Sample records for detectable pulmonary inflammation

  1. [TLR-4 involvement in pyroptosis of mice with pulmonary inflammation infected by Actinobacillus pleuropneumoniae].

    PubMed

    Hu, Peipei; Huang, Fushen; Niu, Junchao; Tang, Zhaoshan

    2015-05-04

    Pyroptosis is a caspase-1 dependent programmed cell death and involves pathogenesis of infectious diseases by releasing many pro-inflammatory cytokines to induced inflammation. TLR-4 plays an important role in mediating pathogenesis of some infectious diseases. In this study, we detected the expression of TLR-4 and some molecules (e. g caspase-1, TNF-α, IL-1β, IL-6, IL-18 ) related with pyroptosis to determine its involvement and mechanisms of pulmonary inflammation in mice infected by A. pleuropneumoniae. Mice were intranasally infected by A. pleuropneumoniae and killed 48 hours post infection. Pulmonary gross lesion and histological pathology by H-E were observed. Expression levels of caspase-1 , caspase-3, TNF-α, IL-1β, IL-6, IL-18, and TLR-4 in lung of mice were detected by RT-PCR and qPCR. Serious pulmonary hemorrhage and inflammation in infected mice were observed. Expression levels of caspase-1, caspase-3, TNF-α, IL-1β, IL-6, IL-18 and TLR-4 increased, and expression levels of caspase-3 were not changed in lung of infected mice. TLR-4 might be involved in pulmonary inflammation of mice infected by A. pleuropneumoniae. After induced by activated TLR-4 some cells in this lesion expressed pro-inflammatory cytokines. These cytokines would induce pulmonary inflammation. This lesion might involve pyroptosis with caspase-1 expression.

  2. Regulation of pulmonary inflammation by mesenchymal cells.

    PubMed

    Alkhouri, Hatem; Poppinga, Wilfred Jelco; Tania, Navessa Padma; Ammit, Alaina; Schuliga, Michael

    2014-12-01

    Pulmonary inflammation and tissue remodelling are common elements of chronic respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), and pulmonary hypertension (PH). In disease, pulmonary mesenchymal cells not only contribute to tissue remodelling, but also have an important role in pulmonary inflammation. This review will describe the immunomodulatory functions of pulmonary mesenchymal cells, such as airway smooth muscle (ASM) cells and lung fibroblasts, in chronic respiratory disease. An important theme of the review is that pulmonary mesenchymal cells not only respond to inflammatory mediators, but also produce their own mediators, whether pro-inflammatory or pro-resolving, which influence the quantity and quality of the lung immune response. The notion that defective pro-inflammatory or pro-resolving signalling in these cells potentially contributes to disease progression is also discussed. Finally, the concept of specifically targeting pulmonary mesenchymal cell immunomodulatory function to improve therapeutic control of chronic respiratory disease is considered. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Systemic inflammation in chronic obstructive pulmonary disease and lung cancer: common driver of pulmonary cachexia?

    PubMed

    Ceelen, Judith J M; Langen, Ramon C J; Schols, Annemie M W J

    2014-12-01

    In this article, a putative role of systemic inflammation as a driver of pulmonary cachexia induced by either chronic obstructive pulmonary disease or nonsmall cell lung cancer is reviewed. Gaps in current translational research approaches are discussed and alternative strategies are proposed to provide new insights. Activation of the ubiquitin proteasome system has generally been considered a cause of pulmonary cachexia, but current animal models lack specificity and evidence is lacking in nonsmall cell lung cancer and conflicting in chronic obstructive pulmonary disease patients. Recent studies have shown activation of the autophagy-lysosome pathway in both nonsmall cell lung cancer and chronic obstructive pulmonary disease. Myonuclear loss, as a consequence of increased apoptotic events in myofibers, has been suggested in cancer-cachexia-associated muscle atrophy. Plasma transfer on myotube cultures can be used to detect early inflammatory signals in patients and presence of atrophy-inducing activity within the circulation. Comparative clinical research between nonsmall cell lung cancer and chronic obstructive pulmonary disease in different disease stages is useful to unravel disease-specific versus common denominators of pulmonary cachexia.

  4. Familial idiopathic pulmonary fibrosis. Evidence of lung inflammation in unaffected family members

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bitterman, P.B.; Rennard, S.I.; Keogh, B.A.

    1986-05-22

    We evaluated 17 clinically unaffected members of three families with an autosomal dominant form of idiopathic pulmonary fibrosis for evidence of alveolar inflammation. Each person in the study was examined by gallium-67 scanning for a general estimate of pulmonary inflammation, and by bronchoalveolar lavage for characterization of the types of recovered cells and their state of activation. Eight of the 17 subjects had evidence of alveolar inflammation on the lavage studies. Supporting data included increased numbers of neutrophils and activated macrophages that released one or more neutrophil chemoattractants, and growth factors for lung fibroblasts--findings similar to those observed in patientsmore » with overt idiopathic pulmonary fibrosis. Four of these eight also had a positive gallium scan; in all the other clinically unaffected subjects the scan was normal. During a follow-up of two to four years in seven of the eight subjects who had evidence of inflammation, no clinical evidence of pulmonary fibrosis has appeared. These results indicate that alveolar inflammation occurs in approximately half the clinically unaffected family members at risk of inheriting autosomal dominant idiopathic pulmonary fibrosis. Whether these persons with evidence of pulmonary inflammation but no fibrosis will proceed to have clinically evident pulmonary fibrosis is not yet known.« less

  5. CFTR-regulated MAPK/NF-κB signaling in pulmonary inflammation in thermal inhalation injury.

    PubMed

    Dong, Zhi Wei; Chen, Jing; Ruan, Ye Chun; Zhou, Tao; Chen, Yu; Chen, YaJie; Tsang, Lai Ling; Chan, Hsiao Chang; Peng, Yi Zhi

    2015-10-30

    The mechanism underlying pulmonary inflammation in thermal inhalation injury remains elusive. Cystic fibrosis, also hallmarked with pulmonary inflammation, is caused by mutations in CFTR, the expression of which is temperature-sensitive. We investigated whether CFTR is involved in heat-induced pulmonary inflammation. We applied heat-treatment in 16HBE14o- cells with CFTR knockdown or overexpression and heat-inhalation in rats in vivo. Heat-treatment caused significant reduction in CFTR and, reciprocally, increase in COX-2 at early stages both in vitro and in vivo. Activation of ERK/JNK, NF-κB and COX-2/PGE2 were detected in heat-treated cells, which were mimicked by knockdown, and reversed by overexpression of CFTR or VX-809, a reported CFTR mutation corrector. JNK/ERK inhibition reversed heat-/CFTR-knockdown-induced NF-κB activation, whereas NF-κB inhibitor showed no effect on JNK/ERK. IL-8 was augmented by heat-treatment or CFTR-knockdown, which was abolished by inhibition of NF-κB, JNK/ERK or COX-2. Moreover, in vitro or in vivo treatment with curcumin, a natural phenolic compound, significantly enhanced CFTR expression and reversed the heat-induced increases in COX-2/PGE2/IL-8, neutrophil infiltration and tissue damage in the airway. These results have revealed a CFTR-regulated MAPK/NF-κB pathway leading to COX-2/PGE2/IL-8 activation in thermal inhalation injury, and demonstrated therapeutic potential of curcumin for alleviating heat-induced pulmonary inflammation.

  6. Effects of exercise training on pulmonary hemodynamics, functional capacity and inflammation in pulmonary hypertension

    PubMed Central

    Richter, Manuel J.; Grimminger, Jan; Krüger, Britta; Ghofrani, Hossein A.; Mooren, Frank C.; Gall, Henning; Pilat, Christian; Krüger, Karsten

    2017-01-01

    Pulmonary hypertension (PH) is characterized by severe exercise limitation mainly attributed to the impairment of right ventricular function resulting from a concomitant elevation of pulmonary vascular resistance and pressure. The unquestioned cornerstone in the management of patients with pulmonary arterial hypertension (PAH) is specific vasoactive medical therapy to improve pulmonary hemodynamics and strengthen right ventricular function. Nevertheless, evidence for a beneficial effect of exercise training (ET) on pulmonary hemodynamics and functional capacity in patients with PH has been growing during the past decade. Beneficial effects of ET on regulating factors, inflammation, and metabolism have also been described. Small case-control studies and randomized clinical trials in larger populations of patients with PH demonstrated substantial improvements in functional capacity after ET. These findings were accompanied by several studies that suggested an effect of ET on inflammation, although a direct link between this effect and the therapeutic benefit of ET in PH has not yet been demonstrated. On this background, the aim of the present review is to describe current concepts regarding the effects of exercise on the pulmonary circulation and pathophysiological limitations, as well as the clinical and mechanistic effects of exercise in patients with PH. PMID:28680563

  7. Home-based pulmonary rehabilitation improves clinical features and systemic inflammation in chronic obstructive pulmonary disease patients.

    PubMed

    do Nascimento, Eloisa Sanches Pereira; Sampaio, Luciana Maria Malosá; Peixoto-Souza, Fabiana Sobral; Dias, Fernanda Dultra; Gomes, Evelim Leal Freitas Dantas; Greiffo, Flavia Regina; Ligeiro de Oliveira, Ana Paula; Stirbulov, Roberto; Vieira, Rodolfo Paula; Costa, Dirceu

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is a respiratory disease characterized by chronic airflow limitation that leads beyond the pulmonary changes to important systemic effects. COPD is characterized by pulmonary and systemic inflammation. However, increases in the levels of inflammatory cytokines in plasma are found even when the disease is stable. Pulmonary rehabilitation improves physical exercise capacity and quality of life and decreases dyspnea. The aim of this study was to evaluate whether a home-based pulmonary rehabilitation (HBPR) program improves exercise tolerance in COPD patients, as well as health-related quality of life and systemic inflammation. This prospective study was conducted at the Laboratory of Functional Respiratory Evaluation, Nove de Julho University, São Paulo, Brazil. After anamnesis, patients were subjected to evaluations of health-related quality of life and dyspnea, spirometry, respiratory muscle strength, upper limbs incremental test, incremental shuttle walk test, and blood test for quantification of systemic inflammatory markers (interleukin [IL]-6 and IL-8). At the end of the evaluations, patients received a booklet containing the physical exercises to be performed at home, three times per week for 8 consecutive weeks. Around 25 patients were enrolled, and 14 completed the pre- and post-HBPR ratings. There was a significant increase in the walked distance and the maximal inspiratory pressure, improvements on two components from the health-related quality-of-life questionnaire, and a decrease in plasma IL-8 levels after the intervention. The HBPR is an important and viable alternative to pulmonary rehabilitation for the treatment of patients with COPD; it improves exercise tolerance, inspiratory muscle strength, quality of life, and systemic inflammation in COPD patients.

  8. G-CSF suppresses allergic pulmonary inflammation, downmodulating cytokine, chemokine and eosinophil production.

    PubMed

    Queto, Túlio; Vasconcelos, Zilton F M; Luz, Ricardo Alves; Anselmo, Carina; Guiné, Ana Amélia A; e Silva, Patricia Machado R; Farache, Júlia; Cunha, José Marcos T; Bonomo, Adriana C; Gaspar-Elsas, Maria Ignez C; Xavier-Elsas, Pedro

    2011-05-09

    Granulocyte Colony-Stimulating Factor (G-CSF), which mobilizes hemopoietic stem cells (HSC), is believed to protect HSC graft recipients from graft-versus-host disease by enhancing Th2 cytokine secretion. Accordingly, G-CSF should aggravate Th2-dependent allergic pulmonary inflammation and the associated eosinophilia. We evaluated the effects of G-CSF in a model of allergic pulmonary inflammation. Allergic pulmonary inflammation was induced by repeated aerosol allergen challenge in ovalbumin-sensitized C57BL/6J mice. The effects of allergen challenge and of G-CSF pretreatment were evaluated by monitoring: a) eosinophilia and cytokine/chemokine content of bronchoalveolar lavage fluid, pulmonary interstitium, and blood; b) changes in airway resistance; and c) changes in bone-marrow eosinophil production. Contrary to expectations, G-CSF pretreatment neither induced nor enhanced allergic pulmonary inflammation. Instead, G-CSF: a) suppressed accumulation of infiltrating eosinophils in bronchoalveolar, peribronchial and perivascular spaces of challenged lungs; and b) prevented ovalbumin challenge-induced rises in airway resistance. G-CSF had multiple regulatory effects on cytokine and chemokine production: in bronchoalveolar lavage fluid, levels of IL-1 and IL-12 (p40), eotaxin and MIP-1a were decreased; in plasma, KC, a neutrophil chemoattractant, was increased, while IL-5 was decreased and eotaxin was unaffected. In bone-marrow, G-CSF: a) prevented the increase in bone-marrow eosinophil production induced by ovalbumin challenge of sensitized mice; and b) selectively stimulated neutrophil colony formation. These observations challenge the view that G-CSF deviates cytokine production towards a Th2 profile in vivo, and suggest that this neutrophil-selective hemopoietin affects eosinophilic inflammation by a combination of effects on lung cytokine production and bone-marrow hemopoiesis. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Establishment of a mouse model for pulmonary inflammation and fibrosis by intratracheal instillation of polyhexamethyleneguanidine phosphate

    PubMed Central

    Lee, Sang Jin; Park, Jong-Hwan; Lee, Jun-Young; Jeong, Yu-Jin; Song, Jeong Ah; Lee, Kyuhong; Kim, Dong-Jae

    2016-01-01

    Although several animal models have been developed to study human pulmonary fibrosis, lack of a perfect model has raised the need for various animal models of pulmonary fibrosis. In this study, we evaluated the pulmonary effect of polyhexamethyleneguanidine phosphate instillation into the lungs of mice to determine the potential of these mice as a murine model of pulmonary fibrosis. Intratracheal instillation of polyhexamethyleneguanidine phosphate induced severe lung inflammation manifested by the infiltration of mononuclear cells and neutrophils and increased production of IL-6, TNF-α, CCL2 and CXCL1. The lung inflammation gradually increased until 28 days after polyhexamethyleneguanidine phosphate exposure, and increases of collagen deposition and TGF-β production, which are indicators of pulmonary fibrosis, were seen. Our study showed that intratracheal instillation of polyhexamethyleneguanidine phosphate induces pulmonary inflammation and fibrosis in mice. PMID:27182113

  10. Pulmonary exposure to diesel exhaust particles enhances coagulatory disturbance with endothelial damage and systemic inflammation related to lung inflammation.

    PubMed

    Inoue, Ken-Ichiro; Takano, Hirohisa; Sakurai, Miho; Oda, Toshio; Tamura, Hiroshi; Yanagisawa, Rie; Shimada, Akinori; Yoshikawa, Toshikazu

    2006-11-01

    Pulmonary exposure to diesel exhaust particles (DEP) enhances lung inflammation related to bacterial endotoxin (lipopolysaccharide [LPS]) in mice. Severe lung inflammation can reportedly induce coagulatory abnormalities and systemic inflammation. This study examined the effects of components of DEP on lung inflammation, pulmonary permeability, coagulatory changes, systemic inflammatory response, and lung-to-systemic translocation of LPS in a murine model of lung inflammation. ICR mice were divided into six experimental groups that intratracheally received vehicle, LPS (2.5 mg/kg), organic chemicals in DEP (DEP-OC; 4 mg/kg) extracted with dicloromethane), residual carbonaceous nuclei of DEP (washed DEP: 4 mg/kg), DEP-OC + LPS, or washed DEP + LPS. Both DEP components exacerbated lung inflammation, vascular permeability, and the increased fibrinogen and E-selectin levels induced by LPS. With overall trends, the exacerbation was more prominent with washed DEP than with DEP-OC. Washed DEP + LPS significantly decreased activated protein C and antithrombin-III and elevated circulatory levels of interleukin (IL)-6, keratinocyte chemoattractant (KC), and LPS as compared with LPS alone, whereas DEP-OC + LPS elevated IL-6, KC, and LPS without significance. These results show that DEP components, especially washed DEP, amplify the effects if LPS on the respiratory system and suggest that they contribute to the adverse health effects of particulate air pollution on the sensitive populations with predisposing vascular and/or pulmonary diseases, including ischemic vascular diseases and respiratory infection.

  11. Pulmonary inflammation-induced loss and subsequent recovery of skeletal muscle mass require functional poly-ubiquitin conjugation.

    PubMed

    Ceelen, Judith J M; Schols, Annemie M W J; Thielen, Nathalie G M; Haegens, Astrid; Gray, Douglas A; Kelders, Marco C J M; de Theije, Chiel C; Langen, Ramon C J

    2018-05-02

    Pulmonary inflammation in response to respiratory infections can evoke muscle wasting. Increased activity of the ubiquitin (Ub)-proteasome system (UPS) and the autophagy lysosome pathway (ALP) have been implicated in inflammation-induced muscle atrophy. Since poly-Ub conjugation is required for UPS-mediated proteolysis and has been implicated in the ALP, we assessed the effect of impaired ubiquitin conjugation on muscle atrophy and recovery following pulmonary inflammation, and compared activation and suppression of these proteolytic systems to protein synthesis regulation. Pulmonary inflammation was induced in mice by an intratracheal instillation of LPS. Proteolysis (UPS and ALP) and synthesis signaling were examined in gastrocnemius muscle homogenates. Ub-conjugation-dependency of muscle atrophy and recovery was addressed using Ub-K48R (K48R) mice with attenuated poly-ubiquitin conjugation, and compared to UBWT control mice. Pulmonary inflammation caused a decrease in skeletal muscle mass which was accompanied by a rapid increase in expression of UPS and ALP constituents and reduction in protein synthesis signaling acutely after LPS. Muscle atrophy was attenuated in K48R mice, while ALP and protein synthesis signaling were not affected. Muscle mass recovery starting 72 h post LPS, correlated with reduced expression of UPS and ALP constituents and restoration of protein synthesis signaling. K48R mice however displayed impaired recovery of muscle mass. Pulmonary inflammation-induced muscle atrophy is in part attributable to UPS-mediated proteolysis, as activation of ALP- and suppression of protein synthesis signaling occur independently of poly-Ub conjugation during muscle atrophy. Recovery of muscle mass following pulmonary inflammation involves inverse regulation of proteolysis and protein synthesis signaling, and requires a functional poly-Ub conjugation.

  12. Platelet activation independent of pulmonary inflammation contributes to diesel exhaust particulate-induced promotion of arterial thrombosis.

    PubMed

    Tabor, Caroline M; Shaw, Catherine A; Robertson, Sarah; Miller, Mark R; Duffin, Rodger; Donaldson, Ken; Newby, David E; Hadoke, Patrick W F

    2016-02-09

    Accelerated thrombus formation induced by exposure to combustion-derived air pollution has been linked to alterations in endogenous fibrinolysis and platelet activation in response to pulmonary and systemic inflammation. We hypothesised that mechanisms independent of inflammation contribute to accelerated thrombus formation following exposure to diesel exhaust particles (DEP). Thrombosis in rats was assessed 2, 6 and 24 h after administration of DEP, carbon black (CB; control carbon nanoparticle), DQ12 quartz microparticles (to induce pulmonary inflammation) or saline (vehicle) by either intra-tracheal instillation (0.5 mg, except Quartz; 0.125 mg) or intravenous injection (0.5 mg/kg). Thrombogenicity was assessed by carotid artery occlusion, fibrinolytic variables and platelet-monocyte aggregates. Measures of inflammation were determined in plasma and bronchoalveolar lavage fluid. Tissue plasminogen activator (t-PA) and plasminogen activator inhibitor (PAI)-1 were measured following direct in vitro exposure of human umbilical vein endothelial cells (HUVECs) to DEP (10-150 μg/mL). Instillation of DEP reduced the time to thrombotic occlusion in vivo, coinciding with the peak of DEP-induced pulmonary inflammation (6 h). CB and DQ12 produced greater inflammation than DEP but did not alter time to thrombotic occlusion. Intravenous DEP produced an earlier (2 h) acceleration of thrombosis (as did CB) without pulmonary or systemic inflammation. DEP inhibited t-PA and PAI-1 release from HUVECs, and reduced the t-PA/PAI-1 ratio in vivo; similar effects in vivo were seen with CB and DQ12. DEP, but not CB or DQ12, increased platelet-monocyte aggregates. DEP accelerates arterial thrombus formation through increased platelet activation. This effect is dissociated from pulmonary and systemic inflammation and from impaired fibrinolytic function.

  13. The role of inflammation in hypoxic pulmonary hypertension: from cellular mechanisms to clinical phenotypes

    PubMed Central

    Poth, Jens M.; Fini, Mehdi A.; Olschewski, Andrea; El Kasmi, Karim C.; Stenmark, Kurt R.

    2014-01-01

    Hypoxic pulmonary hypertension (PH) comprises a heterogeneous group of diseases sharing the common feature of chronic hypoxia-induced pulmonary vascular remodeling. The disease is usually characterized by mild to moderate pulmonary vascular remodeling that is largely thought to be reversible compared with the progressive irreversible disease seen in World Health Organization (WHO) group I disease. However, in these patients, the presence of PH significantly worsens morbidity and mortality. In addition, a small subset of patients with hypoxic PH develop “out-of-proportion” severe pulmonary hypertension characterized by pulmonary vascular remodeling that is irreversible and similar to that in WHO group I disease. In all cases of hypoxia-related vascular remodeling and PH, inflammation, particularly persistent inflammation, is thought to play a role. This review focuses on the effects of hypoxia on pulmonary vascular cells and the signaling pathways involved in the initiation and perpetuation of vascular inflammation, especially as they relate to vascular remodeling and transition to chronic irreversible PH. We hypothesize that the combination of hypoxia and local tissue factors/cytokines (“second hit”) antagonizes tissue homeostatic cellular interactions between mesenchymal cells (fibroblasts and/or smooth muscle cells) and macrophages and arrests these cells in an epigenetically locked and permanently activated proremodeling and proinflammatory phenotype. This aberrant cellular cross-talk between mesenchymal cells and macrophages promotes transition to chronic nonresolving inflammation and vascular remodeling, perpetuating PH. A better understanding of these signaling pathways may lead to the development of specific therapeutic targets, as none are currently available for WHO group III disease. PMID:25416383

  14. Immune Modulatory Effects of IL-22 on Allergen-Induced Pulmonary Inflammation

    PubMed Central

    Fang, Ping; Zhou, Li; Zhou, Yuqi; Kolls, Jay K.; Zheng, Tao; Zhu, Zhou

    2014-01-01

    IL-22 is a Th17/Th22 cytokine that is increased in asthma. However, recent animal studies showed controversial findings in the effects of IL-22 in allergic asthma. To determine the role of IL-22 in ovalbumin-induced allergic inflammation we generated inducible lung-specific IL-22 transgenic mice. Transgenic IL-22 expression and signaling activity in the lung were determined. Ovalbumin (OVA)-induced pulmonary inflammation, immune responses, and airway hyperresponsiveness (AHR) were examined and compared between IL-22 transgenic mice and wild type controls. Following doxycycline (Dox) induction, IL-22 protein was readily detected in the large (CC10 promoter) and small (SPC promoter) airway epithelial cells. IL-22 signaling was evidenced by phosphorylated STAT3. After OVA sensitization and challenge, compared to wild type littermates, IL-22 transgenic mice showed decreased eosinophils in the bronchoalveolar lavage (BAL), and in lung tissue, decreased mucus metaplasia in the airways, and reduced AHR. Among the cytokines and chemokines examined, IL-13 levels were reduced in the BAL fluid as well as in lymphocytes from local draining lymph nodes of IL-22 transgenic mice. No effect was seen on the levels of serum total or OVA-specific IgE or IgG. These findings indicate that IL-22 has immune modulatory effects on pulmonary inflammatory responses in allergen-induced asthma. PMID:25254361

  15. Microbiota Promotes Chronic Pulmonary Inflammation by Enhancing IL-17A and Autoantibodies.

    PubMed

    Yadava, Koshika; Pattaroni, Céline; Sichelstiel, Anke K; Trompette, Aurélien; Gollwitzer, Eva S; Salami, Olawale; von Garnier, Christophe; Nicod, Laurent P; Marsland, Benjamin J

    2016-05-01

    Changes in the pulmonary microbiota are associated with progressive respiratory diseases including chronic obstructive pulmonary disease (COPD). Whether there is a causal relationship between these changes and disease progression remains unknown. To investigate the link between an altered microbiota and disease, we used a murine model of chronic lung inflammation that is characterized by key pathological features found in COPD and compared responses in specific pathogen-free (SPF) mice and mice depleted of microbiota by antibiotic treatment or devoid of a microbiota (axenic). Mice were challenged with LPS/elastase intranasally over 4 weeks, resulting in a chronically inflamed and damaged lung. The ensuing cellular infiltration, histological damage, and decline in lung function were quantified. Similar to human disease, the composition of the pulmonary microbiota was altered in diseased animals. We found that the microbiota richness and diversity were decreased in LPS/elastase-treated mice, with an increased representation of the genera Pseudomonas and Lactobacillus and a reduction in Prevotella. Moreover, the microbiota was implicated in disease development as mice depleted, or devoid, of microbiota exhibited an improvement in lung function, reduced inflammation, and lymphoid neogenesis. The absence of microbial cues markedly decreased the production of IL-17A, whereas intranasal transfer of fluid enriched with the pulmonary microbiota isolated from diseased mice enhanced IL-17A production in the lungs of antibiotic-treated or axenic recipients. Finally, in mice harboring a microbiota, neutralizing IL-17A dampened inflammation and restored lung function. Collectively, our data indicate that host-microbial cross-talk promotes inflammation and could underlie the chronicity of inflammatory lung diseases.

  16. Protective role of interleukin-10 in Ozone-induced pulmonary inflammation**

    EPA Science Inventory

    Background: The mechanisms underlying ozone (03)-induced pulmonary inflammation remain unclear. Interleukin-10 (IL-10) is an anti-inflammatory cytokine that is known to inhibit inflammatory mediators. Objectives: We investigated the molecular mechanisms underlying interleuken-10...

  17. Prostaglandin D2 Attenuates Bleomycin-Induced Lung Inflammation and Pulmonary Fibrosis.

    PubMed

    Kida, Taiki; Ayabe, Shinya; Omori, Keisuke; Nakamura, Tatsuro; Maehara, Toko; Aritake, Kosuke; Urade, Yoshihiro; Murata, Takahisa

    2016-01-01

    Pulmonary fibrosis is a progressive and fatal lung disease with limited therapeutic options. Although it is well known that lipid mediator prostaglandins are involved in the development of pulmonary fibrosis, the role of prostaglandin D2 (PGD2) remains unknown. Here, we investigated whether genetic disruption of hematopoietic PGD synthase (H-PGDS) affects the bleomycin-induced lung inflammation and pulmonary fibrosis in mouse. Compared with H-PGDS naïve (WT) mice, H-PGDS-deficient mice (H-PGDS-/-) represented increased collagen deposition in lungs 14 days after the bleomycin injection. The enhanced fibrotic response was accompanied by an increased mRNA expression of inflammatory mediators, including tumor necrosis factor-α, monocyte chemoattractant protein-1, and cyclooxygenase-2 on day 3. H-PGDS deficiency also increased vascular permeability on day 3 and infiltration of neutrophils and macrophages in lungs on day 3 and 7. Immunostaining showed that the neutrophils and macrophages expressed H-PGDS, and its mRNA expression was increased on day 3and 7 in WT lungs. These observations suggest that H-PGDS-derived PGD2 plays a protective role in bleomycin-induced lung inflammation and pulmonary fibrosis.

  18. Ethanol intoxication prolongs post-burn pulmonary inflammation: role of alveolar macrophages

    PubMed Central

    Shults, Jill A.; Curtis, Brenda J.; Boe, Devin M.; Ramirez, Luis; Kovacs, Elizabeth J.

    2016-01-01

    In this study, the role and fate of AMs were examined in pulmonary inflammation after intoxication and injury. Clinical evidence has revealed that half of all burn patients brought to the emergency department are intoxicated at the time of injury. This combined insult results in amplified neutrophil accumulation and pulmonary edema, with an increased risk of lung failure and mortality, relative to either insult alone. We believe that this excessive pulmonary inflammation, which also parallels decreased lung function, is mediated in part by AMs. Restoration of lung tissue homeostasis is dependent on the eradication of neutrophils and removal of apoptotic cells, both major functions of AMs. Thirty minutes after binge ethanol intoxication, mice were anesthetized and given a 15% total body surface area dorsal scald injury. At 24 h, we found a 50% decrease in the total number of AMs (P < 0.05) and observed a proinflammatory phenotype on the remaining lung AMs. Loss of AMs paralleled a 6-fold increase in the number of TUNEL+ lung apoptotic cells (P < 0.05) and a 3.5-fold increase in the percentage of annexin V+ apoptotic cells in BAL (P < 0.05), after intoxication and injury, relative to controls. In contrast to the reduction in the number of cells, AMs from intoxicated and injured mice had a 4-fold increase in efferocytosis (P < 0.05). In summary, these data suggest that loss of AMs may delay resolution of inflammation, resulting in the pulmonary complications and elevated mortality rates observed in intoxicated and burn-injured patients. PMID:27531926

  19. Inflammation and immunity in the pathogenesis of pulmonary arterial hypertension.

    PubMed

    Rabinovitch, Marlene; Guignabert, Christophe; Humbert, Marc; Nicolls, Mark R

    2014-06-20

    This review summarizes an expanding body of knowledge indicating that failure to resolve inflammation and altered immune processes underlie the development of pulmonary arterial hypertension. The chemokines and cytokines implicated in pulmonary arterial hypertension that could form a biomarker platform are discussed. Pre-clinical studies that provide the basis for dysregulated immunity in animal models of the disease are reviewed. In addition, we present therapies that target inflammatory/immune mechanisms that are currently enrolling patients, and discuss others in development. We show how genetic and metabolic abnormalities are inextricably linked to dysregulated immunity and adverse remodeling in the pulmonary arteries. © 2014 American Heart Association, Inc.

  20. Asthma causes inflammation of human pulmonary arteries and decreases vasodilatation induced by prostaglandin I2 analogs.

    PubMed

    Foudi, Nabil; Badi, Aouatef; Amrane, Mounira; Hodroj, Wassim

    2017-12-01

    Asthma is a chronic inflammatory disease associated with increased cardiovascular events. This study assesses the presence of inflammation and the vascular reactivity of pulmonary arteries in patients with acute asthma. Rings of human pulmonary arteries obtained from non-asthmatic and asthmatic patients were set up in organ bath for vascular tone monitoring. Reactivity was induced by vasoconstrictor and vasodilator agents. Protein expression of inflammatory markers was detected by western blot. Prostanoid releases and cyclic adenosine monophosphate (cAMP) levels were quantified using specific enzymatic kits. Protein expression of cluster of differentiation 68, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and cyclooxygenase-2 was significantly increased in arteries obtained from asthmatic patients. These effects were accompanied by an alteration of vasodilatation induced by iloprost and treprostinil, a decrease in cAMP levels and an increase in prostaglandin (PG) E 2 and PGI 2 synthesis. The use of forskolin (50 µmol/L) has restored the vasodilatation and cAMP release. No difference was observed between the two groups in reactivity induced by norepinephrine, angiotensin II, PGE 2 , KCl, sodium nitroprusside, and acetylcholine. Acute asthma causes inflammation of pulmonary arteries and decreases vasodilation induced by PGI 2 analogs through the impairment of cAMP pathway.

  1. Docosahexaenoic acid inhibits monocrotaline-induced pulmonary hypertension via attenuating endoplasmic reticulum stress and inflammation.

    PubMed

    Chen, Rui; Zhong, Wei; Shao, Chen; Liu, Peijing; Wang, Cuiping; Wang, Zhongqun; Jiang, Meiping; Lu, Yi; Yan, Jinchuan

    2018-02-01

    Endoplasmic reticulum (ER) stress and inflammation contribute to pulmonary hypertension (PH) pathogenesis. Previously, we confirmed that docosahexaenoic acid (DHA) could improve hypoxia-induced PH. However, little is known about the link between DHA and monocrotaline (MCT)-induced PH. Our aims were, therefore, to evaluate the effects and molecular mechanisms of DHA on MCT-induced PH in rats. Rat PH was induced by MCT. Rats were treated with DHA daily in the prevention group (following MCT injection) and the reversal group (after MCT injection for 2 wk) by gavage. After 4 wk, mean pulmonary arterial pressure (mPAP), right ventricular (RV) hypertrophy index, and morphological and immunohistochemical analyses were evaluated. Rat pulmonary artery smooth muscle cells (PASMCs) were used to investigate the effects of DHA on cell proliferation stimulated by platelet-derived growth factor (PDGF)-BB. DHA decreased mPAP and attenuated pulmonary vascular remodeling and RV hypertrophy, which were associated with suppressed ER stress. DHA blocked the mitogenic effect of PDGF-BB on PASMCs and arrested the cell cycle via inhibiting nuclear factor of activated T cells-1 (NFATc1) expression and activation and regulating cell cycle-related proteins. Moreover, DHA ameliorated inflammation in lung and suppressed macrophage and T lymphocyte accumulation in lung and adventitia of resistance pulmonary arteries. These findings suggest that DHA could protect against MCT-induced PH by reducing ER stress, suppressing cell proliferation and inflammation.

  2. 4-Chloro-DL-phenylalanine protects against monocrotaline‑induced pulmonary vascular remodeling and lung inflammation.

    PubMed

    Bai, Yang; Wang, Han-Ming; Liu, Ming; Wang, Yun; Lian, Guo-Chao; Zhang, Xin-Hua; Kang, Jian; Wang, Huai-Liang

    2014-02-01

    The present study was performed to investigate the effects of 4-chloro-DL-phenylalanine (PCPA), a tryptophan hydroxylase (Tph) inhibitor (TphI), on pulmonary vascular remodeling and lung inflammation in monocrotaline (MCT)-induced pulmonary arterial hypertension (PAH) in rats. Animal models of PAH were established using Sprague-Dawley (SD) rats by a single intraperitoneal injection of MCT (60 mg/kg). PCPA (50 or 100 mg/kg/day) was administered to the rats with PAH. On day 22, hemodynamic measurements and morphological observations of the lung tissues were performed. The levels of Tph-1 and serotonin transporter (SERT) in the lungs were analyzed by immunohistochemistry and western blot analysis. The expression of matrix metalloproteinase (MMP)-2 and MMP-9, tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2 and inflammatory cytokines were assayed by western blot analysis. The activity of MMP-2 and MMP-9 was evaluated by gelatin zymography (GZ). MCT markedly promoted PAH, increased the right ventricular hypertrophy index, pulmonary vascular remodeling, lung inflammation and mortality, which was associated with the increased expression of Tph-1, SERT, MMP-2/-9, TIMP-1/-2 and inflammatory cytokines. PCPA markedly attenuated MCT-induced pulmonary vascular remodeling and lung inflammation, inhibited the expression of Tph-1 and SERT and suppressed the expression of MMP-2/-9, TIMP-1/-2, interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) and intercellular adhesion molecule-1 (ICAM-1). These findings suggest that the amelioration of MCT-induced pulmonary vascular remodeling and lung inflammation by PCPA is associated with the downregulation of Tph-1, SERT, MMP/TIMP and inflammatory cytokine expression in rats.

  3. Lack of Correlation Between Pulmonary and Systemic Inflammation Markers in Patients with Chronic Obstructive Pulmonary Disease: A Simultaneous, Two-Compartmental Analysis.

    PubMed

    Núñez, Belen; Sauleda, Jaume; Garcia-Aymerich, Judith; Noguera, Aina; Monsó, Eduard; Gómez, Federico; Barreiro, Esther; Marín, Alicia; Antó, Josep Maria; Agusti, Alvar

    2016-07-01

    The origin of systemic inflammation in chronic obstructive pulmonary disease (COPD) patients remains to be defined, but one of the most widely accepted hypothesis is the 'spill over' of inflammatory mediators from the lung to the circulation. To evaluate the relationship between pulmonary and systemic inflammation in COPD quantifying several inflammatory markers in sputum and serum determined simultaneously. Correlations between various inflammatory variables (TNF-α, IL6, IL8) in sputum and serum were evaluated in 133 patients from the PAC-COPD cohort study. A secondary objective was the evaluation of relationships between inflammatory variables and lung function. Inflammatory markers were clearly higher in sputum than in serum. No significant correlation was found (absolute value, r=0.03-0.24) between inflammatory markers in blood and in sputum. There were no significant associations identified between those markers and lung function variables, such as FEV1, DLCO and PaO2 neither. We found no correlation between pulmonary and systemic inflammation in patients with stable COPD, suggesting different pathogenic mechanisms. Copyright © 2016 SEPAR. Published by Elsevier Espana. All rights reserved.

  4. Inhibitory effects of thalidomide on bleomycin-induced pulmonary fibrosis in rats via regulation of thioredoxin reductase and inflammations.

    PubMed

    Dong, Xiaoying; Li, Xin; Li, Minghui; Chen, Ming; Fan, Qian; Wei, Wei

    2017-01-01

    In this study, the potential clinical effects of thalidomide on bleomycin-induced pulmonary fibrosis were investigated. A Sprague-Dawley rats' model of pulmonary fibrosis induced by an intratracheal instillation of bleomycin was adopted. The rats in thalidomide treated groups were intraperitoneally injected with thalidomide (10, 20, 50 mg/kg) daily for 28 days, while the rats in control and bleomycin treated groups were injected with a saline solution. The effects of thalidomide on pulmonary injury were evaluated by the lung wet/dry weight ratios, cell counts, and histopathological examination. Inflammation of lung tissues was assessed by measuring the levels of interleukin (IL)-6, IL-8, tumor necrosis factor (TNF)-α, and transforming growth factor (TGF)-β in bronchoalveolar lavage fluid (BALF). Oxidative stress was evaluated by detecting the levels of reactive oxygen species (ROS), superoxide dismutase (SOD), total antioxidant capacity (T-AOC), and malondialdehyde (MDA) in lung tissue. The results indicated that thalidomide treatment remarkably attenuated bleomycin-induced pulmonary fibrosis, oxidative stress and inflammation in rats' lung. The anti-inflammatory and anti-oxidative effects of thalidomide were also found in human lung fibroblasts. Thalidomide administration significantly stimulated the activity of thioredoxin reductase, while other enzymes or proteins involved in biologic oxidation-reduction equilibrium were not affected. Our findings indicate that thalidomide-mediated suppression of fibro-proliferation may contribute to the anti-fibrotic effect against bleomycin-induced pulmonary fibrosis. The mechanisms are related to the inhibition of oxidative stress and inflammatory response. In summary, these results may provide a rationale to explore clinical application of thalidomide for the prevention of pulmonary fibrosis.

  5. Aspirin reduces lipopolysaccharide-induced pulmonary inflammation in human models of ARDS.

    PubMed

    Hamid, U; Krasnodembskaya, A; Fitzgerald, M; Shyamsundar, M; Kissenpfennig, A; Scott, C; Lefrancais, E; Looney, M R; Verghis, R; Scott, J; Simpson, A J; McNamee, J; McAuley, D F; O'Kane, C M

    2017-11-01

    Platelets play an active role in the pathogenesis of acute respiratory distress syndrome (ARDS). Animal and observational studies have shown aspirin's antiplatelet and immunomodulatory effects may be beneficial in ARDS. To test the hypothesis that aspirin reduces inflammation in clinically relevant human models that recapitulate pathophysiological mechanisms implicated in the development of ARDS. Healthy volunteers were randomised to receive placebo or aspirin 75  or 1200 mg (1:1:1) for seven days prior to lipopolysaccharide (LPS) inhalation, in a double-blind, placebo-controlled, allocation-concealed study. Bronchoalveolar lavage (BAL) was performed 6 hours after inhaling 50 µg of LPS. The primary outcome measure was BAL IL-8. Secondary outcome measures included markers of alveolar inflammation (BAL neutrophils, cytokines, neutrophil proteases), alveolar epithelial cell injury, systemic inflammation (neutrophils and plasma C-reactive protein (CRP)) and platelet activation (thromboxane B2, TXB2). Human lungs, perfused and ventilated ex vivo (EVLP) were randomised to placebo or 24 mg aspirin and injured with LPS. BAL was carried out 4 hours later. Inflammation was assessed by BAL differential cell counts and histological changes. In the healthy volunteer (n=33) model, data for the aspirin groups were combined. Aspirin did not reduce BAL IL-8. However, aspirin reduced pulmonary neutrophilia and tissue damaging neutrophil proteases (Matrix Metalloproteinase (MMP)-8/-9), reduced BAL concentrations of tumour necrosis factor α and reduced systemic and pulmonary TXB2. There was no difference between high-dose and low-dose aspirin. In the EVLP model, aspirin reduced BAL neutrophilia and alveolar injury as measured by histological damage. These are the first prospective human data indicating that aspirin inhibits pulmonary neutrophilic inflammation, at both low and high doses. Further clinical studies are indicated to assess the role of aspirin in the

  6. Pulmonary inflammation induced by bacteria-free outer membrane vesicles from Pseudomonas aeruginosa.

    PubMed

    Park, Kyong-Su; Lee, Jaewook; Jang, Su Chul; Kim, Sae Rom; Jang, Myoung Ho; Lötvall, Jan; Kim, Yoon-Keun; Gho, Yong Song

    2013-10-01

    Pseudomonas aeruginosa is often involved in lung diseases such as cystic fibrosis. These bacteria can release outer membrane vesicles (OMVs), which are bilayered proteolipids with diameters of approximately 20 to 250 nm. In vitro, these OMVs activate macrophages and airway epithelial cells. The aim of this study was to determine whether OMVs from P. aeruginosa can induce pulmonary inflammation in vivo and to elucidate the mechanisms involved. Bacteria-free OMVs were isolated from P. aeruginosa cultures. Wild-type, Toll-like receptor (TLR)2 and TLR4 knockout mice were exposed to OMVs by the airway, and inflammation in the lung was assessed using differential counts, histology, and quantification of chemokines and cytokines. The involvement of the TLR2 and TLR4 pathways was studied in human cells using transfection. OMVs given to the mouse lung caused dose- and time-dependent pulmonary cellular inflammation. Furthermore, OMVs increased concentrations of several chemokines and cytokines in the mouse lungs and mouse alveolar macrophages. The inflammatory responses to OMVs were comparable to those of live bacteria and were only partly regulated by the TLR2 and TLR4 pathways, according to studies in knockout mice. This study shows that OMVs from P. aeruginosa cause pulmonary inflammation without live bacteria in vivo. This effect is only partly controlled by TLR2 and TLR4. The role of OMVs in clinical disease warrants further studies because targeting of OMVs in addition to live bacteria may add clinical benefit compared with treating with antibiotics alone.

  7. Intercellular Adhesion Molecule 1 Knockout Abrogates Radiation Induced Pulmonary Inflammation

    NASA Astrophysics Data System (ADS)

    Hallahan, Dennis E.; Virudachalam, Subbulakshmi

    1997-06-01

    Increased expression of intercellular adhesion molecule 1 (ICAM-1; CD54) is induced by exposure to ionizing radiation. The lung was used as a model to study the role of ICAM-1 in the pathogenesis of the radiation-induced inflammation-like response. ICAM-1 expression increased in the pulmonary microvascular endothelium and not in the endothelium of larger pulmonary vessels following treatment of mice with thoracic irradiation. To quantify radiation-induced ICAM-1 expression, we utilized fluorescence-activated cell sorting analysis of anti-ICAM-1 antibody labeling of pulmonary microvascular endothelial cells from human cadaver donors (HMVEC-L cells). Fluorochrome conjugates and UV microscopy were used to quantify the fluorescence intensity of ICAM in the irradiated lung. These studies showed a dose- and time-dependent increase in ICAM-1 expression in the pulmonary microvascular endothelium. Peak expression occurred at 24 h, while threshold dose was as low as 2 Gy. To determine whether ICAM-1 is required for inflammatory cell infiltration into the irradiated lung, the anti-ICAM-1 blocking antibody was administered by tail vein injection to mice following thoracic irradiation. Inflammatory cells were quantified by immunofluorescence for leukocyte common antigen (CD45). Mice treated with the anti-ICAM-1 blocking antibody showed attenuation of inflammatory cell infiltration into the lung in response to ionizing radiation exposure. To verify the requirement of ICAM-1 in the inflammation-like radiation response, we utilized the ICAM-1 knockout mouse. ICAM-1 was not expressed in the lungs of ICAM-1-deficient mice following treatment with thoracic irradiation. ICAM-1 knockout mice had no increase in the inflammatory cell infiltration into the lung in response to thoracic irradiation. These studies demonstrate a radiation dose-dependent increase in ICAM-1 expression in the pulmonary microvascular endothelium, and show that ICAM-1 is required for inflammatory cell infiltration

  8. Role for phospholipid acyl chains and cholesterol in pulmonary infections and inflammation

    PubMed Central

    Shaikh, Saame Raza; Fessler, Michael B.

    2016-01-01

    Bacterial and viral respiratory tract infections result in millions of deaths worldwide and are currently the leading cause of death from infection. Acute inflammation is an essential element of host defense against infection, but can be damaging to the host when left unchecked. Effective host defense requires multiple lipid mediators, which collectively have proinflammatory and/or proresolving effects on the lung. During pulmonary infections, phospholipid acyl chains and cholesterol can be chemically and enzymatically oxidized, as well as truncated and modified, producing complex mixtures of bioactive lipids. We review recent evidence that phospholipids and cholesterol and their derivatives regulate pulmonary innate and adaptive immunity during infection. We first highlight data that oxidized phospholipids generated in the lung during infection stimulate pattern recognition receptors, such as TLRs and scavenger receptors, thereby amplifying the pulmonary inflammatory response. Next, we discuss evidence that oxidation of endogenous pools of cholesterol during pulmonary infections produces oxysterols that also modify the function of both innate and adaptive immune cells. Last, we conclude with data that n-3 polyunsaturated fatty acids, both in the form of phospholipid acyl chains and through enzymatic processing into endogenous proresolving lipid mediators, aid in the resolution of lung inflammation through distinct mechanisms. Unraveling the complex mechanisms of induction and function of distinct classes of bioactive lipids, both native and modified, may hold promise for developing new therapeutic strategies for improving pulmonary outcomes in response to infection. PMID:27286794

  9. Inhibition of chlorine-induced pulmonary inflammation and edema by mometasone and budesonide

    PubMed Central

    Chen, Jing; Mo, Yiqun; Schlueter, Connie F.; Hoyle, Gary W.

    2013-01-01

    Chlorine gas is a widely used industrial compound that is highly toxic by inhalation and is considered a chemical threat agent. Inhalation of high levels of chlorine results in acute lung injury characterized by pneumonitis, pulmonary edema, and decrements in lung function. Because inflammatory processes can promote damage in the injured lung, anti-inflammatory therapy may be of potential benefit for treating chemical-induced acute lung injury. We previously developed a chlorine inhalation model in which mice develop epithelial injury, neutrophilic inflammation, pulmonary edema, and impaired pulmonary function. This model was used to evaluate nine corticosteroids for the ability to inhibit chlorine-induced neutrophilic inflammation. Two of the most potent corticosteroids in this assay, mometasone and budesonide, were investigated further. Mometasone or budesonide administered intraperitoneally 1 h after chlorine inhalation caused a dose-dependent inhibition of neutrophil influx in lung tissue sections and in the number of neutrophils in lung lavage fluid. Budesonide, but not mometasone, reduced the levels of the neutrophil attractant CXCL1 in lavage fluid 6 h after exposure. Mometasone or budesonide also significantly inhibited pulmonary edema assessed 1 day after chlorine exposure. Chlorine inhalation resulted in airway hyperreactivity to inhaled methacholine, but neither mometasone nor budesonide significantly affected this parameter. The results suggest that mometasone and budesonide may represent potential treatments for chemical-induced lung injury. PMID:23800689

  10. Inhibition of chlorine-induced pulmonary inflammation and edema by mometasone and budesonide.

    PubMed

    Chen, Jing; Mo, Yiqun; Schlueter, Connie F; Hoyle, Gary W

    2013-10-15

    Chlorine gas is a widely used industrial compound that is highly toxic by inhalation and is considered a chemical threat agent. Inhalation of high levels of chlorine results in acute lung injury characterized by pneumonitis, pulmonary edema, and decrements in lung function. Because inflammatory processes can promote damage in the injured lung, anti-inflammatory therapy may be of potential benefit for treating chemical-induced acute lung injury. We previously developed a chlorine inhalation model in which mice develop epithelial injury, neutrophilic inflammation, pulmonary edema, and impaired pulmonary function. This model was used to evaluate nine corticosteroids for the ability to inhibit chlorine-induced neutrophilic inflammation. Two of the most potent corticosteroids in this assay, mometasone and budesonide, were investigated further. Mometasone or budesonide administered intraperitoneally 1h after chlorine inhalation caused a dose-dependent inhibition of neutrophil influx in lung tissue sections and in the number of neutrophils in lung lavage fluid. Budesonide, but not mometasone, reduced the levels of the neutrophil attractant CXCL1 in lavage fluid 6h after exposure. Mometasone or budesonide also significantly inhibited pulmonary edema assessed 1 day after chlorine exposure. Chlorine inhalation resulted in airway hyperreactivity to inhaled methacholine, but neither mometasone nor budesonide significantly affected this parameter. The results suggest that mometasone and budesonide may represent potential treatments for chemical-induced lung injury. © 2013.

  11. In obese mice, exercise training increases 11β-HSD1 expression, contributing to glucocorticoid activation and suppression of pulmonary inflammation.

    PubMed

    Du, Shu-Fang; Yu, Qing; Chuan, Kai; Ye, Chang-Lin; He, Ze-Jia; Liu, Shu-Juan; Zhu, Xiao-Yan; Liu, Yu-Jian

    2017-10-01

    Exercise training is advocated for treating chronic inflammation and obesity-related metabolic syndromes. Glucocorticoids (GCs), the anti-inflammatory hormones, are synthesized or metabolized in extra-adrenal organs. This study aims to examine whether exercise training affects obesity-associated pulmonary inflammation by regulating local GC synthesis or metabolism. We found that sedentary obese ( ob/ob ) mice exhibited increased levels of interleukin (IL)-1β, IL-18, monocyte chemotactic protein (MCP)-1, and leukocyte infiltration in lung tissues compared with lean mice, which was alleviated by 6 wk of exercise training. Pulmonary corticosterone levels were decreased in ob/ob mice. Exercise training increased pulmonary corticosterone levels in both lean and ob/ob mice. Pulmonary corticosterone levels were negatively correlated with IL-1β, IL-18, and MCP-1. Immunohistochemical staining of the adult mouse lung sections revealed positive immunoreactivities for the steroidogenic acute regulatory protein, the cholesterol side-chain cleavage enzyme (CYP11A1), the steroid 21-hydroxylase (CYP21), 3β-hydroxysteroid dehydrogenase (3β-HSD), and type 1 and type 2 11β-hydroxysteroid dehydrogenase (11β-HSD) but not for 11β-hydroxylase (CYP11B1). Exercise training significantly increased pulmonary 11β-HSD1 expression in both lean and ob/ob mice. In contrast, exercise training per se had no effect on pulmonary 11β-HSD2 expression, although pulmonary 11β-HSD2 levels in ob/ob mice were significantly higher than in lean mice. RU486, a glucocorticoid receptor antagonist, blocked the anti-inflammatory effects of exercise training in lung tissues of obese mice and increased inflammatory cytokines in lean exercised mice. These findings indicate that exercise training increases pulmonary expression of 11β-HSD1, thus contributing to local GC activation and suppression of pulmonary inflammation in obese mice. NEW & NOTEWORTHY Treadmill training leads to a significant increase in

  12. Inflammation, chronic obstructive pulmonary disease and aging.

    PubMed

    Provinciali, Mauro; Cardelli, Maurizio; Marchegiani, Francesca

    2011-12-01

    Chronic obstructive pulmonary disease (COPD) is characterized by an abnormal persistent inflammatory response to noxious environmental stimuli, particularly cigarette smoke. The determinants of the dysregulated immune responses, which play a role both in the onset and continuation of COPD, are largely unknown. We examined several molecular mechanisms regulating the inflammatory pathway, such as cytokine polymorphisms, miRNA expression, and DNA methylation in COPD and aging, with the aim to provide evidence supporting the view that aging of the immune system may predispose to COPD. The incidence of COPD increases with age. The pathogenesis of the disease is linked to a chronic inflammation and involves the recruitment and regulation of innate and adaptive immune cells. A chronic systemic inflammation characterizes aging and has been correlated with many diseases, most of them age-related. COPD and aging are associated with significant dysregulation of the immune system that leads to a chronic inflammatory response. The similar molecular mechanisms and the common genetic signature shared by COPD and aging suggest that immunosenescence may contribute to the development of COPD.

  13. Protection against fine particle-induced pulmonary and systemic inflammation by omega-3 polyunsaturated fatty acids.

    PubMed

    Li, Xiang-Yong; Hao, Lei; Liu, Ying-Hua; Chen, Chih-Yu; Pai, Victor J; Kang, Jing X

    2017-03-01

    Exposure to fine particulate matter, such as through air pollution, has been linked to the increased incidence of chronic diseases. However, few measures have been taken to reduce the health risks associated with fine particle exposure. The identification of safe and effective methods to protect against fine particle exposure-related damage is urgently needed. We used synthetic, non-toxic, fluorescent fine particles to investigate the physical distribution of inhaled fine particles and their effects on pulmonary and systemic inflammation in mice. Tissue levels of omega-3 fatty acids were elevated via dietary supplementation or the fat-1 transgenic mouse model. Markers of pulmonary and systemic inflammation were assessed. We discovered that fine particulate matter not only accumulates in the lungs but can also penetrate the pulmonary barrier and travel into other organs, including the brain, liver, spleen, kidney, and testis. These particles induced both pulmonary and systemic inflammation and increased oxidative stress. We also show that elevating tissue levels of omega-3 fatty acids was effective in reducing fine particle-induced inflammation, whether as a preventive method (prior to exposure) or as an intervention (after exposure). These results advance our understanding of how fine particles contribute to disease development and suggest that increasing tissue omega-3 levels may be a promising nutritional means for reducing the risk of diseases induced by particle exposure. Our findings demonstrate that elevating tissue omega-3 levels can prevent and treat fine particle-induced health problems and thereby present an immediate, practical solution for reducing the disease burden of air pollution. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Cytokine–Ion Channel Interactions in Pulmonary Inflammation

    PubMed Central

    Hamacher, Jürg; Hadizamani, Yalda; Borgmann, Michèle; Mohaupt, Markus; Männel, Daniela Narcissa; Moehrlen, Ueli; Lucas, Rudolf; Stammberger, Uz

    2018-01-01

    The lungs conceptually represent a sponge that is interposed in series in the bodies’ systemic circulation to take up oxygen and eliminate carbon dioxide. As such, it matches the huge surface areas of the alveolar epithelium to the pulmonary blood capillaries. The lung’s constant exposure to the exterior necessitates a competent immune system, as evidenced by the association of clinical immunodeficiencies with pulmonary infections. From the in utero to the postnatal and adult situation, there is an inherent vital need to manage alveolar fluid reabsorption, be it postnatally, or in case of hydrostatic or permeability edema. Whereas a wealth of literature exists on the physiological basis of fluid and solute reabsorption by ion channels and water pores, only sparse knowledge is available so far on pathological situations, such as in microbial infection, acute lung injury or acute respiratory distress syndrome, and in the pulmonary reimplantation response in transplanted lungs. The aim of this review is to discuss alveolar liquid clearance in a selection of lung injury models, thereby especially focusing on cytokines and mediators that modulate ion channels. Inflammation is characterized by complex and probably time-dependent co-signaling, interactions between the involved cell types, as well as by cell demise and barrier dysfunction, which may not uniquely determine a clinical picture. This review, therefore, aims to give integrative thoughts and wants to foster the unraveling of unmet needs in future research. PMID:29354115

  15. Ozone-Induced Pulmonary Injury and Inflammation are Modulated by Adrenal-Derived Stress Hormones

    EPA Science Inventory

    Ozone exposure promotes pulmonary injury and inflammation. Previously we have characterized systemic changes that occur immediately after acute ozone exposure and are mediated by neuro-hormonal stress response pathway. Both HPA axis and sympathetic tone alterations induce the rel...

  16. Granulomatous inflammation of pulmonary squamous cell carcinoma: a rare phenomenon.

    PubMed

    Tajima, Shogo; Koda, Kenji

    2015-01-01

    Some neoplasms are associated with granulomatous inflammation. Granuloma formation in tumor tissue is caused by the cytokines derived from either the main tumor or other cells surrounding the tumor. In other instances, granulomatous inflammation is observed in the lymph nodes draining a tumor. This has been recognized as a sarcoid-like reaction. Herein, we report of a 75-year-old man with pulmonary squamous cell carcinoma (SCC), where granulomatous inflammation was observed extensively at the primary site. The carcinoma seemed to partly regress. In the regressing area, tumor cell debris was surrounded by granuloma. In contrast, no granuloma was identified in the dissected regional lymph nodes. To the best of our knowledge, such a case of SCC had not been described thus far. More case studies are required to determine whether tumor-related granuloma is the main cause of regression or whether it is just a secondary phenomenon caused by the attack and destruction of the tumor by lymphocytes.

  17. Silver Nanoparticles: A study of dissolution, kinetics, and factors affecting pulmonary inflammation

    NASA Astrophysics Data System (ADS)

    Saunders, Eric L.

    The growing use of silver (Ag) nanoparticles (NP) in consumer and industrial goods has led to an increase in interest in the health effects associated with exposure, both occupationally and environmentally. The aim of this research is to examine the contribution of size, shape, and dissolution of AgNP, with its corresponding effect on pulmonary inflammation and clearance. In addition this study looks at metallothionein (MT) and the role it plays as an inflammatory modulator. A nose only exposure method was used to expose three strains of mouse (two inbred, one knockout) to two different sizes of AgNP (˜25 nm and ˜100 nm). This research demonstrates that size, chemistry, and dissolution play key roles in NP deposition and inflammatory response, while no conclusions could be drawn about shape. Additionally, this study found that the main factors affecting the deposition of NP in mice both acutely and sub-chronically are particle size and mouse strain. The results of this study also indicate a relationship between MT2 and inflammation. It was found that the mRNA levels of MT2 were greatly up-regulated in the livers and lungs of mice exposed to AgNP, while MT protein levels were not significantly altered to correlate with the altered regulation of mRNA. Finally, this study showed that, for AgNP, the mechanisms of pulmonary clearance and dissolution happened rapidly and that they, combined, likely represent a major pathway of AgNP transport out of the lung. Taken as a whole, the data in this study show that dissolution, coupled with protein interaction, is a significant mediator of pulmonary inflammation and translocation of AgNP.

  18. Exercise alleviates depression related systemic inflammation in chronic obstructive pulmonary disease patients.

    PubMed

    Abd El-Kader, Shehab M; Al-Jiffri, Osama H

    2016-12-01

    Depression is a highly prevalent co-morbidity in Chronic Obstructive Pulmonary Disease (COPD) which was shown to be associated with a worse course of disease, including reduced quality of life and increased symptoms burden, healthcare use, and even mortality. It has been speculated that systemic inflammation may play a role in the presence of depression. Currently, physical activity is an important lifestyle factor that has the potential to modify inflammatory cytokines and depression, however our understanding of how to use exercise effectively in COPD patients to alleviate depression related systemic inflammation is incomplete and has prompted our interest to identify the type and intensities of effective exercise. The aim of this study was to measure the changes in depression related systemic inflammation of aerobic exercise training in COPD patients in Jeddah area. Eighty patients with moderate severity of COPD participated in this study and were divided into two groups; the first group received aerobic exercise, whereas the second group received no exercise training for 12 weeks. The mean values of tumor necrosis factor-alpha (TNF-α), interleukin-4 (IL-4), interleukin-6 (IL-6), C-reactive protein (CRP) and Beck Depression Inventory (BDI) scores were significantly decreased in in group (A) after treatments, but the changes in group (B) were not significant .Also, there were significant differences between mean levels of the investigated parameters in group (A) and group (B) at the end of the study. Aerobic exercise is an effective treatment policy to improve depression related to systemic inflammation in patients with chronic obstructive pulmonary disease.

  19. Pulmonary oxidative stress, inflammation and dysregulated iron homeostatis in rat models of cardiovascular disease

    EPA Science Inventory

    Underlying cardiovascular disease (CVD) is considered a risk factor for the exacerbation of air pollution health effects. Therefore, rodent models of CVD are increasingly used to examine mechanisms ofvariation in susceptibility. Pulmonary oxidative stress, inflammation and altere...

  20. Non-invasive biomarkers of pulmonary damage and inflammation: Application to children exposed to ozone and trichloramine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernard, Alfred; Carbonnelle, Sylviane; Nickmilder, Marc

    2005-08-07

    To date, airways injury or inflammation caused by air pollutants has been evaluated mainly by analysis of bronchoalveolar lavage, an invasive technique totally unsuitable to children. The assessment of respiratory risks in this particularly vulnerable population has thus for a long time relied on spirometric tests and self-reported symptoms which are relatively late and inaccurate indicators of lung damage. Research in the field of biomarkers is now opening new perspectives with the development of non-invasive tests allowing to monitor inflammation and damage in the deep lung. Blood tests measuring lung-specific proteins (pneumoproteins) such as Clara cell protein (CC16) and surfactant-associatedmore » proteins (A, B or D) are now available to evaluate the permeability and/or the cellular integrity of the pulmonary epithelium. The application of these tests to children has recently led to the discovery of a lung epithelium hyperpermeability caused by trichloramine (nitrogen trichloride), an irritant gas contaminating the air of indoor-chlorinated pools. Serum CC16 can also serve to detect increases of airway permeability during short-term exposures to ambient ozone. Indicators measurable in exhaled air such as nitric oxide (NO) appear more useful to detect airway inflammation. By applying the exhaled NO test to children attending summer camps, we recently found that ambient ozone produces an acute inflammatory response in children from levels slightly lower than current air quality guidelines. In a study exploring the links between atopy, asthma, and exposure to chlorination products in indoor pools, we also found that the exhaled NO test can serve to detect the chronic airway inflammation associated with excessive exposure to trichloramine. Lung-specific proteins measurable in serum and markers in exhaled air represent sensitive tools that can be used to assess non-invasively the effects of air pollutants on the respiratory tract of children.« less

  1. Impact of agglomeration state of nano- and submicron sized gold particles on pulmonary inflammation

    PubMed Central

    2010-01-01

    Background Nanoparticle (NP) toxicity testing comes with many challenges. Characterization of the test substance is of crucial importance and in the case of NPs, agglomeration/aggregation state in physiological media needs to be considered. In this study, we have addressed the effect of agglomerated versus single particle suspensions of nano- and submicron sized gold on the inflammatory response in the lung. Rats were exposed to a single dose of 1.6 mg/kg body weight (bw) of spherical gold particles with geometric diameters of 50 nm or 250 nm diluted either by ultrapure water or by adding phosphate buffered saline (PBS). A single dose of 1.6 mg/kg bw DQ12 quartz was used as a positive control for pulmonary inflammation. Extensive characterization of the particle suspensions has been performed by determining the zetapotential, pH, gold concentration and particle size distribution. Primary particle size and particle purity has been verified using transmission electron microscopy (TEM) techniques. Pulmonary inflammation (total cell number, differential cell count and pro-inflammatory cytokines), cell damage (total protein and albumin) and cytotoxicity (alkaline phosphatase and lactate dehydrogenase) were determined in bronchoalveolar lavage fluid (BALF) and acute systemic effects in blood (total cell number, differential cell counts, fibrinogen and C-reactive protein) 3 and 24 hours post exposure. Uptake of gold particles in alveolar macrophages has been determined by TEM. Results Particles diluted in ultrapure water are well dispersed, while agglomerates are formed when diluting in PBS. The particle size of the 50 nm particles was confirmed, while the 250 nm particles appear to be 200 nm using tracking analysis and 210 nm using TEM. No major differences in pulmonary and systemic toxicity markers were observed after instillation of agglomerated versus single gold particles of different sizes. Both agglomerated as well as single nanoparticles were taken up by

  2. Global analysis of gene expression in pulmonary fibrosis reveals distinct programs regulating lung inflammation and fibrosis

    NASA Astrophysics Data System (ADS)

    Kaminski, Naftali; Allard, John D.; Pittet, Jean F.; Zuo, Fengrong; Griffiths, Mark J. D.; Morris, David; Huang, Xiaozhu; Sheppard, Dean; Heller, Renu A.

    2000-02-01

    The molecular mechanisms of pulmonary fibrosis are poorly understood. We have used oligonucleotide arrays to analyze the gene expression programs that underlie pulmonary fibrosis in response to bleomycin, a drug that causes lung inflammation and fibrosis, in two strains of susceptible mice (129 and C57BL/6). We then compared the gene expression patterns in these mice with 129 mice carrying a null mutation in the epithelial-restricted integrin 6 subunit (6/-), which develop inflammation but are protected from pulmonary fibrosis. Cluster analysis identified two distinct groups of genes involved in the inflammatory and fibrotic responses. Analysis of gene expression at multiple time points after bleomycin administration revealed sequential induction of subsets of genes that characterize each response. The availability of this comprehensive data set should accelerate the development of more effective strategies for intervention at the various stages in the development of fibrotic diseases of the lungs and other organs.

  3. Radiographic Evidence of Sinonasal Inflammation in Asthma-Chronic Obstructive Pulmonary Disease Overlap Syndrome: An Underrecognized Association.

    PubMed

    Hamada, Satoshi; Tatsumi, Shuji; Kobayashi, Yoshiki; Matsumoto, Hisako; Yasuba, Hirotaka

    Sinonasal inflammation on both clinical examinations and imaging significantly impacts both asthma and chronic obstructive pulmonary disease (COPD). The objective of this study was to examine the association between sinonasal inflammation and asthma-COPD overlap syndrome (ACOS). A total of 112 patients with a ratio of forced expiratory volume in 1 s to forced vital capacity of less than 70% were enrolled. COPD, asthma, and ACOS were clinically diagnosed according to the 2014 Global Initiative for Asthma and Global Initiative for Chronic Obstructive Lung Disease guidelines. Sinonasal inflammatory condition was evaluated using sinus computed tomography, and its severity was assessed according to the Lund-Mackay staging (LMS) system. Ethmoid sinus-dominant shadow was defined as the presence of greater LMS scores for the anterior and posterior ethmoid sinuses than for the maxillary sinus. COPD, asthma, and ACOS were diagnosed in 55 (49.1%), 39 (34.8%), and 18 patients (16.1%), respectively. The frequency of radiographic evidence of sinonasal inflammation in patients with COPD, asthma, ACOS was 60.0%, 94.9%, and 72.2%, respectively. Patients with ACOS and COPD had only mild radiographic evidence of sinonasal inflammation (LMS score, 1-7), whereas moderate (LMS score, 8-11) and severe (LMS score, ≥12) radiographic evidence of sinonasal inflammation were detected only in patients with asthma. Furthermore, the frequency of ethmoid sinus-dominant shadow was significantly higher in patients with asthma than in those with COPD and ACOS. Radiographic evidence of sinonasal inflammation was a common comorbidity in ACOS. Future studies are required to examine the role of sinonasal inflammation in ACOS. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  4. Pulmonary stromal cells induce the generation of regulatory DC attenuating T-cell-mediated lung inflammation.

    PubMed

    Li, Qian; Guo, Zhenhong; Xu, Xiongfei; Xia, Sheng; Cao, Xuetao

    2008-10-01

    The tissue microenvironment may affect the development and function of immune cells such as DC. Whether and how the pulmonary stromal microenvironment can affect the development and function of lung DC need to be investigated. Regulatory DC (DCreg) can regulate T-cell response. We wondered whether such regulatory DC exist in the lung and what is the effect of the pulmonary stromal microenvironment on the generation of DCreg. Here we demonstrate that murine pulmonary stromal cells can drive immature DC, which are regarded as being widely distributed in the lung, to proliferate and differentiate into a distinct subset of DCreg, which express high levels of CD11b but low levels of MHC class II (I-A), CD11c, secrete high amounts of IL-10, NO and prostaglandin E2 (PGE2) and suppress T-cell proliferation. The natural counterpart of DCreg in the lung with similar phenotype and regulatory function has been identified. Pulmonary stroma-derived TGF-beta is responsible for the differentiation of immature DC to DCreg, and DCreg-derived PGE2 contributes to their suppression of T-cell proliferation. Moreover, DCreg can induce the generation of CD4+CD25+Foxp3+ Treg. Importantly, infusion with DCreg attenuates T-cell-mediated eosinophilic airway inflammation in vivo. Therefore, the pulmonary microenvironment may drive the generation of DCreg, thus contributing to the maintenance of immune homoeostasis and the control of inflammation in the lung.

  5. Automated detection of pulmonary nodules in CT images with support vector machines

    NASA Astrophysics Data System (ADS)

    Liu, Lu; Liu, Wanyu; Sun, Xiaoming

    2008-10-01

    Many methods have been proposed to avoid radiologists fail to diagnose small pulmonary nodules. Recently, support vector machines (SVMs) had received an increasing attention for pattern recognition. In this paper, we present a computerized system aimed at pulmonary nodules detection; it identifies the lung field, extracts a set of candidate regions with a high sensitivity ratio and then classifies candidates by the use of SVMs. The Computer Aided Diagnosis (CAD) system presented in this paper supports the diagnosis of pulmonary nodules from Computed Tomography (CT) images as inflammation, tuberculoma, granuloma..sclerosing hemangioma, and malignant tumor. Five texture feature sets were extracted for each lesion, while a genetic algorithm based feature selection method was applied to identify the most robust features. The selected feature set was fed into an ensemble of SVMs classifiers. The achieved classification performance was 100%, 92.75% and 90.23% in the training, validation and testing set, respectively. It is concluded that computerized analysis of medical images in combination with artificial intelligence can be used in clinical practice and may contribute to more efficient diagnosis.

  6. Airway inflammation in chronic obstructive pulmonary disease (COPD): a true paradox.

    PubMed

    Eapen, Mathew Suji; Myers, Stephen; Walters, Eugene Haydn; Sohal, Sukhwinder Singh

    2017-10-01

    Chronic obstructive pulmonary disease (COPD) is primarily an airway condition, which mainly affects cigarette smokers and presents with shortness of breath that is progressive and poorly reversible. In COPD research, there has been a long held belief that airway disease progression is due to inflammation. Although this may be true in the airway lumen with innate immunity activated by the effect of smoke or secondary to infection, the accurate picture of inflammatory cells in the airway wall, where the pathophysiological COPD remodeling occurs, is uncertain and debatable. Areas covered: The current review provides a comprehensive literature survey of the changes in the main inflammatory cells in human COPD patients and focuses on contrarian views that affect the prevailing dogma on inflammation. The review also delves into the role of oxidative stress and inflammasomes in modulating the immune response in COPD. Further, the effects of inflammation in affecting the epithelium, fibroblasts, and airway remodeling are discussed. Expert commentary: Inflammation as a driving force for airway wall damage and remodelling in early COPD is at the very least 'oversimplified' and is likely to be misleading. This has serious implications for rational thinking about the illness, including pathogenesis and designing therapy.

  7. Involvement of the cytokine-IDO1-AhR loop in zinc oxide nanoparticle-induced acute pulmonary inflammation.

    PubMed

    Ho, Chia-Chi; Lee, Hui-Ling; Chen, Chao-Yu; Luo, Yueh-Hsia; Tsai, Ming-Hsien; Tsai, Hui-Ti; Lin, Pinpin

    2017-04-01

    Zinc oxide nanoparticles (ZnONPs) are widely used in our daily life, such as in sunscreens and electronic nanodevices. However, pulmonary exposure to ZnONPs causes acute pulmonary inflammation, which is considered as an initial event for various respiratory diseases. Thus, elucidation of the underlying cellular mechanisms of ZnONPs can help us in predicting their potential effects in respiratory diseases. In this study, we observed that ZnONPs increased proinflammatory cytokines, accompanied with an increased expression of aryl hydrocarbon receptor (AhR) and its downstream target cytochrome P450 1A1 (CYP1A1) in macrophages in vitro and in mouse lung epithelia in vivo. Moreover, zinc nitrate, but not silica or titanium dioxide nanoparticles (NPs), had similar effects on macrophages, indicating that the zinc element or ion released from ZnONPs is likely responsible for the activation of the AhR pathway. Cotreatment with an AhR antagonist or AhR knockout reduced ZnONPs-induced cytokine secretion in macrophages or mice, respectively. Furthermore, kynurenine (KYN), an endogenous AhR agonist and a tryptophan metabolite catalyzed by indoleamine 2,3-dioxygenase (IDO), was increased in the serums of mice that aspirated ZnONPs. Consistently, ZnONPs increased IDO1 expression in lung cells in vitro and in vivo. Finally, AhR knockout reduced ZnONPs-induced pulmonary inflammation, cytokine secretion and KYN production in mice, suggesting that AhR activation is involved in ZnONPs-induced cytokine secretion and pulmonary inflammation. In summary, we demonstrated that the pulmonary exposure of ZnONPs stimulated the cytokine-IDO1-AhR loop in the lungs, which has been implied to play roles in immune dysfunctions.

  8. P2Y6 Receptor Activation Promotes Inflammation and Tissue Remodeling in Pulmonary Fibrosis

    PubMed Central

    Müller, Tobias; Fay, Susanne; Vieira, Rodolfo Paula; Karmouty-Quintana, Harry; Cicko, Sanja; Ayata, Cemil Korcan; Zissel, Gernot; Goldmann, Torsten; Lungarella, Giuseppe; Ferrari, Davide; Di Virgilio, Francesco; Robaye, Bernard; Boeynaems, Jean-Marie; Lazarowski, Eduardo R.; Blackburn, Michael R.; Idzko, Marco

    2017-01-01

    Idiopathic pulmonary fibrosis (IPF) is a disease with a poor prognosis and very few available treatment options. The involvement of the purinergic receptor subtypes P2Y2 and P2X7 in fibrotic lung disease has been demonstrated recently. In this study, we investigated the role of P2Y6 receptors in the pathogenesis of IPF in humans and in the animal model of bleomycin-induced lung injury. P2Y6R expression was upregulated in lung structural cells but not in bronchoalveolar lavage (BAL) cells derived from IPF patients as well as in animals following bleomycin administration. Furthermore, BAL fluid levels of the P2Y6R agonist uridine-5′-diphosphate were elevated in animals with bleomycin-induced pulmonary fibrosis. Inflammation and fibrosis following bleomycin administration were reduced in P2Y6R-deficient compared to wild-type animals confirming the pathophysiological relevance of P2Y6R subtypes for fibrotic lung diseases. Experiments with bone marrow chimeras revealed the importance of P2Y6R expression on lung structural cells for pulmonary inflammation and fibrosis. Similar effects were obtained when animals were treated with the P2Y6R antagonist MRS2578. In vitro studies demonstrated that proliferation and secretion of the pro-inflammatory/pro-fibrotic cytokine IL-6 by lung fibroblasts are P2Y6R-mediated processes. In summary, our results clearly demonstrate the involvement of P2Y6R subtypes in the pathogenesis of pulmonary fibrosis. Thus, blocking pulmonary P2Y6 receptors might be a new target for the treatment of IPF. PMID:28878780

  9. Low level laser therapy reduces acute lung inflammation in a model of pulmonary and extrapulmonary LPS-induced ARDS.

    PubMed

    Oliveira, Manoel Carneiro; Greiffo, Flávia Regina; Rigonato-Oliveira, Nicole Cristine; Custódio, Ricardo Wesley Alberca; Silva, Vanessa Roza; Damaceno-Rodrigues, Nilsa Regina; Almeida, Francine Maria; Albertini, Regiane; Lopes-Martins, Rodrigo Álvaro B; de Oliveira, Luis Vicente Franco; de Carvalho, Paulo de Tarso Camillo; Ligeiro de Oliveira, Ana Paula; Leal, Ernesto César P; Vieira, Rodolfo P

    2014-05-05

    The present study aimed to investigate the effects low level laser therapy (LLLT) in a LPS-induced pulmonary and extrapulmonary acute respiratory distress syndrome (ARDS) in BALB/c mice. Laser (830nm laser, 9J/cm(2), 35mW, 80s per point, 3 points per application) was applied in direct contact with skin, 1h after LPS administration. Mice were distributed in control (n=6; PBS), ARDS IT (n=7; LPS orotracheally 10μg/mouse), ARDS IP (n=7; LPS intra-peritoneally 100μg/mouse), ARDS IT+Laser (n=9; LPS intra-tracheally 10μg/mouse), ARDS IP+Laser (n=9; LPS intra-peritoneally 100μg/mouse). Twenty-four hours after last LPS administration, mice were studied for pulmonary inflammation by total and differential cell count in bronchoalveolar lavage (BAL), cytokines (IL-1beta, IL-6, KC and TNF-alpha) levels in BAL fluid and also by quantitative analysis of neutrophils number in the lung parenchyma. LLLT significantly reduced pulmonary and extrapulmonary inflammation in LPS-induced ARDS, as demonstrated by reduced number of total cells (p<0.001) and neutrophils (p<0.001) in BAL, reduced levels of IL-1beta, IL-6, KC and TNF-alpha in BAL fluid and in serum (p<0.001), as well as the number of neutrophils in lung parenchyma (p<0.001). LLLT is effective to reduce pulmonary inflammation in both pulmonary and extrapulmonary model of LPS-induced ARDS. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Framework for 3D histologic reconstruction and fusion with in vivo MRI: Preliminary results of characterizing pulmonary inflammation in a mouse model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rusu, Mirabela, E-mail: mirabela.rusu@gmail.com; Wang, Haibo; Madabhushi, Anant

    Purpose: Pulmonary inflammation is associated with a variety of diseases. Assessing pulmonary inflammation on in vivo imaging may facilitate the early detection and treatment of lung diseases. Although routinely used in thoracic imaging, computed tomography has thus far not been compellingly shown to characterize inflammation in vivo. Alternatively, magnetic resonance imaging (MRI) is a nonionizing radiation technique to better visualize and characterize pulmonary tissue. Prior to routine adoption of MRI for early characterization of inflammation in humans, a rigorous and quantitative characterization of the utility of MRI to identify inflammation is required. Such characterization may be achieved by considering exmore » vivo histology as the ground truth, since it enables the definitive spatial assessment of inflammation. In this study, the authors introduce a novel framework to integrate 2D histology, ex vivo and in vivo imaging to enable the mapping of the extent of disease from ex vivo histology onto in vivo imaging, with the goal of facilitating computerized feature analysis and interrogation of disease appearance on in vivo imaging. The authors’ framework was evaluated in a preclinical preliminary study aimed to identify computer extracted features on in vivo MRI associated with chronic pulmonary inflammation. Methods: The authors’ image analytics framework first involves reconstructing the histologic volume in 3D from individual histology slices. Second, the authors map the disease ground truth onto in vivo MRI via coregistration with 3D histology using the ex vivo lung MRI as a conduit. Finally, computerized feature analysis of the disease extent is performed to identify candidate in vivo imaging signatures of disease presence and extent. Results: The authors evaluated the framework by assessing the quality of the 3D histology reconstruction and the histology—MRI fusion, in the context of an initial use case involving characterization of chronic

  11. Framework for 3D histologic reconstruction and fusion with in vivo MRI: Preliminary results of characterizing pulmonary inflammation in a mouse model.

    PubMed

    Rusu, Mirabela; Golden, Thea; Wang, Haibo; Gow, Andrew; Madabhushi, Anant

    2015-08-01

    Pulmonary inflammation is associated with a variety of diseases. Assessing pulmonary inflammation on in vivo imaging may facilitate the early detection and treatment of lung diseases. Although routinely used in thoracic imaging, computed tomography has thus far not been compellingly shown to characterize inflammation in vivo. Alternatively, magnetic resonance imaging (MRI) is a nonionizing radiation technique to better visualize and characterize pulmonary tissue. Prior to routine adoption of MRI for early characterization of inflammation in humans, a rigorous and quantitative characterization of the utility of MRI to identify inflammation is required. Such characterization may be achieved by considering ex vivo histology as the ground truth, since it enables the definitive spatial assessment of inflammation. In this study, the authors introduce a novel framework to integrate 2D histology, ex vivo and in vivo imaging to enable the mapping of the extent of disease from ex vivo histology onto in vivo imaging, with the goal of facilitating computerized feature analysis and interrogation of disease appearance on in vivo imaging. The authors' framework was evaluated in a preclinical preliminary study aimed to identify computer extracted features on in vivo MRI associated with chronic pulmonary inflammation. The authors' image analytics framework first involves reconstructing the histologic volume in 3D from individual histology slices. Second, the authors map the disease ground truth onto in vivo MRI via coregistration with 3D histology using the ex vivo lung MRI as a conduit. Finally, computerized feature analysis of the disease extent is performed to identify candidate in vivo imaging signatures of disease presence and extent. The authors evaluated the framework by assessing the quality of the 3D histology reconstruction and the histology-MRI fusion, in the context of an initial use case involving characterization of chronic inflammation in a mouse model. The authors

  12. Serum amyloid A opposes lipoxin A₄ to mediate glucocorticoid refractory lung inflammation in chronic obstructive pulmonary disease.

    PubMed

    Bozinovski, Steven; Uddin, Mohib; Vlahos, Ross; Thompson, Michelle; McQualter, Jonathan L; Merritt, Anne-Sophie; Wark, Peter A B; Hutchinson, Anastasia; Irving, Louis B; Levy, Bruce D; Anderson, Gary P

    2012-01-17

    Chronic obstructive pulmonary disease (COPD) will soon be the third most common cause of death globally. Despite smoking cessation, neutrophilic mucosal inflammation persistently damages the airways and fails to protect from recurrent infections. This maladaptive and excess inflammation is also refractory to glucocorticosteroids (GC). Here, we identify serum amyloid A (SAA) as a candidate mediator of GC refractory inflammation in COPD. Extrahepatic SAA was detected locally in COPD bronchoalveolar lavage fluid, which correlated with IL-8 and neutrophil elastase, consistent with neutrophil recruitment and activation. Immunohistochemistry detected SAA was in close proximity to airway epithelium, and in vitro SAA triggered release of IL-8 and other proinflammatory mediators by airway epithelial cells in an ALX/FPR2 (formyl peptide receptor 2) receptor-dependent manner. Lipoxin A(4) (LXA(4)) can also interact with ALX/FPR2 receptors and lead to allosteric inhibition of SAA-initiated epithelial responses (pA(2) 13 nM). During acute exacerbation, peripheral blood SAA levels increased dramatically and were disproportionately increased relative to LXA(4). Human lung macrophages (CD68(+)) colocalized with SAA and GCs markedly increased SAA in vitro (THP-1, pEC(50) 43 nM). To determine its direct actions, SAA was administered into murine lung, leading to induction of CXC chemokine ligand 1/2 and a neutrophilic response that was inhibited by 15-epi-LXA(4) but not dexamethasone. Taken together, these findings identify SAA as a therapeutic target for inhibition and implicate SAA as a mediator of GC-resistant lung inflammation that can overwhelm organ protective signaling by lipoxins at ALX/FPR2 receptors.

  13. Hfe Deficiency Impairs Pulmonary Neutrophil Recruitment in Response to Inflammation

    PubMed Central

    Benesova, Karolina; Vujić Spasić, Maja; Schaefer, Sebastian M.; Stolte, Jens; Baehr-Ivacevic, Tomi; Waldow, Katharina; Zhou, Zhe; Klingmueller, Ursula; Benes, Vladimir; Mall, Marcus A.; Muckenthaler, Martina U.

    2012-01-01

    Regulation of iron homeostasis and the inflammatory response are tightly linked to protect the host from infection. Here we investigate how imbalanced systemic iron homeostasis in a murine disease model of hereditary hemochromatosis (Hfe−/− mice) affects the inflammatory responses of the lung. We induced acute pulmonary inflammation in Hfe−/− and wild-type mice by intratracheal instillation of 20 µg of lipopolysaccharide (LPS) and analyzed local and systemic inflammatory responses and iron-related parameters. We show that in Hfe−/− mice neutrophil recruitment to the bronchoalveolar space is attenuated compared to wild-type mice although circulating neutrophil numbers in the bloodstream were elevated to similar levels in Hfe−/− and wild-type mice. The underlying molecular mechanisms are likely multifactorial and include elevated systemic iron levels, alveolar macrophage iron deficiency and/or hitherto unexplored functions of Hfe in resident pulmonary cell types. As a consequence, pulmonary cytokine expression is out of balance and neutrophils fail to be recruited efficiently to the bronchoalveolar compartment, a process required to protect the host from infections. In conclusion, our findings suggest a novel role for Hfe and/or imbalanced iron homeostasis in the regulation of the inflammatory response in the lung and hereditary hemochromatosis. PMID:22745741

  14. Inhalation of Carbon Black Nanoparticles Aggravates Pulmonary Inflammation in Mice

    PubMed Central

    Saputra, Devina; Yoon, Jin-ha; Park, Hyunju; Heo, Yongju; Yang, Hyoseon; Lee, Eun Ji; Lee, Sangjin; Song, Chang-Woo; Lee, Kyuhong

    2014-01-01

    An increasing number of recent studies have focused on the impact of particulate matter on human health. As a model for atmospheric particulate inhalation, we investigated the effects of inhaled carbon black nanoparticles (CBNP) on mice with bleomycin-induced pulmonary fibrosis. The CNBPs were generated by a novel aerosolization process, and the mice were exposed to the aerosol for 4 hours. We found that CBNP inhalation exacerbated lung inflammation, as evidenced by histopathology analysis and by the expression levels of interleukin-6 protein, fibronectin, and interferon-γ mRNAs in lung tissues. Notably, fibronectin mRNA expression showed a statistically significant increase in expression after CBNP exposure. These data suggest that the concentration of CBNPs delivered (calculated to be 12.5 μg/m3) can aggravate lung inflammation in mice. Our results also suggest that the inhalation of ultrafine particles like PM 2.5 is an impactful environmental risk factor for humans, particularly in susceptible populations with predisposing lung conditions. PMID:25071917

  15. Grouping nanomaterials to predict their potential to induce pulmonary inflammation.

    PubMed

    Braakhuis, Hedwig M; Oomen, Agnes G; Cassee, Flemming R

    2016-05-15

    The rapidly expanding manufacturing, production and use of nanomaterials have raised concerns for both worker and consumer safety. Various studies have been published in which induction of pulmonary inflammation after inhalation exposure to nanomaterials has been described. Nanomaterials can vary in aspects such as size, shape, charge, crystallinity, chemical composition, and dissolution rate. Currently, efforts are made to increase the knowledge on the characteristics of nanomaterials that can be used to categorise them into hazard groups according to these characteristics. Grouping helps to gather information on nanomaterials in an efficient way with the aim to aid risk assessment. Here, we discuss different ways of grouping nanomaterials for their risk assessment after inhalation. Since the relation between single intrinsic particle characteristics and the severity of pulmonary inflammation is unknown, grouping of nanomaterials by their intrinsic characteristics alone is not sufficient to predict their risk after inhalation. The biokinetics of nanomaterials should be taken into account as that affects the dose present at a target site over time. The parameters determining the kinetic behaviour are not the same as the hazard-determining parameters. Furthermore, characteristics of nanomaterials change in the life-cycle, resulting in human exposure to different forms and doses of these nanomaterials. As information on the biokinetics and in situ characteristics of nanomaterials is essential but often lacking, efforts should be made to include these in testing strategies. Grouping nanomaterials will probably be of the most value to risk assessors when information on intrinsic characteristics, life-cycle, biokinetics and effects are all combined. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Cannabidiol (CBD) Enhances Lipopolysaccharide (LPS)-Induced Pulmonary Inflammation in C57BL/6 Mice

    PubMed Central

    Karmaus, Peer W. F.; Wagner, James G.; Harkema, Jack R.; Kaminski, Norbert E.; Kaplan, Barbara L.F.

    2012-01-01

    Cannabidiol (CBD) is a plant-derived cannabinoid that has been predominantly characterized as anti-inflammatory. However, it is clear that immune effects of cannabinoids can vary with cannabinoid concentration, or type or magnitude of immune stimulus. The present studies demonstrate that oral administration of CBD enhanced lipopolysaccharide (LPS)-induced pulmonary inflammation in C57BL/6 mice. The enhanced inflammatory cell infiltrate as observed in bronchoalveolar lavage fluid (BALF) was comprised mainly of neutrophils, with some monocytes. Concomitantly, CBD enhanced pro-inflammatory cytokine mRNA production, including tumor necrosis factor-α (Tnfa), interleukins (IL) 6 and 23 (Il6, Il23), and granulocyte colony stimulating factor (Gcsf). These results demonstrate that the CBD-mediated enhancement of LPS-induced pulmonary inflammation is mediated at the level of transcription of a variety of pro-inflammatory genes. The significance of these studies is that CBD is part of a therapeutic currently in use for spasticity and pain in multiple sclerosis patients, and therefore it is important to further understand mechanisms by which CBD alters immune function. PMID:23173851

  17. Cannabidiol (CBD) enhances lipopolysaccharide (LPS)-induced pulmonary inflammation in C57BL/6 mice.

    PubMed

    Karmaus, Peer W F; Wagner, James G; Harkema, Jack R; Kaminski, Norbert E; Kaplan, Barbara L F

    2013-01-01

    Cannabidiol (CBD) is a plant-derived cannabinoid that has been predominantly characterized as anti-inflammatory. However, it is clear that immune effects of cannabinoids can vary with cannabinoid concentration, or type or magnitude of immune stimulus. The present studies demonstrate that oral administration of CBD enhanced lipopolysaccharide (LPS)-induced pulmonary inflammation in C57BL/6 mice. The enhanced inflammatory cell infiltrate as observed in bronchoalveolar lavage fluid (BALF) was comprised mainly of neutrophils, with some monocytes. Concomitantly, CBD enhanced pro-inflammatory cytokine mRNA production, including tumor necrosis factor-α (Tnfa), interleukins (IL)-5 and -23 (Il6, Il23), and granulocyte colony stimulating factor (Gcsf). These results demonstrate that the CBD-mediated enhancement of LPS-induced pulmonary inflammation is mediated at the level of transcription of a variety of pro-inflammatory genes. The significance of these studies is that CBD is part of a therapeutic currently in use for spasticity and pain in multiple sclerosis patients, and therefore it is important to further understand mechanisms by which CBD alters immune function.

  18. Bone marrow transplantation reveals an essential synergy between neuronal and hemopoietic cell neurokinin production in pulmonary inflammation.

    PubMed

    Chavolla-Calderón, Mara; Bayer, Meggan K; Fontán, J Julio Pérez

    2003-04-01

    Neurogenic inflammation is believed to originate with the antidromic release of substance P, and of other neurokinins encoded by the preprotachykinin A (PPT-A) gene, from unmyelinated nerve fibers (C-fibers) following noxious stimuli. Consistent with this concept, we show here that selective sensory-fiber denervation with capsaicin and targeted deletion of the PPT-A gene protect murine lungs against both immune complex-mediated and stretch-mediated injuries. Reconstitution of PPT-A gene-deleted mice with WT bone marrow does not abrogate this protection, demonstrating a critical role for PPT-A gene expression by sensory neurons in pulmonary inflammation. Surprisingly, reconstitution of WT mice with PPT-A gene-deficient bone marrow also confers protection against pulmonary injury, revealing that PPT-A gene expression in hemopoietic cells has a previously unanticipated essential role in tissue injury. Taken together, these findings demonstrate a critical synergy between capsaicin-sensitive sensory fibers and hemopoietic cells in neurokinin-mediated inflammation and suggest that such synergy may be the basis for a stereotypical mechanism of response to injury in the respiratory tract.

  19. Bone marrow transplantation reveals an essential synergy between neuronal and hemopoietic cell neurokinin production in pulmonary inflammation

    PubMed Central

    Chavolla-Calderón, Mara; Bayer, Meggan K.; Fontán, J. Julio Pérez

    2003-01-01

    Neurogenic inflammation is believed to originate with the antidromic release of substance P, and of other neurokinins encoded by the preprotachykinin A (PPT-A) gene, from unmyelinated nerve fibers (C-fibers) following noxious stimuli. Consistent with this concept, we show here that selective sensory-fiber denervation with capsaicin and targeted deletion of the PPT-A gene protect murine lungs against both immune complex–mediated and stretch-mediated injuries. Reconstitution of PPT-A gene–deleted mice with WT bone marrow does not abrogate this protection, demonstrating a critical role for PPT-A gene expression by sensory neurons in pulmonary inflammation. Surprisingly, reconstitution of WT mice with PPT-A gene–deficient bone marrow also confers protection against pulmonary injury, revealing that PPT-A gene expression in hemopoietic cells has a previously unanticipated essential role in tissue injury. Taken together, these findings demonstrate a critical synergy between capsaicin-sensitive sensory fibers and hemopoietic cells in neurokinin-mediated inflammation and suggest that such synergy may be the basis for a stereotypical mechanism of response to injury in the respiratory tract. PMID:12671046

  20. Impaired Respiratory Function and Heightened Pulmonary Inflammation in Episodic Binge Ethanol Intoxication and Burn Injury

    PubMed Central

    Shults, Jill A.; Curtis, Brenda J.; Chen, Michael M.; O'Halloran, Eileen B.; Ramirez, Luis; Kovacs, Elizabeth J.

    2015-01-01

    Clinical data indicate that cutaneous burn injuries covering greater than ten percent total body surface area are associated with significant morbidity and mortality, where pulmonary complications, including acute respiratory distress syndrome (ARDS), contribute to nearly half of all patient deaths. Approximately 50% of burn patients are intoxicated at the time of hospital admission, which increases days on ventilators by three-fold, and doubles length of hospital admittance, compared to non-intoxicated burn patients. The most common drinking pattern in the United States is binge drinking, where one rapidly consumes alcoholic beverages (4 for women, 5 for men) in 2 hours and an estimated 38 million Americans binge drink, often several times per month. Experimental data demonstrate a single binge ethanol exposure prior to scald injury, impairs innate and adaptive immune responses, thereby enhancing infection susceptibility and amplifying pulmonary inflammation, neutrophil infiltration, and edema, and is associated with increased mortality. Since these characteristics are similar to those observed in ARDS burn patients, our study objective was to determine whether ethanol intoxication and burn injury and the subsequent pulmonary congestion affects physiological parameters of lung function using non-invasive and unrestrained plethysmography in a murine model system. Furthermore, to mirror young adult binge drinking patterns, and to determine the effect of multiple ethanol exposures on pulmonary inflammation, we utilized an episodic binge ethanol exposure regimen, where mice were exposed to ethanol for a total of 6 days (3 days ethanol, 4 days rest, 3 days ethanol) prior to burn injury. Our analyses demonstrate mice exposed to episodic binge ethanol and burn injury have higher mortality, increased pulmonary congestion and neutrophil infiltration, elevated neutrophil chemoattractants, and respiratory dysfunction, compared to burn or ethanol intoxication alone. Overall

  1. Pirfenidone ameliorates lipopolysaccharide-induced pulmonary inflammation and fibrosis by blocking NLRP3 inflammasome activation.

    PubMed

    Li, Yi; Li, Haitao; Liu, Shuai; Pan, Pinhua; Su, Xiaoli; Tan, Hongyi; Wu, Dongdong; Zhang, Lemeng; Song, Chao; Dai, Minhui; Li, Qian; Mao, Zhi; Long, Yuan; Hu, Yongbin; Hu, Chengping

    2018-05-18

    Acute respiratory distress syndrome(ARDS)is a severe clinical disorder characterized by its acute onset, diffuse alveolar damage, intractable hypoxemia, and non-cardiogenic pulmonary edema. Acute lung injury(ALI) can trigger persistent lung inflammation and fibrosis through activation of the NLRP3 inflammasome and subsequent secretion of mature IL-1β, suggesting that the NLRP3 inflammasome is a potential therapeutic target for ALI, for which new therapeutic approaches are needed. Our present study aims to assess whether pirfenidone,with anti-fibrotic and anti-inflammatory properties, can improve LPS-induced inflammation and fibrosis by inhibiting NLRP3 inflammasome activation. Male C57BL/6 J mice were intratracheally injected with LPS to induce ALI. Mice were administered pirfenidone by oral gavage throughout the entire experimental course. The mouse macrophage cell line (J774 A.1) was incubated with LPS and ATP, with or without PFD pre-treatment. We demonstrated that PFD remarkably ameliorated LPS-induced pulmonary inflammation and fibrosis and reduced IL-1β and TGF-β1 levels in bronchoalveolar lavage fluid(BALF). Pirfenidone substantially reduced NLRP3 and ASC expression and inhibited caspase-1 activation and IL-1β maturation in lung tissues. In vitro, the experiments revealed that PFD significantly suppressed LPS/ATP-induced production of reactive oxygen species (ROS) and decreased caspase-1 activation and the level of IL-1β in J774 A.1 cells. Taken together, the administration of PFD reduced LPS-induced lung inflammation and fibrosis by blocking NLRP3 inflammasome activation and subsequent IL-1β secretion. These findings indicated that PFD can down-regulate NLRP3 inflammasome activation and that it may offer a promising therapeutic approach for ARDS patients. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. [Role of MRI for detection and characterization of pulmonary nodules].

    PubMed

    Sommer, G; Koenigkam-Santos, M; Biederer, J; Puderbach, M

    2014-05-01

    Due to physical and technical limitations, magnetic resonance imaging (MRI) has hitherto played only a minor role in image-based diagnostics of the lungs. However, as a consequence of important methodological developments during recent years, MRI has developed into a technically mature and clinically well-proven method for specific pulmonary questions. The purpose of this article is to provide an overview on the currently available sequences and techniques for assessment of pulmonary nodules and analyzes the clinical significance according to the current literature. The main focus is on the detection of lung metastases, the detection of primary pulmonary malignancies in high-risk individuals and the differentiation between pulmonary nodules of benign and malignant character. The MRI technique has a sensitivity of approximately 80 % for detection of malignant pulmonary nodules compared to the reference standard low-dose computed tomography (CT) and is thus somewhat inferior to CT. Advantages of MRI on the other hand are a higher specificity in differentiating malignant and benign pulmonary nodules and the absence of ionizing radiation exposure. A systematic use of MRI as a primary tool for detection and characterization of pulmonary nodules is currently not recommended due to insufficient data. The diagnostic potential of MRI for early detection and staging of malignant pulmonary diseases, however, seems promising. Therefore, further evaluation of MRI as a secondary imaging modality in clinical trials is highly warranted.

  3. Infection, inflammation, and lung function decline in infants with cystic fibrosis.

    PubMed

    Pillarisetti, Naveen; Williamson, Elizabeth; Linnane, Barry; Skoric, Billy; Robertson, Colin F; Robinson, Phil; Massie, John; Hall, Graham L; Sly, Peter; Stick, Stephen; Ranganathan, Sarath

    2011-07-01

    Better understanding of evolution of lung function in infants with cystic fibrosis (CF) and its association with pulmonary inflammation and infection is crucial in informing both early intervention studies aimed at limiting lung damage and the role of lung function as outcomes in such studies. To describe longitudinal change in lung function in infants with CF and its association with pulmonary infection and inflammation. Infants diagnosed after newborn screening or clinical presentation were recruited prospectively. FVC, forced expiratory volume in 0.5 seconds (FEV(0.5)), and forced expiratory flows at 75% of exhaled vital capacity (FEF(75)) were measured using the raised-volume technique, and z-scores were calculated from published reference equations. Pulmonary infection and inflammation were measured in bronchoalveolar lavage within 48 hours of lung function testing. Thirty-seven infants had at least two successful repeat lung function measurements. Mean (SD) z-scores for FVC were -0.8 (1.0), -0.9 (1.1), and -1.7 (1.2) when measured at the first visit, 1-year visit, or 2-year visit, respectively. Mean (SD) z-scores for FEV(0.5) were -1.4 (1.2), -2.4 (1.1), and -4.3 (1.6), respectively. In those infants in whom free neutrophil elastase was detected, FVC z-scores were 0.81 lower (P=0.003), and FEV(0.5) z-scores 0.96 lower (P=0.001), respectively. Significantly greater decline in FEV(0.5) z-scores occurred in those infected with Staphylococcus aureus (P=0.018) or Pseudomonas aeruginosa (P=0.021). In infants with CF, pulmonary inflammation is associated with lower lung function, whereas pulmonary infection is associated with a greater rate of decline in lung function. Strategies targeting pulmonary inflammation and infection are required to prevent early decline in lung function in infants with CF.

  4. A Plant Proteinase Inhibitor from Enterolobium contortisiliquum Attenuates Pulmonary Mechanics, Inflammation and Remodeling Induced by Elastase in Mice

    PubMed Central

    Theodoro-Júnior, Osmar Aparecido; Righetti, Renato Fraga; Almeida-Reis, Rafael; Martins-Oliveira, Bruno Tadeu; Oliva, Leandro Vilela; Prado, Carla Máximo; Saraiva-Romanholo, Beatriz Mangueira; Leick, Edna Aparecida; Pinheiro, Nathalia Montouro; Lobo, Yara Aparecida; Martins, Mílton de Arruda; Oliva, Maria Luiza Vilela; Tibério, Iolanda de Fátima Lopes Calvo

    2017-01-01

    Proteinase inhibitors have been associated with anti-inflammatory and antioxidant activities and may represent a potential therapeutic treatment for emphysema. Our aim was to evaluate the effects of a plant Kunitz proteinase inhibitor, Enterolobium contortisiliquum trypsin inhibitor (EcTI), on several aspects of experimental elastase-induced pulmonary inflammation in mice. C57/Bl6 mice were intratracheally administered elastase (ELA) or saline (SAL) and were treated intraperitoneally with EcTI (ELA-EcTI, SAL-EcTI) on days 1, 14 and 21. On day 28, pulmonary mechanics, exhaled nitric oxide (ENO) and number leucocytes in the bronchoalveolar lavage fluid (BALF) were evaluated. Subsequently, lung immunohistochemical staining was submitted to morphometry. EcTI treatment reduced responses of the mechanical respiratory system, number of cells in the BALF, and reduced tumor necrosis factor-α (TNF-α), matrix metalloproteinase-9 (MMP-9), matrix metalloproteinase-12 (MMP-12), tissue inhibitor of matrix metalloproteinase (TIMP-1), endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS)-positive cells and volume proportion of isoprostane, collagen and elastic fibers in the airways and alveolar walls compared with the ELA group. EcTI treatment reduced elastase induced pulmonary inflammation, remodeling, oxidative stress and mechanical alterations, suggesting that this inhibitor may be a potential therapeutic tool for chronic obstructive pulmonary disease (COPD) management. PMID:28216579

  5. Lycium barbarum polysaccharide protects against LPS-induced ARDS by inhibiting apoptosis, oxidative stress, and inflammation in pulmonary endothelial cells.

