Science.gov

Sample records for detection identification location

  1. Detection, Identification, Location, and Remote Sensing using SAW RFID Sensor Tags

    NASA Technical Reports Server (NTRS)

    Barton, Richard J.

    2009-01-01

    In this presentation, we will consider the problem of simultaneous detection, identification, location estimation, and remote sensing for multiple objects. In particular, we will describe the design and testing of a wireless system capable of simultaneously detecting the presence of multiple objects, identifying each object, and acquiring both a low-resolution estimate of location and a high-resolution estimate of temperature for each object based on wireless interrogation of passive surface acoustic wave (SAW) radiofrequency identification (RFID) sensor tags affixed to each object. The system is being studied for application on the lunar surface as well as for terrestrial remote sensing applications such as pre-launch monitoring and testing of spacecraft on the launch pad and monitoring of test facilities. The system utilizes a digitally beam-formed planar receiving antenna array to extend range and provide direction-of-arrival information coupled with an approximate maximum-likelihood signal processing algorithm to provide near-optimal estimation of both range and temperature. The system is capable of forming a large number of beams within the field of view and resolving the information from several tags within each beam. The combination of both spatial and waveform discrimination provides the capability to track and monitor telemetry from a large number of objects appearing simultaneously within the field of view of the receiving array. In the presentation, we will summarize the system design and illustrate several aspects of the operational characteristics and signal structure. We will examine the theoretical performance characteristics of the system and compare the theoretical results with results obtained from experiments in both controlled laboratory environments and in the field.

  2. Detection, Identification, Location, and Remote Sensing Using SAW RFID Sensor Tags

    NASA Technical Reports Server (NTRS)

    Barton, Richard J.; Kennedy, Timothy F.; Williams, Robert M.; Fink, Patrick W.; Ngo, Phong H.

    2009-01-01

    The Electromagnetic Systems Branch (EV4) of the Avionic Systems Division at NASA Johnson Space Center in Houston, TX is studying the utility of surface acoustic wave (SAW) radiofrequency identification (RFID) tags for multiple wireless applications including detection, identification, tracking, and remote sensing of objects on the lunar surface, monitoring of environmental test facilities, structural shape and health monitoring, and nondestructive test and evaluation of assets. For all of these applications, it is anticipated that the system utilized to interrogate the SAW RFID tags may need to operate at fairly long range and in the presence of considerable multipath and multiple-access interference. Towards that end, EV4 is developing a prototype SAW RFID wireless interrogation system for use in such environments called the Passive Adaptive RFID Sensor Equipment (PARSED) system. The system utilizes a digitally beam-formed planar receiving antenna array to extend range and provide direction-of-arrival information coupled with an approximate maximum-likelihood signal processing algorithm to provide near-optimal estimation of both range and temperature. The system is capable of forming a large number of beams within the field of view and resolving the information from several tags within each beam. The combination of both spatial and waveform discrimination provides the capability to track and monitor telemetry from a large number of objects appearing simultaneously within the field of view of the receiving array. In this paper, we will consider the application of the PARSEQ system to the problem of simultaneous detection, identification, localization, and temperature estimation for multiple objects. We will summarize the overall design of the PARSEQ system and present a detailed description of the design and performance of the signal detection and estimation algorithms incorporated in the system. The system is currently configured only to measure temperature

  3. Feature identification and location experiment.

    PubMed

    Sivertson, W E; Wilson, R G; Bullock, G F; Schappell, R T

    1982-12-01

    The feature identification and location experiment (FILE) senses radiation from the earth in spectral bands centered at 0.65 and 0.85 micrometers and compares ratios of the reflected solar radiation in the two wavelengths to make real-time classification decisions about four primary features: water, vegetation, bare land, and a cloud-snow-ice class. The radiance ratio classification algorithm successfully made automatic data-selection decisions. The classification image obtained on the mission is providing information needed to evaluate the FILE algorithm and system performance. PMID:17790593

  4. LLNL Location and Detection Research

    SciTech Connect

    Myers, S C; Harris, D B; Anderson, M L; Walter, W R; Flanagan, M P; Ryall, F

    2003-07-16

    We present two LLNL research projects in the topical areas of location and detection. The first project assesses epicenter accuracy using a multiple-event location algorithm, and the second project employs waveform subspace Correlation to detect and identify events at Fennoscandian mines. Accurately located seismic events are the bases of location calibration. A well-characterized set of calibration events enables new Earth model development, empirical calibration, and validation of models. In a recent study, Bondar et al. (2003) develop network coverage criteria for assessing the accuracy of event locations that are determined using single-event, linearized inversion methods. These criteria are conservative and are meant for application to large bulletins where emphasis is on catalog completeness and any given event location may be improved through detailed analysis or application of advanced algorithms. Relative event location techniques are touted as advancements that may improve absolute location accuracy by (1) ensuring an internally consistent dataset, (2) constraining a subset of events to known locations, and (3) taking advantage of station and event correlation structure. Here we present the preliminary phase of this work in which we use Nevada Test Site (NTS) nuclear explosions, with known locations, to test the effect of travel-time model accuracy on relative location accuracy. Like previous studies, we find that the reference velocity-model and relative-location accuracy are highly correlated. We also find that metrics based on travel-time residual of relocated events are not a reliable for assessing either velocity-model or relative-location accuracy. In the topical area of detection, we develop specialized correlation (subspace) detectors for the principal mines surrounding the ARCES station located in the European Arctic. Our objective is to provide efficient screens for explosions occurring in the mines of the Kola Peninsula (Kovdor, Zapolyarny

  5. Source Identification and Location Techniques

    NASA Technical Reports Server (NTRS)

    Weir, Donald; Bridges, James; Agboola, Femi; Dougherty, Robert

    2001-01-01

    Mr. Weir presented source location results obtained from an engine test as part of the Engine Validation of Noise Reduction Concepts program. Two types of microphone arrays were used in this program to determine the jet noise source distribution for the exhaust from a 4.3 bypass ratio turbofan engine. One was a linear array of 16 microphones located on a 25 ft. sideline and the other was a 103 microphone 3-D "cage" array in the near field of the jet. Data were obtained from a baseline nozzle and from numerous nozzle configuration using chevrons and/or tabs to reduce the jet noise. Mr. Weir presented data from two configurations: the baseline nozzle and a nozzle configuration with chevrons on both the core and bypass nozzles. This chevron configuration had achieved a jet noise reduction of 4 EPNdB in small scale tests conducted at the Glenn Research Center. IR imaging showed that the chevrons produced significant improvements in mixing and greatly reduced the length of the jet potential core. Comparison of source location data from the 1-D phased array showed a shift of the noise sources towards the nozzle and clear reductions of the sources due to the noise reduction devices. Data from the 3-D array showed a single source at a frequency of 125 Hz. located several diameters downstream from the nozzle exit. At 250 and 400 Hz., multiple sources, periodically spaced, appeared to exist downstream of the nozzle. The trend of source location moving toward the nozzle exit with increasing frequency was also observed. The 3-D array data also showed a reduction in source strength with the addition of chevrons. The overall trend of source location with frequency was compared for the two arrays and with classical experience. Similar trends were observed. Although overall trends with frequency and addition of suppression devices were consistent between the data from the 1-D and the 3-D arrays, a comparison of the details of the inferred source locations did show differences. A

  6. Detection and Location of Damage on Pipelines

    SciTech Connect

    Karen A. Moore; Robert Carrington; John Richardson

    2003-11-01

    The INEEL has developed and successfully tested a real-time pipeline damage detection and location system. This system uses porous metal resistive traces applied to the pipe to detect and locate damage. The porous metal resistive traces are sprayed along the length of a pipeline. The unique nature and arrangement of the traces allows locating the damage in real time along miles of pipe. This system allows pipeline operators to detect damage when and where it is occurring, and the decision to shut down a transmission pipeline can be made with actual real-time data, instead of conservative estimates from visual inspection above the area.

  7. Capacitive system detects and locates fluid leaks

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Electronic monitoring system automatically detects and locates minute leaks in seams of large fluid storage tanks and pipelines covered with thermal insulation. The system uses a capacitive tape-sensing element that is adhesively bonded over seams where fluid leaks are likely to occur.

  8. Martian resource locations: Identification and optimization

    NASA Astrophysics Data System (ADS)

    Chamitoff, Gregory; James, George; Barker, Donald; Dershowitz, Adam

    2005-04-01

    The identification and utilization of in situ Martian natural resources is the key to enable cost-effective long-duration missions and permanent human settlements on Mars. This paper presents a powerful software tool for analyzing Martian data from all sources, and for optimizing mission site selection based on resource collocation. This program, called Planetary Resource Optimization and Mapping Tool (PROMT), provides a wide range of analysis and display functions that can be applied to raw data or imagery. Thresholds, contours, custom algorithms, and graphical editing are some of the various methods that can be used to process data. Output maps can be created to identify surface regions on Mars that meet any specific criteria. The use of this tool for analyzing data, generating maps, and collocating features is demonstrated using data from the Mars Global Surveyor and the Odyssey spacecraft. The overall mission design objective is to maximize a combination of scientific return and self-sufficiency based on utilization of local materials. Landing site optimization involves maximizing accessibility to collocated science and resource features within a given mission radius. Mission types are categorized according to duration, energy resources, and in situ resource utilization. Preliminary optimization results are shown for a number of mission scenarios.

  9. UXO location and identification using borehole magnetometery

    NASA Astrophysics Data System (ADS)

    Zhang, Qing; Al-Nuaimy, Waleed; Huang, Yi; Gascoyne, Jon

    2005-06-01

    It is estimated that 10% of war-time bombs did not explode and can be found at the ground surface or buried at a depth of up to 8 meters depending on the formation of the soil. These unexploded bombs or ordnance (UXO) pose a real danger to construction workers and properties. Ground surface based methods become ineffective for objects sinking into deep places due to rapidly diminishing anomalous field and interfering metal debris distributed over ground surface. To overcome the difficulties, a unique inversion algorithm is proposed in this work with advantages of fast convergence and maximization of information extracted from individual hole measurement. It is more reliable than traditional methods by examining the possibilities within a number of estimations. The information from individual hole measurement is fully interpreted hence suggestion can be made for the positioning of next drilling in order to minimize the number of holes required for clearance. Based upon the recovered information, a comparison method is proposed for the identification and discrimination of UXO items from other objects that may be found in the environment, such as steel pipes and steel barrels. It is not sensitive to the interference in the data once the dipole moment is recovered. The results from a test site demonstrates its supreme capability to deal with real-world inversion problems having small number of available data points.

  10. Failure detection and identification

    NASA Technical Reports Server (NTRS)

    Massoumnia, Mohammad-Ali; Verghese, George C.; Willsky, Alan S.

    1989-01-01

    Using the geometric concept of an unobservability subspace, a solution is given to the problem of detecting and identifying control system component failures in linear, time-invariant systems. Conditions are developed for the existence of a causal, linear, time-invariant processor that can detect and uniquely identify a component failure, first for the case where components can fail simultaneously, and then for the case where they fail only one at a time. Explicit design algorithms are provided when these conditions are satisfied. In addition to time-domain solvability conditions, frequency-domain interpretations of the results are given, and connections are drawn with results already available in the literature.

  11. Locating bomb factories by detecting hydrogen peroxide.

    PubMed

    Romolo, Francesco Saverio; Connell, Samantha; Ferrari, Carlotta; Suarez, Guillaume; Sauvain, Jean-Jacques; Hopf, Nancy B

    2016-11-01

    The analytical capability to detect hydrogen peroxide vapour can play a key role in localizing a site where a H2O2 based Improvised Explosive (IE) is manufactured. In security activities it is very important to obtain information in a short time. For this reason, an analytical method to be used in security activity needs portable devices. The authors have developed the first analytical method based on a portable luminometer, specifically designed and validated to locate IE manufacturing sites using quantitative on-site vapour analysis for H2O2. The method was tested both indoor and outdoor. The results demonstrate that the detection of H2O2 vapours could allow police forces to locate the site, while terrorists are preparing an attack. The collected data are also very important in developing new sensors, able to give an early alarm if located at a proper distance from a site where an H2O2 based IE is prepared. PMID:27591582

  12. Integrated Seismic Event Detection and Location by Advanced Array Processing

    SciTech Connect

    Kvaerna, T; Gibbons, S J; Ringdal, F; Harris, D B

    2007-02-09

    The principal objective of this two-year study is to develop and test a new advanced, automatic approach to seismic detection/location using array processing. We address a strategy to obtain significantly improved precision in the location of low-magnitude events compared with current fully-automatic approaches, combined with a low false alarm rate. We have developed and evaluated a prototype automatic system which uses as a basis regional array processing with fixed, carefully calibrated, site-specific parameters in conjuction with improved automatic phase onset time estimation. We have in parallel developed tools for Matched Field Processing for optimized detection and source-region identification of seismic signals. This narrow-band procedure aims to mitigate some of the causes of difficulty encountered using the standard array processing system, specifically complicated source-time histories of seismic events and shortcomings in the plane-wave approximation for seismic phase arrivals at regional arrays.

  13. Testing of a locating discriminating metal detector for landmine detection

    NASA Astrophysics Data System (ADS)

    Davidson, Nigel; Hawkins, Mark; Beech, Richard

    2006-05-01

    Conventional metal detectors are established and trusted tools for landmine detection, but their inability to precisely locate a target and discriminate mines from clutter leads to a high false alarm rate and slow rate of progress. This paper reports on developments to the Marmot advanced metal detector, which uses an array of coils to precisely locate a metal target in three dimensions and identify it. Recent developments allow the detector to calculate the magnetic polarizability tensor of a metal object. The magnetic polarizability tensor is unique to a particular target, and is a property of the metal's shape, size, conductivity, permeability and orientation. The eigenvalues of the magnetic polarizability tensor are compared to a library of values in the detector's software, representing common types of mine and clutter. In this way, Marmot can often quickly identify a detected object as a type of mine or a piece of clutter. This identification is independent of the target's orientation and, within limits, its position relative to the search head, thus providing the potential for a target recognition facility. This paper presents the results of tests to determine Marmot's ability to detect, precisely locate and identify common landmines. Tests have been conducted in air and in several types of soil. The instrument is a first step in developing the concept for landmine clearance. Issues for further investigation have been identified, including use of the instrument for identifying high metal content landmines, application of the soil rejection function and signal to noise issues.

  14. Identification of contaminant point source in surface waters based on backward location probability density function method

    NASA Astrophysics Data System (ADS)

    Cheng, Wei Ping; Jia, Yafei

    2010-04-01

    A backward location probability density function (BL-PDF) method capable of identifying location of point sources in surface waters is presented in this paper. The relation of forward location probability density function (FL-PDF) and backward location probability density, based on adjoint analysis, is validated using depth-averaged free-surface flow and mass transport models and several surface water test cases. The solutions of the backward location PDF transport equation agreed well to the forward location PDF computed using the pollutant concentration at the monitoring points. Using this relation and the distribution of the concentration detected at the monitoring points, an effective point source identification method is established. The numerical error of the backward location PDF simulation is found to be sensitive to the irregularity of the computational meshes, diffusivity, and velocity gradients. The performance of identification method is evaluated regarding the random error and number of observed values. In addition to hypothetical cases, a real case was studied to identify the source location where a dye tracer was instantaneously injected into a stream. The study indicated the proposed source identification method is effective, robust, and quite efficient in surface waters; the number of advection-diffusion equations needed to solve is equal to the number of observations.

  15. Location and identification of radioactive waste in Massachusetts Bay

    SciTech Connect

    Colton, D.P.; Louft, H.L.

    1993-12-31

    The accurate location and identification of hazardous waste materials dumped in the world`s oceans are becoming an increasing concern. For years, the oceans have been viewed as a convenient and economical place to dispose of all types of waste. In all but a few cases, major dump sites have been closed leaving behind years of accumulated debris. The extent of past environmental damage, the possibility of continued environmental damage, and the possibility of hazardous substances reaching the human food chain need to be carefully investigated. This paper reports an attempt to accurately locate and identify the radioactive component of the waste material. The Department of Energy`s Remote Sensing Laboratory (RSL), in support of the US Environmental Protection Agency (EPA), provided the precision navigation system and prototype underwater radiological monitoring equipment that were used during this project. The paper also describes the equipment used, presents the data obtained, and discusses future equipment development.

  16. Demonstration of the Robotic Gamma Locating and Isotopic Identification Device

    SciTech Connect

    Anderson, M.O.; Conner, C.C.; Daniel, V.E.; McKay, M.D.; Yancey, N.A.

    2002-05-08

    The United States Department of Energy (DOE) continually seeks safer and more cost-effective technologies for use in decontaminating and decommissioning nuclear facilities. To this end, the Deactivation and Decommissioning Focus Area of DOE's Office of Science and Technology sponsors Large-Scale Demonstration and Deployment Projects (LSDDP) to test new technologies. As part of these projects, developers and vendors showcase new products designed to decrease health and safety risks to personnel and the environment, increase productivity, and lower costs. As part of the FY 2000 and 2001 LSDDP, the Idaho National Engineering and Environmental Laboratory (INEEL) collaborated with the Russian Research and Development Institute of Construction Technology (NIKIMT). This collaboration resulted in the development of the Robotic Gamma Locating and Isotopic Identification Device (RGL and IID) which integrated DOE Robotics Crosscutting (Rbx) technology with NIKIMT Russian gamma locating and isotopic identification technology. This paper will discuss the technologies involved in this integration and results from the demonstration including reduction of personnel exposure, increase in productivity, and reduced risk.

  17. Demonstration of the Robotic Gamma Locating and Isotopic Identification Device

    SciTech Connect

    Anderson, Matthew Oley; Conner, Craig C; Daniel, Vincent Elvernard; Mckay, Mark D; Yancey, Neal Adam

    2002-08-01

    The United States Department of Energy (DOE) continually seeks safer and more cost- effective technologies for use in decontaminating and decommissioning nuclear facilities. To this end, the Deactivation and Decommissioning Focus Area of DOE's Office of Science and Technology sponsors Large-Scale Demonstration and Deployment Projects (LSDDP) to test new technologies. As part of these projects, developers and vendors showcase new products designed to decrease health and safety risks to personnel and the environment, increase productivity, and lower costs. As part of the FY 2000 and 2001 LSDDP, the Idaho National Engineering and Environmental Laboratory (INEEL) collaborated with the Russian Research and Development Institute of Construction Technology (NIKIMT). This collaboration resulted in the development of the Robotic Gamma Locating and Isotopic Identification Device (RGL&IID) which integrated DOE Robotics Crosscutting (Rbx) technology with NIKIMT Russian gamma locating and isotopic identification technology. This paper will discuss the technologies involved in this integration and results from the demonstration including reduction of personnel exposure, increase in productivity, and reduced risk.

  18. Fault location identification for localized intermittent connection problems on CAN networks

    NASA Astrophysics Data System (ADS)

    Lei, Yong; Yuan, Yong; Sun, Yichao

    2014-09-01

    The intermittent connection(IC) of the field-bus in networked manufacturing systems is a common but hard troubleshooting network problem, which may result in system level failures or safety issues. However, there is no online IC location identification method available to detect and locate the position of the problem. To tackle this problem, a novel model based online fault location identification method for localized IC problem is proposed. First, the error event patterns are identified and classified according to different node sources in each error frame. Then generalized zero inflated Poisson process(GZIP) model for each node is established by using time stamped error event sequence. Finally, the location of the IC fault is determined by testing whether the parameters of the fitted stochastic model is statistically significant or not using the confident intervals of the estimated parameters. To illustrate the proposed method, case studies are conducted on a 3-node controller area network(CAN) test-bed, in which IC induced faults are imposed on a network drop cable using computer controlled on-off switches. The experimental results show the parameters of the GZIP model for the problematic node are statistically significant(larger than 0), and the patterns of the confident intervals of the estimated parameters are directly linked to the problematic node, which agrees with the experimental setup. The proposed online IC location identification method can successfully identify the location of the drop cable on which IC faults occurs on the CAN network.

