dysfunction in patients with COPD is associated with excessive mitochondrial ROS levels, which contribute to enhanced inflammation and cell

  2. Genetics and Early Detection in Idiopathic Pulmonary Fibrosis

    PubMed Central

    Putman, Rachel K.; Rosas, Ivan O.

    2014-01-01

    Genetic studies hold promise in helping to identify patients with early idiopathic pulmonary fibrosis (IPF). Recent studies using chest computed tomograms (CTs) in smokers and in the general population have demonstrated that imaging abnormalities suggestive of an early stage of pulmonary fibrosis are not uncommon and are associated with respiratory symptoms, physical examination abnormalities, and physiologic decrements expected, but less severe than those noted in patients with IPF. Similarly, recent genetic studies have demonstrated strong and replicable associations between a common promoter polymorphism in the mucin 5B gene (MUC5B) and both IPF and the presence of abnormal imaging findings in the general population. Despite these findings, it is important to note that the definition of early-stage IPF remains unclear, limited data exist to definitively connect abnormal imaging findings to IPF, and genetic studies assessing early-stage pulmonary fibrosis remain in their infancy. In this perspective we provide updated information on interstitial lung abnormalities and their connection to IPF. We summarize information on the genetics of pulmonary fibrosis by focusing on the recent genetic findings of MUC5B. Finally, we discuss the implications of these findings and suggest a roadmap for the use of genetics in the detection of early IPF. PMID:24547893

  3. Acute pulmonary inflammation induced by exposure of the airways to staphylococcal enterotoxin type B in rats

    SciTech Connect

    Desouza, Ivani A. . E-mail: ivanidesouza@fcm.unicamp.br; Franco-Penteado, Carla F.; Camargo, Enilton A.; Lima, Carmen S.P.; Teixeira, Simone A.; Muscara, Marcelo N.; De Nucci, Gilberto; Antunes, Edson

    2006-11-15

    Staphylocococcus aureus is a gram-positive bacterium that produces several enterotoxins, which are responsible for most part of pathological conditions associated to staphylococcal infections, including lung inflammation. This study aimed to investigate the underlying inflammatory mechanisms involved in leukocyte recruitment in rats exposed to staphylococcal enterotoxin B (SEB). Rats were anesthetized with pentobarbital sodium and intratracheally injected with either SEB or sterile phosphate-buffered saline (PBS, 0.4 ml). Airways exposition to SEB (7.5-250 ng/trachea) caused a dose- and time-dependent neutrophil accumulation in BAL fluid, the maximal effects of which were observed at 4 h post-SEB exposure (250 ng/trachea). Eosinophils were virtually absent in BAL fluid, whereas mononuclear cell counts increased only at 24 h post-SEB. Significant elevations of granulocytes in bone marrow (mature and immature forms) and peripheral blood have also been detected. In BAL fluid, marked elevations in the levels of lipid mediators (LTB{sub 4} and PGE{sub 2}) and cytokines (TNF-{alpha}, IL-6 and IL-10) were observed after SEB instillation. The SEB-induced neutrophil accumulation in BAL fluid was reduced by pretreatment with dexamethasone (0.5 mg/kg), the COX-2 inhibitor celecoxib (3 mg/kg), the selective iNOS inhibitor compound 1400 W (5 mg/kg) and the lipoxygenase inhibitor AA-861 (200 {mu}g/kg). In separate experiments carried out with rat isolated peripheral neutrophils, SEB failed to induce neutrophil adhesion to serum-coated plates and chemotaxis. In conclusion, rat airways exposition to SEB causes a neutrophil-dependent lung inflammation at 4 h as result of the release of proinflammatory (NO, PGE{sub 2}, LTB{sub 4}, TNF-{alpha}, IL-6) and anti-inflammatory mediators (IL-10)

  4. Genetic removal of the A2A adenosine receptor enhances pulmonary inflammation, mucin production, and angiogenesis in adenosine deaminase-deficient mice.

    PubMed

    Mohsenin, Amir; Mi, Tiejuan; Xia, Yang; Kellems, Rodney E; Chen, Jiang-Fan; Blackburn, Michael R

    2007-09-01

    Adenosine is generated at sites of tissue injury where it serves to regulate inflammation and damage. Adenosine signaling has been implicated in the regulation of pulmonary inflammation and damage in diseases such as asthma and chronic obstructive pulmonary disease; however, the contribution of specific adenosine receptors to key immunoregulatory processes in these diseases is still unclear. Mice deficient in the purine catabolic enzyme adenosine deaminase (ADA) develop pulmonary inflammation and mucous metaplasia in association with adenosine elevations making them a useful model for assessing the contribution of specific adenosine receptors to adenosine-mediated pulmonary disease. Studies suggest that the A(2A) adenosine receptor (A(2A)R) functions to limit inflammation and promote tissue protection; however, the contribution of A(2A)R signaling has not been examined in the ADA-deficient model of adenosine-mediated lung inflammation. The purpose of the current study was to examine the contribution of A(2A)R signaling to the pulmonary phenotype seen in ADA-deficient mice. This was accomplished by generating ADA/A(2A)R double knockout mice. Genetic removal of the A(2A)R from ADA-deficient mice resulted in enhanced inflammation comprised largely of macrophages and neutrophils, mucin production in the bronchial airways, and angiogenesis, relative to that seen in the lungs of ADA-deficient mice with the A(2A)R. In addition, levels of the chemokines monocyte chemoattractant protein-1 and CXCL1 were elevated, whereas levels of cytokines such as TNF-alpha and IL-6 were not. There were no compensatory changes in the other adenosine receptors in the lungs of ADA/A(2A)R double knockout mice. These findings suggest that the A(2A)R plays a protective role in the ADA-deficient model of pulmonary inflammation. PMID:17601796

  5. Mesenchymal stem cell-conditioned media suppresses inflammation-associated overproliferation of pulmonary artery smooth muscle cells in a rat model of pulmonary hypertension

    PubMed Central

    LIU, JUNFENG; HAN, ZHIBO; HAN, ZHONGCHAO; HE, ZHIXU

    2016-01-01

    Inflammation-associated overproliferation of pulmonary artery smooth muscle cells (PASMCs) is considered to be involved in the pathogenesis of pulmonary hypertension (PH). The administration of mesenchymal stem cell-conditioned media (MSC-CM) has displayed benefits in the treatment of PH, however, the exact mechanism has yet to be elucidated. The present study aimed to determine whether MSC-CM is able to suppress overproliferation of PASMCs in PH via immunoregulation. By the administration of MSC-CM to monocrotaline (MCT)-induced PH rats, and the development of an in vitro co-culture system comprised of PASMCs and activated T cells, the therapeutic effects of MSC-CM on PH, and the changes in the expression of correlated factors, including TNF-α, calcineurin (CaN) and nuclear factor of activated T cells (NFAT), were assessed. Immunohistochemical staining results indicated that MSC-CM was able to significantly suppress the production of TNF-α in MCT-induced PH and co-culture systems; and reverse transcription-quantitative polymerase chain reaction results showed significant downregulation of the expression of CaN and NFATc2 in PASMCs (P<0.01). Furthermore, MSC-CM was able to significantly suppress CaN activity and NFATc2 activation (P<0.01), thus inhibiting the overproliferation of PASMCs. Finally, MSC-CM improved abnormalities in hemodynamics and pulmonary histology in MCT-induced PH. In conclusion, the findings of the current study suggest that administration of MSC-CM has the potential to suppress inflammation-associated overproliferation of PASMCs due to its immunosuppressive effects in PH and, thus, may serve as a beneficial therapeutic strategy. PMID:26893632

  6. Klotho Reduction in Alveolar Macrophages Contributes to Cigarette Smoke Extract-induced Inflammation in Chronic Obstructive Pulmonary Disease.

    PubMed

    Li, Lingling; Wang, Yujie; Gao, Wei; Yuan, Cheng; Zhang, Sini; Zhou, Hong; Huang, Mao; Yao, Xin

    2015-11-13

    Abnormal inflammation and accelerated decline in lung function occur in patients with chronic obstructive pulmonary disease (COPD). Klotho, an anti-aging protein, has an anti-inflammatory function. However, the role of Klotho has never been investigated in COPD. The aim of this study is to investigate the possible role of Klotho by alveolar macrophages in airway inflammation in COPD. Klotho levels were assessed in the lung samples and peripheral blood mononuclear cells of non-smokers, smokers, and patients with COPD. The regulation of Klotho expression by cigarette smoke extract (CSE) was studied in vitro, and small interfering RNA (siRNA) and recombinant Klotho were employed to investigate the role of Klotho on CSE-induced inflammation. Klotho expression was reduced in alveolar macrophages in the lungs and peripheral blood mononuclear cells of COPD patients. CSE decreased Klotho expression and release from MH-S cells. Knockdown of endogenous Klotho augmented the expression of the inflammatory mediators, such as MMP-9, IL-6, and TNF-α, by MH-S cells. Exogenous Klotho inhibited the expression of CSE-induced inflammatory mediators. Furthermore, we showed that Klotho interacts with IκBα of the NF-κB pathway. Dexamethasone treatment increased the expression and release level of Klotho in MH-S cells. Our findings suggest that Klotho plays a role in sustained inflammation of the lungs, which in turn may have therapeutic implications in COPD. PMID:26385922

  7. PULMONARY INJURY AND INFLAMMATION FROM REPEATED EXPOSURE TO SOLUBLE COMPONENTS AND SOLID PARTICULATE MATTER (PM)

    EPA Science Inventory

    Pulmonary injury from acute exposures to PM and the role of soluble versus insoluble PM have received considerable attention; however, their long-term impacts are less well understood. This study compared pulmonary injury and inflammatory responses from repeated exposure to solub...

  8. Computerized detection of pulmonary embolism in computed tomographic pulmonary angiography (CTPA): improvement of vessel segmentation

    NASA Astrophysics Data System (ADS)

    Zhou, Chuan; Chan, Heang-Ping; Kuriakose, Jean W.; Chughtai, Aamer; Hadjiiski, Lubomir M.; Wei, Jun; Patel, Smita; Kazerooni, Ella A.

    2011-03-01

    Vessel segmentation is a fundamental step in an automated pulmonary embolism (PE) detection system. The purpose of this study is to improve the segmentation scheme for pulmonary vessels affected by PE and other lung diseases. We have developed a multiscale hierarchical vessel enhancement and segmentation (MHES) method for pulmonary vessel tree extraction based on the analysis of eigenvalues of Hessian matrices. However, it is difficult to segment the pulmonary vessels accurately when the vessel is occluded by PEs and/or surrounded by lymphoid tissues or lung diseases. In this study, we developed a method that combines MHES with level set refinement (MHES-LSR) to improve vessel segmentation accuracy. The level set was designed to propagate the initial object contours to the regions with relatively high gray-level, high gradient, and high compactness as measured by the smoothness of the curvature along vessel boundaries. Two and eight CTPA scans were randomly selected as training and test data sets, respectively. Forty volumes of interest (VOI) containing "representative" vessels were manually segmented by a radiologist experienced in CTPA interpretation and used as reference standard. The results show that, for the 32 test VOIs, the average percentage volume error relative to the reference standard was improved from 31.7+/-10.9% using the MHES method to 7.7+/-4.7% using the MHES-LSR method. The correlation between the computer-segmented vessel volume and the reference standard was improved from 0.954 to 0.986. The accuracy of vessel segmentation was improved significantly (p<0.05). The MHES-LSR method may have the potential to improve PE detection.

  9. Heme oxygenase-1 attenuates acute pulmonary inflammation by decreasing the release of segmented neutrophils from the bone marrow.

    PubMed

    Konrad, Franziska M; Braun, Stefan; Ngamsri, Kristian-Christos; Vollmer, Irene; Reutershan, Jörg

    2014-11-01

    Recruiting polymorphonuclear neutrophil granulocytes (PMNs) from circulation and bone marrow to the site of inflammation is one of the pivotal mechanisms of the innate immune system. During inflammation, the enzyme heme oxygenase 1 (HO-1) has been shown to reduce PMN migration. Although these effects have been described in various models, underlying mechanisms remain elusive. Recent studies revealed an influence of HO-1 on different cells of the bone marrow. We investigated the particular role of the bone marrow in terms of HO-1-dependent pulmonary inflammation. In a murine model of LPS inhalation, stimulation of HO-1 by cobalt (III) protoporphyrin-IX-chloride (CoPP) resulted in reduced segmented PMN migration into the alveolar space. In the CoPP group, segmented PMNs were also decreased intravascularly, and concordantly, mature and immature PMN populations were higher in the bone marrow. Inhibition of the enzyme by tin protoporphyrin-IX increased segmented and banded PMN migration into the bronchoalveolar lavage fluid with enhanced PMN release from the bone marrow and aggravated parameters of tissue inflammation. Oxidative burst activity was significantly higher in immature compared with mature PMNs. The chemokine stromal-derived factor-1 (SDF-1), which mediates homing of leukocytes into the bone marrow and is decreased in inflammation, was increased by CoPP. When SDF-1 was blocked by the specific antagonist AMD3100, HO-1 activation was no longer effective in curbing PMN trafficking to the inflamed lungs. In conclusion, we show evidence that the anti-inflammatory effects of HO-1 are largely mediated by inhibiting the release of segmented PMNs from the bone marrow rather than direct effects within the lung. PMID:25172914

  10. Pulmonary instillation of low doses of titanium dioxide nanoparticles in mice leads to particle retention and gene expression changes in the absence of inflammation

    SciTech Connect

    Husain, Mainul; Saber, Anne T.; Guo, Charles; Jacobsen, Nicklas R.; Jensen, Keld A.; Yauk, Carole L.; Williams, Andrew; Vogel, Ulla; Wallin, Hakan; Halappanavar, Sabina

    2013-06-15

    We investigated gene expression, protein synthesis, and particle retention in mouse lungs following intratracheal instillation of varying doses of nano-sized titanium dioxide (nano-TiO{sub 2}). Female C57BL/6 mice were exposed to rutile nano-TiO{sub 2} via single intratracheal instillations of 18, 54, and 162 μg/mouse. Mice were sampled 1, 3, and 28 days post-exposure. The deposition of nano-TiO{sub 2} in the lungs was assessed using nanoscale hyperspectral microscopy. Biological responses in the pulmonary system were analyzed using DNA microarrays, pathway-specific real-time RT-PCR (qPCR), gene-specific qPCR arrays, and tissue protein ELISA. Hyperspectral mapping showed dose-dependent retention of nano-TiO{sub 2} in the lungs up to 28 days post-instillation. DNA microarray analysis revealed approximately 3000 genes that were altered across all treatment groups (± 1.3 fold; p < 0.1). Several inflammatory mediators changed in a dose- and time-dependent manner at both the mRNA and protein level. Although no influx of neutrophils was detected at the low dose, changes in the expression of several genes and proteins associated with inflammation were observed. Resolving inflammation at the medium dose, and lack of neutrophil influx in the lung fluid at the low dose, were associated with down-regulation of genes involved in ion homeostasis and muscle regulation. Our gene expression results imply that retention of nano-TiO{sub 2} in the absence of inflammation over time may potentially perturb calcium and ion homeostasis, and affect smooth muscle activities. - Highlights: • Pulmonary effects following exposure to low doses of nano-TiO{sub 2} were examined. • Particle retention in lungs was assessed using nanoscale hyperspectral microscopy. • Particles persisted up to 28 days in lungs in all dose groups. • Inflammation was the pathway affected in the high dose group at all time points. • Ion homeostasis and muscle activity pathways were affected in the low dose

  11. Effect of ultrafine carbon black particles on lipoteichoic acid-induced early pulmonary inflammation in BALB/c mice

    SciTech Connect

    Yamamoto, Shoji . E-mail: snyamamo@nies.go.jp; Tin-Tin-Win-Shwe; Ahmed, Sohel; Kobayashi, Takahiro; Fujimaki, Hidekazu

    2006-06-15

    We studied the interaction effects of a single intratracheal instillation of ultrafine carbon black (CB) particles and staphylococcal lipoteichoic acid (LTA) on early pulmonary inflammation in male BALB/c mice. We examined the cellular profile, cytokine and chemokine levels in the bronchoalveolar lavage (BAL) fluid, and expression of chemokine and toll-like receptor (TLR) mRNAs in lungs. LTA produced a dose-related increase in early pulmonary inflammation, which was characterized by (1) influx of polymorphonuclear neutrophils (PMNs) and (2) induction of interleukin (IL)-6, tumor necrosis factor (TNF)-{alpha}, macrophage inflammatory protein (MIP)-1{alpha}/CCL3, but no effect on monocyte chemoattractant protein (MCP)-1/CCL2 at 24 h after instillation. Levels of some proinflammatory indicators and TLR2-mRNA expression were significantly increased by 14 nm or 95 nm CB (125 {mu}g) and low-dose LTA (10 {mu}g) treatment compared to CB or LTA alone at 4 h after instillation. Notably, PMN levels and production of IL-6 and CCL2 in the 14 nm CB + LTA were significantly higher than that of 95 nm CB + LTA at 4 h after instillation. However, at 24 h after instillation, only PMN levels were significantly higher in the 14 nm CB + LTA than 95 nm CB + LTA but not the cytokines and chemokines. These data show additive as well as synergistic interaction effects of 14 nm or 95 nm ultrafine CB particles and LTA. We suggest that early pulmonary inflammatory responses in male BALB/c mice may be induced in a size-specific manner of the CB particles used in our study.

  12. Pentoxifylline inhibits pulmonary inflammation induced by infrarenal aorticcross-clamping dependent of adenosine receptor A2A

    PubMed Central

    Li, Hali; Tan, Gang; Tong, Liquan; Han, Peng; Zhang, Feng; Liu, Bing; Sun, Xueying

    2016-01-01

    Infrarenal aortic cross-clamping (IAC) is commonly used during infrarenal vascular operations. Prolonged IAC causes ischemia-reperfusion injury to local tissues, resulting in the release of inflammatory cytokines and acute lung injury (ALI). Pentoxifylline (PTX) is a clinically used drug for chronic occlusive arterial diseases and exerts protective effects against ALI induced by various factors in experimental models. In this study, we evaluated the protective effects of PTX in a rat model of IAC. Wistar rats underwent IAC for 2 h, followed by 4 h reperfusion. PTX alone, or in combination with ZM-241385 (an adenosine receptor A2A antagonist) or CGS-21680 (an A2A agonist), was pre-administered to rats 1 h prior to IAC, and the severity of lung injury and inflammation were examined. Administration of PTX significantly attenuated ALI induced by IAC, evidenced by reduced histological scores and wet lung contents, improved blood gas parameters, decreased cell counts and protein amounts in bronchoalveolar lavage fluids, and inhibition of MPO activity and ICAM-1 expression in lung tissues, and lower plasma levels of TNF-α, IL-6, IL-1β and soluble ICAM-1. ZM-241385 significantly abrogated, while CGS-21680 slightly enhanced, the effects of PTX in ameliorating ALI and inhibiting pulmonary inflammation. In exploration of the mechanisms, we found that PTX stimulated IL-10 production through the phosphorylation of STAT3, and A2A receptor participated in this regulation. The study indicates PTX plays a protective role in IAC-induced ALI in rats by inhibiting pulmonary inflammation through A2A signaling pathways. PMID:27347328

  13. The novel compound Sul-121 inhibits airway inflammation and hyperresponsiveness in experimental models of chronic obstructive pulmonary disease

    PubMed Central

    Han, Bing; Poppinga, Wilfred J.; Zuo, Haoxiao; Zuidhof, Annet B.; Bos, I. Sophie T.; Smit, Marieke; Vogelaar, Pieter; Krenning, Guido; Henning, Robert H.; Maarsingh, Harm; Halayko, Andrew J.; van Vliet, Bernard; Stienstra, Stef; Graaf, Adrianus Cornelis van der; Meurs, Herman; Schmidt, Martina

    2016-01-01

    COPD is characterized by persistent airflow limitation, neutrophilia and oxidative stress from endogenous and exogenous insults. Current COPD therapy involving anticholinergics, β2-adrenoceptor agonists and/or corticosteroids, do not specifically target oxidative stress, nor do they reduce chronic pulmonary inflammation and disease progression in all patients. Here, we explore the effects of Sul-121, a novel compound with anti-oxidative capacity, on hyperresponsiveness (AHR) and inflammation in experimental models of COPD. Using a guinea pig model of lipopolysaccharide (LPS)-induced neutrophilia, we demonstrated that Sul-121 inhalation dose-dependently prevented LPS-induced airway neutrophilia (up to ~60%) and AHR (up to ~90%). Non-cartilaginous airways neutrophilia was inversely correlated with blood H2S, and LPS-induced attenuation of blood H2S (~60%) was prevented by Sul-121. Concomitantly, Sul-121 prevented LPS-induced production of the oxidative stress marker, malondialdehyde by ~80%. In immortalized human airway smooth muscle (ASM) cells, Sul-121 dose-dependently prevented cigarette smoke extract-induced IL-8 release parallel with inhibition of nuclear translocation of the NF-κB subunit, p65 (each ~90%). Sul-121 also diminished cellular reactive oxygen species production in ASM cells, and inhibited nuclear translocation of the anti-oxidative response regulator, Nrf2. Our data show that Sul-121 effectively inhibits airway inflammation and AHR in experimental COPD models, prospectively through inhibition of oxidative stress. PMID:27229886

  14. The novel compound Sul-121 inhibits airway inflammation and hyperresponsiveness in experimental models of chronic obstructive pulmonary disease.

    PubMed

    Han, Bing; Poppinga, Wilfred J; Zuo, Haoxiao; Zuidhof, Annet B; Bos, I Sophie T; Smit, Marieke; Vogelaar, Pieter; Krenning, Guido; Henning, Robert H; Maarsingh, Harm; Halayko, Andrew J; van Vliet, Bernard; Stienstra, Stef; Graaf, Adrianus Cornelis van der; Meurs, Herman; Schmidt, Martina

    2016-01-01

    COPD is characterized by persistent airflow limitation, neutrophilia and oxidative stress from endogenous and exogenous insults. Current COPD therapy involving anticholinergics, β2-adrenoceptor agonists and/or corticosteroids, do not specifically target oxidative stress, nor do they reduce chronic pulmonary inflammation and disease progression in all patients. Here, we explore the effects of Sul-121, a novel compound with anti-oxidative capacity, on hyperresponsiveness (AHR) and inflammation in experimental models of COPD. Using a guinea pig model of lipopolysaccharide (LPS)-induced neutrophilia, we demonstrated that Sul-121 inhalation dose-dependently prevented LPS-induced airway neutrophilia (up to ~60%) and AHR (up to ~90%). Non-cartilaginous airways neutrophilia was inversely correlated with blood H2S, and LPS-induced attenuation of blood H2S (~60%) was prevented by Sul-121. Concomitantly, Sul-121 prevented LPS-induced production of the oxidative stress marker, malondialdehyde by ~80%. In immortalized human airway smooth muscle (ASM) cells, Sul-121 dose-dependently prevented cigarette smoke extract-induced IL-8 release parallel with inhibition of nuclear translocation of the NF-κB subunit, p65 (each ~90%). Sul-121 also diminished cellular reactive oxygen species production in ASM cells, and inhibited nuclear translocation of the anti-oxidative response regulator, Nrf2. Our data show that Sul-121 effectively inhibits airway inflammation and AHR in experimental COPD models, prospectively through inhibition of oxidative stress. PMID:27229886

  15. Chronic obstructive pulmonary disease and asthma-associated Proteobacteria, but not commensal Prevotella spp., promote Toll-like receptor 2-independent lung inflammation and pathology

    PubMed Central

    Larsen, Jeppe M; Musavian, Hanieh S; Butt, Tariq M; Ingvorsen, Camilla; Thysen, Anna H; Brix, Susanne

    2015-01-01

    Recent studies of healthy human airways have revealed colonization by a distinct commensal bacterial microbiota containing Gram-negative Prevotella spp. However, the immunological properties of these bacteria in the respiratory system remain unknown. Here we compare the innate respiratory immune response to three Gram-negative commensal Prevotella strains (Prevotella melaninogenica, Prevotella nanceiensis and Prevotella salivae) and three Gram-negative pathogenic Proteobacteria known to colonize lungs of patients with chronic obstructive pulmonary disease (COPD) and asthma (Haemophilus influenzae B, non-typeable Haemophilus influenzae and Moraxella catarrhalis). The commensal Prevotella spp. and pathogenic Proteobacteria were found to exhibit intrinsic differences in innate inflammatory capacities on murine lung cells in vitro. In vivo in mice, non-typeable H. influenzae induced severe Toll-like receptor 2 (TLR2)-independent COPD-like inflammation characterized by predominant airway neutrophilia, expression of a neutrophilic cytokine/chemokine profile in lung tissue, and lung immunopathology. In comparison, P. nanceiensis induced a diminished neutrophilic airway inflammation and no detectable lung pathology. Interestingly, the inflammatory airway response to the Gram-negative bacteria P. nanceiensis was completely TLR2-dependent. These findings demonstrate weak inflammatory properties of Gram-negative airway commensal Prevotella spp. that may make colonization by these bacteria tolerable by the respiratory immune system. PMID:25179236

  16. Automatic two-step detection of pulmonary nodules

    NASA Astrophysics Data System (ADS)

    Dolejší, Martin; Kybic, Jan

    2007-03-01

    We present a computer-aided diagnosis (CAD) system to detect small-size (from 2mm to around 10mm) pulmonary nodules from helical CT scans. A pulmonary nodule is a small, round (parenchymal nodule) or worm (juxta-pleural) shaped lesion in the lungs. Both have greater radio density than lungs parenchyma. Lung nodules may indicate a lung cancer and its detection in early stage improves survival rate of patients. CT is considered to be the most accurate imaging modality for detection of nodules. However, the large amount of data per examination makes the interpretation difficult. This leads to omission of nodules by human radiologist. CAD system presented is designed to help lower the number of omissions. Our system uses two different schemes to locate juxtapleural nodules and parenchymal nodules. For juxtapleural nodules, morphological closing and thresholding is used to find nodule candidates. To locate non-pleural nodule candidates, 3D blob detector uses multiscale filtration. Ellipsoid model is fitted on nodules. To define which of the nodule candidates are in fact nodules, an additional classification step is applied. Linear and multi-threshold classifiers are used. System was tested on 18 cases (4853 slices) with total sensitivity of 96%, with about 12 false positives/slice. The classification step reduces number of false positives to 9 per slice without significantly decreasing sensitivity (89,6%).

  17. Systemic inflammation in patients with chronic obstructive pulmonary disease who are colonized with Pneumocystis jiroveci.

    PubMed

    Calderón, Enrique J; Rivero, Laura; Respaldiza, Nieves; Morilla, Rubén; Montes-Cano, Marco A; Friaza, Vicente; Muñoz-Lobato, Fernando; Varela, José M; Medrano, Francisco J; Horra, Carmen de la

    2007-07-15

    In chronic obstructive pulmonary disease, high levels of airway and systemic inflammatory markers are associated with a faster decrease in lung function. Our study shows that patients colonized by Pneumocystis jiroveci have higher proinflammatory cytokine levels than do noncolonized patients. This suggests that Pneumocystis may play a role in disease progression. PMID:17578770

  18. Variability in Ozone-Induced Pulmonary Injury and Inflammation in Healthy and Cardiovascular Compromised Rat Models

    EPA Science Inventory

    The molecular bases for variability in air pollutant-induced pulmonary injury due to underlying cardiovascular (CVD) and/or metabolic diseases are unknown. We hypothesized that healthy and genetic CVD-prone rat models will exhibit exacerbated response to acute ozone exposure depe...

  19. Influenza A (H1N1) Virus Infection Triggers Severe Pulmonary Inflammation in Lupus-Prone Mice following Viral Clearance

    PubMed Central

    Slight-Webb, Samantha R.; Bagavant, Harini; Crowe, Sherry R.; James, Judith A.

    2015-01-01

    Each year, up to one fifth of the United States population is infected with influenza virus. Although mortality rates are low, hundreds of thousands are hospitalized each year in the United States. Specific high risk groups, such as those with suppressed or dysregulated immune systems, are at greater danger for influenza complications. Respiratory infections are a common cause of hospitalizations and early mortality in patients with systemic lupus erythematosus (SLE); however, whether this increased infection risk is a consequence of the underlying dysregulated immune background and/or immunosuppressing drugs is unknown. To evaluate the influenza immune response in the context of lupus, as well as assess the effect of infection on autoimmune disease in a controlled setting, we infected lupus-prone MRL/MpJ-Faslpr mice with influenza virus A PR/8/34 H1N1. Interestingly, we found that Faslpr mice generated more influenza A virus specific T cells with less neutrophil accumulation in the lung during acute infection. Moreover, Faslpr mice produced fewer flu-specific IgG and IgM antibodies, but effectively cleared the virus. Further, increased extrinsic apoptosis during influenza infection led to a delay in autoimmune disease pathology with decreased severity of splenomegaly and kidney disease. Following primary influenza A infection, Faslpr mice had severe complications during the contraction and resolution phase with widespread severe pulmonary inflammation. Our findings suggest that influenza infection may not exacerbate autoimmune pathology in mice during acute infection as a direct result of virus induced apoptosis. Additionally, autoimmunity drives an enhanced antigen-specific T cell response to clear the virus, but persisting pulmonary inflammation following viral clearance may cause complications in this lupus animal model. PMID:25563403

  20. Dietary long-chain omega-3 fatty acids do not diminish eosinophilic pulmonary inflammation in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of fish oil supplements on diminishing airway inflammation in asthma have been studied in mouse models and human intervention trials with varying results. However, the independent effects of the main omega-3 PUFAs found in fish oil, eicosapentaenoic acid (EPA) and docosahexaenoic acid (D...

  1. Effect of chronic airway inflammation and exercise on pulmonary and systemic antioxidant status of healthy and heaves-affected horses.

    PubMed

    Kirschvink, N; Smith, N; Fiévez, L; Bougnet, V; Art, T; Degand, G; Marlin, D; Roberts, C; Génicot, B; Lindsey, P; Lekeux, P

    2002-09-01

    In heaves-affected horses the relation between oxidant status, airway inflammation (AI) and pulmonary function (PF) is unknown. The oxidant status of blood and pulmonary epithelial lining fluid (PELF) of healthy (H, n = 6) and heaves-affected horses in clinical remission (REM, n = 6) and in crisis (CR, n = 7) was assessed at rest, during and after standardised exercise test by measurement of reduced and oxidised glutathione, glutathione redox ratio [GRR%]; uric acid and 8-epi-PGF2alpha. Oxidant status was related to PF parameters (mechanics of breathing and arterial blood gas tension) and Al parameters (bronchoalveolar lavage [BAL] neutrophil % and AI score). Haemolysate glutathione was significantly different between groups and was correlated with PF and AI parameters; GRR in PELF was increased during CR and was correlated with PF and AI parameters. Exercise induced an increase of plasma uric acid that was significantly higher both in REM and CR. PELF 8-epi-PGF2alpha was significantly increased in CR and correlated with PF and AI parameters. These results suggest that oxidative stress occurring in heaves is correlated with PF and AI and may be locally assessed by PELF glutathione status, uric acid and 8-epi-PGF2alpha. Systemic repercussions are reflected by assay of GSH in resting horses and by uric acid in exercising horses. PMID:12357995

  2. Role of inducible nitric oxide synthase-derived nitric oxide in lipopolysaccharide plus interferon-gamma-induced pulmonary inflammation.

    PubMed

    Zeidler, Patti C; Millecchia, Lyndell M; Castranova, Vincent

    2004-02-15

    Exposure of mice to lipopolysaccharide (LPS) plus interferon-gamma (IFN-gamma) increases nitric oxide (NO) production, which is proposed to play a role in the resulting pulmonary damage and inflammation. To determine the role of inducible nitric oxide synthase (iNOS)-induced NO in this lung reaction, the responses of inducible nitric oxide synthase knockout (iNOS KO) versus C57BL/6J wild-type (WT) mice to aspirated LPS + IFN-gamma were compared. Male mice (8-10 weeks) were exposed to LPS (1.2 mg/kg) + IFN-gamma (5000 U/mouse) or saline. At 24 or 72 h postexposure, lungs were lavaged with saline and the acellular fluid from the first bronchoalveolar lavage (BAL) was analyzed for total antioxidant capacity (TAC), lactate dehydrogenase (LDH) activity, albumin, tumor necrosis factor-alpha (TNF-alpha), and macrophage inflammatory protein-2 (MIP-2). The cellular fraction of the total BAL was used to determine alveolar macrophage (AM) and polymorphonuclear leukocyte (PMN) counts, and AM zymosan-stimulated chemiluminescence (AM-CL). Pulmonary responses 24 h postexposure to LPS + IFN-gamma were characterized by significantly decreased TAC, increased BAL AMs and PMNs, LDH, albumin, TNF-alpha, and MIP-2, and enhanced AM-CL to the same extent in both WT and iNOS KO mice. Responses 72 h postexposure were similar; however, significant differences were found between WT and iNOS KO mice. iNOS KO mice demonstrated a greater decline in total antioxidant capacity, greater BAL PMNs, LDH, albumin, TNF-alpha, and MIP-2, and an enhanced AM-CL compared to the WT. These data suggest that the role of iNOS-derived NO in the pulmonary response to LPS + IFN-gamma is anti-inflammatory, and this becomes evident over time. PMID:14962504

  3. Acute pulmonary toxicity and inflammation induced by combined exposure to didecyldimethylammonium chloride and ethylene glycol in rats.

    PubMed

    Kwon, Do Young; Kim, Hyun-Mi; Kim, Eunji; Lim, Yeon-Mi; Kim, Pilje; Choi, Kyunghee; Kwon, Jung-Taek

    2016-02-01

    Didecyldimethylammonium chloride (DDAC), an antimicrobial agent, has been reported to induce pulmonary toxicity in animal studies. DDAC is frequently used in spray-form household products in combination with ethylene glycol (EG). The purpose of this study was to evaluate the toxic interaction between DDAC and EG in the lung. DDAC at a sub-toxic dose (100 μg/kg body weight) was mixed with a non-toxic dose of EG (100 or 200 μg/kg body weight), and was administrated to rats via intratracheal instillation. Lactate dehydrogenase activity and total protein content in the bronchoalveolar lavage fluid (BALF) were not changed by singly treated DDAC or EG, but significantly enhanced at 1 d after treatment with the mixture, with the effect dependent on the dose of EG. Total cell count in BALF was largely increased and polymorphonuclear leukocytes were predominantly recruited to the lung in rats administrated with the mixture. Inflammatory cytokines, tumor necrosis factor-alpha and interleukin-6 also appeared to be increased by the mixture of DDAC and EG (200 μg/kg body weight) at 1 d post-exposure, which might be associated with the increase in inflammatory cells in lung. BALF protein content and inflammatory cell recruitment in the lung still remained elevated at 7 d after the administration of DDAC with the higher dose of EG. These results suggest that the combination of DDAC and EG can synergistically induce pulmonary cytotoxicity and inflammation, and EG appears to amplify the harmful effects of DDAC on the lung. Therefore pulmonary exposure to these two chemicals commonly found in commercial products can be a potential hazard to human health. PMID:26763389

  4. Biodiesel versus diesel exposure: Enhanced pulmonary inflammation, oxidative stress, and differential morphological changes in the mouse lung

    SciTech Connect

    Yanamala, Naveena; Birch, M. Eileen; Kisin, Elena; Bugarski, Aleksandar D.

    2013-10-15

    The use of biodiesel (BD) or its blends with petroleum diesel (D) is considered to be a viable approach to reduce occupational and environmental exposures to particulate matter (PM). Due to its lower particulate mass emissions compared to D, use of BD is thought to alleviate adverse health effects. Considering BD fuel is mainly composed of unsaturated fatty acids, we hypothesize that BD exhaust particles could induce pronounced adverse outcomes, due to their ability to readily oxidize. The main objective of this study was to compare the effects of particles generated by engine fueled with neat BD and neat petroleum-based D. Biomarkers of tissue damage and inflammation were significantly elevated in lungs of mice exposed to BD particulates. Additionally, BD particulates caused a significant accumulation of oxidatively modified proteins and an increase in 4-hydroxynonenal. The up-regulation of inflammatory cytokines/chemokines/growth factors was higher in lungs upon BD particulate exposure. Histological evaluation of lung sections indicated presence of lymphocytic infiltrate and impaired clearance with prolonged retention of BD particulate in pigment laden macrophages. Taken together, these results clearly indicate that BD exhaust particles could exert more toxic effects compared to D. - Highlights: • Exposure of mice to BDPM caused higher pulmonary toxicity compared to DPM. • Oxidative stress and inflammation were higher in BD vs to D exposed mice. • Inflammatory lymphocyte infiltrates were seen only in lungs of mice exposed to BD. • Ineffective clearance, prolonged PM retention was present only after BD exposure.

  5. Abnormalities of pulmonary vascular dynamics and inflammation in early progressive systemic sclerosis

    SciTech Connect

    Furst, D.E.; Davis, J.A.; Clements, P.J.; Chopra, S.K.; Theofilopoulos, A.N.; Chia, D.

    1981-11-01

    Abnormalities of pulmonary function were studied in 10 patients with progressive systemic sclerosis (PSS) and 3 control subjects. All underwent 81M krypton lung scanning and total body gallium scanning. Immune complexes were measured by Raji cell radioimmunoassay and polyethylene glycol (PEG) assay. Perfusion scans were abnormal in 7 of 9 patients, and 5 of 9 showed a decrease in pulmonary perfusion after cold challenge. Increased gallium uptake was noted in the lungs of 6 of 9 patients. Krypton scans were normal in the control group. Elevated immune complexes were noted in 8 of 10 patients by the Raji assay and in 5 of 10 with the PEG assay. Efforts to separate patients with PSS into subgroups may lead to a better understanding of and advances in therapy for PSS.

  6. Radiotracers Used for the Scintigraphic Detection of Infection and Inflammation

    PubMed Central

    Tsopelas, Chris

    2015-01-01

    Over the last forty years, a small group of commercial radiopharmaceuticals have found their way into routine medical use, for the diagnostic imaging of patients with infection or inflammation. These molecular radiotracers usually participate in the immune response to an antigen, by tagging leukocytes or other molecules/cells that are endogenous to the process. Currently there is an advancing effort by researchers in the preclinical domain to design and develop new agents for this application. This review discusses radiopharmaceuticals used in the nuclear medicine clinic today, as well as those potential radiotracers that exploit an organism's defence mechanisms to an infectious or inflammatory event. PMID:25741532

  7. Use of Metal Oxide Nanoparticle Band Gap to Develop a Predictive Paradigm for Oxidative Stress and Acute Pulmonary Inflammation

    PubMed Central

    Zhang, Haiyuan; Ji, Zhaoxia; Xia, Tian; Meng, Huan; Low-Kam, Cecile; Liu, Rong; Pokhrel, Suman; Lin, Sijie; Wang, Xiang; Liao, Yu-Pei; Wang, Meiying; Li, Linjiang; Rallo, Robert; Damoiseaux, Robert; Telesca, Donatello; Mädler, Lutz; Cohen, Yoram; Zink, Jeffrey I.; Nel, Andre E.

    2014-01-01

    We demonstrate for 24 metal oxide (MOx) nanoparticles that it is possible to use conduction band energy levels to delineate their toxicological potential at cellular and whole animal levels. Among the materials, the overlap of conduction band energy (Ec) levels with the cellular redox potential (−4.12 to −4.84 eV) was strongly correlated to the ability of Co3O4, Cr2O3, Ni2O3, Mn2O3 and CoO nanoparticles to induce oxygen radicals, oxidative stress and inflammation. This outcome is premised on permissible electron transfers from the biological redox couples that maintain the cellular redox equilibrium to the conduction band of the semiconductor particles. Both single parameter cytotoxic as well as multi-parameter oxidative stress assays in cells showed excellent correlation to the generation of acute neutrophilic inflammation and cytokine responses in the lungs of CB57 Bl/6 mice. Co3O4, Ni2O3, Mn2O3 and CoO nanoparticles could also oxidize cytochrome c as a representative redox couple involved in redox homeostasis. While CuO and ZnO generated oxidative stress and acute pulmonary inflammation that is not predicted by Ec levels, the adverse biological effects of these materials could be explained by their solubility, as demonstrated by ICP-MS analysis. Taken together, these results demonstrate, for the first time, that it is possible to predict the toxicity of a large series of MOx nanoparticles in the lung premised on semiconductor properties and an integrated in vitro/in vivo hazard ranking model premised on oxidative stress. This establishes a robust platform for modeling of MOx structure-activity relationships based on band gap energy levels and particle dissolution. This predictive toxicological paradigm is also of considerable importance for regulatory decision-making about this important class of engineered nanomaterials. PMID:22502734

  8. An Immature Myeloid/Myeloid-Suppressor Cell Response Associated with Necrotizing Inflammation Mediates Lethal Pulmonary Tularemia.

    PubMed

    Periasamy, Sivakumar; Avram, Dorina; McCabe, Amanda; MacNamara, Katherine C; Sellati, Timothy J; Harton, Jonathan A

    2016-03-01

    Inhalation of Francisella tularensis (Ft) causes acute and fatal pneumonia. The lung cytokine milieu favors exponential Ft replication, but the mechanisms underlying acute pathogenesis and death remain unknown. Evaluation of the sequential and systemic host immune response in pulmonary tularemia reveals that in contrast to overwhelming bacterial burden or cytokine production, an overt innate cellular response to Ft drives tissue pathology and host mortality. Lethal infection with Ft elicits medullary and extra-medullary myelopoiesis supporting recruitment of large numbers of immature myeloid cells and MDSC to the lungs. These cells fail to mature and die, leading to subsequent necrotic lung damage, loss of pulmonary function, and host death that is partially dependent upon immature Ly6G+ cells. Acceleration of this process may account for the rapid lethality seen with Ft SchuS4. In contrast, during sub-lethal infection with Ft LVS the pulmonary cellular response is characterized by a predominance of mature neutrophils and monocytes required for protection, suggesting a required threshold for lethal bacterial infection. Further, eliciting a mature phagocyte response provides transient, but dramatic, innate protection against Ft SchuS4. This study reveals that the nature of the myeloid cell response may be the primary determinant of host mortality versus survival following Francisella infection. PMID:27015566

  9. Allergic pulmonary inflammation in mice is dependent on eosinophil-induced recruitment of effector T cells

    PubMed Central

    Jacobsen, Elizabeth A.; Ochkur, Sergei I.; Pero, Ralph S.; Taranova, Anna G.; Protheroe, Cheryl A.; Colbert, Dana C.; Lee, Nancy A.; Lee, James J.

    2008-01-01

    The current paradigm surrounding allergen-mediated T helper type 2 (Th2) immune responses in the lung suggests an almost hegemonic role for T cells. Our studies propose an alternative hypothesis implicating eosinophils in the regulation of pulmonary T cell responses. In particular, ovalbumin (OVA)-sensitized/challenged mice devoid of eosinophils (the transgenic line PHIL) have reduced airway levels of Th2 cytokines relative to the OVA-treated wild type that correlated with a reduced ability to recruit effector T cells to the lung. Adoptive transfer of Th2-polarized OVA-specific transgenic T cells (OT-II) alone into OVA-challenged PHIL recipient mice failed to restore Th2 cytokines, airway histopathologies, and, most importantly, the recruitment of pulmonary effector T cells. In contrast, the combined transfer of OT-II cells and eosinophils into PHIL mice resulted in the accumulation of effector T cells and a concomitant increase in both airway Th2 immune responses and histopathologies. Moreover, we show that eosinophils elicit the expression of the Th2 chemokines thymus- and activation-regulated chemokine/CCL17 and macrophage-derived chemokine/CCL22 in the lung after allergen challenge, and blockade of these chemokines inhibited the recruitment of effector T cells. In summary, the data suggest that pulmonary eosinophils are required for the localized recruitment of effector T cells. PMID:18316417

  10. An Immature Myeloid/Myeloid-Suppressor Cell Response Associated with Necrotizing Inflammation Mediates Lethal Pulmonary Tularemia

    PubMed Central

    Periasamy, Sivakumar; Avram, Dorina; McCabe, Amanda; MacNamara, Katherine C.; Sellati, Timothy J.; Harton, Jonathan A.

    2016-01-01

    Inhalation of Francisella tularensis (Ft) causes acute and fatal pneumonia. The lung cytokine milieu favors exponential Ft replication, but the mechanisms underlying acute pathogenesis and death remain unknown. Evaluation of the sequential and systemic host immune response in pulmonary tularemia reveals that in contrast to overwhelming bacterial burden or cytokine production, an overt innate cellular response to Ft drives tissue pathology and host mortality. Lethal infection with Ft elicits medullary and extra-medullary myelopoiesis supporting recruitment of large numbers of immature myeloid cells and MDSC to the lungs. These cells fail to mature and die, leading to subsequent necrotic lung damage, loss of pulmonary function, and host death that is partially dependent upon immature Ly6G+ cells. Acceleration of this process may account for the rapid lethality seen with Ft SchuS4. In contrast, during sub-lethal infection with Ft LVS the pulmonary cellular response is characterized by a predominance of mature neutrophils and monocytes required for protection, suggesting a required threshold for lethal bacterial infection. Further, eliciting a mature phagocyte response provides transient, but dramatic, innate protection against Ft SchuS4. This study reveals that the nature of the myeloid cell response may be the primary determinant of host mortality versus survival following Francisella infection. PMID:27015566

  11. The NF-κB inhibitory Proteins IκBα and IκBβ Mediate Disparate Responses to Inflammation in Fetal Pulmonary Endothelial Cells

    PubMed Central

    Tang, Jen-Ruey; Michaelis, Katherine A.; Nozik-Grayck, Eva; Seedorf, Gregory J.; Hartman-Filson, Marlena; Abman, Steven H.; Wright, Clyde J.

    2013-01-01

    Rationale Exposure to intrauterine inflammation impairs lung growth, but paradoxically protects the neonatal pulmonary vasculature from hyperoxic injury. The mechanisms mediating these contradictory effects are unknown. Objective To identify the role of NF-κB in mediating cytoprotective and pro-inflammatory responses to inflammation in the fetal pulmonary endothelium. Methods and Results In newborn rats exposed to intraamniotic lipopolysaccharide (LPS), we found increased expression of the NF-κB target gene manganese superoxide dismutase (MnSOD) in the pulmonary endothelium. Supporting these in vivo findings, LPS induced NF-κB activation and MnSOD expression in isolated fetal pulmonary arterial endothelial cells. Additionally, LPS exposure caused apoptosis, and suppressed cellular growth and induced P-selectin expression. LPS-induced NF-κB activation that proceeded through specific isoforms of the inhibitory protein IκB mediated these diverse responses; NF-κB signaling through IκBα degradation resulted in MnSOD upregulation and preserved cell growth, whereas NF-κB signaling through IκBβ degradation mediated apoptosis and P-selectin expression. Conclusions These findings suggest that selective inhibition of NF-κB activation that results from IκBβ degradation preserves the enhanced antioxidant defense and protects the developing pulmonary vascular endothelium from ongoing inflammatory injury. PMID:23418625

  12. Pulmonary Inflammation Is Regulated by the Levels of the Vesicular Acetylcholine Transporter

    PubMed Central

    Perini, Adenir; Câmara, Niels O. S.; Costa, Soraia K. P.; Alonso-Vale, Maria Isabel C.; Caperuto, Luciana C.; Tibério, Iolanda F. L. C.; Prado, Marco Antônio M.; Martins, Mílton A.; Prado, Vânia F.; Prado, Carla M.

    2015-01-01

    Acetylcholine (ACh) plays a crucial role in physiological responses of both the central and the peripheral nervous system. Moreover, ACh was described as an anti-inflammatory mediator involved in the suppression of exacerbated innate response and cytokine release in various organs. However, the specific contributions of endogenous release ACh for inflammatory responses in the lung are not well understood. To address this question we have used mice with reduced levels of the vesicular acetylcholine transporter (VAChT), a protein required for ACh storage in secretory vesicles. VAChT deficiency induced airway inflammation with enhanced TNF-α and IL-4 content, but not IL-6, IL-13 and IL-10 quantified by ELISA. Mice with decreased levels of VAChT presented increased collagen and elastic fibers deposition in airway walls which was consistent with an increase in inflammatory cells positive to MMP-9 and TIMP-1 in the lung. In vivo lung function evaluation showed airway hyperresponsiveness to methacholine in mutant mice. The expression of nuclear factor-kappa B (p65-NF-kB) in lung of VAChT-deficient mice were higher than in wild-type mice, whereas a decreased expression of janus-kinase 2 (JAK2) was observed in the lung of mutant animals. Our findings show the first evidence that cholinergic deficiency impaired lung function and produce local inflammation. Our data supports the notion that cholinergic system modulates airway inflammation by modulation of JAK2 and NF-kB pathway. We proposed that intact cholinergic pathway is necessary to maintain the lung homeostasis. PMID:25816137

  13. Improving performance of computer-aided detection of pulmonary embolisms by incorporating a new pulmonary vascular-tree segmentation algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Xingwei; Song, XiaoFei; Chapman, Brian E.; Zheng, Bin

    2012-03-01

    We developed a new pulmonary vascular tree segmentation/extraction algorithm. The purpose of this study was to assess whether adding this new algorithm to our previously developed computer-aided detection (CAD) scheme of pulmonary embolism (PE) could improve the CAD performance (in particular reducing false positive detection rates). A dataset containing 12 CT examinations with 384 verified pulmonary embolism regions associated with 24 threedimensional (3-D) PE lesions was selected in this study. Our new CAD scheme includes the following image processing and feature classification steps. (1) A 3-D based region growing process followed by a rolling-ball algorithm was utilized to segment lung areas. (2) The complete pulmonary vascular trees were extracted by combining two approaches of using an intensity-based region growing to extract the larger vessels and a vessel enhancement filtering to extract the smaller vessel structures. (3) A toboggan algorithm was implemented to identify suspicious PE candidates in segmented lung or vessel area. (4) A three layer artificial neural network (ANN) with the topology 27-10-1 was developed to reduce false positive detections. (5) A k-nearest neighbor (KNN) classifier optimized by a genetic algorithm was used to compute detection scores for the PE candidates. (6) A grouping scoring method was designed to detect the final PE lesions in three dimensions. The study showed that integrating the pulmonary vascular tree extraction algorithm into the CAD scheme reduced false positive rates by 16.2%. For the case based 3D PE lesion detecting results, the integrated CAD scheme achieved 62.5% detection sensitivity with 17.1 false-positive lesions per examination.

  14. In Vivo Detection of Vascular Adhesion Protein-1 in Experimental Inflammation

    PubMed Central

    Jaakkola, Kimmo; Nikula, Tuomo; Holopainen, Riikka; Vähäsilta, Tommi; Matikainen, Marja-Terttu; Laukkanen, Marja-Leena; Huupponen, Risto; Halkola, Lauri; Nieminen, Lauri; Hiltunen, Jukka; Parviainen, Sakari; Clark, Michael R.; Knuuti, Juhani; Savunen, Timo; Kääpä, Pekka; Voipio-Pulkki, Liisa Maria; Jalkanen, Sirpa

    2000-01-01

    Vascular adhesion protein-1 (VAP-1) is an inflammation-inducible endothelial glycoprotein which mediates leukocyte-endothelial cell interactions. To study the pathogenetic significance of VAP-1 in inflammatory disorders, an in vivo immunodetection method was used to detect the regulation of luminally expressed VAP-1 in experimental skin and joint inflammation in the pig and dog. Moreover, VAP-1 was studied as a potential target to localize inflammation by radioimmunoscintigraphy. Up-regulation of VAP-1 in experimental dermatitis and arthritis could be visualized by specifically targeted immunoscintigraphy. Moreover, the translocation of VAP-1 to the functional position on the endothelial surface was only seen in inflamed tissues. These results suggest that VAP-1 is both an optimal candidate for anti-adhesive therapy and a potential target molecule for imaging inflammation. PMID:10934150

  15. Equivalent Dipole Vector Analysis for Detecting Pulmonary Hypertension

    NASA Technical Reports Server (NTRS)

    Harlander, Matevz; Salobir, Barbara; Toplisek, Janez; Schlegel, Todd T.; Starc, Vito

    2010-01-01

    Various 12-lead ECG criteria have been established to detect right ventricular hypertrophy as a marker of pulmonary hypertension (PH). While some criteria offer good specificity they lack sensitivity because of a low prevalence of positive findings in the PH population. We hypothesized that three-dimensional equivalent dipole (ED) model could serve as a better detection tool of PH. We enrolled: 1) 17 patients (12 female, 5 male, mean age 57 years, range 19-79 years) with echocardiographically detected PH (systolic pulmonary arterial pressure greater than 35 mmHg) and no significant left ventricular disease; and 2) 19 healthy controls (7 female, 12 male, mean age 44, range 31-53 years) with no known heart disease. In each subject we recorded a 5-minute high-resolution 12-lead conventional ECG and constructed principal signals using singular value decomposition. Assuming a standard thorax dimension of an adult person with homogenous and isotropic distribution of thorax conductance, we determined moving equivalent dipoles (ED), characterized by the 3D location in the thorax, dipolar strength and the spatial orientation, in time intervals of 5 ms. We used the sum of all ED vectors in the second half of the QRS complex to derive the amplitude of the right-sided ED vector (RV), if the orientation of ED was to the right side of the thorax, and in the first half the QRS to derive the amplitude of the left-sided vector (LV), if the orientation was leftward. Finally, the parameter RV/LV ratio was determined over an average of 256 complexes. The groups differed in age and gender to some extent. There was a non-significant trend toward higher RV in patients with PH (438 units 284) than in controls (280 plus or minus 140) (p = 0.066) but the overlap was such that RV alone was not a good predictor of PH. On the other hand, the RV/LV ratio was a better predictor of PH, with 11/17 (64.7%) of PH patients but only in 1/19 (5.3%) control subjects having RV/LV ratio greater than or

  16. Endobronchial ultrasound for the detection of chronic pulmonary artery thrombus.

    PubMed

    Dhillon, Samjot Singh; Harris, Kassem

    2016-01-01

    Endobronchial ultrasound (EBUS) has been shown to be able to successfully identify acute/subacute pulmonary thromboembolism (PE). Most reported cases have required confirmation by computerized tomography (CT) angiography. This report demonstrates a case where CT angiography was not conclusive and the EBUS was useful in clarifying the chronic process inside the pulmonary artery compatible with clinical diagnosis of chronic pulmonary artery thrombosis. PMID:27503162

  17. Markers of Thrombogenesis and Fibrinolysis and Their Relation to Inflammation and Endothelial Activation in Patients with Idiopathic Pulmonary Arterial Hypertension

    PubMed Central

    Kopeć, Grzegorz; Moertl, Deddo; Steiner, Sabine; Stępień, Ewa; Mikołajczyk, Tomasz; Podolec, Jakub; Waligóra, Marcin; Stępniewski, Jakub; Tomkiewicz-Pająk, Lidia; Guzik, Tomasz; Podolec, Piotr

    2013-01-01

    Background Chronic anticoagulation is a standard of care in idiopathic pulmonary arterial hypertension (IPAH). However, hemostatic abnormalities in this disease remain poorly understood. Therefore, we aimed to study markers of thrombogenesis and fibrinolysis in patients with IPAH. Methods We studied 27 consecutive patients (67% female) with IPAH aged 50.0 years (IQR: 41.0 - 65.0) and 16 controls without pulmonary hypertension. Prothrombin fragment 1+2 (F1+2) and thrombin-antithrombin (TAT) complexes were measured to assess thrombogenesis; tissue-type plasminogen activator (tPA) antigen and plasmin-anti-plasmin complex to characterize activation of fibrinolysis; plasminogen activator inhibitor 1 (PAI-1) to measure inhibition of fibrinolysis; and endothelin-1 (ET-1) and interleukin-6 (IL-6) to assess endothelial activation and systemic inflammation, respectively. In addition, in treatment-naive IPAH patients these markers were assessed after 3 months of PAH-specific therapies. Results TPA (10.1[6.8-15.8] vs 5.2[3.3-7.3] ng/ml, p<0.001), plasmin-anti-plasmin (91.5[60.3-94.2] vs 55.8[51.1-64.9] ng/ml, p<0.001), IL-6 (4.9[2.5-7.9] vs 2.1[1.3-3.8] pg/ml, p=0.001) and ET-1 (3.7 [3.3-4.5] vs 3.4[3.1-3.5], p= 0.03) were higher in patients with IPAH than in controls. In IPAH patients plasmin-anti-plasmin and tPA correlated positively with IL-6 (r=0.39, p=0.04 and r=0.63, p<0.001, respectively) and ET-1 (r=0.55, p=0.003 and r=0.59, p=0.001, respectively). No correlation was found between tPA or plasmin-anti-plasmin and markers of thrombogenesis. Plasmin-anti-plasmin decreased after 3 months of PAH specific therapy while the other markers remained unchanged. Conclusions In the present study we showed that markers of fibrynolysis were elevated in patients with IPAH however we did not find a clear evidence for increased thrombogenesis in this group of patients. Fibrinolysis, inflammation, and endothelial activation were closely interrelated in IPAH. PMID:24312667

  18. Effect of early treatment with transcutaneous electrical diaphragmatic stimulation (TEDS) on pulmonary inflammation induced by bleomycin

    PubMed Central

    Santos, Laisa A.; Silva, Carlos A.; Polacow, Maria L. O.

    2013-01-01

    Background Bleomycin (B) is an antineoplastic drug that has pulmonary fibrosis as a side effect. There are few experimental studies about the effects of physical therapy treatment in this case. Objective The objective was to study rat lungs treated with B and precocious intervention by transcutaneous electrical diaphragmatic stimulation (TEDS). Method Wistar rats were divided into 4 groups (n=5): a control group (C); a stimulated group (TEDS); a group treated with a single dose of B (intratracheally, 2.5 mg/kg) (B); and a group treated with B and electric stimulation (B + TEDS). After the B instillation, the electrical stimulation was applied for 7 days, for a duration of 20 minutes. Lung fragments were histologically processed with hematoxylin and eosin (HE) and 8-isoprostane-PGF2α (8-iso-PGF2α). The density of the alveolar area was determined by planimetry, the inflammatory profile was defined by the number of cells, and the level of oxidative stress in the pulmonary tissue was evaluated by 8-iso-PGF2α. For statistical analysis of the data, the Shapiro-Wilk test was used, followed by a one-way ANOVA with the post-hoc Bonferroni test (p≤0.05). Results The B group exhibited a significant reduction in the area density, and the acute treatment with B + TEDS prevented this reduction. There were increased numbers of fibroblasts, leukocytes, and macrophages in the B group, as well as increased lipid peroxidation, which was observed only in this group. Conclusion B promoted a reduction in the alveolar density area, thereby inducing the inflammatory process and increasing the production of free radicals. These effects were minimized by the application of TEDS at the initial treatment stage. PMID:24346295

  19. Dietary Long-Chain Omega-3 Fatty Acids Do Not Diminish Eosinophilic Pulmonary Inflammation in Mice

    PubMed Central

    Bratt, Jennifer M.; Jiang, Xiaowen; Pedersen, Theresa L.; Grapov, Dmitry; Adkins, Yuriko; Kelley, Darshan S.; Newman, John W.; Kenyon, Nicholas J.; Stephensen, Charles B.

    2014-01-01

    Although the effects of fish oil supplements on airway inflammation in asthma have been studied with varying results, the independent effects of the fish oil components, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), administered separately, are untested. Here, we investigated airway inflammation and hyperresponsiveness using a mouse ovalbumin exposure model of asthma assessing the effects of consuming EPA (1.5% wt/wt), DHA (1.5% wt/wt), EPA plus DHA (0.75% each), or a control diet with no added omega-3 polyunsaturated fatty acids. Consuming these diets for 6 weeks resulted in erythrocyte membrane EPA contents (molar %) of 9.0 (± 0.6), 3.2 (± 0.2), 6.8 (± 0.5), and 0.01 (± 0.0)%; DHA contents were 6.8 (± 0.1), 15.6 (± 0.5), 12.3 (± 0.3), and 3.8 (± 0.2)%, respectively. The DHA group had the highest bronchoalveolar lavage (BAL) fluid eosinophil and IL-6 levels (P < 0.05). Similar trends were seen for macrophages, IL-4, and IL-13, whereas TNF-α was lower in omega-3 polyunsaturated fatty acid groups than the control (P < 0.05). The DHA group also had the highest airway resistance, which differed significantly from the EPA plus DHA group (P < 0.05), which had the lowest. Oxylipins were measured in plasma and BAL fluid, with DHA and EPA suppressing arachidonic acid–derived oxylipin production. DHA-derived oxylipins from the cytochrome P450 and 15-lipoxygenase pathways correlated significantly with BAL eosinophil levels. The proinflammatory effects of DHA suggest that the adverse effects of individual fatty acid formulations should be thoroughly considered before any use as therapeutic agents in asthma. PMID:24134486

  20. What Causes Pulmonary Hypertension?

    MedlinePlus

    ... from the NHLBI on Twitter. What Causes Pulmonary Hypertension? Pulmonary hypertension (PH) begins with inflammation and changes in the ... different types of PH. Group 1 pulmonary arterial hypertension (PAH) may have no known cause, or the ...

  1. Group V secretory phospholipase A2 reveals its role in house dust mite-induced allergic pulmonary inflammation by regulation of dendritic cell function

    PubMed Central

    Giannattasio, Giorgio; Fujioka, Daisuke; Xing, Wei; Katz, Howard R.; Boyce, Joshua A.; Balestrieri, Barbara

    2010-01-01

    We have previously shown that group V secretory phospholipase A2 (sPLA2) regulates phagocytosis of zymosan and Candida albicans by a mechanism that depends on fusion of phagosomes with late endosomes in macrophages. Here we report that group V sPLA2 (Pla2g5)-null mice exposed to an extract of house dust mite Dermatophagoides farinae (Df) had markedly reduced pulmonary inflammation and goblet cell metaplasia compared to wild-type (WT) mice. Pla2g5-null mice had also impaired Th2-type adaptive immune responses to Df compared to WT mice. Pla2g5-null bone marrow-derived dendritic cells (BMDCs) activated by Df had delayed intracellular processing of allergen and impaired allergen-dependent maturation, a pattern recapitulated by the native lung DCs of Df-challenged mice. Adoptively transferred Df-loaded Pla2g5-null BMDCs were less able than Df-loaded WT BMDCs to induce pulmonary inflammation and Th2 polarization in WT mice. However, Pla2g5-null recipients transferred with WT or Pla2g5-null Df-loaded BMDCs exhibited significantly reduced local inflammatory responses to Df, even though the transfer of WT BMDCs still induced an intact Th2 cytokine response in regional lymph nodes. Thus, the expression of group V sPLA2 in APC regulates Ag processing and maturation of dendritic cells, and contributes to pulmonary inflammation and immune response against Df. Furthermore, an additional yet to be identified resident cell type is essential for the development of pulmonary inflammation, likely a cell in which group V sPLA2 is upregulated by Df and whose function is also regulated by group V sPLA2. PMID:20817863

  2. Cystosarcoma phylloides: calcified pulmonary metastases detected by computed tomography.

    PubMed

    Samuels, T; Kerenyi, N; Hamilton, P

    1990-08-01

    We report the appearance of calcifications on computed tomography (CT) images of pulmonary metastases from a rare breast tumor, malignant cystosarcoma phylloides. Histologic examination of the pulmonary masses revealed malignant spindle cells with osteoid and cartilage components in the cellular stroma. This appearance has not been described previously. PMID:2169970

  3. Use of silver nanowires to determine thresholds for fibre length-dependent pulmonary inflammation and inhibition of macrophage migration in vitro

    PubMed Central

    2012-01-01

    Background The objective of this study was to examine the threshold fibre length for the onset of pulmonary inflammation after aspiration exposure in mice to four different lengths of silver nanowires (AgNW). We further examined the effect of fibre length on macrophage locomotion in an in vitro wound healing assay. We hypothesised that exposure to longer fibres causes both increased inflammation and restricted mobility leading to impaired clearance of long fibres from the lower respiratory tract to the mucociliary escalator in vivo. Methods Nine week old female C57BL/6 strain mice were exposed to AgNW and controls via pharyngeal aspiration. The dose used in this study was equalised to fibre number and based on 50 μg/ mouse for AgNW14. To examine macrophage migration in vitro a wound healing assay was used. An artificial wound was created in a confluent layer of bone marrow derived macrophages by scraping with a pipette tip and the number of cells migrating into the wound was monitored microscopically. The dose was equalised for fibre number and based on 2.5 μg/cm2 for AgNW14. Results Aspiration of AgNW resulted in a length dependent inflammatory response in the lungs with threshold at a fibre length of 14 μm. Shorter fibres including 3, 5 and 10 μm elicited no significant inflammation. Macrophage locomotion was also restricted in a length dependent manner whereby AgNW in the length of ≥5 μm resulted in impaired motility in the wound closure assay. Conclusion We demonstrated a 14 μm cut-off length for fibre-induced pulmonary inflammation after aspiration exposure and an in vitro threshold for inhibition of macrophage locomotion of 5 μm. We previously reported a threshold length of 5 μm for fibre-induced pleural inflammation. This difference in pulmonary and pleural fibre- induced inflammation may be explained by differences in clearance mechanism of deposited fibres from the airspaces compared to the pleural space. Inhibition of macrophage migration at

  4. Current concepts on oxidative/carbonyl stress, inflammation and epigenetics in pathogenesis of chronic obstructive pulmonary disease

    SciTech Connect

    Yao Hongwei; Rahman, Irfan

    2011-07-15

    Chronic obstructive pulmonary disease (COPD) is a global health problem. The current therapies for COPD are poorly effective and the mainstays of pharmacotherapy are bronchodilators. A better understanding of the pathobiology of COPD is critical for the development of novel therapies. In the present review, we have discussed the roles of oxidative/aldehyde stress, inflammation/immunity, and chromatin remodeling in the pathogenesis of COPD. An imbalance of oxidants/antioxidants caused by cigarette smoke and other pollutants/biomass fuels plays an important role in the pathogenesis of COPD by regulating redox-sensitive transcription factors (e.g., NF-{kappa}B), autophagy and unfolded protein response leading to chronic lung inflammatory response. Cigarette smoke also activates canonical/alternative NF-{kappa}B pathways and their upstream kinases leading to sustained inflammatory response in lungs. Recently, epigenetic regulation has been shown to be critical for the development of COPD because the expression/activity of enzymes that regulate these epigenetic modifications have been reported to be abnormal in airways of COPD patients. Hence, the significant advances made in understanding the pathophysiology of COPD as described herein will identify novel therapeutic targets for intervention in COPD.