    PubMed

    Chen, Lan; Li, Wen; Qi, Di; Wang, Daoxin

    2018-04-01

    Acute respiratory distress syndrome (ARDS) is a heterogenous syndrome characterised by diffuse alveolar damage, with an increase in lung endothelial and epithelial permeability. Lycium barbarum polysaccharide (LBP), the most biologically active fraction of wolfberry, possesses antiapoptotic and antioxidative effects in distinct situations. In the present study, the protective effects and potential molecular mechanisms of LBP against lipopolysaccharide (LPS)-induced ARDS were investigated in the mice and in the human pulmonary microvascular endothelial cells (HPMECs). The data indicated that pretreatment with LBP significantly attenuated LPS-induced lung inflammation and pulmonary oedema in vivo. LBP significantly reversed LPS-induced decrease in cell viability, increase in apoptosis and oxidative stress via inhibiting caspase-3 activation and intracellular reactive oxygen species (ROS) production in vitro. Moreover, the scratch assay verified that LBP restored the dysfunction of endothelial cells (ECs) migration induced by LPS stimulation. Furthermore, LBP also significantly suppressed LPS-induced NF-κB activation, and subsequently reversed the release of cytochrome c. These results showed the antiapoptosis and antioxidant LBP could partially protect against LPS-induced ARDS through promoting the ECs survival and scavenging ROS via inhibition of NF-κB signalling pathway. Thus, LBP could be potentially used for ARDS against pulmonary inflammation and pulmonary oedema.

  6. Effect of Treatment of Cystic Fibrosis Pulmonary Exacerbations on Systemic Inflammation

    PubMed Central

    Thompson, Valeria; Chmiel, James F.; Montgomery, Gregory S.; Nasr, Samya Z.; Perkett, Elizabeth; Saavedra, Milene T.; Slovis, Bonnie; Anthony, Margaret M.; Emmett, Peggy; Heltshe, Sonya L.

    2015-01-01

    Rationale: In cystic fibrosis (CF), pulmonary exacerbations present an opportunity to define the effect of antibiotic therapy on systemic measures of inflammation. Objectives: Investigate whether plasma inflammatory proteins demonstrate and predict a clinical response to antibiotic therapy and determine which proteins are associated with measures of clinical improvement. Methods: In this multicenter study, a panel of 15 plasma proteins was measured at the onset and end of treatment for pulmonary exacerbation and at a clinically stable visit in patients with CF who were 10 years of age or older. Measurements and Main Results: Significant reductions in 10 plasma proteins were observed in 103 patients who had paired blood collections during antibiotic treatment for pulmonary exacerbations. Plasma C-reactive protein, serum amyloid A, calprotectin, and neutrophil elastase antiprotease complexes correlated most strongly with clinical measures at exacerbation onset. Reductions in C-reactive protein, serum amyloid A, IL-1ra, and haptoglobin were most associated with improvements in lung function with antibiotic therapy. Having higher IL-6, IL-8, and α1-antitrypsin (α1AT) levels at exacerbation onset were associated with an increased risk of being a nonresponder (i.e., failing to recover to baseline FEV1). Baseline IL-8, neutrophil elastase antiprotease complexes, and α1AT along with changes in several plasma proteins with antibiotic treatment, in combination with FEV1 at exacerbation onset, were predictive of being a treatment responder. Conclusions: Circulating inflammatory proteins demonstrate and predict a response to treatment of CF pulmonary exacerbations. A systemic biomarker panel could speed up drug discovery, leading to a quicker, more efficient drug development process for the CF community. PMID:25714657

  7. Differences in inflammation and acute phase response but similar genotoxicity in mice following pulmonary exposure to graphene oxide and reduced graphene oxide

    PubMed Central

    Bengtson, Stefan; Knudsen, Kristina B.; Kyjovska, Zdenka O.; Berthing, Trine; Skaug, Vidar; Levin, Marcus; Koponen, Ismo K.; Shivayogimath, Abhay; Booth, Timothy J.; Alonso, Beatriz; Pesquera, Amaia; Zurutuza, Amaia; Thomsen, Birthe L.; Troelsen, Jesper T.; Jacobsen, Nicklas R.

    2017-01-01

    We investigated toxicity of 2–3 layered >1 μm sized graphene oxide (GO) and reduced graphene oxide (rGO) in mice following single intratracheal exposure with respect to pulmonary inflammation, acute phase response (biomarker for risk of cardiovascular disease) and genotoxicity. In addition, we assessed exposure levels of particulate matter emitted during production of graphene in a clean room and in a normal industrial environment using chemical vapour deposition. Toxicity was evaluated at day 1, 3, 28 and 90 days (18, 54 and 162 μg/mouse), except for GO exposed mice at day 28 and 90 where only the lowest dose was evaluated. GO induced a strong acute inflammatory response together with a pulmonary (Serum-Amyloid A, Saa3) and hepatic (Saa1) acute phase response. rGO induced less acute, but a constant and prolonged inflammation up to day 90. Lung histopathology showed particle agglomerates at day 90 without signs of fibrosis. In addition, DNA damage in BAL cells was observed across time points and doses for both GO and rGO. In conclusion, pulmonary exposure to GO and rGO induced inflammation, acute phase response and genotoxicity but no fibrosis. PMID:28570647

  8. Inflammation responses in patients with pulmonary tuberculosis in an intensive care unit

    PubMed Central

    Liu, Qiu-Yue; Han, Fen; Pan, Li-Ping; Jia, Hong-Yan; Li, Qi; Zhang, Zong-De

    2018-01-01

    Pulmonary tuberculosis caused by Mycobacterium tuberculosis remains a global problem. Inflammatory responses are the primary characteristics of patients with pulmonary tuberculosis in intensive care units (ICU). The aim of the present study was to investigate the clinical importance of inflammatory cells and factors for patients with pulmonary tuberculosis in ICU. A total of 124 patients with pulmonary tuberculosis in ICU were recruited for the present study. The inflammatory responses in patients with pulmonary tuberculosis in ICU were examined by changes in inflammatory cells and factors in the serum. The results indicated that serum levels of lymphocytes, plasma cells, granulocytes and monocytes were increased in patients with pulmonary tuberculosis in ICU compared with healthy controls. The serum levels of inflammatory factors interleukin (IL)-1, IL-6, IL-10, IL-12, and IL-4 were upregulated in patients with pulmonary tuberculosis in ICU. Lower plasma concentrations of IL-2, IL-15 and interferon-γ were detected in patients with pulmonary tuberculosis compared with healthy controls. It was demonstrated that high mobility group box-1 protein expression levels were higher in the serum of patients with pulmonary tuberculosis compared with healthy controls. Notably, an imbalance of T-helper cell (Th)1/Th2 cytokines was observed in patients with pulmonary tuberculosis. Pulmonary tuberculosis caused by M. tuberculosis also upregulated expression of matrix metalloproteinase (MMP)-1 and MMP-9 in hPMCs. In conclusion, these outcomes demonstrated that inflammatory responses and inflammatory factors are associated with the progression of pulmonary tuberculosis, suggesting that inhibition of inflammatory responses and inflammatory factors may be beneficial for the treatment of patients with pulmonary tuberculosis in ICU. PMID:29456674

  9. A Review of Pulmonary Toxicity of Electronic Cigarettes in the Context of Smoking: A Focus on Inflammation.

    PubMed

    Shields, Peter G; Berman, Micah; Brasky, Theodore M; Freudenheim, Jo L; Mathe, Ewy; McElroy, Joseph P; Song, Min-Ae; Wewers, Mark D

    2017-08-01

    The use of electronic cigarettes (e-cigs) is increasing rapidly, but their effects on lung toxicity are largely unknown. Smoking is a well-established cause of lung cancer and respiratory disease, in part through inflammation. It is plausible that e-cig use might affect similar inflammatory pathways. E-cigs are used by some smokers as an aid for quitting or smoking reduction, and by never smokers (e.g., adolescents and young adults). The relative effects for impacting disease risk may differ for these groups. Cell culture and experimental animal data indicate that e-cigs have the potential for inducing inflammation, albeit much less than smoking. Human studies show that e-cig use in smokers is associated with substantial reductions in blood or urinary biomarkers of tobacco toxicants when completely switching and somewhat for dual use. However, the extent to which these biomarkers are surrogates for potential lung toxicity remains unclear. The FDA now has regulatory authority over e-cigs and can regulate product and e-liquid design features, such as nicotine content and delivery, voltage, e-liquid formulations, and flavors. All of these factors may impact pulmonary toxicity. This review summarizes current data on pulmonary inflammation related to both smoking and e-cig use, with a focus on human lung biomarkers. Cancer Epidemiol Biomarkers Prev; 26(8); 1175-91. ©2017 AACR . ©2017 American Association for Cancer Research.

  10. Molecular Ultrasound Imaging for the Detection of Neural Inflammation

    NASA Astrophysics Data System (ADS)

    Volz, Kevin R.

    Molecular imaging is a form of nanotechnology that enables the noninvasive examination of biological processes in vivo. Radiopharmaceutical agents are used to selectively target biochemical markers, which permits their detection and evaluation. Early visualization of molecular variations indicative of pathophysiological processes can aid in patient diagnoses and management decisions. Molecular imaging is performed by introducing molecular probes into the body. Molecular probes are often contrast agents that have been nanoengineered to selectively target and tether to molecules, enabling their radiologic identification. Ultrasound contrast agents have been demonstrated as an effective method of detecting perfusion at the tissue level. Through a nanoengineering process, ultrasound contrast agents can be targeted to specific molecules, thereby extending ultrasound's capabilities from the tissue to molecular level. Molecular ultrasound, or targeted contrast enhanced ultrasound (TCEUS), has recently emerged as a popular molecular imaging technique due to its ability to provide real-time anatomical and functional information in the absence of ionizing radiation. However, molecular ultrasound represents a novel form of molecular imaging, and consequently remains largely preclinical. A review of the TCEUS literature revealed multiple preclinical studies demonstrating its success in detecting inflammation in a variety of tissues. Although, a gap was identified in the existing evidence, as TCEUS effectiveness for detection of neural inflammation in the spinal cord was unable to be uncovered. This gap in knowledge, coupled with the profound impacts that this TCEUS application could have clinically, provided rationale for its exploration, and use as contributory evidence for the molecular ultrasound body of literature. An animal model that underwent a contusive spinal cord injury was used to establish preclinical evidence of TCEUS to detect neural inflammation. Imaging was

  11. Airway epithelial SPDEF integrates goblet cell differentiation and pulmonary Th2 inflammation

    PubMed Central

    Rajavelu, Priya; Chen, Gang; Xu, Yan; Kitzmiller, Joseph A.; Korfhagen, Thomas R.; Whitsett, Jeffrey A.

    2015-01-01

    Epithelial cells that line the conducting airways provide the initial barrier and innate immune responses to the abundant particles, microbes, and allergens that are inhaled throughout life. The transcription factors SPDEF and FOXA3 are both selectively expressed in epithelial cells lining the conducting airways, where they regulate goblet cell differentiation and mucus production. Moreover, these transcription factors are upregulated in chronic lung disorders, including asthma. Here, we show that expression of SPDEF or FOXA3 in airway epithelial cells in neonatal mice caused goblet cell differentiation, spontaneous eosinophilic inflammation, and airway hyperresponsiveness to methacholine. SPDEF expression promoted DC recruitment and activation in association with induction of Il33, Csf2, thymic stromal lymphopoietin (Tslp), and Ccl20 transcripts. Increased Il4, Il13, Ccl17, and Il25 expression was accompanied by recruitment of Th2 lymphocytes, group 2 innate lymphoid cells, and eosinophils to the lung. SPDEF was required for goblet cell differentiation and pulmonary Th2 inflammation in response to house dust mite (HDM) extract, as both were decreased in neonatal and adult Spdef–/– mice compared with control animals. Together, our results indicate that SPDEF causes goblet cell differentiation and Th2 inflammation during postnatal development and is required for goblet cell metaplasia and normal Th2 inflammatory responses to HDM aeroallergen. PMID:25866971

  12. A Randomized, Placebo-controlled Trial of Roflumilast. Effect on Proline-Glycine-Proline and Neutrophilic Inflammation in Chronic Obstructive Pulmonary Disease.

    PubMed

    Wells, J Michael; Jackson, Patricia L; Viera, Liliana; Bhatt, Surya P; Gautney, Joshua; Handley, Guy; King, R Wilson; Xu, Xin; Gaggar, Amit; Bailey, William C; Dransfield, Mark T; Blalock, J Edwin

    2015-10-15

    Roflumilast is a therapeutic agent in the treatment of chronic obstructive pulmonary disease (COPD). It has antiinflammatory effects; however, it is not known whether it can affect a biologic pathway implicated in COPD pathogenesis and progression. The self-propagating acetyl-proline-glycine-proline (AcPGP) pathway is a novel means of neutrophilic inflammation that is pathologic in the development of COPD. AcPGP is produced by extracellular matrix collagen breakdown with prolyl endopeptidase and leukotriene A4 hydrolase serving as the enzymes responsible for its production and degradation, respectively. We hypothesized that roflumilast would decrease AcPGP, halting the feed-forward cycle of inflammation. We conducted a single-center, placebo-controlled, randomized study investigating 12 weeks of roflumilast treatment added to current therapy in moderate-to-severe COPD with chronic bronchitis. Subjects underwent sputum and blood analyses, pulmonary function testing, exercise tolerance, and quality-of-life assessment at 0, 4, and 12 weeks. Twenty-seven patients were enrolled in the intention-to-treat analysis. Roflumilast treatment decreased sputum AcPGP by more than 50% (P < 0.01) and prolyl endopeptidase by 46% (P = 0.02), without significant improvement in leukotriene A4 hydrolase activity compared with placebo. Roflumilast also reduces other inflammatory markers. There were no significant changes in lung function, quality of life, or exercise tolerance between roflumilast- and placebo-treated groups. Roflumilast reduces pulmonary inflammation through decreasing prolyl endopeptidase activity and AcPGP. As expected for lower AcPGP levels, markers of neutrophilic inflammation are blunted. Inhibiting this self-propagating pathway lessens the overall inflammatory burden, which may alter the natural history of COPD, including the risk of exacerbation. Clinical trial registered with www.clinicaltrials.gov (NCT 01572948).

  13. Hydrogen-rich saline inhibits tobacco smoke-induced chronic obstructive pulmonary disease by alleviating airway inflammation and mucus hypersecretion in rats.

    PubMed

    Liu, Zibing; Geng, Wenye; Jiang, Chuanwei; Zhao, Shujun; Liu, Yong; Zhang, Ying; Qin, Shucun; Li, Chenxu; Zhang, Xinfang; Si, Yanhong

    2017-09-01

    Chronic obstructive pulmonary disease induced by tobacco smoke has been regarded as a great health problem worldwide. The purpose of this study is to evaluate the protective effect of hydrogen-rich saline, a novel antioxidant, on chronic obstructive pulmonary disease and explore the underlying mechanism. Sprague-Dawley rats were made chronic obstructive pulmonary disease models via tobacco smoke exposure for 12 weeks and the rats were treated with 10 ml/kg hydrogen-rich saline intraperitoneally during the last 4 weeks. Lung function testing indicated hydrogen-rich saline decreased lung airway resistance and increased lung compliance and the ratio of forced expiratory volume in 0.1 s/forced vital capacity in chronic obstructive pulmonary disease rats. Histological analysis revealed that hydrogen-rich saline alleviated morphological impairments of lung in tobacco smoke-induced chronic obstructive pulmonary disease rats. ELISA assay showed hydrogen-rich saline lowered the levels of pro-inflammatory cytokines (IL-8 and IL-6) and anti-inflammatory cytokine IL-10 in bronchoalveolar lavage fluid and serum of chronic obstructive pulmonary disease rats. The content of malondialdehyde in lung tissue and serum was also determined and the data indicated hydrogen-rich saline suppressed oxidative stress reaction. The protein expressions of mucin MUC5C and aquaporin 5 involved in mucus hypersecretion were analyzed by Western blot and ELISA and the data revealed that hydrogen-rich saline down-regulated MUC5AC level in bronchoalveolar lavage fluid and lung tissue and up-regulated aquaporin 5 level in lung tissue of chronic obstructive pulmonary disease rats. In conclusion, these results suggest that administration of hydrogen-rich saline exhibits significant protective effect on chronic obstructive pulmonary disease through alleviating inflammation, reducing oxidative stress and lessening mucus hypersecretion in tobacco smoke-induced chronic obstructive pulmonary disease rats

  14. An alteration of the gut-liver axis drives pulmonary inflammation after intoxication and burn injury in mice

    PubMed Central

    Chen, Michael M.; Zahs, Anita; Brown, Mary M.; Ramirez, Luis; Turner, Jerrold R.; Choudhry, Mashkoor A.

    2014-01-01

    Approximately half of all adult burn patients are intoxicated at the time of their injury and have worse clinical outcomes than those without prior alcohol exposure. This study tested the hypothesis that intoxication alters the gut-liver axis, leading to increased pulmonary inflammation mediated by burn-induced IL-6 in the liver. C57BL/6 mice were given 1.2 g/kg ethanol 30 min prior to a 15% total body surface area burn. To restore gut barrier function, the specific myosin light chain kinase inhibitor membrane-permeant inhibitor of kinase (PIK), which we have demonstrated to reduce bacterial translocation from the gut, was administered 30 min after injury. Limiting bacterial translocation with PIK attenuated hepatic damage as measured by a 47% reduction in serum alanine aminotransferase (P < 0.05), as well as a 33% reduction in hepatic IL-6 mRNA expression (P < 0.05), compared with intoxicated and burn-injured mice without PIK. This mitigation of hepatic damage was associated with a 49% decline in pulmonary neutrophil infiltration (P < 0.05) and decreased alveolar wall thickening compared with matched controls. These results were reproduced by prophylactic reduction of the bacterial load in the intestines with oral antibiotics before intoxication and burn injury. Overall, these data suggest that the gut-liver axis is deranged when intoxication precedes burn injury and that limiting bacterial translocation in this setting attenuates hepatic damage and pulmonary inflammation. PMID:25104501

  15. Arterial Carboxyhemoglobin Measurement Is Useful for Evaluating Pulmonary Inflammation in Subjects with Interstitial Lung Disease

    PubMed Central

    Hara, Yu; Shinkai, Masaharu; Kanoh, Soichiro; Fujikura, Yuji; K. Rubin, Bruce; Kawana, Akihiko; Kaneko, Takeshi

    2017-01-01

    Objective The arterial concentration of carboxyhemoglobin (CO-Hb) in subjects with inflammatory pulmonary disease is higher than that in healthy individuals. We retrospectively analyzed the relationship between the CO-Hb concentration and established markers of disease severity in subjects with interstitial lung disease (ILD). Methods The CO-Hb concentration was measured in subjects with newly diagnosed or untreated ILD and the relationships between the CO-Hb concentration and the serum biomarker levels, lung function, high-resolution CT (HRCT) findings, and the uptake in gallium-67 (67Ga) scintigraphy were evaluated. Results Eighty-one non-smoking subjects were studied (mean age, 67 years). Among these subjects, (A) 17 had stable idiopathic pulmonary fibrosis (IPF), (B) 9 had an acute exacerbation of IPF, (C) 44 had stable non-IPF, and (D) 11 had an exacerbation of non-IPF. The CO-Hb concentrations of these subjects were (A) 1.5±0.5%, (B) 2.1±0.5%, (C) 1.2±0.4%, and (D) 1.7±0.5%. The CO-Hb concentration was positively correlated with the serum levels of surfactant protein (SP)-A (r=0.38), SP-D (r=0.39), and the inflammation index (calculated from HRCT; r=0.57) and was negatively correlated with the partial pressure of oxygen in the arterial blood (r=-0.56) and the predicted diffusion capacity of carbon monoxide (r=-0.61). The CO-Hb concentrations in subjects with a negative heart sign on 67Ga scintigraphy were higher than those in subjects without a negative heart sign (1.4±0.5% vs. 1.1±0.3%, p=0.018). Conclusion The CO-Hb levels of subjects with ILD were increased, particularly during an exacerbation, and were correlated with the parameters that reflect pulmonary inflammation. PMID:28321059

  16. Arterial Carboxyhemoglobin Measurement Is Useful for Evaluating Pulmonary Inflammation in Subjects with Interstitial Lung Disease.

    PubMed

    Hara, Yu; Shinkai, Masaharu; Kanoh, Soichiro; Fujikura, Yuji; K Rubin, Bruce; Kawana, Akihiko; Kaneko, Takeshi

    2017-01-01

    Objective The arterial concentration of carboxyhemoglobin (CO-Hb) in subjects with inflammatory pulmonary disease is higher than that in healthy individuals. We retrospectively analyzed the relationship between the CO-Hb concentration and established markers of disease severity in subjects with interstitial lung disease (ILD). Methods The CO-Hb concentration was measured in subjects with newly diagnosed or untreated ILD and the relationships between the CO-Hb concentration and the serum biomarker levels, lung function, high-resolution CT (HRCT) findings, and the uptake in gallium-67 ( 67 Ga) scintigraphy were evaluated. Results Eighty-one non-smoking subjects were studied (mean age, 67 years). Among these subjects, (A) 17 had stable idiopathic pulmonary fibrosis (IPF), (B) 9 had an acute exacerbation of IPF, (C) 44 had stable non-IPF, and (D) 11 had an exacerbation of non-IPF. The CO-Hb concentrations of these subjects were (A) 1.5±0.5%, (B) 2.1±0.5%, (C) 1.2±0.4%, and (D) 1.7±0.5%. The CO-Hb concentration was positively correlated with the serum levels of surfactant protein (SP)-A (r=0.38), SP-D (r=0.39), and the inflammation index (calculated from HRCT; r=0.57) and was negatively correlated with the partial pressure of oxygen in the arterial blood (r=-0.56) and the predicted diffusion capacity of carbon monoxide (r=-0.61). The CO-Hb concentrations in subjects with a negative heart sign on 67 Ga scintigraphy were higher than those in subjects without a negative heart sign (1.4±0.5% vs. 1.1±0.3%, p=0.018). Conclusion The CO-Hb levels of subjects with ILD were increased, particularly during an exacerbation, and were correlated with the parameters that reflect pulmonary inflammation.

  17. Alterations in NO- and PGI2- dependent function in aorta in the orthotopic murine model of metastatic 4T1 breast cancer: relationship with pulmonary endothelial dysfunction and systemic inflammation.

    PubMed

    Buczek, E; Denslow, A; Mateuszuk, L; Proniewski, B; Wojcik, T; Sitek, B; Fedorowicz, A; Jasztal, A; Kus, E; Chmura-Skirlinska, A; Gurbiel, R; Wietrzyk, J; Chlopicki, S

    2018-05-22

    Patients with cancer develop endothelial dysfunction and subsequently display a higher risk of cardiovascular events. The aim of the present work was to examine changes in nitric oxide (NO)- and prostacyclin (PGI 2 )-dependent endothelial function in the systemic conduit artery (aorta), in relation to the formation of lung metastases and to local and systemic inflammation in a murine orthotopic model of metastatic breast cancer. BALB/c female mice were orthotopically inoculated with 4T1 breast cancer cells. Development of lung metastases, lung inflammation, changes in blood count, systemic inflammatory response (e.g. SAA, SAP and IL-6), as well as changes in NO- and PGI 2 -dependent endothelial function in the aorta, were examined 2, 4, 5 and 6 weeks following cancer cell transplantation. As early as 2 weeks following transplantation of breast cancer cells, in the early metastatic stage, lungs displayed histopathological signs of inflammation, NO production was impaired and nitrosylhemoglobin concentration in plasma was decreased. After 4 to 6 weeks, along with metastatic development, progressive leukocytosis and systemic inflammation (as seen through increased SAA, SAP, haptoglobin and IL-6 plasma concentrations) were observed. Six weeks following cancer cell inoculation, but not earlier, endothelial dysfunction in aorta was detected; this involved a decrease in basal NO production and a decrease in NO-dependent vasodilatation, that was associated with a compensatory increase in cyclooxygenase-2 (COX-2)- derived PGI 2 production. In 4 T1 metastatic breast cancer in mice early pulmonary metastasis was correlated with lung inflammation, with an early decrease in pulmonary as well as systemic NO availability. Late metastasis was associated with robust, cancer-related, systemic inflammation and impairment of NO-dependent endothelial function in the aorta that was associated with compensatory upregulation of the COX-2-derived PGI 2 pathway.

  18. Biomarkers for Pulmonary Inflammation and Fibrosis and Lung Ventilation Function in Chinese Occupational Refractory Ceramic Fibers-Exposed Workers.

    PubMed

    Zhu, Xiaojun; Gu, Yishuo; Ma, Wenjun; Gao, Panjun; Liu, Mengxuan; Xiao, Pei; Wang, Hongfei; Chen, Juan; Li, Tao

    2017-12-27

    Refractory ceramic fibers (RCFs) can cause adverse health effects on workers' respiratory system, yet no proper biomarkers have been used to detect early pulmonary injury of RCFs-exposed workers. This study assessed the levels of two biomarkers that are related to respiratory injury in RCFs-exposed workers, and explored their relations with lung function. The exposure levels of total dust and respirable fibers were measured simultaneously in RCFs factories. The levels of TGF-β1 and ceruloplasmin (CP) increased with the RCFs exposure level ( p < 0.05), and significantly increased in workers with high exposure level (1.21 ± 0.49 ng/mL, 115.25 ± 32.44 U/L) when compared with the control group (0.99 ± 0.29 ng/mL, 97.90 ± 35.01 U/L) ( p < 0.05). The levels of FVC and FEV₁ were significantly decreased in RCFs exposure group ( p < 0.05). Negative relations were found between the concentrations of CP and FVC (B = -0.423, p = 0.025), or FEV₁ (B = -0.494, p = 0.014). The concentration of TGF-β1 (B = 0.103, p = 0.001) and CP (B = 8.027, p = 0.007) were associated with respirable fiber exposure level. Occupational exposure to RCFs can impair lung ventilation function and may have the potential to cause pulmonary inflammation and fibrosis. TGF-β1 and CP might be used as sensitive and noninvasive biomarkers to detect lung injury in occupational RCFs-exposed workers. Respirable fiber concentration can better reflect occupational RCFs exposure and related respiratory injuries.

  19. Psoralidin, a dual inhibitor of COX-2 and 5-LOX, regulates ionizing radiation (IR)-induced pulmonary inflammation.

    PubMed

    Yang, Hee Jung; Youn, HyeSook; Seong, Ki Moon; Yun, Young Ju; Kim, Wanyeon; Kim, Young Ha; Lee, Ji Young; Kim, Cha Soon; Jin, Young-Woo; Youn, BuHyun

    2011-09-01

    Radiotherapy is the most significant non-surgical cure for the elimination of tumor, however it is restricted by two major problems: radioresistance and normal tissue damage. Efficiency improvement on radiotherapy is demanded to achieve cancer treatment. We focused on radiation-induced normal cell damage, and are concerned about inflammation reported to act as a main limiting factor in the radiotherapy. Psoralidin, a coumestan derivative isolated from the seed of Psoralea corylifolia, has been studied for anti-cancer and anti-bacterial properties. However, little is known regarding its effects on IR-induced pulmonary inflammation. The aim of this study is to investigate mechanisms of IR-induced inflammation and to examine therapeutic mechanisms of psoralidin in human normal lung fibroblasts and mice. Here, we demonstrated that IR-induced ROS activated cyclooxygenases-2 (COX-2) and 5-lipoxygenase (5-LOX) pathway in HFL-1 and MRC-5 cells. Psoralidin inhibited the IR-induced COX-2 expression and PGE(2) production through regulation of PI3K/Akt and NF-κB pathway. Also, psoralidin blocked IR-induced LTB(4) production, and it was due to direct interaction of psoralidin and 5-lipoxygenase activating protein (FLAP) in 5-LOX pathway. IR-induced fibroblast migration was notably attenuated in the presence of psoralidin. Moreover, in vivo results from mouse lung indicate that psoralidin suppresses IR-induced expression of pro-inflammatory cytokines (TNF-α, TGF-β, IL-6 and IL-1 α/β) and ICAM-1. Taken together, our findings reveal a regulatory mechanism of IR-induced pulmonary inflammation in human normal lung fibroblast and mice, and suggest that psoralidin may be useful as a potential lead compound for development of a better radiopreventive agent against radiation-induced normal tissue injury. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Grouping nanomaterials to predict their potential to induce pulmonary inflammation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braakhuis, Hedwig M., E-mail: hedwig.braakhuis@rivm.nl; Department of Toxicogenomics, Maastricht University, PO Box 616, 6200 MD Maastricht; Oomen, Agnes G.

    The rapidly expanding manufacturing, production and use of nanomaterials have raised concerns for both worker and consumer safety. Various studies have been published in which induction of pulmonary inflammation after inhalation exposure to nanomaterials has been described. Nanomaterials can vary in aspects such as size, shape, charge, crystallinity, chemical composition, and dissolution rate. Currently, efforts are made to increase the knowledge on the characteristics of nanomaterials that can be used to categorise them into hazard groups according to these characteristics. Grouping helps to gather information on nanomaterials in an efficient way with the aim to aid risk assessment. Here, wemore » discuss different ways of grouping nanomaterials for their risk assessment after inhalation. Since the relation between single intrinsic particle characteristics and the severity of pulmonary inflammation is unknown, grouping of nanomaterials by their intrinsic characteristics alone is not sufficient to predict their risk after inhalation. The biokinetics of nanomaterials should be taken into account as that affects the dose present at a target site over time. The parameters determining the kinetic behaviour are not the same as the hazard-determining parameters. Furthermore, characteristics of nanomaterials change in the life-cycle, resulting in human exposure to different forms and doses of these nanomaterials. As information on the biokinetics and in situ characteristics of nanomaterials is essential but often lacking, efforts should be made to include these in testing strategies. Grouping nanomaterials will probably be of the most value to risk assessors when information on intrinsic characteristics, life-cycle, biokinetics and effects are all combined. - Highlights: • Grouping of nanomaterials helps to gather information in an efficient way with the aim to aid risk assessment. • Different ways of grouping nanomaterials for their risk assessment after inhalation

  1. Milano summer particulate matter (PM10) triggers lung inflammation and extra pulmonary adverse events in mice.

    PubMed

    Farina, Francesca; Sancini, Giulio; Battaglia, Cristina; Tinaglia, Valentina; Mantecca, Paride; Camatini, Marina; Palestini, Paola

    2013-01-01

    Recent studies have suggested a link between particulate matter (PM) exposure and increased mortality and morbidity associated with pulmonary and cardiovascular diseases; accumulating evidences point to a new role for air pollution in CNS diseases. The purpose of our study is to investigate PM10sum effects on lungs and extra pulmonary tissues. Milano PM10sum has been intratracheally instilled into BALB/c mice. Broncho Alveolar Lavage fluid, lung parenchyma, heart and brain were screened for markers of inflammation (cell counts, cytokines, ET-1, HO-1, MPO, iNOS), cytotoxicity (LDH, ALP, Hsp70, Caspase8-p18, Caspase3-p17) for a putative pro-carcinogenic marker (Cyp1B1) and for TLR4 pathway activation. Brain was also investigated for CD68, TNF-α, GFAP. In blood, cell counts were performed while plasma was screened for endothelial activation (sP-selectin, ET-1) and for inflammation markers (TNF-α, MIP-2, IL-1β, MPO). Genes up-regulation (HMOX1, Cyp1B1, IL-1β, MIP-2, MPO) and miR-21 have been investigated in lungs and blood. Inflammation in the respiratory tract of PM10sum-treated mice has been confirmed in BALf and lung parenchyma by increased PMNs percentage, increased ET-1, MPO and cytokines levels. A systemic spreading of lung inflammation in PM10sum-treated mice has been related to the increased blood total cell count and neutrophils percentage, as well as to increased blood MPO. The blood-endothelium interface activation has been confirmed by significant increases of plasma ET-1 and sP-selectin. Furthermore PM10sum induced heart endothelial activation and PAHs metabolism, proved by increased ET-1 and Cyp1B1 levels. Moreover, PM10sum causes an increase in brain HO-1 and ET-1. These results state the translocation of inflammation mediators, ultrafine particles, LPS, metals associated to PM10sum, from lungs to bloodstream, thus triggering a systemic reaction, mainly involving heart and brain. Our results provided additional insight into the toxicity of PM10sum

  2. Omentin protects against LPS-induced ARDS through suppressing pulmonary inflammation and promoting endothelial barrier via an Akt/eNOS-dependent mechanism.

    PubMed

    Qi, Di; Tang, Xumao; He, Jing; Wang, Daoxin; Zhao, Yan; Deng, Wang; Deng, Xinyu; Zhou, Guoqi; Xia, Jing; Zhong, Xi; Pu, Shenglan

    2016-09-08

    Acute respiratory distress syndrome (ARDS) is characterized by increased pulmonary inflammation and endothelial barrier permeability. Omentin has been shown to benefit obesity-related systemic vascular diseases; however, its effects on ARDS are unknown. In the present study, the level of circulating omentin in patients with ARDS was assessed to appraise its clinical significance in ARDS. Mice were subjected to systemic administration of adenoviral vector expressing omentin (Ad-omentin) and one-shot treatment of recombinant human omentin (rh-omentin) to examine omentin's effects on lipopolysaccharide (LPS)-induced ARDS. Pulmonary endothelial cells (ECs) were treated with rh-omentin to further investigate its underlying mechanism. We found that a decreased level of circulating omentin negatively correlated with white blood cells and procalcitonin in patients with ARDS. Ad-omentin protected against LPS-induced ARDS by alleviating the pulmonary inflammatory response and endothelial barrier injury in mice, accompanied by Akt/eNOS pathway activation. Treatment of pulmonary ECs with rh-omentin attenuated inflammatory response and restored adherens junctions (AJs), and cytoskeleton organization promoted endothelial barrier after LPS insult. Moreover, the omentin-mediated enhancement of EC survival and differentiation was blocked by the Akt/eNOS pathway inactivation. Therapeutic rh-omentin treatment also effectively protected against LPS-induced ARDS via the Akt/eNOS pathway. Collectively, these data indicated that omentin protects against LPS-induced ARDS by suppressing inflammation and promoting the pulmonary endothelial barrier, at least partially, through an Akt/eNOS-dependent mechanism. Therapeutic strategies aiming to restore omentin levels may be valuable for the prevention or treatment of ARDS.

  3. Dictionary learning-based CT detection of pulmonary nodules

    NASA Astrophysics Data System (ADS)

    Wu, Panpan; Xia, Kewen; Zhang, Yanbo; Qian, Xiaohua; Wang, Ge; Yu, Hengyong

    2016-10-01

    Segmentation of lung features is one of the most important steps for computer-aided detection (CAD) of pulmonary nodules with computed tomography (CT). However, irregular shapes, complicated anatomical background and poor pulmonary nodule contrast make CAD a very challenging problem. Here, we propose a novel scheme for feature extraction and classification of pulmonary nodules through dictionary learning from training CT images, which does not require accurately segmented pulmonary nodules. Specifically, two classification-oriented dictionaries and one background dictionary are learnt to solve a two-category problem. In terms of the classification-oriented dictionaries, we calculate sparse coefficient matrices to extract intrinsic features for pulmonary nodule classification. The support vector machine (SVM) classifier is then designed to optimize the performance. Our proposed methodology is evaluated with the lung image database consortium and image database resource initiative (LIDC-IDRI) database, and the results demonstrate that the proposed strategy is promising.

  4. MTOR Suppresses Cigarette Smoke-Induced Epithelial Cell Death and Airway Inflammation in Chronic Obstructive Pulmonary Disease.

    PubMed

    Wang, Yong; Liu, Juan; Zhou, Jie-Sen; Huang, Hua-Qiong; Li, Zhou-Yang; Xu, Xu-Chen; Lai, Tian-Wen; Hu, Yue; Zhou, Hong-Bin; Chen, Hai-Pin; Ying, Song-Min; Li, Wen; Shen, Hua-Hao; Chen, Zhi-Hua

    2018-04-15

    Airway epithelial cell death and inflammation are pathological features of chronic obstructive pulmonary disease (COPD). Mechanistic target of rapamycin (MTOR) is involved in inflammation and multiple cellular processes, e.g., autophagy and apoptosis, but little is known about its function in COPD pathogenesis. In this article, we illustrate how MTOR regulates cigarette smoke (CS)-induced cell death, airway inflammation, and emphysema. Expression of MTOR was significantly decreased and its suppressive signaling protein, tuberous sclerosis 2 (TSC2), was increased in the airway epithelium of human COPD and in mouse lungs with chronic CS exposure. In human bronchial epithelial cells, CS extract (CSE) activated TSC2, inhibited MTOR, and induced autophagy. The TSC2-MTOR axis orchestrated CSE-induced autophagy, apoptosis, and necroptosis in human bronchial epithelial cells; all of which cooperatively regulated CSE-induced inflammatory cytokines IL-6 and IL-8 through the NF-κB pathway. Mice with a specific knockdown of Mtor in bronchial or alveolar epithelial cells exhibited significantly augmented airway inflammation and airspace enlargement in response to CS exposure, accompanied with enhanced levels of autophagy, apoptosis, and necroptosis in the lungs. Taken together, these data demonstrate that MTOR suppresses CS-induced inflammation and emphysema-likely through modulation of autophagy, apoptosis, and necroptosis-and thus suggest that activation of MTOR may represent a novel therapeutic strategy for COPD. Copyright © 2018 by The American Association of Immunologists, Inc.

  5. Reproducibility of a novel model of murine asthma-like pulmonary inflammation

    PubMed Central

    MCKINLEY, L; KIM, J; BOLGOS, G L; SIDDIQUI, J; REMICK, D G

    2004-01-01

    Sensitization to cockroach allergens (CRA) has been implicated as a major cause of asthma, especially among inner-city populations. Endotoxin from Gram-negative bacteria has also been investigated for its role in attenuating or exacerbating the asthmatic response. We have created a novel model utilizing house dust extract (HDE) containing high levels of both CRA and endotoxin to induce pulmonary inflammation (PI) and airway hyperresponsiveness (AHR). A potential drawback of this model is that the HDE is in limited supply and preparation of new HDE will not contain the exact components of the HDE used to define our model system. The present study involved testing HDEs collected from various homes for their ability to cause PI and AHR. Dust collected from five homes was extracted in phosphate buffered saline overnight. The levels of CRA and endotoxin in the supernatants varied from 7·1 to 49·5 mg/ml of CRA and 1·7–6 µg/ml of endotoxin in the HDEs. Following immunization and two pulmonary exposures to HDE all five HDEs induced AHR, PI and plasma IgE levels substantially higher than normal mice. This study shows that HDE containing high levels of cockroach allergens and endotoxin collected from different sources can induce an asthma-like response in our murine model. PMID:15086384

  6. Pulmonary instillation of low doses of titanium dioxide nanoparticles in mice leads to particle retention and gene expression changes in the absence of inflammation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Husain, Mainul, E-mail: mainul.husain@hc-sc.gc.ca; Saber, Anne T., E-mail: ats@nrcwe.dk; Guo, Charles, E-mail: charles.guo@hc-sc.gc.ca

    2013-06-15

    We investigated gene expression, protein synthesis, and particle retention in mouse lungs following intratracheal instillation of varying doses of nano-sized titanium dioxide (nano-TiO{sub 2}). Female C57BL/6 mice were exposed to rutile nano-TiO{sub 2} via single intratracheal instillations of 18, 54, and 162 μg/mouse. Mice were sampled 1, 3, and 28 days post-exposure. The deposition of nano-TiO{sub 2} in the lungs was assessed using nanoscale hyperspectral microscopy. Biological responses in the pulmonary system were analyzed using DNA microarrays, pathway-specific real-time RT-PCR (qPCR), gene-specific qPCR arrays, and tissue protein ELISA. Hyperspectral mapping showed dose-dependent retention of nano-TiO{sub 2} in the lungs upmore » to 28 days post-instillation. DNA microarray analysis revealed approximately 3000 genes that were altered across all treatment groups (± 1.3 fold; p < 0.1). Several inflammatory mediators changed in a dose- and time-dependent manner at both the mRNA and protein level. Although no influx of neutrophils was detected at the low dose, changes in the expression of several genes and proteins associated with inflammation were observed. Resolving inflammation at the medium dose, and lack of neutrophil influx in the lung fluid at the low dose, were associated with down-regulation of genes involved in ion homeostasis and muscle regulation. Our gene expression results imply that retention of nano-TiO{sub 2} in the absence of inflammation over time may potentially perturb calcium and ion homeostasis, and affect smooth muscle activities. - Highlights: • Pulmonary effects following exposure to low doses of nano-TiO{sub 2} were examined. • Particle retention in lungs was assessed using nanoscale hyperspectral microscopy. • Particles persisted up to 28 days in lungs in all dose groups. • Inflammation was the pathway affected in the high dose group at all time points. • Ion homeostasis and muscle activity pathways were affected in the

  7. Acute respiratory changes and pulmonary inflammation involving a pathway of TGF-β1 induction in a rat model of chlorine-induced lung injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wigenstam, Elisabeth; Elfsmark, Linda; Koch, Bo

    We investigated acute and delayed respiratory changes after inhalation exposure to chlorine (Cl{sub 2}) with the aim to understand the pathogenesis of the long-term sequelae of Cl{sub 2}-induced lung-injury. In a rat model of nose-only exposure we analyzed changes in airway hyperresponsiveness (AHR), inflammatory responses in airways, expression of pro-inflammatory markers and development of lung fibrosis during a time-course from 5 h up to 90 days after a single inhalation of Cl{sub 2}. A single dose of dexamethasone (10 mg/kg) was administered 1 h following Cl{sub 2}-exposure. A 15-min inhalation of 200 ppm Cl{sub 2} was non-lethal in Sprague-Dawley rats.more » At 24 h post exposure, Cl{sub 2}-exposed rats displayed elevated numbers of leukocytes with an increase of neutrophils and eosinophils in bronchoalveolar lavage (BAL) and edema was shown both in lung tissue and the heart. At 24 h, the inflammasome-associated cytokines IL-1β and IL-18 were detected in BAL. Concomitant with the acute inflammation a significant AHR was detected. At the later time-points, a delayed inflammatory response was observed together with signs of lung fibrosis as indicated by increased pulmonary macrophages, elevated TGF-β expression in BAL and collagen deposition around airways. Dexamethasone reduced the numbers of neutrophils in BAL at 24 h but did not influence the AHR. Inhalation of Cl{sub 2} in rats leads to acute respiratory and cardiac changes as well as pulmonary inflammation involving induction of TGF-β1. The acute inflammatory response was followed by sustained macrophage response and lack of tissue repair. It was also found that pathways apart from the acute inflammatory response contribute to the Cl{sub 2}-induced respiratory dysfunction. - Highlights: • Inhalation of Cl{sub 2} leads to acute lung inflammation and airway hyperreactivity. • Cl{sub 2} activates an inflammasome pathway of TGF-β induction. • Cl{sub 2} leads to a fibrotic respiratory disease.

  8. Pulmonary Remodeling in Equine Asthma: What Do We Know about Mediators of Inflammation in the Horse?

    PubMed Central

    Gehlen, Heidrun

    2016-01-01

    Equine inflammatory airway disease (IAD) and recurrent airway obstruction (RAO) represent a spectrum of chronic inflammatory disease of the airways in horses resembling human asthma in many aspects. Therefore, both are now described as severity grades of equine asthma. Increasing evidence in horses and humans suggests that local pulmonary inflammation is influenced by systemic inflammatory processes and the other way around. Inflammation, coagulation, and fibrinolysis as well as extracellular remodeling show close interactions. Cytology of bronchoalveolar lavage fluid and tracheal wash is commonly used to evaluate the severity of local inflammation in the lung. Other mediators of inflammation, like interleukins involved in the chemotaxis of neutrophils, have been studied. Chronic obstructive pneumopathies lead to remodeling of bronchial walls and lung parenchyma, ultimately causing fibrosis. Matrix metalloproteinases (MMPs) are discussed as the most important proteolytic enzymes during remodeling in human medicine and increasing evidence exists for the horse as well. A systemic involvement has been shown for severe equine asthma by increased acute phase proteins like serum amyloid A and haptoglobin in peripheral blood during exacerbation. Studies focusing on these and further possible inflammatory markers for chronic respiratory disease in the horse are discussed in this review of the literature. PMID:28053371

  9. Biomarkers for Pulmonary Inflammation and Fibrosis and Lung Ventilation Function in Chinese Occupational Refractory Ceramic Fibers-Exposed Workers

    PubMed Central

    Gu, Yishuo; Ma, Wenjun; Gao, Panjun; Liu, Mengxuan; Xiao, Pei; Wang, Hongfei; Chen, Juan; Li, Tao

    2017-01-01

    Refractory ceramic fibers (RCFs) can cause adverse health effects on workers’ respiratory system, yet no proper biomarkers have been used to detect early pulmonary injury of RCFs-exposed workers. This study assessed the levels of two biomarkers that are related to respiratory injury in RCFs-exposed workers, and explored their relations with lung function. The exposure levels of total dust and respirable fibers were measured simultaneously in RCFs factories. The levels of TGF-β1 and ceruloplasmin (CP) increased with the RCFs exposure level (p < 0.05), and significantly increased in workers with high exposure level (1.21 ± 0.49 ng/mL, 115.25 ± 32.44 U/L) when compared with the control group (0.99 ± 0.29 ng/mL, 97.90 ± 35.01 U/L) (p < 0.05). The levels of FVC and FEV1 were significantly decreased in RCFs exposure group (p < 0.05). Negative relations were found between the concentrations of CP and FVC (B = −0.423, p = 0.025), or FEV1 (B = −0.494, p = 0.014). The concentration of TGF-β1 (B = 0.103, p = 0.001) and CP (B = 8.027, p = 0.007) were associated with respirable fiber exposure level. Occupational exposure to RCFs can impair lung ventilation function and may have the potential to cause pulmonary inflammation and fibrosis. TGF-β1 and CP might be used as sensitive and noninvasive biomarkers to detect lung injury in occupational RCFs-exposed workers. Respirable fiber concentration can better reflect occupational RCFs exposure and related respiratory injuries. PMID:29280967

  10. Oleanolic acid acetate attenuates polyhexamethylene guanidine phosphate-induced pulmonary inflammation and fibrosis in mice.

    PubMed

    Kim, Min-Seok; Han, Jin-Young; Kim, Sung-Hwan; Jeon, Doin; Kim, Hyeon-Young; Lee, Seung Woong; Rho, Mun-Chual; Lee, Kyuhong

    2018-06-01

    Oleanolic acid acetate (OAA), triterpenoid compound isolated from Vigna angularis (azuki bean), has been revealed anti-inflammatory in several studies. We investigated the effects of OAA against polyhexamethylene guanidine phosphate (PHMG-P)-induced pulmonary inflammation and fibrosis in mice. OAA treatment effectively alleviated PHMG-P-induced lung injury, including the number of total and differential cell in BAL fluid, histopathological lesions and hydroxyproline content in a dose dependent manner. Moreover, OAA treatment significantly decreased the elevations of IL-1β, IL-6, TNF-α, TGF-β1, and fibronectin, and the activation of the NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome in the lungs of PHMG-P-treated mice. Cytokines are known to be key modulators in the inflammatory responses that drive progression of fibrosis in injured tissues. The activation of NLRP3 inflammasome has been reported to be involved in induction of inflammatory cytokines. These results indicate that OAA may mitigate the inflammatory response and development of pulmonary fibrosis in the lungs of mice treated with PHMG-P. Copyright © 2018. Published by Elsevier B.V.

  11. Skin condition and its relationship to systemic inflammation in chronic obstructive pulmonary disease.

    PubMed

    Majewski, Sebastian; Pietrzak, Anna; Tworek, Damian; Szewczyk, Karolina; Kumor-Kisielewska, Anna; Kurmanowska, Zofia; Górski, Paweł; Zalewska-Janowska, Anna; Piotrowski, Wojciech Jerzy

    2017-01-01

    The systemic (extrapulmonary) effects and comorbidities of chronic obstructive pulmonary disease (COPD) contribute substantially to its burden. The supposed link between COPD and its systemic effects on distal organs could be due to the low-grade systemic inflammation. The aim of this study was to investigate whether the systemic inflammation may influence the skin condition in COPD patients. Forty patients with confirmed diagnosis of COPD and a control group consisting of 30 healthy smokers and 20 healthy never-smokers were studied. Transepidermal water loss, stratum corneum hydration, skin sebum content, melanin index, erythema index, and skin temperature were measured with worldwide-acknowledged biophysical measuring methods at the volar forearm of all participants using a multifunctional skin physiology monitor. Biomarkers of systemic inflammation, including high-sensitivity C-reactive protein (hsCRP), interleukin-6 (IL-6), and tumor necrosis factor α (TNF-α), were measured in serum using commercially available enzyme-linked immunosorbent assays. There were significant differences between COPD patients and healthy never-smokers in skin temperature, melanin index, sebum content, and hydration level ( P <0.05), but not for transepidermal water loss and erythema index. No significant difference was noted between COPD patients and smokers in any of the biophysical properties of the skin measured. The mean levels of hsCRP and IL-6 in serum were significantly higher in COPD patients and healthy smokers in comparison with healthy never-smokers. There were significant correlations between skin temperature and serum hsCRP ( R =0.40; P =0.02) as well as skin temperature and serum IL-6 ( R =0.49; P =0.005) in smokers. Stratum corneum hydration correlated significantly with serum TNF-α ( R =0.37; P =0.01) in COPD patients. Differences noted in several skin biophysical properties and biomarkers of systemic inflammation between COPD patients, smokers, and healthy never

  12. Osthole Alleviates Bleomycin-Induced Pulmonary Fibrosis via Modulating Angiotensin-Converting Enzyme 2/Angiotensin-(1-7) Axis and Decreasing Inflammation Responses in Rats.

    PubMed

    Hao, Yuewen; Liu, Yan

    2016-01-01

    Studies have shown that angiotensin-converting enzyme 2 (ACE2) plays modulating roles in lung pathophysiology, including pulmonary fibrosis (PF) and acute lung injury. Pulmonary fibrosis is a common complication in these interstitial lung diseases, and PF always has a poor prognosis and short survival. To date, there are few promising methods for treating PF, and they are invariably accompanied by severe side effects. Recent studies have showed that the traditional Chinese herbal extract, osthole, had beneficial effects on lipopolysaccharide (LPS) induced acute lung injury (ALI) via an ACE2 pathway. Here we further investigated the protective effects of osthole on bleomycin induced pulmonary fibrosis and attempted to determine the underlying mechanism. PF mode rats were induced by bleomycin (BLM) and then subsequently administered osthole. Histopathological analyses were employed to identify PF changes. The results showed that BLM resulted in severe PF and diffuse lung inflammation, together with significant elevation of inflammatory factors and a marked increase in expression of angiotensin II (ANG II) and transforming growth factor-beta 1 (TGF-β1). ACE2 and angiotensin-(1-7) [ANG-(1-7)] were both greatly reduced after BLM administration. Meanwhile, osthole treatment attenuated BLM induced PF and inflammation, decreased the expression of these inflammatory mediators, ANG II, and TGF-β1, and reversed ACE2 and ANG-(1-7) production in rat lungs. We conclude that osthole may exert beneficial effects on BLM induced PF in rats, perhaps via modulating the ACE2/ANG-(1-7) axis and inhibiting lung inflammation pathways.

  13. A deep-learning based automatic pulmonary nodule detection system

    NASA Astrophysics Data System (ADS)

    Zhao, Yiyuan; Zhao, Liang; Yan, Zhennan; Wolf, Matthias; Zhan, Yiqiang

    2018-02-01

    Lung cancer is the deadliest cancer worldwide. Early detection of lung cancer is a promising way to lower the risk of dying. Accurate pulmonary nodule detection in computed tomography (CT) images is crucial for early diagnosis of lung cancer. The development of computer-aided detection (CAD) system of pulmonary nodules contributes to making the CT analysis more accurate and with more efficiency. Recent studies from other groups have been focusing on lung cancer diagnosis CAD system by detecting medium to large nodules. However, to fully investigate the relevance between nodule features and cancer diagnosis, a CAD that is capable of detecting nodules with all sizes is needed. In this paper, we present a deep-learning based automatic all size pulmonary nodule detection system by cascading two artificial neural networks. We firstly use a U-net like 3D network to generate nodule candidates from CT images. Then, we use another 3D neural network to refine the locations of the nodule candidates generated from the previous subsystem. With the second sub-system, we bring the nodule candidates closer to the center of the ground truth nodule locations. We evaluate our system on a public CT dataset provided by the Lung Nodule Analysis (LUNA) 2016 grand challenge. The performance on the testing dataset shows that our system achieves 90% sensitivity with an average of 4 false positives per scan. This indicates that our system can be an aid for automatic nodule detection, which is beneficial for lung cancer diagnosis.

  14. Vaspin protects against LPS-induced ARDS by inhibiting inflammation, apoptosis and reactive oxygen species generation in pulmonary endothelial cells via the Akt/GSK-3β pathway

    PubMed Central

    Qi, Di; Wang, Daoxin; Zhang, Chunrong; Tang, Xumao; He, Jing; Zhao, Yan; Deng, Wang; Deng, Xinyu

    2017-01-01

    Acute respiratory distress syndrome (ARDS) is characterized by uncontrolled extravasation of protein-rich fluids, which is caused by disruption and dysfunction of the barrier of pulmonary endothelial cells (ECs). Visceral adipose tissue-derived serine protease inhibitor (vaspin) is a novel adipokine with pleiotropic properties, which has been reported to exert beneficial effects against obesity-associated systemic vascular diseases; however, its effects on ARDS remain unknown. In the present study, mice were subjected to systemic administration of adenoviral vector expressing vaspin (Ad-vaspin) to examine its effects on lipopolysaccharide (LPS)-induced ARDS in vivo. Histological analysis was then conducted, and cytokine [tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-10] levels, and intercellular cell adhesion molecule-1 (ICAM-1) and adherens junctions (AJs) expression were detected. In addition, human pulmonary microvascular ECs (HPMECs) were treated with recombinant human (rh)-vaspin to further investigate its molecular basis and underlying mechanism. The mRNA expression levels of inflammatory cytokines (TNF-α and IL-6) and endothelial-specific adhesion markers [vascular cell adhesion molecule-1 and E-selectin], activation of nuclear factor-κB, and cell viability and apoptosis were then examined. Furthermore, the expression of AJs and organization of the cytoskeleton, as well as expression and activity of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and generation of reactive oxygen species (ROS) were determined. The results indicated that Ad-vaspin protected against LPS-induced ARDS by alleviating the pulmonary inflammatory response and pulmonary EC barrier dysfunction in mice, which was accompanied by activation of the protein kinase B (Akt)/glycogen synthase kinase (GSK)-3β pathway. In addition, pretreatment of HPMECs with rh-vaspin attenuated inflammation, apoptosis and ROS generation without alterations in AJs and cytoskeletal

  15. Pulmonary microvascular cytology can detect tumor cells of intravascular lymphoma.

    PubMed

    Ishiguro, Takashi; Takayanagi, Noboru; Yanagisawa, Tsutomu; Kagiyama, Naho; Saito, Hiroo; Sugita, Yutaka; Kojima, Masaru

    2009-01-01

    A 68-year-old man was admitted to our hospital for indistinct consciousness, progressive dyspnea, night sweats and fever of 2 weeks duration. Hypoxemia, thrombocytopenia, and elevated serum lactate dehydrogenase were found. Computed tomography was negative except for a small bilateral pleural effusion. Chest perfusion scintigraphy showed inhomogeneous perfusion thought unlikely to be pulmonary artery thromboembolism. Intravascular large B-cell lymphoma was suspected, and a pulmonary microvascular cytology specimen was obtained that contained numerous large lymphoma cells. Because the patient's condition was rapidly deteriorating, we started chemotherapy on the basis of the pulmonary microvascular cytology findings, and he improved. Later, atypical lymphocytes similar to those in the pulmonary microvascular cytology specimen were found in a bone marrow specimen. He was diagnosed as having diffuse large B-cell lymphoma. Because lymphoma cells were found in the pulmonary microvasculature, intravascular lymphoma was also diagnosed. Pulmonary microvascular cytology was helpful to detect lymphoma cells in the pulmonary microvasculature.

  16. Exposure to wood smoke particles produces inflammation in healthy volunteers.

    PubMed

    Ghio, Andrew J; Soukup, Joleen M; Case, Martin; Dailey, Lisa A; Richards, Judy; Berntsen, Jon; Devlin, Robert B; Stone, Susan; Rappold, Ana

    2012-03-01

    Human exposure to wood smoke particles (WSP) impacts on human health through changes in indoor air quality, exposures from wild fires, burning of biomass and air pollution. This investigation tested the postulate that healthy volunteers exposed to WSP would demonstrate evidence of both pulmonary and systemic inflammation. Ten volunteers were exposed to filtered air and, 3 weeks or more later, WSP. Each exposure included alternating 15 min of exercise and 15 min of rest for a total duration of 2 h. Wood smoke was generated by heating an oak log on an electric element and then delivered to the exposure chamber. Endpoints measured in the volunteers included symptoms, pulmonary function tests, measures of heart rate variability and repolarisation, blood indices and analysis of cells and fluid obtained during bronchoalveolar lavage. Mean particle mass for the 10 exposures to air and WSP was measured using the mass of particles collected on filters and found to be below the detectable limit and 485±84 μg/m(3), respectively (mean±SD). There was no change in either symptom prevalence or pulmonary function with exposure to WSP. At 20 h after wood smoke exposure, blood tests demonstrated an increased percentage of neutrophils, and bronchial and bronchoalveolar lavage revealed a neutrophilic influx. We conclude that exposure of healthy volunteers to WSP may be associated with evidence of both systemic and pulmonary inflammation.

  17. Apoptosis and Inflammation Associated Gene Expressions in Monocrotaline-Induced Pulmonary Hypertensive Rats after Bosentan Treatment

    PubMed Central

    Hong, Young Mi; Kwon, Jung Hyun; Choi, Shinkyu

    2014-01-01

    Background and Objectives Vascular wall remodeling in pulmonary hypertension can be caused by an aberration in the normal balance between proliferation and apoptosis of endothelial cell in the pulmonary artery. The objective of this study was to evaluate the effect of bosentan on apoptosis in monocrotaline (MCT)-induced pulmonary hypertension. Materials and Methods Sprague-Dawley rats were divided into three groups: control (C) group, M group (MCT 60 mg/kg) and B group (MCT 60 mg/kg plus bosentan 20 mg/day orally). Gene expressions of Bcl (B cell leukemia/lymphoma)-2, caspase-3, complement component (C)-6, vascular endothelial growth factor (VEGF), interleukin (IL)-6 and tumor necrosis factor-alpha (TNF-α) were analyzed by real time polymerase chain reaction and western blot analysis. Results The messenger ribonucleic acid (mRNA) expressions of caspase-3 and VEGF were significantly increased in the M group compared with the C group, and significantly decreased in the B group compared with the M group in week 4. mRNA expression of IL-6 was significantly decreased in weeks 1, 2, and 4 in the B group compared with the M group. mRNA expression of TNF-α was significantly decreased on day 5 and in weeks 1 and 2 in the B group compared with the M group. Conclusion Bosentan may have potential for preventing apoptosis and inflammation. PMID:24653739

  18. [Bronchial inflammation during chronic bronchitis, importance of fenspiride].

    PubMed

    Melloni, B

    2002-09-01

    PATHOPHYSIOLOGY OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE (COPD): Chronic inflammation of the upper airways, pulmonary parenchyma and pulmonary vasculature is the characteristic feature of COPD. Two mechanisms besides inflammation are also involved: oxidative stress and imbalance between proteinases and antiproteinases. Cellular infiltration of the upper airways involved neutrophils, macrophages, T lymphocytes and eosinophils. Inflammatory mediators appear to play a crucial role in the interaction between inflammation and obstruction. PROPERTIES OF FENSPIRIDE: A nonsteroidal drug, fenspiride, exhibits interesting properties documented in vitro: anti-bronchoconstriction activity, anti-secretory activity, and anti-inflammatory activity (reduction in the activity of phospholipase A2 and release of proinflammatory leukotriens). Two french clinical trials have studied the efficacy of fenspiride in patients with acute excerbation or stable COPD and have demonstrated an improvement in the group treated with fenspiride compared with the placebo group.

  19. Hepatic Warm Ischemia-Reperfusion-Induced Increase in Pulmonary Capillary Filtration Is Ameliorated by Administration of a Multidrug Resistance-Associated Protein 1 Inhibitor and Leukotriene D4 Antagonist (MK-571) Through Reducing Neutrophil Infiltration and Pulmonary Inflammation and Oxidative Stress in Rats.

    PubMed

    Yeh, D Y-W; Yang, Y-C; Wang, J-J

    2015-05-01

    Hepatopulmonary syndrome (HPS) is the major complication subsequent to liver ischemia and reperfusion (I/R) injury after resection or transplantation of liver. Hallmarks of HPS include increases in pulmonary leukotrienes and neutrophil recruitment and infiltrating across capillaries. We aimed to investigate the protective efficacy of MK-571, a multidrug resistance-associated protein 1 inhibitor and leukotriene D4 agonist, against hepatic I/R injury-associated change in capillary filtration. Eighteen Sprague-Dawley male rats were evenly divided into a sham-operated group, a hepatic I/R group, and an MK-571-treated I/R group. MK-571 was administered intraperitoneally 15 min before hepatic ischemia and every 12 hours during reperfusion. Ischemia was conducted by occluding the hepatic artery and portal vein for 30 min, followed by removing the clamps and closing the incision. Forty-eight hours after hepatic ischemia, we assessed the pulmonary capillary filtration coefficient (Kfc) through the use of in vitro-isolated, perfused rat lung preparation. We also measured the lung wet-to-dry weight ratio (W/D) and protein concentration in broncho-alveolar lavage fluid (PCBAL). Lung inflammation and oxidative stress were evaluated by use of tissue tumor necrosis factor (TNF)-α and malondialdehyde levels and lavage differential macrophage and neutrophil cell count. Hepatic I/R injury markedly increased Kfc, W/D, PCBAL, tissue TNF-α level, and differential neutrophil cell count (P < .05). MK-571 treatment reduced neutrophil infiltration and lung inflammation and improved pulmonary capillary filtration, collectively suggesting lung protection. Treatment with MK-571 before and during hepatic ischemia and reperfusion protects lung against pulmonary capillary barrier function impairment through decreasing pulmonary lung inflammation and lavage neutrophils. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Nano-sized Contrast Agents to Non-Invasively Detect Renal Inflammation by Magnetic Resonance Imaging

    PubMed Central

    Thurman, Joshua M.; Serkova, Natalie J.

    2013-01-01

    Several molecular imaging methods have been developed that employ nano-sized contrast agents to detect markers of inflammation within tissues. Renal inflammation contributes to disease progression in a wide range of autoimmune and inflammatory diseases, and a biopsy is currently the only method of definitively diagnosing active renal inflammation. However, the development of new molecular imaging methods that employ contrast agents capable of detecting particular immune cells or protein biomarkers will allow clinicians to evaluate inflammation throughout the kidneys, and to assess a patient's response to immunomodulatory drugs. These imaging tools will improve our ability to validate new therapies and to optimize the treatment of individual patients with existing therapies. This review describes the clinical need for new methods of monitoring renal inflammation, and recent advances in the development of nano-sized contrast agents for detection of inflammatory markers of renal disease. PMID:24206601

  1. Bilirubin treatment suppresses pulmonary inflammation in a rat model of smoke-induced emphysema.

    PubMed

    Wei, Jingjing; Zhao, Hui; Fan, Guoquan; Li, Jianqiang

    2015-09-18

    Cigarette smoking is a significant risk factor for emphysema, which is characterized by airway inflammation and oxidative damage. To assess the capacity of bilirubin to protect against smoke-induced emphysema. Smoking status and bilirubin levels were recorded in 58 patients with chronic obstructive pulmonary diseases (COPD) and 71 non-COPD participants. The impact of smoking on serum bilirubin levels and exogenous bilirubin (20 mg/kg/day) on pulmonary injury was assessed in a rat model of smoking-induced emphysema. At sacrifice lung histology, airway leukocyte accumulation and cytokine and chemokine levels in serum, bronchoalveolar lavage fluid (BALF) and lung were analyzed. Oxidative lipid damage and anti-oxidative components was assessed by measuring malondialdehyde, superoxide dismutase (SOD) activity and glutathione. Total serum bilirubin levels were lower in smokers with or without COPD than non-smoking patients without COPD (P < 0.05). Indirect serum bilirubin levels were lower in COPD patients than patients without COPD (P < 0.05). In rats, cigarette smoke reduced serum total and indirect bilirubin levels. Administration of bilirubin reduced mean linear intercept and mean alveoli area, increased mean alveoli number, reduced macrophage, neutrophil and TNF-α content of BALF, and increased BALF and serum IL-10 level, but lowered local and systemic CCL2, CXCL2, CXCL8 and IL-17 levels. Bilirubin suppressed the smoke-induced systemic and regional oxidative lipid damage associated with increased SOD activity. Bilirubin attenuated smoking-induced pulmonary injury by suppressing inflammatory cell recruitment and pro-inflammatory cytokine secretion, increasing anti-inflammatory cytokine levels, and anti-oxidant SOD activity in a rat model of smoke-induced emphysema. Copyright © 2015. Published by Elsevier Inc.

  2. TRPV4 inhibition counteracts edema and inflammation and improves pulmonary function and oxygen saturation in chemically induced acute lung injury

    PubMed Central

    Balakrishna, Shrilatha; Song, Weifeng; Achanta, Satyanarayana; Doran, Stephen F.; Liu, Boyi; Kaelberer, Melanie M.; Yu, Zhihong; Sui, Aiwei; Cheung, Mui; Leishman, Emma; Eidam, Hilary S.; Ye, Guosen; Willette, Robert N.; Thorneloe, Kevin S.; Bradshaw, Heather B.; Matalon, Sadis

    2014-01-01

    The treatment of acute lung injury caused by exposure to reactive chemicals remains challenging because of the lack of mechanism-based therapeutic approaches. Recent studies have shown that transient receptor potential vanilloid 4 (TRPV4), an ion channel expressed in pulmonary tissues, is a crucial mediator of pressure-induced damage associated with ventilator-induced lung injury, heart failure, and infarction. Here, we examined the effects of two novel TRPV4 inhibitors in mice exposed to hydrochloric acid, mimicking acid exposure and acid aspiration injury, and to chlorine gas, a severe chemical threat with frequent exposures in domestic and occupational environments and in transportation accidents. Postexposure treatment with a TRPV4 inhibitor suppressed acid-induced pulmonary inflammation by diminishing neutrophils, macrophages, and associated chemokines and cytokines, while improving tissue pathology. These effects were recapitulated in TRPV4-deficient mice. TRPV4 inhibitors had similar anti-inflammatory effects in chlorine-exposed mice and inhibited vascular leakage, airway hyperreactivity, and increase in elastance, while improving blood oxygen saturation. In both models of lung injury we detected increased concentrations of N-acylamides, a class of endogenous TRP channel agonists. Taken together, we demonstrate that TRPV4 inhibitors are potent and efficacious countermeasures against severe chemical exposures, acting against exaggerated inflammatory responses, and protecting tissue barriers and cardiovascular function. PMID:24838754

  3. Comparative study of two models of combined pulmonary fibrosis and emphysema in mice.

    PubMed

    Zhang, Wan-Guang; Wu, Si-Si; He, Li; Yang, Qun; Feng, Yi-Kuan; Chen, Yue-Tao; Zhen, Guo-Hua; Xu, Yong-Jian; Zhang, Zhen-Xiang; Zhao, Jian-Ping; Zhang, Hui-Lan

    2017-04-01

    Combined pulmonary fibrosis and emphysema (CPFE) is an "umbrella term" encompassing emphysema and pulmonary fibrosis, but its pathogenesis is not known. We established two models of CPFE in mice using tracheal instillation with bleomycin (BLM) or murine gammaherpesvirus 68 (MHV-68). Experimental mice were divided randomly into four groups: A (normal control, n=6), B (emphysema, n=6), C (emphysema+MHV-68, n=24), D (emphysema+BLM, n=6). Group C was subdivided into four groups: C1 (sacrificed on day 367, 7 days after tracheal instillation of MHV-68); C2 (day 374; 14days); C3 (day 381; 21days); C4 (day 388; 28days). Conspicuous emphysema and interstitial fibrosis were observed in BLM and MHV-68 CPFE mouse models. However, BLM induced diffuse pulmonary interstitial fibrosis with severely diffuse pulmonary inflammation; MHV-68 induced relatively modest inflammation and fibrosis, and the inflammation and fibrosis were not diffuse, but instead around bronchioles. Inflammation and fibrosis were detectable in the day-7 subgroup and reached a peak in the day-28 subgroup in the emphysema + MHV-68 group. Levels of macrophage chemoattractant protein-1, macrophage inflammatory protein-1α, interleukin-13, and transforming growth factor-β1 in bronchoalveolar lavage fluid were increased significantly in both models. Percentage of apoptotic type-2 lung epithelial cells was significantly higher; however, all four types of cytokine and number of macrophages were significantly lower in the emphysema+MHV-68 group compared with the emphysema +BLM group. The different changes in pathology between BLM and MHV-68 mice models demonstrated different pathology subtypes of CPFE: macrophage infiltration and apoptosis of type-II lung epithelial cells increased with increasing pathology score for pulmonary fibrosis. Copyright © 2017 Elsevier GmbH. All rights reserved.

  4. Association of air pollution sources and aldehydes with biomarkers of blood coagulation, pulmonary inflammation, and systemic oxidative stress.

    PubMed

    Altemose, Brent; Robson, Mark G; Kipen, Howard M; Ohman Strickland, Pamela; Meng, Qingyu; Gong, Jicheng; Huang, Wei; Wang, Guangfa; Rich, David Q; Zhu, Tong; Zhang, Junfeng

    2017-05-01

    Using data collected before, during, and after the 2008 Summer Olympic Games in Beijing, this study examines associations between biomarkers of blood coagulation (vWF, sCD62P and sCD40L), pulmonary inflammation (EBC pH, EBC nitrite, and eNO), and systemic oxidative stress (urinary 8-OHdG) with sources of air pollution identified utilizing principal component analysis and with concentrations of three aldehydes of health concern. Associations between the biomarkers and the air pollution source types and aldehydes were examined using a linear mixed effects model, regressing through seven lag days and controlling for ambient temperature, relative humidity, gender, and day of week for the biomarker measurements. The biomarkers for pulmonary inflammation, particularly EBC pH and eNO, were most consistently associated with vehicle and industrial combustion, oil combustion, and vegetative burning. The biomarkers for blood coagulation, particularly vWF and sCD62p, were most consistently associated with oil combustion. Systemic oxidative stress biomarker (8-OHdG) was most consistently associated with vehicle and industrial combustion. The associations of the biomarkers were generally not significant or consistent with secondary formation of pollutants and with the aldehydes. The findings support policies to control anthropogenic pollution sources rather than natural soil or road dust from a cardio-respiratory health standpoint.

  5. Maternal Dietary Docosahexaenoic Acid Supplementation Attenuates Fetal Growth Restriction and Enhances Pulmonary Function in a Newborn Mouse Model of Perinatal Inflammation123

    PubMed Central

    Velten, Markus; Britt, Rodney D.; Heyob, Kathryn M.; Tipple, Trent E.; Rogers, Lynette K.

    2014-01-01

    The preterm infant is often exposed to maternal and neonatal inflammatory stimuli and is born with immature lungs, resulting in a need for oxygen therapy. Nutritional intervention with docosahexaenoic acid (DHA; 6.3 g/kg of diet) has been shown to attenuate inflammation in various human diseases. Previous studies demonstrated that maternal DHA supplementation during late gestation and lactation attenuated hyperoxic lung injury in newborn mouse pups. In the present studies, we tested the hypothesis that DHA supplementation to the dam would reduce hyperoxic lung injury and growth deficits in a more severe model of systemic maternal inflammation, including lipopolysaccharide (LPS) and neonatal hyperoxia exposure. On embryonic day 16, dams were placed on DHA (6.3 g DHA/kg diet) or control diets and injected with saline or LPS. Diets were maintained through weaning. At birth, pups were placed in room air or hyperoxia for 14 d. Improvements in birth weight (P < 0.01), alveolarization (P ≤ 0.01), and pulmonary function (P ≤ 0.03) at 2 and 8 wk of age were observed in pups exposed to perinatal inflammation and born to DHA-supplemented dams compared with control diet–exposed pups. These improvements were associated with decreases in tissue macrophage numbers (P < 0.01), monocyte chemoattractant protein-1 expression (P ≤ 0.05), and decreases in soluble receptor for advanced glycation end products concentrations (P < 0.01) at 2 and 8 wk. Furthermore, DHA supplementation attenuated pulmonary fibrosis, which was associated with the reduction of matrix metalloproteinases 2, 3, and 8 (P ≤ 0.03) and collagen mRNA (P ≤ 0.05), and decreased collagen (P < 0.01) and vimentin (P ≤ 0.03) protein concentrations. In a model of severe inflammation, maternal DHA supplementation lessened inflammation and improved lung growth in the offspring. Maternal supplementation with DHA may be a therapeutic strategy to reduce neonatal inflammation. PMID:24453131

  6. A Single Aspiration of Rod-like Carbon Nanotubes Induces Asbestos-like Pulmonary Inflammation Mediated in Part by the IL-1 Receptor.

    PubMed

    Rydman, Elina M; Ilves, Marit; Vanhala, Esa; Vippola, Minnamari; Lehto, Maili; Kinaret, Pia A S; Pylkkänen, Lea; Happo, Mikko; Hirvonen, Maija-Riitta; Greco, Dario; Savolainen, Kai; Wolff, Henrik; Alenius, Harri

    2015-09-01

    Carbon nanotubes (CNT) have been eagerly studied because of their multiple applications in product development and potential risks on health. We investigated the difference of two different CNT and asbestos in inducing proinflammatory reactions in C57BL/6 mice after single pharyngeal aspiration exposure. We used long tangled and long rod-like CNT, as well as crocidolite asbestos at a dose of 10 or 40 µg/mouse. The mice were sacrificed 4 and 16 h or 7, 14, and 28 days after the exposure. To find out the importance of a major inflammatory marker IL-1β in CNT-induced pulmonary inflammation, we used etanercept and anakinra as antagonists as well as Interleukin 1 (IL-1) receptor (IL-1R-/-) mice. The results showed that rod-like CNT, and asbestos in lesser extent, induced strong pulmonary neutrophilia accompanied by the proinflammatory cytokines and chemokines 16 h after the exposure. Seven days after the exposure, neutrophilia had essentially disappeared but strong pulmonary eosinophilia peaked in rod-like CNT and asbestos-exposed groups. After 28 days, pulmonary granulomas, goblet cell hyperplasia, and Charcot-Leyden-like crystals containing acidophilic macrophages were observed especially in rod-like CNT-exposed mice. IL-1R-/- mice and antagonists-treated mice exhibited a significant decrease in neutrophilia and messenger ribonucleic acid (mRNA) levels of proinflammatory cytokines at 16 h. However, rod-like CNT-induced Th2-type inflammation evidenced by the expression of IL-13 and mucus production was unaffected in IL-1R-/- mice at 28 days. This study provides knowledge about the pulmonary effects induced by a single exposure to the CNT and contributes to hazard assessment of carbon nanomaterials on airway exposure. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Vaspin protects against LPS‑induced ARDS by inhibiting inflammation, apoptosis and reactive oxygen species generation in pulmonary endothelial cells via the Akt/GSK‑3β pathway.

    PubMed

    Qi, Di; Wang, Daoxin; Zhang, Chunrong; Tang, Xumao; He, Jing; Zhao, Yan; Deng, Wang; Deng, Xinyu

    2017-12-01

    Acute respiratory distress syndrome (ARDS) is characterized by uncontrolled extravasation of protein‑rich fluids, which is caused by disruption and dysfunction of the barrier of pulmonary endothelial cells (ECs). Visceral adipose tissue‑derived serine protease inhibitor (vaspin) is a novel adipokine with pleiotropic properties, which has been reported to exert beneficial effects against obesity‑associated systemic vascular diseases; however, its effects on ARDS remain unknown. In the present study, mice were subjected to systemic administration of adenoviral vector expressing vaspin (Ad‑vaspin) to examine its effects on lipopolysaccharide (LPS)‑induced ARDS in vivo. Histological analysis was then conducted, and cytokine [tumor necrosis factor (TNF)‑α, interleukin (IL)‑6 and IL‑10] levels, and intercellular cell adhesion molecule‑1 (ICAM‑1) and adherens junctions (AJs) expression were detected. In addition, human pulmonary microvascular ECs (HPMECs) were treated with recombinant human (rh)‑vaspin to further investigate its molecular basis and underlying mechanism. The mRNA expression levels of inflammatory cytokines (TNF‑α and IL‑6) and endothelial‑specific adhesion markers [vascular cell adhesion molecule‑1 and E‑selectin], activation of nuclear factor‑κB, and cell viability and apoptosis were then examined. Furthermore, the expression of AJs and organization of the cytoskeleton, as well as expression and activity of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and generation of reactive oxygen species (ROS) were determined. The results indicated that Ad‑vaspin protected against LPS‑induced ARDS by alleviating the pulmonary inflammatory response and pulmonary EC barrier dysfunction in mice, which was accompanied by activation of the protein kinase B (Akt)/glycogen synthase kinase (GSK)‑3β pathway. In addition, pretreatment of HPMECs with rh‑vaspin attenuated inflammation, apoptosis and ROS generation

  8. Nanofibrillated cellulose causes acute pulmonary inflammation that subsides within a month.

    PubMed

    Ilves, Marit; Vilske, Sara; Aimonen, Kukka; Lindberg, Hanna K; Pesonen, Saila; Wedin, Irene; Nuopponen, Markus; Vanhala, Esa; Højgaard, Casper; Winther, Jakob R; Willemoës, Martin; Vogel, Ulla; Wolff, Henrik; Norppa, Hannu; Savolainen, Kai; Alenius, Harri

    2018-05-30

    Nanofibrillated cellulose (NFC) is a renewable nanomaterial that has beneficial uses in various applications such as packaging materials and paper. Like carbon nanotubes (CNT), NFCs have high aspect ratio and favorable mechanical properties. The aspect ratio also rises a concern whether NFC could pose a health risk and induce pathologies, similar to those triggered by multi-walled CNT. In this study, we explored the immunomodulatory properties of four NFCs in vitro and in vivo, and compared the results with data on bulk-sized cellulose fibrils and rigid multi-walled CNT (rCNT). Two of the NFCs were non-functionalized and two were carboxymethylated or carboxylated. We investigated the production of pro-inflammatory cytokines in differentiated THP-1 cells, and studied the pulmonary effects and biopersistence of the materials in mice. Our results demonstrate that one of the non-functionalized NFCs tested reduced cell viability and triggered pro-inflammatory reactions in vitro. In contrast, all cellulose materials induced innate immunity response in vivo 24 h after oropharyngeal aspiration, and the non-functionalized NFCs additionally caused features of Th2-type inflammation. Modest immune reactions were also seen after 28 days, however, the effects were markedly attenuated as compared with the ones after 24 h. Cellulose materials were not cleared within 1 month, as demonstrated by their presence in the exposed lungs. All effects of NFC were modest as compared with those induced by rCNT. NFC-induced responses were similar or exceeded those triggered by bulk-sized cellulose. These data provide new information about the biodurability and pulmonary effects of different NFCs; this knowledge can be useful in the risk assessment of cellulose materials.

  9. Imaging in chronic obstructive pulmonary disease.

    PubMed

    Shaker, Saher B; Dirksen, Asger; Bach, Karen S; Mortensen, Jann

    2007-06-01

    Chronic obstructive pulmonary disease (COPD) is divided into pulmonary emphysema and chronic bronchitis (CB). Emphysema is defined patho-anatomically as "permanent enlargement of airspaces distal to the terminal bronchiole, accompanied by the destruction of their walls, and without obvious fibrosis" (1). These lesions are readily identified and quantitated using computed tomography (CT), whereas the accompanying hyperinflation is best detected on plain chest X-ray, especially in advanced disease. The diagnosis of CB is clinical and relies on the presence of productive cough for 3 months in 2 or more successive years. The pathological changes of mucosal inflammation and bronchial wall thickening have been more difficult to identify with available imaging techniques. However, recent studies using Multi-detector row CT (MDCT) reported more reproducible assessment of air wall thickening.

  10. Infection, inflammation and exercise in cystic fibrosis

    PubMed Central

    2013-01-01

    Regular exercise is positively associated with health. It has also been suggested to exert anti-inflammatory effects. In healthy subjects, a single exercise session results in immune cell activation, which is characterized by production of immune modulatory peptides (e.g. IL-6, IL-8), a leukocytosis and enhanced immune cell functions. Upon cessation of exercise, immune activation is followed by a tolerizing phase, characterized by a reduced responsiveness of immune cells. Regular exercise of moderate intensity and duration has been shown to exert anti-inflammatory effects and is associated with a reduced disease incidence and viral infection susceptibility. Specific exercise programs may therefore be used to modify the course of chronic inflammatory and infectious diseases such as cystic fibrosis (CF). Patients with CF suffer from severe and chronic pulmonary infections and inflammation, leading to obstructive and restrictive pulmonary disease, exercise intolerance and muscle cachexia. Inflammation is characterized by a hyper-inflammatory phenotype. Patients are encouraged to engage in exercise programs to maintain physical fitness, quality of life, pulmonary function and health. In this review, we present an overview of available literature describing the association between regular exercise, inflammation and infection susceptibility and discuss the implications of these observations for prevention and treatment of inflammation and infection susceptibility in patients with CF. PMID:23497303

  11. Time course of polyhexamethyleneguanidine phosphate-induced lung inflammation and fibrosis in mice.

    PubMed

    Song, Jeongah; Kim, Woojin; Kim, Yong-Bum; Kim, Bumseok; Lee, Kyuhong

    2018-04-15

    Pulmonary fibrosis is a chronic progressive disease with unknown etiology and has poor prognosis. Polyhexamethyleneguanidine phosphate (PHMG-P) causes acute interstitial pneumonia and pulmonary fibrosis in humans when it exposed to the lung. In a previous study, when rats were exposed to PHMG-P through inhalation for 3 weeks, lung inflammation and fibrosis was observed even after 3 weeks of recovery. In this study, we aimed to determine the time course of PHMG-P-induced lung inflammation and fibrosis. We compared pathological action of PHMG-P with that of bleomycin (BLM) and investigated the mechanism underlying PHMG-P-induced lung inflammation and fibrosis. PHMG-P (0.9 mg/kg) or BLM (1.5 mg/kg) was intratracheally administered to mice. At weeks 1, 2, 4 and 10 after instillation, the levels of inflammatory and fibrotic markers and the expression of inflammasome proteins were measured. The inflammatory and fibrotic responses were upregulated until 10 and 4 weeks in the PHMG-P and BLM groups, respectively. Immune cell infiltration and considerable collagen deposition in the peribronchiolar and interstitial areas of the lungs, fibroblast proliferation, and hyperplasia of type II epithelial cells were observed. NALP3 inflammasome activation was detected in the PHMG-P group until 4 weeks, which is suspected to be the main reason for the persistent inflammatory response and exacerbation of fibrotic changes. Most importantly, the pathological changes in the PHMG-P group were similar to those observed in humidifier disinfectant-associated patients. A single exposure of PHMG-P led to persistent pulmonary inflammation and fibrosis for at least 10 weeks. Copyright © 2018. Published by Elsevier Inc.

  12. Respiratory Syncytial Virus Infection and G and/or SH Protein Expression Contribute to Substance P, Which Mediates Inflammation and Enhanced Pulmonary Disease in BALB/c Mice

    PubMed Central

    Tripp, Ralph A.; Moore, Deborah; Winter, Jorn; Anderson, Larry J.

    2000-01-01

    A distinct clinical presentation of respiratory syncytial virus (RSV) infection of humans is bronchiolitis, which has clinical features similar to those of asthma. Substance P (SP), a tachykinin neuropeptide, has been associated with neurogenic inflammation and asthma; therefore, we chose to examine SP-induced inflammation with RSV infection. In this study, we examined the production of pulmonary SP associated with RSV infection of BALB/c mice and the effect of anti-SP F(ab)2 antibodies on the pulmonary inflammatory response. The peak production of pulmonary SP occurred between days 3 and 5 following primary RSV infection and day 1 after secondary infection. Treatment of RSV-infected mice with anti-SP F(ab)2 antibodies suggested that SP may alter the natural killer cell response to primary and secondary infection. In mice challenged after formalin-inactivated RSV vaccination, SP appears to markedly enhance pulmonary eosinophilia as well as increase polymorphonuclear cell trafficking to the lung. Based on studies with a strain of RSV that lacks the G and SH genes, the SP response to RSV infection appears to be associated with G and/or SH protein expression. These data suggest that SP may be an important contributor to the inflammatory response to RSV infection and that anti-SP F(ab)2 antibodies might be used to ameliorate RSV-associated disease. PMID:10644330

  13. Cystic fibrosis transmembrane conductance regulator regulates epithelial cell response to Aspergillus and resultant pulmonary inflammation.

    PubMed

    Chaudhary, Neelkamal; Datta, Kausik; Askin, Frederic B; Staab, Janet F; Marr, Kieren A

    2012-02-01

    Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) alter epithelial cell (EC) interactions with multiple microbes, such that dysregulated inflammation and injury occur with airway colonization in people with cystic fibrosis (CF). Aspergillus fumigatus frequently colonizes CF airways, but it has been assumed to be an innocent saprophyte; its potential role as a cause of lung disease is controversial. To study the interactions between Aspergillus and EC, and the role of the fungus in evoking inflammatory responses. A. fumigatus expressing green fluorescent protein was developed for in vitro and in vivo models, which used cell lines and mouse tracheal EC. Fungal spores (conidia) are rapidly ingested by ECs derived from bronchial cell lines and murine tracheas, supporting a role for EC in early airway clearance. Bronchial ECs harboring CFTR mutations (ΔF508) or deletion demonstrate impaired uptake and killing of conidia, and ECs with CFTR mutation undergo more conidial-induced apoptosis. Germinated (hyphal) forms of the fungus evoke secretion of inflammatory mediators, with CFTR mutation resulting in increased airway levels of macrophage inflammatory protein 2 and KC, and higher lung monocyte chemotactic protein-1. After A. fumigatus inhalation, CFTR(-/-) mice develop exaggerated lymphocytic inflammation, mucin accumulation, and lung injury. Data demonstrate a critical role for CFTR in mediating EC responses to A. fumigatus. Results suggest that the fungus elicits aberrant pulmonary inflammation in the setting of CFTR mutation, supporting the potential role of antifungals to halt progressive CF lung disease.

  14. Multilevel Contextual 3-D CNNs for False Positive Reduction in Pulmonary Nodule Detection.

    PubMed

    Dou, Qi; Chen, Hao; Yu, Lequan; Qin, Jing; Heng, Pheng-Ann

    2017-07-01

    False positive reduction is one of the most crucial components in an automated pulmonary nodule detection system, which plays an important role in lung cancer diagnosis and early treatment. The objective of this paper is to effectively address the challenges in this task and therefore to accurately discriminate the true nodules from a large number of candidates. We propose a novel method employing three-dimensional (3-D) convolutional neural networks (CNNs) for false positive reduction in automated pulmonary nodule detection from volumetric computed tomography (CT) scans. Compared with its 2-D counterparts, the 3-D CNNs can encode richer spatial information and extract more representative features via their hierarchical architecture trained with 3-D samples. More importantly, we further propose a simple yet effective strategy to encode multilevel contextual information to meet the challenges coming with the large variations and hard mimics of pulmonary nodules. The proposed framework has been extensively validated in the LUNA16 challenge held in conjunction with ISBI 2016, where we achieved the highest competition performance metric (CPM) score in the false positive reduction track. Experimental results demonstrated the importance and effectiveness of integrating multilevel contextual information into 3-D CNN framework for automated pulmonary nodule detection in volumetric CT data. While our method is tailored for pulmonary nodule detection, the proposed framework is general and can be easily extended to many other 3-D object detection tasks from volumetric medical images, where the targeting objects have large variations and are accompanied by a number of hard mimics.

  15. [Morphological signs of inflammatory activity in different clinical forms of drug-resistant pulmonary tuberculosis].

    PubMed

    Elipashev, A A; Nikolsky, V O; Shprykov, A S

    to determine whether the activity of tuberculous inflammation is associated with different clinical forms of drug-resistant pulmonary tuberculosis. The material taken from 310 patients operated on in 2010-2015 were retrospectively examined. The patients underwent economical lung resections of limited extent (typical and atypical ones of up to 3 segments) for circumscribed forms of tuberculosis with bacterial excretion. A study group consisted of 161 (51.9%) patients with drug-resistant variants of pulmonary tuberculosis. A control group included 149 (48.1%) patients with preserved susceptibility of Mycobacterium tuberculosis to anti-TB drugs. The activity of specific changes in tuberculosis was morphologically evaluated in accordance with the classification proposed by B.M. Ariel in 1998. The highest activity of fourth-to-fifth degree specific inflammation, including that outside the primary involvement focus, was obtained in the drug-resistant pulmonary tuberculosis group due to the predominance of patients with cavernous and fibrous-cavernous tuberculosis versus those in whom the susceptibility to chemotherapeutic agents was preserved. A macroscopic study showed that the primary lesion focus had a median size in one-half of the all the examinees; but large tuberculomas, caverns, and fibrous caverns over 4 cm in diameter were multiple and detected in the drug-resistant pulmonary tuberculosis group. Multidrug resistance was observed in more than 60% of the patients with fibrous-cavernous pulmonary tuberculosis, extensive drug resistance was seen in those with cavernous tuberculosis, which is an aggravating factor. The data obtained from the morphological study of the intraoperative material can specify the clinical form of tuberculosis and evaluate the efficiency of preoperative specific therapy. The highest activity of specific inflammation was observed in patients with multiple drug-resistant pulmonary tuberculosis, the prevalence of third-to-fourth degree

  16. Gut-lung crosstalk in pulmonary involvement with inflammatory bowel diseases.

    PubMed

    Wang, Hui; Liu, Jing-Shi; Peng, Shao-Hua; Deng, Xi-Yun; Zhu, De-Mao; Javidiparsijani, Sara; Wang, Gui-Rong; Li, Dai-Qiang; Li, Long-Xuan; Wang, Yi-Chun; Luo, Jun-Ming

    2013-10-28

    Pulmonary abnormalities, dysfunction or hyper-reactivity occurs in association with inflammatory bowel disease (IBD) more frequently than previously recognized. Emerging evidence suggests that subtle inflammation exists in the airways among IBD patients even in the absence of any bronchopulmonary symptoms, and with normal pulmonary functions. The pulmonary impairment is more pronounced in IBD patients with active disease than in those in remission. A growing number of case reports show that the IBD patients develop rapidly progressive respiratory symptoms after colectomy, with failure to isolate bacterial pathogens on repeated sputum culture, and often request oral corticosteroid therapy. All the above evidence indicates that the inflammatory changes in both the intestine and lung during IBD. Clinical or subclinical pulmonary inflammation accompanies the main inflammation of the bowel. Although there are clinical and epidemiological reports of chronic inflammation of the pulmonary and intestinal mucosa in IBD, the detailed mechanisms of pulmonary-intestinal crosstalk remain unknown. The lung has no anatomical connection with the main inflammatory site of the bowel. Why does the inflammatory process shift from the gastrointestinal tract to the airways? The clinical and subclinical pulmonary abnormalities, dysfunction, or hyper-reactivity among IBD patients need further evaluation. Here, we give an overview of the concordance between chronic inflammatory reactions in the airways and the gastrointestinal tract. A better understanding of the possible mechanism of the crosstalk among the distant organs will be beneficial in identifying therapeutic strategies for mucosal inflammatory diseases such as IBD and allergy.

  17. Gut-lung crosstalk in pulmonary involvement with inflammatory bowel diseases

    PubMed Central

    Wang, Hui; Liu, Jing-Shi; Peng, Shao-Hua; Deng, Xi-Yun; Zhu, De-Mao; Javidiparsijani, Sara; Wang, Gui-Rong; Li, Dai-Qiang; Li, Long-Xuan; Wang, Yi-Chun; Luo, Jun-Ming

    2013-01-01

    Pulmonary abnormalities, dysfunction or hyper-reactivity occurs in association with inflammatory bowel disease (IBD) more frequently than previously recognized. Emerging evidence suggests that subtle inflammation exists in the airways among IBD patients even in the absence of any bronchopulmonary symptoms, and with normal pulmonary functions. The pulmonary impairment is more pronounced in IBD patients with active disease than in those in remission. A growing number of case reports show that the IBD patients develop rapidly progressive respiratory symptoms after colectomy, with failure to isolate bacterial pathogens on repeated sputum culture, and often request oral corticosteroid therapy. All the above evidence indicates that the inflammatory changes in both the intestine and lung during IBD. Clinical or subclinical pulmonary inflammation accompanies the main inflammation of the bowel. Although there are clinical and epidemiological reports of chronic inflammation of the pulmonary and intestinal mucosa in IBD, the detailed mechanisms of pulmonary-intestinal crosstalk remain unknown. The lung has no anatomical connection with the main inflammatory site of the bowel. Why does the inflammatory process shift from the gastrointestinal tract to the airways? The clinical and subclinical pulmonary abnormalities, dysfunction, or hyper-reactivity among IBD patients need further evaluation. Here, we give an overview of the concordance between chronic inflammatory reactions in the airways and the gastrointestinal tract. A better understanding of the possible mechanism of the crosstalk among the distant organs will be beneficial in identifying therapeutic strategies for mucosal inflammatory diseases such as IBD and allergy. PMID:24187454

  18. Molecular insights into the progression of crystalline silica-induced pulmonary toxicity in rats.

    PubMed

    Sellamuthu, Rajendran; Umbright, Christina; Roberts, Jenny R; Cumpston, Amy; McKinney, Walter; Chen, Bean T; Frazer, David; Li, Shengqiao; Kashon, Michael; Joseph, Pius

    2013-04-01

    Identification of molecular target(s) and mechanism(s) of silica-induced pulmonary toxicity is important for the intervention and/or prevention of diseases associated with exposure to silica. Rats were exposed to crystalline silica by inhalation (15 mg m(-3), 6 h per day, 5 days) and global gene expression profile was determined in the lungs by microarray analysis at 1, 2, 4, 8 and 16 weeks following termination of silica exposure. The number of significantly differentially expressed genes (>1.5-fold change and <0.01 false discovery rate P-value) detected in the lungs during the post-exposure time intervals analyzed exhibited a steady increase in parallel with the progression of silica-induced pulmonary toxicity noticed in the rats. Quantitative real-time PCR analysis of a representative set of 10 genes confirmed the microarray findings. The number of biological functions, canonical pathways and molecular networks significantly affected by silica exposure, as identified by the bioinformatics analysis of the significantly differentially expressed genes detected during the post-exposure time intervals, also exhibited a steady increase similar to the silica-induced pulmonary toxicity. Genes involved in oxidative stress, inflammation, respiratory diseases, cancer, and tissue remodeling and fibrosis were significantly differentially expressed in the rat lungs; however, unresolved inflammation was the single most significant biological response to pulmonary exposure to silica. Excessive mucus production, as implicated by significant overexpression of the pendrin coding gene, SLC26A4, was identified as a potential novel mechanism for silica-induced pulmonary toxicity. Collectively, the findings of our study provided insights into the molecular mechanisms underlying the progression of crystalline silica-induced pulmonary toxicity in the rat. Published 2012. This article is a US Government work and is in the public domain in the USA. Published 2012. This article is a US

  19. Rest and exercise echocardiography for early detection of pulmonary hypertension.

    PubMed

    Kusunose, Kenya; Yamada, Hirotsugu

    2016-03-01

    Early detection of pulmonary hypertension (PH) is essential to ensure that patients receive timely and appropriate treatment for this progressive disease. Rest and exercise echocardiography has been used to screen patients in an attempt to identify early stage PH. However, current PH guidelines recommend against exercise tests because of the lack of evidence. We reviewed previous studies to discuss the current standpoint concerning rest and exercise echocardiography in PH. Around 20 exercise echocardiography studies were included to assess the cutoff value for exercise-induced pulmonary hypertension (EIPH). Approximately 40 exercise echocardiography studies were also included to evaluate the pulmonary artery pressure-flow relationship as assessed by the slope of the mean pulmonary artery pressure and cardiac output (ΔmPAP/ΔQ). There were several EIPH and ΔmPAP/ΔQ reference values in individuals with pulmonary vascular disease. We believed that assessing the ΔmPAP/ΔQ makes sense from a physiological standpoint, and the clinical value should be confirmed in future studies. Exercise echocardiography is an appealing alternative in PH. Further studies are needed to assess the prognostic value of the pulmonary artery pressure-flow relationship in high-risk subjects.

  20. Mesoporous carbon nanomaterials induced pulmonary surfactant inhibition, cytotoxicity, inflammation and lung fibrosis.

    PubMed

    Chen, Yunan; Yang, Yi; Xu, Bolong; Wang, Shunhao; Li, Bin; Ma, Juan; Gao, Jie; Zuo, Yi Y; Liu, Sijin

    2017-12-01

    Environmental exposure and health risk upon engineered nanomaterials are increasingly concerned. The family of mesoporous carbon nanomaterials (MCNs) is a rising star in nanotechnology for multidisciplinary research with versatile applications in electronics, energy and gas storage, and biomedicine. Meanwhile, there is mounting concern on their environmental health risks due to the growing production and usage of MCNs. The lung is the primary site for particle invasion under environmental exposure to nanomaterials. Here, we studied the comprehensive toxicological profile of MCNs in the lung under the scenario of moderate environmental exposure. It was found that at a low concentration of 10μg/mL MCNs induced biophysical inhibition of natural pulmonary surfactant. Moreover, MCNs at similar concentrations reduced viability of J774A.1 macrophages and lung epithelial A549 cells. Incubating with nature pulmonary surfactant effectively reduced the cytotoxicity of MCNs. Regarding the pro-inflammatory responses, MCNs activated macrophages in vitro, and stimulated lung inflammation in mice after inhalation exposure, associated with lung fibrosis. Moreover, we found that the size of MCNs played a significant role in regulating cytotoxicity and pro-inflammatory potential of this nanomaterial. In general, larger MCNs induced more pronounced cytotoxic and pro-inflammatory effects than their smaller counterparts. Our results provided valuable information on the toxicological profile and environmental health risks of MCNs, and suggested that fine-tuning the size of MCNs could be a practical precautionary design strategy to increase safety and biocompatibility of this nanomaterial. Copyright © 2017. Published by Elsevier B.V.

  1. Effect of ageing on pulmonary inflammation, airway hyperresponsiveness and T and B cell responses in antigen-sensitized and -challenged mice.

    PubMed

    Busse, Paula J; Zhang, Teng Fei; Srivastava, Kamal; Schofield, Brian; Li, Xiu-Min

    2007-09-01

    The effect of ageing on several pathologic features of allergic asthma (pulmonary inflammation, eosinophilia, mucus hypersecretion), and their relationship with airway hyperresponsiveness (AHR) is not well characterized. To evaluate lung inflammation, mucus metaplasia and AHR in relationship with age in murine models of allergic asthma comparing young and older mice. Young (6 weeks) and older (6, 12, 18 months) BALB/c mice were sensitized and challenged with ovalbumin (OVA). AHR and bronchoalveolar fluid (BALF), total inflammatory cell count and differential were measured. To evaluate mucus metaplasia, quantitative PCR for the major airway mucin-associated gene, MUC-5AC, from lung tissue was measured, and lung tissue sections stained with periodic acid-Schiff (PAS) for goblet-cell enumeration. Lung tissue cytokine gene expression was determined by quantitative PCR, and systemic cytokine protein levels by ELISA from spleen-cell cultures. Antigen-specific serum IgE was determined by ELISA. AHR developed in both aged and young OVA-sensitized/challenged mice (OVA mice), and was more significantly increased in young OVA mice than in aged OVA mice. However, BALF eosinophil numbers were significantly higher, and lung histology showed greater inflammation in aged OVA mice than in young OVA mice. MUC-5AC expression and numbers of PAS+ staining bronchial epithelial cells were significantly increased in the aged OVA mice. All aged OVA mice had increased IL-5 and IFN-gamma mRNA expression in the lung and IL-5 and IFN-gamma protein levels from spleen cell cultures compared with young OVA mice. OVA-IgE was elevated to a greater extent in aged OVA mice. Although pulmonary inflammation and mucus metaplasia after antigen sensitization/challenge occurred to a greater degree in older mice, the increase in AHR was significantly less compared with younger OVA mice. Antigen treatment produced a unique cytokine profile in older mice (elevated IFN-gamma and IL-5) compared with young mice

  2. Chronic obstructive pulmonary disease and asthma-associated Proteobacteria, but not commensal Prevotella spp., promote Toll-like receptor 2-independent lung inflammation and pathology.