  19. Leak Detection and Location Technology Assessment for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Coffey, Neil C.; Madaras, Eric I.

    2008-01-01

    Micro Meteoroid and Orbital Debris (MMOD) and other impacts can cause leaks in the International Space Station and other aerospace vehicles. The early detection and location of leaks is paramount to astronaut safety. Therefore this document surveys the state of the art in leak detection and location technology for aerospace vehicles.

  20. Equipment Location Plan, partial first floor plan. (Includes identification of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Equipment Location Plan, partial first floor plan. (Includes identification of each separate CPU, tape drive, hard drive, printer, keyboard, etc., within the data processing center in the southwest part of the first floor.) March Air Force Base, Riverside, California, Combat Operations Center, 465-L EDTCC/EDLCC. By International Electric Corporation, Paramus, New Jersey (3/5/62); for Moffatt and Nichol, Engineers, 122 West Fifth Street, Long Beach, California; for the Corps of Engineers, U.S. Army, Office of the District Engineer, Los Angeles, California. Drawing no. AW-60-02-03, sheet no. 85, approved March, 1962; specifications no. OCI-62-66; D.O. series AW 1596/85, Rev. "A"; file drawer 1290. Last revised 3 October 1966. Scale one-quarter inch to one foot. 28.75x40.5 inches. ink on linen - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA

  1. Equipment Location Plan, partial basement plan. (Includes identification of each ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Equipment Location Plan, partial basement plan. (Includes identification of each separate CPU, tape drive, hard drive, printer, keyboard, etc., within the data processing center in the southeast part of the basement.) March Air Force Base, Riverside, California, Combat Operations Center, 465-L DPC. By International Electric Corporation, Paramus, New Jersey (3/5/62); for Moffatt and Nichol, Engineers, 122 West Fifth Street, Long Beach, California; for the Corps of Engineers, U.S. Army, Office of the District Engineer, Los Angeles, California. Drawing no. AW-60-02-03, sheet no. 100, approved March, 1962; specifications no. OCI-62-66; D.O. series AW 1596/100, Rev. "A"; file drawer 1290. Last revised 3 October 1966. Scale one-quarter inch to one foot. 28.75x40.5 inches. ink on linen - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA

  2. Automated detection and location of indications in eddy current signals

    DOEpatents

    Brudnoy, David M.; Oppenlander, Jane E.; Levy, Arthur J.

    2000-01-01

    A computer implemented information extraction process that locates and identifies eddy current signal features in digital point-ordered signals, signals representing data from inspection of test materials, by enhancing the signal features relative to signal noise, detecting features of the signals, verifying the location of the signal features that can be known in advance, and outputting information about the identity and location of all detected signal features.

  3. Automated Detection and Location of Indications in Eddy Current Signals

    SciTech Connect

    Brudnoy, David M.; Oppenlander, Jane E.; Levy, Arthur J.

    1998-06-30

    A computer implemented information extraction process that locates and identifies eddy current signal features in digital point-ordered signals, said signals representing data from inspection of test materials, by enhancing the signal features relative to signal noise, detecting features of the signals, verifying the location of the signal features that can be known in advance, and outputting information about the identity and location of all detected signal features.

  4. Identification of Presolar Spinel Grains from a Murray Residue by Multi-Detection Raster Imaging

    NASA Astrophysics Data System (ADS)

    Nguyen, A.; Zinner, E.; Lewis, R. S.

    2003-03-01

    Multi-detection raster imaging with the NanoSIMS on Murray separate CG led to the identification of 40 presolar spinel grains. This detection mode is an efficient means of locating rare presolar oxide grains.

  5. Algorithm for Detecting Significant Locations from Raw GPS Data

    NASA Astrophysics Data System (ADS)

    Kami, Nobuharu; Enomoto, Nobuyuki; Baba, Teruyuki; Yoshikawa, Takashi

    We present a fast algorithm for probabilistically extracting significant locations from raw GPS data based on data point density. Extracting significant locations from raw GPS data is the first essential step of algorithms designed for location-aware applications. Assuming that a location is significant if users spend a certain time around that area, most current algorithms compare spatial/temporal variables, such as stay duration and a roaming diameter, with given fixed thresholds to extract significant locations. However, the appropriate threshold values are not clearly known in priori and algorithms with fixed thresholds are inherently error-prone, especially under high noise levels. Moreover, for N data points, they are generally O(N 2) algorithms since distance computation is required. We developed a fast algorithm for selective data point sampling around significant locations based on density information by constructing random histograms using locality sensitive hashing. Evaluations show competitive performance in detecting significant locations even under high noise levels.

  6. Rapid detection and identification of infectious agents

    SciTech Connect

    Kingsbury, D.T.; Falkow, S.

    1985-01-01

    This book contains papers divided among five sections. Some of the paper titles are: Aspects of Using Nucleic Acid Filter Hybridization to Characterize and Detect Enteroviral RNAs; Rapid Identification of Lesihmania Species using Specific Hybridization of Kinetoplast DNA Sequences; Selection of DNA Probes for use in the Diagnosis of Infectious Disease; and Summary of DNA Probes.

  7. Defining solar park location using shadow over time detection method

    NASA Astrophysics Data System (ADS)

    Martynov, Ivan; Kauranne, Tuomo

    2016-06-01

    There is nowadays a high demand for research on using renewable sources of energy including solar energy. The availability of stable and efficient solar energy is of paramount importance. Therefore, it is vital to install solar panels in locations which are most of the time not in shadow. To illustrate this idea we have developed a shadow identification method for digital elevation models (DEMs) using the computational means of MATLAB whose environment and tools allow fast and easy image processing. As a source of DEMs we use the Shuttle Radar Topography Mission (SRTM) database since it covers most of the terrain of our planet.

  8. Study of lip-reading detecting and locating technique

    NASA Astrophysics Data System (ADS)

    Wang, Lirong; Li, Jie; Zhao, Yanyan

    2008-03-01

    With the development of human computer interaction, lip reading technology has become a topic focus in the multimode technologic field. However, detecting and locating lip accurately are very difficult because lip contours of different people, varied illuminant conditions, head movements and other factors. Based on the methods of detecting and locating lip we proposed the methods which are based on the lips color extracted lip contour using the adaptive chromatic filter from the facial images. It is not sensitive to illumination, but appropriate chromatic lip filter is given by analyzing the entire face color and clustering statistics of lip color. It is proposed the combinable method which is preprocessing the face image including rotating the angle of face and improving image contrast in this paper and the lip region is analyzed clustering characteristics for the skin color and lip color, obtained adaptive chromatic filter which can prominent lips from the facial image. This method overcomes the varied illuminate, incline face. The experiments showed that it enhanced detection and location accurately through rough detecting lip region. It lay a good foundation for extraction the lip feature and tracking lip subsequently.

  9. Methods, systems and devices for detecting and locating ferromagnetic objects

    DOEpatents

    Roybal, Lyle Gene [Idaho Falls, ID; Kotter, Dale Kent [Shelley, ID; Rohrbaugh, David Thomas [Idaho Falls, ID; Spencer, David Frazer [Idaho Falls, ID

    2010-01-26

    Methods for detecting and locating ferromagnetic objects in a security screening system. One method includes a step of acquiring magnetic data that includes magnetic field gradients detected during a period of time. Another step includes representing the magnetic data as a function of the period of time. Another step includes converting the magnetic data to being represented as a function of frequency. Another method includes a step of sensing a magnetic field for a period of time. Another step includes detecting a gradient within the magnetic field during the period of time. Another step includes identifying a peak value of the gradient detected during the period of time. Another step includes identifying a portion of time within the period of time that represents when the peak value occurs. Another step includes configuring the portion of time over the period of time to represent a ratio.

  10. The impact of mammographic density and lesion location on detection

    NASA Astrophysics Data System (ADS)

    Al Mousa, Dana; Ryan, Elaine; Lee, Warwick; Nickson, Carolyn; Pietrzyk, Mariusz; Reed, Warren; Poulos, Ann; Li, Yanpeng; Brennan, Patrick

    2013-03-01

    The aim of this study is to examine the impact of breast density and lesion location on detection. A set of 55 mammographic images (23 abnormal images with 26 lesions and 32 normal images) were examined by 22 expert radiologists. The images were classified by an expert radiologist according to the Synoptic Breast Imaging Report of the National Breast Cancer Centre (NBCC) as having low mammographic density (D1<25% glandular and D2> 25-50% glandular) or high density (D3 51-75% glandular and D4> 75-glandular). The observers freely examined the images and located any malignancy using a 5-point confidence. Performance was defined using the following metrics: sensitivity, location sensitivity, specificity, receiver operating characteristic (ROC Az) curves and jackknife free-response receiver operator characteristics (JAFROC) figures of merit. Significant increases in sensitivity (p= 0.0174) and ROC (p=0.0001) values were noted for the higher density compared with lower density images according to NBCC classification. No differences were seen in radiologists' performance between lesions within or outside the fibroglandular region. In conclusion, analysis of our data suggests that radiologists scored higher using traditional metrics in higher mammographic density images without any improvement in lesion localisation. Lesion location whether within or outside the fibroglandular region appeared to have no impact on detection abilities suggesting that if a masking effect is present the impact is minimal. Eye-tracking analyses are ongoing.

  11. Detecting and locating electronic devices using their unintended electromagnetic emissions

    NASA Astrophysics Data System (ADS)

    Stagner, Colin Blake

    Electronically-initiated explosives can have unintended electromagnetic emissions which propagate through walls and sealed containers. These emissions, if properly characterized, enable the prompt and accurate detection of explosive threats. The following dissertation develops and evaluates techniques for detecting and locating common electronic initiators. The unintended emissions of radio receivers and microcontrollers are analyzed. These emissions are low-power radio signals that result from the device's normal operation. In the first section, it is demonstrated that arbitrary signals can be injected into a radio receiver's unintended emissions using a relatively weak stimulation signal. This effect is called stimulated emissions. The performance of stimulated emissions is compared to passive detection techniques. The novel technique offers a 5 to 10 dB sensitivity improvement over passive methods for detecting radio receivers. The second section develops a radar-like technique for accurately locating radio receivers. The radar utilizes the stimulated emissions technique with wideband signals. A radar-like system is designed and implemented in hardware. Its accuracy tested in a noisy, multipath-rich, indoor environment. The proposed radar can locate superheterodyne radio receivers with a root mean square position error less than 5 meters when the SNR is 15 dB or above. In the third section, an analytic model is developed for the unintended emissions of microcontrollers. It is demonstrated that these emissions consist of a periodic train of impulses. Measurements of an 8051 microcontroller validate this model. The model is used to evaluate the noise performance of several existing algorithms. Results indicate that the pitch estimation techniques have a 4 dB sensitivity improvement over epoch folding algorithms.

  12. Identification of potential locations of electric vehicle supply equipment

    NASA Astrophysics Data System (ADS)

    Brooker, R. Paul; Qin, Nan

    2015-12-01

    Proper placement of electric vehicle supply equipment (charging stations) requires an understanding of vehicle usage patterns. Using data from the National Household Travel Survey on vehicle mileage and destination patterns, analyses were performed to determine electric vehicles' charging needs, as a function of battery size and state of charge. This paper compares electric vehicle charging needs with Department of Energy electric vehicle charging data from real-world charging infrastructure. By combining the electric vehicles charging needs with charging data from real-world applications, locations with high electric vehicle charging likelihood are identified.

  13. Identification and Location of Brain Protein 4.1

    NASA Astrophysics Data System (ADS)

    Goodman, Steven R.; Casoria, Linda A.; Coleman, Diane B.; Zagon, Ian S.

    1984-06-01

    Protein 4.1 is a membrane skeletal protein that converts the low-affinity interaction between spectrin and actin into a high-affinity ternary complex of spectrin, protein 4.1, and actin that is essential to the structural stability of the erythrocyte. Pig brain was shown to contain an 87-kilodalton immunoreactive analog of protein 4.1 that has partial sequence homology with pig erythrocyte protein 4.1 and the same location as spectrin in the cortical cytoplasm of neuronal and glial cell types of the cerebellum.

  14. Distress detection, location, and communications using advanced space technology

    NASA Technical Reports Server (NTRS)

    Sivertson, W. E., Jr.

    1977-01-01

    This paper briefly introduces a concept for low-cost, global, day-night, all-weather disaster warning and assistance. Evolving, advanced space technology with passive radio frequency reflectors in conjunction with an imaging synthetic aperture radar is employed to detect, identify, locate, and provide passive communication with earth users in distress. This concept evolved from a broad NASA research on new global search and rescue techniques. Appropriate airborne radar test results from this research are reviewed and related to potential disaster applications. The analysis indicates the approach has promise for disaster communications relative to floods, droughts, earthquakes, volcanic eruptions, and severe storms.

  15. A method of detecting and locating electrical current imbalances

    NASA Astrophysics Data System (ADS)

    Patterson, Richard L.

    1993-01-01

    A method of detecting and locating current imbalances such as ground faults in multiwire systems using the Faraday effect is described. As an example, for 2-wire or 3-wire (1 ground wire) electrical systems, light is transmitted along an optical path which is exposed to magnetic fields produced by currents flowing in the hot and neutral wires. The rotations produced by these two magnetic fields cancel each other, therefore light on the optical path does not read the effect of either. However, when a ground fault occurs, the optical path is exposed to a net Faraday effect rotation due to the current imbalance thereby exposing the ground fault.

  16. Detection of new olivine-rich locations on Vesta

    NASA Astrophysics Data System (ADS)

    Palomba, Ernesto; Longobardo, Andrea; De Sanctis, Maria Cristina; Zinzi, Angelo; Ammannito, Eleonora; Marchi, Simone; Tosi, Federico; Zambon, Francesca; Capria, Maria Teresa; Russell, Christopher T.; Raymond, Carol A.; Cloutis, Edward A.

    2015-09-01

    The discovery of olivine on Vesta's surface by the VIR imaging spectrometer onboard the Dawn space mission has forced us to reconsider our views of Vestan petrogenetic models. Olivines were expected to be present in the interior of Vesta: in the mantle of a vertically layered body as invoked by the magma ocean models, or at the base (or within) the mantle-crust boundary as proposed by fractionation models. Olivines have been detected by VIR-Dawn in two wide areas near Arruntia and Bellicia, regions located in the northern hemisphere. Interestingly, these olivine-rich terrains are far from the Rheasilvia and the more ancient Veneneia basins, which are expected to have excavated the crust down to reach the mantle. In this work we present our attempts to identify other undetected olivine rich areas on Vesta by using spectral parameters sensitive to olivine such as the Band Area Ratio (BAR) and other specific parameters created for the detection of olivines on Mars (forsterite, fayalite and a generic olivine index). As a preliminary step we calibrated these parameters by means of VIS-IR spectra of different HED meteorite samples: behaviors versus sample grain size and albedo were analyzed and discussed. We selected the BAR and the Forsterite Index as the best parameters that can be used on Vesta. A cross-correlation analysis has been applied in order to detect olivine signature on the VIR hyperspectral cubes. These detections have then been confirmed by an anti-correlation analysis between the BAR and one of the olivine parameters, independent of the first method applied. In agreement with the recent discovery, Arruntia and Bellicia were found to be as the most olivine-rich areas, i.e. where the parameter values are strongest. In addition we detected 6 new regions, all but one located in the Vesta north hemisphere. This result confirms again that the old petrogenetic models cannot be straightforwardly applied to Vesta and should be reshaped in the view of these new

  17. Analog Binaural Circuits for Detecting and Locating Leaks

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T.

    2003-01-01

    Very-large-scale integrated (VLSI) analog binaural signal-processing circuits have been proposed for use in detecting and locating leaks that emit noise in the ultrasonic frequency range. These circuits would be designed to function even in the presence of intense lower-frequency background noise that could include sounds associated with flow and pumping. Each of the proposed circuits would include the approximate electronic equivalent of a right and a left cochlea plus correlator circuits. A pair of transducers (microphones or accelerometers), corresponding to right and left ears, would provide the inputs to their respective cochleas from different locations (e.g., from different positions along a pipe). The correlation circuits plus some additional external circuits would determine the difference between the times of arrival of a common leak sound at the two transducers. Then the distance along the pipe from either transducer to the leak could be estimated from the time difference and the speed of sound along the pipe. If three or more pairs of transducers and cochlear/correlator circuits were available and could suitably be positioned, it should be possible to locate a leak in three dimensions by use of sound propagating through air.

  18. Damage detection by Acousto-Ultrasonic Location (AUL)

    NASA Astrophysics Data System (ADS)

    Marioli-Riga, Z. P.; Karanika, A. N.; Philippidis, T. P.; Paipetis, S. A.

    1992-12-01

    Damage detection in aircraft structures in-situ is important, especially with not visible defects in composite components for a variety of reasons. In the present paper a new technique based on the Acousto-Ultrasonic (AU) concept is introduced, but instead of extracting information from the externally generated pulsed wave, as with AU, the characteristics of waves reflected from defects are measured. In this way it was possible to identify and locate defected areas in honeycomb panels and thermoplastic carbon fiber laminates. The results were correlated with ultrasonic C-scans, and satisfactory agreement was obtained. The present is part of a major project aiming at the development of a fast inspection method for aircraft components during routine maintenance cycles.

  19. Detecting and Locating Crosswalks using a Camera Phone

    PubMed Central

    Ivanchenko, Volodymyr; Coughlan, James; Shen, Huiying

    2010-01-01

    Urban intersections are the most dangerous parts of a blind or visually impaired person’s travel. To address this problem, this paper describes the novel “Crosswatch” system, which uses computer vision to provide information about the location and orientation of crosswalks to a blind or visually impaired pedestrian holding a camera cell phone. A prototype of the system runs on an off-the-shelf Nokia N95 camera phone in real time, which automatically takes a few images per second, analyzes each image in a fraction of a second and sounds an audio tone when it detects a crosswalk. Real-time performance on the cell phone, whose computational resources are limited compared to the type of desktop platform usually used in computer vision, is made possible by coding in Symbian C++. Tests with blind subjects demonstrate the feasibility of the system. PMID:20502533

  20. System and Method for Detecting Cracks and their Location

    NASA Technical Reports Server (NTRS)

    Woodward, Stanley E. (Inventor); Shams, Qamar A. (Inventor)

    2007-01-01

    A system and method are provided for detecting cracks and their location in a structure. A circuit coupled to a structure has capacitive strain sensors coupled sequentially and in parallel to one another. When excited by a variable magnetic field, the circuit has a resonant frequency that is different for unstrained and strained states. In terms of strained states, the resonant frequency is indicative of a region of the circuit that is experiencing strain induced by strain in a region of the structure in proximity to the region of the circuit. An inductor is electrically coupled to one end of each circuit. A magnetic field response recorder wirelessly transmits the variable magnetic field to the inductor and senses the resonant frequency of the circuit so-excited by the variable magnetic field.

  1. Automated Microbiological Detection/Identification System

    PubMed Central

    Aldridge, C.; Jones, P. W.; Gibson, S.; Lanham, J.; Meyer, M.; Vannest, R.; Charles, R.