  5. The inducible kinase IKKi is required for IL-17-dependent signaling associated with neutrophilia and pulmonary inflammation.

    PubMed

    Bulek, Katarzyna; Liu, Caini; Swaidani, Shadi; Wang, Liwen; Page, Richard C; Gulen, Muhammet F; Herjan, Tomasz; Abbadi, Amina; Qian, Wen; Sun, Dongxu; Lauer, Mark; Hascall, Vincent; Misra, Saurav; Chance, Mark R; Aronica, Mark; Hamilton, Thomas; Li, Xiaoxia

    2011-09-01

    Interleukin 17 (IL-17) is critical in the pathogenesis of inflammatory and autoimmune diseases. Here we report that Act1, the key adaptor for the IL-17 receptor (IL-7R), formed a complex with the inducible kinase IKKi after stimulation with IL-17. Through the use of IKKi-deficient mice, we found that IKKi was required for IL-17-induced expression of genes encoding inflammatory molecules in primary airway epithelial cells, neutrophilia and pulmonary inflammation. IKKi deficiency abolished IL-17-induced formation of the complex of Act1 and the adaptors TRAF2 and TRAF5, activation of mitogen-activated protein kinases (MAPKs) and mRNA stability, whereas the Act1-TRAF6-transcription factor NF-κB axis was retained. IKKi was required for IL-17-induced phosphorylation of Act1 on Ser311, adjacent to a putative TRAF-binding motif. Substitution of the serine at position 311 with alanine impaired the IL-17-mediated Act1-TRAF2-TRAF5 interaction and gene expression. Thus, IKKi is a kinase newly identified as modulating IL-17 signaling through its effect on Act1 phosphorylation and consequent function. PMID:21822257

  6. FUMEPOC: Early detection of chronic obstructive pulmonary disease in smokers

    PubMed Central

    2011-01-01

    Background Currently is not feasible using conventional spirometry as a screening method in Primary Care especially among smoking population to detect chronic obstructive pulmonary disease in early stages. Therefore, the FUMEPOC study protocol intends to analyze the validity and reliability of Vitalograph COPD-6 spirometer as simpler tool to aid screening and diagnosis of this disease in early stages in primary care surgery. Methods / Design Study design: An observational, descriptive study of diagnostic tests, undertaken in Primary Care and Pneumology Outpatient Care Centre at San Juan Hospital and Elda Hospital. All smokers attending the primary care surgery and consent to participate in the study will undergo a test with Vitalograph COPD-6 spirometer. Subsequently, a conventional spirometry will be performed in the hospital and the results will be compared with those of the Vitalograph COPD-6 test. Discussion It is difficult to use the spirometry as screening for early diagnose test in real conditions of primary care clinical practice. The use of a simpler tool, Vitalograph COPD-6 spirometer, can help in the early diagnose and therefore, it could improve the clinical management of the disease. PMID:21627787

  7. Molecular Imaging of Activated Platelets Allows the Detection of Pulmonary Embolism with Magnetic Resonance Imaging

    PubMed Central

    Heidt, Timo; Ehrismann, Simon; Hövener, Jan-Bernd; Neudorfer, Irene; Hilgendorf, Ingo; Reisert, Marco; Hagemeyer, Christoph E.; Zirlik, Andreas; Reinöhl, Jochen; Bode, Christoph; Peter, Karlheinz; von Elverfeldt, Dominik; von zur Muhlen, Constantin

    2016-01-01

    Early and reliable detection of pulmonary embolism (PE) is critical for improving patient morbidity and mortality. The desire for low-threshold screening for pulmonary embolism is contradicted by unfavorable radiation of currently used computed tomography or nuclear techniques, while standard magnetic resonance imaging still struggles to provide sufficient diagnostic sensitivity in the lung. In this study we evaluate a molecular-targeted contrast agent against activated platelets for non-invasive detection of murine pulmonary thromboembolism using magnetic resonance imaging. By intravenous injection of human thrombin, pulmonary thromboembolism were consistently induced as confirmed by immunohistochemistry of the lung. Magnetic resonance imaging after thrombin injection showed local tissue edema in weighted images which co-localized with the histological presence of pulmonary thromboembolism. Furthermore, injection of a functionalized contrast agent targeting activated platelets provided sensitive evidence of focal accumulation of activated platelets within the edematous area, which, ex vivo, correlated well with the size of the pulmonary embolism. In summary, we here show delivery and specific binding of a functionalized molecular contrast agent against activated platelets for targeting pulmonary thromboembolism. Going forward, molecular imaging may provide new opportunities to increase sensitivity of magnetic resonance imaging for detection of pulmonary embolism. PMID:27138487

  8. Molecular Imaging of Activated Platelets Allows the Detection of Pulmonary Embolism with Magnetic Resonance Imaging.

    PubMed

    Heidt, Timo; Ehrismann, Simon; Hövener, Jan-Bernd; Neudorfer, Irene; Hilgendorf, Ingo; Reisert, Marco; Hagemeyer, Christoph E; Zirlik, Andreas; Reinöhl, Jochen; Bode, Christoph; Peter, Karlheinz; von Elverfeldt, Dominik; von Zur Muhlen, Constantin

    2016-01-01

    Early and reliable detection of pulmonary embolism (PE) is critical for improving patient morbidity and mortality. The desire for low-threshold screening for pulmonary embolism is contradicted by unfavorable radiation of currently used computed tomography or nuclear techniques, while standard magnetic resonance imaging still struggles to provide sufficient diagnostic sensitivity in the lung. In this study we evaluate a molecular-targeted contrast agent against activated platelets for non-invasive detection of murine pulmonary thromboembolism using magnetic resonance imaging. By intravenous injection of human thrombin, pulmonary thromboembolism were consistently induced as confirmed by immunohistochemistry of the lung. Magnetic resonance imaging after thrombin injection showed local tissue edema in weighted images which co-localized with the histological presence of pulmonary thromboembolism. Furthermore, injection of a functionalized contrast agent targeting activated platelets provided sensitive evidence of focal accumulation of activated platelets within the edematous area, which, ex vivo, correlated well with the size of the pulmonary embolism. In summary, we here show delivery and specific binding of a functionalized molecular contrast agent against activated platelets for targeting pulmonary thromboembolism. Going forward, molecular imaging may provide new opportunities to increase sensitivity of magnetic resonance imaging for detection of pulmonary embolism. PMID:27138487

  9. Update on the Mechanisms of Pulmonary Inflammation and Oxidative Imbalance Induced by Exercise

    PubMed Central

    Araneda, O. F.; Carbonell, T.; Tuesta, M.

    2016-01-01

    The mechanisms involved in the generation of oxidative damage and lung inflammation induced by physical exercise are described. Changes in lung function induced by exercise involve cooling of the airways, fluid evaporation of the epithelial surface, increased contact with polluting substances, and activation of the local and systemic inflammatory response. The present work includes evidence obtained from the different types of exercise in terms of duration and intensity, the effect of both acute performance and chronic performance, and the influence of special conditions such as cold weather, high altitude, and polluted environments. Levels of prooxidants, antioxidants, oxidative damage to biomolecules, and cellularity, as well as levels of soluble mediators of the inflammatory response and its effects on tissues, are described in samples of lung origin. These samples include tissue homogenates, induced sputum, bronchoalveolar lavage fluid, biopsies, and exhaled breath condensate obtained in experimental protocols conducted on animal and human models. Finally, the need to simultaneously explore the oxidative/inflammatory parameters to establish the interrelation between them is highlighted. PMID:26881028

  10. Hemorrhagic shock primes for lung vascular endothelial cell pyroptosis: role in pulmonary inflammation following LPS.

    PubMed

    Yang, Jie; Zhao, Yanfeng; Zhang, Peng; Li, Yuehua; Yang, Yong; Yang, Yang; Zhu, Junjie; Song, Xiao; Jiang, Gening; Fan, Jie

    2016-01-01

    Hemorrhagic shock (HS) often renders patients more susceptible to lung injury by priming for an exaggerated response to a second infectious stimulus. Acute lung injury (ALI) is a major component of multiple organ dysfunction syndrome following HS and regularly serves as a major cause of patient mortality. The lung vascular endothelium is an active organ that has a central role in the development of ALI through synthesizing and releasing of a number of inflammatory mediators. Cell pyroptosis is a caspase-1-dependent regulated cell death, which features rapid plasma membrane rupture and release of proinflammatory intracellular contents. In this study, we demonstrated an important role of HS in priming for LPS-induced lung endothelial cell (EC) pyroptosis. We showed that LPS through TLR4 activates Nlrp3 (NACHT, LRR, and PYD domains containing protein 3) inflammasome in mouse lung vascular EC, and subsequently induces caspase-1 activation. However, HS induced release of high-mobility group box 1 (HMGB1), which acting through the receptor for advanced glycation end products initiates EC endocytosis of HMGB1, and subsequently triggers a cascade of molecular events, including cathepsin B release from ruptured lysosomes followed by pyroptosome formation and caspase-1 activation. These HS-induced events enhance LPS-induced EC pyroptosis. We further showed that lung vascular EC pyroptosis significantly exaggerates lung inflammation and injury. The present study explores a novel mechanism underlying HS-primed ALI and thus presents a potential therapeutic target for post-HS ALI. PMID:27607578

  11. A functional variant of elafin with improved anti-inflammatory activity for pulmonary inflammation.

    PubMed

    Small, Donna M; Zani, Marie-Louise; Quinn, Derek J; Dallet-Choisy, Sandrine; Glasgow, Arlene M A; O'Kane, Cecilia; McAuley, Danny F; McNally, Paul; Weldon, Sinéad; Moreau, Thierry; Taggart, Clifford C

    2015-01-01

    Elafin is a serine protease inhibitor produced by epithelial and immune cells with anti-inflammatory properties. Research has shown that dysregulated protease activity may elicit proteolytic cleavage of elafin, thereby impairing the innate immune function of the protein. The aim of this study was to generate variants of elafin (GG- and QQ-elafin) that exhibit increased protease resistance while retaining the biological properties of wild-type (WT) elafin. Similar to WT-elafin, GG- and QQ-elafin variants retained antiprotease activity and susceptibility to transglutaminase-mediated fibronectin cross-linking. However, in contrast to WT-elafin, GG- and QQ-elafin displayed significantly enhanced resistance to degradation when incubated with bronchoalveolar lavage fluid from patients with cystic fibrosis. Intriguingly, both variants, particularly GG-elafin, demonstrated improved lipopolysaccharide (LPS) neutralization properties in vitro. In addition, GG-elafin showed improved anti-inflammatory activity in a mouse model of LPS-induced acute lung inflammation. Inflammatory cell infiltration into the lung was reduced in lungs of mice treated with GG-elafin, predominantly neutrophilic infiltration. A reduction in MCP-1 levels in GG-elafin treated mice compared to the LPS alone treatment group was also demonstrated. GG-elafin showed increased functionality when compared to WT-elafin and may be of future therapeutic relevance in the treatment of lung diseases characterized by a protease burden. PMID:25189740

  12. β-Glucans Are Masked but Contribute to Pulmonary Inflammation During Pneumocystis Pneumonia.

    PubMed

    Kutty, Geetha; Davis, A Sally; Ferreyra, Gabriela A; Qiu, Ju; Huang, Da Wei; Sassi, Monica; Bishop, Lisa; Handley, Grace; Sherman, Brad; Lempicki, Richard; Kovacs, Joseph A

    2016-09-01

    β-glucans, which can activate innate immune responses, are a major component in the cell wall of the cyst form of Pneumocystis In the current study, we examined whether β-1,3-glucans are masked by surface proteins in Pneumocystis and what role β-glucans play in Pneumocystis-associated inflammation. For 3 species, including Pneumocystis jirovecii, which causes Pneumocystis pneumonia in humans, Pneumocystis carinii, and Pneumocystis murina, β-1,3-glucans were masked in most organisms, as demonstrated by increased exposure following trypsin treatment. Using quantitative polymerase chain reaction and microarray techniques, we demonstrated in a mouse model of Pneumocystis pneumonia that treatment with caspofungin, an inhibitor of β-1,3-glucan synthesis, for 21 days decreased expression of a broad panel of inflammatory markers, including interferon γ, tumor necrosis factor α, interleukin 1β, interleukin 6, and multiple chemokines/chemokine ligands. Thus, β-glucans in Pneumocystis cysts are largely masked, which likely decreases innate immune activation; this mechanism presumably was developed for interactions with immunocompetent hosts, in whom organism loads are substantially lower. In immunosuppressed hosts with a high organism burden, organism death and release of glucans appears to be an important contributor to deleterious host inflammatory responses. PMID:27324243

  13. Effectiveness of computer aided detection for solitary pulmonary nodules

    NASA Astrophysics Data System (ADS)

    Yan, Jiayong; Li, Wenjie; Du, Xiangying; Lu, Huihai; Xu, Jianrong; Xu, Mantao; Rong, Dongdong

    2009-02-01

    This study is to investigate the incremental effect of using a high performance computer-aided detection (CAD) system in detection of solitary pulmonary nodules in chest radiographs. The Kodak Chest CAD system was evaluated by a panel of six radiologists at different levels of experience. The observer study consisted of two independent phases: readings without CAD and readings with assistance of CAD. The study was conducted over a set of chest radiographs comprising 150 cancer cases and 150 cancer-free cases. The actual sensitivity of the CAD system is 72% with 3.7 false positives per case. Receiver operating characteristic (ROC) analysis was used to assess the overall observer performance. The AUZ (area under ROC curve) showed a significantly improvement (P=0.0001) from 0.844 to 0.884 after using CAD. The ROC analysis was also applied for observer performances on nodules in different sizes and visibilities. The average AUZs are improved from 0.798 to 0.835 (P=0.0003) for 5-10mm nodules, 0.853 to 0.907 (P=0.001) for 10-15mm nodules, 0.864 to 0.897 (P=0.051) for 15-20 mm nodules and 0.859 to 0.896 (P=0.0342) for 20-30mm nodules, respectively. For different visibilities, the average AUZs are improved from 0.886 to 0.915 (P=0.0337), 0.803 to 0.840 (P=0.063), 0.830 to 0.893 (P=0.0001), and 0.813 to 0.847 (P=0.152), for nodules clearly visible, hidden by ribs, partially overlap with ribs, and overlap with other structures, respectively. These results showed that observer performance could be greatly improved when the CAD system is employed as a second reader, especially for small nodules and nodules occluded by ribs.

  14. Pulmonary inflammation by ambient air particles is mediated by superoxide anion.

    PubMed

    Rhoden, Claudia Ramos; Ghelfi, Elisa; González-Flecha, Beatriz

    2008-01-01

    Lung inflammation is a key response to increased levels of particulate air pollution (PM); however, the cellular mechanisms leading to this response remain poorly understood. We have previously shown that oxidants are critical mediators of the inflammatory response elicited by inhalation of ambient air particles. Here we tested the possible role of a specific oxidant, superoxide anion, by using the membrane-permeable analog of superoxide dismutase, Mn(III) tetrakis(4-benzoic acid)porphyrin chloride (MnTBAP). Adult Sprague-Dawley rats were instilled with either urban air particles (UAP) or saline. MnTBAP-treated rats received 10 mg/kg (ip) MnTBAP 2 h prior to exposure to UAP. Recruitment of inflammatory cells into bronchoalveolar lavage was evaluated 4 h after instillation. Rats exposed to UAP showed significant increases in the total cell number (8.9 +/- 0.6 x 10(6); sham: 5.1 +/- 0.6 x 10(6), p < .02), the numbers of polymorphonuclear leukocytes (26 +/- 4%; sham: 6 +/- 1%, p < .0001), protein levels (1.2 +/- 0.5 mg/ml, sham: 0.4 +/- 0.1 mg/ml, p < .001), and a trend of increase in myeloperoxidase levels (5 +/- 1; sham: 2 +/- 1 mU/ml) in bronchoalveolar lavage (BAL). Pretreatment with MnTBAP at a dose that prevented UAP-induced increases in oxidants effectively prevented increase in BAL cells (2.7 +/- 0.6 x 10(6), p < .0001 vs. UAP), PMN influx into the lungs (4 +/- 3%, p < .0001 vs. UAP), and increase in myeloperoxidase (2 +/- 1 mU/ml) and protein levels in BAL (0.1 +/- 0.1 mg/ml). These data indicate that superoxide anion is a critical mediator of the inflammatory response elicited by PM deposition in the lung. PMID:18236216

  15. Peripheral Blood Neutrophilia as a Biomarker of Ozone-Induced Pulmonary Inflammation

    PubMed Central

    Bosson, Jenny A.; Blomberg, Anders; Stenfors, Nikolai; Helleday, Ragnberth; Kelly, Frank J.; Behndig, Annelie F.; Mudway, Ian S.

    2013-01-01

    Background Ozone concentrations are predicted to increase over the next 50 years due to global warming and the increased release of precursor chemicals. It is therefore urgent that good, reliable biomarkers are available to quantify the toxicity of this pollutant gas at the population level. Such a biomarker would need to be easily performed, reproducible, economically viable, and reflective of ongoing pathological processes occurring within the lung. Methodology We examined whether blood neutrophilia occurred following a controlled ozone challenge and addressed whether this could serve as a biomarker for ozone-induced airway inflammation. Three separate groups of healthy subjects were exposed to ozone (0.2 ppm, 2h) and filtered air (FA) on two separate occasions. Peripheral blood samples were collected and bronchoscopy with biopsy sampling and lavages was performed at 1.5h post exposures in group 1 (n=13), at 6h in group 2 (n=15) and at 18h in group 3 (n=15). Total and differential cell counts were assessed in blood, bronchial tissue and airway lavages. Results In peripheral blood, we observed fewer neutrophils 1.5h after ozone compared with the parallel air exposure (-1.1±1.0x109 cells/L, p<0.01), at 6h neutrophil numbers were increased compared to FA (+1.2±1.3x109 cells/L, p<0.01), and at 18h this response had fully attenuated. Ozone induced a peak in neutrophil numbers at 6h post exposure in all compartments examined, with a positive correlation between the response in blood and bronchial biopsies. Conclusions These data demonstrate a systemic neutrophilia in healthy subjects following an acute ozone exposure, which mirrors the inflammatory response in the lung mucosa and lumen. This relationship suggests that blood neutrophilia could be used as a relatively simple functional biomarker for the effect of ozone on the lung. PMID:24391708

  16. Non-Invasive Detection of Lung Inflammation by Near-Infrared Fluorescence Imaging Using Bimodal Liposomes.

    PubMed

    Desu, Hari R; Wood, George C; Thoma, Laura A

    2016-01-01

    Acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome results in respiratory obstruction and severe lung inflammation. Critical characteristics of ALI are alveolar edema, infiltration of leukocytes (neutrophils and monocytes), release of pro-inflammatory cytokines and chemokines into broncho-alveolar lavage fluid, and activation of integrin receptors. The purpose of the study was to demonstrate non-invasive detection of lung inflammation using integrin receptor targeted fluorescence liposomes. An inflammation similar to that observed in ALI was elicited in rodents by intra-tracheal instillation of interleukin-1beta (IL-1beta). Cyclic arginine glycine-(D)-aspartic acid-peptide (cRGD-peptide) grafted fluorescence liposomes were administered to ALI induced male Sprague-Dawley rats for targeting lung integrin receptors. Near-infrared fluorescence imaging (NIRFI) was applied for visualization and quantitation of lung inflammation. NIRFI signals were correlated with inflammatory cellular and biochemical markers of lungs. A positive correlation was observed between NIRF signals and lung inflammation markers. Compared to control group, an intense NIRF signal was observed in ALI induced rats in the window 6-24 h post-IL-1beta instillation. Interaction of integrin receptors with targeted liposomes was assumed to contribute to intense NIRF signal. RT-PCR studies showed an elevated lung expression of alphavbeta5 integrin receptors, 12 h post-IL-1beta instillation. In vitro studies demonstrated integrin receptor specificity of targeted liposomes. These targeted liposomes showed binding to alphavbeta5 integrin receptors expressed on alveolar cells. Non-invasive detection of lung inflammation was demonstrated using a combination of integrin receptor targeting and NIRFI. PMID:26527222

  17. Pulmonary vasospasm in systemic sclerosis: noninvasive techniques for detection

    PubMed Central

    Nair, Arjun; Giannarou, Stamatia; Yang, Guang-Zhong; Oldershaw, Paul; Wort, S. John; MacDonald, Peter; Hansell, David M.; Wells, Athol U.

    2015-01-01

    Abstract In a subgroup of patients with systemic sclerosis (SSc), vasospasm affecting the pulmonary circulation may contribute to worsening respiratory symptoms, including dyspnea. Noninvasive assessment of pulmonary blood flow (PBF), utilizing inert-gas rebreathing (IGR) and dual-energy computed-tomography pulmonary angiography (DE-CTPA), may be useful for identifying pulmonary vasospasm. Thirty-one participants (22 SSc patients and 9 healthy volunteers) underwent PBF assessment with IGR and DE-CTPA at baseline and after provocation with a cold-air inhalation challenge (CACh). Before the study investigations, participants were assigned to subgroups: group A included SSc patients who reported increased breathlessness after exposure to cold air (n = 11), group B included SSc patients without cold-air sensitivity (n = 11), and group C patients included the healthy volunteers. Median change in PBF from baseline was compared between groups A, B, and C after CACh. Compared with groups B and C, in group A there was a significant decline in median PBF from baseline at 10 minutes (−10%; range: −52.2% to 4.0%; P < 0.01), 20 minutes (−17.4%; −27.9% to 0.0%; P < 0.01), and 30 minutes (−8.5%; −34.4% to 2.0%; P < 0.01) after CACh. There was no significant difference in median PBF change between groups B or C at any time point and no change in pulmonary perfusion on DE-CTPA. Reduction in pulmonary blood flow following CACh suggests that pulmonary vasospasm may be present in a subgroup of patients with SSc and may contribute to worsening dyspnea on exposure to cold. PMID:26401250

  18. Omentin protects against LPS-induced ARDS through suppressing pulmonary inflammation and promoting endothelial barrier via an Akt/eNOS-dependent mechanism.

    PubMed

    Qi, Di; Tang, Xumao; He, Jing; Wang, Daoxin; Zhao, Yan; Deng, Wang; Deng, Xinyu; Zhou, Guoqi; Xia, Jing; Zhong, Xi; Pu, Shenglan

    2016-01-01

    Acute respiratory distress syndrome (ARDS) is characterized by increased pulmonary inflammation and endothelial barrier permeability. Omentin has been shown to benefit obesity-related systemic vascular diseases; however, its effects on ARDS are unknown. In the present study, the level of circulating omentin in patients with ARDS was assessed to appraise its clinical significance in ARDS. Mice were subjected to systemic administration of adenoviral vector expressing omentin (Ad-omentin) and one-shot treatment of recombinant human omentin (rh-omentin) to examine omentin's effects on lipopolysaccharide (LPS)-induced ARDS. Pulmonary endothelial cells (ECs) were treated with rh-omentin to further investigate its underlying mechanism. We found that a decreased level of circulating omentin negatively correlated with white blood cells and procalcitonin in patients with ARDS. Ad-omentin protected against LPS-induced ARDS by alleviating the pulmonary inflammatory response and endothelial barrier injury in mice, accompanied by Akt/eNOS pathway activation. Treatment of pulmonary ECs with rh-omentin attenuated inflammatory response and restored adherens junctions (AJs), and cytoskeleton organization promoted endothelial barrier after LPS insult. Moreover, the omentin-mediated enhancement of EC survival and differentiation was blocked by the Akt/eNOS pathway inactivation. Therapeutic rh-omentin treatment also effectively protected against LPS-induced ARDS via the Akt/eNOS pathway. Collectively, these data indicated that omentin protects against LPS-induced ARDS by suppressing inflammation and promoting the pulmonary endothelial barrier, at least partially, through an Akt/eNOS-dependent mechanism. Therapeutic strategies aiming to restore omentin levels may be valuable for the prevention or treatment of ARDS. PMID:27607575

  19. Alum Adjuvant Enhances Protection against Respiratory Syncytial Virus but Exacerbates Pulmonary Inflammation by Modulating Multiple Innate and Adaptive Immune Cells

    PubMed Central

    Kim, Ki-Hye; Lee, Young-Tae; Hwang, Hye Suk; Kwon, Young-Man; Jung, Yu-Jin; Lee, Youri; Lee, Jong Seok; Lee, Yu-Na; Park, Soojin; Kang, Sang-Moo

    2015-01-01

    Respiratory syncytial virus (RSV) is well-known for inducing vaccine-enhanced respiratory disease after vaccination of young children with formalin-inactivated RSV (FI-RSV) in alum formulation. Here, we investigated alum adjuvant effects on protection and disease after FI-RSV immunization with or without alum in comparison with live RSV reinfections. Despite viral clearance, live RSV reinfections caused weight loss and substantial pulmonary inflammation probably due to high levels of RSV specific IFN-γ+IL4-, IFN-γ-TNF-α+, IFN-γ+TNF-α- effector CD4 and CD8 T cells. Alum adjuvant significantly improved protection as evidenced by effective viral clearance compared to unadjuvanted FI-RSV. However, in contrast to unadjuvanted FI-RSV, alum-adjuvanted FI-RSV (FI-RSV-A) induced severe vaccine-enhanced RSV disease including weight loss, eosinophilia, and lung histopathology. Alum adjuvant in the FI-RSV-A was found to be mainly responsible for inducing high levels of RSV-specific IFN-γ-IL4+, IFN-γ-TNF-α+ CD4+ T cells, and proinflammatory cytokines IL-6 and IL-4 as well as B220+ plasmacytoid and CD4+ dendritic cells, and inhibiting the induction of IFN-γ+CD8 T cells. This study suggests that alum adjuvant in FI-RSV vaccines increases immunogenicity and viral clearance but also induces atypical T helper CD4+ T cells and multiple inflammatory dendritic cell subsets responsible for vaccine-enhanced severe RSV disease. PMID:26468884

  20. Effect of nutritional antioxidant supplementation on systemic and pulmonary antioxidant status, airway inflammation and lung function in heaves-affected horses.

    PubMed

    Kirschvink, N; Fiévez, L; Bougnet, V; Art, T; Degand, G; Smith, N; Marlin, D; Roberts, C; Harris, P; Lekeux, P

    2002-11-01

    An oxidant/antioxidant imbalance in favour of oxidants has been identified as playing a decisive role in the pathogenesis of chronic inflammatory airway diseases. Nutritional antioxidant supplementation might reduce oxidative damage by enhancement of the antioxidant defence, thereby modulating inflammatory processes. In a placebo-controlled, blind study, it was tested whether a dietary antioxidant supplement administered for 4 weeks would improve lung function and reduce airway inflammation in heaves-affected horses. Eight horses in clinical remission of heaves were investigated at rest and after a standardised exercise test before and after treatment with an antioxidant supplement (consisting of a mixture of natural antioxidants including vitamins E and C and selenium from a variety of sources) or placebo (oatfeed pellets without additive). Pulmonary function and exercise tolerance were monitored; systemic and pulmonary lining fluid uric acid, glutathione and 8-epi-PGF(2alpha) were analysed, and bronchoalveolar lavage (BAL) cytology and inflammatory scoring of the airways were performed. The antioxidant treatment significantly improved exercise tolerance and significantly reduced endoscopic inflammatory score. Plasma uric acid concentrations were significantly reduced, suggesting downregulation of the xanthine-dehydrogenase and xanthine-oxydase pathway. Haemolysate glutathione showed a nonsignificant trend to increase, while plasma 8-epi-PGF(2alpha) remained unchanged. Pulmonary markers and BAL cytology were not significantly affected by antioxidant supplementation. The present study suggests that the antioxidant supplement tested modulated oxidant/antioxidant balance and airway inflammation of heaves-affected horses. PMID:12455842

  1. Sequential Treatments with Tongsai and Bufei Yishen Granules Reduce Inflammation and Improve Pulmonary Function in Acute Exacerbation-Risk Window of Chronic Obstructive Pulmonary Disease in Rats.

    PubMed

    Lu, Xiaofan; Li, Ya; Li, Jiansheng; Wang, Haifeng; Wu, Zhaohuan; Li, Hangjie; Wang, Yang

    2016-01-01

    Background. Sequential treatments of Chinese medicines for acute exacerbation of chronic obstructive pulmonary disease (AECOPD) risk window (RW) have benefits for preventing reoccurrences of AEs; however, the effects on pulmonary function, pulmonary, and systemic inflammatory biomarkers remain unclear. Methods. Cigarette-smoke/bacterial infections induced rats were randomized into Control, COPD, AECOPD, Tongsai Granule/normal saline (TSG/NS), moxifloxacin + salbutamol/NS (MXF+STL/NS), TSG/Bufei Yishen Granule (BYG), MXF+STL/STL, and TSG+MXF+STL/BYG+STL groups and given corresponding medicine(s) in AE- and/or RW phase. Body temperature, pulmonary function, blood cytology, serum amyloid A (SAA) and C-reactive protein (CRP), pulmonary histomorphology and myeloperoxidase (MPO), polymorphonuclear (PMN) elastase, interleukins IL-1β, IL-6, and IL-10, and tumor necrosis factor- (TNF-) α expressions were determined. Results. Body temperature, inflammatory cells and cytokines, SAA, CRP, and pulmonary impairment were higher in AECOPD rats than stable COPD, while pulmonary function declined and recovered to COPD level in 14-18 days. All biomarkers were improved in treated groups with shorter recovery times of 4-10 days, especially in TSG+MXF+STL/BYG+STL group. Conclusion. Sequential treatments with Tongsai and Bufei Yishen Granules, during AECOPD-RW periods, can reduce inflammatory response and improve pulmonary function and shorten the recovery courses of AEs, especially the integrated Chinese and Western medicines. PMID:27563333

  2. Sequential Treatments with Tongsai and Bufei Yishen Granules Reduce Inflammation and Improve Pulmonary Function in Acute Exacerbation-Risk Window of Chronic Obstructive Pulmonary Disease in Rats

    PubMed Central

    Lu, Xiaofan; Li, Ya; Wang, Haifeng; Wu, Zhaohuan; Li, Hangjie; Wang, Yang

    2016-01-01

    Background. Sequential treatments of Chinese medicines for acute exacerbation of chronic obstructive pulmonary disease (AECOPD) risk window (RW) have benefits for preventing reoccurrences of AEs; however, the effects on pulmonary function, pulmonary, and systemic inflammatory biomarkers remain unclear. Methods. Cigarette-smoke/bacterial infections induced rats were randomized into Control, COPD, AECOPD, Tongsai Granule/normal saline (TSG/NS), moxifloxacin + salbutamol/NS (MXF+STL/NS), TSG/Bufei Yishen Granule (BYG), MXF+STL/STL, and TSG+MXF+STL/BYG+STL groups and given corresponding medicine(s) in AE- and/or RW phase. Body temperature, pulmonary function, blood cytology, serum amyloid A (SAA) and C-reactive protein (CRP), pulmonary histomorphology and myeloperoxidase (MPO), polymorphonuclear (PMN) elastase, interleukins IL-1β, IL-6, and IL-10, and tumor necrosis factor- (TNF-) α expressions were determined. Results. Body temperature, inflammatory cells and cytokines, SAA, CRP, and pulmonary impairment were higher in AECOPD rats than stable COPD, while pulmonary function declined and recovered to COPD level in 14–18 days. All biomarkers were improved in treated groups with shorter recovery times of 4–10 days, especially in TSG+MXF+STL/BYG+STL group. Conclusion. Sequential treatments with Tongsai and Bufei Yishen Granules, during AECOPD-RW periods, can reduce inflammatory response and improve pulmonary function and shorten the recovery courses of AEs, especially the integrated Chinese and Western medicines. PMID:27563333

  3. A Single 9-Colour Flow Cytometric Method to Characterise Major Leukocyte Populations in the Rat: Validation in a Model of LPS-Induced Pulmonary Inflammation

    PubMed Central

    Barnett-Vanes, Ashton; Sharrock, Anna; Birrell, Mark A.; Rankin, Sara

    2016-01-01

    The rat is a commonly used model for immunological investigation. Yet basic research and characterisation of leukocyte populations and sub-sets lags far behind murine research, with inconsistency on reported leukocyte markers and their overlap. These shortcomings limit the opportunity for more complex and advanced rat immunology research. In this study, we developed a robust 9-colour flow-cytometric protocol to elucidate the major blood and tissue rat leukocyte populations, and validated it in a model of LPS-induced pulmonary inflammation. Blood and tissues (lung, BALF, spleen, liver, bone marrow) from naïve Sprague-Dawley rats were collected and analysed by flow cytometry (FCM). Rats were exposed to aerosolised saline or LPS (1mg/mL), at 3 and 24hrs thereafter blood, lung and BALF were collected and analysed using FCM and ELISA. Neutrophils, two monocyte subsets, NK Cells, B Cells, CD4+, CD8+ T Cells and alveolar macrophages can be identified simultaneously across different tissues using a 9-colour panel. Neutrophils and monocytes can be distinguished based upon differential expression of CD43 and His48. Neutrophils and CD43Lo/His48Hi monocyte-macrophages are elevated in the lung at 3 and 24hrs during LPS-induced pulmonary inflammation. This validated method for leukocyte enumeration will offer a platform for greater consistency in future rat immunology and inflammation research. PMID:26764486

  4. Pulmonary inflammation and tissue damage in the mouse lung after exposure to PM samples from biomass heating appliances of old and modern technologies.

    PubMed

    Happo, Mikko S; Uski, Oskari; Jalava, Pasi I; Kelz, Joachim; Brunner, Thomas; Hakulinen, Pasi; Mäki-Paakkanen, Jorma; Kosma, Veli-Matti; Jokiniemi, Jorma; Obernberger, Ingwald; Hirvonen, Maija-Riitta

    2013-01-15

    Current levels of ambient air fine particulate matter (PM(2.5)) are associated with mortality and morbidity in urban populations worldwide. In residential areas wood combustion is one of the main sources of PM(2.5) emissions, especially during wintertime. However, the adverse health effects of particulate emissions from the modern heating appliances and fuels are poorly known. In this study, health related toxicological properties of PM(1) emissions from five modern and two old technology appliances were examined. The PM(1) samples were collected by using a Dekati® Gravimetric Impactor (DGI). The collected samples were weighed and extracted with methanol for chemical and toxicological analyses. Healthy C57BL/6J mice were intratracheally exposed to a single dose of 1, 3, 10 or 15 mg/kg of the particulate samples for 4, 18 or 24h. Thereafter, the lungs were lavaged and bronchoalveolar lavage fluid (BALF) was assayed for indicators of inflammation, cytotoxicity and genotoxicity. Lungs of 24h exposed mice were collected for inspection of pulmonary tissue damage. There were substantial differences in the combustion qualities of old and modern technology appliances. Modern technology appliances had the lowest PM(1) (mg/MJ) emissions, but they induced the highest inflammatory, cytotoxic and genotoxic activities. In contrast, old technology appliances had clearly the highest PM(1) (mg/MJ) emissions, but their effect in the mouse lungs were the lowest. Increased inflammatory activity was associated with ash related components of the emissions, whereas high PAH concentrations were correlating with the smallest detected responses, possibly due to their immunosuppressive effect. PMID:23201646

  5. EKG-gated digital subtraction angiography in the detection of pulmonary emboli. [Dogs

    SciTech Connect

    Hirji, M.; Gamsu, G.; Webb, W.R.; Brito, A.C.; Kuriyama, K.; Stern, R.G.; Cox, L.

    1984-07-01

    Detection of pulmonary emboli was investigated using electrocardiographically gated (EKG-gated) intravenous digital subtraction angiography (DSA) in 6 anesthetized and paralyzed dogs. Six autologous blood clots were introducted into the internal jugular vein of each dog and both conventional pulmonary angiography and EKG- gated DSA performed in frontal and oblique projections. The authors conclude that DSA can demonstrate individual emboli with good sensitivity and excellent precision. If several emboli are present, KEG-gated DSA should prove highly accurate; however, care must be taken because overinterpretation is more likely with DSA than with conventional pulmonary angiography.

  6. SOPROCARE - 450 nm wavelength detection tool for microbial plaque and gingival inflammation: a clinical study

    NASA Astrophysics Data System (ADS)

    Rechmann, P.; Liou, Shasan W.; Rechmann, Beate M.; Featherstone, John D.

    2014-02-01

    Gingivitis due to microbial plaque and calculus can lead over time if left untreated to advanced periodontal disease with non-physiological pocket formation. Removal of microbial plaque in the gingivitis stage typically achieves gingival health. The SOPROCARE camera system emits blue light at 450 nm wavelength using three blue diodes. The 450 nm wavelength is located in the non-ionizing, visible spectral wavelength region and thus is not dangerous. It is assumed that using the SOPROCARE camera in perio-mode inflamed gingiva can easily be observed and inflammation can be scored due to fluorescence from porphyrins in blood. The assumption is also that illumination of microbial plaque with blue light induces fluorescence due to the bacteria and porphyrin content of the plaque and thus can help to make microbial plaque and calculus visible. Aim of the study with 55 subjects was to evaluate the ability of the SOPROCARE fluorescence camera system to detect, visualize and allow scoring of microbial plaque in comparison to the Turesky modification of the Quigley and Hein plaque index. A second goal was to detect and score gingival inflammation and correlated the findings to the Silness and Löe gingival inflammation index. The study showed that scoring of microbial plaque as well as gingival inflammation levels similar to the established Turesky modified Quigley Hein index and the Silness and Löe gingival inflammation index can easily be done using the SOPROCARE fluorescence system in periomode. Linear regression fits between the different clinical indices and SOPROCARE scores in fluorescence perio-mode revealed the system's capacity for effective discrimination between scores.

  7. Upregulated protein arginine methyltransferase 1 by IL-4 increases eotaxin-1 expression in airway epithelial cells and participates in antigen-induced pulmonary inflammation in rats.

    PubMed

    Sun, Qingzhu; Yang, Xudong; Zhong, Bo; Jiao, Fangfang; Li, Chenyan; Li, Dongmin; Lan, Xi; Sun, Jian; Lu, Shemin

    2012-04-01

    Protein arginine methyltransferases (PRMTs), catalyzing methylation of both histones and other cellular proteins, have emerged as key regulators of various cellular processes. This study aimed to identify key PRMTs involved in Ag-induced pulmonary inflammation (AIPI), a rat model for asthma, and to explore the role of PRMT1 in the IL-4-induced eosinophil infiltration process. E3 rats were i.p. sensitized with OVA/alum and intranasally challenged with OVA to induce AIPI. The expressions of PRMT1-6, eotaxin-1, and CCR3 in lungs were screened by real-time quantitative PCR. Arginine methyltransferase inhibitor 1 (AMI-1, a pan-PRMT inhibitor) and small interfering RNA-PRMT1 were used to interrupt the function of PRMT1 in A549 cells. In addition, AMI-1 was administrated intranasally to AIPI rats to observe the effects on inflammatory parameters. The results showed that PRMT1 expression was mainly expressed in bronchus and alveolus epithelium and significantly upregulated in lungs from AIPI rats. The inhibition of PRMTs by AMI-1 and the knockdown of PRMT1 expression were able to downregulate the expressions of eotaxin-1 and CCR3 with the IL-4 stimulation in the epithelial cells. Furthermore, AMI-1 administration to AIPI rats can also ameliorate pulmonary inflammation, reduce IL-4 production and humoral immune response, and abrogate eosinophil infiltration into the lungs. In summary, PRMT1 expression is upregulated in AIPI rat lungs and can be stimulated by IL-4. Intervention of PRMT1 activity can abrogate IL-4-dependent eotaxin-1 production to influence the pulmonary inflammation with eosinophil infiltration. The findings may provide experimental evidence that PRMT1 plays an important role in asthma pathogenesis. PMID:22387551

  8. Potentiated interaction between ineffective doses of budesonide and formoterol to control the inhaled cadmium-induced up-regulation of metalloproteinases and acute pulmonary inflammation in rats.

    PubMed

    Zhang, Wenhui; Zhi, Jianming; Cui, Yongyao; Zhang, Fan; Habyarimana, Adélite; Cambier, Carole; Gustin, Pascal

    2014-01-01

    The anti-inflammatory properties of glucocorticoids are well known but their protective effects exerted with a low potency against heavy metals-induced pulmonary inflammation remain unclear. In this study, a model of acute pulmonary inflammation induced by a single inhalation of cadmium in male Sprague-Dawley rats was used to investigate whether formoterol can improve the anti-inflammatory effects of budesonide. The cadmium-related inflammatory responses, including matrix metalloproteinase-9 (MMP-9) activity, were evaluated. Compared to the values obtained in rats exposed to cadmium, pretreatment of inhaled budesonide (0.5 mg/15 ml) elicited a significant decrease in total cell and neutrophil counts in bronchoalveolar lavage fluid (BALF) associated with a significant reduction of MMP-9 activity which was highly correlated with the number of inflammatory cells in BALF. Additionally, cadmium-induced lung injuries characterized by inflammatory cell infiltration within alveoli and the interstitium were attenuated by the pre-treatment of budesonide. Though the low concentration of budesonide (0.25 mg/15 ml) exerted a very limited inhibitory effects in the present rat model, its combination with an inefficient concentration of formoterol (0.5 mg/30 ml) showed an enhanced inhibitory effect on neutrophil and total cell counts as well as on the histological lung injuries associated with a potentiation of inhibition on the MMP-9 activity. In conclusion, high concentration of budesonide alone could partially protect the lungs against cadmium exposure induced-acute neutrophilic pulmonary inflammation via the inhibition of MMP-9 activity. The combination with formoterol could enhance the protective effects of both drugs, suggesting a new therapeutic strategy for the treatment of heavy metals-induced lung diseases. PMID:25313925

  9. Potentiated Interaction between Ineffective Doses of Budesonide and Formoterol to Control the Inhaled Cadmium-Induced Up-Regulation of Metalloproteinases and Acute Pulmonary Inflammation in Rats

    PubMed Central

    Zhang, Wenhui; Zhi, Jianming; Cui, Yongyao; Zhang, Fan; Habyarimana, Adélite; Cambier, Carole; Gustin, Pascal

    2014-01-01

    The anti-inflammatory properties of glucocorticoids are well known but their protective effects exerted with a low potency against heavy metals-induced pulmonary inflammation remain unclear. In this study, a model of acute pulmonary inflammation induced by a single inhalation of cadmium in male Sprague-Dawley rats was used to investigate whether formoterol can improve the anti-inflammatory effects of budesonide. The cadmium-related inflammatory responses, including matrix metalloproteinase-9 (MMP-9) activity, were evaluated. Compared to the values obtained in rats exposed to cadmium, pretreatment of inhaled budesonide (0.5 mg/15 ml) elicited a significant decrease in total cell and neutrophil counts in bronchoalveolar lavage fluid (BALF) associated with a significant reduction of MMP-9 activity which was highly correlated with the number of inflammatory cells in BALF. Additionally, cadmium-induced lung injuries characterized by inflammatory cell infiltration within alveoli and the interstitium were attenuated by the pre-treatment of budesonide. Though the low concentration of budesonide (0.25 mg/15 ml) exerted a very limited inhibitory effects in the present rat model, its combination with an inefficient concentration of formoterol (0.5 mg/30 ml) showed an enhanced inhibitory effect on neutrophil and total cell counts as well as on the histological lung injuries associated with a potentiation of inhibition on the MMP-9 activity. In conclusion, high concentration of budesonide alone could partially protect the lungs against cadmium exposure induced-acute neutrophilic pulmonary inflammation via the inhibition of MMP-9 activity. The combination with formoterol could enhance the protective effects of both drugs, suggesting a new therapeutic strategy for the treatment of heavy metals-induced lung diseases. PMID:25313925

  10. Role of Chitinase 3-Like-1 in Interleukin-18-Induced Pulmonary Type 1, Type 2, and Type 17 Inflammation; Alveolar Destruction; and Airway Fibrosis in the Murine Lung.

    PubMed

    Kang, Min-Jong; Yoon, Chang Min; Nam, Milang; Kim, Do-Hyun; Choi, Je-Min; Lee, Chun Geun; Elias, Jack A

    2015-12-01

    Chitinase 3-like 1 (Chi3l1), which is also called YKL-40 in humans and BRP-39 in mice, is the prototypic chitinase-like protein. Recent studies have highlighted its impressive ability to regulate the nature of tissue inflammation and the magnitude of tissue injury and fibroproliferative repair. This can be appreciated in studies that highlight its induction after cigarette smoke exposure, during which it inhibits alveolar destruction and the genesis of pulmonary emphysema. IL-18 is also known to be induced and activated by cigarette smoke, and, in murine models, the IL-18 pathway has been shown to be necessary and sufficient to generate chronic obstructive pulmonary disease-like inflammation, fibrosis, and tissue destruction. However, the relationship between Chi3l1 and IL-18 has not been defined. To address this issue we characterized the expression of Chi3l1/BRP-39 in control and lung-targeted IL-18 transgenic mice. We also characterized the effects of transgenic IL-18 in mice with wild-type and null Chi3l1 loci. The former studies demonstrated that IL-18 is a potent stimulator of Chi3l1/BRP-39 and that this stimulation is mediated via IFN-γ-, IL-13-, and IL-17A-dependent mechanisms. The latter studies demonstrated that, in the absence of Chi3l1/BRP-39, IL-18 induced type 2 and type 17 inflammation and fibrotic airway remodeling were significantly ameliorated, whereas type 1 inflammation, emphysematous alveolar destruction, and the expression of cytotoxic T lymphocyte perforin, granzyme, and retinoic acid early transcript 1 expression were enhanced. These studies demonstrate that IL-18 is a potent stimulator of Chi3l1 and that Chi3l1 is an important mediator of IL-18-induced inflammatory, fibrotic, alveolar remodeling, and cytotoxic responses. PMID:25955511

  11. sTREM-1 in bronchoalveolar lavage fluid in patients with pulmonary sarcoidosis, effect of smoking and inflammation.

    PubMed

    Suchankova, M; Bucova, M; E, Tibenska; Demian, J; Majer, I; Novosadova, H; Tedlova, E; Durmanova, V; Paulovicova, E

    2013-01-01

    Soluble TREM-1 (sTREM-1; Triggering receptor expressed on myelocytes) is a new inflammatory marker indicating the intensity of myeloid cells activation and the presence of infection caused by extracellular bacteria and mould.The aim of our work was to detect and compare the levels of sTREM-1 in bronchoalveolar lavage fluid (BALF) in patients with pulmonary sarcoidosis (PS) and other ILD of non-infectious origin. The sTREM-1 levels were assessed by ELISA in 46 patients suffering from ILD, out of them 22 with PS. The levels of BALF sTREM-1 in PS patients were higher than in control group of ILD patients of non-infectious origin, however, the difference was not statistically significant. Since all PS patients except one were non-smokers we compared non-smokers PS with non-smokers ILD patients and found four times higher levels of BALF sTREM-1 in PS patients (P = 0.001). We also recorded the effect of smoking, ILD smokers had higher sTREM-1 levels than non-smokers (P = 0.0019). Higher concentrations of sTREM-1 were detected in BALF of patients with lymphadenopathy and with elevated inflammatory markers in BALF. Our results show that BALF sTREM-1 could be a good inflammatory marker and could help in diagnosis and PS monitoring. Detection of sTREM-1 in BALF indirectly points to myeloid cells activation in the lungs and helps to complete the information about the number of myeloid cells commonly determined in BALF with additional information concerning the intensity of their activation. This is the first study that analyses BALF sTREM-1 levels in patients with PS (Tab. 8, Ref. 28). Text in PDF www.elis.sk. PMID:24329508

  12. Inflammable Gas Mixture Detection with a Single Catalytic Sensor Based on the Electric Field Effect

    PubMed Central

    Tong, Ziyuan; Tong, Min-Ming; Meng, Wen; Li, Meng

    2014-01-01

    This paper introduces a new way to analyze mixtures of inflammable gases with a single catalytic sensor. The analysis technology was based on a new finding that an electric field on the catalytic sensor can change the output sensitivity of the sensor. The analysis of mixed inflammable gases results from processing the output signals obtained by adjusting the electric field parameter of the catalytic sensor. For the signal process, we designed a group of equations based on the heat balance of catalytic sensor expressing the relationship between the output signals and the concentration of gases. With these equations and the outputs of different electric fields, the gas concentration in a mixture could be calculated. In experiments, a mixture of methane, butane and ethane was analyzed by this new method, and the results showed that the concentration of each gas in the mixture could be detected with a single catalytic sensor, and the maximum relative error was less than 5%. PMID:24717635

  13. Detecting Renal Allograft Inflammation Using Quantitative Urine Metabolomics and CXCL10

    PubMed Central

    Ho, Julie; Sharma, Atul; Mandal, Rupasri; Wishart, David S.; Wiebe, Chris; Storsley, Leroy; Karpinski, Martin; Gibson, Ian W.; Nickerson, Peter W.; Rush, David N.

    2016-01-01

    Background The goal of this study was to characterize urinary metabolomics for the noninvasive detection of cellular inflammation and to determine if adding urinary chemokine ligand 10 (CXCL10) improves the overall diagnostic discrimination. Methods Urines (n = 137) were obtained before biopsy in 113 patients with no (n = 66), mild (borderline or subclinical; n = 58), or severe (clinical; n = 13) rejection from a prospective cohort of adult renal transplant patients (n = 113). Targeted, quantitative metabolomics was performed with direct flow injection tandem mass spectrometry using multiple reaction monitoring (ABI 4000 Q-Trap). Urine CXCL10 was measured by enzyme-linked immunosorbent assay. A projection on latent structures discriminant analysis was performed and validated using leave-one-out cross-validation, and an optimal 2-component model developed. Chemokine ligand 10 area under the curve (AUC) was determined and net reclassification index and integrated discrimination index analyses were performed. Results PLS2 demonstrated that urinary metabolites moderately discriminated the 3 groups (Cohen κ, 0.601; 95% confidence interval [95% CI], 0.46-0.74; P < 0.001). Using binary classifiers, urinary metabolites and CXCL10 demonstrated an AUC of 0.81 (95% CI, 0.74-0.88) and 0.76 (95% CI, 0.68-0.84), respectively, and a combined AUC of 0.84 (95% CI, 0.78-0.91) for detecting alloimmune inflammation that was improved by net reclassification index and integrated discrimination index analyses. Urinary CXCL10 was the best univariate discriminator, followed by acylcarnitines and hexose. Conclusions Urinary metabolomics can noninvasively discriminate noninflamed renal allografts from those with subclinical and clinical inflammation, and the addition of urine CXCL10 had a modest but significant effect on overall diagnostic performance. These data suggest that urinary metabolomics and CXCL10 may be useful for noninvasive monitoring of alloimmune inflammation in renal

  14. NKT cells mediate pulmonary inflammation and dysfunction in murine sickle cell disease through production of IFN-γ and CXCR3 chemokines

    PubMed Central

    Wallace, Kori L.; Marshall, Melissa A.; Ramos, Susan I.; Lannigan, Joanne A.; Field, Joshua J.; Strieter, Robert M.

    2009-01-01

    Ischemia-reperfusion injury (IRI) triggers an inflammatory cascade that is initiated by the activation of CD1d-restricted iNKT cells. In sickle cell disease (SCD), misshapen erythrocytes evoke repeated transient bouts of microvascular IRI. Compared with C57BL/6 controls, NY1DD mice have more numerous and activated (CD69+, interferon-γ+ [IFN-γ+]) lung, liver, and spleen iNKT cells that are hyperresponsive to hypoxia/reoxygenation. NY1DD mice have increased pulmonary levels of IFN-γ, IFN-γ–inducible chemokines (CXCL9, CXCL10), and elevated numbers of lymphocytes expressing the chemokine receptor CXCR3. Treating NY1DD mice with anti-CD1d antibody to inhibit iNKT cell activation reverses baseline pulmonary dysfunction manifested as elevated vascular permeability, decreased arterial oxygen saturation, and increased numbers of activated leukocytes. Anti-CD1d antibodies decrease pulmonary levels of IFN-γ and CXCR3 chemokines. Neutralization of CXCR3 receptors ameliorates pulmonary dysfunction. Crossing NY1DD to lymphocyte-deficient Rag1−/− mice decreases pulmonary dysfunction. This is counteracted by the adoptive transfer of 1 million NKT cells. Like mice, people with SCD have increased numbers of activated circulating iNKT cells expressing CXCR3. Together, these data indicate that iNKT cells play a pivotal role in sustaining inflammation in SCD mice by a pathway involving IFN-γ and production of chemotactic CXCR3 chemokines and that this mechanism may translate to human disease. PMID:19433855

  15. Pulmonary nodule detection in PET/CT images: improved approach using combined nodule detection and hybrid FP reduction

    NASA Astrophysics Data System (ADS)

    Teramoto, Atsushi; Fujita, Hiroshi; Tomita, Yoya; Takahashi, Katsuaki; Yamamuro, Osamu; Tamaki, Tsuneo

    2012-03-01

    In this study, an automated scheme for detecting pulmonary nodules in PET/CT images has been proposed using combined detection and hybrid false-positive (FP) reduction techniques. The initial nodule candidates were detected separately from CT and PET images. FPs were then eliminated in the initial candidates by using support vector machine with characteristic values obtained from CT and PET images. In the experiment, we evaluated proposed method using 105 cases of PET/CT images that were obtained in the cancer-screening program. We evaluated true positive fraction (TPF) and FP / case. As a result, TPFs of CT and PET detections were 0.76 and 0.44, respectively. However, by integrating the both results, TPF was reached to 0.82 with 5.14 FPs/case. These results indicate that our method may be of practical use for the detection of pulmonary nodules using PET/CT images.

  16. Hemoglobin-induced lung vascular oxidation, inflammation, and remodeling contribute to the progression of hypoxic pulmonary hypertension and is attenuated in rats with repeated-dose haptoglobin administration.

    PubMed

    Irwin, David C; Baek, Jin Hyen; Hassell, Kathryn; Nuss, Rachelle; Eigenberger, Paul; Lisk, Christina; Loomis, Zoe; Maltzahn, Joanne; Stenmark, Kurt R; Nozik-Grayck, Eva; Buehler, Paul W

    2015-05-01

    Haptoglobin (Hp) is an approved treatment in Japan for trauma, burns, and massive transfusion-related hemolysis. Additional case reports suggest uses in other acute hemolytic events that lead to acute kidney injury. However, Hp's protective effects on the pulmonary vasculature have not been evaluated within the context of mitigating the consequences of chronic hemoglobin (Hb) exposure in the progression of pulmonary hypertension (PH) secondary to hemolytic diseases. This study was performed to assess the utility of chronic Hp therapy in a preclinical model of Hb and hypoxia-mediated PH. Rats were simultaneously exposed to chronic Hb infusion (35 mg per day) and hypobaric hypoxia for 5 weeks in the presence or absence of Hp treatment (90 mg/kg twice a week). Hp inhibited the Hb plus hypoxia-mediated nonheme iron accumulation in lung and heart tissue, pulmonary vascular inflammation and resistance, and right-ventricular hypertrophy, which suggests a positive impact on impeding the progression of PH. In addition, Hp therapy was associated with a reduction in critical mediators of PH, including lung adventitial macrophage population and endothelial ICAM-1 expression. By preventing Hb-mediated pathology, Hp infusions: (1) demonstrate a critical role for Hb in vascular remodeling associated with hypoxia and (2) suggest a novel therapy for chronic hemolysis-associated PH. PMID:25656991

  17. Hemoglobin induced lung vascular oxidation, inflammation, and remodeling contributes to the progression of hypoxic pulmonary hypertension and is attenuated in rats with repeat dose haptoglobin administration

    PubMed Central

    Baek, Jin Hyen; Hassell, Kathryn; Nuss, Rachelle; Eigenberger, Paul; Lisk, Christina; Loomis, Zoe; Maltzahn, Joanne; Stenmark, Kurt R; Nozik-Grayck, Eva

    2015-01-01

    Objective Haptoglobin (Hp) is an approved treatment in Japan with indications for trauma, burns and massive transfusion related hemolysis. Additional case reports suggest uses in other acute hemolytic events that lead to acute kidney injury. However, Hp's protective effects on the pulmonary vasculature have not been evaluated within the context of mitigating the consequences of chronic hemoglobin (Hb) exposure in the progression of pulmonary hypertension (PH) secondary to hemolytic diseases. This study was performed to assess the utility of chronic Hp therapy in a preclinical model of Hb and hypoxia mediated PH. Approach and results Rats were simultaneously exposed to chronic Hb-infusion (35 mg per day) and hypobaric hypoxia for five weeks in the presence or absence of Hp treatment (90 mg/kg twice a week). Hp inhibited the Hb plus hypoxia-mediated non-heme iron accumulation in lung and heart tissue, pulmonary vascular inflammation and resistance, and right ventricular hypertrophy, which suggest a positive impact on impeding the progression of PH. In addition, Hp therapy was associated with a reduction in critical mediators of PH, including lung adventitial macrophage population and endothelial ICAM-1 expression. Conclusions By preventing Hb-mediated pathology, Hp infusions: (1) demonstrate a critical role for Hb in vascular remodeling associated with hypoxia; and (2) suggest a novel therapy for chronic hemolysis associated PH. PMID:25656991

  18. Prostaglandin E2 deficiency uncovers a dominant role for thromboxane A2 in house dust mite-induced allergic pulmonary inflammation.

    PubMed

    Liu, Tao; Laidlaw, Tanya M; Feng, Chunli; Xing, Wei; Shen, Shiliang; Milne, Ginger L; Boyce, Joshua A

    2012-07-31

    Prostaglandin E(2) (PGE(2)) is an abundant lipid inflammatory mediator with potent but incompletely understood anti-inflammatory actions in the lung. Deficient PGE(2) generation in the lung predisposes to airway hyperresponsiveness and aspirin intolerance in asthmatic individuals. PGE(2)-deficient ptges(-/-) mice develop exaggerated pulmonary eosinophilia and pulmonary arteriolar smooth-muscle hyperplasia compared with PGE(2)-sufficient controls when challenged intranasally with a house dust mite extract. We now demonstrate that both pulmonary eosinophilia and vascular remodeling in the setting of PGE(2) deficiency depend on thromboxane A(2) and signaling through the T prostanoid (TP) receptor. Deletion of TP receptors from ptges(-/-) mice reduces inflammation, vascular remodeling, cytokine generation, and airway reactivity to wild-type levels, with contributions from TP receptors localized to both hematopoietic cells and tissue. TP receptor signaling ex vivo is controlled heterologously by E prostanoid (EP)(1) and EP(2) receptor-dependent signaling pathways coupling to protein kinases C and A, respectively. TP-dependent up-regulation of intracellular adhesion molecule-1 expression is essential for the effects of PGE(2) deficiency. Thus, PGE(2) controls the strength of TP receptor signaling as a major bronchoprotective mechanism, carrying implications for the pathobiology and therapy of asthma. PMID:22802632

  19. CD28/B7 Deficiency Attenuates Systolic Overload-Induced Congestive Heart Failure, Myocardial and Pulmonary Inflammation, and Activated T Cell Accumulation in the Heart and Lungs.

    PubMed

    Wang, Huan; Kwak, Dongmin; Fassett, John; Hou, Lei; Xu, Xin; Burbach, Brandon J; Thenappan, Thenappan; Xu, Yawei; Ge, Jun-Bo; Shimizu, Yoji; Bache, Robert J; Chen, Yingjie

    2016-09-01

    The inflammatory response regulates congestive heart failure (CHF) development. T cell activation plays an important role in tissue inflammation. We postulate that CD28 or B7 deficiency inhibits T cell activation and attenuates CHF development by reducing systemic, cardiac, and pulmonary inflammation. We demonstrated that chronic pressure overload-induced end-stage CHF in mice is characterized by profound accumulation of activated effector T cells (CD3(+)CD44(high) cells) in the lungs and a mild but significant increase of these cells in the heart. In knockout mice lacking either CD28 or B7, there was a dramatic reduction in the accumulation of activated effector T cells in both hearts and lungs of mice under control conditions and after transverse aortic constriction. CD28 or B7 knockout significantly attenuated transverse aortic constriction-induced CHF development, as indicated by less increase of heart and lung weight and less reduction of left ventricle contractility. CD28 or B7 knockout also significantly reduced transverse aortic constriction-induced CD45(+) leukocyte, T cell, and macrophage infiltration in hearts and lungs, lowered proinflammatory cytokine expression (such as tumor necrosis factor-α and interleukin-1β) in lungs. Furthermore, CD28/B7 blockade by CTLA4-Ig treatment (250 μg/mouse every 3 days) attenuated transverse aortic constriction-induced T cell activation, left ventricle hypertrophy, and left ventricle dysfunction. Our data indicate that CD28/B7 deficiency inhibits activated effector T cell accumulation, reduces myocardial and pulmonary inflammation, and attenuates the development of CHF. Our findings suggest that strategies targeting T cell activation may be useful in treating CHF. PMID:27432861

  20. Novel ways to noninvasively detect inflammation of the myocardium: contrast-enhanced MRI and myocardial contrast echocardiography

    PubMed Central

    van den Brink, M.R.; Geluk, C.A.; Lindner, J.R.; Velthuis, B.K.; Vonken, E.J.; Cramer, M.J.M.

    2003-01-01

    Both contrast-enhanced magnetic resonance imaging (CE-MRI) and myocardial contrast echocardiography (MCE) are promising tools to detect cardiac inflammation. CE-MRI can be used to characterise the location and extent of myocardial inflammation, since areas of abnormal signal enhancement associated with regional wall motion abnormalities reliably indicate areas of active myocarditis. In MCE, chemically composed microbubbles can be visualised by ultrasound and used to determine the status of the cardiac microvasculature. If there is any inflammation the microbubbles will be phagocytosed by neutrophils and monocytes, thus enabling the degree of inflammation to be assessed. These noninvasive techniques may allow early diagnosis and accurate evaluation of myocardial inflammation. ImagesFigure 1Figure 2Figure 3Figure 4 PMID:25696203

  1. Detection of Mycobacterium tuberculosis complex by nested polymerase chain reaction in pulmonary and extrapulmonary specimens* ,**

    PubMed Central

    Furini, Adriana Antônia da Cruz; Pedro, Heloisa da Silveira Paro; Rodrigues, Jean Francisco; Montenegro, Lilian Maria Lapa; Machado, Ricardo Luiz Dantas; Franco, Célia; Schindler, Haiana Charifker; Batista, Ida Maria Foschiani Dias; Rossit, Andrea Regina Baptista

    2013-01-01

    OBJECTIVE: To compare the performance of nested polymerase chain reaction (NPCR) with that of cultures in the detection of the Mycobacterium tuberculosis complex in pulmonary and extrapulmonary specimens. METHODS: We analyzed 20 and 78 pulmonary and extrapulmonary specimens, respectively, of 67 hospitalized patients suspected of having tuberculosis. An automated microbial system was used for the identification of Mycobacterium spp. cultures, and M. tuberculosis IS6110 was used as the target sequence in the NPCR. The kappa statistic was used in order to assess the level of agreement among the results. RESULTS: Among the 67 patients, 6 and 5, respectively, were diagnosed with pulmonary and extrapulmonary tuberculosis, and the NPCR was positive in all of the cases. Among the 98 clinical specimens, smear microscopy, culture, and NPCR were positive in 6.00%, 8.16%, and 13.26%, respectively. Comparing the results of NPCR with those of cultures (the gold standard), we found that NPCR had a sensitivity and specificity of 100% and 83%, respectively, in pulmonary specimens, compared with 83% and 96%, respectively, in extrapulmonary specimens, with good concordance between the tests (kappa, 0.50 and 0.6867, respectively). CONCLUSIONS: Although NPCR proved to be a very useful tool for the detection of M. tuberculosis complex, clinical, epidemiological, and other laboratory data should also be considered in the diagnosis and treatment of pulmonary and extrapulmonary tuberculosis. PMID:24473765

  2. Effects of Schisandra chinensis extracts on cough and pulmonary inflammation in a cough hypersensitivity guinea pig model induced by cigarette smoke exposure.