    PubMed

    Larsen, Jeppe M; Musavian, Hanieh S; Butt, Tariq M; Ingvorsen, Camilla; Thysen, Anna H; Brix, Susanne

    2015-02-01

    Recent studies of healthy human airways have revealed colonization by a distinct commensal bacterial microbiota containing Gram-negative Prevotella spp. However, the immunological properties of these bacteria in the respiratory system remain unknown. Here we compare the innate respiratory immune response to three Gram-negative commensal Prevotella strains (Prevotella melaninogenica, Prevotella nanceiensis and Prevotella salivae) and three Gram-negative pathogenic Proteobacteria known to colonize lungs of patients with chronic obstructive pulmonary disease (COPD) and asthma (Haemophilus influenzae B, non-typeable Haemophilus influenzae and Moraxella catarrhalis). The commensal Prevotella spp. and pathogenic Proteobacteria were found to exhibit intrinsic differences in innate inflammatory capacities on murine lung cells in vitro. In vivo in mice, non-typeable H. influenzae induced severe Toll-like receptor 2 (TLR2)-independent COPD-like inflammation characterized by predominant airway neutrophilia, expression of a neutrophilic cytokine/chemokine profile in lung tissue, and lung immunopathology. In comparison, P. nanceiensis induced a diminished neutrophilic airway inflammation and no detectable lung pathology. Interestingly, the inflammatory airway response to the Gram-negative bacteria P. nanceiensis was completely TLR2-dependent. These findings demonstrate weak inflammatory properties of Gram-negative airway commensal Prevotella spp. that may make colonization by these bacteria tolerable by the respiratory immune system. © 2014 John Wiley & Sons Ltd.

  3. Chronic obstructive pulmonary disease and asthma-associated Proteobacteria, but not commensal Prevotella spp., promote Toll-like receptor 2-independent lung inflammation and pathology

    PubMed Central

    Larsen, Jeppe M; Musavian, Hanieh S; Butt, Tariq M; Ingvorsen, Camilla; Thysen, Anna H; Brix, Susanne

    2015-01-01

    Recent studies of healthy human airways have revealed colonization by a distinct commensal bacterial microbiota containing Gram-negative Prevotella spp. However, the immunological properties of these bacteria in the respiratory system remain unknown. Here we compare the innate respiratory immune response to three Gram-negative commensal Prevotella strains (Prevotella melaninogenica, Prevotella nanceiensis and Prevotella salivae) and three Gram-negative pathogenic Proteobacteria known to colonize lungs of patients with chronic obstructive pulmonary disease (COPD) and asthma (Haemophilus influenzae B, non-typeable Haemophilus influenzae and Moraxella catarrhalis). The commensal Prevotella spp. and pathogenic Proteobacteria were found to exhibit intrinsic differences in innate inflammatory capacities on murine lung cells in vitro. In vivo in mice, non-typeable H. influenzae induced severe Toll-like receptor 2 (TLR2)-independent COPD-like inflammation characterized by predominant airway neutrophilia, expression of a neutrophilic cytokine/chemokine profile in lung tissue, and lung immunopathology. In comparison, P. nanceiensis induced a diminished neutrophilic airway inflammation and no detectable lung pathology. Interestingly, the inflammatory airway response to the Gram-negative bacteria P. nanceiensis was completely TLR2-dependent. These findings demonstrate weak inflammatory properties of Gram-negative airway commensal Prevotella spp. that may make colonization by these bacteria tolerable by the respiratory immune system. PMID:25179236

  4. Cold ischemia with selective anterograde in situ pulmonary perfusion preserves gas exchange and mitochondrial homeostasis and curbs inflammation in an experimental model of donation after cardiac death.

    PubMed

    Pottecher, Julien; Santelmo, Nicola; Noll, Eric; Charles, Anne-Laure; Benahmed, Malika; Canuet, Matthieu; Frossard, Nelly; Namer, Izzie J; Geny, Bernard; Massard, Gilbert; Diemunsch, Pierre

    2013-10-01

    The aim of this study was to assess the functional preservation of the lung graft with anterograde lung perfusion in a model of donation after cardiac death. Thirty minutes after cardiac arrest, in situ anterograde selective pulmonary cold perfusion was started in six swine. The alveolo-capillary membrane was challenged at 3, 6, and 8 h with measurements of the mean pulmonary arterial pressure (mPAP), the pulmonary vascular resistance (PVR), the PaO2 /FiO2 ratio, the transpulmonary oxygen output (tpVO2 ), and the transpulmonary CO2 clearance (tpCO2 ). Mitochondrial homeostasis was investigated by measuring maximal oxidative capacity (Vmax ) and the coupling of phosphorylation to oxidation (ACR, acceptor control ratio) in lung biopsies. Inflammation and induction of primary immune response were assessed by measurement of tumor necrosis factor alpha (TNFα), interleukine-6 (IL-6) and receptor for advanced glycation endproducts (RAGE) in bronchoalveolar lavage fluid. Data were compared using repeated measures Anova. Pulmonary hemodynamics (mPAP: P = 0.69; PVR: P = 0.46), oxygenation (PaO2 /FiO2 : P = 0.56; tpVO2 : P = 0.46), CO2 diffusion (tpCO2 : P = 0.24), mitochondrial homeostasis (Vmax : P = 0.42; ACR: P = 0.8), and RAGE concentrations (P = 0.24) did not significantly change up to 8 h after cardiac arrest. TNFα and IL-6 were undetectable. Unaffected pulmonary hemodynamics, sustained oxygen and carbon dioxide diffusion, preserved mitochondrial homeostasis, and lack of inflammation suggest a long-lasting functional preservation of the graft with selective anterograde in situ pulmonary perfusion. © 2013 Steunstichting ESOT. Published by John Wiley & Sons Ltd.

  5. Genetics and Early Detection in Idiopathic Pulmonary Fibrosis

    PubMed Central

    Putman, Rachel K.; Rosas, Ivan O.

    2014-01-01

    Genetic studies hold promise in helping to identify patients with early idiopathic pulmonary fibrosis (IPF). Recent studies using chest computed tomograms (CTs) in smokers and in the general population have demonstrated that imaging abnormalities suggestive of an early stage of pulmonary fibrosis are not uncommon and are associated with respiratory symptoms, physical examination abnormalities, and physiologic decrements expected, but less severe than those noted in patients with IPF. Similarly, recent genetic studies have demonstrated strong and replicable associations between a common promoter polymorphism in the mucin 5B gene (MUC5B) and both IPF and the presence of abnormal imaging findings in the general population. Despite these findings, it is important to note that the definition of early-stage IPF remains unclear, limited data exist to definitively connect abnormal imaging findings to IPF, and genetic studies assessing early-stage pulmonary fibrosis remain in their infancy. In this perspective we provide updated information on interstitial lung abnormalities and their connection to IPF. We summarize information on the genetics of pulmonary fibrosis by focusing on the recent genetic findings of MUC5B. Finally, we discuss the implications of these findings and suggest a roadmap for the use of genetics in the detection of early IPF. PMID:24547893

  6. Oxidative stress–induced mitochondrial dysfunction drives inflammation and airway smooth muscle remodeling in patients with chronic obstructive pulmonary disease

    PubMed Central

    Wiegman, Coen H.; Michaeloudes, Charalambos; Haji, Gulammehdi; Narang, Priyanka; Clarke, Colin J.; Russell, Kirsty E.; Bao, Wuping; Pavlidis, Stelios; Barnes, Peter J.; Kanerva, Justin; Bittner, Anton; Rao, Navin; Murphy, Michael P.; Kirkham, Paul A.; Chung, Kian Fan; Adcock, Ian M.; Brightling, Christopher E.; Davies, Donna E.; Finch, Donna K.; Fisher, Andrew J.; Gaw, Alasdair; Knox, Alan J.; Mayer, Ruth J.; Polkey, Michael; Salmon, Michael; Singh, David

    2015-01-01

    Background Inflammation and oxidative stress play critical roles in patients with chronic obstructive pulmonary disease (COPD). Mitochondrial oxidative stress might be involved in driving the oxidative stress–induced pathology. Objective We sought to determine the effects of oxidative stress on mitochondrial function in the pathophysiology of airway inflammation in ozone-exposed mice and human airway smooth muscle (ASM) cells. Methods Mice were exposed to ozone, and lung inflammation, airway hyperresponsiveness (AHR), and mitochondrial function were determined. Human ASM cells were isolated from bronchial biopsy specimens from healthy subjects, smokers, and patients with COPD. Inflammation and mitochondrial function in mice and human ASM cells were measured with and without the presence of the mitochondria-targeted antioxidant MitoQ. Results Mice exposed to ozone, a source of oxidative stress, had lung inflammation and AHR associated with mitochondrial dysfunction and reflected by decreased mitochondrial membrane potential (ΔΨm), increased mitochondrial oxidative stress, and reduced mitochondrial complex I, III, and V expression. Reversal of mitochondrial dysfunction by the mitochondria-targeted antioxidant MitoQ reduced inflammation and AHR. ASM cells from patients with COPD have reduced ΔΨm, adenosine triphosphate content, complex expression, basal and maximum respiration levels, and respiratory reserve capacity compared with those from healthy control subjects, whereas mitochondrial reactive oxygen species (ROS) levels were increased. Healthy smokers were intermediate between healthy nonsmokers and patients with COPD. Hydrogen peroxide induced mitochondrial dysfunction in ASM cells from healthy subjects. MitoQ and Tiron inhibited TGF-β–induced ASM cell proliferation and CXCL8 release. Conclusions Mitochondrial dysfunction in patients with COPD is associated with excessive mitochondrial ROS levels, which contribute to enhanced inflammation and cell

  7. Oxidative stress-induced mitochondrial dysfunction drives inflammation and airway smooth muscle remodeling in patients with chronic obstructive pulmonary disease.

    PubMed

    Wiegman, Coen H; Michaeloudes, Charalambos; Haji, Gulammehdi; Narang, Priyanka; Clarke, Colin J; Russell, Kirsty E; Bao, Wuping; Pavlidis, Stelios; Barnes, Peter J; Kanerva, Justin; Bittner, Anton; Rao, Navin; Murphy, Michael P; Kirkham, Paul A; Chung, Kian Fan; Adcock, Ian M

    2015-09-01

    Inflammation and oxidative stress play critical roles in patients with chronic obstructive pulmonary disease (COPD). Mitochondrial oxidative stress might be involved in driving the oxidative stress-induced pathology. We sought to determine the effects of oxidative stress on mitochondrial function in the pathophysiology of airway inflammation in ozone-exposed mice and human airway smooth muscle (ASM) cells. Mice were exposed to ozone, and lung inflammation, airway hyperresponsiveness (AHR), and mitochondrial function were determined. Human ASM cells were isolated from bronchial biopsy specimens from healthy subjects, smokers, and patients with COPD. Inflammation and mitochondrial function in mice and human ASM cells were measured with and without the presence of the mitochondria-targeted antioxidant MitoQ. Mice exposed to ozone, a source of oxidative stress, had lung inflammation and AHR associated with mitochondrial dysfunction and reflected by decreased mitochondrial membrane potential (ΔΨm), increased mitochondrial oxidative stress, and reduced mitochondrial complex I, III, and V expression. Reversal of mitochondrial dysfunction by the mitochondria-targeted antioxidant MitoQ reduced inflammation and AHR. ASM cells from patients with COPD have reduced ΔΨm, adenosine triphosphate content, complex expression, basal and maximum respiration levels, and respiratory reserve capacity compared with those from healthy control subjects, whereas mitochondrial reactive oxygen species (ROS) levels were increased. Healthy smokers were intermediate between healthy nonsmokers and patients with COPD. Hydrogen peroxide induced mitochondrial dysfunction in ASM cells from healthy subjects. MitoQ and Tiron inhibited TGF-β-induced ASM cell proliferation and CXCL8 release. Mitochondrial dysfunction in patients with COPD is associated with excessive mitochondrial ROS levels, which contribute to enhanced inflammation and cell hyperproliferation. Targeting mitochondrial ROS represents

  8. Potentiated Interaction between Ineffective Doses of Budesonide and Formoterol to Control the Inhaled Cadmium-Induced Up-Regulation of Metalloproteinases and Acute Pulmonary Inflammation in Rats

    PubMed Central

    Zhang, Wenhui; Zhi, Jianming; Cui, Yongyao; Zhang, Fan; Habyarimana, Adélite; Cambier, Carole; Gustin, Pascal

    2014-01-01

    The anti-inflammatory properties of glucocorticoids are well known but their protective effects exerted with a low potency against heavy metals-induced pulmonary inflammation remain unclear. In this study, a model of acute pulmonary inflammation induced by a single inhalation of cadmium in male Sprague-Dawley rats was used to investigate whether formoterol can improve the anti-inflammatory effects of budesonide. The cadmium-related inflammatory responses, including matrix metalloproteinase-9 (MMP-9) activity, were evaluated. Compared to the values obtained in rats exposed to cadmium, pretreatment of inhaled budesonide (0.5 mg/15 ml) elicited a significant decrease in total cell and neutrophil counts in bronchoalveolar lavage fluid (BALF) associated with a significant reduction of MMP-9 activity which was highly correlated with the number of inflammatory cells in BALF. Additionally, cadmium-induced lung injuries characterized by inflammatory cell infiltration within alveoli and the interstitium were attenuated by the pre-treatment of budesonide. Though the low concentration of budesonide (0.25 mg/15 ml) exerted a very limited inhibitory effects in the present rat model, its combination with an inefficient concentration of formoterol (0.5 mg/30 ml) showed an enhanced inhibitory effect on neutrophil and total cell counts as well as on the histological lung injuries associated with a potentiation of inhibition on the MMP-9 activity. In conclusion, high concentration of budesonide alone could partially protect the lungs against cadmium exposure induced-acute neutrophilic pulmonary inflammation via the inhibition of MMP-9 activity. The combination with formoterol could enhance the protective effects of both drugs, suggesting a new therapeutic strategy for the treatment of heavy metals-induced lung diseases. PMID:25313925

  9. Cystic Fibrosis Transmembrane Conductance Regulator Regulates Epithelial Cell Response to Aspergillus and Resultant Pulmonary Inflammation

    PubMed Central

    Chaudhary, Neelkamal; Datta, Kausik; Askin, Frederic B.; Staab, Janet F.

    2012-01-01

    Rationale: Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) alter epithelial cell (EC) interactions with multiple microbes, such that dysregulated inflammation and injury occur with airway colonization in people with cystic fibrosis (CF). Aspergillus fumigatus frequently colonizes CF airways, but it has been assumed to be an innocent saprophyte; its potential role as a cause of lung disease is controversial. Objectives: To study the interactions between Aspergillus and EC, and the role of the fungus in evoking inflammatory responses. Methods: A. fumigatus expressing green fluorescent protein was developed for in vitro and in vivo models, which used cell lines and mouse tracheal EC. Measurements and Main Results: Fungal spores (conidia) are rapidly ingested by ECs derived from bronchial cell lines and murine tracheas, supporting a role for EC in early airway clearance. Bronchial ECs harboring CFTR mutations (ΔF508) or deletion demonstrate impaired uptake and killing of conidia, and ECs with CFTR mutation undergo more conidial-induced apoptosis. Germinated (hyphal) forms of the fungus evoke secretion of inflammatory mediators, with CFTR mutation resulting in increased airway levels of macrophage inflammatory protein 2 and KC, and higher lung monocyte chemotactic protein-1. After A. fumigatus inhalation, CFTR−/− mice develop exaggerated lymphocytic inflammation, mucin accumulation, and lung injury. Conclusions: Data demonstrate a critical role for CFTR in mediating EC responses to A. fumigatus. Results suggest that the fungus elicits aberrant pulmonary inflammation in the setting of CFTR mutation, supporting the potential role of antifungals to halt progressive CF lung disease. PMID:22135344

  10. The Translational Repressor T-cell Intracellular Antigen-1 (TIA-1) is a Key Modulator of Th2 and Th17 Responses Driving Pulmonary Inflammation Induced by Exposure to House Dust Mite

    PubMed Central

    Simarro, Maria; Giannattasio, Giorgio; Xing, Wei; Lundequist, Emma-Maria; Stewart, Samantha; Stevens, Richard L.; Orduña, Antonio; Boyce, Joshua A.; Anderson, Paul J.

    2012-01-01

    T-cell Intracellular Antigen-1 (TIA-1) is a translational repressor that dampens the production of proinflammatory cytokines and enzymes. In this study we investigated the role of TIA-1 in a mouse model of pulmonary inflammation induced by exposure to the allergenic extract (Df) of the house dust mite Dermatophagoides farinae. When intranasally challenged with a low dose of Df, mice lacking TIA-1 protein (Tia-1−/−) showed more severe airway and tissue eosinophilia, infiltration of lung bronchovascular bundles, and goblet cell metaplasia than wild-type littermates. Tia-1−/− mice also had higher levels of Df-specific IgE and IgG1 in serum and ex vivo restimulated Tia-1−/− lymph node cells and splenocytes transcribed and released more Th2/Th17 cytokines. To evaluate the site of action of TIA-1, we studied the response to Df in bone marrow chimeras. These experiments revealed that TIA-1 acts on both hematopoietic and non-hematopoietic cells to dampen pulmonary inflammation. Our results identify TIA-1 as a negative regulator of allergen-mediated pulmonary inflammation in vivo. Thus, TIA-1 might be an important player in the pathogenesis of bronchial asthma. PMID:22525013

  11. The translational repressor T-cell intracellular antigen-1 (TIA-1) is a key modulator of Th2 and Th17 responses driving pulmonary inflammation induced by exposure to house dust mite.

    PubMed

    Simarro, Maria; Giannattasio, Giorgio; Xing, Wei; Lundequist, Emma-Maria; Stewart, Samantha; Stevens, Richard L; Orduña, Antonio; Boyce, Joshua A; Anderson, Paul J

    2012-08-30

    T-cell intracellular antigen-1 (TIA-1) is a translational repressor that dampens the production of proinflammatory cytokines and enzymes. In this study we investigated the role of TIA-1 in a mouse model of pulmonary inflammation induced by exposure to the allergenic extract (Df) of the house dust mite Dermatophagoides farinae. When intranasally challenged with a low dose of Df, mice lacking TIA-1 protein (Tia-1(-/-)) showed more severe airway and tissue eosinophilia, infiltration of lung bronchovascular bundles, and goblet cell metaplasia than wild-type littermates. Tia-1(-/-) mice also had higher levels of Df-specific IgE and IgG(1) in serum and ex vivo restimulated Tia-1(-/-) lymph node cells and splenocytes transcribed and released more Th2/Th17 cytokines. To evaluate the site of action of TIA-1, we studied the response to Df in bone marrow chimeras. These experiments revealed that TIA-1 acts on both hematopoietic and non-hematopoietic cells to dampen pulmonary inflammation. Our results identify TIA-1 as a negative regulator of allergen-mediated pulmonary inflammation in vivo. Thus, TIA-1 might be an important player in the pathogenesis of bronchial asthma. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Regulation of alveolar macrophage death in acute lung inflammation.

    PubMed

    Fan, Erica K Y; Fan, Jie

    2018-03-27

    Acute lung injury (ALI) and its severe form, known as acute respiratory distress syndrome (ARDS), are caused by direct pulmonary insults and indirect systemic inflammatory responses that result from conditions such as sepsis, trauma, and major surgery. The reciprocal influences between pulmonary and systemic inflammation augments the inflammatory process in the lung and promotes the development of ALI. Emerging evidence has revealed that alveolar macrophage (AM) death plays important roles in the progression of lung inflammation through its influence on other immune cell populations in the lung. Cell death and tissue inflammation form a positive feedback cycle, ultimately leading to exaggerated inflammation and development of disease. Pharmacological manipulation of AM death signals may serve as a logical therapeutic strategy for ALI/ARDS. This review will focus on recent advances in the regulation and underlying mechanisms of AM death as well as the influence of AM death on the development of ALI.

  13. Computer-aided detection of pulmonary embolism at CT pulmonary angiography: can it improve performance of inexperienced readers?

    PubMed

    Blackmon, Kevin N; Florin, Charles; Bogoni, Luca; McCain, Joshua W; Koonce, James D; Lee, Heon; Bastarrika, Gorka; Thilo, Christian; Costello, Philip; Salganicoff, Marcos; Joseph Schoepf, U

    2011-06-01

    To evaluate the effect of a computer-aided detection (CAD) algorithm on the performance of novice readers for detection of pulmonary embolism (PE) at CT pulmonary angiography (CTPA). We included CTPA examinations of 79 patients (50 female, 52 ± 18 years). Studies were evaluated by two independent inexperienced readers who marked all vessels containing PE. After 3 months all studies were reevaluated by the same two readers, this time aided by CAD prototype. A consensus read by three expert radiologists served as the reference standard. Statistical analysis used χ(2) and McNemar testing. Expert consensus revealed 119 PEs in 32 studies. For PE detection, the sensitivity of CAD alone was 78%. Inexperienced readers' initial interpretations had an average per-PE sensitivity of 50%, which improved to 71% (p < 0.001) with CAD as a second reader. False positives increased from 0.18 to 0.25 per study (p = 0.03). Per-study, the readers initially detected 27/32 positive studies (84%); with CAD this number increased to 29.5 studies (92%; p = 0.125). Our results suggest that CAD significantly improves the sensitivity of PE detection for inexperienced readers with a small but appreciable increase in the rate of false positives.

  14. IL-23 Is Essential for the Development of Elastase-Induced Pulmonary Inflammation and Emphysema.

    PubMed

    Fujii, Utako; Miyahara, Nobuaki; Taniguchi, Akihiko; Waseda, Koichi; Morichika, Daisuke; Kurimoto, Etsuko; Koga, Hikari; Kataoka, Mikio; Gelfand, Erwin W; Cua, Daniel J; Yoshimura, Akihiko; Tanimoto, Mitsune; Kanehiro, Arihiko

    2016-11-01

    We recently reported that IL-17A plays a critical role in the development of porcine pancreatic elastase (PPE)-induced emphysema. The proliferation of T-helper type 17 (Th17) cells was induced by IL-23. To determine the contribution of IL-23 to the development of pulmonary emphysema, a mouse model of PPE-induced emphysema was used in which responses of IL-23p19-deficient (IL-23 -/- ) and wild-type (WT) mice were compared. Intratracheal instillation of PPE induced emphysematous changes in the lungs and was associated with increased levels of IL-23 in lung homogenates. Compared with WT mice, IL-23 -/- mice developed significantly lower static compliance values and markedly reduced emphysematous changes on histological analyses after PPE instillation. These changes were associated with lower levels of IL-17A and fewer Th17 cells in the lung. The neutrophilia seen in bronchoalveolar lavage fluid of WT mice was attenuated in IL-23 -/- mice, and the reduction was associated with decreased levels of keratinocyte-derived cytokine and macrophage inflammatory protein-2 in bronchoalveolar lavage fluid. Treatment with anti-IL-23p40 monoclonal antibody significantly attenuated PPE-induced emphysematous changes in the lungs of WT mice. These data identify the important contributions of IL-23 to the development of elastase-induced pulmonary inflammation and emphysema, mediated through an IL-23/IL-17 pathway. Targeting IL-23 in emphysema is a potential therapeutic strategy for delaying disease progression.

  15. Pulmonary inflammation induced by subacute ozone is augmented in adiponectin deficient mice: role of IL-17A

    PubMed Central

    Kasahara, David I.; Kim, Hye Y.; Williams, Alison S.; Verbout, Norah G.; Tran, Jennifer; Si, Huiqing; Wurmbrand, Allison P.; Jastrab, Jordan; Hug, Christopher; Umetsu, Dale T.; Shore, Stephanie A.

    2012-01-01

    Pulmonary responses to ozone, a common air pollutant, are augmented in obese individuals. Adiponectin, an adipose derived hormone that declines in obesity, has regulatory effects on the immune system. To determine the role of adiponectin in the pulmonary inflammation induced by extended (48–72 h) low dose (0.3 ppm) exposure to ozone, adiponectin deficient (Adipo−/−) and wildtype mice were exposed to ozone or to room air. In wildtype mice, ozone exposure increased total bronchoalveolar lavage (BAL) adiponectin. Ozone induced lung inflammation, including increases in BAL neutrophils, protein (an index of lung injury), IL-6, KC, LIX and G-CSF were augmented in Adipo−/− versus wildtype mice. Ozone also increased IL-17A mRNA expression to a greater extent in Adipo−/− versus wildtype mice. Moreover, compared to control antibody, anti-IL-17A antibody attenuated ozone-induced increases in BAL neutrophils and G-CSF in Adipo−/− but not in wildtype mice, suggesting that IL-17A, by promoting G-CSF release, contributed to augmented neutrophilia in Adipo−/− mice. Flow-cytometric analysis of lung cells revealed that the number of CD45+/F4/80+/IL-17A+ macrophages and γδ T cells expressing IL-17A increased after ozone exposure in wildtype mice, and further increased in Adipo−/− mice. The IL-17+ macrophages were CD11c− (interstitial macrophages), whereas CD11c+ macrophages (alveolar macrophages) did not express IL-17A. Taken together, the data are consistent with the hypothesis that adiponectin protects against neutrophil recruitment induced by extended, low dose ozone exposure by inhibiting the induction and/or recruitment of IL-17A in interstitial macrophages and/or γδ T cells. PMID:22474022

  16. Detection and 3D representation of pulmonary air bubbles in HRCT volumes

    NASA Astrophysics Data System (ADS)

    Silva, Jose S.; Silva, Augusto F.; Santos, Beatriz S.; Madeira, Joaquim

    2003-05-01

    Bubble emphysema is a disease characterized by the presence of air bubbles within the lungs. With the purpose of identifying pulmonary air bubbles, two alternative methods were developed, using High Resolution Computer Tomography (HRCT) exams. The search volume is confined to the pulmonary volume through a previously developed pulmonary contour detection algorithm. The first detection method follows a slice by slice approach and uses selection criteria based on the Hounsfield levels, dimensions, shape and localization of the bubbles. Candidate regions that do not exhibit axial coherence along at least two sections are excluded. Intermediate sections are interpolated for a more realistic representation of lungs and bubbles. The second detection method, after the pulmonary volume delimitation, follows a fully 3D approach. A global threshold is applied to the entire lung volume returning candidate regions. 3D morphologic operators are used to remove spurious structures and to circumscribe the bubbles. Bubble representation is accomplished by two alternative methods. The first generates bubble surfaces based on the voxel volumes previously detected; the second method assumes that bubbles are approximately spherical. In order to obtain better 3D representations, fits super-quadrics to bubble volume. The fitting process is based on non-linear least squares optimization method, where a super-quadric is adapted to a regular grid of points defined on each bubble. All methods were applied to real and semi-synthetical data where artificial and randomly deformed bubbles were embedded in the interior of healthy lungs. Quantitative results regarding bubble geometric features are either similar to a priori known values used in simulation tests, or indicate clinically acceptable dimensions and locations when dealing with real data.

  17. Pulmonary toxicity of well-dispersed titanium dioxide nanoparticles following intratracheal instillation

    NASA Astrophysics Data System (ADS)

    Yoshiura, Yukiko; Izumi, Hiroto; Oyabu, Takako; Hashiba, Masayoshi; Kambara, Tatsunori; Mizuguchi, Yohei; Lee, Byeong Woo; Okada, Takami; Tomonaga, Taisuke; Myojo, Toshihiko; Yamamoto, Kazuhiro; Kitajima, Shinichi; Horie, Masanori; Kuroda, Etsushi; Morimoto, Yasuo

    2015-06-01

    In order to investigate the pulmonary toxicity of titanium dioxide (TiO2) nanoparticles, we performed an intratracheal instillation study with rats of well-dispersed TiO2 nanoparticles and examined the pulmonary inflammation and histopathological changes in the lung. Wistar Hannover rats were intratracheally administered 0.2 mg (0.66 mg/kg) and 1.0 mg (3.3 mg/kg) of well-dispersed TiO2 nanoparticles (P90; diameter of agglomerates: 25 nm), then the pulmonary inflammation responses were examined from 3 days to 6 months after the instillation, and the pathological features were examined up to 24 months. Transient inflammation and the upregulation of chemokines in the broncho-alveolar lavage fluid were observed for 1 month. No respiratory tumors or severe fibrosis were observed during the recovery time. These data suggest that transient inflammation induced by TiO2 may not lead to chronic, irreversible legions in the lung, and that TiO2 nanoparticles may not have a high potential for lung disorder.

  18. Automatic detection of pulmonary nodules at spiral CT: first clinical experience with a computer-aided diagnosis system

    NASA Astrophysics Data System (ADS)

    Wormanns, Dag; Fiebich, Martin; Wietholt, Christian; Diederich, Stefan; Heindel, Walter

    2000-06-01

    We evaluated the practical application of a Computer-Aided Diagnosis (CAD) system for viewing spiral computed tomography (CT) of the chest low-dose screening examinations which includes an automatic detection of pulmonary nodules. A UNIX- based CAD system was developed including a detection algorithm for pulmonary nodules and a user interface providing an original axial image, the same image with nodules highlighted, a thin-slab MIP, and a cine mode. As yet, 26 CT examinations with 1625 images were reviewed in a clinical setting and reported by an experienced radiologist using both the CAD system and hardcopies. The CT studies exhibited 19 nodules found on the hardcopies in consensus reporting of 2 experienced radiologists. Viewing with the CAD system was more time consuming than using hardcopies (4.16 vs. 2.92 min) due to analyzing MIP and cine mode. The algorithm detected 49% (18/37) pulmonary nodules larger than 5 mm and 30% (21/70) of all nodules. It produced an average of 6.3 false positive findings per CT study. Most of the missed nodules were adjacent to the pleura. However, the program detected 6 nodules missed by the radiologists. Automatic nodule detection increases the radiologists's awareness of pulmonary lesions. Simultaneous display of axial image and thin-slab MIP makes the radiologist more confident in diagnosis of smaller pulmonary nodules. The CAD system improves the detection of pulmonary nodules at spiral CT. Lack of sensitivity and specificity is still an issue to be addressed but does not prevent practical use.

  19. [Pulmonary pathology in fatal human influenza A (H1N1) infection].

    PubMed

    Duan, Xue-jing; Li, Yong; Gong, En-cong; Wang, Jue; Lü, Fu-dong; Zhang, He-qiu; Sun, Lin; Yue, Zhu-jun; Song, Chen-chao; Zhang, Shi-Jie; Li, Ning; Dai, Jie

    2011-12-01

    To study the pulmonary pathology in patients died of fatal human influenza A(H1N1) infection. Eight cases of fatal human influenza A (H1N1) infection, including 2 autopsy cases and 6 paramortem needle puncture biopsies, were enrolled into the study. Histologic examination, immunohistochemitry, flow cytometry and Western blotting were carried out. The major pathologic changes included necrotizing bronchiolitis with surrounding inflammation, diffuse alveolar damage and pulmonary hemorrhage. Influenza viral antigen expression was detected in the lung tissue by Western blotting. Immunohistochemical study demonstrated the presence of nuclear protein and hemagglutinin virus antigens in parts of trachea, bronchial epithelium and glands, alveolar epithelium, macrophages and endothelium. Flow cytometry showed that the apoptotic rate of type II pneumocytes (32.15%, 78.15%) was significantly higher than that of the controls (1.93%, 3.77%). Necrotizing bronchiolitis, diffuse alveolar damage and pulmonary hemorrhage followed by pulmonary fibrosis in late stage are the major pathologic changes in fatal human influenza A (H1N1) infection.

  20. Comparison of three-view thoracic radiography and computed tomography for detection of pulmonary nodules in dogs with neoplasia.

    PubMed

    Armbrust, Laura J; Biller, David S; Bamford, Aubrey; Chun, Ruthanne; Garrett, Laura D; Sanderson, Michael W

    2012-05-01

    To compare the detection of pulmonary nodules by use of 3-view thoracic radiography and CT in dogs with confirmed neoplasia. Prospective case series. 33 dogs of various breeds. 3 interpreters independently evaluated 3-view thoracic radiography images. The location and size of pulmonary nodules were recorded. Computed tomographic scans of the thorax were obtained and evaluated by a single interpreter. The location, size, margin, internal architecture, and density of pulmonary nodules were recorded. Sensitivity, specificity, positive predictive value, and negative predictive value were calculated for thoracic radiography (with CT as the gold standard). 21 of 33 (64%) dogs had pulmonary nodules or masses detected on CT. Of the dogs that had positive CT findings, 17 of 21 (81%) had pulmonary nodules or masses detected on radiographs by at least 1 interpreter. Sensitivity of radiography ranged from 71% to 95%, and specificity ranged from 67% to 92%. Radiography had a positive predictive value of 83% to 94% and a negative predictive value of 65% to 89%. The 4 dogs that were negative for nodules on thoracic radiography but positive on CT were all large-breed to giant-breed dogs with osteosarcoma. CT was more sensitive than radiography for detection of pulmonary nodules. This was particularly evident in large-breed to giant-breed dogs. Thoracic CT is recommended in large-breed to giant-breed dogs with osteosarcoma if the detection of pulmonary nodules will change treatment.

  1. The novel compound Sul-121 inhibits airway inflammation and hyperresponsiveness in experimental models of chronic obstructive pulmonary disease

    PubMed Central

    Han, Bing; Poppinga, Wilfred J.; Zuo, Haoxiao; Zuidhof, Annet B.; Bos, I. Sophie T.; Smit, Marieke; Vogelaar, Pieter; Krenning, Guido; Henning, Robert H.; Maarsingh, Harm; Halayko, Andrew J.; van Vliet, Bernard; Stienstra, Stef; Graaf, Adrianus Cornelis van der; Meurs, Herman; Schmidt, Martina

    2016-01-01

    COPD is characterized by persistent airflow limitation, neutrophilia and oxidative stress from endogenous and exogenous insults. Current COPD therapy involving anticholinergics, β2-adrenoceptor agonists and/or corticosteroids, do not specifically target oxidative stress, nor do they reduce chronic pulmonary inflammation and disease progression in all patients. Here, we explore the effects of Sul-121, a novel compound with anti-oxidative capacity, on hyperresponsiveness (AHR) and inflammation in experimental models of COPD. Using a guinea pig model of lipopolysaccharide (LPS)-induced neutrophilia, we demonstrated that Sul-121 inhalation dose-dependently prevented LPS-induced airway neutrophilia (up to ~60%) and AHR (up to ~90%). Non-cartilaginous airways neutrophilia was inversely correlated with blood H2S, and LPS-induced attenuation of blood H2S (~60%) was prevented by Sul-121. Concomitantly, Sul-121 prevented LPS-induced production of the oxidative stress marker, malondialdehyde by ~80%. In immortalized human airway smooth muscle (ASM) cells, Sul-121 dose-dependently prevented cigarette smoke extract-induced IL-8 release parallel with inhibition of nuclear translocation of the NF-κB subunit, p65 (each ~90%). Sul-121 also diminished cellular reactive oxygen species production in ASM cells, and inhibited nuclear translocation of the anti-oxidative response regulator, Nrf2. Our data show that Sul-121 effectively inhibits airway inflammation and AHR in experimental COPD models, prospectively through inhibition of oxidative stress. PMID:27229886

  2. Pulmonary and central nervous system pathology in fatal cases of hand foot and mouth disease caused by enterovirus A71 infection.

    PubMed

    Wang, Zijun; Nicholls, John M; Liu, Fengfeng; Wang, Joshua; Feng, Zijian; Liu, Dongge; Sun, Yanni; Zhou, Cheng; Li, Yunqian; Li, Hai; Qi, Shunxiang; Huang, Xueyong; Sui, Jilin; Liao, Qiaohong; Peiris, Malik; Yu, Hongjie; Wang, Yu

    2016-04-01

    In the past 17 years, neurological disease associated with enterovirus A71 (EV-A71) has increased dramatically in the Asia-Pacific region with a high fatality rate in young infants, often due to pulmonary oedema, however the mechanism of this oedema remains obscure. We analysed the brainstem, heart and lungs of 15 fatal cases of confirmed EV-A71 infection in order to understand the pathophysiological mechanism of death and pulmonary oedema. In keeping with other case studies, the main cause of death was neurogenic pulmonary oedema. In the brainstem, 11 cases showed inflammation and all cases showed parenchymal inflammation with seven cases showing moderate or severe clasmatodendrosis. No viral antigen was detected in sections of the brainstem in any of the cases. All fatal cases showed evidence of pulmonary oedema; however, there was absence of direct pulmonary viral damage or myocarditis-induced damage and EV-A71 viral antigen staining was negative. Though there was no increase in staining for Na/K-ATPase, 11 of the 15 cases showed a marked reduction in aquaporin-4 staining in the lung, and this reduction may contribute to the development of fatal pulmonary oedema. Copyright © 2016. Published by Elsevier B.V.

  3. RhoA/Rho-kinase signaling: a therapeutic target in pulmonary hypertension.

    PubMed

    Barman, Scott A; Zhu, Shu; White, Richard E

    2009-01-01

    Pulmonary arterial hypertension (PAH) is a devastating disease characterized by progressive elevation of pulmonary arterial pressure and vascular resistance due to pulmonary vasoconstriction and vessel remodeling as well as inflammation. Rho-kinases (ROCKs) are one of the best-described effectors of the small G-protein RhoA, and ROCKs are involved in a variety of cellular functions including muscle cell contraction, proliferation and vascular inflammation through inhibition of myosin light chain phosphatase and activation of downstream mediators. A plethora of evidence in animal models suggests that heightened RhoA/ROCK signaling is important in the pathogenesis of pulmonary hypertension by causing enhanced constriction and remodeling of the pulmonary vasculature. Both animal and clinical studies suggest that ROCK inhibitors are effective for treatment of severe PAH with minimal risk, which supports the premise that ROCKs are important therapeutic targets in pulmonary hypertension and that ROCK inhibitors are a promising new class of drugs for this devastating disease.

  4. Pulmonary tuberculosis and disease-related pulmonary apical fibrosis in ankylosing spondylitis.

    PubMed

    Ho, Huei-Huang; Lin, Meng-Chih; Yu, Kuang-Hui; Wang, Chin-Man; Wu, Yeong-Jian Jan; Chen, Ji-Yih

    2009-02-01

    We investigated the etiological association and clinical characteristics of apical pulmonary fibrosis in ankylosing spondylitis (AS). We reviewed medical records of 2136 consecutive patients diagnosed with AS at a tertiary medical center. Clinical and radiographic characteristics were analyzed for evidence of apical lung fibrosis on chest radiographs. Of 2136 patients with AS, 63 (2.9%) developed apical lung fibrosis, of which chronic infections were the cause in 41 and AS inflammation predisposed the fibrosis in 22 patients. Tuberculosis (TB) infection was considered to be the cause of apical lung fibrosis in 40 patients (63.5%) including 19 with bacteriologically-proven TB and 21 with chest radiographs suggestive of TB. Two were identified as having non-TB mycobacterial infection and one as Aspergillus infection. Lung cavity lesion appeared to be a crucial differentiator (p = 0.009, odds ratio 7.4, 95% CI 1.5-36.0) between TB infection and AS inflammation-induced apical fibrosis. Our study suggests that TB, instead of Aspergillus, is the most common pulmonary infection in patients with AS presenting with apical lung fibrosis. AS-associated apical lung fibrosis may mimic pulmonary TB infection. Thus, bacteriological survey and serial radiological followup of lung fibrocavitary lesions are critical for accurate diagnosis and treatment.

  5. Role of the inflammasome in chronic obstructive pulmonary disease (COPD).

    PubMed

    Colarusso, Chiara; Terlizzi, Michela; Molino, Antonio; Pinto, Aldo; Sorrentino, Rosalinda

    2017-10-10

    Inflammation is central to the development of chronic obstructive pulmonary disease (COPD), a pulmonary disorder characterized by chronic bronchitis, chronic airway obstruction, emphysema, associated to progressive and irreversible decline of lung function. Emerging genetic and pharmacological evidence suggests that IL-1-like cytokines are highly detected in the sputum and broncho-alveolar lavage (BAL) of COPD patients, implying the involvement of the multiprotein complex inflammasome. So far, scientific evidence has focused on nucleotide-binding oligomerization domain-like receptors protein 3 (NLRP3) inflammasome, a specialized inflammatory signaling platform that governs the maturation and secretion of IL-1-like cytokines through the regulation of caspase-1-dependent proteolytic processing. Some studies revealed that it is involved during airway inflammation typical of COPD. Based on the influence of cigarette smoke in various respiratory diseases, including COPD, in this view we report its effects in inflammatory and immune responses in COPD mouse models and in human subjects affected by COPD. In sharp contrast to what reported on experimental and clinical studies, randomized clinical trials show that indirect inflammasome inhibitors did not have any beneficial effect in moderate to severe COPD patients.

  6. Role of the inflammasome in chronic obstructive pulmonary disease (COPD)

    PubMed Central

    Colarusso, Chiara; Terlizzi, Michela; Molino, Antonio; Pinto, Aldo; Sorrentino, Rosalinda

    2017-01-01

    Inflammation is central to the development of chronic obstructive pulmonary disease (COPD), a pulmonary disorder characterized by chronic bronchitis, chronic airway obstruction, emphysema, associated to progressive and irreversible decline of lung function. Emerging genetic and pharmacological evidence suggests that IL-1-like cytokines are highly detected in the sputum and broncho-alveolar lavage (BAL) of COPD patients, implying the involvement of the multiprotein complex inflammasome. So far, scientific evidence has focused on nucleotide-binding oligomerization domain-like receptors protein 3 (NLRP3) inflammasome, a specialized inflammatory signaling platform that governs the maturation and secretion of IL-1-like cytokines through the regulation of caspase-1-dependent proteolytic processing. Some studies revealed that it is involved during airway inflammation typical of COPD. Based on the influence of cigarette smoke in various respiratory diseases, including COPD, in this view we report its effects in inflammatory and immune responses in COPD mouse models and in human subjects affected by COPD. In sharp contrast to what reported on experimental and clinical studies, randomized clinical trials show that indirect inflammasome inhibitors did not have any beneficial effect in moderate to severe COPD patients. PMID:29137224

  7. N-acetylcysteine improves established monocrotaline-induced pulmonary hypertension in rats

    PubMed Central

    2014-01-01

    Background The outcome of patients suffering from pulmonary arterial hypertension (PAH) are predominantly determined by the response of the right ventricle to the increase afterload secondary to high vascular pulmonary resistance. However, little is known about the effects of the current available or experimental PAH treatments on the heart. Recently, inflammation has been implicated in the pathophysiology of PAH. N-acetylcysteine (NAC), a well-known safe anti-oxidant drug, has immuno-modulatory and cardioprotective properties. We therefore hypothesized that NAC could reduce the severity of pulmonary hypertension (PH) in rats exposed to monocrotaline (MCT), lowering inflammation and preserving pulmonary vascular system and right heart function. Methods Saline-treated control, MCT-exposed, MCT-exposed and NAC treated rats (day 14–28) were evaluated at day 28 following MCT for hemodynamic parameters (right ventricular systolic pressure, mean pulmonary arterial pressure and cardiac output), right ventricular hypertrophy, pulmonary vascular morphometry, lung inflammatory cells immunohistochemistry (monocyte/macrophages and dendritic cells), IL-6 expression, cardiomyocyte hypertrophy and cardiac fibrosis. Results The treatment with NAC significantly decreased pulmonary vascular remodeling, lung inflammation, and improved total pulmonary resistance (from 0.71 ± 0.05 for MCT group to 0.50 ± 0.06 for MCT + NAC group, p < 0.05). Right ventricular function was also improved with NAC treatment associated with a significant decrease in cardiomyocyte hypertrophy (625 ± 69 vs. 439 ± 21 μm2 for MCT and MCT + NAC group respectively, p < 0.001) and heart fibrosis (14.1 ± 0.8 vs. 8.8 ± 0.1% for MCT and MCT + NAC group respectively, p < 0.001). Conclusions Through its immuno-modulatory and cardioprotective properties, NAC has beneficial effect on pulmonary vascular and right heart function in experimental PH. PMID:24929652

  8. Protective effects of tiotropium alone or combined with budesonide against cadmium inhalation induced acute neutrophilic pulmonary inflammation in rats

    PubMed Central

    Zhi, Jianming; Gustin, Pascal

    2018-01-01

    As a potent bronchodilator, the anti-inflammatory effects of tiotropium and its interaction with budesonide against cadmium-induced acute pulmonary inflammation were investigated. Compared to values obtained in rats exposed to cadmium, cytological analysis indicated a significant decrease of total cell and neutrophil counts and protein concentration in bronchoalveolar lavage fluid (BALF) in rats pretreated with tiotropium (70μg/15ml or 350μg/15ml). Zymographic tests showed a decrease of MMP-2 activity in BALF in rats pretreated only with high concentration of tiotropium. Histological examination revealed a significant decrease of the severity and extent of inflammatory lung injuries in rats pretreated with both tested concentrations of tiotropium. Though tiotropium (70μg/15ml) or budesonide (250μg/15ml) could not reduce cadmium-induced bronchial hyper-responsiveness, their combination significantly decreased bronchial contractile response to methacholine. These two drugs separately decreased the neutrophil number and protein concentration in BALF but no significant interaction was observed when both drugs were combined. Although no inhibitory effects on MMP-2 and MMP-9 was observed in rats pretreated with budesonide alone, the combination with the ineffective dose of tiotropium induced a significant reduction on these parameters. The inhibitory effect of tiotropium on lung injuries was not influenced by budesonide which alone induced a limited action on the severity and extent of inflammatory sites. Our findings show that tiotropium exerts anti-inflammatory effects on cadmium-induced acute neutrophilic pulmonary inflammation. The combination of tiotropium with budesonide inhibits cadmium-induced inflammatory injuries with a synergistic interaction on MMP-2 and MMP-9 activity and airway hyper-responsiveness. PMID:29489916

  9. Protective effects of tiotropium alone or combined with budesonide against cadmium inhalation induced acute neutrophilic pulmonary inflammation in rats.

    PubMed

    Zhao, Shiwei; Yang, Qi; Yu, Zhixi; Lv, You; Zhi, Jianming; Gustin, Pascal; Zhang, Wenhui

    2018-01-01

    As a potent bronchodilator, the anti-inflammatory effects of tiotropium and its interaction with budesonide against cadmium-induced acute pulmonary inflammation were investigated. Compared to values obtained in rats exposed to cadmium, cytological analysis indicated a significant decrease of total cell and neutrophil counts and protein concentration in bronchoalveolar lavage fluid (BALF) in rats pretreated with tiotropium (70μg/15ml or 350μg/15ml). Zymographic tests showed a decrease of MMP-2 activity in BALF in rats pretreated only with high concentration of tiotropium. Histological examination revealed a significant decrease of the severity and extent of inflammatory lung injuries in rats pretreated with both tested concentrations of tiotropium. Though tiotropium (70μg/15ml) or budesonide (250μg/15ml) could not reduce cadmium-induced bronchial hyper-responsiveness, their combination significantly decreased bronchial contractile response to methacholine. These two drugs separately decreased the neutrophil number and protein concentration in BALF but no significant interaction was observed when both drugs were combined. Although no inhibitory effects on MMP-2 and MMP-9 was observed in rats pretreated with budesonide alone, the combination with the ineffective dose of tiotropium induced a significant reduction on these parameters. The inhibitory effect of tiotropium on lung injuries was not influenced by budesonide which alone induced a limited action on the severity and extent of inflammatory sites. Our findings show that tiotropium exerts anti-inflammatory effects on cadmium-induced acute neutrophilic pulmonary inflammation. The combination of tiotropium with budesonide inhibits cadmium-induced inflammatory injuries with a synergistic interaction on MMP-2 and MMP-9 activity and airway hyper-responsiveness.

  10. [Pulmonary function in patients with disseminated pulmonary tuberculosis].

    PubMed

    Nefedov, V B; Shergina, E A; Popova, L A

    2007-01-01

    Vital capacity (VC), forced vital capacity (FVC), forced expiratory volume in 1 second (FEV1), FEV1/VC%, PEF, MEF25%, MEF50%, MEF75%, TLS, TGV, pulmonary residual volume (PRV), Raw, Rin, Rex, DLCO-SB, DLCO-SS, PaO2, and PaCO2 were determined in 29 patients with disseminated pulmonary tuberculosis. Pulmonary dysfunction was detected in 93.1% of the patients. Changes were found in lung volumes and capacities in 65.5%, impaired bronchial patency and pulmonary gas exchange dysfunction were in 79.3 and 37.9%, respectively. The changes in pulmonary volumes and capacities appeared as increased PRV, decreased VC, FVC, and TLS, decreased and increased TGV; impaired bronchial patency presented as decreased PEF, MEF25%, MEF50%, MEF75%, and FEV1/VC% and increased Raw, Rin, and Rex; pulmonary gas exchange dysfunction manifested itself as reduced DLCO-SS and PaO2 and decreased and increased PaCO2. The observed functional changes varied from slight to significant and pronounced with a preponderance of small disorders, a lower detection rate of significant disorders, and rare detection of very pronounced ones.

  11. Detection of pulmonary metastases with pathological correlation: effect of breathing on the accuracy of spiral CT.

    PubMed

    Coakley, F V; Cohen, M D; Waters, D J; Davis, M M; Karmazyn, B; Gonin, R; Hanna, M P

    1997-07-01

    CT of the chest for suspected pulmonary metastases in adults is generally performed using a breath-hold technique. The results may not be applicable to young children in whom breath-holding may be impossible. Determine the effect of breathing on the accuracy of pulmonary metastasis detection by spiral CT (SCT). Prior to euthanasia four anesthetized dogs with metastatic osteosarcoma underwent SCT with a collimation of 5 mm and a pitch of 2, during both induced breath-hold and normal quiet breathing. Images were reconstructed as contiguous 5-mm slices. Macroscopically evident metastases were noted at postmortem. Hard-copy SCT images were reviewed by ten radiologists, each of whom circled all suspected metastases. SCT images were compared with postmortem results to determine true and false positives. The pathologist identified 132 macroscopically evident pulmonary metastases. For metastasis detection, there was no significant difference between breath-hold SCT and breathing SCT. In our animal model, SCT can be performed during normal resting breathing without significant loss of accuracy in the detection of pulmonary metastases.

  12. A pilot study of the effect of spironolactone therapy on exercise capacity and endothelial dysfunction in pulmonary arterial hypertension: study protocol for a randomized controlled trial.

    PubMed

    Elinoff, Jason M; Rame, J Eduardo; Forfia, Paul R; Hall, Mary K; Sun, Junfeng; Gharib, Ahmed M; Abd-Elmoniem, Khaled; Graninger, Grace; Harper, Bonnie; Danner, Robert L; Solomon, Michael A

    2013-04-02

    Pulmonary arterial hypertension is a rare disorder associated with poor survival. Endothelial dysfunction plays a central role in the pathogenesis and progression of pulmonary arterial hypertension. Inflammation appears to drive this dysfunctional endothelial phenotype, propagating cycles of injury and repair in genetically susceptible patients with idiopathic and disease-associated pulmonary arterial hypertension. Therapy targeting pulmonary vascular inflammation to interrupt cycles of injury and repair and thereby delay or prevent right ventricular failure and death has not been tested. Spironolactone, a mineralocorticoid and androgen receptor antagonist, has been shown to improve endothelial function and reduce inflammation. Current management of patients with pulmonary arterial hypertension and symptoms of right heart failure includes use of mineralocorticoid receptor antagonists for their diuretic and natriuretic effects. We hypothesize that initiating spironolactone therapy at an earlier stage of disease in patients with pulmonary arterial hypertension could provide additional benefits through anti-inflammatory effects and improvements in pulmonary vascular function. Seventy patients with pulmonary arterial hypertension without clinical evidence of right ventricular failure will be enrolled in a randomized, double-blinded, placebo-controlled trial to investigate the effect of early treatment with spironolactone on exercise capacity, clinical worsening and vascular inflammation in vivo. Our primary endpoint is change in placebo-corrected 6-minute walk distance at 24 weeks and the incidence of clinical worsening in the spironolactone group compared to placebo. At a two-sided alpha level of 0.05, we will have at least 84% power to detect an effect size (group mean difference divided by standard deviation) of 0.9 for the difference in the change of 6-minute walk distance from baseline between the two groups. Secondary endpoints include the effect of

  13. A pilot study of the effect of spironolactone therapy on exercise capacity and endothelial dysfunction in pulmonary arterial hypertension: study protocol for a randomized controlled trial

    PubMed Central

    2013-01-01

    Background Pulmonary arterial hypertension is a rare disorder associated with poor survival. Endothelial dysfunction plays a central role in the pathogenesis and progression of pulmonary arterial hypertension. Inflammation appears to drive this dysfunctional endothelial phenotype, propagating cycles of injury and repair in genetically susceptible patients with idiopathic and disease-associated pulmonary arterial hypertension. Therapy targeting pulmonary vascular inflammation to interrupt cycles of injury and repair and thereby delay or prevent right ventricular failure and death has not been tested. Spironolactone, a mineralocorticoid and androgen receptor antagonist, has been shown to improve endothelial function and reduce inflammation. Current management of patients with pulmonary arterial hypertension and symptoms of right heart failure includes use of mineralocorticoid receptor antagonists for their diuretic and natriuretic effects. We hypothesize that initiating spironolactone therapy at an earlier stage of disease in patients with pulmonary arterial hypertension could provide additional benefits through anti-inflammatory effects and improvements in pulmonary vascular function. Methods/Design Seventy patients with pulmonary arterial hypertension without clinical evidence of right ventricular failure will be enrolled in a randomized, double-blinded, placebo-controlled trial to investigate the effect of early treatment with spironolactone on exercise capacity, clinical worsening and vascular inflammation in vivo. Our primary endpoint is change in placebo-corrected 6-minute walk distance at 24 weeks and the incidence of clinical worsening in the spironolactone group compared to placebo. At a two-sided alpha level of 0.05, we will have at least 84% power to detect an effect size (group mean difference divided by standard deviation) of 0.9 for the difference in the change of 6-minute walk distance from baseline between the two groups. Secondary endpoints include

  14. The Effects of Antigen-Specific IgG1 Antibody for the Pulmonary-Hypertension-Phenotype and B Cells for Inflammation in Mice Exposed to Antigen and Fine Particles from Air Pollution

    PubMed Central

    Park, Sung-Hyun; Chen, Wen-Chi; Durmus, Nedim; Bleck, Bertram; Reibman, Joan; Riemekasten, Gabriela; Grunig, Gabriele

    2015-01-01

    Air pollution is known to exacerbate chronic inflammatory conditions of the lungs including pulmonary hypertension, cardiovascular diseases and autoimmune diseases. Directly pathogenic antibodies bind pro-inflammatory cell receptors and cause or exacerbate inflammation. In contrast, anti-inflammatory antibody isotypes (e.g. mouse immunoglobulin G1, IgG1) bind inhibitory cell receptors and can inhibit inflammation. Our previous studies showed that co-exposure to antigen and urban ambient particulate matter (PM2.5) induced severe pulmonary arterial thickening and increased right ventricular systolic pressures in mice via T-cell produced cytokines, Interleukin (IL)-13 and IL-17A. The aim of the current study was to understand how B cell and antibody responses integrate into this T cell cytokine network for the pulmonary hypertension phenotype. Special focus was on antigen-specific IgG1 that is the predominant antibody in the experimental response to antigen and urban ambient PM2.5. Wild type and B cell-deficient mice were primed with antigen and then challenged with antigen and urban particulate matter and injected with antibodies as appropriate. Our data surprisingly showed that B cells were necessary for the development of increased right ventricular pressures and molecular changes in the right heart in response to sensitization and intranasal challenge with antigen and PM2.5. Further, our studies showed that both, the increase in right ventricular systolic pressure and right ventricular molecular changes were restored by reconstituting the B cell KO mice with antigen specific IgG1. In addition, our studies identified a critical, non-redundant role of B cells for the IL-17A-directed inflammation in response to exposure with antigen and PM2.5, which was not corrected with antigen-specific IgG1. In contrast, IL-13-directed inflammatory markers, as well as severe pulmonary arterial remodeling induced by challenge with antigen and PM2.5 were similar in B cell

  15. Acute pulmonary toxicity and inflammation induced by combined exposure to didecyldimethylammonium chloride and ethylene glycol in rats.

    PubMed

    Kwon, Do Young; Kim, Hyun-Mi; Kim, Eunji; Lim, Yeon-Mi; Kim, Pilje; Choi, Kyunghee; Kwon, Jung-Taek

    2016-02-01

    Didecyldimethylammonium chloride (DDAC), an antimicrobial agent, has been reported to induce pulmonary toxicity in animal studies. DDAC is frequently used in spray-form household products in combination with ethylene glycol (EG). The purpose of this study was to evaluate the toxic interaction between DDAC and EG in the lung. DDAC at a sub-toxic dose (100 μg/kg body weight) was mixed with a non-toxic dose of EG (100 or 200 μg/kg body weight), and was administrated to rats via intratracheal instillation. Lactate dehydrogenase activity and total protein content in the bronchoalveolar lavage fluid (BALF) were not changed by singly treated DDAC or EG, but significantly enhanced at 1 d after treatment with the mixture, with the effect dependent on the dose of EG. Total cell count in BALF was largely increased and polymorphonuclear leukocytes were predominantly recruited to the lung in rats administrated with the mixture. Inflammatory cytokines, tumor necrosis factor-alpha and interleukin-6 also appeared to be increased by the mixture of DDAC and EG (200 μg/kg body weight) at 1 d post-exposure, which might be associated with the increase in inflammatory cells in lung. BALF protein content and inflammatory cell recruitment in the lung still remained elevated at 7 d after the administration of DDAC with the higher dose of EG. These results suggest that the combination of DDAC and EG can synergistically induce pulmonary cytotoxicity and inflammation, and EG appears to amplify the harmful effects of DDAC on the lung. Therefore pulmonary exposure to these two chemicals commonly found in commercial products can be a potential hazard to human health.

  16. Nebulized C1-Esterase Inhibitor does not Reduce Pulmonary Complement Activation in Rats with Severe Streptococcus Pneumoniae Pneumonia.

    PubMed

    de Beer, Friso; Lagrand, Wim; Glas, Gerie J; Beurskens, Charlotte J P; van Mierlo, Gerard; Wouters, Diana; Zeerleder, Sacha; Roelofs, Joris J T H; Juffermans, Nicole P; Horn, Janneke; Schultz, Marcus J

    2016-12-01

    Complement activation plays an important role in the pathogenesis of pneumonia. We hypothesized that inhibition of the complement system in the lungs by repeated treatment with nebulized plasma-derived human C1-esterase inhibitor reduces pulmonary complement activation and subsequently attenuates lung injury and lung inflammation. This was investigated in a rat model of severe Streptococcus pneumoniae pneumonia. Rats were intra-tracheally challenged with S. pneumoniae to induce pneumonia. Nebulized C1-esterase inhibitor or saline (control animals) was repeatedly administered to rats, 30 min before induction of pneumonia and every 6 h thereafter. Rats were sacrificed 20 or 40 h after inoculation with bacteria. Brochoalveolar lavage fluid and lung tissue were obtained for measuring levels of complement activation (C4b/c), lung injury and inflammation. Induction of pneumonia was associated with pulmonary complement activation (C4b/c at 20 h 1.24 % [0.56-2.59] and at 40 h 2.08 % [0.98-5.12], compared to 0.50 % [0.07-0.59] and 0.03 % [0.03-0.03] in the healthy control animals). The functional fraction of C1-INH was detectable in BALF, but no effect was found on pulmonary complement activation (C4b/c at 20 h 0.73 % [0.16-1.93] and at 40 h 2.38 % [0.54-4.19]). Twenty hours after inoculation, nebulized C1-esterase inhibitor treatment reduced total histology score, but this effect was no longer seen at 40 h. Nebulized C1-esterase inhibitor did not affect other markers of lung injury or lung inflammation. In this negative experimental animal study, severe S. pneumoniae pneumonia in rats is associated with pulmonary complement activation. Repeated treatment with nebulized C1-esterase inhibitor, although successfully delivered to the lungs, does not affect pulmonary complement activation, lung inflammation or lung injury.

  17. Hirsutella sinensis mycelium attenuates bleomycin-induced pulmonary inflammation and fibrosis in vivo

    PubMed Central

    Huang, Tsung-Teng; Lai, Hsin-Chih; Ko, Yun-Fei; Ojcius, David M.; Lan, Ying-Wei; Martel, Jan; Young, John D.; Chong, Kowit-Yu

    2015-01-01

    Hirsutella sinensis mycelium (HSM), the anamorph of Cordyceps sinensis, is a traditional Chinese medicine that has been shown to possess various pharmacological properties. We previously reported that this fungus suppresses interleukin-1β and IL-18 secretion by inhibiting both canonical and non-canonical inflammasomes in human macrophages. However, whether HSM may be used to prevent lung fibrosis and the mechanism underlying this activity remain unclear. Our results show that pretreatment with HSM inhibits TGF-β1–induced expression of fibronectin and α-SMA in lung fibroblasts. HSM also restores superoxide dismutase expression in TGF-β1–treated lung fibroblasts and inhibits reactive oxygen species production in lung epithelial cells. Furthermore, HSM pretreatment markedly reduces bleomycin–induced lung injury and fibrosis in mice. Accordingly, HSM reduces inflammatory cell accumulation in bronchoalveolar lavage fluid and proinflammatory cytokines levels in lung tissues. The HSM extract also significantly reduces TGF-β1 in lung tissues, and this effect is accompanied by decreased collagen 3α1 and α-SMA levels. Moreover, HSM reduces expression of the NLRP3 inflammasome and P2X7R in lung tissues, whereas it enhances expression of superoxide dismutase. These findings suggest that HSM may be used for the treatment of pulmonary inflammation and fibrosis. PMID:26497260

  18. Non-Invasive Detection of Lung Inflammation by Near-Infrared Fluorescence Imaging Using Bimodal Liposomes.

    PubMed

    Desu, Hari R; Wood, George C; Thoma, Laura A

    2016-01-01

    Acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome results in respiratory obstruction and severe lung inflammation. Critical characteristics of ALI are alveolar edema, infiltration of leukocytes (neutrophils and monocytes), release of pro-inflammatory cytokines and chemokines into broncho-alveolar lavage fluid, and activation of integrin receptors. The purpose of the study was to demonstrate non-invasive detection of lung inflammation using integrin receptor targeted fluorescence liposomes. An inflammation similar to that observed in ALI was elicited in rodents by intra-tracheal instillation of interleukin-1beta (IL-1beta). Cyclic arginine glycine-(D)-aspartic acid-peptide (cRGD-peptide) grafted fluorescence liposomes were administered to ALI induced male Sprague-Dawley rats for targeting lung integrin receptors. Near-infrared fluorescence imaging (NIRFI) was applied for visualization and quantitation of lung inflammation. NIRFI signals were correlated with inflammatory cellular and biochemical markers of lungs. A positive correlation was observed between NIRF signals and lung inflammation markers. Compared to control group, an intense NIRF signal was observed in ALI induced rats in the window 6-24 h post-IL-1beta instillation. Interaction of integrin receptors with targeted liposomes was assumed to contribute to intense NIRF signal. RT-PCR studies showed an elevated lung expression of alphavbeta5 integrin receptors, 12 h post-IL-1beta instillation. In vitro studies demonstrated integrin receptor specificity of targeted liposomes. These targeted liposomes showed binding to alphavbeta5 integrin receptors expressed on alveolar cells. Non-invasive detection of lung inflammation was demonstrated using a combination of integrin receptor targeting and NIRFI.

  19. Engineering Bacterial Thiosulfate and Tetrathionate Sensors for Detecting Gut Inflammation

    DTIC Science & Technology

    2017-04-03

    Article Engineering bacterial thiosulfate and tetrathionate sensors for detecting gut inflammation Kristina N-M Daeffler1 , Jeffrey D Galley2, Ravi U...interest in using genetically engineered sensor bacteria to study gut microbiota pathways, and diagnose or treat associated diseases. Here, we...understood. Genetically engineered sensor bacteria have untapped potential as tools for analyzing gut pathways. Bacteria have evolved sensors of a large

  20. Bronchus-associated Lymphoid Tissue in Pulmonary Hypertension Produces Pathologic Autoantibodies

    PubMed Central

    Colvin, Kelley L.; Cripe, Patrick J.; Ivy, D. Dunbar; Stenmark, Kurt R.

    2013-01-01

    Rationale: Autoimmunity has long been associated with pulmonary hypertension. Bronchus-associated lymphoid tissue plays important roles in antigen sampling and self-tolerance during infection and inflammation. Objectives: We reasoned that activated bronchus-associated lymphoid tissue would be evident in rats with pulmonary hypertension, and that loss of self-tolerance would result in production of pathologic autoantibodies that drive vascular remodeling. Methods: We used animal models, histology, and gene expression assays to evaluate the role of bronchus-associated lymphoid tissue in pulmonary hypertension. Measurements and Main Results: Bronchus-associated lymphoid tissue was more numerous, larger, and more active in pulmonary hypertension compared with control animals. We found dendritic cells in and around lymphoid tissue, which were composed of CD3+ T cells over a core of CD45RA+ B cells. Antirat IgG and plasma from rats with pulmonary hypertension decorated B cells in lymphoid tissue, resistance vessels, and adventitia of large vessels. Lymphoid tissue in diseased rats was vascularized by aquaporin-1+ high endothelial venules and vascular cell adhesion molecule–positive vessels. Autoantibodies are produced in bronchus-associated lymphoid tissue and, when bound to pulmonary adventitial fibroblasts, change their phenotype to one that may promote inflammation. Passive transfer of autoantibodies into rats caused pulmonary vascular remodeling and pulmonary hypertension. Diminution of lymphoid tissue reversed pulmonary hypertension, whereas immunologic blockade of CCR7 worsened pulmonary hypertension and hastened its onset. Conclusions: Bronchus-associated lymphoid tissue expands in pulmonary hypertension and is autoimmunologically active. Loss of self-tolerance contributes to pulmonary vascular remodeling and pulmonary hypertension. Lymphoid tissue–directed therapies may be beneficial in treating pulmonary hypertension. PMID:24093638

  1. Pulmonary exposure to carbonaceous nanomaterials and sperm quality.

    PubMed

    Skovmand, Astrid; Jacobsen Lauvås, Anna; Christensen, Preben; Vogel, Ulla; Sørig Hougaard, Karin; Goericke-Pesch, Sandra

    2018-01-31

    Semen quality parameters are potentially affected by nanomaterials in several ways: Inhaled nanosized particles are potent inducers of pulmonary inflammation, leading to the release of inflammatory mediators. Small amounts of particles may translocate from the lungs into the lung capillaries, enter the systemic circulation and ultimately reach the testes. Both the inflammatory response and the particles may induce oxidative stress which can directly affect spermatogenesis. Furthermore, spermatogenesis may be indirectly affected by changes in the hormonal milieu as systemic inflammation is a potential modulator of endocrine function. The aim of this study was to investigate the effects of pulmonary exposure to carbonaceous nanomaterials on sperm quality parameters in an experimental mouse model. Effects on sperm quality after pulmonary inflammation induced by carbonaceous nanomaterials were investigated by intratracheally instilling sexually mature male NMRI mice with four different carbonaceous nanomaterials dispersed in nanopure water: graphene oxide (18 μg/mouse/i.t.), Flammruss 101, Printex 90 and SRM1650b (0.1 mg/mouse/i.t. each) weekly for seven consecutive weeks. Pulmonary inflammation was determined by differential cell count in bronchoalveolar lavage fluid. Epididymal sperm concentration and motility were measured by computer-assisted sperm analysis. Epididymal sperm viability and morphological abnormalities were assessed manually using Hoechst 33,342/PI flourescent and Spermac staining, respectively. Epididymal sperm were assessed with regard to sperm DNA integrity (damage). Daily sperm production was measured in the testis, and testosterone levels were measured in blood plasma by ELISA. Neutrophil numbers in the bronchoalveolar fluid showed sustained inflammatory response in the nanoparticle-exposed groups one week after the last instillation. No significant changes in epididymal sperm parameters, daily sperm production or plasma testosterone levels

  2. Genetic deletion of apolipoprotein A-I increases airway hyperresponsiveness, inflammation, and collagen deposition in the lung

    PubMed Central

    Wang, Weiling; Xu, Hao; Shi, Yang; Nandedkar, Sandhya; Zhang, Hao; Gao, Haiqing; Feroah, Thom; Weihrauch, Dorothee; Schulte, Marie L.; Jones, Deron W.; Jarzembowski, Jason; Sorci-Thomas, Mary; Pritchard, Kirkwood A.

    2010-01-01

    The relationship between high-density lipoprotein and pulmonary function is unclear. To determine mechanistic relationships we investigated the effects of genetic deletion of apolipoprotein A-I (apoA-I) on plasma lipids, paraoxonase (PON1), pro-inflammatory HDL (p-HDL), vasodilatation, airway hyperresponsiveness and pulmonary oxidative stress, and inflammation. ApoA-I null (apoA-I−/−) mice had reduced total and HDL cholesterol but increased pro-inflammatory HDL compared with C57BL/6J mice. Although PON1 protein was increased in apoA-I−/− mice, PON1 activity was decreased. ApoA-I deficiency did not alter vasodilatation of facialis arteries, but it did alter relaxation responses of pulmonary arteries. Central airway resistance was unaltered. However, airway resistance mediated by tissue dampening and elastance were increased in apoA-I−/− mice, a finding also confirmed by positive end-expiratory pressure (PEEP) studies. Inflammatory cells, collagen deposition, 3-nitrotyrosine, and 4-hydroxy-2-nonenal were increased in apoA-I−/− lungs but not oxidized phospholipids. Colocalization of 4-hydroxy-2-nonenal with transforming growth factor β-1 (TGFβ-1 was increased in apoA-I−/− lungs. Xanthine oxidase, myeloperoxidase and endothelial nitric oxide synthase were increased in apoA-I−/− lungs. Dichlorodihydrofluorescein-detectable oxidants were increased in bronchoalveolar lavage fluid (BALF) in apoA-I−/− mice. In contrast, BALF nitrite+nitrate levels were decreased in apoA-I−/− mice. These data demonstrate that apoA-I plays important roles in limiting pulmonary inflammation and oxidative stress, which if not prevented, will decrease pulmonary artery vasodilatation and increase airway hyperresponsiveness. PMID:20498409

  3. Innate Lymphoid Cells Mediate Pulmonary Eosinophilic Inflammation, Airway Mucous Cell Metaplasia, and Type 2 Immunity in Mice Exposed to Ozone.

    PubMed

    Kumagai, Kazuyoshi; Lewandowski, Ryan P; Jackson-Humbles, Daven N; Buglak, Nicholas; Li, Ning; White, Kaylin; Van Dyken, Steven J; Wagner, James G; Harkema, Jack R

    2017-08-01

    Exposure to elevated levels of ambient ozone in photochemical smog is associated with eosinophilic airway inflammation and nonatopic asthma in children. In the present study, we determined the role of innate lymphoid cells (ILCs) in the pathogenesis of ozone-induced nonatopic asthma by using lymphoid cell-sufficient C57BL/6 mice, ILC-sufficient Rag2 -/- mice (devoid of T and B cells), and ILC-deficient Rag2 -/- Il2rg -/- mice (depleted of all lymphoid cells including ILCs). Mice were exposed to 0 or 0.8 parts per million ozone for 1 day or 9 consecutive weekdays (4 hr/day). A single exposure to ozone caused neutrophilic inflammation, airway epithelial injury, and reparative DNA synthesis in all strains of mice, irrespective of the presence or absence of ILCs. In contrast, 9-day exposures induced eosinophilic inflammation and mucous cell metaplasia only in the lungs of ILC-sufficient mice. Repeated ozone exposures also elicited increased messenger RNA expression of transcripts associated with type 2 immunity and airway mucus production in ILC-sufficient mice. ILC-deficient mice repeatedly exposed to ozone had no pulmonary pathology or increased gene expression related to type 2 immunity. These results suggest a new paradigm for the biologic mechanisms underlying the development of a phenotype of childhood nonatopic asthma that has been linked to ambient ozone exposures.

  4. Pathogenesis pathways of idiopathic pulmonary fibrosis in bleomycin-induced lung injury model in mice.

    PubMed

    Shi, Keyun; Jiang, Jianzhong; Ma, Tieliang; Xie, Jing; Duan, Lirong; Chen, Ruhua; Song, Ping; Yu, Zhixin; Liu, Chao; Zhu, Qin; Zheng, Jinxu

    2014-01-01

    Our objective was to investigate the pathogenesis pathways of idiopathic pulmonary fibrosis (IPF). Bleomycin (BLM) induced animal models of experimental lung fibrosis were used. CHIP assay was executed to find the link between Smad3 and IL-31, and the expressions of TGF-β1, Smad3, IL-31 and STAT1 were detected to find whether they were similar with each other. We found that in the early injury or inflammation of the animal model, BLM promoted the development of inflammation, leading to severe pulmonary fibrosis. Then the expression of TGF-β1 and Smad3 increased. Activated Smad3 bound to the IL-31 promoter region, followed by the activation of JAK-STAT pathways. The inhibitor of TGF-β1 receptor decreased the IL-31 expression and knocking-down of IL-31 also decreased the STAT1 expression. We conclude that there is a pathway of pathogenesis in BLM-induced mouse model that involves the TGF-β, IL-31 and JAKs/STATs pathway. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Limonene and its ozone-initiated reaction products attenuate allergic lung inflammation in mice.

    PubMed

    Hansen, Jitka S; Nørgaard, Asger W; Koponen, Ismo K; Sørli, Jorid B; Paidi, Maya D; Hansen, Søren W K; Clausen, Per Axel; Nielsen, Gunnar D; Wolkoff, Peder; Larsen, Søren Thor

    2016-11-01

    Inhalation of indoor air pollutants may cause airway irritation and inflammation and is suspected to worsen allergic reactions. Inflammation may be due to mucosal damage, upper (sensory) and lower (pulmonary) airway irritation due to activation of the trigeminal and vagal nerves, respectively, and to neurogenic inflammation. The terpene, d-limonene, is used as a fragrance in numerous consumer products. When limonene reacts with the pulmonary irritant ozone, a complex mixture of gas and particle phase products is formed, which causes sensory irritation. This study investigated whether limonene, ozone or the reaction mixture can exacerbate allergic lung inflammation and whether airway irritation is enhanced in allergic BALB/cJ mice. Naïve and allergic (ovalbumin sensitized) mice were exposed via inhalation for three consecutive days to clean air, ozone, limonene or an ozone-limonene reaction mixture. Sensory and pulmonary irritation was investigated in addition to ovalbumin-specific antibodies, inflammatory cells, total protein and surfactant protein D in bronchoalveolar lavage fluid and hemeoxygenase-1 and cytokines in lung tissue. Overall, airway allergy was not exacerbated by any of the exposures. In contrast, it was found that limonene and the ozone-limonene reaction mixture reduced allergic inflammation possibly due to antioxidant properties. Ozone induced sensory irritation in both naïve and allergic mice. However, allergic but not naïve mice were protected from pulmonary irritation induced by ozone. This study showed that irritation responses might be modulated by airway allergy. However, aggravation of allergic symptoms was observed by neither exposure to ozone nor exposure to ozone-initiated limonene reaction products. In contrast, anti-inflammatory properties of the tested limonene-containing pollutants might attenuate airway allergy.

  6. Transgenic up-regulation of Claudin-6 decreases fine diesel particulate matter (DPM)-induced pulmonary inflammation.

    PubMed

    Lewis, Joshua B; Bodine, Jared S; Gassman, Jason R; Muñoz, Samuel Arce; Milner, Dallin C; Dunaway, Todd M; Egbert, Kaleb M; Monson, Troy D; Broberg, Dallin S; Arroyo, Juan A; Reynolds, Paul R

    2018-04-25

    Claudin-6 (Cldn6) is a tetraspanin transmembrane protein that contributes to tight junctional complexes and has been implicated in the maintenance of lung epithelial barriers. In the present study, we tested the hypothesis that genetic up-regulation of Cldn-6 influences inflammation in mice exposed to short-term environmental diesel particulate matter (DPM). Mice were subjected to ten exposures of nebulized DPM (PM2.5) over a period of 20 days via a nose-only inhalation system (Scireq, Montreal, Canada). Using real-time RT-PCR, we discovered that the Cldn6 gene was up-regulated in control mice exposed to DPM and in lung-specific transgenic mice that up-regulate Cldn-6 (Cldn-6 TG). Interestingly, DPM did not further enhance Cldn-6 expression in Cldn-6 TG mice. DPM caused increased cell diapedesis into bronchoalveolar lavage fluid (BALF) from control mice; however, Cldn-6 TG mice had less total cells and PMNs in BALF following DPM exposure. Because Cldn-6 TG mice had diminished cell diapedesis, other inflammatory intermediates were screened to characterize the impact of increased Cldn-6 on inflammatory signaling. Cytokines that mediate inflammatory responses including TNF-α and IL-1β were differentially regulated in Cldn6 TG mice and controls following DPM exposure. These results demonstrate that epithelial barriers organized by Cldn-6 mediate, at least in part, diesel-induced inflammation. Further work may show that Cldn-6 is a key target in understanding pulmonary epithelial gateways exacerbated by environmental pollution.

  7. [Diagnostic work-up of pulmonary nodules : Management of pulmonary nodules detected with low‑dose CT screening].

    PubMed

    Wormanns, D

    2016-09-01

    Pulmonary nodules are the most frequent pathological finding in low-dose computed tomography (CT) scanning for early detection of lung cancer. Early stages of lung cancer are often manifested as pulmonary nodules; however, the very commonly occurring small nodules are predominantly benign. These benign nodules are responsible for the high percentage of false positive test results in screening studies. Appropriate diagnostic algorithms are necessary to reduce false positive screening results and to improve the specificity of lung cancer screening. Such algorithms are based on some of the basic principles comprehensively described in this article. Firstly, the diameter of nodules allows a differentiation between large (>8 mm) probably malignant and small (<8 mm) probably benign nodules. Secondly, some morphological features of pulmonary nodules in CT can prove their benign nature. Thirdly, growth of small nodules is the best non-invasive predictor of malignancy and is utilized as a trigger for further diagnostic work-up. Non-invasive testing using positron emission tomography (PET) and contrast enhancement as well as invasive diagnostic tests (e.g. various procedures for cytological and histological diagnostics) are briefly described in this article. Different nodule morphology using CT (e.g. solid and semisolid nodules) is associated with different biological behavior and different algorithms for follow-up are required. Currently, no obligatory algorithm is available in German-speaking countries for the management of pulmonary nodules, which reflects the current state of knowledge. The main features of some international and American recommendations are briefly presented in this article from which conclusions for the daily clinical use are derived.

  8. Multi-Walled Carbon Nanotubes Augment Allergic Airway Eosinophilic Inflammation by Promoting Cysteinyl Leukotriene Production.

    PubMed

    Carvalho, Sophia; Ferrini, Maria; Herritt, Lou; Holian, Andrij; Jaffar, Zeina; Roberts, Kevan

    2018-01-01

    Multi-walled carbon nanotubes (MWCNT) have been reported to promote lung inflammation and fibrosis. The commercial demand for nanoparticle-based materials has expanded rapidly and as demand for nanomaterials grows, so does the urgency of establishing an appreciation of the degree of health risk associated with their increased production and exposure. In this study, we examined whether MWCNT inhalation elicited pulmonary eosinophilic inflammation and influenced the development of allergic airway inflammatory responses. Our data revealed that instillation of FA21 MWCNT into the airways of mice resulted in a rapid increase, within 24 h, in the number of eosinophils present in the lungs. The inflammatory response elicited was also associated with an increase in the level of cysteinyl leukotrienes (cysLTs) present in the bronchoalveolar lavage fluid. CysLTs were implicated in the airway inflammatory response since pharmacological inhibition of their biosynthesis using the 5-lipoxygenase inhibitor Zileuton resulted in a marked reduction in the severity of inflammation observed. Moreover, FA21 MWCNT entering the airways of mice suffering from house dust mite (HDM)-elicited allergic lung inflammation markedly exacerbated the intensity of the airway inflammation. This response was characterized by a pulmonary eosinophilia, lymphocyte infiltration, and raised cysLT levels. The severity of pulmonary inflammation caused by either inhalation of MWCNT alone or in conjunction with HDM allergen correlated with the level of nickel present in the material, since preparations that contained higher levels of nickel (FA21, 5.54% Ni by weight) were extremely effective at eliciting or exacerbating inflammatory or allergic responses while preparations containing lower amounts of nickel (FA04, 2.54% Ni by weight) failed to initiate or exacerbate pulmonary inflammation. In summary, instillation of high nickel MWCNT into the lungs promoted eosinophilic inflammation and caused an intense

  9. Smoking is a risk factor for pulmonary metastasis in colorectal cancer.

    PubMed

    Yahagi, M; Tsuruta, M; Hasegawa, H; Okabayashi, K; Toyoda, N; Iwama, N; Morita, S; Kitagawa, Y

    2017-09-01

    The hepatic microenvironment, which may include chronic inflammation and fibrosis, is considered to contribute to the pathogenesis of liver metastases of colorectal cancer. A similar mechanism is anticipated for pulmonary metastases, although no reports are available. Smoking causes pulmonary inflammation and fibrosis. Thus, we hypothesized that smokers would be especially affected by pulmonary metastases of colorectal cancer. In this study, we attempted to clarify the impact of smoking on pulmonary metastasis of colorectal cancer. Between September 2005 and December 2010 we reviewed 567 patients with pathological Stage I, II or III colorectal cancer, whose clinicopathological background included a preoperative smoking history, pack-year history from medical records. Univariate and multivariate analyses using the Cox proportional hazard model were performed to determine the independent prognostic factors for pulmonary metastasis-free survival. Pulmonary metastases occurred in 39 (6.9%) patients. The smoking histories revealed 355 never smokers, 119 former smokers and 93 current smokers among the subjects. Multivariate analysis revealed that being a current smoker (hazard ratio = 2.72, 95% CI 1.18-6.25; P = 0.02) was an independent risk factor for pulmonary metastases. Smoking may be a risk factor for pulmonary metastasis of colorectal cancer. Cessation of smoking should be recommended to prevent pulmonary metastasis, although further basic and clinical studies are required. Colorectal Disease © 2017 The Association of Coloproctology of Great Britain and Ireland.

  10. AltitudeOmics: effect of reduced barometric pressure on detection of intrapulmonary shunt, pulmonary gas exchange efficiency, and total pulmonary resistance.

    PubMed

    Petrassi, Frank A; Davis, James T; Beasley, Kara M; Evero, Oghenero; Elliott, Jonathan E; Goodman, Randall D; Futral, Joel E; Subudhi, Andrew; Solano-Altamirano, J Manuel; Goldman, Saul; Roach, Robert C; Lovering, Andrew T

    2018-05-01

    Blood flow through intrapulmonary arteriovenous anastomoses (Q IPAVA ) occurs in healthy humans at rest and during exercise when breathing hypoxic gas mixtures at sea level and may be a source of right-to-left shunt. However, at high altitudes, Q IPAVA is reduced compared with sea level, as detected using transthoracic saline contrast echocardiography (TTSCE). It remains unknown whether the reduction in Q IPAVA (i.e., lower bubble scores) at high altitude is due to a reduction in bubble stability resulting from the lower barometric pressure (P B ) or represents an actual reduction in Q IPAVA . To this end, Q IPAVA , pulmonary artery systolic pressure (PASP), cardiac output (Q T ), and the alveolar-to-arterial oxygen difference (AaDO 2 ) were assessed at rest and during exercise (70-190 W) in the field (5,260 m) and in the laboratory (1,668 m) during four conditions: normobaric normoxia (NN; [Formula: see text] = 121 mmHg, P B  = 625 mmHg; n = 8), normobaric hypoxia (NH; [Formula: see text] = 76 mmHg, P B  = 625 mmHg; n = 7), hypobaric normoxia (HN; [Formula: see text] = 121 mmHg, P B  = 410 mmHg; n = 8), and hypobaric hypoxia (HH; [Formula: see text] = 75 mmHg, P B  = 410 mmHg; n = 7). We hypothesized Q IPAVA would be reduced during exercise in isooxic hypobaria compared with normobaria and that the AaDO 2 would be reduced in isooxic hypobaria compared with normobaria. Bubble scores were greater in normobaric conditions, but the AaDO 2 was similar in both isooxic hypobaria and normobaria. Total pulmonary resistance (PASP/Q T ) was elevated in HN and HH. Using mathematical modeling, we found no effect of hypobaria on bubble dissolution time within the pulmonary transit times under consideration (<5 s). Consequently, our data suggest an effect of hypobaria alone on pulmonary blood flow. NEW & NOTEWORTHY Blood flow through intrapulmonary arteriovenous anastomoses, detected by transthoracic saline contrast echocardiography, was reduced during exercise

  11. Targeted Delivery of Pulmonary Arterial Endothelial Cells Overexpressing Interleukin-8 Receptors Attenuates Monocrotaline-Induced Pulmonary Vascular Remodeling

    PubMed Central

    Fu, Jinyan; Chen, Yiu-Fai; Zhao, Xiangmin; Creighton, Judy; Guo, Yuan-Yuan; Hage, Fadi G.; Oparil, Suzanne; Xing, Daisy D.

    2014-01-01

    Objective Interleukin-8 (IL8) receptors IL8RA and IL8RB (ILRA/B) on neutrophil membranes bind to IL8 with high affinity and play a critical role in neutrophil recruitment to sites of injury and/or inflammation. This study tested the hypothesis that administration of rat pulmonary arterial endothelial cells (ECs) overexpressing IL8RA/B can accelerate the adhesion of ECs to the injured lung and inhibit monocrotaline (MCT)-induced pulmonary inflammation, arterial thickening and hypertension, and right ventricular (RV) hypertrophy. Approach and Results The treatment groups included 10-wk-old ovariectomized Sprague-Dawley rats that received s.c. injection of phosphate-buffered-saline (Vehicle); a single injection of MCT (MCT alone, 60 mg/kg, s.c.); MCT followed by i.v. transfusion of ECs transduced with the empty adenoviral vector (Null-EC); and MCT followed by i.v. transfusion of ECs overexpressing IL8RA/B (IL8RA/B-EC, 1.5×106 cells/rat). Two days or 4 wks after MCT treatment, eNOS, iNOS, CINC-2β (IL8 equivalent in rat) and MCP-1 expression; neutrophil and macrophage infiltration into pulmonary arterioles, and arteriolar and alveolar morphology were measured by histological and immunohistochemical techniques. Pro-inflammatory cytokine/chemokine protein levels were measured by Multiplexed rat specific magnetic beads based sandwich immunoassay in total lung homogenates. Transfusion of IL8RA/B-ECs significantly reduced MCT-induced neutrophil infiltration and pro-inflammatory mediator (IL-8, MCP-1, iNOS, CINC and MIP-2) expression in lungs and pulmonary arterioles and alveoli, pulmonary artery pressure, and pulmonary arteriole and RV hypertrophy and remodeling. Conclusion These provocative findings suggest that targeted delivery of ECs overexpressing IL8RA/B is effective in repairing the injured pulmonary vasculature. PMID:24790141

  12. Reduction of lymph tissue false positives in pulmonary embolism detection

    NASA Astrophysics Data System (ADS)

    Ghanem, Bernard; Liang, Jianming; Bi, Jinbo; Salganicoff, Marcos; Krishnan, Arun

    2008-03-01

    Pulmonary embolism (PE) is a serious medical condition, characterized by the partial/complete blockage of an artery within the lungs. We have previously developed a fast yet effective approach for computer aided detection of PE in computed topographic pulmonary angiography (CTPA),1 which is capable of detecting both acute and chronic PEs, achieving a benchmark performance of 78% sensitivity at 4 false positives (FPs) per volume. By reviewing the FPs generated by this system, we found the most dominant type of FP, roughly one third of all FPs, to be lymph/connective tissue. In this paper, we propose a novel approach that specifically aims at reducing this FP type. Our idea is to explicitly exploit the anatomical context configuration of PE and lymph tissue in the lungs: a lymph FP connects to the airway and is located outside the artery, while a true PE should not connect to the airway and must be inside the artery. To realize this idea, given a detected candidate (i.e. a cluster of suspicious voxels), we compute a set of contextual features, including its distance to the airway based on local distance transform and its relative position to the artery based on fast tensor voting and Hessian "vesselness" scores. Our tests on unseen cases show that these features can reduce the lymph FPs by 59%, while improving the overall sensitivity by 3.4%.

  13. Comparison of digital tomosynthesis and chest radiography for the detection of pulmonary nodules: systematic review and meta-analysis.

    PubMed

    Kim, Jun H; Lee, Kyung H; Kim, Kyoung-Tae; Kim, Hyun J; Ahn, Hyeong S; Kim, Yeo J; Lee, Ha Y; Jeon, Yong S

    2016-12-01

    To compare the diagnostic accuracy of digital tomosynthesis (DTS) with that of chest radiography for the detection of pulmonary nodules by meta-analysis. A systematic literature search was performed to identify relevant original studies from 1 January 1 1976 to 31 August 31 2016. The quality of included studies was assessed by quality assessment of diagnostic accuracy studies-2. Per-patient data were used to calculate the sensitivity and specificity and per-lesion data were used to calculate the detection rate. Summary receiver-operating characteristic curves were drawn for pulmonary nodule detection. 16 studies met the inclusion criteria. 1017 patients on a per-patient basis and 2159 lesions on a per-lesion basis from 16 eligible studies were evaluated. The pooled patient-based sensitivity of DTS was 0.85 [95% confidence interval (CI) 0.83-0.88] and the specificity was 0.95 (0.93-0.96). The pooled sensitivity and specificity of chest radiography were 0.47 (0.44-0.51) and 0.37 (0.34-0.40), respectively. The per-lesion detection rate was 2.90 (95% CI 2.63-3.19). DTS has higher diagnostic accuracy than chest radiography for detection of pulmonary nodules. Chest radiography has low sensitivity but similar specificity, comparable with that of DTS. Advances in knowledge: DTS has higher diagnostic accuracy than chest radiography for the detection of pulmonary nodules.

  14. Accurate registration of temporal CT images for pulmonary nodules detection

    NASA Astrophysics Data System (ADS)

    Yan, Jichao; Jiang, Luan; Li, Qiang

    2017-02-01

    Interpretation of temporal CT images could help the radiologists to detect some subtle interval changes in the sequential examinations. The purpose of this study was to develop a fully automated scheme for accurate registration of temporal CT images for pulmonary nodule detection. Our method consisted of three major registration steps. Firstly, affine transformation was applied in the segmented lung region to obtain global coarse registration images. Secondly, B-splines based free-form deformation (FFD) was used to refine the coarse registration images. Thirdly, Demons algorithm was performed to align the feature points extracted from the registered images in the second step and the reference images. Our database consisted of 91 temporal CT cases obtained from Beijing 301 Hospital and Shanghai Changzheng Hospital. The preliminary results showed that approximately 96.7% cases could obtain accurate registration based on subjective observation. The subtraction images of the reference images and the rigid and non-rigid registered images could effectively remove the normal structures (i.e. blood vessels) and retain the abnormalities (i.e. pulmonary nodules). This would be useful for the screening of lung cancer in our future study.

  15. Detection of Mycobacterium tuberculosis complex by nested polymerase chain reaction in pulmonary and extrapulmonary specimens* ,**

    PubMed Central

    Furini, Adriana Antônia da Cruz; Pedro, Heloisa da Silveira Paro; Rodrigues, Jean Francisco; Montenegro, Lilian Maria Lapa; Machado, Ricardo Luiz Dantas; Franco, Célia; Schindler, Haiana Charifker; Batista, Ida Maria Foschiani Dias; Rossit, Andrea Regina Baptista

    2013-01-01

    OBJECTIVE: To compare the performance of nested polymerase chain reaction (NPCR) with that of cultures in the detection of the Mycobacterium tuberculosis complex in pulmonary and extrapulmonary specimens. METHODS: We analyzed 20 and 78 pulmonary and extrapulmonary specimens, respectively, of 67 hospitalized patients suspected of having tuberculosis. An automated microbial system was used for the identification of Mycobacterium spp. cultures, and M. tuberculosis IS6110 was used as the target sequence in the NPCR. The kappa statistic was used in order to assess the level of agreement among the results. RESULTS: Among the 67 patients, 6 and 5, respectively, were diagnosed with pulmonary and extrapulmonary tuberculosis, and the NPCR was positive in all of the cases. Among the 98 clinical specimens, smear microscopy, culture, and NPCR were positive in 6.00%, 8.16%, and 13.26%, respectively. Comparing the results of NPCR with those of cultures (the gold standard), we found that NPCR had a sensitivity and specificity of 100% and 83%, respectively, in pulmonary specimens, compared with 83% and 96%, respectively, in extrapulmonary specimens, with good concordance between the tests (kappa, 0.50 and 0.6867, respectively). CONCLUSIONS: Although NPCR proved to be a very useful tool for the detection of M. tuberculosis complex, clinical, epidemiological, and other laboratory data should also be considered in the diagnosis and treatment of pulmonary and extrapulmonary tuberculosis. PMID:24473765

  16. Automated detection of pulmonary nodules in PET/CT images: Ensemble false-positive reduction using a convolutional neural network technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teramoto, Atsushi, E-mail: teramoto@fujita-hu.ac.jp; Fujita, Hiroshi; Yamamuro, Osamu

    Purpose: Automated detection of solitary pulmonary nodules using positron emission tomography (PET) and computed tomography (CT) images shows good sensitivity; however, it is difficult to detect nodules in contact with normal organs, and additional efforts are needed so that the number of false positives (FPs) can be further reduced. In this paper, the authors propose an improved FP-reduction method for the detection of pulmonary nodules in PET/CT images by means of convolutional neural networks (CNNs). Methods: The overall scheme detects pulmonary nodules using both CT and PET images. In the CT images, a massive region is first detected using anmore » active contour filter, which is a type of contrast enhancement filter that has a deformable kernel shape. Subsequently, high-uptake regions detected by the PET images are merged with the regions detected by the CT images. FP candidates are eliminated using an ensemble method; it consists of two feature extractions, one by shape/metabolic feature analysis and the other by a CNN, followed by a two-step classifier, one step being rule based and the other being based on support vector machines. Results: The authors evaluated the detection performance using 104 PET/CT images collected by a cancer-screening program. The sensitivity in detecting candidates at an initial stage was 97.2%, with 72.8 FPs/case. After performing the proposed FP-reduction method, the sensitivity of detection was 90.1%, with 4.9 FPs/case; the proposed method eliminated approximately half the FPs existing in the previous study. Conclusions: An improved FP-reduction scheme using CNN technique has been developed for the detection of pulmonary nodules in PET/CT images. The authors’ ensemble FP-reduction method eliminated 93% of the FPs; their proposed method using CNN technique eliminates approximately half the FPs existing in the previous study. These results indicate that their method may be useful in the computer-aided detection of pulmonary

  17. The impact of faceplate surface characteristics on detection of pulmonary nodules

    NASA Astrophysics Data System (ADS)

    Toomey, R. J.; Ryan, J. T.; McEntee, M. F.; McNulty, J.; Evanoff, M. G.; Cuffe, F.; Yoneda, T.; Stowe, J.; Brennan, P. C.

    2009-02-01

    Introduction In order to prevent specular reflections, many monitor faceplates have features such as tiny dimples on their surface to diffuse ambient light incident on the monitor, however, this "anti-glare" surface may also diffuse the image itself. The purpose of the study was to determine whether the surface characteristics of monitor faceplates influence the detection of pulmonary nodules under low and high ambient lighting conditions. Methods and Materials Separate observer performance studies were conducted at each of two light levels (<1 lux and >250 lux). Twelve examining radiologists with the American Board of Radiology participated in the darker condition and eleven in the brighter condition. All observers read on both smooth "glare" and dimpled "anti-glare" faceplates in a single lighting condition. A counterbalanced methodology was utilized to minimise memory effects. In each reading, observers were presented with thirty chest images in random order, of which half contained a single simulated pulmonary nodule. They were asked to give their confidence that each image did or did not contain a nodule and to mark the suspicious location. ROC analysis was applied to resultant data. Results No statistically significant differences were seen in the trapezoidal area under the ROC curve (AUC), sensitivity, specificity or average time per case at either light level for chest specialists or radiologists from other specialities. Conclusion The characteristics of the faceplate surfaces do not appear to affect detection of pulmonary nodules. Further work into other image types is being conducted.

  18. Upregulation of Human Endogenous Retrovirus-K Is Linked to Immunity and Inflammation in Pulmonary Arterial Hypertension.

    PubMed

    Saito, Toshie; Miyagawa, Kazuya; Chen, Shih-Yu; Tamosiuniene, Rasa; Wang, Lingli; Sharpe, Orr; Samayoa, Erik; Harada, Daisuke; Moonen, Jan-Renier A J; Cao, Aiqin; Chen, Pin-I; Hennigs, Jan K; Gu, Mingxia; Li, Caiyun G; Leib, Ryan D; Li, Dan; Adams, Christopher M; Del Rosario, Patricia A; Bill, Matthew; Haddad, Francois; Montoya, Jose G; Robinson, William H; Fantl, Wendy J; Nolan, Garry P; Zamanian, Roham T; Nicolls, Mark R; Chiu, Charles Y; Ariza, Maria E; Rabinovitch, Marlene

    2017-11-14

    Immune dysregulation has been linked to occlusive vascular remodeling in pulmonary arterial hypertension (PAH) that is hereditary, idiopathic, or associated with other conditions. Circulating autoantibodies, lung perivascular lymphoid tissue, and elevated cytokines have been related to PAH pathogenesis but without a clear understanding of how these abnormalities are initiated, perpetuated, and connected in the progression of disease. We therefore set out to identify specific target antigens in PAH lung immune complexes as a starting point toward resolving these issues to better inform future application of immunomodulatory therapies. Lung immune complexes were isolated and PAH target antigens were identified by liquid chromatography tandem mass spectrometry, confirmed by enzyme-linked immunosorbent assay, and localized by confocal microscopy. One PAH antigen linked to immunity and inflammation was pursued and a link to PAH pathophysiology was investigated by next-generation sequencing, functional studies in cultured monocytes and endothelial cells, and hemodynamic and lung studies in a rat. SAM domain and HD domain-containing protein 1 (SAMHD1), an innate immune factor that suppresses HIV replication, was identified and confirmed as highly expressed in immune complexes from 16 hereditary and idiopathic PAH versus 12 control lungs. Elevated SAMHD1 was localized to endothelial cells, perivascular dendritic cells, and macrophages, and SAMHD1 antibodies were prevalent in tertiary lymphoid tissue. An unbiased screen using metagenomic sequencing related SAMHD1 to increased expression of human endogenous retrovirus K (HERV-K) in PAH versus control lungs (n=4). HERV-K envelope and deoxyuridine triphosphate nucleotidohydrolase mRNAs were elevated in PAH versus control lungs (n=10), and proteins were localized to macrophages. HERV-K deoxyuridine triphosphate nucleotidohydrolase induced SAMHD1 and proinflammatory cytokines (eg, interleukin 6, interleukin 1β, and tumor

  19. Pathology and immune reactivity: understanding multidimensionality in pulmonary tuberculosis.

    PubMed

    Dorhoi, Anca; Kaufmann, Stefan H E

    2016-03-01

    Heightened morbidity and mortality in pulmonary tuberculosis (TB) are consequences of complex disease processes triggered by the causative agent, Mycobacterium tuberculosis (Mtb). Mtb modulates inflammation at distinct stages of its intracellular life. Recognition and phagocytosis, replication in phagosomes and cytosol escape induce tightly regulated release of cytokines [including interleukin (IL)-1, tumor necrosis factor (TNF), IL-10], chemokines, lipid mediators, and type I interferons (IFN-I). Mtb occupies various lung lesions at sites of pathology. Bacteria are barely detectable at foci of lipid pneumonia or in perivascular/bronchiolar cuffs. However, abundant organisms are evident in caseating granulomas and at the cavity wall. Such lesions follow polar trajectories towards fibrosis, encapsulation and mineralization or liquefaction, extensive matrix destruction, and tissue injury. The outcome is determined by immune factors acting in concert. Gradients of cytokines and chemokines (CCR2, CXCR2, CXCR3/CXCR5 agonists; TNF/IL-10, IL-1/IFN-I), expression of activation/death markers on immune cells (TNF receptor 1, PD-1, IL-27 receptor) or abundance of enzymes [arginase-1, matrix metalloprotease (MMP)-1, MMP-8, MMP-9] drive genesis and progression of lesions. Distinct lesions coexist such that inflammation in TB encompasses a spectrum of tissue changes. A better understanding of the multidimensionality of immunopathology in TB will inform novel therapies against this pulmonary disease.

  20. Role of inflammation in cardiopulmonary health effects of PM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donaldson, Ken; Mills, Nicholas; MacNee, William

    2005-09-01

    The relationship between increased exposure to PM and adverse cardiovascular effects is well documented in epidemiological studies. Inflammation in the lungs, caused by deposited particles, can be seen as a key process that could mediate adverse effects on the cardiovascular system. There are at least three potential pathways that could lead from pulmonary inflammation to adverse cardiovascular effects. Firstly, inflammation in the lung could lead to systemic inflammation, which is well known to be linked to sudden death from cardiovascular causes. Systemic inflammation can lead to destabilization by activation of inflammatory processes in atheromatous plaques. Secondly, inflammation can cause anmore » imbalance in coagulation factors that favor propagation of thrombi if thrombosis is initiated. Thirdly, inflammation could affect the autonomic nervous system activity in ways that could lead to alterations in the control of heart rhythm which could culminate in fatal dysrhythmia.« less

  1. Familial Mediterranean fever presenting with pulmonary embolism.

    PubMed

    Ruiz, Ximena D; Gadea, Carlos M

    2011-01-01

    Familial Mediterranean fever (FMF) is the autoinflammatory disease and hereditary periodic fever syndrome that most commonly affects people of Eastern Mediterranean origin. It is characterized by recurrent self-limited attacks of fever and serositis, with an increase in acute-phase reactant markers, and is transmitted in an autosomal recessive pattern. Inflammation shifts the hemostatic mechanisms favoring thrombosis. There are few reports of an increased risk of hypercoagulability in patients with FMF in the absence of amyloidosis and nephrotic syndrome. In this case report, we describe a 43-year-old Turkish patient who presented with right-sided pleuritic chest pain and pulmonary embolism. The patient described having prior similar attacks of serositis, but had never been diagnosed with FMF. Further workup revealed an increase in acute phase reactants, negative hypercoagulability studies and heterozygosity for the M694V mutation in the pyrin (MEFV) gene. We identified untreated FMF and chronic inflammation as his only risk factor for pulmonary embolism. With this case report, we support recent studies that have demonstrated that inflammation may lead to prothrombotic states in patients with FMF.