    1977-01-01

    An automated, computerized system, the AutoMicrobic System, has been developed for the detection, enumeration, and identification of bacteria and yeasts in clinical specimens. The biological basis for the system resides in lyophilized, highly selective and specific media enclosed in wells of a disposable plastic cuvette; introduction of a suitable specimen rehydrates and inoculates the media in the wells. An automated optical system monitors, and the computer interprets, changes in the media, with enumeration and identification results automatically obtained in 13 h. Sixteen different selective media were developed and tested with a variety of seeded (simulated) and clinical specimens. The AutoMicrobic System has been extensively tested with urine specimens, using a urine test kit (Identi-Pak) that contains selective media for Escherichia coli, Proteus species, Pseudomonas aeruginosa, Klebsiella-Enterobacter species, Serratia species, Citrobacter freundii, group D enterococci, Staphylococcus aureus, and yeasts (Candida species and Torulopsis glabrata). The system has been tested with 3,370 seeded urine specimens and 1,486 clinical urines. Agreement with simultaneous conventional (manual) cultures, at levels of 70,000 colony-forming units per ml (or more), was 92% or better for seeded specimens; clinical specimens yielded results of 93% or better for all organisms except P. aeruginosa, where agreement was 86%. System expansion in progress includes antibiotic susceptibility testing and compatibility with most types of clinical specimens. Images PMID:334798

  2. Autonomous system for pathogen detection and identification

    NASA Astrophysics Data System (ADS)

    Belgrader, Philip; Benett, William J.; Bergman, Werner; Langlois, Richard G.; Mariella, Raymond P., Jr.; Milanovich, Fred P.; Miles, Robin R.; Venkateswaran, Kodumudi; Long, Gary; Nelson, William

    1999-01-01

    The purpose of this project is to build a prototype instrument that will, running unattended, detect, identify, and quantify BW agents. In order to accomplish this, we have chosen to start with the world's leading, proven assays for pathogens: surface-molecular recognition assays, such as antibody-based assays, implemented on a high-performance, identification (ID)-capable flow cytometer, and the polymerase chain reaction for nucleic-acid based assays. With these assays, we must integrate the capability to: (1) collect samples form aerosols, water, or surface; (2) perform sample preparation prior to the assays; (3) incubate the prepared samples, if necessary, for a period of time; (4) transport the prepared, incubated samples to the assays; (5) perform the assays; (6) interpret and report the result of the assays. Issues such as reliability, sensitivity and accuracy, quantify of consumables, maintenance schedule, etc. must be addressed satisfactorily to the end user. The highest possible sensitivity and specificity of the assay must be combined with no false alarms. Today, we have assays that can, in under 30 minutes, detect and identify simulants for BW agents at concentrations of a few hundred colony- forming units per ml of solution. If the bio-aerosol sampler of this system collects 1000 1/min and concentrates the respirable particles into 1 ml of solution with 70 percent processing efficiency over a period of 5 minutes, then this translates to a detection/ID capability of under 0.1 agent- containing particle/liter of air.

  3. Autonomous system for pathogen detection and identification

    SciTech Connect

    Belgrader, P.; Benett, W.; Bergman, W.; Langlois, R.; Mariella, R.; Milanovich, F.; Miles, R.; Venkateswaran, K.; Long, G.; Nelson, W.

    1998-09-24

    This purpose of this project is to build a prototype instrument that will, running unattended, detect, identify, and quantify BW agents. In order to accomplish this, we have chosen to start with the world' s leading, proven, assays for pathogens: surface-molecular recognition assays, such as antibody-based assays, implemented on a high-performance, identification (ID)-capable flow cytometer, and the polymerase chain reaction (PCR) for nucleic-acid based assays. With these assays, we must integrate the capability to: l collect samples from aerosols, water, or surfaces; l perform sample preparation prior to the assays; l incubate the prepared samples, if necessary, for a period of time; l transport the prepared, incubated samples to the assays; l perform the assays; l interpret and report the results of the assays. Issues such as reliability, sensitivity and accuracy, quantity of consumables, maintenance schedule, etc. must be addressed satisfactorily to the end user. The highest possible sensitivity and specificity of the assay must be combined with no false alarms. Today, we have assays that can, in under 30 minutes, detect and identify simulants for BW agents at concentrations of a few hundred colony-forming units per ml of solution. If the bio-aerosol sampler of this system collects 1000 Ymin and concentrates the respirable particles into 1 ml of solution with 70% processing efficiency over a period of 5 minutes, then this translates to a detection/ID capability of under 0.1 agent-containing particle/liter of air.

  4. Edge Detection Techniques for Automatic Location of Spectra

    NASA Astrophysics Data System (ADS)

    Zarate, N.; Labrie, K.

    2012-09-01

    To improve the processing of multi-object or cross-dispersed spectroscopic data, especially for systems resulting in curved 2-D spectra, we have implemented in Python edge detection techniques widely used in the photo processing and remote sensing world. The software uses the discontinuity found in a spectral image to precisely locate each dispersed 2-D spectrum on the pixel array. A valid spectrum image edge is defined as continuous and sharp. To this end the best input data is a well illuminated flat field. The algorithm applies a discontinuity detection filter to the image. We find that a 3 × 3 Sobel kernel reliably produces easily traceable edges on our data. Some instruments produce data with large background noise. In those cases, a mild smoothing filter is first applied to reduce noise spikes that would otherwise confuse the edge tracing algorithm. The edges highlighted by the filtering are traced using the SciPy function label. Each edge is represented by a second degree polynomial that follows each slit edge. Currently the software assumes that the spectra are nearly horizontal or nearly vertical. This constraint can easily be lifted with the choice of a different convolution kernel.

  5. ACOUSTIC DETECTING AND LOCATING GAS PIPE LINE INFRINGEMENT

    SciTech Connect

    John L. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Patrick Browning

    2004-12-01

    The extensive network of high-pressure natural gas transmission pipelines covering the United States provides an important infrastructure for our energy independence. Early detection of pipeline leaks and infringements by construction equipment, resulting in corrosion fractures, presents an important aspect of our national security policy. The National Energy Technology Laboratory Strategic Center for Natural Gas (SCVG) is and has been funding research on various applicable techniques. The WVU research team has focused on monitoring pipeline background acoustic signals generated and transmitted by gas flowing through the gas inside the pipeline. In case of a pipeline infringement, any mechanical impact on the pipe wall, or escape of high-pressure gas, generates acoustic signals traveling both up and down stream through the gas. Sudden changes in flow noise are detectable with a Portable Acoustic Monitoring Package (PAMP), developed under this contract. It incorporates a pressure compensating microphone and a signal- recording device. Direct access to the gas inside the line is obtained by mounting such a PAMP, with a 1/2 inch NPT connection, to a pipeline pressure port found near most shut-off valves. An FFT of the recorded signal subtracted by that of the background noise recorded one-second earlier appears to sufficiently isolate the infringement signal to allow source interpretation. Using cell phones for data downloading might allow a network of such 1000-psi rated PAMP's to acoustically monitor a pipeline system and be trained by neural network software to positively identify and locate any pipeline infringement.

  6. ACOUSTIC DETECTING AND LOCATING GAS PIPE LINE INFRINGEMENT

    SciTech Connect

    John L. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Patrick Browning

    2004-10-31

    The extensive network of high-pressure natural gas transmission pipelines covering the United States provides an important infrastructure for our energy independence. Early detection of pipeline leaks and infringements by construction equipment, resulting in corrosion fractures, presents an important aspect of our national security policy. The National Energy Technology Laboratory Strategic Center for Natural Gas (SCVG) is and has been funding research on various applicable techniques. The WVU research team has focused on monitoring pipeline background acoustic signals generated and transmitted by gas flowing through the gas inside the pipeline. In case of a pipeline infringement, any mechanical impact on the pipe wall, or escape of high-pressure gas, generates acoustic signals traveling both up and down stream through the gas. Sudden changes in flow noise are detectable with a Portable Acoustic Monitoring Package (PAMP), developed under this contract. It incorporates a pressure compensating microphone and a signal- recording device. Direct access to the gas inside the line is obtained by mounting such a PAMP, with a 1/2 inch NPT connection, to a pipeline pressure port found near most shut-off valves. An FFT of the recorded signal subtracted by that of the background noise recorded one-second earlier appears to sufficiently isolate the infringement signal to allow source interpretation. Using cell phones for data downloading might allow a network of such 1000-psi rated PAMP's to acoustically monitor a pipeline system and be trained by neural network software to positively identify and locate any pipeline infringement.

  7. Airborne system for detection and location of radio interference sources

    NASA Astrophysics Data System (ADS)

    Audone, Bruno; Pastore, Alberto

    1992-11-01

    The rapid expansion of telecommunication has practically saturated every band of Radio Frequency Spectrum; a similar expansion of electrical and electronic devices has affected all radio communications which are, in some way, influenced by a large amount of interferences, either intentionally or unintentionally produced. Operational consequences of these interferences, particularly in the frequency channels used for aeronautical services, can be extremely dangerous, making mandatory a tight control of Electromagnetic Spectrum. The present paper analyzes the requirements and the problems related to the surveillance, for civil application, of the Electromagnetic Spectrum between 20 and 1000 MHz, with particular attention to the detection and location of radio interference sources; after a brief introduction and the indication of the advantages of an airborne versus ground installation, the airborne system designed by Alenia in cooperation with Italian Ministry of Post and Telecommunication, its practical implementation and the prototype installation on board of a small twin turboprop aircraft for experimentation purposes is presented. The results of the flight tests are also analyzed and discussed.

  8. Sequential Optimal Monitoring Network Design using Iterative Kriging for Identification of Unknown Groundwater Pollution Sources Location

    NASA Astrophysics Data System (ADS)

    Prakash, O.; Datta, B.

    2011-12-01

    Identification of unknown groundwater pollution source characteristics, in terms of location, magnitude and activity duration is important for designing an effective pollution remediation strategy. Precise source characterization also becomes very important to ascertain liability, and to recover the cost of remediation from parties responsible for the groundwater pollution. Due to the uncertainties in accurately predicting the aquifer response to source flux injection, generally encountered sparsity of concentration observation data in the field, and the non uniqueness in the aquifer response to the subjected hydraulic and chemical stresses, groundwater pollution source characterization remains a challenging task. A scientifically designed pollutant concentration monitoring network becomes imperative for accurate pollutant source characterization. The efficiency of the unknown source locations identification process is largely determined by locations of monitoring wells where the pollutant concentration is observed. The proposed method combines spatial interpolation of concentration measurements and Simulated Annealing as optimization algorithm to find the optimum locations for monitoring wells. Initially, the observed concentration data at few sparsely and arbitrarily distributed wells are used to interpolate the concentration data for the aquifer study area. The concentration information is passed to the optimization algorithm (decision model) as concentration gradient which in turn finds the optimum locations for implementing the next sequence of monitoring wells. Concentration measurement data from these designed monitoring wells and already implemented monitoring network are iteratively used as feedback information for potential groundwater pollution source locations identification. The potential applicability of the developed methodology is demonstrated for an illustrative study area.

  9. Highway Safety Program Manual: Volume 9: Identification and Surveillance of Accident Locations.

    ERIC Educational Resources Information Center

    National Highway Traffic Safety Administration (DOT), Washington, DC.

    Volume 9 of the 19-volume Highway Safety Program Manual (which provides guidance to State and local governments on preferred highway safety practices) focuses on identification and surveillance of accident locations. The purpose of the program, its specific objectives, and its relationship with other programs are explored. Federal authority in the…

  10. Re-Identification Risk versus Data Utility for Aggregated Mobility Research Using Mobile Phone Location Data

    PubMed Central

    Yin, Ling; Wang, Qian; Shaw, Shih-Lung; Fang, Zhixiang; Hu, Jinxing; Tao, Ye; Wang, Wei

    2015-01-01

    Mobile phone location data is a newly emerging data source of great potential to support human mobility research. However, recent studies have indicated that many users can be easily re-identified based on their unique activity patterns. Privacy protection procedures will usually change the original data and cause a loss of data utility for analysis purposes. Therefore, the need for detailed data for activity analysis while avoiding potential privacy risks presents a challenge. The aim of this study is to reveal the re-identification risks from a Chinese city’s mobile users and to examine the quantitative relationship between re-identification risk and data utility for an aggregated mobility analysis. The first step is to apply two reported attack models, the top N locations and the spatio-temporal points, to evaluate the re-identification risks in Shenzhen City, a metropolis in China. A spatial generalization approach to protecting privacy is then proposed and implemented, and spatially aggregated analysis is used to assess the loss of data utility after privacy protection. The results demonstrate that the re-identification risks in Shenzhen City are clearly different from those in regions reported in Western countries, which prove the spatial heterogeneity of re-identification risks in mobile phone location data. A uniform mathematical relationship has also been found between re-identification risk (x) and data (y) utility for both attack models: y = -axb+c, (a, b, c>0; 0identification risks and a privacy-utility tradeoff benchmark for improving privacy protection when sharing detailed trajectory data. PMID:26469780

  11. The use of roving discs and orthogonal natural frequencies for crack identification and location in rotors

    NASA Astrophysics Data System (ADS)

    Haji, Zyad N.; Olutunde Oyadiji, S.

    2014-11-01

    A variety of approaches that have been developed for the identification and localisation of cracks in a rotor system, which exploit natural frequencies, require a finite element model to obtain the natural frequencies of the intact rotor as baseline data. In fact, such approaches can give erroneous results about the location and depth of a crack if an inaccurate finite element model is used to represent an uncracked model. A new approach for the identification and localisation of cracks in rotor systems, which does not require the use of the natural frequencies of an intact rotor as a baseline data, is presented in this paper. The approach, named orthogonal natural frequencies (ONFs), is based only on the natural frequencies of the non-rotating cracked rotor in the two lateral bending vibration x-z and y-z planes. The approach uses the cracked natural frequencies in the horizontal x-z plane as the reference data instead of the intact natural frequencies. Also, a roving disc is traversed along the rotor in order to enhance the dynamics of the rotor at the cracked locations. At each spatial location of the roving disc, the two ONFs of the rotor-disc system are determined from which the corresponding ONF ratio is computed. The ONF ratios are normalised by the maximum ONF ratio to obtain normalised orthogonal natural frequency curves (NONFCs). The non-rotating cracked rotor is simulated by the finite element method using the Bernoulli-Euler beam theory. The unique characteristics of the proposed approach are the sharp, notched peaks at the crack locations but rounded peaks at non-cracked locations. These features facilitate the unambiguous identification and locations of cracks in rotors. The effects of crack depth, crack location, and mass of a roving disc are investigated. The results show that the proposed method has a great potential in the identification and localisation of cracks in a non-rotating cracked rotor.

  12. Detection, Isolation, and Identification of Vibrio cholerae from the Environment

    PubMed Central

    Huq, Anwar; Haley, Bradd J.; Taviani, Elisa; Chen, Arlene; Hasan, Nur A.; Colwell, Rita R.

    2012-01-01

    Recent molecular advances in microbiology have greatly improved the detection of bacterial pathogens in the environment. Improvement and a downward trend in the cost of molecular detection methods have contributed to increased frequency of detection of pathogenic microorganisms where traditional culture-based detection methods have failed. Culture methods also have been greatly improved and the confluence of the two suites of methods provides a powerful tool for detection, isolation, and characterization of pathogens. While molecular detection provides data on the presence and type of pathogens, culturing methods allow a researcher to preserve the organism of interest for “–omics” studies, such as genomic, metabolomic, secretomic, and transcriptomic analysis, which are rapidly becoming more affordable. This has yielded a clearer understanding of the ecology and epidemiology of microorganisms that cause disease. Specifically, important advances have been made over the past several years on isolation, detection, and identification of Vibrio cholerae, the causative agent of cholera in humans. In this unit, we present commonly accepted methods for isolation, detection, and characterization of V. cholerae, providing more extensive knowledge of the ecology and epidemiology of this organism. This unit has been fully revised and updated from the earlier unit (Huq, Grim et al. 2006) with the latest knowledge and additional information not previously included. We have also taken into account of cost of reagents and equipment that may be prohibitive for many researchers and have, therefore, included protocols for all laboratories, including those with limited resources, likely to be located in regions of cholera endemicity. PMID:22875567

  13. GIS applied to location of fires detection towers in domain area of tropical forest.

    PubMed

    Eugenio, Fernando Coelho; Rosa Dos Santos, Alexandre; Fiedler, Nilton Cesar; Ribeiro, Guido Assunção; da Silva, Aderbal Gomes; Juvanhol, Ronie Silva; Schettino, Vitor Roberto; Marcatti, Gustavo Eduardo; Domingues, Getúlio Fonseca; Alves Dos Santos, Gleissy Mary Amaral Dino; Pezzopane, José Eduardo Macedo; Pedra, Beatriz Duguy; Banhos, Aureo; Martins, Lima Deleon

    2016-08-15

    In most countries, the loss of biodiversity caused by the fires is worrying. In this sense, the fires detection towers are crucial for rapid identification of fire outbreaks and can also be used in environmental inspection, biodiversity monitoring, telecommunications mechanisms, telemetry and others. Currently the methodologies for allocating fire detection towers over large areas are numerous, complex and non-standardized by government supervisory agencies. Therefore, this study proposes and evaluates different methodologies to best location of points to install fire detection towers considering the topography, risk areas, conservation units and heat spots. Were used Geographic Information Systems (GIS) techniques and unaligned stratified systematic sampling for implementing and evaluating 9 methods for allocating fire detection towers. Among the methods evaluated, the C3 method was chosen, represented by 140 fire detection towers, with coverage of: a) 67% of the study area, b) 73.97% of the areas with high risk, c) 70.41% of the areas with very high risk, d) 70.42% of the conservation units and e) 84.95% of the heat spots in 2014. The proposed methodology can be adapted to areas of other countries. PMID:27110968

  14. Damage Detection/Locating System Providing Thermal Protection

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E. (Inventor); Jones, Thomas W. (Inventor); Taylor, Bryant D. (Inventor); Qamar, A. Shams (Inventor)

    2010-01-01

    A damage locating system also provides thermal protection. An array of sensors substantially tiles an area of interest. Each sensor is a reflective-surface conductor having operatively coupled inductance and capacitance. A magnetic field response recorder is provided to interrogate each sensor before and after a damage condition. Changes in response are indicative of damage and a corresponding location thereof.

  15. Identification of unique repeated patterns, location of mutation in DNA finger printing using artificial intelligence technique.

    PubMed

    Mukunthan, B; Nagaveni, N

    2014-01-01

    In genetic engineering, conventional techniques and algorithms employed by forensic scientists to assist in identification of individuals on the basis of their respective DNA profiles involves more complex computational steps and mathematical formulae, also the identification of location of mutation in a genomic sequence in laboratories is still an exigent task. This novel approach provides ability to solve the problems that do not have an algorithmic solution and the available solutions are also too complex to be found. The perfect blend made of bioinformatics and neural networks technique results in efficient DNA pattern analysis algorithm with utmost prediction accuracy. PMID:24589835

  16. Pickless event detection and location: The waveform correlation event detection system (WCEDS) revisited

    DOE PAGESBeta

    Arrowsmith, Stephen John; Young, Christopher J.; Ballard, Sanford; Slinkard, Megan Elizabeth

    2016-01-01

    The standard paradigm for seismic event monitoring breaks the event detection problem down into a series of processing stages that can be categorized at the highest level into station-level processing and network-level processing algorithms (e.g., Le Bras and Wuster (2002)). At the station-level, waveforms are typically processed to detect signals and identify phases, which may subsequently be updated based on network processing. At the network-level, phase picks are associated to form events, which are subsequently located. Furthermore, waveforms are typically directly exploited only at the station-level, while network-level operations rely on earth models to associate and locate the events thatmore » generated the phase picks.« less

  17. Pickless event detection and location: The waveform correlation event detection system (WCEDS) revisited

    SciTech Connect

    Arrowsmith, Stephen John; Young, Christopher J.; Ballard, Sanford; Slinkard, Megan Elizabeth

    2016-01-01

    The standard paradigm for seismic event monitoring breaks the event detection problem down into a series of processing stages that can be categorized at the highest level into station-level processing and network-level processing algorithms (e.g., Le Bras and Wuster (2002)). At the station-level, waveforms are typically processed to detect signals and identify phases, which may subsequently be updated based on network processing. At the network-level, phase picks are associated to form events, which are subsequently located. Furthermore, waveforms are typically directly exploited only at the station-level, while network-level operations rely on earth models to associate and locate the events that generated the phase picks.