    PubMed

    Zhong, Shan; Nie, Yi-chu; Gan, Zhen-yong; Liu, Xiao-dong; Fang, Zhang-fu; Zhong, Bo-nian; Tian, Jin; Huang, Chu-qin; Lai, Ke-fang; Zhong, Nan-shan

    2015-05-13

    Schisandra chinensis (S. chinensis) is a traditional Chinese medicine commonly used in prescription medications for the treatment of chronic cough. However, the material basis of S. chinensis in relieving cough has not been completely elucidated yet. This study established a guinea pig model of cough hypersensitivity induced by 14 days of cigarette smoke (CS) exposure, to evaluate the antitussive, antioxidant, and anti-inflammatory effects of three S. chinensis extracts. And then the function of four lignans in reducing expression of TRPV1 and TRPA1 was examined using A549 cells induced by cigarette smoke extract (CSE). The results demonstrated that both ethanol extract (EE) and ethanol-water extract (EWE) of S. chinensis, but not water extract (WE), significantly reduced the cough frequency enhanced by 0.4M citric acid solution in these cough hypersensitivity guinea pigs. Meanwhile, pretreatment with EE and EWE both significantly attenuated the CS-induced increase in infiltration of pulmonary neutrophils and total inflammatory cells, as well as pulmonary MDA, TNF-α, and IL-8, while remarkably increased activities of pulmonary SOD and GSH. According to H&E and immunofluorescence staining assays, airway epithelium hyperplasia, smooth muscle thickening, inflammatory cells infiltration, as well as expression of TRPV1 and TRPA1, were significantly attenuated in animals pretreatment with 1g/kg EE. Moreover, four lignans of EE, including schizandrin, schisantherin A, deoxyschizandrin and γ-schisandrin, significantly inhibited CSE-induced expression of TRPV1, TRPA1 and NOS3, as well as NO release in A549 cells. In conclusion, S. chinensis reduces cough frequency and pulmonary inflammation in the CS-induced cough hypersensitivity guinea pigs. Lignans may be the active components. PMID:25681545

  3. Role of Cardiovascular Disease-associated iron overload in Libby amphibole-induced acute pulmonary injury and inflammation

    EPA Science Inventory

    Pulmonary toxicity induced by asbestos is thought to be mediated through redox-cycling of fiber-bound and bioavailable iron (Fe). We hypothesized that Libby amphibole (LA)-induced cute lung injury will be exacerbated in rat models of cardiovascular disease (CVD)-associated Fe-ove...

  4. False-positive elimination for computer-aided detection of pulmonary micronodules

    NASA Astrophysics Data System (ADS)

    Chang, Sukmoon; Zhou, Jinghao; Metaxas, Dimitris N.; Axel, Leon

    2006-03-01

    Computed Tomography (CT) is generally accepted as the most sensitive way for lung cancer screening. Its high contrast resolution allows the detection of small nodules and, thus, lung cancer at a very early stage. Due to the amount of data it produces, however, automating the nodule detection process is viable. The challenging problem for any nodule detection system is to keep low false-positive detection rate while maintaining high sensitivity. In this paper, we first describe a 3D filter-based method for pulmonary micronodule detection from high-resolution 3D chest CT images. Then, we propose a false-positive elimination method based on a deformable model. Finally, we present promising results of applying our method to various clinical chest CT datasets with over 90% detection rate. The proposed method focuses on the automatic detection of both calcified (high-contrast) and noncalcified (low-contrast) granulomatous nodules less than 5mm in diameter.

  5. p53- and PAI-1-mediated induction of C-X-C chemokines and CXCR2: importance in pulmonary inflammation due to cigarette smoke exposure.

    PubMed

    Tiwari, Nivedita; Marudamuthu, Amarnath S; Tsukasaki, Yoshikazu; Ikebe, Mitsuo; Fu, Jian; Shetty, Sreerama

    2016-03-15

    We previously demonstrated that tumor suppressor protein p53 augments plasminogen activator inhibitor-1 (PAI-1) expression in alveolar epithelial cells (AECs) during chronic cigarette smoke (CS) exposure-induced lung injury. Chronic lung inflammation with elevated p53 and PAI-1 expression in AECs and increased susceptibility to and exacerbation of respiratory infections are all associated with chronic obstructive pulmonary disease (COPD). We recently demonstrated that preventing p53 from binding to the endogenous PAI-1 mRNA in AECs by either suppressing p53 expression or blockading p53 interactions with the PAI-1 mRNA mitigates apoptosis and lung injury. Within this context, we now show increased expression of the C-X-C chemokines (CXCL1 and CXCL2) and their receptor CXCR2, and the intercellular cellular adhesion molecule-1 (ICAM-1), in the lung tissues of patients with COPD. We also found a similar increase in lung tissues and AECs from wild-type (WT) mice exposed to passive CS for 20 wk and in primary AECs treated with CS extract in vitro. Interestingly, passive CS exposure of mice lacking either p53 or PAI-1 expression resisted an increase in CXCL1, CXCL2, CXCR2, and ICAM-1. Furthermore, inhibition of p53-mediated induction of PAI-1 expression by treatment of WT mice exposed to passive CS with caveolin-1 scaffolding domain peptide reduced CXCL1, CXCL2, and CXCR2 levels and lung inflammation. Our study reveals that p53-mediated induction of PAI-1 expression due to chronic CS exposure exacerbates lung inflammation through elaboration of CXCL1, CXCL2, and CXCR2. We further provide evidence that targeting this pathway mitigates lung injury associated with chronic CS exposure. PMID:26747783

  6. Influence of Nodule Detection Software on Radiologists’ Confidence in Identifying Pulmonary Nodules With Computed Tomography

    PubMed Central

    Nietert, Paul J.; Ravenel, James G.; Taylor, Katherine K.; Silvestri, Gerard A.

    2011-01-01

    Purpose With advances in technology, detection of small pulmonary nodules is increasing. Nodule detection software (NDS) has been developed to assist radiologists with pulmonary nodule diagnosis. Although it may increase sensitivity for small nodules, often there is an accompanying increase in false-positive findings. We designed a study to examine the extent to which computed tomography (CT) NDS influences the confidence of radiologists in identifying small pulmonary nodules. Materials and Methods Eight radiologists (readers) with different levels of experience examined thoracic CT scans of 131 cases and identified all the clinically relevant pulmonary nodules. The reference standard was established by an expert, dedicated thoracic radiologist. For each nodule, the readers recorded nodule size, density, location, and confidence level. Two weeks (or more) later, the readers reinterpreted the same scans; however, this time they were provided marks, when present, as indicated by NDS and asked to reassess their level of confidence. The effect of NDS on changes in reader confidence was assessed using multivariable generalized linear regression models. Results A total of 327 unique nodules were identified. Declines in confidence were significantly (P<0.05) associated with the absence of an NDS mark and smaller nodules (odds ratio=71.0, 95% confidence interval =14.8–339.7). Among nodules with pre-NDS confidence less than 100%, increases in confidence were significantly (P<0.05) associated with the presence of an NDS mark (odds ratio=6.0, 95% confidence interval =2.7–13.6) and larger nodules. Secondary findings showed that NDS did not improve reader diagnostic accuracy. Conclusion Although in this study NDS does not seem to enhance reader accuracy, the confidence of the radiologists in identifying small pulmonary nodules with CT is greatly influenced by NDS. PMID:20498624

  7. Detection and 3D representation of pulmonary air bubbles in HRCT volumes

    NASA Astrophysics Data System (ADS)

    Silva, Jose S.; Silva, Augusto F.; Santos, Beatriz S.; Madeira, Joaquim

    2003-05-01

    Bubble emphysema is a disease characterized by the presence of air bubbles within the lungs. With the purpose of identifying pulmonary air bubbles, two alternative methods were developed, using High Resolution Computer Tomography (HRCT) exams. The search volume is confined to the pulmonary volume through a previously developed pulmonary contour detection algorithm. The first detection method follows a slice by slice approach and uses selection criteria based on the Hounsfield levels, dimensions, shape and localization of the bubbles. Candidate regions that do not exhibit axial coherence along at least two sections are excluded. Intermediate sections are interpolated for a more realistic representation of lungs and bubbles. The second detection method, after the pulmonary volume delimitation, follows a fully 3D approach. A global threshold is applied to the entire lung volume returning candidate regions. 3D morphologic operators are used to remove spurious structures and to circumscribe the bubbles. Bubble representation is accomplished by two alternative methods. The first generates bubble surfaces based on the voxel volumes previously detected; the second method assumes that bubbles are approximately spherical. In order to obtain better 3D representations, fits super-quadrics to bubble volume. The fitting process is based on non-linear least squares optimization method, where a super-quadric is adapted to a regular grid of points defined on each bubble. All methods were applied to real and semi-synthetical data where artificial and randomly deformed bubbles were embedded in the interior of healthy lungs. Quantitative results regarding bubble geometric features are either similar to a priori known values used in simulation tests, or indicate clinically acceptable dimensions and locations when dealing with real data.

  8. Direct Detection and Quantification of Bacterial Genes Associated with Inflammation in DNA Isolated from Stool

    PubMed Central

    Gómez-Moreno, Ramón; Robledo, Iraida E.; Baerga-Ortiz, Abel

    2014-01-01

    Although predominantly associated with health benefits, the gut microbiota has also been shown to harbor genes that promote inflammation. In this work, we report a method for the direct detection and quantification of these pro-inflammatory bacterial genes by PCR and qPCR in DNA extracted from human stool samples. PCR reactions were performed to detect (i) the pks island genes, (ii) tcpC, which is present in some strains of Escherichia coli and (iii) gelE presented in some strains of Enterococcus faecalis. Additionally, we screened for the presence of the following genes encoding cyclomodulins that disrupted mammalian cell division: (iv) cdt (which encodes the cytolethal distending toxin) and (v) cnf-1 (which encodes the cytotoxic necrotizing factor-1). Our results show that 20% of the samples (N = 41) tested positive for detectable amounts of pks island genes, whereas 10% of individuals were positive for tcpC or gelE and only one individual was found to harbor the cnf-1 gene. Of the 13 individuals that were positive for at least one of the pro-inflammatory genes, 5 were found to harbor more than one. A quantitative version of the assay, which used real-time PCR, revealed the pro-inflammatory genes to be in high copy numbers: up to 1.3 million copies per mg of feces for the pks island genes. Direct detection of specific genes in stool could prove useful toward screening for the presence of pro-inflammatory bacterial genes in individuals with inflammatory bowel diseases or colorectal cancer. PMID:25635239

  9. The regulation of pulmonary inflammation by the hypoxia-inducible factor-hydroxylase oxygen-sensing pathway.

    PubMed

    Whyte, Moira K B; Walmsley, Sarah R

    2014-12-01

    Although the hypoxia-inducible factor (HIF)-hydroxylase oxygen-sensing pathway has been extensively reviewed in the context of cellular responses to hypoxia and cancer biology, its importance in regulating innate immune biology is less well described. In this review, we focus on the role of the HIF-hydroxylase pathway in regulating myeloid cell responses and its relevance to inflammatory lung disease. The more specific roles of individual HIF/ prolyl hydroxylase pathway members in vivo are discussed in the context of lineage-specific rodent models of inflammation, with final reference made to the therapeutic challenges of targeting the HIF/hydroxylase pathway in immune cells. PMID:25525731

  10. The use of liquid chromatography tandem mass spectrometry to detect proteins in saliva from horses with and without systemic inflammation.

    PubMed

    Jacobsen, Stine; Top Adler, Ditte Marie; Bundgaard, Louise; Sørensen, Mette Aamand; Andersen, Pia Haubro; Bendixen, Emøke

    2014-12-01

    The objective of the study was to assess global expression of proteins in equine saliva using liquid chromatography tandem mass spectrometry (LC-MS/MS). Saliva was obtained from seven horses with and six horses without evidence of systemic inflammatory disease. Tryptic peptides from saliva were analysed by LC-MS/MS. Of 195 unique proteins identified, 57 were detected only in saliva samples from horses with systemic inflammation (in two to six of the seven horses). Among the differentially expressed proteins were several acute phase proteins (APPs) such as serum amyloid A, fibrinogen, haptoglobin, and alpha1-acid glycoprotein. The study is the first to describe detection of inflammatory proteins in horse saliva. The proteins detected were similar to those described in saliva from cattle, small ruminants and pigs. Detection of APPs in horses with systemic inflammation suggests that saliva may be used for non-invasive disease monitoring in horses as in humans, pigs and dogs. PMID:25296850

  11. Cardiomyopathy confers susceptibility to particulate matter-induced oxidative stress, vagal dominance, arrhythmia and pulmonary inflammation in heart failure-prone rats.

    PubMed

    Carll, Alex P; Haykal-Coates, Najwa; Winsett, Darrell W; Hazari, Mehdi S; Ledbetter, Allen D; Richards, Judy H; Cascio, Wayne E; Costa, Daniel L; Farraj, Aimen K

    2015-02-01

    Acute exposure to ambient fine particulate matter (PM2.5) is tied to cardiovascular morbidity and mortality, especially among those with prior cardiac injury. The mechanisms and pathophysiological events precipitating these outcomes remain poorly understood but may involve inflammation, oxidative stress, arrhythmia and autonomic nervous system imbalance. Cardiomyopathy results from cardiac injury, is the leading cause of heart failure, and can be induced in heart failure-prone rats through sub-chronic infusion of isoproterenol (ISO). To test whether cardiomyopathy confers susceptibility to inhaled PM2.5 and can elucidate potential mechanisms, we investigated the cardiophysiologic, ventilatory, inflammatory and oxidative effects of a single nose-only inhalation of a metal-rich PM2.5 (580 µg/m(3), 4 h) in ISO-pretreated (35 days × 1.0 mg/kg/day sc) rats. During the 5 days post-treatment, ISO-treated rats had decreased HR and BP and increased pre-ejection period (PEP, an inverse correlate of contractility) relative to saline-treated rats. Before inhalation exposure, ISO-pretreated rats had increased PR and ventricular repolarization time (QT) and heterogeneity (Tp-Te). Relative to clean air, PM2.5 further prolonged PR-interval and decreased systolic BP during inhalation exposure; increased tidal volume, expiratory time, heart rate variability (HRV) parameters of parasympathetic tone and atrioventricular block arrhythmias over the hours post-exposure; increased pulmonary neutrophils, macrophages and total antioxidant status one day post-exposure; and decreased pulmonary glutathione peroxidase 8 weeks after exposure, with all effects occurring exclusively in ISO-pretreated rats but not saline-pretreated rats. Ultimately, our findings indicate that cardiomyopathy confers susceptibility to the oxidative, inflammatory, ventilatory, autonomic and arrhythmogenic effects of acute PM2.5 inhalation. PMID:25600220

  12. Cardiomyopathy confers susceptibility to particulate matter-induced oxidative stress, vagal dominance, arrhythmia, and pulmonary inflammation in heart failure-prone rats

    PubMed Central

    Carll, Alex P.; Haykal-Coates, Najwa; Winsett, Darrell W.; Hazari, Mehdi S.; Ledbetter, Allen D.; Richards, Judy H.; Cascio, Wayne E.; Costa, Daniel L.; Farraj, Aimen K.

    2016-01-01

    Acute exposure to ambient fine particulate matter (PM2.5) is tied to cardiovascular morbidity and mortality, especially among those with prior cardiac injury. The mechanisms and pathophysiologic events precipitating these outcomes remain poorly understood but may involve inflammation, oxidative stress, arrhythmia, and autonomic nervous system imbalance. Cardiomyopathy results from cardiac injury, is the leading cause of heart failure, and can be induced in heart failure-prone rats through sub-chronic infusion of isoproterenol (ISO). To test whether cardiomyopathy confers susceptibility to inhaled PM2.5 and can elucidate potential mechanisms, we investigated the cardiophysiologic, ventilatory, inflammatory, and oxidative effects of a single nose-only inhalation of a metal-rich PM2.5 (580 μg/m3, 4h) in ISO-pretreated (35 days * 1.0 mg/kg/day sc) rats. During the 5 days post-treatment, ISO-treated rats had decreased HR and BP and increased pre-ejection period (PEP, an inverse correlate of contractility) relative to saline-treated rats. Before inhalation exposure, ISO-pretreated rats had increased PR and ventricular repolarization time (QT) and heterogeneity (Tp-Te). Relative to clean air, PM2.5 further prolonged PR-interval and decreased systolic BP during inhalation exposure; increased tidal volume, expiratory time, heart rate variability (HRV) parameters of parasympathetic tone, and atrioventricular block arrhythmias over the hours post-exposure; increased pulmonary neutrophils, macrophages, and total antioxidant status one day post-exposure; and decreased pulmonary glutathione peroxidase 8 weeks after exposure, with all effects occurring exclusively in ISO-pretreated rats but not saline-pretreated rats. Ultimately, our findings indicate that cardiomyopathy confers susceptibility to the oxidative, inflammatory, ventilatory, autonomic, and arrhythmogenic effects of acute PM2.5 inhalation. PMID:25600220

  13. Elevated Expression of IL-23/IL-17 Pathway-Related Mediators Correlates with Exacerbation of Pulmonary Inflammation During Polymicrobial Sepsis1

    PubMed Central

    Cauvi, David M.; Williams, Michael R.; Bermudez, Jose A.; Armijo, Gabrielle; De Maio, Antonio

    2014-01-01

    Sepsis is a leading cause of death in the United States, claiming more than 215,000 lives every year. A primary condition observed in septic patients is the incidence of acute respiratory distress syndrome (ARDS), which is characterized by the infiltration of neutrophils into the lung. Prior studies have shown differences in pulmonary neutrophil accumulation in C57BL/6J (B6) and A/J mice after endotoxic and septic shock. However, the mechanism by which neutrophils accumulate in the lung after polymicrobial sepsis induced by cecal ligation and puncture (CLP) still remains to be fully elucidated. We show in this study that lung inflammation, characterized by neutrophil infiltration and expression of inflammatory cytokines, was aggravated in B6 as compared to A/J mice and correlated with high expression of p19, the IL-23-specific subunit. Furthermore, LPS stimulation of B6- and A/J-derived macrophages, one of the main producers of IL-23 and IL-12, revealed that B6 mice favored the production of IL-23 whereas A/J-derived macrophages expressed higher levels of IL-12. In addition, expression of IL-17, known to be upregulated by IL-23, was also more elevated in the lung of B6 mice when compared to A/J mice. In contrast, pulmonary expression of IFN-γ was much more pronounced in A/J than in B6 mice, which was most likely a result of a higher production of IL-12. The expression of the IL-17-dependent neutrophil recruitment factors CXCL2 and G-CSF was also higher in B6 mice. Altogether, these results suggest that increased activation of the IL-23/IL-17 pathway has detrimental effects on sepsis-induced lung inflammation, whereas activation of the IL-12/IFN-γ pathway may lead, in contrast, to less pronounced inflammatory events. These two pathways may become possible therapeutic targets for the treatment of sepsis-induced ARDS. PMID:24978886

  14. Histological aspects of the pulmonary territory as seen in an experimentally ovalbumin induced inflammation in guinea pigs.

    PubMed

    Filip, Florina; Foia, Lili; Pavelescu, M; Brănişteanu, D; Cotuţiu, C

    2002-01-01

    The microscopic morphology of the respiratory territory was investigated on sections of pulmonary tissue and bronchioalveolar lavage liquid (BAL) that were stained with Giemsa, PAS and trichrome solutions. As a result of the induced pathological conditions, the following histological images were encountered: normal histological aspect of the bronchoalveolar territory was seen in the groups nebulized with 0.9% NaCl or sensitized after i.p. administration of ovalbumin (OA); macrophage cells influx in both tissue samples and BAL in animals nebulized with OA; after sensitization with OA followed by nebulization with OA, the same sequence of events as in atopical asthma was reproduced, including loss of epithelial structure and the appearance of mast cells and basophils in the alveolar territory. Hydrocortisone hemisuccinate, used to treat asthma attacks, causes a similar histological aspect as in the untreated group. Cells with intact basophilic granules were seen in the hypersensitized group under ketotiphen protection. PMID:12635369

  15. Preliminary clinical results: an analyzing tool for 2D optical imaging in detection of active inflammation in rheumatoid arthritis

    NASA Astrophysics Data System (ADS)

    Adi Aizudin Bin Radin Nasirudin, Radin; Meier, Reinhard; Ahari, Carmen; Sievert, Matti; Fiebich, Martin; Rummeny, Ernst J.; No"l, Peter B.

    2011-03-01

    Optical imaging (OI) is a relatively new method in detecting active inflammation of hand joints of patients suffering from rheumatoid arthritis (RA). With the high number of people affected by this disease especially in western countries, the availability of OI as an early diagnostic imaging method is clinically highly relevant. In this paper, we present a newly in-house developed OI analyzing tool and a clinical evaluation study. Our analyzing tool extends the capability of existing OI tools. We include many features in the tool, such as region-based image analysis, hyper perfusion curve analysis, and multi-modality image fusion to aid clinicians in localizing and determining the intensity of inflammation in joints. Additionally, image data management options, such as the full integration of PACS/RIS, are included. In our clinical study we demonstrate how OI facilitates the detection of active inflammation in rheumatoid arthritis. The preliminary clinical results indicate a sensitivity of 43.5%, a specificity of 80.3%, an accuracy of 65.7%, a positive predictive value of 76.6%, and a negative predictive value of 64.9% in relation to clinical results from MRI. The accuracy of inflammation detection serves as evidence to the potential of OI as a useful imaging modality for early detection of active inflammation in patients with rheumatoid arthritis. With our in-house developed tool we extend the usefulness of OI imaging in the clinical arena. Overall, we show that OI is a fast, inexpensive, non-invasive and nonionizing yet highly sensitive and accurate imaging modality.-

  16. Effect of morphing between unenhanced and multiscale enhanced chest radiographs on pulmonary nodule detection

    NASA Astrophysics Data System (ADS)

    Pietrzyk, Mariusz W.; Zöhrer, Fabian; Harz, Markus T.; McEntee, Mark; Hahn, Horst K.; Haygood, Tamara; Evanoff, Michael G.; Brennan, Patrick C.

    2012-02-01

    Aim: This study aims to determine the effectiveness of a novel image-processing algorithm for multi-scale enhancement of chest radiographs to improve detection and localization of real pulmonary nodules. Background: Our wavelet-based enhancement method interactively adjusts the contrast of medical images extracting the spatial frequency components at different scales, followed by a weighting procedure. This study aims to explore the usefulness of this novel procedure for chest image reporting. Method: Sixteen radiologists viewed 50 PA chest radiographs in order to localize pulmonary nodules. The databank contains 25 normal and 25 abnormal images, with multi-nodule cases. Subjects were allowed to mark unlimited number of locations followed by ranking confidence of nodule presence according to a 5-level scale. Subjects viewed all cases at least in two out of three conditions: unprocessed, enhanced and with morphing between these two. MCMR ROC and JAFROC analyses were conducted. Results: No significant differences were found in ROC AUC values across modalities and specialities. Only localization performance with morphing tool is significantly higher (F(1,8)=13.303, p=0.007) for chest expert (JAFROC FOM=0.6355) from non-chest (JAFROC FOM=0.4675) radiologists. Conclusion: Radiologists specialized in chest image interpretation performed consistently well in localizing pulmonary nodules, whereas non-chest radiologists were suffer from distracting effect of morphing tool.

  17. Effects of Mikania glomerata Spreng. and Mikania laevigata Schultz Bip. ex Baker (Asteraceae) extracts on pulmonary inflammation and oxidative stress caused by acute coal dust exposure

    SciTech Connect

    Freitas, T.P.; Silveira, P.C.; Rocha, L.G.; Rezin, G.T.; Rocha, J.; Citadini-Zanette, V.; Romao, P.T.; Dal-Pizzol, F.; Pinho, R.A.; Andrade, V.M.; Streck, E.L.

    2008-12-15

    Several studies have reported biological effects of Mikania glomerata and Mikania laevigata, used in Brazilian folk medicine for respiratory diseases. Pneumoconiosis is characterized by pulmonary inflammation caused by coal dust exposure. In this work, we evaluated the effect of pretreatment with M. glomerata and M. laevigata extracts (MGE and MLE, respectively) (100 mg/kg, s.c.) on inflammatory and oxidative stress parameters in lung of rats subjected to a single coal dust intratracheal instillation. Rats were pretreated for 2 weeks with saline solution, MGE, or MLE. On day 15, the animals were anesthetized, and gross mineral coal dust or saline solutions were administered directly in the lung by intratracheal instillation. Fifteen days after coal dust instillation, the animals were killed. Bronchoalveolar lavage (BAL) was obtained; total cell count and lactate dehydrogenase (LDH) activity were determined. In the lung, myeloperoxidase activity, thiobarbituric acid-reactive substances (TBARS) level, and protein carbonyl and sulfhydryl contents were evaluated. In BAL of treated animals, we verified an increased total cell count and LDH activity. MGE and MLE prevented the increase in cell count, but only MLE prevented the increase in LDH. Myeloperoxidase and TBARS levels were not affected, protein carbonylation was increased, and the protein thiol levels were decreased by acute coal dust intratracheal administration. The findings also suggest that both extracts present an important protective effect on the oxidation of thiol groups. Moreover, pretreatment with MGE and MLE also diminished lung inflammatory infiltration induced by coal dust, as assessed by histopathologic analyses.

  18. Detecting inflammation and fibrosis in bowel wall with photoacoustic imaging in a Crohn's disease animal model

    NASA Astrophysics Data System (ADS)

    Xu, Guan; Johnson, Laura A.; Hu, Jack; Dillman, Jonathan R.; Higgins, Peter D. R.; Wang, Xueding

    2015-03-01

    Crohn's disease (CD) is an autoimmune disease affecting 700,000 people in the United States. This condition may cause obstructing intestinal narrowings (strictures) due to inflammation, fibrosis (deposition of collagen), or a combination of both. Utilizing the unique strong optical absorption of hemoglobin at 532 nm and collagen at 1370 nm, this study investigated the feasibility of non-invasively characterizing intestinal strictures using photoacoustic imaging (PAI). Three normal controls, ten pure inflammation and 9 inflammation plus fibrosis rat bowel wall samples were imaged. Statistical analysis of the PA measurements has shown the capability of discriminating the purely inflammatory from mixed inflammatory and fibrotic strictures.

  19. Short-term exposure to high-pressure ventilation leads to pulmonary biotrauma and systemic inflammation in the rat.

    PubMed

    Hoegl, Sandra; Boost, Kim A; Flondor, Michael; Scheiermann, Patrick; Muhl, Heiko; Pfeilschifter, Josef; Zwissler, Bernhard; Hofstetter, Christian

    2008-04-01

    Though often lifesaving, mechanical ventilation itself bears the risk of lung damage [ventilator-induced lung injury (VILI)]. The underlying molecular mechanisms have not been fully elucidated, but stress-induced mediators seem to play an important role in biotrauma related to VILI. Our purpose was to evaluate an animal model of VILI that allows the observation of pathophysiologic changes along with parameters of biotrauma. For VILI induction, rats (n=16) were ventilated with a peak airway pressure (pmax) of 45 cm H2O and end-expiratory pressure (PEEP) of 0 for 20 min, followed by an observation time of 4 h. In the control group (n=8) the animals were ventilated with a pmax of 20 cm H2O and PEEP of 4. High-pressure ventilation resulted in an increase in paCO2 and a decrease in paO2 and mean arterial pressure. Only 4 animals out of 16 survived 4 h and VILI lungs showed severe macroscopic and microscopic damage, oedema and neutrophil influx. High-pressure ventilation increased the cytokine levels of macrophage inflammatory protein-2 and IL-1beta in bronchoalveolar lavage and plasma. VILI also induced pulmonary heat shock protein-70 expression and the activity of matrix metalloproteinases. The animal model used enabled us to observe the effect of high-pressure ventilation on mortality, lung damage/function and biotrauma. Thus, by combining barotrauma with biotrauma, this animal model may be suitable for studying therapeutical approaches to VILI. PMID:18360698

  20. Predictive model for the detection of pulmonary hypertension in dogs with myxomatous mitral valve disease

    PubMed Central

    MIKAWA, Shoma; MIYAGAWA, Yuichi; TODA, Noriko; TOMINAGA, Yoshinori; TAKEMURA, Naoyuki

    2014-01-01

    Pulmonary hypertension (PH) often occurs due to a left heart disease, such as myxomatous mitral valve disease (MMVD), in dogs and is diagnosed using Doppler echocardiography and estimated pulmonary arterial pressure. Diagnosis of PH in dogs requires expertise in echocardiography: however, the examination for PH is difficult to perform in a clinical setting. Thus, simple and reliable methods are required for the diagnosis of PH in dogs. The purpose of this study was to develop models using multiple logistic regression analysis to detect PH due to left heart disease in dogs with MMVD without echocardiography. The medical records of dogs with MMVD were retrospectively reviewed, and 81 dogs were included in this study and classified into PH and non-PH groups. Bivariate analysis was performed to compare all parameters between the groups, and variables with P values of <0.25 in bivariate analysis were included in multiple logistic regression analysis to develop models for the detection of PH. In multiple logistic regression analysis, the model included a vertebral heart scale short axis of >5.2 v, and a length of sternal contact of >3.3 v was considered suitable for the detection of PH. The predictive accuracy of this model (85.9%) was judged statistically adequate, and therefore, this model may be useful to screen for PH due to left heart disease in dogs with MMVD without echocardiography. PMID:25319513

  1. "Single-exposure" dual energy digital radiography in the detection of pulmonary nodules and calcifications.

    PubMed

    Oestmann, J W; Greene, R; Rhea, J T; Rosenthal, H; Koenker, R M; Tillotson, C L; Pearsen, K D; Hill, J W; Velaj, R H

    1989-07-01

    We studied the detectability of mineralized and non-mineralized simulated pulmonary nodules with dual energy digital radiography. "Soft tissue" and "bone" images (pixel size = 0.2 mm, 10 bits deep) were obtained with subtraction image processing after a single simultaneous exposure (100 kVp, 8 mAs, 17 mR skin exposure dose) of two storage phosphors with an interleaved 0.9 mm copper wafer. Three classes of paraffin-based nodules (0.5 to 3.0 cm) of varying mineral concentration (0, 120 and 190 mg/cm3 K2HPO4) were randomly positioned on the chest wall of two healthy volunteers to simulate calcified and non-calcified nodules. The average receiver operating characteristics (ROC) area of six readers (n = 2880 observations) showed that digital "bone" images (ROC area: 0.77 +/- 0.03) were significantly better (P less than 0.04) than conventional radiographs (OC Film, Lanex medium screens, 141 kVp, 19 mR skin exposure dose) (ROC area: 0.71 +/- 0.05) in detecting calcification in nodules. The unsubtracted digital images of lower kilovoltage were not superior to the 141 kVp conventional radiographs in a subgroup of two readers (ROC area: 0.73 +/- 0.02). Digital "soft tissue" images were equivalent to conventional chest radiographs in detecting soft tissue pulmonary nodules (ROC areas: 0.92 +/- 0.04 and 0.92 +/- 0.05, respectively. PMID:2753645

  2. Biodiesel versus diesel exposure: Enhanced pulmonary inflammation, oxidative stress, and differential morphological changes in the mouse lung

    PubMed Central

    Yanamala, Naveena; Hatfield, Meghan K.; Farcas, Mariana T.; Schwegler-Berry, Diane; Hummer, Jon A.; Shurin, Michael R.; Birch, M. Eileen; Gutkin, Dmitriy W.; Kisin, Elena; Kagan, Valerian E.; Bugarski, Aleksandar D.; Shvedova, Anna A.

    2015-01-01

    The use of biodiesel (BD) or its blends with petroleum diesel (D) is considered to be a viable approach to reduce occupational and environmental exposures to particulate matter (PM). Due to its lower particulate mass emissions compared to D, use of BD is thought to alleviate adverse health effects. Considering BD fuel is mainly composed of unsaturated fatty acids, we hypothesize that BD exhaust particles could induce pronounced adverse outcomes, due to their ability to readily oxidize. The main objective of this study was to compare the effects of particles generated by engine fueled with neat BD and neat petroleum-based D. Biomarkers of tissue damage and inflammation were significantly elevated in lungs of mice exposed to BD particulates. Additionally, BD particulates caused a significant accumulation of oxidatively modified proteins and an increase in 4-hydroxynonenal. The up-regulation of inflammatory cytokines/chemokines/growth factors was higher in lungs upon BD particulate exposure. Histological evaluation of lung sections indicated presence of lymphocytic infiltrate and impaired clearance with prolonged retention of BD particulate in pigment laden macrophages. Taken together, these results clearly indicate that BD exhaust particles could exert more toxic effects compared to D. PMID:23886933

  3. Automatic detection of large pulmonary solid nodules in thoracic CT images

    SciTech Connect

    Setio, Arnaud A. A. Jacobs, Colin; Gelderblom, Jaap; Ginneken, Bram van

    2015-10-15

    Purpose: Current computer-aided detection (CAD) systems for pulmonary nodules in computed tomography (CT) scans have a good performance for relatively small nodules, but often fail to detect the much rarer larger nodules, which are more likely to be cancerous. We present a novel CAD system specifically designed to detect solid nodules larger than 10 mm. Methods: The proposed detection pipeline is initiated by a three-dimensional lung segmentation algorithm optimized to include large nodules attached to the pleural wall via morphological processing. An additional preprocessing is used to mask out structures outside the pleural space to ensure that pleural and parenchymal nodules have a similar appearance. Next, nodule candidates are obtained via a multistage process of thresholding and morphological operations, to detect both larger and smaller candidates. After segmenting each candidate, a set of 24 features based on intensity, shape, blobness, and spatial context are computed. A radial basis support vector machine (SVM) classifier was used to classify nodule candidates, and performance was evaluated using ten-fold cross-validation on the full publicly available lung image database consortium database. Results: The proposed CAD system reaches a sensitivity of 98.3% (234/238) and 94.1% (224/238) large nodules at an average of 4.0 and 1.0 false positives/scan, respectively. Conclusions: The authors conclude that the proposed dedicated CAD system for large pulmonary nodules can identify the vast majority of highly suspicious lesions in thoracic CT scans with a small number of false positives.

  4. Feasibility of Using Wideband Microwave System for Non-Invasive Detection and Monitoring of Pulmonary Oedema

    PubMed Central

    Rezaeieh, S. Ahdi; Zamani, A.; Bialkowski, K. S.; Mahmoud, A.; Abbosh, A. M.

    2015-01-01

    Pulmonary oedema is a common manifestation of various fatal diseases that can be caused by cardiac or non-cardiac syndromes. The accumulated fluid has a considerably higher dielectric constant compared to lungs’ tissues, and can thus be detected using microwave techniques. Therefore, a non-invasive microwave system for the early detection of pulmonary oedema is presented. It employs a platform in the form of foam-based bed that contains two linear arrays of wideband antennas covering the band 0.7–1 GHz. The platform is designed such that during the tests, the subject lays on the bed with the back of the torso facing the antenna arrays. The antennas are controlled using a switching network that is connected to a compact network analyzer. A novel frequency-based imaging algorithm is used to process the recorded signals and generate an image of the torso showing any accumulated fluids in the lungs. The system is verified on an artificial torso phantom, and animal organs. As a feasibility study, preclinical tests are conducted on healthy subjects to determinate the type of obtained images, the statistics and threshold levels of their intensity to differentiate between healthy and unhealthy subjects. PMID:26365299

  5. Feasibility of Using Wideband Microwave System for Non-Invasive Detection and Monitoring of Pulmonary Oedema

    NASA Astrophysics Data System (ADS)

    Rezaeieh, S. Ahdi; Zamani, A.; Bialkowski, K. S.; Mahmoud, A.; Abbosh, A. M.

    2015-09-01

    Pulmonary oedema is a common manifestation of various fatal diseases that can be caused by cardiac or non-cardiac syndromes. The accumulated fluid has a considerably higher dielectric constant compared to lungs’ tissues, and can thus be detected using microwave techniques. Therefore, a non-invasive microwave system for the early detection of pulmonary oedema is presented. It employs a platform in the form of foam-based bed that contains two linear arrays of wideband antennas covering the band 0.7-1 GHz. The platform is designed such that during the tests, the subject lays on the bed with the back of the torso facing the antenna arrays. The antennas are controlled using a switching network that is connected to a compact network analyzer. A novel frequency-based imaging algorithm is used to process the recorded signals and generate an image of the torso showing any accumulated fluids in the lungs. The system is verified on an artificial torso phantom, and animal organs. As a feasibility study, preclinical tests are conducted on healthy subjects to determinate the type of obtained images, the statistics and threshold levels of their intensity to differentiate between healthy and unhealthy subjects.

  6. Standard moments based vessel bifurcation filter for computer-aided detection of pulmonary nodules

    NASA Astrophysics Data System (ADS)

    Fotin, Sergei V.; Reeves, Anthony P.; Biancardi, Alberto M.; Yankelevitz, David F.; Henschke, Claudia I.

    2010-03-01

    This work describes a method that can discriminate between a solid pulmonary nodule and a pulmonary vessel bifurcation point at a given candidate location on a CT scan using the method of standard moments. The algorithm starts with the estimation of a spherical window around a nodule candidate center that best captures the local shape properties of the region. Then, given this window, the standard set of moments, invariant to rotation and scale is computed over the geometric representation of the region. Finally, a feature vector composed of the moment values is classified as either a nodule or a vessel bifurcation point. The performance of this technique was evaluated on a dataset containing 276 intraparenchymal nodules and 276 selected vessel bifurcation points. The method resulted in 99% sensitivity and 80% specificity in identifying nodules, which makes this technique an efficient filter for false positives reduction. Its efficiency was further evaluated on the dataset of 656 low-dose chest CT scans. Inclusion of this filter into a design of an experimental detection system resulted in up to a 69% decrease in false positive rate in detection of intraparenchymal nodules with less than 1% loss in sensitivity.

  7. Feasibility of Using Wideband Microwave System for Non-Invasive Detection and Monitoring of Pulmonary Oedema.

    PubMed

    Rezaeieh, S Ahdi; Zamani, A; Bialkowski, K S; Mahmoud, A; Abbosh, A M

    2015-01-01

    Pulmonary oedema is a common manifestation of various fatal diseases that can be caused by cardiac or non-cardiac syndromes. The accumulated fluid has a considerably higher dielectric constant compared to lungs' tissues, and can thus be detected using microwave techniques. Therefore, a non-invasive microwave system for the early detection of pulmonary oedema is presented. It employs a platform in the form of foam-based bed that contains two linear arrays of wideband antennas covering the band 0.7-1 GHz. The platform is designed such that during the tests, the subject lays on the bed with the back of the torso facing the antenna arrays. The antennas are controlled using a switching network that is connected to a compact network analyzer. A novel frequency-based imaging algorithm is used to process the recorded signals and generate an image of the torso showing any accumulated fluids in the lungs. The system is verified on an artificial torso phantom, and animal organs. As a feasibility study, preclinical tests are conducted on healthy subjects to determinate the type of obtained images, the statistics and threshold levels of their intensity to differentiate between healthy and unhealthy subjects. PMID:26365299

  8. Detection of Heart Sounds in Children with and without Pulmonary Arterial Hypertension―Daubechies Wavelets Approach

    PubMed Central

    Elgendi, Mohamed; Kumar, Shine; Guo, Long; Rutledge, Jennifer; Coe, James Y.; Zemp, Roger; Schuurmans, Dale; Adatia, Ian

    2015-01-01

    Background Automatic detection of the 1st (S1) and 2nd (S2) heart sounds is difficult, and existing algorithms are imprecise. We sought to develop a wavelet-based algorithm for the detection of S1 and S2 in children with and without pulmonary arterial hypertension (PAH). Method Heart sounds were recorded at the second left intercostal space and the cardiac apex with a digital stethoscope simultaneously with pulmonary arterial pressure (PAP). We developed a Daubechies wavelet algorithm for the automatic detection of S1 and S2 using the wavelet coefficient ‘D6’ based on power spectral analysis. We compared our algorithm with four other Daubechies wavelet-based algorithms published by Liang, Kumar, Wang, and Zhong. We annotated S1 and S2 from an audiovisual examination of the phonocardiographic tracing by two trained cardiologists and the observation that in all subjects systole was shorter than diastole. Results We studied 22 subjects (9 males and 13 females, median age 6 years, range 0.25–19). Eleven subjects had a mean PAP < 25 mmHg. Eleven subjects had PAH with a mean PAP ≥ 25 mmHg. All subjects had a pulmonary artery wedge pressure ≤ 15 mmHg. The sensitivity (SE) and positive predictivity (+P) of our algorithm were 70% and 68%, respectively. In comparison, the SE and +P of Liang were 59% and 42%, Kumar 19% and 12%, Wang 50% and 45%, and Zhong 43% and 53%, respectively. Our algorithm demonstrated robustness and outperformed the other methods up to a signal-to-noise ratio (SNR) of 10 dB. For all algorithms, detection errors arose from low-amplitude peaks, fast heart rates, low signal-to-noise ratio, and fixed thresholds. Conclusion Our algorithm for the detection of S1 and S2 improves the performance of existing Daubechies-based algorithms and justifies the use of the wavelet coefficient ‘D6’ through power spectral analysis. Also, the robustness despite ambient noise may improve real world clinical performance. PMID:26629704

  9. Low intensity laser therapy (LILT) in vivo acts on the neutrophils recruitment and chemokines/cytokines levels in a model of acute pulmonary inflammation induced by aerosol of lipopolysaccharide from Escherichia coli in rat.

    PubMed

    Mafra de Lima, F; Villaverde, A B; Salgado, M A; Castro-Faria-Neto, H C; Munin, E; Albertini, R; Aimbire, F

    2010-12-01

    It has been suggested that low intensity laser therapy (LILT) acts on pulmonary inflammation. Thus, we investigate in this work if LILT (650nm, 2.5mW, 31.2mW/cm(2), 1.3J/cm(2), laser spot size of 0.08cm(2) and irradiation time of 42s) can attenuate edema, neutrophil recruitment and inflammatory mediators in acute lung inflammation. Thirty-five male Wistar rats (n=7 per group) were distributed in the following experimental groups: control, laser, LPS, LPS+laser and dexamethasone+LPS. Airway inflammation was measured 4h post-LPS challenge. Pulmonary microvascular leakage was used for measuring pulmonary edema. Bronchoalveolar lavage fluid (BALF) cellularity and myeloperoxidase (MPO) were used for measuring neutrophil recruitment and activation. RT-PCR was performed in lung tissue to assess mRNA expression of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin (IL-10), cytokine-induced neutrophil chemoattractant-1 (CINC-1), macrophage inflammatory protein-2 (MIP-2) and intercellular adhesion molecule-1 (ICAM-1). Protein levels in both BALF and lung were determined by ELISA. LILT inhibited pulmonary edema and endothelial cytoskeleton damage, as well as neutrophil influx and activation. Similarly, the LILT reduced the TNF-α and IL-1β, in lung and BALF. LILT prevented lung ICAM-1 up-regulation. The rise of CINC-1 and MIP-2 protein levels in both lung and BALF, and the lung mRNA expressions for IL-10, were unaffected. Data suggest that the LILT effect is due to the inhibition of ICAM-1 via the inhibition of TNF-α and IL-1β. PMID:20728373

  10. Pulmonary hypertension

    MedlinePlus

    Pulmonary arterial hypertension; Sporadic primary pulmonary hypertension; Familial primary pulmonary hypertension; Idiopathic pulmonary arterial hypertension; Primary pulmonary hypertension; PPH; Secondary pulmonary ...

  11. Usefulness of Transcranial Doppler for Detecting Pulmonary Arteriovenous Malformations in Hereditary Hemorrhagic Telangiectasia.

    PubMed

    Kijima, Yasufumi; Gevorgyan, Rubine; McWilliams, Justin Pryce; Miller, Nicholas; Noureddin, Nabil; Tobis, Jonathan Marvin

    2016-04-01

    The aim of this study was to assess transcranial Doppler (TCD) as a screening test for pulmonary arteriovenous malformation (PAVM) in patients with hereditary hemorrhagic telangiectasia (HHT). This retrospective study included suspected patients with HHT who were screened for PAVM with a TCD and a chest computed tomography (CT) study. The results of TCD and CT were compared to evaluate the usefulness of TCD for detecting PAVM. A TCD Spencer grade ≥3 was defined as positive for a significant right-to-left shunt (RLS). The diameter of the pulmonary arteries feeding the PAVM was measured by calipers from the CT study. In 86 subjects from 74 families with HHT, the sensitivity of TCD for identifying a PAVM at rest was 98% and post-Valsalva was 100%. Specificity was 58% and 35%, respectively, presumably due to pulmonary shunts too small to recognize on CT. Of the patients with HHT who were referred for embolization therapy for their PAVMs, all 20 had TCD grade ≥3. In patients who were diagnosed with a PAVM by chest CT, patients with TCD grade ≥5 had a significantly larger sum of artery diameters feeding the PAVMs compared to those with grade ≤4 (5.0 ± 3.2 mm vs 2.6 ± 1.9 mm, p = 0.01). In conclusion, a TCD examination for evaluating RLS is sensitive for identifying PAVM in patients with HHT and is useful in quantitating the degree of RLS flow. The sensitivity of the TCD examination makes it a useful screening test without radiation in HHT subjects to determine which patients need to undergo CT evaluation to identify PAVMs. PMID:26873746

  12. Analysis of repeated 24-core saturation prostate biopsy: Inverse association between asymptomatic histological inflammation and prostate cancer detection

    PubMed Central

    Kato, Tomonori; Komiya, Akira; Morii, Akihiro; Iida, Hiroaki; Ito, Takatoshi; Fuse, Hideki

    2016-01-01

    Saturation prostate biopsy protocols have been developed to improve the prostate cancer (PCa) detection rate, particularly in the setting of repeat biopsies. The present study attempted to clarify the association between PCa detection and various risk factors in repeat saturation biopsies. A retrospective analysis was conducted on 78 Japanese patients for whom findings had caused suspicion of PCa despite previous negative prostate biopsies, and who consecutively underwent a 24-core transperineal repeat biopsy at Toyama University Hospital (Toyama, Japan). PCa was confirmed histologically in 16 of the 78 patients (20.5%). A univariate analysis revealed that the prostate-specific antigen (PSA) level at repeat biopsy was higher (P<0.01), the fPSA/tPSA ratio was lower (P=0.04), the total prostate volume was smaller (P=0.01) and the PSA density was higher (P<0.01) in PCa patients than in patients with benign prostatic disease (BPD). Histological inflammation was more frequently observed in BPD patients than in PCa patients (P<0.01). A multivariate analysis revealed that histological inflammation was the only independent predictor of the presence of a malignant lesion on repeat biopsy (odds ratio, 0.027; P=0.01). It must be considered that inflammation may cause a PSA increase in some patients with a negative initial biopsy, leading to unnecessary repeat biopsy. PMID:27446407

  13. Computer-aided detection of lung cancer: combining pulmonary nodule detection systems with a tumor risk prediction model

    NASA Astrophysics Data System (ADS)

    Setio, Arnaud A. A.; Jacobs, Colin; Ciompi, Francesco; van Riel, Sarah J.; Winkler Wille, Mathilde M.; Dirksen, Asger; van Rikxoort, Eva M.; van Ginneken, Bram

    2015-03-01

    Computer-Aided Detection (CAD) has been shown to be a promising tool for automatic detection of pulmonary nodules from computed tomography (CT) images. However, the vast majority of detected nodules are benign and do not require any treatment. For effective implementation of lung cancer screening programs, accurate identification of malignant nodules is the key. We investigate strategies to improve the performance of a CAD system in detecting nodules with a high probability of being cancers. Two strategies were proposed: (1) combining CAD detections with a recently published lung cancer risk prediction model and (2) the combination of multiple CAD systems. First, CAD systems were used to detect the nodules. Each CAD system produces markers with a certain degree of suspicion. Next, the malignancy probability was automatically computed for each marker, given nodule characteristics measured by the CAD system. Last, CAD degree of suspicion and malignancy probability were combined using the product rule. We evaluated the method using 62 nodules which were proven to be malignant cancers, from 180 scans of the Danish Lung Cancer Screening Trial. The malignant nodules were considered as positive samples, while all other findings were considered negative. Using a product rule, the best proposed system achieved an improvement in sensitivity, compared to the best individual CAD system, from 41.9% to 72.6% at 2 false positives (FPs)/scan and from 56.5% to 88.7% at 8 FPs/scan. Our experiment shows that combining a nodule malignancy probability with multiple CAD systems can increase the performance of computerized detection of lung cancer.

  14. Automatic 3D pulmonary nodule detection in CT images: A survey.

    PubMed

    Valente, Igor Rafael S; Cortez, Paulo César; Neto, Edson Cavalcanti; Soares, José Marques; de Albuquerque, Victor Hugo C; Tavares, João Manuel R S

    2016-02-01

    This work presents a systematic review of techniques for the 3D automatic detection of pulmonary nodules in computerized-tomography (CT) images. Its main goals are to analyze the latest technology being used for the development of computational diagnostic tools to assist in the acquisition, storage and, mainly, processing and analysis of the biomedical data. Also, this work identifies the progress made, so far, evaluates the challenges to be overcome and provides an analysis of future prospects. As far as the authors know, this is the first time that a review is devoted exclusively to automated 3D techniques for the detection of pulmonary nodules from lung CT images, which makes this work of noteworthy value. The research covered the published works in the Web of Science, PubMed, Science Direct and IEEEXplore up to December 2014. Each work found that referred to automated 3D segmentation of the lungs was individually analyzed to identify its objective, methodology and results. Based on the analysis of the selected works, several studies were seen to be useful for the construction of medical diagnostic aid tools. However, there are certain aspects that still require attention such as increasing algorithm sensitivity, reducing the number of false positives, improving and optimizing the algorithm detection of different kinds of nodules with different sizes and shapes and, finally, the ability to integrate with the Electronic Medical Record Systems and Picture Archiving and Communication Systems. Based on this analysis, we can say that further research is needed to develop current techniques and that new algorithms are needed to overcome the identified drawbacks. PMID:26652979

  15. Pulmonary embolism detection using localized vessel-based features in dual energy CT

    NASA Astrophysics Data System (ADS)

    Dicente Cid, Yashin; Depeursinge, Adrien; Foncubierta Rodríguez, Antonio; Platon, Alexandra; Poletti, Pierre-Alexandre; Müller, Henning

    2015-03-01

    Pulmonary embolism (PE) affects up to 600,000 patients and contributes to at least 100,000 deaths every year in the United States alone. Diagnosis of PE can be difficult as most symptoms are unspecific and early diagnosis is essential for successful treatment. Computed Tomography (CT) images can show morphological anomalies that suggest the existence of PE. Various image-based procedures have been proposed for improving computer-aided diagnosis of PE. We propose a novel method for detecting PE based on localized vessel-based features computed in Dual Energy CT (DECT) images. DECT provides 4D data indexed by the three spatial coordinates and the energy level. The proposed features encode the variation of the Hounsfield Units across the different levels and the CT attenuation related to the amount of iodine contrast in each vessel. A local classification of the vessels is obtained through the classification of these features. Moreover, the localization of the vessel in the lung provides better comparison between patients. Results show that the simple features designed are able to classify pulmonary embolism patients with an AUC (area under the receiver operating curve) of 0.71 on a lobe basis. Prior segmentation of the lung lobes is not necessary because an automatic atlas-based segmentation obtains similar AUC levels (0.65) for the same dataset. The automatic atlas reaches 0.80 AUC in a larger dataset with more control cases.

  16. Detectability of pulmonary nodules in linearly and logarithmically amplified digital images of the chest

    NASA Astrophysics Data System (ADS)

    Plenkovich, Dinko

    1992-06-01

    The purpose of this study was to compare detectability of pulmonary nodules in linearly and logarithmically amplified digital images of the chest. One hundred and sixty digital x-ray images of a frozen, unembalmed, human chest phantom with simulated pulmonary nodules were acquired using a 40 cm diameter image intensifier-television camera system. Signal from the video camera was digitized with a frame grabber using MicroVAX 3400 as the host computer. Each of these 160 images was processed using both linear and logarithmic amplification, resulting in 320 digital images of the chest. A free-response receiver operating characteristic (FROC) study was performed in which an experienced radiologist was asked to locate multiple simulated nodules on all 320 digital images and to record one of three levels of confidence for each assumed nodule. For each criterion, the total number of correct responses was divided by the total number of nodules to obtain the ordinate of the point. The total number of false-positive answers generated was divided by the number of images to obtain the abscissa of the point. Examination of FROC curves demonstrated that significantly more mediastinal nodules were identified in logarithmically amplified images.

  17. The value of telehealth in the early detection of chronic obstructive pulmonary disease exacerbations: A prospective observational study.

    PubMed

    Hamad, Ghassan A; Crooks, Michael; Morice, Alyn H

    2016-06-01

    We aim to establish the value of telemonitoring in the early detection of chronic obstructive pulmonary disease exacerbations. We followed up patients undergoing chronic obstructive pulmonary disease telemonitoring for 4 months. We studied changes in the telemonitored data in the week prior to admission or to community chronic obstructive pulmonary disease exacerbation. A total of 183 patients were studied. In all, 30 chronic obstructive pulmonary disease-related hospital admissions and 68 chronic obstructive pulmonary disease community exacerbations were recorded. Changes in telehealth parameters occurred in 80 per cent (24/30) of admissions and 82 per cent (56/68) of community exacerbations. Although changes in telehealth data occurred in the majority of exacerbations, most individual symptoms was present in less than half the exacerbations and almost 20 per cent of exacerbations were not preceded by any change in telemonitoring data. Cough created significantly more alerts by those treated in the community (p = 0.008), whereas a drop in oxygen saturation created significantly more alerts pre-hospitalisation (p = 0.049). We conclude that further work is required to develop methods of identifying impending chronic obstructive pulmonary disease exacerbations with greater sensitivity and specificity. PMID:25564494

  18. Computerized detection of pulmonary nodules using cellular neural networks in CT images

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangwei; McLennan, Geoffrey; Hoffman, Eric A.; Sonka, Milan

    2004-05-01

    The purpose of this study is to develop a computer-aided diagnosis (CAD) system to detect small-sized (from 2mm to 10mm) non-pleural pulmonary nodules in high resolution helical CT scans. A new 3D automated scheme using cellular neural networks is presented. Different from most previous methods, this scheme employed the local shape property to perform voxel classification. The shape index feature successfully captured the local shape difference between nodules and non-nodules, especially vessels. A 3D discrete-time cellular neural network (DTCNN) was constructed to give a reliable voxel classification by collecting information in a neighborhood. To tailor it for lung nodule detection, this DTCNN was trained using genetic algorithms (GAs) to derive the shape index variation pattern of nodules. 19 clinical thoracic CT cases involving a total of 4838 sectional images were used in this work, with 2 scans forming the training set, and the remaining 17 cases being the testing set. The evaluation was composed of two stages. During the first stage, a pulmonologist and our CAD system independently detected nodules in the testing set. Then, the suspected nodule areas located by the computer were reviewed by the pulmonologist to confirm nodules missed by the human in the first review. There were 32 true nodules detected by the computer but missed by the pulmonologist in the first review, in which 30 non-juxtapleural nodules were found. Considering the nodules detected by the pulmonologist during the first and second reviews as the truth, 52 of 62 non-pleural nodules were detected by the CAD system (sensitivity being 83.9%), with the number of false positives being 3.47 per case.

  19. Anti-inflammatory actions of Chemoattractant Receptor-homologous molecule expressed on Th2 by the antagonist MK-7246 in a novel rat model of Alternaria alternata elicited pulmonary inflammation.

    PubMed

    Gil, Malgorzata A; Caniga, Michael; Woodhouse, Janice D; Eckman, Joseph; Lee, Hyun-Hee; Salmon, Michael; Naber, John; Hamilton, Valerie T; Sevilla, Raquel S; Bettano, Kimberly; Klappenbach, Joel; Moy, Lily; Correll, Craig C; Gervais, Francois G; Siliphaivanh, Phieng; Zhang, Weisheng; Zhang-Hoover, Jie; McLeod, Robbie L; Cicmil, Milenko

    2014-11-15

    Alternaria alternata is a fungal allergen linked to the development of severe asthma in humans. In view of the clinical relationship between A. alternata and asthma, we sought to investigate the allergic activity of this antigen after direct application to the lungs of Brown Norway rats. Here we demonstrate that a single intratracheal instillation of A. alternata induces dose and time dependent eosinophil influx, edema and Type 2 helper cell cytokine production in the lungs of BN rats. We established the temporal profile of eosinophilic infiltration and cytokine production, such as Interleukin-5 and Interleukin-13, following A. alternata challenge. These responses were comparable to Ovalbumin induced models of asthma and resulted in peak inflammatory responses 48h following a single challenge, eliminating the need for multiple sensitizations and challenges. The initial perivascular and peribronchiolar inflammation preceded alveolar inflammation, progressing to a more sub-acute inflammatory response with notable epithelial cell hypertrophy. To limit the effects of an A. alternata inflammatory response, MK-7246 was utilized as it is an antagonist for Chemoattractant Receptor-homologous molecule expressed in Th2 cells. In a dose-dependent manner, MK-7246 decreased eosinophil influx and Th2 cytokine production following the A. alternata challenge. Furthermore, therapeutic administration of corticosteroids resulted in a dose-dependent decrease in eosinophil influx and Th2 cytokine production. Reproducible asthma-related outcomes and amenability to pharmacological intervention by mechanisms relevant to asthma demonstrate that an A. alternata induced pulmonary inflammation in BN rats is a valuable preclinical pharmacodynamic in vivo model for evaluating the pharmacological inhibitors of allergic pulmonary inflammation. PMID:25261040

  20. Impact of Dietary Tomato Juice on Changes in Pulmonary Oxidative Stress, Inflammation and Structure Induced by Neonatal Hyperoxia in Mice (Mus musculus).

    PubMed

    Bouch, Sheena; Harding, Richard; O'Reilly, Megan; Wood, Lisa G; Sozo, Foula

    2016-01-01

    Many preterm infants require hyperoxic gas for survival, although it can contribute to lung injury. Experimentally, neonatal hyperoxia leads to persistent alterations in lung structure and increases leukocytes in bronchoalveolar lavage fluid (BALF). These effects of hyperoxia on the lungs are considered to be caused, at least in part, by increased oxidative stress. Our objective was to determine if dietary supplementation with a known source of antioxidants (tomato juice, TJ) could protect the developing lung from injury caused by breathing hyperoxic gas. Neonatal mice (C57BL6/J) breathed either 65% O2 (hyperoxia) or room air from birth until postnatal day 7 (P7d); some underwent necropsy at P7d and others were raised in room air until adulthood (P56d). In subsets of both groups, drinking water was replaced with TJ (diluted 50:50 in water) from late gestation to necropsy. At P7d and P56d, we analyzed total antioxidant capacity (TAC), markers of oxidative stress (nitrotyrosine and heme oxygenase-1 expression), inflammation (interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) expression), collagen (COL) and smooth muscle in the lungs; we also assessed lung structure. We quantified macrophages in lung tissue (at P7d) and leukocytes in BALF (at P56d). At P7d, TJ increased pulmonary TAC and COL1α1 expression and attenuated the hyperoxia-induced increase in nitrotyrosine and macrophage influx; however, changes in lung structure were not affected. At P56d, TJ increased TAC, decreased oxidative stress and reversed the hyperoxia-induced increase in bronchiolar smooth muscle. Additionally, TJ alone decreased IL-1β expression, but following hyperoxia TJ increased TNF-α expression and did not alter the hyperoxia-induced increase in leukocyte number. We conclude that TJ supplementation during and after neonatal exposure to hyperoxia protects the lung from some but not all aspects of hyperoxia-induced injury, but may also have adverse side-effects. The effects of

  1. Relationship between Household Air Pollution from Biomass Smoke Exposure, and Pulmonary Dysfunction, Oxidant-Antioxidant Imbalance and Systemic Inflammation in Rural Women and Children in Nigeria

    PubMed Central

    Oluwole, Oluwafemi; Arinola, Ganiyu O.; Ana, Godson R.; Wiskel, Tess; Huo, Dezheng; Olopade, Olufunmilayo I.; Olopade, Christopher O.

    2013-01-01

    Background: Exposure to particulate matter from burning biomass fuels is believed to affect oxidant-antioxidant balance and to induce oxidative stress. Methods: Fifty-nine mother-child pairs from 59 households that used firewood exclusively for cooking in three rural communities in southwest Nigeria underwent blood test for albumin, pre-albumin, retinol-binding protein (RBP), superoxide dismutase (SOD), vitamins C, vitamin E, malondialdehyde (MDA) and C-reactive protein (CRP). Spirometry was performed and indoor levels of PM2.5 were determined. Results: Mean age (± SD; years) of mothers and children was 43.0±11.7 and 13.6±3.2, respectively. The median indoor PM2.5 level was 1575.1 µg/m3 (IQR 943.6–2847.0, p<0.001), which is substantially higher than the World Health Organization (WHO) standard of 25 µg/m3. The mean levels of pre-albumin (0.21±0.14 g/dL) and RBP (0.03±0.03 g/dL) in women were significantly lower than their respective normal ranges (1-3 g/dL and 0.2-0.6 g/dL, respectively, p<0.05). Similarly, the mean levels of pre-albumin (0.19±0.13 g/dL) and RBP (0.01±0.01 g/dL) in children were significantly lower than the respective normal ranges (1-3 g/dL and 0.2-0.6 g/dL, respectively, p<0.05). Mean serum concentrations of MDA in children (5.44±1.88 µmol/L) was positively correlated to serum concentrations of CRP (r=0.3, p=0.04) and negatively correlated to lung function (FEV1/FVC) in both mothers and children (both r=-0.3, p<0.05). Also, regression analysis indicates that CRP and SOD are associated with lung function impairment in mothers (-2.55±1.08, p<0.05) and children (-5.96±3.05, p=0.05) respectively. Conclusion: Exposure to HAP from biomass fuel is associated with pulmonary dysfunction, reduced antioxidant defense and inflammation of the airways. Further studies are needed to better define causal relationships and the mechanisms involved. PMID:23777718

  2. Impact of Dietary Tomato Juice on Changes in Pulmonary Oxidative Stress, Inflammation and Structure Induced by Neonatal Hyperoxia in Mice (Mus musculus)

    PubMed Central

    Bouch, Sheena; Harding, Richard; O’Reilly, Megan; Wood, Lisa G.; Sozo, Foula

    2016-01-01

    Many preterm infants require hyperoxic gas for survival, although it can contribute to lung injury. Experimentally, neonatal hyperoxia leads to persistent alterations in lung structure and increases leukocytes in bronchoalveolar lavage fluid (BALF). These effects of hyperoxia on the lungs are considered to be caused, at least in part, by increased oxidative stress. Our objective was to determine if dietary supplementation with a known source of antioxidants (tomato juice, TJ) could protect the developing lung from injury caused by breathing hyperoxic gas. Neonatal mice (C57BL6/J) breathed either 65% O2 (hyperoxia) or room air from birth until postnatal day 7 (P7d); some underwent necropsy at P7d and others were raised in room air until adulthood (P56d). In subsets of both groups, drinking water was replaced with TJ (diluted 50:50 in water) from late gestation to necropsy. At P7d and P56d, we analyzed total antioxidant capacity (TAC), markers of oxidative stress (nitrotyrosine and heme oxygenase-1 expression), inflammation (interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) expression), collagen (COL) and smooth muscle in the lungs; we also assessed lung structure. We quantified macrophages in lung tissue (at P7d) and leukocytes in BALF (at P56d). At P7d, TJ increased pulmonary TAC and COL1α1 expression and attenuated the hyperoxia-induced increase in nitrotyrosine and macrophage influx; however, changes in lung structure were not affected. At P56d, TJ increased TAC, decreased oxidative stress and reversed the hyperoxia-induced increase in bronchiolar smooth muscle. Additionally, TJ alone decreased IL-1β expression, but following hyperoxia TJ increased TNF-α expression and did not alter the hyperoxia-induced increase in leukocyte number. We conclude that TJ supplementation during and after neonatal exposure to hyperoxia protects the lung from some but not all aspects of hyperoxia-induced injury, but may also have adverse side-effects. The effects of

  3. A hybrid lung and vessel segmentation algorithm for computer aided detection of pulmonary embolism

    NASA Astrophysics Data System (ADS)

    Raghupathi, Laks; Lakare, Sarang

    2009-02-01

    Advances in multi-detector technology have made CT pulmonary angiography (CTPA) a popular radiological tool for pulmonary emboli (PE) detection. CTPA provide rich detail of lung anatomy and is a useful diagnostic aid in highlighting even very small PE. However analyzing hundreds of slices is laborious and time-consuming for the practicing radiologist which may also cause misdiagnosis due to the presence of various PE look-alike. Computer-aided diagnosis (CAD) can be a potential second reader in providing key diagnostic information. Since PE occurs only in vessel arteries, it is important to mark this region of interest (ROI) during CAD preprocessing. In this paper, we present a new lung and vessel segmentation algorithm for extracting contrast-enhanced vessel ROI in CTPA. Existing approaches to segmentation either provide only the larger lung area without highlighting the vessels or is computationally prohibitive. In this paper, we propose a hybrid lung and vessel segmentation which uses an initial lung ROI and determines the vessels through a series of refinement steps. We first identify a coarse vessel ROI by finding the "holes" from the lung ROI. We then use the initial ROI as seed-points for a region-growing process while carefully excluding regions which are not relevant. The vessel segmentation mask covers 99% of the 259 PE from a real-world set of 107 CTPA. Further, our algorithm increases the net sensitivity of a prototype CAD system by 5-9% across all PE categories in the training and validation data sets. The average run-time of algorithm was only 100 seconds on a standard workstation.