  2. A pulmonary metastasis of a cystosarcoma phyllodes of the breast detected by 18F-FDG PET/CT.

    PubMed

    Treglia, Giorgio; Muoio, Barbara; Caldarella, Carmelo; Parapatt, George Koshy

    2014-03-01

    We describe a pulmonary metastasis of a cystosarcoma phyllodes of the breast (CPB) detected by F-FDG PET/CT. A 65-year-old female patient previously operated on for a cystosarcoma phyllodes of the left breast underwent F-FDG PET/CT for restaging. F-FDG PET/CT showed an area of increased F-FDG uptake corresponding to a 2-cm right pulmonary nodule. Histology suggested the presence of a pulmonary metastasis of CPB.

  3. CD28/B7 deficiency attenuates systolic overload-induced congestive heart failure, myocardial and pulmonary inflammation, and activated T-cell accumulation in the heart and lungs

    PubMed Central

    Wang, Huan; Kwak, Dongmin; Fassett, John; Hou, Lei; Xu, Xin; Burbach, Brandon J.; Thenappan, Thenappan; Xu, Yawei; Ge, Jun-bo; Shimizu, Yoji; Bache, Robert J.; Chen, Yingjie

    2017-01-01

    The inflammatory response regulates congestive heart failure (CHF) development. T-cell activation plays an important role in tissue inflammation. We postulate that CD28 or B7 deficiency inhibits T-cell activation and attenuates CHF development by reducing systemic, cardiac and pulmonary inflammation. We demonstrated that chronic pressure overload-induced end-stage CHF in mice is characterized by profound accumulation of activated effector T-cells (CD3+CD44high cells) in the lungs and a mild but significant increase of these cells in the heart. In knockout (KO) mice lacking either CD28 or B7, there was a dramatic reduction in the accumulation of activated effector T cells in both hearts and lungs of mice under control conditions and after transverse aortic constriction (TAC). CD28 or B7 KO significantly attenuated TAC-induced CHF development, as indicated by less increase of heart and lung weight, and less reduction of LV contractility. CD28 or B7 KO also significantly reduced TAC-induced CD45+ leukocyte, T-cell and macrophage infiltration in hearts and lungs, lowered pro-inflammatory cytokine expression (such as TNF-α and IL-1β) in lungs. Furthermore, CD28/B7 blockade by CTLA4-Ig treatment (250μg/mouse every 3 days) attenuated TAC-induced T cell activation, LV hypertrophy, and LV dysfunction. Our data indicate that CD28/B7 deficiency inhibits activated effector T-cell accumulation, reduces myocardial and pulmonary inflammation, and attenuates the development of CHF. Our findings suggest that strategies targeting T-cell activation may be useful in treating CHF. PMID:27432861

  4. Hypoxia-induced pulmonary arterial hypertension augments lung injury and airway reactivity caused by ozone exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zychowski, Katherine E.; Lucas, Selita N.; Sanchez

    Ozone (O{sub 3})-related cardiorespiratory effects are a growing public health concern. Ground level O{sub 3} can exacerbate pre-existing respiratory conditions; however, research regarding therapeutic interventions to reduce O{sub 3}-induced lung injury is limited. In patients with chronic obstructive pulmonary disease, hypoxia-associated pulmonary hypertension (HPH) is a frequent comorbidity that is difficult to treat clinically, yet associated with increased mortality and frequency of exacerbations. In this study, we hypothesized that established HPH would confer vulnerability to acute O{sub 3} pulmonary toxicity. Additionally, we tested whether improvement of pulmonary endothelial barrier integrity via rho-kinase inhibition could mitigate pulmonary inflammation and injury. Tomore » determine if O{sub 3} exacerbated HPH, male C57BL/6 mice were subject to either 3 weeks continuous normoxia (20.9% O{sub 2}) or hypoxia (10.0% O{sub 2}), followed by a 4-h exposure to either 1 ppm O{sub 3} or filtered air (FA). As an additional experimental intervention fasudil (20 mg/kg) was administered intraperitoneally prior to and after O{sub 3} exposures. As expected, hypoxia significantly increased right ventricular pressure and hypertrophy. O{sub 3} exposure in normoxic mice caused lung inflammation but not injury, as indicated by increased cellularity and edema in the lung. However, in hypoxic mice, O{sub 3} exposure led to increased inflammation and edema, along with a profound increase in airway hyperresponsiveness to methacholine. Fasudil administration resulted in reduced O{sub 3}-induced lung injury via the enhancement of pulmonary endothelial barrier integrity. These results indicate that increased pulmonary vascular pressure may enhance lung injury, inflammation and edema when exposed to pollutants, and that enhancement of pulmonary endothelial barrier integrity may alleviate such vulnerability. - Highlights: • Environmental exposures can exacerbate chronic

  5. Comparison of digital tomosynthesis and chest radiography for the detection of pulmonary nodules: systematic review and meta-analysis

    PubMed Central

    Kim, Jun H; Lee, Kyung H; Kim, Kyoung-Tae; Ahn, Hyeong S; Kim, Yeo J; Lee, Ha Y; Jeon, Yong S

    2016-01-01

    Objective: To compare the diagnostic accuracy of digital tomosynthesis (DTS) with that of chest radiography for the detection of pulmonary nodules by meta-analysis. Methods: A systematic literature search was performed to identify relevant original studies from 1 January 1 1976 to 31 August 31 2016. The quality of included studies was assessed by quality assessment of diagnostic accuracy studies-2. Per-patient data were used to calculate the sensitivity and specificity and per-lesion data were used to calculate the detection rate. Summary receiver-operating characteristic curves were drawn for pulmonary nodule detection. Results: 16 studies met the inclusion criteria. 1017 patients on a per-patient basis and 2159 lesions on a per-lesion basis from 16 eligible studies were evaluated. The pooled patient-based sensitivity of DTS was 0.85 [95% confidence interval (CI) 0.83–0.88] and the specificity was 0.95 (0.93–0.96). The pooled sensitivity and specificity of chest radiography were 0.47 (0.44–0.51) and 0.37 (0.34–0.40), respectively. The per-lesion detection rate was 2.90 (95% CI 2.63–3.19). Conclusion: DTS has higher diagnostic accuracy than chest radiography for detection of pulmonary nodules. Chest radiography has low sensitivity but similar specificity, comparable with that of DTS. Advances in knowledge: DTS has higher diagnostic accuracy than chest radiography for the detection of pulmonary nodules. PMID:27759428

  6. Characterization of lung inflammation and its impact on macrophage function in aging

    PubMed Central

    Canan, Cynthia H.; Gokhale, Nandan S.; Carruthers, Bridget; Lafuse, William P.; Schlesinger, Larry S.; Torrelles, Jordi B.; Turner, Joanne

    2014-01-01

    Systemic inflammation that occurs with increasing age (inflammaging) is thought to contribute to the increased susceptibility of the elderly to several disease states. The elderly are at significant risk for developing pulmonary disorders and infectious diseases, but the contribution of inflammation in the pulmonary environment has received little attention. In this study, we demonstrate that the lungs of old mice have elevated levels of proinflammatory cytokines and a resident population of highly activated pulmonary macrophages that are refractory to further activation by IFN-γ. The impact of this inflammatory state on macrophage function was determined in vitro in response to infection with M.tb. Macrophages from the lungs of old mice secreted more proinflammatory cytokines in response to M.tb infection than similar cells from young mice and also demonstrated enhanced M.tb uptake and P-L fusion. Supplementation of mouse chow with the NSAID ibuprofen led to a reversal of lung and macrophage inflammatory signatures. These data indicate that the pulmonary environment becomes inflammatory with increasing age and that this inflammatory environment can be reversed with ibuprofen. PMID:24935957

  7. Cardiovascular function in pulmonary emphysema.

    PubMed

    Visca, Dina; Aiello, Marina; Chetta, Alfredo

    2013-01-01

    Chronic obstructive pulmonary disease (COPD) and chronic cardiovascular disease, such as coronary artery disease, congestive heart failure, and cardiac arrhythmias, have a strong influence on each other, and systemic inflammation has been considered as the main linkage between them. On the other hand, airflow limitation may markedly affect lung mechanics in terms of static and dynamic hyperinflation, especially in pulmonary emphysema, and they can in turn influence cardiac performance as well. Skeletal mass depletion, which is a common feature in COPD especially in pulmonary emphysema patients, may have also a role in cardiovascular function of these patients, irrespective of lung damage. We reviewed the emerging evidence that highlights the role of lung mechanics and muscle mass impairment on ventricular volumes, stroke volume, and stroke work at rest and on exercise in the presence of pulmonary emphysema. Patients with emphysema may differ among COPD population even in terms of cardiovascular function.

  8. Inflammatory Role of Macrophage Xanthine Oxidoreductase in Pulmonary Hypertension: Implications for Novel Therapeutic Approaches

    DTIC Science & Technology

    2015-10-01

    Lung Inflammation, Uric Acid, Chronic Obstructive Pulmonary Disease, Mononuclear Phagocyte , Monosodium Urate, XOR WT, XOR KO, Wistar Kyoto, Pulmonary...0451 Annual Report (Year 1) 4 Mononuclear Phagocyte XOR Activity and Superoxide Generation Were Reduced by

  9. Cartwheel projections of segmented pulmonary vasculature for the detection of pulmonary embolism

    NASA Astrophysics Data System (ADS)

    Kiraly, Atilla P.; Naidich, David P.; Novak, Carol L.

    2005-04-01

    Pulmonary embolism (PE) detection via contrast-enhanced computed tomography (CT) images is an increasingly important topic of research. Accurate identification of PE is of critical importance in determining the need for further treatment. However, current multi-slice CT scanners provide datasets typically containing 600 or more images per patient, making it desirable to have a visualization method to help radiologists focus directly on potential candidates that might otherwise have been overlooked. This is especially important when assessing the ability of CT to identify smaller, sub-segmental emboli. We propose a cartwheel projection approach to PE visualization that computes slab projections of the original data aided by vessel segmentation. Previous research on slab visualization for PE has utilized the entire volumetric dataset, requiring thin slabs and necessitating the use of maximum intensity projection (MIP). Our use of segmentation within the projection computation allows the use of thicker slabs than previous methods, as well as the ability to employ visualization variations that are only possible with segmentation. Following automatic segmentation of the pulmonary vessels, slabs may be rotated around the X-, Y- or Z-axis. These slabs are rendered by preferentially using voxels within the lung vessels. This effectively eliminates distracting information not relevant to diagnosis, lessening both the chance of overlooking a subtle embolus and minimizing time on spent evaluating false positives. The ability to employ thicker slabs means fewer images need to be evaluated, yielding a more efficient workflow.

  10. Acetylcholine beyond bronchoconstriction: roles in inflammation and remodeling.

    PubMed

    Kistemaker, Loes E M; Gosens, Reinoud

    2015-03-01

    Acetylcholine is the primary parasympathetic neurotransmitter in the airways, where it not only induces bronchoconstriction and mucus secretion, but also regulates airway inflammation and remodeling. In this review, we propose that these effects are all primarily mediated via the muscarinic M3 receptor. Acetylcholine promotes inflammation and remodeling via direct effects on airway cells, and via mechanical stress applied to the airways sequential to bronchoconstriction. The effects on inflammation and remodeling are regulated by both neuronal and non-neuronal acetylcholine. Taken together, we believe that the combined effects of anticholinergic therapy on M3-mediated bronchoconstriction, mucus secretion, inflammation, and remodeling may account for the positive outcome of treatment with these drugs for patients with chronic pulmonary obstructive disease (COPD) or asthma. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Inflammatory Response Mechanisms Exacerbating Hypoxemia in Coexistent Pulmonary Fibrosis and Sleep Apnea

    PubMed Central

    Balachandran, Jay

    2015-01-01

    Mediators of inflammation, oxidative stress, and chemoattractants drive the hypoxemic mechanisms that accompany pulmonary fibrosis. Patients with idiopathic pulmonary fibrosis commonly have obstructive sleep apnea, which potentiates the hypoxic stimuli for oxidative stress, culminating in systemic inflammation and generalized vascular endothelial damage. Comorbidities like pulmonary hypertension, obesity, gastroesophageal reflux disease, and hypoxic pulmonary vasoconstriction contribute to chronic hypoxemia leading to the release of proinflammatory cytokines that may propagate clinical deterioration and alter the pulmonary fibrotic pathway. Tissue inhibitor of metalloproteinase (TIMP-1), interleukin- (IL-) 1α, cytokine-induced neutrophil chemoattractant (CINC-1, CINC-2α/β), lipopolysaccharide induced CXC chemokine (LIX), monokine induced by gamma interferon (MIG-1), macrophage inflammatory protein- (MIP-) 1α, MIP-3α, and nuclear factor- (NF-) κB appear to mediate disease progression. Adipocytes may induce hypoxia inducible factor (HIF) 1α production; GERD is associated with increased levels of lactate dehydrogenase (LDH), alkaline phosphatase (ALP), and tumor necrosis factor alpha (TNF-α); pulmonary artery myocytes often exhibit increased cytosolic free Ca2+. Protein kinase C (PKC) mediated upregulation of TNF-α and IL-1β also occurs in the pulmonary arteries. Increased understanding of the inflammatory mechanisms driving hypoxemia in pulmonary fibrosis and obstructive sleep apnea may potentiate the identification of appropriate therapeutic targets for developing effective therapies. PMID:25944985

  12. Genotypic, Phenotypic and Clinical Validation of GeneXpert in Extra-Pulmonary and Pulmonary Tuberculosis in India

    PubMed Central

    Singh, Urvashi B.; Pandey, Pooja; Mehta, Girija; Bhatnagar, Anuj K.; Mohan, Anant; Goyal, Vinay; Ahuja, Vineet; Ramachandran, Ranjani; Sachdeva, Kuldeep S.; Samantaray, Jyotish C.

    2016-01-01

    Background Newer molecular diagnostics have brought paradigm shift in early diagnosis of tuberculosis [TB]. WHO recommended use of GeneXpert MTB/RIF [Xpert] for Extra-pulmonary [EP] TB; critics have since questioned its efficiency. Methods The present study was designed to assess the performance of GeneXpert in 761 extra-pulmonary and 384 pulmonary specimens from patients clinically suspected of TB and compare with Phenotypic, Genotypic and Composite reference standards [CRS]. Results Comparison of GeneXpert results to CRS, demonstrated sensitivity of 100% and 90.68%, specificity of 100% and 99.62% for pulmonary and extra-pulmonary samples. On comparison with culture, sensitivity for Rifampicin [Rif] resistance detection was 87.5% and 81.82% respectively, while specificity was 100% for both pulmonary and extra-pulmonary TB. On comparison to sequencing of rpoB gene [Rif resistance determining region, RRDR], sensitivity was respectively 93.33% and 90% while specificity was 100% in both pulmonary and extra-pulmonary TB. GeneXpert assay missed 533CCG mutation in one sputum and dual mutation [517 & 519] in one pus sample, detected by sequencing. Sequencing picked dual mutation [529, 530] in a sputum sample sensitive to Rif, demonstrating, not all RRDR mutations lead to resistance. Conclusions Current study reports observations in a patient care setting in a high burden region, from a large collection of pulmonary and extra-pulmonary samples and puts to rest questions regarding sensitivity, specificity, detection of infrequent mutations and mutations responsible for low-level Rif resistance by GeneXpert. Improvements in the assay could offer further improvement in sensitivity of detection in different patient samples; nevertheless it may be difficult to improve sensitivity of Rif resistance detection if only one gene is targeted. Assay specificity was high both for TB detection and Rif resistance detection. Despite a few misses, the assay offers major boost to early

  13. [Surgical Treatment of Small Pulmonary Nodules Under Video-assisted Thoracoscopy 
(A Report of 129 Cases)].

    PubMed

    Wang, Tong; Yan, Tiansheng; Wan, Feng; Ma, Shaohua; Wang, Keyi; Wang, Jingdi; Song, Jintao; He, Wei; Bai, Jie; Jin, Liang

    2017-01-20

    The development of image technology has led to increasing detection of pulmonary small nodules year by year, but the determination of their nature before operation is difficult. This clinical study aimed to investigate the necessity and feasibility of surgical resection of pulmonary small nodules through a minimally invasive approach and the operational manner of non-small cell lung cancer (NSCLC). The clinical data of 129 cases with pulmonary small nodule of 10 mm or less in diameter were retrospectively analyzed in our hospital from December 2013 to November 2016. Thin-section computed tomography (CT) was performed on all cases with 129 pulmonary small nodules. CT-guided hook-wire precise localization was performed on 21 cases. Lobectomy, wedge resection, and segmentectomy with lymph node dissection might be performed in patients according to physical condition. Results of the pathological examination of 37 solid pulmonary nodules (SPNs) revealed 3 primary squamous cell lung cancers, 3 invasive adenocarcinomas (IAs), 2 metastatic cancers, 2 small cell lung cancers (SCLCs), 16 hamartomas, and 12 nonspecific chronic inflammations. The results of pathological examination of 49 mixed ground glass opacities revealed 19 IAs, 6 micro invasive adenocarcinomas (MIAs), 4 adenocarcinomas in situ (AIS), 1 atypical adenomatous hyperplasia (AAH), 1 SCLC, and 18 nonspecific chronic inflammations. The results of pathological examination of 43 pure ground glass opacities revealed 19 AIS, 6 MIAs, 6 IA, 6 AAHs, and 6 nonspecific chronic inflammations. Wedge resection under video-assisted thoracoscopic surgery (VATS) was performed in patients with 52 benign pulmonary small nodules. Lobectomy and systematic lymph node dissection under VATS were performed in 33 patients with NSCLC. Segmentectomy with selective lymph node dissection, wedge resection, and selective lymph node dissection under VATS were performed in six patients with NSCLC. Two patients received secondary lobectomy and

  14. Role of four-dimensional echocardiography with high-definition flow imaging and spatiotemporal image correlation in detecting fetal pulmonary veins.

    PubMed

    Sun, Xue; Zhang, Ying; Fan, Miao; Wang, Yu; Wang, Meilian; Siddiqui, Faiza Amber; Sun, Wei; Sun, Feifei; Zhang, Dongyu; Lei, Wenjia; Hu, Guyue

    2017-06-01

    Prenatal diagnosis of fetal total anomalous pulmonary vein connection (TAPVC) remains challenging for most screening sonographers. The purpose of this study was to evaluate the use of four-dimensional echocardiography with high-definition flow imaging and spatiotemporal image correlation (4D-HDFI) in identifying pulmonary veins in normal and TAPVC fetuses. We retrospectively reviewed and performed 4D-HDFI in 204 normal and 12 fetuses with confirmed diagnosis of TAPVC. Cardiac volumes were available for postanalysis to obtain 4D-rendered images of the pulmonary veins. For the normal fetuses, two other traditional modalities including color Doppler and HDFI were used to detect the number of pulmonary veins and comparisons were made between each of these traditional methods and 4D-HDFI. For conventional echocardiography, HDFI modality was superior to color Doppler in detecting more pulmonary veins in normal fetuses throughout the gestational period. 4D-HDFI was the best method during the second trimester of pregnancy in identifying normal fetal pulmonary veins. 4D-HDFI images vividly depicted the figure, course, and drainage of pulmonary veins in both normal and TAPVC fetuses. HDFI and the advanced 4D-HDFI technique could facilitate identification of the anatomical features of pulmonary veins in both normal and TAPVC fetuses; 4D-HDFI therefore provides additional and more precise information than conventional echocardiography techniques. © 2017, Wiley Periodicals, Inc.

  15. Pulmonary artery relative area change detects mild elevations in pulmonary vascular resistance and predicts adverse outcome in pulmonary hypertension.

    PubMed

    Swift, Andrew J; Rajaram, Smitha; Condliffe, Robin; Capener, Dave; Hurdman, Judith; Elliot, Charlie; Kiely, David G; Wild, Jim M

    2012-10-01

    The aim of this study was to evaluate the clinical use of magnetic resonance imaging measurements related to pulmonary artery stiffness in the evaluation of pulmonary hypertension (PH). A total of 134 patients with suspected PH underwent right heart catheterization (RHC) and magnetic resonance imaging on a 1.5-T scanner within 2 days. Phase contrast imaging at the pulmonary artery trunk and cine cardiac views were acquired. Pulmonary artery area change (AC), relative AC (RAC), compliance (AC/pulse pressure from RHC), distensibility (RAC/pulse pressure from RHC), right ventricular functional indices, and right ventricular mass were all derived. Regression curve fitting identified the statistical model of best fit between RHC measurements and pulmonary artery stiffness indices. The diagnostic accuracy and prognostic value of noninvasive AC and RAC were also assessed. The relationship between pulmonary vascular resistance and pulmonary artery RAC was best reflected by an inverse linear model. Patients with mild elevation in pulmonary vascular resistance (<4 Woods units) demonstrated reduced RAC (P = 0.02) and increased right ventricular mass index (P < 0.0001) without significant loss of right ventricular function (P = 0.17). At follow-up of 0 to 40 months, 18 patients with PH had died (16%). Analysis of Kaplan-Meier plots showed that both AC and RAC predicted mortality (log-rank test, P = 0.046 and P = 0.012, respectively). Area change and RAC were also predictors of mortality using univariate Cox proportional hazards regression analysis (P = 0.046 and P = 0.03, respectively). Noninvasive assessment of pulmonary artery RAC is a marker sensitive to early increased vascular resistance in PH and is a predictor of adverse outcome.

  16. The Effects of Resveratrol on Inflammation and Oxidative Stress in a Rat Model of Chronic Obstructive Pulmonary Disease.

    PubMed

    Wang, Xiao-Li; Li, Ting; Li, Ji-Hong; Miao, Shu-Ying; Xiao, Xian-Zhong

    2017-09-12

    Oxidative stress and inflammation are hypothesized to contribute to the pathogenesis of chronic obstructive pulmonary disease (COPD). Resveratrol (trans-3,5,4'-trihydroxystilbene) is known for its antioxidant and anti-inflammatory properties. The study aimed to investigate the effects of resveratrol in a rat model with COPD on the regulation of oxidative stress and inflammation via the activation of Sirtuin1 (SIRTl) and proliferator-activated receptor-γ coactivator-1α (PGC-1α). Thirty Wistar rats were randomly divided into three groups: control group, COPD group and resveratrol intervention group. The COPD model was established by instilling with lipopolysaccharide (LPS) and challenging with cigarette smoke (CS). The levels of interleukin-6 (IL-6) and interleukin-8 (IL-8) in serum were measured. The levels of malondialdehyde (MDA) and the activity of superoxide dismutase (SOD) were measured. The expression levels of SIRT1 and PGC-1α in the lung tissues were examined by immunohistochemistry as well as real-time reverse transcriptase polymerase chain reaction (real-time RT-PCR) and western blotting analysis. After the treatment with resveratrol (50 mg/kg), compared with the COPD group, alleviation of inflammation and reconstruction in the small airways of the lungs were seen. Resveratrol might be correlated not only with the lower level of MDA and the higher activity of SOD, but also with the upregulation of SIRT1 and PGC-1α expression. Resveratrol treatment decreased serum levels of IL-6 and IL-8. Our findings indicate that resveratrol had a therapeutic effect in our rat COPD model, which is related to the inhibition of oxidative stress and inflammatory response. The mechanism may be related to the activation and upgrading of the SIRT1/PGC-1α signaling pathways. Thus resveratrol might be a therapeutic modality in COPD.

  17. Absence of lung fibrosis after a single pulmonary delivery of lipid nanocapsules in rats.

    PubMed

    Hureaux, José; Lacoeuille, Franck; Lagarce, Frédéric; Rousselet, Marie-Christine; Contini, Aurélien; Saulnier, Patrick; Benoit, Jean-Pierre; Urban, Thierry

    2017-01-01

    Lipid nanocapsules (LNCs) are potential drug carriers for pulmonary delivery since they can be nebulized without any structural or functional changes, and the aerosols produced are highly compatible with pulmonary drug delivery in human beings. The alveolar surface tension, in vitro cytotoxicity, biodistribution and pulmonary toxicity in rats of a single endotracheal spray of LNCs or paclitaxel-loaded LNCs were studied. In vitro cytotoxicity of LNCs after a spray remained unchanged. Biodistribution study showed a homogeneous repartition in the lungs in rats with an improvement in lung retention of the radiolabeled tracer loaded in LNCs compared to the absence of LNCs with a lung half-time of 8.8±0.7 hours. Bronchoalveolar fluid analysis revealed transient 7-day alveolar inflammation, reaching a maximum between days 2 and 4, characterized by a peak of granulocytes at day 1 followed by a peak of lymphocytes at day 3. Alveolar protein levels were increased at days 3 and 7. Acute inflammation was increased with paclitaxel-loaded LNCs in comparison with blank LNCs but dropped out at day 7. No histological pulmonary lesion was observed at day 60. LNCs lowered surface tension to a greater degree than Curosurf ® in a physicochemical model of the pulmonary alveolus. A single pulmonary delivery of LNCs induces a short-term alveolar inflammation with no residual lesions in rats at day 60. These data permit to start the study of LNCs in surfactant replacement therapy.

  18. SOPROCARE - 450 nm wavelength detection tool for microbial plaque and gingival inflammation: a clinical study

    NASA Astrophysics Data System (ADS)

    Rechmann, P.; Liou, Shasan W.; Rechmann, Beate M.; Featherstone, John D.

    2014-02-01

    Gingivitis due to microbial plaque and calculus can lead over time if left untreated to advanced periodontal disease with non-physiological pocket formation. Removal of microbial plaque in the gingivitis stage typically achieves gingival health. The SOPROCARE camera system emits blue light at 450 nm wavelength using three blue diodes. The 450 nm wavelength is located in the non-ionizing, visible spectral wavelength region and thus is not dangerous. It is assumed that using the SOPROCARE camera in perio-mode inflamed gingiva can easily be observed and inflammation can be scored due to fluorescence from porphyrins in blood. The assumption is also that illumination of microbial plaque with blue light induces fluorescence due to the bacteria and porphyrin content of the plaque and thus can help to make microbial plaque and calculus visible. Aim of the study with 55 subjects was to evaluate the ability of the SOPROCARE fluorescence camera system to detect, visualize and allow scoring of microbial plaque in comparison to the Turesky modification of the Quigley and Hein plaque index. A second goal was to detect and score gingival inflammation and correlated the findings to the Silness and Löe gingival inflammation index. The study showed that scoring of microbial plaque as well as gingival inflammation levels similar to the established Turesky modified Quigley Hein index and the Silness and Löe gingival inflammation index can easily be done using the SOPROCARE fluorescence system in periomode. Linear regression fits between the different clinical indices and SOPROCARE scores in fluorescence perio-mode revealed the system's capacity for effective discrimination between scores.

  19. Hypoxia-induced mitogenic factor (FIZZ1/RELMα) induces endothelial cell apoptosis and subsequent interleukin-4-dependent pulmonary hypertension

    PubMed Central

    Takimoto, Eiki; Zhang, Ailan; Weiner, Noah C.; Meuchel, Lucas W.; Berger, Alan E.; Cheadle, Chris; Johns, Roger A.

    2014-01-01

    Pulmonary hypertension (PH) is characterized by elevated pulmonary artery pressure that leads to progressive right heart failure and ultimately death. Injury to endothelium and consequent wound repair cascades have been suggested to trigger pulmonary vascular remodeling, such as that observed during PH. The relationship between injury to endothelium and disease pathogenesis in this disorder remains poorly understood. We and others have shown that, in mice, hypoxia-induced mitogenic factor (HIMF, also known as FIZZ1 or RELMα) plays a critical role in the pathogenesis of lung inflammation and the development of PH. In this study, we dissected the mechanism by which HIMF and its human homolog resistin (hRETN) induce pulmonary endothelial cell (EC) apoptosis and subsequent lung inflammation-mediated PH, which exhibits many of the hallmarks of the human disease. Systemic administration of HIMF caused increases in EC apoptosis and interleukin (IL)-4-dependent vascular inflammatory marker expression in mouse lung during the early inflammation phase. In vitro, HIMF, hRETN, and IL-4 activated pulmonary microvascular ECs (PMVECs) by increasing angiopoietin-2 expression and induced PMVEC apoptosis. In addition, the conditioned medium from hRETN-treated ECs had elevated levels of endothelin-1 and caused significant increases in pulmonary vascular smooth muscle cell proliferation. Last, HIMF treatment caused development of PH that was characterized by pulmonary vascular remodeling and right heart failure in wild-type mice but not in IL-4 knockout mice. These data suggest that HIMF contributes to activation of vascular inflammation at least in part by inducing EC apoptosis in the lung. These events lead to subsequent PH. PMID:24793164

  20. The Effects of Aging on Pulmonary Oxidative Damage, Protein Nitration and Extracellular Superoxide Dismutase Down-Regulation During Systemic Inflammation

    PubMed Central

    Starr, Marlene E; Ueda, Junji; Yamamoto, Shoji; Evers, B. Mark; Saito, Hiroshi

    2011-01-01

    Systemic inflammatory response syndrome (SIRS), a serious clinical condition characterized by whole body inflammation, is particularly threatening for elderly patients who suffer much higher mortality rates than the young. A major pathological consequence of SIRS is acute lung injury caused by neutrophil-mediated oxidative damage. Previously, we reported an increase in protein tyrosine nitration (a marker of oxidative/nitrosative damage), and a decrease in antioxidant enzyme, extra-cellular superoxide dismutase (EC-SOD), in the lungs of young mice during endotoxemia-induced SIRS. Here we demonstrate that during endotoxemia, down-regulation of EC-SOD is significantly more profound and prolonged, while up-regulation of iNOS is augmented in aged compared to young mice. Aged mice also showed 2.5-fold higher protein nitration levels, compared to young mice, with particularly strong nitration in the pulmonary vascular endothelium during SIRS. Additionally, by 2-dimensional gel electrophoresis, Western blotting and mass spectrometry, we identified proteins which show increased tyrosine nitration in age- and SIRS-dependent manners; these proteins (profilin-1, transgelin-2, LASP 1, tropomyosin and myosin) include components of the actin cytoskeleton responsible for maintaining pulmonary vascular permeability. Reduced EC-SOD in combination with increased oxidative/nitrosative damage and altered cytoskeletal protein function due to tyrosine nitration may contribute to augmented lung injury in the aged with SIRS. PMID:21092756

  1. Preliminary clinical results: an analyzing tool for 2D optical imaging in detection of active inflammation in rheumatoid arthritis

    NASA Astrophysics Data System (ADS)

    Adi Aizudin Bin Radin Nasirudin, Radin; Meier, Reinhard; Ahari, Carmen; Sievert, Matti; Fiebich, Martin; Rummeny, Ernst J.; No"l, Peter B.

    2011-03-01

    Optical imaging (OI) is a relatively new method in detecting active inflammation of hand joints of patients suffering from rheumatoid arthritis (RA). With the high number of people affected by this disease especially in western countries, the availability of OI as an early diagnostic imaging method is clinically highly relevant. In this paper, we present a newly in-house developed OI analyzing tool and a clinical evaluation study. Our analyzing tool extends the capability of existing OI tools. We include many features in the tool, such as region-based image analysis, hyper perfusion curve analysis, and multi-modality image fusion to aid clinicians in localizing and determining the intensity of inflammation in joints. Additionally, image data management options, such as the full integration of PACS/RIS, are included. In our clinical study we demonstrate how OI facilitates the detection of active inflammation in rheumatoid arthritis. The preliminary clinical results indicate a sensitivity of 43.5%, a specificity of 80.3%, an accuracy of 65.7%, a positive predictive value of 76.6%, and a negative predictive value of 64.9% in relation to clinical results from MRI. The accuracy of inflammation detection serves as evidence to the potential of OI as a useful imaging modality for early detection of active inflammation in patients with rheumatoid arthritis. With our in-house developed tool we extend the usefulness of OI imaging in the clinical arena. Overall, we show that OI is a fast, inexpensive, non-invasive and nonionizing yet highly sensitive and accurate imaging modality.-

  2. Exposure to traffic pollution, acute inflammation and autonomic response in a panel of car commuters.

    PubMed

    Sarnat, Jeremy A; Golan, Rachel; Greenwald, Roby; Raysoni, Amit U; Kewada, Priya; Winquist, Andrea; Sarnat, Stefanie E; Dana Flanders, W; Mirabelli, Maria C; Zora, Jennifer E; Bergin, Michael H; Yip, Fuyuen

    2014-08-01

    Exposure to traffic pollution has been linked to numerous adverse health endpoints. Despite this, limited data examining traffic exposures during realistic commutes and acute response exists. We conducted the Atlanta Commuters Exposures (ACE-1) Study, an extensive panel-based exposure and health study, to measure chemically-resolved in-vehicle exposures and corresponding changes in acute oxidative stress, lipid peroxidation, pulmonary and systemic inflammation and autonomic response. We recruited 42 adults (21 with and 21 without asthma) to conduct two 2-h scripted highway commutes during morning rush hour in the metropolitan Atlanta area. A suite of in-vehicle particulate components were measured in the subjects' private vehicles. Biomarker measurements were conducted before, during, and immediately after the commutes and in 3 hourly intervals after commutes. At measurement time points within 3h after the commute, we observed mild to pronounced elevations relative to baseline in exhaled nitric oxide, C-reactive-protein, and exhaled malondialdehyde, indicative of pulmonary and systemic inflammation and oxidative stress initiation, as well as decreases relative to baseline levels in the time-domain heart-rate variability parameters, SDNN and rMSSD, indicative of autonomic dysfunction. We did not observe any detectable changes in lung function measurements (FEV1, FVC), the frequency-domain heart-rate variability parameter or other systemic biomarkers of vascular injury. Water soluble organic carbon was associated with changes in eNO at all post-commute time-points (p<0.0001). Our results point to measureable changes in pulmonary and autonomic biomarkers following a scripted 2-h highway commute. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Exposure to traffic pollution, acute inflammation and autonomic response in a panel of car commuters

    PubMed Central

    Sarnat, Jeremy A.; Golan, Rachel; Greenwald, Roby; Raysoni, Amit U.; Kewada, Priya; Winquist, Andrea; Sarnat, Stefanie E.; Flanders, W. Dana; Mirabelli, Maria C.; Zora, Jennifer E.; Bergin, Michael H.; Yip, Fuyuen

    2015-01-01

    Background Exposure to traffic pollution has been linked to numerous adverse health endpoints. Despite this, limited data examining traffic exposures during realistic commutes and acute response exists. Objectives: We conducted the Atlanta Commuters Exposures (ACE-1) Study, an extensive panel-based exposure and health study, to measure chemically-resolved in-vehicle exposures and corresponding changes in acute oxidative stress, lipid peroxidation, pulmonary and systemic inflammation and autonomic response. Methods We recruited 42 adults (21 with and 21 without asthma) to conduct two 2-h scripted highway commutes during morning rush hour in the metropolitan Atlanta area. A suite of in-vehicle particulate components were measured in the subjects’ private vehicles. Biomarker measurements were conducted before, during, and immediately after the commutes and in 3 hourly intervals after commutes. Results At measurement time points within 3 h after the commute, we observed mild to pronounced elevations relative to baseline in exhaled nitric oxide, C-reactive-protein, and exhaled malondialdehyde, indicative of pulmonary and systemic inflammation and oxidative stress initiation, as well as decreases relative to baseline levels in the time-domain heart-rate variability parameters, SDNN and rMSSD, indicative of autonomic dysfunction. We did not observe any detectable changes in lung function measurements (FEV1, FVC), the frequency-domain heart-rate variability parameter or other systemic biomarkers of vascular injury. Water soluble organic carbon was associated with changes in eNO at all post-commute time-points (p < 0.0001). Conclusions Our results point to measureable changes in pulmonary and autonomic biomarkers following a scripted 2-h highway commute. PMID:24906070

  4. Proximal pulmonary vein stenosis detection in pediatric patients: value of multiplanar and 3-D VR imaging evaluation.

    PubMed

    Lee, Edward Y; Jenkins, Kathy J; Muneeb, Muhammad; Marshall, Audrey C; Tracy, Donald A; Zurakowski, David; Boiselle, Phillip M

    2013-08-01

    One of the important benefits of using multidetector computed tomography (MDCT) is its capability to generate high-quality two-dimensional (2-D) multiplanar (MPR) and three-dimensional (3-D) images from volumetric and isotropic axial CT data. However, to the best of our knowledge, no results have been published on the potential diagnostic role of multiplanar and 3-D volume-rendered (VR) images in detecting pulmonary vein stenosis, a condition in which MDCT has recently assumed a role as the initial noninvasive imaging modality of choice. The purpose of this study was to compare diagnostic accuracy and interpretation time of axial, multiplanar and 3-D VR images for detection of proximal pulmonary vein stenosis in children, and to assess the potential added diagnostic value of multiplanar and 3-D VR images. We used our hospital information system to identify all consecutive children (< 18 years of age) with proximal pulmonary vein stenosis who had both a thoracic MDCT angiography study and a catheter-based conventional angiography within 2 months from June 2005 to February 2012. Two experienced pediatric radiologists independently reviewed each MDCT study for the presence of proximal pulmonary vein stenosis defined as ≥ 50% of luminal narrowing on axial, multiplanar and 3-D VR images. Final diagnosis was confirmed by angiographic findings. Diagnostic accuracy was compared using the z-test. Confidence level of diagnosis (scale 1-5, 5 = highest), perceived added diagnostic value (scale 1-5, 5 = highest), and interpretation time of multiplanar or 3-D VR images were compared using paired t-tests. Interobserver agreement was measured using the chance-corrected kappa coefficient. The final study population consisted of 28 children (15 boys and 13 girls; mean age: 5.2 months). Diagnostic accuracy based on 116 individual pulmonary veins for detection of proximal pulmonary vein stenosis was 72.4% (84 of 116) for axial MDCT images, 77.5% (90 of 116 cases) for

  5. Biodiesel versus diesel exposure: Enhanced pulmonary inflammation, oxidative stress, and differential morphological changes in the mouse lung

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yanamala, Naveena, E-mail: wqu1@cdc.gov; Hatfield, Meghan K., E-mail: wla4@cdc.gov; Farcas, Mariana T., E-mail: woe7@cdc.gov

    2013-10-15

    The use of biodiesel (BD) or its blends with petroleum diesel (D) is considered to be a viable approach to reduce occupational and environmental exposures to particulate matter (PM). Due to its lower particulate mass emissions compared to D, use of BD is thought to alleviate adverse health effects. Considering BD fuel is mainly composed of unsaturated fatty acids, we hypothesize that BD exhaust particles could induce pronounced adverse outcomes, due to their ability to readily oxidize. The main objective of this study was to compare the effects of particles generated by engine fueled with neat BD and neat petroleum-basedmore » D. Biomarkers of tissue damage and inflammation were significantly elevated in lungs of mice exposed to BD particulates. Additionally, BD particulates caused a significant accumulation of oxidatively modified proteins and an increase in 4-hydroxynonenal. The up-regulation of inflammatory cytokines/chemokines/growth factors was higher in lungs upon BD particulate exposure. Histological evaluation of lung sections indicated presence of lymphocytic infiltrate and impaired clearance with prolonged retention of BD particulate in pigment laden macrophages. Taken together, these results clearly indicate that BD exhaust particles could exert more toxic effects compared to D. - Highlights: • Exposure of mice to BDPM caused higher pulmonary toxicity compared to DPM. • Oxidative stress and inflammation were higher in BD vs to D exposed mice. • Inflammatory lymphocyte infiltrates were seen only in lungs of mice exposed to BD. • Ineffective clearance, prolonged PM retention was present only after BD exposure.« less

  6. Dietary Anthocyanins against Obesity and Inflammation

    PubMed Central

    Lee, Yoon-Mi; Yoon, Young; Yoon, Haelim; Park, Hyun-Min; Song, Sooji; Yeum, Kyung-Jin

    2017-01-01

    Chronic low-grade inflammation plays a pivotal role in the pathogenesis of obesity, due to its associated chronic diseases such as type II diabetes, cardiovascular diseases, pulmonary diseases and cancer. Thus, targeting inflammation is an attractive strategy to counter the burden of obesity-induced health problems. Recently, food-derived bioactive compounds have been spotlighted as a regulator against various chronic diseases due to their low toxicity, as opposed to drugs that induce severe side effects. Here we describe the beneficial effects of dietary anthocyanins on obesity-induced metabolic disorders and inflammation. Red cabbage microgreen, blueberry, blackcurrant, mulberry, cherry, black elderberry, black soybean, chokeberry and jaboticaba peel contain a variety of anthocyanins including cyanidins, delphinidins, malvidins, pelargonidins, peonidins and petunidins, and have been reported to alter both metabolic markers and inflammatory markers in cells, animals, and humans. This review discusses the interplay between inflammation and obesity, and their subsequent regulation via the use of dietary anthocyanins, suggesting an alternative dietary strategy to ameliorate obesity and obesity associated chronic diseases. PMID:28974032

  7. Dietary Anthocyanins against Obesity and Inflammation.

    PubMed

    Lee, Yoon-Mi; Yoon, Young; Yoon, Haelim; Park, Hyun-Min; Song, Sooji; Yeum, Kyung-Jin

    2017-10-01

    Chronic low-grade inflammation plays a pivotal role in the pathogenesis of obesity, due to its associated chronic diseases such as type II diabetes, cardiovascular diseases, pulmonary diseases and cancer. Thus, targeting inflammation is an attractive strategy to counter the burden of obesity-induced health problems. Recently, food-derived bioactive compounds have been spotlighted as a regulator against various chronic diseases due to their low toxicity, as opposed to drugs that induce severe side effects. Here we describe the beneficial effects of dietary anthocyanins on obesity-induced metabolic disorders and inflammation. Red cabbage microgreen, blueberry, blackcurrant, mulberry, cherry, black elderberry, black soybean, chokeberry and jaboticaba peel contain a variety of anthocyanins including cyanidins, delphinidins, malvidins, pelargonidins, peonidins and petunidins, and have been reported to alter both metabolic markers and inflammatory markers in cells, animals, and humans. This review discusses the interplay between inflammation and obesity, and their subsequent regulation via the use of dietary anthocyanins, suggesting an alternative dietary strategy to ameliorate obesity and obesity associated chronic diseases.

  8. Development of pulmonary fibrosis through a pathway involving the transcription factor Fra-2/AP-1

    PubMed Central

    Eferl, Robert; Hasselblatt, Peter; Rath, Martina; Popper, Helmut; Zenz, Rainer; Komnenovic, Vukoslav; Idarraga, Maria-Helena; Kenner, Lukas; Wagner, Erwin F.

    2008-01-01

    Studies using genetically modified mice have revealed fundamental functions of the transcription factor Fos/AP-1 in bone biology, inflammation, and cancer. However, the biological role of the Fos-related protein Fra-2 is not well defined in vivo. Here we report an unexpected profibrogenic function of Fra-2 in transgenic mice, in which ectopic expression of Fra-2 in various organs resulted in generalized fibrosis with predominant manifestation in the lung. The pulmonary phenotype was characterized by vascular remodeling and obliteration of pulmonary arteries, which coincided with expression of osteopontin, an AP-1 target gene involved in vascular remodeling and fibrogenesis. These alterations were followed by inflammation; release of profibrogenic factors, such as IL-4, insulin-like growth factor 1, and CXCL5; progressive fibrosis; and premature mortality. Genetic experiments and bone marrow reconstitutions suggested that fibrosis developed independently of B and T cells and was not mediated by autoimmunity despite the marked inflammation observed in transgenic lungs. Importantly, strong expression of Fra-2 was also observed in human samples of idiopathic and autoimmune-mediated pulmonary fibrosis. These findings indicate that Fra-2 expression is sufficient to cause pulmonary fibrosis in mice, possibly by linking vascular remodeling and fibrogenesis, and suggest that Fra-2 has to be considered a contributing pathogenic factor of pulmonary fibrosis in humans. PMID:18641127

  9. Use of Metal Oxide Nanoparticle Band Gap to Develop a Predictive Paradigm for Oxidative Stress and Acute Pulmonary Inflammation

    PubMed Central

    Zhang, Haiyuan; Ji, Zhaoxia; Xia, Tian; Meng, Huan; Low-Kam, Cecile; Liu, Rong; Pokhrel, Suman; Lin, Sijie; Wang, Xiang; Liao, Yu-Pei; Wang, Meiying; Li, Linjiang; Rallo, Robert; Damoiseaux, Robert; Telesca, Donatello; Mädler, Lutz; Cohen, Yoram; Zink, Jeffrey I.; Nel, Andre E.

    2014-01-01

    We demonstrate for 24 metal oxide (MOx) nanoparticles that it is possible to use conduction band energy levels to delineate their toxicological potential at cellular and whole animal levels. Among the materials, the overlap of conduction band energy (Ec) levels with the cellular redox potential (−4.12 to −4.84 eV) was strongly correlated to the ability of Co3O4, Cr2O3, Ni2O3, Mn2O3 and CoO nanoparticles to induce oxygen radicals, oxidative stress and inflammation. This outcome is premised on permissible electron transfers from the biological redox couples that maintain the cellular redox equilibrium to the conduction band of the semiconductor particles. Both single parameter cytotoxic as well as multi-parameter oxidative stress assays in cells showed excellent correlation to the generation of acute neutrophilic inflammation and cytokine responses in the lungs of CB57 Bl/6 mice. Co3O4, Ni2O3, Mn2O3 and CoO nanoparticles could also oxidize cytochrome c as a representative redox couple involved in redox homeostasis. While CuO and ZnO generated oxidative stress and acute pulmonary inflammation that is not predicted by Ec levels, the adverse biological effects of these materials could be explained by their solubility, as demonstrated by ICP-MS analysis. Taken together, these results demonstrate, for the first time, that it is possible to predict the toxicity of a large series of MOx nanoparticles in the lung premised on semiconductor properties and an integrated in vitro/in vivo hazard ranking model premised on oxidative stress. This establishes a robust platform for modeling of MOx structure-activity relationships based on band gap energy levels and particle dissolution. This predictive toxicological paradigm is also of considerable importance for regulatory decision-making about this important class of engineered nanomaterials. PMID:22502734

  10. Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation.

    PubMed

    Zhang, Haiyuan; Ji, Zhaoxia; Xia, Tian; Meng, Huan; Low-Kam, Cecile; Liu, Rong; Pokhrel, Suman; Lin, Sijie; Wang, Xiang; Liao, Yu-Pei; Wang, Meiying; Li, Linjiang; Rallo, Robert; Damoiseaux, Robert; Telesca, Donatello; Mädler, Lutz; Cohen, Yoram; Zink, Jeffrey I; Nel, Andre E

    2012-05-22

    We demonstrate for 24 metal oxide (MOx) nanoparticles that it is possible to use conduction band energy levels to delineate their toxicological potential at cellular and whole animal levels. Among the materials, the overlap of conduction band energy (E(c)) levels with the cellular redox potential (-4.12 to -4.84 eV) was strongly correlated to the ability of Co(3)O(4), Cr(2)O(3), Ni(2)O(3), Mn(2)O(3), and CoO nanoparticles to induce oxygen radicals, oxidative stress, and inflammation. This outcome is premised on permissible electron transfers from the biological redox couples that maintain the cellular redox equilibrium to the conduction band of the semiconductor particles. Both single-parameter cytotoxic as well as multi-parameter oxidative stress assays in cells showed excellent correlation to the generation of acute neutrophilic inflammation and cytokine responses in the lungs of C57 BL/6 mice. Co(3)O(4), Ni(2)O(3), Mn(2)O(3), and CoO nanoparticles could also oxidize cytochrome c as a representative redox couple involved in redox homeostasis. While CuO and ZnO generated oxidative stress and acute pulmonary inflammation that is not predicted by E(c) levels, the adverse biological effects of these materials could be explained by their solubility, as demonstrated by ICP-MS analysis. These results demonstrate that it is possible to predict the toxicity of a large series of MOx nanoparticles in the lung premised on semiconductor properties and an integrated in vitro/in vivo hazard ranking model premised on oxidative stress. This establishes a robust platform for modeling of MOx structure-activity relationships based on band gap energy levels and particle dissolution. This predictive toxicological paradigm is also of considerable importance for regulatory decision-making about this important class of engineered nanomaterials.

  11. Impact of residual pulmonary obstruction on the long-term outcome of patients with pulmonary embolism.

    PubMed

    Pesavento, Raffaele; Filippi, Lucia; Palla, Antonio; Visonà, Adriana; Bova, Carlo; Marzolo, Marco; Porro, Fernando; Villalta, Sabina; Ciammaichella, Maurizio; Bucherini, Eugenio; Nante, Giovanni; Battistelli, Sandra; Muiesan, Maria Lorenza; Beltramello, Giampietro; Prisco, Domenico; Casazza, Franco; Ageno, Walter; Palareti, Gualtiero; Quintavalla, Roberto; Monti, Simonetta; Mumoli, Nicola; Zanatta, Nello; Cappelli, Roberto; Cattaneo, Marco; Moretti, Valentino; Corà, Francesco; Bazzan, Mario; Ghirarduzzi, Angelo; Frigo, Anna Chiara; Miniati, Massimo; Prandoni, Paolo

    2017-05-01

    The impact of residual pulmonary obstruction on the outcome of patients with pulmonary embolism is uncertain.We recruited 647 consecutive symptomatic patients with a first episode of pulmonary embolism, with or without concomitant deep venous thrombosis. They received conventional anticoagulation, were assessed for residual pulmonary obstruction through perfusion lung scanning after 6 months and then were followed up for up to 3 years. Recurrent venous thromboembolism and chronic thromboembolic pulmonary hypertension were assessed according to widely accepted criteria.Residual pulmonary obstruction was detected in 324 patients (50.1%, 95% CI 46.2-54.0%). Patients with residual pulmonary obstruction were more likely to be older and to have an unprovoked episode. After a 3-year follow-up, recurrent venous thromboembolism and/or chronic thromboembolic pulmonary hypertension developed in 34 out of the 324 patients (10.5%) with residual pulmonary obstruction and in 15 out of the 323 patients (4.6%) without residual pulmonary obstruction, leading to an adjusted hazard ratio of 2.26 (95% CI 1.23-4.16).Residual pulmonary obstruction, as detected with perfusion lung scanning at 6 months after a first episode of pulmonary embolism, is an independent predictor of recurrent venous thromboembolism and/or chronic thromboembolic pulmonary hypertension. Copyright ©ERS 2017.

  12. Pulmonary blood flow and pulmonary hypertension: Is the pulmonary circulation flowophobic or flowophilic?

    PubMed Central

    Kulik, Thomas J.

    2012-01-01

    Increased pulmonary blood flow (PBF) is widely thought to provoke pulmonary vascular obstructive disease (PVO), but the impact of wall shear stress in the lung is actually poorly defined. We examined information from patients having cardiac lesions which impact the pulmonary circulation in distinct ways, as well as experimental studies, asking how altered hemodynamics impact the risk of developing PVO. Our results are as follows: (1) with atrial septal defect (ASD; increased PBF but low PAP), shear stress may be increased but there is little tendency to develop PVO; (2) with normal PBF but increased pulmonary vascular resistance (PVR; mitral valve disease) shear stress may also be increased but risk of PVO still low; (3) with high PVR and PBF (e.g., large ventricular septal defect), wall shear stress is markedly increased and the likelihood of developing PVO is much higher than with high PBF or PAP only; and (4) with ASD, experimental and clinical observations suggest that increased PBF plus another stimulus (e.g., endothelial inflammation) may be required for PVO. We conclude that modestly increased wall shear stress (e.g., ASD) infrequently provokes PVO, and likely requires other factors to be harmful. Likewise, increased PAP seldom causes PVO. Markedly increased wall shear stress may greatly increase the likelihood of PVO, but we cannot discriminate its effect from the combined effects of increased PAP and PBF. Finally, the age of onset of increased PAP may critically impact the risk of PVO. Some implications of these observations for future investigations are discussed. PMID:23130101

  13. Lodenafil treatment in the monocrotaline model of pulmonary hypertension in rats.

    PubMed

    Polonio, Igor Bastos; Acencio, Milena Marques Pagliareli; Pazetti, Rogério; Almeida, Francine Maria de; Silva, Bárbara Soares da; Pereira, Karina Aparecida Bonifácio; Souza, Rogério

    2014-01-01

    We assessed the effects of lodenafil on hemodynamics and inflammation in the rat model of monocrotaline-induced pulmonary hypertension (PH). Thirty male Sprague-Dawley rats were randomly divided into three groups: control; monocrotaline (experimental model); and lodenafil (experimental model followed by lodenafil treatment, p.o., 5 mg/kg daily for 28 days) Mean pulmonary artery pressure (mPAP) was obtained by right heart catheterization. We investigated right ventricular hypertrophy (RVH) and IL-1 levels in lung fragments. The number of cases of RVH was significantly higher in the monocrotaline group than in the lodenafil and control groups, as were mPAP and IL-1 levels. We conclude that lodenafil can prevent monocrotaline-induced PH, RVH, and inflammation.

  14. Lodenafil treatment in the monocrotaline model of pulmonary hypertension in rats*

    PubMed Central

    Polonio, Igor Bastos; Acencio, Milena Marques Pagliareli; Pazetti, Rogério; de Almeida, Francine Maria; da Silva, Bárbara Soares; Pereira, Karina Aparecida Bonifácio; Souza, Rogério

    2014-01-01

    We assessed the effects of lodenafil on hemodynamics and inflammation in the rat model of monocrotaline-induced pulmonary hypertension (PH). Thirty male Sprague-Dawley rats were randomly divided into three groups: control; monocrotaline (experimental model); and lodenafil (experimental model followed by lodenafil treatment, p.o., 5 mg/kg daily for 28 days) Mean pulmonary artery pressure (mPAP) was obtained by right heart catheterization. We investigated right ventricular hypertrophy (RVH) and IL-1 levels in lung fragments. The number of cases of RVH was significantly higher in the monocrotaline group than in the lodenafil and control groups, as were mPAP and IL-1 levels. We conclude that lodenafil can prevent monocrotaline-induced PH, RVH, and inflammation. PMID:25210965

  15. [Turpentine baths in rehabilitation of patients with chronic obstructive pulmonary disease].

    PubMed

    Aĭrapetova, N S; Polikanova, E B; Davydova, O B; Gosn, L D; Kulikova, O V; Ksenofontova, I V; Nikoda, N V; Rassulova, M A; Nitchenko, O V; Siziakova, L A; Doronina, Iu V; Derevnina, N A

    2007-01-01

    We have investigated effects of turpentine baths with white emultion, yellow solution and mixed on the course of inflammation, immunocompetent system, external respiration function, pulmonary cardiohemodynamics, physical performance in patients with chronic obstructive pulmonary disease. We developed differential indications for each bath variant depending on the features of a clinical picture of the disease, comorbid pathology and revealed contraindications to their administration.

  16. Cannabidiol improves lung function and inflammation in mice submitted to LPS-induced acute lung injury.

    PubMed

    Ribeiro, A; Almeida, V I; Costola-de-Souza, C; Ferraz-de-Paula, V; Pinheiro, M L; Vitoretti, L B; Gimenes-Junior, J A; Akamine, A T; Crippa, J A; Tavares-de-Lima, W; Palermo-Neto, J

    2015-02-01

    We have previously shown that the prophylactic treatment with cannabidiol (CBD) reduces inflammation in a model of acute lung injury (ALI). In this work we analyzed the effects of the therapeutic treatment with CBD in mice subjected to the model of lipopolysaccharide (LPS)-induced ALI on pulmonary mechanics and inflammation. CBD (20 and 80 mg/kg) was administered (i.p.) to mice 6 h after LPS-induced lung inflammation. One day (24 h) after the induction of inflammation the assessment of pulmonary mechanics and inflammation were analyzed. The results show that CBD decreased total lung resistance and elastance, leukocyte migration into the lungs, myeloperoxidase activity in the lung tissue, protein concentration and production of pro-inflammatory cytokines (TNF and IL-6) and chemokines (MCP-1 and MIP-2) in the bronchoalveolar lavage supernatant. Thus, we conclude that CBD administered therapeutically, i.e. during an ongoing inflammatory process, has a potent anti-inflammatory effect and also improves the lung function in mice submitted to LPS-induced ALI. Therefore the present and previous data suggest that in the future cannabidiol might become a useful therapeutic tool for the attenuation and treatment of inflammatory lung diseases.

  17. GW0742, a high affinity PPAR-β/δ agonist reduces lung inflammation induced by bleomycin instillation in mice.

    PubMed

    Galuppo, M; Di Paola, R; Mazzon, E; Esposito, E; Paterniti, I; Kapoor, A; Thiemermann, C; Cuzzocrea, S

    2010-01-01

    Peroxisome Proliferator-Activated Receptor β/δ belongs to a family of ligand-activated transcription factors. Recent data have clarified its metabolic roles and enhanced the potential role of this receptor as a pharmacological target. Moreover, although its role in acute inflammation remains unclear, being the nuclear receptor PPAR β/δ widely expressed in many tissues, including the vascular endothelium, we assume that the infiltration of PMNs into tissues, a prominent feature in inflammation, may also be related to PPAR β/δ. Mice subjected to intratracheal instillation of bleomycin (BLEO, 1 mg/kg), a glycopeptide produced by the bacterium Streptomyces verticillus, develop lung inflammation and injury characterized by a significant neutrophil infiltration and tissue oedema. Therefore, the aim of this study is to investigate the effects of GW0742, a synthetic high affinity PPAR β/δ agonist, and its possible role in preventing the advance of inflammatory and apoptotic processes induced by bleomycin, that long-term leads to the appearance of pulmonary fibrosis. Our data showed that GW0742-treatment (0.3 mg/Kg, 10 percent DMSO, i.p.) has therapeutic effects on pulmonary damage, decreasing many inflammatory and apoptotic parameters detected by measurement of: 1) cytokine production; 2) leukocyte accumulation, indirectly measured as decrease of myeloperoxidase (MPO) activity; 3) IkBα degradation and NF-kB nuclear translocation; 4) ERK phosphorylation; 5) stress oxidative by NO formation due to iNOS expression; 6) nitrotyrosine and PAR localization; 7) the degree of apoptosis, evaluated by Bax and Bcl-2 balance, FAS ligand expression and TUNEL staining. Taken together, our results clearly show that GW0742 reduces the lung injury and inflammation due to the intratracheal BLEO--instillation in mice.

  18. Significance of Intratracheal Instillation Tests for the Screening of Pulmonary Toxicity of Nanomaterials.

    PubMed

    Morimoto, Yasuo; Izumi, Hiroto; Yoshiura, Yukiko; Fujisawa, Yuri; Fujita, Katsuhide

    Inhalation tests are the gold standard test for the estimation of the pulmonary toxicity of respirable materials. Intratracheal instillation tests have been used widely, but they yield limited evidence of the harmful effects of respirable materials. We reviewed the effectiveness of intratracheal instillation tests for estimating the hazards of nanomaterials, mainly using research papers featuring intratracheal instillation and inhalation tests centered on a Japanese national project. Compared to inhalation tests, intratracheal instillation tests induced more acute inflammatory responses in the animal lung due to a bolus effect regardless of the toxicity of the nanomaterials. However, nanomaterials with high toxicity induced persistent inflammation in the chronic phase, and nanomaterials with low toxicity induced only transient inflammation. Therefore, in order to estimate the harmful effects of a nanomaterial, an observation period of 3 months or 6 months following intratracheal instillation is necessary. Among the endpoints of pulmonary toxicity, cell count and percentage of neutrophil, chemokines for neutrophils and macrophages, and oxidative stress markers are considered most important. These markers show persistent and transient responses in the lung from nanomaterials with high and low toxicity, respectively. If the evaluation of the pulmonary toxicity of nanomaterials is performed in not only the acute but also the chronic phase in order to avoid the bolus effect of intratracheal instillation and inflammatory-related factors that are used as endpoints of pulmonary toxicity, we speculate that intratracheal instillation tests can be useful for screening for the identification of the hazard of nanomaterials through pulmonary inflammation.

  19. Inflammation and angiogenesis in fibrotic lung disease.

    PubMed

    Keane, Michael P; Strieter, Robert M; Lynch, Joseph P; Belperio, John A

    2006-12-01

    The pathogenesis of pulmonary fibrosis is poorly understood. Although inflammation has been presumed to have an important role in the development of fibrosis this has been questioned recently, particularly with regard to idiopathic pulmonary fibrosis (IPF). It is, however, increasingly recognized that the polarization of the inflammatory response toward a type 2 phenotype supports fibroproliferation. Increased attention has been on the role of noninflammatory structural cells such as the fibroblast, myofibroblast, epithelial cell, and endothelial cells. Furthermore, the origin of these cells appears to be multifactorial and includes resident cells, bone marrow-derived cells, and epithelial to mesenchymal transition. Increasing evidence supports the presence of vascular remodeling in fibrotic lung disease, although the precise role in the pathogenesis of fibrosis remains to be determined. Therefore, the pathogenesis of pulmonary fibrosis is complex and involves the interaction of multiple cell types and compartments within the lung.

  20. [Computed tomography with computer-assisted detection of pulmonary nodules in dogs and cats].

    PubMed

    Niesterok, C; Piesnack, S; Köhler, C; Ludewig, E; Alef, M; Kiefer, I

    2015-01-01

    The aim of this study was to assess the potential benefit of computer-assisted detection (CAD) of pulmonary nodules in veterinary medicine. Therefore, the CAD rate was compared to the detection rates of two individual examiners in terms of its sensitivity and false-positive findings. We included 51 dogs and 16 cats with pulmonary nodules previously diagnosed by computed tomography. First, the number of nodules ≥ 3 mm was recorded for each patient by two independent examiners. Subsequently, each examiner used the CAD software for automated nodule detection. With the knowledge of the CAD results, a final consensus decision on the number of nodules was achieved. The software used was a commercially available CAD program. The sensitivity of examiner 1 was 89.2%, while that of examiner 2 reached 87.4%. CAD had a sensitivity of 69.4%. With CAD, the sensitivity of examiner 1 increased to 94.7% and that of examiner 2 to 90.8%. The CAD-system, which we used in our study, had a moderate sensitivity of 69.4%. Despite its severe limitations, with a high level of false-positive and false-negative results, CAD increased the examiners' sensitivity. Therefore, its supportive role in diagnostics appears to be evident.

  1. Relationship between pulmonary and systemic markers of exposure to multiple types of welding particulate matter.

    PubMed

    Erdely, Aaron; Salmen-Muniz, Rebecca; Liston, Angie; Hulderman, Tracy; Zeidler-Erdely, Patti C; Antonini, James M; Simeonova, Petia P

    2011-09-05

    Welding results in a unique and complex occupational exposure. Recent epidemiological studies have shown an increased risk of cardiovascular disease following welding fume exposure. In this study, we compared the induction of pulmonary and systemic inflammation following exposure to multiple types of welding fumes. Mice were exposed to 340μg of manual metal arc stainless steel (MMA-SS), gas metal arc-SS (GMA-SS) or GMA-mild steel (GMA-MS) by pharyngeal aspiration. Mice were sacrificed at 4 and 24h post-exposure to evaluate various parameters of pulmonary and systemic inflammation. Alterations in pulmonary gene expression by a custom designed TaqMan array showed minimal differences between the fumes at 4h. Conversely at 24h, gene expression changes were further increased by SS but not GMA-MS exposure. These findings were associated with the surrogate marker of systemic inflammation, liver acute phase gene induction. Interestingly, stress response genes in cardiovascular tissues were only increased following MMA-SS exposure. These effects were related to the initial level of pulmonary cytotoxicity, as measured by lactate dehydrogenase activity, which was greatest following MMA-SS exposure. In conclusion, varying types of welding fumes elicit quantitatively different systemic inflammatory and/or stress responses. Published by Elsevier Ireland Ltd.

  2. Current concepts on oxidative/carbonyl stress, inflammation and epigenetics in pathogenesis of chronic obstructive pulmonary disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao Hongwei; Rahman, Irfan, E-mail: irfan_rahman@urmc.rochester.edu

    Chronic obstructive pulmonary disease (COPD) is a global health problem. The current therapies for COPD are poorly effective and the mainstays of pharmacotherapy are bronchodilators. A better understanding of the pathobiology of COPD is critical for the development of novel therapies. In the present review, we have discussed the roles of oxidative/aldehyde stress, inflammation/immunity, and chromatin remodeling in the pathogenesis of COPD. An imbalance of oxidants/antioxidants caused by cigarette smoke and other pollutants/biomass fuels plays an important role in the pathogenesis of COPD by regulating redox-sensitive transcription factors (e.g., NF-{kappa}B), autophagy and unfolded protein response leading to chronic lung inflammatorymore » response. Cigarette smoke also activates canonical/alternative NF-{kappa}B pathways and their upstream kinases leading to sustained inflammatory response in lungs. Recently, epigenetic regulation has been shown to be critical for the development of COPD because the expression/activity of enzymes that regulate these epigenetic modifications have been reported to be abnormal in airways of COPD patients. Hence, the significant advances made in understanding the pathophysiology of COPD as described herein will identify novel therapeutic targets for intervention in COPD.« less

  3. Evaluation of end-tidal CO2 pressure at the anaerobic threshold for detecting and assessing pulmonary hypertension.

    PubMed

    Higashi, Akifumi; Dohi, Yoshihiro; Yamabe, Sayuri; Kinoshita, Hiroki; Sada, Yoshiharu; Kitagawa, Toshiro; Hidaka, Takayuki; Kurisu, Satoshi; Yamamoto, Hideya; Yasunobu, Yuji; Kihara, Yasuki

    2017-11-01

    Cardiopulmonary exercise testing (CPET) is useful for the evaluation of patients with suspected or confirmed pulmonary hypertension (PH). End-tidal carbon dioxide pressure (PETCO 2 ) during exercise is reduced with elevated pulmonary artery pressure. However, the utility of ventilatory parameters such as CPET for detecting PH remains unclear. We conducted a review in 155 patients who underwent right heart catheterization and CPET. Fifty-nine patients had PH [mean pulmonary arterial pressure (mPAP) ≥25 mmHg]. There was an inverse correlation between PETCO 2 at the anaerobic threshold (AT) and mPAP (r = -0.66; P < 0.01). Multiple regression analysis showed that PETCO 2 at the AT was independently associated with an elevated mPAP (P = 0.04). The sensitivity and specificity of CPET for PH were 80 and 86%, respectively, when the cut-off value identified by receiver operating characteristic curve analysis for PETCO 2 at the AT was ≤34.7 mmHg. A combination of echocardiography and CPET improved the sensitivity in detecting PH without markedly reducing specificity (sensitivity 87%, specificity 85%). Evaluation of PETCO 2 at the AT is useful for estimating pulmonary pressure. A combination of CPET and previous screening algorithms for PH may enhance the diagnostic ability of PH.

  4. Role of eosinophils in airway inflammation of chronic obstructive pulmonary disease.

    PubMed

    Tashkin, Donald P; Wechsler, Michael E

    2018-01-01

    COPD is a significant cause of morbidity and mortality. In some patients with COPD, eosinophils contribute to inflammation that promotes airway obstruction; approximately a third of stable COPD patients have evidence of eosinophilic inflammation. Although the eosinophil threshold associated with clinical relevance in patients with COPD is currently subject to debate, eosinophil counts hold potential as biomarkers to guide therapy. In particular, eosinophil counts may be useful in assessing which patients may benefit from inhaled corticosteroid therapy, particularly regarding exacerbation prevention. In addition, several therapies targeting eosinophilic inflammation are available or in development, including monoclonal antibodies targeting the IL5 ligand, the IL5 receptor, IL4, and IL13. The goal of this review was to describe the biologic characteristics of eosinophils, their role in COPD during exacerbations and stable disease, and their use as biomarkers to aid treatment decisions. We also propose an algorithm for inhaled corticosteroid use, taking into consideration eosinophil counts and pneumonia history, and emerging eosinophil-targeted therapies in COPD.

  5. Role of eosinophils in airway inflammation of chronic obstructive pulmonary disease

    PubMed Central

    Tashkin, Donald P; Wechsler, Michael E

    2018-01-01

    COPD is a significant cause of morbidity and mortality. In some patients with COPD, eosinophils contribute to inflammation that promotes airway obstruction; approximately a third of stable COPD patients have evidence of eosinophilic inflammation. Although the eosinophil threshold associated with clinical relevance in patients with COPD is currently subject to debate, eosinophil counts hold potential as biomarkers to guide therapy. In particular, eosinophil counts may be useful in assessing which patients may benefit from inhaled corticosteroid therapy, particularly regarding exacerbation prevention. In addition, several therapies targeting eosinophilic inflammation are available or in development, including monoclonal antibodies targeting the IL5 ligand, the IL5 receptor, IL4, and IL13. The goal of this review was to describe the biologic characteristics of eosinophils, their role in COPD during exacerbations and stable disease, and their use as biomarkers to aid treatment decisions. We also propose an algorithm for inhaled corticosteroid use, taking into consideration eosinophil counts and pneumonia history, and emerging eosinophil-targeted therapies in COPD. PMID:29403271

  6. Effects of amorphous silica coating on cerium oxide nanoparticles induced pulmonary responses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Jane, E-mail: jym1@cdc.gov; Mercer, Robert R.; Barger, Mark

    2015-10-01

    Recently cerium compounds have been used in a variety of consumer products, including diesel fuel additives, to increase fuel combustion efficiency and decrease diesel soot emissions. However, cerium oxide (CeO{sub 2}) nanoparticles have been detected in the exhaust, which raises a health concern. Previous studies have shown that exposure of rats to nanoscale CeO{sub 2} by intratracheal instillation (IT) induces sustained pulmonary inflammation and fibrosis. In the present study, male Sprague–Dawley rats were exposed to CeO{sub 2} or CeO{sub 2} coated with a nano layer of amorphous SiO{sub 2} (aSiO{sub 2}/CeO{sub 2}) by a single IT and sacrificed at variousmore » times post-exposure to assess potential protective effects of the aSiO{sub 2} coating. The first acellular bronchoalveolar lavage (BAL) fluid and BAL cells were collected and analyzed from all exposed animals. At the low dose (0.15 mg/kg), CeO{sub 2} but not aSiO{sub 2}/CeO{sub 2} exposure induced inflammation. However, at the higher doses, both particles induced a dose-related inflammation, cytotoxicity, inflammatory cytokines, matrix metalloproteinase (MMP)-9, and tissue inhibitor of MMP at 1 day post-exposure. Morphological analysis of lung showed an increased inflammation, surfactant and collagen fibers after CeO{sub 2} (high dose at 3.5 mg/kg) treatment at 28 days post-exposure. aSiO{sub 2} coating significantly reduced CeO{sub 2}-induced inflammatory responses in the airspace and appeared to attenuate phospholipidosis and fibrosis. Energy dispersive X-ray spectroscopy analysis showed Ce and phosphorous (P) in all particle-exposed lungs, whereas Si was only detected in aSiO{sub 2}/CeO{sub 2}-exposed lungs up to 3 days after exposure, suggesting that aSiO{sub 2} dissolved off the CeO{sub 2} core, and some of the CeO{sub 2} was transformed to CePO{sub 4} with time. These results demonstrate that aSiO{sub 2} coating reduce CeO{sub 2}-induced inflammation, phospholipidosis and fibrosis. - Highlights

  7. Curcumin, inflammation, and chronic diseases: how are they linked?

    PubMed

    He, Yan; Yue, Yuan; Zheng, Xi; Zhang, Kun; Chen, Shaohua; Du, Zhiyun

    2015-05-20

    It is extensively verified that continued oxidative stress and oxidative damage may lead to chronic inflammation, which in turn can mediate most chronic diseases including cancer, diabetes, cardiovascular, neurological, inflammatory bowel disease and pulmonary diseases. Curcumin, a yellow coloring agent extracted from turmeric, shows strong anti-oxidative and anti-inflammatory activities when used as a remedy for the prevention and treatment of chronic diseases. How oxidative stress activates inflammatory pathways leading to the progression of chronic diseases is the focus of this review. Thus, research to date suggests that chronic inflammation, oxidative stress, and most chronic diseases are closely linked, and the antioxidant properties of curcumin can play a key role in the prevention and treatment of chronic inflammation diseases.

  8. Eosinophilic and Neutrophilic Airway Inflammation in the Phenotyping of Mild-to-Moderate Asthma and Chronic Obstructive Pulmonary Disease.

    PubMed

    Górska, Katarzyna; Paplińska-Goryca, Magdalena; Nejman-Gryz, Patrycja; Goryca, Krzysztof; Krenke, Rafał

    2017-04-01

    Asthma and chronic obstructive pulmonary disease (COPD) are heterogeneous diseases with different inflammatory phenotypes. Various inflammatory mediators play a role in these diseases. The aim of this study was to analyze the neutrophilic and eosinophilic airway and systemic inflammation as the phenotypic characterization of patients with asthma and COPD. Twenty-four patients with asthma and 33 patients with COPD were enrolled in the study. All the patients were in mild-to-moderate stage of disease, and none of them were treated with inhaled corticosteroids. Concentrations of IL-6, neutrophil elastase (NE), matrix metalloproteinase 9 (MMP-9), eosinophil cationic protein (ECP), and IL-33 and IL-17 in serum and induced sputum (IS) were measured by enzyme-linked immunosorbent assay (ELISA). The cellular composition of blood and IS was evaluated. Hierarchical clustering of patients was performed for the combination of selected clinical features and mediators. Asthma and COPD can be differentiated based on eosinophilic/neutrophilic systemic or airway inflammation with unsatisfactory efficiency. Hierarchical clustering of patients based on blood eosinophil percentage and clinical data revealed two asthma clusters differing in the number of positive skin prick tests and one COPD cluster with two subclusters characterized by low and high blood eosinophil concentrations. Clustering of patients according to IS measurements and clinical data showed two main clusters: pure asthma characterized by high eosinophil/atopy status and mixed asthma and COPD cluster with low eosinophil/atopy status. The neutrophilic phenotype of COPD was associated with more severe airway obstruction and hyperinflation.

  9. Pulmonary veins in the normal lung and pulmonary hypertension due to left heart disease

    PubMed Central

    Hunt, James M.; Bethea, Brian; Liu, Xiang; Gandjeva, Aneta; Mammen, Pradeep P. A.; Stacher, Elvira; Gandjeva, Marina R.; Parish, Elisabeth; Perez, Mario; Smith, Lynelle; Graham, Brian B.; Kuebler, Wolfgang M.

    2013-01-01

    Despite the importance of pulmonary veins in normal lung physiology and the pathobiology of pulmonary hypertension with left heart disease (PH-LHD), pulmonary veins remain largely understudied. Difficult to identify histologically, lung venous endothelium or smooth muscle cells display no unique characteristic functional and structural markers that distinguish them from pulmonary arteries. To address these challenges, we undertook a search for unique molecular markers in pulmonary veins. In addition, we addressed the expression pattern of a candidate molecular marker and analyzed the structural pattern of vascular remodeling of pulmonary veins in a rodent model of PH-LHD and in lung tissue of patients with PH-LHD obtained at time of placement on a left ventricular assist device. We detected urokinase plasminogen activator receptor (uPAR) expression preferentially in normal pulmonary veins of mice, rats, and human lungs. Expression of uPAR remained elevated in pulmonary veins of rats with PH-LHD; however, we also detected induction of uPAR expression in remodeled pulmonary arteries. These findings were validated in lungs of patients with PH-LHD. In selected patients with sequential lung biopsy at the time of removal of the left ventricular assist device, we present early data suggesting improvement in pulmonary hemodynamics and venous remodeling, indicating potential regression of venous remodeling in response to assist device treatment. Our data indicate that remodeling of pulmonary veins is an integral part of PH-LHD and that pulmonary veins share some key features present in remodeled yet not normotensive pulmonary arteries. PMID:24039255

  10. Emodin alleviates bleomycin-induced pulmonary fibrosis in rats.

    PubMed

    Guan, Ruijuan; Zhao, Xiaomei; Wang, Xia; Song, Nana; Guo, Yuhong; Yan, Xianxia; Jiang, Liping; Cheng, Wenjing; Shen, Linlin

    2016-11-16

    Idiopathic pulmonary fibrosis (IPF) is a lethal lung disease with few treatment options and poor prognosis. Emodin, extracted from Chinese rhubarb, was found to be able to alleviate bleomycin (BLM)-induced pulmonary fibrosis, yet the underlying mechanism remains largely unknown. This study aimed to further investigate the effects of emodin on the inflammation and fibrosis of BLM-induced pulmonary fibrosis and the mechanism involved in rats. Our results showed that emodin improved pulmonary function, reduced weight loss and prevented death in BLM-treated rats. Emodin significantly relieved lung edema and fibrotic changes, decreased collagen deposition, and suppressed the infiltration of myofibroblasts [characterized by expression of α-smooth muscle actin (α-SMA)] and inflammatory cells (mainly macrophages and lymphocytes). Moreover, emodin reduced levels of TNF-α, IL-6, TGF-β1 and heat shock protein (HSP)-47 in the lungs of BLM-treated rats. In vitro, emodin profoundly inhibited TGF-β1-induced α-SMA, collagen IV and fibronectin expression in human embryo lung fibroblasts (HELFs). Emodin also inhibited TGF-β1-induced Smad2/3 and STAT3 activation, indicating that Smad2/3 and STAT3 inactivation mediates emodin-induced effects on TGF-β1-induced myofibroblast differentiation. These results suggest that emodin can exert its anti-fibrotic effect via suppression of TGF-β1 signaling and subsequently inhibition of inflammation, HSP-47 expression, myofibroblast differentiation and extracellular matrix (ECM) deposition. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Vitamin E deficiency enhances pulmonary inflammatory response and oxidative stress induced by single-walled carbon nanotubes in C57BL/6 mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shvedova, Anna A.; Kisin, Elena R.; Murray, Ashley R.

    2007-06-15

    Exposure of mice to single-walled carbon nanotubes (SWCNTs) induces an unusually robust pulmonary inflammatory response with an early onset of fibrosis, which is accompanied by oxidative stress and antioxidant depletion. The role of specific components of the antioxidant protective system, specifically vitamin E, the major lipid-soluble antioxidant, in the SWCNT-induced reactions has not been characterized. We used C57BL/6 mice, maintained on vitamin E-sufficient or vitamin E-deficient diets, to explore and compare the pulmonary inflammatory reactions to aspired SWCNTs. The vitamin E-deficient diet caused a 90-fold depletion of {alpha}-tocopherol in the lung tissue and resulted in a significant decline of othermore » antioxidants (GSH, ascorbate) as well as accumulation of lipid peroxidation products. A greater decrease of pulmonary antioxidants was detected in SWCNT-treated vitamin E-deficient mice as compared to controls. Lowered levels of antioxidants in vitamin E-deficient mice were associated with a higher sensitivity to SWCNT-induced acute inflammation (total number of inflammatory cells, number of polymorphonuclear leukocytes, released LDH, total protein content and levels of pro-inflammatory cytokines, TNF-{alpha} and IL-6) and enhanced profibrotic responses (elevation of TGF-{beta} and collagen deposition). Exposure to SWCNTs markedly shifted the ratio of cleaved to full-length extracellular superoxide dismutase (EC-SOD). Given that pulmonary levels of vitamin E can be manipulated through diet, its effects on SWCNT-induced inflammation may be of practical importance in optimizing protective strategies.« less

  12. Tomosynthesis for the early detection of pulmonary emphysema: diagnostic performance compared with chest radiography, using multidetector computed tomography as reference.

    PubMed

    Yamada, Yoshitake; Jinzaki, Masahiro; Hashimoto, Masahiro; Shiomi, Eisuke; Abe, Takayuki; Kuribayashi, Sachio; Ogawa, Kenji

    2013-08-01

    To compare the diagnostic performance of tomosynthesis with that of chest radiography for the detection of pulmonary emphysema, using multidetector computed tomography (MDCT) as reference. Forty-eight patients with and 63 without pulmonary emphysema underwent chest MDCT, tomosynthesis and radiography on the same day. Two blinded radiologists independently evaluated the tomosynthesis images and radiographs for the presence of pulmonary emphysema. Axial and coronal MDCT images served as the reference standard and the percentage lung volume with attenuation values of -950 HU or lower (LAA-950) was evaluated to determine the extent of emphysema. Receiver-operating characteristic (ROC) analysis and generalised estimating equations model were used. ROC analysis revealed significantly better performance (P < 0.0001) of tomosynthesis than radiography for the detection of pulmonary emphysema. The average sensitivity, specificity, positive predictive value and negative predictive value of tomosynthesis were 0.875, 0.968, 0.955 and 0.910, respectively, whereas the values for radiography were 0.479, 0.913, 0.815 and 0.697, respectively. For both tomosynthesis and radiography, the sensitivity increased with increasing LAA-950. The diagnostic performance of tomosynthesis was significantly superior to that of radiography for the detection of pulmonary emphysema. In both tomosynthesis and radiography, the sensitivity was affected by the LAA-950. • Tomosynthesis showed significantly better diagnostic performance for pulmonary emphysema than radiography. • Interobserver agreement for tomosynthesis was significantly higher than that for radiography. • Sensitivity increased with increasing LAA -950 in both tomosynthesis and radiography. • Tomosynthesis imparts a similar radiation dose to two projection chest radiography. • Radiation dose and cost of tomosynthesis are lower than those of MDCT.

  13. Substrate stiffness-dependent exacerbation of endothelial permeability and inflammation: mechanisms and potential implications in ALI and PH (2017 Grover Conference Series)

    PubMed Central

    Karki, Pratap; Birukova, Anna A.

    2018-01-01

    The maintenance of endothelial barrier integrity is absolutely essential to prevent the vascular leak associated with pneumonia, pulmonary edema resulting from inhalation of toxins, acute elevation to high altitude, traumatic and septic lung injury, acute lung injury (ALI), and its life-threatening complication, acute respiratory distress syndrome (ARDS). In addition to the long-known edemagenic and inflammatory agonists, emerging evidences suggest that factors of endothelial cell (EC) mechanical microenvironment such as blood flow, mechanical strain of the vessel, or extracellular matrix stiffness also play an essential role in the control of endothelial permeability and inflammation. Recent studies from our group and others have demonstrated that substrate stiffening causes endothelial barrier disruption and renders EC more susceptible to agonist-induced cytoskeletal rearrangement and inflammation. Further in vivo studies have provided direct evidence that proinflammatory stimuli increase lung microvascular stiffness which in turn exacerbates endothelial permeability and inflammation and perpetuates a vicious circle of lung inflammation. Accumulating evidence suggests a key role for RhoA GTPases signaling in stiffness-dependent mechanotransduction mechanisms defining EC permeability and inflammatory responses. Vascular stiffening is also known to be a key contributor to other cardiovascular diseases such as arterial pulmonary hypertension (PH), although the precise role of stiffness in the development and progression of PH remains to be elucidated. This review summarizes the current understanding of stiffness-dependent regulation of pulmonary EC permeability and inflammation, and discusses potential implication of pulmonary vascular stiffness alterations at macro- and microscale in development and modulation of ALI and PH. PMID:29714090

  14. The cancer theory of pulmonary arterial hypertension

    PubMed Central

    Boucherat, Olivier; Vitry, Geraldine; Trinh, Isabelle; Paulin, Roxane; Provencher, Steeve; Bonnet, Sebastien

    2017-01-01

    Pulmonary arterial hypertension (PAH) remains a mysterious killer that, like cancer, is characterized by tremendous complexity. PAH development occurs under sustained and persistent environmental stress, such as inflammation, shear stress, pseudo-hypoxia, and more. After inducing an initial death of the endothelial cells, these environmental stresses contribute with time to the development of hyper-proliferative and apoptotic resistant clone of cells including pulmonary artery smooth muscle cells, fibroblasts, and even pulmonary artery endothelial cells allowing vascular remodeling and PAH development. Molecularly, these cells exhibit many features common to cancer cells offering the opportunity to exploit therapeutic strategies used in cancer to treat PAH. In this review, we outline the signaling pathways and mechanisms described in cancer that drive PAH cells’ survival and proliferation and discuss the therapeutic potential of antineoplastic drugs in PAH. PMID:28597757

  15. Investigation of household contacts of pulmonary tuberculosis patients increases case detection in Mwanza City, Tanzania.

    PubMed

    Beyanga, Medard; Kidenya, Benson R; Gerwing-Adima, Lisa; Ochodo, Eleanor; Mshana, Stephen E; Kasang, Christa

    2018-03-06

    Tuberculosis (TB) contact tracing is a key strategy for containing TB and provides addition to the passive case finding approach. However, this practice has not been implemented in Tanzania, where there is unacceptably high treatment gap of 62.1% between cases estimated and cases detected. Therefore calls for more aggressive case finding for TB to close this gap. We aimed to determine the magnitude and predictors of bacteriologically-confirmed pulmonary TB among household contacts of bacteriologically-confirmed pulmonary TB index cases in the city of Mwanza, Tanzania. This study was carried out from August to December 2016 in Mwanza city at the TB outpatient clinics of Tertiary Hospital of the Bugando Medical Centre, Sekou-Toure Regional Hospital, and Nyamagana District Hospital. Bacteriologically-confirmed TB index cases diagnosed between May and July 2016 were identified from the laboratory registers book. Contacts were traced by home visits by study TB nurses, and data were collected using a standardized TB screening questionnaire. To detect the bacterioriologically-confirmed pulmonary TB, two sputum samples per household contact were collected under supervision for all household contacts following standard operating procedures. Samples were transported to the Bugando Medical Centre TB laboratory for investigation for TB using fluorescent smear microscopy, GeneXpert MTB/RIF and Löwenstein-Jensen (LJ) culture. Logistic regression was used to determine predictors of bacteriologically-confirmed pulmonary TB among household contacts. During the study period, 456 household contacts from 93 TB index cases were identified. Among these 456 household contacts, 13 (2.9%) were GeneXpert MTB/RIF positive, 18 (3.9%) were MTB-culture positive and four (0.9%) were AFB-smear positive. Overall, 29 (6.4%) of contacts had bacteriologically-confirmed pulmonary TB. Predictors of bacteriologically-confirmed pulmonary TB among household contacts were7being married (Odds ratio [OR

  16. Pathophysiological effect of fat embolism in a canine model of pulmonary contusion.

    PubMed

    Elmaraghy, A W; Aksenov, S; Byrick, R J; Richards, R R; Schemitsch, E H

    1999-08-01

    decrease in the ratio of partial pressure of arterial oxygen to fractional inspired oxygen concentration (p = 0.0001) and a significant increase in the alveolar-arterial oxygen gradient (p = 0.0001). The combination of pulmonary contusion and fat embolism caused a significant transient increase in pulmonary capillary wedge pressure (p = 0.0013) as well as a significant sustained decrease in partial pressure of arterial oxygen (p = 0.0001) and a significant decrease in systolic blood pressure (p = 0.001) that lasted for an hour. Pulmonary contusion followed by fat embolism caused a significant increase in peak airway pressure (p = 0.015), alveolar-arterial oxygen gradient (p = 0.0001), and pulmonary arterial pressure (p = 0.01), and these effects persisted for five hours. Total thoracic compliance was decreased 6.4 percent by pulmonary contusion alone, 4.6 percent by fat embolism alone, and 23.5 percent by pulmonary contusion followed by fat embolism. The ratio of partial pressure of arterial oxygen to fractional inspired oxygen concentration was decreased 23.7 percent by pulmonary contusion alone, 52.3 percent by fat embolism alone, and 65.8 percent by pulmonary contusion followed by fat embolism. The mean pulmonary edema score was significantly higher with the combined injury than with either injury alone (p = 0.0001). None of the samples from the lungs demonstrated inflammation. Fat embolism combined with pulmonary contusion resulted in a significantly greater mean percentage of the area occupied by fat in the noncontused right lung than in the contused left lung (p = 0.001); however, no significant difference between the right and left lungs could be detected with fat embolism alone. The mean percentage of the glomerular and cerebral areas occupied by fat was greater with fat embolism combined with pulmonary contusion than with fat embolism alone (p = 0.0001 and p = 0.01, respectively). (ABSTRACT TRUNCATED)

  17. Omeprazole Attenuates Pulmonary Aryl Hydrocarbon Receptor Activation and Potentiates Hyperoxia-Induced Developmental Lung Injury in Newborn Mice.

    PubMed

    Shivanna, Binoy; Zhang, Shaojie; Patel, Ananddeep; Jiang, Weiwu; Wang, Lihua; Welty, Stephen E; Moorthy, Bhagavatula

    2015-11-01

    Hyperoxia contributes to the development of bronchopulmonary dysplasia (BPD) in human preterm infants and a similar lung phenotype characterized by alveolar simplification in newborn mice. Omeprazole (OM) is a proton pump inhibitor that is used to treat humans with gastric acid related disorders. OM-mediated aryl hydrocarbon receptor (AhR) activation attenuates acute hyperoxic lung injury (HLI) in adult mice. Whether OM activates pulmonary AhR and protects C57BL/6J newborn mice against hyperoxia-induced developmental lung (alveolar and pulmonary vascular simplification, inflammation, and oxidative stress) injury (HDLI) is unknown. Therefore, we tested the hypothesis that OM will activate pulmonary AhR and mitigate HDLI in newborn mice. Newborn mice were treated daily with i.p. injections of OM at doses of 10 (OM10) or 25 (OM25) mg/kg while being exposed to air or hyperoxia (FiO2 of 85%) for 14 days, following which their lungs were harvested to determine alveolarization, pulmonary vascularization, inflammation, oxidative stress, vascular injury, and AhR activation. To our surprise, hyperoxia-induced alveolar and pulmonary vascular simplification, inflammation, oxidative stress, and vascular injury were augmented in OM25-treated animals. These findings were associated with attenuated pulmonary vascular endothelial growth factor receptor 2 expression and decreased pulmonary AhR activation in the OM25 group. We conclude that contrary to our hypothesis, OM decreases functional activation of pulmonary AhR and potentiates HDLI in newborn mice. These observations are consistent with our previous findings, which suggest that AhR activation plays a protective role in HDLI in newborn mice. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Usefulness of interferon-γ release assay for the diagnosis of sputum smear-negative pulmonary and extra-pulmonary TB in Zhejiang Province, China.

    PubMed

    Ji, Lei; Lou, Yong-Liang; Wu, Zhong-Xiu; Jiang, Jin-Qin; Fan, Xing-Li; Wang, Li-Fang; Liu, Xiao-Xiang; Du, Peng; Yan, Jie; Sun, Ai-Hua

    2017-09-01

    Quick diagnosis of smear-negative pulmonary tuberculosis (TB) and extra-pulmonary TB are urgently needed in clinical diagnosis. Our research aims to investigate the usefulness of the interferon-γ release assay (IGRA) for the diagnosis of smear-negative pulmonary and extra-pulmonary TB. We performed TB antibody and TB-IGRA tests on 389 pulmonary TB patients (including 120 smear-positive pulmonary TB patients and 269 smear-negative pulmonary TB patients), 113 extra-pulmonary TB patients, 81 patients with other pulmonary diseases and 100 healthy controls. Blood samples for the TB-Ab test and the TB-IGRA were collected, processed, and interpreted according to the manufacturer's protocol. The detection ratio of smear-positive pulmonary TB patients and smear-negative pulmonary TB patients were 90.8% (109 of 120) and 89.6% (241 of 269), respectively. There was no statistically significant difference of its performance between these two sample sets (P > 0.05). The detection ratio of positive TB patients and extra-pulmonary TB patients were 90.0% (350 of 389) and 87.6% (99 of 113), respectively, which was not significantly different (P > 0.05). In this work, the total detection ratio using TB-IGRA was 89.4%, therefore TB-IGRA has diagnostic values in smear-negative pulmonary TB and extra-pulmonary TB diagnosis.

  19. Differential Activation of Airway Eosinophils Induces IL-13 Mediated Allergic Th2 Pulmonary Responses in Mice

    PubMed Central

    Jacobsen, EA; Doyle, AD; Colbert, DC; Zellner, KR; Protheroe, CA; LeSuer, WE; Lee, NA.; Lee, JJ

    2015-01-01

    Background Eosinophils are hallmark cells of allergic Th2 respiratory inflammation. However, the relative importance of eosinophil activation and the induction of effector functions such as the expression of IL-13 to allergic Th2 pulmonary disease remain to be defined. Methods Wild type or cytokine deficient (IL-13−/− or IL-4−/−) eosinophils treated with cytokines (GM-CSF, IL-4, IL-33) were adoptively transferred into eosinophil-deficient recipient mice subjected to allergen provocation using established models of respiratory inflammation. Allergen-induced pulmonary changes were assessed. Results In contrast to the transfer of untreated blood eosinophils to the lungs of recipient eosinophildeficient mice, which induced no immune/inflammatory changes either in the lung or lung draining lymph nodes (LDLNs), pretreatment of blood eosinophils with GM-CSF prior to transfer elicited trafficking of these eosinophils to LDLNs. In turn, these LDLN eosinophils elicited the accumulation of dendritic cells and CD4+ T cells to these same LDLNs without inducing pulmonary inflammation. However, exposure of eosinophils to GM-CSF, IL-4 and IL-33 prior to transfer induced not only immune events in the LDLN, but also allergen-mediated increases in airway Th2 cytokine/chemokine levels, the subsequent accumulation of CD4+ T cells as well as alternatively activated (M2) macrophages, and the induction of pulmonary histopathologies. Significantly, this allergic respiratory inflammation was dependent on eosinophil-derived IL-13 whereas IL-4 expression by eosinophils had no significant role. Conclusion The data demonstrate the differential activation of eosinophils as a function of cytokine exposure and suggest that eosinophil-specific IL-13 expression by activated cells is a necessary component of the subsequent allergic Th2 pulmonary pathologies. PMID:26009788

  20. Differential activation of airway eosinophils induces IL-13-mediated allergic Th2 pulmonary responses in mice.

    PubMed

    Jacobsen, E A; Doyle, A D; Colbert, D C; Zellner, K R; Protheroe, C A; LeSuer, W E; Lee, N A; Lee, J J

    2015-09-01

    Eosinophils are hallmark cells of allergic Th2 respiratory inflammation. However, the relative importance of eosinophil activation and the induction of effector functions such as the expression of IL-13 to allergic Th2 pulmonary disease remain to be defined. Wild-type or cytokine-deficient (IL-13(-/-) or IL-4(-/-) ) eosinophils treated with cytokines (GM-CSF, IL-4, IL-33) were adoptively transferred into eosinophil-deficient recipient mice subjected to allergen provocation using established models of respiratory inflammation. Allergen-induced pulmonary changes were assessed. In contrast to the transfer of untreated blood eosinophils to the lungs of recipient eosinophil deficient mice, which induced no immune/inflammatory changes either in the lung or in the lung draining lymph nodes (LDLN), pretreatment of blood eosinophils with GM-CSF prior to transfer elicited trafficking of these eosinophils to LDLN. In turn, these LDLN eosinophils elicited the accumulation of dendritic cells and CD4(+) T cells to these same LDLNs without inducing pulmonary inflammation. However, exposure of eosinophils to GM-CSF, IL-4, and IL-33 prior to transfer induced not only immune events in the LDLN, but also allergen-mediated increases in airway Th2 cytokine/chemokine levels, the subsequent accumulation of CD4(+) T cells as well as alternatively activated (M2) macrophages, and the induction of pulmonary histopathologies. Significantly, this allergic respiratory inflammation was dependent on eosinophil-derived IL-13, whereas IL-4 expression by eosinophils had no significant role. The data demonstrate the differential activation of eosinophils as a function of cytokine exposure and suggest that eosinophil-specific IL-13 expression by activated cells is a necessary component of the subsequent allergic Th2 pulmonary pathologies. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Pulmonary nodule detection in oncological patients - Value of respiratory-triggered, periodically rotated overlapping parallel T2-weighted imaging evaluated with PET/CT-MR.

    PubMed

    de Galiza Barbosa, Felipe; Geismar, Jan Henning; Delso, Gaspar; Messerli, Michael; Huellner, Martin; Stolzmann, Paul; Veit-Haibach, Patrick

    2018-01-01

    To prospectively evaluate the detection and conspicuity of pulmonary nodules in an oncological population, using a tri-modality PET/CT-MR protocol including a respiration-gated T2-PROPELLER sequence for possible integration into a simultaneous PET/MR protocol. 149 patients referred for staging of malignancy were prospectively enrolled in this single-center study. Imaging was performed on a tri-modality PET/CT-MR setup and was comprised of PET/CT and 3T-MR imaging with 3D dual-echo GRE pulse sequence (Dixon) and an axial respiration-gated T2-weighted PROPELLER (T2-P) sequence. Images were assessed for presence, conspicuity, size and interpretation of the pulmonary parenchymal nodules. McNemar's test was used to evaluate paired differences in nodule detection rates between MR and CT from PET/CT. The correlation of pulmonary nodule size in CT and MR imaging was assessed using Pearson correlation coefficient. 299 pulmonary nodules were detected on PET/CT. The detectability was significantly higher on T2-P (60%, p<0.01) compared to T1-weighted Dixon-type sequences (16.1-37.8%). T2-P had a significantly higher detection rate among FDG-positive (92.4%) and among confirmed malignant nodules (75.9%) compared to T1-Dixon. Nodules <10mm were detected less often by MR sequences than by CT (p < 0.01). However, nodules >10mm were detected equally well with T2-P (92.2%) and CT (p >0.05). In a per-patient analysis, there was no significant change in the clinical interpretation of the nodules detected with T2-P and CT. Despite the overall lower detection rate compared with CT, the free-breathing respiratory gating T2-w sequence showed higher detectability in all evaluated categories compared to breath-hold T1-weighted MR sequences. Specifically, the T2-P was found to be not statistically different from CT in FDG-positive nodules, in detection of nodules >10mm and concerning conspicuity of pulmonary nodules. Overall, the additional time investment into T2-P seems to be justified

  2. Contrast-enhanced pulmonary MRA for the primary diagnosis of pulmonary embolism: current state of the art and future directions.

    PubMed

    Benson, Donald G; Schiebler, Mark L; Repplinger, Michael D; François, Christopher J; Grist, Thomas M; Reeder, Scott B; Nagle, Scott K

    2017-06-01

    CT pulmonary angiography (CTPA) is currently considered the imaging standard of care for the diagnosis of pulmonary embolism (PE). Recent advances in contrast-enhanced pulmonary MR angiography (MRA) techniques have led to increased use of this modality for the detection of PE in the proper clinical setting. This review is intended to provide an introduction to the state-of-the-art techniques used in pulmonary MRA for the detection of PE and to discuss possible future directions for this modality. This review discusses the following issues pertinent to MRA for the diagnosis of PE: (1) the diagnostic efficacy and clinical effectiveness for pulmonary MRA relative to CTPA, (2) the different pulmonary MRA techniques used for the detection of PE, (3) guidance for building a clinical service at their institution using MRA and (4) future directions of PE MRA. Our principal aim was to show how pulmonary MRA can be used as a safe, effective modality for the diagnosis of clinically significant PE, particularly for those patients where there are concerns about ionizing radiation or contraindications/allergies to the iodinated contrast material.

  3. Contrast-enhanced pulmonary MRA for the primary diagnosis of pulmonary embolism: current state of the art and future directions

    PubMed Central

    Schiebler, Mark L; Repplinger, Michael D; François, Christopher J; Grist, Thomas M; Reeder, Scott B

    2017-01-01

    CT pulmonary angiography (CTPA) is currently considered the imaging standard of care for the diagnosis of pulmonary embolism (PE). Recent advances in contrast-enhanced pulmonary MR angiography (MRA) techniques have led to increased use of this modality for the detection of PE in the proper clinical setting. This review is intended to provide an introduction to the state-of-the-art techniques used in pulmonary MRA for the detection of PE and to discuss possible future directions for this modality. This review discusses the following issues pertinent to MRA for the diagnosis of PE: (1) the diagnostic efficacy and clinical effectiveness for pulmonary MRA relative to CTPA, (2) the different pulmonary MRA techniques used for the detection of PE, (3) guidance for building a clinical service at their institution using MRA and (4) future directions of PE MRA. Our principal aim was to show how pulmonary MRA can be used as a safe, effective modality for the diagnosis of clinically significant PE, particularly for those patients where there are concerns about ionizing radiation or contraindications/allergies to the iodinated contrast material. PMID:28306332

  4. Oxidative injury of the pulmonary circulation in the perinatal period: Short- and long-term consequences for the human cardiopulmonary system

    PubMed Central

    de Wijs-Meijler, Daphne P.; Duncker, Dirk J.; Tibboel, Dick; Schermuly, Ralph T.; Weissmann, Norbert; Merkus, Daphne; Reiss, Irwin K.M.