  18. Real-time detection, location, and characterization of rockslides using broadband regional seismic networks

    NASA Astrophysics Data System (ADS)

    Manconi, Andrea; Picozzi, Matteo; Coviello, Velio; De Santis, Francesca; Elia, Luca

    2016-07-01

    We propose a new real-time approach to detect, locate, and estimate the volume of rockslides by analyzing waveforms acquired from broadband regional seismic networks. The identification of signals generated by rockslides from other sources, such as natural and/or induced earthquakes, is accomplished by exploiting the ratio between local magnitudes (ML) and duration magnitudes (MD). We found that signals associated with rockslides have ML/MD < 0.8, while for earthquakes ML/MD ≅ 1. In addition, we derived an empirical relationship between MD and rockslide volumes, obtaining a preliminary characterization of rockslide volume within seconds after their occurrence. The key points of this study are presented by testing the hypothesis on a recent rockslide event that occurred in northern Italy. We discuss also the potential evolution of the methodology for early warning and/or rapid response purposes.

  19. 2D signature for detection and identification of drugs

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Varentsova, Svetlana A.; Shen, Jingling; Zhang, Cunlin; Zhou, Qingli; Shi, Yulei

    2011-06-01

    The method of spectral dynamics analysis (SDA-method) is used for obtaining the2D THz signature of drugs. This signature is used for the detection and identification of drugs with similar Fourier spectra by transmitted THz signal. We discuss the efficiency of SDA method for the identification problem of pure methamphetamine (MA), methylenedioxyamphetamine (MDA), 3, 4-methylenedioxymethamphetamine (MDMA) and Ketamine.

  20. A Theory and Experiments for Detecting Shock Locations

    NASA Technical Reports Server (NTRS)

    Hariharan, S. I.; Johnson, D. K.; Adamovsky, G.

    1994-01-01

    In this paper we present a simplified one-dimensional theory for predicting locations of normal shocks in a converging diverging nozzle. The theory assumes that the flow is quasi one-dimensional and the flow is accelerated in the throat area. Optical aspects of the model consider propagation of electromagnetic fields transverse to the shock front. The theory consists of an inverse problem in which from the measured intensity it reconstructs an index of refraction profile for the shock. From this profile and the Dale-Gladstone relation, the density in the flow field is determined, thus determining the shock location. Experiments show agreement with the theory. In particular the location is determined within 10 percent of accuracy. Both the theoretical as well as the experimental results are presented to validate the procedures in this work.

  1. An intelligent subtitle detection model for locating television commercials.

    PubMed

    Huang, Yo-Ping; Hsu, Liang-Wei; Sandnes, Frode-Eika

    2007-04-01

    A strategy for locating television (TV) commercials in TV programs is proposed. Based on the observation that most TV commercials do not have subtitles, the first stage exploits six subtitle constraints and an adaptive neurofuzzy inference system model to determine whether a frame contains a subtitle or not. The second stage involves locating the mark-in/mark-out points using a genetic algorithm. An interactive user interface allows users to efficiently identify and fine-tune the exact boundaries separating the commercials from the program content. Furthermore, erroneous boundaries are manually corrected. Experimental results show that the precision rate and recall rates exceed 90%. PMID:17416175

  2. Detection and location of metal fragments in the human body

    NASA Technical Reports Server (NTRS)

    Brown, R. L.; Neuschaefer, R. W.

    1970-01-01

    Portable electronic device, based on the design of an eddy current gage, detects ferrous and nonferrous metal fragments. Device is more easily transported than X-ray equipment and does not present a radiation hazard.

  3. Optical sensor for detection of supercavity-body contact location

    NASA Astrophysics Data System (ADS)

    Belden, Jesse; Jandron, Michael; Truscott, Tadd

    2013-11-01

    Supercavitating vehicles have been the subject of intense research due to the potential for drag reduction and/or increased speeds. The control of such vehicles depends on accurate knowledge of planing forces generated by partial, transient wetting of afterbody surfaces. Measurement of the supercavity-body contact location, which determines the planing area, is thus critical for vehicle control. A robust sensor capable of measuring supercavity contact location along the length of a body is presented. The sensor operates on the optical principle of total internal reflection to differentiate between liquid and gas phases in contact with the body. An array of photodetectors is used to sense the presence or absence of light from a laser source to map the contact location. The theoretical operation and limitations of the sensor are discussed and several experiments are presented to validate the theory. Also, we present an elegant signal processing method to compensate for in situ changes in ambient light conditions. This work was funded by the Office of Naval Research.

  4. Locating tube blockage that X-ray cannot detect

    NASA Technical Reports Server (NTRS)

    Hendron, J. A.

    1971-01-01

    Alternate choices to X-ray use in detecting foreign materials in metal assemblies are available, including negative radiography, neutron radiography, liquid-crystal inspection and ultrasonics. Advantages and disadvantages of each method are given. Report is valuable in testings and inspections, including heat exchangers and piping systems.

  5. ACOUSTIC DETECTING AND LOCATING GAS PIPE LINE INFRINGEMENT

    SciTech Connect

    John L Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Deepak Mehra

    2003-04-01

    The West Virginia University natural gas transmission line leak detection research is only considering using readily available 1/2 inch pipeline access ports for the detection of leak generated signals. The main problem with leak signals is the low signal to noise ratio. One of the acoustic signals associated with gas escaping through a leak is only temporary and is in the form of a rarefaction wave originating when the leak is formed. Due to pipeline friction, over distance such a step function transitions to a ramp function. The ability to identify a leak by pipeline monitoring and signal processing depends a great deal on the quality and signal to noise ratio of the characteristics of the detectors used. Combinations of sensing devices are being used for the WVU sensor package and are contained in a removable sensor housing. The four sensors currently installed are a 1/2 inch 3 Hz-40 Khz microphone, an audible range moving coil sensor, a piezo-electric pressure transducer, and the WVU designed floating 3 inch diameter diaphragm to detect flow transient induced pressure ramp type signals. The WVU diaphragm sensor, which is currently under development, uses the same diaphragm principle as a high quality capacitance type microphone, but utilizes aerodynamic signal amplification. This type of amplification only amplifies the ramp-signal itself, not the random pipeline noise.

  6. Accurate identification of centromere locations in yeast genomes using Hi-C.

    PubMed

    Varoquaux, Nelle; Liachko, Ivan; Ay, Ferhat; Burton, Joshua N; Shendure, Jay; Dunham, Maitreya J; Vert, Jean-Philippe; Noble, William S

    2015-06-23

    Centromeres are essential for proper chromosome segregation. Despite extensive research, centromere locations in yeast genomes remain difficult to infer, and in most species they are still unknown. Recently, the chromatin conformation capture assay, Hi-C, has been re-purposed for diverse applications, including de novo genome assembly, deconvolution of metagenomic samples and inference of centromere locations. We describe a method, Centurion, that jointly infers the locations of all centromeres in a single genome from Hi-C data by exploiting the centromeres' tendency to cluster in three-dimensional space. We first demonstrate the accuracy of Centurion in identifying known centromere locations from high coverage Hi-C data of budding yeast and a human malaria parasite. We then use Centurion to infer centromere locations in 14 yeast species. Across all microbes that we consider, Centurion predicts 89% of centromeres within 5 kb of their known locations. We also demonstrate the robustness of the approach in datasets with low sequencing depth. Finally, we predict centromere coordinates for six yeast species that currently lack centromere annotations. These results show that Centurion can be used for centromere identification for diverse species of yeast and possibly other microorganisms. PMID:25940625

  7. Detection and location of debris cloud impact damage

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Pang, Baojun; Liu, Zhidong; Chi, Runqiang

    2009-12-01

    A variety of anomalies and system failure can be caused by micrometeoroid and space debris impact on spacecraft. A system based on acoustic emission technique is considered for monitoring the impact events. Most of recent works focused on point-like source localization. However, the spacecraft may use a single thin plate named "bumper" placed at a short distance ahead of a primary structural system. The impact source would be in the form of debris cloud. In this study, normal hypervelocity impact experiments were used to study the characteristics of signals caused by debris cloud impact. Four ultrasonic transducers were mounted on the target plate for collecting the debris cloud impact signals. In the Fourier transform of the signals, the distinctions caused by different form of debris cloud impact could be seen. The mathematical model to determine the impact location was provided. It was found that the position predicted was near the center of the damaged region caused by debris cloud impact.

  8. Detection and location of debris cloud impact damage

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Pang, Baojun; Liu, ZhiDong; Chi, Runqiang

    2010-03-01

    A variety of anomalies and system failure can be caused by micrometeoroid and space debris impact on spacecraft. A system based on acoustic emission technique is considered for monitoring the impact events. Most of recent works focused on point-like source localization. However, the spacecraft may use a single thin plate named "bumper" placed at a short distance ahead of a primary structural system. The impact source would be in the form of debris cloud. In this study, normal hypervelocity impact experiments were used to study the characteristics of signals caused by debris cloud impact. Four ultrasonic transducers were mounted on the target plate for collecting the debris cloud impact signals. In the Fourier transform of the signals, the distinctions caused by different form of debris cloud impact could be seen. The mathematical model to determine the impact location was provided. It was found that the position predicted was near the center of the damaged region caused by debris cloud impact.

  9. Medical isotope identification with large mobile detection systems

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sanjoy; Maurer, Richard

    2012-10-01

    The Remote Sensing laboratory (RSL) of National Security Technologies Inc. has built an array of large (5.08 - cm x 10.16 - cm x 40.6 - cm) thallium doped sodium iodide (NaI: Tl) scintillators to locate and screen gamma-ray emitting radioisotopes that are of interests to radiological emergency responders [1]. These vehicle mounted detectors provide the operators with rapid, simple, specific information for radiological threat assessment. Applications include large area inspection, customs inspection, border protection, emergency response, and monitoring of radiological facilities. These RSL mobile units are currently being upgraded to meet the Defense Threat Reduction Agency mission requirements for a next-generation system capable of detecting and identifying nuclear threat materials. One of the challenging problems faced by these gamma-ray detectors is the unambiguous identification of medical isotopes like 131I (364.49 keV [81.7%], 636.99 keV [7.17%]), 99Tcm (140.51 keV [89.1%]) and 67Ga (184.6 keV [19.7%], 300.2 [16.0%], 393.5 [4.5%] that are used in radionuclide therapy and often have overlapping gamma-ray energy regions of interest (ROI). The problem is made worse by short (about 5 seconds) acquisition time of the spectral data necessary for dynamic mobile detectors. This article describes attempts to identify medical isotopes from data collected from this mobile detection system in a short period of time (not exceeding 5 secs) and a large standoff distance (typically ~ 10 meters) The mobile units offer identification capabilities that are based on hardware auto stabilization of the amplifier gain. The 1461 keV gamma-energy line from 40K is tracked. It uses gamma-ray energy windowing along with embedded mobile Gamma Detector Response and Analysis Software (GADRAS) [2] simultaneously to deconvolve any overlapping gamma-energy ROIs. These high sensitivity detectors are capable of resolving complex masking scenarios and exceed all ANSI N42.34 (2006) requirements

  10. Identification of Groundwater Contaminant Location and Release History using Simulation-Optimization Method

    NASA Astrophysics Data System (ADS)

    Park, Y. C.

    2015-12-01

    Identification of location and release history of contaminant in groundwater is necessary to improve the remediation accuracy and to decrease the remediation cost. Especially in an industrial complex, groundwater is contaminated by various sources during unknown periods and groundwater remediation turns out complicated problems. A simulation-optimization method is preferred to solve the complicated problems of contaminant source identification because a simulation-optimization method has flexible applicability. For simulations of groundwater flow and contaminant transport, MODFLOW, MT3DMS and RT3D are used. These models are integrated with a genetic algorithm to obtain the optimization of contaminant location and release history. Because computing time and costs are enormous for a simulation-optimization method, a distributed computing technique is used to reduce computing time and costs. The performance of developed computer programs is evaluated with hypothetical examples with combinations of aquifers and contaminants from simple to complicated levels. The results shows the possibility of developed computer program to solve the problem of contaminant location and release history problems. This subject is supported by Korea Ministry of Environment as "The GAIA project".

  11. Generic detection and identification of pospiviroids.

    PubMed

    Olivier, Thibaut; Demonty, Elisabeth; Fauche, Frédéric; Steyer, Stéphan

    2014-08-01

    A multiplex one-step RT-PCR aiming at detecting all pospiviroids known to be harmful to cultivated plants has been developed. Specificity, sensitivity, selectivity, repeatability and reproducibility of this test have been assessed in order to fulfill the recommendations of the EPPO standard PM7/98 and provide routine detection laboratories with a cost-effective, easy-to-use and robust pospiviroid detection test. To further understand the epidemiology and ease the management of pospiviroid outbreaks, this RT-PCR diagnostic test can be followed by direct sequencing of the amplicons to identify and characterize the detected pospiviroid isolates. PMID:24585041

  12. APPARATUS FOR DETECTING AND LOCATING PRESENCE OF FLUIDS

    DOEpatents

    Williamson, R.R.

    1958-09-16

    A system is described fur detecting water leaks in water-cooled neutronic reactors by utilizing an electrical hygrometer having a resistance element variable with the moisture content. The graphite blocks, forming the moderator in many types of reactors, coniain ducts in which helium gas is circulated. When a leak occurs in a coolant tube, the water will seep through the graphite until it oozes into one of the helium ducts, where it will be swept along with the helium into a system of pipes that connect each of the helium ducts. By inserting an electric hygrometer in each of these pipes and connecting it to an alarm system, the moisture content of the helium will cause a change in the electrical resistance of the hygrometer which will initiate a signal alarm indicating the presence and position of the leaky water tube in the reactor.

  13. Final Scientific Report, Integrated Seismic Event Detection and Location by Advanced Array Processing

    SciTech Connect

    Kvaerna, T.; Gibbons. S.J.; Ringdal, F; Harris, D.B.

    2007-01-30

    primarily the result of spurious identification and incorrect association of phases, and of excessive variability in estimates for the velocity and direction of incoming seismic phases. The mitigation of these causes has led to the development of two complimentary techniques for classifying seismic sources by testing detected signals under mutually exclusive event hypotheses. Both of these techniques require appropriate calibration data from the region to be monitored, and are therefore ideally suited to mining areas or other sites with recurring seismicity. The first such technique is a classification and location algorithm where a template is designed for each site being monitored which defines which phases should be observed, and at which times, for all available regional array stations. For each phase, the variability of measurements (primarily the azimuth and apparent velocity) from previous events is examined and it is determined which processing parameters (array configuration, data window length, frequency band) provide the most stable results. This allows us to define optimal diagnostic tests for subsequent occurrences of the phase in question. The calibration of templates for this project revealed significant results with major implications for seismic processing in both automatic and analyst reviewed contexts: • one or more fixed frequency bands should be chosen for each phase tested for. • the frequency band providing the most stable parameter estimates varies from site to site and a frequency band which provides optimal measurements for one site may give substantially worse measurements for a nearby site. • slowness corrections applied depend strongly on the frequency band chosen. • the frequency band providing the most stable estimates is often neither the band providing the greatest SNR nor the band providing the best array gain. For this reason, the automatic template location estimates provided here are frequently far better than those obtained by

  14. The influence of attention and target identification on saccadic eye movements depends on prior target location.

    PubMed

    Hardwick, David R; Cutmore, Timothy R H; Hine, Trevor J

    2014-01-01

    Saccadic latency is reduced by a temporal gap between fixation point and target, by identification of a target feature, and by movement in a new direction (inhibition of saccadic return, ISR). A simple additive model was compared with a shared resources model that predicts a three-way interaction. Twenty naïve participants made horizontal saccades to targets left and right of fixation in a randomised block design. There was a significant three-way interaction among the factors on saccade latency. This was revealed in a two-way interaction between feature identification and the gap versus no gap factor which was only apparent when the saccade was in the same direction as the previous saccade. No interaction was apparent when the saccade was in the opposite direction. This result supports an attentional inhibitory effect that is present during ISR to a previous location which is only partly released by the facilitative effect of feature identification and gap. Together, anticipatory error data and saccade latency interactions suggest a source of ISR at a higher level of attention, possibly localised in the dorsolateral prefrontal cortex and involving tonic activation. PMID:24719754

  15. The Influence of Attention and Target Identification on Saccadic Eye Movements Depends on Prior Target Location

    PubMed Central

    Hardwick, David R.; Cutmore, Timothy R. H.; Hine, Trevor J.

    2014-01-01

    Saccadic latency is reduced by a temporal gap between fixation point and target, by identification of a target feature, and by movement in a new direction (inhibition of saccadic return, ISR). A simple additive model was compared with a shared resources model that predicts a three-way interaction. Twenty naïve participants made horizontal saccades to targets left and right of fixation in a randomised block design. There was a significant three-way interaction among the factors on saccade latency. This was revealed in a two-way interaction between feature identification and the gap versus no gap factor which was only apparent when the saccade was in the same direction as the previous saccade. No interaction was apparent when the saccade was in the opposite direction. This result supports an attentional inhibitory effect that is present during ISR to a previous location which is only partly released by the facilitative effect of feature identification and gap. Together, anticipatory error data and saccade latency interactions suggest a source of ISR at a higher level of attention, possibly localised in the dorsolateral prefrontal cortex and involving tonic activation. PMID:24719754

  16. Field Demonstration of Innovative Condition Assessment Technologies for Water Mains: Leak Detection and Location

    EPA Science Inventory

    Three leak detection/location technologies were demonstrated on a 76-year-old, 2,057-ft-long portion of a cement-lined, 24-in. cast iron water main in Louisville, KY. This activity was part of a series of field demonstrations of innovative leak detection/location and condition a...

  17. Molecular identification and phylogenetic analysis of the forensically important family Piophilidae (Diptera) from different European locations.

    PubMed

    Zajac, Barbara Karolina; Martin-Vega, Daniel; Feddern, Nina; Fremdt, Heike; e Castro, Catharina Prado; Szpila, Krzysztof; Reckel, Frank; Schütt, Svenja; Verhoff, Marcel A; Amendt, Jens; Zehner, Richard

    2016-02-01

    Species identification plays an important role in forensic entomology and is mandatory for an accurate calculation of the minimum post-mortem interval. Many important Diptera and Coleoptera taxa of the cadaver community can already be identified by common barcoding approaches, i.e., by sequencing a 658bp region in the mitochondrial cytochrome c oxidase subunit I (coI) gene. Nevertheless, there is still a lack of reference barcodes for species, in particular, that can be found on cadavers at later decomposition stages. Flies of the family Piophilidae illustrate this gap of knowledge perfectly. Due to the fact that a reliable morphological identification key for the immature stages of this flies is still missing and the immature stages of many piophilids cannot be assigned to a certain species, there is need for additional tools to identify forensically relevant taxa. We collected adult piophilid specimens at 10 locations in five European countries: Spain (n=3 locations), Germany (n=3), Portugal (n=2), Poland (n=1) and Switzerland (n=1). Apart from the coI barcoding region, we additionally analyzed a 398bp long region of the nuclear elongation factor 1 alpha (ef1a) and subsequently established the molecular identifier for nine piophilid species. In addition, we present the molecular phylogeny of the examined taxa. PMID:26760908

  18. Bacteriophage Amplification-Coupled Detection and Identification of Bacterial Pathogens

    NASA Astrophysics Data System (ADS)

    Cox, Christopher R.; Voorhees, Kent J.