  4. Long-Circulating and pH-Sensitive Liposome Preparation Trapping a Radiotracer for Inflammation Site Detection.

    PubMed

    Mota, Luciene Das Graças; de Barros, André Luís Branco; Fuscaldi, Leonardo Lima; de Oliveira, Mônica Cristina; Cardoso, Valbert Nascimento

    2015-06-01

    Inflammatory and infectious diseases are one of the most common causes of mortality and morbidity. This paper aimed to prepare and to evaluate the ability of long-circulating and pH-sensitive liposomes, trapping a radiotracer, to identify inflamed focus. The physicochemical characterization of freeze-dried liposomes, using glucose as cryoprotectant, showed 80% of the vesicles with adequate mean diameter and good vesicle size homogeneity. Radiotracer encapsulation percentage in liposomes was 10.65%, of which 4.88% was adsorbed on the surface of the vesicles. Furthermore, liposomes presented positive zeta potential. Freeze-dried liposomes, stored for 180 days at 4 degrees C, did not show significant changes in the mean diameter, indicating good stability. Free radiotracer and radiolabeled liposomes were injected into inflammation focus-bearing rats, and ex-vivo biodistribution studies and scintigraphic images were performed. Results showed that radiopharmaceutical, free and encapsulated into liposomes, were able to identify the inflamed site. Target/non-target ratios, obtained by scintigraphic images, were greater than 1.5 at all investigated times. Data did not show significant differences between the free radiotracer and radiolabeled liposomes. Results suggest that this liposomal preparation could be employed as an alternative procedure for inflamed site detection by means of scintigraphic images. However, as the radiotracer is adsorbed onto the liposome surface by electrostatic forces, it is suggested that a neutral radiopharmaceutical be used to confirm the potential of this formulation as a scintigraphic probe for inflammation/infection detection. PMID:26369024

  5. Validation of an Automated Cough Detection Algorithm for Tracking Recovery of Pulmonary Tuberculosis Patients

    PubMed Central

    Larson, Sandra; Comina, Germán; Gilman, Robert H.; Tracey, Brian H.; Bravard, Marjory; López, José W.

    2012-01-01

    Background A laboratory-free test for assessing recovery from pulmonary tuberculosis (TB) would be extremely beneficial in regions of the world where laboratory facilities are lacking. Our hypothesis is that analysis of cough sound recordings may provide such a test. In the current paper, we present validation of a cough analysis tool. Methodology/Principal Findings Cough data was collected from a cohort of TB patients in Lima, Peru and 25.5 hours of recordings were manually annotated by clinical staff. Analysis software was developed and validated by comparison to manual scoring. Because many patients cough in bursts, coughing was characterized in terms of cough epochs. Our software correctly detects 75.5% of cough episodes with a specificity of 99.6% (comparable to past results using the same definition) and a median false positive rate of 4 false positives/hour, due to the noisy, real-world nature of our dataset. We then manually review detected coughs to eliminate false positives, in effect using the algorithm as a pre-screening tool that reduces reviewing time to roughly 5% of the recording length. This cough analysis approach provides a foundation to support larger-scale studies of coughing rates over time for TB patients undergoing treatment. PMID:23071550

  6. Pulmonary nodule detection in CT images based on shape constraint CV model

    SciTech Connect

    Wang, Bing; Tian, Xuedong; Wang, Qian; Yang, Ying; Xie, Hongzhi E-mail: xiehongzhi@medmail.com.cn; Zhang, Shuyang; Gu, Lixu E-mail: xiehongzhi@medmail.com.cn

    2015-03-15

    Purpose: Accurate detection of pulmonary nodules remains a technical challenge in computer-aided diagnosis systems because some nodules may adhere to the blood vessels or the lung wall, which have low contrast compared to the surrounding tissues. In this paper, the analysis of typical shape features of candidate nodules based on a shape constraint Chan–Vese (CV) model combined with calculation of the number of blood branches adhered to nodule candidates is proposed to reduce false positive (FP) nodules from candidate nodules. Methods: The proposed scheme consists of three major stages: (1) Segmentation of lung parenchyma from computed tomography images. (2) Extraction of candidate nodules. (3) Reduction of FP nodules. A gray level enhancement combined with a spherical shape enhancement filter is introduced to extract the candidate nodules and their sphere-like contour regions. FPs are removed by analysis of the typical shape features of nodule candidates based on the CV model using spherical constraint and by investigating the number of blood branches adhered to the candidate nodules. The constrained shapes of CV model are automatically achieved from the extracted candidate nodules. Results: The detection performance was evaluated on 127 nodules of 103 cases including three types of challenging nodules, which are juxta-pleural nodules, juxta-vascular nodules, and ground glass opacity nodules. The free-receiver operating characteristic (FROC) curve shows that the proposed method is able to detect 88% of all the nodules in the data set with 4 FPs per case. Conclusions: Evaluation shows that the authors’ method is feasible and effective for detection of three types of nodules in this study.

  7. A complete CAD system for pulmonary nodule detection in high resolution CT images

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangwei; McLennan, Geoffrey; Hoffman, Eric A.; Sonka, Milan

    2005-04-01

    The purpose of this study is to develop a computer-aided diagnosis (CAD) system to detect small-sized (from 2mm to 10mm) pulmonary nodules in high resolution helical CT scans. A new CAD system is proposed to locate both juxtapleural nodules and non-pleural nodules. Isotropic resampling and lung segmentation are performed as preprocessing steps. Morphological closing was utilized to smooth the lung contours to include the indented possible juxtapleural locations, thresholding and 3D component analysis were used to obtain 3D volumetric nodule candidates; furthermore, gray level and geometric features were extracted, and analyzed using linear discriminant analysis (LDA) classifier. Leave one case out method was used to evaluate the LDA. To deal with non-pleural nodules, a discrete-time cellular neural network (DTCNN) based on local shape features was developed. This scheme employed the local shape property to perform voxel classification. The shape index feature successfully captured the local shape difference between nodules and non-nodules, especially vessels. To tailor it for lung nodule detection, this DTCNN was trained using genetic algorithms (GAs) to derive the shape index variation pattern of nodules. Nonoverlapping training and testing sets were utilized in the non-pleural nodule detection. 19 clinical thoracic CT cases involving a total of 4838 sectional images were used in this work. The juxtapleural nodule detection method was able to obtain sensitivity 81.25% with an average of 8.29 FPs per case. The non-pleural nodule finding scheme attained sensitivity of 83.9% with an average 3.47 FPs/case. Combining the two subsystems together, an overall performance of 82.98% sensitivity with 11.76 FPs/case can be obtained.

  8. Quantitative In Vivo Detection of Chlamydia muridarum Associated Inflammation in a Mouse Model Using Optical Imaging

    PubMed Central

    Patel, Manishkumar; Boddicker, Melissa A.; DeMaula, Christopher; Connolly, Brett; Bednar, Bohumil; Heinrichs, Jon H.; Smith, Jeffrey G.

    2015-01-01

    Chlamydia trachomatis is a bacterial sexually transmitted disease with over 1.3 million cases reported to the CDC in 2010. While Chlamydia infection is easily treated with antibiotics, up to 70% of infections are asymptomatic and go untreated. The current mouse model relies on invasive upper genital tract gross pathology readouts at ~60–80 days postinfection. High throughput optical imaging through the use of biomarkers has been successfully used to quickly evaluate several disease processes. Here we evaluate Neutrophil Elastase 680 (Elastase680) for its ability to measure Chlamydia muridarum associated inflammation in live mice using fluorescence molecular tomography (FMT) and In Vivo Imaging System (IVIS). Optical imaging was able to distinguish with statistical significance between vaccinated and nonvaccinated mice as well as mock-challenged and challenged mice 2 weeks after challenge which was 9 weeks sooner than typical gross pathological assessment. Immunohistochemistry confirmed the presence of neutrophils and correlated well with both in vivo and ex vivo imaging. In this report we demonstrate that Elastase680 can be used as a molecular imaging biomarker for inflammation associated with chlamydial infection in a mouse model and that these biomarkers can significantly decrease the time for pathology evaluation and thus increase the rate of therapeutics discovery. PMID:26663988

  9. MR Imaging of Pulmonary Nodules: Detection Rate and Accuracy of Size Estimation in Comparison to Computed Tomography

    PubMed Central

    Cieszanowski, Andrzej; Lisowska, Antonina; Dabrowska, Marta; Korczynski, Piotr; Zukowska, Malgorzata; Grudzinski, Ireneusz P.; Pacho, Ryszard; Rowinski, Olgierd; Krenke, Rafal

    2016-01-01

    Objective The aims of this study were to assess the sensitivity of various magnetic resonance imaging (MRI) sequences for the diagnosis of pulmonary nodules and to estimate the accuracy of MRI for the measurement of lesion size, as compared to computed tomography (CT). Methods Fifty patients with 113 pulmonary nodules diagnosed by CT underwent lung MRI and CT. MRI studies were performed on 1.5T scanner using the following sequences: T2-TSE, T2-SPIR, T2-STIR, T2-HASTE, T1-VIBE, and T1-out-of-phase. CT and MRI data were analyzed independently by two radiologists. Results The overall sensitivity of MRI for the detection of pulmonary nodules was 80.5% and according to nodule size: 57.1% for nodules ≤4mm, 75% for nodules >4-6mm, 87.5% for nodules >6-8mm and 100% for nodules >8mm. MRI sequences yielded following sensitivities: 69% (T1-VIBE), 54.9% (T2-SPIR), 48.7% (T2-TSE), 48.7% (T1-out-of-phase), 45.1% (T2-STIR), 25.7% (T2-HASTE), respectively. There was very strong agreement between the maximum diameter of pulmonary nodules measured by CT and MRI (mean difference -0.02 mm; 95% CI –1.6–1.57 mm; Bland-Altman analysis). Conclusions MRI yielded high sensitivity for the detection of pulmonary nodules and enabled accurate assessment of their diameter. Therefore it may be considered an alternative to CT for follow-up of some lung lesions. However, due to significant number of false positive diagnoses, it is not ready to replace CT as a tool for lung nodule detection. PMID:27258047

  10. Upregulation of Transient Receptor Potential Canonical Channels Contributes to Endotoxin-Induced Pulmonary Arterial Stenosis

    PubMed Central

    Chen, Gui-Lan; Jiang, Hongni; Zou, Fangdong

    2016-01-01

    Background Septic shock is a pathologic condition caused by endotoxin-producing bacteria, and often associated with severe pulmonary hypertension. Inflammation is a major systemic response to endotoxin; however, it is unknown whether endotoxin has a direct impact on pulmonary arteries that contributes to pathogenesis of pulmonary hypertension. Material/Methods Rat pulmonary arteries and primary pulmonary arterial smooth muscle cells (PASMCs) were cultured in vitro and treated with lipopolysaccharide (LPS) and blockers of transient receptor potential canonical (TRPC) channels. Neointimal growth and arterial stenosis were observed on cryosections of cultured pulmonary arteries. Proliferation of PASMCs was examined by a WST-1 (water-soluble tetrazolium salt) assay. Expression of TRPC genes in pulmonary arteries and PASMCs were detected and quantified by real-time polymerase chain reaction and Western blotting. Results LPS significantly induced neointimal growth and stenosis of pulmonary arteries and promoted proliferation of PASMCs. TRPC channel blockers 2-aminoethoxydiphenyl borate and SKF-96365 inhibited LPS-induced remodeling of pulmonary arteries and PASMC proliferation. Expression of TRPC1/3/4/6 was detected in pulmonary arteries and PASMCs. LPS treatment dramatically increased the expression of TRPC3 and TRPC4 at both messenger RNA and protein levels. Conclusions LPS stimulates stenosis of pulmonary arteries through enhancement of TRPC-mediated Ca2+ entry into PASMCs, which is caused by upregulation of TRPC3 and TRPC4 channels. PMID:27471122

  11. A new computationally efficient CAD system for pulmonary nodule detection in CT imagery.

    PubMed

    Messay, Temesguen; Hardie, Russell C; Rogers, Steven K

    2010-06-01

    Early detection of lung nodules is extremely important for the diagnosis and clinical management of lung cancer. In this paper, a novel computer aided detection (CAD) system for the detection of pulmonary nodules in thoracic computed tomography (CT) imagery is presented. The paper describes the architecture of the CAD system and assesses its performance on a publicly available database to serve as a benchmark for future research efforts. Training and tuning of all modules in our CAD system is done using a separate and independent dataset provided courtesy of the University of Texas Medical Branch (UTMB). The publicly available testing dataset is that created by the Lung Image Database Consortium (LIDC). The LIDC data used here is comprised of 84 CT scans containing 143 nodules ranging from 3 to 30mm in effective size that are manually segmented at least by one of the four radiologists. The CAD system uses a fully automated lung segmentation algorithm to define the boundaries of the lung regions. It combines intensity thresholding with morphological processing to detect and segment nodule candidates simultaneously. A set of 245 features is computed for each segmented nodule candidate. A sequential forward selection process is used to determine the optimum subset of features for two distinct classifiers, a Fisher Linear Discriminant (FLD) classifier and a quadratic classifier. A performance comparison between the two classifiers is presented, and based on this, the FLD classifier is selected for the CAD system. With an average of 517.5 nodule candidates per case/scan (517.5+/-72.9), the proposed front-end detector/segmentor is able to detect 92.8% of all the nodules in the LIDC/testing dataset (based on merged ground truth). The mean overlap between the nodule regions delineated by three or more radiologists and the ones segmented by the proposed segmentation algorithm is approximately 63%. Overall, with a specificity of 3 false positives (FPs) per case/patient on

  12. Pulmonary Fissure Detection in CT Images Using a Derivative of Stick Filter.

    PubMed

    Xiao, Changyan; Stoel, Berend C; Bakker, M Els; Peng, Yuanyuan; Stolk, Jan; Staring, Marius

    2016-06-01

    Pulmonary fissures are important landmarks for recognition of lung anatomy. In CT images, automatic detection of fissures is complicated by factors like intensity variability, pathological deformation and imaging noise. To circumvent this problem, we propose a derivative of stick (DoS) filter for fissure enhancement and a post-processing pipeline for subsequent segmentation. Considering a typical thin curvilinear shape of fissure profiles inside 2D cross-sections, the DoS filter is presented by first defining nonlinear derivatives along a triple stick kernel in varying directions. Then, to accommodate pathological abnormality and orientational deviation, a [Formula: see text] cascading and multiple plane integration scheme is adopted to form a shape-tuned likelihood for 3D surface patches discrimination. During the post-processing stage, our main contribution is to isolate the fissure patches from adhering clutters by introducing a branch-point removal algorithm, and a multi-threshold merging framework is employed to compensate for local intensity inhomogeneity. The performance of our method was validated in experiments with two clinical CT data sets including 55 publicly available LOLA11 scans as well as separate left and right lung images from 23 GLUCOLD scans of COPD patients. Compared with manually delineating interlobar boundary references, our method obtained a high segmentation accuracy with median F1-scores of 0.833, 0.885, and 0.856 for the LOLA11, left and right lung images respectively, whereas the corresponding indices for a conventional Wiemker filtering method were 0.687, 0.853, and 0.841. The good performance of our proposed method was also verified by visual inspection and demonstration on abnormal and pathological cases, where typical deformations were robustly detected together with normal fissures. PMID:26766371

  13. A novel computer-aided detection system for pulmonary nodule identification in CT images

    NASA Astrophysics Data System (ADS)

    Han, Hao; Li, Lihong; Wang, Huafeng; Zhang, Hao; Moore, William; Liang, Zhengrong

    2014-03-01

    Computer-aided detection (CADe) of pulmonary nodules from computer tomography (CT) scans is critical for assisting radiologists to identify lung lesions at an early stage. In this paper, we propose a novel approach for CADe of lung nodules using a two-stage vector quantization (VQ) scheme. The first-stage VQ aims to extract lung from the chest volume, while the second-stage VQ is designed to extract initial nodule candidates (INCs) within the lung volume. Then rule-based expert filtering is employed to prune obvious FPs from INCs, and the commonly-used support vector machine (SVM) classifier is adopted to further reduce the FPs. The proposed system was validated on 100 CT scans randomly selected from the 262 scans that have at least one juxta-pleural nodule annotation in the publicly available database - Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI). The two-stage VQ only missed 2 out of the 207 nodules at agreement level 1, and the INCs detection for each scan took about 30 seconds in average. Expert filtering reduced FPs more than 18 times, while maintaining a sensitivity of 93.24%. As it is trivial to distinguish INCs attached to pleural wall versus not on wall, we investigated the feasibility of training different SVM classifiers to further reduce FPs from these two kinds of INCs. Experiment results indicated that SVM classification over the entire set of INCs was in favor of, where the optimal operating of our CADe system achieved a sensitivity of 89.4% at a specificity of 86.8%.

  14. Inflammation in low back pain may be detected from the peripheral blood: suggestions for biomarker

    PubMed Central

    Li, Yong; Liu, Jun; Liu, Zong-zhi; Duan, Da-peng

    2016-01-01

    Biomarker for prediction of development of low back pain, and disease progression in chronic conditions are virtually non-existent. In the present study, we examined evidence of inflammation in the peripheral blood and demonstrated significant changes in neuroinflammation markers in subjects with chronic low back pain in comparison with control subjects. The present study was performed using peripheral blood from subjects with chronic low back pain and age-matched control subjects. Western blotting, real-time RT-PCR, cell culture and in vitro assays were incorporated to perform the current study. We obtained evidence that the balance between proinflammatory and anti-inflammatory cytokines is misaligned, with decrease in interleukin-10 (IL-10) expression and increase in interleukin-6 (IL-6) expression. Furthermore, we demonstrated increase in CD16 monocyte expression. Cells were cultured under differential conditions to generate M1/M2 macrophages. In the macrophages, opioid secretory capacity was shown to be diminished. Finally, Dragon (repulsive guidance molecule b, RGMb) expression was shown diminished in M1 macrophages, which serves as a key transcriptional inhibitor of IL-6 expression. These biochemical and cellular alterations in chronic low back pain can serve as potential biomarkers for assessing disease initiation, intensity and progression. PMID:27380953

  15. Inflammation in low back pain may be detected from the peripheral blood: suggestions for biomarker.

    PubMed

    Li, Yong; Liu, Jun; Liu, Zong-Zhi; Duan, Da-Peng

    2016-08-01

    Biomarker for prediction of development of low back pain, and disease progression in chronic conditions are virtually non-existent. In the present study, we examined evidence of inflammation in the peripheral blood and demonstrated significant changes in neuroinflammation markers in subjects with chronic low back pain in comparison with control subjects. The present study was performed using peripheral blood from subjects with chronic low back pain and age-matched control subjects. Western blotting, real-time RT-PCR, cell culture and in vitro assays were incorporated to perform the current study. We obtained evidence that the balance between proinflammatory and anti-inflammatory cytokines is misaligned, with decrease in interleukin-10 (IL-10) expression and increase in interleukin-6 (IL-6) expression. Furthermore, we demonstrated increase in CD16 monocyte expression. Cells were cultured under differential conditions to generate M1/M2 macrophages. In the macrophages, opioid secretory capacity was shown to be diminished. Finally, Dragon (repulsive guidance molecule b, RGMb) expression was shown diminished in M1 macrophages, which serves as a key transcriptional inhibitor of IL-6 expression. These biochemical and cellular alterations in chronic low back pain can serve as potential biomarkers for assessing disease initiation, intensity and progression. PMID:27380953

  16. Cardiomyopathy confers susceptibility to particulate matter-induced oxidative stress, vagal dominance, arrhythmia, pulmonary inflammation in heart failure-prone rats

    EPA Science Inventory

    Acute exposure to ambient fine particulate matter (PM2.5) is tied to cardiovascular morbidity and mortality, especially among those with prior cardiac injury. The mechanisms and pathophysiologic events precipitating these outcomes remain poorly understood but may involve inflamm...

  17. Endothelial dysfunction in the pulmonary artery induced by concentrated fine particulate matter exposure is associated with local but not systemic inflammation.

    PubMed

    Davel, Ana Paula; Lemos, Miriam; Pastro, Luciana Manfré; Pedro, Sibelli Cosme; de André, Paulo Afonso; Hebeda, Cristina; Farsky, Sandra Helena; Saldiva, Paulo Hilário; Rossoni, Luciana Venturini

    2012-05-16

    Clinical evidence has identified the pulmonary circulation as an important target of air pollution. It was previously demonstrated that in vitro exposure to fine particulate matter (aerodynamic diameter≤2.5 μm, PM2.5) induces endothelial dysfunction in isolated pulmonary arteries. We aimed to investigate the effects of in vivo exposure to urban concentrated PM2.5 on rat pulmonary artery reactivity and the mechanisms involved. For this, adult Wistar rats were exposed to 2 weeks of concentrated São Paulo city air PM2.5 at an accumulated daily dose of approximately 600 μg/m3. Pulmonary arteries isolated from PM2.5-exposed animals exhibited impaired endothelium-dependent relaxation to acetylcholine without significant changes in nitric oxide donor response compared to control rats. PM2.5 caused vascular oxidative stress and enhanced protein expression of Cu/Zn- and Mn-superoxide dismutase in the pulmonary artery. Protein expression of endothelial nitric oxide synthase (eNOS) was reduced, while tumor necrosis factor (TNF)-α was enhanced by PM2.5 inhalation in pulmonary artery. There was a significant positive correlation between eNOS expression and maximal relaxation response (Emax) to acetylcholine. A negative correlation was found between vascular TNF-α expression and Emax to acetylcholine. Plasma cytokine levels, blood cells count and coagulation parameters were similar between control and PM2.5-exposed rats. The present findings showed that in vivo daily exposure to concentrated urban PM2.5 could decrease endothelium-dependent relaxation and eNOS expression on pulmonary arteries associated with local high TNF-α level but not systemic pro-inflammatory factors. Taken together, the present results elucidate the mechanisms underlying the trigger of cardiopulmonary diseases induced by urban ambient levels of PM2.5. PMID:22361244

  18. Detection of invasive pulmonary aspergillosis in haematological malignancy patients by using lateral-flow technology.

    PubMed

    Thornton, Christopher; Johnson, Gemma; Agrawal, Samir

    2012-01-01

    Invasive pulmonary aspergillosis (IPA) is a leading cause of morbidity and mortality in haematological malignancy patients and hematopoietic stem cell transplant recipients(1). Detection of IPA represents a formidable diagnostic challenge and, in the absence of a 'gold standard', relies on a combination of clinical data and microbiology and histopathology where feasible. Diagnosis of IPA must conform to the European Organization for Research and Treatment of Cancer and the National Institute of Allergy and Infectious Diseases Mycology Study Group (EORTC/MSG) consensus defining "proven", "probable", and "possible" invasive fungal diseases(2). Currently, no nucleic acid-based tests have been externally validated for IPA detection and so polymerase chain reaction (PCR) is not included in current EORTC/MSG diagnostic criteria. Identification of Aspergillus in histological sections is problematic because of similarities in hyphal morphologies with other invasive fungal pathogens(3), and proven identification requires isolation of the etiologic agent in pure culture. Culture-based approaches rely on the availability of biopsy samples, but these are not always accessible in sick patients, and do not always yield viable propagules for culture when obtained. An important feature in the pathogenesis of Aspergillus is angio-invasion, a trait that provides opportunities to track the fungus immunologically using tests that detect characteristic antigenic signatures molecules in serum and bronchoalveolar lavage (BAL) fluids. This has led to the development of the Platelia enzyme immunoassay (GM-EIA) that detects Aspergillus galactomannan and a 'pan-fungal' assay (Fungitell test) that detects the conserved fungal cell wall component (1 →3)-β-D-glucan, but not in the mucorales that lack this component in their cell walls(1,4). Issues surrounding the accuracy of these tests(1,4-6) has led to the recent development of next-generation monoclonal antibody (MAb)-based assays that

  19. Detection of Invasive Pulmonary Aspergillosis in Haematological Malignancy Patients by using Lateral-flow Technology

    PubMed Central

    Thornton, Christopher; Johnson, Gemma; Agrawal, Samir

    2012-01-01

    Invasive pulmonary aspergillosis (IPA) is a leading cause of morbidity and mortality in haematological malignancy patients and hematopoietic stem cell transplant recipients1. Detection of IPA represents a formidable diagnostic challenge and, in the absence of a 'gold standard', relies on a combination of clinical data and microbiology and histopathology where feasible. Diagnosis of IPA must conform to the European Organization for Research and Treatment of Cancer and the National Institute of Allergy and Infectious Diseases Mycology Study Group (EORTC/MSG) consensus defining "proven", "probable", and "possible" invasive fungal diseases2. Currently, no nucleic acid-based tests have been externally validated for IPA detection and so polymerase chain reaction (PCR) is not included in current EORTC/MSG diagnostic criteria. Identification of Aspergillus in histological sections is problematic because of similarities in hyphal morphologies with other invasive fungal pathogens3, and proven identification requires isolation of the etiologic agent in pure culture. Culture-based approaches rely on the availability of biopsy samples, but these are not always accessible in sick patients, and do not always yield viable propagules for culture when obtained. An important feature in the pathogenesis of Aspergillus is angio-invasion, a trait that provides opportunities to track the fungus immunologically using tests that detect characteristic antigenic signatures molecules in serum and bronchoalveolar lavage (BAL) fluids. This has led to the development of the Platelia enzyme immunoassay (GM-EIA) that detects Aspergillus galactomannan and a 'pan-fungal' assay (Fungitell test) that detects the conserved fungal cell wall component (1 →3)-β-D-glucan, but not in the mucorales that lack this component in their cell walls1,4. Issues surrounding the accuracy of these tests1,4-6 has led to the recent development of next-generation monoclonal antibody (MAb)-based assays that detect

  20. A symptom-related monitoring program following pulmonary embolism for the early detection of CTEPH: a prospective observational registry study

    PubMed Central

    2014-01-01

    Background Chronic thromboembolic pulmonary hypertension (CTEPH) is a long-term complication following an acute pulmonary embolism (PE). It is frequently diagnosed at advanced stages which is concerning as delayed treatment has important implications for favourable clinical outcome. Performing a follow-up examination of patients diagnosed with acute PE regardless of persisting symptoms and using all available technical procedures would be both cost-intensive and possibly ineffective. Focusing diagnostic procedures therefore on only symptomatic patients may be a practical approach for detecting relevant CTEPH. This study aimed to evaluate if a follow-up program for patients with acute PE based on telephone monitoring of symptoms and further examination of only symptomatic patients could detect CTEPH. In addition, we investigated the role of cardiopulmonary exercise testing (CPET) as a diagnostic tool. Methods In a prospective cohort study all consecutive patients with newly diagnosed PE (n=170, 76 males, 94 females within 26 months) were recruited according to the inclusion and exclusion criteria. Patients were contacted via telephone and asked to answer standardized questions relating to symptoms. At the time of the final analysis 130 patients had been contacted. Symptomatic patients underwent a structured evaluation with echocardiography, CPET and complete work-up for CTEPH. Results 37.7%, 25.5% and 29.3% of the patients reported symptoms after three, six, and twelve months respectively. Subsequent clinical evaluation of these symptomatic patients saw 20.4%, 11.5% and 18.8% of patients at the respective three, six and twelve months time points having an echocardiography suggesting pulmonary hypertension (PH). CTEPH with pathological imaging and a mean pulmonary artery pressure (mPAP) ≥ 25 mm Hg at rest was confirmed in eight subjects. Three subjects with mismatch perfusion defects showed an exercise induced increase of PAP without increasing pulmonary artery

  1. Early Detection of Schistosoma Egg-Induced Pulmonary Granulomas in a Returning Traveler.

    PubMed

    Coron, Noémie; Le Govic, Yohann; Kettani, Sami; Pihet, Marc; Hemery, Sandrine; de Gentile, Ludovic; Chabasse, Dominique

    2016-03-01

    We report the case of a French traveler who developed acute pulmonary schistosomiasis 2 months after visiting Benin. He presented with a 1-month history of fever, cough, and thoracic pain. Initial investigations revealed hypereosinophilia and multiple nodular lesions on chest computed tomography scan. Lung biopsies were performed 2 months later because of migrating chest infiltrates and increasing eosinophilia. Histological examination showed schistosomal egg-induced pulmonary granulomas with ova exhibiting a prominent terminal spine, resembling Schistosoma haematobium. However, egg shells were Ziehl-Neelsen positive, raising the possibility of a Schistosoma intercalatum or a Schistosoma guineensis infection. Moreover, involvement of highly infectious hybrid species cannot be excluded considering the atypical early pulmonary oviposition. This case is remarkable because of the rarity of pulmonary schistosomiasis, its peculiar clinical presentation and difficulties in making species identification. It also emphasizes the need to consider schistosomiasis diagnosis in all potentially exposed travelers with compatible symptoms. PMID:26787142

  2. Role of oxidative stress, inflammation, nitric oxide and transforming growth factor-beta in the protective effect of diosgenin in monocrotaline-induced pulmonary hypertension in rats.

    PubMed

    Ahmed, Lamiaa A; Obaid, Al Arqam Z; Zaki, Hala F; Agha, Azza M

    2014-10-01

    Pulmonary hypertension is a progressive disease of various origins that is associated with right ventricular dysfunction. In the present study, the protective effect of diosgenin was investigated in monocrotaline-induced pulmonary hypertension in rats. Pulmonary hypertension was induced by a single subcutaneous injection of monocrotaline (60 mg/kg). Diosgenin (100 mg/kg) was given by oral administration once daily for 3 weeks. At the end of the experiment, mean arterial blood pressure, electrocardiography and echocardiography were recorded. Rats were then sacrificed and serum was separated for determination of total nitrate/nitrite level. Right ventricles and lungs were isolated for estimation of oxidative stress markers, tumor necrosis factor-alpha, total nitrate/nitrite and transforming growth factor-beta contents. Myeloperoxidase and caspase-3 activities in addition to endothelial and inducible nitric oxide synthase protein expression were also determined. Moreover, histological analysis of pulmonary arteries and cardiomyocyte cross-sectional area was performed. Diosgenin treatment provided a significant improvement toward preserving hemodynamic changes and alleviating oxidative stress, inflammatory and apoptotic markers induced by monocrotaline in rats. Furthermore, diosgenin therapy prevented monocrotaline-induced changes in nitric oxide production, endothelial and inducible nitric oxide synthase protein expression as well as histological analysis. These findings support the beneficial effect of diosgenin in pulmonary hypertension induced by monocrotaline in rats. PMID:25062790

  3. The detection of toxigenic Corynebacterium ulcerans from cats with nasal inflammation in Japan.

    PubMed

    Saeki, J; Katsukawa, C; Matsubayashi, M; Nakanishi, H; Furuya, M; Tani, H; Sasai, K

    2015-09-01

    Corynebacterium ulcerans (toxigenic C. ulcerans) produces the diphtheria toxin, which causes pharyngeal and cutaneous diphtheria-like disease in people, and this bacterium is commonly detected in dogs and cats that are reared at home. It is considered dangerous when a carrier animal becomes the source of infection in people. To investigate the carrier situation of toxigenic C. ulcerans of cats bred in Japan, bacteria were isolated from 37 cats with a primary complaint of rhinitis in 16 veterinary hospitals in Osaka. Toxigenic C. ulcerans was detected in two of the cats. By drug sensitivity testing, the detected bacterium was sensitive to all investigated drugs, except clindamycin. It appears necessary to create awareness regarding toxigenic C. ulcerans infection in pet owners because this bacterium is believed to be the causative organism for rhinitis in cats. PMID:25578079

  4. Adenosine A2A receptors induced on iNKT and NK cells reduce pulmonary inflammation and injury in mice with sickle cell disease

    PubMed Central

    Wallace, Kori L.

    2010-01-01

    We showed previously that pulmonary function and arterial oxygen saturation in NY1DD mice with sickle cell disease (SCD) are improved by depletion of invariant natural killer T (iNKT) cells or blockade of their activation. Here we demonstrate that SCD causes a 9- and 6-fold induction of adenosine A2A receptor (A2AR) mRNA in mouse pulmonary iNKT and natural killer (NK) cells, respectively. Treating SCD mice with the A2AR agonist ATL146e produced a dose-dependent reversal of pulmonary dysfunction with maximal efficacy at 10 ng/kg/minute that peaked within 3 days and persisted throughout 7 days of continuous infusion. Crossing NY1DD mice with Rag1−/− mice reduced pulmonary injury that was restored by adoptive transfer of 106 purified iNKT cells. Reconstituted injury was reversed by ATL146e unless the adoptively transferred iNKT cells were pretreated with the A2AR alkylating antagonist, FSPTP (5-amino-7-[2-(4-fluorosulfonyl)phenylethyl]-2-(2-furyl)-pryazolo[4,3-ϵ]-1,2,4-triazolo[1,5-c]pyrimidine), which completely prevented pro-tection. In NY1DD mice exposed to hypoxia-reoxygenation, treatment with ATL146e at the start of reoxygenation prevented further lung injury. Together, these data indicate that activation of induced A2ARs on iNKT and NK cells in SCD mice is sufficient to improve baseline pulmonary function and prevent hypoxia-reoxygenation–induced exacerbation of pulmonary injury. A2A agonists have promise for treating diseases associated with iNKT or NK cell activation. PMID:20798237

  5. Pulmonary C Fibers Modulate MMP-12 Production via PAR2 and Are Involved in the Long-Term Airway Inflammation and Airway Hyperresponsiveness Induced by Respiratory Syncytial Virus Infection

    PubMed Central

    Zang, Na; Zhuang, Jianguo; Deng, Yu; Yang, Zhimei; Ye, Zhixu; Xie, Xiaohong; Ren, Luo; Fu, Zhou; Luo, Zhengxiu; Xu, Fadi

    2015-01-01

    ABSTRACT Children with acute respiratory syncytial virus (RSV) infection often develop sequelae of persistent airway inflammation and wheezing. Pulmonary C fibers (PCFs) are involved in the generation of airway inflammation and resistance; however, their role in persistent airway diseases after RSV is unexplored. Here, we elucidated the pathogenesis of PCF activation in RSV-induced persistent airway disorders. PCF-degenerated and intact mice were used in the current study. Airway inflammation and airway resistance were evaluated. MMP408 and FSLLRY-NH2 were the selective antagonists for MMP-12 and PAR2, respectively, to investigate the roles of MMP-12 and PAR2 in PCFs mediating airway diseases. As a result, PCF degeneration significantly reduced the following responses to RSV infection: augmenting of inflammatory cells, especially macrophages, and infiltrating of inflammatory cells in lung tissues; specific airway resistance (sRaw) response to methacholine; and upregulation of MMP-12 and PAR2 expression. Moreover, the inhibition of MMP-12 reduced the total number of cells and macrophages in bronchiolar lavage fluid (BALF), as well infiltrating inflammatory cells, and decreased the sRaw response to methacholine. In addition, PAR2 was upregulated especially at the later stage of RSV infection. Downregulation of PAR2 ameliorated airway inflammation and resistance following RSV infection and suppressed the level of MMP-12. In all, the results suggest that PCF involvement in long-term airway inflammation and airway hyperresponsiveness occurred at least partially via modulating MMP-12, and the activation of PAR2 might be related to PCF-modulated MMP-12 production. Our initial findings indicated that the inhibition of PCF activity would be targeted therapeutically for virus infection-induced long-term airway disorders. IMPORTANCE The current study is critical to understanding that PCFs are involved in long-term airway inflammation and airway resistance after RSV infection

  6. Diagnostic Accuracy of Ultrasonography and Radiography in Detection of Pulmonary Contusion; a Systematic Review and Meta-Analysis

    PubMed Central

    Hosseini, Mostafa; Ghelichkhani, Parisa; Baikpour, Masoud; Tafakhori, Abbas; Asady, Hadi; Haji Ghanbari, Mohammad Javad; Yousefifard, Mahmoud; Safari, Saeed

    2015-01-01

    Introduction: Ultrasonography is currently being used as one of the diagnostic modalities in various medical emergencies for screening of trauma patients. The diagnostic value of this modality in detection of traumatic chest injuries has been evaluated by several studies but its diagnostic accuracy in diagnosis of pulmonary contusion is a matter of discussion. Therefore, the present study aimed to determine the diagnostic accuracy of ultrasonography and radiography in detection of pulmonary contusion through a systematic review and meta-analysis. Methods: An extended systematic search was performed by two reviewers in databases of Medline, EMBASE, ISI Web of Knowledge, Scopus, Cochrane Library, and ProQuest. They extracted the data and assessed the quality of the studies. After summarization of data into true positive, false positive, true negative, and false negative meta-analysis was carried out via a mixed-effects binary regression model. Further subgroup analysis was performed due to a significant heterogeneity between the studies. Results: 12 studies were included in this meta-analysis (1681 chest trauma patients, 76% male). Pooled sensitivity of ultrasonography in detection of pulmonary contusion was 0.92 (95% CI: 0.81-0.96; I2= 95.81, p<0.001) and its pooled specificity was calculated to be 0.89 (95% CI: 0.85-0.93; I2 = 67.29, p<0.001) while these figures for chest radiography were 0.44 (95% CI: 0.32-0.58; I2= 87.52, p<0.001) and 0.98 (95% CI: 0.88-1.0; I2= 95.22, p<0.001), respectively. Subgroup analysis showed that the sources of heterogeneity between the studies were sampling method, operator, frequency of the transducer, and sample size. Conclusion: Ultrasonography was found to be a better screening tool in detection of pulmonary contusion. Moreover, an ultrasonography performed by a radiologist / intensivist with 1-5MHz probe has a higher diagnostic value in identifying pulmonary contusions. PMID:26495401

  7. The Effect Of Pixel Size On The Detection Rate Of Early Pulmonary Sarcoidosis In Digital Chest Radiographic Systems

    NASA Astrophysics Data System (ADS)

    MacMahon, Heber; Vyborny, Carl; Powell, Gregory; Doi, Kunio; Metz, Charles E.

    1984-08-01

    In digital radiography the pixel size used determines the potential spatial resolution of the system. The need for spatial resolution varies depending on the subject matter imaged. In many areas, including the chest, the minimum spatial resolution requirements have not been determined. Sarcoidosis is a disease which frequently causes subtle interstitial infiltrates in the lungs. As the initial step in an investigation designed to determine the minimum pixel size required in digital chest radiographic systems, we have studied 1 mm pixel digitized images on patients with early pulmonary sarcoidosis. The results of this preliminary study suggest that neither mild interstitial pulmonary infiltrates nor other abnormalities such as pneumothoraces may be detected reliably with 1 mm pixel digital images.

  8. RNA Sequencing Analysis Detection of a Novel Pathway of Endothelial Dysfunction in Pulmonary Arterial Hypertension

    PubMed Central

    Rhodes, Christopher J.; Im, Hogune; Cao, Aiqin; Hennigs, Jan K.; Wang, Lingli; Sa, Silin; Chen, Pin-I; Nickel, Nils P.; Miyagawa, Kazuya; Hopper, Rachel K.; Tojais, Nancy F.; Li, Caiyun G.; Gu, Mingxia; Spiekerkoetter, Edda; Xian, Zhaoying; Chen, Rui; Zhao, Mingming; Kaschwich, Mark; del Rosario, Patricia A.; Bernstein, Daniel; Zamanian, Roham T.; Wu, Joseph C.; Snyder, Michael P.

    2015-01-01

    Rationale: Pulmonary arterial hypertension is characterized by endothelial dysregulation, but global changes in gene expression have not been related to perturbations in function. Objectives: RNA sequencing was used to discriminate changes in transcriptomes of endothelial cells cultured from lungs of patients with idiopathic pulmonary arterial hypertension versus control subjects and to assess the functional significance of major differentially expressed transcripts. Methods: The endothelial transcriptomes from the lungs of seven control subjects and six patients with idiopathic pulmonary arterial hypertension were analyzed. Differentially expressed genes were related to bone morphogenetic protein type 2 receptor (BMPR2) signaling. Those down-regulated were assessed for function in cultured cells and in a transgenic mouse. Measurements and Main Results: Fold differences in 10 genes were significant (P < 0.05), four increased and six decreased in patients versus control subjects. No patient was mutant for BMPR2. However, knockdown of BMPR2 by siRNA in control pulmonary arterial endothelial cells recapitulated 6 of 10 patient-related gene changes, including decreased collagen IV (COL4A1, COL4A2) and ephrinA1 (EFNA1). Reduction of BMPR2-regulated transcripts was related to decreased β-catenin. Reducing COL4A1, COL4A2, and EFNA1 by siRNA inhibited pulmonary endothelial adhesion, migration, and tube formation. In mice null for the EFNA1 receptor, EphA2, versus control animals, vascular endothelial growth factor receptor blockade and hypoxia caused more severe pulmonary hypertension, judged by elevated right ventricular systolic pressure, right ventricular hypertrophy, and loss of small arteries. Conclusions: The novel relationship between BMPR2 dysfunction and reduced expression of endothelial COL4 and EFNA1 may underlie vulnerability to injury in pulmonary arterial hypertension. PMID:26030479

  9. Effect of greyscale liquid crystal displays of different resolutions on observer performance during detection of small solitary pulmonary nodules

    PubMed Central

    Yin, J; Guo, Q; Zhang, W; Su, H; Zhang, J; Yue, Y; Ding, C; Lin, A; Wang, Y; Wang, H

    2012-01-01

    Objective The aim of this study was to evaluate the effect of monochrome liquid crystal displays (LCDs) with different resolutions on observer performance during detection of small solitary pulmonary nodules. Methods Chest images of digital radiography were selected online from the hospital's picture archiving and communication system. Of the 164 images selected, small solitary non-calcified pulmonary nodules were present in 63 images and absent in 101 images. Observer performance was assessed among 3 extremely experienced, 3 very experienced and 3 moderately experienced radiologists, who independently interpreted these images on 2, 3 and 5 megapixel greyscale LCDs. A five-point confidence level rating scale was used to represent the presence of nodules: definite absence, probable absence, indetermination, probable presence and definite presence. The observers were requested to rank each image on the given display according to the presence of the pulmonary nodule. Observer performance was analysed in terms of receiver operating characteristics (ROCs). Results The areas under the ROC curves which represented the observer performance for the 2, 3 and 5 megapixel LCDs were found to be 0.705, 0.722 and 0.764, respectively, for the extremely experienced radiologists; 0.687, 0.712 and 0.721, respectively, for the very experienced radiologists; and 0.689, 0.696 and 0.711, respectively, for the moderately experienced radiologists. These differences were not statistically significant. Conclusion The observer performances for detection of small solitary non-calcified pulmonary nodules by radiologists with varying degrees of experience were comparable between the 2, 3 and 5 megapixel monochrome LCDs. PMID:22744323

  10. Efficacy and Pharmacology of the NLRP3 Inflammasome Inhibitor CP-456,773 (CRID3) in Murine Models of Dermal and Pulmonary Inflammation.

    PubMed

    Primiano, Michael J; Lefker, Bruce A; Bowman, Michael R; Bree, Andrea G; Hubeau, Cedric; Bonin, Paul D; Mangan, Matthew; Dower, Ken; Monks, Brian G; Cushing, Leah; Wang, Stephen; Guzova, Julia; Jiao, Aiping; Lin, Lih-Ling; Latz, Eicke; Hepworth, David; Hall, J Perry

    2016-09-15

    A critical component of innate immune response to infection and tissue damage is the NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome, and this pathway and its activation products have been implicated in the pathophysiology of a variety of diseases. NLRP3 inflammasome activation leads to the cleavage of pro-IL-1β and pro-IL-18, as well as the subsequent release of biologically active IL-1β, IL-18, and other soluble mediators of inflammation. In this study, we further define the pharmacology of the previously reported NLRP3 inflammasome-selective, IL-1β processing inhibitor CP-456,773 (also known as MCC950), and we demonstrate its efficacy in two in vivo models of inflammation. Specifically, we show that in human and mouse innate immune cells CP-456,773 is an inhibitor of the cellular release of IL-1β, IL-1α, and IL-18, that CP-456,773 prevents inflammasome activation induced by disease-relevant soluble and crystalline NLRP3 stimuli, and that CP-456,773 inhibits R848- and imiquimod-induced IL-1β release. In mice, CP-456,773 demonstrates potent inhibition of the release of proinflammatory cytokines following acute i.p. challenge with LPS plus ATP in a manner that is proportional to the free/unbound concentrations of the drug, thereby establishing an in vivo pharmacokinetic/pharmacodynamic model for CP-456,773. Furthermore, CP-456,773 reduces ear swelling in an imiquimod cream-induced mouse model of skin inflammation, and it reduces airway inflammation in mice following acute challenge with house dust mite extract. These data implicate the NLRP3 inflammasome in the pathogenesis of dermal and airway inflammation, and they highlight the utility of CP-456,773 for interrogating the contribution of the NLRP3 inflammasome and its outputs in preclinical models of inflammation and disease. PMID:27521339

  11. Detection of the Inflammation Biomarker C-Reactive Protein in Serum Samples: Towards an Optimal Biosensor Formula

    PubMed Central

    Fakanya, Wellington M.; Tothill, Ibtisam E.

    2014-01-01

    The development of an electrochemical immunosensor for the biomarker, C-reactive protein (CRP), is reported in this work. CRP has been used to assess inflammation and is also used in a multi-biomarker system as a predictive biomarker for cardiovascular disease risk. A gold-based working electrode sensor was developed, and the types of electrode printing inks and ink curing techniques were then optimized. The electrodes with the best performance parameters were then employed for the construction of an immunosensor for CRP by immobilizing anti-human CRP antibody on the working electrode surface. A sandwich enzyme-linked immunosorbent assay (ELISA) was then constructed after sample addition by using anti-human CRP antibody labelled with horseradish peroxidase (HRP). The signal was generated by the addition of a mediator/substrate system comprised of 3,3,5',5'-Tetramethylbenzidine dihydrochloride (TMB) and hydrogen peroxide (H2O2). Measurements were conducted using chronoamperometry at −200 mV against an integrated Ag/AgCl reference electrode. A CRP limit of detection (LOD) of 2.2 ng·mL−1 was achieved in spiked serum samples, and performance agreement was obtained with reference to a commercial ELISA kit. The developed CRP immunosensor was able to detect a diagnostically relevant range of the biomarker in serum without the need for signal amplification using nanoparticles, paving the way for future development on a cardiac panel electrochemical point-of-care diagnostic device. PMID:25587427

  12. Naringenin adds to the protective effect of L-arginine in monocrotaline-induced pulmonary hypertension in rats: favorable modulation of oxidative stress, inflammation and nitric oxide.

    PubMed

    Ahmed, Lamiaa A; Obaid, Al Arqam Z; Zaki, Hala F; Agha, Azza M

    2014-10-01

    The present study was directed to investigate the possible modulatory effect of naringenin when co-administered with L-arginine in monocrotaline-induced pulmonary hypertension in rats. Pulmonary hypertension was induced by a single subcutaneous injection of monocrotaline (60 mg/kg). L-arginine (500 mg/kg) and naringenin (50 mg/kg) were orally administered daily, alone and in combination, for 3 weeks. Mean arterial blood pressure, electrocardiography and echocardiography were then recorded and rats were sacrificed and serum was separated for determination of total nitrate/nitrite level. Right ventricles and lungs were isolated for estimation of oxidative stress markers, tumor necrosis factor-alpha, total nitrate/nitrite and transforming growth factor-beta. Myeloperoxidase and caspase-3 activities in addition to endothelial and inducible nitric oxide synthase protein expression were also determined. Moreover, histological analysis of pulmonary arteries and cardiomyocyte cross-sectional area was performed. Combined therapy provided a significant improvement in L-arginine protective effect toward preserving hemodynamic changes and alleviating oxidative stress, inflammatory and apoptotic markers induced by monocrotaline treatment. Furthermore, combined therapy prevented monocrotaline-induced changes in endothelial and inducible nitric oxide synthase protein expression as well as histological analysis compared with either treatment alone. In conclusion, naringenin significantly adds to the protective effect of L-arginine in pulmonary hypertension induced by monocrotaline in rats. PMID:24878387

  13. Exposure for ultrafine carbon particles at levels below detectable pulmonary inflammation affects cardiovascular performance in spontaneously hypertensive rats*

    EPA Science Inventory

    Rationale: Exposure to particulate matter is a risk factor for cardiopulmonary disease but the related molecular mechanisms are poorly understood. Previously we studied cardiovascular responses in healthy WKY rats following inhalation exposure to ultrafine carbon particles (UfCPs...

  14. Comparison of dual energy subtraction chest radiography and traditional chest X-rays in the detection of pulmonary nodules

    PubMed Central

    Wang, Jiheng; Norman, Geoff; Wang, Zhou; Koff, David

    2016-01-01

    Background Dual energy subtraction (DES) radiography is a powerful but underutilized technique which aims to improve the diagnostic value of an X-ray by separating soft tissue from bones, producing two different images. Compared to traditional chest X-rays, DES requires exposure to higher doses of radiation but may achieve higher accuracy. The objective of this study was to assess the clinical benefits of DES radiography by comparing the speed and accuracy of diagnosis of pulmonary nodules with DES versus traditional chest X-rays. Methods Five radiologists and five radiology residents read the DES and traditional chest X-rays of 51 patients, 34 with pulmonary nodules and 17 without. Their accuracy and speed in the detection of nodules were measured using specialized image display software. Results DES radiography reduced reading time from 13 to 10 sec (P<0.0001) in staff and from 21 to 15 sec in residents (P<0.0001). There was also a small increase in sensitivity 0.58 to 0.67 overall (P<0.10) with no change in specificity (0.85 overall). Conclusions By eliminating rib shadows in soft tissue images, DES improved the speed and accuracy of radiologists in the diagnosis of pulmonary nodules. PMID:26981449

  15. Telemetric Detection of Chronic Obstructive Pulmonary Disease and Investigation of Quality of Life for People Working in Shipbuilding Industry

    PubMed Central

    Koulouri, Agoritsa; Gourgoulianis, Konstantinos; Hatzoglou, Chryssi; Roupa, Zoe

    2014-01-01

    ABSTRACT Introduction: Chronic Obstructive Pulmonary Disease (COPD) has a significant impact on quality of life-related health. Aim: It was the detection of Chronic Obstructive Pulmonary Disease by using telemetric methods and the investigation of the quality of life for people working in Shipbuilding Industry compared with a control group. Methods: A group of one hundred men working in the shipbuilding industry aged 51.8 ± 8.2 years old and a control group of one hundred men of the general population aged 51.1 ± 6.4 years were studied. All participants completed the General Health Questionnaire – 28, the Fagerstrom test and a form with demographic characteristics. Pulmonary function test results were electronically sent to a specialist for evaluation. Results: People working in the shipbuilding zone had significantly lower values (p<0.001) in FVC, FEV1 and FEV1/FVC compared with the general population participants. Worse social functionality was exhibited by workers in the shipbuilding zone, people with elementary education, unemployed and by those suffering from comorbidities (p <0.001). Conclusions: Health level and its individual dimensions are both associated with health self-assessment and occupational and economic status. The coexistence of chronic diseases and smoking dependence affects emotion and social functioning of individuals. PMID:25568580

  16. Role of Computer Aided Diagnosis (CAD) in the detection of pulmonary nodules on 64 row multi detector computed tomography

    PubMed Central

    Prakashini, K; Babu, Satish; Rajgopal, KV; Kokila, K Raja

    2016-01-01

    Aims and Objectives: To determine the overall performance of an existing CAD algorithm with thin-section computed tomography (CT) in the detection of pulmonary nodules and to evaluate detection sensitivity at a varying range of nodule density, size, and location. Materials and Methods: A cross-sectional prospective study was conducted on 20 patients with 322 suspected nodules who underwent diagnostic chest imaging using 64-row multi-detector CT. The examinations were evaluated on reconstructed images of 1.4 mm thickness and 0.7 mm interval. Detection of pulmonary nodules, initially by a radiologist of 2 years experience (RAD) and later by CAD lung nodule software was assessed. Then, CAD nodule candidates were accepted or rejected accordingly. Detected nodules were classified based on their size, density, and location. The performance of the RAD and CAD system was compared with the gold standard that is true nodules confirmed by consensus of senior RAD and CAD together. The overall sensitivity and false-positive (FP) rate of CAD software was calculated. Observations and Results: Of the 322 suspected nodules, 221 were classified as true nodules on the consensus of senior RAD and CAD together. Of the true nodules, the RAD detected 206 (93.2%) and 202 (91.4%) by the CAD. CAD and RAD together picked up more number of nodules than either CAD or RAD alone. Overall sensitivity for nodule detection with the CAD program was 91.4%, and FP detection per patient was 5.5%. The CAD showed comparatively higher sensitivity for nodules of size 4–10 mm (93.4%) and nodules in hilar (100%) and central (96.5%) location when compared to RAD's performance. Conclusion: CAD performance was high in detecting pulmonary nodules including the small size and low-density nodules. CAD even with relatively high FP rate, assists and improves RAD's performance as a second reader, especially for nodules located in the central and hilar region and for small nodules by saving RADs time.

  17. T1 Measurements for Detection of Expansion of the Myocardial Extracellular Volume in Chronic Obstructive Pulmonary Disease

    PubMed Central

    Neilan, Tomas G; Bakker, Jessie P; Sharma, Bhavneesh; Owens, Robert L.; Farhad, Hoshang; Shah, Ravi V; Abbasi, Siddique A; Kohli, Puja; Wilson, Joel; DeMaria, Anthony; Jerosch-Herold, Michael; Kwong, Raymond Y.; Malhotra, Atul

    2014-01-01

    Background We aimed to assess whether chronic obstructive pulmonary disease (COPD) is associated with expansion of the myocardial extracellular volume (ECV) using T1 measurements. Methods Adult COPD patients (GOLD stage 2 or higher) and free of known cardiovascular disease were recruited. All study patients underwent measures of pulmonary function, 6-minute walk test, serum measures of inflammation, overnight polysomnography, and a contrast CMR study. Results Eight patients with COPD were compared to 8 healthy control subjects. The mean predicted FEV1% of COPD subjects was 68%. Compared to controls, patients had normal left ventricular (LV) and right ventricular size, mass, and function. However, as compared to controls, the LV remodeling index (median 0.87 IQR 0.43 vs. median 0.62 IQR 0.17, p=0.03) and active left atrial emptying fraction was increased (median 46 IQR 8 vs. median 38 IQR 10, p=0.005), and passive left atrial emptying fraction was reduced (median 24 IQR 10 vs. median 44 IQR 20, p=0.007). The ECV was increased in patients with COPD (median 0.32 IQR 0.05 vs. median 0.27 IQR 0.05, p=0.001). The ECV showed a strong positive association with LV remodeling (r = 0.72, p = 0.04) and an inverse association with the 6-minute walk duration (r = −0.79, p = 0.02) and passive left atrial emptying fraction (r = −0.68, p = 0.003). Conclusions Expansion of the ECV, suggestive of diffuse myocardial fibrosis, is present in COPD and is associated with LV remodeling, reduced left atrial function and exercise capacity. PMID:25442461

  18. Fast and Adaptive Detection of Pulmonary Nodules in Thoracic CT Images Using a Hierarchical Vector Quantization Scheme

    PubMed Central

    Han, Hao; Li, Lihong; Han, Fangfang; Song, Bowen; Moore, William; Liang, Zhengrong

    2014-01-01

    Computer-aided detection (CADe) of pulmonary nodules is critical to assisting radiologists in early identification of lung cancer from computed tomography (CT) scans. This paper proposes a novel CADe system based on a hierarchical vector quantization (VQ) scheme. Compared with the commonly-used simple thresholding approach, high-level VQ yields a more accurate segmentation of the lungs from the chest volume. In identifying initial nodule candidates (INCs) within the lungs, low-level VQ proves to be effective for INCs detection and segmentation, as well as computationally efficient compared to existing approaches. False-positive (FP) reduction is conducted via rule-based filtering operations in combination with a feature-based support vector machine classifier. The proposed system was validated on 205 patient cases from the publically available on-line LIDC (Lung Image Database Consortium) database, with each case having at least one juxta-pleural nodule annotation. Experimental results demonstrated that our CADe system obtained an overall sensitivity of 82.7% at a specificity of 4 FPs/scan, and 89.2% sensitivity at 4.14 FPs/scan for the classification of juxta-pleural INCs only. With respect to comparable CADe systems, the proposed system shows outperformance and demonstrates its potential for fast and adaptive detection of pulmonary nodules via CT imaging. PMID:25486657

  19. High detection rates of cryptococcal antigen in pulmonary cryptococcosis by Eiken latex agglutination test with pronase pretreatment.

    PubMed

    Kohno, S; Yasuoka, A; Koga, H; Kaku, M; Maesaki, S; Tanaka, K; Mitsutake, K; Matsuda, H; Hara, K

    1993-08-01

    Two different kits for the detection of serum cryptococcal antigen in patients with pulmonary cryptococcosis were evaluated. The Eiken test (the Eiken Co., Tokyo), which uses pronase for pretreatment of serum, was compared with the Crypto-LA test (International Biological Laboratories, Cranbury, NJ), which did not use pronase prior to testing. Cryptococcal antigen was detected in 21 of 23 patients (91%) with the Eiken test and in only 10 of 23 patients (43%) with the Crypto-LA test (p < 0.01 by McNemar test). However, the sensitivity of two tests was identical without use of pronase, as both tests could detect as little as 10(4) cells/ml of Cryptococcus neoformans and 10 ng/ml of capsular polysaccharide of C. neoformans. In those serum specimens for which both tests were positive, titers were much higher for the Eiken test, but there was a statistically significant correlation between the two tests (coefficient correlation 0.79, p < 0.01). Cryptococcal antigen titer levels measured by the Eiken test correlated well with clinical courses. There was one false-positive reaction among 82 sera of non-cryptococcal patients. Pronase enhanced the sensitivity of the Eiken test, which appeared to be useful in patients with pulmonary cryptococcal disease, and its use may prevent unneeded lung biopsies. PMID:8264770

  20. Scintigraphic detection of TNF-driven inflammation by radiolabelled certolizumab pegol in patients with rheumatoid arthritis and spondyloarthritis

    PubMed Central

    Carron, Philippe; Lambert, Bieke; Van Praet, Liesbet; De Vos, Filip; Varkas, Gaëlle; Jans, Lennart; Elewaut, Dirk; Van den Bosch, Filip

    2016-01-01

    Background Biologicals are the cornerstone for many treatment algorithms in inflammatory arthritis. While tumour necrosis factor (TNF) inhibitors may achieve important responses in ∼50% of patients with rheumatoid arthritis (RA) and spondyloarthritis (SpA), a significant fraction of patients are partial or non-responders. We hypothesised that in vivo assessment of TNF by scintigraphy with 99mTc-radiolabelled certolizumab pegol (CZP) might lead to a more ‘evidence-based biological therapy’. Objectives Our goal was to perform a proof-of-concept study of in vivo detection of TNF by immunoscintigraphy of a radiolabelled TNF inhibitor in RA and SpA, and correlate this with clinical, imaging findings and therapeutic outcome. Methods CZP was conjugated with succinimidyl-6-hydrazino-nicotinamide and subsequently radiolabelled with Tc99m. Whole body and static images of hands, feet and sacroiliac joints of 20 patients (5 RA; 15 SpA) were acquired at 3 time points. Immunoscintigraphic findings were scored semiquantitatively. Subsequently, all patients were treated with CZP. Results In peripheral joints, clinically affected joints or abnormal ultrasound findings were observed more frequently (p<0.001) in the scintigraphic-positive group. In patients with axial SpA, bone marrow edema on MRI was detected more frequently (p<0.001) in quadrants with tracer uptake. At the patient level, the odds of a joint remaining tender despite 24 weeks of CZP treatment was significantly smaller in joints with clear tracer uptake as compared with those with no uptake (OR=0.42, p=0.04). Conclusions Immunoscintigraphy with radiolabelled CZP demonstrated both axial and peripheral inflammation, and displayed good correlation with clinical features, conventional imaging and therapy response. Trial registration number NCT01590966; Results. PMID:27403334

  1. Nanoparticles activate the NLR pyrin domain containing 3 (Nlrp3) inflammasome and cause pulmonary inflammation through release of IL-1α and IL-1β

    PubMed Central

    Yazdi, Amir S.; Guarda, Greta; Riteau, Nicolas; Drexler, Stefan K.; Tardivel, Aubry; Couillin, Isabelle; Tschopp, Jürg

    2010-01-01

    Nanoparticles are increasingly used in various fields, including biomedicine and electronics. One application utilizes the opacifying effect of nano-TiO2, which is frequently used as pigment in cosmetics. Although TiO2 is believed to be biologically inert, an emerging literature reports increased incidence of respiratory diseases in people exposed to TiO2. Here, we show that nano-TiO2 and nano-SiO2, but not nano-ZnO, activate the NLR pyrin domain containing 3 (Nlrp3) inflammasome, leading to IL-1β release and in addition, induce the regulated release of IL-1α. Unlike other particulate Nlrp3 agonists, nano-TiO2–dependent-Nlrp3 activity does not require cytoskeleton-dependent phagocytosis and induces IL-1α/β secretion in nonphagocytic keratinocytes. Inhalation of nano-TiO2 provokes lung inflammation which is strongly suppressed in IL-1R– and IL-1α–deficient mice. Thus, the inflammation caused by nano-TiO2 in vivo is largely caused by the biological effect of IL-1α. The current use of nano-TiO2 may present a health hazard due to its capacity to induce IL-1R signaling, a situation reminiscent of inflammation provoked by asbestos exposure. PMID:20974980

  2. Distress and Patient-Centered Communication among Veterans with Incidental (Not Screen-Detected) Pulmonary Nodules. A Cohort Study

    PubMed Central

    Golden, Sara E.; Ganzini, Linda; Wiener, Renda Soylemez; Au, David H.

    2015-01-01

    Rationale: Incidental pulmonary nodule detection is postulated to cause distress, but the frequency and magnitude of that distress have not been reported. The quality of patient–clinician communication and the perceived risk of lung cancer may influence distress Objectives: To evaluate the association of communication processes with distress and the perceived risk of lung cancer using validated instruments. Methods: We conducted a prospective cohort study of patients with incidentally detected nodules who received care at one Department of Veterans Affairs Medical Center. We measured distress with the Impact of Event Scale and patient-centered communication with the Consultation Care Measure, both validated instruments. Risk of lung cancer was self-reported by participants. We used multivariable adjusted logistic regression to measure the association of communication quality with distress. Measurements and Main Results: Among 122 Veterans with incidental nodules, 23%, 12%, and 4% reported experiencing mild, moderate, and severe distress, respectively, at the time they were informed of the pulmonary nodule. Participant-reported risk of lung cancer was not associated with distress. In the adjusted model, high-quality communication was associated with decreased distress (odds ratio [OR] = 0.28, 95% confidence interval [CI] = 0.08–1.00, P = 0.05). Among participants who reported a risk of malignancy of 30% or less, high-quality communication was associated with decreased distress (OR = 0.15, 95% CI = 0.02–0.92, P = 0.04), but was not associated with distress for those who reported a risk greater than 30% (OR = 0.12 (95% CI = 0.00–3.97, P = 0.24), although the P value for interaction was not significant. Conclusions: Veterans with incidental pulmonary nodules frequently reported inadequate information exchange regarding their nodule. Many patients experience distress after they are informed that they have a pulmonary nodule

  3. A novel spherical shell filter for reducing false positives in automatic detection of pulmonary nodules in thoracic CT scans

    NASA Astrophysics Data System (ADS)

    van de Leemput, Sil; Dorssers, Frank; Ehteshami Bejnordi, Babak

    2015-03-01

    Early detection of pulmonary nodules is crucial for improving prognosis of patients with lung cancer. Computer-aided detection of lung nodules in thoracic computed tomography (CT) scans has a great potential to enhance the performance of the radiologist in detecting nodules. In this paper we present a computer-aided lung nodule detection system for computed tomography (CT) scans that works in three steps. The system first segments the lung using thresholding and hole filling. From this segmentation the system extracts candidate nodules using Laplacian of Gaussian. To reject false positives among the detected candidate nodules, multiple established features are calculated. We propose a novel feature based on a spherical shell filter, which is specifically designed to distinguish between vascular structures and nodular structures. The performance of the proposed CAD system was evaluated by partaking in the ANODE09 challenge, which presents a platform for comparing automatic nodule detection programs. The results from the challenge show that our CAD system ranks third among the submitted works, demonstrating the efficacy of our proposed CAD system. The results also show that our proposed spherical shell filter in combination with conventional features can significantly reduce the number of false positives from the detected candidate nodules.