    2017-01-01

    Development of the pulmonary circulation is a complex process with a spatial pattern that is tightly controlled. This process is vulnerable for disruption by various events in the prenatal and early postnatal periods. Disruption of normal pulmonary vascular development leads to abnormal structure and function of the lung vasculature, causing neonatal pulmonary vascular diseases. Premature babies are especially at risk of the development of these diseases, including persistent pulmonary hypertension and bronchopulmonary dysplasia. Reactive oxygen species play a key role in the pathogenesis of neonatal pulmonary vascular diseases and can be caused by hyperoxia, mechanical ventilation, hypoxia, and inflammation. Besides the well-established short-term consequences, exposure of the developing lung to injurious stimuli in the perinatal period, including oxidative stress, may also contribute to the development of pulmonary vascular diseases later in life, through so-called “fetal or perinatal programming.” Because of these long-term consequences, it is important to develop a follow-up program tailored to adolescent survivors of neonatal pulmonary vascular diseases, aimed at early detection of adult pulmonary vascular diseases, and thereby opening the possibility of early intervention and interfering with disease progression. This review focuses on pathophysiologic events in the perinatal period that have been shown to disrupt human normal pulmonary vascular development, leading to neonatal pulmonary vascular diseases that can extend even into adulthood. This knowledge may be particularly important for ex-premature adults who are at risk of the long-term consequences of pulmonary vascular diseases, thereby contributing disproportionately to the burden of adult cardiovascular disease in the future. PMID:28680565

  5. Automated detection of pulmonary embolism (PE) in computed tomographic pulmonary angiographic (CTPA) images: multiscale hierachical expectation-maximization segmentation of vessels and PEs

    NASA Astrophysics Data System (ADS)

    Zhou, Chuan; Chan, Heang-Ping; Hadjiiski, Lubomir M.; Chughtai, Aamer; Patel, Smita; Cascade, Philip N.; Sahiner, Berkman; Wei, Jun; Ge, Jun; Kazerooni, Ella A.

    2007-03-01

    CT pulmonary angiography (CTPA) has been reported to be an effective means for clinical diagnosis of pulmonary embolism (PE). We are developing a computer-aided detection (CAD) system to assist radiologist in PE detection in CTPA images. 3D multiscale filters in combination with a newly designed response function derived from the eigenvalues of Hessian matrices is used to enhance vascular structures including the vessel bifurcations and suppress non-vessel structures such as the lymphoid tissues surrounding the vessels. A hierarchical EM estimation is then used to segment the vessels by extracting the high response voxels at each scale. The segmented vessels are pre-screened for suspicious PE areas using a second adaptive multiscale EM estimation. A rule-based false positive (FP) reduction method was designed to identify the true PEs based on the features of PE and vessels. 43 CTPA scans were used as an independent test set to evaluate the performance of PE detection. Experienced chest radiologists identified the PE locations which were used as "gold standard". 435 PEs were identified in the artery branches, of which 172 and 263 were subsegmental and proximal to the subsegmental, respectively. The computer-detected volume was considered true positive (TP) when it overlapped with 10% or more of the gold standard PE volume. Our preliminary test results show that, at an average of 33 and 24 FPs/case, the sensitivities of our PE detection method were 81% and 78%, respectively, for proximal PEs, and 79% and 73%, respectively, for subsegmental PEs. The study demonstrates the feasibility that the automated method can identify PE accurately on CTPA images. Further study is underway to improve the sensitivity and reduce the FPs.

  6. Hemoglobin induced lung vascular oxidation, inflammation, and remodeling contributes to the progression of hypoxic pulmonary hypertension and is attenuated in rats with repeat dose haptoglobin administration

    PubMed Central

    Baek, Jin Hyen; Hassell, Kathryn; Nuss, Rachelle; Eigenberger, Paul; Lisk, Christina; Loomis, Zoe; Maltzahn, Joanne; Stenmark, Kurt R; Nozik-Grayck, Eva

    2015-01-01

    Objective Haptoglobin (Hp) is an approved treatment in Japan with indications for trauma, burns and massive transfusion related hemolysis. Additional case reports suggest uses in other acute hemolytic events that lead to acute kidney injury. However, Hp's protective effects on the pulmonary vasculature have not been evaluated within the context of mitigating the consequences of chronic hemoglobin (Hb) exposure in the progression of pulmonary hypertension (PH) secondary to hemolytic diseases. This study was performed to assess the utility of chronic Hp therapy in a preclinical model of Hb and hypoxia mediated PH. Approach and results Rats were simultaneously exposed to chronic Hb-infusion (35 mg per day) and hypobaric hypoxia for five weeks in the presence or absence of Hp treatment (90 mg/kg twice a week). Hp inhibited the Hb plus hypoxia-mediated non-heme iron accumulation in lung and heart tissue, pulmonary vascular inflammation and resistance, and right ventricular hypertrophy, which suggest a positive impact on impeding the progression of PH. In addition, Hp therapy was associated with a reduction in critical mediators of PH, including lung adventitial macrophage population and endothelial ICAM-1 expression. Conclusions By preventing Hb-mediated pathology, Hp infusions: (1) demonstrate a critical role for Hb in vascular remodeling associated with hypoxia; and (2) suggest a novel therapy for chronic hemolysis associated PH. PMID:25656991

  7. Hemoglobin-induced lung vascular oxidation, inflammation, and remodeling contribute to the progression of hypoxic pulmonary hypertension and is attenuated in rats with repeated-dose haptoglobin administration.

    PubMed

    Irwin, David C; Baek, Jin Hyen; Hassell, Kathryn; Nuss, Rachelle; Eigenberger, Paul; Lisk, Christina; Loomis, Zoe; Maltzahn, Joanne; Stenmark, Kurt R; Nozik-Grayck, Eva; Buehler, Paul W

    2015-05-01

    Haptoglobin (Hp) is an approved treatment in Japan for trauma, burns, and massive transfusion-related hemolysis. Additional case reports suggest uses in other acute hemolytic events that lead to acute kidney injury. However, Hp's protective effects on the pulmonary vasculature have not been evaluated within the context of mitigating the consequences of chronic hemoglobin (Hb) exposure in the progression of pulmonary hypertension (PH) secondary to hemolytic diseases. This study was performed to assess the utility of chronic Hp therapy in a preclinical model of Hb and hypoxia-mediated PH. Rats were simultaneously exposed to chronic Hb infusion (35 mg per day) and hypobaric hypoxia for 5 weeks in the presence or absence of Hp treatment (90 mg/kg twice a week). Hp inhibited the Hb plus hypoxia-mediated nonheme iron accumulation in lung and heart tissue, pulmonary vascular inflammation and resistance, and right-ventricular hypertrophy, which suggests a positive impact on impeding the progression of PH. In addition, Hp therapy was associated with a reduction in critical mediators of PH, including lung adventitial macrophage population and endothelial ICAM-1 expression. By preventing Hb-mediated pathology, Hp infusions: (1) demonstrate a critical role for Hb in vascular remodeling associated with hypoxia and (2) suggest a novel therapy for chronic hemolysis-associated PH. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Detection of Heart Sounds in Children with and without Pulmonary Arterial Hypertension―Daubechies Wavelets Approach

    PubMed Central

    Elgendi, Mohamed; Kumar, Shine; Guo, Long; Rutledge, Jennifer; Coe, James Y.; Zemp, Roger; Schuurmans, Dale; Adatia, Ian

    2015-01-01

    Background Automatic detection of the 1st (S1) and 2nd (S2) heart sounds is difficult, and existing algorithms are imprecise. We sought to develop a wavelet-based algorithm for the detection of S1 and S2 in children with and without pulmonary arterial hypertension (PAH). Method Heart sounds were recorded at the second left intercostal space and the cardiac apex with a digital stethoscope simultaneously with pulmonary arterial pressure (PAP). We developed a Daubechies wavelet algorithm for the automatic detection of S1 and S2 using the wavelet coefficient ‘D 6’ based on power spectral analysis. We compared our algorithm with four other Daubechies wavelet-based algorithms published by Liang, Kumar, Wang, and Zhong. We annotated S1 and S2 from an audiovisual examination of the phonocardiographic tracing by two trained cardiologists and the observation that in all subjects systole was shorter than diastole. Results We studied 22 subjects (9 males and 13 females, median age 6 years, range 0.25–19). Eleven subjects had a mean PAP < 25 mmHg. Eleven subjects had PAH with a mean PAP ≥ 25 mmHg. All subjects had a pulmonary artery wedge pressure ≤ 15 mmHg. The sensitivity (SE) and positive predictivity (+P) of our algorithm were 70% and 68%, respectively. In comparison, the SE and +P of Liang were 59% and 42%, Kumar 19% and 12%, Wang 50% and 45%, and Zhong 43% and 53%, respectively. Our algorithm demonstrated robustness and outperformed the other methods up to a signal-to-noise ratio (SNR) of 10 dB. For all algorithms, detection errors arose from low-amplitude peaks, fast heart rates, low signal-to-noise ratio, and fixed thresholds. Conclusion Our algorithm for the detection of S1 and S2 improves the performance of existing Daubechies-based algorithms and justifies the use of the wavelet coefficient ‘D 6’ through power spectral analysis. Also, the robustness despite ambient noise may improve real world clinical performance. PMID:26629704

  9. DNA Damage and Pulmonary Hypertension

    PubMed Central

    Ranchoux, Benoît; Meloche, Jolyane; Paulin, Roxane; Boucherat, Olivier; Provencher, Steeve; Bonnet, Sébastien

    2016-01-01

    Pulmonary hypertension (PH) is defined by a mean pulmonary arterial pressure over 25 mmHg at rest and is diagnosed by right heart catheterization. Among the different groups of PH, pulmonary arterial hypertension (PAH) is characterized by a progressive obstruction of distal pulmonary arteries, related to endothelial cell dysfunction and vascular cell proliferation, which leads to an increased pulmonary vascular resistance, right ventricular hypertrophy, and right heart failure. Although the primary trigger of PAH remains unknown, oxidative stress and inflammation have been shown to play a key role in the development and progression of vascular remodeling. These factors are known to increase DNA damage that might favor the emergence of the proliferative and apoptosis-resistant phenotype observed in PAH vascular cells. High levels of DNA damage were reported to occur in PAH lungs and remodeled arteries as well as in animal models of PH. Moreover, recent studies have demonstrated that impaired DNA-response mechanisms may lead to an increased mutagen sensitivity in PAH patients. Finally, PAH was linked with decreased breast cancer 1 protein (BRCA1) and DNA topoisomerase 2-binding protein 1 (TopBP1) expression, both involved in maintaining genome integrity. This review aims to provide an overview of recent evidence of DNA damage and DNA repair deficiency and their implication in PAH pathogenesis. PMID:27338373

  10. DHA suppresses chronic apoptosis in the lung caused by perinatal inflammation.

    PubMed

    Ali, Mehboob; Heyob, Kathryn M; Velten, Markus; Tipple, Trent E; Rogers, Lynette K

    2015-09-01

    We have previously shown that an adverse perinatal environment significantly alters lung growth and development and results in persistently altered cardiopulmonary physiology in adulthood. Our model of maternal LPS treatment followed by 14 days of neonatal hyperoxia exposure causes severe pulmonary disease characterized by permanent decreases in alveolarization and diffuse interstitial fibrosis. The current investigations tested the hypothesis that dysregulation of Notch signaling pathways contributes to the permanently altered lung phenotype in our model and that the improvements we have observed previously with maternal docosahexaenoic acid (DHA) supplementation are mediated through normalization of Notch-related protein expression. Results indicated that inflammation (IL-6 levels) and oxidation (F2a-isoprostanes) persisted through 8 wk of life in mice exposed to LPS/O2 perinatally. These changes were attenuated by maternal DHA supplementation. Modest but inconsistent differences were observed in Notch-pathway proteins Jagged 1, DLL 1, PEN2, and presenilin-2. We detected substantial increases in markers of apoptosis including PARP-1, APAF-1, caspase-9, BCL2, and HMGB1, and these increases were attenuated in mice that were nursed by DHA-supplemented dams during the perinatal period. Although Notch signaling is not significantly altered at 8 wk of age in mice with perinatal exposure to LPS/O2, our findings indicate that persistent apoptosis continues to occur at 8 wk of age. We speculate that ongoing apoptosis may contribute to persistently altered lung development and may further enhance susceptibility to additional pulmonary disease. Finally, we found that maternal DHA supplementation prevented sustained inflammation, oxidation, and apoptosis in our model. Copyright © 2015 the American Physiological Society.

  11. [Pulmonary function in patients with infiltrative pulmonary tuberculosis].

    PubMed

    Nefedov, V B; Popova, L A; Shergina, E A

    2007-01-01

    Vital capacity (VC), forced vital capacity (FVC), forced expiratory volume in 1 second (FEV1), FEV1/VC%, PEF, MEF25, MEF50, MEF75, TLC, TGV, pulmonary residual volume (PRV), R(aw), R(in),, R(ex), DLCO-SB, DLCO-SS, PaO2, and PaCO2 were determined in 103 patients with infiltrative pulmonary tuberculosis. Pulmonary dysfunction was detected in 83.5% of the patients. Changes were found in lung volumes and capacities in 63.1%, impaired bronchial patency and pulmonary gas exchange dysfunction were in 60.2 and 41.7%, respectively. The changes in pulmonary volumes and capacities appeared as increased PRV, decreased VC and FVC, and decreased and increased TGV and TLC; impaired bronchial patency presented as decreased PEF, MEF25, MEF50, MEF75, FEV1/VC% and increased R(aw) R(in), and R(ex); pulmonary gas exchange dysfunction manifested itself as reduced DLCO-SB, DLCO-SS, and PaO2 and decreased and increased PaCO2. The magnitude of the observed functional changes was generally slight. Significant disorders were observed rarely and very pronounced ones were exceptional.

  12. Size effects of single-walled carbon nanotubes on in vivo and in vitro pulmonary toxicity

    PubMed Central

    Fujita, Katsuhide; Fukuda, Makiko; Endoh, Shigehisa; Maru, Junko; Kato, Haruhisa; Nakamura, Ayako; Shinohara, Naohide; Uchino, Kanako; Honda, Kazumasa

    2015-01-01

    Abstract To elucidate the effect of size on the pulmonary toxicity of single-wall carbon nanotubes (SWCNTs), we prepared two types of dispersed SWCNTs, namely relatively thin bundles with short linear shapes (CNT-1) and thick bundles with long linear shapes (CNT-2), and conducted rat intratracheal instillation tests and in vitro cell-based assays using NR8383 rat alveolar macrophages. Total protein levels, MIP-1α expression, cell counts in BALF, and histopathological examinations revealed that CNT-1 caused pulmonary inflammation and slower recovery and that CNT-2 elicited acute lung inflammation shortly after their instillation. Comprehensive gene expression analysis confirmed that CNT-1-induced genes were strongly associated with inflammatory responses, cell proliferation, and immune system processes at 7 or 30 d post-instillation. Numerous genes were significantly upregulated or downregulated by CNT-2 at 1 d post-instillation. In vitro assays demonstrated that CNT-1 and CNT-2 SWCNTs were phagocytized by NR8383 cells. CNT-2 treatment induced cell growth inhibition, reactive oxygen species production, MIP-1α expression, and several genes involved in response to stimulus, whereas CNT-1 treatment did not exert a significant impact in these regards. These results suggest that SWCNTs formed as relatively thin bundles with short linear shapes elicited delayed pulmonary inflammation with slower recovery. In contrast, SWCNTs with a relatively thick bundle and long linear shapes sensitively induced cellular responses in alveolar macrophages and elicited acute lung inflammation shortly after inhalation. We conclude that the pulmonary toxicity of SWCNTs is closely associated with the size of the bundles. These physical parameters are useful for risk assessment and management of SWCNTs. PMID:25865113

  13. Clinical experience with a computer-aided diagnosis system for automatic detection of pulmonary nodules at spiral CT of the chest

    NASA Astrophysics Data System (ADS)

    Wormanns, Dag; Fiebich, Martin; Saidi, Mustafa; Diederich, Stefan; Heindel, Walter

    2001-05-01

    The purpose of the study was to evaluate a computer aided diagnosis (CAD) workstation with automatic detection of pulmonary nodules at low-dose spiral CT in a clinical setting for early detection of lung cancer. Two radiologists in consensus reported 88 consecutive spiral CT examinations. All examinations were reviewed using a UNIX-based CAD workstation with a self-developed algorithm for automatic detection of pulmonary nodules. The algorithm was designed to detect nodules with at least 5 mm diameter. The results of automatic nodule detection were compared to the consensus reporting of two radiologists as gold standard. Additional CAD findings were regarded as nodules initially missed by the radiologists or as false positive results. A total of 153 nodules were detected with all modalities (diameter: 85 nodules <5mm, 63 nodules 5-9 mm, 5 nodules >= 10 mm). Reasons for failure of automatic nodule detection were assessed. Sensitivity of radiologists for nodules >=5 mm was 85%, sensitivity of CAD was 38%. For nodules >=5 mm without pleural contact sensitivity was 84% for radiologists at 45% for CAD. CAD detected 15 (10%) nodules not mentioned in the radiologist's report but representing real nodules, among them 10 (15%) nodules with a diameter $GREW5 mm. Reasons for nodules missed by CAD include: exclusion because of morphological features during region analysis (33%), nodule density below the detection threshold (26%), pleural contact (33%), segmentation errors (5%) and other reasons (2%). CAD improves detection of pulmonary nodules at spiral CT significantly and is a valuable second opinion in a clinical setting for lung cancer screening. Optimization of region analysis and an appropriate density threshold have a potential for further improvement of automatic nodule detection.

  14. Pulmonary exposure to diesel exhaust particles induces airway inflammation and cytokine expression in NC/Nga mice.

    PubMed

    Inoue, Ken-ichiro; Takano, Hirohisa; Yanagisawa, Rie; Ichinose, Takamichi; Shimada, Akinori; Yoshikawa, Toshikazu

    2005-10-01

    Although several studies have reported that diesel exhaust particles (DEP) affect cardiorespiratory health in animals and humans, the effect of DEP on animal models with spontaneous allergic disorders has been far less intensively studied. The Nc/Nga mouse is known to be a typical animal model for human atopic dermatitis (AD). In the present study, we investigated the effects of repeated pulmonary exposure to DEP on airway inflammation and cytokine expression in NC/Nga mice. The animals were randomized into two experimental groups that received vehicle or DEP by intratracheal instillation weekly for six weeks. Cellular profiles of bronchoalveolar lavage (BAL) fluid and expressions of cytokines and chemokines in both the BAL fluid and lung tissues were evaluated 24 h after the last instillation. The DEP challenge produced an increase in the numbers of total cells, neutrophils, and mononuclear cells in BAL fluid as compared to the vehicle challenge (P<0.01). DEP exposure significantly induced the lung expressions of interleukin (IL)-4, keratinocyte chemoattractant (KC), and macrophage inflammatory protein (MIP)-1alpha when compared to the vehicle challenge. These results indicate that intratracheal exposure to DEP induces the recruitment of inflammatory cells, at least partially, through the local expression of IL-4 and chemokines in NC/Nga mice.

  15. Enhanced inflammation in New Zealand white rabbits when MERS-CoV reinfection occurs in the absence of neutralizing antibody

    PubMed Central

    Houser, Katherine V.; Gretebeck, Lisa; Vogel, Leatrice; Sutton, Troy; Orandle, Marlene; Moore, Ian N.

    2017-01-01

    The Middle East respiratory syndrome coronavirus (MERS-CoV) is a zoonotic betacoronavirus that was first detected in humans in 2012 as a cause of severe acute respiratory disease. As of July 28, 2017, there have been 2,040 confirmed cases with 712 reported deaths. While many infections have been fatal, there have also been a large number of mild or asymptomatic cases discovered through monitoring and contact tracing. New Zealand white rabbits are a possible model for asymptomatic infection with MERS-CoV. In order to discover more about non-lethal infections and to learn whether a single infection with MERS-CoV would protect against reinfection, we inoculated rabbits with MERS-CoV and monitored the antibody and inflammatory response. Following intranasal infection, rabbits developed a transient dose-dependent pulmonary infection with moderately high levels of viral RNA, viral antigen, and perivascular inflammation in multiple lung lobes that was not associated with clinical signs. The rabbits developed antibodies against viral proteins that lacked neutralizing activity and the animals were not protected from reinfection. In fact, reinfection resulted in enhanced pulmonary inflammation, without an associated increase in viral RNA titers. Interestingly, passive transfer of serum from previously infected rabbits to naïve rabbits was associated with enhanced inflammation upon infection. We further found this inflammation was accompanied by increased recruitment of complement proteins compared to primary infection. However, reinfection elicited neutralizing antibodies that protected rabbits from subsequent viral challenge. Our data from the rabbit model suggests that people exposed to MERS-CoV who fail to develop a neutralizing antibody response, or persons whose neutralizing antibody titers have waned, may be at risk for severe lung disease on re-exposure to MERS-CoV. PMID:28817732

  16. Effects of intratracheal administration of nuclear factor-kappaB decoy oligodeoxynucleotides on long-term cigarette smoke-induced lung inflammation and pathology in mice

    PubMed Central

    2009-01-01

    To determine if nuclear factor-κB (NF-κB) activation may be a key factor in lung inflammation and respiratory dysfunction, we investigated whether NF-κB can be blocked by intratracheal administration of NF-κB decoy oligodeoxynucleotides (ODNs), and whether decoy ODN-mediated NF-κB inhibition can prevent smoke-induced lung inflammation, respiratory dysfunction, and improve pathological alteration in the small airways and lung parenchyma in the long-term smoke-induced mouse model system. We also detected changes in transcriptional factors. In vivo, the transfection efficiency of NF-κB decoy ODNs to alveolar macrophages in BALF was measured by fluorescein isothiocyanate (FITC)-labeled NF-κB decoy ODNs and flow cytometry post intratracheal ODN administration. Pulmonary function was measured by pressure sensors, and pathological changes were assessed using histology and the pathological Mias software. NF-κB and activator protein 1(AP-1) activity was detected by the electrophoretic motility shift assay (EMSA). Mouse cytokine and chemokine pulmonary expression profiles were investigated by enzyme-linked immunosorbent assay (ELISA) in bronchoalveolar lavage fluid (BALF) and lung tissue homogenates, respectively, after repeated exposure to cigarette smoke. After 24 h, the percentage of transfected alveolar macrophages was 30.00 ± 3.30%. Analysis of respiratory function indicated that transfection of NF-κB decoy ODNs significantly impacted peak expiratory flow (PEF), and bronchoalveolar lavage cytology displayed evidence of decreased macrophage infiltration in airways compared to normal saline-treated or scramble NF-κB decoy ODNs smoke exposed mice. NF-κB decoy ODNs inhibited significantly level of macrophage inflammatory protein (MIP) 1α and monocyte chemoattractant protein 1(MCP-1) in lung homogenates compared to normal saline-treated smoke exposed mice. In contrast, these NF-κB decoy ODNs-treated mice showed significant increase in the level of tumor

  17. Effects of altitude and exercise on pulmonary capillary integrity: evidence for subclinical high-altitude pulmonary edema.

    PubMed

    Eldridge, Marlowe W; Braun, Ruedi K; Yoneda, Ken Y; Walby, William F

    2006-03-01

    Strenuous exercise may be a significant contributing factor for development of high-altitude pulmonary edema, particularly at low or moderate altitudes. Thus we investigated the effects of heavy cycle ergometer exercise (90% maximal effort) under hypoxic conditions in which the combined effects of a marked increase in pulmonary blood flow and nonuniform hypoxic pulmonary vasoconstriction could add significantly to augment the mechanical stress on the pulmonary microcirculation. We postulated that intense exercise at altitude would result in an augmented permeability edema. We recruited eight endurance athletes and examined their bronchoalveolar lavage fluid (BALF) for red blood cells (RBCs), protein, inflammatory cells, and soluble mediators at 2 and 26 h after intense exercise under normoxic and hypoxic conditions. After heavy exercise, under all conditions, the athletes developed a permeability edema with high BALF RBC and protein concentrations in the absence of inflammation. We found that exercise at altitude (3,810 m) caused significantly greater leakage of RBCs [9.2 (SD 3.1)x10(4) cells/ml] into the alveolar space than that seen with normoxic exercise [5.4 (SD 1.2)x10(4) cells/ml]. At altitude, the 26-h postexercise BALF revealed significantly higher RBC and protein concentrations, suggesting an ongoing capillary leak. Interestingly, the BALF profiles following exercise at altitude are similar to that of early high-altitude pulmonary edema. These findings suggest that pulmonary capillary disruption occurs with intense exercise in healthy humans and that hypoxia augments the mechanical stresses on the pulmonary microcirculation.

  18. Superoxide Dismutase Mimetic, MnTE-2-PyP, Attenuates Chronic Hypoxia-Induced Pulmonary Hypertension, Pulmonary Vascular Remodeling, and Activation of the NALP3 Inflammasome

    PubMed Central

    Villegas, Leah R.; Kluck, Dylan; Field, Carlie; Oberley-Deegan, Rebecca E.; Woods, Crystal; Yeager, Michael E.; El Kasmi, Karim C.; Savani, Rashmin C.; Bowler, Russell P.

    2013-01-01

    Abstract Aims: Pulmonary hypertension (PH) is characterized by an oxidant/antioxidant imbalance that promotes abnormal vascular responses. Reactive oxygen species, such as superoxide (O2•−), contribute to the pathogenesis of PH and vascular responses, including vascular remodeling and inflammation. This study sought to investigate the protective role of a pharmacological catalytic antioxidant, a superoxide dismutase (SOD) mimetic (MnTE-2-PyP), in hypoxia-induced PH, vascular remodeling, and NALP3 (NACHT, LRR, and PYD domain-containing protein 3)–mediated inflammation. Results: Mice (C57/BL6) were exposed to hypobaric hypoxic conditions, while subcutaneous injections of MnTE-2-PyP (5 mg/kg) or phosphate-buffered saline (PBS) were given 3× weekly for up to 35 days. SOD mimetic-treated groups demonstrated protection against increased right ventricular systolic pressure, indirect measurements of pulmonary artery pressure, and RV hypertrophy. Vascular remodeling was assessed by Ki67 staining to detect vascular cell proliferation, α-smooth muscle actin staining to analyze small vessel muscularization, and hyaluronan (HA) measurements to assess extracellular matrix modulation. Activation of the NALP3 inflammasome pathway was measured by NALP3 expression, caspase-1 activation, and interleukin 1-beta (IL-1β) and IL-18 production. Hypoxic exposure increased PH, vascular remodeling, and NALP3 inflammasome activation in PBS-treated mice, while mice treated with MnTE-2-PyP showed an attenuation in each of these endpoints. Innovation: This study is the first to demonstrate activation of the NALP3 inflammasome with cleavage of caspase-1 and release of active IL-1 β and IL-18 in chronic hypoxic PH, as well as its attenuation by the SOD mimetic, MnTE-2-PyP. Conclusion: The ability of the SOD mimetic to scavenge extracellular O2•− supports our previous observations in EC-SOD-overexpressing mice that implicate extracellular oxidant/antioxidant imbalance in hypoxic PH

  19. Pulmonary-impedance power spectral analysis: A facile means of detecting radiation-induced gastrointestinal distress and performance decrement in man

    NASA Technical Reports Server (NTRS)

    Rick, R. C.; Lushbaugh, C. C.; Mcdow, E.; Frome, E.

    1972-01-01

    Changes in respiratory variance revealed by power spectral analysis of the pulmonary impedance pneumogram can be used to detect and measure stresses directly or indirectly affecting human respiratory function. When gastrointestinal distress occurred during a series of 5 total-body exposures of 30 R at a rate of 1.5 R/min, it was accompanied by typical shifts in pulmonary impedance power spectra. These changes did not occur after protracted exposure of 250 R (30 R daily) at 1.5 R/hr that failed to cause radiation sickness. This system for quantitating respiratory effort can also be used to detect alterations in one's ability to perform under controlled exercise conditions.

  20. PPAR-gamma pathways attenuate pulmonary granuloma formation in a carbon nanotube induced murine model of sarcoidosis.

    PubMed

    McPeek, Matthew; Malur, Anagha; Tokarz, Debra A; Murray, Gina; Barna, Barbara P; Thomassen, Mary Jane

    2018-06-15

    Peroxisome proliferator activated receptor gamma (PPARγ), a ligand activated nuclear transcription factor, is constitutively expressed in alveolar macrophages of healthy individuals. PPARγ deficiencies have been noted in several lung diseases including the alveolar macrophages of pulmonary sarcoidosis patients. We have previously described a murine model of multiwall carbon nanotubes (MWCNT) induced pulmonary granulomatous inflammation which bears striking similarities to pulmonary sarcoidosis, including the deficiency of alveolar macrophage PPARγ. Further studies demonstrate alveolar macrophage PPARγ deficiency exacerbates MWCNT-induced pulmonary granulomas. Based on these observations we hypothesized that activation of PPARγ via administration of the PPARγ-specific ligand rosiglitazone would limit MWCNT-induced granuloma formation and promote PPARγ-dependent pathways. Results presented here show that rosiglitazone significantly limits the frequency and severity of MWCNT-induced pulmonary granulomas. Furthermore, rosiglitazone attenuates alveolar macrophage NF-κB activity and downregulates the expression of the pro-inflammatory mediators, CCL2 and osteopontin. PPARγ activation via rosiglitazone also prevents the MWCNT-induced deficiency of PPARγ-regulated ATP-binding cassette lipid transporter-G1 (ABCG1) expression. ABCG1 is crucial to pulmonary lipid homeostasis. ABCG1 deficiency results in lipid accumulation which promotes pro-inflammatory macrophage activation. Our results indicate that restoration of homeostatic ABCG1 levels by rosiglitazone correlates with both reduced pulmonary lipid accumulation, and decreased alveolar macrophage activation. These data confirm and further support our previous observations that PPARγ pathways are critical in regulating MWCNT-induced pulmonary granulomatous inflammation. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Polyhexamethyleneguanidine phosphate induces severe lung inflammation, fibrosis, and thymic atrophy.

    PubMed

    Song, Jeong Ah; Park, Hyun-Ju; Yang, Mi-Jin; Jung, Kyung Jin; Yang, Hyo-Seon; Song, Chang-Woo; Lee, Kyuhong

    2014-07-01

    Polyhexamethyleneguanidine phosphate (PHMG-P) has been widely used as a disinfectant because of its strong bactericidal activity and low toxicity. However, in 2011, the Korea Centers for Disease Control and Prevention and the Ministry of Health and Welfare reported that a suspicious outbreak of pulmonary disease might have originated from humidifier disinfectants. The purpose of this study was to assess the toxicity of PHMG-P following direct exposure to the lung. PHMG-P (0.3, 0.9, or 1.5 mg/kg) was instilled into the lungs of mice. The levels of proinflammatory markers and fibrotic markers were quantified in lung tissues and flow cytometry was used to evaluate T cell distribution in the thymus. Administration of PHMG-P induced proinflammatory cytokines elevation and infiltration of immune cells into the lungs. Histopathological analysis revealed a dose-dependent exacerbation of both inflammation and pulmonary fibrosis on day 14. PHMG-P also decreased the total cell number and the CD4(+)/CD8(+) cell ratio in the thymus, with the histopathological examination indicating severe reduction of cortex and medulla. The mRNA levels of biomarkers associated with T cell development also decreased markedly. These findings suggest that exposure of lung tissue to PHMG-P leads to pulmonary inflammation and fibrosis as well as thymic atrophy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Pulmonary vasculature directed adenovirus increases epithelial lining fluid alpha-1 antitrypsin levels.

    PubMed

    Buggio, Maurizio; Towe, Christopher; Annan, Anand; Kaliberov, Sergey; Lu, Zhi Hong; Stephens, Calvin; Arbeit, Jeffrey M; Curiel, David T

    2016-01-01

    Gene therapy for inherited serum deficiency disorders has previously been limited by the balance between obtaining adequate expression and causing hepatic toxicity. Our group has previously described modifications of a replication deficient human adenovirus serotype 5 that increase pulmonary vasculature transgene expression. In the present study, we use a modified pulmonary targeted adenovirus to express human alpha-1 antitrypsin (A1AT) in C57BL/6 J mice. Using the targeted adenovirus, we were able to achieve similar increases in serum A1AT levels with less liver viral uptake. We also increased pulmonary epithelial lining fluid A1AT levels by more than an order of magnitude compared to that of untargeted adenovirus expressing A1AT in a mouse model. These gains are achieved along with evidence of decreased systemic inflammation and no evidence for increased inflammation within the vector-targeted end organ. In addition to comprising a step towards clinically viable gene therapy for A1AT, maximization of protein production at the site of action represents a significant technical advancement in the field of systemically delivered pulmonary targeted gene therapy. It also provides an alternative to the previous limitations of hepatic viral transduction and associated toxicities. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Protective effects of diketopiperazines from Moslae Herba against influenza A virus-induced pulmonary inflammation via inhibition of viral replication and platelets aggregation.

    PubMed

    Zhang, Huan-Huan; Yu, Wen-Ying; Li, Lan; Wu, Fang; Chen, Qin; Yang, Yang; Yu, Chen-Huan

    2018-04-06

    Moslae Herba (MH) is broadly used as an antiviral, antipyretic and anticoagulant drug which effectively treats respiratory diseases including cough, asthma, throat, cold and flu. The excessive inflammation of the lungs is the hallmark of severe influenza A virus (IAV) infection, while platelet aggregation and its subsequent microvascular thrombosis can exacerbate IAV-induced lung injury. Thus, inhibition of platelet aggregation can be a potential target for IAV treatment. Previous studies focus on the flavonoids from MH and their anti-inflammatory activities, but the anticoagulant compounds and potential molecular mechanism of MH remains unclear. This study was to isolate and characterize diketopiperazines (DKPs) from MH and to explore the underlying anticoagulant mechanism on IAV infection models. EtOAc sub-extract separated from MH ethanolic extract was subjected to fractionation through column chromatography. The chemical structures of pure compounds were characterized by the spectral analysis. Antiviral activities of DKPs were assayed in IAV-infected Madin-Darby canine kidney (MDCK) cells and mice. Anticoagulant effects of DKPs were investigated on adenosine 5'-diphosphate (ADP)-induced acute pulmonary embolism and IAV-induced lung injury in vivo, as well as the inhibition on platelet activating factor (PAF), arachidonic acid (AA) and ADP-induced platelet aggregation in vitro. The serum levels of thromboxane B 2 (TXB 2 ) and 6-keto-PGF 1α were detected by ELISA. The expressions of key proteins in CD41-mediated PI3K/AKT pathways were determined by western blotting analysis. Six DKPs were, for the first time, isolated from MH and identified as cyclo(Tyr-Leu) (1), cyclo(Phe-Phe) (2), cyclo(Phe-Tyr) (3), cyclo(Ala-Ile) (4), cyclo(Ala-Leu) (5) and Bz-Phe-Phe-OMe (6). Among these DKPs, cyclo(Ala-Ile) and Bz-Phe-Phe-OMe possessed low cytotoxicities and significant inhibition against cytopathic effects induced by IAV (H1N1 and H3N2) replication in MDCK cells

  4. Low-Level Laser Therapy Reduces Lung Inflammation in an Experimental Model of Chronic Obstructive Pulmonary Disease Involving P2X7 Receptor.

    PubMed

    da Cunha Moraes, Gabriel; Vitoretti, Luana Beatriz; de Brito, Auriléia Aparecida; Alves, Cintia Estefano; de Oliveira, Nicole Cristine Rigonato; Dos Santos Dias, Alana; Matos, Yves Silva Teles; Oliveira-Junior, Manoel Carneiro; Oliveira, Luis Vicente Franco; da Palma, Renata Kelly; Candeo, Larissa Carbonera; Lino-Dos-Santos-Franco, Adriana; Horliana, Anna Carolina Ratto Tempestine; Gimenes Júnior, João Antonio; Aimbire, Flavio; Vieira, Rodolfo Paula; Ligeiro-de-Oliveira, Ana Paula

    2018-01-01

    Chronic obstructive pulmonary disease (COPD) is a progressive disease characterized by irreversible airflow limitation, airway inflammation and remodeling, and enlargement of alveolar spaces. COPD is in the top five leading causes of deaths worldwide and presents a high economic cost. However, there are some preventive measures to lower the risk of developing COPD. Low-level laser therapy (LLLT) is a new effective therapy, with very low cost and no side effects. So, our objective was to investigate if LLLT reduces pulmonary alterations in an experimental model of COPD. C57BL/6 mice were submitted to cigarette smoke for 75 days (2x/day). After 60 days to smoke exposure, the treated group was submitted to LLLT (diode laser, 660 nm, 30 mW, and 3 J/cm 2 ) for 15 days and euthanized for morphologic and functional analysis of the lungs. Our results showed that LLLT significantly reduced the number of inflammatory cells and the proinflammatory cytokine secretion such as IL-1 β , IL-6, and TNF- α in bronchoalveolar lavage fluid (BALF). We also observed that LLLT decreased collagen deposition as well as the expression of purinergic P2X7 receptor. On the other hand, LLLT increased the IL-10 release. Thus, LLLT can be pointed as a promising therapeutic approach for lung inflammatory diseases as COPD.

  5. Divergent Effects of Neutrophils on Fas-Induced Pulmonary Inflammation, Apoptosis, and Lung Damage.

    PubMed

    Bruns, Bastian; Hönle, Theresia; Kellermann, Philipp; Ayala, Alfred; Perl, Mario

    2017-02-01

    Pulmonary Fas activation is essential in the pathogenesis of the acute respiratory distress syndrome. It remains unclear whether Fas-induced lung injury is dependent on neutrophils or mainly triggered by epithelial cell apoptosis. The contribution of lung epithelial cells (LEC) and alveolar macrophages (AM) remains elusive.Mice were neutrophil reduced prior to intratracheal instillation of Fas-activating (Jo2) or isotype antibody for 6 or 18 h. LEC and AM were incubated with Jo2 and in the presence of nuclear factor kappa B, p-38 mitogen activated protein kinase (p38MAPK), or extracellular signal regulating kinase 1/2 (ERK1/2) inhibitors. Cytokines were assessed by cytometric bead array or ELISA. Apoptosis was quantified via active caspase-3 Western blotting and Terminal Deoxynucleotide Transferase dUTP Nick End Labeling (TUNEL). Lung injury was assessed by bronchoalveolar lavage fluid (BALF) protein concentration and lung histology.KC, IL-6, and MCP-1 were markedly increased in lung, plasma, and BALF 18 h after Jo2 in the presence of neutrophils; in neutrophil-reduced mice lungs, MCP-1, but not KC or IL-6, was even further enhanced. Six hours after Jo2, BALF protein was markedly increased only in the presence of neutrophils. Apoptosis remained unaffected by neutrophil reduction. AM released MCP-1 and underwent apoptosis at lower concentrations of Jo2 than LEC. Inhibition of p38MAPK significantly increased, while inhibition of ERK1/2 reduced AM and LEC apoptosis.In conclusion, neutrophils are a necessary component of Fas-induced lung damage, while not affecting lung apoptosis directly per se. LEC display higher resistance to Fas-triggered inflammation and apoptosis than AM.

  6. Relation between physical capacity, nutritional status and systemic inflammation in COPD.

    PubMed

    Hallin, Runa; Janson, Christer; Arnardottir, Ragnheiður Harpa; Olsson, Roger; Emtner, Margareta; Branth, Stefan; Boman, Gunnar; Slinde, Frode

    2011-07-01

    Decreased physical capacity, weight loss, fat-free mass depletion and systemic inflammation are frequently observed in patients with chronic obstructive pulmonary disease (COPD). Our aim was to examine relations between physical capacity, nutritional status, systemic inflammation and disease severity in COPD. Forty nine patients with moderate to severe COPD were included in the study. Spirometry was preformed. Physical capacity was determined by a progressive symptom limited cycle ergo meter test, incremental shuttle walking test, 12-minute walk distance and hand grip strength test. Nutritional status was investigated by anthropometric measurements, (weight, height, arm and leg circumferences and skinfold thickness) and bioelectrical impedance assessment was performed. Blood samples were analyzed for C-reactive protein (CRP) and fibrinogen. Working capacity was positively related to forced expiratory volume in 1 s (FEV(1) ) (p < 0.001), body mass index and fat free mass index (p = 0.01) and negatively related to CRP (p = 0.02) and fibrinogen (p = 0.03). Incremental shuttle walk test was positively related to FEV(1) (p < 0.001) and negatively to CRP (p = 0.048). Hand grip strength was positively related to fat free mass index, and arm and leg circumferences. Fifty to 76% of the variation in physical capacity was accounted for when age, gender, FEV(1) , fat free mass index and CRP were combined in a multiple regression model. Physical capacity in chronic obstructive pulmonary disease is related to lung function, body composition and systemic inflammation. A depiction of all three aspects of the disease might be important when targeting interventions in chronic obstructive pulmonary disease. © 2010 Blackwell Publishing Ltd.

  7. Ultramicronized palmitoylethanolamide (PEA-um(®)) in the treatment of idiopathic pulmonary fibrosis.

    PubMed

    Di Paola, Rosanna; Impellizzeri, Daniela; Fusco, Roberta; Cordaro, Marika; Siracusa, Rosalba; Crupi, Rosalia; Esposito, Emanuela; Cuzzocrea, Salvatore

    2016-09-01

    Pulmonary fibrosis is a chronic condition characterized by progressive scarring of lung parenchyma. The aim of this study was to examine the effects of an ultramicronized preparation of palmitoylethanolamide (PEA-um(®)), an endogenous fatty acid amide, in mice subjected to idiopathic pulmonary fibrosis. Idiopathic pulmonary fibrosis was induced in male mice by a single intratracheal administration of saline with bleomycin sulphate (1mg/kg body weight) in a volume of 100μL. PEA-um(®) was injected intraperitoneally at 1, 3 or 10mg/kg 1h after bleomycin instillation and daily thereafter. Animals were sacrificed after 7 and 21days by pentobarbitone overdose. One cohort of mice was sacrificed after seven days of bleomycin administration, followed by bronchoalveloar lavage and determination of myeloperoxidase activity, lung edema and histopathology features. In the 21-day cohort, mortality was assessed daily, and surviving mice were sacrificed followed by the above analyses together with immunohistochemical localization of CD8, tumor necrosis factor-α, CD4, interleukin-1β, transforming growth factor-β, inducible nitric oxide synthase and basic fibroblast growth factor. Compared to bleomycin-treated mice, animals that received also PEA-um(®) (3 or 10mg/kg) had significantly decreased weight loss, mortality, inflammation, lung damage at the histological level, and lung fibrosis at 7 and 21days. PEA-um(®) (1mg/kg) did not significantly inhibit the inflammation response and lung fibrosis. This study demonstrates that PEA-um(®) (3 and 10mg/kg) reduces the extent of lung inflammation in a mouse model of idiopathic pulmonary fibrosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Agmatine attenuates silica-induced pulmonary fibrosis.

    PubMed

    El-Agamy, D S; Sharawy, M H; Ammar, E M

    2014-06-01

    There is a large body of evidence that nitric oxide (NO) formation is implicated in mediating silica-induced pulmonary fibrosis. As a reactive free radical, NO may not only contribute to lung parenchymal tissue injury but also has the ability to combine with superoxide and form a highly reactive toxic species peroxynitrite that can induce extensive cellular toxicity in the lung tissues. This study aimed to explore the effect of agmatine, a known NO synthase inhibitor, on silica-induced pulmonary fibrosis in rats. Male Sprague Dawley rats were treated with agmatine for 60 days following a single intranasal instillation of silica suspension (50 mg in 0.1 ml saline/rat). The results revealed that agmatine attenuated silica-induced lung inflammation as it decreased the lung wet/dry weight ratio, protein concentration, and the accumulation of the inflammatory cells in the bronchoalveolar lavage fluid. Agmatine showed antifibrotic activity as it decreased total hydroxyproline content of the lung and reduced silica-mediated lung inflammation and fibrosis in lung histopathological specimen. In addition, agmatine significantly increased superoxide dismutase (p < 0.001) and reduced glutathione (p < 0.05) activities with significant decrease in the lung malondialdehyde (p < 0.001) content as compared to the silica group. Agmatine also reduced silica-induced overproduction of pulmonary nitrite/nitrate as well as tumor necrosis factor α. Collectively, these results demonstrate the protective effects of agmatine against the silica-induced lung fibrosis that may be attributed to its ability to counteract the NO production, lipid peroxidation, and regulate cytokine effects. © The Author(s) 2014.

  9. Pidotimod exacerbates allergic pulmonary infection in an OVA mouse model of asthma.

    PubMed

    Fu, Luo-Qin; Li, Ya-Li; Fu, Ai-Kun; Wu, Yan-Ping; Wang, Yuan-Yuan; Hu, Sheng-Lan; Li, Wei-Fen

    2017-10-01

    Pidotimod is a synthetic dipeptide with biological and immuno‑modulatory properties. It has been widely used for treatment and prevention of recurrent respiratory infections. However, its impact on the regulation of allergic pulmonary inflammation is still not clear. In the current study, an ovalbumin (OVA)‑induced allergic asthma model was used to investigate the immune‑modulating effects of pidotimod on airway eosinophilia, mucus metaplasia and inflammatory factor expression compared with dexamethasone (positive control). The authors determined that treatment with pidotimod exacerbated pulmonary inflammation as demonstrated by significantly increased eosinophil infiltration, dramatically elevated immunoglobulin E production, and enhanced T helper 2 response. Moreover, treatment failed to attenuate mucus production in lung tissue, and did not reduce OVA‑induced high levels of FIZZ1 and Arg1 expression in asthmatic mice. In contrast, administration of dexamethasone was efficient in alleviating allergic airway inflammation in OVA‑induced asthmatic mice. These data indicated that pidotimod as an immunotherapeutic agent should be used cautiously and the effectiveness for controlling allergic asthma needs further evaluation and research.

  10. Source of biomass cooking fuel determines pulmonary response to household air pollution.

    PubMed

    Sussan, Thomas E; Ingole, Vijendra; Kim, Jung-Hyun; McCormick, Sarah; Negherbon, Jesse; Fallica, Jonathan; Akulian, Jason; Yarmus, Lonny; Feller-Kopman, David; Wills-Karp, Marsha; Horton, Maureen R; Breysse, Patrick N; Agrawal, Anurag; Juvekar, Sanjay; Salvi, Sundeep; Biswal, Shyam

    2014-03-01

    Approximately 3 billion people-half the worldwide population-are exposed to extremely high concentrations of household air pollution due to the burning of biomass fuels on inefficient cookstoves, accounting for 4 million annual deaths globally. Yet, our understanding of the pulmonary responses to household air pollution exposure and the underlying molecular and cellular events is limited. The two most prevalent biomass fuels in India are wood and cow dung, and typical 24-hour mean particulate matter (PM) concentrations in homes that use these fuels are 300 to 5,000 μg/m(3). We dissected the mechanisms of pulmonary responses in mice after acute or subchronic exposure to wood or cow dung PM collected from rural Indian homes during biomass cooking. Acute exposures resulted in robust proinflammatory cytokine production, neutrophilic inflammation, airway resistance, and hyperresponsiveness, all of which were significantly higher in mice exposed to PM from cow dung. On the contrary, subchronic exposures induced eosinophilic inflammation, PM-specific antibody responses, and alveolar destruction that was highest in wood PM-exposed mice. To understand the molecular pathways that trigger biomass PM-induced inflammation, we exposed Toll-like receptor (TLR)2-, TLR3-, TLR4-, TLR5-, and IL-1R-deficient mice to PM and found that IL-1R, TLR4, and TLR2 are the predominant receptors that elicit inflammatory responses via MyD88 in mice exposed to wood or cow dung PM. In conclusion, this study demonstrates that subchronic exposure to PM collected from households burning biomass fuel elicits a persistent pulmonary inflammation largely through activation of TLR and IL-1R pathways, which could increase the risk for chronic respiratory diseases.

  11. Experimental pulmonary embolism: effects of the thrombus and attenuation of pulmonary artery injury by low-molecular-weight heparin.

    PubMed

    Rectenwald, John E; Deatrick, K Barry; Sukheepod, Pasu; Lynch, Erin M; Moore, Andrea J; Moaveni, Daria M; Dewyer, Nicholas A; Deywer, Nicholas A; Luke, Catherine E; Upchurch, Gilbert R; Wakefield, Thomas W; Kunkel, Steven L; Henke, Peter K

    2006-04-01

    Pulmonary embolism (PE) is a life-threatening condition that is associated with the long-term sequelae of chronic pulmonary hypertension. Prior experimental work has suggested that post-PE inflammation is accompanied by pulmonary artery intimal hyperplasia. This study evaluated the effect of the thrombus and tested the hypothesis that thrombolytic, antiplatelet, and anticoagulant agents would decrease pulmonary injury. Male Sprague-Dawley rats (n = 267) underwent laparotomy and temporary clip occlusion of the infrarenal inferior vena cava for the formation of endogenous thrombus or placement of an inert silicone "thrombus." Two days later, repeat laparotomy was performed, the clip removed, and the thrombus or silicone plug was embolized to the lungs. The endogenous thrombus group received normal saline, low-molecular-weight heparin (LMWH), tissue plasminogen activator (tPA), or a gIIB/IIIA antagonist (abciximab). Lung tissue was harvested at various times over 21 days and assayed for total collagen, monocyte chemoattractant protein-1 (MCP-1), interleukin-13 (IL-13), and transforming growth factor-beta (TGF-beta). Fixed sections were stained with trichrome for intimal hyperplasia determination and ED-1 monocytes and alpha-actin-positive staining. The overall survival for rats undergoing PE was 90%, was not affected by treatment, and 84% of all PE localized to the right pulmonary artery. The PE significantly reduced Pa(O2) in all groups. Compared with controls, the silicone emboli group had an increased level of IL-13 on day 1, an increased level of MCP-1 on day 4, and an increase in the levels of all inflammatory mediators on day 14 (P < .05). Accompanying these differences were greater pulmonary artery intimal hyperplasia at days 4 and 21 in the silicone group compared with controls (P < .05). LMWH treatment in the thrombus of PE rats significantly decreased IL-13 levels at all time points, whereas treatment with abciximab or tPA significantly increased IL-13

  12. Equivalent Dipole Vector Analysis for Detecting Pulmonary Hypertension

    NASA Technical Reports Server (NTRS)

    Harlander, Matevz; Salobir, Barbara; Toplisek, Janez; Schlegel, Todd T.; Starc, Vito

    2010-01-01

    Various 12-lead ECG criteria have been established to detect right ventricular hypertrophy as a marker of pulmonary hypertension (PH). While some criteria offer good specificity they lack sensitivity because of a low prevalence of positive findings in the PH population. We hypothesized that three-dimensional equivalent dipole (ED) model could serve as a better detection tool of PH. We enrolled: 1) 17 patients (12 female, 5 male, mean age 57 years, range 19-79 years) with echocardiographically detected PH (systolic pulmonary arterial pressure greater than 35 mmHg) and no significant left ventricular disease; and 2) 19 healthy controls (7 female, 12 male, mean age 44, range 31-53 years) with no known heart disease. In each subject we recorded a 5-minute high-resolution 12-lead conventional ECG and constructed principal signals using singular value decomposition. Assuming a standard thorax dimension of an adult person with homogenous and isotropic distribution of thorax conductance, we determined moving equivalent dipoles (ED), characterized by the 3D location in the thorax, dipolar strength and the spatial orientation, in time intervals of 5 ms. We used the sum of all ED vectors in the second half of the QRS complex to derive the amplitude of the right-sided ED vector (RV), if the orientation of ED was to the right side of the thorax, and in the first half the QRS to derive the amplitude of the left-sided vector (LV), if the orientation was leftward. Finally, the parameter RV/LV ratio was determined over an average of 256 complexes. The groups differed in age and gender to some extent. There was a non-significant trend toward higher RV in patients with PH (438 units 284) than in controls (280 plus or minus 140) (p = 0.066) but the overlap was such that RV alone was not a good predictor of PH. On the other hand, the RV/LV ratio was a better predictor of PH, with 11/17 (64.7%) of PH patients but only in 1/19 (5.3%) control subjects having RV/LV ratio greater than or

  13. Linking Inflammation, Cardiorespiratory Variability, and Neural Control in Acute Inflammation via Computational Modeling

    PubMed Central

    Dick, Thomas E.; Molkov, Yaroslav I.; Nieman, Gary; Hsieh, Yee-Hsee; Jacono, Frank J.; Doyle, John; Scheff, Jeremy D.; Calvano, Steve E.; Androulakis, Ioannis P.; An, Gary; Vodovotz, Yoram

    2012-01-01

    Acute inflammation leads to organ failure by engaging catastrophic feedback loops in which stressed tissue evokes an inflammatory response and, in turn, inflammation damages tissue. Manifestations of this maladaptive inflammatory response include cardio-respiratory dysfunction that may be reflected in reduced heart rate and ventilatory pattern variabilities. We have developed signal-processing algorithms that quantify non-linear deterministic characteristics of variability in biologic signals. Now, coalescing under the aegis of the NIH Computational Biology Program and the Society for Complexity in Acute Illness, two research teams performed iterative experiments and computational modeling on inflammation and cardio-pulmonary dysfunction in sepsis as well as on neural control of respiration and ventilatory pattern variability. These teams, with additional collaborators, have recently formed a multi-institutional, interdisciplinary consortium, whose goal is to delineate the fundamental interrelationship between the inflammatory response and physiologic variability. Multi-scale mathematical modeling and complementary physiological experiments will provide insight into autonomic neural mechanisms that may modulate the inflammatory response to sepsis and simultaneously reduce heart rate and ventilatory pattern variabilities associated with sepsis. This approach integrates computational models of neural control of breathing and cardio-respiratory coupling with models that combine inflammation, cardiovascular function, and heart rate variability. The resulting integrated model will provide mechanistic explanations for the phenomena of respiratory sinus-arrhythmia and cardio-ventilatory coupling observed under normal conditions, and the loss of these properties during sepsis. This approach holds the potential of modeling cross-scale physiological interactions to improve both basic knowledge and clinical management of acute inflammatory diseases such as sepsis and trauma

  14. Linking Inflammation, Cardiorespiratory Variability, and Neural Control in Acute Inflammation via Computational Modeling.

    PubMed

    Dick, Thomas E; Molkov, Yaroslav I; Nieman, Gary; Hsieh, Yee-Hsee; Jacono, Frank J; Doyle, John; Scheff, Jeremy D; Calvano, Steve E; Androulakis, Ioannis P; An, Gary; Vodovotz, Yoram

    2012-01-01

    Acute inflammation leads to organ failure by engaging catastrophic feedback loops in which stressed tissue evokes an inflammatory response and, in turn, inflammation damages tissue. Manifestations of this maladaptive inflammatory response include cardio-respiratory dysfunction that may be reflected in reduced heart rate and ventilatory pattern variabilities. We have developed signal-processing algorithms that quantify non-linear deterministic characteristics of variability in biologic signals. Now, coalescing under the aegis of the NIH Computational Biology Program and the Society for Complexity in Acute Illness, two research teams performed iterative experiments and computational modeling on inflammation and cardio-pulmonary dysfunction in sepsis as well as on neural control of respiration and ventilatory pattern variability. These teams, with additional collaborators, have recently formed a multi-institutional, interdisciplinary consortium, whose goal is to delineate the fundamental interrelationship between the inflammatory response and physiologic variability. Multi-scale mathematical modeling and complementary physiological experiments will provide insight into autonomic neural mechanisms that may modulate the inflammatory response to sepsis and simultaneously reduce heart rate and ventilatory pattern variabilities associated with sepsis. This approach integrates computational models of neural control of breathing and cardio-respiratory coupling with models that combine inflammation, cardiovascular function, and heart rate variability. The resulting integrated model will provide mechanistic explanations for the phenomena of respiratory sinus-arrhythmia and cardio-ventilatory coupling observed under normal conditions, and the loss of these properties during sepsis. This approach holds the potential of modeling cross-scale physiological interactions to improve both basic knowledge and clinical management of acute inflammatory diseases such as sepsis and trauma.

  15. Role of LTB4 in the pathogenesis of elastase-induced murine pulmonary emphysema

    PubMed Central

    Paige, Mikell; Hanna, Halim; Kim, Su H.; Burdick, Marie D.; Strieter, Robert M.

    2010-01-01

    Exaggerated levels of the leukotriene B4 (LTB4) frequently coexist at sites of inflammation and tissue remodeling. Therefore, we hypothesize that the LTB4 pathway plays an important role in the pathogenesis of neutrophilic inflammation that contributes to pulmonary emphysema. In this study, significant levels of LTB4 were detected in human lung tissues with emphysema compared with lungs without emphysema (9,497 ± 2,839 vs. 4,142 ± 1,173 pg/ml, n = 9 vs. 10, P = 0.04). To further determine the biological role of LTB4 in the pathogenesis of emphysema, we compared the lungs of wild-type (WT) and LTA4 hydrolase−/− mice (LTB4 deficient, LTA4H−/−) exposed to intranasal elastase or vehicle control. We found that intranasal elastase induced accumulation of LTB4 in the lungs and caused progressively worsening emphysema between 14 and 28 days after elastase exposure in WT mice but not in LTA4H−/− mice. Premortem physiology documented increased lung compliance in elastase-exposed WT mice compared with elastase-exposed LTA4H−/− mice as measured by Flexivent (0.058 ± 0.005 vs. 0.041 ± 0.002 ml/cmH2O pressure). Postmortem morphometry documented increased total lung volume and alveolar sizes in elastase-exposed WT mice compared with elastase-exposed LTA4H−/− mice as measured by volume displacement and alveolar chord length assessment. Furthermore, elastase-exposed LTA4H−/− mice were found to have significantly delayed influx of the CD45highCD11bhighLy6Ghigh leukocytes compatible with neutrophils compared with elastase-exposed WT mice. Mechanistic insights to these phenotypes were provided by demonstrating protection from elastase-induced murine emphysema with neutrophil depletion in the elastase-exposed WT mice and by demonstrating time-dependent modulation of cysteinyl leukotriene biosynthesis in the elastase-exposed LTA4H−/− mice compared with elastase-exposed WT mice. Together, these findings demonstrated that LTB4 played an important role in

  16. PULMONARY INJURY AND INFLAMMATION FROM REPEATED EXPOSURE TO SOLUBLE COMPONENTS AND SOLID PARTICULATE MATTER (PM)

    EPA Science Inventory

    Pulmonary injury from acute exposures to PM and the role of soluble versus insoluble PM have received considerable attention; however, their long-term impacts are less well understood. This study compared pulmonary injury and inflammatory responses from repeated exposure to solub...

  17. Detection of chronic obstructive pulmonary disease in community-based annual lung cancer screening: Chiba Chronic Obstructive Pulmonary Disease Lung Cancer Screening Study Group.

    PubMed

    Sekine, Yasuo; Fujisawa, Takehiko; Suzuki, Kiminori; Tsutatani, Shuko; Kubota, Kazuko; Ikegami, Hiroshi; Isobe, Yuji; Nakamura, Mitsugu; Takiguchi, Yuichi; Tatsumi, Koichiro

    2014-01-01

    Detection of chronic obstructive pulmonary disease (COPD) is crucial in the management of COPD. The aim of this study was to establish the utility of a community-based lung cancer screening for detecting COPD. In Japan, community-based lung cancer screening for residents who are 40 years or older using chest radiography is well established. A screening system in Chiba City, Japan, was used to detect COPD. The criteria to consider COPD at screening included age of 60 years or older, a smoking history and chronic respiratory symptoms. Participants fulfilling these criteria were referred for diagnostic evaluation consisting of pulmonary function testing (PFT) and chest computed tomography (CT). Of 89,100 Chiba City residents who underwent lung cancer screening, 72,653 residents were 60 years or older. Among them, 878 (1.0%) were identified with suspected COPD and referred for further evaluation. Of those identified, a total of 567 residents (64.6%, 567/878) underwent further evaluations, and 161 (28.4%) were reported to have COPD, with 38.5% of them requiring COPD treatment. To verify the diagnoses from the secondary evaluation centres, PFT and CT data were collected from 228 study participants, and 24.9% were diagnosed with COPD. CT findings classified according to the Goddard classification revealed that 20.1% of these participants had moderate to severe emphysema. COPD screening added to a community-based lung cancer screening programme may be effective in the detection of patients with COPD. © 2013 The Authors. Respirology © 2013 Asian Pacific Society of Respirology.

  18. Resveratrol efficiently improves pulmonary function via stabilizing mast cells in a rat intestinal injury model.

    PubMed

    Huang, Xiaolei; Zhao, Weicheng; Hu, Dan; Han, Xue; Wang, Hanbin; Yang, Jianyu; Xu, Yang; Li, Yuantao; Yao, Weifeng; Chen, Chaojin

    2017-09-15

    Intestinal ischemia/reperfusion (IIR) leads to acute lung injury (ALI) distally by aggravating pulmonary oxidative stress. Resveratrol is effective in attenuating ALI through its antioxidant capacity. This study aimed to determine the effects of resveratrol on IIR-induced ALI and to explore the role of mast cells (MCs) activation in a rat model of IIR. Adult Sprague-Dawley rats were subjected to IIR by occluding the superior mesenteric artery for 60min followed by 4-hour reperfusion. Resveratrol was intraperitoneally injected at a dose of 15mg/kg for 5days before IIR. MCs stabilizer/inhibitor cromolyn sodium and degranulator compound 48/80 were used to explore the interaction between resveratrol and MCs. Lung tissues were collected for pathological detection and MCs staining. Pulmonary protein expression of surfactant protein-C (SP-C), tryptase, p47 phox and gp91 phox (two NADPH oxidase subunits), ICAM-1(intercellular adhesion molecule-1) and P-selectin were detected. The levels of oxidative stress markers (SOD, MDA, H 2 O 2 and MPO) and β-hexosaminidase were also measured. At the end of IIR, lung injury was significantly increased and was associated with decreased expression of SP-C and increased lung oxidative stress. Increased inflammation as well as activation of MCs was also observed in the lungs after IIR. All these changes were prevented or reversed by resveratrol pretreatment or MCs inhibition with cromolyn sodium. However, these protective effects of resveratrol or cromolyn sodium were reduced by MCs degranulator compound 48/80. These findings reveal that resveratrol attenuates IIR-induced ALI by reducing NADPH oxidase protein expression and inflammation through stabilizing MCs. Copyright © 2017. Published by Elsevier Inc.

  19. Effects of inhaled corticosteroids on airway inflammation in chronic obstructive pulmonary disease: a systematic review and meta-analysis

    PubMed Central

    Jen, Rachel; Rennard, Stephen I; Sin, Don D

    2012-01-01

    Background: Chronic obstructive pulmonary disease (COPD) is characterized by chronic inflammation in the small airways. The effect of inhaled corticosteroids (ICS) on lung inflammation in COPD remains uncertain. We sought to determine the effects of ICS on inflammatory indices in bronchial biopsies and bronchoalveolar lavage fluid of patients with COPD. Methods: We searched Medline, Embase, Cinahl, and the Cochrane database for randomized, controlled clinical trials that used bronchial biopsies and bronchoalveolar lavage to evaluate the effects of ICS in stable COPD. For each chosen study, we calculated the mean differences in the concentrations of inflammatory cells before and after treatment in both intervention and control groups. These values were then converted into standardized mean differences (SMD) to accommodate the differences in patient selection, clinical treatment, and biochemical procedures that were employed across the original studies. If significant heterogeneity was present (P < 0.1), then a random effects model was used to pool the original data; otherwise, a fixed effects model was used. Results: We identified eight original studies that met the inclusion criteria. Four studies used bronchial biopsies (n =102 participants) and showed that ICS were effective in reducing CD4 and CD8 cell counts (SMD, −0.52 units and −0.66 units, 95% confidence interval). The five studies used bronchoalveolar lavage fluid (n =309), which together showed that ICS reduced neutrophil and lymphocyte counts (SMD, −0.64 units and −0.64 units, 95% confidence interval). ICS on the other hand significantly increased macrophage counts (SMD, 0.68 units, 95% confidence interval) in bronchoalveolar lavage fluid. Conclusion: ICS has important immunomodulatory effects in airways with COPD that may explain its beneficial effect on exacerbations and enhanced risk of pneumonia. PMID:23055709

  20. Attenuation of Lipopolysaccharide-Induced Lung Vascular Stiffening by Lipoxin Reduces Lung Inflammation

    PubMed Central

    Meng, Fanyong; Mambetsariev, Isa; Tian, Yufeng; Beckham, Yvonne; Meliton, Angelo; Leff, Alan; Gardel, Margaret L.; Allen, Michael J.; Birukov, Konstantin G.

    2015-01-01

    Reversible changes in lung microstructure accompany lung inflammation, although alterations in tissue micromechanics and their impact on inflammation remain unknown. This study investigated changes in extracellular matrix (ECM) remodeling and tissue stiffness in a model of LPS-induced inflammation and examined the role of lipoxin analog 15-epi-lipoxin A4 (eLXA4) in the reduction of stiffness-dependent exacerbation of the inflammatory process. Atomic force microscopy measurements of live lung slices were used to directly measure local tissue stiffness changes induced by intratracheal injection of LPS. Effects of LPS on ECM properties and inflammatory response were evaluated in an animal model of LPS-induced lung injury, live lung tissue slices, and pulmonary endothelial cell (EC) culture. In vivo, LPS increased perivascular stiffness in lung slices monitored by atomic force microscopy and stimulated expression of ECM proteins fibronectin, collagen I, and ECM crosslinker enzyme, lysyl oxidase. Increased stiffness and ECM remodeling escalated LPS-induced VCAM1 and ICAM1 expression and IL-8 production by lung ECs. Stiffness-dependent exacerbation of inflammatory signaling was confirmed in pulmonary ECs grown on substrates with high and low stiffness. eLXA4 inhibited LPS-increased stiffness in lung cross sections, attenuated stiffness-dependent enhancement of EC inflammatory activation, and restored lung compliance in vivo. This study shows that increased local vascular stiffness exacerbates lung inflammation. Attenuation of local stiffening of lung vasculature represents a novel mechanism of lipoxin antiinflammatory action. PMID:24992633

  1. Pulmonary vasculature in COPD: The silent component.

    PubMed

    Blanco, Isabel; Piccari, Lucilla; Barberà, Joan Albert

    2016-08-01

    Chronic obstructive pulmonary disease (COPD) is characterized by airflow obstruction that results from an inflammatory process affecting the airways and lung parenchyma. Despite major abnormalities taking place in bronchial and alveolar structures, changes in pulmonary vessels also represent an important component of the disease. Alterations in vessel structure are highly prevalent and abnormalities in their function impair gas exchange and may result in pulmonary hypertension (PH), an important complication of the disease associated with reduced survival and worse clinical course. The prevalence of PH is high in COPD, particularly in advanced stages, although it remains of mild to moderate severity in the majority of cases. Endothelial dysfunction, with imbalance between vasodilator/vasoconstrictive mediators, is a key determinant of changes taking place in pulmonary vasculature in COPD. Cigarette smoke products may perturb endothelial cells and play a critical role in initiating vascular changes. The concurrence of inflammation, hypoxia and emphysema further contributes to vascular damage and to the development of PH. The use of drugs that target endothelium-dependent signalling pathways, currently employed in pulmonary arterial hypertension, is discouraged in COPD due to the lack of efficacy observed in randomized clinical trials and because there is compelling evidence indicating that these drugs may worsen pulmonary gas exchange. The subgroup of patients with severe PH should be ideally managed in centres with expertise in both PH and chronic lung diseases because alterations of pulmonary vasculature might resemble those observed in pulmonary arterial hypertension. Because this condition entails poor prognosis, it warrants specialist treatment. © 2016 Asian Pacific Society of Respirology.

  2. RAGE and tobacco smoke: insights into modeling chronic obstructive pulmonary disease

    PubMed Central

    Robinson, Adam B.; Stogsdill, Jeffrey A.; Lewis, Joshua B.; Wood, Tyler T.; Reynolds, Paul R.

    2012-01-01

    Chronic obstructive pulmonary disease (COPD) is a progressive condition characterized by chronic airway inflammation and airspace remodeling, leading to airflow limitation that is not completely reversible. Smoking is the leading risk factor for compromised lung function stemming from COPD pathogenesis. First- and second-hand cigarette smoke contain thousands of constituents, including several carcinogens and cytotoxic chemicals that orchestrate chronic lung inflammation and destructive alveolar remodeling. Receptors for advanced glycation end-products (RAGE) are multi-ligand cell surface receptors primarily expressed by diverse lung cells. RAGE expression increases following cigarette smoke exposure and expression is elevated in the lungs of patients with COPD. RAGE is responsible in part for inducing pro-inflammatory signaling pathways that culminate in expression and secretion of several cytokines, chemokines, enzymes, and other mediators. In the current review, new transgenic mouse models that conditionally over-express RAGE in pulmonary epithelium are discussed. When RAGE is over-expressed throughout embryogenesis, apoptosis in the peripheral lung causes severe lung hypoplasia. Interestingly, apoptosis in RAGE transgenic mice occurs via conserved apoptotic pathways also known to function in advanced stages of COPD. RAGE over-expression in the adult lung models features of COPD including pronounced inflammation and loss of parenchymal tissue. Understanding the biological contributions of RAGE during cigarette smoke-induced inflammation may provide critically important insight into the pathology of COPD. PMID:22934052

  3. Effects of amorphous silica coating on cerium oxide nanoparticles induced pulmonary responses.

    PubMed

    Ma, Jane; Mercer, Robert R; Barger, Mark; Schwegler-Berry, Diane; Cohen, Joel M; Demokritou, Philip; Castranova, Vincent

    2015-10-01

    Recently cerium compounds have been used in a variety of consumer products, including diesel fuel additives, to increase fuel combustion efficiency and decrease diesel soot emissions. However, cerium oxide (CeO2) nanoparticles have been detected in the exhaust, which raises a health concern. Previous studies have shown that exposure of rats to nanoscale CeO2 by intratracheal instillation (IT) induces sustained pulmonary inflammation and fibrosis. In the present study, male Sprague-Dawley rats were exposed to CeO2 or CeO2 coated with a nano layer of amorphous SiO2 (aSiO2/CeO2) by a single IT and sacrificed at various times post-exposure to assess potential protective effects of the aSiO2 coating. The first acellular bronchoalveolar lavage (BAL) fluid and BAL cells were collected and analyzed from all exposed animals. At the low dose (0.15mg/kg), CeO2 but not aSiO2/CeO2 exposure induced inflammation. However, at the higher doses, both particles induced a dose-related inflammation, cytotoxicity, inflammatory cytokines, matrix metalloproteinase (MMP)-9, and tissue inhibitor of MMP at 1day post-exposure. Morphological analysis of lung showed an increased inflammation, surfactant and collagen fibers after CeO2 (high dose at 3.5mg/kg) treatment at 28days post-exposure. aSiO2 coating significantly reduced CeO2-induced inflammatory responses in the airspace and appeared to attenuate phospholipidosis and fibrosis. Energy dispersive X-ray spectroscopy analysis showed Ce and phosphorous (P) in all particle-exposed lungs, whereas Si was only detected in aSiO2/CeO2-exposed lungs up to 3days after exposure, suggesting that aSiO2 dissolved off the CeO2 core, and some of the CeO2 was transformed to CePO4 with time. These results demonstrate that aSiO2 coating reduce CeO2-induced inflammation, phospholipidosis and fibrosis. Published by Elsevier Inc.

  4. The distribution of immunomodulatory cells in the lungs of patients with idiopathic pulmonary fibrosis

    PubMed Central

    Nuovo, Gerard J.; Hagood, James S.; Magro, Cynthia M.; Chin, Nena; Kapil, Rubina; Davis, Luke; Marsh, Clay B.; Folcik, Virginia A.

    2011-01-01

    We have characterized the immune system involvement in the disease processes of idiopathic pulmonary fibrosis in novel ways. To do so, we analyzed lung tissue from 21 cases of idiopathic pulmonary fibrosis and 21 (non-fibrotic, non-cancerous) controls for immune cell and inflammation-related markers. The immunohistochemical analysis of the tissue was grouped by patterns of severity in disease pathology. There were significantly greater numbers of CD68+ and CD80+ cells, and significantly fewer CD3+, CD4+, and CD45RO+ cells in areas of relatively (histologically) normal lung in biopsies from idiopathic pulmonary fibrosis patients compared to controls. In zones of active disease, characterized by epithelial cell regeneration and fibrosis, there were significantly more cells expressing CD4, CD8, CD20, CD68, CD80, CCR6, S100, IL-17, tumor necrosis factor-α, and retinoic acid-related orphan receptors compared to histologically normal lung areas from idiopathic pulmonary fibrosis patients. Inflammation was implicated in these active regions by the cells that expressed retinoid orphan receptor-α, -β, and -γ, CCR6, and IL-17. The regenerating epithelial cells predominantly expressed these pro-inflammatory molecules, as evidenced by co-expression analyses with epithelial cytokeratins. Macrophages in pseudo-alveoli and CD3+ T cells in the fibrotic interstitium also expressed IL-17. Co-expression of IL-17 with retinoid orphan receptors, and epithelial cytoskeletal proteins, CD68, and CD3 in epithelial cells, macrophages, and T-cells, respectively, confirmed the production of IL-17 by these cell types. There was little staining for Foxp3, CD56, or CD34 in any idiopathic pulmonary fibrosis lung regions. The fibrotic regions had fewer immune cells overall. In summary, our study shows participation of innate and adaptive mononuclear cells in active-disease regions of idiopathic pulmonary fibrosis lung, where the regenerating epithelial cells appear to propagate inflammation

  5. Experimental extrinsic allergic alveolitis and pulmonary angiitis induced by intratracheal or intravenous challenge with Corynebacterium parvum in sensitized rats.

    PubMed Central

    Yi, E. S.; Lee, H.; Suh, Y. K.; Tang, W.; Qi, M.; Yin, S.; Remick, D. G.; Ulich, T. R.

    1996-01-01

    Extrinsic allergic alveolitis and pulmonary sarcoidosis are granulomatous diseases of the lung for which clinical presentation and anatomic site of granuloma formation differ. Extrinsic allergic alveolitis is caused by inhaled antigens, whereas the nature and source of the inciting antigen in sarcoidosis is unknown. To test the hypothesis that the route via which antigen is introduced to the lung contributes to the clinicopathological presentation of pulmonary granulomatous disease, rats immunized with intravenous (i.v.) Corynebacterium parvum were challenged after 2 weeks with either intratracheal (i.t.) or i.v. C. parvum. The granulomatous inflammation elicited by i.t. challenge predominantly involved alveolar spaces and histologically simulated extrinsic allergic alveolitis. In contrast, the inflammation induced by i.v. challenge was characterized by granulomatous angiitis and interstitial inflammation simulating sarcoidosis. Elevations of leukocyte counts and TNF levels in bronchoalveolar fluid, which reflect inflammation in the intra-alveolar compartment, were much more pronounced after i.t. than after i.v. challenge. Tumor necrosis factor, interleukin-6, CC chemokine, CXC chemokine, and adhesion molecule mRNA and protein expression occurred in each model. In conclusion, i.t. or i.v. challenge with C. parvum in sensitized rats caused pulmonary granulomatous inflammation that was histologically similar to human extrinsic allergic alveolitis and sarcoidosis, respectively. Although the soluble and cellular mediators of granulomatous inflammation were qualitatively similar in both disease models, the differing anatomic source of the same antigenic challenge was responsible for differing clinicopathological presentations. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 11 Figure 13 Figure 12 Figure 14 PMID:8863677

  6. Th17 cells and IL-17 promote the skin and lung inflammation and fibrosis process in a bleomycin-induced murine model of systemic sclerosis.

    PubMed

    Lei, Ling; Zhao, Cheng; Qin, Fang; He, Zhi-Yi; Wang, Xu; Zhong, Xiao-Ning

    2016-01-01

    Systemic sclerosis (SSc) is characterised by fibrosis of the skin and internal organs, such as the lungs. Enhanced Th17 responses are associated with skin fibrosis in patients with SSc, however, whether they are associated with lung fibrosis has not been clarified. This study aimed to investigate the potential association of Th17 responses with the skin and pulmonary fibrosis as well as the potential mechanisms in a mouse bleomycin (BLM) model of SSc. BALB/c mice were injected subcutaneously with phosphate buffered saline (PBS) (control) or BLM for 28 days and the skin and pulmonary inflammation and fibrosis were characterized by histology. The percentages of circulating, skin and pulmonary infiltrating Th17 cells and the contents of collagen in mice were analysed. The levels of RORγt, IL-17A, IL-6 and TGF-β1 mRNA transcripts in the skin and lungs were determined by quantitative RTPCR and the levels of serum IL-17A, IL-6 and TGF-β1 were determined by ELISA. Furthermore, the effect of rIL-17A on the proliferation of pulmonary fibroblasts and their cytokine expression was analysed. The potential association of Th17 responses with the severity of skin and lung fibrosis was analysed. In comparison with the control mice, significantly increased skin and pulmonary inflammation and fibrosis and higher levels of hydroxyproline were detected in the BLM mice. Significantly higher frequency of circulating, skin and lung infiltrating Th17 cells and higher levels of serum, skin and lung IL-17A, TGF-β1, IL-6 and RORγt were detected in the BLM mice. The concentrations of serum IL-17A were correlated positively with the percentages of Th17 cells and the contents of skin hydroxyproline in the BLM mice. The levels of IL-17A expression were positively correlated with the skin and lung inflammatory scores as well as the skin fibrosis in the BLM mice. In addition, IL-17A significantly enhanced pulmonary fibroblast proliferation and their type I collagen, TGF-β and IL-6 expression

  7. Matrix Metalloproteinases Promote Inflammation and Fibrosis in Asbestos-Induced Lung Injury in Mice

    PubMed Central

    Tan, Roderick J.; Fattman, Cheryl L.; Niehouse, Laura M.; Tobolewski, Jacob M.; Hanford, Lana E.; Li, Qinglang; Monzon, Federico A.; Parks, William C.; Oury, Tim D.

    2006-01-01

    Inhalation of asbestos fibers causes pulmonary inflammation and eventual pulmonary fibrosis (asbestosis). Although the underlying molecular events are poorly understood, protease/antiprotease and oxidant/antioxidant imbalances are believed to contribute to the disease. Implicated in other forms of pulmonary fibrosis, the matrix metalloproteinases (MMPs) have not been examined in asbestosis. We therefore hypothesized that MMPs play a pathogenic role in asbestosis development. Wild-type C57BL/6 mice were intratracheally instilled with 0.1 mg crocidolite asbestos, causing an inflammatory response at 1 d and a developing fibrotic response at 7, 14, and 28 d. Gelatin zymography demonstrated an increase in MMP-9 (gelatinase B) during the inflammatory phase, while MMP-2 (gelatinase A) was profoundly increased in the fibrotic phase. Immunohistochemistry revealed MMP-9 in and around bronchiolar and airspace neutrophils that were often associated with visible asbestos fibers. MMP-2 was found in fibrotic regions at 7, 14, and 28 d. No increases in RNA levels of MMP-2, MMP-9, or MMP-8 were found, but levels of MMP-7, MMP-12, and MMP-13 RNA did increase at 14 d. The MMP inhibitors, TIMP-1 and TIMP-2, were also increased at 7–28 d after asbestos exposure. To confirm the importance of MMP activity in disease progression, mice exposed to asbestos were given daily injections of the MMP inhibitor, GM6001. MMP inhibition reduced inflammation and fibrosis in asbestos-treated mice. Collectively, these data suggest that MMPs contribute to the pathogenesis of asbestosis through effects on inflammation and fibrosis development. PMID:16574944

  8. Automated lung sound analysis for detecting pulmonary abnormalities.

    PubMed

    Datta, Shreyasi; Dutta Choudhury, Anirban; Deshpande, Parijat; Bhattacharya, Sakyajit; Pal, Arpan

    2017-07-01

    Identification of pulmonary diseases comprises of accurate auscultation as well as elaborate and expensive pulmonary function tests. Prior arts have shown that pulmonary diseases lead to abnormal lung sounds such as wheezes and crackles. This paper introduces novel spectral and spectrogram features, which are further refined by Maximal Information Coefficient, leading to the classification of healthy and abnormal lung sounds. A balanced lung sound dataset, consisting of publicly available data and data collected with a low-cost in-house digital stethoscope are used. The performance of the classifier is validated over several randomly selected non-overlapping training and validation samples and tested on separate subjects for two separate test cases: (a) overlapping and (b) non-overlapping data sources in training and testing. The results reveal that the proposed method sustains an accuracy of 80% even for non-overlapping data sources in training and testing.

  9. [Effect of acidic oligosaccharides on P-selectin of pulmonary hypertensive rats induced by monocrotaline].

    PubMed

    Feng, Z; Hu, Y; An, N N; Feng, W J; Hu, T; Mao, Y J

    2018-02-12

    Objective: To observe the effects of acidic oligosaccharides (AOS) on P-selectin levels in the serum and the pulmonary arteries of pulmonary hypertensive rats induced by monocrotaline. Methods: Sixty healthy adult male Sprague-Dawley rats were randomly divided into control group ( n =10), model group ( n =10), Alprostadil group ( n =10), low-dose AOS group (AOS-L, n =10), medium-dose AOS group (AOS-M, n =10) and high-dose AOS group (AOS-H, n =10). The rat model of pulmonary arterial hypertension was made by a single intraperitoneal injection of monocrotaline(60 mg/kg). Five weeks after injection, pulmonary arterial (PA) acceleration time (PAT) and ejection time (ET) were measured by color Doppler ultrasound. Then, the Alprostadil group was treated by Alprostadil 5 μg·kg(-1)·d(-1)intraperitoneally. Acidic oligosaccharides was administered by intraperitoneal injection to rats in the AOS-L group(5 kg(-1)·d(-1)), AOS-M group (10 mg·kg(-1)·d(-1))and AOS-H group (20 mg·kg(-1)·d(-1)). Control group and model group were given normal saline instead. At the end of experiments, the death rate was recorded and PAT/ET was measured. We calculated the right ventricular hypertrophy index (RVHI) of all rats sacrificed under anesthesia. Precision-cut lung slices were stained with HE for observation of the structure of middle and small arteries. The expression level of P-selectin in serum and pulmonary arterial tissues were detected by ELISA and Western blot respectively. Results: AOS significantly increased the level of PAT/ET ( P <0.01), and attenuated RVHI ( P <0.01). AOS significantly improved intima-media proliferation in small-to medium-sized pulmonary arteries, and attenuated perivascular inflammation. AOS and Alprostadil significantly down-regulated the protein expression of P-selectin in serum and pulmonary arteries ( P <0.01). Conclusion: In this rat model of monocrotaline-induced pulmonary hypertension, AOS decreased the expressions of P-selectin in serum and

  10. Detection of invariant natural killer T cells in ejaculates from infertile patients with chronic inflammation of genital tract.

    PubMed

    Duan, Yong-Gang; Chen, Shujian; Haidl, Gerhard; Allam, Jean-Pierre

    2017-08-01

    Chronic inflammation of genital tract is thought to play a major role in male fertility disorder. Natural killer (NK) T cells are a heterogeneous group of T cells that share properties of both T cells and NK cells which display immunoregulatory properties. However, little is known regarding the presence and function of NK T cells in ejaculates from patients with chronic inflammation of genital tract. Invariant NK T (iNK T) cells were detected by invariant (Vα24-JαQ) TCR chain in ejaculates from patients suffering from chronic inflammation of genital tract (CIGT) using flow cytometry and immunofluorescence of double staining (n=40). Inflammatory cytokines interleukin (IL)-6, IL-17, and IFN-γ were detected in cell-free seminal plasma using an enzyme-linked immunosorbent assay (ELISA). The correlation between the percentage of iNK T cells and spermatozoa count, motility, vitality, seminal IL-6, IL-17, and IFN-γ was investigated. Significant percentages of iNK T cells above 10% were detected in 50% (CIGT-NKT + group). A negative correlation was detected between the percentage of iNK T cells and spermatozoa count (r=-.5957, P=.0056), motility (r=-.6163, P=.0038), and vitality (r=-.8032, P=.0019) in CIGT-NKT + group (n=20). Interestingly, a significant correlation of iNK T cells to seminal IL-6 (r=.7083, P=.0005), IFN-γ (r=.9578, P<.0001) was detected whereas lack of correlation between iNK T cells and IL-17 (r=-.1557, P=.5122) in CIGT-NKT + group. The proliferative response of iNK T cells could accompany an inflammatory response to spermatozoa and consequently influence sperm quality through secretion of IFN-γ but not IL-17 under chronic inflammatory condition. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Early detection and management of pulmonary arterial hypertension.

    PubMed

    Humbert, Marc; Gerry Coghlan, J; Khanna, Dinesh

    2012-12-01

    The long-term prognosis for patients with pulmonary arterial hypertension (PAH) remains poor, despite advances in treatment options that have been made in the past few decades. Recent evidence suggests that World Health Organization functional class I or II patients have significantly better long-term survival rates than patients in higher functional classes, thus providing a rationale for earlier diagnosis and treatment of PAH. However, early diagnosis is challenging and there is frequently a delay between symptom onset and diagnosis. Screening programmes play an important role in PAH detection and expert opinion favours echocardiographic screening of asymptomatic patients who may be predisposed to the development of PAH (i.e. those with systemic sclerosis or sickle cell disease), although current guidelines only recommend annual echocardiographic screening in symptomatic patients. This article reviews the currently available screening programmes, including their limitations, and describes alternative screening approaches that may identify more effectively those patients who require right heart catheterisation for a definitive PAH diagnosis.

  12. Re-defining the Unique Roles for Eosinophils in Allergic Respiratory Inflammation

    PubMed Central

    Jacobsen, Elizabeth A.; Lee, Nancy A.; Lee, James J.

    2014-01-01

    Summary The role of eosinophils in the progression and resolution of allergic respiratory inflammation is poorly defined despite the commonality of their presence and in some cases their use as a biomarker for disease severity and/or symptom control. However, this ambiguity belies the wealth of insights that have recently been gained through the use of eosinophil-deficient/attenuated strains of mice that have demonstrated novel immunoregulatory and remodeling/repair functions for these cells in the lung following allergen provocation. Specifically, studies of eosinophil-deficient mice suggest that eosinophils contribute to events occurring in the lungs following allergen provocation at several key moments: (i) The initiating phase of events leading to Th2-polarized pulmonary inflammation, (ii) The suppression Th1/Th17 pathways in lung draining lymph nodes, (iii) The recruitment of effector Th2 T cells to the lung, and finally (iv) Mechanisms of inflammatory resolution that re-establish pulmonary homeostasis. These suggested functions have recently been confirmed and expanded upon using allergen provocation of an inducible eosinophil-deficient strain of mice (iPHIL) that demonstrated an eosinophil-dependent mechanism(s) leading to Th2 dominated immune responses in the presence of eosinophils in contrast to neutrophilic as well as mixed Th1/Th17/Th2 variant phenotypes in the absence of eosinophils. These findings highlighted that eosinophils are not exclusively downstream mediators controlled by T cells, dendritic cells (DC), and/or innate lymphocytic cells (ILC2). Instead, eosinophils appear to be more aptly described as significant contributors in complex interrelated pathways that lead to pulmonary inflammation and subsequently promote resolution and the re-establishment of homeostatic baseline. In this review we summarize and put into the context the evolving hypotheses that are now expanding our understanding of the roles eosinophils likely have in the lung

  13. Automatic detection and quantification of pulmonary arterio-venous malformations in hereditary hemorrhagic telangiectasia

    NASA Astrophysics Data System (ADS)

    Fetita, Catalin; Fortemps de Loneux, Thierry; Kouvahe, Amélé Florence; El Hajjam, Mostafa

    2017-03-01

    Hereditary hemorrhagic telangiectasia (HHT) is an autosomic dominant disorder, which is characterized by the development of multiple arterio-venous malformations in the skin, mucous membranes, and/or visceral organs. Pulmonary Arterio-Venous Malformation (PAVM) is an abnormal connection where feeding arteries shunt directly into draining veins with no intervening capillary bed. This condition may lead to paradoxical embolism and hemorrhagic complications. PAVMs patients should systematically be screened as the spontaneous complication rate is high, reaching almost 50%. Chest enhanced contrast CT scanner is the reference screening and follow-up examination. When performed by experienced operators as the prime treatment, percutaneous embolization of PAVMs is a safe, efficient and sustained therapy. The accuracy of PAVM detection and quantification of its progression over time is the key of embolotherapy success. In this paper, we propose an automatic method for PAVM detection and quantification relying on a modeling of vessel deformation, i.e. local caliber increase, based on mathematical morphology. The pulmonary field and vessels are first segmented using geodesic operators. The vessel caliber is estimated by means of a granulometric measure and the local caliber increase is detected by using a geodesic operator, the h-maxdomes. The detection sensitivity can be tuned up according to the choice of the h value which models the irregularity of the vessel caliber along its axis and the PAVM selection is performed according to a clinical criterion of >3 mm diameter of the feeding artery of the PAVM. The developed method was tested on a 20 patient dataset. A sensitivity study allowed choosing the irregularity parameter to maximize the true positive ratio reaching 85.4% in average. A specific false positive reduction procedure targeting the vessel trunks of the arterio-venous tree near mediastinum allows a precision increase from 13% to 67% with an average number of 1

  14. Patients' Knowledge, Beliefs, and Distress Associated with Detection and Evaluation of Incidental Pulmonary Nodules for Cancer: Results from a Multicenter Survey.

    PubMed

    Freiman, Marc R; Clark, Jack A; Slatore, Christopher G; Gould, Michael K; Woloshin, Steven; Schwartz, Lisa M; Wiener, Renda Soylemez

    2016-05-01

    Pulmonary nodules are detected in more than 1 million Americans each year. Prior qualitative work suggests that the detection of incidental pulmonary nodules can be burdensome for patients, but whether these findings generalize to a broader sample of patients is unknown. We categorized patients' knowledge, beliefs, and distress associated with detection and evaluation of a pulmonary nodule, as well as their impressions of clinician communication. We administered a cross-sectional survey to adults with an incidental pulmonary nodule who were recruited from a rural medical center, an urban safety net hospital, and a Veterans Affairs hospital. Of the 490 individuals mailed surveys, 244 (50%) responded. Median nodule size was 7 mm, mean patient age was 67 years, 29% of respondents were female, and 86% were white. A quarter of the respondents (26%) reported clinically significant distress related to their nodule, our primary outcome, as measured by the Impact of Event Scale. Patients reported multiple concerns, including uncertainty about the nodule's cause (78%), the possibility of cancer (73%), and the possible need for surgery (64%). Only 25% of patients accurately estimated their lung cancer risk (within 15% of their actual risk); overall, there was no correlation between perceived and actual risk (r = -0.007, p = 0.93). The 23% of patients who did receive information on cancer risk from their provider were more likely to find this information reassuring (16%) than scary (7%). A quarter of patients with incidental pulmonary nodules experienced clinically significant distress. Knowledge about cancer risk and evaluation was poor. Clinician communication may help bridge knowledge gaps and alleviate distress in some patients. Published by Elsevier Inc.

  15. Impact of nutritional status on body functioning in chronic obstructive pulmonary disease and how to intervene.

    PubMed

    Aniwidyaningsih, Wahju; Varraso, Raphaëlle; Cano, Noel; Pison, Christophe

    2008-07-01

    Chronic obstructive pulmonary disease is the fifth leading cause of mortality in the world. This study reviews diet as a risk or protective factor for chronic obstructive pulmonary disease, mechanisms of malnutrition, undernutrition consequences on body functioning and how to modulate nutritional status of patients with chronic obstructive pulmonary disease. Different dietary factors (dietary pattern, foods, nutrients) have been associated with chronic obstructive pulmonary disease and the course of the disease. Mechanical disadvantage, energy imbalance, disuse muscle atrophy, hypoxemia, systemic inflammation and oxidative stress have been reported to cause systemic consequences such as cachexia and compromise whole body functioning. Nutritional intervention makes it possible to modify the natural course of the disease provided that it is included in respiratory rehabilitation combining bronchodilators optimization, infection control, exercise and, in some patients, correction of hypogonadism. Diet, as a modifiable risk factor, appears more as an option to prevent and modify the course of chronic obstructive pulmonary disease. Reduction of mechanical disadvantage, physical training and anabolic agents should be used conjointly with oral nutrition supplements to overcome undernutrition and might change the prognosis of the disease in some cases. Major research challenges address the role of systemic inflammation and the best interventions for controlling it besides smoking cessation.

  16. Molecular and cellular mechanisms of pulmonary fibrosis

    PubMed Central

    2012-01-01

    Pulmonary fibrosis is a chronic lung disease characterized by excessive accumulation of extracellular matrix (ECM) and remodeling of the lung architecture. Idiopathic pulmonary fibrosis is considered the most common and severe form of the disease, with a median survival of approximately three years and no proven effective therapy. Despite the fact that effective treatments are absent and the precise mechanisms that drive fibrosis in most patients remain incompletely understood, an extensive body of scientific literature regarding pulmonary fibrosis has accumulated over the past 35 years. In this review, we discuss three broad areas which have been explored that may be responsible for the combination of altered lung fibroblasts, loss of alveolar epithelial cells, and excessive accumulation of ECM: inflammation and immune mechanisms, oxidative stress and oxidative signaling, and procoagulant mechanisms. We discuss each of these processes separately to facilitate clarity, but certainly significant interplay will occur amongst these pathways in patients with this disease. PMID:22824096

  17. Budesonide suppresses pulmonary antibacterial host defense by down-regulating cathelicidin-related antimicrobial peptide in allergic inflammation mice and in lung epithelial cells

    PubMed Central

    2013-01-01

    Background Glucocorticoids are widely regarded as the most effective treatment for asthma. However, the direct impact of glucocorticoids on the innate immune system and antibacterial host defense during asthma remain unclear. Understanding the mechanisms underlying this process is critical to the clinical application of glucocorticoids for asthma therapy. After sensitization and challenge with ovalbumin (OVA), BALB/c mice were treated with inhaled budesonide and infected with Pseudomonas aeruginosa (P. aeruginosa). The number of viable bacteria in enflamed lungs was evaluated, and levels of interleukin-4 (IL-4) and interferon-γ (IFN-γ) in serum were measured. A lung epithelial cell line was pretreated with budesonide. Levels of cathelicidin-related antimicrobial peptide (CRAMP) were measured by immunohistochemistry and western blot analysis. Intracellular bacteria were observed in lung epithelial cells. Results Inhaled budesonide enhanced lung infection in allergic mice exposed to P. aeruginosa and increased the number of viable bacteria in lung tissue. Higher levels of IL-4 and lower levels of IFN-γ were observed in the serum. Budesonide decreased the expression of CRAMP, increased the number of internalized P. aeruginosa in OVA-challenged mice and in lung epithelial cell lines. These data indicate that inhaled budesonide can suppress pulmonary antibacterial host defense by down-regulating CRAMP in allergic inflammation mice and in cells in vitro. Conclusions Inhaled budesonide suppressed pulmonary antibacterial host defense in an asthmatic mouse model and in lung epithelium cells in vitro. This effect was dependent on the down-regulation of CRAMP. PMID:23387852

  18. The role of platelets in the development and progression of pulmonary arterial hypertension.

    PubMed

    Kazimierczyk, Remigiusz; Kamiński, Karol

    2018-06-06

    Pulmonary arterial hypertension is a multifactorial disease characterized by vasoconstriction, vascular remodeling, inflammation and thrombosis. Although an increasing number of research confirmed that pulmonary artery endothelial cells, pulmonary artery smooth muscle cells as well as platelets have a role in the pulmonary arterial hypertension pathogenesis, it is still unclear what integrates these factors. In this paper, we review the evidence that platelets through releasing a large variety of chemokines could actively impact the pulmonary arterial hypertension pathogenesis and development. A recent publication revealed that not only an excess of platelet derived cytokines, but also a deficiency may be associated with pulmonary arterial hypertension development and progression. Hence, a simple platelet blockade may not be a correct action to treat pulmonary arterial hypertension. Our review aims to analyse the interactions between the platelets and different types of cells involved in pulmonary arterial hypertension pathogenesis. This knowledge could help to find novel therapeutic options and improve prognosis in this devastating disease. Copyright © 2018 Medical University of Bialystok. Published by Elsevier B.V. All rights reserved.

  19. A geranyl acetophenone targeting cysteinyl leukotriene synthesis prevents allergic airway inflammation in ovalbumin-sensitized mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ismail, Norazren; Jambari, Nuzul Nurahya; Zareen, Seema

    Asthma is associated with increased pulmonary inflammation and airway hyperresponsiveness. The current use of corticosteroids in the management of asthma has recently raised issues regarding safety and lack of responsiveness in 5–10% of asthmatic individuals. The aim of the present study was to investigate the therapeutic effect of a non-steroidal small molecule that has cysteinyl leukotriene (cysLT) inhibitory activity, upon attenuation of allergic lung inflammation in an acute murine model. Mice were sensitized with ovalbumin (OVA) and treated with several intraperitoneal doses (100, 20, 2 and 0.2 mg/kg) of 2,4,6,-trihydroxy-3-geranylacetophenone (tHGA). Bronchoalveolar lavage was performed, blood and lung samples weremore » obtained and respiratory function was measured. OVA sensitization increased pulmonary inflammation and pulmonary allergic inflammation was significantly reduced at doses of 100, 20 and 2 mg/kg with no effect at the lowest dose of 0.2 mg/kg. The beneficial effects in the lung were associated with reduced eosinophilic infiltration and reduced secretion of Th2 cytokines and cysLTs. Peripheral blood reduction of total IgE was also a prominent feature. Treatment with tHGA significantly attenuated altered airway hyperresponsiveness as measured by the enhanced pause (Penh) response to incremental doses of methacholine. These data demonstrate that tHGA, a synthetic non-steroidal small molecule, can prevent acute allergic inflammation. This proof of concept opens further avenues of research and development of tHGA as an additional option to the current armamentarium of anti-asthma therapeutics. -- Highlights: ► Safer and effective anti-asthmatic drugs are in great demand. ► tHGA is a new 5-LO/cysLT inhibitor that inhibits allergic asthma in mice. ► tHGA is a natural compound that can be synthesized. ► Doses as low as 2 mg/kg alleviate lung pathology in experimental asthma. ► tHGA is a potential drug lead for the treatment of allergic

  20. Distress and patient-centered communication among veterans with incidental (not screen-detected) pulmonary nodules. A cohort study.

    PubMed

    Slatore, Christopher G; Golden, Sara E; Ganzini, Linda; Wiener, Renda Soylemez; Au, David H

    2015-02-01

    Incidental pulmonary nodule detection is postulated to cause distress, but the frequency and magnitude of that distress have not been reported. The quality of patient-clinician communication and the perceived risk of lung cancer may influence distress Objectives: To evaluate the association of communication processes with distress and the perceived risk of lung cancer using validated instruments. We conducted a prospective cohort study of patients with incidentally detected nodules who received care at one Department of Veterans Affairs Medical Center. We measured distress with the Impact of Event Scale and patient-centered communication with the Consultation Care Measure, both validated instruments. Risk of lung cancer was self-reported by participants. We used multivariable adjusted logistic regression to measure the association of communication quality with distress. Among 122 Veterans with incidental nodules, 23%, 12%, and 4% reported experiencing mild, moderate, and severe distress, respectively, at the time they were informed of the pulmonary nodule. Participant-reported risk of lung cancer was not associated with distress. In the adjusted model, high-quality communication was associated with decreased distress (odds ratio [OR] = 0.28, 95% confidence interval [CI] = 0.08-1.00, P = 0.05). Among participants who reported a risk of malignancy of 30% or less, high-quality communication was associated with decreased distress (OR = 0.15, 95% CI = 0.02-0.92, P = 0.04), but was not associated with distress for those who reported a risk greater than 30% (OR = 0.12 (95% CI = 0.00-3.97, P = 0.24), although the P value for interaction was not significant. Veterans with incidental pulmonary nodules frequently reported inadequate information exchange regarding their nodule. Many patients experience distress after they are informed that they have a pulmonary nodule, and high-quality patient-clinician communication is associated with

  1. Unraveling the Complex Relationship Triad between Lipids, Obesity, and Inflammation

    PubMed Central

    Khan, Shahida A.; Khan, Sarah A.; Zahran, Solafa A.; Damanhouri, Ghazi

    2014-01-01

    Obesity today stands at the intersection between inflammation and metabolic disorders causing an aberration of immune activity, and resulting in increased risk for diabetes, atherosclerosis, fatty liver, and pulmonary inflammation to name a few. Increases in mortality and morbidity in obesity related inflammation have initiated studies to explore different lipid mediated molecular pathways of attempting resolution that uncover newer therapeutic opportunities of anti-inflammatory components. Majorly the thromboxanes, prostaglandins, leukotrienes, lipoxins, and so forth form the group of lipid mediators influencing inflammation. Of special mention are the omega-6 and omega-3 fatty acids that regulate inflammatory mediators of interest in hepatocytes and adipocytes via the cyclooxygenase and lipoxygenase pathways. They also exhibit profound effects on eicosanoid production. The inflammatory cyclooxygenase pathway arising from arachidonic acid is a critical step in the progression of inflammatory responses. New oxygenated products of omega-3 metabolism, namely, resolvins and protectins, behave as endogenous mediators exhibiting powerful anti-inflammatory and immune-regulatory actions via the peroxisome proliferator-activated receptors (PPARs) and G protein coupled receptors (GPCRs). In this review we attempt to discuss the complex pathways and links between obesity and inflammation particularly in relation to different lipid mediators. PMID:25258478

  2. Persistent inflammation and recovery after intensive care: A systematic review.

    PubMed

    Griffith, David M; Vale, Matthew E; Campbell, Christine; Lewis, Steff; Walsh, Timothy S

    2016-06-01

    Physical weakness is common after critical illness; however, it is not clear how best to treat it. Inflammation characterizes critical illness, is associated with loss of muscle mass during critical illness, and potentially modifies post-intensive care unit (ICU) recovery. We sought to identify published reports on the prevalence of systemic inflammation after critical illness and its association with physical recovery. This is a systematic review of the literature from MEDLINE, EMBASE, CINAHL, CPCI-SSH, and CPCI-S from January 1982 to December 2011. From 7433 references, 207 full-text articles were reviewed, 57 were eligible, and 22 were included. Inflammation was present in most patients at ICU discharge according to C-reactive protein concentration (range, 70%-100%), procalcitonin (range, 89%-100%), tumor necrosis factor α (100%), and systemic inflammatory response syndrome criteria (range, 92%-95%). Fewer patients had elevated myeloperoxidase concentrations (range, 0%-56%). At hospital discharge, 9 (90%) of 10 chronic obstructive pulmonary disease patients had elevated C-reactive protein. No studies tested the association between inflammation and physical recovery. Inflammation is present in most patients at ICU discharge, but little is known or has been investigated about persistent inflammation after this time point. No studies have explored the relationship between persistent inflammation and physical recovery. Further research is proposed. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Mechanical ventilation with lower tidal volumes and positive end-expiratory pressure prevents pulmonary inflammation in patients without preexisting lung injury.