    Current methods of species-specific bacterial detection and identification are complex, time-consuming, and often require expensive specialized equipment and highly trained personnel. Numerous biochemical and genotypic identification methods have been applied to bacterial characterization, but all rely on tedious microbiological culturing practices and/or costly sequencing protocols which render them impractical for deployment as rapid, cost-effective point-of-care or field detection and identification methods. With a view towards addressing these shortcomings, we have exploited the evolutionarily conserved interactions between a bacteriophage (phage) and its bacterial host to develop species-specific detection methods. Phage amplification-coupled matrix assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF-MS) was utilized to rapidly detect phage propagation resulting from species-specific in vitro bacterial infection. This novel signal amplification method allowed for bacterial detection and identification in as little as 2 h, and when combined with disulfide bond reduction methods developed in our laboratory to enhance MALDI-TOF-MS resolution, was observed to lower the limit of detection by several orders of magnitude over conventional spectroscopy and phage typing methods. Phage amplification has been combined with lateral flow immunochromatography (LFI) to develop rapid, easy-to-operate, portable, species-specific point-of-care (POC) detection devices. Prototype LFI detectors have been developed and characterized for Yersinia pestis and Bacillus anthracis, the etiologic agents of plague and anthrax, respectively. Comparable sensitivity and rapidity was observed when phage amplification was adapted to a species-specific handheld LFI detector, thus allowing for rapid, simple, POC bacterial detection and identification while eliminating the need for bacterial culturing or DNA isolation and amplification techniques.

  19. A New Position Location System Using DTV Transmitter Identification Watermark Signals

    NASA Astrophysics Data System (ADS)

    Wang, Xianbin; Wu, Yiyan; Chouinard, Jean-Yves

    2006-12-01

    A new position location technique using the transmitter identification (TxID) RF watermark in the digital TV (DTV) signals is proposed in this paper. Conventional global positioning system (GPS) usually does not work well inside buildings due to the high frequency and weak field strength of the signal. In contrast to the GPS, the DTV signals are received from transmitters at relatively short distance, while the broadcast transmitters operate at levels up to the megawatts effective radiated power (ERP). Also the RF frequency of the DTV signal is much lower than the GPS, which makes it easier for the signal to penetrate buildings and other objects. The proposed position location system based on DTV TxID signal is presented in this paper. Practical receiver implementation issues including nonideal correlation and synchronization are analyzed and discussed. Performance of the proposed technique is evaluated through Monte Carlo simulations and compared with other existing position location systems. Possible ways to improve the accuracy of the new position location system is discussed.

  20. Mobile Location with NLOS Identification and Mitigation Based on Modified Kalman Filtering

    PubMed Central

    Ke, Wei; Wu, Lenan

    2011-01-01

    In order to enhance accuracy and reliability of wireless location in the mixed line-of-sight (LOS) and non-line-of-sight (NLOS) environments, a robust mobile location algorithm is presented to track the position of a mobile node (MN). An extended Kalman filter (EKF) modified in the updating phase is utilized to reduce the NLOS error in rough wireless environments, in which the NLOS bias contained in each measurement range is estimated directly by the constrained optimization method. To identify the change of channel situation between NLOS and LOS, a low complexity identification method based on innovation vectors is proposed. Numerical results illustrate that the location errors of the proposed algorithm are all significantly smaller than those of the iterated NLOS EKF algorithm and the conventional EKF algorithm in different LOS/NLOS conditions. Moreover, this location method does not require any statistical distribution knowledge of the NLOS error. In addition, complexity experiments suggest that this algorithm supports real-time applications. PMID:22319373

  1. Mobile location with NLOS identification and mitigation based on modified Kalman filtering.

    PubMed

    Ke, Wei; Wu, Lenan

    2011-01-01

    In order to enhance accuracy and reliability of wireless location in the mixed line-of-sight (LOS) and non-line-of-sight (NLOS) environments, a robust mobile location algorithm is presented to track the position of a mobile node (MN). An extended Kalman filter (EKF) modified in the updating phase is utilized to reduce the NLOS error in rough wireless environments, in which the NLOS bias contained in each measurement range is estimated directly by the constrained optimization method. To identify the change of channel situation between NLOS and LOS, a low complexity identification method based on innovation vectors is proposed. Numerical results illustrate that the location errors of the proposed algorithm are all significantly smaller than those of the iterated NLOS EKF algorithm and the conventional EKF algorithm in different LOS/NLOS conditions. Moreover, this location method does not require any statistical distribution knowledge of the NLOS error. In addition, complexity experiments suggest that this algorithm supports real-time applications. PMID:22319373

  2. Detecting surface runoff location in a small catchment using distributed and simple observation method

    NASA Astrophysics Data System (ADS)

    Dehotin, Judicaël; Breil, Pascal; Braud, Isabelle; de Lavenne, Alban; Lagouy, Mickaël; Sarrazin, Benoît

    2015-06-01

    Surface runoff is one of the hydrological processes involved in floods, pollution transfer, soil erosion and mudslide. Many models allow the simulation and the mapping of surface runoff and erosion hazards. Field observations of this hydrological process are not common although they are crucial to evaluate surface runoff models and to investigate or assess different kinds of hazards linked to this process. In this study, a simple field monitoring network is implemented to assess the relevance of a surface runoff susceptibility mapping method. The network is based on spatially distributed observations (nine different locations in the catchment) of soil water content and rainfall events. These data are analyzed to determine if surface runoff occurs. Two surface runoff mechanisms are considered: surface runoff by saturation of the soil surface horizon and surface runoff by infiltration excess (also called hortonian runoff). The monitoring strategy includes continuous records of soil surface water content and rainfall with a 5 min time step. Soil infiltration capacity time series are calculated using field soil water content and in situ measurements of soil hydraulic conductivity. Comparison of soil infiltration capacity and rainfall intensity time series allows detecting the occurrence of surface runoff by infiltration-excess. Comparison of surface soil water content with saturated water content values allows detecting the occurrence of surface runoff by saturation of the soil surface horizon. Automatic records were complemented with direct field observations of surface runoff in the experimental catchment after each significant rainfall event. The presented observation method allows the identification of fast and short-lived surface runoff processes at a small spatial and temporal resolution in natural conditions. The results also highlight the relationship between surface runoff and factors usually integrated in surface runoff mapping such as topography, rainfall

  3. Detection and study of new heavy particles through jet identification

    SciTech Connect

    Babcock, J.B.

    1981-01-01

    A solution to the problem of the identification of an arbitrary number of jets in high energy collisions is reviewed. Some of the applications of this solution to the study of the electroweak interactions are illustrated through two examples: the detection and analysis of top quarks, and the detection of charged Higgs or pseudo Goldstone bosons, in e/sup +/e/sup -/ reactions. Although these two examples involve e/sup +/e/sup -/ initial states, the jet identification method described in this paper could be used in the analysis of any reaction involving jets.

  4. Multi-stage identification scheme for detecting damage in structures under ambient excitations

    NASA Astrophysics Data System (ADS)

    Bao, Chunxiao; Hao, Hong; Li, Zhong-Xian

    2013-04-01

    Structural damage identification methods are critical to the successful application of structural health monitoring (SHM) systems to civil engineering structures. The dynamic response of civil engineering structures is usually characterized by high nonlinearity and non-stationarity. Accordingly, an improved Hilbert-Huang transform (HHT) method which is adaptive, output-only and applicable to system identification of in-service structures under ambient excitations is developed in this study. Based on this method, a multi-stage damage detection scheme including the detection of damage occurrence, damage existence, damage location and the estimation of damage severity is developed. In this scheme, the improved HHT method is used to analyse the structural acceleration response, the obtained instantaneous frequency detects the instant of damage occurrence, the instantaneous phase is sensitive to minor damage and provides reliable damage indication, and the damage indicator developed based on statistical analysis of the Hilbert marginal spectrum detects damage locations. Finally, the response sampled at the detected damage location is continuously analysed to estimate the damage severity. Numerical and experimental studies of frame structures under ambient excitations are performed. The results demonstrate that this scheme accomplishes the above damage detection functions within one flow. It is robust, time efficient, simply implemented and applicable to the real-time SHM of in-service structures.

  5. Detection and Location of Gamma-Ray Sources with a Modulating Coded Mask

    SciTech Connect

    Anderson, Dale N.; Stromswold, David C.; Wunschel, Sharon C.; Peurrung, Anthony J.; Hansen, Randy R.

    2006-01-31

    This paper presents methods of detecting and locating a concelaed nuclear gamma-ray source with a coded aperture mask. Energetic gamma rays readily penetrate moderate amounts of shielding material and can be detected at distances of many meters. The detection of high energy gamma-ray sources is vitally important to national security for several reasons, including nuclear materials smuggling interdiction, monitoring weapon components under treaties, and locating nuclear weapons and materials in the possession terrorist organizations.

  6. Apparatus for detecting a magnetic anomaly contiguous to remote location by squid gradiometer and magnetometer systems

    DOEpatents

    Overton, Jr., William C.; Steyert, Jr., William A.

    1984-01-01

    A superconducting quantum interference device (SQUID) magnetic detection apparatus detects magnetic fields, signals, and anomalies at remote locations. Two remotely rotatable SQUID gradiometers may be housed in a cryogenic environment to search for and locate unambiguously magnetic anomalies. The SQUID magnetic detection apparatus can be used to determine the azimuth of a hydrofracture by first flooding the hydrofracture with a ferrofluid to create an artificial magnetic anomaly therein.

  7. [Laboratory methods for detection and identification of biological pathogens].

    PubMed

    Bar-Haim, Erez; Aran, Adi; Marcus, Nir; Finkelstein, Arseny; Amsalem, Yoram; Yehezkeli, Yoav

    2005-05-01

    Laboratory detection and recognition methods of infectious diseases agents have developed markedly in recent years, following the proliferation of nucleic acid and immuno-based detection technologies. The present review summarizes the state of the art in current biorecognition methods: antigenic identification, genetic identification such as PCR, RFLP and FISH, protemics and mass spectrometry. For each method we have specified the technology and qualification required, time to result, specifity and sensitivity, while emphasizing the advantages and disadvantages of using each method for the detection of a given pathogen. Nucleic acid-based detection is more specific and sensitive than immunological-based detection, while the latter is simpler and expected to further development with the improvements in the affinity, specifity and mass production of new immunoglobulins. Protein-based detection methods have an advantage comparing to nucleic acid identification: the presence of the protein approves that the tested gene is functional. Mass spectrometry enables simultaneous detections of multiple proteins and thus holds a promise for new technical developments with a vast array of applications. Most physicians do not practice biodetection technologies in their every day routine, but encounter those terms in their clinical and academic work. The review aims to display basic information in this field in order to enable a common language with basic science specialists. PMID:15931898

  8. Identification of hidden allergens: detection of pistachio traces in mortadella.

    PubMed

    Barbieri, G; Frigeri, G

    2006-12-01

    An analytical method based on the detection of specific DNA was developed and applied to mortadella samples with and without pistachio (Pistacia vera). The method is proposed for the detection of traces of pistachio deriving from previous processes or from accidental contamination, since in predisposed individuals pistachios can cause allergic reactions leading to anaphylactic shock. Three pairs of primers were identified and tested by polymerase chain reaction (PCR) on mortadella samples prepared with pistachio. Accidental contamination was also simulated. The optimized PCR was able to detect the presence of pistachio, even at low concentrations. The primers pair PSTC 1-2 is suggested for unambiguous identification of pistachio in mortadella. The limit of detection for this primers pair was 100 mg kg-1. No interference was observed from other spices or ingredients utilized in the formulation of the mortadella. The method enabled the identification of possible traces of pistachio remaining in the production plant after less than thorough washing. PMID:17118868

  9. Target detection and identification using synthetic aperture acoustics

    NASA Astrophysics Data System (ADS)

    Knox, Mary; Tantum, Stacy; Collins, Leslie

    2014-05-01

    Recent research has shown that synthetic aperture acoustic (SAA) imaging may be useful for object identification. The goal of this work is to use SAA information to detect and identify four types of objects: jagged rocks, river rocks, small concave capped cylinders, and large concave capped cylinders. More specifically, we examine the use of frequency domain features extracted from the SAA images. We utilize Support Vector Machines (SVMs) for target detection, where an SVM is trained on target and non-target (background) examples for each target type. Assuming perfect target detection, we then compare multivariate Gaussian models for target identification. Experimental results show that SAA-based frequency domain features are able to detect and identify the four types of objects.

  10. First Identification of a Chromosomally Located Penicillinase Gene in Kingella kingae Species Isolated in Continental Europe

    PubMed Central

    Basmaci, Romain; Bidet, Philippe; Berçot, Béatrice; Jost, Christelle; Kwon, Thérésa; Gaumetou, Elodie

    2014-01-01

    Kingella kingae is the major pathogen causing osteoarticular infections (OAI) in young children in numerous countries. Plasmid-borne TEM-1 penicillinase production has been sporadically detected in a few countries but not in continental Europe, despite a high prevalence of K. kingae infections. We describe here for the first time a K. kingae β-lactamase-producing strain in continental Europe and demonstrate the novel chromosomal location of the blaTEM-1 gene in K. kingae species. PMID:25049250

  11. Explosive Detection and Identification by PGNAA

    SciTech Connect

    E.H. Seabury; A.J. Caffrey

    2004-11-01

    The goal of this project was to determine the feasibility of using field-portable prompt gamma-ray neutron activation analysis (PGNAA) to detect and identify explosives in improvised nuclear devices (INDs). The studies were carried out using the Monte Carlo N-Particle (MCNP) code developed at Los Alamos National Laboratory. The model results were tested experimentally using explosive simulants and the PINS PGNAA system developed at Idaho National Engineering and Environmental Laboratory (INEEL). The results of the MCNP calculations and PINS measurements are presented in this report. The calculations and measurements were in good agreement and indicate that most explosives are readily distinguishable from one another.

  12. Detection, identification, and quantification techniques for spills of hazardous chemicals

    NASA Technical Reports Server (NTRS)

    Washburn, J. F.; Sandness, G. A.

    1977-01-01

    The first 400 chemicals listed in the Coast Guard's Chemical Hazards Response Information System were evaluated with respect to their detectability, identifiability, and quantifiability by 12 generalized remote and in situ sensing techniques. Identification was also attempted for some key areas in water pollution sensing technology.

  13. Investigation on location-dependent detectability of a small mass for digital breast tomosynthesis evaluation

    NASA Astrophysics Data System (ADS)

    Lee, Changwoo; Baek, Jongduk; Park, Subok

    2016-03-01

    Digital breast tomosynthesis (DBT) is an emerging imaging modality for improved breast cancer detection and diagnosis [1-5]. Numerous efforts have been made to find quantitative metrics associated with mammographic image quality assessment, such as the exponent β of anatomical noise power spectrum, glandularity, contrast noise ratio, etc. [6-8]. In addition, with the use of Fourier-domain detectability for a task-based assessment of DBT, a stationarity assumption on reconstructed image statistics was often made [9-11], resulting in the use of multiple regions-of-interest (ROIs) from different locations in order to increase sample size. While all these metrics provide some information on mammographic image characteristics and signal detection, the relationship between these metrics and detectability in DBT evaluation has not been fully understood. In this work, we investigated spatial-domain detectability trends and levels as a function of the number of slices Ns at three different ROI locations on the same image slice, where background statistics differ in terms of the aforementioned metrics. Detectabilities for the three ROI locations were calculated using multi-slice channelized Hotelling observers with 2D/3D Laguerre-Gauss channels. Our simulation results show that detectability levels and trends as a function of Ns vary across these three ROI locations. They also show that the exponent β, mean glandularity, and mean attenuation coefficient vary across the three ROI locations but they do not necessarily predict the ranking of detectability levels and trends across these ROI locations.

  14. Explosives Detection and Identification by PGNAA

    SciTech Connect

    E. H. Seabury; A. J. Caffrey

    2006-04-01

    The feasibility of using field-portable prompt gamma-ray neutron activation analysis (PGNAA) to detect and identify explosives in improvised nuclear devices has been studied computationally, using the Monte Carlo N-Particle (MCNP) code developed at Los Alamos National Laboratory. The Monte Carlo results, in turn were tested experimentally using explosive simulants and the PINS PGNAA system developed at Idaho National Laboratory (INL). The results of the MCNP calculations and PINS measurements have been previously reported. In this report we describe measurements performed on actual explosives and compare the results with calculations. The calculations and measurements were in good agreement and indicate that most explosives are readily distinguishable from one another by PGNAA

  15. Accounting for uncertainty in location when detecting point sources using infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Nichols, J. M.; Waterman, J. R.

    2016-07-01

    This work derives the modeling and detection theory required to predict the performance of an infrared focal plane array in detecting point source targets. Specifically, we focus on modeling the uncertainty associated with the location of the point source on the array. In the process we derive several new expressions related to pixel-averaged detection performance under a variety of problem assumptions. The resulting predictions are compared to standard approaches where the location is assumed fixed and known. It is further shown how to incorporate these predictions into multi-frame detection strategies.

  16. Modelling Visual Change Detection and Identification under Free Viewing Conditions.

    PubMed

    McAnally, Ken; Martin, Russell

    2016-01-01

    We examined whether the abilities of observers to perform an analogue of a real-world monitoring task involving detection and identification of changes to items in a visual display could be explained better by models based on signal detection theory (SDT) or high threshold theory (HTT). Our study differed from most previous studies in that observers were allowed to inspect the initial display for 3s, simulating the long inspection times typical of natural viewing, and their eye movements were not constrained. For the majority of observers, combined change detection and identification performance was best modelled by a SDT-based process that assumed that memory resources were distributed across all eight items in our displays. Some observers required a parameter to allow for sometimes making random guesses at the identities of changes they had missed. However, the performance of a small proportion of observers was best explained by a HTT-based model that allowed for lapses of attention. PMID:26882348

  17. A new algorithmic approach for fingers detection and identification

    NASA Astrophysics Data System (ADS)

    Mubashar Khan, Arslan; Umar, Waqas; Choudhary, Taimoor; Hussain, Fawad; Haroon Yousaf, Muhammad

    2013-03-01

    Gesture recognition is concerned with the goal of interpreting human gestures through mathematical algorithms. Gestures can originate from any bodily motion or state but commonly originate from the face or hand. Hand gesture detection in a real time environment, where the time and memory are important issues, is a critical operation. Hand gesture recognition largely depends on the accurate detection of the fingers. This paper presents a new algorithmic approach to detect and identify fingers of human hand. The proposed algorithm does not depend upon the prior knowledge of the scene. It detects the active fingers and Metacarpophalangeal (MCP) of the inactive fingers from an already detected hand. Dynamic thresholding technique and connected component labeling scheme are employed for background elimination and hand detection respectively. Algorithm proposed a new approach for finger identification in real time environment keeping the memory and time constraint as low as possible.

  18. Effects of Information Load, Location, and Mode of Observation on Detecting and Identifying Brief Targets.

    ERIC Educational Resources Information Center

    Bishop, Harold P.

    The two experiments reported are part of a series evaluating effects of display parameters, task variables, and operator perceptual limitations on ability of Night Vision Device operators to process visual information quickly and accurately. For untrained observers, target brightness requirements were higher for identification than for detection,…

  19. Comparison of terahertz technologies for detection and identification of explosives

    NASA Astrophysics Data System (ADS)

    Beigang, René; Biedron, Sandra G.; Dyjak, Slawomir; Ellrich, Frank; Haakestad, Magnus W.; Hübsch, Daniel; Kartaloglu, Tolga; Ozbay, Ekmel; Ospald, Frank; Palka, Norbert; Puc, Uroš; Czerwińska, ElŻbieta; Sahin, Asaf B.; Sešek, Aleksander; Trontelj, Janez; Å vigelj, Andrej; Altan, Hakan; van Rheenen, Arthur D.; Walczakowski, Michał

    2014-05-01

    We present results on the comparison of different THz technologies for the detection and identification of a variety of explosives from our laboratory tests that were carried out in the framework of NATO SET-193 "THz technology for stand-off detection of explosives: from laboratory spectroscopy to detection in the field" under the same controlled conditions. Several laser-pumped pulsed broadband THz time-domain spectroscopy (TDS) systems as well as one electronic frequency-modulated continuous wave (FMCW) device recorded THz spectra in transmission and/or reflection.