  4. Retroperitoneal inflammation

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/001255.htm Retroperitoneal inflammation To use the sharing features on this page, please enable JavaScript. Retroperitoneal inflammation is swelling that occurs in the retroperitoneal space. ...

  5. A method for generating pulmonary neutrophilia using aerosolized lipopolysaccharide.

    PubMed

    Roos, Abraham B; Berg, Tove; Ahlgren, Kerstin M; Grunewald, Johan; Nord, Magnus

    2014-01-01

    Acute lung injury (ALI) is a severe disease characterized by alveolar neutrophilia, with limited treatment options and high mortality. Experimental models of ALI are key in enhancing our understanding of disease pathogenesis. Lipopolysaccharide (LPS) derived from gram positive bacteria induces neutrophilic inflammation in the airways and lung parenchyma of mice. Efficient pulmonary delivery of compounds such as LPS is, however, difficult to achieve. In the approach described here, pulmonary delivery in mice is achieved by challenge to aerosolized Pseudomonas aeruginosa LPS. Dissolved LPS was aerosolized by a nebulizer connected to compressed air. Mice were exposed to a continuous flow of LPS aerosol in a Plexiglas box for 10 min, followed by 2 min conditioning after the aerosol was discontinued. Tracheal intubation and subsequent bronchoalveolar lavage, followed by formalin perfusion was next performed, which allows for characterization of the sterile pulmonary inflammation. Aerosolized LPS generates a pulmonary inflammation characterized by alveolar neutrophilia, detected in bronchoalveolar lavage and by histological assessment. This technique can be set up at a small cost with few appliances, and requires minimal training and expertise. The exposure system can thus be routinely performed at any laboratory, with the potential to enhance our understanding of lung pathology. PMID:25548888

  6. Sandstorm Appearance of Pulmonary Alveolar Microlithiasis Incidentally Detected in a Young, Asymptomatic Male

    PubMed Central

    Bux, Shaik Ismail; Liam, Chong Kin; Rahman, Nazarina Abdul; Ho, Choon Yan

    2013-01-01

    Pulmonary alveolar microlithiasis (PAM) is a rare chronic disease with paucity of symptoms in contrast to the imaging findings. We present a case of a 24-year-old Malay man having an incidental abnormal pre-employment chest radiograph of dense micronodular opacities giving the classical "sandstorm" appearance. High-resolution computed tomography of the lungs showed microcalcifications with subpleural cystic changes. Open lung biopsy showed calcospherites within the alveolar spaces. The radiological and histopathological findings were characteristic of PAM. PMID:24043987

  7. Sandstorm appearance of pulmonary alveolar microlithiasis incidentally detected in a young, asymptomatic male.

    PubMed

    Ch'ng, Li Shyan; Bux, Shaik Ismail; Liam, Chong Kin; Rahman, Nazarina Abdul; Ho, Choon Yan

    2013-01-01

    Pulmonary alveolar microlithiasis (PAM) is a rare chronic disease with paucity of symptoms in contrast to the imaging findings. We present a case of a 24-year-old Malay man having an incidental abnormal pre-employment chest radiograph of dense micronodular opacities giving the classical "sandstorm" appearance. High-resolution computed tomography of the lungs showed microcalcifications with subpleural cystic changes. Open lung biopsy showed calcospherites within the alveolar spaces. The radiological and histopathological findings were characteristic of PAM. PMID:24043987

  8. The Most Common Detected Risk and Etiologic Factors of Pulmonary Thromboembolism

    PubMed Central

    Cukic, Vesna; Baljic, Rusmir

    2012-01-01

    Introduction: Pulmonary thromboembolism (PTE) is the most serious manifestation of thromboembolic disease. Objective: To determine the most common risk and etiologic factors of pulmonary tromboembolism in patients treated in Intensive care unit of Clinic for Pulmonary Diseases and TB “Podhrastovi” in three-year- period from 2008. to 2010. Material and methods: We retrospectively analysed patients with PTE treated in Intensive care unit of Clinic for Pulmonary Diseases and TB “Podhrastovi” in three-year period from 2008. to 2010. PTE was diagnosed by high resolute computed tomography, in most of them ventilatory /perfusion scintigraphy (V/P SPECT) was made, with proper laboratory analyses (D-dimmer, platelets , fibrinogen, and if it was needed protein C, S and AT III factor were examined). In all of them echosonography of abdomen and pelvis was done, also the examination by angiologist, and in patients with indications echosonography of the heart and Color Doppler of leg veins was made. We analysed risk and etiologic factors for PTE in each patient. Results: In 222 treated patients with PTE risk factors were found in 124 or 55.86% patients, etiologic factors were found in 31 or 13.96%, and both risk and etiologic factors in one patient were found in 18 or 8.11% patients. Conclusion: PTE is very serious disease that very often has fatal prognosis, and can develop with previously entirely healthy people, and as soon as we become suspicious of its presence we have to made appropriate diagnostic procedures and include appropriate therapy. We can after look for risk and etiologic factors and try to influence them. PMID:23922531

  9. Pulmonary artery stenosis caused by a large aortic arch pseudoaneurysm detected 10 years after a minor trauma

    PubMed Central

    Zamani, Jalal; Aghasadeghi, Kamran; Zarrabi, Khalil; Abdi Ardekani, Alireza; Zolghadrasli, Abdolali

    2016-01-01

    Pseudoaneurysm of aorta is a rare condition usually seen after aortic surgeries or serious accidents. Here we report a 60 years old man without any previous medical condition who presented with non-specific symptoms and underwent different investigations for more than 1 year, until the presence of a continuous murmur raised suspicion toward his cardiovascular system. In echocardiographic and computed tomography (CT) angiographic studies a large pseudoaneurysm of aortic arch with compression effect on pulmonary artery was detected. At this stage he remembered having suffered a minor trauma 10 years ago. He finally underwent operation and his aortic wall was repaired successfully with a patch. This case highlights the importance of thorough history taking and physical examination in patients irrespective of symptoms and high index of suspicion to detect this life-threatening condition. PMID:27069568

  10. Pulmonary edema

    MedlinePlus

    ... congestion; Lung water; Pulmonary congestion; Heart failure - pulmonary edema ... Pulmonary edema is often caused by congestive heart failure . When the heart is not able to pump efficiently, blood ...

  11. Recent technological and application developments in computed tomography and magnetic resonance imaging for improved pulmonary nodule detection and lung cancer staging

    PubMed Central

    Sieren, Jessica C.; Ohno, Yoshiharu; Koyama, Hisanobu; Sugimura, Kazuro; McLennan, Geoffrey

    2010-01-01

    This review compares the emerging technologies and approaches in the application of magnetic resonance (MR) and computed tomography (CT) imaging for the assessment of pulmonary nodules and staging of malignant findings. Included in this review is a brief definition of pulmonary nodules and an introduction to the challenges faced. We have highlighted the current status of both MR and CT for the early detection of lung nodules. Developments are detailed in this review for the management of pulmonary nodules using advanced imaging, including; dynamic imaging studies, dual energy CT, computer aided detection and diagnosis, and imaging assisted nodule biopsy approaches which have improved lung nodule detection and diagnosis rates. Recent advancements linking in-vivo imaging to corresponding histological pathology are also highlighted. In-vivo imaging plays a pivotal role in the clinical staging of pulmonary nodules through TNM assessment. While CT and PET/CT are currently the most commonly clinically employed modalities for pulmonary nodule staging, studies are presented which highlight the augmentative potential of MR. PMID:21105140

  12. Automated detection system for pulmonary emphysema on 3D chest CT images

    NASA Astrophysics Data System (ADS)

    Hara, Takeshi; Yamamoto, Akira; Zhou, Xiangrong; Iwano, Shingo; Itoh, Shigeki; Fujita, Hiroshi; Ishigaki, Takeo

    2004-05-01

    An automatic extraction of pulmonary emphysema area on 3-D chest CT images was performed using an adaptive thresholding technique. We proposed a method to estimate the ratio of the emphysema area to the whole lung volume. We employed 32 cases (15 normal and 17 abnormal) which had been already diagnosed by radiologists prior to the study. The ratio in all the normal cases was less than 0.02, and in abnormal cases, it ranged from 0.01 to 0.26. The effectiveness of our approach was confirmed through the results of the present study.

  13. Novel biomarkers for pulmonary arterial hypertension.

    PubMed

    Anwar, Anjum; Ruffenach, Gregoire; Mahajan, Aman; Eghbali, Mansoureh; Umar, Soban

    2016-01-01

    Pulmonary arterial hypertension is a deadly disease characterized by elevated pulmonary arterial pressures leading to right ventricular hypertrophy and failure. The confirmatory gold standard test is the invasive right heart catheterization. The disease course is monitored by pulmonary artery systolic pressure measurement via transthoracic echocardiography. A simple non-invasive test to frequently monitor the patients is much needed. Search for a novel biomarker that can be detected by a simple test is ongoing and many different options are being studied. Here we review some of the new and unique pre-clinical options for potential pulmonary hypertension biomarkers. These biomarkers can be broadly categorized based on their association with endothelial cell dysfunction, inflammation, epigenetics, cardiac function, oxidative stress, metabolism,extracellular matrix, and volatile compounds in exhaled breath condensate. A biomarker that can be detected in blood, urine or breath condensate and correlates with disease severity, progression and response to therapy may result in significant cost reduction and improved patient outcomes. PMID:27439993

  14. “Indefinite for Dysplasia” in Barrett's Esophagus: Inflammation and DNA Content Abnormality are Significant Predictors of Early Detection of Neoplasia

    PubMed Central

    Choi, Won-Tak; Emond, Mary J; Rabinovitch, Peter S; Ahn, Joseph; Upton, Melissa P; Westerhoff, Maria

    2015-01-01

    Background: Dysplasia arising from Barrett's esophagus precedes esophageal adenocarcinoma (EAC). Cases that are difficult to diagnose as dysplastic, especially in the setting of inflammation, may be designated “indefinite for dysplasia (IND).” Although flow cytometric analysis of DNA content has shown some promise in detecting EAC, there are few reports that have specifically evaluated the outcome of IND. Aims and methods: We analyzed a series of 96 IND patients seen at the University of Washington between 2005 and 2013 to determine the outcome of IND and to identify factors (including histologic features and DNA flow cytometric data) associated with subsequent detection of neoplasia. Results: Twenty-five percent of IND cases were found to have low-grade dysplasia, high-grade dysplasia (HGD), or EAC within 1 year, with 37% and 47% detected within 2 and 3 years, respectively. The 1-, 2-, and 3-year detection rates of HGD or EAC were 10%, 13%, and 20%, respectively. Active inflammation (hazard ratio (HR)=3.4, P=0.0005) and abnormal DNA content (HR=5.7, P=0.003) were significant risk factors of neoplasia. When active inflammation and DNA flow cytometric results were considered together, the HR for the combined markers was 18.8 (P<0.0001). The sensitivity and specificity of the combined markers for predicting detection of subsequent neoplasia within 3 years were 100% and 60%, respectively, with 100% negative and 89% positive predictive values. Conclusions: Histology with the support of DNA flow cytometry can identify a subset of IND patients who may have a higher risk for subsequent detection of neoplasia. PMID:25761942

  15. Evaluation of methods for detection and identification of Mycobacterium species in patients suspected of having pulmonary tuberculosis

    PubMed Central

    Marchi, A. M.; Juttel, I. D.; Kawacubo, E. M.; Dalmarco, E. M.; Blatt, S. L.; Cordova, C. M. M.

    2008-01-01

    Tuberculosis control is a priority for the Ministry of Health policies in Brazil. In the present work, the detection of Mycobacterium tuberculosis by the Polymerase Chain Reaction (PCR) was standardized, and the laboratory diagnosis of pulmonary tuberculosis was evaluated comparing baciloscopy, culture and PCR tests. The study was carried out with 117 sputum samples from different patients suspected of having pulmonary tuberculosis, for whom physicians had ordered a baciloscopy test. Baciloscopy was performed using the Ziehl-Neelsen method, and culture was performed by incubation of treated samples in Lowenstein-Jensen’s medium at 37°C for eight weeks. For PCR, DNA was amplified with a specific pair of primers to the M. tuberculosis complex, with a resulting product of 123 bp from the insertion element IS6110. Three (2.56%) samples presented a positive baciloscopy result and a positive PCR result (100% agreement), and nine (7.69%) presented Mycobacterium sp. growth in culture (P= 0.1384). Among six samples with positive results in culture, one was identified by PCR-RFLP as belonging to the M. tuberculosis complex and one was identified as a non-tuberculosis mycobacteria. Sensitivity and specificity of PCR compared to culture were 33.3% and 100%, respectively. PMID:24031276

  16. Evaluation of methods for detection and identification of Mycobacterium species in patients suspected of having pulmonary tuberculosis.

    PubMed

    Marchi, A M; Juttel, I D; Kawacubo, E M; Dalmarco, E M; Blatt, S L; Cordova, C M M

    2008-10-01

    Tuberculosis control is a priority for the Ministry of Health policies in Brazil. In the present work, the detection of Mycobacterium tuberculosis by the Polymerase Chain Reaction (PCR) was standardized, and the laboratory diagnosis of pulmonary tuberculosis was evaluated comparing baciloscopy, culture and PCR tests. The study was carried out with 117 sputum samples from different patients suspected of having pulmonary tuberculosis, for whom physicians had ordered a baciloscopy test. Baciloscopy was performed using the Ziehl-Neelsen method, and culture was performed by incubation of treated samples in Lowenstein-Jensen's medium at 37°C for eight weeks. For PCR, DNA was amplified with a specific pair of primers to the M. tuberculosis complex, with a resulting product of 123 bp from the insertion element IS6110. Three (2.56%) samples presented a positive baciloscopy result and a positive PCR result (100% agreement), and nine (7.69%) presented Mycobacterium sp. growth in culture (P= 0.1384). Among six samples with positive results in culture, one was identified by PCR-RFLP as belonging to the M. tuberculosis complex and one was identified as a non-tuberculosis mycobacteria. Sensitivity and specificity of PCR compared to culture were 33.3% and 100%, respectively. PMID:24031276

  17. Detection of pulmonary nodule growth with dose reduced chest tomosynthesis: a human observer study using simulated nodules

    NASA Astrophysics Data System (ADS)

    Söderman, Christina; Johnsson, Ã. se; Vikgren, Jenny; Rossi Norrlund, Rauni; Molnar, David; Mirzai, Maral; Svalkvist, Angelica; Mânsson, Lars Gunnar; Bâth, Magnus

    2016-03-01

    Chest tomosynthesis may be a suitable alternative to computed tomography for the clinical task of follow up of pulmonary nodules. The aim of the present study was to investigate the detection of pulmonary nodule growth suggestive of malignancy using chest tomosynthesis. Previous studies have indicated remained levels of detection of pulmonary nodules at dose levels corresponding to that of a conventional lateral radiograph, approximately 0.04 mSv, which motivated to perform the present study this dose level. Pairs of chest tomosynthesis image sets, where the image sets in each pair were acquired of the same patient at two separate occasions, were included in the study. Simulated nodules with original diameters of approximately 8 mm were inserted in the pairs of image sets, simulating situations where the nodule had remained stable in size or increased isotropically in size between the two different imaging occasions. Four different categories of nodule growth were included, corresponding to a volume increase of approximately 21 %, 68 %, 108 % and 250 %. All nodules were centered in the depth direction in the tomosynthesis images. All images were subjected to a simulated dose reduction, resulting in images corresponding to an effective dose of 0.04 mSv. Four observers were given the task of rating their confidence that the nodule was stable in size or not on a five-level rating scale. This was done both before any size measurements were made of the nodule as well as after measurements were performed. Using Receiver operating characteristic analysis, the rating data for the nodules that were stable in size was compared to the rating data for the nodules simulated to have increased in size. Statistically significant differences between the rating distributions for the stable nodules and all of the four nodule growth categories were found. For the three largest nodule growths, nearly perfect detection of nodule growth was seen. In conclusion, the present study

  18. [Orbital inflammation].

    PubMed

    Mouriaux, F; Coffin-Pichonnet, S; Robert, P-Y; Abad, S; Martin-Silva, N

    2014-12-01

    Orbital inflammation is a generic term encompassing inflammatory pathologies affecting all structures within the orbit : anterior (involvement up to the posterior aspect of the globe), diffuse (involvement of intra- and/or extraconal fat), apical (involvement of the posterior orbit), myositis (involvement of only the extraocular muscles), dacryoadenitis (involvement of the lacrimal gland). We distinguish between specific inflammation and non-specific inflammation, commonly referred to as idiopathic inflammation. Specific orbital inflammation corresponds to a secondary localization of a "generalized" disease (systemic or auto-immune). Idiopathic orbital inflammation corresponds to uniquely orbital inflammation without generalized disease, and thus an unknown etiology. At the top of the differential diagnosis for specific or idiopathic orbital inflammation are malignant tumors, represented most commonly in the adult by lympho-proliferative syndromes and metastases. Treatment of specific orbital inflammation begins with treatment of the underlying disease. For idiopathic orbital inflammation, treatment (most often corticosteroids) is indicated above all in cases of visual loss due to optic neuropathy, in the presence of pain or oculomotor palsy. PMID:25455557

  19. Rapid detection of Candida species in bronchoalveolar lavage fluid from patients with pulmonary symptoms.

    PubMed

    Zarrinfar, Hossein; Kaboli, Saeed; Dolatabadi, Somayeh; Mohammadi, Rasoul

    2016-01-01

    Candida species, especially C. albicans, are commensals on human mucosal surfaces, but are increasingly becoming one of the important invasive pathogens as seen by a rise in its prevalence in immunocompromised patients and in antibiotic consumption. Thus, an accurate identification of Candida species in patients with pulmonary symptoms can provide important information for effective treatment. A total of 75 clinical isolates of Candida species were obtained from the bronchoalveolar lavage fluid of both immunocompromised and immunocompetent patients with pulmonary symptoms. Candida cultures were identified based on nuclear ribosomal Internal Transcribed Spacer (ITS1-ITS2 rDNA) sequence analysis by polymerase chain reaction-restriction fragment length polymorphisms (PCR-RFLP). Molecular identification indicated that the isolates belonged predominantly to C. albicans (52%), followed by C. tropicalis (24%), C. glabrata (14.7%), C. krusei (5.3%), C. parapsilosis (1.3%), C. kefyr (1.3%) and C. guilliermondii (1.3%). Given the increasing complexity of disease profiles and their management regimens in diverse patients, rapid and accurate identification of Candida species can lead to timely and appropriate antifungal therapy. PMID:26887241

  20. Rapid detection of Candida species in bronchoalveolar lavage fluid from patients with pulmonary symptoms

    PubMed Central

    Zarrinfar, Hossein; Kaboli, Saeed; Dolatabadi, Somayeh; Mohammadi, Rasoul

    2016-01-01

    Candida species, especially C. albicans, are commensals on human mucosal surfaces, but are increasingly becoming one of the important invasive pathogens as seen by a rise in its prevalence in immunocompromised patients and in antibiotic consumption. Thus, an accurate identification of Candida species in patients with pulmonary symptoms can provide important information for effective treatment. A total of 75 clinical isolates of Candida species were obtained from the bronchoalveolar lavage fluid of both immunocompromised and immunocompetent patients with pulmonary symptoms. Candida cultures were identified based on nuclear ribosomal Internal Transcribed Spacer (ITS1-ITS2 rDNA) sequence analysis by polymerase chain reaction–restriction fragment length polymorphisms (PCR-RFLP). Molecular identification indicated that the isolates belonged predominantly to C. albicans (52%), followed by C. tropicalis (24%), C. glabrata (14.7%), C. krusei (5.3%), C. parapsilosis (1.3%), C. kefyr (1.3%) and C. guilliermondii (1.3%). Given the increasing complexity of disease profiles and their management regimens in diverse patients, rapid and accurate identification of Candida species can lead to timely and appropriate antifungal therapy. PMID:26887241

  1. Pulmonary embolus

    MedlinePlus

    ... blood clot; Blood clot - lung; Embolus; Tumor embolus; Embolism - pulmonary; DVT-pulmonary embolism; Thrombosis - pulmonary embolism ... x-ray CT angiogram of the chest Pulmonary ventilation/perfusion scan, also called a V/Q scan ...

  2. 17(R)-resolvin D1 ameliorates bleomycin-induced pulmonary fibrosis in mice.

    PubMed

    Yatomi, Masakiyo; Hisada, Takeshi; Ishizuka, Tamotsu; Koga, Yasuhiko; Ono, Akihiro; Kamide, Yosuke; Seki, Kaori; Aoki-Saito, Haruka; Tsurumaki, Hiroaki; Sunaga, Noriaki; Kaira, Kyoichi; Dobashi, Kunio; Yamada, Masanobu; Okajima, Fumikazu

    2015-12-01

    Idiopathic pulmonary fibrosis (IPF) is a destructive inflammatory disease with limited therapeutic options. Inflammation plays an integral role in the development of pulmonary fibrosis. Unresolved inflammatory responses can lead to substantial tissue injury, chronic inflammation, and fibrosis. The resolvins are a family of endogenous ω-3 fatty acid derived-lipid mediators of inflammation resolution. Resolvin D1 (RvD1) displays potent anti-inflammatory, pro-resolving activity, without causing immunosuppression. Its epimer, 17(R)-resolvin D1 (17(R)-RvD1), exhibits equivalent functionality to RvD1. In addition, 17(R)-RvD1 is resistant to rapid inactivation by eicosanoid oxidoreductases. In the present study, we tested the hypothesis that 17(R)-RvD1 can provide a therapeutic benefit in IPF by reducing inflammation and pulmonary fibrosis, while leaving the normal immune response intact. Mice were exposed to bleomycin (BLM) via micro-osmotic pump to induce pulmonary fibrosis, and were then treated with 17(R)-RvD1 or vehicle by intraperitoneal injection. Administration of 17(R)-RvD1 from the start of BLM treatment attenuated neutrophil alveolar infiltration, lung collagen content, and Interleukin-1β (IL-1β), transforming growth factor-β1 (TGF-β1), connective tissue growth factor (CTGF), and type I collagen mRNA expression, along with subsequent reduction in histologically detectable fibrosis. The 17(R)-RvD1-induced infiltration of inflammatory cells was inhibited by an antagonist of lipoxin A4 receptor/formyl peptide receptor 2 (ALX/FPR2). The administration of 17(R)-RvD1 at the later fibrotic stage also improved the lung failure. These results suggest that 17(R)-RvD1 attenuates pulmonary fibrosis by promoting the resolution of neutrophilic inflammation and also provides pulmonary restoration. These data highlight the therapeutic potential of 17(R)-RvD1 in the management of this intractable disease. PMID:26660549

  3. Baicalein inhibits pulmonary carcinogenesis-associated inflammation and interferes with COX-2, MMP-2 and MMP-9 expressions in-vivo

    SciTech Connect

    Chandrashekar, Naveenkumar; Selvamani, Asokkumar; Subramanian, Raghunandhakumar; Pandi, Anandakumar; Thiruvengadam, Devaki

    2012-05-15

    The objective of the present study is to investigate the therapeutic efficacy of baicalein (BE) on inflammatory cytokines, which is in line with tumor invasion factors and antioxidant defensive system during benzo(a)pyrene [B(a)P] (50 mg/kg body weight) induced pulmonary carcinogenesis in Swiss albino mice. After experimental period, increased levels of total and differential cell count in bronchoalveolar lavage fluid were observed. Accompanied by marked increase in immature mast cell by toluidine blue staining and mature mast cell by safranin–alcian blue staining in B(a)P-induced lung cancer bearing animals. Protein expression levels studied by immunohistochemistry and immunoblot analysis of cytokines such as tumor necrosis factor-α, interleukin-1β and inducible nitric oxide synthase were also found to be significantly increased in lung cancer bearing animals. B(a)P-exposed mice lung exhibits activated expression of nuclear transcription factor kappa-B as confirmed by immunofluorescence and immunoblot analysis. Administration of BE (12 mg/kg body weight) significantly counteracted all the above deleterious changes. Moreover, assessment of tumor invasion factors on protein levels by immunoblot and mRNA expression levels by RT-PCR revealed that BE treatment effectively negates B(a)P-induced upregulated expression of matrix metalloproteinase-2, matrix metalloproteinase-9 and cyclo-oxygenase-2. Further analysis of lipid peroxidation markers such as thiobarbituric acid reactive substances, hydro-peroxides and antioxidants such as glutathione-S-transferase and reduced glutathione in lung tissue was carried out to substantiate the antioxidant effect of BE. The chemotherapeutic effect observed in the present study is attributed to the potent anti-inflammatory and antioxidant potential by BE against pulmonary carcinogenesis. -- Highlights: ► BE treatment protects from inflammatory cells and mast-cells accumulation in lungs. ► BE altered the expressions of TNF

  4. Drospirenone detected in postmortem blood of a young woman with pulmonary thromboembolism: A case report and review of the literature.

    PubMed

    Idota, Nozomi; Kobayashi, Masaki; Miyamori, Daisuke; Kakiuchi, Yasuhiro; Ikegaya, Hiroshi

    2015-03-01

    Progestin/estrogen oral contraceptives have some side effects, including venous thromboembolism. To alleviate side effects, improvements have been made to low-dose oral contraceptives, including reductions in the amount of estrogen and/or changes the type of progestin. A compound drug containing 3mg drospirenone and 20μg ethinylestradiol (DRSP/EE20, YAZ®) was released in overseas markets in 2006, and in Japan in 2010 as a newly developed low-dose medicines. This drug is expected to have lower side effects. We received a medicolegal autopsy case of a young woman who had been prescribed YAZ for dysmenorrhea for 17months. The autopsy revealed a blood clot in her pulmonary artery bifurcation. Blood screening by ultra-performance liquid chromatography-mass spectrometry analysis did not detect any medicinal toxicants. However, from police investigations, it is strongly believed that she had been taking YAZ. Therefore we performed a single ion resolution mode assay and detected DRSP. A quantitative analysis revealed 32.3ng/mL of DRSP. As no other cause of the pulmonary thromboembolism was evident, we consider YAZ as the likely cause of the pulmonary thromboembolism. Recent reports from the past few years suggest a higher risk of venous thromboembolism with DRSP/EE20 than earlier progestin/estrogen oral contraceptives. Comparing the risk associated with DRSP/EE20 and DRSP/EE30, one report found no differences and another report showed DRSP/EE20 was associated with a higher risk than DRSP/EE30. No cases of thrombosis caused by progestin alone have been reported. But comparing the risk between DRSP/EE20 and other progestins/EE20, two studies reported DRSP/EE20 had a higher risk than other progestins/EE20. The incidence of venous thromboembolism is highest in the first year of use and decreases thereafter. Because DRSP/EE20 has been on the market for only a couple of years, it is necessary for clinicians to use the drug carefully and accumulate more side-effect data. It is

  5. Absence of c-Jun NH2-terminal kinase 1 protects against house dust mite-induced pulmonary remodeling but not airway hyperresponsiveness and inflammation

    PubMed Central

    van der Velden, Jos L. J.; Hoffman, Sidra M.; Alcorn, John F.; Tully, Jane E.; Chapman, David G.; Lahue, Karolyn G.; Guala, Amy S.; Lundblad, Lennart K. A.; Aliyeva, Minara; Daphtary, Nirav; Irvin, Charles G.

    2014-01-01

    Chronic allergic asthma leads to airway remodeling and subepithelial fibrosis via mechanisms not fully understood. Airway remodeling is amplified by profibrotic mediators, such as transforming growth factor-β1 (TGF-β1), which plays a cardinal role in various models of fibrosis. We recently have identified a critical role for c-Jun-NH2-terminal-kinase (JNK) 1 in augmenting the profibrotic effects of TGF-β1, linked to epithelial-to-mesenchymal transition of airway epithelial cells. To examine the role of JNK1 in house dust mite (HDM)-induced airway remodeling, we induced allergic airway inflammation in wild-type (WT) and JNK1−/− mice by intranasal administration of HDM extract. WT and JNK1−/− mice were sensitized with intranasal aspirations of HDM extract for 15 days over 3 wk. HDM caused similar increases in airway hyperresponsiveness, mucus metaplasia, and airway inflammation in WT and JNK1−/− mice. In addition, the profibrotic cytokine TGF-β1 and phosphorylation of Smad3 were equally increased in WT and JNK1−/− mice. In contrast, increases in collagen content in lung tissue induced by HDM were significantly attenuated in JNK1−/− mice compared with WT controls. Furthermore HDM-induced increases of α-smooth muscle actin (α-SMA) protein and mRNA expression as well as the mesenchymal markers high-mobility group AT-hook 2 and collagen1A1 in WT mice were attenuated in JNK1−/− mice. The let-7 family of microRNAs has previously been linked to fibrosis. HDM exposure in WT mice and primary lung epithelial cells resulted in striking decreases in let-7g miRNA that were not observed in mice or primary lung epithelial cells lacking JNK1−/− mice. Overexpression of let-7g in lung epithelial cells reversed the HDM-induced increases in α-SMA. Collectively, these findings demonstrate an important requirement for JNK1 in promoting HDM-induced fibrotic airway remodeling. PMID:24610935

  6. Arctigenin Protects against Lipopolysaccharide-Induced Pulmonary Oxidative Stress and Inflammation in a Mouse Model via Suppression of MAPK, HO-1, and iNOS Signaling.

    PubMed

    Zhang, Wen-zhou; Jiang, Zheng-kui; He, Bao-xia; Liu, Xian-ben

    2015-08-01

    Arctigenin, a bioactive component of Arctium lappa (Nubang), has anti-inflammatory activity. Here, we investigated the effects of arctigenin on lipopolysaccharide (LPS)-induced acute lung injury. Mice were divided into four groups: control, LPS, LPS + DMSO, and LPS + Arctigenin. Mice in the LPS + Arctigenin group were injected intraperitoneally with 50 mg/kg of arctigenin 1 h before an intratracheal administration of LPS (5 mg/kg). Lung tissues and bronchoalveolar lavage fluids (BALFs) were collected. Histological changes of the lung were analyzed by hematoxylin and eosin staining. Arctigenin decreased LPS-induced acute lung inflammation, infiltration of inflammatory cells into BALF, and production of pro-inflammatory cytokines. Moreover, arctigenin pretreatment reduced the malondialdehyde level and increased superoxide dismutase and catalase activities and glutathione peroxidase/glutathione disulfide ratio in the lung. Mechanically, arctigenin significantly reduced the production of nitric oxygen and inducible nitric oxygen synthase (iNOS) expression, enhanced the expression of heme oxygenase-1, and decreased the phosphorylation of mitogen-activated protein kinases (MAPKs). Arctigenin has anti-inflammatory and antioxidative effects on LPS-induced acute lung injury, which are associated with modulation of MAPK, HO-1, and iNOS signaling. PMID:25616905

  7. Detection of Mycobacterium tuberculosis (MTB) in Fecal Specimens From Adults Diagnosed With Pulmonary Tuberculosis Using the Xpert MTB/Rifampicin Test

    PubMed Central

    Kokuto, Hiroyuki; Sasaki, Yuka; Yoshimatsu, Shoji; Mizuno, Kazue; Yi, Lina; Mitarai, Satoshi

    2015-01-01

    Background. The Xpert Mycobacterium tuberculosis (MTB)/rifampicin (RIF) is a fully automated diagnostic test that allows for the detection of MTB including its RIF resistance. Although the test is used for the diagnosis of tuberculosis (TB) in sputum samples worldwide, studies using fecal specimens are scarce. We therefore evaluated the efficacy of the Xpert MTB/RIF test for detection of MTB in fecal specimens obtained from adult pulmonary TB patients, confirmed by culture and/or molecular diagnostic methods. Methods. We conducted a retrospective case-control study to provide proof-of-concept regarding the efficacy of the Xpert MTB/RIF test using fecal samples for diagnosing pulmonary TB via detection of MTB in adult patients (≥20 years) at the Fukujuji Hospital in Tokyo, Japan. Results. Fecal specimens were obtained from 56 active pulmonary TB patients (including 48 sputum smear-positive and 8 sputum smear-negative patients), 10 non-TB patients (including 4 Myocobacterium avium complex infections), and 27 healthy individuals who were exposed to active pulmonary TB patients. The sensitivity of the fecal Xpert MTB/RIF was 100% (81.7%–100%) for detection of MTB in specimens from sputum smear-positive (1+ to 3+) patients, 81.0% (58.1%–94.6%) in specimens from sputum smear scanty positive patients, and 50.0% (15.7%–84.3%) in specimens from sputum smear-negative patients. Meanwhile, each of the fecal specimens from the non-TB group was negative for MTB (specificity 100%; 95% confidence interval, 86.2–100). Conclusions. The fecal Xpert MTB/RIF test could detect MTB in a large proportion of smear-positive pulmonary TB patients, without frequent false-positive results at a TB referral hospital in Japan. PMID:26125035

  8. Pulmonary Physiology of Chronic Obstructive Pulmonary Disease, Cystic Fibrosis, and Alpha-1 Antitrypsin Deficiency.

    PubMed

    Stockley, James A; Stockley, Robert A

    2016-04-01

    Cystic fibrosis is predominantly an airway disease with marked bronchiectatic changes associated with inflammation, chronic colonization, and progressive airflow obstruction. The condition can be identified in childhood and monitored with detectable airway changes early in life while conventional spirometry remains in the normal range. Alpha-1 antitrypsin deficiency can also be detected early in life through blood spot and genetic testing and leads (in some) to the development of airflow obstruction and a predominant emphysema phenotype with bronchiectatic changes in about 30%. Early detection also allows the natural history of the pulmonary physiological changes to be determined. Chronic obstructive pulmonary disease is usually detected late in the disease process when significant damage has occurred. The condition consists of varying combinations of airway disease, bronchiectasis, colonization, and emphysema. Lessons learned from the physiological evolution of airway disease in cystic fibrosis and the emphysema of alpha-1 antitrypsin deficiency provide strategies to enable early detection of chronic obstructive pulmonary disease in general and its phenotypes. PMID:27115945

  9. Inhibition of lung injury, inflammation, and interstitial pulmonary fibrosis by polyethylene glycol-conjugated catalase in a rapid inhalation model of asbestosis.

    PubMed

    Mossman, B T; Marsh, J P; Sesko, A; Hill, S; Shatos, M A; Doherty, J; Petruska, J; Adler, K B; Hemenway, D; Mickey, R

    1990-05-01

    Several in vitro studies suggest the involvement of active oxygen metabolites in cell damage caused by asbestos. To determine if lung injury, inflammation, and asbestosis could be inhibited in vivo in a rapid-onset, inhalation model of disease, a novel method of chronic administration of antioxidant enzymes was developed. In brief, Fischer 344 rats were treated with polyethylene glycol-conjugated (PEG-) superoxide dismutase or catalase in osmotic pumps over a 10-day (5 days/wk for 2 wk) or 20-day (5 days/wk for 2 wk) period of exposure to crocidolite asbestos. Control rats included sham-exposed animals and those exposed to asbestos but receiving chemically inactivated enzymes. After 10 days of exposure to asbestos, lactic dehydrogenase (LDH), alkaline phosphatase, and total protein in bronchoalveolar lavage (BAL) were measured in one group of rats. Total and differnetial cell counts in BAL also were assessed. After 20 days of exposure, lungs of an additional group of rats were evaluated by histopathology and by measurement of hydroxyproline. Asbestos-associated elevations in LDH, protein, and total cell numbers in BAL were reduced in rats receiving PEG-catalase. Decreases in numbers of alveolar macrophages, polymorphonuclear leukocytes, and lymphocytes occurred in these animals. Exposure to asbestos for 20 days caused significant increases in both the amount of hydroxyproline in lung and the severity and extent of fibrotic lesions as determined by histopathology. These indicators of asbestosis were inhibited in a dosage-dependent fashion in rats receiving PEG-catalase. Use of inactivated PEG-catalase failed to boost serum levels of catalase and did not inhibit asbestos-induced elevation of hydroxyproline in lung.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2160214

  10. Radiolabeled, nonspecific, polyclonal human immunoglobulin in the detection of focal inflammation by scintigraphy: Comparison with gallium-67 citrate and technetium-99m-labeled albumin

    SciTech Connect

    Rubin, R.H.; Fischman, A.J.; Needleman, M.; Wilkinson, R.; Callahan, R.J.; Khaw, B.A.; Hansen, W.P.; Kramer, P.B.; Strauss, H.W.

    1989-03-01

    The accumulation of nonspecific polyclonal human immunoglobulin (IgG) radiolabeled with /sup 125/I or /sup 111/In was compared to that of (/sup 67/Ga)citrate and (/sup 99m/Tc)albumin in rats with deep thigh inflammation due to Escherichia coli infection. Serial scintigrams were acquired at 1, 3, 24, and in some cases, 48 hr after injection. As early as 3 hr postinjection, (/sup 111/In)IgG showed greater accumulation at the lesion than (/sup 99m/Tc)HSA (p less than 0.01). Both (/sup 125/I)IgG and (/sup 111/In)IgG showed greater accumulation than (/sup 67/Ga)citrate (p less than 0.01). At 24 hr, IgG image definition increased, while HSA image definition decreased, and the intensity of accumulation of both IgG preparations was greater than that of (/sup 67/Ga)citrate or (/sup 99m/Tc)HSA (p less than 0.01). At all imaging times, (/sup 67/Ga)citrate accumulation was surprisingly low. In inflammation produced by Pseudomonas aeruginosa, Staphylococcus aureus, Klebsiella pneumoniae, Candida albicans, or turpentine, (/sup 111/In)IgG accumulation was similar to the results obtained with Escherichia coli. These studies suggest that focal sites of inflammation can be detected with radiolabeled nonspecific human polyclonal IgG.

  11. Pulmonary cachexia.

    PubMed

    Schols, Annemie M W J

    2002-09-01

    Weight loss is a frequent complication in patients with chronic obstructive pulmonary disease (COPD) and is a determining factor of functional capacity, health status, and mortality. Weight loss in COPD is a consequence of increased energy requirements unbalanced by dietary intake. Both metabolic and mechanical inefficiency contribute to the elevated energy expenditure during physical activity, while systemic inflammation is a determinant of hypermetabolism at rest. A disbalance between protein synthesis and protein breakdown may cause a disproportionate depletion of fat-free mass in some patients. Nutritional support is indicated for depleted patients with COPD because it provides not only supportive care, but direct intervention through improvement in respiratory and peripheral skeletal muscle function and in exercise performance. A combination of oral nutritional supplements and exercise or anabolic stimulus appears to be the best treatment approach to obtaining significant functional improvement. Patients responding to this treatment even demonstrated a decreased mortality. Poor response was related to the effects of systemic inflammation on dietary intake and catabolism. The effectiveness of anticatabolic modulation requires further investigation. PMID:12163214

  12. Mesenchymal stem cells suppress CaN/NFAT expression in the pulmonary arteries of rats with pulmonary hypertension

    PubMed Central

    LIU, JUNFENG; HAN, ZHIBO; HAN, ZHONGCHAO; HE, ZHIXU

    2015-01-01

    Inflammation and hyperproliferation of pulmonary artery smooth muscle cells (PASMCs) is considered the primary pathological feature of pulmonary hypertension (PH). The present study determined that mesenchymal stem cells (MSCs) suppress the expression of calcineurin (CaN) and nuclear factor of activated T-cells (NFAT) in the pulmonary arteries of rats, and this may exert a therapeutic effect on PH. The potential therapeutic effects of MSCs on PH were assessed via the transplantation of human umbilical cord-derived MSCs, which were cultured in serum-free medium, into a monocrotaline (MCT)-induced PH rat model. Subsequently, the expression levels of tumor necrosis factor (TNF)-α in lung tissue and plasma, and of CaN and NFATc2 in pulmonary arteries were assessed. In the rat model of MCT-induced PH, investigated in the present study, TNF-α expression levels were detected in the lung tissue, and the levels of TNF-α in the plasma were increased. Furthermore, in addition to hemodynamic changes and the evident medial hypertrophy of the pulmonary muscular arterioles, CaN and NFATc2 expression levels were significantly upregulated in the pulmonary arteries. In the present study, the transplantation of MSCs, cultured in serum-free medium, decreased the levels of TNF-α in the lung tissue and plasma of rats, and downregulated CaN and NFATc2 expression in the pulmonary arteries. Furthermore, hemodynamic abnormalities and medial hypertrophy of the pulmonary muscular arterioles were notably improved. Therefore, the results of the present study may suggest that the administration of MSCs in PH may suppress the production of TNF-α, and downregulate the expression of CaN and NFATc2 in pulmonary arteries, which may provide an effective treatment for PH by suppressing the pathological proliferation of PASMCs. PMID:26640533

  13. Automatic detection of spiculation of pulmonary nodules in computed tomography images

    NASA Astrophysics Data System (ADS)

    Ciompi, F.; Jacobs, C.; Scholten, E. T.; van Riel, S. J.; W. Wille, M. M.; Prokop, M.; van Ginneken, B.

    2015-03-01

    We present a fully automatic method for the assessment of spiculation of pulmonary nodules in low-dose Computed Tomography (CT) images. Spiculation is considered as one of the indicators of nodule malignancy and an important feature to assess in order to decide on a patient-tailored follow-up procedure. For this reason, lung cancer screening scenario would benefit from the presence of a fully automatic system for the assessment of spiculation. The presented framework relies on the fact that spiculated nodules mainly differ from non-spiculated ones in their morphology. In order to discriminate the two categories, information on morphology is captured by sampling intensity profiles along circular patterns on spherical surfaces centered on the nodule, in a multi-scale fashion. Each intensity profile is interpreted as a periodic signal, where the Fourier transform is applied, obtaining a spectrum. A library of spectra is created by clustering data via unsupervised learning. The centroids of the clusters are used to label back each spectrum in the sampling pattern. A compact descriptor encoding the nodule morphology is obtained as the histogram of labels along all the spherical surfaces and used to classify spiculated nodules via supervised learning. We tested our approach on a set of nodules from the Danish Lung Cancer Screening Trial (DLCST) dataset. Our results show that the proposed method outperforms other 3-D descriptors of morphology in the automatic assessment of spiculation.

  14. Molecular Detection of Capillaria aerophila, an Agent of Canine and Feline Pulmonary Capillariosis

    PubMed Central

    Di Cesare, Angela; Castagna, Giuseppe; Otranto, Domenico; Meloni, Silvana; Milillo, Piermarino; Latrofa, Maria Stefania; Paoletti, Barbara; Bartolini, Roberto

    2012-01-01

    Capillaria aerophila, a trichuroid nematode causing pulmonary infections in wild and domestic carnivores, is occasionally and potentially poorly recognized in infections of humans due to clinicopathological mimicry and a lack of accurate, robust laboratory diagnostics. The present work evaluated the efficiency of a DNA-based assay amplifying a partial cytochrome c oxidase subunit 1 (cox1) gene of C. aerophila in the diagnosis of lung capillariosis. Fecal samples from 34 dogs and 10 cats positive at parasitological examination for C. aerophila and other endoparasites (i.e., other lungworms, whipworms, roundworms, hookworms, tapeworms, and/or coccidia) and from 44 animals negative for C. aerophila but positive for other endoparasites were molecularly examined. Of the 44 samples positive for C. aerophila at copromicroscopy, 43 scored positive (i.e., 33/34 dogs and 10/10 cats) in seminested PCR, resulting in a sensitivity of 97 to 100%. Samples that were copromicroscopy negative for C. aerophila although positive for other endoparasites never produced a PCR product or nonspecific amplicons. The specific PCR amplification of C. aerophila (i.e., specificity of 100%) was confirmed by a nucleotide sequence analysis of the cox1 amplicons. The potential implications of the molecular diagnosis of lung capillariosis are discussed. PMID:22442326

  15. Air pollution source apportionment before, during, and after the 2008 Beijing Olympics and association of sources to aldehydes and biomarkers of blood coagulation, pulmonary and systemic inflammation, and oxidative stress in healthy young adults

    NASA Astrophysics Data System (ADS)

    Altemose, Brent A.

    Based on principal component analysis (PCA) of air pollution data collected during the Summer Olympic Games held in Beijing, China during 2008, the five source types of air pollution identified -- natural soil/road dust, vehicle and industrial combustion, vegetative burning, oil combustion, and secondary formation, were all distinctly lower during the Olympics. This was particularly true for vehicle and industrial combustion and oil combustion, and during the main games period between the opening and closing ceremonies. The reduction in secondary formation was reflective of a reduction in nitrogen oxides, but this also contributed to increased ozone concentrations during the Olympic period. Among three toxic aldehydes measured in Beijing during the same time period, only acetaldehyde had a reduction in mean concentration during the Olympic air pollution control period compared to the pre-Olympic period. Accordingly, acetaldehyde was significantly correlated with primary emission sources including vegetative burning and oil combustion, and with several pollutants emitted mainly from primary sources. In contrast, formaldehyde and acrolein increased during the Olympic air pollution control period; accordingly both were significantly correlated with ozone and with the secondary formation source type. These findings indicate primary sources may dominate for acetaldehyde while secondary sources may dominate for formaldehyde and acrolein. Biomarkers for pulmonary inflammation (exhaled breath condensate (EBC) pH, exhaled nitric oxide, and EBC nitrite) and hemostasis and blood coagulation (vWF and sCD62p) were most consistently associated with vehicle and industrial combustion, oil combustion, and vegetative burning. The systemic inflammation biomarker 8-OHdG was most consistently associated with vehicle and industrial combustion. In contrast, the associations between the biomarkers and the aldehydes were generally not significant or in the hypothesized direction, although

  16. Inflammatory cytokines in pulmonary hypertension

    PubMed Central

    2014-01-01

    Pulmonary hypertension is an “umbrella term” used for a spectrum of entities resulting in an elevation of the pulmonary arterial pressure. Clinical symptoms include dyspnea and fatigue which in the absence of adequate therapeutic intervention may lead to progressive right heart failure and death. The pathogenesis of pulmonary hypertension is characterized by three major processes including vasoconstriction, vascular remodeling and microthrombotic events. In addition accumulating evidence point to a cytokine driven inflammatory process as a major contributor to the development of pulmonary hypertension. This review summarizes the latest clinical and experimental developments in inflammation associated with pulmonary hypertension with special focus on Interleukin-6, and its role in vascular remodeling in pulmonary hypertension. PMID:24739042

  17. iPads and LCDs show similar performance in the detection of pulmonary nodules

    NASA Astrophysics Data System (ADS)

    McEntee, Mark F.; Lowe, Joanna; Butler, Marie Louise; Pietrzyk, Mariusz; Evanoff, Michael G.; Ryan, John; Brennan, Patrick C.; Rainford, Louise A.

    2012-02-01

    In February 2011 the University of Chicago Medical School distributed iPads to its trainee doctors for use when reviewing clinical information and images on the ward or clinics. The use of tablet computing devices is becoming widespread in medicine with Apple™ heralding them as "revolutionary" in medicine. The question arises, just because it is technical achievable to use iPads for clinical evaluation of images, should we do so? The current work assesses the diagnostic efficacy of iPads when compared with LCD secondary display monitors for identifying lung nodules on chest x-rays. Eight examining radiologists of the American Board of Radiology were involved in the assessment, reading chest images on both the iPad and the an off-the-shelf LCD monitor. Thirty chest images were shown to each observer, of which 15 had one or more lung nodules. Radiologists were asked to locate the nodules and score how confident they were with their decision on a scale of 1-5. An ROC and JAFROC analysis was performed and modalities were compared using DBM MRMC. The results demonstrate no significant differences in performance between the iPad and the LCD for the ROC AUC (p<0.075) or JAFROC FOM (p<0.059) for random readers and random cases. Sample size estimation showed that this result is significant at a power of 0.8 and an effect size of 0.05 for ROC and 0.07 for JAFROC. This work demonstrates that for the task of identifying pulmonary nodules, the use of the iPad does not significantly change performance compared to an off-the-shelf LCD.

  18. Stand-alone performance of a computer-assisted detection prototype for detection of acute pulmonary embolism: a multi-institutional comparison

    PubMed Central

    Wittenberg, R; Peters, J F; Weber, M; Lely, R J; Cobben, L P J; Prokop, M; Schaefer-Prokop, C M

    2012-01-01

    Objective To assess whether the performance of a computer-assisted detection (CAD) algorithm for acute pulmonary embolism (PE) differs in pulmonary CT angiographies acquired at various institutions. Methods In this retrospective study, we included 40 consecutive scans with and 40 without PE from 3 institutions (n=240) using 64-slice scanners made by different manufacturers (General Electric; Philips; Siemens). CAD markers were classified as true or false positive (FP) using independent evaluation by two readers and consultation of a third chest radiologist in discordant cases. Image quality parameters were subjectively scored using 4/5-point scales. Image noise and vascular enhancement were measured. Statistical analysis was done to correlate image quality of the three institutions with CAD stand-alone performance. Results Patient groups were comparable with respect to age (p=0.22), accompanying lung disease (p=0.12) and inpatient/outpatient ratio (p=0.67). The sensitivity was 100% (34/34), 97% (37/38) and 92% (33/36), and the specificity was 18% (8/44), 15% (6/41) and 13% (5/39). Neither significantly differed between the institutions (p=0.21 and p=0.820, respectively). The mean number of FP findings (4.5, 6.2 and 3.7) significantly varied (p=0.02 and p=0.03), but median numbers (2, 3 and 3) were comparable. Image quality parameters were significantly associated with the number of FP findings (p<0.05) but not with sensitivity. After correcting for noise and vascular enhancement, the number of FPs did not significantly differ between the three institutions (p=0.43). Conclusions CAD stand-alone performance is independent of scanner type but strongly related to image quality and thus scanning protocols. PMID:22167514

  19. Allergic Lung Inflammation Reduces Tissue Invasion and Enhances Survival from Pulmonary Pneumococcal Infection in Mice, Which Correlates with Increased Expression of Transforming Growth Factor β1 and SiglecFlow Alveolar Macrophages

    PubMed Central

    Sanfilippo, Alan M.; Furuya, Yoichi; Roberts, Sean; Salmon, Sharon L.

    2015-01-01

    Asthma is generally thought to confer an increased risk for invasive pneumococcal disease (IPD) in humans. However, recent reports suggest that mortality rates from IPD are unaffected in patients with asthma and that chronic obstructive pulmonary disease (COPD), a condition similar to asthma, protects against the development of complicated pneumonia. To clarify the effects of asthma on the subsequent susceptibility to pneumococcal infection, ovalbumin (OVA)-induced allergic lung inflammation (ALI) was induced in mice followed by intranasal infection with A66.1 serotype 3 Streptococcus pneumoniae. Surprisingly, mice with ALI were significantly more resistant to lethal infection than non-ALI mice. The heightened resistance observed following ALI correlated with enhanced early clearance of pneumococci from the lung, decreased bacterial invasion from the airway into the lung tissue, a blunted inflammatory cytokine and neutrophil response to infection, and enhanced expression of transforming growth factor β1 (TGF-β1). Neutrophil depletion prior to infection had no effect on enhanced early bacterial clearance or resistance to IPD in mice with ALI. Although eosinophils recruited into the lung during ALI appeared to be capable of phagocytizing bacteria, neutralization of interleukin-5 (IL-5) to inhibit eosinophil recruitment likewise had no effect on early clearance or survival following infection. However, enhanced resistance was associated with an increase in levels of clodronate-sensitive, phagocytic SiglecFlow alveolar macrophages within the airways following ALI. These findings suggest that, while the risk of developing IPD may actually be decreased in patients with acute asthma, additional clinical data are needed to better understand the risk of IPD in patients with different asthma phenotypes. PMID:25964474

  20. Allergic Lung Inflammation Reduces Tissue Invasion and Enhances Survival from Pulmonary Pneumococcal Infection in Mice, Which Correlates with Increased Expression of Transforming Growth Factor β1 and SiglecF(low) Alveolar Macrophages.

    PubMed

    Sanfilippo, Alan M; Furuya, Yoichi; Roberts, Sean; Salmon, Sharon L; Metzger, Dennis W

    2015-07-01

    Asthma is generally thought to confer an increased risk for invasive pneumococcal disease (IPD) in humans. However, recent reports suggest that mortality rates from IPD are unaffected in patients with asthma and that chronic obstructive pulmonary disease (COPD), a condition similar to asthma, protects against the development of complicated pneumonia. To clarify the effects of asthma on the subsequent susceptibility to pneumococcal infection, ovalbumin (OVA)-induced allergic lung inflammation (ALI) was induced in mice followed by intranasal infection with A66.1 serotype 3 Streptococcus pneumoniae. Surprisingly, mice with ALI were significantly more resistant to lethal infection than non-ALI mice. The heightened resistance observed following ALI correlated with enhanced early clearance of pneumococci from the lung, decreased bacterial invasion from the airway into the lung tissue, a blunted inflammatory cytokine and neutrophil response to infection, and enhanced expression of transforming growth factor β1 (TGF-β1). Neutrophil depletion prior to infection had no effect on enhanced early bacterial clearance or resistance to IPD in mice with ALI. Although eosinophils recruited into the lung during ALI appeared to be capable of phagocytizing bacteria, neutralization of interleukin-5 (IL-5) to inhibit eosinophil recruitment likewise had no effect on early clearance or survival following infection. However, enhanced resistance was associated with an increase in levels of clodronate-sensitive, phagocytic SiglecF(low) alveolar macrophages within the airways following ALI. These findings suggest that, while the risk of developing IPD may actually be decreased in patients with acute asthma, additional clinical data are needed to better understand the risk of IPD in patients with different asthma phenotypes. PMID:25964474

  1. Changes in respiratory function impairment following the treatment of severe pulmonary tuberculosis – limitations for the underlying COPD detection

    PubMed Central

    Radovic, Milan; Ristic, Lidija; Ciric, Zorica; Dinic-Radovic, Violeta; Stankovic, Ivana; Pejcic, Tatjana; Rancic, Milan; Bogdanovic, Dragan

    2016-01-01

    Background During the treatment phase of active pulmonary tuberculosis (PTB), respiratory function impairment is usually restrictive. This may become obstructive, as a PTB-associated airflow obstruction (AFO) or as a later manifestation of underlying COPD. Purpose The aim of the study was to examine the potential causes and risks for AFO development in PTB by exploring the aspects of spirometry limitations and clinical implications for the underlying COPD detection, taking into account various confounding factors. Patients and methods Prospective, nest case–control study on 40 new cases of PTB with initial restrictive respiratory function impairment, diagnosed and treated according to the directly observed treatment short course (DOTS) strategy. Results From all observed patients, 37.5% of them developed AFO upon the completion of PTB treatment, with significantly increased average of forced vital capacity (%) (P<0.01). Their changes in forced expiratory volume in the first second (%) during the PTB treatment were strongly associated with the air pollution exposure in living (0.474%–20.971% for 95% confidence interval [CI]; P=0.041) and working environments (3.928%–20.379% for 95% CI; P=0.005), initial radiological extent of PTB lesions (0.018%–0.700% for 95% CI; P=0.047), leukocyte count (0.020%–1.328% for 95% CI; P=0.043), and C-reactive protein serum level (0.046%–0.205% for 95% CI; P=0.003) compared to the other patients. The multivariate logistic regression analysis model shows initial radiological extent of pulmonary tuberculosis lesions (OR 1.01–1.05 for 95% CI; P=0.02) and sputum conversion rate on culture (OR 1.02–1.68 for 95% CI; P=0.04) as the most significant predictors for the risk of AFO development. Conclusion AFO upon PTB treatment is a common manifestation of underlying COPD, which mostly occurs later, during the reparative processes in active PTB, even in the absence of major risk factors, such as cigarette smoking and biomass fuel

  2. Improved Detection of Invasive Pulmonary Aspergillosis Arising during Leukemia Treatment Using a Panel of Host Response Proteins and Fungal Antigens

    PubMed Central

    Ju, Hyunsu; Wheat, L. Joseph; Baden, Lindsey; Stafford, Susan; Wu, Zheng; Issa, Nicolas; Caliendo, Angela M.; Denning, David W.; Soman, Kizhake; Clancy, Cornelius J.; Nguyen, M. Hong; Sugrue, Michele W.; Alexander, Barbara D.; Wingard, John R.

    2015-01-01

    Invasive pulmonary aspergillosis (IPA) is an opportunistic fungal infection in patients undergoing chemotherapy for hematological malignancy, hematopoietic stem cell transplant, or other forms of immunosuppression. In this group, Aspergillus infections account for the majority of deaths due to mold pathogens. Although early detection is associated with improved outcomes, current diagnostic regimens lack sensitivity and specificity. Patients undergoing chemotherapy, stem cell transplantation and lung transplantation were enrolled in a multi-site prospective observational trial. Proven and probable IPA cases and matched controls were subjected to discovery proteomics analyses using a biofluid analysis platform, fractionating plasma into reproducible protein and peptide pools. From 556 spots identified by 2D gel electrophoresis, 66 differentially expressed post-translationally modified plasma proteins were identified in the leukemic subgroup only. This protein group was rich in complement components, acute-phase reactants and coagulation factors. Low molecular weight peptides corresponding to abundant plasma proteins were identified. A candidate marker panel of host response (9 plasma proteins, 4 peptides), fungal polysaccharides (galactomannan), and cell wall components (β-D glucan) were selected by statistical filtering for patients with leukemia as a primary underlying diagnosis. Quantitative measurements were developed to qualify the differential expression of the candidate host response proteins using selective reaction monitoring mass spectrometry assays, and then applied to a separate cohort of 57 patients with leukemia. In this verification cohort, a machine learning ensemble-based algorithm, generalized pathseeker (GPS) produced a greater case classification accuracy than galactomannan (GM) or host proteins alone. In conclusion, Integration of host response proteins with GM improves the diagnostic detection of probable IPA in patients undergoing treatment

  3. Magnetic bead fluorescent immunoassay for the rapid detection of the novel inflammation marker YKL40 at the point-of-care.

    PubMed

    Schmalenberg, Michael; Beaudoin, Christopher; Bulst, Ludwig; Steubl, Dominik; Luppa, Peter B

    2015-12-01

    Pneumonia is one of the leading causes of death worldwide.We present a magnetic bead fluorescent sandwich immunoassay that allows rapid serum measurement of the novel inflammation marker YKL40 (CHI3L1) at the point of care (POC) that could aid pneumonia diagnosis. The magnetic beads serve as the solid phase for separation of YKL40 from serum. The readout is performed using a small and robust fluorescence reader,which detects the turnover of a fluorescent substrate. The assay procedure, from sample addition to data retrieval, consists of three steps and is performed in less than 20 min. The presented assay has a linear range from 3 to 111 ng/mL, with a limit of detection of 2.9 ng/mL. The average recoveries were found between 101 and 111%. The developed method was applied in sera from healthy subjects (n= 14; c(YKL40)= 50 ± 49 ng/mL) and from pneumonia patients (n = 14; c(YKL40) = 333.6 ± 225 ng/mL). The elevated YKL40 concentrations in pneumonia-diseased patients are in good agreement with previously published data. The POC-ready device provides a simple immunoassay that could help to optimize pneumonia inflammation diagnostics in low-resource settings. PMID:26434383

  4. Evaluation of Giant African Pouched Rats for Detection of Pulmonary Tuberculosis in Patients from a High-Endemic Setting

    PubMed Central

    Reither, Klaus; Jugheli, Levan; Glass, Tracy R.; Sasamalo, Mohamed; Mhimbira, Francis A.; Weetjens, Bart J.; Cox, Christophe; Edwards, Timothy L.; Mulder, Christiaan; Beyene, Negussie W.; Mahoney, Amanda

    2015-01-01

    Background This study established evidence about the diagnostic performance of trained giant African pouched rats for detecting Mycobacterium tuberculosis in sputum of well-characterised patients with presumptive tuberculosis (TB) in a high-burden setting. Methods The TB detection rats were evaluated using sputum samples of patients with presumptive TB enrolled in two prospective cohort studies in Bagamoyo, Tanzania. The patients were characterised by sputum smear microscopy and culture, including subsequent antigen or molecular confirmation of Mycobacterium tuberculosis, and by clinical data at enrolment and for at least 5-months of follow-up to determine the reference standard. Seven trained giant African pouched rats were used for the detection of TB in the sputum samples after shipment to the APOPO project in Morogoro, Tanzania. Results Of 469 eligible patients, 109 (23.2%) were culture-positive for Mycobacterium tuberculosis and 128 (27.3%) were non-TB controls with sustained recovery after 5 months without anti-TB treatment. The HIV prevalence was 46%. The area under the receiver operating characteristic curve of the seven rats for the detection of culture-positive pulmonary tuberculosis was 0.72 (95% CI 0.66–0.78). An optimal threshold could be defined at ≥2 indications by rats in either sample with a corresponding sensitivity of 56.9% (95% CI 47.0–66.3), specificity of 80.5% (95% CI 72.5–86.9), positive and negative predictive value of 71.3% (95% CI 60.6–80.5) and 68.7% (95% CI 60.6–76.0), and an accuracy for TB diagnosis of 69.6%. The diagnostic performance was negatively influenced by low burden of bacilli, and independent of the HIV status. Conclusion Giant African pouched rats have potential for detection of tuberculosis in sputum samples. However, the diagnostic performance characteristics of TB detection rats do not currently meet the requirements for high-priority, rapid sputum-based TB diagnostics as defined by the World Health

  5. Detection of rearrangement of anaplastic lymphoma kinase (ALK) and mutation of epidermal growth factor receptor (EGFR) in primary pulmonary lymphoepithelioma-like carcinoma

    PubMed Central

    Wang, Liang; Lin, Yongbin; Cai, Qingqing; Long, Hao; Zhang, Yu; Rong, Tiehua

    2015-01-01

    Background Primary pulmonary lymphoepithelioma-like carcinoma (LELC) is a distinct rare subtype of lung cancer. The prevalence of anaplastic lymphoma kinase (ALK) rearrangement and epidermal growth factor receptor (EGFR) mutation in primary pulmonary LELC had not been thoroughly investigated. Methods We investigated a cohort of 42 patients with primary pulmonary LELC and genotyped for ALK rearrangement and EGFR mutation. ALK rearrangement was detected by fluorescence in situ hybridization (FISH). EGFR mutational analysis of exons 18 through 21 was analyzed by TaqMan real-time polymerase chain reaction (PCR). Results Epstein-Barr virus-encoded RNAs (EBERs) showed positive signals in all 42 patients. By immunohistochemistry staining, all patients demonstrated positive expression of CK5/6 and P63, but almost all patients were negative for TTF-1 (34/34, 100%) or CK7 (34/35, 97.1%). None of the 42 patients had ALK rearrangement. Of 42 patients tested, only one patient (2.4%) harbored L858R mutation and gefitinib was applied to this case, however no objective response was observed and the progression free survival (PFS) time was only 1 month. Conclusions Primary pulmonary LELC is a unique histological subtype of lung cancer. ALK rearrangement and EGFR mutation are lack and they may not be the oncogenic driver gene in pulmonary LELC. Future efforts should be made to explore other oncogenic driver gene to guide targeted therapy in this rare disease to determine the optimal treatment. Keywords Pulmonary lymphoepithelioma-like carcinoma (LELC); anaplastic lymphoma kinase (ALK); epidermal growth factor receptor (EGFR); targeted therapy; Epstein-Barr virus (EBV) PMID:26543602

  6. Pulmonary Rehabilitation

    MedlinePlus

    ... Topics Bronchitis COPD Cystic Fibrosis Idiopathic Pulmonary Fibrosis Sarcoidosis Send a link to NHLBI to someone by ... people who have COPD (chronic obstructive pulmonary disease), sarcoidosis (sar-koy-DOE-sis), idiopathic pulmonary fibrosis , or ...

  7. Pulmonary embolus

    MedlinePlus

    ... Blood clot - lung; Embolus; Tumor embolus; Embolism - pulmonary; DVT-pulmonary embolism; Thrombosis - pulmonary embolism ... area). This type of clot is called a deep vein thrombosis (DVT) . The blood clot breaks off and travels ...