    PubMed

    Wolthuis, Esther K; Choi, Goda; Dessing, Mark C; Bresser, Paul; Lutter, Rene; Dzoljic, Misa; van der Poll, Tom; Vroom, Margreeth B; Hollmann, Markus; Schultz, Marcus J

    2008-01-01

    Mechanical ventilation with high tidal volumes aggravates lung injury in patients with acute lung injury or acute respiratory distress syndrome. The authors sought to determine the effects of short-term mechanical ventilation on local inflammatory responses in patients without preexisting lung injury. Patients scheduled to undergo an elective surgical procedure (lasting > or = 5 h) were randomly assigned to mechanical ventilation with either higher tidal volumes of 12 ml/kg ideal body weight and no positive end-expiratory pressure (PEEP) or lower tidal volumes of 6 ml/kg and 10 cm H2O PEEP. After induction of anesthesia and 5 h thereafter, bronchoalveolar lavage fluid and/or blood was investigated for polymorphonuclear cell influx, changes in levels of inflammatory markers, and nucleosomes. Mechanical ventilation with lower tidal volumes and PEEP (n = 21) attenuated the increase of pulmonary levels of interleukin (IL)-8, myeloperoxidase, and elastase as seen with higher tidal volumes and no PEEP (n = 19). Only for myeloperoxidase, a difference was found between the two ventilation strategies after 5 h of mechanical ventilation (P < 0.01). Levels of tumor necrosis factor alpha, IL-1alpha, IL-1beta, IL-6, macrophage inflammatory protein 1alpha, and macrophage inflammatory protein 1beta in the bronchoalveolar lavage fluid were not affected by mechanical ventilation. Plasma levels of IL-6 and IL-8 increased with mechanical ventilation, but there were no differences between the two ventilation groups. The use of lower tidal volumes and PEEP may limit pulmonary inflammation in mechanically ventilated patients without preexisting lung injury. The specific contribution of both lower tidal volumes and PEEP on the protective effects of the lung should be further investigated.

  4. The Role of Iron in Libby Amphibole-Induced Lung Injury and Inflammation

    EPA Science Inventory

    Complexation of host iron (Fe) on the surface of inhaled asbestos fibers has been postulated to cause oxidative stress contributing to in vivo pulmonary injury and inflammation. We examined the role of Fe in Libby amphibole (LA; mean length 4.99um ± 4.53 and width 0.28um ± 0.19)...

  5. Role of Computer Aided Diagnosis (CAD) in the detection of pulmonary nodules on 64 row multi detector computed tomography.

    PubMed

    Prakashini, K; Babu, Satish; Rajgopal, K V; Kokila, K Raja

    2016-01-01

    To determine the overall performance of an existing CAD algorithm with thin-section computed tomography (CT) in the detection of pulmonary nodules and to evaluate detection sensitivity at a varying range of nodule density, size, and location. A cross-sectional prospective study was conducted on 20 patients with 322 suspected nodules who underwent diagnostic chest imaging using 64-row multi-detector CT. The examinations were evaluated on reconstructed images of 1.4 mm thickness and 0.7 mm interval. Detection of pulmonary nodules, initially by a radiologist of 2 years experience (RAD) and later by CAD lung nodule software was assessed. Then, CAD nodule candidates were accepted or rejected accordingly. Detected nodules were classified based on their size, density, and location. The performance of the RAD and CAD system was compared with the gold standard that is true nodules confirmed by consensus of senior RAD and CAD together. The overall sensitivity and false-positive (FP) rate of CAD software was calculated. Of the 322 suspected nodules, 221 were classified as true nodules on the consensus of senior RAD and CAD together. Of the true nodules, the RAD detected 206 (93.2%) and 202 (91.4%) by the CAD. CAD and RAD together picked up more number of nodules than either CAD or RAD alone. Overall sensitivity for nodule detection with the CAD program was 91.4%, and FP detection per patient was 5.5%. The CAD showed comparatively higher sensitivity for nodules of size 4-10 mm (93.4%) and nodules in hilar (100%) and central (96.5%) location when compared to RAD's performance. CAD performance was high in detecting pulmonary nodules including the small size and low-density nodules. CAD even with relatively high FP rate, assists and improves RAD's performance as a second reader, especially for nodules located in the central and hilar region and for small nodules by saving RADs time.

  6. Role of Computer Aided Diagnosis (CAD) in the detection of pulmonary nodules on 64 row multi detector computed tomography

    PubMed Central

    Prakashini, K; Babu, Satish; Rajgopal, KV; Kokila, K Raja

    2016-01-01

    Aims and Objectives: To determine the overall performance of an existing CAD algorithm with thin-section computed tomography (CT) in the detection of pulmonary nodules and to evaluate detection sensitivity at a varying range of nodule density, size, and location. Materials and Methods: A cross-sectional prospective study was conducted on 20 patients with 322 suspected nodules who underwent diagnostic chest imaging using 64-row multi-detector CT. The examinations were evaluated on reconstructed images of 1.4 mm thickness and 0.7 mm interval. Detection of pulmonary nodules, initially by a radiologist of 2 years experience (RAD) and later by CAD lung nodule software was assessed. Then, CAD nodule candidates were accepted or rejected accordingly. Detected nodules were classified based on their size, density, and location. The performance of the RAD and CAD system was compared with the gold standard that is true nodules confirmed by consensus of senior RAD and CAD together. The overall sensitivity and false-positive (FP) rate of CAD software was calculated. Observations and Results: Of the 322 suspected nodules, 221 were classified as true nodules on the consensus of senior RAD and CAD together. Of the true nodules, the RAD detected 206 (93.2%) and 202 (91.4%) by the CAD. CAD and RAD together picked up more number of nodules than either CAD or RAD alone. Overall sensitivity for nodule detection with the CAD program was 91.4%, and FP detection per patient was 5.5%. The CAD showed comparatively higher sensitivity for nodules of size 4–10 mm (93.4%) and nodules in hilar (100%) and central (96.5%) location when compared to RAD's performance. Conclusion: CAD performance was high in detecting pulmonary nodules including the small size and low-density nodules. CAD even with relatively high FP rate, assists and improves RAD's performance as a second reader, especially for nodules located in the central and hilar region and for small nodules by saving RADs time. PMID:27578931

  7. Adrenergic and steroid hormone modulation of ozone-induced pulmonary injury and inflammation

    EPA Science Inventory

    Rationale: We have shown that acute ozone inhalation promotes activation of the sympathetic and hypothalamic-pituitary-adrenal (HPA) axis leading to release of cortisol and epinephrine from the adrenals. Adrenalectomy (ADREX) inhibits ozone-induced pulmonary vascular leakage and ...

  8. Feasibility of Using Wideband Microwave System for Non-Invasive Detection and Monitoring of Pulmonary Oedema

    NASA Astrophysics Data System (ADS)

    Rezaeieh, S. Ahdi; Zamani, A.; Bialkowski, K. S.; Mahmoud, A.; Abbosh, A. M.

    2015-09-01

    Pulmonary oedema is a common manifestation of various fatal diseases that can be caused by cardiac or non-cardiac syndromes. The accumulated fluid has a considerably higher dielectric constant compared to lungs’ tissues, and can thus be detected using microwave techniques. Therefore, a non-invasive microwave system for the early detection of pulmonary oedema is presented. It employs a platform in the form of foam-based bed that contains two linear arrays of wideband antennas covering the band 0.7-1 GHz. The platform is designed such that during the tests, the subject lays on the bed with the back of the torso facing the antenna arrays. The antennas are controlled using a switching network that is connected to a compact network analyzer. A novel frequency-based imaging algorithm is used to process the recorded signals and generate an image of the torso showing any accumulated fluids in the lungs. The system is verified on an artificial torso phantom, and animal organs. As a feasibility study, preclinical tests are conducted on healthy subjects to determinate the type of obtained images, the statistics and threshold levels of their intensity to differentiate between healthy and unhealthy subjects.

  9. Feasibility of Using Wideband Microwave System for Non-Invasive Detection and Monitoring of Pulmonary Oedema

    PubMed Central

    Rezaeieh, S. Ahdi; Zamani, A.; Bialkowski, K. S.; Mahmoud, A.; Abbosh, A. M.

    2015-01-01

    Pulmonary oedema is a common manifestation of various fatal diseases that can be caused by cardiac or non-cardiac syndromes. The accumulated fluid has a considerably higher dielectric constant compared to lungs’ tissues, and can thus be detected using microwave techniques. Therefore, a non-invasive microwave system for the early detection of pulmonary oedema is presented. It employs a platform in the form of foam-based bed that contains two linear arrays of wideband antennas covering the band 0.7–1 GHz. The platform is designed such that during the tests, the subject lays on the bed with the back of the torso facing the antenna arrays. The antennas are controlled using a switching network that is connected to a compact network analyzer. A novel frequency-based imaging algorithm is used to process the recorded signals and generate an image of the torso showing any accumulated fluids in the lungs. The system is verified on an artificial torso phantom, and animal organs. As a feasibility study, preclinical tests are conducted on healthy subjects to determinate the type of obtained images, the statistics and threshold levels of their intensity to differentiate between healthy and unhealthy subjects. PMID:26365299

  10. Patients’ Knowledge, Beliefs, and Distress associated with Detection and Evaluation of Incidental Pulmonary Nodules for Cancer: Results from a Multi-Center Survey

    PubMed Central

    Freiman, Marc R.; Clark, Jack A.; Slatore, Christopher G.; Gould, Michael K.; Woloshin, Steven; Schwartz, Lisa M.; Wiener, Renda Soylemez

    2016-01-01

    Introduction Pulmonary nodules are detected in over a million Americans each year. Prior qualitative work suggests the detection of incidental pulmonary nodules can be burdensome for patients, but it is unknown whether these findings generalize to a broader sample of patients. We categorized patients’ knowledge, beliefs, and distress associated with detection and evaluation of a pulmonary nodule, and their impressions of clinician communication. Methods We administered a cross-sectional survey to adults with an incidental pulmonary nodule recruited from a rural medical center, an urban safety net hospital, and a Veterans Affairs hospital. Results Of 490 surveys mailed, 244 (50%) responded. Median nodule size was 7 mm; mean patient age was 67 years; 29% were female, and 86% were white. A quarter (26%) of respondents reported clinically significant distress related to their nodule as measured by the Impact of Event scale, our primary outcome. Patients reported multiple concerns including uncertainty about the nodule’s etiology (78%), the possibility of cancer (73%), and the possible need for surgery (64%). Only 25% of patients accurately estimated their lung cancer risk (within 15% of their actual risk); overall there was no correlation between perceived and actual risk (r=−0.007, p=0.93). Among the 23% of patients who did receive cancer risk information from their provider, they were more likely to find this information reassuring (16%) than scary (7%). Conclusion A quarter of patients with incidental pulmonary nodules experienced clinically significant distress. Knowledge about cancer risk and evaluation was poor. Clinician communication may help bridge knowledge gaps and alleviate distress in some patients. PMID:26961390

  11. Time course of haemodynamic, respiratory and inflammatory disturbances induced by experimental acute pulmonary polystyrene microembolism.

    PubMed

    Dolci, Daniel T; Fuentes, Carolina B; Rolim, Denise; Park, Marcelo; Schettino, Guilherme P P; Azevedo, Luciano C P

    2010-01-01

    The time course of cardiopulmonary alterations after pulmonary embolism has not been clearly demonstrated and nor has the role of systemic inflammation on the pathogenesis of the disease. This study aimed to evaluate over 12 h the effects of pulmonary embolism caused by polystyrene microspheres on the haemodynamics, lung mechanics and gas exchange and on interleukin-6 production. Ten large white pigs (weight 35-42 kg) had arterial and pulmonary catheters inserted and pulmonary embolism was induced in five pigs by injection of polystyrene microspheres (diameter approximately 300 micromol l(-1)) until a value of pulmonary mean arterial pressure of twice the baseline was obtained. Five other animals received only saline. Haemodynamic and respiratory data and pressure-volume curves of the respiratory system were collected. A bronchoscopy was performed before and 12 h after embolism, when the animals were euthanized. The embolism group developed hypoxaemia that was not corrected with high oxygen fractions, as well as higher values of dead space, airway resistance and lower respiratory compliance levels. Acute haemodynamic alterations included pulmonary arterial hypertension with preserved systemic arterial pressure and cardiac index. These derangements persisted until the end of the experiments. The plasma interleukin-6 concentrations were similar in both groups; however, an increase in core temperature and a nonsignificant higher concentration of bronchoalveolar lavage proteins were found in the embolism group. Acute pulmonary embolism induced by polystyrene microspheres in pigs produces a 12-h lasting hypoxaemia and a high dead space associated with high airway resistance and low compliance. There were no plasma systemic markers of inflammation, but a higher central temperature and a trend towards higher bronchoalveolar lavage proteins were found.

  12. Asthma and Chronic Obstructive Pulmonary Disease (COPD) – Differences and Similarities

    PubMed Central

    Cukic, Vesna; Lovre, Vladimir; Dragisic, Dejan; Ustamujic, Aida

    2012-01-01

    Bronchial asthma and COPD (chronic obstructive pulmonary disease) are obstructive pulmonary diseases that affected millions of people all over the world. Asthma is a serious global health problem with an estimated 300 million affected individuals. COPD is one of the major causes of chronic morbidity and mortality and one of the major public health problems worldwide. COPD is the fourth leading cause of death in the world and further increases in its prevalence and mortality can be predicted. Although asthma and COPD have many similarities, they also have many differences. They are two different diseases with differences in etiology, symptoms, type of airway inflammation, inflammatory cells, mediators, consequences of inflammation, response to therapy, course. Some similarities in airway inflammation in severe asthma and COPD and good response to combined therapy in both of these diseases suggest that they have some similar patophysiologic characteristics. The aim of this article is to show similarities and differences between these two diseases. Today asthma and COPD are not fully curable, not identified enough and not treated enough and the therapy is still developing. But in future better understanding of pathology, adequate identifying and treatment, may be and new drugs, will provide a much better quality of life, reduced morbidity and mortality of these patients. PMID:23678316

  13. Dirofilaria, visceral larva migrans, and tropical pulmonary eosinophilia.

    PubMed

    Chitkara, R K; Sarinas, P S

    1997-06-01

    Helminthic infections are prevalent worldwide. The intestinal ascarid, Toxocara, the animal filarial parasite, Dirofilaria, and the human filarial parasite, Wuchereria or Brugia, produce an array of pulmonary disease in humans. Infections are common in temperate, tropical, and subtropical regions of the world. Pulmonary dirofilariasis is essentially an asymptomatic disease. Most cases are diagnosed accidentally after thoracotomy for a solitary pulmonary nodule presumed to be lung cancer. Clinical manifestations of toxocariasis or visceral larva migrans (VLM) are the result of allergic and inflammatory responses of the host, and manifest with airway reactivity, acute pneumonia, and persistent eosinophilia. VLM is a self-limited disease and specific treatment is rarely necessary. In acute cases, a short course of steroids reduces morbidity and mortality but preventive measures are more important in curbing toxocara infection. Tropical pulmonary eosinophilia (TPE) is the result of immunologic hyperresponsiveness to the human filarial antigen and eosinophils play a crucial role in its pathogenesis. Airway hyperreactivity, extreme eosinophilia, and pulmonary physiologic impairment are the characteristic features. Treatment of TPE with diethylcarbamazine results in dramatic amelioration of symptoms. However, low grade inflammation persists in a significant number of patients and can lead to chronic interstitial lung disease. Mass treatment of patients in certain endemic areas has been effective in eliminating TPE.

  14. Oxidative stress in severe pulmonary trauma in critical ill patients. Antioxidant therapy in patients with multiple trauma--a review.

    PubMed

    Bedreag, Ovidiu Horea; Rogobete, Alexandru Florin; Sarandan, Mirela; Cradigati, Alina Carmen; Papurica, Marius; Dumbuleu, Maria Corina; Chira, Alexandru Mihai; Rosu, Oana Maria; Sandesc, Dorel

    2015-01-01

    Multiple trauma patients require extremely good management and thus, the trauma team needs to be prepared and to be up to date with the new standards of intensive therapy. Oxidative stress and free radicals represent an extremely aggressive factor to cells, having a direct consequence upon the severity of lung inflammation. Pulmonary tissue is damaged by oxidative stress, leading to biosynthesis of mediators that exacerbate inflammation modulators. The subsequent inflammation spreads throughout the body, leading most of the time to multiple organ dysfunction and death. In this paper, we briefly present an update of biochemical effects of oxidative stress and free radical damage to the pulmonary tissue in patients in critical condition in the intensive care unit. Also, we would like to present a series of active substances that substantially reduce the aggressiveness of free radicals, increasing the chances of survival.

  15. Intravenous volume tomographic pulmonary angiography imaging

    NASA Astrophysics Data System (ADS)

    Ning, Ruola; Strang, John G.; Chen, Biao; Conover, David L.; Yu, Rongfeng

    1999-05-01

    This study presents a new intravenous (IV) tomographic angiography imaging technique, called intravenous volume tomographic digital angiography (VTDA) for cross sectional pulmonary angiography. While the advantages of IV-VTDA over spiral CT in terms of volume scanning time and resolution have been validated and reported in our previous papers for head and neck vascular imaging, the superiority of IV-VTDA over spiral CT for cross sectional pulmonary angiography has not been explored yet. The purpose of this study is to demonstrate the advantage of isotropic resolution of IV-VTDA in the x, y and z directions through phantom and animal studies, and to explore its clinical application for detecting clots in pulmonary angiography. A prototype image intensifier-based VTDA imaging system has been designed and constructed by modifying a GE 8800 CT scanner. This system was used for a series of phantom and dog studies. A pulmonary vascular phantom was designed and constructed. The phantom was scanned using the prototype VTDA system for direct 3D reconstruction. Then the same phantom was scanned using a GE CT/i spiral CT scanner using the routine pulmonary CT angiography protocols. IV contrast injection and volume scanning protocols were developed during the dog studies. Both VTDA reconstructed images and spiral CT images of the specially designed phantom were analyzed and compared. The detectability of simulated vessels and clots was assessed as the function of iodine concentration levels, oriented angles, and diameters of the vessels and clots. A set of 3D VTDA reconstruction images of dog pulmonary arteries was obtained with different IV injection rates and isotropic resolution in the x, y and z directions. The results of clot detection studies in dog pulmonary arteries have also been shown. This study presents a new tomographic IV angiography imaging technique for cross sectional pulmonary angiography. The results of phantom and animal studies indicate that IV-VTDA is

  16. Helminth-induced arginase-1 exacerbates lung inflammation and disease severity in tuberculosis.

    PubMed

    Monin, Leticia; Griffiths, Kristin L; Lam, Wing Y; Gopal, Radha; Kang, Dongwan D; Ahmed, Mushtaq; Rajamanickam, Anuradha; Cruz-Lagunas, Alfredo; Zúñiga, Joaquín; Babu, Subash; Kolls, Jay K; Mitreva, Makedonka; Rosa, Bruce A; Ramos-Payan, Rosalio; Morrison, Thomas E; Murray, Peter J; Rangel-Moreno, Javier; Pearce, Edward J; Khader, Shabaana A

    2015-12-01

    Parasitic helminth worms, such as Schistosoma mansoni, are endemic in regions with a high prevalence of tuberculosis (TB) among the population. Human studies suggest that helminth coinfections contribute to increased TB susceptibility and increased rates of TB reactivation. Prevailing models suggest that T helper type 2 (Th2) responses induced by helminth infection impair Th1 immune responses and thereby limit Mycobacterium tuberculosis (Mtb) control. Using a pulmonary mouse model of Mtb infection, we demonstrated that S. mansoni coinfection or immunization with S. mansoni egg antigens can reversibly impair Mtb-specific T cell responses without affecting macrophage-mediated Mtb control. Instead, S. mansoni infection resulted in accumulation of high arginase-1-expressing macrophages in the lung, which formed type 2 granulomas and exacerbated inflammation in Mtb-infected mice. Treatment of coinfected animals with an antihelminthic improved Mtb-specific Th1 responses and reduced disease severity. In a genetically diverse mouse population infected with Mtb, enhanced arginase-1 activity was associated with increased lung inflammation. Moreover, in patients with pulmonary TB, lung damage correlated with increased serum activity of arginase-1, which was elevated in TB patients coinfected with helminths. Together, our data indicate that helminth coinfection induces arginase-1-expressing type 2 granulomas, thereby increasing inflammation and TB disease severity. These results also provide insight into the mechanisms by which helminth coinfections drive increased susceptibility, disease progression, and severity in TB.

  17. Optimal Monochromatic Energy Levels in Spectral CT Pulmonary Angiography for the Evaluation of Pulmonary Embolism

    PubMed Central

    Wu, Huawei; Zhang, Qing; Hua, Jia; Hua, Xiaolan; Xu, Jianrong

    2013-01-01

    Background The aim of this study was to determine the optimal monochromatic spectral CT pulmonary angiography (sCTPA) levels to obtain the highest image quality and diagnostic confidence for pulmonary embolism detection. Methods The Institutional Review Board of the Shanghai Jiao Tong University School of Medicine approved this study, and written informed consent was obtained from all participating patients. Seventy-two patients with pulmonary embolism were scanned with spectral CT mode in the arterial phase. One hundred and one sets of virtual monochromatic spectral (VMS) images were generated ranging from 40 keV to 140 keV. Image noise, clot diameter and clot to artery contrast-to-noise ratio (CNR) from seven sets of VMS images at selected monochromatic levels in sCTPA were measured and compared. Subjective image quality and diagnostic confidence for these images were also assessed and compared. Data were analyzed by paired t test and Wilcoxon rank sum test. Results The lowest noise and the highest image quality score for the VMS images were obtained at 65 keV. The VMS images at 65 keV also had the second highest CNR value behind that of 50 keV VMS images. There was no difference in the mean noise and CNR between the 65 keV and 70 keV VMS images. The apparent clot diameter correlated with the keV levels. Conclusions The optimal energy level for detecting pulmonary embolism using dual-energy spectral CT pulmonary angiography was 65–70 keV. Virtual monochromatic spectral images at approximately 65–70 keV yielded the lowest image noise, high CNR and highest diagnostic confidence for the detection of pulmonary embolism. PMID:23667583

  18. Obesity-related pulmonary arterial hypertension in rats correlates with increased circulating inflammatory cytokines and lipids and with oxidant damage in the arterial wall but not with hypoxia

    PubMed Central

    Irwin, David C.; Garat, Chrystelle V.; Crossno, Joseph T.; MacLean, Paul S.; Sullivan, Timothy M.; Erickson, Paul F.; Jackman, Matthew R.; Harral, Julie W.; Reusch, Jane E. B.

    2014-01-01

    Abstract Obesity is causally linked to a number of comorbidities, including cardiovascular disease, diabetes, renal dysfunction, and cancer. Obesity has also been linked to pulmonary disorders, including pulmonary arterial hypertension (PAH). It was long believed that obesity-related PAH was the result of hypoventilation and hypoxia due to the increased mechanical load of excess body fat. However, in recent years it has been proposed that the metabolic and inflammatory disturbances of obesity may also play a role in the development of PAH. To determine whether PAH develops in obese rats in the absence of hypoxia, we assessed pulmonary hemodynamics and pulmonary artery (PA) structure in the diet-resistant/diet-induced obesity (DR/DIO) and Zucker lean/fatty rat models. We found that high-fat feeding (DR/DIO) or overfeeding (Zucker) elicited PA remodeling, neomuscularization of distal arterioles, and elevated PA pressure, accompanied by right ventricular (RV) hypertrophy. PA thickening and distal neomuscularization were also observed in DIO rats on a low-fat diet. No evidence of hypoventilation or chronic hypoxia was detected in either model, nor was there a correlation between blood glucose or insulin levels and PAH. However, circulating inflammatory cytokine levels were increased with high-fat feeding or calorie overload, and hyperlipidemia and oxidant damage in the PA wall correlated with PAH in the DR/DIO model. We conclude that hyperlipidemia and peripheral inflammation correlate with the development of PAH in obese subjects. Obesity-related inflammation may predispose to PAH even in the absence of hypoxia. PMID:25610600

  19. Targeted expression of heme oxygenase-1 prevents the pulmonary inflammatory and vascular responses to hypoxia

    NASA Astrophysics Data System (ADS)

    Minamino, Tohru; Christou, Helen; Hsieh, Chung-Ming; Liu, Yuxiang; Dhawan, Vijender; Abraham, Nader G.; Perrella, Mark A.; Mitsialis, S. Alex; Kourembanas, Stella

    2001-07-01

    Chronic hypoxia causes pulmonary hypertension with smooth muscle cell proliferation and matrix deposition in the wall of the pulmonary arterioles. We demonstrate here that hypoxia also induces a pronounced inflammation in the lung before the structural changes of the vessel wall. The proinflammatory action of hypoxia is mediated by the induction of distinct cytokines and chemokines and is independent of tumor necrosis factor- signaling. We have previously proposed a crucial role for heme oxygenase-1 (HO-1) in protecting cardiomyocytes from hypoxic stress, and potent anti-inflammatory properties of HO-1 have been reported in models of tissue injury. We thus established transgenic mice that constitutively express HO-1 in the lung and exposed them to chronic hypoxia. HO-1 transgenic mice were protected from the development of both pulmonary inflammation as well as hypertension and vessel wall hypertrophy induced by hypoxia. Significantly, the hypoxic induction of proinflammatory cytokines and chemokines was suppressed in HO-1 transgenic mice. Our findings suggest an important protective function of enzymatic products of HO-1 activity as inhibitors of hypoxia-induced vasoconstrictive and proinflammatory pathways.

  20. Perfusion defects in pulmonary perfusion iodine maps: causes and semiology.

    PubMed

    Bustos Fiore, A; González Vázquez, M; Trinidad López, C; Mera Fernández, D; Costas Álvarez, M

    2017-12-14

    to describe the usefulness of dual-energy CT for obtaining pulmonary perfusion maps to provide morphological and functional information in patients with pulmonary embolisms. To review the semiology of perfusion defects due to pulmonary embolism so they can be differentiated from perfusion defects due to other causes: alterations outside the range used in the iodine map caused by other diseases of the lung parenchyma or artifacts. CT angiography of the pulmonary arteries is the technique of choice for the diagnosis of pulmonary embolisms. New dual-energy CT scanners are useful for detecting perfusion defects secondary to complete or partial obstruction of pulmonary arteries and is most useful for detecting pulmonary embolisms in subsegmental branches. Copyright © 2017 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  1. Effects and molecular mechanisms of intrauterine infection/inflammation on lung development.

    PubMed

    Pan, Jiarong; Zhan, Canyang; Yuan, Tianming; Wang, Weiyan; Shen, Ying; Sun, Yi; Wu, Tai; Gu, Weizhong; Chen, Lihua; Yu, Huimin

    2018-05-10

    Intrauterine infection/inflammation plays an important role in the development of lung injury and bronchopulmonary dysplasia (BPD) in preterm infants, While a multifactorial genesis is likely, mechanisms involved in BPD after intrauterine infection/inflammation are largely unknown. Recent studies have suggested microRNAs (miRNAs) are likely to play a role. Therefore, this study aimed to study the effects and mechanisms of intrauterine infection/inflammation on lung development, and to identify miRNAs related to lung injury and BPD. An animal model of intrauterine infection/inflammation was established with pregnant SD rats endocervically inoculated with E.coli. The fetal and neonatal rats were observed at embryonic day (E) 17, 19, 21 and postnatal day (P) 1, 3, 7, 14, respectively. Body weight, lung weight, the expression levels of NLRP3, TNF-α, IL-lβ, IL-6, VEGF, Collagen I, SP-A, SP-B and SP-C in the lung tissues of fetal and neonatal rats were measured. Expression profiles of 1218 kinds of miRNAs in the lungs of neonatal rats were detected by miRNA microarray technique. Target genes of the identified miRNAs were predicted through online software. Intrauterine infection/inflammation compromised not only weight development but also lung development of the fetal and neonatal rats. The results showed significantly increased expression of NLRP3, TNF-α, IL-1β, IL-6, Collagen I, and significantly decreased expression of VEGF, SP-A, SP-B and SP-C in the fetal and neonatal rat lung tissues in intrauterine infection group compared to the control group at different observation time point (P < 0.05). Forty-three miRNAs with significant differential expression were identified. Possible target genes regulated by the identified miRNAs are very rich. Intrauterine infection/inflammation results in lung histological changes which are very similar to those observed in BPD. Possible mechanisms may include NLRP3 inflammasome activation followed by inflammatory cytokines

  2. Cost-Effectiveness of Interventions for Chronic Obstructive Pulmonary Disease (COPD) Using an Ontario Policy Model

    PubMed Central

    Chandra, K; Blackhouse, G; McCurdy, BR; Bornstein, M; Campbell, K; Costa, V; Franek, J; Kaulback, K; Levin, L; Sehatzadeh, S; Sikich, N; Thabane, M; Goeree, R

    2012-01-01

    Pulmonary Disease (COPD): An Evidence-Based Analysis Pulmonary Rehabilitation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis Long-Term Oxygen Therapy for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis Noninvasive Positive Pressure Ventilation for Acute Respiratory Failure Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis Noninvasive Positive Pressure Ventilation for Chronic Respiratory Failure Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis Hospital-at-Home Programs for Patients With Acute Exacerbations of Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis Home Telehealth for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis Cost-Effectiveness of Interventions for Chronic Obstructive Pulmonary Disease Using an Ontario Policy Model Experiences of Living and Dying With COPD: A Systematic Review and Synthesis of the Qualitative Empirical Literature For more information on the qualitative review, please contact Mita Giacomini at: http://fhs.mcmaster.ca/ceb/faculty_member_giacomini.htm. For more information on the economic analysis, please visit the PATH website: http://www.path-hta.ca/About-Us/Contact-Us.aspx. The Toronto Health Economics and Technology Assessment (THETA) collaborative has produced an associated report on patient preference for mechanical ventilation. For more information, please visit the THETA website: http://theta.utoronto.ca/static/contact. Background Chronic obstructive pulmonary disease (COPD) is characterized by chronic inflammation throughout the airways, parenchyma, and pulmonary vasculature. The inflammation causes repeated cycles of injury and repair in the airway wall— inflammatory cells release a variety of chemicals and lead to cellular damage. The inflammation process also contributes to the loss of elastic recoil pressure

  3. Detection of systemic inflammation in severely impaired chronic pain patients, and effects of a CBT-ACT-based multi-modal pain rehabilitation program.

    PubMed

    Hysing, E-B; Smith, L; Thulin, M; Karlsten, R; Gordh, T

    2017-12-29

    Aims A few previous studies indicate an ongoing of low-grade systemic inflammation in chronic pain patients (CPP) [1, 2]. In the present study we investigated the plasma inflammatory profile in severely impaired chronic pain patients. In addition we studied if there were any alterations in inflammation patterns at one-year follow up, after the patients had taken part in a CBT-ACT based 4 weeks in-hospital pain rehabilitation program (PRP). Methods Blood samples were collected from 52 well characterized chronic pain patients. Plasma from matched healthy blood donors were used as controls. At one year after the treatment program, 28 of the patients were available for follow up. Instead of only analyzing single inflammation-related substances, we used a new multiplex panel enabling the simultaneous analysis of 92 inflammation-related proteins, mainly cytokines and chemokines (Proseek Inflammation, Olink, Uppsala, Sweden). Multivariate statistics were used for analysis. Results Clear signs of increased inflammatory activity were detected in the pain patients. Accepting a false discovery rate (FDR) of 5%, there were significant differences in 43 of the 92 inflammatory biomarkers. The expression of 8 biomarkers were 4 times higher in patients compared to controls. Three biomarkers, CXCL5, SIRT2, AXIN1 were more than 8 times higher. The conventional marker for inflammation, CRP, did not differ. Of the 28 patients available for follow up one year after the intervention, all showed lower levels of the inflammatory biomarker initially raised. Conclusions The results indicate that CPP suffer from a low grade of chronic systemic inflammation, not detectable by CRP analysis. This may have implications for the general pain hypersensitivity, and other symptoms, often described in this group of patients. We conclude that inflammatory plasma proteins may be measureable molecular markers to distinguishes CPP from pain free controls, and that a CBT-ACT pain rehab program seem to

  4. Loss of Matrix Metalloproteinase-13 Attenuates Murine Radiation-Induced Pulmonary Fibrosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flechsig, Paul; Hartenstein, Bettina; Teurich, Sybille

    2010-06-01

    Purpose: Pulmonary fibrosis is a disorder of the lungs with limited treatment options. Matrix metalloproteinases (MMPs) constitute a family of proteases that degrade extracellular matrix with roles in fibrosis. Here we studied the role of MMP13 in a radiation-induced lung fibrosis model using a MMP13 knockout mouse. Methods and Materials: We investigated the role of MMP13 in lung fibrosis by investigating the effects of MMP13 deficiency in C57Bl/6 mice after 20-Gy thoracic irradiation (6-MV Linac). The morphologic results in histology were correlated with qualitative and quantitative results of volume computed tomography (VCT), magnetic resonance imaging (MRI), and clinical outcome. Results:more » We found that MMP13 deficient mice developed less pulmonary fibrosis than their wildtype counterparts, showed attenuated acute pulmonary inflammation (days after irradiation), and a reduction of inflammation during the later fibrogenic phase (5-6 months after irradiation). The reduced fibrosis in MMP13 deficient mice was evident in histology with reduced thickening of alveolar septi and reduced remodeling of the lung architecture in good correlation with reduced features of lung fibrosis in qualitative and quantitative VCT and MRI studies. The partial resistance of MMP13-deficient mice to fibrosis was associated with a tendency towards a prolonged mouse survival. Conclusions: Our data indicate that MMP13 has a role in the development of radiation-induced pulmonary fibrosis. Further, our findings suggest that MMP13 constitutes a potential drug target to attenuate radiation-induced lung fibrosis.« less

  5. Evaluation of a new automated Abbott RealTime MTB RIF/INH assay for qualitative detection of rifampicin/isoniazid resistance in pulmonary and extra-pulmonary clinical samples of Mycobacterium tuberculosis.

    PubMed

    Ruiz, Pilar; Causse, Manuel; Vaquero, Manuel; Gutierrez, Juan Bautista; Casal, Manuel

    2017-01-01

    A new automated real-time PCR assay for the detection of rifampicin (RIF) and isoniazid (INH) resistance in Mycobacterium tuberculosis (MTB) was evaluated. A total of 163 clinical samples (128 pulmonary and 35 extra-pulmonary) were processed using four PCR assay kits: Abbott RealTime MTB RIF/INH, Genotype MTBDRplus, Xpert/MTB RIF, and Anyplex MTB/MDR. The results of phenotypic drug-susceptibility testing using BACTECMGIT 960 were used as reference. The sensitivity and specificity of the new Abbott RealTime MTB RIF/INH assay in comparison with phenotypic testing was 96.3% (95%CI 87.32%-100%) for RIF and 100% (95%CI 99.3%-100%) for INH; the sensitivity was 78.8% (95%CI 66.8%-90.9%) and the specificity was 100% (95%CI 98.9%-100%). The Abbott RealTime MTB RIF/INH test could be a valid method for detecting the most common mutations in strains resistant to RIF and INH.

  6. Effect of hypoxia on lung gene expression and proteomic profile: insights into the pulmonary surfactant response

    PubMed Central

    Olmeda, Bárbara; Umstead, Todd M.; Silveyra, Patricia; Pascual, Alberto; López-Barneo, José; Phelps, David S.; Floros, Joanna; Pérez-Gil, Jesús

    2014-01-01

    Exposure of lung to hypoxia has been previously reported to be associated with significant alterations in the protein content of bronchoalveolar lavage (BAL) and lung tissue. In the present work we have used a proteomic approach to describe the changes in protein complement induced by moderate long-term hypoxia (rats exposed to 10% O2 for 72 hours) in BAL and lung tissue, with a special focus on the proteins associated with pulmonary surfactant, which could indicate adaptation of this system to limited oxygen availability. The analysis of the general proteomic profile indicates a hypoxia-induced increase in proteins associated with inflammation both in lavage and lung tissue. Analysis at mRNA and protein levels revealed no significant changes induced by hypoxia on the content in surfactant proteins or their apparent oligomeric state. In contrast, we detected a hypoxia-induced significant increase in the expression and accumulation of hemoglobin in lung tissue, at both mRNA and protein levels, as well as an accumulation of hemoglobin both in BAL and associated with surface-active membranes of the pulmonary surfactant complex. Evaluation of pulmonary surfactant surface activity from hypoxic rats showed no alterations in its spreading ability, ruling out inhibition by increased levels of serum or inflammatory proteins. PMID:24576641

  7. AAV delivery of tumor necrosis factor-α short hairpin RNA attenuates cold-induced pulmonary hypertension and pulmonary arterial remodeling.

    PubMed

    Crosswhite, Patrick; Chen, Kai; Sun, Zhongjie

    2014-11-01

    Cold temperatures are associated with increased mortality and morbidity of cardiovascular and pulmonary disease. Cold exposure causes lung inflammation, pulmonary hypertension (PH), and right ventricle hypertrophy, but there is no effective therapy because of unknown mechanism. Here, we investigated whether RNA interference silencing of tumor necrosis factor (TNF)-α decreases cold-induced macrophage infiltration, PH, and pulmonary arterial (PA) remodeling. We found for the first time that continuous cold exposure (5.0°C) increased TNF-α expression and macrophage infiltration in the lungs and PAs right before elevation of right ventricle systolic pressure. The in vivo RNA interference silencing of TNF-α was achieved by intravenous delivery of recombinant AAV-2 carrying TNF-α short hairpin small-interfering RNA 24 hours before cold exposure. Cold exposure for 8 weeks significantly increased right ventricle pressure compared with the warm controls (40.19±4.9 versus 22.9±1.1 mm Hg), indicating that cold exposure caused PH. Cold exposure increased TNF-α, interleukin-6, and phosphodiesterase-1C protein expression in the lungs and PAs and increased lung macrophage infiltration. Notably, TNF-α short hairpin small-interfering RNA prevented the cold-induced increases in TNF-α, interleukin-6, and phosphodiesterase-1C protein expression, abolished lung macrophage infiltration, and attenuated PH (26.28±1.6 mm Hg), PA remodeling, and right ventricle hypertrophy. PA smooth muscle cells isolated from cold-exposed animals showed increased intracellular superoxide levels and cell proliferation along with decreased intracellular cGMP. These cold-induced changes were prevented by TNF-α short hairpin small-interfering RNA. In conclusions, upregulation of TNF-α played a critical role in the pathogenesis of cold-induced PH by promoting pulmonary macrophage infiltration and inflammation. AAV delivery of TNF-α short hairpin small-interfering RNA may be an effective

  8. An association between pulmonary Mycobacterium avium-intracellulare complex infections and biomarkers of Th2-type inflammation.

    PubMed

    Pfeffer, Paul E; Hopkins, Susan; Cropley, Ian; Lowe, David M; Lipman, Marc

    2017-05-15

    The rising incidence of pulmonary Mycobacterium avium-intracellulare complex (MAI) infection is unexplained but parallels the growing world-wide epidemic of allergic disease. We hypothesized an association between pulmonary MAI infection and Th2-type immune responses as seen in allergy. Biomarkers of patient Th2-type immune responses (peripheral blood eosinophil counts and serum IgE levels) were compared between patients with positive pulmonary samples for tuberculosis and non-tuberculous mycobacterial (NTM) infection. A further comparison of clinical characteristics, including respiratory co-morbidities, and biomarkers, was conducted between patients culturing MAI NTM and those culturing NTM other than MAI. Patients culturing NTM from pulmonary samples had significantly higher peripheral blood eosinophil levels than those culturing Mycobacterium tuberculosis. Furthermore, patients culturing MAI compared to those culturing NTM other than MAI had higher eosinophil counts (mean 0.29x10 9 /L vs 0.15x10 9 /L, p = 0.010) and IgE levels (geometric mean 138kU/L vs 47kU/L, p = 0.021). However there was no significant difference in the frequency of asthma between the two NTM groups. There is an association between biomarkers of Th2-type immune responses and pulmonary MAI. Prospective and translational research could identify the direction of causation; and so determine whether our finding may be utilized within future management strategies for MAI.

  9. Detection of pulmonary nodules in CT images based on fuzzy integrated active contour model and hybrid parametric mixture model.

    PubMed

    Li, Bin; Chen, Kan; Tian, Lianfang; Yeboah, Yao; Ou, Shanxing

    2013-01-01

    The segmentation and detection of various types of nodules in a Computer-aided detection (CAD) system present various challenges, especially when (1) the nodule is connected to a vessel and they have very similar intensities; (2) the nodule with ground-glass opacity (GGO) characteristic possesses typical weak edges and intensity inhomogeneity, and hence it is difficult to define the boundaries. Traditional segmentation methods may cause problems of boundary leakage and "weak" local minima. This paper deals with the above mentioned problems. An improved detection method which combines a fuzzy integrated active contour model (FIACM)-based segmentation method, a segmentation refinement method based on Parametric Mixture Model (PMM) of juxta-vascular nodules, and a knowledge-based C-SVM (Cost-sensitive Support Vector Machines) classifier, is proposed for detecting various types of pulmonary nodules in computerized tomography (CT) images. Our approach has several novel aspects: (1) In the proposed FIACM model, edge and local region information is incorporated. The fuzzy energy is used as the motivation power for the evolution of the active contour. (2) A hybrid PMM Model of juxta-vascular nodules combining appearance and geometric information is constructed for segmentation refinement of juxta-vascular nodules. Experimental results of detection for pulmonary nodules show desirable performances of the proposed method.

  10. Early Detection of Chronic Obstructive Pulmonary Disease in Primary Care.

    PubMed

    Kobayashi, Seiichi; Hanagama, Masakazu; Yanai, Masaru

    2017-12-01

    Objective To evaluate the effectiveness of an early detection program for chronic obstructive pulmonary disease (COPD) in a primary care setting in Japan. Methods Participants of ≥40 years of age who regularly visited a general practitioner's clinic due to chronic disease were asked to complete a COPD screening questionnaire (COPD Population Screener; COPD-PS) and undergo simplified spirometry using a handheld spirometric device. Patients who showed possible COPD were referred to a respiratory specialist and underwent a detailed examination that included spirometry and chest radiography. Results A total of 111 patients with possible COPD were referred for close examination. Among these patients, 27 patients were newly diagnosed with COPD. The patients with COPD were older, had lower BMI values, and had a longer smoking history in comparison to non-COPD patients. COPD patients also had more comorbid conditions. A diagnosis of COPD was significantly associated with a high COPD-PS score (p<0.001) and the detection of possible airflow limitation evaluated by the handheld spirometric device (p<0.01). An ROC curve analysis demonstrated that 5 points was the best COPD-PS cut-off value for the diagnosis of COPD. The combination of both tools showed 40.7% of sensitivity and 96.4% of specificity. Conclusion The use of the COPD-PS plus a handheld spirometric device could facilitate the early detection of undiagnosed COPD in primary care.

  11. Polyhexamethylene guanidine phosphate aerosol particles induce pulmonary inflammatory and fibrotic responses.

    PubMed

    Kim, Ha Ryong; Lee, Kyuhong; Park, Chang We; Song, Jeong Ah; Shin, Da Young; Park, Yong Joo; Chung, Kyu Hyuck

    2016-03-01

    Polyhexamethylene guanidine (PHMG) phosphate was used as a disinfectant for the prevention of microorganism growth in humidifiers, without recognizing that a change of exposure route might cause significant health effects. Epidemiological studies reported that the use of humidifier disinfectant containing PHMG-phosphate can provoke pulmonary fibrosis. However, the pulmonary toxicity of PHMG-phosphate aerosol particles is unknown yet. This study aimed to elucidate the toxicological relationship between PHMG-phosphate aerosol particles and pulmonary fibrosis. An in vivo nose-only exposure system and an in vitro air-liquid interface (ALI) co-culture model were applied to confirm whether PHMG-phosphate induces inflammatory and fibrotic responses in the respiratory tract. Seven-week-old male Sprague-Dawley rats were exposed to PHMG-phosphate aerosol particles for 3 weeks and recovered for 3 weeks in a nose-only exposure chamber. In addition, three human lung cells (Calu-3, differentiated THP-1 and HMC-1 cells) were cultured at ALI condition for 12 days and were treated with PHMG-phosphate at set concentrations and times. The reactive oxygen species (ROS) generation, airway barrier injuries and inflammatory and fibrotic responses were evaluated in vivo and in vitro. The rats exposed to PHMG-phosphate aerosol particles in nanometer size showed pulmonary inflammation and fibrosis including inflammatory cytokines and fibronectin mRNA increase, as well as histopathological changes. In addition, PHMG-phosphate triggered the ROS generation, airway barrier injuries and inflammatory responses in a bronchial ALI co-culture model. Those results demonstrated that PHMG-phosphate aerosol particles cause pulmonary inflammatory and fibrotic responses. All features of fibrogenesis by PHMG-phosphate aerosol particles closely resembled the pathology of fibrosis that was reported in epidemiological studies. Finally, we expected that PHMG-phosphate infiltrated into the lungs in the form of

  12. One Not to Miss: Ovarian Vein Thrombosis Causing Pulmonary Embolism with Literature Review

    PubMed Central

    Verde, Franco; Johnson, Pamela T.

    2012-01-01

    Ovarian vein thrombosis (OVT) is an uncommon entity typically seen in the post-partum, patients with pelvic surgery, infection, or inflammation, and hypercoagulabilty. Concurrent pulmonary embolism (PE) may occur in these patients; however, is an uncommon complication. Treatment commonly involves anti-coagulation and antibiotics in the setting of pelvic inflammatory disease. Presented is a case report of ovarian vein thrombosis leading to pulmonary embolism in the setting of malignancy, underscoring the importance of inspecting the gonadal vein during interpretation, particularly in the emergency setting. PMID:23378885

  13. Therapeutic effects of telomerase in mice with pulmonary fibrosis induced by damage to the lungs and short telomeres.

    PubMed

    Povedano, Juan Manuel; Martinez, Paula; Serrano, Rosa; Tejera, Águeda; Gómez-López, Gonzalo; Bobadilla, Maria; Flores, Juana Maria; Bosch, Fátima; Blasco, Maria A

    2018-01-30

    Pulmonary fibrosis is a fatal lung disease characterized by fibrotic foci and inflammatory infiltrates. Short telomeres can impair tissue regeneration and are found both in hereditary and sporadic cases. We show here that telomerase expression using AAV9 vectors shows therapeutic effects in a mouse model of pulmonary fibrosis owing to a low-dose bleomycin insult and short telomeres. AAV9 preferentially targets regenerative alveolar type II cells (ATII). AAV9- Tert -treated mice show improved lung function and lower inflammation and fibrosis at 1-3 weeks after viral treatment, and improvement or disappearance of the fibrosis at 8 weeks after treatment. AAV9- Tert treatment leads to longer telomeres and increased proliferation of ATII cells, as well as lower DNA damage, apoptosis, and senescence. Transcriptome analysis of ATII cells confirms downregulation of fibrosis and inflammation pathways. We provide a proof-of-principle that telomerase activation may represent an effective treatment for pulmonary fibrosis provoked or associated with short telomeres. © 2018, Povedano et al.

  14. Therapeutic effects of telomerase in mice with pulmonary fibrosis induced by damage to the lungs and short telomeres

    PubMed Central

    Serrano, Rosa; Tejera, Águeda; Gómez-López, Gonzalo; Bobadilla, Maria; Flores, Juana Maria; Bosch, Fátima

    2018-01-01

    Pulmonary fibrosis is a fatal lung disease characterized by fibrotic foci and inflammatory infiltrates. Short telomeres can impair tissue regeneration and are found both in hereditary and sporadic cases. We show here that telomerase expression using AAV9 vectors shows therapeutic effects in a mouse model of pulmonary fibrosis owing to a low-dose bleomycin insult and short telomeres. AAV9 preferentially targets regenerative alveolar type II cells (ATII). AAV9-Tert-treated mice show improved lung function and lower inflammation and fibrosis at 1–3 weeks after viral treatment, and improvement or disappearance of the fibrosis at 8 weeks after treatment. AAV9-Tert treatment leads to longer telomeres and increased proliferation of ATII cells, as well as lower DNA damage, apoptosis, and senescence. Transcriptome analysis of ATII cells confirms downregulation of fibrosis and inflammation pathways. We provide a proof-of-principle that telomerase activation may represent an effective treatment for pulmonary fibrosis provoked or associated with short telomeres. PMID:29378675

  15. Chronic obstructive pulmonary disease and glucose metabolism: a bitter sweet symphony

    PubMed Central

    2012-01-01

    Chronic obstructive pulmonary disease, metabolic syndrome and diabetes mellitus are common and underdiagnosed medical conditions. It was predicted that chronic obstructive pulmonary disease will be the third leading cause of death worldwide by 2020. The healthcare burden of this disease is even greater if we consider the significant impact of chronic obstructive pulmonary disease on the cardiovascular morbidity and mortality. Chronic obstructive pulmonary disease may be considered as a novel risk factor for new onset type 2 diabetes mellitus via multiple pathophysiological alterations such as: inflammation and oxidative stress, insulin resistance, weight gain and alterations in metabolism of adipokines. On the other hand, diabetes may act as an independent factor, negatively affecting pulmonary structure and function. Diabetes is associated with an increased risk of pulmonary infections, disease exacerbations and worsened COPD outcomes. On the top of that, coexistent OSA may increase the risk for type 2 DM in some individuals. The current scientific data necessitate a greater outlook on chronic obstructive pulmonary disease and chronic obstructive pulmonary disease may be viewed as a risk factor for the new onset type 2 diabetes mellitus. Conversely, both types of diabetes mellitus should be viewed as strong contributing factors for the development of obstructive lung disease. Such approach can potentially improve the outcomes and medical control for both conditions, and, thus, decrease the healthcare burden of these major medical problems. PMID:23101436

  16. Detection of Leishmania spp. and associated inflammation in ocular-associated smooth and striated muscles in dogs with patent leishmaniosis.

    PubMed

    Naranjo, Carolina; Fondevila, Dolors; Leiva, Marta; Roura, Xavier; Peña, Teresa

    2010-05-01

    Canine leishmaniosis is a disease characterized by the wide distribution of the parasite throughout the tissues of the host. The purpose of this study was to describe the presence of Leishmania spp. and associated inflammation in ocular-associated muscles of dogs with patent leishmaniosis. Smooth muscles (iris dilator muscle, iris sphincter muscle, ciliary muscle, Müller muscle, smooth muscle of the periorbita and smooth muscle of the nictitating membrane) and striated muscles (orbicularis oculi muscle, obliquus dorsalis muscle and dorsal rectus muscle) were evaluated. Routine staining with hematoxylin and eosin and immunohistochemistry to detect Leishmania spp. were performed on tissue sections. Granulomatous inflammation was seen surrounding muscular fibers and was composed mainly of macrophages with scattered lymphocytes and plasma cells. This infiltrate could be seen in 52/473 (10.99%) samples of smooth muscle and 36/142 (25.35%) samples of striated muscle. Parasites were detected in 43/473 (9.09%) samples of smooth muscle and in 28/142 (19.71%) samples of striated muscle. To the authors' knowledge, this is the first report assessing the presence of Leishmania spp. and associated infiltrate in intraocular, extraocular and adnexal smooth and striated muscles. The inflammation present in those muscles could contribute to clinical signs already described, such as blepharitis, uveitis, and orbital cellulitis.

  17. Effects of different tidal volumes in pulmonary and extrapulmonary lung injury with or without intraabdominal hypertension.

    PubMed

    Santos, Cíntia L; Moraes, Lillian; Santos, Raquel S; Oliveira, Mariana G; Silva, Johnatas D; Maron-Gutierrez, Tatiana; Ornellas, Débora S; Morales, Marcelo M; Capelozzi, Vera L; Jamel, Nelson; Pelosi, Paolo; Rocco, Patricia R M; Garcia, Cristiane S N B

    2012-03-01

    We hypothesized that: (1) intraabdominal hypertension increases pulmonary inflammatory and fibrogenic responses in acute lung injury (ALI); (2) in the presence of intraabdominal hypertension, higher tidal volume reduces lung damage in extrapulmonary ALI, but not in pulmonary ALI. Wistar rats were randomly allocated to receive Escherichia coli lipopolysaccharide intratracheally (pulmonary ALI) or intraperitoneally (extrapulmonary ALI). After 24 h, animals were randomized into subgroups without or with intraabdominal hypertension (15 mmHg) and ventilated with positive end expiratory pressure = 5 cmH(2)O and tidal volume of 6 or 10 ml/kg during 1 h. Lung and chest wall mechanics, arterial blood gases, lung and distal organ histology, and interleukin (IL)-1β, IL-6, caspase-3 and type III procollagen (PCIII) mRNA expressions in lung tissue were analyzed. With intraabdominal hypertension, (1) chest-wall static elastance increased, and PCIII, IL-1β, IL-6, and caspase-3 expressions were more pronounced than in animals with normal intraabdominal pressure in both ALI groups; (2) in extrapulmonary ALI, higher tidal volume was associated with decreased atelectasis, and lower IL-6 and caspase-3 expressions; (3) in pulmonary ALI, higher tidal volume led to higher IL-6 expression; and (4) in pulmonary ALI, liver, kidney, and villi cell apoptosis was increased, but not affected by tidal volume. Intraabdominal hypertension increased inflammation and fibrogenesis in the lung independent of ALI etiology. In extrapulmonary ALI associated with intraabdominal hypertension, higher tidal volume improved lung morphometry with lower inflammation in lung tissue. Conversely, in pulmonary ALI associated with intraabdominal hypertension, higher tidal volume increased IL-6 expression.

  18. PULMONARY AND CARDIAC GENE EXPRESSION FOLLOWING ACUTE ULTRAFINE CARBON PARTICLE INHALATION IN HYPERTENSIVE RATS

    EPA Science Inventory

    Inhalation of ultrafine carbon particles (ufCP) causes cardiac physiological changes without marked pulmonary injury or inflammation. We hypothesized that acute ufCP exposure of 13 months old Spontaneously Hypertensive (SH) rats will cause differential effects on the lung and hea...

  19. Small pulmonary nodules in baseline and incidence screening rounds of low-dose CT lung cancer screening

    PubMed Central

    Walter, Joan E.; Oudkerk, Matthijs

    2017-01-01

    Currently, lung cancer screening by low-dose computed tomography (LDCT) is widely recommended for high-risk individuals by US guidelines, but there still is an ongoing debate concerning respective recommendations for European countries. Nevertheless, the available data regarding pulmonary nodules released by lung cancer screening studies could improve future screening guidelines, as well as the clinical practice of incidentally detected pulmonary nodules on routine CT scans. Most lung cancer screening trials present results for baseline and incidence screening rounds separately, clustering pulmonary nodules initially found at baseline screening and newly detected pulmonary nodules after baseline screening together. This approach does not appreciate possible differences among pulmonary nodules detected at baseline and firstly detected at incidence screening rounds and is heavily influenced by methodological differences of the respective screening trials. This review intends to create a basis for assessing non-calcified pulmonary nodules detected during LDCT lung cancer screening in a more clinical relevant manner. The aim is to present data of non-calcified pulmonary baseline nodules and new non-calcified pulmonary incident nodules without clustering them together, thereby also simplifying translation to the clinical practice of incidentally detected pulmonary nodules. Small pulmonary nodules newly detected at incidence screening rounds of LDCT lung cancer screening may possess a greater lung cancer probability than pulmonary baseline nodules at a smaller size, which is essential for the development of new guidelines. PMID:28331823

  20. Morphologic characteristics of central pulmonary thromboemboli predict haemodynamic response in massive pulmonary embolism.

    PubMed

    Podbregar, Matej; Voga, Gorazd; Krivec, Bojan

    2004-08-01

    On hospital admission, the morphology of the central pulmonary artery thromboemboli is an independent predictor of 30-day mortality in patients with massive pulmonary embolism (MPE). This may be due to the differential susceptibility of thromboemboli to thrombolysis. The aim of this study was to assess haemodynamic response to treatment in patients with MPE and morphologically different thromboemboli. Prospective observational study. An 11-bed closed medical ICU at a 860-bed community general hospital. Twelve consecutive patients with shock or hypotension due to MPE and central pulmonary thromboemboli detected by transesophageal echocardiography who were treated with thrombolysis between January 2000 through April 2002. Patients were divided into two groups according to the characteristics of detected central pulmonary thromboemboli: group 1, thrombi with one or more long, mobile parts; and group 2, immobile thrombi. Urokinase infusion was terminated when mixed venous oxygen saturation was stabilized above 60% for 15 min. At 2 h, the total pulmonary vascular resistance index was reduced more in group 1 than group 2 [from 27+/-12 mmHg/(l.min.m(2)) to 14+/-6 mmHg/(l.min.m(2)) (-52%) vs 27+/-8 mmHg/(l.min.m(2)) to 23+/-10 mmHg/(l.min.m(2)) (-15%), respectively, P=0.04]. In group 1 thrombolysis was terminated earlier than group 2 (89+/-40 min vs 210+/-62 min, respectively, P= 0.0024). The cumulative dose of urokinase used in group 1 was lower than group 2 (1.7+/-0.3 M i.u. vs 2.7+/-0.5 M i.u., respectively, P= 0.023). Haemodynamic stabilization is achieved faster in patients with mobile central thromboemboli detected by transesophageal echocardiography during MPE.

  1. Emodin mitigates diesel exhaust particles-induced increase in airway resistance, inflammation and oxidative stress in mice.

    PubMed

    Nemmar, Abderrahim; Al-Salam, Suhail; Yuvaraju, Priya; Beegam, Sumaya; Ali, Badreldin H

    2015-08-15

    Clinical and experimental studies have reported that short-term exposure to particulate air pollution is associated with inflammation, oxidative stress and impairment of lung function. Emodin (1,3,8-trihydroxy-6-methylanthraquinone) has a strong antioxidant and anti-inflammatory actions. Therefore, in the present study, we evaluated the possible ameliorative effect of emodin on diesel exhaust particles (DEP)-induced impairment of lung function, inflammation and oxidative stress in mice. Mice were intratracheally instilled with DEP (20 μg/mouse) or saline (control). Emodin was administered intraperitoneally 1h before and 7h after pulmonary exposure to DEP. Twenty-four hours following DEP exposure, we evaluated airway resistance measured by forced oscillation technique, lung inflammation and oxidative stress. Emodin treatment abated the DEP-induced increase in airway resistance, and prevented the influx of neutrophils in bronchoalveolar lavage fluid. Similarly, lung histopathology confirmed the protective effect of emodin on DEP-induced lung inflammation. DEP induced a significant increase of proinflammatory cytokines in the lung including tumor necrosis factor α, interleukin 6 and interleukin 1β. The latter effect was significantly ameliorated by emodin. DEP caused a significant increase in lung lipid peroxidation, reactive oxygen species and a significant decrease of reduced glutathione concentration. These effects were significantly mitigated by emodin. We conclude that emodin significantly mitigated DEP-induced increase of airway resistance, lung inflammation and oxidative stress. Pending further pharmacological and toxicological studies, emodin may be considered a potentially useful pulmonary protective agent against particulate air pollution-induced lung toxicity. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Commercial Serological Antibody Detection Tests for the Diagnosis of Pulmonary Tuberculosis: A Systematic Review

    PubMed Central

    Steingart, Karen R; Henry, Megan; Laal, Suman; Hopewell, Philip C; Ramsay, Andrew; Menzies, Dick; Cunningham, Jane; Weldingh, Karin; Pai, Madhukar

    2007-01-01

    Background The global tuberculosis epidemic results in nearly 2 million deaths and 9 million new cases of the disease a year. The vast majority of tuberculosis patients live in developing countries, where the diagnosis of tuberculosis relies on the identification of acid-fast bacilli on unprocessed sputum smears using conventional light microscopy. Microscopy has high specificity in tuberculosis-endemic countries, but modest sensitivity which varies among laboratories (range 20% to 80%). Moreover, the sensitivity is poor for paucibacillary disease (e.g., pediatric and HIV-associated tuberculosis). Thus, the development of rapid and accurate new diagnostic tools is imperative. Immune-based tests are potentially suitable for use in low-income countries as some test formats can be performed at the point of care without laboratory equipment. Currently, dozens of distinct commercial antibody detection tests are sold in developing countries. The question is “do they work?” Methods and Findings We conducted a systematic review to assess the accuracy of commercial antibody detection tests for the diagnosis of pulmonary tuberculosis. Studies from all countries using culture and/or microscopy smear for confirmation of pulmonary tuberculosis were eligible. Studies with fewer than 50 participants (25 patients and 25 control participants) were excluded. In a comprehensive search, we identified 68 studies. The results demonstrate that (1) overall, commercial tests vary widely in performance; (2) sensitivity is higher in smear-positive than smear-negative samples; (3) in studies of smear-positive patients, Anda-TB IgG by enzyme-linked immunosorbent assay shows limited sensitivity (range 63% to 85%) and inconsistent specificity (range 73% to 100%); (4) specificity is higher in healthy volunteers than in patients in whom tuberculosis disease is initially suspected and subsequently ruled out; and (5) there are insufficient data to determine the accuracy of most commercial tests

  3. Circadian clock component REV-ERBα controls homeostatic regulation of pulmonary inflammation.

    PubMed

    Pariollaud, Marie; Gibbs, Julie E; Hopwood, Thomas W; Brown, Sheila; Begley, Nicola; Vonslow, Ryan; Poolman, Toryn; Guo, Baoqiang; Saer, Ben; Jones, D Heulyn; Tellam, James P; Bresciani, Stefano; Tomkinson, Nicholas Co; Wojno-Picon, Justyna; Cooper, Anthony Wj; Daniels, Dion A; Trump, Ryan P; Grant, Daniel; Zuercher, William; Willson, Timothy M; MacDonald, Andrew S; Bolognese, Brian; Podolin, Patricia L; Sanchez, Yolanda; Loudon, Andrew Si; Ray, David W

    2018-06-01

    Recent studies reveal that airway epithelial cells are critical pulmonary circadian pacemaker cells, mediating rhythmic inflammatory responses. Using mouse models, we now identify the rhythmic circadian repressor REV-ERBα as essential to the mechanism coupling the pulmonary clock to innate immunity, involving both myeloid and bronchial epithelial cells in temporal gating and determining amplitude of response to inhaled endotoxin. Dual mutation of REV-ERBα and its paralog REV-ERBβ in bronchial epithelia further augmented inflammatory responses and chemokine activation, but also initiated a basal inflammatory state, revealing a critical homeostatic role for REV-ERB proteins in the suppression of the endogenous proinflammatory mechanism in unchallenged cells. However, REV-ERBα plays the dominant role, as deletion of REV-ERBβ alone had no impact on inflammatory responses. In turn, inflammatory challenges cause striking changes in stability and degradation of REV-ERBα protein, driven by SUMOylation and ubiquitination. We developed a novel selective oxazole-based inverse agonist of REV-ERB, which protects REV-ERBα protein from degradation, and used this to reveal how proinflammatory cytokines trigger rapid degradation of REV-ERBα in the elaboration of an inflammatory response. Thus, dynamic changes in stability of REV-ERBα protein couple the core clock to innate immunity.

  4. The HMGB1-RAGE Inflammatory Pathway: Implications for Brain Injury-Induced Pulmonary Dysfunction

    PubMed Central

    Weber, Daniel J.; Allette, Yohance M.; Wilkes, David S.

    2015-01-01

    Abstract Significance: Deceased patients who have suffered severe traumatic brain injury (TBI) are the largest source of organs for lung transplantation. However, due to severely compromised pulmonary lung function, only one-third of these patients are eligible organ donors, with far fewer capable of donating lungs (∼20%). As a result of this organ scarcity, understanding and controlling the pulmonary pathophysiology of potential donors are key to improving the health and long-term success of transplanted lungs. Recent Advances: Although the exact mechanism by which TBI produces pulmonary pathophysiology remains unclear, it may be related to the release of damage-associated molecular patterns (DAMPs) from the injured tissue. These heterogeneous, endogenous host molecules can be rapidly released from damaged or dying cells and mediate sterile inflammation following trauma. In this review, we highlight the interaction of the DAMP, high-mobility group box protein 1 (HMGB1) with the receptor for advanced glycation end-products (RAGE), and toll-like receptor 4 (TLR4). Critical Issues: Recently published studies are reviewed, implicating the release of HMGB1 as producing marked changes in pulmonary inflammation and physiology following trauma, followed by an overview of the experimental evidence demonstrating the benefits of blocking the HMGB1-RAGE axis. Future Directions: Targeting the HMGB1 signaling axis may increase the number of lungs available for transplantation and improve long-term benefits for organ recipient patient outcomes. Antioxid. Redox Signal. 23, 1316–1328. PMID:25751601

  5. Loss of Syndecan-1 Abrogates the Pulmonary Protective Phenotype Induced by Plasma After Hemorrhagic Shock.

    PubMed

    Wu, Feng; Peng, Zhanglong; Park, Pyong Woo; Kozar, Rosemary A

    2017-09-01

    Syndecan-1 (Sdc1) is considered a biomarker of injury to the endothelial glycocalyx following hemorrhagic shock, with shedding of Sdc1 deleterious. Resuscitation with fresh frozen plasma (FFP) has been correlated with restitution of pulmonary Sdc1 and reduction of lung injury, but the precise contribution of Sdc1 to FFPs protection in the lung remains unclear. Human lung endothelial cells were used to assess the time and dose-dependent effect of FFP on Sdc1 expression and the effect of Sdc1 silencing on in vitro endothelial cell permeability and actin stress fiber formation. Wild-type and Sdc1 mice were subjected to hemorrhagic shock followed by resuscitation with lactated Ringers (LR) or FFP and compared with shock alone and shams. Lungs were harvested after 3 h for analysis of permeability, histology, and inflammation and for measurement of syndecan- 2 and 4 expression. In vitro, FFP enhanced pulmonary endothelial Sdc1 expression in time- and dose-dependent manners and loss of Sdc1 in pulmonary endothelial cells worsened permeability and stress fiber formation by FFP. Loss of Sdc1 in vivo led to equivalency between LR and FFP in restoring pulmonary injury, inflammation, and permeability after shock. Lastly, Sdc1 mice demonstrated a significant increase in pulmonary syndecan 4 expression after hemorrhagic shock and FFP-based resuscitation. Taken together, our findings support a key role for Sdc1 in modulating pulmonary protection by FFP after hemorrhagic shock. Our results also suggest that other members of the syndecan family may at least be contributing to FFP's effects on the endothelium, an area that warrants further investigation.

  6. Inflammation-induced preterm lung maturation: lessons from animal experimentation.

    PubMed

    Moss, Timothy J M; Westover, Alana J

    2017-06-01

    Intrauterine inflammation, or chorioamnionitis, is a major contributor to preterm birth. Prematurity per se is associated with considerable morbidity and mortality resulting from lung immaturity but exposure to chorioamnionitis reduces the risk of neonatal respiratory distress syndrome (RDS) in preterm infants. Animal experiments have identified that an increase in pulmonary surfactant production by the preterm lungs likely underlies this decreased risk of RDS in infants exposed to chorioamnionitis. Further animal experimentation has shown that infectious or inflammatory agents in amniotic fluid exert their effects on lung development by direct effects within the developing respiratory tract, and probably not by systemic pathways. Differences in the effects of intrauterine inflammation and glucocorticoids demonstrate that canonical glucocorticoid-mediated lung maturation is not responsible for inflammation-induced changes in lung development. Animal experimentation is identifying alternative lung maturational pathways, and transgenic animals and cell culture techniques will allow identification of novel mechanisms of lung maturation that may lead to new treatments for the prevention of RDS. Copyright © 2016. Published by Elsevier Ltd.

  7. Osteoporosis in Chronic Obstructive Pulmonary Disease

    PubMed Central

    Sarkar, Malay; Bhardwaj, Rajeev; Madabhavi, Irappa; Khatana, Jasmin

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is a lifestyle-related chronic inflammatory pulmonary disease associated with significant morbidity and mortality worldwide. COPD is associated with various comorbidities found in all stages of COPD. The comorbidities have significant impact in terms of morbidity, mortality, and economic burden in COPD. Management of comorbidities should be incorporated into the comprehensive management of COPD as this will also have an effect on the outcome in COPD patients. Various comorbidities reported in COPD include cardiovascular disease, skeletal muscle dysfunction, anemia, metabolic syndrome, and osteoporosis. Osteoporosis is a significant comorbidity in COPD patients. Various risk factors, such as tobacco smoking, systemic inflammation, vitamin D deficiency, and the use of oral or inhaled corticosteroids (ICSs) are responsible for its occurrence in patients with COPD. This review will focus on the prevalence, pathogenesis, risk factors, diagnosis, and treatment of osteoporosis in COPD patients. PMID:25788838

  8. Molecular pathology of pulmonary surfactants and cytokines in drowning compared with other asphyxiation and fatal hypothermia.

    PubMed

    Miyazato, Takako; Ishikawa, Takaki; Michiue, Tomomi; Maeda, Hitoshi

    2012-07-01

    Drowning involves complex fatal factors, including asphyxiation and electrolyte/osmotic disturbances, as well as hypothermia in cold water. The present study investigated the molecular pathology of pulmonary injury due to drowning, using lung specimens from forensic autopsy cases of drowning (n = 21), acute mechanical asphyxia due to neck compression and smothering (n = 24), and hypothermia (cold exposure, n = 11), as well as those of injury (n = 23), intoxication (n = 13), fire fatality (n = 18), and acute cardiac death (n = 9) for comparison. TaqMan real-time reverse transcription polymerase chain reaction was used to quantify messenger RNA (mRNA) expressions of pulmonary surfactant-associated proteins A and D (SP-A and SP-D), tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-10. SP-A and SP-D mRNA levels were lower for drowning, mechanical asphyxiation, fire fatality, and acute cardiac deaths than for hypothermia and injury. TNF-α, IL-1β, and IL-10 mRNA levels were higher for drowning or for drowning and injury than for other groups; there was no significant difference between fire fatality, involving airway injury due to inhalation of hot/irritant gases, and other control groups. These observations suggest characteristic molecular biological patterns of pulmonary injury involving suppression of pulmonary surfactants and activation of early-phase mediators of inflammation in drowning, with high mRNA expression levels of pulmonary surfactants in fatal hypothermia; however, there was no significant difference among these markers in immunohistochemical detection, except for SP-A. These mRNA expressions can be used as markers of pulmonary injury to assist in investigations of the pathophysiology of drowning and fatal hypothermia in combination with other biochemical and biological markers.

  9. Inflammable Gas Mixture Detection with a Single Catalytic Sensor Based on the Electric Field Effect

    PubMed Central

    Tong, Ziyuan; Tong, Min-Ming; Meng, Wen; Li, Meng

    2014-01-01

    This paper introduces a new way to analyze mixtures of inflammable gases with a single catalytic sensor. The analysis technology was based on a new finding that an electric field on the catalytic sensor can change the output sensitivity of the sensor. The analysis of mixed inflammable gases results from processing the output signals obtained by adjusting the electric field parameter of the catalytic sensor. For the signal process, we designed a group of equations based on the heat balance of catalytic sensor expressing the relationship between the output signals and the concentration of gases. With these equations and the outputs of different electric fields, the gas concentration in a mixture could be calculated. In experiments, a mixture of methane, butane and ethane was analyzed by this new method, and the results showed that the concentration of each gas in the mixture could be detected with a single catalytic sensor, and the maximum relative error was less than 5%. PMID:24717635

  10. SiO2-induced release of sVEGFRs from pulmonary macrophages.

    PubMed

    Chao, Jie; Lv, Yan; Chen, Jin; Wang, Jing; Yao, Honghong

    2018-01-01

    The inhalation of silicon dioxide (SiO 2 ) particles causes silicosis, a stubborn pulmonary disease that is characterized by alveolar inflammation during the early stage. Soluble cytokine receptors (SCRs) play important roles in regulating inflammation by either attenuating or promoting cytokine signaling. However, the role of SCRs in silicosis remains unknown. Luminex assays revealed increased soluble vascular endothelial growth factor receptor (sVEGFR) family levels in the plasma of silicosis patients. In an enzyme-linked immunosorbent assay (ELISA), cells from the differentiated human monocytic cell line U937 released sVEGFR family proteins after exposure to SiO 2 (50μg/cm 2 ). Further Western blot experiments revealed that VEGFR expression was also elevated in U937 cells. In contrast, levels of sVEGFR family members did not change in the supernatants of human umbilical vein endothelial cells (HUVECs) after exposure to SiO 2 (50μg/cm 2 ). Interestingly, VEGFR expression in HUVECs decreased after SiO 2 treatment. In a scratch assay, HUVECs exhibited cell migration ability, indicating the acquisition of mesenchymal properties. Our findings highlight the important role of sVEGFRs in both inflammation and fibrosis induced by SiO 2 , suggesting a possible mechanism for the fibrogenic effects observed in pulmonary diseases associated with fibrosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Helminth-induced arginase-1 exacerbates lung inflammation and disease severity in tuberculosis

    PubMed Central

    Monin, Leticia; Griffiths, Kristin L.; Lam, Wing Y.; Gopal, Radha; Kang, Dongwan D.; Ahmed, Mushtaq; Rajamanickam, Anuradha; Cruz-Lagunas, Alfredo; Zúñiga, Joaquín; Babu, Subash; Kolls, Jay K.; Mitreva, Makedonka; Rosa, Bruce A.; Ramos-Payan, Rosalio; Morrison, Thomas E.; Murray, Peter J.; Rangel-Moreno, Javier; Pearce, Edward J.; Khader, Shabaana A.

    2015-01-01

    Parasitic helminth worms, such as Schistosoma mansoni, are endemic in regions with a high prevalence of tuberculosis (TB) among the population. Human studies suggest that helminth coinfections contribute to increased TB susceptibility and increased rates of TB reactivation. Prevailing models suggest that T helper type 2 (Th2) responses induced by helminth infection impair Th1 immune responses and thereby limit Mycobacterium tuberculosis (Mtb) control. Using a pulmonary mouse model of Mtb infection, we demonstrated that S. mansoni coinfection or immunization with S. mansoni egg antigens can reversibly impair Mtb-specific T cell responses without affecting macrophage-mediated Mtb control. Instead, S. mansoni infection resulted in accumulation of high arginase-1–expressing macrophages in the lung, which formed type 2 granulomas and exacerbated inflammation in Mtb-infected mice. Treatment of coinfected animals with an antihelminthic improved Mtb-specific Th1 responses and reduced disease severity. In a genetically diverse mouse population infected with Mtb, enhanced arginase-1 activity was associated with increased lung inflammation. Moreover, in patients with pulmonary TB, lung damage correlated with increased serum activity of arginase-1, which was elevated in TB patients coinfected with helminths. Together, our data indicate that helminth coinfection induces arginase-1–expressing type 2 granulomas, thereby increasing inflammation and TB disease severity. These results also provide insight into the mechanisms by which helminth coinfections drive increased susceptibility, disease progression, and severity in TB. PMID:26571397

  12. TRP channels and traffic-related environmental pollution-induced pulmonary disease

    PubMed Central

    Akopian, Armen N.; Fanick, E. Robert

    2016-01-01

    Environmental pollutant exposures are major risk factors for adverse health outcomes, with increased morbidity and mortality in humans. Diesel exhaust (DE) is one of the major harmful components of traffic-related air pollution. Exposure to DE affects several physiological systems, including the airways, and pulmonary diseases are increased in highly populated urban areas. Hence, there are urgent needs to (1) create newer and lesser polluting fuels, (2) improve exhaust aftertreatments and reduce emissions, and (3) understand mechanisms of actions for toxic effects of both conventional and cleaner diesel fuels on the lungs. These steps could aid the development of diagnostics and interventions to prevent the negative impact of traffic-related air pollution on the pulmonary system. Exhaust from conventional, and to a lesser extent, clean fuels, contains particulate matter (PM) and more than 400 additional chemical constituents. The major toxic constituents are nitrogen oxides (NOx) and polycyclic aromatic hydrocarbons (PAHs). PM and PAHs could potentially act via transient receptor potential (TRP) channels. In this review, we will first discuss the associations between DE from conventional as well as clean fuel technologies and acute and chronic airway inflammation. We will then review possible activation and/or potentiation of TRP vanilloid type 1 (TRPV1) and ankyrin 1 (TRPA1) channels by PM and PAHs. Finally, we will discuss and summarize recent findings on the mechanisms whereby TRPs could control the link between DE and airway inflammation, which is a primary determinant leading to pulmonary disease. PMID:26837756

  13. TRP channels and traffic-related environmental pollution-induced pulmonary disease.

    PubMed

    Akopian, Armen N; Fanick, E Robert; Brooks, Edward G

    2016-05-01

    Environmental pollutant exposures are major risk factors for adverse health outcomes, with increased morbidity and mortality in humans. Diesel exhaust (DE) is one of the major harmful components of traffic-related air pollution. Exposure to DE affects several physiological systems, including the airways, and pulmonary diseases are increased in highly populated urban areas. Hence, there are urgent needs to (1) create newer and lesser polluting fuels, (2) improve exhaust aftertreatments and reduce emissions, and (3) understand mechanisms of actions for toxic effects of both conventional and cleaner diesel fuels on the lungs. These steps could aid the development of diagnostics and interventions to prevent the negative impact of traffic-related air pollution on the pulmonary system. Exhaust from conventional, and to a lesser extent, clean fuels, contains particulate matter (PM) and more than 400 additional chemical constituents. The major toxic constituents are nitrogen oxides (NOx) and polycyclic aromatic hydrocarbons (PAHs). PM and PAHs could potentially act via transient receptor potential (TRP) channels. In this review, we will first discuss the associations between DE from conventional as well as clean fuel technologies and acute and chronic airway inflammation. We will then review possible activation and/or potentiation of TRP vanilloid type 1 (TRPV1) and ankyrin 1 (TRPA1) channels by PM and PAHs. Finally, we will discuss and summarize recent findings on the mechanisms whereby TRPs could control the link between DE and airway inflammation, which is a primary determinant leading to pulmonary disease.

  14. Monocrotaline-Induced Pulmonary Hypertension Involves Downregulation of Antiaging Protein Klotho and eNOS Activity.

    PubMed

    Varshney, Rohan; Ali, Quaisar; Wu, Chengxiang; Sun, Zhongjie

    2016-11-01

    The objective of this study is to investigate whether stem cell delivery of secreted Klotho (SKL), an aging-suppressor protein, attenuates monocrotaline-induced pulmonary vascular dysfunction and remodeling. Overexpression of SKL in mesenchymal stem cells (MSCs) was achieved by transfecting MSCs with lentiviral vectors expressing SKL-green fluorescent protein (GFP). Four groups of rats were treated with monocrotaline, whereas an additional group was given saline (control). Three days later, 4 monocrotaline-treated groups received intravenous delivery of nontransfected MSCs, MSC-GFP, MSC-SKL-GFP, and PBS, respectively. Ex vivo vascular relaxing responses to acetylcholine were diminished in small pulmonary arteries (PAs) in monocrotaline-treated rats, indicating pulmonary vascular endothelial dysfunction. Interestingly, delivery of MSCs overexpressing SKL (MSC-SKL-GFP) abolished monocrotaline-induced pulmonary vascular endothelial dysfunction and PA remodeling. Monocrotaline significantly increased right ventricular systolic blood pressure, which was attenuated significantly by MSC-SKL-GFP, indicating improved PA hypertension. MSC-SKL-GFP also attenuated right ventricular hypertrophy. Nontransfected MSCs slightly, but not significantly, improved PA hypertension and pulmonary vascular endothelial dysfunction. MSC-SKL-GFP attenuated monocrotaline-induced inflammation, as evidenced by decreased macrophage infiltration around PAs. MSC-SKL-GFP increased SKL levels, which rescued the downregulation of SIRT1 (Sirtuin 1) expression and endothelial NO synthase (eNOS) phosphorylation in the lungs of monocrotaline-treated rats. In cultured endothelial cells, SKL abolished monocrotaline-induced downregulation of eNOS activity and NO levels and enhanced cell viability. Therefore, stem cell delivery of SKL is an effective therapeutic strategy for pulmonary vascular endothelial dysfunction and PA remodeling. SKL attenuates monocrotaline-induced PA remodeling and PA smooth muscle

  15. Comparison of multiple enzyme activatable near infrared fluorescent molecular probes for detection and quantification of inflammation in murine colitis models

    PubMed Central

    Ding, Shengli; Blue, Randal E.; Morgan, Douglas R.; Lund, Pauline K.

    2015-01-01

    Background Activatable near-infrared fluorescent (NIRF) probes have been used for ex vivo and in vivo detection of intestinal tumors in animal models. We hypothesized that NIRF probes activatable by cathepsins or MMPs will detect and quantify dextran sulphate sodium (DSS) induced acute colonic inflammation in wild type (WT) mice or chronic colitis in IL-10 null mice ex vivo or in vivo. Methods WT mice given DSS, water controls and IL-10 null mice with chronic colitis were administered probes by retro-orbital injection. FMT2500 LX system imaged fresh and fixed intestine ex vivo and mice in vivo. Inflammation detected by probes was verified by histology and colitis scoring. NIRF signal intensity was quantified using 2D region of interest (ROI) ex vivo or 3D ROI-analysis in vivo. Results Ex vivo, seven probes tested yielded significant higher NIRF signals in colon of DSS treated mice versus controls. A subset of probes was tested in IL-10 null mice and yielded strong ex vivo signals. Ex vivo fluorescence signal with 680 series probes was preserved after formalin fixation. In DSS and IL-10 null models, ex vivo NIRF signal strongly and significantly correlated with colitis scores. In vivo, ProSense680, CatK680FAST and MMPsense680 yielded significantly higher NIRF signals in DSS treated mice than controls but background was high in controls. Conclusion Both cathepsin or MMP-activated NIRF-probes can detect and quantify colonic inflammation ex vivo. ProSense680 yielded the strongest signals in DSS colitis ex vivo and in vivo, but background remains a problem for in vivo quantification of colitis. PMID:24374874

  16. Pulmonary physiology during pulmonary embolism.

    PubMed

    Elliott, C G

    1992-04-01

    Acute pulmonary thromboembolism produces a number of pathophysiologic derangements of pulmonary function. Foremost among these alterations is increased pulmonary vascular resistance. For patients without preexistent cardiopulmonary disease, increased pulmonary vascular resistance is directly related to the degree of vascular obstruction demonstrated on the pulmonary arteriogram. Vasoconstriction, either reflexly or biochemically mediated, may contribute to increased pulmonary vascular resistance. Acute pulmonary thromboembolism also disturbs matching of ventilation and blood flow. Consequently, some lung units are overventilated relative to perfusion (increased dead space), while other lung units are underventilated relative to perfusion (venous admixture). True right-to-left shunting of mixed venous blood can occur through the lungs (intrapulmonary shunt) or across the atrial septum (intracardiac shunt). In addition, abnormalities of pulmonary gas exchange (carbon monoxide transfer), pulmonary compliance and airway resistance, and ventilatory control may accompany pulmonary embolism. Thrombolytic therapy can reverse the hemodynamic derangements of acute pulmonary thromboembolism more rapidly than anticoagulant therapy. Limited data suggest a sustained benefit of thrombolytic treatment on the pathophysiologic alterations of pulmonary vascular resistance and pulmonary gas exchange produced by acute pulmonary emboli.

  17. Accuracy of pulmonary auscultation to detect abnormal respiratory mechanics: a cross-sectional diagnostic study.

    PubMed

    Xavier, Glaciele Nascimento; Duarte, Antonio Carlos Magalhães; Melo-Silva, César Augusto; dos Santos, Carlos Eduardo Ventura Gaio; Amado, Veronica Moreira

    2014-12-01

    Pulmonary auscultation is a method used in clinical practice for the evaluation and detection of abnormalities relating to the respiratory system. This method has limitations, as it depends on the experience and hearing acuity of the examiner to determine adventitious sounds. In this context, it's important to analyze whether there is a correlation between auscultation of lung sounds and the behavior of the respiratory mechanical properties of the respiratory system in patients with immediate postoperative cardiac surgery. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Comparison of Digital Tomosynthesis and Chest Radiography for the Detection of Noncalcified Pulmonary and Hilar Lesions.

    PubMed

    Galea, Angela; Adlan, Tarig; Gay, David; Roobottom, Carl; Dubbins, Paul; Riordan, Richard

    2015-09-01

    The aim of this study was to compare the sensitivity and specificity of chest digital tomosynthesis (DTS) with chest radiography (CXR) for the detection of noncalcified pulmonary nodules and hilar lesions using computed tomography (CT) as the reference standard. A total of 78 patients with suspected noncalcified pulmonary lesions on CXR were included in the study. Two radiologists, blinded to the history and CT, analyzed the CXR and the DTS images (separately), whereas a third radiologist analyzed the CXR and DTS images together. Noncalcified intrapulmonary nodules and hilar lesions were recorded for analysis. The interobserver agreement for CXR and DTS was assessed, and the time taken to report the images was recorded. A total of 202 lesions were recorded in 78 patients. There were 111 true lesions confirmed on CT in 53 patients; in 25 patients subsequent CT excluded a lesion. The overall sensitivity was 32% for CXR and 49% for DTS. This improved to 54% when the posteroanterior CXR and DTS were reviewed together (CXR-DTS). The overall specificities for CXR, DTS, and CXR-DTS were 49%, 96%, and 98%, respectively. There were 56 suspected hilar lesions with subgroup sensitivities of 76% for CXR, 65% for DTS, and 76% for CXR-DTS. The specificity for hilar lesions was 59%, 92%, and 97% for CXR, DTS, and CXR-DTS, respectively. DTS significantly improves the detectability of noncalcified nodules when compared with and when used in combination with CXR. The specificity and interobserver agreement of DTS in the diagnosis of suspected noncalcified pulmonary nodules and hilar lesions are significantly better than those of CXR and approaches those of CT.

  19. Age-related differences in pulmonary effects of acute and ...

    EPA Pesticide Factsheets

    Ozone (O3) is known to induce adverse pulmonary and systemic health effects. Importantly, children and older persons are considered at-risk populations for O3-induced dysfunction, yet the mechanisms accounting for the age-related pulmonary responses to O3 are uncertain. In this study, we examined age-related susceptibility to O3 using 1 mo (adolescent), 4 mo (young adult), 12 mo (adult) and 24 mo (senescent) male Brown Norway rats exposed to filtered air or O3 (0.25and 1.00 ppm), 6 h/day, two days/week for 1 week (acute) or 13 weeks (subchronic). Ventilatory function, assessed by whole-body plethysmography, and bronchoalveolar lavage fluid (BALF) biomarkers of injury and inflammation were used to examine O3-induced pulmonary effects.Relaxation time declined in all ages following the weekly exposures; however, this effect persisted only in the 24 mo rats following a five days recovery, demonstrating an inability to induce adaptation commonly seen with repeated O3 exposures. PenH was increased in all groups with an augmented response in the 4 mo rats following the subchronic O3 exposures. O3 led to increased breathing frequency and minute volume in the 1 and 4 mo animals. Markers ofpulmonary permeability were increased in all age groups. Elevations in BALF γ-glutamyl transferase activity and lung inflammation following an acute O3 exposure were noted in only the 1 and 4 mo rats, which likely received an increased effective O3 dose. These data demonstrate that ado

  20. Compare the efficacy of inhaled budesonide and systemic methylprednisolone on systemic inflammation of AECOPD.

    PubMed

    Sun, Xuejiao; He, Zhiyi; Zhang, Jianquan; Deng, Jingmin; Bai, Jing; Li, Meihua; Zhong, Xiaoning

    2015-04-01

    Corticosteroids have been shown to improve the outcome of acute exacerbation of chronic obstructive pulmonary disease (AECOPD). However, whether inhaled corticosteroids (IC) alone have similar effects with systemic corticosteroid (SCS) is still unclear. To compare the efficacy of inhaled budesonide and systemic methylprednisolone on systemic inflammation of AECOPD. 30 AECOPD patients were randomly divided into two group. Budesonide group (15 cases) were treated with inhaled budesonide (3 mg Bid); methylprednisolone group (15 cases) were treated with systemic methylprednisolone (methylprednisolone acetate injectable suspension 40 mg Qd for three days and then methylprednisolone tablets 8 mg Bid). Observe symptoms, lung function, blood gas analysis and adverse effects of the patients in two groups. Peripheral blood samples were collected before and after treatment for 1 day, 4 days and 7 days. Interleukin-8 (IL-8) and TNF-α levels were determined by an enzyme linked immunosorbent assay (ELISA). Hs-CRP levels were detected by automatic biochemical analyzer. Western blotting was used to determine histone deacetylase 2 (HDAC2) protein expression. Symptoms, pulmonary function and blood gas analysis were significantly improved after treatment in the two groups (P < 0.05) and no significant differences between the two groups (P > 0.05). There were no significant differences of IL-8, TNF-α and hs-CRP levels in the two groups (P > 0.05). Besides, the levels of HDAC2 protein expression before treatment were significantly lower comparing to that after treatment for 4 and 7 days. Incidence of adverse events (heart rate, blood pressure, glycemic, sleep condition, gastrointestinal symptoms) in budesonide group was lower than methylprednisolone group (P < 0.05). Inhaled budesonide and systemic methylprednisolone have the same effects on systemic inflammation of AECOPD. Inhaled corticosteroid alone could instead systemic corticosteroid in AECOPD treatment. Copyright

  1. Evaluation of the Microcirculation in Chronic Thromboembolic Pulmonary Hypertension Patients: The Impact of Pulmonary Arterial Remodeling on Postoperative and Follow-Up Pulmonary Arterial Pressure and Vascular Resistance.

    PubMed

    Jujo, Takayuki; Sakao, Seiichiro; Ishibashi-Ueda, Hatsue; Ishida, Keiichi; Naito, Akira; Sugiura, Toshihiko; Shigeta, Ayako; Tanabe, Nobuhiro; Masuda, Masahisa; Tatsumi, Koichiro

    2015-01-01

    Chronic thromboembolic pulmonary hypertension (CTEPH) is generally recognized to be caused by persistent organized thrombi that occlude the pulmonary arteries. The aim of this study was to investigate the characteristics of small vessel remodeling and its impact on the hemodynamics in CTEPH patients. Hemodynamic data were obtained from right heart catheterization in 17 CTEPH patients before pulmonary endarterectomy (PEA). Lung tissue specimens were obtained at the time of PEA. Pathological observations and evaluation of quantitative changes in pulmonary muscular arteries and veins were performed using light microscopy on 423 slides in 17 patients. The relationship between the results and the hemodynamics of CTEPH was investigated. Pulmonary arteriopathy and venopathy were recognized in most cases, although no plexiform lesions and no capillary-hemangiomatosis-like lesions were detected in any of the specimens. The severity of pulmonary arteriopathy was correlated with pulmonary vascular resistance (PVR) in the postoperative and follow-up periods. The PVR and mean pulmonary arterial pressure were significantly higher in the high-obstruction group than in the low-obstruction group. The findings in pulmonary venopathy were similar to the findings seen in pulmonary veno-occlusive disease in some cases, although severe venopathy was only observed in a portion of the pulmonary veins. There was a significant correlation between the extent of pulmonary arteriopathy and venopathy, although an effect of pulmonary venopathy to hemodynamics, including pulmonary arterial wedged pressure (PAWP), could not be identified. The vascular remodeling of the pulmonary muscular arteries was closely associated with the hemodynamics of CTEPH. Severe pulmonary arteriopathy might be related to residual pulmonary hypertension after PEA. Those altered pulmonary arteries might be a new target for the persistent PH after the operation.

  2. Evaluation of GeneXpert MTB/RIF for detection of pulmonary tuberculosis at peripheral tuberculosis clinics.

    PubMed

    Shao, Yan; Peng, Hong; Chen, Cheng; Zhu, Tao; Ji, Ming; Jiang, Wei; Zhu, Wei; Zhai, Xiang Jun; Lu, Wei

    2017-04-01

    Tuberculosis is one of the most common infectious diseases in China, while delayed patient finding obstructed disease control, especially for smear-negative patients. The current study was undertaken to evaluate the diagnostic accuracy of GeneXpert MTB/RIF compared with conventional methods in the detection of pulmonary tuberculosis patients. A total of 295 spot sputum samples from confirmed pulmonary tuberculosis patients were evaluated from September 2014 to June 2015. Each sample was examined by acid-fast bacillus smear microscopy, culture and GeneXpert MTB/RIF. The sputum culture on Löwenstein-Jensen (L-J) was considered as the gold-standard. After testing by smear, 68.81% (203/295) was negative and 31.19% (92/295) was positive. As the gold-standard, L-J culture detected 37.97% (112/295) positive of all specimens, while the positivity for GeneXpert MTB/RIF was 46.44% (137/295). Compared with L-J culture, the combined sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) for GeneXpert MTB/RIF were 94.64%, 82.97%, 77.37% and 96.18% respectively. For smear-negative specimens, the sensitivity, specificity, PPV and NPV for GeneXpert MTB/RIF were 96.00%, 83.05%, 44.44% and 99.32%; while for smear-positive specimens, the corresponding accuracy values were 94.25%, 80.00%, 98.80% and 44.44%. The findings of study indicated that GeneXpert MTB/RIF assay demonstrated a high sensitivity in detecting Mycobacterium tuberculosis compared to smear method and a high NPV among smear negative patients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Controlled lung reperfusion to reduce pulmonary ischaemia/reperfusion injury after cardiopulmonary bypass in a porcine model.

    PubMed

    Slottosch, Ingo; Liakopoulos, Oliver; Kuhn, Elmar; Deppe, Antje; Lopez-Pastorini, Alberto; Schwarz, David; Neef, Klaus; Choi, Yeong-Hoon; Sterner-Kock, Anja; Jung, Kristina; Mühlfeld, Christian; Wahlers, Thorsten

    2014-12-01

    Ischaemia/reperfusion (I/R) injury of the lungs contributes to pulmonary dysfunction after cardiac surgery with cardiopulmonary bypass (CPB), leading to increased morbidity and mortality of patients. This study investigated the value of controlled lung reperfusion strategies on lung ischaemia-reperfusion injury in a porcine CPB model. Pigs were subjected to routine CPB for 120 min with 60 min of blood cardioplegic cardiac arrest (CCA). Following CCA, the uncontrolled reperfusion (UR, n = 6) group was conventionally weaned from CPB. Two groups underwent controlled lung reperfusion strategies (CR group: controlled reperfusion conditions, n = 6; MR group: controlled reperfusion conditions and modified reperfusate, n = 6) via the pulmonary artery before CPB weaning. Sham-operated pigs (n = 7) served as controls. Animals were followed up until 4 h after CPB. Pulmonary function, haemodynamics, markers of inflammation, endothelial injury and oxidative stress as well as morphological lung alterations were analysed. CPB (UR group) induced deterioration of pulmonary function (lung mechanics, oxygenation index and lung oedema). Also, controlled lung reperfusion groups (CR and MR) presented with pulmonary dysfunction after CPB. However, compared with UR, controlled lung reperfusion strategies (CR and MR) improved lung mechanics and reduced markers of oxidative stress, but without alteration of haemodynamics, oxygenation, inflammation, endothelial injury and lung morphology. Both controlled reperfusion groups were similar without relevant differences. Controlled lung reperfusion strategies attenuated a decrease in lung mechanics and an increase in oxidative stress, indicating an influence on CPB-related pulmonary injury. However, they failed to avoid completely CPB-related lung injury, implying the need for additional strategies given the multifactorial pathophysiology of postoperative pulmonary dysfunction. © The Author 2014. Published by Oxford University Press on behalf of

  4. Mepenzolate bromide promotes diabetic wound healing by modulating inflammation and oxidative stress

    PubMed Central

    Zheng, Yongjun; Wang, Xingtong; Ji, Shizhao; Tian, Song; Wu, Haibin; Luo, Pengfei; Fang, He; Wang, Li; Wu, Guosheng; Xiao, Shichu; Xia, Zhaofan

    2016-01-01

    Diabetic wounds are characterized by persistent inflammation and the excessive production of reactive oxygen species, thus resulting in impaired wound healing. Mepenzolate bromide, which was originally used to treat gastrointestinal disorders in clinical settings, has recently been shown to display beneficial effects in chronic obstructive pulmonary disease and pulmonary fibrosis of a mouse model by inhibiting inflammatory responses and reducing oxidative stress. However,the role of mepenzolate bromide in diabetic wound healing is still unclear. In this study, full-thickness excisional skin wounds were created on the backs of db/db mice, and mepenzolate bromide was topically applied to the wound bed. We found that mepenzolate bromide significantly promoted diabetic wound healing by measuring wound closure rate and histomorphometric analyses. Further studies showed that inflammation was inhibited by assessing the number of macrophages and levels of pro-inflammatory cytokines and pro-healing cytokines in the wounds. Furthermore, oxidative stress was reduced by monitoring the levels of MDA and H2O2 and the activities of glutathione peroxidase and catalase in the wounds. These results demonstrated the potential application of mepenzolate bromide for treating diabetic ulcers and other chronic wounds in clinics. PMID:27398156

  5. The role of leukotrienes in airway inflammation.

    PubMed

    Ogawa, Yoshiko; Calhoun, William J

    2006-10-01

    Cysteinyl leukotrienes (cysLTs) are a class of closely structurally related lipid molecules, originally described as slow-reacting substance of anaphylaxis, with a myriad of biologic functions. These activities include producing smooth muscle contraction and mucus secretion, recruiting allergic inflammatory cells, modulating cytokine production, influencing neural transmission, and altering structural changes in the airway. Administration of cysLTs to animals and human subjects reproduces many features of allergic inflammation and asthma. Leukotriene (LT) blockers have independent efficacy in asthma and improve pulmonary function when added to inhaled steroids. Conversely, blockade of this pathway both in animals and in human subjects results in important reductions in inflammation and its consequences and might reduce structural changes of remodeling. These data collectively make a compelling case for an important role of cysLTs in airway inflammation and asthma. However, the magnitude of effect of anti-LTs is smaller than that of corticosteroids, and there is more variability in benefit of LT blockade than is seen with inhaled steroids. In addition, adding anti-LTs to inhaled steroids in asthmatic patients does not appear to produce added anti-inflammatory benefit. Genetic polymorphisms and environmental factors, such as tobacco smoke exposure, might underlie some of the heterogeneity of response to LT blockers.

  6. Inflammation in sickle cell disease.

    PubMed

    Conran, Nicola; Belcher, John D

    2018-01-01

    The primary β-globin gene mutation that causes sickle cell disease (SCD) has significant pathophysiological consequences that result in hemolytic events and the induction of the inflammatory processes that ultimately lead to vaso-occlusion. In addition to their role in the initiation of the acute painful vaso-occlusive episodes that are characteristic of SCD, inflammatory processes are also key components of many of the complications of the disease including autosplenectomy, acute chest syndrome, pulmonary hypertension, leg ulcers, nephropathy and stroke. We, herein, discuss the events that trigger inflammation in the disease, as well as the mechanisms, inflammatory molecules and cells that propagate these inflammatory processes. Given the central role that inflammation plays in SCD pathophysiology, many of the therapeutic approaches currently under pre-clinical and clinical development for the treatment of SCD endeavor to counter aspects or specific molecules of these inflammatory processes and it is possible that, in the future, we will see anti-inflammatory drugs being used either together with, or in place of, hydroxyurea in those SCD patients for whom hematopoietic stem cell transplants and evolving gene therapies are not a viable option.

  7. The Effect Of Pixel Size On The Detection Rate Of Early Pulmonary Sarcoidosis In Digital Chest Radiographic Systems

    NASA Astrophysics Data System (ADS)

    MacMahon, Heber; Vyborny, Carl; Powell, Gregory; Doi, Kunio; Metz, Charles E.

    1984-08-01

    In digital radiography the pixel size used determines the potential spatial resolution of the system. The need for spatial resolution varies depending on the subject matter imaged. In many areas, including the chest, the minimum spatial resolution requirements have not been determined. Sarcoidosis is a disease which frequently causes subtle interstitial infiltrates in the lungs. As the initial step in an investigation designed to determine the minimum pixel size required in digital chest radiographic systems, we have studied 1 mm pixel digitized images on patients with early pulmonary sarcoidosis. The results of this preliminary study suggest that neither mild interstitial pulmonary infiltrates nor other abnormalities such as pneumothoraces may be detected reliably with 1 mm pixel digital images.

  8. Detection of Alveolar Fibrocytes in Idiopathic Pulmonary Fibrosis and Systemic Sclerosis

    PubMed Central

    Phin, Sophie; Debray, Marie-Pierre; Marchal-Somme, Joelle; Tiev, Kiet; Bonay, Marcel; Fabre, Aurélie; Soler, Paul; Dehoux, Monique; Crestani, Bruno

    2013-01-01

    Background Fibrocytes are circulating precursors for fibroblasts. Blood fibrocytes are increased in patients with idiopathic pulmonary fibrosis (IPF). The aim of this study was to determine whether alveolar fibrocytes are detected in broncho-alveolar lavage (BAL), to identify their prognostic value, and their potential association with culture of fibroblasts from BAL. Methods We quantified fibrocytes in BAL from 26 patients with IPF, 9 patients with Systemic Sclerosis(SSc)-interstitial lung disease (ILD), and 11 controls. BAL cells were cultured to isolate alveolar fibroblasts. Results Fibrocytes were detected in BAL in 14/26 IPF (54%) and 5/9 SSc patients (55%), and never in controls. Fibrocytes were in median 2.5% [0.4–19.7] and 3.0% [2.7–3.7] of BAL cells in IPF and SSc-ILD patients respectively. In IPF patients, the number of alveolar fibrocytes was correlated with the number of alveolar macrophages and was associated with a less severe disease but not with a better outcome. Fibroblasts were cultured from BAL in 12/26 IPF (46%), 5/9 SSc-ILD (65%) and never in controls. The detection of BAL fibrocytes did not predict a positive culture of fibroblasts. Conclusion Fibrocytes were detected in BAL fluid in about half of the patients with IPF and SSc-ILD. Their number was associated with less severe disease in IPF patients and did not associate with the capacity to grow fibroblasts from BAL fluid. PMID:23341987

  9. [Pulmonary hypertension associated with congenital heart disease and Eisenmenger syndrome].