  20. Monitoring and identification of airborne fungi at historic locations on Ross Island, Antarctica

    NASA Astrophysics Data System (ADS)

    Duncan, Shona M.; Farrell, Roberta L.; Jordan, Neville; Jurgens, Joel A.; Blanchette, Robert A.

    2010-08-01

    Air sampling in the ‘Heroic Era’ historic huts on Ross Island, Antarctica confirmed fungal presence, viability and winter survival. Cultivation and consensus sequence-based identification of Cladosporium cladosporioides, Pseudeurotium desertorum, Geomyces sp. and Antarctomyces psychrotrophicus demonstrated that they dominated the air environment within the huts. Cadophora sp. and Thebolus sp. were also isolated from the air and identified by morphological characteristics. Viable fungal colony forming units generally dropped in winter 2007 samplings from levels recorded in summer 2006 but were still substantial and greater than observed in summer 2008 and summer 2009 sampling at some locations. Comparing interior to exterior sampling, at the Hut Point and Cape Evans sites, there were more fungi recovered from the air in the interiors but at Cape Royds location, more fungi were recovered from the outside environment, possibly due to the impact of large amounts of organic material from the nearby Adélie penguin rookery. This research reveals airborne fungal biodiversity in summer and winter and demonstrates spores are widespread particularly in the interiors of the huts. Completed conservation efforts appear to have reduced fungal blooms and spores, which should reduce future adverse impacts to wood, textiles, paper and other artefacts so that this important polar heritage can be preserved.

  1. Identification of efficient observers for locating spreading source in complex networks

    NASA Astrophysics Data System (ADS)

    Zhang, Xizhe; Zhang, Yubo; Lv, Tianyang; Yin, Ying

    2016-01-01

    Estimating the location of the spreading source of complex networks is a challenging task and plays an important role in many real problems. The hidden source can be localized based on the information gathered by a few nodes, which are called the observers. Identification of the efficient observers is critical to locate the source with high accuracy. Here we analyze several placement strategies of the observers based on centralities of nodes, including the high-degree, high-betweenness, high-clustering coefficient, high-eigenvector and high-closeness. Based on the random spreading experiments on both model and real networks, we find that the localization accuracy of these strategies is decreased with the increase of the connectivity of network, and there is no significant difference between them. Further experiments show that the coverage range of the observers may be the key factor that affects the localization accuracy. Our results can provide a route for the optimal design of placement strategies of the observer nodes.

  2. [Molecular identification of mycobacteria and detection of antibiotic resistance].

    PubMed

    Cattoir, V

    2004-01-01

    Mycobacteria are responsible for many human infections, especially species of tuberculosis complex, causative agents of tuberculosis. With nine millions new cases every year, this disease is responsible for more than two millions of deaths. Nontuberculous mycobacteria (e.g. Mycobacterium avium-intracellulare, Mycobacterium kansasii, Mycobacterium xenopi or Mycobacterium ulcerans) can cause infections too, usually in particular clinical settings. Standard diagnosis of mycobacterial infections relies on direct examination and culture. Although culture in liquid media allows the detection of mycobacterial growth at an earlier stage, isolation and phenotypic identification requires several weeks, as does antimicrobial susceptibility testing. Nowadays, molecular tools are available, allowing quicker accurate diagnosis. Detection of Mycobacterium tuberculosis complex by amplification-based tests can be performed directly from clinical samples, although most identifications are successfully after isolation. Several commercial techniques are now available but identification is limited to selected species, at a high cost. Sequencing of genomic targets (such as rrs, rpoB, gyrB, 16S-23S intergenic spacer or hsp65) allows accurate and quick identifications but requires access to a sequencer. Eventually, our better knowledge of the action mechanisms of the different drugs allows genotypic detection of most antibiotic resistances. Indeed, characterization of mutations in specific target genes (such as rpoB, katG, embB, pncA, gyrA or rrl) should be an effective tool for rapid detection of resistance, although this method has only been used so far for rifampin resistance detection. Nevertheless, this approach, limited to reference laboratories, should always be performed in conjunction with antibiogram. PMID:15297234

  3. Detection and identification of human targets in radar data

    NASA Astrophysics Data System (ADS)

    Gürbüz, Sevgi Z.; Melvin, William L.; Williams, Douglas B.

    2007-04-01

    Radar offers unique advantages over other sensors, such as visual or seismic sensors, for human target detection. Many situations, especially military applications, prevent the placement of video cameras or implantment seismic sensors in the area being observed, because of security or other threats. However, radar can operate far away from potential targets, and functions during daytime as well as nighttime, in virtually all weather conditions. In this paper, we examine the problem of human target detection and identification using single-channel, airborne, synthetic aperture radar (SAR). Human targets are differentiated from other detected slow-moving targets by analyzing the spectrogram of each potential target. Human spectrograms are unique, and can be used not just to identify targets as human, but also to determine features about the human target being observed, such as size, gender, action, and speed. A 12-point human model, together with kinematic equations of motion for each body part, is used to calculate the expected target return and spectrogram. A MATLAB simulation environment is developed including ground clutter, human and non-human targets for the testing of spectrogram-based detection and identification algorithms. Simulations show that spectrograms have some ability to detect and identify human targets in low noise. An example gender discrimination system correctly detected 83.97% of males and 91.11% of females. The problems and limitations of spectrogram-based methods in high clutter environments are discussed. The SNR loss inherent to spectrogram-based methods is quantified. An alternate detection and identification method that will be used as a basis for future work is proposed.

  4. 46 CFR 108.409 - Location and spacing of tubing in pneumatic fire detection system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Location and spacing of tubing in pneumatic fire... and spacing of tubing in pneumatic fire detection system. (a) All tubing in a pneumatic fire detection... tubing; (2) Beams or girders extending below the ceiling or other obstructions do not detract from...

  5. 46 CFR 108.409 - Location and spacing of tubing in pneumatic fire detection system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Location and spacing of tubing in pneumatic fire... and spacing of tubing in pneumatic fire detection system. (a) All tubing in a pneumatic fire detection... tubing; (2) Beams or girders extending below the ceiling or other obstructions do not detract from...

  6. 46 CFR 108.409 - Location and spacing of tubing in pneumatic fire detection system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Location and spacing of tubing in pneumatic fire... and spacing of tubing in pneumatic fire detection system. (a) All tubing in a pneumatic fire detection... tubing; (2) Beams or girders extending below the ceiling or other obstructions do not detract from...

  7. 46 CFR 108.409 - Location and spacing of tubing in pneumatic fire detection system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Location and spacing of tubing in pneumatic fire... and spacing of tubing in pneumatic fire detection system. (a) All tubing in a pneumatic fire detection... tubing; (2) Beams or girders extending below the ceiling or other obstructions do not detract from...

  8. Automated Detection of Soma Location and Morphology in Neuronal Network Cultures

    PubMed Central

    Ozcan, Burcin; Negi, Pooran; Laezza, Fernanda; Papadakis, Manos; Labate, Demetrio

    2015-01-01

    Automated identification of the primary components of a neuron and extraction of its sub-cellular features are essential steps in many quantitative studies of neuronal networks. The focus of this paper is the development of an algorithm for the automated detection of the location and morphology of somas in confocal images of neuronal network cultures. This problem is motivated by applications in high-content screenings (HCS), where the extraction of multiple morphological features of neurons on large data sets is required. Existing algorithms are not very efficient when applied to the analysis of confocal image stacks of neuronal cultures. In addition to the usual difficulties associated with the processing of fluorescent images, these types of stacks contain a small number of images so that only a small number of pixels are available along the z-direction and it is challenging to apply conventional 3D filters. The algorithm we present in this paper applies a number of innovative ideas from the theory of directional multiscale representations and involves the following steps: (i) image segmentation based on support vector machines with specially designed multiscale filters; (ii) soma extraction and separation of contiguous somas, using a combination of level set method and directional multiscale filters. We also present an approach to extract the soma’s surface morphology using the 3D shearlet transform. Extensive numerical experiments show that our algorithms are computationally efficient and highly accurate in segmenting the somas and separating contiguous ones. The algorithms presented in this paper will facilitate the development of a high-throughput quantitative platform for the study of neuronal networks for HCS applications. PMID:25853656

  9. Method for tracking the location of mobile agents using stand-off detection technique

    DOEpatents

    Schmitt, Randal L.; Bender, Susan Fae Ann; Rodacy, Philip J.; Hargis, Jr., Philip J.; Johnson, Mark S.

    2006-12-26

    A method for tracking the movement and position of mobile agents using light detection and ranging (LIDAR) as a stand-off optical detection technique. The positions of the agents are tracked by analyzing the time-history of a series of optical measurements made over the field of view of the optical system. This provides a (time+3-D) or (time+2-D) mapping of the location of the mobile agents. Repeated pulses of a laser beam impinge on a mobile agent, such as a bee, and are backscattered from the agent into a LIDAR detection system. Alternatively, the incident laser pulses excite fluorescence or phosphorescence from the agent, which is detected using a LIDAR system. Analysis of the spatial location of signals from the agents produced by repeated pulses generates a multidimensional map of agent location.

  10. Oligonucleotide Array for Identification and Detection of Pythium Species†

    PubMed Central

    Tambong, J. T.; de Cock, A. W. A. M.; Tinker, N. A.; Lévesque, C. A.

    2006-01-01

    A DNA array containing 172 oligonucleotides complementary to specific diagnostic regions of internal transcribed spacers (ITS) of more than 100 species was developed for identification and detection of Pythium species. All of the species studied, with the exception of Pythium ostracodes, exhibited a positive hybridization reaction with at least one corresponding species-specific oligonucleotide. Hybridization patterns were distinct for each species. The array hybridization patterns included cluster-specific oligonucleotides that facilitated the recognition of species, including new ones, belonging to groups such as those producing filamentous or globose sporangia. BLAST analyses against 500 publicly available Pythium sequences in GenBank confirmed that species-specific oligonucleotides were unique to all of the available strains of each species, of which there were numerous economically important ones. GenBank entries of newly described species that are not putative synonyms showed no homology to sequences of the spotted species-specific oligonucleotides, but most new species did match some of the cluster-specific oligonucleotides. Further verification of the specificity of the DNA array was done with 50 additional Pythium isolates obtained by soil dilution plating. The hybridization patterns obtained were consistent with the identification of these isolates based on morphology and ITS sequence analyses. In another blind test, total DNA of the same soil samples was amplified and hybridized on the array, and the results were compared to those of 130 Pythium isolates obtained by soil dilution plating and root baiting. The 13 species detected by the DNA array corresponded to the isolates obtained by a combination of soil dilution plating and baiting, except for one new species that was not represented on the array. We conclude that the reported DNA array is a reliable tool for identification and detection of the majority of Pythium species in environmental samples

  11. An Application for Driver Drowsiness Identification based on Pupil Detection using IR Camera

    NASA Astrophysics Data System (ADS)

    Kumar, K. S. Chidanand; Bhowmick, Brojeshwar

    A Driver drowsiness identification system has been proposed that generates alarms when driver falls asleep during driving. A number of different physical phenomena can be monitored and measured in order to detect drowsiness of driver in a vehicle. This paper presents a methodology for driver drowsiness identification using IR camera by detecting and tracking pupils. The face region is first determined first using euler number and template matching. Pupils are then located in the face region. In subsequent frames of video, pupils are tracked in order to find whether the eyes are open or closed. If eyes are closed for several consecutive frames then it is concluded that the driver is fatigued and alarm is generated.

  12. Trace aerosol detection and identification by dynamic photoacoustic spectroscopy.

    PubMed

    Sullenberger, R M; Clark, M L; Kunz, R R; Samuels, A C; Emge, D K; Ellzy, M W; Wynn, C M

    2014-12-15

    Dynamic photoacoustic spectroscopy (DPAS) is a high sensitivity technique for standoff detection of trace vapors. A field-portable DPAS system has potential as an early warning provider for gaseous-based chemical threats. For the first time, we utilize DPAS to successfully detect the presence of trace aerosols. Aerosol identification via long-wavelength infrared (LWIR) spectra is demonstrated. We estimate the sensitivity of our DPAS system to aerosols comprised of silica particles is comparable to that of SF(6) gas based on a signal level per absorbance unit metric for the two materials. The implications of these measurements are discussed. PMID:25607495

  13. Cultivar Evaluation and Essential Test Locations Identification for Sugarcane Breeding in China

    PubMed Central

    Luo, Jun; Xu, Liping; Zhang, Hua; Yuan, Zhaonian; Deng, Zuhu; Chen, Rukai

    2014-01-01

    The discrepancies across test sites and years, along with the interaction between cultivar and environment, make it difficult to accurately evaluate the differences of the sugarcane cultivars. Using a genotype main effect plus genotype-environment interaction (GGE) Biplot software, the yield performance data of seven sugarcane cultivars in the 8th Chinese National Sugarcane Regional Tests were analyzed to identify cultivars recommended for commercial release. Fn38 produced a high and stable sugar yield. Gn02-70 had the lowest cane yield with high stability. Yz06-407 was a high cane yield cultivar with poor stability in sugar yield. Yz05-51 and Lc03-1137 had an unstable cane yield but relatively high sugar yield. Fn39 produced stable high sugar yield with low and unstable cane production. Significantly different sugar and cane yields were observed across seasons due to strong cultivar-environment interactions. Three areas, Guangxi Chongzuo, Guangxi Baise, and Guangxi Hechi, showed better representativeness of cane yield and sugar content than the other four areas. On the other hand, the areas Guangxi Chongzuo, Yunnan Lincang, and Yunnan Baoshan showed strong discrimination ability, while the areas Guangxi Hechi and Guangxi Liuzhou showed poor discrimination ability. This study provides a reference for cultivar evaluation and essential test locations identification for sugarcane breeding in China. PMID:24982939

  14. Dopant location identification in Nd3+ doped TiO2 nanoparticles

    SciTech Connect

    Li, W.; Frenkel, A.; Woicik, J.; Ni, C.; Shah, S.

    2010-12-03

    Large band gap semiconductors are typically doped in order to enhance their photocatalytic, photovoltaic, and other chemical and optoelectronic properties. The identification of dopant position and its local environment are essential to explore the effect of doping. X ray techniques, including extended x ray absorption fine structure, x ray photoelectron spectroscopy, and x ray diffraction, were performed to analyze the Nd (0 to 1.5 at. %) dopant location and the structural changes associated with the doping in anatase TiO{sub 2} nanoparticles, which were synthesized by metalorganic chemical vapor deposition. Nd ions were determined to have a trivalent chemical state and substitute for Ti{sup 4+} in the TiO{sub 2} structure. The substitutional Nd{sup 3+} ions cause anatase lattice expansion along c direction with a maximum value of 0.15 {angstrom} at 1.5% Nd doping level and the local structure of the dopants changes towards rutile like configuration. The lengths of the nearest neighbor Nd-O and Nd-Ti bonds increase by 0.5-0.8 {angstrom} compared to their counterparts in the pure TiO{sub 2} host structure. The substitutional nature of Nd{sup 3+} dopants explains why they are efficient not only for charge carrier separation but also for visible light absorption in TiO{sub 2}.

  15. Fast detection and identification of bacteria in potable water

    NASA Astrophysics Data System (ADS)

    Heller, C.; Reidt, U.; Helwig, A.; Müller, G.; Meixner, L.; Neumeier, K.; Lindner, P.; Molz, R.; Wolf, H.; Zullei-Seibert, N.; Preuß, G.; Friedberger, A.

    2009-05-01

    The quality and safety of drinking water is of major importance for human life. Current analytical methods recognizing viable bacteria in potable water are time consuming due to a required cultivation step. Fast and automated detection of water borne pathogenic microorganisms with high sensitivity and selectivity is still a challenging task. We report on a novel biosensor system using micromechanical filters with nano sized pores to capture and enrich bacteria on the filter surface. Thus the accumulated organisms are accessible to different detection methods using fluorescent probes. Depending on the kind of detection - specific (identification of a certain species) or unspecific (total amount of cells) - different assays are applied. For non-specific detection we use fluorescent dyes that bind to or intercalate in the DNA molecules of the bacteria. Upon binding, the fluorescent signal of the dyes increases by a factor of 1000 or more. Additionally, we use enzyme substrates for the detection of active cells. The whole detection process is automated by integrating the microsieves into a fluidic system together with a high performance fluorescence detector. To ensure realistic conditions, real potable water, i.e. including particles, has been spiked with defined amounts of microorganisms. Thus, sampling, enriching and detection of microorganisms - all with a single micromechanical filter - is not only possible with ideal media, e.g. laboratory buffer solutions, but also with tap water. These results show the potential of microfilters for several applications in fast pathogen detection.

  16. Location Error Detection and Compensation for IEEE 802.15.4a Networks in Indoor Environments

    NASA Astrophysics Data System (ADS)

    Kong, Youngbae; Kim, Junseok; Kwon, Younggoo; Park, Gwitae

    IEEE 802.15.4a standard enables location-aided routing or topology control in ZigBee networks, since it uses time-of-arrival (TOA)-based ranging technique. However, TOA based techniques may yield location error due to the non-line-of-sight (NLOS) effects, and hence degrade the network performance. In this letter, we demonstrate the impact of NLOS on the localization performance and propose a location error detection and compensation algorithm for IEEE 802.15.4a networks. The proposed algorithm detects NLOS by using the min-max algorithm and compensates the location error by using the Kalman filter. Experimental results show that the proposed algorithm significantly reduces the localization errors in indoor environments.

  17. Intelligent signal analysis methodologies for nuclear detection, identification and attribution

    NASA Astrophysics Data System (ADS)

    Alamaniotis, Miltiadis

    Detection and identification of special nuclear materials can be fully performed with a radiation detector-spectrometer. Due to several physical and computational limitations, development of fast and accurate radioisotope identifier (RIID) algorithms is essential for automated radioactive source detection and characterization. The challenge is to identify individual isotope signatures embedded in spectral signature aggregation. In addition, background and isotope spectra overlap to further complicate the signal analysis. These concerns are addressed, in this thesis, through a set of intelligent methodologies recognizing signature spectra, background spectrum and, subsequently, identifying radionuclides. Initially, a method for detection and extraction of signature patterns is accomplished by means of fuzzy logic. The fuzzy logic methodology is applied on three types of radiation signal processing applications, where it exhibits high positive detection, low false alarm rate and very short execution time, while outperforming the maximum likelihood fitting approach. In addition, an innovative Pareto optimal multiobjective fitting of gamma ray spectra using evolutionary computing is presented. The methodology exhibits perfect identification while performs better than single objective fitting. Lastly, an innovative kernel based machine learning methodology was developed for estimating natural background spectrum in gamma ray spectra. The novelty of the methodology lies in the fact that it implements a data based approach and does not require any explicit physics modeling. Results show that kernel based method adequately estimates the gamma background, but algorithm's performance exhibits a strong dependence on the selected kernel.

  18. Long-term particle measurements in Finnish Arctic: Part II - Trend analysis and source location identification

    NASA Astrophysics Data System (ADS)

    Laing, James R.; Hopke, Philip K.; Hopke, Eleanor F.; Husain, Liaquat; Dutkiewicz, Vincent A.; Paatero, Jussi; Viisanen, Yrjö.