  8. Detection of reactive free radicals in fresh coal mine dust and their implication for pulmonary injury.

    PubMed

    Dalal, N S; Suryan, M M; Vallyathan, V; Green, F H; Jafari, B; Wheeler, R

    1989-01-01

    Freshly ground and aged anthracite and bituminous coal samples were investigated by electron spin resonance (ESR) spectroscopy to detect the presence, concentration and reactivity of free radicals. Freshly ground anthracite coal produced greater concentration of free radicals than the bituminous coal, and the radical reactivity was also greater for the anthracite. The reactivity of the newly produced free radicals in the anthracite dust correlated with the dust's toxicity. Furthermore, similar coal-based free radicals were detected in the lung tissue of autopsied coal miners, suggestive of persistent reactivity by the embedded coal dust leading to the progressive disease process. Results of the studies on the severity of coal workers' pneumoconiosis (CWP) and free radical concentration in lung tissue support this hypothesis. PMID:2705696

  9. Extensive pulmonary sarcoid reaction in a patient with BMPR-2 associated idiopathic pulmonary arterial hypertension.

    PubMed

    Braam, Evelien A J E; Quanjel, Marian J R; Van Haren-Willems, Jolanda H G M; Van Oosterhout, Matthijs F M; Vink, Aryan; Heijdra, Yvonne F; Kwakkel-van Erp, Johanna M

    2016-01-01

    Pulmonary arterial hypertension is a progressive life-threatening disease characterized by vascular remodeling. There is evidence that varied immune mechanism play an important role in progression of pulmonary hypertension.  We describe a case of a 35-year-old woman with idiopathic pulmonary arterial hypertension (IPAH) and a novel BMPR2 mutation, who underwent a successful lung transplantation.  Extensive granulomatous inflammation was seen in the resected lungs. The granulomatous inflammation found in the histology supports  a sarcoid-like reaction due to pulmonary hypertension in the context of the BMPR2 mutation. PMID:27537724

  10. A New Method of Detecting Pulmonary Nodules with PET/CT Based on an Improved Watershed Algorithm

    PubMed Central

    Zhao, Juanjuan; Ji, Guohua; Qiang, Yan; Han, Xiaohong; Pei, Bo; Shi, Zhenghao

    2015-01-01

    Background Integrated 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) is widely performed for staging solitary pulmonary nodules (SPNs). However, the diagnostic efficacy of SPNs based on PET/CT is not optimal. Here, we propose a method of detection based on PET/CT that can differentiate malignant and benign SPNs with few false-positives. Method Our proposed method combines the features of positron-emission tomography (PET) and computed tomography (CT). A dynamic threshold segmentation method was used to identify lung parenchyma in CT images and suspicious areas in PET images. Then, an improved watershed method was used to mark suspicious areas on the CT image. Next, the support vector machine (SVM) method was used to classify SPNs based on textural features of CT images and metabolic features of PET images to validate the proposed method. Results Our proposed method was more efficient than traditional methods and methods based on the CT or PET features alone (sensitivity 95.6%; average of 2.9 false positives per scan). PMID:25853496

  11. Pulmonary-impedance power spectral analysis: A facile means of detecting radiation-induced gastrointestinal distress and performance decrement in man

    NASA Technical Reports Server (NTRS)

    Rick, R. C.; Lushbaugh, C. C.; Mcdow, E.; Frome, E.

    1972-01-01

    Changes in respiratory variance revealed by power spectral analysis of the pulmonary impedance pneumogram can be used to detect and measure stresses directly or indirectly affecting human respiratory function. When gastrointestinal distress occurred during a series of 5 total-body exposures of 30 R at a rate of 1.5 R/min, it was accompanied by typical shifts in pulmonary impedance power spectra. These changes did not occur after protracted exposure of 250 R (30 R daily) at 1.5 R/hr that failed to cause radiation sickness. This system for quantitating respiratory effort can also be used to detect alterations in one's ability to perform under controlled exercise conditions.

  12. Automated detection of pulmonary nodules from whole lung helical CT scans: performance comparison for isolated and attached nodules

    NASA Astrophysics Data System (ADS)

    Enquobahrie, Andinet A.; Reeves, Anthony P.; Yankelevitz, David F.; Henschke, Claudia I.

    2004-05-01

    The objective of this research is to evaluate and compare the performance of our automated detection algorithm on isolated and attached nodules in whole lung CT scans. Isolated nodules are surrounded by the lung parenchyma with no attachment to large solid structures such as the chest wall or mediastinum surface, while attached nodules are adjacent to these structures. The detection algorithm involves three major stages. First, the region of the image space where pulmonary nodules are to be found is identified. This involves segmenting the lung region and generating the pleural surface. In the second stage, which is the hypothesis generation stage, nodule candidate locations are identified and their sizes are estimated. The nodule candidates are successively refined in the third stage a sequence of filters of increasing complexity. The algorithm was tested on a dataset containing 250 low-dose whole lung CT scans with 2.5mm slice thickness. A scan is composed of images covering the whole lung region for a single person. The dataset was partitioned into 200 and 50 scans for training and testing the algorithm. Only solid nodules were considered in this study. Experienced chest radiologists identified a total of 447 solid nodules. 345 and 102 of the nodules were from the training and testing datasets respectively. 126(28.2%) of the nodules in the dataset were attached nodules. The detection performance was then evaluated separately for isolated and attached nodule types considering different size ranges. For nodules 3mm and larger, the algorithm achieved a sensitivity of 97.8% with 2.0 false positives (FPs) per scan and 95.7% with 19.3 FPs per scan for isolated and attached nodules respectively. For nodules 4mm and larger, a sensitivity of 96.6% with 1.5 FP per scan and a 100% sensitivity with 13 FPs per scan were obtained for isolated and attached nodule types respectively. The results show that our algorithm detects isolated and attached nodules with comparable

  13. Surfactant and allergic airway inflammation.

    PubMed

    Winkler, Carla; Hohlfeld, Jens M

    2013-01-01

    Pulmonary surfactant is a complex mixture of unique proteins and lipids that covers the airway lumen. Surfactant prevents alveolar collapse and maintains airway patency by reducing surface tension at the air-liquid interface. Furthermore, it provides a defence against antigen uptake by binding foreign particles and enhancing cellular immune responses. Allergic asthma is associated with chronic airway inflammation and presents with episodes of airway narrowing. The pulmonary inflammation and bronchoconstriction can be triggered by exposure to allergens or pathogens present in the inhaled air. Pulmonary surfactant has the potential to interact with various immune cells which orchestrate allergen- or pathogen-driven episodes of airway inflammation. The complex nature of surfactant allows multiple sites of interaction, but also makes it susceptible to external alterations, which potentially impair its function. This duality of modulating airway physiology and immunology during inflammatory conditions, while at the same time being prone to alterations accompanied by restricted function, has stimulated numerous studies in recent decades, which are reviewed in this article. PMID:23896983

  14. Potential Mediator of Inflammation

    PubMed Central

    Carp, Harvey; Janoff, Aaron

    1980-01-01

    Human polymorphonuclear leukocytes, monocytes, or pulmonary alveolar macrophages, stimulated in vitro by phorbol myristate acetate (PMA), released reactive oxygen species able to suppress the elastase inhibitory capacity (EIC) of human serum. Immunoelectrophoresis using antibodies against α1-proteinase inhibitor (α1-Pi) and elastase showed that inactivation of α1-Pi was responsible for the decreased serum EIC. Treatment of phagocyte-inactivated serum with a reducing agent (dithiothreitol) resulted in significant recovery of EIC, suggesting that α1-Pi had been oxidatively inactivated. Serum EIC was partially protected by superoxide dismutase or catalase. Hydrogen peroxide alone had no effect on serum EIC. Thus, neither H2O2 nor O2− alone, but a product of the two, may have oxidatively inactivated α1-Pi. In support of the foregoing, neutrophils or monocytes from a patient with chronic granulomatous disease failed to produce detectable levels of O2− after incubation with PMA. These cells also failed to suppress serum EIC. In the case of PMA-stimulated polymorphonuclear leukocytes or monocytes, extracellular myeloperoxidase may have also played a role in α1-Pi inactivation since serum EIC was partly protected by azide, cyanide, or the depletion of extracellular chloride. Indeed, in a cell-free system consisting of purified myeloperoxidase, a glucose oxidase-H2O2-generating system, and Cl−, the EIC of human serum or purified α1-Pi could also be suppressed. Omission of any single reactant prevented this effect, as did NaN3 or catalase, suggesting that enzymatically active myeloperoxidase and H2O2 were necessary. Immunoelectrophoresis of myeloperoxidase-inactivated serum showed that, as before, inactivation of α1-Pi was responsible for the decreased EIC. Treating myeloperoxidase-inactivated serum with dithiothreitol led to significant recovery of EIC, again suggesting that oxidative inactivation of α1-Pi had occurred. Oxidative inactivation of α1-Pi in the

  15. Evaluation of pulmonary alveolar epithelial integrity by the detection of restriction to diffusion of hydrophilic solutes of different molecular sizes.

    PubMed

    Mason, G R; Peters, A M; Bagdades, E; Myers, M J; Snook, D; Hughes, J M

    2001-03-01

    The rate of transfer of a hydrophilic solute from the alveoli to pulmonary blood following inhalation as an aerosol depends on the molecular size of the solute and the permeability of the alveolar epithelium. The value of this measurement for assessing damage to the epithelium in lung disease is compromised by cigarette smoking, which accelerates clearance by unknown mechanisms. The rates of clearance of (99m)Tc-labelled diethylenetriaminepenta-acetic acid (DTPA) (molecular mass 492 Da) and (113m)In-labelled biotinylated DTPA (B-DTPA) (molecular mass 1215 Da) were monitored simultaneously by dynamic gamma-radiation camera imaging following simultaneous inhalation, and compared between eight normal non-smoking subjects and nine habitual cigarette smokers. The clearance rates of DTPA were 0.95 (S.D. 0.39)%/min in non-smokers and 4.13 (1.06) %/min in smokers. These were about twice the clearance rates of B-DTPA, which in the corresponding groups were 0.41 (0.26) and 2.12 (0.72)%/min respectively. The ratio of the B-DTPA/DTPA clearance rates was, in all subjects, less than the ratio (0.74) of the cube roots of the molecular masses of the solutes, assumed to correspond to the ratio of their free diffusion coefficients in water, and was not significantly different between smokers and non-smokers. As alveolar permeability increased, the ratio of clearance rates in the entire population showed a significant trend to increase in a non-linear fashion towards the value corresponding to the ratio of the free diffusion coefficients. We conclude that the diffusion of at least the larger of these two solutes through the pulmonary alveolar epithelium is restricted (i.e. associated with a reflection coefficient greater than zero). Cigarette smoking, however, does not appear to cause a loss of this restriction, and may increase solute clearance by other mechanisms, such as reducing fluid volume within the alveolus, thereby raising the local radiotracer concentration, or increasing

  16. 99mTc-labelled anti-CD11b SPECT/CT imaging allows detection of plaque destabilization tightly linked to inflammation.

    PubMed

    Liu, Guobing; Hu, Yan; Xiao, Jie; Li, Xiao; Li, Yanli; Tan, Hui; Zhao, Yanzhao; Cheng, Dengfeng; Shi, Hongcheng

    2016-01-01

    It remains challenging to predict the risk of rupture for a specific atherosclerotic plaque timely, a thrombotic trigger tightly linked to inflammation. CD11b, is a biomarker abundant on inflammatory cells, not restricted to monocytes/macrophages. In this study, we fabricated a probe named as (99m)Tc-MAG3-anti-CD11b for detecting inflamed atherosclerotic plaques with single photon emission computed tomography/computed tomography (SPECT/CT). The ApoE-knockout (ApoE(-/-)) mice were selected to establish animal models, with C57BL/6J mice used for control. A higher CD11b(+)-cell recruitment with higher CD11b expression and more serious whole-body inflammatory status were identified in ApoE(-/-) mice. The probe showed high in vitro affinity and specificity to the Raw-264.7 macrophages, as well as inflammatory cells infiltrated in atherosclerotic plaques, either in ex vivo fluorescent imaging or in in vivo micro-SPECT/CT imaging, which were confirmed by ex vivo planar gamma imaging, Oil-Red-O staining and CD11b-immunohistochemistry staining. A significant positive relationship was identified between the radioactivity intensity on SPECT/CT images and the CD11b expression in plaques. In summary, this study demonstrates the feasibility of anti-CD11b antibody mediated noninvasive SPECT/CT imaging of inflammatory leukocytes in murine atherosclerotic plaques. This imaging strategy can identify inflammation-rich plaques at risk for rupture and evaluate the effectiveness of inflammation-targeted therapies in atheroma. PMID:26877097

  17. 99mTc-labelled anti-CD11b SPECT/CT imaging allows detection of plaque destabilization tightly linked to inflammation

    PubMed Central

    Liu, Guobing; Hu, Yan; Xiao, Jie; Li, Xiao; Li, Yanli; Tan, Hui; Zhao, Yanzhao; Cheng, Dengfeng; Shi, Hongcheng

    2016-01-01

    It remains challenging to predict the risk of rupture for a specific atherosclerotic plaque timely, a thrombotic trigger tightly linked to inflammation. CD11b, is a biomarker abundant on inflammatory cells, not restricted to monocytes/macrophages. In this study, we fabricated a probe named as 99mTc-MAG3-anti-CD11b for detecting inflamed atherosclerotic plaques with single photon emission computed tomography/computed tomography (SPECT/CT). The ApoE-knockout (ApoE−/−) mice were selected to establish animal models, with C57BL/6J mice used for control. A higher CD11b+-cell recruitment with higher CD11b expression and more serious whole-body inflammatory status were identified in ApoE−/− mice. The probe showed high in vitro affinity and specificity to the Raw-264.7 macrophages, as well as inflammatory cells infiltrated in atherosclerotic plaques, either in ex vivo fluorescent imaging or in in vivo micro-SPECT/CT imaging, which were confirmed by ex vivo planar gamma imaging, Oil-Red-O staining and CD11b-immunohistochemistry staining. A significant positive relationship was identified between the radioactivity intensity on SPECT/CT images and the CD11b expression in plaques. In summary, this study demonstrates the feasibility of anti-CD11b antibody mediated noninvasive SPECT/CT imaging of inflammatory leukocytes in murine atherosclerotic plaques. This imaging strategy can identify inflammation-rich plaques at risk for rupture and evaluate the effectiveness of inflammation-targeted therapies in atheroma. PMID:26877097

  18. Robustness evaluation of a computer-aided detection system for pulmonary embolism (PE) in CTPA using independent test set from multiple institutions

    NASA Astrophysics Data System (ADS)

    Zhou, Chuan; Chan, Heang-Ping; Chughtai, Aamer; Kuriakose, Jean W.; Kazerooni, Ella A.; Hadjiiski, Lubomir M.; Wei, Jun; Patel, Smita

    2015-03-01

    We have developed a computer-aided detection (CAD) system for assisting radiologists in detection of pulmonary embolism (PE) in computed tomographic pulmonary angiographic (CTPA) images. The CAD system includes stages of pulmonary vessel segmentation, prescreening of PE candidates and false positive (FP) reduction to identify suspicious PEs. The system was trained with 59 CTPA PE cases collected retrospectively from our patient files (UM set) with IRB approval. Five feature groups containing 139 features that characterized the intensity texture, gradient, intensity homogeneity, shape, and topology of PE candidates were initially extracted. Stepwise feature selection guided by simplex optimization was used to select effective features for FP reduction. A linear discriminant analysis (LDA) classifier was formulated to differentiate true PEs from FPs. The purpose of this study is to evaluate the performance of our CAD system using an independent test set of CTPA cases. The test set consists of 50 PE cases from the PIOPED II data set collected by multiple institutions with access permission. A total of 537 PEs were manually marked by experienced thoracic radiologists as reference standard for the test set. The detection performance was evaluated by freeresponse receiver operating characteristic (FROC) analysis. The FP classifier obtained a test Az value of 0.847 and the FROC analysis indicated that the CAD system achieved an overall sensitivity of 80% at 8.6 FPs/case for the PIOPED test set.

  19. (99m)Tc SPECT imaging agent based on cFLFLFK for the detection of FPR1 in inflammation.

    PubMed

    Stasiuk, Graeme J; Holloway, Paul M; Rivas, Charlotte; Trigg, William; Luthra, Sajinder Kaur; Morisson Iveson, Veronique; Gavins, Felicity N E; Long, Nicholas J

    2015-03-21

    Non-invasive imaging of the inflammatory process can provide great insight into a wide variety of disease states, aiding diagnosis, evaluation and effective targeted treatment. During inflammation, blood borne leukocytes are recruited, through a series of activation and adhesion steps, to the site of injury or infection where they migrate across the blood vessel wall into the tissue. Thus, tracking leukocyte recruitment and accumulation provides a dynamic and localised read out of inflammatory events. Current leukocyte imaging techniques require ex vivo labelling of patient blood, involving laborious processing and potential risks to both patient and laboratory staff. Utilising high affinity ligands for leukocyte specific receptors may allow for injectable tracers that label leukocytes in situ, omitting potentially hazardous ex vivo handling. Formyl peptide receptors (FPRs) are a group of G-protein coupled receptors involved in the chemotaxis and inflammatory functioning of leukocytes. Highly expressed on leukocytes, and up-regulated during inflammation, these receptors provide a potential target for imaging inflammatory events. Herein we present the synthesis and initial in vitro testing of a potential Single Photon Emission Computed Tomography (SPECT) leukocyte tracer. The FPR1 antagonist cFLFLFK-NH2, which displays high affinity with little physiological effect, has been linked via a PEG motif to a (99m)Tc chelate. This tracer shows in vitro binding to human embryonic kidney cells expressing the FPR1 receptor, and functional in vitro tests reveal cFLFLFK-NH2 compounds to have no effect on inflammatory cell functioning. Overall, these data show that (99m)Tc.cFLFLFK-NH2 may be a useful tool for non-invasive imaging of leukocyte accumulation in inflammatory disease states. PMID:25603955

  20. Ultrasound Elasticity Imaging for Detecting Intestinal Fibrosis and Inflammation in Rats and Humans With Crohn’s Disease

    PubMed Central

    Stidham, Ryan W.; Xu, Jingping; Johnson, Laura A.; Kim, Kang; Moons, David S.; Mckenna, Barbara J.; Rubin, Jonathan M.; Higgins, Peter D. R.

    2016-01-01

    BACKGROUND Intestinal fibrosis causes many complications of Crohn’s disease (CD). Available biomarkers and imaging modalities lack sufficient accuracy to distinguish intestinal inflammation from fibrosis. Transcutaneous ultrasound elasticity imaging (UEI) is a promising, noninvasive approach for measuring tissue mechanical properties. We hypothesized that UEI could differentiate inflammatory from fibrotic bowel wall changes in both animal models of colitis and humans with CD. METHODS Female Lewis rats underwent weekly trinitrobenzene sulfonic acid enemas yielding models of acute inflammatory colitis (n = 5) and chronic intestinal fibrosis (n = 6). UEI scanning used a novel speckle-tracking algorithm to estimate tissue strain. Resected bowel segments were evaluated for evidence of inflammation and fibrosis. Seven consecutive patients with stenotic CD were studied with UEI and their resected stenotic and normal bowel segments were evaluated by ex vivo elastometry and histopathology. RESULTS Transcutaneous UEI normalized strain was able to differentiate acutely inflamed (−2.07) versus chronic fibrotic (−1.10) colon in rat models of inflammatory bowel disease (IBD; P = .037). Transcutaneous UEI normalized strain also differentiated stenotic (−0.87) versus adjacent normal small bowel (−1.99) in human CD (P = .0008), and this measurement also correlated well with ex vivo elastometry (r = −0.81). CONCLUSIONS UEI can differentiate inflammatory from fibrotic intestine in rat models of IBD and can differentiate between fibrotic and unaffected intestine in a pilot study in humans with CD. UEI represents a novel technology with potential to become a new objective measure of progression of intestinal fibrosis. Prospective clinical studies in CD are needed. PMID:21784048

  1. Studies on experimental pulmonary granulomas. I. Detection of lymphokines in granulomatous lesions.

    PubMed Central

    Masih, N.; Majeska, J.; Yoshida, T.

    1979-01-01

    Granulomatous reactions were immunologically induced in guinea pigs by several procedures, including intravenous injections of Bacille Calmette Gúerin (BCG) into animals immunized with complete Freund's Adjuvant and an intravenous injection of agarose beads linked to a specific antigen (dinitrophenylated bovine serum albumin) into immune animals. The tissue extracts obtained from lungs at various stages of granuloma formation were examined for macrophage migration inhibition (MIF) activity. The activity was found in a high incidence during the early stages of the granulomatous response. In contrast, MIF activity could be detected only rarely in granulomatous spleens and not in granulomatous livers. Chemotactic factor activity and mitogenic factor activity were only sporadically detectable. The MIF activity was associated with fractions showing chemical heterogeneity. One fraction was physicochemically indistinguishable from conventional lymphocyte-derived MIF; the other was a substance of large molecular weight. These results demonstrate the presence of biologically active mediators in immune granulomas, which may be related to early events involved in the induction or enhancement of such reactions. Images Figure 2 Figure 3 Figure 1 Figure 4 PMID:377991

  2. Crystal Formation in Inflammation.

    PubMed

    Franklin, Bernardo S; Mangan, Matthew S; Latz, Eicke

    2016-05-20

    The formation and accumulation of crystalline material in tissues is a hallmark of many metabolic and inflammatory conditions. The discovery that the phase transition of physiologically soluble substances to their crystalline forms can be detected by the immune system and activate innate immune pathways has revolutionized our understanding of how crystals cause inflammation. It is now appreciated that crystals are part of the pathogenesis of numerous diseases, including gout, silicosis, asbestosis, and atherosclerosis. In this review we discuss current knowledge of the complex mechanisms of crystal formation in diseased tissues and their interplay with the nutrients, metabolites, and immune cells that account for crystal-induced inflammation. PMID:26772211

  3. Pulmonary valve stenosis

    MedlinePlus

    ... valve pulmonary stenosis; Pulmonary stenosis; Stenosis - pulmonary valve; Balloon valvuloplasty - pulmonary ... water pills) Treat abnormal heartbeats and rhythms Percutaneous balloon pulmonary dilation (valvuloplasty) may be performed when no ...

  4. Clinical implications of granulomatous inflammation detected by endobronchial ultrasound transbronchial needle aspiration in patients with suspected cancer recurrence in the mediastinum

    PubMed Central

    Kennedy, Marcus P; Jimenez, Carlos A; Mhatre, Ashwini D; Morice, Rodolfo C; Eapen, Georgie A

    2008-01-01

    Background Granulomatous inflammation has been previously reported in association with cancer. Endobronchial ultrasound guided transbronchial needle aspiration (EBUS-TBNA) is a new minimally invasive test for investigating mediastinal lymphadenopathy. The identification of granulomatous inflammation by EBUS-TBNA and the clinical implications of such detection in a series of patients with previously treated cancer and new mediastinal lymphadenopathy has not previously been performed. Methods All 153 consecutive patients undergoing EBUS-TBNA in an academic cancer institution for suspected cancer in the mediastinum (mediastinal lymphadenopathy by CT imaging) were reviewed. Patients with non-caseating granuloma identified by EBUS-TBNA were included. Results EBUS-TBNA identified non-caseating granuloma in 17/153 (11%) patients. A subset of 8/153 (5.2%) had sarcoid like lymphadenopathy mimicking cancer recurrence (5/5 PET positive). Another 8/153 (5.2%) patients with new mediastinal lymphadenopathy and no prior history of cancer had a clinical syndrome consistent with sarcoidosis. One other patient with a history of breast cancer was diagnosed with non-tuberculous mycobacteria infection. No patient required mediastinoscopy and there were no complications. Conclusion In an academic cancer institute, at least 5% of patients undergoing EBUS-TBNA have sarcoid-like lymphadenopathy mimicking cancer recurrence. Further studies to define the precise etiology, natural history and prognosis of this phenomenon are warranted. PMID:18298864

  5. Alpha4-integrin (CD49d) expression on bovine peripheral blood neutrophils is related to inflammation of the respiratory system.

    PubMed

    Soethout, Ernst C; Rutten, Victor P M G; Houwers, Dirk J; de Groot, Hugo S J; Antonis, Adriaan F G; Niewold, Theo A; Müller, Kerstin E

    2003-05-30

    Neutrophil emigration from the pulmonary vasculature, is mediated by cellular adhesion molecules (CAM) expressed on the outer membranes of endothelial cells and neutrophils. Although beta(2)-integrin-dependent migration is a major mechanism of neutrophil migration, which was demonstrated by extensive invasion of neutrophils in pulmonary tissue of calves suffering from a genetic deficit in expression of beta(2)-integrins, termed bovine leukocyte adhesion deficiency (LAD), the role of alternative CAM is still unclear. We investigated whether an alternate CAM for beta(2)-integrin function, i.e. the alpha(4)-integrin, was expressed on peripheral blood neutrophils of calves. As we detected basal but significant expression, the effect of naturally acquired pulmonary infection on the expression of either integrin was determined, as an indication for its function in the migration process. In our experiments, basal expression of alpha(4)-integrins on peripheral blood neutrophils from clinically healthy calves was detected. On neutrophils of calves, experiencing field outbreaks of enzootic bronchopneumonia, higher expression of the alpha(4)-integrin was detected, which returned to normal after successful treatment of the disease. In addition, its level of expression was linearly related to plasma acute phase protein (haptoglobin) concentrations, which is a sensitive parameter for severity of respiratory inflammation. Increased expression of the alpha(4)-integrin on peripheral blood neutrophils during pulmonary inflammation indicates a role for this CAM in neutrophil migration in the lung. PMID:12753772

  6. Right Ventricular Adaptation and Failure in Pulmonary Arterial Hypertension

    PubMed Central

    Ryan, John J.; Huston, Jessica; Kutty, Shelby; Hatton, Nathan D.; Bowman, Lindsay; Tian, Lian; Herr, Julia E.; Johri, Amer M.; Archer, Stephen L.

    2015-01-01

    Pulmonary arterial hypertension (PAH) is an obstructive pulmonary vasculopathy, characterized by excess proliferation, apoptosis-resistance, inflammation, fibrosis and vasoconstriction. While PAH therapies target some of these vascular abnormalities (primarily vasoconstriction) most do not directly benefit the right ventricle (RV). This is suboptimal since a patient’s functional state and prognosis are largely determined by the success of the adaptation of the RV to the increased afterload. The RV initially hypertrophies but may ultimately decompensate, becoming dilated, hypokinetic and fibrotic. A number of pathophysiologic abnormalities have been identified in the PAH RV, including: ischemia and hibernation (partially reflecting RV capillary rarefaction), autonomic activation (due to GRK2-mediated down-regulation and desensitization of β-adrenergic receptors), mitochondrial-metabolic abnormalities (notably increased uncoupled glycolysis and glutaminolysis), and fibrosis. Many RV abnormalities are detectable by molecular imaging and may serve as biomarkers. Some molecular pathways, such as those regulating angiogenesis, metabolism and mitochondrial dynamics, are similarly deranged in the RV and pulmonary vasculature, offering the possibility of therapies that treat both the RV and pulmonary circulation. An important paradigm in PAH is that the RV and pulmonary circulation constitute a unified cardiopulmonary unit. Clinical trials of PAH pharmacotherapies should assess both components of the cardiopulmonary unit. PMID:25840092

  7. Rationale and Design of a Randomized Trial of Home Electronic Symptom and Lung Function Monitoring to Detect Cystic Fibrosis Pulmonary Exacerbations: the early intervention in cystic fibrosis exacerbation (eICE) Trial

    PubMed Central

    Lechtzin, N; West, N; Allgood, S; Wilhelm, E; Khan, U; Mayer-Hamblett, N; Aitken, M L; Ramsey, BW; Boyle, MP; Mogayzel, PJ; Goss, CH

    2013-01-01

    Background Acute pulmonary exacerbations are central events in the lives of individuals with cystic fibrosis (CF). Pulmonary Exacerbations lead to impaired lung function, worse quality of life, and shorter survival. We hypothesized that aggressive early treatment of acute pulmonary exacerbation may improve clinical outcomes. Purpose Describe the rationale of an ongoing trial designed to determine the efficacy of home monitoring of both lung function measurements and symptoms for early detection and subsequent early treatment of acute CF pulmonary exacerbations. Study Design A randomized, non-blinded, multi-center trial in 320 individuals with CF age 14 years and older. The study compares usual care to a twice a week assessment of home spirometry and CF respiratory symptoms using an electronic device with data transmission to the research personnel to identify and trigger early treatment of CF pulmonary exacerbation. Participants will be enrolled in the study for 12 months. The primary endpoint is change in FEV1 (L) from baseline to 12 months determined by a linear mixed effects model incorporating all quarterly FEV1 measurements. Secondary endpoints include time to first acute protocol-defined pulmonary exacerbation, number of acute pulmonary exacerbations, number of hospitalization days for acute pulmonary exacerbation, time from the end of acute pulmonary exacerbation to onset of subsequent pulmonary exacerbation, change in Health related quality of life, change in treatment burden, change in CF respiratory symptoms, and adherence to the study protocol. Conclusions This study is a first step in establishing alternative approaches to the care of CF pulmonary exacerbations. We hypothesize that early treatment of pulmonary exacerbations has the potential to slow lung function decline, reduce respiratory symptoms and improve the quality of life for individuals with CF. PMID:24055998

  8. Pulmonary langerhans cell histiocytosis

    PubMed Central

    2012-01-01

    Pulmonary Langerhans Cell Histiocytosis (PLCH) is a relatively uncommon lung disease that generally, but not invariably, occurs in cigarette smokers. The pathologic hallmark of PLCH is the accumulation of Langerhans and other inflammatory cells in small airways, resulting in the formation of nodular inflammatory lesions. While the overwhelming majority of patients are smokers, mechanisms by which smoking induces this disease are not known, but likely involve a combination of events resulting in enhanced recruitment and activation of Langerhans cells in small airways. Bronchiolar inflammation may be accompanied by variable lung interstitial and vascular involvement. While cellular inflammation is prominent in early disease, more advanced stages are characterized by cystic lung destruction, cicatricial scarring of airways, and pulmonary vascular remodeling. Pulmonary function is frequently abnormal at presentation. Imaging of the chest with high resolution chest CT scanning may show characteristic nodular and cystic abnormalities. Lung biopsy is necessary for a definitive diagnosis, although may not be required in instances were imaging findings are highly characteristic. There is no general consensus regarding the role of immunosuppressive therapy in smokers with PLCH. All smokers must be counseled on the importance of smoking cessation, which may result in regression of disease and obviate the need for systemic immunosuppressive therapy. The prognosis for most patients is relatively good, particularly if longitudinal lung function testing shows stability. Complications like pneumothoraces and secondary pulmonary hypertension may shorten life expectancy. Patients with progressive disease may require lung transplantation. PMID:22429393

  9. Can calcified pulmonary metastases detected by (18)F-FDG PET/CT suggest the primary tumor?

    PubMed

    Hong, Chae Moon; Ahn, Byeong Cheol

    2016-01-01

    Many calcified nodules are encountered on the (18)F-FDG PET/CT scan and even though most of them are benign, the possibility of calcified pulmonary metastases (CPM) should be considered. The CT portion can often differentiate benign diseases due to their morphology. Measuring SUVmax is very important. Understanding the mechanism of calcification in malignant metastatic pulmonary lesions may be useful to suggest their origin. PMID:27035906

  10. Implementation of combined SVM-algorithm and computer-aided perception feedback for pulmonary nodule detection

    NASA Astrophysics Data System (ADS)

    Pietrzyk, Mariusz W.; Rannou, Didier; Brennan, Patrick C.

    2012-02-01

    This pilot study examines the effect of a novel decision support system in medical image interpretation. This system is based on combining image spatial frequency properties and eye-tracking data in order to recognize over and under calling errors. Thus, before it can be implemented as a detection aided schema, training is required during which SVMbased algorithm learns to recognize FP from all reported outcomes, and, FN from all unreported prolonged dwelled regions. Eight radiologists inspected 50 PA chest radiographs with the specific task of identifying lung nodules. Twentyfive cases contained CT proven subtle malignant lesions (5-20mm), but prevalence was not known by the subjects, who took part in two sequential reading sessions, the second, without and with support system feedback. MCMR ROC DBM and JAFROC analyses were conducted and demonstrated significantly higher scores following feedback with p values of 0.04, and 0.03 respectively, highlighting significant improvements in radiology performance once feedback was used. This positive effect on radiologists' performance might have important implications for future CAD-system development.

  11. Coming events cast their shadows before: detecting inflammation in the acute diabetic foot and the foot in remission.

    PubMed

    Bharara, Manish; Schoess, Jeffrey; Armstrong, David G

    2012-02-01

    The incidence of diabetic foot complications, most notably wounds, is increasing worldwide. Most people who present for care of a foot wound will become infected. Globally, this results in one major amputation every 30 seconds with over 2500 limbs lost per day. Presently, clinicians assess circulation, neuropathy and plantar pressures to identify the risk of foot ulceration. Several studies have suggested prevention of foot ulcers by identifying individuals at high risk and treating for lower extremity complications. Our group has proposed several diagnostics as well as prevention strategies, especially thermography and thermometry for management of patients with diabetic foot complications. These strategies employ non-invasive assessment of inflammation for acute as well as chronic care for the foot, with the intent to prevent ulceration/re-ulceration and subsequent traumatic amputations. The authors' review some important clinical studies and ongoing research in this area, with the long-term goal to further the role of thermography and thermometry in clinical care for the diabetic foot. PMID:22271717

  12. Rapid Detection and Identification of Mucormycetes in Bronchoalveolar Lavage Samples from Immunocompromised Patients with Pulmonary Infiltrates by Use of High-Resolution Melt Analysis

    PubMed Central

    Racil, Zdenek; Hrncirova, Kristyna; Kocmanova, Iva; Volfova, Pavlina; Ricna, Dita; Bejdak, Petr; Moulis, Mojmir; Pavlovsky, Zdenek; Weinbergerova, Barbora; Toskova, Martina; Mayer, Jiri

    2014-01-01

    Rapid differential diagnostics of pulmonary infiltrates suspected of invasive fungal disease in an immunocompromised host and early initiation of effective antifungal therapy are crucial for patient outcomes. There are no serological tests available to detect mucormycetes; therefore, PCR-based methods are highly suitable. We validated our previously published PCR followed by high-resolution melt analysis (PCR/HRMA) to detect Rhizopus spp., Rhizomucor pusillus, Lichtheimia corymbifera, and Mucor spp. in bronchoalveolar lavage (BAL) samples from immunocompromised patients who were at risk of invasive fungal disease. All PCR/HRMA-positive samples were retested using novel real-time quantitative PCR (RQ PCR) assays specific to the species identified. In total, between January 2009 and December 2012 we analyzed 99 BAL samples from 86 patients with pulmonary abnormalities using PCR/HRMA. Ninety (91%) BAL samples were negative, and 9 (9%) samples were positive. The sensitivity and specificity of PCR/HRMA were 100% and 93%, respectively. By combining the positive results of PCR/HRMA with positive RQ PCR results, the specificity was raised to 98%. PCR/HRMA, due to its high negative predictive value (99%), represents a fast and reliable tool for routine BAL sample screening for the differential diagnosis of pulmonary infiltrates in immunocompromised patients for the four most clinically important mucormycetes. PMID:24850354

  13. Rapid detection and identification of mucormycetes in bronchoalveolar lavage samples from immunocompromised patients with pulmonary infiltrates by use of high-resolution melt analysis.

    PubMed

    Lengerova, Martina; Racil, Zdenek; Hrncirova, Kristyna; Kocmanova, Iva; Volfova, Pavlina; Ricna, Dita; Bejdak, Petr; Moulis, Mojmir; Pavlovsky, Zdenek; Weinbergerova, Barbora; Toskova, Martina; Mayer, Jiri

    2014-08-01

    Rapid differential diagnostics of pulmonary infiltrates suspected of invasive fungal disease in an immunocompromised host and early initiation of effective antifungal therapy are crucial for patient outcomes. There are no serological tests available to detect mucormycetes; therefore, PCR-based methods are highly suitable. We validated our previously published PCR followed by high-resolution melt analysis (PCR/HRMA) to detect Rhizopus spp., Rhizomucor pusillus, Lichtheimia corymbifera, and Mucor spp. in bronchoalveolar lavage (BAL) samples from immunocompromised patients who were at risk of invasive fungal disease. All PCR/HRMA-positive samples were retested using novel real-time quantitative PCR (RQ PCR) assays specific to the species identified. In total, between January 2009 and December 2012 we analyzed 99 BAL samples from 86 patients with pulmonary abnormalities using PCR/HRMA. Ninety (91%) BAL samples were negative, and 9 (9%) samples were positive. The sensitivity and specificity of PCR/HRMA were 100% and 93%, respectively. By combining the positive results of PCR/HRMA with positive RQ PCR results, the specificity was raised to 98%. PCR/HRMA, due to its high negative predictive value (99%), represents a fast and reliable tool for routine BAL sample screening for the differential diagnosis of pulmonary infiltrates in immunocompromised patients for the four most clinically important mucormycetes. PMID:24850354

  14. Is diagnostic accuracy for detecting pulmonary nodules in chest CT reduced after a long day of reading?

    NASA Astrophysics Data System (ADS)

    Krupinski, Elizabeth A.; Berbaum, Kevin S.; Caldwell, Robert; Schartz, Kevin M.

    2012-02-01

    Radiologists are reading more cases with more images, especially in CT and MRI and thus working longer hours than ever before. There have been concerns raised regarding fatigue and whether it impacts diagnostic accuracy. This study measured the impact of reader visual fatigue by assessing symptoms, visual strain via dark focus of accommodation, and diagnostic accuracy. Twenty radiologists and 20 radiology residents were given two diagnostic performance tests searching CT chest sequences for a solitary pulmonary nodule before (rested) and after (tired) a day of clinical reading. 10 cases used free search and navigation, and the other 100 cases used preset scrolling speed and duration. Subjects filled out the Swedish Occupational Fatigue Inventory (SOFI) and the oculomotor strain subscale of the Simulator Sickness Questionnaire (SSQ) before each session. Accuracy was measured using ROC techniques. Using Swensson's technique yields an ROC area = 0.86 rested vs. 0.83 tired, p (one-tailed) = 0.09. Using Swensson's LROC technique yields an area = 0.73 rested vs. 0.66 tired, p (one-tailed) = 0.09. Using Swensson's Loc Accuracy technique yields an area = 0.77 rested vs. 0.72 tired, p (one-tailed) = 0.13). Subjective measures of fatigue increased significantly from early to late reading. To date, the results support our findings with static images and detection of bone fractures. Radiologists at the end of a long work day experience greater levels of measurable visual fatigue or strain, contributing to a decrease in diagnostic accuracy. The decrease in accuracy was not as great however as with static images.

  15. Keratinocyte growth factor protects against elastase-induced pulmonary emphysema in mice.

    PubMed

    Plantier, Laurent; Marchand-Adam, Sylvain; Antico Arciuch, Valeria G; Antico, Valeria G; Boyer, Laurent; De Coster, Cécile; Marchal, Joëlle; Bachoual, Rafik; Mailleux, Arnaud; Boczkowski, Jorge; Crestani, Bruno

    2007-11-01

    Pulmonary emphysema is characterized by persistent inflammation and progressive alveolar destruction. The keratinocyte growth factor (KGF) favorably influences alveolar maintenance and repair and possesses anti-inflammatory properties. We aimed to determine whether exogenous KGF prevented or corrected elastase-induced pulmonary emphysema in vivo. Treatment with 5 mg x kg(-1) x day(-1) KGF before elastase instillation prevented pulmonary emphysema. This effect was associated with 1) a sharp reduction in bronchoalveolar lavage fluid total protein and inflammatory cell recruitment, 2) a reduction in the pulmonary expression of the chemokines CCL2 (or monocyte chemoattractant protein-1) and CXCL2 (or macrophage inflammatory protein-2alpha) and of the adhesion molecules ICAM-1 and VCAM-1, 3) a reduction in matrix metalloproteinase (MMP)-2 and MMP-9 activity at day 3, and 4) a major reduction in DNA damage detected by terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL) in alveolar cells at day 7. Treatment with KGF after elastase instillation had no effect on elastase-induced emphysema despite the conserved expression of the KGF receptor in the lungs of elastase-instilled animals as determined by immunohistochemistry. In vitro, KGF abolished the elastase-induced increase in CCL2, CXCL2, and ICAM-1 mRNA in the MLE-12 murine alveolar epithelial cell line. We conclude that KGF pretreatment protected against elastase-induced pulmonary inflammation, activation of MMPs, alveolar cell DNA damage, and subsequent emphysema in mice. PMID:17766584

  16. Influence of the 2009 financial crisis on detection of advanced pulmonary tuberculosis in Osaka city, Japan: a cross-sectional study

    PubMed Central

    Danno, Katsura; Komukai, Jun; Yoshida, Hideki; Matsumoto, Kenji; Koda, Shinichi; Terakawa, Kazuhiko; Iso, Hiroyasu

    2013-01-01

    Objective To investigate the association between the economic recession and the detection of advanced cases of pulmonary tuberculosis in Osaka city from 2007 to 2009. Design A repeated cross-sectional study. Setting Osaka city has been the highest tuberculosis burden area in Japan. After the previous global financial crisis, the unemployment rate in Osaka prefecture has deteriorated from 5.3% in 2008 to 6.6% in 2009. Participants During the study period, 3406 pulmonary tuberculosis cases were enrolled: 2530 males and 876 females; 1546 elderly cases (65 years and above) and 1860 young cases (under 65 years); 417 homeless cases and 2989 non-homeless cases. Outcome measures Patients’ information included the sex, age, registry, health insurances, places of detection, sputum smear test results, patients’ delay, doctors’ delay and the grade of chest x-ray findings. They were statistically analysed between 2007 and 2008, two years before and just before the financial crisis, and between 2008 and 2009, just before and after the financial crisis. Results The total numbers of pulmonary tuberculosis cases were 1172 in 2007, 1083 in 2008 and 1151 in 2009. In health examinations for non-homeless people, higher number of cases in 2009 were sputum smear positive, had respiratory symptoms and showed advanced disease in chest x-rays than those in 2008, with a longer patients’ delay. On the contrary, in health examination for homeless people, fewer cases of advanced pulmonary tuberculosis were found in 2009 than in 2008, with a shorter patients’ delay. In clinical examinations, there was no trend towards a difference between non-homeless and homeless people. Conclusions Although homeless people might be protected by public assistance, tuberculosis prevention and control need to be reinforced for the non-homeless population after the financial crisis. PMID:23558729

  17. CT-Guided Biopsy in Suspected Spondylodiscitis – The Association of Paravertebral Inflammation with Microbial Pathogen Detection

    PubMed Central

    Spira, Daniel; Germann, Thomas; Lehner, Burkhard; Hemmer, Stefan; Akbar, Michael; Jesser, Jessica; Weber, Marc-André; Rehnitz, Christoph

    2016-01-01

    Objectives To search for imaging characteristics distinguishing patients with successful from those with futile microbiological pathogen detection by CT-guided biopsy in suspected spondylodiscitis. Methods 34 consecutive patients with suspected spondylodiscitis underwent CT-guided biopsy for pathogen detection. MR-images were assessed for inflammatory infiltration of disks, adjacent vertebrae, epidural and paravertebral space. CT-images were reviewed for arrosion of adjacent end plates and reduced disk height. Biopsy samples were sent for microbiological examination in 34/34 patients, and for additional histological analysis in 28/34 patients. Results Paravertebral infiltration was present in all 10/10 patients with positive microbiology and occurred in only 12/24 patients with negative microbiology, resulting in a sensitivity of 100% and a specificity of 50% for pathogen detection. Despite its limited sensitivities, epidural infiltration and paravertebral abscesses showed considerably higher specificities of 83.3% and 90.9%, respectively. Paravertebral infiltration was more extensive in patients with positive as compared to negative microbiology (p = 0.002). Even though sensitivities for pathogen detection were also high in case of vertebral and disk infiltration, or end plate arrosion, specificities remained below 10%. Conclusions Inflammatory infiltration of the paravertebral space indicated successful pathogen detection by CT-guided biopsy. Specificity was increased by the additional occurrence of epidural infiltration or paravertebral abscesses. PMID:26727377

  18. Utility of intra-operative capnogram to detect branch pulmonary artery obstruction following total correction of tetralogy of Fallot.

    PubMed

    Garg, Rajnish; Murthy, Keshava; Rao, Shekhar; John, Colin

    2011-01-01

    Branch pulmonary artery obstruction is one of the prime reasons for re-operation in patients who have undergone repair for tetralogy of Fallot. Branch pulmonary artery obstruction may develop over a period of time due to dilation of right ventricular outflow tract or it may be caused by residual stenosis after inadequate repair. This may lead to differential lung perfusion causing morbidity. Intra-operative capnogram monitoring reveals ventilation-perfusion relationship. We report two cases where the capnogram helped the diagnosis and management of branch pulmonary artery obstruction. We found a redundant patch in the first and an extra length of the homograft in second case which led to the obstruction. However, but for the changes in the intraoperative capnogram, this condition may by far remain undiagnosed considering the fact that it does not produce hemodynamic changes but can lead to postoperative morbidity. PMID:21196674

  19. In vivo expression of monokine and inducible nitric oxide synthase in experimentally induced pulmonary granulomatous inflammation. Evidence for sequential production of interleukin-1, inducible nitric oxide synthase, and tumor necrosis factor.

    PubMed Central

    Tsuji, M.; Dimov, V. B.; Yoshida, T.

    1995-01-01

    The present study examined the temporal pattern and localization of interleukin-1, tumor necrosis factor-alpha, and inducible nitric oxide synthase expression in lung tissue undergoing foreign body granuloma formation. Pulmonary granulomas were induced by the intratracheal injection of dextran beads into genetically high granuloma responder, carrying Bcgs (BALB/c), and low responder, carrying Bcgr (C3H/HeJ and DBA/2), mice. There was a pattern of sequential expression of these molecules in BALB/c mice. Thus, interleukin-1 alpha and inducible nitric oxide synthase were induced mostly in the cells accumulated around the beads and also in some bronchiolar epithelial cells during the early phase (1 to 3 days), whereas tumor necrosis factor-alpha was induced in the cells around the beads at the later resolution phase (3 to 7 days). By contrast, in low responder mice, an increase in the expression of interleukin-1 alpha and inducible nitric oxide synthase was detected in lung macrophages as well as in alveolar cells and bronchiolar epithelial cells on day 1, but that of tumor necrosis factor-alpha was not detected throughout the period. These results together with our previous findings on cytokine activity in granuloma extract suggest that interleukin-1 and nitric oxide produced by recruited macrophages may take part in the early, macrophage-dependent phase of granuloma formation whereas tumor necrosis factor-alpha may be more crucial as a mediator responsible for the difference in innate resistance or susceptibility to granuloma formation. Images Figure 1 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 PMID:7573346

  20. Ultrasound-detected joint inflammation and B cell count: related variables for rituximab-treated RA patients?

    PubMed

    Valor, Lara; Martínez-Estupiñán, Lina; Janta, Iustina; Nieto, Juan Carlos; Ovalles-Bonilla, Juan Gabriel; González-Fernández, Carlos; Del Rio, Tamara; Hernández-Flórez, Diana; Monteagudo, Indalecio; López-Longo, Francisco Javier; Naredo, Esperanza

    2016-06-01

    This cross-sectional observational study aimed to explore the relationship between B cell count and ultrasound (US)-detected synovitis, in patients with rheumatoid arthritis treated with rituximab. Thirty-seven consecutive RA patients treated with RTX were recruited for the study. The patients underwent clinical [i.e., Disease Activity Score 28 joints (DAS28)], laboratory, and US assessment of 12 joints. Each joint was semiquantitatively (0-3) scored on B-mode and power Doppler mode. The scores were summed, and a global index was created for BM (BMS) and PD scores (PDI) synovitis. BM subclinical synovitis was evident in all patients, with PD synovial signal detected in 16 patients (43.2 %). No correlation was found between DAS28 and US scores. B cells were detected in 27 (72.9 %) patients, but there was no association in the mean B cell count and disease activity as measured by DAS28 (DAS28 < 2.6 = 34.53, DAS28 > 2.6 = 49.45, p = 0.52) and PDI score (PDI < 1 = 49.48, PDI > 1 = 35.44, p = 0.54). There was no correlation between the B cell count and DAS28, BMS, and PDI (r = 0.020, p = 0.907; r = -0.151, p = 0.371; r = -0.099, p = 0.558, respectively). In RTX-treated RA patients, no relationship could be established between US-detected synovitis and peripheral blood B cell count. PMID:27072348

  1. Curved planar reformation and optimal path tracing (CROP) method for false positive reduction in computer-aided detection of pulmonary embolism in CTPA

    NASA Astrophysics Data System (ADS)

    Zhou, Chuan; Chan, Heang-Ping; Guo, Yanhui; Wei, Jun; Chughtai, Aamer; Hadjiiski, Lubomir M.; Sundaram, Baskaran; Patel, Smita; Kuriakose, Jean W.; Kazerooni, Ella A.

    2013-03-01

    The curved planar reformation (CPR) method re-samples the vascular structures along the vessel centerline to generate longitudinal cross-section views. The CPR technique has been commonly used in coronary CTA workstation to facilitate radiologists' visual assessment of coronary diseases, but has not yet been used for pulmonary vessel analysis in CTPA due to the complicated tree structures and the vast network of pulmonary vasculature. In this study, a new curved planar reformation and optimal path tracing (CROP) method was developed to facilitate feature extraction and false positive (FP) reduction and improve our PE detection system. PE candidates are first identified in the segmented pulmonary vessels at prescreening. Based on Dijkstra's algorithm, the optimal path (OP) is traced from the pulmonary trunk bifurcation point to each PE candidate. The traced vessel is then straightened and a reformatted volume is generated using CPR. Eleven new features that characterize the intensity, gradient, and topology are extracted from the PE candidate in the CPR volume and combined with the previously developed 9 features to form a new feature space for FP classification. With IRB approval, CTPA of 59 PE cases were retrospectively collected from our patient files (UM set) and 69 PE cases from the PIOPED II data set with access permission. 595 and 800 PEs were manually marked by experienced radiologists as reference standard for the UM and PIOPED set, respectively. At a test sensitivity of 80%, the average FP rate was improved from 18.9 to 11.9 FPs/case with the new method for the PIOPED set when the UM set was used for training. The FP rate was improved from 22.6 to 14.2 FPs/case for the UM set when the PIOPED set was used for training. The improvement in the free response receiver operating characteristic (FROC) curves was statistically significant (p<0.05) by JAFROC analysis, indicating that the new features extracted from the CROP method are useful for FP reduction.

  2. Incidental Pelvic and Para-aortic Lymph Node Lymphangioleiomyomatosis Detected During Surgical Staging of Pelvic Cancer in Women Without Symptomatic Pulmonary Lymphangioleiomyomatosis or Tuberous Sclerosis Complex.

    PubMed

    Rabban, Joseph T; Firetag, Brandie; Sangoi, Ankur R; Post, Miriam D; Zaloudek, Charles J

    2015-08-01

    Extrapulmonary lymphangioleiomyomatosis (LAM) is a rare neoplasm of spindle cells exhibiting melanocytic and myoid differentiation that arises as a mass in the mediastinum, retroperitoneum, uterine wall, and/or intraperitoneal lymph nodes. Many patients also have pulmonary LAM, tuberous sclerosis complex (TSC), and/or other neoplasms of the perivascular epithelioid cell tumor family. This study reports 26 patients with clinically occult LAM involving pelvic/para-aortic lymph nodes removed from women undergoing surgical staging of a uterine (17), ovarian (5), cervical (3), or urinary bladder (1) neoplasm. None of the patients exhibited symptoms of pulmonary LAM, and the median patient age (56 y) was older than what would be expected for patients presenting with pulmonary LAM. Only 2/26 patients had TSC. Four patients also had uterine LAM. One of these 4 had uterine perivascular epithelioid cell tumor, and 1 had vaginal angiomyolipoma. In all 26 patients the lymph node LAM was grossly occult, measured 3.5 mm on average (1 to 19 mm), and involved either a single lymph node (12/26) or multiple lymph nodes (14/26). HMB45 was positive in 24/25 cases, mostly in a focal or patchy distribution. Other melanocytic markers included MiTF (12/14) and MelanA (2/12). Myoid markers included smooth muscle actin (23/23) and desmin (15/16), mostly in a diffuse distribution. Estrogen receptor was positive in all cases tested, as was D240 expression in the lymphatic endothelium lining the spindle cell bundles. Concurrent findings in the involved lymph nodes included metastatic carcinoma (3/26), endosalpingiosis (3/26), and reactive lymphoid hyperplasia (13/26). This study demonstrates that clinically occult lymph node LAM can be detected during surgical staging of pelvic cancer and is not commonly associated with pulmonary LAM or TSC, although these patients should still be formally evaluated for both of these diseases. PMID:25786086

  3. [Pulmonary embolism].

    PubMed

    Söffker, Gerold; Kluge, Stefan

    2015-01-01

    Acute pulmonary embolism is an important differential diagnosis of acute chest pain. The clinical signs are often non-specific. However, diagnosis and therapy must be done quickly in order to reduce morbidity and mortality. The new (2014) European guidelines for acute pulmonary embolism (PE) focus on risk-adapted diagnostic algorithms and prognosis adapted therapy concepts. According to the hemodynamic presentation the division in a high-risk group (unstable patient with persistent hypotension or shock) or in non-high-risk groups (hemodynamically stable) was proposed. In the high-risk group the immediate diagnosis is usually done by multidetector spiral computed tomography (MDCT) and primarily the medical therapy of right ventricular dysfunction and thrombolysis is recommended.In the non-high-risk group, this is subdivided into an intermediate-risk group and low-risk group, the diagnosis algorithm based on the PE-pretest probability--determined by validated scores. Moreover, the diagnosis is usually secured by MDCT--the new gold standard in the PE-diagnosis, scores, or it can be primarily ruled out due to the high negative predictive value of D-dimer determination. To improve the prognostic risk stratification in non-high-risk group patients the additional detection of right ventricular dysfunction (MDCT, echocardiography), cardiac biomarkers (troponin, NT proBNP) and validated scores (e.g. Pulmonary Embolism Severity Index) is recommended. Therefore, the intermediate-risk group can be further subdivided. For treatment of non-high-risk group patients, the initial anticoagulation (except those with severe renal insufficiency) using low molecular weight heparin/fondaparinux and conversion to vitamin-K antagonists or alternatively with direct oral anticoagulants (DOAK) is recommended. Hemodynamically stable patients with right ventricular dysfunction and myocardial ischemia (Intermediate-high-risk group patients) but with clinically progressive hemodynamic

  4. Pulmonary Fibrosis

    MedlinePlus

    Pulmonary fibrosis is a condition in which the tissue deep in your lungs becomes scarred over time. This tissue ... may not get enough oxygen. Causes of pulmonary fibrosis include environmental pollutants, some medicines, some connective tissue ...

  5. Pulmonary Embolism

    MedlinePlus

    ... pulmonary embolism is a sudden blockage in a lung artery. The cause is usually a blood clot ... loose and travels through the bloodstream to the lung. Pulmonary embolism is a serious condition that can ...

  6. Pulmonary Rehabilitation

    MedlinePlus

    Pulmonary Rehabilitation If you have shortness of breath because of lung problems, you may have asked yourself: • Can I ... medications do I really need to take? Pulmonary rehabilitation can help answer these and other questions. Enrolling ...

  7. Pulmonary Embolism.

    PubMed

    Rali, Parth; Gandhi, Viral; Malik, Khalid

    2016-01-01

    Pulmonary embolism covers a wide spectrum of presentation from an asymptomatic individual to a life-threatening medical emergency. It is of paramount importance to appropriately risk stratify patients with pulmonary embolism, particularly with those who present without hypotension. Right ventricular dysfunction can evolve after a patient has received a diagnosis of pulmonary embolism, necessitating aggressive measures rather than simple anticoagulation. In this review, we discuss definition, risk stratification, pathogenesis, diagnostic approach, and management, with particular focus on massive pulmonary embolism. PMID:26919674

  8. Evaluation of the role of oxidative stress, inflammation and apoptosis in the pulmonary and the hepatic toxicity induced by cerium oxide nanoparticles following intratracheal instillation in male Sprague-Dawley rats

    NASA Astrophysics Data System (ADS)

    Nalabotu, Siva Krishna

    The field of nanotechnology is rapidly progressing with potential applications in the automobile, healthcare, electronics, cosmetics, textiles, information technology, and environmental sectors. Nanomaterials are engineered structures with at least one dimension of 100 nanometers or less. With increased applications of nanotechnology, there are increased chances of exposure to manufactured nanomaterials. Recent reports on the toxicity of engineered nanomaterials have given scientific and regulatory agencies concerns over the safety of nanomaterials. Specifically, the Organization for Economic Co-operation and Development (OECD) has identified fourteen high priority nanomaterials for study. Cerium oxide (CeO2) nanoparticles are one among the high priority group. Recent data suggest that CeO2 nanoparticles may be toxic to lung cell lines in vitro and lung tissues in vivo. Other work has proposed that oxidative stress may play an important role in the toxicity; however, the exact mechanism of the toxicity, has to our knowledge, not been investigated. Similarly, it is not clear whether CeO2 nanoparticles exhibit systemic toxicity. Here, we investigate whether pulmonary exposure to CeO2 nanoparticles is associated with oxidative stress, inflammation and apoptosis in the lungs and liver of adult male Sprague-Dawley rats. Our data suggest that the intratracheal instillation of CeO2 nanoparticles can cause an increased lung weight to body weight ratio. Changes in lung weights were associated with the accumulation of cerium in the lungs, elevations in serum inflammatory markers, an increased Bax to Bcl-2 ratio, elevated caspase-3 protein levels, increased phosphorylation of p38-MAPK and diminished phosphorylation of ERK1/2-MAPK. Our findings from the study evaluating the possible translocation of CeO2 nanoparticles from the lungs to the liver suggest that CeO 2 nanoparticle exposure was associated with increased liver ceria levels, elevations in serum alanine transaminase

  9. The In-Vivo Use of Superparamagnetic Iron Oxide Nanoparticles to Detect Inflammation Elicits a Cytokine Response but Does Not Aggravate Experimental Arthritis

    PubMed Central

    Vermeij, Eline A.; Koenders, Marije I.; Bennink, Miranda B.; Crowe, Lindsey A.; Maurizi, Lionel; Vallée, Jean-Paul; Hofmann, Heinrich; van den Berg, Wim B.; van Lent, Peter L. E. M.; van de Loo, Fons A. J.

    2015-01-01

    Background Superparamagnetic Iron Oxide Nanoparticles (SPION) are used in diagnostic imaging of a variety of different diseases. For such in-vivo application, an additional coating with a polymer, for example polyvinyl alcohol (PVA), is needed to stabilize the SPION and prevent aggregation. As the particles are foreign to the body, reaction against the SPION could occur. In this study we investigated the effects that SPION may have on experimental arthritis after intra-articular (i.a.) or intravenous (i.v.) injection. Methods PVA-coated SPION were injected either i.a. (6 or 24 μg iron) or i.v. (100 μg or 1 mg iron) into naïve Toll-like receptor-4 deficient (TLR4-/-) or wild-type C57Bl/6 mice, or C57Bl/6 mice with antigen-induced arthritis. As control, some mice were injected with PVA or PBS. MR imaging was performed at 1 and 7 days after injection. Mice were sacrificed 2 hours and 1, 2, 7, 10 and 14 days after injection of the SPION, and RNA from synovium and liver was isolated for pro-inflammatory gene expression analysis. Serum cytokine measurements and whole knee joint histology were also performed. Results Injection of a high dose of SPION or PVA into naïve knee joints resulted in an immediate upregulation of pro-inflammatory gene expression in the synovium. A similar gene expression profile was observed after SPION or PVA injection into knee joints of TLR4-/- mice, indicating that this effect is not due to LPS contamination. Histological analysis of the knee joints also revealed synovial inflammation after SPION injection. Two hours after i.v. injection of SPION or PVA into naïve mice, an upregulation of pro-inflammatory gene expression was detected in the liver. Administration of SPION or PVA into arthritic mice via i.a. injection did not result in an upregulation in gene expression and also no additional effects were observed on histology. MR imaging and histology showed long-term retention of SPION in the inflamed joint. However, 14 days after the

  10. Molecular insights into the progression of crystalline silica-induced pulmonary toxicity in rats

    PubMed Central

    Sellamuthu, Rajendran; Umbright, Christina; Roberts, Jenny R.; Cumpston, Amy; McKinney, Walter; Chen, Bean T.; Frazer, David; Li, Shengqiao; Kashon, Michael; Joseph, Pius

    2015-01-01

    Identification of molecular target(s) and mechanism(s) of silica-induced pulmonary toxicity is important for the intervention and/or prevention of diseases associated with exposure to silica. Rats were exposed to crystalline silica by inhalation (15 mg m−3, 6 h per day, 5 days) and global gene expression profile was determined in the lungs by microarray analysis at 1, 2, 4, 8 and 16 weeks following termination of silica exposure. The number of significantly differentially expressed genes (>1.5-fold change and <0.01 false discovery rate P-value) detected in the lungs during the post-exposure time intervals analyzed exhibited a steady increase in parallel with the progression of silica-induced pulmonary toxicity noticed in the rats. Quantitative real-time PCR analysis of a representative set of 10 genes confirmed the microarray findings. The number of biological functions, canonical pathways and molecular networks significantly affected by silica exposure, as identified by the bioinformatics analysis of the significantly differentially expressed genes detected during the post-exposure time intervals, also exhibited a steady increase similar to the silica-induced pulmonary toxicity. Genes involved in oxidative stress, inflammation, respiratory diseases, cancer, and tissue remodeling and fibrosis were significantly differentially expressed in the rat lungs; however, unresolved inflammation was the single most significant biological response to pulmonary exposure to silica. Excessive mucus production, as implicated by significant overexpression of the pendrin coding gene, SLC26A4, was identified as a potential novel mechanism for silica-induced pulmonary toxicity. Collectively, the findings of our study provided insights into the molecular mechanisms underlying the progression of crystalline silica-induced pulmonary toxicity in the rat. Published 2012. This article is a US Government work and is in the public domain in the USA. PMID:22431001

  11. Eosinophilic Inflammation in Allergic Asthma

    PubMed Central

    Possa, Samantha S.; Leick, Edna A.; Prado, Carla M.; Martins, Mílton A.; Tibério, Iolanda F. L. C.

    2013-01-01

    Eosinophils are circulating granulocytes involved in pathogenesis of asthma. A cascade of processes directed by Th2 cytokine producing T-cells influence the recruitment of eosinophils into the lungs. Furthermore, multiple elements including interleukin (IL)-5, IL-13, chemoattractants such as eotaxin, Clara cells, and CC chemokine receptor (CCR)3 are already directly involved in recruiting eosinophils to the lung during allergic inflammation. Once recruited, eosinophils participate in the modulation of immune response, induction of airway hyperresponsiveness and remodeling, characteristic features of asthma. Various types of promising treatments for reducing asthmatic response are related to reduction in eosinophil counts both in human and experimental models of pulmonary allergic inflammation, showing that the recruitment of these cells really plays an important role in the pathophysiology of allergic diseases such asthma. PMID:23616768

  12. Pulmonary Hypertension

    PubMed Central

    Newman, John H.

    2005-01-01

    The modern era in cardiopulmonary medicine began in the 1940s, when Cournand and Richards pioneered right-heart catheterization. Until that time, no direct measurement of central vascular pressure had been performed in humans. Right-heart catheterization ignited an explosion of insights into function and dysfunction of the pulmonary circulation, cardiac performance, ventilation–perfusion relationships, lung–heart interactions, valvular function, and congenital heart disease. It marked the beginnings of angiocardiography with its diagnostic implications for diseases of the left heart and peripheral circulation. Pulmonary hypertension was discovered to be the consequence of a large variety of diseases that either raised pressure downstream of the pulmonary capillaries, induced vasoconstriction, increased blood flow to the lung, or obstructed the pulmonary vessels, either by embolism or in situ fibrosis. Hypoxic vasoconstriction was found to be a major cause of acute and chronic pulmonary hypertension, and surprising vasoreactivity of the pulmonary vascular bed was discovered to be present in many cases of severe pulmonary hypertension, initially in mitral stenosis. Diseases as disparate as scleroderma, cystic fibrosis, kyphoscoliosis, sleep apnea, and sickle cell disease were found to have shared consequences in the pulmonary circulation. Some of the achievements of Cournand and Richards and their scientific descendents are discussed in this article, including success in the diagnosis and treatment of idiopathic pulmonary arterial hypertension, chronic thromboembolic pulmonary hypertension, and management of hypoxic pulmonary hypertension. PMID:15994464

  13. Detection of fusobacterium nucleatum and fadA adhesin gene in patients with orthodontic gingivitis and non-orthodontic periodontal inflammation.