    PubMed

    Calderón-Colmenero, Juan; Sandoval Zárate, Julio; Beltrán Gámez, Miguel

    2015-01-01

    Pulmonary arterial hypertension is a common complication of congenital heart disease (CHD). Congenital cardiopathies are the most frequent congenital malformations. The prevalence in our country remains unknown, based on birthrate, it is calculated that 12,000 to 16,000 infants in our country have some cardiac malformation. In patients with an uncorrected left-to-right shunt, increased pulmonary pressure leads to vascular remodeling and endothelial dysfunction secondary to an imbalance in vasoactive mediators which promotes vasoconstriction, inflammation, thrombosis, cell proliferation, impaired apotosis and fibrosis. The progressive rise in pulmonary vascular resistance and increased pressures in the right heart provocated reversal of the shunt may arise with the development of Eisenmenger' syndrome the most advanced form de Pulmonary arterial hypertension associated with congenital heart disease. The prevalence of Pulmonary arterial hypertension associated with CHD has fallen in developed countries in recent years that is not yet achieved in developing countries therefore diagnosed late as lack of hospital infrastructure and human resources for the care of patients with CHD. With the development of targeted medical treatments for pulmonary arterial hypertension, the concept of a combined medical and interventional/surgical approach for patients with Pulmonary arterial hypertension associated with CHD is a reality. We need to know the pathophysiological factors involved as well as a careful evaluation to determine the best therapeutic strategy. Copyright © 2014 Instituto Nacional de Cardiología Ignacio Chávez. Published by Masson Doyma México S.A. All rights reserved.

  10. Pulmonary magnetic resonance imaging is similar to chest tomography in detecting inflammation in patients with systemic sclerosis.

    PubMed

    Müller, Carolina de Souza; Warszawiak, Danny; Paiva, Eduardo Dos Santos; Escuissato, Dante Luiz

    Interstitial lung disease (ILD) and pulmonary arterial hypertension (PAH) are prevalent complications of systemic sclerosis (SSc) and are currently the leading causes of death related to the disease. The accurate recognition of these conditions is therefore of utmost importance for patient management. A study was carried out with 24 SSc patients being followed at the Rheumatology Department of the Hospital de Clínicas of Universidade Federal do Paraná (UFPR) and 14 healthy volunteers, with the objective of evaluating the usefulness of lung magnetic resonance imaging (MRI) when assessing ILD in SS patients. The results obtained with lung MRI were compared to those obtained by computed tomography (CT) of the chest, currently considered the examination of choice when investigating ILD in SS patients. The assessed population was predominantly composed of women with a mean age of 50 years, limited cutaneous SS, and a disease duration of approximately 7 years. In most cases, there was agreement between the findings on chest CT and lung MRI. Considering it is a radiation-free examination and capable of accurately identifying areas of lung tissue inflammatory involvement, lung MRI showed to be a useful examination, and further studies are needed to assess whether there is an advantage in using lung MRI instead of chest CT when assessing ILD activity in SS patients. Copyright © 2017 Elsevier Editora Ltda. All rights reserved.

  11. Antioxidative, anti-inflammation and lung-protective effects of mycelia selenium polysaccharides from Oudemansiella radicata.

    PubMed

    Gao, Zheng; Li, Juan; Song, Xinling; Zhang, Jianjun; Wang, Xiuxiu; Jing, Huijuan; Ren, Zhenzhen; Li, Shangshang; Zhang, Chen; Jia, Le

    2017-11-01

    The present work was designed to investigated the antioxidant, anti-inflammation, and pulmonary protective effects of SMPS and MPS from Oudemansiella radicata on LPS-induced lung injured mice. The results demonstrated that SMPS showed potential effects on relieving lung injury and preventing oxidative stress, reflecting by decreasing the serum levels of C3, CRP and GGT, increasing the pulmonary activities of SOD, GSH-Px, CAT and T-AOC, as well as down-regulating the MDA and LPO contents, respectively. Furthermore, the levels of TNF-α (224.211±3.12ng/mL), IL-1β (254.557±2.18ng/L), and IL-6 (18.214±0.15ng/L) in BALF of mice treated with SMPS at the dosage of 400mg/kg/d significantly lower than that in the lung injured mice. These conclusions indicated that both SMPS and MPS possessed potent antioxidants and anti-inflammation activities, and could be used as functional foods and natural drugs in preventing lung injury. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Lung transcriptional profiling: insights into the mechanisms of ozone-induced pulmonary injury in Wistar Kyoto rats

    EPA Science Inventory

    Acute ozone-induced pulmonary injury and inflammation are well characterized in rats; however, mechanistic understanding of the pathways involved is limited. We hypothesized that acute exposure of healthy rats to ozone will cause transcriptional alterations, and comprehensive ana...

  13. Ozone-Induced Vascular Contractility and Pulmonary Injury Are Differentially Impacted by Diets Enriched With Coconut Oil, Fish Oil, and Olive Oil.

    PubMed

    Snow, Samantha J; Cheng, Wan-Yun; Henriquez, Andres; Hodge, Myles; Bass, Virgina; Nelson, Gail M; Carswell, Gleta; Richards, Judy E; Schladweiler, Mette C; Ledbetter, Allen D; Chorley, Brian; Gowdy, Kymberly M; Tong, Haiyan; Kodavanti, Urmila P

    2018-05-01

    Fish, olive, and coconut oil dietary supplementation have several cardioprotective benefits, but it is not established if they protect against air pollution-induced adverse effects. We hypothesized that these dietary supplements would attenuate ozone-induced systemic and pulmonary effects. Male Wistar Kyoto rats were fed either a normal diet, or a diet supplemented with fish, olive, or coconut oil for 8 weeks. Animals were then exposed to air or ozone (0.8 ppm), 4 h/day for 2 days. Ozone exposure increased phenylephrine-induced aortic vasocontraction, which was completely abolished in rats fed the fish oil diet. Despite this cardioprotective effect, the fish oil diet increased baseline levels of bronchoalveolar lavage fluid (BALF) markers of lung injury and inflammation. Ozone-induced pulmonary injury/inflammation were comparable in rats on normal, coconut oil, and olive oil diets with altered expression of markers in animals fed the fish oil diet. Fish oil, regardless of exposure, led to enlarged, foamy macrophages in the BALF that coincided with decreased pulmonary mRNA expression of cholesterol transporters, cholesterol receptors, and nuclear receptors. Serum microRNA profile was assessed and demonstrated marked depletion of a variety of microRNAs in animals fed the fish oil diet, several of which were of splenic origin. No ozone-specific changes were noted. Collectively, these data indicate that although fish oil offered vascular protection from ozone exposure, it increased pulmonary injury/inflammation and impaired lipid transport mechanisms resulting in foamy macrophage accumulation, demonstrating the need to be cognizant of potential off-target pulmonary effects that might offset the overall benefit of this vasoprotective supplement.

  14. Evaluation of the Microcirculation in Chronic Thromboembolic Pulmonary Hypertension Patients: The Impact of Pulmonary Arterial Remodeling on Postoperative and Follow-Up Pulmonary Arterial Pressure and Vascular Resistance

    PubMed Central

    Ishida, Keiichi; Naito, Akira; Sugiura, Toshihiko; Shigeta, Ayako; Tanabe, Nobuhiro; Masuda, Masahisa; Tatsumi, Koichiro

    2015-01-01

    Background Chronic thromboembolic pulmonary hypertension (CTEPH) is generally recognized to be caused by persistent organized thrombi that occlude the pulmonary arteries. The aim of this study was to investigate the characteristics of small vessel remodeling and its impact on the hemodynamics in CTEPH patients. Methods and Results Hemodynamic data were obtained from right heart catheterization in 17 CTEPH patients before pulmonary endarterectomy (PEA). Lung tissue specimens were obtained at the time of PEA. Pathological observations and evaluation of quantitative changes in pulmonary muscular arteries and veins were performed using light microscopy on 423 slides in 17 patients. The relationship between the results and the hemodynamics of CTEPH was investigated. Pulmonary arteriopathy and venopathy were recognized in most cases, although no plexiform lesions and no capillary-hemangiomatosis-like lesions were detected in any of the specimens. The severity of pulmonary arteriopathy was correlated with pulmonary vascular resistance (PVR) in the postoperative and follow-up periods. The PVR and mean pulmonary arterial pressure were significantly higher in the high-obstruction group than in the low-obstruction group. The findings in pulmonary venopathy were similar to the findings seen in pulmonary veno-occlusive disease in some cases, although severe venopathy was only observed in a portion of the pulmonary veins. There was a significant correlation between the extent of pulmonary arteriopathy and venopathy, although an effect of pulmonary venopathy to hemodynamics, including pulmonary arterial wedged pressure (PAWP), could not be identified. Conclusion The vascular remodeling of the pulmonary muscular arteries was closely associated with the hemodynamics of CTEPH. Severe pulmonary arteriopathy might be related to residual pulmonary hypertension after PEA. Those altered pulmonary arteries might be a new target for the persistent PH after the operation. PMID:26252755

  15. Significant expression of thyroid transcription factor-1 in pulmonary squamous cell carcinoma detected by SPT24 monoclonal antibody and CSA-II system.

    PubMed

    Kashima, Kenji; Hashimoto, Hisashi; Nishida, Haruto; Arakane, Motoki; Yada, Naomi; Daa, Tsutomu; Yokoyama, Shigeo

    2014-01-01

    In contrast to the usefulness of thyroid transcription factor-1 (TTF-1) in distinguishing primary adenocarcinoma of the lung from metastatic lesions, TTF-1 expression in pulmonary squamous cell carcinoma is reported to be at low level and not a suitable immunohistochemical marker. We hypothesized that the highly sensitive detection system, CSA-II, can visualize even faint expression of TTF-1 in pulmonary squamous cell carcinoma. In this study, 2 commercially available clones of TTF-1 monoclonal antibody, 8G7G3/1 and SPT24, were used for staining 38 cases of pulmonary squamous cell carcinoma, in combination with the CSA-II and the conventional detection system, EnVision. The combined use of the 8G7G3/1 clone with EnVision and CSA-II showed a positive reaction in only 1 and 4 cases, respectively. The use of SPT24 clone showed positive staining in 5 cases with EnVision and in 20 of 38 cases (52.6%) with the CSA-II. Interestingly, positive staining by the SPT24-CSA-II technique of samples from tissue blocks preserved for <2 years was 73.6% compared with only 31.5% in those preserved for >2 years. In addition, a 6-month preservation of the cut sections resulted in stain fading and decreased positivity (50%), compared with freshly cut sections. We conclude that the use of the SPT24 monoclonal antibody with the CSA-II system can detect even weak expression of TTF-1 in pulmonary squamous cell carcinoma. This staining technique can potentially allow the discrimination of primary squamous cell carcinoma of the lung from metastatic lesions, especially in freshly prepared paraffin sections.

  16. The Pathogenesis of Pulmonary Sarcoidosis and Implications for Treatment.

    PubMed

    Patterson, Karen C; Chen, Edward S

    2018-06-01

    Thoracic sarcoidosis is the most common form of sarcoidosis, encompassing a heterogeneous group of patients with a wide range of clinical features and associated outcomes. The distinction between isolated thoracic lymphadenopathy and pulmonary involvement matters. Morbidity is often higher, and long-term outcomes are worse for the latter. Although inflammatory infiltrates in pulmonary sarcoidosis may resolve, persistent disease activity is common and can result in lung fibrosis. Given the distinct clinical features and natural history of pulmonary sarcoidosis, its pathogenesis may differ in important ways from other sarcoidosis manifestations. This review highlights recent advances in the pathogenesis of pulmonary sarcoidosis, including the nature of the sarcoidosis antigen, the role of serum amyloid A and other host factors that contribute to alterations in innate immunity, factors that shape adaptive T-cell profiles in the lung, and how these mechanisms influence the maintenance of granulomatous inflammation in sarcoidosis. We discuss questions raised by recent findings, including the role of innate immunity in the pathogenesis, the meaning of immune cell exhaustion, and mechanisms that may contribute to lung fibrosis in sarcoidosis. We conclude with a reflection on when and how immunosuppressive therapies may be helpful for pulmonary sarcoidosis, a consideration of nonpharmacologic management strategies, and a survey of potential novel therapeutic targets for this vexing disease. Copyright © 2017 American College of Chest Physicians. All rights reserved.

  17. The Role of the Mammalian Target of Rapamycin (mTOR) in Pulmonary Fibrosis

    PubMed Central

    Nho, Richard

    2018-01-01

    The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR)-dependent pathway is one of the most integral pathways linked to cell metabolism, proliferation, differentiation, and survival. This pathway is dysregulated in a variety of diseases, including neoplasia, immune-mediated diseases, and fibroproliferative diseases such as pulmonary fibrosis. The mTOR kinase is frequently referred to as the master regulator of this pathway. Alterations in mTOR signaling are closely associated with dysregulation of autophagy, inflammation, and cell growth and survival, leading to the development of lung fibrosis. Inhibitors of mTOR have been widely studied in cancer therapy, as they may sensitize cancer cells to radiation therapy. Studies also suggest that mTOR inhibitors are promising modulators of fibroproliferative diseases such as idiopathic pulmonary fibrosis (IPF) and radiation-induced pulmonary fibrosis (RIPF). Therefore, mTOR represents an attractive and unique therapeutic target in pulmonary fibrosis. In this review, we discuss the pathological role of mTOR kinase in pulmonary fibrosis and examine how mTOR inhibitors may mitigate fibrotic progression. PMID:29518028

  18. Pulmonary Artery Aneurysm/Pseudoaneurysm, a Delayed Complication of Lung Abscess: A Case Report.

    PubMed

    Oguma, Tsuyoshi; Morise, Masahiro; Harada, Kazuki; Tanaka, Jun; Sato, Masako; Horio, Yukihiro; Takiguchi, Hiroto; Tomomatsu, Hiromi; Tomomatsu, Katsuyoshi; Takihara, Takahisa; Niimi, Kyoko; Hayama, Naoki; Aoki, Takuya; Urano, Tetsuya; Ito, Chihiro; Koizumi, Jun; Asano, Koichiro

    2015-09-20

    Massive hemoptysis mostly arises from the bronchial arteries; however, bleeding can also occur from a lesion in injured pulmonary arteries, such as pulmonary artery aneurysm/pseudoaneurysm (PAA/PAP), during pulmonary infection. A 66-year-old man was admitted with a diagnosis of lung abscess in the right lower lobe that was complicated with pyothorax. Intravenous administration of antibiotics and thoracic drainage successfully controlled the infection and inflammation until day 16, when the patient began to exhibit hemoptysis and bloody pleural effusion. Enhanced computed tomography (CT) with multi-planer reconstruction (MPR) images showed a highly enhanced mass inside the abscess fed by the pulmonary artery, suggesting PAA/PAP. Pulmonary angiography confirmed PAA/PAP, and embolization with coils successfully stopped both the bleeding into the sputum and pleural effusion, with a collapsed aneurysm visible on chest CT scan. Clinicians should consider the possibility of PAA/PAP in the differential diagnosis of hemoptysis during the treatment of patients with lung abscess. MPR CT is helpful for the diagnosis of PAA/PAP and its feeding vessels.

  19. Epoxy composite dusts with and without carbon nanotubes cause similar pulmonary responses, but differences in liver histology in mice following pulmonary deposition.

    PubMed

    Saber, Anne Thoustrup; Mortensen, Alicja; Szarek, Józef; Koponen, Ismo Kalevi; Levin, Marcus; Jacobsen, Nicklas Raun; Pozzebon, Maria Elena; Mucelli, Stefano Pozzi; Rickerby, David George; Kling, Kirsten; Atluri, Rambabu; Madsen, Anne Mette; Jackson, Petra; Kyjovska, Zdenka Orabi; Vogel, Ulla; Jensen, Keld Alstrup; Wallin, Håkan

    2016-06-29

    The toxicity of dusts from mechanical abrasion of multi-walled carbon nanotube (CNT) epoxy nanocomposites is unknown. We compared the toxic effects of dusts generated by sanding of epoxy composites with and without CNT. The used CNT type was included for comparison. Mice received a single intratracheal instillation of 18, 54 and 162 μg of CNT or 54, 162 and 486 μg of the sanding dust from epoxy composite with and without CNT. DNA damage in lung and liver, lung inflammation and liver histology were evaluated 1, 3 and 28 days after intratracheal instillation. Furthermore, the mRNA expression of interleukin 6 and heme oxygenase 1 was measured in the lungs and serum amyloid A1 in the liver. Printex 90 carbon black was included as a reference particle. Pulmonary exposure to CNT and all dusts obtained by sanding epoxy composite boards resulted in recruitment of inflammatory cells into lung lumen: On day 1 after instillation these cells were primarily neutrophils but on day 3, eosinophils contributed significantly to the cell population. There were still increased numbers of neutrophils 28 days after intratracheal instillation of the highest dose of the epoxy dusts. Both CNT and epoxy dusts induced DNA damage in lung tissue up to 3 days after intratracheal instillation but not in liver tissue. There was no additive effect of adding CNT to epoxy resins for any of the pulmonary endpoints. In livers of mice instilled with CNT and epoxy dust with CNTs inflammatory and necrotic histological changes were observed, however, not in mice instilled with epoxy dust without CNT. Pulmonary deposition of epoxy dusts with and without CNT induced inflammation and DNA damage in lung tissue. There was no additive effect of adding CNT to epoxies for any of the pulmonary endpoints. However, hepatic inflammatory and necrotic histopathological changes were seen in mice instilled with sanding dust from CNT-containing epoxy but not in mice instilled with reference epoxy.

  20. Rocuronium Bromide Inhibits Inflammation and Pain by Suppressing Nitric Oxide Production and Enhancing Prostaglandin E2 Synthesis in Endothelial Cells.

    PubMed

    Baek, Sang Bin; Shin, Mal Soon; Han, Jin Hee; Moon, Sang Woong; Chang, Boksoon; Jeon, Jung Won; Yi, Jae Woo; Chung, Jun Young

    2016-12-01

    Rocuronium bromide is a nondepolarizing neuromuscular blocking drug and has been used as an adjunct for relaxation or paralysis of the skeletal muscles, facilitation of endotracheal intubation, and improving surgical conditions during general anesthesia. However, intravenous injection of rocuronium bromide induces injection pain or withdrawal movement. The exact mechanism of rocuronium bromide-induced injection pain or withdrawal movement is not yet understood. We investigated whether rocuronium bromide treatment is involved in the induction of inflammation and pain in vascular endothelial cells. For this study, calf pulmonary artery endothelial (CPAE) cells were used, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, Western blot, nitric oxide detection, and prostaglandin E 2 immunoassay were conducted. Rocuronium bromide treatment inhibited endothelial nitric oxide synthase and suppressed nitric oxide production in CPAE cells. Rocuronium bromide activated cyclooxygenase-2, inducible nitric oxide synthase and increased prostaglandin E 2 synthesis in CPAE cells. Rocuronium bromide induced inflammation and pain in CPAE cells. Suppressing nitric oxide production and enhancing prostaglandin E 2 synthesis might be associated with rocuronium bromide-induced injection pain or withdrawal movement.

  1. Aspergillus fumigatus Preexposure Worsens Pathology and Improves Control of Mycobacterium abscessus Pulmonary Infection in Mice.

    PubMed

    Monin, Leticia; Mehta, Shail; Elsegeiny, Waleed; Gopal, Radha; McAleer, Jeremy P; Oury, Tim D; Kolls, Jay; Khader, Shabaana A

    2018-03-01

    Cystic fibrosis (CF) is an autosomal recessive disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. Mutations in this chloride channel lead to mucus accumulation, subsequent recurrent pulmonary infections, and inflammation, which, in turn, cause chronic lung disease and respiratory failure. Recently, rates of nontuberculous mycobacterial (NTM) infections in CF patients have been increasing. Of particular relevance is infection with Mycobacterium abscessus , which causes a serious, life-threatening disease and constitutes one of the most antibiotic-resistant NTM species. Interestingly, an increased prevalence of NTM infections is associated with worsening lung function in CF patients who are also coinfected with Aspergillus fumigatus We established a new mouse model to investigate the relationship between A. fumigatus and M. abscessus pulmonary infections. In this model, animals exposed to A. fumigatus and coinfected with M. abscessus exhibited increased lung inflammation and decreased mycobacterial burden compared with those of mice infected with M. abscessus alone. This increased control of M. abscessus infection in coinfected mice was mucus independent but dependent on both transcription factors T-box 21 (Tbx21) and retinoic acid receptor (RAR)-related orphan receptor gamma t (RORγ-t), master regulators of type 1 and type 17 immune responses, respectively. These results implicate a role for both type 1 and type 17 responses in M. abscessus control in A. fumigatus -coinfected lungs. Our results demonstrate that A. fumigatus , an organism found commonly in CF patients with NTM infection, can worsen pulmonary inflammation and impact M. abscessus control in a mouse model. Copyright © 2018 American Society for Microbiology.

  2. Detection of Talaromyces marneffei from Fresh Tissue of an Inhalational Murine Pulmonary Model Using Nested PCR

    PubMed Central

    Liu, Yinghui; Huang, Xiaowen; Yi, Xiuwen; He, Ya; Mylonakis, Eleftherios; Xi, Liyan

    2016-01-01

    Penicilliosis marneffei, often consecutive to the aspiration of Talaromyces marneffei (Penicillium marneffei), continues to be one of the significant causes of morbidity and mortality in immunocompromised patients in endemic regions such as Southeast Asia. Improving the accuracy of diagnosing this disease would aid in reducing the mortality of associated infections. In this study, we developed a stable and reproducible murine pulmonary model that mimics human penicilliosis marneffei using a nebulizer to deliver Talaromyces marneffei (SUMS0152) conidia to the lungs of BALB/c nude mice housed in exposure chamber. Using this model, we further revealed that nested PCR was sensitive and specific for detecting Talaromyces marneffei in bronchoalveolar lavage fluid and fresh tissues. This inhalation model may provide a more representative analysis tool for studying the development of penicilliosis marneffei, in addition to revealing that nested PCR has a predictive value in reflecting pulmonary infection. PMID:26886887

  3. Impact of morphologic characteristics of central pulmonary thromboemboli in massive pulmonary embolism.

    PubMed

    Podbregar, Matej; Krivec, Bojan; Voga, Gorazd

    2002-09-01

    To assess the impact of morphologically different central pulmonary artery thromboemboli in patients with massive pulmonary emboli (MPEs) on short-term outcome. A prospective registry of consecutive patients. An 11-bed closed medical ICU at a 860-bed community general hospital Forty-seven patients with shock or hypotension due to MPE and central pulmonary thromboemboli detected by transesophageal echocardiography who were treated with thrombolysis between January 1994 and April 2000. Patients were divided into two groups according to the following characteristics of the detected thromboemboli: group 1, thrombi with one or more long, mobile parts; and group 2, immobile thrombi. Right heart catheterization was performed. The incidence of both types of thromboemboli was comparable. Groups 1 and 2 showed no differences in demographic data, risk factors for pulmonary embolism, length of preceding clinical symptoms, percentage of patients in shock, hemodynamic variables, serum lactate levels on hospital admission, and treatment. Seven fatal cases due to obstructive shock and right heart failure were present in group 2, but none were present in group 1 (7 of 23 patients vs 0 of 24 patients, respectively; p < 0.05). At 12 h, the cardiac index was lower in group 2 than in group 1 (2.6 +/- 1.0 vs 3.1 +/- 0.9 L/min/m(2), respectively; p < 0.05), and the central venous pressure (15.0 +/- 6.2 vs 12.5 +/- 3.7 mm Hg, respectively; p < 0.05) and total pulmonary resistance (12.9 +/- 5.9 vs 8.6 +/- 2.7 mm Hg/L/min/m(2), respectively; p < 0.001) were higher in group 2 compared to group 1. On hospital admission, inclusion in group 2 (p < 0.03; hazard ratio, 9.53; 95% confidence interval [CI], 1.19 to 76.47) and preexisting chronic medical or neurologic disease (p < 0.01; hazard ratio, 16.4; 95% CI, 1.97 to 136.3) were independent predictors of 30-day mortality. On hospital admission, morphology of the thromboemboli and the presence of pre-existing chronic medical or neurologic disease

  4. Long-Circulating and pH-Sensitive Liposome Preparation Trapping a Radiotracer for Inflammation Site Detection.

    PubMed

    Mota, Luciene Das Graças; de Barros, André Luís Branco; Fuscaldi, Leonardo Lima; de Oliveira, Mônica Cristina; Cardoso, Valbert Nascimento

    2015-06-01

    Inflammatory and infectious diseases are one of the most common causes of mortality and morbidity. This paper aimed to prepare and to evaluate the ability of long-circulating and pH-sensitive liposomes, trapping a radiotracer, to identify inflamed focus. The physicochemical characterization of freeze-dried liposomes, using glucose as cryoprotectant, showed 80% of the vesicles with adequate mean diameter and good vesicle size homogeneity. Radiotracer encapsulation percentage in liposomes was 10.65%, of which 4.88% was adsorbed on the surface of the vesicles. Furthermore, liposomes presented positive zeta potential. Freeze-dried liposomes, stored for 180 days at 4 degrees C, did not show significant changes in the mean diameter, indicating good stability. Free radiotracer and radiolabeled liposomes were injected into inflammation focus-bearing rats, and ex-vivo biodistribution studies and scintigraphic images were performed. Results showed that radiopharmaceutical, free and encapsulated into liposomes, were able to identify the inflamed site. Target/non-target ratios, obtained by scintigraphic images, were greater than 1.5 at all investigated times. Data did not show significant differences between the free radiotracer and radiolabeled liposomes. Results suggest that this liposomal preparation could be employed as an alternative procedure for inflamed site detection by means of scintigraphic images. However, as the radiotracer is adsorbed onto the liposome surface by electrostatic forces, it is suggested that a neutral radiopharmaceutical be used to confirm the potential of this formulation as a scintigraphic probe for inflammation/infection detection.

  5. Modulation of pulmonary inflammatory responses and anti-microbial defenses in mice exposed to diesel exhaust

    EPA Science Inventory

    Abstract: Diesel exhaust (DE) is a major component of urban air pollution and has been shown to increase the severity of infectious and allergic lung disease. The purpose of this study was to evaluate the effects of DE exposure on pulmonary inflammation, mediator production and ...

  6. Comparative evaluation of physicians' pulmonary nodule detection with reduced slice thickness at CT screening

    NASA Astrophysics Data System (ADS)

    Sinsuat, Marodina; Shimamura, Ichiro; Saita, Shinsuke; Kubo, Mitsuru; Kawata, Yoshiki; Niki, Noboru; Ohmatsu, Hironobu; Kakinuma, Ryutaro; Eguchi, Kenji; Kaneko, Masahiro; Tominaga, Keigo; Moriyama, Noriyuki

    2008-03-01

    With thin and thick section Multi-slice CT images at lung cancer screening, we have statistically and quantitatively shown and evaluated the diagnostic capabilities of these slice thicknesses on physicians' pulmonary nodule diagnosis. To comparatively evaluate the 2 mm and 10 mm slice thicknesses, MSCT images of 360 people were read by six physicians. The reading criteria consisted of nodule for further examination (NFE), nodule for no further examination (NNFE) and no abnormality (NA) case. For reading results evaluation; firstly, cross-tabulation was carried out to roughly analyze the diagnoses based on whole lung field and each lung lobes. Secondly, from semi-automated extraction result of the nodule, detailed quantitative analysis was carried out to determine the diagnostic capabilities of two slice thicknesses. Finally, using the reading results of 2 mm thick image as the gold standard, the diagnostic capabilities were analyzed through the features and locations of pulmonary nodules. The study revealed that both slice thicknesses can depict lung cancer. Thin section may not be effective to diagnose nodules of <=3 mm in size and nodules of <= 5mm in size for thick section. Though thick section is less tiring for reading physicians, it is not good at depicting nodules located at the border of lung upper lobe and which have a pixel size distance of <=5 from the chest wall. The information presented may serve as a useful reference to determine in which particular pulmonary nodule condition the two slice thicknesses can be effectively used for early detection of lung cancer.

  7. Targeting pro-resolution pathways to combat chronic inflammation in COPD

    PubMed Central

    Anthony, Desiree; Vlahos, Ross

    2014-01-01

    Chronic obstructive pulmonary disease (COPD) is an inflammatory lung condition that is associated with irreversible airflow obstruction as a consequence of small airways disease, excessive mucus production and emphysema. Paradoxically, excessive inflammation fails to control microbial pathogens that not only colonise COPD airways, but also trigger acute exacerbations, which markedly increase inflammation underlying host tissue damage. Excessive production of leukocyte mobilising cytokines such as CXCL8 (IL-8) and leukotriene B4 (LTB4) in response to environmental stimuli (cigarette smoke and microbial products) are thought to maintain chronic inflammation, in conjunction with inefficient macrophage clearance of microbes and apoptotic neutrophils. In this perspective, we discuss an alternative view on why inflammation persists with a focus on why pro-resolution mediators such as lipoxin A4 (LXA4), D-series resolving and Annexin A1 fail to effectively switch off inflammation in COPD. These pro-resolving mediators converge on the G-protein coupled receptor, ALX/FPR2. This receptor is particularly relevant to COPD as the complex milieu of exogenous and host-derived mediators within the inflamed airways include agonists that potently activate ALX/FPR2, including Serum Amyloid A (SAA) and the cathelicidin, LL-37. There is emerging evidence to suggest that ALX/FPR2 can exist in alternative receptor conformations in an agonist-biased manner, which facilitates alternate functional receptor behaviors. Hence, the development of more stable pro-resolving analogs provides therapeutic opportunities to address ALX/FPR2 conformations to counteract pathogenic signaling and promote non-phlogistic clearance pathways essential for resolution of inflammation. PMID:25478196

  8. Targeting pro-resolution pathways to combat chronic inflammation in COPD.

    PubMed

    Bozinovski, Steven; Anthony, Desiree; Vlahos, Ross

    2014-11-01

    Chronic obstructive pulmonary disease (COPD) is an inflammatory lung condition that is associated with irreversible airflow obstruction as a consequence of small airways disease, excessive mucus production and emphysema. Paradoxically, excessive inflammation fails to control microbial pathogens that not only colonise COPD airways, but also trigger acute exacerbations, which markedly increase inflammation underlying host tissue damage. Excessive production of leukocyte mobilising cytokines such as CXCL8 (IL-8) and leukotriene B4 (LTB4) in response to environmental stimuli (cigarette smoke and microbial products) are thought to maintain chronic inflammation, in conjunction with inefficient macrophage clearance of microbes and apoptotic neutrophils. In this perspective, we discuss an alternative view on why inflammation persists with a focus on why pro-resolution mediators such as lipoxin A4 (LXA4), D-series resolving and Annexin A1 fail to effectively switch off inflammation in COPD. These pro-resolving mediators converge on the G-protein coupled receptor, ALX/FPR2. This receptor is particularly relevant to COPD as the complex milieu of exogenous and host-derived mediators within the inflamed airways include agonists that potently activate ALX/FPR2, including Serum Amyloid A (SAA) and the cathelicidin, LL-37. There is emerging evidence to suggest that ALX/FPR2 can exist in alternative receptor conformations in an agonist-biased manner, which facilitates alternate functional receptor behaviors. Hence, the development of more stable pro-resolving analogs provides therapeutic opportunities to address ALX/FPR2 conformations to counteract pathogenic signaling and promote non-phlogistic clearance pathways essential for resolution of inflammation.

  9. Evaluation of a commercial ligase chain reaction assay for the diagnosis of pulmonary and extra-pulmonary tuberculosis.

    PubMed

    Viveiros, M; Pinheiro, S; Moreira, P; Pacheco, T; Brum, L

    1999-06-01

    Egas Moniz Hospital, Lisbon, Portugal. To evaluate the Ligase Chain Reaction (LCx) Mycobacterium tuberculosis Assay for the direct detection of M. tuberculosis complex in respiratory specimens after smear observation, and its suitability for non-respiratory clinical specimens. Analysis of 156 specimens collected from 123 patients with pulmonary tuberculosis and/or extrapulmonary involvement. Among 93 pulmonary secretions and 63 extra-pulmonary samples and after resolution of discrepancies based on clinical and laboratory findings, two pulmonary samples from a patient with a diagnosis of sarcoidosis, four samples of cerebrospinal and one of seminal fluid were considered as false positives. Two tissue biopsy samples, one pericardial effusion and one pulmonary secretion from patients strongly suspected of having tuberculosis were considered as false negatives for the assay, without inhibition of amplification. All specimens yielding M. avium on culture were LCx negative. The LCx Mycobacterium tuberculosis Assay was found to be useful for the rapid identification of M. tuberculosis complex in all types of specimens. It revealed a high specificity both in pulmonary and extrapulmonary products, and a sensitivity of 97% for the pulmonary secretions and of 75% for the extra-pulmonary specimens, independently of the bacilloscopy results.

  10. Right Pulmonary Artery Distensibility Index (RPAD Index). A field study of an echocardiographic method to detect early development of pulmonary hypertension and its severity even in the absence of regurgitant jets for Doppler evaluation in heartworm-infected dogs.

    PubMed

    Venco, Luigi; Mihaylova, Liliya; Boon, June A

    2014-11-15

    invasively and noninvasively if possible. Results of these evaluations indicated that RPAD Index is a valuable method for early detection of the presence and severity of pulmonary hypertension in heartworm-infected dogs even in the absence of regurgitant jets for Doppler evaluation and that there is a strong correlation between the RPAD Index and the level of pulmonary hypertension. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Incidental detection of prostate-specific antigen-negative metastatic prostate cancer initially presented with solitary pulmonary nodule on fluorodeoxyglucose positron emission tomography/computed tomography

    PubMed Central

    Erdogan, Ezgi Basak; Buyukpinarbasili, Nur; Ziyade, Sedat; Akman, Tolga; Turk, Haci Mehmet; Aydin, Mehmet

    2015-01-01

    A 71-year-old male patient with solitary pulmonary nodule underwent fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT) showing slightly increased FDG uptake in this nodule. In addition, PET/CT detected hypermetabolic sclerotic bone lesions in the right second rib and 7th thoracic vertebrae, which were interpreted as possible metastases, and mildly increased FDG uptake in the prostate gland highly suspicious of malignancy. The patient's prostate-specific antigen (PSA) level was within normal range (3.8 ng/dL). The histopathological examination of the lung nodule and right second rib lesion proved metastases from prostate cancer, then the prostate biopsy-confirmed prostate adenocarcinoma. The unique feature of this case is to emphasize the importance of performing PET/CT for solitary pulmonary nodule in detecting PSA-negative metastatic prostate cancer. This case indicated that it should be kept in mind that, even if the PSA is negative, a lung metastasis of prostate cancer may be an underlying cause in patients evaluated for solitary pulmonary nodule by FDG PET/CT. PMID:26170575

  12. Magnetic Resonance Characterization of Cardiac Adaptation and Myocardial Fibrosis in Pulmonary Hypertension Secondary to Systemic-To-Pulmonary Shunt.

    PubMed

    Pereda, Daniel; García-Lunar, Inés; Sierra, Federico; Sánchez-Quintana, Damián; Santiago, Evelyn; Ballesteros, Constanza; Encalada, Juan F; Sánchez-González, Javier; Fuster, Valentín; Ibáñez, Borja; García-Álvarez, Ana

    2016-09-01

    Pulmonary hypertension (PH) and right ventricular (RV) dysfunction are strong predictors of morbidity and mortality among patients with congenital heart disease. Early detection of RV involvement may be useful in the management of these patients. We aimed to assess progressive cardiac adaptation and quantify myocardial extracellular volume in an experimental porcine model of PH because of aorto-pulmonary shunt using cardiac magnetic resonance (CMR). To characterize serial cardiac adaptation, 12 pigs (aorto-pulmonary shunt [n=6] or sham operation [n=6]) were evaluated monthly with right heart catheterization, CMR, and computed tomography during 4 months, followed by pathology analysis. Extracellular volume by CMR in different myocardial regions was studied in 20 animals (aorto-pulmonary shunt [n=10] or sham operation [n=10]) 3 months after the intervention. All shunted animals developed PH. CMR evidenced progressive RV hypertrophy and dysfunction secondary to increased afterload and left ventricular dilatation secondary to volume overload. Shunt flow by CMR strongly correlated with PH severity, left ventricular end-diastolic pressure, and left ventricular dilatation. T1-mapping sequences demonstrated increased extracellular volume at the RV insertion points, the interventricular septum, and the left ventricular lateral wall, reproducing the pattern of fibrosis found on pathology. Extracellular volume at the RV insertion points strongly correlated with pulmonary hemodynamics and RV dysfunction. Prolonged systemic-to-pulmonary shunting in growing piglets induces PH with biventricular remodeling and myocardial fibrosis that can be detected and monitored using CMR. These results may be useful for the diagnosis and management of congenital heart disease patients with pulmonary overcirculation. © 2016 American Heart Association, Inc.

  13. The combination of Bifidobacterium breve with non-digestible oligosaccharides suppresses airway inflammation in a murine model for chronic asthma.

    PubMed

    Sagar, Seil; Vos, Arjan P; Morgan, Mary E; Garssen, Johan; Georgiou, Niki A; Boon, Louis; Kraneveld, Aletta D; Folkerts, Gert

    2014-04-01

    Over the last decade, there has been a growing interest in the use of interventions that target the intestinal microbiota as a treatment approach for asthma. This study is aimed at exploring the therapeutic effects of long-term treatment with a combination of Bifidobacterium breve with non-digestible oligosaccharides on airway inflammation and remodeling. A murine ovalbumin-induced chronic asthma model was used. Pulmonary airway inflammation; mRNA expression of pattern recognition receptors, Th-specific cytokines and transcription factors in lung tissue; expression of Foxp3 in blood Th cells; in vitro T cell activation; mast cell degranulation; and airway remodeling were examined. The combination of B. breve with non-digestible oligosaccharides suppressed pulmonary airway inflammation; reduced T cell activation and mast cell degranulation; modulated expression of pattern recognition receptors, cytokines and transcription factors; and reduced airway remodeling. The treatment induced regulatory T cell responses, as shown by increased Il10 and Foxp3 transcription in lung tissue, and augmented Foxp3 protein expression in blood CD4+CD25+Foxp3+ T cells. This specific combination of beneficial bacteria with non-digestible oligosaccharides has strong anti-inflammatory properties, possibly via the induction of a regulatory T cell response, resulting in reduced airway remodeling and, therefore, may be beneficial in the treatment of chronic inflammation in allergic asthma. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Diesel exhaust induced pulmonary and cardiovascular impairment: The role of hypertension intervention

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kodavanti, Urmila P., E-mail: kodavanti.urmila@epa.gov; Thomas, Ronald F.; Ledbetter, Allen D.

    Exposure to diesel exhaust (DE) and associated gases is linked to cardiovascular impairments; however, the susceptibility of hypertensive individuals is poorly understood. The objectives of this study were (1) to determine cardiopulmonary effects of gas-phase versus whole-DE and (2) to examine the contribution of systemic hypertension in pulmonary and cardiovascular effects. Male Wistar Kyoto (WKY) rats were treated with hydralazine to reduce blood pressure (BP) or L-NAME to increase BP. Spontaneously hypertensive (SH) rats were treated with hydralazine to reduce BP. Control and drug-pretreated rats were exposed to air, particle-filtered exhaust (gas), or whole DE (1500 μg/m{sup 3}), 4 h/daymore » for 2 days or 5 days/week for 4 weeks. Acute and 4-week gas and DE exposures increased neutrophils and γ-glutamyl transferase (γ-GT) activity in lavage fluid of WKY and SH rats. DE (4 weeks) caused pulmonary albumin leakage and inflammation in SH rats. Two-day DE increased serum fatty acid binding protein-3 (FABP-3) in WKY. Marked increases occurred in aortic mRNA after 4-week DE in SH (eNOS, TF, tPA, TNF-α, MMP-2, RAGE, and HMGB-1). Hydralazine decreased BP in SH while L-NAME tended to increase BP in WKY; however, neither changed inflammation nor BALF γ-GT. DE-induced and baseline BALF albumin leakage was reduced by hydralazine in SH rats and increased by L-NAME in WKY rats. Hydralazine pretreatment reversed DE-induced TF, tPA, TNF-α, and MMP-2 expression but not eNOS, RAGE, and HMGB-1. ET-1 was decreased by HYD. In conclusion, antihypertensive drug treatment reduces gas and DE-induced pulmonary protein leakage and expression of vascular atherogenic markers. - Highlights: ► Acute diesel exhaust exposure induces pulmonary inflammation in healthy rats. ► In hypertensive rats diesel exhaust effects are seen only after long term exposure. ► Normalizing blood pressure reverses lung protein leakage caused by diesel exhaust. ► Normalizing blood pressure reverses

  15. Pleurotus eryngii Ameliorates Lipopolysaccharide-Induced Lung Inflammation in Mice.

    PubMed

    Kawai, Junya; Andoh, Tsugunobu; Ouchi, Kenji; Inatomi, Satoshi

    2014-01-01

    Pleurotus eryngii (P. eryngii) is consumed as a fresh cultivated mushroom worldwide and demonstrated to have multiple beneficial effects. We investigated the anti-inflammatory effect of P. eryngii in mice with acute lung injury (ALI). Intranasal instillation of lipopolysaccharide (LPS) (10  μ g/site/mouse) induced marked lung inflammation (increase in the number of inflammatory cells, protein leakage, and production of nitric oxide in bronchoalveolar lavage fluid) as well as histopathological damage in the lung, 6 h after treatment. Mice administered heat-treated P. eryngii (0.3-1 g/kg, p.o. (HTPE)) 1 h before LPS challenge showed decreased pulmonary inflammation and ameliorated histopathological damage. These results suggest that HTPE has anti-inflammatory effects against ALI. Thus, P. eryngii itself may also have anti-inflammatory effects and could be a beneficial food for the prevention of ALI induced by bacterial infection.

  16. Pleurotus eryngii Ameliorates Lipopolysaccharide-Induced Lung Inflammation in Mice

    PubMed Central

    Andoh, Tsugunobu; Ouchi, Kenji; Inatomi, Satoshi

    2014-01-01

    Pleurotus eryngii (P. eryngii) is consumed as a fresh cultivated mushroom worldwide and demonstrated to have multiple beneficial effects. We investigated the anti-inflammatory effect of P. eryngii in mice with acute lung injury (ALI). Intranasal instillation of lipopolysaccharide (LPS) (10 μg/site/mouse) induced marked lung inflammation (increase in the number of inflammatory cells, protein leakage, and production of nitric oxide in bronchoalveolar lavage fluid) as well as histopathological damage in the lung, 6 h after treatment. Mice administered heat-treated P. eryngii (0.3–1 g/kg, p.o. (HTPE)) 1 h before LPS challenge showed decreased pulmonary inflammation and ameliorated histopathological damage. These results suggest that HTPE has anti-inflammatory effects against ALI. Thus, P. eryngii itself may also have anti-inflammatory effects and could be a beneficial food for the prevention of ALI induced by bacterial infection. PMID:24799939

  17. Using radiology reports to encourage evidence-based practice in the evaluation of small, incidentally detected pulmonary nodules. A preliminary study.

    PubMed

    Woloshin, Steven; Schwartz, Lisa M; Dann, Elizabeth; Black, William C

    2014-02-01

    Standard radiology report forms do not guide ordering clinicians toward evidence-based practice. To test an enhanced radiology report that estimates the probability that a pulmonary nodule is malignant and provides explicit, professional guideline recommendations. Anonymous, institutional review board-approved, internet-based survey of all clinicians with privileges at the Dartmouth-Hitchcock Medical Center comparing a standard versus an enhanced chest computed tomography report for a 65-year-old former smoker with an incidentally detected 7-mm pulmonary nodule. A total of 43% (n = 447) of 1045 eligible clinicians answered patient management questions after reading a standard and then an enhanced radiology report (which included the probability of malignancy and Fleischner Society guideline recommendations). With the enhanced report, more clinicians chose the correct management strategy (72% with enhanced versus 32% with standard report [40% difference; 95% confidence interval (CI) = 35-45%]), appropriately made fewer referrals to pulmonary for opinions or biopsy (21 vs. 41% [-40% difference; 95% CI = -25 to -16%]), ordered fewer positron emission tomography scans (3 versus 13%; -10% difference; 95% CI = -13 to -7%), and fewer computed tomography scans outside the recommended time interval (2 versus 7%; -5% difference; 95% CI = -7 to -2%). Most clinicians preferred or strongly preferred the enhanced report, and thought they had a better understanding of the nodule's significance and management. An enhanced radiology report with probability estimates for malignancy and management recommendations was associated with improved clinicians' response to incidentally detected small pulmonary nodules in an internet-based survey of clinicians at one academic medical center, and was strongly preferred. The utility of this approach should be tested next in clinical practice.

  18. Detection of high-sensitivity troponin in outpatients with stable pulmonary hypertension identifies a subgroup at higher risk of adverse outcomes.

    PubMed

    Roy, Andrew K; McCullagh, Brian N; Segurado, Ricardo; McGorrian, Catherine; Keane, Elizabeth; Keaney, John; Fitzgibbon, Maria N; Mahon, Niall G; Murray, Patrick T; Gaine, Sean P

    2014-01-01

    The detection of elevations in cardiorenal biomarkers, such as troponins, B-type natriuretic peptides (BNPs), and neutrophil gelatinase-associated lipocalins, are associated with poor outcomes in patients hospitalized with acute heart failure. Less is known about the association of these markers with adverse events in chronic right ventricular dysfunction due to pulmonary hypertension, or whether their measurement may improve risk assessment in the outpatient setting. We performed a cohort study of 108 patients attending the National Pulmonary Hypertension Unit in Dublin, Ireland, from 2007 to 2009. Cox proportional hazards analysis and receiver operating characteristic curves were used to determine predictors of mortality and hospitalization. Death or hospitalization occurred in 50 patients (46.3%) during the median study period of 4.1 years. Independent predictors of mortality were: 1) decreasing 6-minute walk test (6MWT; hazard ratio [HR] 12.8; P < .001); 2) BNP (HR 6.68; P < .001); and 3) highly sensitive troponin (hsTnT; HR 5.48; P < .001). Adjusted hazard analyses remained significant when hsTnT was added to a model with BNP and 6MWT (HR 9.26, 95% CI 3.61-23.79), as did the predictive ability of the model for death and rehospitalization (area under the receiver operating characteristic curve 0.81, 95% CI 0.73-0.90). Detection of troponin using a highly sensitive assay identifies a pulmonary hypertension subgroup with a poorer prognosis. hsTnT may also be used in a risk prediction model to identify patients at higher risk who may require escalation of targeted pulmonary vasodilator therapies and closer clinical surveillance. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Rapid detection of Mycobacterium tuberculosis and rifampicin resistance in extrapulmonary tuberculosis and sputum smear-negative pulmonary suspects using Xpert MTB/RIF.

    PubMed

    Ullah, Irfan; Javaid, Arshad; Masud, Haleema; Ali, Mazhar; Basit, Anila; Ahmad, Waqas; Younis, Faisal; Yasmin, Rehana; Khan, Afsar; Jabbar, Abdul; Husain, Masroor; Butt, Zahid Ahmad

    2017-04-01

    Tuberculosis (TB) is a serious public health problem in developing countries such as Pakistan. Rapid diagnosis of TB and detection of drug resistance are very important for timely and appropriate management of multidrug-resistant TB (MDR-TB). The purpose of this study was to determine the diagnostic efficacy of the Xpert MTB/RIF assay for rapid diagnosis of TB and detection of rifampicin (RIF) resistance in extrapulmonary and smear-negative pulmonary TB suspects. A total of 98 bronchoalveolar lavage fluid (BALF) and 168 extrapulmonary specimens were processed by Xpert MTB/RIF. Culture results are considered as the gold standard for diagnosis of TB, and drug susceptibility testing for detection of RIF resistance. Diagnostic efficacy was measured in terms of sensitivity, specificity and positive and negative predictive values. The Xpert MTB/RIF assay detected 40 (40.8 %) of 98 BALF of presumptive pulmonary TB and 60 (35.7 %) of 168 extrapulmonary specimens. Sensitivity and specificity of the Xpert MTB/RIF assay for detection of TB was 86 and 88.4 %, respectively. The positive predictive value was 71.5 % while negative predictive value was 95.1 %. The Xpert MTB/RIF assay is a rapid and simple technique with high sensitivity and specificity for diagnosing TB and detecting drug resistance in extrapulmonary and smear-negative TB cases.

  20. Lung imaging in pulmonary disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taplin, G.V.; Chopra, S.K.

    1976-01-01

    Although it has been recognized for several years that chronic obstructive pulmonary disease (COPD) can cause lung perfusion defects which may simulate pulmonary embolism, relatively little use has been made of either the radioxenon or the radioaerosol inhalation lung imaging procedures until the last few years as a means of distinguishing pulmonary embolism (P.E.) from COPD is reported. Recent experience is reported with the use of both of these procedures in comparison with pulmonary function tests for the early detection of COPD in population studies and also in P.E. suspects. Equal emphasis is given to simultaneous aerosol ventilation-perfusion (V/P) imagingmore » in the differential diagnosis of P.E. Finally, this paper is concerned with new developments in regional lung diffusion imaging following the inhalation of radioactive gases and rapidly absorbed radioaerosols. Their experimental basis is presented and their potential clinical applications in pulmonary embolism are discussed. As a result of these investigations, a functional (V/P) diagnosis of pulmonary embolism in patients may be possible in the near future with a sequential radioaerosol inhalation procedure alone.« less

  1. Pulmonary and pleural responses in Fischer 344 rats following short-term inhalation of a synthetic vitreous fiber. II. Pathobiologic responses.

    PubMed

    Gelzleichter, T R; Bermudez, E; Mangum, J B; Wong, B A; Moss, O R; Everitt, J I

    1996-03-01

    The pleura is a target site for toxic effects induced by a variety of fibrous particulates, including both natural mineral and man-made vitreous fibers. We examined selected cytological and biochemical indicators of inflammation in both the pleural compartment and pulmonary parenchyma in F344 rats following inhalation of RCF-1, a kaolin-based ceramic fiber. Male F344 rats were exposed by inhalation to 89 mg/m3 (2645 WHO fibers/cc) RCF-1 6 hr/day for 5 consecutive days. In lung parenchyma, cytological and biochemical inflammatory responses occurred rapidly following exposure. In contrast, pleural responses were delayed in onset and of a much smaller magnitude than those observed in lung. At both Day 1 and Day 28 postexposure, increased quantities of lactate dehydrogenase, N-acetyl glucosaminidase, alkaline phosphatase, albumin, and neutrophils were present in bronchoalveolar lavage fluid. These responses were attenuated at the latter time point. No significant responses were detected in pleural lavage fluid until 28 days following exposure, at which time elevated numbers of macrophages and eosinophils, but not neutrophils, were observed. Increased albumin and fibronectin were also observed in PLF at this latter time point. These findings demonstrate that the onset of pleural and pulmonary responses following inhalation of RCF-1 are temporally separated and that pleural injury may increase in severity with time following exposure. The increase in severity of pleural inflammation found in the postexposure period cannot be readily explained by fiber translocation.

  2. [Airway oxidative stress and inflammation markers in chronic obstructive pulmonary diseases(COPD) patients are linked with exposure to traffic-related air pollution: a panel study].

    PubMed

    Chen, J; Zhao, Q; Liu, B B; Wang, J; Xu, H B; Zhang, Y; Song, X M; He, B; Huang, W

    2016-05-01

    To investigate the effects of short-term exposure to traffic-related air pollution on airway oxidative stress and inflammation in chronic obstructive pulmonary diseases (COPD) patients. A panel of forty-five diagnosed COPD patients were recruited and followed with repeated measurements of biomarkers reflecting airway oxidative stress and inflammation in exhaled breath condensate (EBC), including nitrate and nitrite, 8-isoprostane, interleukin-8 and acidity of EBC (pH), between 5(th) September in 2014 and 26(th) May in 2015. The associations between air pollution and biomarkers were analyzed with mixed-effects models, controlling for confounding covariates. The concentration of PM2.5, black carbon, NO2 and number concentration of particles with diameter less than 100 nm (PNC100), and particles in size ranges between 100 nm to 200 nm (PNC100-200) during the first follow-up were (156.5±117.7), (10.7±0.7), (165.9±66.0)μg/m(3) and 397 521±96 712, 79 421±44 090 per cubic meter, respectively; the concentration were (67.9±29.6), (3.4±1.3), (126.1±10.9) μg/m(3) and (295 682±39 430), (24 693±12 369) per cubic meter, respectively during the second follow-up. The differences were of significance, with t value being 3.10, 4.42, 2.61, 4.02, 5.12, respectively and P value being 0.005,<0.001, 0.016, <0.001 and <0.001, respectively. In our COPD-patient panel, per interquartile range (IQR) increase in PNC100-200, we observed an increase of 65% (95% CI: 8%-152%) in nitrate and nitrite in EBC reflecting airway oxidative stress. For an IQR increase in PM2.5, black carbon and PNC100-200, respective increases of 0.17 ng/ml (95% CI: 0.02-0.33), 0.12 ng/ml (95% CI: 0.01-0.24) and 0.13 ng/ml (95% CI:0.02-0.24) in interleukin-8 in EBC reflecting airway inflammation were also observed. An IQR increase in ozone was also associated with a 0.24 (95%CI: 0.05-0.42) decrease in pH of EBC reflecting increased airway inflammation. No significant association observed between air pollution

  3. Early Detection of Chronic Obstructive Pulmonary Disease in Apparently Healthy Attendants of Tertiary Care Hospital and Assessment of its Severity.

    PubMed

    Zubair, Tahira; Abbassi, Amanullah; Khan, Osama Ahsan

    2017-05-01

    Early detection of Chronic Obstructive Pulmonary Disease in apparently healthy attendants of tertiary care hospital and assessment of its severity. Cross-sectional, observational study. Study was conducted from January 2015 to July 2015 at Dow University Hospital, Ojha campus. Ascreening method was designed for apparently healthy individuals including attendants of patients, hospital staff, faculty and students, belonging to age group 18-60 years after excluding severe obesity and already diagnosed respiratory and cardiovascular diseases by means of history. Each participant performed pulmonary function tests via spirometer after filling a questionnaire based on various risk factors and symptoms of chronic obstructive pulmonary disease (COPD). Data was entered and analysed by SPSS-20. Out of the 517 participants, 122 (23.6%) were found to have COPD diagnosed by means of spirometry. Out of these, 23 (4.4%) had COPD stage I, 42 (8.1%) had COPD II, 34 (6.6%) had COPD III, and 23 (4.4%) had COPD IV. Exposure to smoking, wooden stoves, pesticides, biomass fuel, aerosol sprays, gas grill and vehicle exhaust were found to be statistically significant factors in relation to development of COPD. Apparently healthy individuals may have underlying COPD and active screening by means of spirometry plays vital role in early detection of COPD. Smoking and exposure to certain hazardous environmental pollutants are responsible for the development and progression of COPD.

  4. Progressive ventilation inhomogeneity in infants with cystic fibrosis after pulmonary infection.

    PubMed

    Simpson, Shannon J; Ranganathan, Sarath; Park, Judy; Turkovic, Lidija; Robins-Browne, Roy M; Skoric, Billy; Ramsey, Kathryn A; Rosenow, Tim; Banton, Georgia L; Berry, Luke; Stick, Stephen M; Hall, Graham L

    2015-12-01

    Measures of ventilation distribution are promising for monitoring early lung disease in cystic fibrosis (CF). This study describes the cross-sectional and longitudinal impacts of pulmonary inflammation and infection on ventilation homogeneity in infants with CF.Infants diagnosed with CF underwent multiple breath washout (MBW) testing and bronchoalveolar lavage at three time points during the first 2 years of life.Measures were obtained for 108 infants on 156 occasions. Infants with a significant pulmonary infection at the time of MBW showed increases in lung clearance index (LCI) of 0.400 units (95% CI 0.150-0.648; p=0.002). The impact was long lasting, with previous pulmonary infection leading to increased ventilation inhomogeneity over time compared to those who remained free of infection (p<0.05). Infection with Haemophilus influenzae was particularly detrimental to the longitudinal lung function in young children with CF where LCI was increased by 1.069 units for each year of life (95% CI 0.484-1.612; p<0.001).Pulmonary infection during the first year of life is detrimental to later lung function. Therefore, strategies aimed at prevention, surveillance and eradication of pulmonary pathogens are paramount to preserve lung function in infants with CF. Copyright ©ERS 2015.

  5. All the “RAGE” in lung disease: The receptor for advanced glycation endproducts (RAGE) is a major mediator of pulmonary inflammatory responses

    PubMed Central

    Oczypok, Elizabeth A.; Perkins, Timothy N.; Oury, Tim D.

    2017-01-01

    SUMMARY The receptor for advanced glycation endproducts (RAGE) is a pro-inflammatory pattern recognition receptor (PRR) that has been implicated in the pathogenesis of numerous inflammatory diseases. It was discovered in 1992 on endothelial cells and was named for its ability to bind advanced glycation endproducts and promote vascular inflammation in the vessels of patients with diabetes. Further studies revealed that RAGE is most highly expressed in lung tissue and spurred numerous explorations into RAGE’s role in the lung. These studies have found that RAGE is an important mediator in allergic airway inflammation (AAI) and asthma, pulmonary fibrosis, lung cancer, chronic obstructive pulmonary disease (COPD), acute lung injury, pneumonia, cystic fibrosis, and bronchopulmonary dysplasia. RAGE has not yet been targeted in the lungs of paediatric or adult clinical populations, but the development of new ways to inhibit RAGE is setting the stage for the emergence of novel therapeutic agents for patients suffering from these pulmonary conditions. PMID:28416135

  6. Myocardial inflammation, cellular death, and viral detection in sudden infant death caused by SIDS, suffocation, or myocarditis.

    PubMed

    Krous, Henry F; Ferandos, Christine; Masoumi, Homeyra; Arnold, John; Haas, Elisabeth A; Stanley, Christina; Grossfeld, Paul D

    2009-07-01

    The significance of minor myocardial inflammatory infiltrates and viral detection in SIDS is controversial. We retrospectively compared the demographic profiles, myocardial inflammation, cardiomyocyte necrosis, and myocardial virus detection in infants who died of SIDS in a safe sleep environment, accidental suffocation, or myocarditis. Formalin-fixed, paraffin-embedded myocardial sections were semiquantitatively assessed for CD3 lymphocytes and CD68 macrophages using immunohistochemistry and for cardiomyocyte cell death in H&E-stained sections. Enteroviruses and adenoviruses were searched for using PCR technology. The means of lymphocytes, macrophages, and necrotic cardiomyocytes were not statistically different in SIDS and suffocation cases. Enterovirus, not otherwise specified, was detected in one suffocation case and was the only virus detected in the three groups. Very mild myocardial lymphocyte and macrophage infiltration and scattered necrotic cardiomyocytes in SIDS are not pathologic, but may occur after the developing heart is exposed to environmental pathogens, including viruses.

  7. G-CSF maintains controlled neutrophil mobilization during acute inflammation by negatively regulating CXCR2 signaling

    PubMed Central

    Bajrami, Besnik; Zhu, Haiyan; Zhang, Yu C.

    2016-01-01

    Cytokine-induced neutrophil mobilization from the bone marrow to circulation is a critical event in acute inflammation, but how it is accurately controlled remains poorly understood. In this study, we report that CXCR2 ligands are responsible for rapid neutrophil mobilization during early-stage acute inflammation. Nevertheless, although serum CXCR2 ligand concentrations increased during inflammation, neutrophil mobilization slowed after an initial acute fast phase, suggesting a suppression of neutrophil response to CXCR2 ligands after the acute phase. We demonstrate that granulocyte colony-stimulating factor (G-CSF), usually considered a prototypical neutrophil-mobilizing cytokine, was expressed later in the acute inflammatory response and unexpectedly impeded CXCR2-induced neutrophil mobilization by negatively regulating CXCR2-mediated intracellular signaling. Blocking G-CSF in vivo paradoxically elevated peripheral blood neutrophil counts in mice injected intraperitoneally with Escherichia coli and sequestered large numbers of neutrophils in the lungs, leading to sterile pulmonary inflammation. In a lipopolysaccharide-induced acute lung injury model, the homeostatic imbalance caused by G-CSF blockade enhanced neutrophil accumulation, edema, and inflammation in the lungs and ultimately led to significant lung damage. Thus, physiologically produced G-CSF not only acts as a neutrophil mobilizer at the relatively late stage of acute inflammation, but also prevents exaggerated neutrophil mobilization and the associated inflammation-induced tissue damage during early-phase infection and inflammation. PMID:27551153

  8. Systemic inflammation and oxidative stress post-lung resection: Effect of pretreatment with N-acetylcysteine.

    PubMed

    Bastin, Anthony J; Davies, Nathan; Lim, Eric; Quinlan, Greg J; Griffiths, Mark J

    2016-01-01

    N-acetylcysteine has been used to treat a variety of lung diseases, where is it thought to have an antioxidant effect. In a randomized placebo-controlled double-blind study, the effect of N-acetylcysteine on systemic inflammation and oxidative damage was examined in patients undergoing lung resection, a human model of acute lung injury. Eligible adults were randomized to receive preoperative infusion of N-acetylcysteine (240 mg/kg over 12 h) or placebo. Plasma thiols, interleukin-6, 8-isoprostane, ischaemia-modified albumin, red blood cell glutathione and exhaled breath condensate pH were measured pre- and post-operatively as markers of local and systemic inflammation and oxidative stress. Patients undergoing lung resection and one-lung ventilation exhibited significant postoperative inflammation and oxidative damage. Postoperative plasma thiol concentration was significantly higher in the N-acetylcysteine-treated group. However, there was no significant difference in any of the measured biomarkers of inflammation or oxidative damage, or in clinical outcomes, between N-acetylcysteine and placebo groups. Preoperative administration of N-acetylcysteine did not attenuate postoperative systemic or pulmonary inflammation or oxidative damage after lung resection. NCT00655928 at ClinicalTrials.gov. © 2015 Asian Pacific Society of Respirology.

  9. An Immature Myeloid/Myeloid-Suppressor Cell Response Associated with Necrotizing Inflammation Mediates Lethal Pulmonary Tularemia

    PubMed Central

    Periasamy, Sivakumar; Avram, Dorina; McCabe, Amanda; MacNamara, Katherine C.; Sellati, Timothy J.; Harton, Jonathan A.

    2016-01-01

    Inhalation of Francisella tularensis (Ft) causes acute and fatal pneumonia. The lung cytokine milieu favors exponential Ft replication, but the mechanisms underlying acute pathogenesis and death remain unknown. Evaluation of the sequential and systemic host immune response in pulmonary tularemia reveals that in contrast to overwhelming bacterial burden or cytokine production, an overt innate cellular response to Ft drives tissue pathology and host mortality. Lethal infection with Ft elicits medullary and extra-medullary myelopoiesis supporting recruitment of large numbers of immature myeloid cells and MDSC to the lungs. These cells fail to mature and die, leading to subsequent necrotic lung damage, loss of pulmonary function, and host death that is partially dependent upon immature Ly6G+ cells. Acceleration of this process may account for the rapid lethality seen with Ft SchuS4. In contrast, during sub-lethal infection with Ft LVS the pulmonary cellular response is characterized by a predominance of mature neutrophils and monocytes required for protection, suggesting a required threshold for lethal bacterial infection. Further, eliciting a mature phagocyte response provides transient, but dramatic, innate protection against Ft SchuS4. This study reveals that the nature of the myeloid cell response may be the primary determinant of host mortality versus survival following Francisella infection. PMID:27015566

  10. C-reactive protein and other markers of inflammation in hemodialysis patients

    PubMed Central

    Heidari, Behzad

    2013-01-01

    Hemodialysis patients are at greater risk of cardiovascular disease. Higher than expected cardiovascular morbidity and mortality in this population has been attributed to dislipidemia as well as inflammation. The causes of inflammation in hemodialysis patients are multifactorial. Several markers were used for the detection of inflammatory reaction in patients with chronic renal disease. These markers can be used for the prediction of future cardiovascular events. Among the several parameters of inflammatory markers, serum, CRP is well known and its advantages for the detection of inflammation and its predictor ability has been evaluated in several studies. This review addressed the associated factors and markers of inflammation in hemodialysis patients. In addition, their ability in predicting future atherosclerosis and effect of treatment has been reviewed. However, this context particularly in using CRP as a prediction marker of inflammation and morbidity requires further studies. PMID:24009946

  11. C-reactive protein and other markers of inflammation in hemodialysis patients.

    PubMed

    Heidari, Behzad

    2013-01-01

    Hemodialysis patients are at greater risk of cardiovascular disease. Higher than expected cardiovascular morbidity and mortality in this population has been attributed to dislipidemia as well as inflammation. The causes of inflammation in hemodialysis patients are multifactorial. Several markers were used for the detection of inflammatory reaction in patients with chronic renal disease. These markers can be used for the prediction of future cardiovascular events. Among the several parameters of inflammatory markers, serum, CRP is well known and its advantages for the detection of inflammation and its predictor ability has been evaluated in several studies. This review addressed the associated factors and markers of inflammation in hemodialysis patients. In addition, their ability in predicting future atherosclerosis and effect of treatment has been reviewed. However, this context particularly in using CRP as a prediction marker of inflammation and morbidity requires further studies.

  12. Pulmonary embolism detection using localized vessel-based features in dual energy CT

    NASA Astrophysics Data System (ADS)

    Dicente Cid, Yashin; Depeursinge, Adrien; Foncubierta Rodríguez, Antonio; Platon, Alexandra; Poletti, Pierre-Alexandre; Müller, Henning

    2015-03-01

    Pulmonary embolism (PE) affects up to 600,000 patients and contributes to at least 100,000 deaths every year in the United States alone. Diagnosis of PE can be difficult as most symptoms are unspecific and early diagnosis is essential for successful treatment. Computed Tomography (CT) images can show morphological anomalies that suggest the existence of PE. Various image-based procedures have been proposed for improving computer-aided diagnosis of PE. We propose a novel method for detecting PE based on localized vessel-based features computed in Dual Energy CT (DECT) images. DECT provides 4D data indexed by the three spatial coordinates and the energy level. The proposed features encode the variation of the Hounsfield Units across the different levels and the CT attenuation related to the amount of iodine contrast in each vessel. A local classification of the vessels is obtained through the classification of these features. Moreover, the localization of the vessel in the lung provides better comparison between patients. Results show that the simple features designed are able to classify pulmonary embolism patients with an AUC (area under the receiver operating curve) of 0.71 on a lobe basis. Prior segmentation of the lung lobes is not necessary because an automatic atlas-based segmentation obtains similar AUC levels (0.65) for the same dataset. The automatic atlas reaches 0.80 AUC in a larger dataset with more control cases.

  13. Effect of radiation dose reduction and iterative reconstruction on computer-aided detection of pulmonary nodules: Intra-individual comparison.

    PubMed

    Den Harder, Annemarie M; Willemink, Martin J; van Hamersvelt, Robbert W; Vonken, Evert-Jan P A; Milles, Julien; Schilham, Arnold M R; Lammers, Jan-Willem; de Jong, Pim A; Leiner, Tim; Budde, Ricardo P J

    2016-02-01

    To evaluate the effect of radiation dose reduction and iterative reconstruction (IR) on the performance of computer-aided detection (CAD) for pulmonary nodules. In this prospective study twenty-five patients were included who were scanned for pulmonary nodule follow-up. Image acquisition was performed at routine dose and three reduced dose levels in a single session by decreasing mAs-values with 45%, 60% and 75%. Tube voltage was fixed at 120 kVp for patients ≥ 80 kg and 100 kVp for patients < 80 kg. Data were reconstructed with filtered back projection (FBP), iDose(4) (levels 1,4,6) and IMR (levels 1-3). All noncalcified solid pulmonary nodules ≥ 4 mm identified by two radiologists in consensus served as the reference standard. Subsequently, nodule volume was measured with CAD software and compared to the reference consensus. The numbers of true-positives, false-positives and missed pulmonary nodules were evaluated as well as the sensitivity. Median effective radiation dose was 2.2 mSv at routine dose and 1.2, 0.9 and 0.6 mSv at respectively 45%, 60% and 75% reduced dose. A total of 28 pulmonary nodules were included. With FBP at routine dose, 89% (25/28) of the nodules were correctly identified by CAD. This was similar at reduced dose levels with FBP, iDose(4) and IMR. CAD resulted in a median number of false-positives findings of 11 per scan with FBP at routine dose (93% of the CAD marks) increasing to 15 per scan with iDose(4) (95% of the CAD marks) and 26 per scan (96% of the CAD marks) with IMR at the lowest dose level. CAD can identify pulmonary nodules at submillisievert dose levels with FBP, hybrid and model-based IR. However, the number of false-positive findings increased using hybrid and especially model-based IR at submillisievert dose while dose reduction did not affect the number of false-positives with FBP. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Sensitivity of scintigraphy for detection of pulmonary capillary albumin leak in canine oleic acid ARDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugerman, H.J.; Strash, A.M.; Hirsch, J.I.

    1981-07-01

    Computerized gamma scintigraphy was shown in this study to be a sensitive technique for the detection and kinetic analysis of a pulmonary capillary protein leak. A rising lung:heart radioactivity of slope of injury was found at each dose of intravenous oleic acid in dogs from 0.01 to 0.20 ml/kg (p less than 0.01). This slope of injury was proportional to the dose of oleic acid (r . +0.97; p less than 0.004) and was more sensitive than changes in arterial oxygen tension, standard chest radiography, bloodless wet:dry lung weight, or alveolar epithelial membrane permeability. Only standard light microscopy and rightmore » lymphatic duct flow were able to document the leakage of protein detected by gamma scintigraphy at 0.01 ml/kg oleic acid.« less

  15. Hypothalamic inflammation and gliosis in obesity

    PubMed Central

    Dorfman, Mauricio D.; Thaler, Joshua P.

    2015-01-01

    Structured Abstract Purpose of review Hypothalamic inflammation and gliosis are recently discovered mechanisms that may contribute to obesity pathogenesis. Current research in this area suggests that investigation of these CNS responses may provide opportunities to develop new weight loss treatments. Recent findings In rodents, hypothalamic inflammation and gliosis occur rapidly with high-fat diet consumption prior to significant weight gain. In addition, sensitivity or resistance to diet-induced obesity in rodents generally correlates with the presence or absence of hypothalamic inflammation and reactive gliosis (brain response to injury). Moreover, functional interventions that increase or decrease inflammation in neurons and glia correspondingly alter diet-associated weight gain. However, some conflicting data have recently emerged that question the contribution of hypothalamic inflammation to obesity pathogenesis. However, several studies have detected gliosis and disrupted connectivity in obese humans, highlighting the potential translational importance of this mechanism. Summary There is growing evidence that obesity is associated with brain inflammation in humans, particularly in the hypothalamus where its presence may disrupt body weight control and glucose homeostasis. More work is needed to determine whether this response is common in human obesity and to what extent it can be manipulated for therapeutic benefit. PMID:26192704

  16. Ion channels in inflammation.

    PubMed

    Eisenhut, Michael; Wallace, Helen

    2011-04-01

    Most physical illness in vertebrates involves inflammation. Inflammation causes disease by fluid shifts across cell membranes and cell layers, changes in muscle function and generation of pain. These disease processes can be explained by changes in numbers or function of ion channels. Changes in ion channels have been detected in diarrhoeal illnesses, pyelonephritis, allergy, acute lung injury and systemic inflammatory response syndromes involving septic shock. The key role played by changes in ion transport is directly evident in inflammation-induced pain. Expression or function of all major categories of ion channels like sodium, chloride, calcium, potassium, transient receptor potential, purinergic receptor and acid-sensing ion channels can be influenced by cyto- and chemokines, prostaglandins, leukotrienes, histamine, ATP, reactive oxygen species and protons released in inflammation. Key pathways in this interaction are cyclic nucleotide, phosphoinositide and mitogen-activated protein kinase-mediated signalling, direct modification by reactive oxygen species like nitric oxide, ATP or protons and disruption of the cytoskeleton. Therapeutic interventions to modulate the adverse and overlapping effects of the numerous different inflammatory mediators on each ion transport system need to target adversely affected ion transport systems directly and locally.

  17. Pulmonary Veno-Occlusive Disease: A Newly Recognized Cause of Severe Pulmonary Hypertension in Dogs.

    PubMed

    Williams, K; Andrie, K; Cartoceti, A; French, S; Goldsmith, D; Jennings, S; Priestnall, S L; Wilson, D; Jutkowitz, A

    2016-07-01

    Pulmonary hypertension is a well-known though poorly characterized disease in veterinary medicine. In humans, pulmonary veno-occlusive disease (PVOD) is a rare cause of severe pulmonary hypertension with a mean survival time of 2 years without lung transplantation. Eleven adult dogs (5 males, 6 females; median age 10.5 years, representing various breeds) were examined following the development of severe respiratory signs. Lungs of affected animals were evaluated morphologically and with immunohistochemistry for alpha smooth muscle actin, desmin, CD31, CD3, CD20, and CD204. All dogs had pulmonary lesions consistent with PVOD, consisting of occlusive remodeling of small- to medium-sized pulmonary veins, foci of pulmonary capillary hemangiomatosis (PCH), and accumulation of hemosiderophages; 6 of 11 dogs had substantial pulmonary arterial medial and intimal thickening. Ultrastructural examination and immunohistochemistry showed that smooth muscle cells contributed to the venous occlusion. Increased expression of CD31 was evident in regions of PCH indicating increased numbers of endothelial cells in these foci. Spindle cells strongly expressing alpha smooth muscle actin and desmin co-localized with foci of PCH; similar cells were present but less intensely labeled elsewhere in non-PCH alveoli. B cells and macrophages, detected by immunohistochemistry, were not co-localized with the venous lesions of canine PVOD; small numbers of CD3-positive T cells were occasionally in and around the wall of remodeled veins. These findings indicate a condition in dogs with clinically severe respiratory disease and pathologic features resembling human PVOD, including foci of pulmonary venous remodeling and PCH. © The Author(s) 2016.

  18. Early pulmonary events of nose-only water pipe (shisha) smoking exposure in mice

    PubMed Central

    Nemmar, Abderrahim; Hemeiri, Ahmed Al; Hammadi, Naser Al; Yuvaraju, Priya; Beegam, Sumaya; Yasin, Javed; Elwasila, Mohamed; Ali, Badreldin H; Adeghate, Ernest

    2015-01-01

    Water pipe smoking (WPS) is increasing in popularity and prevalence worldwide. Convincing data suggest that the toxicants in WPS are similar to that of cigarette smoke. However, the underlying pathophysiologic mechanisms related to the early pulmonary events of WPS exposure are not understood. Here, we evaluated the early pulmonary events of nose-only exposure to mainstream WPS generated by commercially available honey flavored “moasel” tobacco. BALB/c mice were exposed to WPS 30 min/day for 5 days. Control mice were exposed using the same protocol to atmospheric air only. We measured airway resistance using forced oscillation technique, and pulmonary inflammation was evaluated histopathologically and by biochemical analysis of bronchoalveolar lavage (BAL) fluid and lung tissue. Lung oxidative stress was evaluated biochemically by measuring the level of reactive oxygen species (ROS), lipid peroxidation (LPO), reduced glutathione (GSH), catalase, and superoxide dismutase (SOD). Mice exposed to WPS showed a significant increase in the number of neutrophils (P < 0.05) and lymphocytes (P < 0.001). Moreover, total protein (P < 0.05), lactate dehydrogenase (P < 0.005), and endothelin (P < 0.05) levels were augmented in bronchoalveolar lavage fluid. Tumor necrosis factor α (P < 0.005) and interleukin 6 (P < 0.05) concentrations were significantly increased in lung following the exposure to WPS. Both ROS (P < 0.05) and LPO (P < 0.005) in lung tissue were significantly increased, whereas the level and activity of antioxidants including GSH (P < 0.0001), catalase (P < 0.005), and SOD (P < 0.0001) were significantly decreased after WPS exposure, indicating the occurrence of oxidative stress. In contrast, airway resistance was not increased in WPS exposure. We conclude that subacute, nose-only exposure to WPS causes lung inflammation and oxidative stress without affecting pulmonary function suggesting that inflammation and oxidative stress are

  19. Early pulmonary events of nose-only water pipe (shisha) smoking exposure in mice.

    PubMed

    Nemmar, Abderrahim; Al Hemeiri, Ahmed; Al Hammadi, Naser; Yuvaraju, Priya; Beegam, Sumaya; Yasin, Javed; Elwasila, Mohamed; Ali, Badreldin H; Adeghate, Ernest

    2015-03-01

    Water pipe smoking (WPS) is increasing in popularity and prevalence worldwide. Convincing data suggest that the toxicants in WPS are similar to that of cigarette smoke. However, the underlying pathophysiologic mechanisms related to the early pulmonary events of WPS exposure are not understood. Here, we evaluated the early pulmonary events of nose-only exposure to mainstream WPS generated by commercially available honey flavored "moasel" tobacco. BALB/c mice were exposed to WPS 30 min/day for 5 days. Control mice were exposed using the same protocol to atmospheric air only. We measured airway resistance using forced oscillation technique, and pulmonary inflammation was evaluated histopathologically and by biochemical analysis of bronchoalveolar lavage (BAL) fluid and lung tissue. Lung oxidative stress was evaluated biochemically by measuring the level of reactive oxygen species (ROS), lipid peroxidation (LPO), reduced glutathione (GSH), catalase, and superoxide dismutase (SOD). Mice exposed to WPS showed a significant increase in the number of neutrophils (P < 0.05) and lymphocytes (P < 0.001). Moreover, total protein (P < 0.05), lactate dehydrogenase (P < 0.005), and endothelin (P < 0.05) levels were augmented in bronchoalveolar lavage fluid. Tumor necrosis factor α (P < 0.005) and interleukin 6 (P < 0.05) concentrations were significantly increased in lung following the exposure to WPS. Both ROS (P < 0.05) and LPO (P < 0.005) in lung tissue were significantly increased, whereas the level and activity of antioxidants including GSH (P < 0.0001), catalase (P < 0.005), and SOD (P < 0.0001) were significantly decreased after WPS exposure, indicating the occurrence of oxidative stress. In contrast, airway resistance was not increased in WPS exposure. We conclude that subacute, nose-only exposure to WPS causes lung inflammation and oxidative stress without affecting pulmonary function suggesting that inflammation and oxidative stress are early

  20. Influence of the 2009 financial crisis on detection of advanced pulmonary tuberculosis in Osaka city, Japan: a cross-sectional study

    PubMed Central

    Danno, Katsura; Komukai, Jun; Yoshida, Hideki; Matsumoto, Kenji; Koda, Shinichi; Terakawa, Kazuhiko; Iso, Hiroyasu

    2013-01-01

    Objective To investigate the association between the economic recession and the detection of advanced cases of pulmonary tuberculosis in Osaka city from 2007 to 2009. Design A repeated cross-sectional study. Setting Osaka city has been the highest tuberculosis burden area in Japan. After the previous global financial crisis, the unemployment rate in Osaka prefecture has deteriorated from 5.3% in 2008 to 6.6% in 2009. Participants During the study period, 3406 pulmonary tuberculosis cases were enrolled: 2530 males and 876 females; 1546 elderly cases (65 years and above) and 1860 young cases (under 65 years); 417 homeless cases and 2989 non-homeless cases. Outcome measures Patients’ information included the sex, age, registry, health insurances, places of detection, sputum smear test results, patients’ delay, doctors’ delay and the grade of chest x-ray findings. They were statistically analysed between 2007 and 2008, two years before and just before the financial crisis, and between 2008 and 2009, just before and after the financial crisis. Results The total numbers of pulmonary tuberculosis cases were 1172 in 2007, 1083 in 2008 and 1151 in 2009. In health examinations for non-homeless people, higher number of cases in 2009 were sputum smear positive, had respiratory symptoms and showed advanced disease in chest x-rays than those in 2008, with a longer patients’ delay. On the contrary, in health examination for homeless people, fewer cases of advanced pulmonary tuberculosis were found in 2009 than in 2008, with a shorter patients’ delay. In clinical examinations, there was no trend towards a difference between non-homeless and homeless people. Conclusions Although homeless people might be protected by public assistance, tuberculosis prevention and control need to be reinforced for the non-homeless population after the financial crisis. PMID:23558729

  1. Influence of the 2009 financial crisis on detection of advanced pulmonary tuberculosis in Osaka city, Japan: a cross-sectional study.

    PubMed

    Danno, Katsura; Komukai, Jun; Yoshida, Hideki; Matsumoto, Kenji; Koda, Shinichi; Terakawa, Kazuhiko; Iso, Hiroyasu

    2013-01-01

    To investigate the association between the economic recession and the detection of advanced cases of pulmonary tuberculosis in Osaka city from 2007 to 2009. A repeated cross-sectional study. Osaka city has been the highest tuberculosis burden area in Japan. After the previous global financial crisis, the unemployment rate in Osaka prefecture has deteriorated from 5.3% in 2008 to 6.6% in 2009. During the study period, 3406 pulmonary tuberculosis cases were enrolled: 2530 males and 876 females; 1546 elderly cases (65 years and above) and 1860 young cases (under 65 years); 417 homeless cases and 2989 non-homeless cases. Patients' information included the sex, age, registry, health insurances, places of detection, sputum smear test results, patients' delay, doctors' delay and the grade of chest x-ray findings. They were statistically analysed between 2007 and 2008, two years before and just before the financial crisis, and between 2008 and 2009, just before and after the financial crisis. The total numbers of pulmonary tuberculosis cases were 1172 in 2007, 1083 in 2008 and 1151 in 2009. In health examinations for non-homeless people, higher number of cases in 2009 were sputum smear positive, had respiratory symptoms and showed advanced disease in chest x-rays than those in 2008, with a longer patients' delay. On the contrary, in health examination for homeless people, fewer cases of advanced pulmonary tuberculosis were found in 2009 than in 2008, with a shorter patients' delay. In clinical examinations, there was no trend towards a difference between non-homeless and homeless people. Although homeless people might be protected by public assistance, tuberculosis prevention and control need to be reinforced for the non-homeless population after the financial crisis.

  2. Emerging Metabolic Therapies in Pulmonary Arterial Hypertension

    PubMed Central

    Harvey, Lloyd D.; Chan, Stephen Y.

    2017-01-01

    Pulmonary hypertension (PH) is an enigmatic vascular disorder characterized by pulmonary vascular remodeling and increased pulmonary vascular resistance, ultimately resulting in pressure overload, dysfunction, and failure of the right ventricle. Current medications for PH do not reverse or prevent disease progression, and current diagnostic strategies are suboptimal for detecting early-stage disease. Thus, there is a substantial need to develop new diagnostics and therapies that target the molecular origins of PH. Emerging investigations have defined metabolic aberrations as fundamental and early components of disease manifestation in both pulmonary vasculature and the right ventricle. As such, the elucidation of metabolic dysregulation in pulmonary hypertension allows for greater therapeutic insight into preventing, halting, or even reversing disease progression. This review will aim to discuss (1) the reprogramming and dysregulation of metabolic pathways in pulmonary hypertension; (2) the emerging therapeutic interventions targeting these metabolic pathways; and (3) further innovation needed to overcome barriers in the treatment of this devastating disease. PMID:28375184

  3. Identification of the first New Zealand case of equine multinodular pulmonary fibrosis.

    PubMed

    Dunowska, M; Hardcastle, M R; Tonkin, F B

    2014-07-01

    A 10-year-old polo mare presented with a history of weight loss, poor condition and inappetance. The mare was tachycardic, tachypnoeic and febrile. Harsh lung sounds were auscultated over all lung fields. The mare initially responded to treatment with antibiotics, anti-inflammatory drugs and bronchodilators. Throughout the course of treatment, there was a variable lymphocytosis, monocytosis and fluctuation in concentrations of fibrinogen. The mare also developed a mild anaemia, most likely due to chronic disease. Despite treatment, the mare's condition deteriorated over the following 2 months, and she was subject to euthanasia. On post mortem examination, white to pale tan, large coalescing fibrous nodules up to 5 cm in diameter were found distributed throughout the lungs. Histopathology revealed a multifocally severe interstitial pneumonia with superimposed bronchiolar or alveolar inflammation, fibrosis, Type II pneumocyte hyperplasia and histiocytic intranuclear inclusion bodies, consistent with the findings previously reported for cases of equine multinodular pulmonary fibrosis (EMPF). Equine multinodular pulmonary fibrosis based on characteristic gross and histopathological findings. The diagnosis was strengthened by detection of DNA for equine herpesvirus 5 in the lung tissue. This report describes the first recognised case of EMPF in New Zealand. The affected horse did not respond to treatment and was subject to euthanasia. The prognosis for horses with EMPF, based on a limited number of cases worldwide, is currently considered poor.

  4. Blocking the 4-1BB Pathway Ameliorates Crystalline Silica-induced Lung Inflammation and Fibrosis in Mice.

    PubMed

    Li, Chao; Du, Sitong; Lu, Yiping; Lu, Xiaowei; Liu, Fangwei; Chen, Ying; Weng, Dong; Chen, Jie

    2016-01-01

    Long term pulmonary exposure to crystalline silica leads to silicosis that manifests progressive interstitial fibrosis, eventually leading to respiratory failure and death. Despite efforts to eliminate silicosis, clinical cases continue to occur in both developing and developed countries. The exact mechanisms of crystalline silica-induced pulmonary fibrosis remain elusive. Herein, we find that 4-1BB is induced in response to crystalline silica injury in lungs and that it is highly expressed during development of experimental silicosis. Therefore, we explore the role of 4-1BB pathway during crystalline silica-induced lung injury and find that a specific inhibitor blocking the pathway could effectively alleviate crystalline silica-induced lung inflammation and subsequent pulmonary fibrosis in vivo. Compared to controls, the treated mice exhibited reduced Th1 and Th17 responses. The concentrations of pro-inflammatory cytokines in bronchoalveolar lavage fluid (BALF), including tumor necrosis factor (TNF)-α, interferon (IFN)-γ and interleukin (IL)-17A following crystalline silica challenge were also reduced in inhibitor-treated mice. Although there was no significant alteration in Th2 cytokines of IL-4 and IL-13, another type of pro-fibrogenic cell, regulatory T cell (Treg) was significantly affected. In addition, one of the major participants in fibrogenesis, fibrocyte recruited less due to the blockade. Furthermore, we demonstrated the decreased fibrocyte recruitment was associated with chemokine reductions in lung. Our study discovers the 4-1BB pathway signaling enhances inflammatory response and promotes pulmonary fibrosis induced by crystalline silica. The findings here provide novel insights into the molecular events that control crystalline silica-induced lung inflammation and fibrosis through regulating Th responses and the recruitment of fibrocytes in crystalline silica-exposed lung.

  5. The administration of a high refined carbohydrate diet promoted an increase in pulmonary inflammation and oxidative stress in mice exposed to cigarette smoke

    PubMed Central

    Pena, Karina Braga; Ramos, Camila de Oliveira; Soares, Nícia Pedreira; da Silva, Pamela Félix; Bandeira, Ana Carla Balthar; Costa, Guilherme de Paula; Cangussú, Sílvia Dantas; Talvani, André; Bezerra, Frank Silva

    2016-01-01

    This study aimed to evaluate the effects of a high refined carbohydrate diet and pulmonary inflammatory response in C57BL/6 mice exposed to cigarette smoke (CS). Twenty-four male mice were divided into four groups: control group (CG), which received a standard diet; cigarette smoke group (CSG), which was exposed to CS; a high refined carbohydrate diet group (RG), which received a high refined carbohydrate diet; and a high refined carbohydrates diet and cigarette smoke group (RCSG), which received a high refined carbohydrate diet and was exposed to CS. The animals were monitored for food intake and body weight gain for 12 weeks. After this period, the CSG and RCSG were exposed to CS for five consecutive days. At the end of the experimental protocol, all animals were euthanized for subsequent analyses. There was an increase of inflammatory cells in the bronchoalveolar lavage fluid (BALF) of CSG compared to CG and RCSG compared to CG, CSG, and RG. In addition, in the BALF, there was an increase of tumor necrosis factor alpha in RCSG compared to CG, CSG, and RG; interferon gamma increase in RCSG compared to the CSG; and increase in interleukin-10 in RCSG compared to CG and RG. Lipid peroxidation increased in RCSG compared to CG, CSG, and RG. Furthermore, the oxidation of proteins increased in CSG compared to CG. The analysis of oxidative stress showed an increase in superoxide dismutase in RCSG compared to CG, CSG, and RG and an increase in the catalase activity in RCSG compared with CG. In addition, there was a decrease in the glutathione reduced/glutathione total ratio of CSG, RG, and RCSG compared to CG. Therefore, the administration of a high refined carbohydrate diet promoted an increase in pulmonary inflammation and oxidative stress in mice exposed to CS. PMID:28008246

  6. The value of dual-source multidetector-row computed tomography in determining pulmonary blood supply in patients with pulmonary atresia with ventricular septal defect.

    PubMed

    Chaosuwannakit, N; Makarawate, P

    2018-01-01

    Primary evaluation of patients with pulmonary atresia with ventricular septal defect (PA-VSD) traditionally relies upon echocardiography and conventional cardiac angiography (CCA). Cardiac angiography is considered the gold standard for delineation of anatomy in children with PA-VSD. Data comparing CCA and dual-source multidetector-row computed tomography angiography (MDCT) in PA-VSD patients is limited. The objective of this study was to test the hypothesis that MDCT is equivalent to CCA for anatomic delineation in these patients. Twenty-eight patients with PA-VSD underwent CCA and MDCT in close proximity to each other without interval therapy. A retrospective review of these 28 patients was performed. All MDCT data of pulmonary artery morphology, major aortopulmonary collateral arteries (MAPCAs) and type of blood supply (dual vs. single supply) were evaluated by blinded experts and results were compared with CCA. Twenty-eight patients had adequate size right and left pulmonary arteries (21 confluent and 7 non-confluent). Seven patients had complete absence of native pulmonary artery and 3 patients had stenosis of distal branches of pulmonary arteries; all had MAPCAs from descending thoracic aorta and/or subclavian arteries. Sensitivity, specificity, positive and negative predictive value of MDCT for detecting confluent of pulmonary arteries, absence of native pulmonary artery and stenosis of pulmonary arteries were all 100%. Moreover, accuracy of detecting MAPCAs was excellent. These results suggest that MDCT and CCA are equivalent in their ability to delineate pulmonary artery anatomy and MAPCAs. Dual source MDCT provides high diagnostic accuracy in evaluation of pulmonary blood supply in patients with PA-VSD and allows precise characterisation of the condition of pulmonary arteries and MAPCAs which is of paramount importance in managing patients with PA-VSD. (Folia Morphol 2018; 77, 1: 116-122).

  7. Grape seed extract ameliorates bleomycin-induced mouse pulmonary fibrosis.

    PubMed

    Liu, Qi; Jiang, Jun-Xia; Liu, Ya-Nan; Ge, Ling-Tian; Guan, Yan; Zhao, Wei; Jia, Yong-Liang; Dong, Xin-Wei; Sun, Yun; Xie, Qiang-Min

    2017-05-05

    Pulmonary fibrosis is common in a variety of inflammatory lung diseases, such as interstitial pneumonia, chronic obstructive pulmonary disease, and silicosis. There is currently no effective clinical drug treatment. It has been reported that grape seed extracts (GSE) has extensive pharmacological effects with minimal toxicity. Although it has been found that GSE can improve the lung collagen deposition and fibrosis pathology induced by bleomycin in rat, its effects on pulmonary function, inflammation, growth factors, matrix metalloproteinases and epithelial-mesenchymal transition remain to be researched. In the present study, we studied whether GSE provided protection against bleomycin (BLM)-induced mouse pulmonary fibrosis. ICR strain mice were treated with BLM in order to establish pulmonary fibrosis models. GSE was given daily via intragastric administration for three weeks starting at one day after intratracheal instillation. GSE at 50 or 100mg/kg significantly reduced BLM-induced inflammatory cells infiltration, proinflammatory factor protein expression, and hydroxyproline in lung tissues, and improved pulmonary function in mice. Additionally, treatment with GSE also significantly impaired BLM-induced increases in lung fibrotic marker expression (collagen type I alpha 1 and fibronectin 1) and decreases in an anti-fibrotic marker (E-cadherin). Further investigation indicated that the possible molecular targets of GSE are matrix metalloproteinases-9 (MMP-9) and TGF-β1, given that treatment with GSE significantly prevented BLM-induced increases in MMP-9 and TGF-β1 expression in the lungs. Together, these results suggest that supplementation with GSE may improve the quality of life of lung fibrosis patients by inhibiting MMP-9 and TGF-β1 expression in the lungs. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Activation of GPER ameliorates experimental pulmonary hypertension in male rats.

    PubMed

    Alencar, Allan K; Montes, Guilherme C; Montagnoli, Tadeu; Silva, Ananssa M; Martinez, Sabrina T; Fraga, Aline G; Wang, Hao; Groban, Leanne; Sudo, Roberto T; Zapata-Sudo, Gisele

    2017-01-15

    Pulmonary hypertension (PH) is characterized by pulmonary vascular remodeling that leads to pulmonary congestion, uncompensated right-ventricle (RV) failure, and premature death. Preclinical studies have demonstrated that the G protein-coupled estrogen receptor (GPER) is cardioprotective in male rats and that its activation elicits vascular relaxation in rats of either sex. To study the effects of GPER on the cardiopulmonary system by the administration of its selective agonist G1 in male rats with monocrotaline (MCT)-induced PH. Rats received a single intraperitoneal injection of MCT (60mg/kg) for PH induction. Experimental groups were as follows: control, MCT+vehicle, and MCT+G1 (400μg/kg/daysubcutaneous). Animals (n=5pergroup) were treated with vehicle or G1 for 14days after disease onset. Activation of GPER attenuated exercise intolerance and reduced RV overload in PH rats. Rats with PH exhibited echocardiographic alterations, such as reduced pulmonary flow, RV hypertrophy, and left-ventricle dysfunction, by the end of protocol. G1 treatment reversed these PH-related abnormalities of cardiopulmonary function and structure, in part by promoting pulmonary endothelial nitric oxide synthesis, Ca 2+ handling regulation and reduction of inflammation in cardiomyocytes, and a decrease of collagen deposition by acting in pulmonary and cardiac fibroblasts. G1 was effective to reverse PH-induced RV dysfunction and exercise intolerance in male rats, a finding that have important implications for ongoing clinical evaluation of new cardioprotective and vasodilator drugs for the treatment of the disease. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Hypercapnic acidosis modulates inflammation, lung mechanics, and edema in the isolated perfused lung.

    PubMed

    De Smet, Hilde R; Bersten, Andrew D; Barr, Heather A; Doyle, Ian R

    2007-12-01

    Low tidal volume (V(T)) ventilation strategies may be associated with permissive hypercapnia, which has been shown by ex vivo and in vivo studies to have protective effects. We hypothesized that hypercapnic acidosis may be synergistic with low V(T) ventilation; therefore, we studied the effects of hypercapnia and V(T) on unstimulated and lipopolysaccharide-stimulated isolated perfused lungs. Isolated perfused rat lungs were ventilated for 2 hours with low (7 mL/kg) or moderately high (20 mL/kg) V(T) and 5% or 20% CO(2), with lipopolysaccharide or saline added to the perfusate. Hypercapnia resulted in reduced pulmonary edema, lung stiffness, tumor necrosis factor alpha (TNF-alpha) and interleukin 6 (IL-6) in the lavage and perfusate. The moderately high V(T) did not cause lung injury but increased lavage IL-6 and perfusate IL-6 as well as TNF-alpha. Pulmonary edema and respiratory mechanics improved, possibly as a result of a stretch-induced increase in surfactant turnover. Lipopolysaccharide did not induce significant lung injury. We conclude that hypercapnia exerts a protective effect by modulating inflammation, lung mechanics, and edema. The moderately high V(T) used in this study stimulated inflammation but paradoxically improved edema and lung mechanics with an associated increase in surfactant release.

  10. Apocynin and ebselen reduce influenza A virus-induced lung inflammation in cigarette smoke-exposed mice.

    PubMed

    Oostwoud, L C; Gunasinghe, P; Seow, H J; Ye, J M; Selemidis, S; Bozinovski, S; Vlahos, R

    2016-02-15

    Influenza A virus (IAV) infections are a common cause of acute exacerbations of chronic obstructive pulmonary disease (AECOPD). Oxidative stress is increased in COPD, IAV-induced lung inflammation and AECOPD. Therefore, we investigated whether targeting oxidative stress with the Nox2 oxidase inhibitors and ROS scavengers, apocynin and ebselen could ameliorate lung inflammation in a mouse model of AECOPD. Male BALB/c mice were exposed to cigarette smoke (CS) generated from 9 cigarettes per day for 4 days. On day 5, mice were infected with 1 × 10(4.5) PFUs of the IAV Mem71 (H3N1). BALF inflammation, viral titers, superoxide production and whole lung cytokine, chemokine and protease mRNA expression were assessed 3 and 7 days post infection. IAV infection resulted in a greater increase in BALF inflammation in mice that had been exposed to CS compared to non-smoking mice. This increase in BALF inflammation in CS-exposed mice caused by IAV infection was associated with elevated gene expression of pro-inflammatory cytokines, chemokines and proteases, compared to CS alone mice. Apocynin and ebselen significantly reduced the exacerbated BALF inflammation and pro-inflammatory cytokine, chemokine and protease expression caused by IAV infection in CS mice. Targeting oxidative stress using apocynin and ebselen reduces IAV-induced lung inflammation in CS-exposed mice and may be therapeutically exploited to alleviate AECOPD.

  11. Role of IRE1α/XBP-1 in Cystic Fibrosis Airway Inflammation

    PubMed Central

    Ribeiro, Carla M. P.; Lubamba, Bob A.

    2017-01-01

    Cystic fibrosis (CF) pulmonary disease is characterized by chronic airway infection and inflammation. The infectious and inflamed CF airway environment impacts on the innate defense of airway epithelia and airway macrophages. The CF airway milieu induces an adaptation in these cells characterized by increased basal inflammation and a robust inflammatory response to inflammatory mediators. Recent studies have indicated that these responses depend on activation of the unfolded protein response (UPR). This review discusses the contribution of airway epithelia and airway macrophages to CF airway inflammatory responses and specifically highlights the functional importance of the UPR pathway mediated by IRE1/XBP-1 in these processes. These findings suggest that targeting the IRE1/XBP-1 UPR pathway may be a therapeutic strategy for CF airway disease. PMID:28075361

  12. Reduction of eotaxin production and eosinophil recruitment by pulmonary autologous macrophage transfer in a cockroach allergen-induced asthma model.

    PubMed

    Beal, Dominic R; Stepien, David M; Natarajan, Sudha; Kim, Jiyoun; Remick, Daniel G

    2013-12-01

    We sought to investigate the effects of cockroach allergen (CRA) exposure on the lung macrophage population to determine how different macrophage phenotypes influence exacerbation of disease. CRA exposure caused significantly reduced expression of CD86 on lung macrophages. These effects were not systemic, as peritoneal macrophage CD86 expression was not altered. To investigate whether naïve macrophages could reduce asthma-like pulmonary inflammation, autologous peritoneal macrophages were instilled into the airways 24 h before the final CRA challenge. Pulmonary inflammation was assessed by measurement of airway hyperresponsiveness, mucin production, inflammatory cell recruitment, and cytokine production. Cell transfer did not have significant effects in control mice, nor did it affect pulmonary mucin production or airway hyperresponsiveness in control or CRA-exposed mice. However, there was significant reduction in the number of eosinophils recovered in the bronchoalveolar lavage (BAL) (5.8 × 10⁵ vs. 0.88 × 10⁵), and total cell recruitment to the airways of CRA-exposed mice was markedly reduced (1.1 × 10⁶ vs. 0.57 × 10⁶). The reduced eosinophil recruitment was reflected by substantially lower levels of eosinophil peroxidase in the lung and significantly lower concentrations of eotaxins in BAL (eotaxin 1: 3 pg/ml vs. undetectable; eotaxin 2: 2,383 vs. 131 pg/ml) and lung homogenate (eotaxin 1: 1,043 vs. 218 pg/ml; eotaxin 2: 10 vs. 1.5 ng/ml). We conclude that CRA decreases lung macrophage CD86 expression. Furthermore, supplementation of the lung cell population with peritoneal macrophages inhibits eosinophil recruitment, achieved through reduction of eotaxin production. These data demonstrate that transfer of naïve macrophages will reduce some aspects of asthma-like pulmonary inflammation in response to CRA.

  13. Transesophageal Echocardiographic Assessment of Pulmonary Artery-to-Ascending Aorta Ratio for the Detection of Pulmonary Hypertension in Cardiac Surgical Patients.