    2014-05-01

    Forty-seven years (1964-2010) of weekly trace metal and major ion concentrations in total suspended particle samples from Kevo, Finland were analyzed for long-term trends and by source identification methods. Significant long-term decreasing trends were detected for most species. The largest decreases over the 47 years were Sb (-3.90% yr-1), Pb (-3.87% yr-1), Mn (-3.45% yr-1), Cd (-3.42% yr-1), and Ca (-3.13% yr-1). As, Pb, and Cd concentrations at Kevo were consistent with the reported time-trends of European emissions inventories. Pb concentrations at Kevo have dramatically decreased (92%) in the past 47 years due to the reduced use of leaded gasoline in automobiles. Back-trajectory analysis suggests that the main source areas of anthropogenic species (V, Cd, Mn, Mo, Sb, Tl, W) were predominantly in Eastern Europe, European Russia, and the Baltics. Markers of stationary fuel combustion (V, Mn, Mo, Sb, Se, and Tl) pointed towards source regions in the Pechora Basin and Ural industrial areas in Russia, and near gas and oil fields in western Kazakhstan.

  19. Damage detection and identification in smart structures using SVM and ANN

    NASA Astrophysics Data System (ADS)

    Farooq, M.; Zheng, H.; Nagabhushana, A.; Roy, S.; Burkett, S.; Barkey, M.; Kotru, S.; Sazonov, E.

    2012-04-01

    A critical part of structural health monitoring is accurate detection of damages in the structure. This paper presents the results of two multi-class damage detection and identification approaches based on classification using Support Vector Machine (SVM) and Artificial Neural Networks (ANN). The article under test was a fiber composite panel modeled by a Finite Element Model (FEM). Static strain data were acquired at 6 predefined locations and mixed with Gaussian noise to simulate performance of real strain sensors. Strain data were then normalized by the mean of the strain values. Two experiments were performed for the performance evaluation of damage detection and identification. In both experiments, one healthy structure and two damaged structures with one and two small cracks were simulated with varying material properties and loading conditions (45 cases for each structure). The SVM and ANN models were trained with 70% of these samples and the remaining 30% samples were used for validation. The objective of the first experiment was to detect whether or not the panel was damaged. In this two class problem the average damage detection accuracy for ANN and SVM were 93.2% and 96.66% respectively. The objective of second experiment was to detect the severity of the damage by differentiating between structures with one crack and two cracks. In this three class problem the average prediction accuracy for ANN and SVM were 83.5% and 90.05% respectively. These results suggest that for noisy data, SVM may perform better than ANN for this problem.

  20. P wave detection thresholds, Pn velocity estimates, and T wave location uncertainty from oceanic hydrophones

    NASA Astrophysics Data System (ADS)

    Slack, Philip D.; Fox, Christopher G.; Dziak, Robert P.

    1999-06-01

    P wave arrivals recorded by the U.S. Navy's SOund SUrveillance System (SOSUS) hydrophone arrays were used to estimate earthquake detection thresholds and Pn velocities in the northeast Pacific Ocean. The Navy hydrophones have been used successfully to detect and locate oceanic earthquakes using their waterborne acoustic tertiary (T) waves; however, use of these hydrophones for seismic body wave detection allows regional seismic analyses to be extended to the oceanic environment. The P wave detection threshold of the SOSUS hydrophones was quantified using the epicentral distance and magnitude of 250 northeast Pacific Ocean earthquakes. Earthquakes with body wave magnitudes as low as 2 have detectable P wave arrivals at epicentral distances of ≤500 km. Earthquakes with mb between 3.5 and 5 were detected ˜50% of the time at distances of 100-1500 km, while events with mb > 5 were all detected, even out to distances of 1000-1500 km. Both P and T wave hydrophone arrival times were used to estimate the epicenters of 100 earthquakes. The peak amplitude of the T wave coda and the onset of the P wave were used as the earthquake arrival times to estimate event locations. T wave arrival time residuals have a Gaussian distribution with zero mean, which implies that using T wave peak amplitude is consistent with using the P wave onset as the arrival time. There are typically ≤6 stations used to derive a T wave based location, hence location error ellipses are not well constrained. A Monte Carlo technique was employed to estimate T wave event location uncertainty. T wave locations have error bars of ˜1 km in latitude and longitude when >3 hydrophones are used for a location estimate. The detected P wave arrivals and earthquake locations were used to measure Pn velocities. Pn velocity values of 7.9 ± 0.1 and 8.0 ± 0.1 km/s were found for the Pacific and Juan de Fuca plates, respectively. A Pn velocity of 7.5 ± 0.1 km/s was measured for rays traveling northward from the

  1. Biological agent detection and identification using pattern recognition

    NASA Astrophysics Data System (ADS)

    Braun, Jerome J.; Glina, Yan; Judson, Nicholas; Transue, Kevin D.

    2005-05-01

    This paper discusses a novel approach for the automatic identification of biological agents. The essence of the approach is a combination of gene expression, microarray-based sensing, information fusion, machine learning and pattern recognition. Integration of these elements is a distinguishing aspect of the approach, leading to a number of significant advantages. Amongst them are the applicability to various agent types including bacteria, viruses, toxins, and other, ability to operate without the knowledge of a pathogen's genome sequence and without the need for bioagent-speciific materials or reagents, and a high level of extensibility. Furthermore, the approach allows detection of uncatalogued agents, including emerging pathogens. The approach offers a promising avenue for automatic identification of biological agents for applications such as medical diagnostics, bioforensics, and biodefense.

  2. Automated Identification and Location Analysis of Marked Stem Cells Colonies in Optical Microscopy Images

    PubMed Central

    Paduano, Vincenzo; Tagliaferri, Daniela; Falco, Geppino; Ceccarelli, Michele

    2013-01-01

    Embryonic stem cells (ESCs) are characterized by two remarkable peculiarities: the capacity to propagate as undifferentiated cells (self-renewal) and the ability to differentiate in ectoderm, endoderm, and mesoderm derivatives (pluripotency). Although the majority of ESCs divide without losing the pluripotency, it has become evident that ESC cultures consists of multiple cell populations highlighted by the expression of early germ lineage markers during spontaneous differentiation. Hence, the identification and characterization of ESCs subpopulations represents an efficient approach to improve the comprehension of correlation between gene expression and cell specification status. To study markers of ESCs heterogeneity, we developed an analysis pipeline which can automatically process images of stem cell colonies in optical microscopy. The question we try to address is to find out the statistically significant preferred locations of the marked cells. We tested our algorithm on a set of images of stem cell colonies to analyze the expression pattern of the Zscan4 gene, which was an elite candidate gene to be studied because it is specifically expressed in subpopulation of ESCs. To validate the proposed method we analyzed the behavior of control genes whose pattern had been associated to biological status such as differentiation (EndoA), pluripotency (Pou5f1), and pluripotency fluctuation (Nanog). We found that Zscan4 is not uniformly expressed inside a stem cell colony, and that it tends to be expressed towards the center of the colony, moreover cells expressing Zscan4 cluster each other. This is of significant importance because it allows us to hypothesize a biological status where the cells expressing Zscan4 are preferably associated to the inner of colonies suggesting pluripotent cell status features, and the clustering between themselves suggests either a colony paracrine effect or an early phase of cell specification through proliferation. Also, the analysis on

  3. Automated identification and location analysis of marked stem cells colonies in optical microscopy images.

    PubMed

    Paduano, Vincenzo; Tagliaferri, Daniela; Falco, Geppino; Ceccarelli, Michele

    2013-01-01

    Embryonic stem cells (ESCs) are characterized by two remarkable peculiarities: the capacity to propagate as undifferentiated cells (self-renewal) and the ability to differentiate in ectoderm, endoderm, and mesoderm derivatives (pluripotency). Although the majority of ESCs divide without losing the pluripotency, it has become evident that ESC cultures consists of multiple cell populations highlighted by the expression of early germ lineage markers during spontaneous differentiation. Hence, the identification and characterization of ESCs subpopulations represents an efficient approach to improve the comprehension of correlation between gene expression and cell specification status. To study markers of ESCs heterogeneity, we developed an analysis pipeline which can automatically process images of stem cell colonies in optical microscopy. The question we try to address is to find out the statistically significant preferred locations of the marked cells. We tested our algorithm on a set of images of stem cell colonies to analyze the expression pattern of the Zscan4 gene, which was an elite candidate gene to be studied because it is specifically expressed in subpopulation of ESCs. To validate the proposed method we analyzed the behavior of control genes whose pattern had been associated to biological status such as differentiation (EndoA), pluripotency (Pou5f1), and pluripotency fluctuation (Nanog). We found that Zscan4 is not uniformly expressed inside a stem cell colony, and that it tends to be expressed towards the center of the colony, moreover cells expressing Zscan4 cluster each other. This is of significant importance because it allows us to hypothesize a biological status where the cells expressing Zscan4 are preferably associated to the inner of colonies suggesting pluripotent cell status features, and the clustering between themselves suggests either a colony paracrine effect or an early phase of cell specification through proliferation. Also, the analysis on

  4. Event Detection and Location of Earthquakes Using the Cascadia Initiative Dataset

    NASA Astrophysics Data System (ADS)

    Morton, E.; Bilek, S. L.; Rowe, C. A.

    2015-12-01

    The Cascadia subduction zone (CSZ) produces a range of slip behavior along the plate boundary megathrust, from great earthquakes to episodic slow slip and tremor (ETS). Unlike other subduction zones that produce great earthquakes and ETS, the CSZ is notable for the lack of small and moderate magnitude earthquakes recorded. The seismogenic zone extent is currently estimated to be primarily offshore, thus the lack of observed small, interplate earthquakes may be partially due to the use of only land seismometers. The Cascadia Initiative (CI) community seismic experiment seeks to address this issue by including ocean bottom seismometers (OBS) deployed directly over the locked seismogenic zone, in addition to land seismometers. We use these seismic data to explore whether small magnitude earthquakes are occurring on the plate interface, but have gone undetected by the land-based seismic networks. We select a subset of small magnitude (M0.1-3.7) earthquakes from existing earthquake catalogs, based on land seismic data, whose preliminary hypocentral locations suggest they may have occurred on the plate interface. We window the waveforms on CI OBS and land seismometers around the phase arrival times for these earthquakes to generate templates for subspace detection, which allows for additional flexibility over traditional matched filter detection methods. Here we present event detections from the first year of CI deployment and preliminary locations for the detected events. Initial results of scanning the first year of the CI deployment using one cluster of template events, located near a previously identified subducted seamount, include 473 detections on OBS station M08A (~61.6 km offshore) and 710 detections on OBS station J25A (~44.8 km northeast of M08A). Ongoing efforts include detection using additional OBS stations along the margin, as well as determining locations of clusters detected in the first year of deployment.

  5. An Improved Anchor Shot Detection Method Using Fitness of Face Location and Dissimilarity of Icon Region

    NASA Astrophysics Data System (ADS)

    Keum, Ji-Soo; Lee, Hyon-Soo; Hagiwara, Masafumi

    In this letter, we propose an improved anchor shot detection (ASD) method in order to effectively retrieve anchor shots from news video. The face location and dissimilarity of icon region are used to reduce false alarms in the proposed method. According to the results of the experiment on several types of news video, the proposed method obtained high anchor detection results compared with previous methods.

  6. Testing continuous earthquake detection and location in Alentejo (South Portugal) by waveform coherency analysis

    NASA Astrophysics Data System (ADS)

    Matos, Catarina; Grigoli, Francesco; Cesca, Simone; Custódio, Susana

    2015-04-01

    In the last decade a permanent seismic network of 30 broadband stations, complemented by dense temporary deployments, covered Portugal. This extraordinary network coverage enables now the computation of a high-resolution image of the seismicity of Portugal, which in turn will shed light on the seismotectonics of Portugal. The large data volumes available cannot be analyzed by traditional time-consuming manual location procedures. In this presentation we show first results on the automatic detection and location of earthquakes occurred in a selected region in the south of Portugal Our main goal is to implement an automatic earthquake detection and location routine in order to have a tool to quickly process large data sets, while at the same time detecting low magnitude earthquakes (i.e., lowering the detection threshold). We present a modified version of the automatic seismic event location by waveform coherency analysis developed by Grigoli et al. (2013, 2014), designed to perform earthquake detections and locations in continuous data. The event detection is performed by continuously computing the short-term-average/long-term-average of two different characteristic functions (CFs). For the P phases we used a CF based on the vertical energy trace, while for S phases we used a CF based on the maximum eigenvalue of the instantaneous covariance matrix (Vidale 1991). Seismic event detection and location is obtained by performing waveform coherence analysis scanning different hypocentral coordinates. We apply this technique to earthquakes in the Alentejo region (South Portugal), taking advantage from a small aperture seismic network installed in the south of Portugal for two years (2010 - 2011) during the DOCTAR experiment. In addition to the good network coverage, the Alentejo region was chosen for its simple tectonic setting and also because the relationship between seismicity, tectonics and local lithospheric structure is intriguing and still poorly understood. Inside

  7. Microearthquakes at Valles Caldera, New Mexico: Improved Detection and Location with Two Additional Caldera Stations

    NASA Astrophysics Data System (ADS)

    Roberts, P. M.; House, L. S.; Ten Cate, J. A.

    2015-12-01

    The Los Alamos Seismic Network (LASN) has operated for 43 years, providing data to locate more than 2,500 earthquakes in north-central New Mexico. Roughly 1-2 earthquakes are detected and located per month within about 150 km of Los Alamos, a total of over 900 from 1973 to present. LASN's primary purpose is to monitor seismicity close to the Los Alamos National Laboratory (LANL) for seismic hazards; monitoring seismicity associated with the nearby Valles Caldera is secondary. Until 2010 the network was focused on monitoring seismic hazards and comprised only 7 stations, all near LANL or in the nearby Jemez Mountains. Just one station—PER, installed in 1998—was close enough to Valles Caldera to be able to detect microearthquakes located in or near the caldera. An initial study of the data from station PER between 1998 and 2002 identified and located 13 events with magnitudes less than 0.5 using the single-station hodogram technique. Those events were all located south of the caldera within a few kilometers of PER. Recently, two new digital broadband stations were installed inside the caldera, one on a northeastern ring-fracture dome, station CDAB, and the other on a northwestern dome, station SAMT. Also, station PER was upgraded with digital broadband instrumentation. Thus, LASN now can detect and record microearthquakes as small as magnitude -1.5 near the caldera, and they can be located using multiple arrival times. Several recent events located near station SAMT on the caldera's ring fracture are the first that have been seen in that area. Additional events were recorded (by all three stations) and located in the area south of the caldera where the earlier hodogram-only events were located. These new multi-station event recordings allow a more quantitative assessment of the uncertainties in the initial single-station hodogram locations. Each event is located using multiple arrival times as well as the hodogram method at as many as three stations. Thus

  8. Chip-based device for parallel sorting, amplification, detection, and identification of nucleic acid subsequences

    DOEpatents

    Beer, Neil Reginald; Colston, Jr, Billy W.

    2016-08-09

    An apparatus for chip-based sorting, amplification, detection, and identification of a sample having a planar substrate. The planar substrate is divided into cells. The cells are arranged on the planar substrate in rows and columns. Electrodes are located in the cells. A micro-reactor maker produces micro-reactors containing the sample. The micro-reactor maker is positioned to deliver the micro-reactors to the planar substrate. A microprocessor is connected to the electrodes for manipulating the micro-reactors on the planar substrate. A detector is positioned to interrogate the sample contained in the micro-reactors.

  9. RCUT: A Non-Invasive Method for Detection, Location, and Quantification of Radiological Contaminants in Pipes and Ducts - 12514

    SciTech Connect

    Bratton, Wesley L.; Maresca, Joseph W. Jr.; Beck, Deborah A.

    2012-07-01

    Radiological Characterization Using Tracers (RCUT) is a minimally invasive method for detection and location of residual radiological contamination in pipes and ducts. The RCUT technology utilizes reactive gaseous tracers that dissociate when exposed to gamma and/or beta radiation emitting from a radiological contaminant in a pipe or duct. Sulfur hexafluoride (SF{sub 6}) was selected as a tracer for this radiological application, because it is a chemically inert gas that is both nonflammable, nontoxic, and breaks down when exposed to gamma radiation. Laboratory tests demonstrated that the tracer pair of SF{sub 6} and O{sub 2} formed SO{sub 2}F{sub 2} when exposed to a gamma or beta radioactive field, which indicated the presence of radiological contamination. Field application of RCUT involves first injecting the reactive tracers into the pipe to fill the pipe being inspected and allowing sufficient time for the tracer to interact with any contaminants present. This is followed by the injection of an inert gas at one end of the pipe to push the reactive tracer at a known or constant flow velocity along the pipe and then out the exit and sampling port at the end of the pipeline where its concentration is measured by a gas chromatograph. If a radiological contaminant is present in the pipe being tested, the presence of SO{sub 2}F{sub 2} will be detected. The time of arrival of the SO{sub 2}F{sub 2} can be used to locate the contaminant. If the pipe is free of radiological contamination, no SO{sub 2}F{sub 2} will be detected. RCUT and PCUT are both effective technologies that can be used to detect contamination within pipelines without the need for mechanical or human inspection. These methods can be used to detect, locate, and/or estimate the volume of a variety of radioactive materials and hazardous chemicals such as chlorinated solvents, petroleum products, and heavy metals. While further optimization is needed for RCUT, the key first step of identification of a

  10. Multiband array detection and location of seismic sources recorded by dense seismic networks

    NASA Astrophysics Data System (ADS)

    Poiata, Natalia; Satriano, Claudio; Vilotte, Jean-Pierre; Bernard, Pascal; Obara, Kazushige

    2016-06-01

    We present a new methodology for detection and space-time location of seismic sources based on multiscale, frequency-selective coherence of the wave field recorded by dense large-scale seismic networks and local antennas. The method is designed to enhance coherence of the signal statistical features across the array of sensors and consists of three steps: signal processing, space-time imaging, and detection and location. The first step provides, for each station, a simplified representation of seismic signal by extracting multiscale non-stationary statistical characteristics, through multiband higher-order statistics or envelopes. This signal processing scheme is designed to account for a priori unknown transients, potentially associated with a variety of sources (e.g. earthquakes, tremors), and to prepare data for a better performance in posterior steps. Following space-time imaging is carried through 3-D spatial mapping and summation of station-pair time-delay estimate functions. This step produces time-series of 3-D spatial images representing the likelihood that each pixel makes part of a source. Detection and location is performed in the final step by extracting the local maxima from the 3-D spatial images. We demonstrate the efficiency of the method in detecting and locating seismic sources associated with low signal-to-noise ratio on an example of the aftershock earthquake records from local stations of International Maule Aftershock Deployment in Central Chile. The performance and potential of the method to detect, locate and characterize the energy release associated with possibly mixed seismic radiation from earthquakes and low-frequency tectonic tremors is further tested on continuous data from southwestern Japan.

  11. Multi-band array detection and location of seismic sources recorded by dense seismic networks

    NASA Astrophysics Data System (ADS)

    Poiata, Natalia; Satriano, Claudio; Vilotte, Jean-Pierre; Bernard, Pascal; Obara, Kazushige

    2016-02-01

    We present a new methodology for detection and space-time location of seismic sources based on multi-scale, frequency-selective coherence of the wave field recorded by dense large-scale seismic networks and local antennas. The method is designed to enhance coherence of the signal statistical features across the array of sensors and consists of three steps: signal processing, space-time imaging, and detection and location. The first step provides, for each station, a simplified representation of seismic signal by extracting multi-scale non-stationary statistical characteristics, through multi-band higher-order statistics or envelopes. This signal processing scheme is designed to account for a priori unknown transients, potentially associated with a variety of sources (e.g., earthquakes, tremors), and to prepare data for a better performance in posterior steps. Following space-time imaging is carried through 3D spatial mapping and summation of station-pair time-delay estimate functions. This step produces time series of 3D spatial images representing the likelihood that each pixel makes part of a source. Detection and location is performed in the final step by extracting the local maxima from the 3D spatial images. We demonstrate the efficiency of the method in detecting and locating seismic sources associated with low signal-to-noise ratio on an example of the aftershock earthquake records from local stations of International Maule Aftershock Deployment in Central Chile. The performance and potential of the method to detect, locate and characterize the energy release associated with possibly mixed seismic radiation from earthquakes and low-frequency tectonic tremors is further tested on continuous data from southwestern Japan.