    PubMed

    Liu, Ping; Liu, Yi; Wang, Jianning; Guo, Yang; Zhang, Yujie; Xiao, Shuiqing

    2014-01-01

    Fusobacterium nucleatum is one of the most abundant gram-negative bacilli colonizing the subgingival plaque and closely associated with periodontal disease. However it is unclear whether F. nucleatum is involved in gingival inflammation under orthodontic appliance. A novel adhesin, FadA, which is unique to oral Fusobacteria, is required for F. nucleatum binding and invasion to epithelial cells and thus may play an important role in colonization of Fusobacterium in the host. In this study, we evaluated the prevalence of F. nucleatum and its virulence factor FadA adhesion gene (fadA) in 169 subgingival biofilm samples from 55 cases of gingivitis patients with orthodontic appliances, 49 cases of gingivitis patients without orthodontic treatment, 35 cases of periodontitis patients and 30 cases of periodontally healthy people via PCR. The correlations between the F. nucleatum/fadA and gingivitis index(GI)was also analyzed. The detection rate of F. nucleatum/fadA in periodontitis group and non-orthodontic gingivitis group was higher than the other two groups (p<0.01) while it was higher in orthodontic gingivitis group than in health people (p<0.05). An obviously positive correlation was observed between the prevalence of F. nucleatum/fadA and GI. F. nucleatum carrying fadA may be more closely related to the development of gingivitis and periodontal disease compared with orthodontic gingivitis. PMID:24416378

  14. In vivo detection of clinically non-apparent ocular surface inflammation in patients with meibomian gland dysfunction-associated refractory dry eye symptoms: a pilot study

    PubMed Central

    Qazi, Y; Kheirkhah, A; Blackie, C; Cruzat, A; Trinidad, M; Williams, C; Korb, D R; Hamrah, P

    2015-01-01

    Purpose The utility of in vivo confocal microscopy (IVCM) in the investigation of palpebral conjunctival and corneal inflammation in patients with meibomian gland dysfunction (MGD)-associated refractory dry eye symptoms following gland expression, despite objective clinical improvement. Methods A retrospective, observational pilot study was conducted evaluating five patients with MGD-associated refractory dry eye symptoms and three control groups: symptomatic untreated MGD patients (n=3), treatment-responsive MGD patients with improved symptoms (n=3) and asymptomatic healthy normals (n=11). Ocular surface disease index (OSDI) scores, tear break-up time (TBUT), the number of meibomian glands yielding liquid secretion (MGYLS), palpebral conjunctival epithelial and substantia propria immune cell (EIC, SIC), and corneal dendritic cell (DC) densities were measured. Results Despite clinical improvement (TBUT: 6.4±1.2 s to 10.1±2.1 s, P=0.03; MGYLS: 3.5±0.8 glands to 7.0±1.1 glands, P=0.13) and a normal clinical examination post treatment, MGD patients remained symptomatic. IVCM revealed increased immune cells in the palpebral conjunctiva (refractory MGD EIC=592.6±110.1 cells/mm2; untreated MGD EIC=522.6±104.7 cells/mm2, P=0.69; responsive MGD EIC=194.9±119.4 cells/mm2, P<0.01; normals EIC=123.7±19.2 cells/mm2, P< 0.001), but not the cornea (refractory MGD DC=60.9±28.3 cells/mm2; normals DC=25.9±6.3 cells/mm2; P=0.43). EIC did not correlate with TBUT (Rs=−0.26, P=0.33). OSDI scores correlated with both EIC (Rs=0.76, P<0.001) and TBUT (Rs=−0.69, P<0.01) but not SIC. Intraglandular immune cells were also seen. Conclusion MGD-associated refractory symptoms and the symptom-sign disparity may be explained by clinically non-apparent, active inflammation of the palpebral conjunctiva as detected by IVCM. These patients may benefit from anti-inflammatory therapy. PMID:26088680

  15. Pulmonary and central nervous system pathology in fatal cases of hand foot and mouth disease caused by enterovirus A71 infection.

    PubMed

    Wang, Zijun; Nicholls, John M; Liu, Fengfeng; Wang, Joshua; Feng, Zijian; Liu, Dongge; Sun, Yanni; Zhou, Cheng; Li, Yunqian; Li, Hai; Qi, Shunxiang; Huang, Xueyong; Sui, Jilin; Liao, Qiaohong; Peiris, Malik; Yu, Hongjie; Wang, Yu

    2016-04-01

    In the past 17 years, neurological disease associated with enterovirus A71 (EV-A71) has increased dramatically in the Asia-Pacific region with a high fatality rate in young infants, often due to pulmonary oedema, however the mechanism of this oedema remains obscure. We analysed the brainstem, heart and lungs of 15 fatal cases of confirmed EV-A71 infection in order to understand the pathophysiological mechanism of death and pulmonary oedema. In keeping with other case studies, the main cause of death was neurogenic pulmonary oedema. In the brainstem, 11 cases showed inflammation and all cases showed parenchymal inflammation with seven cases showing moderate or severe clasmatodendrosis. No viral antigen was detected in sections of the brainstem in any of the cases. All fatal cases showed evidence of pulmonary oedema; however, there was absence of direct pulmonary viral damage or myocarditis-induced damage and EV-A71 viral antigen staining was negative. Though there was no increase in staining for Na/K-ATPase, 11 of the 15 cases showed a marked reduction in aquaporin-4 staining in the lung, and this reduction may contribute to the development of fatal pulmonary oedema. PMID:27020504

  16. Infection, inflammation and exercise in cystic fibrosis

    PubMed Central

    2013-01-01

    Regular exercise is positively associated with health. It has also been suggested to exert anti-inflammatory effects. In healthy subjects, a single exercise session results in immune cell activation, which is characterized by production of immune modulatory peptides (e.g. IL-6, IL-8), a leukocytosis and enhanced immune cell functions. Upon cessation of exercise, immune activation is followed by a tolerizing phase, characterized by a reduced responsiveness of immune cells. Regular exercise of moderate intensity and duration has been shown to exert anti-inflammatory effects and is associated with a reduced disease incidence and viral infection susceptibility. Specific exercise programs may therefore be used to modify the course of chronic inflammatory and infectious diseases such as cystic fibrosis (CF). Patients with CF suffer from severe and chronic pulmonary infections and inflammation, leading to obstructive and restrictive pulmonary disease, exercise intolerance and muscle cachexia. Inflammation is characterized by a hyper-inflammatory phenotype. Patients are encouraged to engage in exercise programs to maintain physical fitness, quality of life, pulmonary function and health. In this review, we present an overview of available literature describing the association between regular exercise, inflammation and infection susceptibility and discuss the implications of these observations for prevention and treatment of inflammation and infection susceptibility in patients with CF. PMID:23497303

  17. Role of inflammation in cardiopulmonary health effects of PM

    SciTech Connect

    Donaldson, Ken . E-mail: ken.donaldson@ed.ac.uk; Mills, Nicholas; MacNee, William; Robinson, Simon; Newby, David

    2005-09-01

    The relationship between increased exposure to PM and adverse cardiovascular effects is well documented in epidemiological studies. Inflammation in the lungs, caused by deposited particles, can be seen as a key process that could mediate adverse effects on the cardiovascular system. There are at least three potential pathways that could lead from pulmonary inflammation to adverse cardiovascular effects. Firstly, inflammation in the lung could lead to systemic inflammation, which is well known to be linked to sudden death from cardiovascular causes. Systemic inflammation can lead to destabilization by activation of inflammatory processes in atheromatous plaques. Secondly, inflammation can cause an imbalance in coagulation factors that favor propagation of thrombi if thrombosis is initiated. Thirdly, inflammation could affect the autonomic nervous system activity in ways that could lead to alterations in the control of heart rhythm which could culminate in fatal dysrhythmia.

  18. When a pulmonary embolism is not a pulmonary embolism: a rare case of primary pulmonary leiomyosarcoma

    PubMed Central

    Muganlinskaya, Nargiz; Guzman, Amanda; Dahagam, Chanukya; Selinger, Stephen R.

    2015-01-01

    Arterial leiomyosarcomas account for up to 21% of vascular leiomyosarcomas, with 56% of arterial leiomyosarcomas occurring in the pulmonary artery. While isolated cases of primary pulmonary artery leiomyosarcoma document survival up to 36 months after treatment, these uncommon, aggressive tumors are highly lethal, with 1-year survival estimated at 20% from the onset of symptoms. We discuss a rare case of a pulmonary artery leiomyosarcoma that was originally diagnosed as a pulmonary embolism (PE). A 72-year-old Caucasian female was initially diagnosed with ‘saddle pulmonary embolism’ based on computerized tomographic angiography of the chest 2 months prior to admission and placed on anticoagulation. Dyspnea escalated, and serial computed tomography scans showed cardiomegaly with pulmonary emboli involving the right and left main pulmonary arteries with extension into the right and left upper and lower lobe branches. An echocardiogram on admission showed severe pulmonary hypertension with a pulmonary artery pressure of 82.9 mm Hg, and a severely enlarged right ventricle. Respiratory distress and multiorgan failure developed and, unfortunately, the patient expired. Autopsy showed a lobulated, yellow mass throughout the main pulmonary arteries measuring 13 cm in diameter. The mass extended into the parenchyma of the right upper lobe. On microscopy, the mass was consistent with a high-grade primary pulmonary artery leiomyosarcoma. Median survival of patients with primary pulmonary artery leiomyosarcoma without surgery is one and a half months, and mortality is usually due to right-sided heart failure. Pulmonary artery leiomyosarcoma is a rare but highly lethal disease commonly mistaken for PE. Thus, we recommend clinicians to suspect this malignancy when anticoagulation fails to relieve initial symptoms. In conclusion, early detection and suspicion of pulmonary artery leiomyosarcoma should be considered in patients refractory to anticoagulation, prompting initiation

  19. Effect of Histological Inflammation on Total and Free Serum Prostate-Specific Antigen Values in Patients Without Clinically Detectable Prostate Cancer

    PubMed Central

    Spajic, Borislav; Reljic, Ante; Katusic, Josip; Popovic, Alek; Grubisic, Igor; Tomas, Davor

    2014-01-01

    Purpose We are often confronted with patients in the "gray zone" (prostate-specific antigen [PSA]<10 ng/mL) whose biopsies reveal no malignancy but only inflammation. We investigated the relationship between histological inflammation and total PSA (tPSA), free PSA (fPSA), and percentage of free PSA (f/tPSA) levels in patients without prostate cancer (PC). Materials and Methods We studied 106 men with tPSA<10 ng/mL who had undergone biopsy that was negative for PC and who had no clinical prostatitis. Inflammation observed at biopsies was scored for inflammation type in each biopsy core by use of a four-point scale and was then correlated with tPSA, fPSA, and f/tPSA. Results Different patterns of inflammation were found in each set of biopsies. Regression factor analysis was used to form two groups according to inflammation type: more chronic and more acute. Median tPSA, fPSA, and f/tPSA levels in the more chronic and more acute inflammation groups were 6.4 ng/mL, 1.09 ng/mL, and 15%, and 7.3 ng/mL, 0.79 ng/mL, and l2%, respectively. A significant difference was found in fPSA (p=0.003) and f/tPSA (p<0.001), whereas the difference in tPSA was not significant (p=0.200). Total PSA correlated with fPSA (r=0.4, p<0.001) but not with inflammation type (r=0.12, p>0.010). A correlation existed between inflammation type and fPSA (r=-0.31, p=0.001) and f/tPSA (r=-0.43, p<0.001) in that the fPSA and f/tPSA were lower in the group with more acute inflammation. Conclusions Subclinical inflammation has a significant influence on fPSA in patients with tPSA<10 ng/mL but without PC or clinical prostatitis. Subclinical inflammation is not characterized by elevated tPSA alone but also by a decreased fPSA, a tendency similar to that in PC. PMID:25132947

  20. Experimental modeling of pulmonary barotrauma.

    PubMed

    Siermontowski, Piotr; Kozłowski, Wojciech; Pedrycz, Agnieszka; Krefft, Karolina; Kaczerska, Dorota

    2015-01-01

    The main causes of pulmonary barotrauma include loss of consciousness or panic attack of a diver and emergence from underwater with a constricted glottis. However, numerous publications and our observations indicate that the majority of fully symptomatic cases of pulmonary barotrauma develop without any evident errors in the ascending technique. Therefore, an attempt was made to examine such cases using the experimental model of pulmonary barotrauma designed by the authors. The experiment was conducted on 32 rabbits divided into three groups: Group C--not subjected to any treatment; Group E--with induced pulmonary barotrauma; and Group CT--subjected only to compression followed by quick decompression. In Groups E and CT, the same morphological markers of pulmonary barotrauma were detected in the lungs, although their severity varied. Morphological markers of pulmonary barotrauma were observed both in the group where the tube was not ob-structed (E) and in animals exposed only to rapid decompression (CT) PMID:26094289

  1. Pulmonary fibrosis: pathogenesis, etiology and regulation

    PubMed Central

    Wilson, MS; Wynn, TA

    2009-01-01

    Pulmonary fibrosis and architectural remodeling of tissues can severely disrupt lung function, often with fatal consequences. The etiology of pulmonary fibrotic diseases is varied, with an array of triggers including allergens, chemicals, radiation and environmental particles. However, the cause of one of the most common pulmonary fibrotic conditions, idiopathic pulmonary fibrosis (IPF), is still unclear. This review examines common mechanisms of pulmonary wound-healing responses following lung injury, and highlights the pathogenesis of some of the most widespread pulmonary fibrotic diseases. A three phase model of wound repair is reviewed that includes; (1) injury; (2) inflammation; and (3) repair. In most pulmonary fibrotic conditions dysregulation at one or more of these phases has been reported. Chronic inflammation can lead to an imbalance in the production of chemokines, cytokines, growth factors, and disrupt cellular recruitment. These changes coupled with excessive pro-fibrotic IL-13 and/or TGFβ1 production can turn a well-controlled healing response into a pathogenic fibrotic response. Endogenous regulatory mechanisms are discussed including novel areas of therapeutic intervention. Restoring homeostasis to these dysregulated healing responses, or simply neutralizing the key pro-fibrotic mediators may prevent or slow the progression of pulmonary fibrosis. PMID:19129758

  2. Evaluation of a thoracic ultrasound training module for the detection of pneumothorax and pulmonary edema by prehospital physician care providers

    PubMed Central

    Noble, Vicki E; Lamhaut, Lionel; Capp, Roberta; Bosson, Nichole; Liteplo, Andrew; Marx, Jean-Sebastian; Carli, Pierre

    2009-01-01

    Background While ultrasound (US) has continued to expedite diagnosis and therapy for critical care physicians inside the hospital system, the technology has been slow to diffuse into the pre-hospital system. Given the diagnostic benefits of thoracic ultrasound (TUS), we sought to evaluate image recognition skills for two important TUS applications; the identification of B-lines (used in the US diagnosis of pulmonary edema) and the identification of lung sliding and comet tails (used in the US diagnosis of pneumothorax). In particular we evaluated the impact of a focused training module in a pre-hospital system that utilizes physicians as pre-hospital providers. Methods 27 Paris Service D'Aide Médicale Urgente (SAMU) physicians at the Hôpital Necker with varying levels of US experience were given two twenty-five image recognition pre-tests; the first test had examples of both normal and pneumothorax lung US and the second had examples of both normal and pulmonary edema lung US. All 27 physicians then underwent the same didactic training modules. A post-test was administered upon completing the training module and results were recorded. Results Pre and post-test scores were compared for both the pneumothorax and the pulmonary edema modules. For the pneumothorax module, mean test scores increased from 10.3 +/- 4.1 before the training to 20.1 +/- 3.5 after (p < 0.0001), out of 25 possible points. The standard deviation decreased as well, indicating a collective improvement. For the pulmonary edema module, mean test scores increased from 14.1 +/- 5.2 before the training to 20.9 +/- 2.4 after (p < 0.0001), out of 25 possible points. The standard deviation decreased again by more than half, indicating a collective improvement. Conclusion This brief training module resulted in significant improvement of image recognition skills for physicians both with and without previous ultrasound experience. Given that rapid diagnosis of these conditions in the pre-hospital system

  3. Hepatic Cryoablation, But Not Radiofrequency Ablation, Results in Lung Inflammation

    PubMed Central

    Chapman, William C.; Debelak, Jacob P.; Wright Pinson, C.; Washington, M. Kay; Atkinson, James B.; Venkatakrishnan, Annapurna; Blackwell, Timothy S.; Christman, John W.

    2000-01-01

    Objective To compare the effects of 35% hepatic cryoablation with a similar degree of radiofrequency ablation (RFA) on lung inflammation, nuclear factor κB (NF-κB) activation, and production of NF-κB dependent cytokines. Summary Background Data Multisystem injury, including acute lung injury, is a severe complication associated with hepatic cryoablation of 30% to 35% or more of liver parenchyma, but this complication has not been reported with RFA. Methods Sprague-Dawley rats underwent 35% hepatic cryoablation or RFA and were killed at 1, 2, and 6 hours. Liver and lung tissue were freeze-clamped for measurement of NF-κB activation, which was detected by electrophoretic mobility shift assay. Serum concentrations of tumor necrosis factor α and macrophage inflammatory protein 2 were measured by enzyme-linked immunosorbent assay. Histologic studies of pulmonary tissue and electron microscopy of ablated liver tissue were compared among treatment groups. Results Histologic lung sections after cryoablation showed multiple foci of perivenular inflammation, with activated lymphocytes, foamy macrophages, and neutrophils. In animals undergoing RFA, inflammatory foci were not present. NF-κB activation was detected at 1 hour in both liver and lung tissue samples of animals undergoing cryoablation but not after RFA, and serum cytokine levels were significantly elevated in cryoablation versus RFA animals. Electron microscopy of cryoablation-treated liver tissue demonstrated disruption of the hepatocyte plasma membrane with extension of intact hepatocyte organelles into the space of Disse; RFA-treated liver tissue demonstrated coagulative destruction of hepatocyte organelles within an intact plasma membrane. To determine the stimulus for systemic inflammation, rats treated with cryoablation had either immediate resection of the ablated segment or delayed resection after a 15-minute thawing interval. Immediate resection of the cryoablated liver tissue prevented NF

  4. Pulmonary rehabilitation.

    PubMed

    Troosters, Thierry; Demeyer, Heleen; Hornikx, Miek; Camillo, Carlos Augusto; Janssens, Wim

    2014-03-01

    Pulmonary rehabilitation is a therapy that offers benefits to patients with chronic obstructive pulmonary disease that are complementary to those obtained by pharmacotherapy. The main objective of pulmonary rehabilitation is to restore muscle function and exercise tolerance, reverse other nonrespiratory consequences of the disease, and help patients to self-manage chronic obstructive pulmonary disease and its exacerbations and symptoms. To do so, a multidisciplinary program tailored to the patient in terms of program content, exercise prescription, and setting must be offered. Several settings and programs have shown to spin off in significant immediate results. The challenge lies in maintaining the benefits outside the program. PMID:24507849

  5. Cardiac Dual-source Computed Tomography for the Detection of Left Main Compression Syndrome in Patients with Pulmonary Hyper-tension

    PubMed Central

    Demerouti, Eftychia; Manginas, Athanassios; Petrou, Emmanouil; Katsilouli, Spyridoula; Karyofillis, Panagiotis; Athanassopoulos, George; Karatasakis, George; Iakovou, Ioannis; Mihas, Konstantinos; Mastorakou, Irene

    2016-01-01

    Introduction: Left Main Compression Syndrome (LMCS) represents an entity described as the extrinsic compression of the left main coronary artery (LMCA) by a dilated pulmonary artery (PA) trunk. We examined the presence of LMCS in patients with pulmonary hypertension (PH) using dual-source computed tomography (DSCT), as a non-invasive diagnostic tool. Methods: The following parameters were measured: PA trunk diameter (PAD), the distance between PAD and LMCA (LMPA) and the distance between PA and aorta (AoPA). These measurements were related with demographic, echocardiographic, hemodynamic and clinical parameters. Angiography was performed in two patients with LMCS suspected by cardiac computed tomographic angiography. Patients without PH but with angina were examined as controls, using DSCT cardiac angiography to assess the same measurements and to detect the prevalence of coronary artery disease. Results: PA diameter value over 40.00 mm has been associated with PH and LMCS. Furthermore, LMCS did not occur at a distance smaller than 0.50 mm between the PA and the LMCA, and did not correlate with the distance between the PA and the aorta or with cardiac index and NT-proBNP. Conclusion: DSCT may represent the initial testing modality in PH patients with dilated PA trunk to exclude LMCS. A periodical rule-out of this rare entity, as assessed by DSCT, in patients with a severely dilated PA seems to be mandatory for PH patients contributing to survival improvement. PMID:27499817

  6. Association of Sand Dust Particles with Pulmonary Function and Respiratory Symptoms in Adult Patients with Asthma in Western Japan Using Light Detection and Ranging: A Panel Study

    PubMed Central

    Watanabe, Masanari; Noma, Hisashi; Kurai, Jun; Shimizu, Atsushi; Sano, Hiroyuki; Kato, Kazuhiro; Mikami, Masaaki; Ueda, Yasuto; Tatsukawa, Toshiyuki; Ohga, Hideki; Yamasaki, Akira; Igishi, Tadashi; Kitano, Hiroya; Shimizu, Eiji

    2015-01-01

    Light detection and ranging (LIDAR) can estimate daily volumes of sand dust particles from the East Asian desert to Japan. The objective of this study was to investigate the relationship between sand dust particles and pulmonary function, and respiratory symptoms in adult patients with asthma. One hundred thirty-seven patients were included in the study. From March 2013 to May 2013, the patients measured their morning peak expiratory flow (PEF) and kept daily lower respiratory symptom diaries. A linear mixed model was used to estimate the correlation of the median daily levels of sand dust particles, symptoms scores, and PEF. A heavy sand dust day was defined as an hourly concentration of sand dust particles of >0.1 km−1. By this criterion, there were 8 heavy sand dust days during the study period. Elevated sand dust particles levels were significantly associated with the symptom score (0.04; 95% confidence interval (CI); 0.03, 0.05), and this increase persisted for 5 days. There was no significant association between PEF and heavy dust exposure (0.01 L/min; 95% CI, −0.62, 0.11). The present study found that sand dust particles were significantly associated with worsened lower respiratory tract symptoms in adult patients with asthma, but not with pulmonary function. PMID:26501307

  7. Immunohistochemical detection of IgM and IgG in lung tissue of dogs with leptospiral pulmonary haemorrhage syndrome (LPHS).

    PubMed

    Schuller, Simone; Callanan, John J; Worrall, Sheila; Francey, Thierry; Schweighauser, Ariane; Kohn, Barbara; Klopfleisch, Robert; Posthaus, Horst; Nally, Jarlath E

    2015-06-01

    Leptospiral pulmonary haemorrhage syndrome (LPHS) is a severe form of leptospirosis. Pathogenic mechanisms are poorly understood. Lung tissues from 26 dogs with LPHS, 5 dogs with pulmonary haemorrhage due to other causes and 6 healthy lungs were labelled for IgG (n=26), IgM (n=25) and leptospiral antigens (n=26). Three general staining patterns for IgG/IgM were observed in lungs of dogs with LPHS with most tissues showing more than one staining pattern: (1) alveolar septal wall staining, (2) staining favouring alveolar surfaces and (3) staining of intra-alveolar fluid. Healthy control lung showed no staining, whereas haemorrhagic lung from dogs not infected with Leptospira showed staining of intra-alveolar fluid and occasionally alveolar septa. Leptospiral antigens were not detected. We conclude that deposition of IgG/IgM is demonstrable in the majority of canine lungs with naturally occurring LPHS, similar to what has been described in other species. Our findings suggest involvement of the host humoral immunity in the pathogenesis of LPHS and provide further evidence to support the dog as a natural disease model for human LPHS. PMID:25963899

  8. Association of Sand Dust Particles with Pulmonary Function and Respiratory Symptoms in Adult Patients with Asthma in Western Japan Using Light Detection and Ranging: A Panel Study.

    PubMed

    Watanabe, Masanari; Noma, Hisashi; Kurai, Jun; Shimizu, Atsushi; Sano, Hiroyuki; Kato, Kazuhiro; Mikami, Masaaki; Ueda, Yasuto; Tatsukawa, Toshiyuki; Ohga, Hideki; Yamasaki, Akira; Igishi, Tadashi; Kitano, Hiroya; Shimizu, Eiji

    2015-10-01

    Light detection and ranging (LIDAR) can estimate daily volumes of sand dust particles from the East Asian desert to Japan. The objective of this study was to investigate the relationship between sand dust particles and pulmonary function, and respiratory symptoms in adult patients with asthma. One hundred thirty-seven patients were included in the study. From March 2013 to May 2013, the patients measured their morning peak expiratory flow (PEF) and kept daily lower respiratory symptom diaries. A linear mixed model was used to estimate the correlation of the median daily levels of sand dust particles, symptoms scores, and PEF. A heavy sand dust day was defined as an hourly concentration of sand dust particles of >0.1 km(-1). By this criterion, there were 8 heavy sand dust days during the study period. Elevated sand dust particles levels were significantly associated with the symptom score (0.04; 95% confidence interval (CI); 0.03, 0.05), and this increase persisted for 5 days. There was no significant association between PEF and heavy dust exposure (0.01 L/min; 95% CI, -0.62, 0.11). The present study found that sand dust particles were significantly associated with worsened lower respiratory tract symptoms in adult patients with asthma, but not with pulmonary function. PMID:26501307

  9. Transcription Factor ets-2 Plays an Important Role in the Pathogenesis of Pulmonary Fibrosis

    PubMed Central

    Baran, Christopher P.; Fischer, Sara N.; Nuovo, Gerard J.; Kabbout, Mohamed N.; Hitchcock, Charles L.; Bringardner, Benjamin D.; McMaken, Sara; Newland, Christie A.; Cantemir-Stone, Carmen Z.; Phillips, Gary S.; Ostrowski, Michael C.

    2011-01-01

    Ets-2 is a ubiquitous transcription factor activated after phosphorylation at threonine-72. Previous studies highlighted the importance of phosphorylated ets-2 in lung inflammation and extracellular matrix remodeling, two pathways involved in pulmonary fibrosis. We hypothesized that phosphorylated ets-2 played an important role in pulmonary fibrosis, and we sought to determine the role of ets-2 in its pathogenesis. We challenged ets-2 (A72/A72) transgenic mice (harboring a mutated form of ets-2 at phosphorylation site threonine-72) and ets-2 (wild-type/wild-type [WT/WT]) control mice with sequential intraperitoneal injections of bleomycin, followed by quantitative measurements of lung fibrosis and inflammation and primary cell in vitro assays. Concentrations of phosphorylated ets-2 were detected via the single and dual immunohistochemical staining of murine lungs and lung sections from patients with idiopathic pulmonary fibrosis. Ets-2 (A72/A72) mice were protected from bleomycin-induced pulmonary fibrosis, compared with ets-2 (WT/WT) mice. This protection was characterized by decreased lung pathological abnormalities and the fibrotic gene expression of Type I collagen, Type III collagen, α–smooth muscle actin, and connective tissue growth factor. Immunohistochemical staining of lung sections from bleomycin-treated ets-2 (WT/WT) mice and from patients with idiopathic pulmonary fibrosis demonstrated increased staining of phosphorylated ets-2 that colocalized with Type I collagen expression and to fibroblastic foci. Lastly, primary lung fibroblasts from ets-2 (A72/A72) mice exhibited decreased expression of Type I collagen in response to stimulation with TGF-β, compared with fibroblasts from ets-2 (WT/WT) mice. These data indicate the importance of phosphorylated ets-2 in the pathogenesis of pulmonary fibrosis through the expression of Type I collagen and (myo)fibroblast activation. PMID:21562315

  10. Transcription factor ets-2 plays an important role in the pathogenesis of pulmonary fibrosis.

    PubMed

    Baran, Christopher P; Fischer, Sara N; Nuovo, Gerard J; Kabbout, Mohamed N; Hitchcock, Charles L; Bringardner, Benjamin D; McMaken, Sara; Newland, Christie A; Cantemir-Stone, Carmen Z; Phillips, Gary S; Ostrowski, Michael C; Marsh, Clay B

    2011-11-01

    Ets-2 is a ubiquitous transcription factor activated after phosphorylation at threonine-72. Previous studies highlighted the importance of phosphorylated ets-2 in lung inflammation and extracellular matrix remodeling, two pathways involved in pulmonary fibrosis. We hypothesized that phosphorylated ets-2 played an important role in pulmonary fibrosis, and we sought to determine the role of ets-2 in its pathogenesis. We challenged ets-2 (A72/A72) transgenic mice (harboring a mutated form of ets-2 at phosphorylation site threonine-72) and ets-2 (wild-type/wild-type [WT/WT]) control mice with sequential intraperitoneal injections of bleomycin, followed by quantitative measurements of lung fibrosis and inflammation and primary cell in vitro assays. Concentrations of phosphorylated ets-2 were detected via the single and dual immunohistochemical staining of murine lungs and lung sections from patients with idiopathic pulmonary fibrosis. Ets-2 (A72/A72) mice were protected from bleomycin-induced pulmonary fibrosis, compared with ets-2 (WT/WT) mice. This protection was characterized by decreased lung pathological abnormalities and the fibrotic gene expression of Type I collagen, Type III collagen, α-smooth muscle actin, and connective tissue growth factor. Immunohistochemical staining of lung sections from bleomycin-treated ets-2 (WT/WT) mice and from patients with idiopathic pulmonary fibrosis demonstrated increased staining of phosphorylated ets-2 that colocalized with Type I collagen expression and to fibroblastic foci. Lastly, primary lung fibroblasts from ets-2 (A72/A72) mice exhibited decreased expression of Type I collagen in response to stimulation with TGF-β, compared with fibroblasts from ets-2 (WT/WT) mice. These data indicate the importance of phosphorylated ets-2 in the pathogenesis of pulmonary fibrosis through the expression of Type I collagen and (myo)fibroblast activation. PMID:21562315

  11. Immunohistochemical detection of piscine reovirus (PRV) in hearts of Atlantic salmon coincide with the course of heart and skeletal muscle inflammation (HSMI)

    PubMed Central

    2012-01-01

    Aquaculture is the fastest growing food production sector in the world. However, the increased production has been accompanied by the emergence of infectious diseases. Heart and skeletal muscle inflammation (HSMI) is one example of an emerging disease in farmed Atlantic salmon (Salmo salar L). Since the first recognition as a disease entity in 1999 it has become a widespread and economically important disease in Norway. The disease was recently found to be associated with infection with a novel reovirus, piscine reovirus (PRV). The load of PRV, examined by RT-qPCR, correlated with severity of HSMI in naturally and experimentally infected salmon. The disease is characterized by epi-, endo- and myocarditis, myocardial necrosis, myositis and necrosis of the red skeletal muscle. The aim of this study was to investigate the presence of PRV antigens in heart tissue of Atlantic salmon and monitor the virus distribution in the heart during the disease development. This included target cell specificity, viral load and tissue location during an HSMI outbreak. Rabbit polyclonal antisera were raised against putative PRV capsid proteins μ1C and σ1 and used in immunohistochemical analysis of archived salmon heart tissue from an experimental infection. The results are consistent with the histopathological changes of HSMI and showed a sequential staining pattern with PRV antigens initially present in leukocyte-like cells and subsequently in cardiomyocytes in the heart ventricle. Our results confirm the association between PRV and HSMI, and strengthen the hypothesis of PRV being the causative agent of HSMI. Immunohistochemical detection of PRV antigens will be beneficial for the understanding of the pathogenesis of HSMI as well as for diagnostic purposes. PMID:22486941

  12. A rare case of human pulmonary dirofilariasis with a growing pulmonary nodule after migrating infiltration shadows, mimicking primary lung carcinoma

    PubMed Central

    Haro, Akira; Tamiya, Sadafumi; Nagashima, Akira

    2016-01-01

    Introduction Pulmonary dirofilariasis is a rare pulmonary parasitic infection by the nematode Dirofilaria immitis. It is characterized by an asymptomatic pulmonary nodule usually seen on chest X-ray. The differential diagnosis of pulmonary dirofilariasis includes other pulmonary diseases, primary lung carcinoma and metastatic lung tumor. Case presentation Pulmonary dirofilariasis was diagnosed in a woman who presented with interstitial pneumonia. Growth of the pulmonary nodule was detected subsequent to hemoptysis. The histological diagnosis was made based on a wedge resection performed under video-associated thoracic surgery (VATS). Conclusion Pulmonary dirofilariasis often varies in its clinical course. The diagnosis is best made using wedge resection under VATS. PMID:27015012

  13. Unilateral Pulmonary Agenesis and Gastric Duplication Cyst: A Rare Association

    PubMed Central

    Skokic, Fahrija; Hotic, Nesad; Husaric, Edin; Radoja, Gordana; Muratovic, Selma; Dedic, Nermina

    2013-01-01

    Lung agenesis and gastric duplication cysts are both rare congenital anomalies. Gastric duplication cysts can present with nausea, vomiting, hematemesis, or vague abdominal pain. Unilateral pulmonary agenesis can present with respiratory distress which usually occurs due to retention of bronchial secretions and inflammations. We report the unique case of right pulmonary agenesis associated with gastric duplication cyst. PMID:23844300

  14. Traumatic pulmonary pseudocysts: CT findings.

    PubMed

    Tsitouridis, Ioannis; Tsinoglou, Konstantinos; Tsandiridis, Christos; Papastergiou, Christos; Bintoudi, Antonia

    2007-08-01

    Traumatic pulmonary pseudocyst constitutes an uncommon, though well recognized, manifestation of closed chest trauma. It is usually encountered in young patients, whose compliant chest wall permits the transmission of great compressive forces to the lung parenchyma and the laceration of the latter. Traumatic pulmonary pseudocyst is usually detected during the imaging evaluation of multi-injured patients with the use of computed tomography, as it is often not apparent in the initial supine anteroposterior chest radiographs. We present 5 cases of trauma patients, in whom we detected the presence of multiple traumatic pulmonary pseudocysts during the imaging evaluation of blunt chest trauma with the use of computed tomography. PMID:17721334

  15. Detection of a Molecular Biomarker for Zygomycetes by Quantitative PCR Assays of Plasma, Bronchoalveolar Lavage, and Lung Tissue in a Rabbit Model of Experimental Pulmonary Zygomycosis▿

    PubMed Central

    Kasai, Miki; Harrington, Susan M.; Francesconi, Andrea; Petraitis, Vidmantas; Petraitiene, Ruta; Beveridge, Mara G.; Knudsen, Tena; Milanovich, Jeffery; Cotton, Margaret P.; Hughes, Johanna; Schaufele, Robert L.; Sein, Tin; Bacher, John; Murray, Patrick R.; Kontoyiannis, Dimitrios P.; Walsh, Thomas J.

    2008-01-01

    We developed two real-time quantitative PCR (qPCR) assays, targeting the 28S rRNA gene, for the diagnosis of zygomycosis caused by the most common, clinically significant Zygomycetes. The amplicons of the first qPCR assay (qPCR-1) from Rhizopus, Mucor, and Rhizomucor species were distinguished through melt curve analysis. The second qPCR assay (qPCR-2) detected Cunninghamella species using a different primer/probe set. For both assays, the analytic sensitivity for the detection of hyphal elements from germinating sporangiospores in bronchoalveolar lavage (BAL) fluid and lung tissue homogenates from rabbits was 1 to 10 sporangiospores/ml. Four unique and clinically applicable models of invasive pulmonary zygomycosis served as surrogates of human infections, facilitating the validation of these assays for potential diagnostic utility. For qPCR-1, 5 of 98 infarcted lung specimens were positive by qPCR and negative by quantitative culture (qCx). None were qCx positive only. Among 23 BAL fluid samples, all were positive by qPCR, while 22 were positive by qCx. qPCR-1 detected Rhizopus and Mucor DNA in 20 (39%) of 51 serial plasma samples as early as day 1 postinoculation. Similar properties were observed for qPCR-2, which showed greater sensitivity than qCx for BAL fluid (100% versus 67%; P = 0.04; n = 15). The assay detected Cunninghamella DNA in 18 (58%) of 31 serial plasma samples as early as day 1 postinoculation. These qPCR assays are sensitive and specific for the detection of Rhizopus, Mucor, Rhizomucor, and Cunninghamella species and can be used for the study and detection of infections caused by these life-threatening pathogens. PMID:18845827

  16. Pathology and immune reactivity: understanding multidimensionality in pulmonary tuberculosis.

    PubMed

    Dorhoi, Anca; Kaufmann, Stefan H E

    2016-03-01

    Heightened morbidity and mortality in pulmonary tuberculosis (TB) are consequences of complex disease processes triggered by the causative agent, Mycobacterium tuberculosis (Mtb). Mtb modulates inflammation at distinct stages of its intracellular life. Recognition and phagocytosis, replication in phagosomes and cytosol escape induce tightly regulated release of cytokines [including interleukin (IL)-1, tumor necrosis factor (TNF), IL-10], chemokines, lipid mediators, and type I interferons (IFN-I). Mtb occupies various lung lesions at sites of pathology. Bacteria are barely detectable at foci of lipid pneumonia or in perivascular/bronchiolar cuffs. However, abundant organisms are evident in caseating granulomas and at the cavity wall. Such lesions follow polar trajectories towards fibrosis, encapsulation and mineralization or liquefaction, extensive matrix destruction, and tissue injury. The outcome is determined by immune factors acting in concert. Gradients of cytokines and chemokines (CCR2, CXCR2, CXCR3/CXCR5 agonists; TNF/IL-10, IL-1/IFN-I), expression of activation/death markers on immune cells (TNF receptor 1, PD-1, IL-27 receptor) or abundance of enzymes [arginase-1, matrix metalloprotease (MMP)-1, MMP-8, MMP-9] drive genesis and progression of lesions. Distinct lesions coexist such that inflammation in TB encompasses a spectrum of tissue changes. A better understanding of the multidimensionality of immunopathology in TB will inform novel therapies against this pulmonary disease. PMID:26438324

  17. Detection and Measurement of Fungal Burden in a Guinea Pig Model of Invasive Pulmonary Aspergillosis by Novel Quantitative Nested Real-Time PCR Compared with Galactomannan and (1,3)-β-d-Glucan Detection

    PubMed Central

    Kocmanova, Iva; Racil, Zdenek; Hrncirova, Kristyna; Pospisilova, Sarka; Mayer, Jiri; Najvar, Laura K.; Wiederhold, Nathan P.; Kirkpatrick, William R.; Patterson, Thomas F.

    2012-01-01

    We developed and assessed the diagnostic value of a novel quantitative nested real-time (QNRT) PCR assay targeting the internal transcribed spacer region of ribosomal DNA (rDNA) in a guinea pig model of invasive pulmonary aspergillosis. Groups of 5 immunosuppressed animals that were infected using an aerosol chamber with Aspergillus fumigatus conidia were humanely terminated 1 h postinoculation and at days 3, 5, 7, and 11 postchallenge, and lung tissue, bronchoalveolar lavage (BAL) fluid, whole blood, and serum samples were collected. The QNRT PCR results obtained with the serum and BAL fluid were compared to those achieved with galactomannan and (1→3)-β-d-glucan assays. High fungal burden levels were detected by QNRT PCR in both lung tissue and BAL fluid in all infected animals at each time point, and the sensitivity of each assay in BAL fluid was 100% by day 3 and remained so through the remainder of the study. The sensitivity of detection of fungi in whole blood and serum samples was significantly lower, and some samples remained negative by all three assays despite the advanced stage of the infection. From these data, we can conclude that this novel QNRT PCR method was highly sensitive for the detection of A. fumigatus from different types of samples in this model. In addition, BAL fluid samples appeared to be the most suitable for the early diagnosis of invasive pulmonary aspergillosis. When testing serum, the use of a combination of available assays may increase the possibility of early detection of this opportunistic mycosis. PMID:22189110

  18. A pilot study of the effect of spironolactone therapy on exercise capacity and endothelial dysfunction in pulmonary arterial hypertension: study protocol for a randomized controlled trial

    PubMed Central

    2013-01-01

    Background Pulmonary arterial hypertension is a rare disorder associated with poor survival. Endothelial dysfunction plays a central role in the pathogenesis and progression of pulmonary arterial hypertension. Inflammation appears to drive this dysfunctional endothelial phenotype, propagating cycles of injury and repair in genetically susceptible patients with idiopathic and disease-associated pulmonary arterial hypertension. Therapy targeting pulmonary vascular inflammation to interrupt cycles of injury and repair and thereby delay or prevent right ventricular failure and death has not been tested. Spironolactone, a mineralocorticoid and androgen receptor antagonist, has been shown to improve endothelial function and reduce inflammation. Current management of patients with pulmonary arterial hypertension and symptoms of right heart failure includes use of mineralocorticoid receptor antagonists for their diuretic and natriuretic effects. We hypothesize that initiating spironolactone therapy at an earlier stage of disease in patients with pulmonary arterial hypertension could provide additional benefits through anti-inflammatory effects and improvements in pulmonary vascular function. Methods/Design Seventy patients with pulmonary arterial hypertension without clinical evidence of right ventricular failure will be enrolled in a randomized, double-blinded, placebo-controlled trial to investigate the effect of early treatment with spironolactone on exercise capacity, clinical worsening and vascular inflammation in vivo. Our primary endpoint is change in placebo-corrected 6-minute walk distance at 24 weeks and the incidence of clinical worsening in the spironolactone group compared to placebo. At a two-sided alpha level of 0.05, we will have at least 84% power to detect an effect size (group mean difference divided by standard deviation) of 0.9 for the difference in the change of 6-minute walk distance from baseline between the two groups. Secondary endpoints include

  19. The Impact of Immunosenescence on Pulmonary Disease

    PubMed Central

    Murray, Michelle A.; Chotirmall, Sanjay H.

    2015-01-01

    The global population is aging with significant gains in life expectancy particularly in the developed world. Consequently, greater focus on understanding the processes that underlie physiological aging has occurred. Key facets of advancing age include genomic instability, telomere shortening, epigenetic changes, and declines in immune function termed immunosenescence. Immunosenescence and its associated chronic low grade systemic “inflamm-aging” contribute to the development and progression of pulmonary disease in older individuals. These physiological processes predispose to pulmonary infection and confer specific and unique clinical phenotypes observed in chronic respiratory disease including late-onset asthma, chronic obstructive pulmonary disease, and pulmonary fibrosis. Emerging concepts of the gut and airway microbiome further complicate the interrelationship between host and microorganism particularly from an immunological perspective and especially so in the setting of immunosenescence. This review focuses on our current understanding of the aging process, immunosenescence, and how it can potentially impact on various pulmonary diseases and the human microbiome. PMID:26199462

  20. Multicenter Evaluation of Anyplex Plus MTB/NTM MDR-TB Assay for Rapid Detection of Mycobacterium tuberculosis Complex and Multidrug-Resistant Isolates in Pulmonary and Extrapulmonary Specimens

    PubMed Central

    De Maio, Flavio; Caccuri, Francesca; Campilongo, Federica; Sanguinetti, Maurizio; Fiorentini, Simona; Giagulli, Cinzia

    2015-01-01

    The rapid diagnosis of tuberculosis (TB) and the detection of drug-resistant Mycobacterium tuberculosis strains are critical for successful public health interventions. Therefore, TB diagnosis requires the availability of diagnostic tools that allow the rapid detection of M. tuberculosis and drug resistance in clinical samples. Here, we performed a multicenter study to evaluate the performance of the Seegene Anyplex MTB/NTM MDR-TB assay, a new molecular method based on a multiplex real-time PCR system, for detection of Mycobacterium tuberculosis complex (MTBC), nontuberculous mycobacteria (NTM), and genetic determinants of drug resistance. In total, the results for 755 samples (534 pulmonary and 221 extrapulmonary samples) were compared with the results of smears and cultures. For pulmonary specimens, the sensitivities of the Anyplex assay and acid-fast bacillus smear testing were 86.4% and 75.0%, respectively, and the specificities were 99% and 99.4%. For extrapulmonary specimens, the sensitivities of the Anyplex assay and acid-fast bacillus smear testing were 83.3% and 50.0%, respectively, and the specificities of both were 100%. The negative and positive predictive values of the Anyplex assay for pulmonary specimens were 97% and 100%, respectively, and those for extrapulmonary specimens were 84.6% and 100%. The sensitivities of the Anyplex assay for detecting isoniazid resistance in MTBC strains from pulmonary and extrapulmonary specimens were 83.3% and 50%, respectively, while the specificities were 100% for both specimen types. These results demonstrate that the Anyplex MTB/NTM MDR-TB assay is an efficient and rapid method for the diagnosis of pulmonary and extrapulmonary TB and the detection of isoniazid resistance. PMID:26491178

  1. Extramedullary Pulmonary Hematopoiesis Causing Pulmonary Hypertension and Severe Tricuspid Regurgitation Detected by Technetium-99m Sulfur Colloid Bone Marrow Scan and Single-Photon Emission Computed Tomography/CT

    PubMed Central

    Clarke, Michael John; Kannivelu, Anbalagan; Chinchure, Dinesh; Srinivasan, Sivasubramanian

    2014-01-01

    Extramedullary pulmonary hematopoiesis is a rare entity with a limited number of case reports in the available literature only. We report the case of a 66-year-old man with known primary myelofibrosis, in whom a Technetium-99m sulfur colloid bone marrow scan with single-photon emission computed tomography (SPECT)/CT revealed a pulmonary hematopoiesis as the cause of pulmonary hypertension and severe tricuspid regurgitation. To the best of our knowledge, this is the first description of Technetium-99m sulfur colloid SPECT/CT imaging in this rare condition. PMID:24843243

  2. Evaluation of a Multiplex Real-Time PCR Assay for Detecting Major Bacterial Enteric Pathogens in Fecal Specimens: Intestinal Inflammation and Bacterial Load Are Correlated in Campylobacter Infections.

    PubMed

    Wohlwend, Nadia; Tiermann, Sacha; Risch, Lorenz; Risch, Martin; Bodmer, Thomas

    2016-09-01

    A total of 1,056 native or Cary-Blair-preserved stool specimens were simultaneously tested by conventional stool culturing and by enteric bacterial panel (EBP) multiplex real-time PCR for Campylobacter jejuni, Campylobacter coli, Salmonella spp., and shigellosis disease-causing agents (Shigella spp. and enteroinvasive Escherichia coli [EIEC]). Overall, 143 (13.5%) specimens tested positive by PCR for the targets named above; 3 coinfections and 109 (10.4%) Campylobacter spp., 17 (1.6%) Salmonella spp., and 20 (1.9%) Shigella spp./EIEC infections were detected. The respective positive stool culture rates were 75 (7.1%), 14 (1.3%), and 7 (0.7%). The median threshold cycle (CT) values of culture-positive specimens were significantly lower than those of culture-negative ones (CT values, 24.3 versus 28.7; P < 0.001), indicating that the relative bacterial load per fecal specimen was significantly associated with the culture results. In Campylobacter infections, the respective median fecal calprotectin concentrations in PCR-negative/culture-negative (n = 40), PCR-positive/culture-negative (n = 14), and PCR-positive/culture-positive (n = 15) specimens were 134 mg/kg (interquartile range [IQR], 30 to 1,374 mg/kg), 1,913 mg/kg (IQR, 165 to 3,813 mg/kg), and 5,327 mg/kg (IQR, 1,836 to 18,213 mg/kg). Significant differences were observed among the three groups (P < 0.001), and a significant linear trend was identified (P < 0.001). Furthermore, the fecal calprotectin concentrations and CT values were found to be correlated (r = -0.658). Our results demonstrate that molecular screening of Campylobacter spp., Salmonella spp., and Shigella spp./EIEC using the BD Max EBP assay will result in timely diagnosis and improved sensitivity. The determination of inflammatory markers, such as calprotectin, in fecal specimens may aid in the interpretation of PCR results, particularly for enteric pathogens associated with mucosal damage and colonic inflammation. PMID:27307458

  3. [Radiographic assessment of pulmonary hypertension: Methodical aspects].

    PubMed

    Korobkova, I Z; Lazutkina, V K; Nizovtsova, L A; Riden, T V

    2015-01-01

    Pulmonary hypertension is a menacing complication of a number of diseases, which is responsible for high mortality rates and considerably poorer quality of life in a patient. The timely detection for pulmonary hypertension allows timely initiation of treatment, thus improvement in prognosis in the patient. Chest X-ray is the most commonly used radiographic technique for various causes. Physicians' awareness about the radiographic manifestations of pulmonary hypertension may contribute to the earlier detection of this severe disease. Owing to the natural contrast of reflected structures, a chest X-ray film gives a unique opportunity to assess pulmonary circulation vessels, to reveal the signs of pulmonary hypertension, and to estimate trends in the course of the disease. The paper details a procedure for analysis and the normal radiographic anatomy of pulmonary circulation vessels, gives the present classification of pulmonary hypertension, and sets forth its X-ray semiotics. PMID:26552229

  4. The Pathobiology of Chronic Thromboembolic Pulmonary Hypertension.

    PubMed

    Lang, Irene M; Dorfmüller, Peter; Vonk Noordegraaf, Anton

    2016-07-01

    Chronic thromboembolic pulmonary hypertension (CTEPH) is a late sequel of venous thromboembolism that cannot be completely reproduced in animal models. The prevalence of CTEPH in humans is estimated at roughly 17-20 per million; however, partly because up to 50% of patients with CTEPH never experience symptomatic pulmonary embolism, precise numbers on the incidence and prevalence are not known. Because CTEPH is diagnosed at a median age of 63 years in patients who often have other concomitant cardiovascular disease or lung disease, assessment of pathophysiology in patients can be challenging, We do know that CTEPH is a dual vascular disorder. Stenoses, webs, and occlusions predominate in large and medium-sized pulmonary arteries at the sites of previous pulmonary emboli. A "secondary vasculopathy" resembling the pulmonary arteriopathy encountered in other forms of pulmonary hypertension predominates in low-resistance vessels. Anastomoses between bronchial artery branches and precapillary pulmonary arterioles appear during evolution of the disease. Other acquired vascular connections between bronchial arteries and pulmonary veins may trigger venous remodeling. Current concepts regarding the pathophysiology of CTEPH include contributions of hyperactive coagulation (e.g., high coagulation factor VIII, combined coagulation defects, dysfibrinogenemias), insufficient anticoagulation, non-O blood groups, and misguided thrombus resolution (e.g., infection, inflammation, dysfunctional innate immunity, abnormal circulating phospholipids). Current research focuses on the question as to whether a genetic predisposition leads to misguided vascular healing after pulmonary thromboembolism in susceptible individuals. PMID:27571003

  5. Value of systematic intervention for chronic obstructive pulmonary disease in a regional Japanese city based on case detection rate and medical cost

    PubMed Central

    Tawara, Yuichi; Senjyu, Hideaki; Tanaka, Kenichiro; Tanaka, Takako; Asai, Masaharu; Kozu, Ryo; Tabusadani, Mitsuru; Honda, Sumihisa; Sawai, Terumitsu

    2015-01-01

    Objective We established a COPD taskforce for early detection, diagnosis, treatment, and intervention. We implemented a pilot intervention with a prospective and longitudinal design in a regional city. This study evaluates the usefulness of the COPD taskforce and intervention based on COPD case detection rate and per capita medical costs. Method We distributed a questionnaire to all 8,878 inhabitants aged 50–89 years, resident in Matsuura, Nagasaki Prefecture in 2006. Potentially COPD-positive persons received a pulmonary function test and diagnosis. We implemented ongoing detection, examination, education, and treatment interventions, performed follow-up examinations or respiratory lessons yearly, and supported the health maintenance of each patient. We compared COPD medical costs in Matsuura and in the rest of Nagasaki Prefecture using data from 2004 to 2013 recorded by the association of Nagasaki National Health Insurance Organization, assessing 10-year means and annual change. Results As of 2014, 256 people have received a definitive diagnosis of COPD; representing 31% of the estimated total number of COPD patients. Of the cases detected, 87.5% were mild or moderate in severity. COPD medical costs per patient in Matsuura were significantly lower than the rest of Nagasaki Prefecture, as was rate of increase in cost over time. Conclusion The COPD program in Matsuura enabled early detection and treatment of COPD patients and helped to lower the associated burden of medical costs. The success of this program suggests that a similar program could reduce the economic and human costs of COPD morbidity throughout Japan. PMID:26347397

  6. Three‐Dimensional Echocardiography and 2D‐3D Speckle‐Tracking Imaging in Chronic Pulmonary Hypertension: Diagnostic Accuracy in Detecting Hemodynamic Signs of Right Ventricular (RV) Failure

    PubMed Central

    Vitarelli, Antonio; Mangieri, Enrico; Terzano, Claudio; Gaudio, Carlo; Salsano, Felice; Rosato, Edoardo; Capotosto, Lidia; D'Orazio, Simona; Azzano, Alessia; Truscelli, Giovanni; Cocco, Nino; Ashurov, Rasul

    2015-01-01

    Background Our aim was to compare three‐dimensional (3D) and 2D and 3D speckle‐tracking (2D‐STE, 3D‐STE) echocardiographic parameters with conventional right ventricular (RV) indexes in patients with chronic pulmonary hypertension (PH), and investigate whether these techniques could result in better correlation with hemodynamic variables indicative of heart failure. Methods and Results Seventy‐three adult patients (mean age, 53±13 years; 44% male) with chronic PH of different etiologies were studied by echocardiography and cardiac catheterization (25 precapillary PH from pulmonary arterial hypertension, 23 obstructive pulmonary heart disease, and 23 postcapillary PH from mitral regurgitation). Thirty healthy subjects (mean age, 54±15 years; 43% male) served as controls. Standard 2D measurements (RV–fractional area change–tricuspid annular plane systolic excursion) and mitral and tricuspid tissue Doppler annular velocities were obtained. RV 3D volumes and global and regional ejection fraction (3D‐RVEF) were determined. RV strains were calculated by 2D‐STE and 3D‐STE. RV 3D global‐free‐wall longitudinal strain (3DGFW‐RVLS), 2D global‐free‐wall longitudinal strain (GFW‐RVLS), apical‐free‐wall longitudinal strain, basal‐free‐wall longitudinal strain, and 3D‐RVEF were lower in patients with precapillary PH (P<0.0001) and postcapillary PH (P<0.01) compared to controls. 3DGFW‐RVLS (hazard ratio 4.6, 95% CI 2.79 to 8.38, P=0.004) and 3D‐RVEF (hazard ratio 5.3, 95% CI 2.85 to 9.89, P=0.002) were independent predictors of mortality. Receiver operating characteristic curves showed that the thresholds offering an adequate compromise between sensitivity and specificity for detecting hemodynamic signs of RV failure were 39% for 3D‐RVEF (AUC 0.89), −17% for 3DGFW‐RVLS (AUC 0.88), −18% for GFW‐RVLS (AUC 0.88), −16% for apical‐free‐wall longitudinal strain (AUC 0.85), 16 mm for tricuspid annular plane systolic

  7. Microarray analysis in pulmonary hypertension

    PubMed Central

    Hoffmann, Julia; Wilhelm, Jochen; Olschewski, Andrea

    2016-01-01

    Microarrays are a powerful and effective tool that allows the detection of genome-wide gene expression differences between controls and disease conditions. They have been broadly applied to investigate the pathobiology of diverse forms of pulmonary hypertension, namely group 1, including patients with idiopathic pulmonary arterial hypertension, and group 3, including pulmonary hypertension associated with chronic lung diseases such as chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. To date, numerous human microarray studies have been conducted to analyse global (lung homogenate samples), compartment-specific (laser capture microdissection), cell type-specific (isolated primary cells) and circulating cell (peripheral blood) expression profiles. Combined, they provide important information on development, progression and the end-stage disease. In the future, system biology approaches, expression of noncoding RNAs that regulate coding RNAs, and direct comparison between animal models and human disease might be of importance. PMID:27076594

  8. Microarray analysis in pulmonary hypertension.

    PubMed

    Hoffmann, Julia; Wilhelm, Jochen; Olschewski, Andrea; Kwapiszewska, Grazyna

    2016-07-01

    Microarrays are a powerful and effective tool that allows the detection of genome-wide gene expression differences between controls and disease conditions. They have been broadly applied to investigate the pathobiology of diverse forms of pulmonary hypertension, namely group 1, including patients with idiopathic pulmonary arterial hypertension, and group 3, including pulmonary hypertension associated with chronic lung diseases such as chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. To date, numerous human microarray studies have been conducted to analyse global (lung homogenate samples), compartment-specific (laser capture microdissection), cell type-specific (isolated primary cells) and circulating cell (peripheral blood) expression profiles. Combined, they provide important information on development, progression and the end-stage disease. In the future, system biology approaches, expression of noncoding RNAs that regulate coding RNAs, and direct comparison between animal models and human disease might be of importance. PMID:27076594

  9. Detection and Quantification of Mycobacterium tuberculosis in the Sputum of Culture-Negative HIV-infected Pulmonary Tuberculosis Suspects: A Proof-of-Concept Study

    PubMed Central

    Madico, Guillermo; Mpeirwe, Moses; White, Laura; Vinhas, Solange; Orr, Beverley; Orikiriza, Patrick; Miller, Nancy S.; Gaeddert, Mary; Mwanga-Amumpaire, Juliet; Palaci, Moises; Kreiswirth, Barry; Straight, Joe; Dietze, Reynaldo; Boum, Yap; Jones-López, Edward C.

    2016-01-01

    Rationale Rapid diagnosis of pulmonary tuberculosis (TB) is critical for timely initiation of treatment and interruption of transmission. Yet, despite recent advances, many patients remain undiagnosed. Culture, usually considered the most sensitive diagnostic method, is sub-optimal for paucibacillary disease. Methods We evaluated the Totally Optimized PCR (TOP) TB assay, a new molecular test that we hypothesize is more sensitive than culture. After pre-clinical studies, we estimated TOP’s per-patient sensitivity and specificity in a convenience sample of 261 HIV-infected pulmonary TB suspects enrolled into a TB diagnostic study in Mbarara, Uganda against MGIT culture, Xpert MTB/RIF and a composite reference standard. We validated results with a confirmatory PCR used for sequencing M. tuberculosis. Measurements and Results Using culture as reference, TOP had 100% sensitivity but 35% specificity. Against a composite reference standard, the sensitivity of culture (27%) and Xpert MTB/RIF (27%) was lower than TOP (99%), with similar specificity (100%, 98% and 87%, respectively). In unadjusted analyses, culture-negative/TOP-positive patients were more likely to be older (P<0·001), female (P<0·001), have salivary sputum (P = 0·05), sputum smear-negative (P<0.001) and less advanced disease on chest radiograph (P = 0.05). M. tuberculosis genotypes identified in sputum by DNA sequencing exhibit differential growth in culture. Conclusions These findings suggest that the TOP TB assay is accurately detecting M. tuberculosis DNA in the sputum of culture-negative tuberculosis suspects. Our results require prospective validation with clinical outcomes. If the operating characteristics of the TOP assay are confirmed in future studies, it will be justified as a “TB rule out” test. PMID:27391604

  10. Celiac disease with pulmonary haemosiderosis and cardiomyopathy.

    PubMed

    Işikay, Sedat; Yilmaz, Kutluhan; Kilinç, Metin

    2012-01-01

    Celiac disease or pulmonary haemosiderosis can be associated with several distinguished conditions. Pulmonary haemosiderosis is a rare, severe and fatal disease characterised by recurrent episodes of alveolar haemorrhage, haemoptysis and anaemia. Association of pulmonary haemosiderosis and celiac disease is extremely rare. We describe a case of celiac disease presented with dilated cardiomyopathy and pulmonary haemosiderosis without gastrointestinal symptoms of celiac disease. In addition, vitamin A deficiency was detected. This case suggests that celiac disease should be considered in patients with cardiomyopathy and/or pulmonary haemosiderosis regardless of the intestinal symptoms of celiac disease. PMID:23169927

  11. High expression of pulmonary proteinase-activated receptor 2 in acute and chronic lung injury in preterm infants.

    PubMed

    Cederqvist, Katariina; Haglund, Caj; Heikkilä, Päivi; Hollenberg, Morley D; Karikoski, Riitta; Andersson, Sture

    2005-06-01

    Proteinase-activated receptor 2 (PAR(2)), a G-protein-coupled receptor activated by serine proteinases such as trypsin, has been suggested to play an important role in inflammatory and fibroproliferative processes. In preterm infants, the development of bronchopulmonary dysplasia (BPD) is characterized by early pulmonary inflammation and subsequent interstitial fibrosis. High pulmonary trypsin-2 has been shown to be associated with the development of BPD. We studied the expression and distribution of PAR(2) and trypsin-2 by immunohistochemistry in autopsy lung specimens of fetuses (n = 10), of preterm infants who died of acute or prolonged respiratory distress syndrome (RDS) (n = 8 and n = 7, respectively) or BPD (n = 6), and of newborn infants without lung disease (n = 5) who served as controls. In prolonged RDS and BPD, PAR(2) immunoreactivity was significantly higher in bronchial epithelium when compared with infants without pulmonary pathology (p < 0.05 and p < 0.005, respectively). In alveolar epithelium, expression of PAR(2) was elevated in prolonged RDS when compared with newborn infants without pulmonary pathology (p < 0.05). Moreover, strong expression of PAR(2) was detected in myofibroblasts of thickened and fibrotic alveolar walls in prolonged RDS or BPD. Trypsin-2 was co-localized with PAR(2) in bronchoalveolar epithelium. These findings suggest that PAR(2), possibly activated by trypsin-2, may participate in inflammation and fibroproliferation associated with progression of RDS toward BPD in preterm infants. PMID:15879299

  12. Pulmonary Hypertension

    MedlinePlus

    Pulmonary hypertension (PH) is high blood pressure in the arteries to your lungs. It is a serious condition. If you have ... and you can develop heart failure. Symptoms of PH include Shortness of breath during routine activity, such ...

  13. Pulmonary aspergilloma

    MedlinePlus

    ... Coccidioidomycosis Cystic fibrosis Histoplasmosis Lung abscess Lung cancer Sarcoidosis See also: Aspergillosis Symptoms You may not have ... fibrosis Histoplasmosis Lung cancer - small cell Pulmonary tuberculosis Sarcoidosis Update Date 8/31/2014 Updated by: Jatin ...

  14. Pulmonary Atresia

    MedlinePlus

    ... to repair the defect. Return to main topic: Congenital Heart Disease See on other sites: MedlinePlus https://medlineplus.gov/ency/article/001091.htm Pulmonary atresia American Heart Association www. ...

  15. Pulmonary atresia

    MedlinePlus

    ... blood flow from the right ventricle (right side pumping chamber) to the lungs. In pulmonary atresia, a ... Reconstructing the heart as a single ventricle (1 pumping chamber instead of 2) Heart transplant

  16. Pulmonary atresia

    MedlinePlus

    ... form of heart disease that occurs from birth (congenital heart disease), in which the pulmonary valve does not form ... As with most congenital heart diseases, there is no known cause of ... is associated with another type of congenital heart defect ...

  17. [Pulmonary rehabilitation].

    PubMed

    Senjyu, Hideaki

    2016-05-01

    Pulmonary rehabilitation commenced in Japan in 1957. However, the development of pulmonary rehabilitation took a long time due to the lack of the necessary health and medical services. Pulmonary rehabilitation is a comprehensive intervention based on a thorough patient assessment followed by patient-tailored therapies that include, but are not limited to, exercise training, education, and behavior change, designed to improve the physical and psychological condition of people with chronic respiratory disease and to promote the long-term adherence to health-enhancing behaviors. The benefits of pulmonary rehabilitation include a decrease in breathlessness and an improvement in exercise tolerance. It is important that the gains in exercise tolerance lead to an increase in daily physical activity. PMID:27254948

  18. Pulmonary Embolism

    MedlinePlus

    ... is a sudden blockage in a lung artery. The cause is usually a blood clot in the leg called a deep vein thrombosis that breaks loose and travels through the bloodstream to the lung. Pulmonary embolism is a ...

  19. First Description of a New Disease in Rainbow Trout (Oncorhynchus mykiss (Walbaum)) Similar to Heart and Skeletal Muscle Inflammation (HSMI) and Detection of a Gene Sequence Related to Piscine Orthoreovirus (PRV).