    PubMed

    Narendra Kumar, Karthik; Singh, Naveen G; P S, Nagaraja; Patil, Thimmangouda A; N, Manjunath

    2017-10-01

    The objective of the study was to investigate if the main pulmonary artery (mPA)-to-ascending aorta (AscAo), (mPA:AscAo) ratio could serve as a screening tool in identifying pulmonary artery hypertension (PAH). A prospective observational study. Tertiary care center, university hospital. Fifty-four adult patients undergoing off-pump coronary artery bypass grafting surgery (OPCAB). mPA and AscAo transverse diameters were measured by transesophageal echocardiography (TEE) and the mean pulmonary arterial pressures (mPAP) were recorded simultaneously using a pulmonary artery catheter. mPA:AscAo ratio demonstrated significant linear correlation with mPAP measured by pulmonary artery catheterization (ie, r = 0.61, confidence interval [CI] = 0.5352-0.6736, p < 0.0001). Receiver operating characteristic curves were performed to evaluate sensitivity and specificity of mPA:AscAo ratio ≥1 for diagnosing PAH (mPAP ≥25 mmHg). Area under the curve for mPA:AscAo ratio was 0.91 (95% CI, 0.869-0.936, p < 0.0001), with a sensitivity of 84.27%, specificity of 83.92%, positive-predictive value of 87.6% and negative-predictive value of 81.1% for a mPAP ≥25 mmHg. The ratio of mPA:AscAo is a simple, reliable, and reproducible method that can be obtained through TEE, which guides the clinician to screen patients with PAH. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Size effects of latex nanomaterials on lung inflammation in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inoue, Ken-ichiro; Takano, Hirohisa; Yanagisawa, Rie

    Effects of nano-sized materials (nanomaterials) on sensitive population have not been well elucidated. This study examined the effects of pulmonary exposure to (latex) nanomaterials on lung inflammation related to lipopolysaccharide (LPS) or allergen in mice, especially in terms of their size-dependency. In protocol 1, ICR male mice were divided into 8 experimental groups that intratracheally received a single exposure to vehicle, latex nanomaterials (250 {mu}g/animal) with three sizes (25, 50, and 100 nm), LPS (75 {mu}g/animal), or LPS plus latex nanomaterials. In protocol 2, ICR male mice were divided into 8 experimental groups that intratracheally received repeated exposure to vehicle,more » latex nanomaterials (100 {mu}g/animal), allergen (ovalbumin: OVA; 1 {mu}g/animal), or allergen plus latex nanomaterials. In protocol 1, latex nanomaterials with all sizes exacerbated lung inflammation elicited by LPS, showing an overall trend of amplified lung expressions of proinflammatory cytokines. Furthermore, LPS plus nanomaterials, especially with size less than 50 nm, significantly elevated circulatory levels of fibrinogen, macrophage chemoattractant protein-1, and keratinocyte-derived chemoattractant, and von Willebrand factor as compared with LPS alone. The enhancement tended overall to be greater with the smaller nanomaterials than with the larger ones. In protocol 2, latex nanomaterials with all sizes did not significantly enhance the pathophysiology of allergic asthma, characterized by eosinophilic lung inflammation and Igs production, although latex nanomaterials with less than 50 nm significantly induced/enhanced neutrophilic lung inflammation. These results suggest that latex nanomaterials differentially affect two types of (innate and adaptive immunity-dominant) lung inflammation.« less

  15. Detection of pulmonary nodule growth with dose reduced chest tomosynthesis: a human observer study using simulated nodules

    NASA Astrophysics Data System (ADS)

    Söderman, Christina; Johnsson, Ã. se; Vikgren, Jenny; Rossi Norrlund, Rauni; Molnar, David; Mirzai, Maral; Svalkvist, Angelica; Mânsson, Lars Gunnar; Bâth, Magnus

    2016-03-01

    Chest tomosynthesis may be a suitable alternative to computed tomography for the clinical task of follow up of pulmonary nodules. The aim of the present study was to investigate the detection of pulmonary nodule growth suggestive of malignancy using chest tomosynthesis. Previous studies have indicated remained levels of detection of pulmonary nodules at dose levels corresponding to that of a conventional lateral radiograph, approximately 0.04 mSv, which motivated to perform the present study this dose level. Pairs of chest tomosynthesis image sets, where the image sets in each pair were acquired of the same patient at two separate occasions, were included in the study. Simulated nodules with original diameters of approximately 8 mm were inserted in the pairs of image sets, simulating situations where the nodule had remained stable in size or increased isotropically in size between the two different imaging occasions. Four different categories of nodule growth were included, corresponding to a volume increase of approximately 21 %, 68 %, 108 % and 250 %. All nodules were centered in the depth direction in the tomosynthesis images. All images were subjected to a simulated dose reduction, resulting in images corresponding to an effective dose of 0.04 mSv. Four observers were given the task of rating their confidence that the nodule was stable in size or not on a five-level rating scale. This was done both before any size measurements were made of the nodule as well as after measurements were performed. Using Receiver operating characteristic analysis, the rating data for the nodules that were stable in size was compared to the rating data for the nodules simulated to have increased in size. Statistically significant differences between the rating distributions for the stable nodules and all of the four nodule growth categories were found. For the three largest nodule growths, nearly perfect detection of nodule growth was seen. In conclusion, the present study

  16. Fluoxetine protects against methamphetamine‑induced lung inflammation by suppressing oxidative stress through the SERT/p38 MAPK/Nrf2 pathway in rats.

    PubMed

    Wang, Yun; Gu, Yu-Han; Liu, Ming; Bai, Yang; Wang, Huai-Liang

    2017-02-01

    Methamphetamine (MA) abuse is a major public health and safety concern throughout the world and a growing burden on healthcare costs. The purpose of the present study was to investigate the protective effect of fluoxetine against MA‑induced chronic pulmonary inflammation and to evaluate the potential role of nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated antioxidative stress. Wistar rats were divided into control, MA and two fluoxetine‑treated groups. Rats in the MA and the two fluoxetine‑treated groups were treated daily with intraperitoneal injection of 10 mg/kg MA twice daily. Rats in the two fluoxetine‑treated groups were injected intragastrically with fluoxetine (2 and 10 mg/kg) once daily, respectively. After 5 weeks, the rats were euthanized and hematoxylin and eosin staining, immunohistochemistry, western blot analysis and redox assay were performed. It was demonstrated that chronic exposure to MA can induce pulmonary inflammation in rats, with the symptoms of inflammatory cell infiltration, crowded lung parenchyma, thickened septum and a reduced number of alveolar sacs. Fluoxetine attenuated pulmonary inflammation and the expression of interleukin‑6 and tumor necrosis factor‑α in rat lungs. Fluoxetine inhibited MA‑induced increases in the expression levels of serotonin transporter (SERT) and p‑p38 mitogen‑activated protein kinase (MAPK), and reversed the MA‑induced decrease in nuclear Nrf2 and human heme oxygenase‑1 in lungs. Fluoxetine at 10 mg/kg significantly reversed the reduced glutathione (GSH) level, the ratio of GSH/oxidized glutathione, and the reactive oxygen species level in rat lungs from the MA group. These findings suggested that fluoxetine, a SERT inhibitor, has a protective effect against MA‑induced lung inflammation by suppressing oxidative stress through the SERT/p38 MAPK/Nrf2 pathway in rats.

  17. Evaluation of meteorological and epidemiological characteristics of fatal pulmonary embolism

    NASA Astrophysics Data System (ADS)

    Törő, Klára; Pongrácz, Rita; Bartholy, Judit; Váradi-T, Aletta; Marcsa, Boglárka; Szilágyi, Brigitta; Lovas, Attila; Dunay, György; Sótonyi, Péter

    2016-03-01

    The objective of the present study was to identify risk factors among epidemiological factors and meteorological conditions in connection with fatal pulmonary embolism. Information was collected from forensic autopsy records in sudden unexpected death cases where pulmonary embolism was the exact cause of death between 2001 and 2010 in Budapest. Meteorological parameters were detected during the investigated period. Gender, age, manner of death, cause of death, place of death, post-mortem pathomorphological changes and daily meteorological conditions (i.e. daily mean temperature and atmospheric pressure) were examined. We detected that the number of registered pulmonary embolism (No 467, 211 male) follows power law in time regardless of the manner of death. We first described that the number of registered fatal pulmonary embolism up to the nth day can be expressed as Y( n) = α ṡ n β where Y denotes the number of fatal pulmonary embolisms up to the nth day and α > 0 and β > 1 are model parameters. We found that there is a definite link between the cold temperature and the increasing incidence of fatal pulmonary embolism. Cold temperature and the change of air pressure appear to be predisposing factors for fatal pulmonary embolism. Meteorological parameters should have provided additional information about the predisposing factors of thromboembolism.

  18. The development of a pseudo-chamber after balloon pulmonary angioplasty: long-term complications of balloon pulmonary angioplasty.

    PubMed

    Sugiyama, Hisashi; Kise, Hiroaki; Toda, Takako; Hoshiai, Minako

    2016-11-01

    We experienced a rare complication where extravasation developed a pseudo-chamber long after the balloon pulmonary angioplasty for supravalvular pulmonary stenosis. A 3-month-old girl was diagnosed with an anomalous origin of the left coronary artery from the pulmonary artery. She underwent the Takeuchi procedure at 10 months of age. During the follow-up, the supravalvular pulmonary stenosis deteriorated, and was treated by balloon pulmonary angioplasty with the double balloon technique catheter at 6 years of age. Angiography at the main pulmonary artery showed a small amount of extravasation contrast medium after the procedure. Follow-up echocardiography showed a diminished extravasation hemorrhage. Twelve years later, right ventricular enlargement due to pulmonary regurgitation had been observed on echocardiography. In addition, abnormal echo free space was detected at the left posterior of the left atrium. Enhanced computed tomography clearly demonstrated there was an orifice and extent of the pseudo-chamber. Surgical findings revealed a large tear just distal to the coronary tunnel. We speculated that extravasation blood was limited in the perivascular area early after the procedure but eventually reached the non-adhesive oblique pericardial sinus with age. Consequently, pulmonary to oblique pericardial sinus communication was established and looked like a pseudo-chamber long after the procedure. In conclusion, even if extravasation seems to be limited immediately after the balloon pulmonary angioplasty, it could expand for non-adhesive space and could develop a huge blood space like chamber. Long-term careful observation should be necessary for extravasation of pulmonary artery even with surgical adhesion.

  19. The Unfolded Protein Response in Chronic Obstructive Pulmonary Disease

    PubMed Central

    2016-01-01

    Accumulation of nonfunctional and potentially cytotoxic, misfolded proteins in chronic obstructive pulmonary disease (COPD) is believed to contribute to lung cell apoptosis, inflammation, and autophagy. Because of its fundamental role as a quality control system in protein metabolism, the “unfolded protein response” (UPR) is of potential importance in the pathogenesis of COPD. The UPR comprises a series of transcriptional, translational, and post-translational processes that decrease protein synthesis while enhancing protein folding capacity and protein degradation. Several studies have suggested that the UPR contributes to lung cell apoptosis and lung inflammation in at least some subjects with human COPD. However, information on the prevalence of the UPR in subjects with COPD, the lung cells that manifest a UPR, and the role of the UPR in the pathogenesis of COPD is extremely limited and requires additional study. PMID:27115948

  20. The Unfolded Protein Response in Chronic Obstructive Pulmonary Disease.

    PubMed

    Kelsen, Steven G

    2016-04-01

    Accumulation of nonfunctional and potentially cytotoxic, misfolded proteins in chronic obstructive pulmonary disease (COPD) is believed to contribute to lung cell apoptosis, inflammation, and autophagy. Because of its fundamental role as a quality control system in protein metabolism, the "unfolded protein response" (UPR) is of potential importance in the pathogenesis of COPD. The UPR comprises a series of transcriptional, translational, and post-translational processes that decrease protein synthesis while enhancing protein folding capacity and protein degradation. Several studies have suggested that the UPR contributes to lung cell apoptosis and lung inflammation in at least some subjects with human COPD. However, information on the prevalence of the UPR in subjects with COPD, the lung cells that manifest a UPR, and the role of the UPR in the pathogenesis of COPD is extremely limited and requires additional study.

  1. Detection of Pneumocystis jirovecii by nested PCR in HIV-negative patients with pulmonary disease.

    PubMed

    Santos, Cristina Rodrigues; de Assis, Ângela M; Luz, Edson A; Lyra, Luzia; Toro, Ivan F; Seabra, José Claudio C; Daldin, Dira H; Marcalto, Tathiane U; Galasso, Marcos T; Macedo, Ronaldo F; Schreiber, Angélica Z; Aoki, Francisco H

    Nested PCR can be used to determine the status of Pneumocystis jirovecii infection in other lung diseases. This study sought to detect a target DNA fragment (mitochondrial large subunit rRNA or mtL SUrRNA) of P. jirovecii in patients with lung disease who underwent bronchoscopy with collection of bronchoalveolar lavage (BAL). The results from toluidine blue staining were compared with those obtained using molecular methods that included an "in house" DNA extraction procedure, PCR and nested PCR. Fifty-five BAL samples from patients with atypical chest X-rays were screened for P. jirovecii. None of the samples was positive for P. jirovecii using toluidine blue staining. In contrast, P. jirovecii DNA was detected by nested PCR in BAL samples from 36 of 55 patients (65.5%). The lung diseases in the patients included cancer, pneumonia, tuberculosis, and chronic obstructive pulmonary disease (COPD). Other chronic problems in the patients included hypertension, diabetes, smoking, and alcoholism. Nested PCR showed high sensitivity for detecting P. jirovecii, especially when compared with toluidine blue staining. Using this method, P. jirovecii infection was detected in HIV-negative patients with lung disease. Copyright © 2016 Asociación Española de Micología. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. A deep 3D residual CNN for false-positive reduction in pulmonary nodule detection.

    PubMed

    Jin, Hongsheng; Li, Zongyao; Tong, Ruofeng; Lin, Lanfen

    2018-05-01

    The automatic detection of pulmonary nodules using CT scans improves the efficiency of lung cancer diagnosis, and false-positive reduction plays a significant role in the detection. In this paper, we focus on the false-positive reduction task and propose an effective method for this task. We construct a deep 3D residual CNN (convolution neural network) to reduce false-positive nodules from candidate nodules. The proposed network is much deeper than the traditional 3D CNNs used in medical image processing. Specifically, in the network, we design a spatial pooling and cropping (SPC) layer to extract multilevel contextual information of CT data. Moreover, we employ an online hard sample selection strategy in the training process to make the network better fit hard samples (e.g., nodules with irregular shapes). Our method is evaluated on 888 CT scans from the dataset of the LUNA16 Challenge. The free-response receiver operating characteristic (FROC) curve shows that the proposed method achieves a high detection performance. Our experiments confirm that our method is robust and that the SPC layer helps increase the prediction accuracy. Additionally, the proposed method can easily be extended to other 3D object detection tasks in medical image processing. © 2018 American Association of Physicists in Medicine.

  3. Sarcopenic Obesity, Functional Outcomes, and Systemic Inflammation in Patients With Chronic Obstructive Pulmonary Disease.

    PubMed

    Joppa, Pavol; Tkacova, Ruzena; Franssen, Frits M E; Hanson, Corrine; Rennard, Stephen I; Silverman, Edwin K; McDonald, Merry-Lynn N; Calverley, Peter M A; Tal-Singer, Ruth; Spruit, Martijn A; Kenn, Klaus; Wouters, Emiel F M; Rutten, Erica P A

    2016-08-01

    Both loss of muscle mass (ie, sarcopenia) and obesity adversely impact clinically important outcomes in patients with chronic obstructive pulmonary disease (COPD). Currently, there are only a few studies in patients with COPD with sarcopenia and concurrent obesity, termed sarcopenic obesity (SO). To explore the effects of SO on exercise capacity, health status, and systemic inflammation in COPD. Baseline data collected from a total of 2548 participants (2000 patients with COPD, mean age (SD), 63.5 (7.1) years; and 548 controls, 54.8 (9.0) years) from ECLIPSE (Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints) study, a multicenter longitudinal observational study, were used. All participants were divided into 4 body composition phenotypes using bioelectrical impedance analysis: (1) normal body composition, (2) obesity, (3) sarcopenia, and (4) SO. In patients with COPD, the 6-minute walking distance, disease-specific health status, and plasma inflammatory markers were compared among the respective body composition groups. Patients with COPD were 3 times more likely to present with SO compared with controls without COPD (odds ratio [OR] 3.3, 95% confidence interval [CI] 2.0-5.4, P < .001). In patients with COPD, SO was related to reduced 6-minute walking distance (-28.0 m, 95% CI -45.6 to -10.4), P < .01) and to higher systemic inflammatory burden (an elevation of at least 2 inflammatory markers, OR 1.6, 95% CI 1.1-2.5, P = .028) compared with the normal body composition group after adjustments for age, sex, smoking, body mass index, and airflow limitation. Our findings suggest that SO is associated with worse physical performance and higher systemic inflammatory burden compared with other body composition phenotypes in patients with COPD. ClinicalTrials.gov no. NCT00292552. Copyright © 2016 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.

  4. [Study on pulmonary lesions in which nontuberculous mycobacteria were detected by percutaneous aspiration--a proposal to add "culture positivity of percutaneous aspiration material" to the bacteriological diagnostic criteria of pulmonary nontuberculous mycobacterial diseases].

    PubMed

    Nakahara, Yasuharu; Mochizuki, Yoshiro; Kawamura, Tetsuji; Sasaki, Shin; Morimoto, Akie; Mizumori, Yasuyuki; Tsukamoto, Hiroaki; Watanabe, Etsuko; Yokoyama, Toshihide

    2013-03-01

    Culture positivity of percutaneous aspiration material" is not included in the current bacteriological criteria for diagnosis of pulmonary nontuberculous mycobacterial (NTM) diseases, which were published by the Infectious Diseases Society of America (IDSA)/American Thoracic Society (ATS) in 2007 or those released by the Japanese Society for Tuberculosis in 2008. However, percutaneous aspiration is a reliable technique for the detection of causative microorganisms isolated from the focus of infection. We discuss the benefits of including positive culture of percutaneous aspiration material in the bacteriological diagnostic criteria of pulmonary NTM diseases. We reviewed the radiological images and clinical courses of pulmonary diseases in which NTM cultures were obtained from percutaneously aspirated materials at our hospital from 1991 to 2011. Aspiration was carried out under local anesthesia, usually with fluoroscopic guidance. After percutaneous insertion of a 22-gauge needle attached to a 20-mL syringe containing about 3 mL of saline, the lesion specimen was withdrawn together with the saline. After the needle was pulled out, the aspirated material and saline were transferred to test tubes for cytological and microbiological examinations. In patients with thin-walled cavitary lesions, saline was injected into the cavity and then aspirated. Percutaneous aspiration was performed in 2,742 patients and NTM disease was detected in 51 patients. Of these 51 patients, 12 had solitary nodular lesions, and in many of these patients, no NTM bacilli could be detected in the sputa or bronchial washing specimens. Mycobacterium avium was identified in 10 of the 12 cases. Four of these 10 patients were followed up after their diagnosis without any treatment: 3 showed spontaneous reduction in lesion size, while 1 patient's condition remained unchanged. Four of the remaining 6 cases were treated with anti-NTM medications, and lesion size reduced in 2 cases, while no change or

  5. Investigating the value of right heart echocardiographic metrics for detection of pulmonary hypertension in patients with advanced lung disease.

    PubMed

    Amsallem, Myriam; Boulate, David; Kooreman, Zoe; Zamanian, Roham T; Fadel, Guillaume; Schnittger, Ingela; Fadel, Elie; McConnell, Michael V; Dhillon, Gundeep; Mercier, Olaf; Haddad, François

    2017-06-01

    This study determined whether novel right heart echocardiography metrics help to detect pulmonary hypertension (PH) in patients with advanced lung disease (ALD). We reviewed echocardiography and catheterization data of 192 patients from the Stanford ALD registry and echocardiograms of 50 healthy controls. Accuracy of echocardiographic right heart metrics to detect PH was assessed using logistic regression and area under the ROC curves (AUC) analysis. Patients were divided into a derivation (n = 92) and validation cohort (n = 100). Experimental validation was assessed in a piglet model of mild PH followed longitudinally. Tricuspid regurgitation (TR) was not interpretable in 52% of patients. In the derivation cohort, right atrial maximal volume index (RAVI), ventricular end-systolic area index (RVESAI), free-wall longitudinal strain and tricuspid annular plane systolic excursion (TAPSE) differentiated patients with and without PH; 20% of patients without PH had moderate to severe RV enlargement by RVESAI. On multivariate analysis, RAVI and TAPSE were independently associated with PH (AUC = 0.77, p < 0.001), which was confirmed in the validation cohort (0.78, p < 0.001). Presence of right heart metrics abnormalities did not improve detection of PH in patients with interpretable TR (p > 0.05) and provided moderate detection value in patients without TR. Only two patients with more severe PH (mean pulmonary pressure 35 and 36 mmHg) were missed. The animal model confirmed that right heart enlargement discriminated best pigs with PH from shams. This study highlights the frequency of right heart enlargement and dysfunction in ALD irrespectively from presence of PH, therefore limiting their use for detection of PH.

  6. DW MRI at 3.0 T versus FDG PET/CT for detection of malignant pulmonary tumors.

    PubMed

    Zhang, Jian; Cui, Long-Biao; Tang, Xing; Ren, Xin-Ling; Shi, Jie-Ran; Yang, Hai-Nan; Zhang, Yan; Li, Zhi-Kui; Wu, Chang-Gui; Jian, Wen; Zhao, Feng; Ti, Xin-Yu; Yin, Hong

    2014-02-01

    Emerging evidence suggests that diffusion-weighted magnetic resonance imaging (DW MRI) could be useful for tumor detection with N and M staging of lung cancer in place of fluorine 18 fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT). DW MRI at 3.0 T and FDG PET/CT were performed before therapy in 113 patients with pulmonary nodules. Mean apparent diffusion coefficient (ADC), maximal standardized uptake value (SUVmax ) and Ki-67 scores were assessed. Quantitatively, specificity and accuracy of ADC (91.7 and 92.9%, respectively) were significantly higher than those of SUVmax (66.7 and 77.9% respectively, p < 0.05), although sensitivity was not significantly different between them (93.5 and 83.1%, p > 0.05). Qualitatively, sensitivity, specificity and accuracy of DW MRI (96.1, 83.3 and 92.0%, respectively) were also not significantly different from that of FDG PET/CT (88.3, 83.3 and 86.7%, respectively, p > 0.05). Significant negative correlation was found between Ki-67 score and ADC (r = -0.66, p < 0.05), ADC and SUVmax (r = -0.37, p < 0.05), but not between Ki-67 score and SUVmax (r = -0.11, p > 0.05). In conclusion, quantitative and qualitative assessments for detection of malignant pulmonary tumors with DW MRI at 3.0 T are superior to those with FDG PET/CT. Furthermore, ADC could predict the malignancy of lung cancer. © 2013 UICC.

  7. Pathway focused protein profiling indicates differential function for IL-1B, -18 and VEGF during initiation and resolution of lung inflammation evoked by carbon nanoparticle exposure in mice

    PubMed Central

    2009-01-01

    Background Carbonaceous nanoparticles possess an emerging source of human exposure due to the massive release of combustion products and the ongoing revolution in nanotechnology. Pulmonary inflammation caused by deposited nanoparticles is central for their adverse health effects. Epidemiological studies suggest that individuals with favourable lung physiology are at lower risk for particulate matter associated respiratory diseases probably due to efficient control of inflammation and repair process. Therefore we selected a mouse strain C3H/HeJ (C3) with robust lung physiology and exposed it to moderately toxic carbon nanoparticles (CNP) to study the elicited pulmonary inflammation and its resolution. Methods 5 μg, 20 μg and 50 μg CNP were intratracheally (i.t.) instilled in C3 mice to identify the optimal dose for subsequent time course studies. Pulmonary inflammation was assessed using histology, bronchoalveolar lavage (BAL) analysis and by a panel of 62 protein markers. Results 1 day after instillation of CNP, C3 mice exhibited a typical dose response, with the lowest dose (5 μg) representing the 'no effect level' as reflected by polymorphonuclear leucocyte (PMN), and BAL/lung concentrations of pro-inflammatory proteins. Histological analysis and BAL-protein concentration did not reveal any evidence of tissue injury in 20 μg CNP instilled animals. Accordingly time course assessment of the inflammatory response was performed after 3 and 7 days with this dose (20 μg). Compared to day 1, BAL PMN counts were significantly decreased at day 3 and completely returned to normal by day 7. We have identified protein markers related to the acute response and also to the time dependent response in lung and BAL. After complete resolution of PMN influx on day 7, we detected elevated concentrations of 20 markers that included IL1B, IL18, FGF2, EDN1, and VEGF in lung and/or BAL. Biological pathway analysis revealed these factors to be involved in a closely regulated

  8. Signal transduction in the development of pulmonary arterial hypertension

    PubMed Central

    Malenfant, Simon; Neyron, Anne-Sophie; Paulin, Roxane; Potus, François; Meloche, Jolyane; Provencher, Steeve; Bonnet, Sébastien

    2013-01-01

    Pulmonary arterial hypertension (PAH) is a unique disease. Properly speaking, it is not a disease of the lung. It can be seen more as a microvascular disease occurring mainly in the lungs and affecting the heart. At the cellular level, the PAH paradigm is characterized by inflammation, vascular tone imbalance, pulmonary arterial smooth muscle cell proliferation and resistance to apoptosis and the presence of in situ thrombosis. At a clinical level, the aforementioned abnormal vascular properties alter physically the pulmonary circulation and ventilation, which greatly influence the right ventricle function as it highly correlates with disease severity. Consequently, right heart failure remains the principal cause of death within this cohort of patients. While current treatment modestly improve patients’ conditions, none of them are curative and, as of today, new therapies are lacking. However, the future holds potential new therapies that might have positive influence on the quality of life of the patient. This article will first review the clinical presentation of the disease and the different molecular pathways implicated in the pathobiology of PAH. The second part will review tomorrow's future putative therapies for PAH. PMID:24015329

  9. Transcriptome of Cultured Lung Fibroblasts in Idiopathic Pulmonary Fibrosis: Meta-Analysis of Publically Available Microarray Datasets Reveals Repression of Inflammation and Immunity Pathways.

    PubMed

    Plantier, Laurent; Renaud, Hélène; Respaud, Renaud; Marchand-Adam, Sylvain; Crestani, Bruno

    2016-12-13

    Heritable profibrotic differentiation of lung fibroblasts is a key mechanism of idiopathic pulmonary fibrosis (IPF). Its mechanisms are yet to be fully understood. In this study, individual data from four independent microarray studies comparing the transcriptome of fibroblasts cultured in vitro from normal (total n = 20) and IPF (total n = 20) human lung were compiled for meta-analysis following normalization to z-scores. One hundred and thirteen transcripts were upregulated and 115 were downregulated in IPF fibroblasts using the Significance Analysis of Microrrays algorithm with a false discovery rate of 5%. Downregulated genes were highly enriched for Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional classes related to inflammation and immunity such as Defense response to virus, Influenza A, tumor necrosis factor (TNF) mediated signaling pathway, interferon-inducible absent in melanoma2 (AIM2) inflammasome as well as Apoptosis. Although upregulated genes were not enriched for any functional class, select factors known to play key roles in lung fibrogenesis were overexpressed in IPF fibroblasts, most notably connective tissue growth factor ( CTGF ) and serum response factor ( SRF ), supporting their role as drivers of IPF. The full data table is available as a supplement.

  10. A Lethal Disease Model for Hantavirus Pulmonary Syndrome in Immunosuppressed Syrian Hamsters Infected with Sin Nombre Virus

    PubMed Central

    Brocato, Rebecca L.; Hammerbeck, Christopher D.; Bell, Todd M.; Wells, Jay B.; Queen, Laurie A.

    2014-01-01

    Sin Nombre virus (SNV) is a rodent-borne hantavirus that causes hantavirus pulmonary syndrome (HPS) predominantly in North America. SNV infection of immunocompetent hamsters results in an asymptomatic infection; the only lethal disease model for a pathogenic hantavirus is Andes virus (ANDV) infection of Syrian hamsters. Efforts to create a lethal SNV disease model in hamsters by repeatedly passaging virus through the hamster have demonstrated increased dissemination of the virus but no signs of disease. In this study, we demonstrate that immunosuppression of hamsters through the administration of a combination of dexamethasone and cyclophosphamide, followed by infection with SNV, results in a vascular leak syndrome that accurately mimics both HPS disease in humans and ANDV infection of hamsters. Immunosuppressed hamsters infected with SNV have a mean number of days to death of 13 and display clinical signs associated with HPS, including pulmonary edema. Viral antigen was widely detectable throughout the pulmonary endothelium. Histologic analysis of lung sections showed marked inflammation and edema within the alveolar septa of SNV-infected hamsters, results which are similar to what is exhibited by hamsters infected with ANDV. Importantly, SNV-specific neutralizing polyclonal antibody administered 5 days after SNV infection conferred significant protection against disease. This experiment not only demonstrated that the disease was caused by SNV, it also demonstrated the utility of this animal model for testing candidate medical countermeasures. This is the first report of lethal disease caused by SNV in an adult small-animal model. PMID:24198421

  11. A lethal disease model for hantavirus pulmonary syndrome in immunosuppressed Syrian hamsters infected with Sin Nombre virus.

    PubMed

    Brocato, Rebecca L; Hammerbeck, Christopher D; Bell, Todd M; Wells, Jay B; Queen, Laurie A; Hooper, Jay W

    2014-01-01

    Sin Nombre virus (SNV) is a rodent-borne hantavirus that causes hantavirus pulmonary syndrome (HPS) predominantly in North America. SNV infection of immunocompetent hamsters results in an asymptomatic infection; the only lethal disease model for a pathogenic hantavirus is Andes virus (ANDV) infection of Syrian hamsters. Efforts to create a lethal SNV disease model in hamsters by repeatedly passaging virus through the hamster have demonstrated increased dissemination of the virus but no signs of disease. In this study, we demonstrate that immunosuppression of hamsters through the administration of a combination of dexamethasone and cyclophosphamide, followed by infection with SNV, results in a vascular leak syndrome that accurately mimics both HPS disease in humans and ANDV infection of hamsters. Immunosuppressed hamsters infected with SNV have a mean number of days to death of 13 and display clinical signs associated with HPS, including pulmonary edema. Viral antigen was widely detectable throughout the pulmonary endothelium. Histologic analysis of lung sections showed marked inflammation and edema within the alveolar septa of SNV-infected hamsters, results which are similar to what is exhibited by hamsters infected with ANDV. Importantly, SNV-specific neutralizing polyclonal antibody administered 5 days after SNV infection conferred significant protection against disease. This experiment not only demonstrated that the disease was caused by SNV, it also demonstrated the utility of this animal model for testing candidate medical countermeasures. This is the first report of lethal disease caused by SNV in an adult small-animal model.

  12. Pulmonary cytomegalovirus infection: detection by Gallium-67 imaging in the transplant patient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamed, I.A.; Wenzl, J.E.; Leonard, J.C.

    1979-03-01

    Cytomegalovirus (CMV) infection is a frequent complication during the first few months following renal transplantation. The diagnosis is sometimes difficult but may be made by viral culture, a fourfold rise in the CMV antibody titer, or by demonstration of the CMV inclusions in the affected tissue. An increased pulmonary uptake of gallium citrate Ga 67 has been demonstrated following renal transplantation in two patients, each of whom had a fourfold rise in CMV complement fixing antibody titer, one of whom additionally had CMV inclusion bodies in a lung biopsy specimen prior to clinical or radiological demonstration of the pulmonary involvement.more » Gallium imaging, therefore, appears to be a valuable noninvasive test for early diagnosis of CMV pulmonary infections.« less

  13. Pulmonary hypertension

    MedlinePlus

    Pulmonary arterial hypertension; Sporadic primary pulmonary hypertension; Familial primary pulmonary hypertension; Idiopathic pulmonary arterial hypertension; Primary pulmonary hypertension; PPH; Secondary pulmonary ...

  14. Magnetic resonance enterography has good inter-rater agreement and diagnostic accuracy for detecting inflammation in pediatric Crohn disease.

    PubMed

    Church, Peter C; Greer, Mary-Louise C; Cytter-Kuint, Ruth; Doria, Andrea S; Griffiths, Anne M; Turner, Dan; Walters, Thomas D; Feldman, Brian M

    2017-05-01

    signs and wPCDAI was higher than with CRP. AUC was highest (≥0.75) for ulcers, wall enhancement, wall thickening, wall T2 hyperintensity and wall DWI hyperintensity. Some MRE signs had good inter-rater agreement and AUC for detection of inflammation in children with Crohn disease.

  15. Differential Response to Exercise in African Americans with High Levels of Inflammation.

    PubMed

    Kretzschmar, Jan; Babbitt, Dianne M; Diaz, Keith M; Feairheller, Deborah L; Sturgeon, Kathleen M; Perkins-Ball, Amanda M; Williamson, Sheara T; Ling, Chenyi; Grimm, Heather; Brown, Michael D

    2017-01-01

    Systemic inflammation, measured by C-reactive protein (CRP), is an important risk factor for cardiovascular disease (CVD) and mortality. We investigated whether aerobic exercise training (AEXT) affects African Americans with high inflammation (HI) the same way it does African Americans with low inflammation (LI) in terms of CVD risk factors. 23 African Americans with CRP levels <3 mg/L (LI) and 14 African Americans with CRP ≥3 mg/L (HI) underwent six months of AEXT. Participants were sedentary, non-diabetic, non-smoking, with clinical blood pressure <160/100 mm Hg, were non-hyperlipidemic, had no signs of cardiovascular, renal, or pulmonary disease, and were not on medication. Measures included CD62E+ endothelial microparticles (EMPs), a measure of early stage endothelial dysfunction, as well as lipid and glucose profile, aerobic fitness, body composition, and blood pressure. The LI group improved aerobic fitness by 10%, body mass index by 3%, and plasma triglycerides by 20%, with no change being observed in HI group for these variables. The HI group improved fasting plasma glucose levels by 10%, with no change occurring in the LI group. Both groups improved CD62E+ EMPs by 38% and 59% for the LI and HI group, respectively. A standard AEXT intervention differentially affected CVD risk factors among African Americans with high and low inflammation. This may indicate that, in African Americans with high inflammation, AEXT alone may not be enough to reap the same benefits as their low-inflammation peers in terms of CVD risk modification.

  16. Evaluation of chest tomosynthesis for the detection of pulmonary nodules: effect of clinical experience and comparison with chest radiography

    NASA Astrophysics Data System (ADS)

    Zachrisson, Sara; Vikgren, Jenny; Svalkvist, Angelica; Johnsson, Åse A.; Boijsen, Marianne; Flinck, Agneta; Månsson, Lars Gunnar; Kheddache, Susanne; Båth, Magnus

    2009-02-01

    Chest tomosynthesis refers to the technique of collecting low-dose projections of the chest at different angles and using these projections to reconstruct section images of the chest. In this study, a comparison of chest tomosynthesis and chest radiography in the detection of pulmonary nodules was performed and the effect of clinical experience of chest tomosynthesis was evaluated. Three senior thoracic radiologists, with more than ten years of experience of chest radiology and 6 months of clinical experience of chest tomosynthesis, acted as observers in a jackknife free-response receiver operating characteristics (JAFROC-1) study, performed on 42 patients with and 47 patients without pulmonary nodules examined with both chest tomosynthesis and chest radiography. MDCT was used as reference and the total number of nodules found using MDCT was 131. To investigate the effect of additional clinical experience of chest tomosynthesis, a second reading session of the tomosynthesis images was performed one year after the initial one. The JAFROC-1 figure of merit (FOM) was used as the principal measure of detectability. In comparison with chest radiography, chest tomosynthesis performed significantly better with regard to detectability. The observer-averaged JAFROC-1 FOM was 0.61 for tomosynthesis and 0.40 for radiography, giving a statistically significant difference between the techniques of 0.21 (p<0.0001). The observer-averaged JAFROC-1 FOM of the second reading of the tomosynthesis cases was not significantly higher than that of the first reading, indicating no improvement in detectability due to additional clinical experience of tomosynthesis.

  17. Targeting the renin-angiotensin system as novel therapeutic strategy for pulmonary diseases.

    PubMed

    Tan, Wan Shun Daniel; Liao, Wupeng; Zhou, Shuo; Mei, Dan; Wong, Wai-Shiu Fred

    2017-12-27

    The renin-angiotensin system (RAS) plays a major role in regulating electrolyte balance and blood pressure. RAS has also been implicated in the regulation of inflammation, proliferation and fibrosis in pulmonary diseases such as asthma, acute lung injury (ALI), chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF) and pulmonary arterial hypertension (PAH). Current therapeutics suffer from some drawbacks like steroid resistance, limited efficacies and side effects. Novel intervention is definitely needed to offer optimal therapeutic strategy and clinical outcome. This review compiles and analyses recent investigations targeting RAS for the treatment of inflammatory lung diseases. Inhibition of the upstream angiotensin (Ang) I/Ang II/angiotensin receptor type 1 (AT 1 R) pathway and activation of the downstream angiotensin-converting enzyme 2 (ACE2)/Ang (1-7)/Mas receptor pathway are two feasible strategies demonstrating efficacies in various pulmonary disease models. More recent studies favor the development of targeting the downstream ACE2/Ang (1-7)/Mas receptor pathway, in which diminazene aceturate, an ACE2 activator, GSK2586881, a recombinant ACE2, and AV0991, a Mas receptor agonist, showed much potential for further development. As the pathogenesis of pulmonary diseases is so complex that RAS modulation may be used alone or in combination with existing drugs like corticosteroids, pirfenidone/nintedanib or endothelin receptor antagonists for different pulmonary diseases. Personalized medicine through genetic screening and phenotyping for angiotensinogen or ACE would aid treatment especially for non-responsive patients. This review serves to provide an update on the latest development in the field of RAS targeting for pulmonary diseases, and offer some insights into future direction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Immune-regulating effects of exercise on cigarette smoke-induced inflammation

    PubMed Central

    Madani, Ashkan; Alack, Katharina; Richter, Manuel Jonas; Krüger, Karsten

    2018-01-01

    Long-term cigarette smoking (LTCS) represents an important risk factor for cardiac infarction and stroke and the central risk factor for the development of a bronchial carcinoma, smoking-associated interstitial lung fibrosis, and chronic obstructive pulmonary disease. The pathophysiologic development of these diseases is suggested to be promoted by chronic and progressive inflammation. Cigarette smoking induces repetitive inflammatory insults followed by a chronic and progressive activation of the immune system. In the pulmonary system of cigarette smokers, oxidative stress, cellular damage, and a chronic activation of pattern recognition receptors are described which are followed by the translocation of the NF-kB, the release of pro-inflammatory cytokines, chemokines, matrix metalloproteases, and damage-associated molecular patterns. In parallel, smoke pollutants cross directly through the alveolus–capillary interface and spread through the systemic bloodstream targeting different organs. Consequently, LTCS induces a systemic low-grade inflammation and increased oxidative stress in the vascular system. In blood, these processes promote an increased coagulation and endothelial dysfunction. In muscle tissue, inflammatory processes activate catabolic signaling pathways followed by muscle wasting and sarcopenia. In brain, several characteristics of neuroinflammation were described. Regular exercise training has been shown to be an effective nonpharmacological treatment strategy in smoke-induced pulmonary diseases. It is well established that exercise training exerts immune-regulating effects by activating anti-inflammatory signaling pathways. In this regard, the release of myokines from contracting skeletal muscle, the elevations of cortisol and adrenalin, the reduced expression of Toll-like receptors, and the increased mobilization of immune-regulating leukocyte subtypes might be of vital importance. Exercise training also increases the local and systemic

  19. Pulmonary Morbidity in Infancy after Exposure to Chorioamnionitis in Late Preterm Infants.

    PubMed

    McDowell, Karen M; Jobe, Alan H; Fenchel, Matthew; Hardie, William D; Gisslen, Tate; Young, Lisa R; Chougnet, Claire A; Davis, Stephanie D; Kallapur, Suhas G

    2016-06-01

    Chorioamnionitis is an important cause of preterm birth, but its impact on postnatal outcomes is understudied. To evaluate whether fetal exposure to inflammation is associated with adverse pulmonary outcomes at 6 to 12 months' chronological age in infants born moderate to late preterm. Infants born between 32 and 36 weeks' gestational age were prospectively recruited (N = 184). Chorioamnionitis was diagnosed by placenta and umbilical cord histology. Select cytokines were measured in samples of cord blood. Validated pulmonary questionnaires were administered (n = 184), and infant pulmonary function testing was performed (n = 69) between 6 and 12 months' chronological age by the raised volume rapid thoracoabdominal compression technique. A total of 25% of participants had chorioamnionitis. Although infant pulmonary function testing variables were lower in infants born preterm compared with historical normative data for term infants, there were no differences between infants with chorioamnionitis (n = 20) and those without (n = 49). Boys and black infants had lower infant pulmonary function testing measurements than girls and white infants, respectively. Chorioamnionitis exposure was associated independently with wheeze (odds ratio [OR], 2.08) and respiratory-related physician visits (OR, 3.18) in the first year of life. Infants exposed to severe chorioamnionitis had increased levels of cord blood IL-6 and greater pulmonary morbidity at age 6 to 12 months than those exposed to mild chorioamnionitis. Elevated IL-6 was associated with significantly more respiratory problems (OR, 3.23). In infants born moderate or late preterm, elevated cord blood IL-6 and exposure to histologically identified chorioamnionitis was associated with respiratory morbidity during infancy without significant changes in infant pulmonary function testing measurements. Black compared with white and boy compared with girl infants had lower infant pulmonary function testing

  20. Pulmonary Morbidity in Infancy after Exposure to Chorioamnionitis in Late Preterm Infants

    PubMed Central

    McDowell, Karen M.; Jobe, Alan H.; Fenchel, Matthew; Hardie, William D.; Gisslen, Tate; Young, Lisa R.; Chougnet, Claire A.; Davis, Stephanie D.

    2016-01-01

    Rationale: Chorioamnionitis is an important cause of preterm birth, but its impact on postnatal outcomes is understudied. Objectives: To evaluate whether fetal exposure to inflammation is associated with adverse pulmonary outcomes at 6 to 12 months’ chronological age in infants born moderate to late preterm. Methods: Infants born between 32 and 36 weeks’ gestational age were prospectively recruited (N = 184). Chorioamnionitis was diagnosed by placenta and umbilical cord histology. Select cytokines were measured in samples of cord blood. Validated pulmonary questionnaires were administered (n = 184), and infant pulmonary function testing was performed (n = 69) between 6 and 12 months’ chronological age by the raised volume rapid thoracoabdominal compression technique. Measurements and Main Results: A total of 25% of participants had chorioamnionitis. Although infant pulmonary function testing variables were lower in infants born preterm compared with historical normative data for term infants, there were no differences between infants with chorioamnionitis (n = 20) and those without (n = 49). Boys and black infants had lower infant pulmonary function testing measurements than girls and white infants, respectively. Chorioamnionitis exposure was associated independently with wheeze (odds ratio [OR], 2.08) and respiratory-related physician visits (OR, 3.18) in the first year of life. Infants exposed to severe chorioamnionitis had increased levels of cord blood IL-6 and greater pulmonary morbidity at age 6 to 12 months than those exposed to mild chorioamnionitis. Elevated IL-6 was associated with significantly more respiratory problems (OR, 3.23). Conclusions: In infants born moderate or late preterm, elevated cord blood IL-6 and exposure to histologically identified chorioamnionitis was associated with respiratory morbidity during infancy without significant changes in infant pulmonary function testing measurements. Black compared with white

  1. ASK1 Inhibition Halts Disease Progression in Preclinical Models of Pulmonary Arterial Hypertension.

    PubMed

    Budas, Grant R; Boehm, Mario; Kojonazarov, Baktybek; Viswanathan, Gayathri; Tian, Xia; Veeroju, Swathi; Novoyatleva, Tatyana; Grimminger, Friedrich; Hinojosa-Kirschenbaum, Ford; Ghofrani, Hossein A; Weissmann, Norbert; Seeger, Werner; Liles, John T; Schermuly, Ralph T

    2018-02-01

    Progression of pulmonary arterial hypertension (PAH) is associated with pathological remodeling of the pulmonary vasculature and the right ventricle (RV). Oxidative stress drives the remodeling process through activation of MAPKs (mitogen-activated protein kinases), which stimulate apoptosis, inflammation, and fibrosis. We investigated whether pharmacological inhibition of the redox-sensitive apical MAPK, ASK1 (apoptosis signal-regulating kinase 1), can halt the progression of pulmonary vascular and RV remodeling. A selective, orally available ASK1 inhibitor, GS-444217, was administered to two preclinical rat models of PAH (monocrotaline and Sugen/hypoxia), a murine model of RV pressure overload induced by pulmonary artery banding, and cellular models. Oral administration of GS-444217 dose dependently reduced pulmonary arterial pressure and reduced RV hypertrophy in PAH models. The therapeutic efficacy of GS-444217 was associated with reduced ASK1 phosphorylation, reduced muscularization of the pulmonary arteries, and reduced fibrotic gene expression in the RV. Importantly, efficacy was observed when GS-444217 was administered to animals with established disease and also directly reduced cardiac fibrosis and improved cardiac function in a model of isolated RV pressure overload. In cellular models, GS-444217 reduced phosphorylation of p38 and JNK (c-Jun N-terminal kinase) induced by adenoviral overexpression of ASK1 in rat cardiomyocytes and reduced activation/migration of primary mouse cardiac fibroblasts and human pulmonary adventitial fibroblasts derived from patients with PAH. ASK1 inhibition reduced pathological remodeling of the pulmonary vasculature and the right ventricle and halted progression of pulmonary hypertension in rodent models. These preclinical data inform the first description of a causal role of ASK1 in PAH disease pathogenesis.

  2. Can in vitro assays substitute for in vivo studies in assessing the pulmonary hazards of fine and nanoscale materials?

    NASA Astrophysics Data System (ADS)

    Sayes, Christie M.; Reed, Kenneth L.; Subramoney, Shekhar; Abrams, Lloyd; Warheit, David B.

    2009-02-01

    Risk evaluations for nanomaterials require the generation of hazard data as well as exposure assessments. Most of the validated nanotoxicity studies have been conducted using in vivo experimental designs. It would be highly desirable to develop in vitro pulmonary hazard tests to assess the toxicity of fine and nanoscale particle-types. However, in vitro evaluations for pulmonary hazards are known to have limited predictive value for identifying in vivo lung toxicity effects. Accordingly, this study investigated the capacity of in vitro screening studies to predict in vivo pulmonary toxicity of several fine or nanoparticle-types following exposures in rats. Initially, complete physicochemical characterization of particulates was conducted, both in the dry and wet states. Second, rats were exposed by intratracheal instillation to 1 or 5 mg/kg of the following particle-types: carbonyl iron, crystalline silica, amorphous silica, nanoscale zinc oxide, or fine zinc oxide. Inflammation and cytotoxicity endpoints were measured at 24 h, 1 week, 1 month and 3 months post-instillation exposure. In addition, histopathological analyses of lung tissues were conducted at 3 months post-exposure. Pulmonary cell in vitro studies consisted of three different culture conditions at 4 different time periods. These included (1) rat L2 lung epithelial cells, (2) primary rat alveolar macrophages, and (3) alveolar macrophage—L2 lung epithelial cell co-cultures which were incubated with the same particles as tested in the in vivo study for 1, 4, 24, or 48 h. Cell culture fluids were evaluated for cytotoxicity endpoints and inflammatory cytokines at the different time periods in an attempt to match the biomarkers assessed in the in vivo study. Results of in vivo pulmonary toxicity studies demonstrated that instilled carbonyl iron particles produced little toxicity. Crystalline silica and amorphous silica particle exposures produced substantial inflammatory and cytotoxic effects initially

  3. Phosphodiesterase-4 inhibition combined with isoniazid treatment of rabbits with pulmonary tuberculosis reduces macrophage activation and lung pathology.

    PubMed

    Subbian, Selvakumar; Tsenova, Liana; O'Brien, Paul; Yang, Guibin; Koo, Mi-Sun; Peixoto, Blas; Fallows, Dorothy; Zeldis, Jerome B; Muller, George; Kaplan, Gilla

    2011-07-01

    Tuberculosis (TB) is responsible for significant morbidity and mortality worldwide. Even after successful microbiological cure of TB, many patients are left with residual pulmonary damage that can lead to chronic respiratory impairment and greater risk of additional TB episodes due to reinfection with Mycobacterium tuberculosis. Elevated levels of the proinflammatory cytokine tumor necrosis factor-α and several other markers of inflammation, together with expression of matrix metalloproteinases, have been associated with increased risk of pulmonary fibrosis, tissue damage, and poor treatment outcomes in TB patients. In this study, we used a rabbit model of pulmonary TB to evaluate the impact of adjunctive immune modulation, using a phosphodiesterase-4 inhibitor that dampens the innate immune response, on the outcome of treatment with the antibiotic isoniazid. Our data show that cotreatment of M. tuberculosis infected rabbits with the phosphodiesterase-4 inhibitor CC-3052 plus isoniazid significantly reduced the extent of immune pathogenesis, compared with antibiotic alone, as determined by histologic analysis of infected tissues and the expression of genes involved in inflammation, fibrosis, and wound healing in the lungs. Combined treatment with an antibiotic and CC-3052 not only lessened disease but also improved bacterial clearance from the lungs. These findings support the potential for adjunctive immune modulation to improve the treatment of pulmonary TB and reduce the risk of chronic respiratory impairment. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  4. Diagnosis, Prevention and Management of Postoperative Pulmonary Edema

    PubMed Central

    Bajwa, SJ Singh; Kulshrestha, A

    2012-01-01

    Postoperative pulmonary edema is a well-known postoperative complication caused as a result of numerous etiological factors which can be easily detected by a careful surveillance during postoperative period. However, there are no preoperative and intraoperative criteria which can successfully establish the possibilities for development of postoperative pulmonary edema. The aims were to review the possible etiologic and diagnostic challenges in timely detection of postoperative pulmonary edema and to discuss the various management strategies for prevention of this postoperative complication so as to decrease morbidity and mortality. The various search engines for preparation of this manuscript were used which included Entrez (including Pubmed and Pubmed Central), NIH.gov, Medknow.com, Medscape.com, WebMD.com, Scopus, Science Direct, MedHelp.org, yahoo.com and google.com. Manual search was carried out and various text books and journals of anesthesia and critical care medicine were also searched. From the information gathered, it was observed that postoperative cardiogenic pulmonary edema in patients with serious cardiovascular diseases is most common followed by noncardiogenic pulmonary edema which can be due to fluid overload in the postoperative period or it can be negative pressure pulmonary edema (NPPE). NPPE is an important clinical entity in immediate post-extubation period and occurs due to acute upper airway obstruction and creation of acute negative intrathoracic pressure. NPPE carries a good prognosis if promptly diagnosed and appropriately treated with or without mechanical ventilation. PMID:23439791

  5. Combined pulmonary fibrosis and emphysema: an increasingly recognized condition* **

    PubMed Central

    Dias, Olívia Meira; Baldi, Bruno Guedes; Costa, André Nathan; Carvalho, Carlos Roberto Ribeiro

    2014-01-01

    Combined pulmonary fibrosis and emphysema (CPFE) has been increasingly recognized in the literature. Patients with CPFE are usually heavy smokers or former smokers with concomitant lower lobe fibrosis and upper lobe emphysema on chest HRCT scans. They commonly present with severe breathlessness and low DLCO, despite spirometry showing relatively preserved lung volumes. Moderate to severe pulmonary arterial hypertension is common in such patients, who are also at an increased risk of developing lung cancer. Unfortunately, there is currently no effective treatment for CPFE. In this review, we discuss the current knowledge of the pathogenesis, clinical characteristics, and prognostic factors of CPFE. Given that most of the published data on CPFE are based on retrospective analysis, more studies are needed in order to address the role of emphysema and its subtypes; the progression of fibrosis/emphysema and its correlation with inflammation; treatment options; and prognosis. PMID:25029654

  6. Cigarette Smoke, Bacteria, Mold, Microbial Toxins, and Chronic Lung Inflammation

    PubMed Central

    Pauly, John L.; Paszkiewicz, Geraldine

    2011-01-01

    Chronic inflammation associated with cigarette smoke fosters malignant transformation and tumor cell proliferation and promotes certain nonneoplastic pulmonary diseases. The question arises as to whether chronic inflammation and/or colonization of the airway can be attributed, at least in part, to tobacco-associated microbes (bacteria, fungi, and spores) and/or microbial toxins (endotoxins and mycotoxins) in tobacco. To address this question, a literature search of documents in various databases was performed. The databases included PubMed, Legacy Tobacco Documents Library, and US Patents. This investigation documents that tobacco companies have identified and quantified bacteria, fungi, and microbial toxins at harvest, throughout fermentation, and during storage. Also characterized was the microbial flora of diverse smoking and smokeless tobacco articles. Evidence-based health concerns expressed in investigations of microbes and microbial toxins in cigarettes, cigarette smoke, and smokeless tobacco products are reasonable; they warrant review by regulatory authorities and, if necessary, additional investigation to address scientific gaps. PMID:21772847

  7. A Potential Role for Acrolein in Neutrophil-Mediated Chronic Inflammation.

    PubMed

    Noerager, Brett D; Xu, Xin; Davis, Virginia A; Jones, Caleb W; Okafor, Svetlana; Whitehead, Alicia; Blalock, J Edwin; Jackson, Patricia L

    2015-12-01

    Neutrophils (PMNs) are key mediators of inflammatory processes throughout the body. In this study, we investigated the role of acrolein, a highly reactive aldehyde that is ubiquitously present in the environment and produced endogenously at sites of inflammation, in mediating PMN-mediated degradation of collagen facilitating proline-glycine-proline (PGP) production. We treated peripheral blood neutrophils with acrolein and analyzed cell supernatants and lysates for matrix metalloproteinase-9 (MMP-9) and prolyl endopeptidase (PE), assessed their ability to break down collagen and release PGP, and assayed for the presence of leukotriene A4 hydrolase (LTA4H) and its ability to degrade PGP. Acrolein treatment induced elevated production and functionality of collagen-degrading enzymes and generation of PGP fragments. Meanwhile, LTA4H levels and triaminopeptidase activity declined with increasing concentrations of acrolein thereby sparing PGP from enzymatic destruction. These findings suggest that acrolein exacerbates the acute inflammatory response mediated by neutrophils and sets the stage for chronic pulmonary and systemic inflammation.

  8. Pulmonary CT and MRI Phenotypes that help explain COPD Pathophysiology and Outcomes

    PubMed Central

    Hoffman, Eric A.; Lynch, David A.; Barr, R. Graham; van Beek, Edwin J.R.; Parraga, Grace

    2016-01-01

    Pulmonary X-ray computed tomographic (CT) and magnetic resonance imaging (MRI) research and development has been motivated, in part, by the quest to sub-phenotype common chronic lung diseases such as chronic obstructive pulmonary disease (COPD). For thoracic CT and MRI, the main COPD research tools, disease biomarkers are being validated that go beyond anatomy and structure to include pulmonary functional measurements such as regional ventilation, perfusion and inflammation. In addition, there has also been a drive to improve spatial and contrast resolution while at the same time reducing or eliminating radiation exposure. Therefore, this review focuses on our evolving understanding of patient-relevant and clinically-important COPD endpoints and how current and emerging MRI and CT tools and measurements may be exploited for their identification, quantification and utilization. Since reviews of the imaging physics of pulmonary CT and MRI and reviews of other COPD imaging methods were previously published and well-summarized, we focus on the current clinical challenges in COPD and the potential of newly emerging MR and CT imaging measurements to address them. Here we summarize MRI and CT imaging methods and their clinical translation for generating reproducible and sensitive measurements of COPD related to pulmonary ventilation and perfusion as well as parenchyma morphology. The key clinical problems in COPD provide an important framework in which pulmonary imaging needs to rapidly move in order to address the staggering burden, costs as well as the mortality and morbidity associated with COPD. PMID:26199216

  9. Inflammation: an important parameter in the search of prostate cancer biomarkers

    PubMed Central

    2014-01-01

    Background A more specific and early diagnostics for prostate cancer (PCa) is highly desirable. In this study, being inflammation the focus of our effort, serum protein profiles were analyzed in order to investigate if this parameter could interfere with the search of discriminating proteins between PCa and benign prostatic hyperplasia (BPH). Methods Patients with clinical suspect of PCa and candidates for trans-rectal ultrasound guided prostate biopsy (TRUS) were enrolled. Histological specimens were examined in order to grade and classify the tumor, identify BPH and detect inflammation. Surface Enhanced Laser Desorption/Ionization-Time of Flight-Mass Spectrometry (SELDI-ToF-MS) and two-dimensional gel electrophoresis (2-DE) coupled with Liquid Chromatography-MS/MS (LC-MS/MS) were used to analyze immuno-depleted serum samples from patients with PCa and BPH. Results The comparison between PCa (with and without inflammation) and BPH (with and without inflammation) serum samples by SELDI-ToF-MS analysis did not show differences in protein expression, while changes were only observed when the concomitant presence of inflammation was taken into consideration. In fact, when samples with histological sign of inflammation were excluded, 20 significantly different protein peaks were detected. Subsequent comparisons (PCa with inflammation vs PCa without inflammation, and BPH with inflammation vs BPH without inflammation) showed that 16 proteins appeared to be modified in the presence of inflammation, while 4 protein peaks were not modified. With 2-DE analysis, comparing PCa without inflammation vs PCa with inflammation, and BPH without inflammation vs the same condition in the presence of inflammation, were identified 29 and 25 differentially expressed protein spots, respectively. Excluding samples with inflammation the comparison between PCa vs BPH showed 9 unique PCa proteins, 4 of which overlapped with those previously identified in the presence of inflammation, while

  10. Blocking the 4-1BB Pathway Ameliorates Crystalline Silica-induced Lung Inflammation and Fibrosis in Mice

    PubMed Central

    Li, Chao; Du, Sitong; Lu, Yiping; Lu, Xiaowei; Liu, Fangwei; Chen, Ying; Weng, Dong; Chen, Jie

    2016-01-01

    Long term pulmonary exposure to crystalline silica leads to silicosis that manifests progressive interstitial fibrosis, eventually leading to respiratory failure and death. Despite efforts to eliminate silicosis, clinical cases continue to occur in both developing and developed countries. The exact mechanisms of crystalline silica-induced pulmonary fibrosis remain elusive. Herein, we find that 4-1BB is induced in response to crystalline silica injury in lungs and that it is highly expressed during development of experimental silicosis. Therefore, we explore the role of 4-1BB pathway during crystalline silica-induced lung injury and find that a specific inhibitor blocking the pathway could effectively alleviate crystalline silica-induced lung inflammation and subsequent pulmonary fibrosis in vivo. Compared to controls, the treated mice exhibited reduced Th1 and Th17 responses. The concentrations of pro-inflammatory cytokines in bronchoalveolar lavage fluid (BALF), including tumor necrosis factor (TNF)-α, interferon (IFN)-γ and interleukin (IL)-17A following crystalline silica challenge were also reduced in inhibitor-treated mice. Although there was no significant alteration in Th2 cytokines of IL-4 and IL-13, another type of pro-fibrogenic cell, regulatory T cell (Treg) was significantly affected. In addition, one of the major participants in fibrogenesis, fibrocyte recruited less due to the blockade. Furthermore, we demonstrated the decreased fibrocyte recruitment was associated with chemokine reductions in lung. Our study discovers the 4-1BB pathway signaling enhances inflammatory response and promotes pulmonary fibrosis induced by crystalline silica. The findings here provide novel insights into the molecular events that control crystalline silica-induced lung inflammation and fibrosis through regulating Th responses and the recruitment of fibrocytes in crystalline silica-exposed lung. PMID:27698940

  11. Airway inflammation and mannitol challenge test in COPD

    PubMed Central

    2011-01-01

    Background Eosinophilic airway inflammation has successfully been used to tailor anti-inflammatory therapy in chronic obstructive pulmonary disease (COPD). Airway hyperresponsiveness (AHR) by indirect challenges is associated with airway inflammation. We hypothesized that AHR to inhaled mannitol captures eosinophilia in induced sputum in COPD. Methods Twenty-eight patients (age 58 ± 7.8 yr, packyears 40 ± 15.5, post-bronchodilator FEV1 77 ± 14.0%predicted, no inhaled steroids ≥4 wks) with mild-moderate COPD (GOLD I-II) completed two randomized visits with hypertonic saline-induced sputum and mannitol challenge (including sputum collection). AHR to mannitol was expressed as response-dose-ratio (RDR) and related to cell counts, ECP, MPO and IL-8 levels in sputum. Results There was a positive correlation between RDR to mannitol and eosinophil numbers (r = 0.47, p = 0.03) and level of IL-8 (r = 0.46, p = 0.04) in hypertonic saline-induced sputum. Furthermore, significant correlations were found between RDR and eosinophil numbers (r = 0.71, p = 0.001), level of ECP (r = 0.72, p = 0.001), IL-8 (r = 0.57, p = 0.015) and MPO (r = 0.64, p = 0.007) in sputum collected after mannitol challenge. ROC-curves showed 60% sensitivity and 100% specificity of RDR for >2.5% eosinophils in mannitol-induced sputum. Conclusions In mild-moderate COPD mannitol hyperresponsiveness is associated with biomarkers of airway inflammation. The high specificity of mannitol challenge suggests that the test is particularly suitable to exclude eosinophilic airways inflammation, which may facilitate individualized treatment in COPD. Trial registration Netherlands Trial Register (NTR): NTR1283 PMID:21241520

  12. Variability in Ozone-Induced Pulmonary Injury and Inflammation in Healthy and Cardiovascular Compromised Rat Models

    EPA Science Inventory

    The molecular bases for variability in air pollutant-induced pulmonary injury due to underlying cardiovascular (CVD) and/or metabolic diseases are unknown. We hypothesized that healthy and genetic CVD-prone rat models will exhibit exacerbated response to acute ozone exposure depe...

  13. Role of Alveolar Macrophages in Chronic Obstructive Pulmonary Disease

    PubMed Central

    Vlahos, Ross; Bozinovski, Steven

    2014-01-01

    Alveolar macrophages (AMs) represent a unique leukocyte population that responds to airborne irritants and microbes. This distinct microenvironment coordinates the maturation of long-lived AMs, which originate from fetal blood monocytes and self-renew through mechanisms dependent on GM-CSF and CSF-1 signaling. Peripheral blood monocytes can also replenish lung macrophages; however, this appears to occur in a stimuli specific manner. In addition to mounting an appropriate immune response during infection and injury, AMs actively coordinate the resolution of inflammation through efferocytosis of apoptotic cells. Any perturbation of this process can lead to deleterious responses. In chronic obstructive pulmonary disease (COPD), there is an accumulation of airway macrophages that do not conform to the classic M1/M2 dichotomy. There is also a skewed transcriptome profile that favors expression of wound-healing M2 markers, which is reflective of a deficiency to resolve inflammation. Endogenous mediators that can promote an imbalance in inhibitory M1 vs. healing M2 macrophages are discussed, as they are the plausible mechanisms underlying why AMs fail to effectively resolve inflammation and restore normal lung homeostasis in COPD. PMID:25309536

  14. Novel therapeutic approaches for pulmonary fibrosis

    PubMed Central

    Datta, Arnab; Scotton, Chris J; Chambers, Rachel C

    2011-01-01

    Pulmonary fibrosis represents the end stage of a number of heterogeneous conditions and is, to a greater or lesser degree, the hallmark of the interstitial lung diseases. It is characterized by the excessive deposition of extracellular matrix proteins within the pulmonary interstitium leading to the obliteration of functional alveolar units and in many cases, respiratory failure. While a small number of interstitial lung diseases have known aetiologies, most are idiopathic in nature, and of these, idiopathic pulmonary fibrosis is the most common and carries with it an appalling prognosis – median survival from the time of diagnosis is less than 3 years. This reflects the lack of any effective therapy to modify the course of the disease, which in turn is indicative of our incomplete understanding of the pathogenesis of this condition. Current prevailing hypotheses focus on dysregulated epithelial–mesenchymal interactions promoting a cycle of continued epithelial cell injury and fibroblast activation leading to progressive fibrosis. However, it is likely that multiple abnormalities in a myriad of biological pathways affecting inflammation and wound repair – including matrix regulation, epithelial reconstitution, the coagulation cascade, neovascularization and antioxidant pathways – modulate this defective crosstalk and promote fibrogenesis. This review aims to offer a pathogenetic rationale behind current therapies, briefly outlining previous and ongoing clinical trials, but will focus on recent and exciting advancements in our understanding of the pathogenesis of idiopathic pulmonary fibrosis, which may ultimately lead to the development of novel and effective therapeutic interventions for this devastating condition. LINKED ARTICLES This article is part of a themed issue on Respiratory Pharmacology. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2011.163.issue-1 PMID:21265830

  15. Asthma-COPD overlap. Clinical relevance of genomic signatures of type 2 inflammation in chronic obstructive pulmonary disease.

    PubMed

    Christenson, Stephanie A; Steiling, Katrina; van den Berge, Maarten; Hijazi, Kahkeshan; Hiemstra, Pieter S; Postma, Dirkje S; Lenburg, Marc E; Spira, Avrum; Woodruff, Prescott G

    2015-04-01

    Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease and likely includes a subgroup that is biologically comparable to asthma. Studying asthma-associated gene expression changes in COPD could add insight into COPD pathogenesis and reveal biomarkers that predict a favorable response to corticosteroids. To determine whether asthma-associated gene signatures are increased in COPD and associated with asthma-related features. We compared disease-associated airway epithelial gene expression alterations in an asthma cohort (n = 105) and two COPD cohorts (n = 237, 171). The T helper type 2 (Th2) signature (T2S) score, a gene expression metric induced in Th2-high asthma, was evaluated in these COPD cohorts. The T2S score was correlated with asthma-related features and response to corticosteroids in COPD in a randomized, placebo-controlled trial, the Groningen and Leiden Universities study of Corticosteroids in Obstructive Lung Disease (GLUCOLD; n = 89). The 200 genes most differentially expressed in asthma versus healthy control subjects were enriched among genes associated with more severe airflow obstruction in these COPD cohorts (P < 0.001), suggesting significant gene expression overlap. A higher T2S score was associated with decreased lung function (P < 0.001), but not asthma history, in both COPD cohorts. Higher T2S scores correlated with increased airway wall eosinophil counts (P = 0.003), blood eosinophil percentage (P = 0.03), bronchodilator reversibility (P = 0.01), and improvement in hyperinflation after corticosteroid treatment (P = 0.019) in GLUCOLD. These data identify airway gene expression alterations that can co-occur in asthma and COPD. The association of the T2S score with increased severity and "asthma-like" features (including a favorable corticosteroid response) in COPD suggests that Th2 inflammation is important in a COPD subset that cannot be identified by clinical history of asthma.

  16. Effectiveness of computer aided detection for solitary pulmonary nodules

    NASA Astrophysics Data System (ADS)

    Yan, Jiayong; Li, Wenjie; Du, Xiangying; Lu, Huihai; Xu, Jianrong; Xu, Mantao; Rong, Dongdong

    2009-02-01

    This study is to investigate the incremental effect of using a high performance computer-aided detection (CAD) system in detection of solitary pulmonary nodules in chest radiographs. The Kodak Chest CAD system was evaluated by a panel of six radiologists at different levels of experience. The observer study consisted of two independent phases: readings without CAD and readings with assistance of CAD. The study was conducted over a set of chest radiographs comprising 150 cancer cases and 150 cancer-free cases. The actual sensitivity of the CAD system is 72% with 3.7 false positives per case. Receiver operating characteristic (ROC) analysis was used to assess the overall observer performance. The AUZ (area under ROC curve) showed a significantly improvement (P=0.0001) from 0.844 to 0.884 after using CAD. The ROC analysis was also applied for observer performances on nodules in different sizes and visibilities. The average AUZs are improved from 0.798 to 0.835 (P=0.0003) for 5-10mm nodules, 0.853 to 0.907 (P=0.001) for 10-15mm nodules, 0.864 to 0.897 (P=0.051) for 15-20 mm nodules and 0.859 to 0.896 (P=0.0342) for 20-30mm nodules, respectively. For different visibilities, the average AUZs are improved from 0.886 to 0.915 (P=0.0337), 0.803 to 0.840 (P=0.063), 0.830 to 0.893 (P=0.0001), and 0.813 to 0.847 (P=0.152), for nodules clearly visible, hidden by ribs, partially overlap with ribs, and overlap with other structures, respectively. These results showed that observer performance could be greatly improved when the CAD system is employed as a second reader, especially for small nodules and nodules occluded by ribs.

  17. Vitamin D supplementation of initially vitamin D-deficient mice diminishes lung inflammation with limited effects on pulmonary epithelial integrity.

    PubMed

    Gorman, Shelley; Buckley, Alysia G; Ling, Kak-Ming; Berry, Luke J; Fear, Vanessa S; Stick, Stephen M; Larcombe, Alexander N; Kicic, Anthony; Hart, Prue H

    2017-08-01

    In disease settings, vitamin D may be important for maintaining optimal lung epithelial integrity and suppressing inflammation, but less is known of its effects prior to disease onset. Female BALB/c dams were fed a vitamin D 3 -supplemented (2280 IU/kg, VitD + ) or nonsupplemented (0 IU/kg, VitD - ) diet from 3 weeks of age, and mated at 8 weeks of age. Male offspring were fed the same diet as their mother. Some offspring initially fed the VitD - diet were switched to a VitD + diet from 8 weeks of age (VitD -/+ ). At 12 weeks of age, signs of low-level inflammation were observed in the bronchoalveolar lavage fluid (BALF) of VitD - mice (more macrophages and neutrophils), which were suppressed by subsequent supplementation with vitamin D 3 There was no difference in the level of expression of the tight junction proteins occludin or claudin-1 in lung epithelial cells of VitD + mice compared to VitD - mice; however, claudin-1 levels were reduced when initially vitamin D-deficient mice were fed the vitamin D 3 -containing diet (VitD -/+ ). Reduced total IgM levels were detected in BALF and serum of VitD -/+ mice compared to VitD + mice. Lung mRNA levels of the vitamin D receptor (VDR) were greatest in VitD -/+ mice. Total IgG levels in BALF were greater in mice fed the vitamin D 3 -containing diet, which may be explained by increased activation of B cells in airway-draining lymph nodes. These findings suggest that supplementation of initially vitamin D-deficient mice with vitamin D 3 suppresses signs of lung inflammation but has limited effects on the epithelial integrity of the lungs. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  18. Pulmonary toxicity of well-dispersed cerium oxide nanoparticles following intratracheal instillation and inhalation

    NASA Astrophysics Data System (ADS)

    Morimoto, Yasuo; Izumi, Hiroto; Yoshiura, Yukiko; Tomonaga, Taisuke; Oyabu, Takako; Myojo, Toshihiko; Kawai, Kazuaki; Yatera, Kazuhiro; Shimada, Manabu; Kubo, Masaru; Yamamoto, Kazuhiro; Kitajima, Shinichi; Kuroda, Etsushi; Kawaguchi, Kenji; Sasaki, Takeshi

    2015-11-01

    We performed inhalation and intratracheal instillation studies of cerium dioxide (CeO2) nanoparticles in order to investigate their pulmonary toxicity, and observed pulmonary inflammation not only in the acute and but also in the chronic phases. In the intratracheal instillation study, F344 rats were exposed to 0.2 mg or 1 mg of CeO2 nanoparticles. Cell analysis and chemokines in bronchoalveolar lavage fluid (BALF) were analyzed from 3 days to 6 months following the instillation. In the inhalation study, rats were exposed to the maximum concentration of inhaled CeO2 nanoparticles (2, 10 mg/m3, respectively) for 4 weeks (6 h/day, 5 days/week). The same endpoints as in the intratracheal instillation study were examined from 3 days to 3 months after the end of the exposure. The intratracheal instillation of CeO2 nanoparticles caused a persistent increase in the total and neutrophil number in BALF and in the concentration of cytokine-induced neutrophil chemoattractant (CINC)-1, CINC-2, chemokine for neutrophil, and heme oxygenase-1 (HO-1), an oxidative stress marker, in BALF during the observation time. The inhalation of CeO2 nanoparticles also induced a persistent influx of neutrophils and expression of CINC-1, CINC-2, and HO-1 in BALF. Pathological features revealed that inflammatory cells, including macrophages and neutrophils, invaded the alveolar space in both studies. Taken together, the CeO2 nanoparticles induced not only acute but also chronic inflammation in the lung, suggesting that CeO2 nanoparticles have a pulmonary toxicity that can lead to irreversible lesions.

  19. Comparative evaluation of western blotting in hepatic and pulmonary cystic echinococcosis.

    PubMed

    Akisu, C; Delibas, S B; Bicmen, C; Ozkoc, S; Aksoy, U; Turgay, N

    2006-12-01

    Many serological tests are widely used in the diagnosis of cystic echinococcosis (CE), caused by the larval stages of Echinococcus granulosus. The present study was carried for differentiation between hepatic and pulmonary cystic echinococcosis by Western Blotting (WB). A total of 121 sera from patients with hepatic CE (37), pulmonary CE (31) and controls (53; consisting of six healthy, seven Hymenolepis nana infection, 20 hepatic and 20 pulmonary diseases other than CE) were examined. In all of the CE patients, E. gronulosus infection was confirmed by surgical intervention. Sera were previously tested using IHA and ELISA to detect the E. gronulosus specific antibodies. Sera from hepatic cases of CE reacted with 16 polypeptides of 6-116 kDa and sera from pulmonary cases of CE reacted with 14 polypeptides of 4-130 kDa by Western Blotting. The WB test enabled the detection of antibodies in the hepatic CE samples for proteins of 24, 32 34, 44-46 and 52-54 kDa in molecular weight in 78.4%, 75.7%, 78.4% and 89.2% of the patients, respectively. In the pulmonary CE samples sera WB test enabled the detection of antibodies 24, 44-46, 100, 110, 116 and 120 124 kDa in molecular weight in 81.3%, 75.0%, 87.5%, 71.9%, 84.4% and 65.6% of the patients, respectively. We indicated that the antigenic components of high molecular weight can be good candidates for differentiation of hepatic CE from pulmonary CE.

  20. Naja naja atra venom ameliorates pulmonary fibrosis by inhibiting inflammatory response and oxidative stress.

    PubMed

    Cui, Kui; Kou, Jian-Qun; Gu, Jin-Hua; Han, Rong; Wang, Guanghui; Zhen, Xuechu; Qin, Zheng-Hong

    2014-12-02

    Naja naja atra venom (NNAV) displays diverse pharmacological actions including analgesia, anti-inflammation and immune regulation.In this study, we investigated the effects of NNAV on pulmonary fibrosis and its mechanisms of action. To determine if Naja naja atra venom (NNAV) can produce beneficial effects on pulmonary fibrosis, two marine models of pulmonary fibrosis were produced with bleomycin (BLM) and lipopolysaccharide (LPS). NNAV (30, 90, 270 μg/kg) was orally administered once a day started five days before BLM and LPS until to the end of experiment. The effects of NNAV treatment on pulmonary injury were evaluated with arterial blood gas analysis, hydroxyproline (HYP) content assessment and HE/Masson staining. The effects of NNAV treatment on inflammatory related cytokines, fibrosis related TGF-β/Smad signaling pathway and oxidative stress were examined. The results showed that NNAV improved the lung gas-exchange function and attenuated the fibrotic lesions in lung. NNAV decreased IL-1β and TNF-α levels in serum in both pulmonary fibrosis models. NNAV inhibited the activation of NF-κB in LPS-induced and TGF-β/Smad pathway in BLM-induced pulmonary fibrosis. Additionally, NNAV also increased the levels of SOD and GSH and reduced the levels of MDA in BLM-induced pulmonary fibrosis model. The present study indicates that NNAV attenuates LPS- and BLM-induced lung fibrosis. Its mechanisms of action are associated with inhibiting inflammatory response and oxidative stress. The study suggests that NNAV might be a potential therapeutic drug for treatment of pulmonary fibrosis.

  1. Deep learning aided decision support for pulmonary nodules diagnosing: a review.

    PubMed

    Yang, Yixin; Feng, Xiaoyi; Chi, Wenhao; Li, Zhengyang; Duan, Wenzhe; Liu, Haiping; Liang, Wenhua; Wang, Wei; Chen, Ping; He, Jianxing; Liu, Bo

    2018-04-01

    Deep learning techniques have recently emerged as promising decision supporting approaches to automatically analyze medical images for different clinical diagnosing purposes. Diagnosing of pulmonary nodules by using computer-assisted diagnosing has received considerable theoretical, computational, and empirical research work, and considerable methods have been developed for detection and classification of pulmonary nodules on different formats of images including chest radiographs, computed tomography (CT), and positron emission tomography in the past five decades. The recent remarkable and significant progress in deep learning for pulmonary nodules achieved in both academia and the industry has demonstrated that deep learning techniques seem to be promising alternative decision support schemes to effectively tackle the central issues in pulmonary nodules diagnosing, including feature extraction, nodule detection, false-positive reduction, and benign-malignant classification for the huge volume of chest scan data. The main goal of this investigation is to provide a comprehensive state-of-the-art review of the deep learning aided decision support for pulmonary nodules diagnosing. As far as the authors know, this is the first time that a review is devoted exclusively to deep learning techniques for pulmonary nodules diagnosing.

  2. Deep learning aided decision support for pulmonary nodules diagnosing: a review

    PubMed Central

    Yang, Yixin; Feng, Xiaoyi; Chi, Wenhao; Li, Zhengyang; Duan, Wenzhe; Liu, Haiping; Liang, Wenhua; Wang, Wei; Chen, Ping

    2018-01-01

    Deep learning techniques have recently emerged as promising decision supporting approaches to automatically analyze medical images for different clinical diagnosing purposes. Diagnosing of pulmonary nodules by using computer-assisted diagnosing has received considerable theoretical, computational, and empirical research work, and considerable methods have been developed for detection and classification of pulmonary nodules on different formats of images including chest radiographs, computed tomography (CT), and positron emission tomography in the past five decades. The recent remarkable and significant progress in deep learning for pulmonary nodules achieved in both academia and the industry has demonstrated that deep learning techniques seem to be promising alternative decision support schemes to effectively tackle the central issues in pulmonary nodules diagnosing, including feature extraction, nodule detection, false-positive reduction, and benign-malignant classification for the huge volume of chest scan data. The main goal of this investigation is to provide a comprehensive state-of-the-art review of the deep learning aided decision support for pulmonary nodules diagnosing. As far as the authors know, this is the first time that a review is devoted exclusively to deep learning techniques for pulmonary nodules diagnosing. PMID:29780633

  3. Idiopathic pulmonary fibrosis. A rare cause of scintigraphic ventilation-perfusion mismatch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pochis, W.T.; Krasnow, A.Z.; Collier, B.D.

    1990-05-01

    A case of idiopathic pulmonary fibrosis with multiple areas of mismatch on ventilation-perfusion lung imaging in the absence of pulmonary embolism is presented. Idiopathic pulmonary fibrosis is one of the few nonembolic diseases producing a pulmonary ventilation-perfusion mismatch. In this condition, chest radiographs may not detect the full extent of disease, and xenon-133 ventilation imaging may be relatively insensitive to morbid changes in small airways. Thus, when examining patients with idiopathic pulmonary fibrosis, one should be aware that abnormal perfusion imaging patterns without matching ventilation abnormalities are not always due to embolism. In this setting, contrast pulmonary angiography is oftenmore » needed for accurate differential diagnosis.« less

  4. Odor Signals of Immune Activation and CNS Inflammation

    DTIC Science & Technology

    2014-12-01

    inflammation results in detectable alteration of body odor and that traumatic brain injury (TBI) might similarly produce volatile metabolites specific to...Because both LPS and TBI elicit inflammatory processes and LPS-induced inflammation induces body odor changes, we hypothesized that (1) TBI would...induce a distinct change in body odor and (2) this change would resemble the change induced by LPS. Mice receiving surgery and lateral fluid percussion

  5. [Orbital inflammation].

    PubMed

    Mouriaux, F; Coffin-Pichonnet, S; Robert, P-Y; Abad, S; Martin-Silva, N

    2014-12-01

    Orbital inflammation is a generic term encompassing inflammatory pathologies affecting all structures within the orbit : anterior (involvement up to the posterior aspect of the globe), diffuse (involvement of intra- and/or extraconal fat), apical (involvement of the posterior orbit), myositis (involvement of only the extraocular muscles), dacryoadenitis (involvement of the lacrimal gland). We distinguish between specific inflammation and non-specific inflammation, commonly referred to as idiopathic inflammation. Specific orbital inflammation corresponds to a secondary localization of a "generalized" disease (systemic or auto-immune). Idiopathic orbital inflammation corresponds to uniquely orbital inflammation without generalized disease, and thus an unknown etiology. At the top of the differential diagnosis for specific or idiopathic orbital inflammation are malignant tumors, represented most commonly in the adult by lympho-proliferative syndromes and metastases. Treatment of specific orbital inflammation begins with treatment of the underlying disease. For idiopathic orbital inflammation, treatment (most often corticosteroids) is indicated above all in cases of visual loss due to optic neuropathy, in the presence of pain or oculomotor palsy. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  6. Chronic obstructive pulmonary disease

    PubMed Central

    Vijayan, V.K.

    2013-01-01

    The global prevalence of physiologically defined chronic obstructive pulmonary disease (COPD) in adults aged >40 yr is approximately 9-10 per cent. Recently, the Indian Study on Epidemiology of Asthma, Respiratory Symptoms and Chronic Bronchitis in Adults had shown that the overall prevalence of chronic bronchitis in adults >35 yr is 3.49 per cent. The development of COPD is multifactorial and the risk factors of COPD include genetic and environmental factors. Pathological changes in COPD are observed in central airways, small airways and alveolar space. The proposed pathogenesis of COPD includes proteinase-antiproteinase hypothesis, immunological mechanisms, oxidant-antioxidant balance, systemic inflammation, apoptosis and ineffective repair. Airflow limitation in COPD is defined as a postbronchodilator FEV1 (forced expiratory volume in 1 sec) to FVC (forced vital capacity) ratio <0.70. COPD is characterized by an accelerated decline in FEV1. Co morbidities associated with COPD are cardiovascular disorders (coronary artery disease and chronic heart failure), hypertension, metabolic diseases (diabetes mellitus, metabolic syndrome and obesity), bone disease (osteoporosis and osteopenia), stroke, lung cancer, cachexia, skeletal muscle weakness, anaemia, depression and cognitive decline. The assessment of COPD is required to determine the severity of the disease, its impact on the health status and the risk of future events (e.g., exacerbations, hospital admissions or death) and this is essential to guide therapy. COPD is treated with inhaled bronchodilators, inhaled corticosteroids, oral theophylline and oral phosphodiesterase-4 inhibitor. Non pharmacological treatment of COPD includes smoking cessation, pulmonary rehabilitation and nutritional support. Lung volume reduction surgery and lung transplantation are advised in selected severe patients. Global strategy for the diagnosis, management and prevention of Chronic Obstructive Pulmonary Disease guidelines

  7. Life-threatening haemothorax: a rare presentation of pulmonary arteriovenous malformation.

    PubMed

    Kundu, Somenath; Mitra, Subhra; Mukherjee, Shubhasis; Chakravorty, Anushree

    2010-11-01

    Arteriovenous malformations of the lung are rare pulmonary vascular disorders which can suddenly lead to life threatening complications. Haemothorax due to rupture of a pulmonary arteriovenous malformation (PAVM) is very rare. We report here a case of a 39 year-old lady who presented with an acute onset of shortness of breath due to right-sided massive haemothorax and was subsequently detected to have pulmonary as well as cerebral arteriovenous malformation (CAVM).

  8. The alpha-tocopherol form of vitamin E reverses age-associated susceptibility to Streptococcus pneumoniae lung infection by modulating pulmonary neutrophil recruitment

    USDA-ARS?s Scientific Manuscript database

    Streptococcus pneumonia infections are an important cause of morbidity and mortality in older patients. Uncontrolled neutrophil-driven pulmonary inflammation exacerbates this disease. To test whether the alpha-tocopherol (alpha-Toc) form of vitamin E, a regulator of immunity, can modulate neutrophil...

  9. Alum Adjuvant Enhances Protection against Respiratory Syncytial Virus but Exacerbates Pulmonary Inflammation by Modulating Multiple Innate and Adaptive Immune Cells

    PubMed Central

    Kim, Ki-Hye; Lee, Young-Tae; Hwang, Hye Suk; Kwon, Young-Man; Jung, Yu-Jin; Lee, Youri; Lee, Jong Seok; Lee, Yu-Na; Park, Soojin; Kang, Sang-Moo

    2015-01-01

    Respiratory syncytial virus (RSV) is well-known for inducing vaccine-enhanced respiratory disease after vaccination of young children with formalin-inactivated RSV (FI-RSV) in alum formulation. Here, we investigated alum adjuvant effects on protection and disease after FI-RSV immunization with or without alum in comparison with live RSV reinfections. Despite viral clearance, live RSV reinfections caused weight loss and substantial pulmonary inflammation probably due to high levels of RSV specific IFN-γ+IL4-, IFN-γ-TNF-α+, IFN-γ+TNF-α- effector CD4 and CD8 T cells. Alum adjuvant significantly improved protection as evidenced by effective viral clearance compared to unadjuvanted FI-RSV. However, in contrast to unadjuvanted FI-RSV, alum-adjuvanted FI-RSV (FI-RSV-A) induced severe vaccine-enhanced RSV disease including weight loss, eosinophilia, and lung histopathology. Alum adjuvant in the FI-RSV-A was found to be mainly responsible for inducing high levels of RSV-specific IFN-γ-IL4+, IFN-γ-TNF-α+ CD4+ T cells, and proinflammatory cytokines IL-6 and IL-4 as well as B220+ plasmacytoid and CD4+ dendritic cells, and inhibiting the induction of IFN-γ+CD8 T cells. This study suggests that alum adjuvant in FI-RSV vaccines increases immunogenicity and viral clearance but also induces atypical T helper CD4+ T cells and multiple inflammatory dendritic cell subsets responsible for vaccine-enhanced severe RSV disease. PMID:26468884

  10. Body mass index and extent of MRI-detected inflammation: opposite effects in rheumatoid arthritis versus other arthritides and asymptomatic persons.

    PubMed

    Mangnus, Lukas; Nieuwenhuis, Wouter P; van Steenbergen, Hanna W; Huizinga, Tom W J; Reijnierse, Monique; van der Helm-van Mil, Annette H M

    2016-10-22

    In the population a high body mass index (BMI) has been associated with slightly increased inflammatory markers. Within rheumatoid arthritis (RA), however, a high BMI has been associated with less radiographic progression; this phenomenon is unexplained. We hypothesized that the phenomenon is caused by an inverse relationship between BMI and inflammation in hand and foot joints with RA. To explore this hypothesis, local inflammation was measured using magnetic resonance imaging (MRI) in early arthritis patients presenting with RA or other arthritides and in asymptomatic volunteers. A total of 195 RA patients, 159 patients with other inflammatory arthritides included in the Leiden Early Arthritis Clinic, and 193 asymptomatic volunteers underwent a unilateral contrast-enhanced 1.5 T MRI scan of metacarpophalangeal, wrist, and metatarsophalangeal joints. Each MRI scan was scored by two readers on synovitis, bone marrow edema (BME), and tenosynovitis; the sum yielded the total MRI inflammation score. Linear regression on log-transformed MRI data was used. A higher BMI was associated with higher MRI inflammation scores in arthritides other than RA (β = 1.082, p < 0.001) and in asymptomatic volunteers (β = 1.029, p = 0.040), whereas it was associated with lower MRI inflammation scores in RA (β = 0.97, p = 0.005). Evaluating the different types of inflammation, a higher BMI was associated with higher synovitis, BME, and tenosynovitis scores in arthritides other than RA (respectively β = 1.084, p < 0.001, β = 1.021, p = 0.24, and β = 1.054, p = 0.003), but with lower synovitis and BME scores in RA (respectively β = 0.98, p = 0.047 and β = 0.95, p = 0.002). Increased BMI is correlated with less severe MRI-detected synovitis and BME in RA. This might explain the paradox in RA where obesity correlates with less severe radiographic progression.

  11. Diagnosis and management of solitary pulmonary nodules.

    PubMed

    Jeong, Yeon Joo; Lee, Kyung Soo; Kwon, O Jung

    2008-12-01

    The advent of computed tomography (CT) screening with or without the help of computer-aided detection systems has increased the detection rate of solitary pulmonary nodules (SPNs), including that of early peripheral lung cancer. Helical dynamic (HD)CT, providing the information on morphologic and hemodynamic characteristics with high specificity and reasonably high accuracy, can be used for the initial assessment of SPNs. (18)F-fluorodeoxyglucose PET/CT is more sensitive at detecting malignancy than HDCT. Therefore, PET/CT may be selectively performed to characterize SPNs when HDCT gives an inconclusive diagnosis. Serial volume measurements are currently the most reliable methods for the tissue characterization of subcentimeter nodules. When malignant nodule is highly suspected for subcentimeter nodules, video-assisted thoracoscopic surgery nodule removal after nodule localization using the pulmonary nodule-marker system may be performed for diagnosis and treatment.

  12. Lung ultrasound compared with chest X-ray in diagnosing postoperative pulmonary complications following cardiothoracic surgery: a prospective observational study.

    PubMed

    Touw, H R; Parlevliet, K L; Beerepoot, M; Schober, P; Vonk, A; Twisk, J W; Elbers, P W; Boer, C; Tuinman, P R

    2018-03-12

    Postoperative pulmonary complications are common after cardiothoracic surgery and are associated with adverse outcomes. The ability to detect postoperative pulmonary complications using chest X-rays is limited, and this technique requires radiation exposure. Little is known about the diagnostic accuracy of lung ultrasound for the detection of postoperative pulmonary complications after cardiothoracic surgery, and we therefore aimed to compare lung ultrasound with chest X-ray to detect postoperative pulmonary complications in this group of patients. We performed this prospective, observational, single-centre study in a tertiary intensive care unit treating adult patients who had undergone cardiothoracic surgery. We recorded chest X-ray findings upon admission and on postoperative days 2 and 3, as well as rates of postoperative pulmonary complications and clinically-relevant postoperative pulmonary complications that required therapy according to the treating physician as part of their standard clinical practice. Lung ultrasound was performed by an independent researcher at the time of chest X-ray. We compared lung ultrasound with chest X-ray for the detection of postoperative pulmonary complications and clinically-relevant postoperative pulmonary complications. We also assessed inter-observer agreement for lung ultrasound, and the time to perform both imaging techniques. Subgroup analyses were performed to compare the time to detection of clinically-relevant postoperative pulmonary complications by both modalities. We recruited a total of 177 patients in whom both lung ultrasound and chest X-ray imaging were performed. Lung ultrasound identified 159 (90%) postoperative pulmonary complications on the day of admission compared with 107 (61%) identified with chest X-ray (p < 0.001). Lung ultrasound identified 11 out of 17 patients (65%) and chest X-ray 7 out of 17 patients (41%) with clinically-relevant postoperative pulmonary complications (p < 0.001). The

  13. Telemetric Detection of Chronic Obstructive Pulmonary Disease and Investigation of Quality of Life for People Working in Shipbuilding Industry

    PubMed Central

    Koulouri, Agoritsa; Gourgoulianis, Konstantinos; Hatzoglou, Chryssi; Roupa, Zoe

    2014-01-01

    ABSTRACT Introduction: Chronic Obstructive Pulmonary Disease (COPD) has a significant impact on quality of life-related health. Aim: It was the detection of Chronic Obstructive Pulmonary Disease by using telemetric methods and the investigation of the quality of life for people working in Shipbuilding Industry compared with a control group. Methods: A group of one hundred men working in the shipbuilding industry aged 51.8 ± 8.2 years old and a control group of one hundred men of the general population aged 51.1 ± 6.4 years were studied. All participants completed the General Health Questionnaire – 28, the Fagerstrom test and a form with demographic characteristics. Pulmonary function test results were electronically sent to a specialist for evaluation. Results: People working in the shipbuilding zone had significantly lower values (p<0.001) in FVC, FEV1 and FEV1/FVC compared with the general population participants. Worse social functionality was exhibited by workers in the shipbuilding zone, people with elementary education, unemployed and by those suffering from comorbidities (p <0.001). Conclusions: Health level and its individual dimensions are both associated with health self-assessment and occupational and economic status. The coexistence of chronic diseases and smoking dependence affects emotion and social functioning of individuals. PMID:25568580

  14. Telemetric detection of chronic obstructive pulmonary disease and investigation of quality of life for people working in shipbuilding industry.

    PubMed

    Koulouri, Agoritsa; Gourgoulianis, Konstantinos; Hatzoglou, Chryssi; Roupa, Zoe

    2014-10-01

    Chronic Obstructive Pulmonary Disease (COPD) has a significant impact on quality of life-related health. It was the detection of Chronic Obstructive Pulmonary Disease by using telemetric methods and the investigation of the quality of life for people working in Shipbuilding Industry compared with a control group. A group of one hundred men working in the shipbuilding industry aged 51.8 ± 8.2 years old and a control group of one hundred men of the general population aged 51.1 ± 6.4 years were studied. All participants completed the General Health Questionnaire - 28, the Fagerstrom test and a form with demographic characteristics. Pulmonary function test results were electronically sent to a specialist for evaluation. People working in the shipbuilding zone had significantly lower values (p<0.001) in FVC, FEV1 and FEV1/FVC compared with the general population participants. Worse social functionality was exhibited by workers in the shipbuilding zone, people with elementary education, unemployed and by those suffering from comorbidities (p <0.001). Health level and its individual dimensions are both associated with health self-assessment and occupational and economic status. The coexistence of chronic diseases and smoking dependence affects emotion and social functioning of individuals.

  15. Siderite (FeCO₃) and magnetite (Fe₃O₄) overload-dependent pulmonary toxicity is determined by the poorly soluble particle not the iron content.

    PubMed

    Pauluhn, Jürgen; Wiemann, Martin

    2011-11-01

    The two poorly soluble iron containing solid aerosols of siderite (FeCO₃) and magnetite (Fe₃O₄) were compared in a 4-week inhalation study on rats at similar particle mass concentrations of approximately 30 or 100 mg/m³. The particle size distributions were essentially identical (MMAD ≈1.4 μm). The iron-based concentrations were 12 or 38 and 22 or 66 mg Fe/m³ for FeCO₃ and Fe₃O₄, respectively. Modeled and empirically determined iron lung burdens were compared with endpoints suggestive of pulmonary inflammation by determinations in bronchoalveolar lavage (BAL) and oxidative stress in lung tissue during a postexposure period of 3 months. The objective of study was to identify the most germane exposure metrics, that are the concentration of elemental iron (mg Fe/m³), total particle mass (mg PM/m³) or particle volume (μl PM/m³) and their associations with the effects observed. From this analysis it was apparent that the intensity of pulmonary inflammation was clearly dependent on the concentration of particle-mass or -volume and not of iron. Despite its lower iron content, the exposure to FeCO₃ caused a more pronounced and sustained inflammation as compared to Fe₃O₄. Similarly, borderline evidence of increased oxidative stress and inflammation occurred especially following exposure to FeCO₃ at moderate lung overload levels. The in situ analysis of 8-oxoguanine in epithelial cells of alveolar and bronchiolar regions supports the conclusion that both FeCO₃ and Fe₃O₄ particles are effectively endocytosed by macrophages as opposed to epithelial cells. Evidence of intracellular or nuclear sources of redox-active iron did not exist. In summary, this mechanistic study supports previous conclusions, namely that the repeated inhalation exposure of rats to highly respirable pigment-type iron oxides cause nonspecific pulmonary inflammation which shows a clear dependence on the particle volume-dependent lung overload rather than any increased

  16. Detection and prognostic value of pulmonary congestion by lung ultrasound in ambulatory heart failure patients.

    PubMed

    Platz, Elke; Lewis, Eldrin F; Uno, Hajime; Peck, Julie; Pivetta, Emanuele; Merz, Allison A; Hempel, Dorothea; Wilson, Christina; Frasure, Sarah E; Jhund, Pardeep S; Cheng, Susan; Solomon, Scott D

    2016-04-14

    Pulmonary congestion is a common and important finding in heart failure (HF). While clinical examination and chest radiography are insensitive, lung ultrasound (LUS) is a novel technique that may detect and quantify subclinical pulmonary congestion. We sought to independently relate LUS and clinical findings to 6-month HF hospitalizations and all-cause mortality (composite primary outcome). We used LUS to examine 195 NYHA class II-IV HF patients (median age 66, 61% men, 74% white, ejection fraction 34%) during routine cardiology outpatient visits. Lung ultrasound was performed in eight chest zones with a pocket ultrasound device (median exam duration 2 min) and analysed offline. In 185 patients with adequate LUS images in all zones, the sum of B-lines (vertical lines on LUS) ranged from 0 to 13. B-lines, analysed by tertiles, were associated with clinical and laboratory markers of congestion. Thirty-two per cent of patients demonstrated ≥3 B-lines on LUS, yet 81% of these patients had no findings on auscultation. During the follow-up period, 50 patients (27%) were hospitalized for HF or died. Patients in the third tertile (≥3 B-lines) had a four-fold higher risk of the primary outcome (adjusted HR 4.08, 95% confidence interval, CI 1.95, 8.54; P < 0.001) compared with those in the first tertile and spent a significantly lower number of days alive and out of the hospital (125 days vs. 165 days; adjusted P < 0.001). Pulmonary congestion assessed by ultrasound is prevalent in ambulatory patients with chronic HF, is associated with other features of clinical congestion, and identifies those who have worse prognosis. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.

  17. Pulmonary Hypertension Care Center Network: Improving Care and Outcomes in Pulmonary Hypertension.

    PubMed

    Sahay, Sandeep; Melendres-Groves, Lana; Pawar, Leena; Cajigas, Hector R

    2017-04-01

    Pulmonary hypertension (PH) is a chronic, progressive, life-threatening disease that requires expert multidisciplinary care. To facilitate this level of care, the Pulmonary Hypertension Association established across the United States a network of pulmonary hypertension care centers (PHCCs) with special expertise in PH, particularly pulmonary arterial hypertension, to raise the overall quality of care and outcomes for patients with this life-threatening disease. Since the inception of PHCCs in September 2014, to date 35 centers have been accredited in the United States. This model of care brings together physicians and specialists from other disciplines to provide care, facilitate basic and clinical research, and educate the next generation of providers. PHCCs also offer additional opportunities for improvements in PH care. The patient registry offered through the PHCCs is an organized system by which data are collected to evaluate the outcomes of patients with PH. This registry helps in detecting variations in outcomes across centers, thus identifying opportunities for improvement. Multiple tactics were undertaken to implement the strategic plan, training, and tools throughout the PHCC network. In addition, strategies to foster collaboration between care center staff and individuals with PH and their families are the cornerstone of the PHCCs. The Pulmonary Vascular Network of the American College of Chest Physicians believes this to be a positive step that will improve the quality of care delivered in the United States to patients with PH. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  18. Interleukin-6 Contributes to Inflammation and Remodeling in a Model of Adenosine Mediated Lung Injury

    PubMed Central

    Pedroza, Mesias; Schneider, Daniel J.; Karmouty-Quintana, Harry; Coote, Julie; Shaw, Stevan; Corrigan, Rebecca; Molina, Jose G.; Alcorn, Joseph L.; Galas, David; Gelinas, Richard; Blackburn, Michael R.

    2011-01-01

    Background Chronic lung diseases are the third leading cause of death in the United States due in part to an incomplete understanding of pathways that govern the progressive tissue remodeling that occurs in these disorders. Adenosine is elevated in the lungs of animal models and humans with chronic lung disease where it promotes air-space destruction and fibrosis. Adenosine signaling increases the production of the pro-fibrotic cytokine interleukin-6 (IL-6). Based on these observations, we hypothesized that IL-6 signaling contributes to tissue destruction and remodeling in a model of chronic lung disease where adenosine levels are elevated. Methodology/Principal Findings We tested this hypothesis by neutralizing or genetically removing IL-6 in adenosine deaminase (ADA)-deficient mice that develop adenosine dependent pulmonary inflammation and remodeling. Results demonstrated that both pharmacologic blockade and genetic removal of IL-6 attenuated pulmonary inflammation, remodeling and fibrosis in this model. The pursuit of mechanisms involved revealed adenosine and IL-6 dependent activation of STAT-3 in airway epithelial cells. Conclusions/Significance These findings demonstrate that adenosine enhances IL-6 signaling pathways to promote aspects of chronic lung disease. This suggests that blocking IL-6 signaling during chronic stages of disease may provide benefit in halting remodeling processes such as fibrosis and air-space destruction. PMID:21799929

  19. Type I collagen-targeted PET probe for pulmonary fibrosis detection and staging in preclinical models

    PubMed Central

    Désogère, Pauline; Tapias, Luis F.; Hariri, Lida P.; Rotile, Nicholas J.; Rietz, Tyson A.; Probst, Clemens K.; Blasi, Francesco; Day, Helen; Mino-Kenudson, Mari; Weinreb, Paul; Violette, Shelia M.; Fuchs, Bryan C.; Tager, Andrew M.; Lanuti, Michael; Caravan, Peter

    2017-01-01

    Pulmonary fibrosis is a scarring of the lungs that can arise from radiation injury, drug toxicity, environmental or genetic causes, and for unknown reasons [idiopathic pulmonary fibrosis (IPF)]. Overexpression of collagen is a hallmark of organ fibrosis. Here, we describe a peptide-based PET probe (68Ga-CBP8) that targets collagen type I. We evaluated 68Ga-CBP8 in vivo in the bleomycin-induced mouse model of pulmonary fibrosis. 68Ga-CBP8 showed high specificity for pulmonary fibrosis and high target:background ratios in diseased animals. The lung PET signal and lung 68Ga-CBP8 uptake (quantified ex vivo) correlated linearly (r2=0.80) with the amount of lung collagen in mice with fibrosis. We further demonstrated that the 68Ga-CBP8 probe could be used to monitor response to treatment in a second mouse model of pulmonary fibrosis associated with vascular leak. Ex vivo analysis of lung tissue from patients with IPF supported the animal findings. These studies indicate that 68Ga-CBP8 is a promising candidate for non-invasive imaging of human pulmonary fibrosis. PMID:28381537

  20. Pulmonary Hypertension

    MedlinePlus

    ... together all groups are called pulmonary hypertension.) Group 1 Pulmonary Arterial Hypertension Group 1 PAH includes: PAH ... information, go to "Types of Pulmonary Hypertension." ) Group 1 Pulmonary Arterial Hypertension Group 1 pulmonary arterial hypertension ( ...