    PubMed

    Olsen, Anne Berit; Hjortaas, Monika; Tengs, Torstein; Hellberg, Hege; Johansen, Renate

    2015-01-01

    In fall 2013, anorexia, lethargy and mortalities up to 10-12,000 dead fish per week were observed in rainbow trout Oncorhynchus mykiss in three fresh water hatcheries (salinity 0-1 ‰) on the west coast of Norway. The fish (25-100 g) showed signs of circulatory failure with haemorrhages, ascites and anaemia. The histopathological findings comprised inflammation of the heart and red muscle and liver necrosis. The affected fish had a common origin. Disease and mortalities were also observed up to four months after sea water transfer. Microbiological examination did not reveal presence of any known pathogens. Based on histopathological similarities to heart and skeletal inflammation (HSMI) in Atlantic salmon, associated with piscine orthoreovirus (PRV), extended investigations to detect a virus within the family Reoviridae were conducted. By the use of primer sets targeting the PRV genome, a sequence with 85% identity to a part of segment S1 of PRV was obtained. Further analysis showed that the virus sequence could only be aligned with PRV and no other reoviruses both on amino acid and nucleotide level. Two PCR assays were developed for specific detection of the virus. High amounts of the virus were detected in diseased fish at all affected farms and low amounts were detected in low prevalence at the broodfish farms. Further investigations are needed to determine if the virus is associated with the new disease in rainbow trout and to further characterize the virus with respect to classification, relationship with PRV, virulence, pathology and epidemiology. PMID:26176955

  20. First Description of a New Disease in Rainbow Trout (Oncorhynchus mykiss (Walbaum)) Similar to Heart and Skeletal Muscle Inflammation (HSMI) and Detection of a Gene Sequence Related to Piscine Orthoreovirus (PRV)

    PubMed Central

    Olsen, Anne Berit; Hjortaas, Monika; Tengs, Torstein; Hellberg, Hege; Johansen, Renate

    2015-01-01

    In fall 2013, anorexia, lethargy and mortalities up to 10-12,000 dead fish per week were observed in rainbow trout Oncorhynchus mykiss in three fresh water hatcheries (salinity 0-1 ‰) on the west coast of Norway. The fish (25-100 g) showed signs of circulatory failure with haemorrhages, ascites and anaemia. The histopathological findings comprised inflammation of the heart and red muscle and liver necrosis. The affected fish had a common origin. Disease and mortalities were also observed up to four months after sea water transfer. Microbiological examination did not reveal presence of any known pathogens. Based on histopathological similarities to heart and skeletal inflammation (HSMI) in Atlantic salmon, associated with piscine orthoreovirus (PRV), extended investigations to detect a virus within the family Reoviridae were conducted. By the use of primer sets targeting the PRV genome, a sequence with 85% identity to a part of segment S1 of PRV was obtained. Further analysis showed that the virus sequence could only be aligned with PRV and no other reoviruses both on amino acid and nucleotide level. Two PCR assays were developed for specific detection of the virus. High amounts of the virus were detected in diseased fish at all affected farms and low amounts were detected in low prevalence at the broodfish farms. Further investigations are needed to determine if the virus is associated with the new disease in rainbow trout and to further characterize the virus with respect to classification, relationship with PRV, virulence, pathology and epidemiology. PMID:26176955

  1. Pulmonary Edema

    PubMed Central

    Tanser, Paul H.

    1980-01-01

    The physician who deals with pulmonary edema from a pathophysiologic basis will seldom make a diagnostic or therapeutic error. Recent additions to preload and afterload therapy have greatly helped in the emergency and ambulatory treatment of pulmonary edema due to left heart failure. Careful follow-up and patient self-monitoring are the most effective means of reducing hospitalization of chronic heart failure patients. PMID:21293700

  2. Pulmonary immunostimulation with MALP-2 in influenza virus-infected mice increases survival after pneumococcal superinfection.

    PubMed

    Reppe, Katrin; Radünzel, Peter; Dietert, Kristina; Tschernig, Thomas; Wolff, Thorsten; Hammerschmidt, Sven; Gruber, Achim D; Suttorp, Norbert; Witzenrath, Martin

    2015-12-01

    Pulmonary infection with influenza virus is frequently complicated by bacterial superinfection, with Streptococcus pneumoniae being the most prevalent causal pathogen and hence often associated with high morbidity and mortality rates. Local immunosuppression due to pulmonary influenza virus infection has been identified as a major cause of the pathogenesis of secondary bacterial lung infection. Thus, specific local stimulation of the pulmonary innate immune system in subjects with influenza virus infection might improve the host defense against secondary bacterial pathogens. In the present study, we examined the effect of pulmonary immunostimulation with Toll-like receptor 2 (TLR-2)-stimulating macrophage-activating lipopeptide 2 (MALP-2) in influenza A virus (IAV)-infected mice on the course of subsequent pneumococcal superinfection. Female C57BL/6N mice infected with IAV were treated with MALP-2 on day 5 and challenged with S. pneumoniae on day 6. Intratracheal MALP-2 application increased proinflammatory cytokine and chemokine release and enhanced the recruitment of leukocytes, mainly neutrophils, into the alveolar space of IAV-infected mice, without detectable systemic side effects. Local pulmonary instillation of MALP-2 in IAV-infected mice 24 h before transnasal pneumococcal infection considerably reduced the bacterial number in the lung tissue without inducing exaggerated inflammation. The pulmonary viral load was not altered by MALP-2. Clinically, MALP-2 treatment of IAV-infected mice increased survival rates and reduced hypothermia and body weight loss after pneumococcal superinfection compared to those of untreated coinfected mice. In conclusion, local immunostimulation with MALP-2 in influenza virus-infected mice improved pulmonary bacterial elimination and increased survival after subsequent pneumococcal superinfection. PMID:26371127

  3. Temporal sequence of pulmonary and systemic inflammatory responses to graded polymicrobial peritonitis in mice.

    PubMed

    Stamme, C; Bundschuh, D S; Hartung, T; Gebert, U; Wollin, L; Nüsing, R; Wendel, A; Uhlig, S

    1999-11-01

    The lungs are the remote organ most commonly affected in human peritonitis. The major goals of this study were to define the dose- and time-dependent relationship between graded septic peritonitis and systemic and pulmonary inflammatory responses in mice. BALB/c mice were treated with intraperitoneal polymicrobial inoculi and sacrificed at 3, 12, and 24 h. The treatment protocol resulted in distinct groups of animals with respect to mortality rate, kinetics, and concentrations of a broad spectrum of pro- and anti-inflammatory endogenous mediators, intrapulmonary bacterial accumulation, and static lung compliance. In sublethally infected mice, pulmonary bacterial proliferation was controlled. Levels of monocyte chemoattractant protein-1 (MCP-1), interleukin-10, interleukin-6, granulocyte colony-stimulating factor (G-CSF), and tumor necrosis factor (TNF) in plasma were elevated 3 h after infection exclusively. At 3 h, MCP-1, gamma interferon, and TNF were detected in extracts of pulmonary tissue or in bronchoalveolar lavage (BAL) fluid. Static lung compliance (C(st)) was transiently decreased at 12 h. In contrast, in lethally infected mice pulmonary bacterial proliferation was not contained. Concentrations of MCP-1, G-CSF, and TNF in plasma were maximal at 24 h, as were pulmonary MCP-1 levels. Lung myeloperoxidase activity was increased at 3, 12, and 24 h. C(st) was reduced after 3 h and did not reach control values at 24 h. Pulmonary cyclooxygenase-2 mRNA and eicosanoids in BAL fluid and plasma were elevated at 3 and 24 h. This study shows that polymicrobial peritonitis in mice leads to dose-dependent systemic and pulmonary inflammation accompanied by a decrease in lung compliance. PMID:10531211

  4. Pulmonary Immunostimulation with MALP-2 in Influenza Virus-Infected Mice Increases Survival after Pneumococcal Superinfection

    PubMed Central

    Reppe, Katrin; Radünzel, Peter; Dietert, Kristina; Tschernig, Thomas; Wolff, Thorsten; Hammerschmidt, Sven; Gruber, Achim D.; Suttorp, Norbert

    2015-01-01

    Pulmonary infection with influenza virus is frequently complicated by bacterial superinfection, with Streptococcus pneumoniae being the most prevalent causal pathogen and hence often associated with high morbidity and mortality rates. Local immunosuppression due to pulmonary influenza virus infection has been identified as a major cause of the pathogenesis of secondary bacterial lung infection. Thus, specific local stimulation of the pulmonary innate immune system in subjects with influenza virus infection might improve the host defense against secondary bacterial pathogens. In the present study, we examined the effect of pulmonary immunostimulation with Toll-like receptor 2 (TLR-2)-stimulating macrophage-activating lipopeptide 2 (MALP-2) in influenza A virus (IAV)-infected mice on the course of subsequent pneumococcal superinfection. Female C57BL/6N mice infected with IAV were treated with MALP-2 on day 5 and challenged with S. pneumoniae on day 6. Intratracheal MALP-2 application increased proinflammatory cytokine and chemokine release and enhanced the recruitment of leukocytes, mainly neutrophils, into the alveolar space of IAV-infected mice, without detectable systemic side effects. Local pulmonary instillation of MALP-2 in IAV-infected mice 24 h before transnasal pneumococcal infection considerably reduced the bacterial number in the lung tissue without inducing exaggerated inflammation. The pulmonary viral load was not altered by MALP-2. Clinically, MALP-2 treatment of IAV-infected mice increased survival rates and reduced hypothermia and body weight loss after pneumococcal superinfection compared to those of untreated coinfected mice. In conclusion, local immunostimulation with MALP-2 in influenza virus-infected mice improved pulmonary bacterial elimination and increased survival after subsequent pneumococcal superinfection. PMID:26371127

  5. Results of a Quality Assurance Program for Detection of Cytomegalovirus Infection in the Pediatric Pulmonary and Cardiovascular Complications of Vertically Transmitted Human Immunodeficiency Virus Infection Study

    PubMed Central

    Demmler, Gail J.; Istas, Allison; Easley, Kirk A.; Kovacs, Andrea

    2000-01-01

    A quality assurance program was established by the Pediatric Pulmonary and Cardiovascular Complications of Vertically Transmitted Human Immunodeficiency Virus Type 1 Infection Study Group for monitoring cytomegalovirus (CMV) antibody and culture results obtained from nine different participating laboratories. Over a 3-year period, every 6 months, each laboratory was sent by the designated reference laboratory six coded samples: three urine samples for CMV detection and three serum samples for CMV immunoglobulin G (IgG) and IgM antibody determination. Overall, the participating laboratories exhibited the following composite performance statistics, relative to the reference laboratory (sensitivity and specificity, respectively): 100 and 97.4% for CMV cultures, 95.5 and 94.4% for CMV IgG antibody assays, and 92.6 and 90.2% for CMV IgM assays. The practice of having individual laboratories use different commercial methods and reagents for CMV detection and antibody determination was successfully monitored and provided useful information on the comparable performance of different assays. PMID:11060049

  6. High frequency edge enhancement in the detection of fine pulmonary lines. Parity between storage phosphor digital images and conventional chest radiography.

    PubMed

    Oestmann, J W; Greene, R; Rubens, J R; Pile-Spellman, E; Hall, D; Robertson, C; Llewellyn, H J; McCarthy, K A; Potsaid, M; White, G

    1989-09-01

    Fine linear structures represent a severe test of the minimum spatial resolution that is needed for digital chest imaging. We studied the comparative observer performance of storage phosphor digital imaging (1760 X 2140 pixel matrix, 10 bits deep), and conventional radiography (Lanex medium screen, Ortho C film) in the detection of simulated fine pulmonary lines superimposed on the normal chest when exposure factors were identical (20mR skin entrance dose at 141 kVp). Receiver operating characteristics analysis of 2160 observations by six readers found that high frequency edge-enhanced digital images (ROC area: 0.78 +/- 0.06) performed better than unenhanced digital images (ROC area: 0.70 +/- 0.07) (P less than 0.01 for paired t-test), and that edge enhanced digital images performed on a par with conventional radiography (ROC area: 0.78 +/- 0.09). We conclude that for the detection of fine linear structures, storage phosphor digital images can perform on a par with higher resolution conventional chest radiographs when a high frequency edge-enhancement algorithm is employed. PMID:2807816

  7. Detection of Aspergillus fumigatus in a rat model of invasive pulmonary aspergillosis by real-time nucleic acid sequence-based amplification.

    PubMed

    Zhao, Yanan; Park, Steven; Warn, Peter; Shrief, Raghdaa; Harrison, Elizabeth; Perlin, David S

    2010-04-01

    Rapid and sensitive detection of Aspergillus from clinical samples may facilitate the early diagnosis of invasive pulmonary aspergillosis (IPA). A real-time nucleic acid sequence-based amplification (NASBA) method was investigated by use of an inhalational rat model of IPA. Immunosuppressed male Sprague-Dawley rats were exposed to Aspergillus fumigatus spores for an hour in an aerosol chamber. Bronchoalveolar lavage (BAL) fluid, lung tissues, and whole blood were collected from five infected rats at 1, 24, 48, 72, and 96 h postinfection and five uninfected rats at the end of the experiment. Total nucleic acid (TNA) was extracted on an easyMAG instrument. A primer-molecular beacon set targeting 28S rRNA was designed to detect Aspergillus spp. The results were compared to those of quantitative PCR (qPCR) (18S rDNA) and quantitative culture. The analytical sensitivity of the real-time NASBA assay was <1 CFU/assay. A linear range of detection was demonstrated over 5 log units of conidia (10 to 10(5) spores). Both NASBA and qPCR showed a progressive increase in lung tissue burdens, while the CFU counts were stable over time. The fungal burdens in BAL fluid were more variable and not indicative of a progressive infection. The results of both real-time assays correlated well for both sample types (r = 0.869 and P < 0.0001 for lung tissue, r = 0.887 and P < 0.0001 for BAL fluid). For all whole-blood specimens, NASBA identified Aspergillus-positive samples in the group from which samples were collected at 72 h postinfection (three of five samples) and the group from which samples were collected at 96 h postinfection (five of five samples), but no positive results were obtained by culture or PCR. Real-time NASBA is highly sensitive and useful for the detection of Aspergillus in an experimental model of IPA. PMID:20129972

  8. Detection of differentially regulated subsarcolemmal calcium signals activated by vasoactive agonists in rat pulmonary artery smooth muscle cells

    PubMed Central

    Subedi, Krishna P.; Paudel, Omkar

    2013-01-01

    Intracellular calcium (Ca2+) plays pivotal roles in distinct cellular functions through global and local signaling in various subcellular compartments, and subcellular Ca2+ signal is the key factor for independent regulation of different cellular functions. In vascular smooth muscle cells, subsarcolemmal Ca2+ is an important regulator of excitation-contraction coupling, and nucleoplasmic Ca2+ is crucial for excitation-transcription coupling. However, information on Ca2+ signals in these subcellular compartments is limited. To study the regulation of the subcellular Ca2+ signals, genetically encoded Ca2+ indicators (cameleon), D3cpv, targeting the plasma membrane (PM), cytoplasm, and nucleoplasm were transfected into rat pulmonary arterial smooth muscle cells (PASMCs) and Ca2+ signals were monitored using laser scanning confocal microscopy. In situ calibration showed that the Kd for Ca2+ of D3cpv was comparable in the cytoplasm and nucleoplasm, but it was slightly higher in the PM. Stimulation of digitonin-permeabilized cells with 1,4,5-trisphosphate (IP3) elicited a transient elevation of Ca2+ concentration with similar amplitude and kinetics in the nucleoplasm and cytoplasm. Activation of G protein-coupled receptors by endothelin-1 and angiotensin II preferentially elevated the subsarcolemmal Ca2+ signal with higher amplitude in the PM region than the nucleoplasm and cytoplasm. In contrast, the receptor tyrosine kinase activator, platelet-derived growth factor, elicited Ca2+ signals with similar amplitudes in all three regions, except that the rise-time and decay-time were slightly slower in the PM region. These data clearly revealed compartmentalization of Ca2+ signals in the subsarcolemmal regions and provide the basis for further investigations of differential regulation of subcellular Ca2+ signals in PASMCs. PMID:24352334

  9. DNA Damage and Pulmonary Hypertension

    PubMed Central

    Ranchoux, Benoît; Meloche, Jolyane; Paulin, Roxane; Boucherat, Olivier; Provencher, Steeve; Bonnet, Sébastien

    2016-01-01

    Pulmonary hypertension (PH) is defined by a mean pulmonary arterial pressure over 25 mmHg at rest and is diagnosed by right heart catheterization. Among the different groups of PH, pulmonary arterial hypertension (PAH) is characterized by a progressive obstruction of distal pulmonary arteries, related to endothelial cell dysfunction and vascular cell proliferation, which leads to an increased pulmonary vascular resistance, right ventricular hypertrophy, and right heart failure. Although the primary trigger of PAH remains unknown, oxidative stress and inflammation have been shown to play a key role in the development and progression of vascular remodeling. These factors are known to increase DNA damage that might favor the emergence of the proliferative and apoptosis-resistant phenotype observed in PAH vascular cells. High levels of DNA damage were reported to occur in PAH lungs and remodeled arteries as well as in animal models of PH. Moreover, recent studies have demonstrated that impaired DNA-response mechanisms may lead to an increased mutagen sensitivity in PAH patients. Finally, PAH was linked with decreased breast cancer 1 protein (BRCA1) and DNA topoisomerase 2-binding protein 1 (TopBP1) expression, both involved in maintaining genome integrity. This review aims to provide an overview of recent evidence of DNA damage and DNA repair deficiency and their implication in PAH pathogenesis. PMID:27338373

  10. DNA Damage and Pulmonary Hypertension.

    PubMed

    Ranchoux, Benoît; Meloche, Jolyane; Paulin, Roxane; Boucherat, Olivier; Provencher, Steeve; Bonnet, Sébastien

    2016-01-01

    Pulmonary hypertension (PH) is defined by a mean pulmonary arterial pressure over 25 mmHg at rest and is diagnosed by right heart catheterization. Among the different groups of PH, pulmonary arterial hypertension (PAH) is characterized by a progressive obstruction of distal pulmonary arteries, related to endothelial cell dysfunction and vascular cell proliferation, which leads to an increased pulmonary vascular resistance, right ventricular hypertrophy, and right heart failure. Although the primary trigger of PAH remains unknown, oxidative stress and inflammation have been shown to play a key role in the development and progression of vascular remodeling. These factors are known to increase DNA damage that might favor the emergence of the proliferative and apoptosis-resistant phenotype observed in PAH vascular cells. High levels of DNA damage were reported to occur in PAH lungs and remodeled arteries as well as in animal models of PH. Moreover, recent studies have demonstrated that impaired DNA-response mechanisms may lead to an increased mutagen sensitivity in PAH patients. Finally, PAH was linked with decreased breast cancer 1 protein (BRCA1) and DNA topoisomerase 2-binding protein 1 (TopBP1) expression, both involved in maintaining genome integrity. This review aims to provide an overview of recent evidence of DNA damage and DNA repair deficiency and their implication in PAH pathogenesis. PMID:27338373

  11. Types of Pulmonary Hypertension

    MedlinePlus

    ... from the NHLBI on Twitter. Types of Pulmonary Hypertension The World Health Organization divides pulmonary hypertension (PH) ... are called pulmonary hypertension.) Group 1 Pulmonary Arterial Hypertension Group 1 PAH includes: PAH that has no ...

  12. Pulmonary embolism

    SciTech Connect

    Dunnick, N.R.; Newman, G.E.; Perlmutt, L.M.; Braun, S.D.

    1988-11-01

    Pulmonary embolism is a common medical problem whose incidence is likely to increase in our aging population. Although it is life-threatening, effective therapy exists. The treatment is not, however, without significant complications. Thus, accurate diagnosis is important. Unfortunately, the clinical manifestations of pulmonary embolism are nonspecific. Furthermore, in many patients the symptoms of an acute embolism are superimposed on underlying chronic heart or lung disease. Thus, a high index of suspicion is needed to identify pulmonary emboli. Laboratory parameters, including arterial oxygen tensions and electrocardiography, are as nonspecific as the clinical signs. They may be more useful in excluding another process than in diagnosing pulmonary embolism. The first radiologic examination is the chest radiograph, but the clinical symptoms are frequently out of proportion to the findings on the chest films. Classic manifestations of pulmonary embolism on the chest radiograph include a wedge-shaped peripheral opacity and a segmental or lobar diminution in vascularity with prominent central arteries. However, these findings are not commonly seen and, even when present, are not specific. Even less specific findings include cardiomegaly, pulmonary infiltrate, elevation of a hemidiaphragm, and pleural effusion. Many patients with pulmonary embolism may have a normal chest radiograph. The chest radiograph is essential, however, for two purposes. First, it may identify another cause of the patient's symptoms, such as a rib fracture, dissecting aortic aneurysm, or pneumothorax. Second, a chest radiograph is essential to interpretation of the radionuclide V/Q scan. The perfusion scan accurately reflects the perfusion of the lung. However, a perfusion defect may result from a variety of etiologies. Any process such as vascular stenosis or compression by tumor may restrict blood flow. 84 references.

  13. Glucagon like peptide-1 attenuates bleomycin-induced pulmonary fibrosis, involving the inactivation of NF-κB in mice.

    PubMed

    Gou, Si; Zhu, Tao; Wang, Wei; Xiao, Min; Wang, Xi-chen; Chen, Zhong-hua

    2014-10-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with high mortality and poor prognosis. Previous studies confirmed that NF-κB plays a critical role in the pathogenesis of pulmonary fibrosis and glucagon like peptide-1 (GLP-1) has a property of anti-inflammation by inactivation of NF-κB. Furthermore, the GLP-1 receptor was detected in the lung tissues. Our aim was to investigate the potential value and mechanisms of GLP-1 on BLM-induced pulmonary fibrosis in mice. Mice with BLM-induced pulmonary fibrosis were treated with or without GLP-1 administration. 28 days after BLM infusion, the number of total cells, macrophages, neutrophils, lymphocytes, and the content of TGF-β1 in BALF were measured. Hematoxylin-eosin (HE) staining and Masson's trichrome (MT) staining were performed. The Ashcroft score and hydroxyproline content were analyzed. RT-qPCR and western blot were used to evaluate the expression of α-SMA and VCAM-1. The phosphorylation of NF-κB p65 was also assessed by western blot. DNA binding of NF-κB p65 was measured through Trans(AM) p65 transcription factor ELISA kit. GLP-1 reduced inflammatory cell infiltration and the content of TGF-β1 in BLAF in mice with BLM injection. The Ashcroft score and hydroxyproline content were decreased by GLP-1 administration. Meanwhile, BLM-induced overexpression of α-SMA and VCAM-1 were blocked by GLP-1 treatment in mice. GLP-1 also reduced the ratio of phosphor-NF-κB p65/total-NF-κB p65 and NF-κB p65 DNA binding activity in BLM-induced pulmonary fibrosis in mice. Our data found that BLM-induced lung inflammation and pulmonary fibrosis were significantly alleviated by GLP-1 treatment in mice, possibly through inactivation of NF-κB. PMID:25111852

  14. [Pulmonary function in patients with disseminated pulmonary tuberculosis].

    PubMed

    Nefedov, V B; Shergina, E A; Popova, L A

    2007-01-01

    Vital capacity (VC), forced vital capacity (FVC), forced expiratory volume in 1 second (FEV1), FEV1/VC%, PEF, MEF25%, MEF50%, MEF75%, TLS, TGV, pulmonary residual volume (PRV), Raw, Rin, Rex, DLCO-SB, DLCO-SS, PaO2, and PaCO2 were determined in 29 patients with disseminated pulmonary tuberculosis. Pulmonary dysfunction was detected in 93.1% of the patients. Changes were found in lung volumes and capacities in 65.5%, impaired bronchial patency and pulmonary gas exchange dysfunction were in 79.3 and 37.9%, respectively. The changes in pulmonary volumes and capacities appeared as increased PRV, decreased VC, FVC, and TLS, decreased and increased TGV; impaired bronchial patency presented as decreased PEF, MEF25%, MEF50%, MEF75%, and FEV1/VC% and increased Raw, Rin, and Rex; pulmonary gas exchange dysfunction manifested itself as reduced DLCO-SS and PaO2 and decreased and increased PaCO2. The observed functional changes varied from slight to significant and pronounced with a preponderance of small disorders, a lower detection rate of significant disorders, and rare detection of very pronounced ones. PMID:18041129

  15. Pulmonary vasculature in COPD: The silent component.

    PubMed

    Blanco, Isabel; Piccari, Lucilla; Barberà, Joan Albert

    2016-08-01

    Chronic obstructive pulmonary disease (COPD) is characterized by airflow obstruction that results from an inflammatory process affecting the airways and lung parenchyma. Despite major abnormalities taking place in bronchial and alveolar structures, changes in pulmonary vessels also represent an important component of the disease. Alterations in vessel structure are highly prevalent and abnormalities in their function impair gas exchange and may result in pulmonary hypertension (PH), an important complication of the disease associated with reduced survival and worse clinical course. The prevalence of PH is high in COPD, particularly in advanced stages, although it remains of mild to moderate severity in the majority of cases. Endothelial dysfunction, with imbalance between vasodilator/vasoconstrictive mediators, is a key determinant of changes taking place in pulmonary vasculature in COPD. Cigarette smoke products may perturb endothelial cells and play a critical role in initiating vascular changes. The concurrence of inflammation, hypoxia and emphysema further contributes to vascular damage and to the development of PH. The use of drugs that target endothelium-dependent signalling pathways, currently employed in pulmonary arterial hypertension, is discouraged in COPD due to the lack of efficacy observed in randomized clinical trials and because there is compelling evidence indicating that these drugs may worsen pulmonary gas exchange. The subgroup of patients with severe PH should be ideally managed in centres with expertise in both PH and chronic lung diseases because alterations of pulmonary vasculature might resemble those observed in pulmonary arterial hypertension. Because this condition entails poor prognosis, it warrants specialist treatment. PMID:27028849

  16. Immunohistochemical detection of IgM and IgG in lung tissue of dogs with leptospiral pulmonary haemorrhage syndrome (LPHS)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leptospiral pulmonary haemorrhage syndrome (LPHS) is a severe form of leptospirosis. Pathogenic mechanisms are poorly understood. Lung tissues from 26 dogs with LPHS, 5 dogs with pulmonary haemorrhage due to other causes and 6 healthy lungs were labelled for IgG, IgM and leptospiral antigens. Three ...

  17. Metabolism and bioenergetics in the right ventricle and pulmonary vasculature in pulmonary hypertension

    PubMed Central

    Archer, Stephen L.; Fang, Yong-Hu; Ryan, John J.; Piao, Lin

    2013-01-01

    Pulmonary arterial hypertension (PAH) is a syndrome in which pulmonary vascular cross sectional area and compliance are reduced by vasoconstriction, vascular remodeling, and inflammation. Vascular remodeling results in part from increased proliferation and impaired apoptosis of vascular cells. The resulting increase in afterload promotes right ventricular hypertrophy (RVH) and RV failure. Recently identified mitochondrial-metabolic abnormalities in PAH, notably pyruvate dehydrogenase kinase-mediated inhibition of pyruvate dehydrogenase (PDH), result in aerobic glycolysis in both the lung vasculature and RV. This glycolytic shift has diagnostic importance since it is detectable early in experimental PAH by increased lung and RV uptake of 18F-fluorodeoxyglucose on positron emission tomography. The metabolic shift also has pathophysiologic and therapeutic relevance. In RV myocytes, the glycolytic switch reduces contractility while in the vasculature it renders cells hyperproliferative and apoptosis-resistant. Reactivation of PDH can be achieved directly by PDK inhibition (using dichloroacetate), or indirectly via activating the Randle cycle, using inhibitors of fatty acid oxidation (FAO), trimetazidine and ranolazine. In experimental PAH and RVH, PDK inhibition increases glucose oxidation, enhances RV function, regresses pulmonary vascular disease by reducing proliferation and enhancing apoptosis, and restores cardiac repolarization. FAO inhibition increases RV glucose oxidation and RV function in experimental RVH. The trigger for metabolic remodeling in the RV and lung differ. In the RV, metabolic remodeling is likely triggered by ischemia (due to microvascular rarefaction and/or reduced coronary perfusion pressure). In the vasculature, metabolic changes result from redox-mediated activation of transcription factors, including hypoxia-inducible factor 1α, as a consequence of epigenetic silencing of SOD2 and/or changes in mitochondrial fission/fusion. Randomized

  18. Dendriform pulmonary ossification in a patient with mucoepidermoid carcinoma.

    PubMed

    Triki, Meriam; Kallel, Rim; Hentati, Abdessalem; Hentati, Yosr; Mnif, Hela; Boudawara, Tahya

    2016-07-01

    Dendriform pulmonary ossification is a chronic process characterized by the presence of heterotopic bone within the interstitium and alveolar walls. It usually occurs in the setting of chronic inflammation. We report an unusual case of a 54-year-old man with a history of relapsing Hodgkin lymphoma who was diagnosed with concomitant mucoepidermoid pulmonary carcinoma and dendriform ossifications. The radiological features were initially misinterpreted as post-radiation pulmonary fibrosis and bronchiectasis. The diagnosis was finally established after considering both the radiological and pathological findings. Dendriform pulmonary ossification is an under-recognized disease that should be considered in the differential diagnosis of lung chronic diseases. PMID:27252231

  19. [Pulmonary Langerhans cell histiocytosis].

    PubMed

    Popper, H H

    2015-09-01

    Pulmonary Langerhans cell histiocytosis is regarded as a reactive proliferation of the dendritic Langerhans cell population stimulated by chronic tobacco-derived plant proteins due to incomplete combustion but can also occur in childhood as a tumor-like systemic disease. Currently, both these forms cannot be morphologically distinguished. In the lungs a nodular proliferation of Langerhans cells occurs in the bronchial mucosa and also peripherally in the alveolar septa with an accompanying infiltration by eosinophilic granulocytes and destruction of the bronchial wall. Langerhans cells can be selectively detected with antibodies against CD1a and langerin. In the reactive isolated pulmonary form, abstinence from tobacco smoking in most patients leads to regression of infiltration and improvement of symptoms. In high-resolution computed tomography (HRCT) the small star-like scars can still be detected even after complete cessation of tobacco smoking. PMID:26289803

  20. The Effects and Mechanism of Atorvastatin on Pulmonary Hypertension Due to Left Heart Disease

    PubMed Central

    Wang, Qing; Guo, Yi-Zhan; Zhang, Yi-Tao; Xue, Jiao-Jie; Chen, Zhi-Chong; Cheng, Shi-Yao; Ou, Mao-De; Cheng, Kang-Lin; Zeng, Wei-Jie

    2016-01-01

    Background Pulmonary hypertension due to left heart disease (PH-LHD) is one of the most common forms of PH, termed group 2 PH. Atorvastatin exerts beneficial effects on the structural remodeling of the lung in ischemic heart failure. However, few studies have investigated the effects of atorvastatin on PH due to left heart failure induced by overload. Methods Group 2 PH was induced in animals by aortic banding. Rats (n = 20) were randomly divided into four groups: a control group (C), an aortic banding group (AOB63), an atorvastatin prevention group (AOB63/ATOR63) and an atorvastatin reversal group (AOB63/ATOR50-63). Atorvastatin was administered for 63 days after banding to the rats in the AOB63/ATOR63 group and from days 50 to 63 to the rats in the AOB63/ATOR50-63 group. Results Compared with the controls, significant increases in the mean pulmonary arterial pressure, pulmonary arteriolar medial thickening, biventricular cardiac hypertrophy, wet and dry weights of the right middle lung, percentage of PCNA-positive vascular smooth muscle cells, inflammatory infiltration and expression of RhoA and Rho-kinase II were observed in the AOB63 group, and these changes concomitant with significant decreases in the percentage of TUNEL-positive vascular smooth muscle cells. Treatment of the rats in the AOB63/ATOR63 group with atorvastatin at a dose of 10 mg/kg/day significantly decreased the mean pulmonary arterial pressure, right ventricular hypertrophy, pulmonary arteriolar medial thickness, inflammatory infiltration, percentage of PCNA-positive cells and pulmonary expression of RhoA and Rho-kinase II and significantly augmented the percentage of TUNEL-positive cells compared with the AOB63 group. However, only a trend of improvement in pulmonary vascular remodeling was detected in the AOB63/ATOR50-63 group. Conclusions Atorvastatin prevents pulmonary vascular remodeling in the PH-LHD model by down-regulating the expression of RhoA/Rho kinase, by inhibiting the

  1. Visualization of CAD results to the radiologist: influence of the marker type on radiologists's sensitivity for the detection of pulmonary nodules

    NASA Astrophysics Data System (ADS)

    Beyer, Florian; Diederich, Stefan; Heindel, Walter; Wormanns, Dag

    2007-03-01

    Purpose: The efficiency of the detection of pulmonary nodules by a radiologist with the help of CAD is influenced by the user interface of the system. Marker with a visually dominant appearance may distract the radiologist from other parts of the screen. Purpose was to analyse the influence of different CAD markers on radiologist's performance. Materials and methods: 10 radiologists analysed 150 pictures of chest CT slices. Every picture contained a CAD marker; five different types of markers were used - each respectively on 30 pictures (1: thick walled square, 2: thin walled circle, 3: small arrow, 4: pixel sized point on nodule, 5: very subtle change of colour). One hundred images contained one nodule: CAD markers marked this finding in 50 cases; in 50 cases a false positive finding was marked instead. The remaining 50 images contained no nodule but a marker of a false positive finding. The radiologists had to decide for each image if there was a nodule visible and either click on the nodule or on a button "no finding". Sensitivity and specificity were calculated for each marker type. Results: Mean sensitivity was 59%, 62%, 64%, 65% and 64% for marker 1 to 5, respectively. Specificity was 50%, 51%, 64%, 45% and 67%. In the cases with false positive findings sensitivity for detection of the unmarked nodule was 41%, 58%, 59%, 49% and 54%. New work to be presented: The study shows that the marker type influences radiologist's sensitivity and distraction from other findings. Conclusion: Of the tested markers a small arrow was most efficient for the presentation of the results to the radiologist.

  2. Fasting 2-Deoxy-2-[18F]fluoro-d-glucose Positron Emission Tomography to Detect Metabolic Changes in Pulmonary Arterial Hypertension Hearts over 1 Year

    PubMed Central

    Lundgrin, Erika L.; Park, Margaret M.; Sharp, Jacqueline; Tang, W.H. Wilson; Thomas, James D.; Asosingh, Kewal; Comhair, Suzy A.; DiFilippo, Frank P.; Neumann, Donald R.; Davis, Laura; Graham, Brian B.; Tuder, Rubin M.; Dostanic, Iva

    2013-01-01

    Background: The development of tools to monitor the right ventricle in pulmonary arterial hypertension (PAH) is of clinical importance. PAH is associated with pathologic expression of the transcription factor hypoxia-inducible factor (HIF)-1α, which induces glycolytic metabolism and mobilization of proangiogenic progenitor (CD34+CD133+) cells. We hypothesized that PAH cardiac myocytes have a HIF-related switch to glycolytic metabolism that can be detected with fasting 2-deoxy-2-[18F]fluoro-d-glucose positron emission tomography (FDG-PET) and that glucose uptake is informative for cardiac function. Methods: Six healthy control subjects and 14 patients with PAH underwent fasting FDG-PET and echocardiogram. Blood CD34+CD133+ cells and erythropoietin were measured as indicators of HIF activation. Twelve subjects in the PAH cohort underwent repeat studies 1 year later to determine if changes in FDG uptake were related to changes in echocardiographic parameters or to measures of HIF activation. Measurements and Results: FDG uptake in the right ventricle was higher in patients with PAH than in healthy control subjects and correlated with echocardiographic measures of cardiac dysfunction and circulating CD34+CD133+ cells but not erythropoietin. Among patients with PAH, FDG uptake was lower in those receiving β-adrenergic receptor blockers. Changes in FDG uptake over time were related to changes in echocardiographic parameters and CD34+CD133+ cell numbers. Immunohistochemistry of explanted PAH hearts of patients undergoing transplantation revealed that HIF-1α was present in myocyte nuclei but was weakly detectable in control hearts. Conclusions: PAH hearts have pathologic glycolytic metabolism that is quantitatively related to cardiac dysfunction over time, suggesting that metabolic imaging may be useful in therapeutic monitoring of patients. PMID:23509326

  3. Pulmonary Paragonimiasis: The Detection of a Worm Migration Track as a Diagnostic Clue for Uncertain Eosinophilic Pleural Effusion.

    PubMed

    Akaba, Tomohiro; Takeyama, Kiyoshi; Toriyama, Midori; Kubo, Ayako; Mizobuchi, Rie; Yamada, Takeshi; Tagaya, Etsuko; Kondo, Mitsuko; Sakai, Shuji; Tamaoki, Jun

    2016-01-01

    A 38-year-old woman with sustained right chest pain was referred to our hospital. She showed pleural effusion and peripheral blood eosinophilia. Thoracentesis revealed eosinophilic pleural effusion in which the smear, culture and cytological examinations were all negative. Although she had no notable dietary history, chest CT revealed linear opacities, which suggested the migration tracks of paragonimiasis. The diagnosis was confirmed using enzyme-linked immunosorbent assays, which showed elevated Paragonimus westermani and Paragonimus miyazakii antibody levels. After the initiation of praziquantel therapy, all clinical findings were promptly improved. The detection of a migration track may therefore be useful in the diagnosis of paragonimiasis. PMID:26935371

  4. Relevant Issues in the Pathology and Pathobiology of Pulmonary Hypertension

    PubMed Central

    Archer, Stephen L.; Dorfmüller, Peter; Erzurum, Serpil C.; Guignabert, Christophe; Michelakis, Evangelos; Rabinovitch, Marlene; Schermuly, Ralph; Stenmark, Kurt R.

    2014-01-01

    Knowledge of the pathobiology of pulmonary hypertension continues to accelerate. However, fundamental gaps remain in our understanding of the underlying pathological changes in pulmonary arteries and veins in the different forms of this syndrome. Although pulmonary hypertension primarily affects the arteries, venous disease is increasingly recognized as an important entity. Moreover, prognosis in pulmonary hypertension is determined largely by the status of the right ventricle, rather than the levels of pulmonary artery pressures. It is increasingly clear that while vasospasm plays a role, pulmonary hypertension is an obstructive lung panvasculopathy. Disordered metabolism and mitochondrial structure, inflammation, and dysregulation of growth factors lead to a proliferative, apoptosis-resistant state. These abnormalities may be acquired, genetically mediated as a result of mutations in bone morphogenetic protein receptor (BMPR)2 or activin-like kinase (Alk)-1 or epigenetically-inherited (as a result of epigenetic silencing of genes such as superoxide dismutase 2). There is a pressing need to better understand how the pathobiology leads to severe disease in some patients versus mild pulmonary hypertension in others. Recent recognition of a potential role of acquired abnormalities of mitochondrial metabolism in the right ventricular myocytes and pulmonary vascular cells suggests new therapeutic approaches, diagnostic modalities, and biomarkers. Finally, dissection of role of pulmonary inflammation in the initiation and promotion of pulmonary hypertension has revealed a complex yet fascinating interplay with pulmonary vascular remodeling, promising to lead to novel therapeutics and diagnostics. Emerging concepts are also relevant to the pathobiology of pulmonary hypertension, including a role for bone marrow and circulating progenitor cells and microRNAs. Continued interest in the interface of the genetic basis of pulmonary hypertension and cellular and molecular

  5. Improved algorithm for computerized detection and quantification of pulmonary emphysema at high-resolution computed tomography (HRCT)

    NASA Astrophysics Data System (ADS)

    Tylen, Ulf; Friman, Ola; Borga, Magnus; Angelhed, Jan-Erik

    2001-05-01

    Emphysema is characterized by destruction of lung tissue with development of small or large holes within the lung. These areas will have Hounsfield values (HU) approaching -1000. It is possible to detect and quantificate such areas using simple density mask technique. The edge enhancement reconstruction algorithm, gravity and motion of the heart and vessels during scanning causes artefacts, however. The purpose of our work was to construct an algorithm that detects such image artefacts and corrects them. The first step is to apply inverse filtering to the image removing much of the effect of the edge enhancement reconstruction algorithm. The next step implies computation of the antero-posterior density gradient caused by gravity and correction for that. Motion artefacts are in a third step corrected for by use of normalized averaging, thresholding and region growing. Twenty healthy volunteers were investigated, 10 with slight emphysema and 10 without. Using simple density mask technique it was not possible to separate persons with disease from those without. Our algorithm improved separation of the two groups considerably. Our algorithm needs further refinement, but may form a basis for further development of methods for computerized diagnosis and quantification of emphysema by HRCT.

  6. Detection and follow-up of chronic obstructive pulmonary disease (COPD) and risk factors in the Southern Cone of Latin America. the pulmonary risk in South America (PRISA) study

    PubMed Central

    2011-01-01

    Background The World Health Organization has estimated that by 2030, chronic obstructive pulmonary disease will be the third leading cause of death worldwide. Most knowledge of chronic obstructive pulmonary disease is based on studies performed in Europe or North America and little is known about the prevalence, patient characteristics and change in lung function over time in patients in developing countries, such as those of Latin America. This lack of knowledge is in sharp contrast to the high levels of tobacco consumption and exposure to biomass fuels exhibited in Latin America, both major risk factors for the development of chronic obstructive pulmonary disease. Studies have also demonstrated that most Latin American physicians frequently do not follow international chronic obstructive pulmonary disease diagnostic and treatment guidelines. The PRISA Study will expand the current knowledge regarding chronic obstructive pulmonary disease and risk factors in Argentina, Chile and Uruguay to inform policy makers and health professionals on the best policies and practices to address this condition. Methods/Design PRISA is an observational, prospective cohort study with at least four years of follow-up. In the first year, PRISA has employed a randomized three-staged stratified cluster sampling strategy to identify 6,000 subjects from Marcos Paz and Bariloche, Argentina, Temuco, Chile, and Canelones, Uruguay. Information, such as comorbidities, socioeconomic status and tobacco and biomass exposure, will be collected and spirometry, anthropometric measurements, blood sampling and electrocardiogram will be performed. In year four, subjects will have repeat measurements taken. Discussion There is no longitudinal data on chronic obstructive pulmonary disease incidence and risk factors in the southern cone of Latin America, therefore this population-based prospective cohort study will fill knowledge gaps in the prevalence and incidence of chronic obstructive pulmonary

  7. Klotho expression is reduced in COPD airway epithelial cells: effects on inflammation and oxidant injury

    PubMed Central

    Gao, Wei; Yuan, Cheng; Zhang, Jingying; Li, Lingling; Yu, Like; Wiegman, Coen H.; Barnes, Peter J.; Adcock, Ian M.; Huang, Mao

    2015-01-01

    COPD (chronic obstructive pulmonary disease) is associated with sustained inflammation, excessive injury, and accelerated lung aging. Human Klotho (KL) is an anti-aging protein that protects cells against inflammation and damage. In the present study, we quantified KL expression in the lungs of COPD patients and in an ozone-induced mouse model of COPD, and investigated the mechanisms that control KL expression and function in the airways. KL distribution and levels in human and mouse airways were measured by immunohistochemistry and Western blotting. The effect of CSE (cigarette smoke extract) on KL expression was detected in human bronchial epithelial cells. Moreover, the effect of KL on CSE-mediated inflammation and hydrogen peroxide-induced cellular injury/apoptosis was determined using siRNAs. KL expression was decreased in the lungs of smokers and further reduced in patients with COPD. Similarly, 6 weeks of exposure to ozone decreased KL levels in airway epithelial cells. CSE and TNFα (tumour necrosis factor α) decreased KL expression and release from airway epithelial cells, which was associated with enhanced pro-inflammatory cytokine expression. Moreover, KL depletion increased cell sensitivity to cigarette smoke-induced inflammation and oxidative stress-induced cell damage. These effects involved the NF-κB (nuclear factor κB), MAPK (mitogen-activated protein kinase) and Nrf2 (nuclear factor erythroid 2-related factor 2) pathways. Reduced KL expression in COPD airway epithelial cells was associated with increased oxidative stress, inflammation and apoptosis. These data provide new insights into the mechanisms associated with the accelerated lung aging in COPD development. PMID:26201096

  8. Klotho expression is reduced in COPD airway epithelial cells: effects on inflammation and oxidant injury.

    PubMed

    Gao, Wei; Yuan, Cheng; Zhang, Jingying; Li, Lingling; Yu, Like; Wiegman, Coen H; Barnes, Peter J; Adcock, Ian M; Huang, Mao; Yao, Xin

    2015-12-01

    COPD (chronic obstructive pulmonary disease) is associated with sustained inflammation, excessive injury, and accelerated lung aging. Human Klotho (KL) is an anti-aging protein that protects cells against inflammation and damage. In the present study, we quantified KL expression in the lungs of COPD patients and in an ozone-induced mouse model of COPD, and investigated the mechanisms that control KL expression and function in the airways. KL distribution and levels in human and mouse airways were measured by immunohistochemistry and Western blotting. The effect of CSE (cigarette smoke extract) on KL expression was detected in human bronchial epithelial cells. Moreover, the effect of KL on CSE-mediated inflammation and hydrogen peroxide-induced cellular injury/apoptosis was determined using siRNAs. KL expression was decreased in the lungs of smokers and further reduced in patients with COPD. Similarly, 6 weeks of exposure to ozone decreased KL levels in airway epithelial cells. CSE and TNFα (tumour necrosis factor α) decreased KL expression and release from airway epithelial cells, which was associated with enhanced pro-inflammatory cytokine expression. Moreover, KL depletion increased cell sensitivity to cigarette smoke-induced inflammation and oxidative stress-induced cell damage. These effects involved the NF-κB (nuclear factor κB), MAPK (mitogen-activated protein kinase) and Nrf2 (nuclear factor erythroid 2-related factor 2) pathways. Reduced KL expression in COPD airway epithelial cells was associated with increased oxidative stress, inflammation and apoptosis. These data provide new insights into the mechanisms associated with the accelerated lung aging in COPD development. PMID:26201096

  9. Persistence of LPS-induced lung inflammation in surfactant protein-C-deficient mice.

    PubMed

    Glasser, Stephan W; Maxfield, Melissa D; Ruetschilling, Teah L; Akinbi, Henry T; Baatz, John E; Kitzmiller, Joseph A; Page, Kristen; Xu, Yan; Bao, Erik L; Korfhagen, Thomas R

    2013-11-01

    Pulmonary surfactant protein-C (SP-C) gene-targeted mice (Sftpc(-/-)) develop progressive lung inflammation and remodeling. We hypothesized that SP-C deficiency reduces the ability to suppress repetitive inflammatory injury. Sftpc(+/+) and Sftpc(-/-) mice given three doses of bacterial LPS developed airway and airspace inflammation, which was more intense in the Sftpc(-/-) mice at 3 and 5 days after the final dose. Compared with Sftpc(+/+)mice, inflammatory injury persisted in the lungs of Sftpc(-/-) mice 30 days after the final LPS challenge. Sftpc(-/-) mice showed LPS-induced airway goblet cell hyperplasia with increased detection of Sam pointed Ets domain and FoxA3 transcription factors. Sftpc(-/-) type II alveolar epithelial cells had increased cytokine expression after LPS exposure relative to Sftpc(+/+) cells, indicating that type II cell dysfunction contributes to inflammatory sensitivity. Microarray analyses of isolated type II cells identified a pattern of enhanced expression of inflammatory genes consistent with an intrinsic low-level inflammation resulting from SP-C deficiency. SP-C-containing clinical surfactant extract (Survanta) or SP-C/phospholipid vesicles blocked LPS signaling through the LPS receptor (Toll-like receptor [TLR] 4/CD14/MD2) in human embryonic kidney 293T cells, indicating that SP-C blocks LPS-induced cytokine production by a TLR4-dependent mechanism. Phospholipid vesicles alone did not modify the TLR4 response. In vivo deficiency of SP-C leads to inflammation, increased cytokine production by type II cells, and persistent inflammation after repetitive LPS stimulation. PMID:23795648

  10. Pain related inflammation analysis using infrared images

    NASA Astrophysics Data System (ADS)

    Bhowmik, Mrinal Kanti; Bardhan, Shawli; Das, Kakali; Bhattacharjee, Debotosh; Nath, Satyabrata

    2016-05-01

    Medical Infrared Thermography (MIT) offers a potential non-invasive, non-contact and radiation free imaging modality for assessment of abnormal inflammation having pain in the human body. The assessment of inflammation mainly depends on the emission of heat from the skin surface. Arthritis is a disease of joint damage that generates inflammation in one or more anatomical joints of the body. Osteoarthritis (OA) is the most frequent appearing form of arthritis, and rheumatoid arthritis (RA) is the most threatening form of them. In this study, the inflammatory analysis has been performed on the infrared images of patients suffering from RA and OA. For the analysis, a dataset of 30 bilateral knee thermograms has been captured from the patient of RA and OA by following a thermogram acquisition standard. The thermograms are pre-processed, and areas of interest are extracted for further processing. The investigation of the spread of inflammation is performed along with the statistical analysis of the pre-processed thermograms. The objectives of the study include: i) Generation of a novel thermogram acquisition standard for inflammatory pain disease ii) Analysis of the spread of the inflammation related to RA and OA using K-means clustering. iii) First and second order statistical analysis of pre-processed thermograms. The conclusion reflects that, in most of the cases, RA oriented inflammation affects bilateral knees whereas inflammation related to OA present in the unilateral knee. Also due to the spread of inflammation in OA, contralateral asymmetries are detected through the statistical analysis.

  11. Chronic obstructive pulmonary disease.

    PubMed

    Barnes, Peter J; Burney, Peter G J; Silverman, Edwin K; Celli, Bartolome R; Vestbo, Jørgen; Wedzicha, Jadwiga A; Wouters, Emiel F M

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is a common disease with high global morbidity and mortality. COPD is characterized by poorly reversible airway obstruction, which is confirmed by spirometry, and includes obstruction of the small airways (chronic obstructive bronchiolitis) and emphysema, which lead to air trapping and shortness of breath in response to physical exertion. The most common risk factor for the development of COPD is cigarette smoking, but other environmental factors, such as exposure to indoor air pollutants - especially in developing countries - might influence COPD risk. Not all smokers develop COPD and the reasons for disease susceptibility in these individuals have not been fully elucidated. Although the mechanisms underlying COPD remain poorly understood, the disease is associated with chronic inflammation that is usually corticosteroid resistant. In addition, COPD involves accelerated ageing of the lungs and an abnormal repair mechanism that might be driven by oxidative stress. Acute exacerbations, which are mainly triggered by viral or bacterial infections, are important as they are linked to a poor prognosis. The mainstay of the management of stable disease is the use of inhaled long-acting bronchodilators, whereas corticosteroids are beneficial primarily in patients who have coexisting features of asthma, such as eosinophilic inflammation and more reversibility of airway obstruction. Apart from smoking cessation, no treatments reduce disease progression. More research is needed to better understand disease mechanisms and to develop new treatments that reduce disease activity and progression. PMID:27189863

  12. Pulmonary Hypertension

    MedlinePlus

    Pulmonary hypertension (PH) is high blood pressure in the arteries to your lungs. It is a serious condition. If you have it, the blood ... heart has to work harder to pump the blood through. Over time, your heart weakens and ... of PH include Shortness of breath during routine activity, such ...

  13. PULMONARY TOXICOLOGY

    EPA Science Inventory

    Pulmonary disease and dysfunction exact a tremendous health burden on society. In a recent survey of lung disease published by the American Lung Association in 2012, upwards of 10 million Americans were diagnosed with chronic bronchitis while over 4 million Americans had emphysem...

  14. Pulmonary ascariasis.

    PubMed

    Mukerjee, C M; Thompson, J E

    1979-07-28

    A case of pulmonary ascariasis is reported for the first time in Australia. Because of increasing immigration from countries which have a high incidence of ascariasis (especially those of South-East Asia), and increasing travel to Asian countries, the awareness of this infestation as a cause of respiratory disease may be of great importance. PMID:40103

  15. Pulmonary nocardiosis

    MedlinePlus

    ... infection from returning. Alternative Names Nocardiosis - pulmonary Images Respiratory system References Limper AH. Overview of pneumonia. In: Goldman L, Schafer AI, eds. Goldman's Cecil Medicine . 24th ed. Philadelphia, PA: ... of Respiratory Medicine . 5th ed. Philadelphia, PA: Elsevier Saunders; 2010: ...

  16. Pulmonary Hypertension

    MedlinePlus

    ... Anticoagulants (blood-thinning medicine) Calcium channel blockers Diuretics (water pills) Digoxin Your doctor will decide what type of medicine is right for you. In some cases, people who have pulmonary hypertension need surgical treatment. Surgical treatment options include a lung transplant and ...

  17. Usefulness of Intratracheal Instillation Studies for Estimating Nanoparticle-Induced Pulmonary Toxicity

    PubMed Central

    Morimoto, Yasuo; Izumi, Hiroto; Yoshiura, Yukiko; Fujishima, Kei; Yatera, Kazuhiro; Yamamoto, Kazuhiro

    2016-01-01

    Inhalation studies are the gold standard for the estimation of the harmful effects of respirable chemical substances, while there is limited evidence of the harmful effects of chemical substances by intratracheal instillation. We reviewed the effectiveness of intratracheal instillation studies for estimating the hazards of nanoparticles, mainly using papers in which both inhalation and intratracheal instillation studies were performed using the same nanoparticles. Compared to inhalation studies, there is a tendency in intratracheal instillation studies that pulmonary inflammation lasted longer in the lungs. A difference in pulmonary inflammation between high and low toxicity nanoparticles was observed in the intratracheal instillation studies, as in the inhalation studies. Among the endpoints of pulmonary toxicity, the kinetics of neutrophil counts, percentage of neutrophils, and chemokines for neutrophils and macrophages, heme oxygenase-1 (HO-1) in bronchoalveolar lavage fluid (BALF), reflected pulmonary inflammation, suggesting that these markers may be considered the predictive markers of pulmonary toxicity in both types of study. When comparing pulmonary inflammation between intratracheal instillation and inhalation studies under the same initial lung burden, there is a tendency that the inflammatory response following the intratracheal instillation of nanoparticles is greater than or equal to that following the inhalation of nanoparticles. If the difference in clearance in both studies is not large, the estimations of pulmonary toxicity are close. We suggest that intratracheal instillation studies can be useful for ranking the hazard of nanoparticles through pulmonary inflammation. PMID:26828483

  18. Exposure to traffic pollution, acute inflammation and autonomic response in a panel of car commuters

    PubMed Central

    Sarnat, Jeremy A.; Golan, Rachel; Greenwald, Roby; Raysoni, Amit U.; Kewada, Priya; Winquist, Andrea; Sarnat, Stefanie E.; Flanders, W. Dana; Mirabelli, Maria C.; Zora, Jennifer E.; Bergin, Michael H.; Yip, Fuyuen

    2015-01-01

    Background Exposure to traffic pollution has been linked to numerous adverse health endpoints. Despite this, limited data examining traffic exposures during realistic commutes and acute response exists. Objectives: We conducted the Atlanta Commuters Exposures (ACE-1) Study, an extensive panel-based exposure and health study, to measure chemically-resolved in-vehicle exposures and corresponding changes in acute oxidative stress, lipid peroxidation, pulmonary and systemic inflammation and autonomic response. Methods We recruited 42 adults (21 with and 21 without asthma) to conduct two 2-h scripted highway commutes during morning rush hour in the metropolitan Atlanta area. A suite of in-vehicle particulate components were measured in the subjects’ private vehicles. Biomarker measurements were conducted before, during, and immediately after the commutes and in 3 hourly intervals after commutes. Results At measurement time points within 3 h after the commute, we observed mild to pronounced elevations relative to baseline in exhaled nitric oxide, C-reactive-protein, and exhaled malondialdehyde, indicative of pulmonary and systemic inflammation and oxidative stress initiation, as well as decreases relative to baseline levels in the time-domain heart-rate variability parameters, SDNN and rMSSD, indicative of autonomic dysfunction. We did not observe any detectable changes in lung function measurements (FEV1, FVC), the frequency-domain heart-rate variability parameter or other systemic biomarkers of vascular injury. Water soluble organic carbon was associated with changes in eNO at all post-commute time-points (p < 0.0001). Conclusions Our results point to measureable changes in pulmonary and autonomic biomarkers following a scripted 2-h highway commute. PMID:24906070

  19. Modulation of lung inflammation by the Epstein-Barr virus protein Zta

    PubMed Central

    Guenther, James F.; Cameron, Jennifer E.; Nguyen, Hong T.; Wang, Yu; Sullivan, Deborah E.; Shan, Bin; Lasky, Joseph A.; Flemington, Erik K.

    2010-01-01

    Several studies have implicated gamma-herpesviruses, particularly Epstein-Barr virus (EBV), in the progression of idiopathic pulmonary fibrosis. The data presented here examine the possible role that EBV plays in the potentiation of this disease by evaluating the pulmonary response to expression of the EBV lytic transactivator protein Zta. Expression of Zta in the lungs of mice via adenovirus-mediated delivery (Adv-Zta) produced profibrogenic inflammation that appeared most pronounced by day 7 postexposure. Relative to mice exposed to control GFP-expressing adenovirus (Adv-GFP), mice exposed to Adv-Zta displayed evidence of lung injury and a large increase in inflammatory cells, predominantly neutrophils, recovered by bronchoalveolar lavage (BAL). Cytokine and mRNA profiling of the BAL fluid and cells recovered from Adv-Zta-treated mice revealed a Th2 and Th17 bias. mRNA profiles from Adv-Zta-infected lung epithelial cells revealed consistent induction of mRNAs encoding Th2 cytokines. Coexpression in transient assays of wild-type Zta, but not a DNA-binding-defective mutant Zta, activated expression of the IL-13 promoter in lung epithelial cells, and detection of IL-13 in Adv-Zta-treated mice correlated with expression of Zta. Induction of Th2 cytokines in Zta-expressing mice corresponded with alternative activation of macrophages. In cell culture and in mice, Zta repressed lung epithelial cell markers. Despite the profibrogenic character at day 7, the inflammation resolves by 28 days postexposure to Adv-Zta without evidence of fibrosis. These observations indicate that the EBV lytic transactivator protein Zta displays activity consistent with a pathogenic role in pulmonary fibrosis associated with herpesvirus infection. PMID:20817778

  20. Understanding the Impact of Infection, Inflammation, and Their Persistence in the Pathogenesis of Bronchopulmonary Dysplasia

    PubMed Central

    Balany, Jherna; Bhandari, Vineet

    2015-01-01

    The concerted interaction of genetic and environmental factors acts on the preterm human immature lung with inflammation being the common denominator leading to the multifactorial origin of the most common chronic lung disease in infants – ­bronchopulmonary dysplasia (BPD). Adverse perinatal exposure to infection/inflammation with added insults like invasive mecha nical ventilation, exposure to hyperoxia, and sepsis causes persistent immune dysregulation. In this review article, we have attempted to analyze and consolidate current knowledge about the role played by persistent prenatal and postnatal inflammation in the pathogenesis of BPD. While some parameters of the early inflammatory response (neutrophils, cytokines, etc.) may not be detectable after days to weeks of exposure to noxious stimuli, they have already initiated the signaling pathways of the inflammatory process/immune cascade and have affected permanent defects structurally and functionally in the BPD lungs. Hence, translational research aimed at prevention/amelioration of BPD needs to focus on dampening the inflammatory response at an early stage to prevent the cascade of events leading to lung injury with impaired healing resulting in the pathologic pulmonary phenotype of alveolar simplification and dysregulated vascularization characteristic of BPD. PMID:26734611

  1. An unusual cause of pulmonary artery pseudoaneurysm: acrylate embolism.

    PubMed

    Mourin, Giséle; Badia, Alain; Cazes, Aurélie; Planquette, Benjamin

    2012-12-01

    Sclerotherapy is commonly used to manage bleeding from oesophageal varices. In a patient with cirrhosis of the liver, sclerotherapy with bucrylate was followed by a pulmonary embolism and then by a decline in general health. A chest radiograph taken 5 months later disclosed a left perihilar opacity, surrounding and invading the pulmonary artery. Despite moderate fixation by positron emission tomography and inconclusive bronchoscopy findings, an upper left lobectomy was deemed in order. A left pulmonary artery pseudoaneurysm was found during the surgery. The pseudoaneurysm ruptured during dissection, requiring a left pneumonectomy. The pathological examination showed shredding of the left pulmonary artery, which contained foreign material. At points of contact with this material, destruction and severe polymorphic inflammation of the pulmonary parenchyma were noted. There was no evidence of tumour or infection. These findings strongly suggested an iatrogenic pulmonary artery pseudoaneurysm related to a bucrylate embolism through porto-systemic vascular shunts. We are not aware of previously reported cases. PMID:22990635

  2. Localized Th1-, Th2-, T Regulatory Cell-, and Inflammation-Associated Hepatic and Pulmonary Immune Responses in Ascaris suum-Infected Swine Are Increased by Retinoic Acid▿ †

    PubMed Central

    Dawson, Harry; Solano-Aguilar, Gloria; Beal, Madeline; Beshah, Ethiopia; Vangimalla, Vandana; Jones, Eudora; Botero, Sebastian; Urban, Joseph F.

    2009-01-01

    Pigs infected with Ascaris suum or controls were given 100 μg (low-dose) or 1,000 μg (high-dose) all-trans retinoic acid (ATRA)/kg body weight in corn oil or corn oil alone per os on days after inoculation (DAI) −1, +1, and +3 with infective eggs. Treatment with ATRA increased interleukin 4 (IL4) and IL12p70 in plasma of infected pigs at 7 DAI and augmented bronchoalveolar lavage (BAL) eosinophilia observed at 7 and 14 DAI. To explore potential molecular mechanisms underlying these observations, a quantitative real-time reverse transcription (RT)-PCR array was used to examine mRNA expression in tissue. Ascaris-infected pigs had increased levels of liver mRNA for T-helper-2 (Th2)-associated cytokines, mast cell markers, and T regulatory (Treg) cells, while infected pigs given ATRA had higher IL4, IL13, CCL11, CCL26, CCL17, CCL22, and TPSB1 expression. Gene expression for Th1-associated markers (IFNG, IL12B, and TBX21), the CXCR3 ligand (CXCL9), IL1B, and the putative Treg marker TNFRSF18 was also increased. Expression of IL4, IL13, IL1B, IL6, CCL11, and CCL26 was increased in the lungs of infected pigs treated with ATRA. To determine a putative cellular source of eosinophil chemoattractants, alveolar macrophages were treated with IL4 and/or ATRA in vitro. IL4 induced CCL11, CCL17, CCL22, and CCL26 mRNA, and ATRA increased the basal and IL4-stimulated expression of CCL17 and CCL22. Thus, ATRA augments a diverse Th1-, Th2-, Treg-, and inflammation-associated response in swine infected with A. suum, and the increased BAL eosinophilia may be related to enhanced induction of eosinophil chemokine activity by alveolar macrophages. PMID:19332534

  3. Microbiome, Inflammation and Cancer

    PubMed Central

    Francescone, Ralph; Hou, Vivianty; Grivennikov, Sergei I.

    2014-01-01

    Inflammation has long been suspected to play a major role in the pathogenesis of cancer. Only recently however, have some mechanisms of its tumor promoting effects come to light. Microbes, both commensal and pathogenic, are critical regulators of the host immune system, and ultimately, of inflammation. Consequently, microbes have the potential power to influence tumor progression as well, through a wide variety of routes, including chronic activation of inflammation, alteration of tumor microenvironment, induction of genotoxic responses, and metabolism. In this review, we will provide a general overview of commensal microbiota, inflammation and cancer, and how microbes fit into this emerging field. PMID:24855005

  4. Detection of low-prevalence somatic TSC2 mutations in sporadic pulmonary lymphangioleiomyomatosis tissues by deep sequencing.

    PubMed

    Fujita, Atsushi; Ando, Katsutoshi; Kobayashi, Etsuko; Mitani, Keiko; Okudera, Koji; Nakashima, Mitsuko; Miyatake, Satoko; Tsurusaki, Yoshinori; Saitsu, Hirotomo; Seyama, Kuniaki; Miyake, Noriko; Matsumoto, Naomichi

    2016-01-01

    Lymphangioleiomyomatosis (LAM) (MIM #606690) is a rare lung disorder leading to respiratory failure associated with progressive cystic destruction due to the proliferation and infiltration of abnormal smooth muscle-like cells (LAM cells). LAM can occur alone (sporadic LAM, S-LAM) or combined with tuberous sclerosis complex (TSC-LAM). TSC is caused by a germline heterozygous mutation in either TSC1 or TSC2, and TSC-LAM is thought to occur as a result of a somatic mutation (second hit) in addition to a germline mutation in TSC1 or TSC2 (first hit). S-LAM is also thought to occur under the two-hit model involving a somatic mutation and/or loss of heterozygosity in TSC2. To identify TSC1 or TSC2 changes in S-LAM patients, the two genes were analyzed by deep next-generation sequencing (NGS) using genomic DNA from blood leukocytes (n = 9), LAM tissue from lung (n = 7), LAM cultured cells (n = 4), or LAM cell clusters (n = 1). We identified nine somatic mutations in six of nine S-LAM patients (67 %) with mutant allele frequencies of 1.7-46.2 %. Three of these six patients (50 %) showed two different TSC2 mutations with allele frequencies of 1.7-28.7 %. Furthermore, at least five mutations with low prevalence (<20 % of allele frequency) were confirmed by droplet digital PCR. As LAM tissues are likely to be composed of heterogeneous cell populations, mutant allele frequencies can be low. Our results confirm the consistent finding of TSC2 mutations in LAM samples, and highlight the benefit of laser capture microdissection and in-depth allele analyses for detection, such as NGS. PMID:26563443