  12. A ZigBee-Based Location-Aware Fall Detection System for Improving Elderly Telecare

    PubMed Central

    Huang, Chih-Ning; Chan, Chia-Tai

    2014-01-01

    Falls are the primary cause of accidents among the elderly and frequently cause fatal and non-fatal injuries associated with a large amount of medical costs. Fall detection using wearable wireless sensor nodes has the potential of improving elderly telecare. This investigation proposes a ZigBee-based location-aware fall detection system for elderly telecare that provides an unobstructed communication between the elderly and caregivers when falls happen. The system is based on ZigBee-based sensor networks, and the sensor node consists of a motherboard with a tri-axial accelerometer and a ZigBee module. A wireless sensor node worn on the waist continuously detects fall events and starts an indoor positioning engine as soon as a fall happens. In the fall detection scheme, this study proposes a three-phase threshold-based fall detection algorithm to detect critical and normal falls. The fall alarm can be canceled by pressing and holding the emergency fall button only when a normal fall is detected. On the other hand, there are three phases in the indoor positioning engine: path loss survey phase, Received Signal Strength Indicator (RSSI) collection phase and location calculation phase. Finally, the location of the faller will be calculated by a k-nearest neighbor algorithm with weighted RSSI. The experimental results demonstrate that the fall detection algorithm achieves 95.63% sensitivity, 73.5% specificity, 88.62% accuracy and 88.6% precision. Furthermore, the average error distance for indoor positioning is 1.15 ± 0.54 m. The proposed system successfully delivers critical information to remote telecare providers who can then immediately help a fallen person. PMID:24743841

  13. A ZigBee-based location-aware fall detection system for improving elderly telecare.

    PubMed

    Huang, Chih-Ning; Chan, Chia-Tai

    2014-04-01

    Falls are the primary cause of accidents among the elderly and frequently cause fatal and non-fatal injuries associated with a large amount of medical costs. Fall detection using wearable wireless sensor nodes has the potential of improving elderly telecare. This investigation proposes a ZigBee-based location-aware fall detection system for elderly telecare that provides an unobstructed communication between the elderly and caregivers when falls happen. The system is based on ZigBee-based sensor networks, and the sensor node consists of a motherboard with a tri-axial accelerometer and a ZigBee module. A wireless sensor node worn on the waist continuously detects fall events and starts an indoor positioning engine as soon as a fall happens. In the fall detection scheme, this study proposes a three-phase threshold-based fall detection algorithm to detect critical and normal falls. The fall alarm can be canceled by pressing and holding the emergency fall button only when a normal fall is detected. On the other hand, there are three phases in the indoor positioning engine: path loss survey phase, Received Signal Strength Indicator (RSSI) collection phase and location calculation phase. Finally, the location of the faller will be calculated by a k-nearest neighbor algorithm with weighted RSSI. The experimental results demonstrate that the fall detection algorithm achieves 95.63% sensitivity, 73.5% specificity, 88.62% accuracy and 88.6% precision. Furthermore, the average error distance for indoor positioning is 1.15 ± 0.54 m. The proposed system successfully delivers critical information to remote telecare providers who can then immediately help a fallen person. PMID:24743841

  14. An approach for de-identification of point locations of livestock premises for further use in disease spread modeling.

    PubMed

    Martin, Michael K; Helm, Julie; Patyk, Kelly A

    2015-06-15

    We describe a method for de-identifying point location data used for disease spread modeling to allow data custodians to share data with modeling experts without disclosing individual farm identities. The approach is implemented in an open-source software program that is described and evaluated here. The program allows a data custodian to select a level of de-identification based on the K-anonymity statistic. The program converts a file of true farm locations and attributes into a file appropriate for use in disease spread modeling with the locations randomly modified to prevent re-identification based on location. Important epidemiological relationships such as clustering are preserved to as much as possible to allow modeling similar to those using true identifiable data. The software implementation was verified by visual inspection and basic descriptive spatial analysis of the output. Performance is sufficient to allow de-identification of even large data sets on desktop computers available to any data custodian. PMID:25944175

  15. Detection and identification of illicit drugs using terahertz imaging

    NASA Astrophysics Data System (ADS)

    Lu, Meihong; Shen, Jingling; Li, Ning; Zhang, Yan; Zhang, Cunlin; Liang, Laishun; Xu, Xiaoyu

    2006-11-01

    We demonstrated an advanced terahertz imaging technique for detection and identification of illicit drugs by introducing the component spatial pattern analysis. As an explanation, the characteristic fingerprint spectra and refractive index of ketamine were first measured with terahertz time-domain spectroscopy both in the air and nitrogen. The results obtained in the ambient air indicated that some absorption peaks are not obvious or probably not dependable. It is necessary and important to present a more practical technique for the detection. The spatial distributions of several illicit drugs [3,4-methylenedioxymethamphetamine, methylenedioxyamphetamine, heroin, acetylcodeine, morphine, and ketamine], widely consumed in the world, were obtained from terahertz images using absorption spectra previously measured in the range from 0.2to2.6THz in the ambient air. The different kinds of pure illicit drugs hidden in mail envelopes were inspected and identified. It could be an effective method in the field of safety inspection.

  16. Automatic Earthquake Detection and Location by Waveform coherency in Alentejo (South Portugal) Using CatchPy

    NASA Astrophysics Data System (ADS)

    Custodio, S.; Matos, C.; Grigoli, F.; Cesca, S.; Heimann, S.; Rio, I.

    2015-12-01

    Seismic data processing is currently undergoing a step change, benefitting from high-volume datasets and advanced computer power. In the last decade, a permanent seismic network of 30 broadband stations, complemented by dense temporary deployments, covered mainland Portugal. This outstanding regional coverage currently enables the computation of a high-resolution image of the seismicity of Portugal, which contributes to fitting together the pieces of the regional seismo-tectonic puzzle. Although traditional manual inspections are valuable to refine automatic results they are impracticable with the big data volumes now available. When conducted alone they are also less objective since the criteria is defined by the analyst. In this work we present CatchPy, a scanning algorithm to detect earthquakes in continuous datasets. Our main goal is to implement an automatic earthquake detection and location routine in order to have a tool to quickly process large data sets, while at the same time detecting low magnitude earthquakes (i.e. lowering the detection threshold). CatchPY is designed to produce an event database that could be easily located using existing location codes (e.g.: Grigoli et al. 2013, 2014). We use CatchPy to perform automatic detection and location of earthquakes that occurred in Alentejo region (South Portugal), taking advantage of a dense seismic network deployed in the region for two years during the DOCTAR experiment. Results show that our automatic procedure is particularly suitable for small aperture networks. The event detection is performed by continuously computing the short-term-average/long-term-average of two different characteristic functions (CFs). For the P phases we used a CF based on the vertical energy trace while for S phases we used a CF based on the maximum eigenvalue of the instantaneous covariance matrix (Vidale 1991). Seismic event location is performed by waveform coherence analysis, scanning different hypocentral coordinates

  17. Rapid Detection and Identification of Biogenic Aerosol Releases and Sources

    NASA Astrophysics Data System (ADS)

    Wagner, J.; Macher, J.; Ghosal, S.; Ahmed, K.; Hemati, K.; Wall, S.; Kumagai, K.

    2011-12-01

    Biogenic aerosols can be important contributors to aerosol chemistry, cloud droplet and ice nucleation, absorption and scattering of radiation, human health and comfort, and plant, animal, and microbial ecology. Many types of bioaerosols, e.g., fungal spores, are released into the atmosphere in response to specific climatological and meteorological conditions. The rapid identification of bioaerosol releases is thus important for better characterization of the above phenomena, as well as enabling public officials to respond quickly and appropriately to releases of infectious agents or biological toxins. One approach to rapid and accurate bioaerosol detection is to employ sequential, automated samples that can be fed directly into an image acquisition and data analysis device. Raman spectroscopy-based identification of bioaerosols, automated analysis of microscopy images, and automated detection of near-monodisperse peaks in aerosol size-distribution data were investigated as complementary approaches to traditional, manual methods for the identification and counting of fungal and actinomycete spores. Manual light microscopy is a widely used analytical technique that is compatible with a number of air sample formats and requires minimal sample preparation. However, a major drawback is its dependence on a human analyst's ability to distinguish particles and accurately count, size, and identify them. Therefore, automated methods, such as those evaluated in this study, have the potential to provide cost-effective and rapid alternatives if demonstrated to be accurate and reliable. An exploratory examination of individual spores for several macro- and microfungi (those with and without large fruiting bodies) by Raman microspectroscopy found unique spectral features that were used to identify fungi to the genus level. Automated analyses of digital spore images accurately recognized and counted single fungal spores and clusters. An automated procedure to discriminate near

  18. Chemical Detection and Identification Techniques for Exobiology Flight Experiments

    NASA Technical Reports Server (NTRS)

    Kojiro, Daniel R.; Sheverev, Valery A.; Khromov, Nikolai A.

    2002-01-01

    Exobiology flight experiments require highly sensitive instrumentation for in situ analysis of the volatile chemical species that occur in the atmospheres and surfaces of various bodies within the solar system. The complex mixtures encountered place a heavy burden on the analytical Instrumentation to detect and identify all species present. The minimal resources available onboard for such missions mandate that the instruments provide maximum analytical capabilities with minimal requirements of volume, weight and consumables. Advances in technology may be achieved by increasing the amount of information acquired by a given technique with greater analytical capabilities and miniaturization of proven terrestrial technology. We describe here methods to develop analytical instruments for the detection and identification of a wide range of chemical species using Gas Chromatography. These efforts to expand the analytical capabilities of GC technology are focused on the development of detectors for the GC which provide sample identification independent of the GC retention time data. A novel new approach employs Penning Ionization Electron Spectroscopy (PIES).

  19. Jersey number detection in sports video for athlete identification

    NASA Astrophysics Data System (ADS)

    Ye, Qixiang; Huang, Qingming; Jiang, Shuqiang; Liu, Yang; Gao, Wen

    2005-07-01

    Athlete identification is important for sport video content analysis since users often care about the video clips with their preferred athletes. In this paper, we propose a method for athlete identification by combing the segmentation, tracking and recognition procedures into a coarse-to-fine scheme for jersey number (digital characters on sport shirt) detection. Firstly, image segmentation is employed to separate the jersey number regions with its background. And size/pipe-like attributes of digital characters are used to filter out candidates. Then, a K-NN (K nearest neighbor) classifier is employed to classify a candidate into a digit in "0-9" or negative. In the recognition procedure, we use the Zernike moment features, which are invariant to rotation and scale for digital shape recognition. Synthetic training samples with different fonts are used to represent the pattern of digital characters with non-rigid deformation. Once a character candidate is detected, a SSD (smallest square distance)-based tracking procedure is started. The recognition procedure is performed every several frames in the tracking process. After tracking tens of frames, the overall recognition results are combined to determine if a candidate is a true jersey number or not by a voting procedure. Experiments on several types of sports video shows encouraging result.

  20. Detection and location of 127 anatomical landmarks in diverse CT datasets

    NASA Astrophysics Data System (ADS)

    Dabbah, Mohammad A.; Murphy, Sean; Pello, Hippolyte; Courbon, Romain; Beveridge, Erin; Wiseman, Stewart; Wyeth, Daniel; Poole, Ian

    2014-03-01

    The automatic detection and localization of anatomical landmarks has wide application, including intra and interpatient registration, study location and navigation, and the targeting of specialized algorithms. In this paper, we demonstrate the automatic detection and localization of 127 anatomically defined landmarks distributed throughout the body, excluding arms. Landmarks are defined on the skeleton, vasculature and major organs. Our approach builds on the classification forests method,1 using this classifier with simple image features which can be efficiently computed. For the training and validation of the method we have used 369 CT volumes on which radiographers and anatomists have marked ground truth (GT) - that is the locations of all defined landmarks occurring in that volume. A particular challenge is to deal with the wide diversity of datasets encountered in radiology practice. These include data from all major scanner manufacturers, different extents covering single and multiple body compartments, truncated cardiac acquisitions, with and without contrast. Cases with stents and catheters are also represented. Validation is by a leave-one-out method, which we show can be efficiently implemented in the context of decision forest methods. Mean location accuracy of detected landmarks is 13.45mm overall; execution time averages 7s per volume on a modern server machine. We also present localization ROC analysis to characterize detection accuracy - that is to decide if a landmark is or is not present in a given dataset.

  1. An experiment to detect and locate lightning associated with eruptions of Redoubt Volcano

    USGS Publications Warehouse

    Hoblitt, R.P.

    1994-01-01

    A commercially-available lightning-detection system was temporarily deployed near Cook Inlet, Alaska in an attempt to remotely monitor volcanogenic lightning associated with eruptions of Redoubt Volcano. The system became operational on February 14, 1990; lightning was detected in 11 and located in 9 of the 13 subsequent eruptions. The lightning was generated by ash clouds rising from pyroclastic density currents produced by collapse of a lava dome emplaced near Redoubt's summit. Lightning discharge (flash) location was controlled by topography, which channeled the density currents, and by wind direction. In individual eruptions, early flashes tended to have a negative polarity (negative charge is lowered to ground) while late flashes tended to have a positive polarity (positive charge is lowered to ground), perhaps because the charge-separation process caused coarse, rapid-settling particles to be negatively charged and fine, slow-settling particles to be positively charged. Results indicate that lightning detection and location is a useful adjunct to seismic volcano monitoring, particularly when poor weather or darkness prevents visual observation. The simultaneity of seismicity and lightning near a volcano provides the virtual certainty that an ash cloud is present. This information is crucial for aircraft safety and to warn threatened communities of impending tephra falls. The Alaska Volcano Observatory has now deployed a permanent lightning-detection network around Cook Inlet. ?? 1994.

  2. Detection and Identification of Ligands for Mammalian RPTP Extracellular Domains.

    PubMed

    Stoker, Andrew William

    2016-01-01

    Receptor protein tyrosine phosphatases (RPTPs) form a group of over 20 enzymes in vertebrates, each with unique ectodomains subject to potential extracellular interactions with ligands. It has recently become clear that a remarkably diverse range of ligands exist, including homophilic binders, adhesion molecules, neurotrophin receptors, and proteoglycans. Individual RPTPs can bind several ligands, and vice versa, suggesting that complex cell signaling networks exist. The identification of RPTP ligands and where they are located in tissues remains a challenge for a large number of these enzymes. Here we describe some powerful methods that have proved successful for several research groups, leading to our improved understanding of RPTP-ligand interactions and functional regulation. PMID:27514811

  3. Optimal Sensor Location Design for Reliable Fault Detection in Presence of False Alarms

    PubMed Central

    Yang, Fan; Xiao, Deyun; Shah, Sirish L.

    2009-01-01

    To improve fault detection reliability, sensor location should be designed according to an optimization criterion with constraints imposed by issues of detectability and identifiability. Reliability requires the minimization of undetectability and false alarm probability due to random factors on sensor readings, which is not only related with sensor readings but also affected by fault propagation. This paper introduces the reliability criteria expression based on the missed/false alarm probability of each sensor and system topology or connectivity derived from the directed graph. The algorithm for the optimization problem is presented as a heuristic procedure. Finally, a boiler system is illustrated using the proposed method. PMID:22291524

  4. Device for detection and identification of carbon- and nitrogen-containing materials

    DOEpatents

    Karev, Alexander Ivanovich; Raevsky, Valery Georgievich; Dzhilavyan, Leonid Zavenovich; Laptev, Valery Dmitrievich; Pakhomov, Nikolay Ivanovich; Shvedunov, Vasily Ivanovich; Rykalin, Vladimir Ivanovich; Brothers, Louis Joseph; Wilhide, Larry K

    2014-03-25

    A device for detection and identification of carbon- and nitrogen-containing materials is described. In particular, the device performs the detection and identification of carbon- and nitrogen-containing materials by photo-nuclear detection. The device may comprise a race-track microtron, a breaking target, and a water-filled Cherenkov radiation counter.

  5. Detection and location of mechanical system degradation by using detector signal noise data

    SciTech Connect

    Damiano, B.; Blakeman, E.D.; Phillips, L.D.

    1994-06-01

    This report describes the investigation of a diagnostic method for detecting and locating the source of structural degradation in mechanical systems. The goal of this investigation was to determine whether the diagnostic method would be practically and successfully applied to detect and locate structural changes in a mechanical system. The diagnostic method uses a mathematical model of the mechanical system to define relationships between system parameters, such as spring rates and damping rates, and measurable spectral features, such as natural frequencies and mode shapes. These model-defined relationships are incorporated into a neural network, which is used to relate measured spectral features to system parameters. The diagnosis of the system`s condition is performed by presenting the neural network with measured spectral features and comparing the system parameters estimated by the neural network to previously estimated values. Changes in the estimated system parameters indicate the location and severity of degradation in the mechanical system. The investigation involved applying the method by using computer-simulated data and data collected from a bench-top mechanical system. The effects of neural network training set size and composition on the accuracy of the model parameter estimates were investigated by using computer-simulated data. The measured data were used to demonstrate that the method can be applied to estimate the parameters of a {open_quotes}real{close_quotes} mechanical system. The results show that this diagnostic method can be applied to successfully locate and estimate the magnitude of structural changes in a mechanical system. The average error in the estimated spring rate values of the bench-top mechanical system was approximately 5 to 10%. This degree of accuracy is sufficient to permit the use of this method for detecting and locating structural degradation in mechanical systems.

  6. Detection, identification and mapping of iron anomalies in brain tissue using X-ray absorption spectroscopy

    SciTech Connect

    Mikhaylova, A.; Davidson, M.; Toastmann, H.; Channell, J.E.T.; Guyodo, Y.; Batich, C.; Dobson, J.

    2008-06-16

    This work describes a novel method for the detection, identification and mapping of anomalous iron compounds in mammalian brain tissue using X-ray absorption spectroscopy. We have located and identified individual iron anomalies in an avian tissue model associated with ferritin, biogenic magnetite and haemoglobin with a pixel resolution of less than 5 {micro}m. This technique represents a breakthrough in the study of both intra- and extra-cellular iron compounds in brain tissue. The potential for high-resolution iron mapping using microfocused X-ray beams has direct application to investigations of the location and structural form of iron compounds associated with human neurodegenerative disorders - a problem which has vexed researchers for 50 years.

  7. Detection, identification and mapping of iron anomalies in brain tissue using X-ray absorption spectroscopy

    PubMed Central

    Mikhaylova, A; Davidson, M; Toastmann, H; Channell, J.E.T; Guyodo, Y; Batich, C; Dobson, J

    2005-01-01

    This work describes a novel method for the detection, identification and mapping of anomalous iron compounds in mammalian brain tissue using X-ray absorption spectroscopy. We have located and identified individual iron anomalies in an avian tissue model associated with ferritin, biogenic magnetite and haemoglobin with a pixel resolution of less than 5 μm. This technique represents a breakthrough in the study of both intra- and extra-cellular iron compounds in brain tissue. The potential for high-resolution iron mapping using microfocused X-ray beams has direct application to investigations of the location and structural form of iron compounds associated with human neurodegenerative disorders—a problem which has vexed researchers for 50 years. PMID:16849161

  8. [INVITED] Time reversal optical tomography: Detecting and locating tumors in an ex vivo model human breast

    NASA Astrophysics Data System (ADS)

    Wu, Binlin; Alrubaiee, Mohammad; Gayen, S. K.

    2016-03-01

    Time reversal optical tomography (TROT), a recently introduced diffuse optical imaging approach, is used to detect, locate, and obtain cross-section images of tumors inside a "model human breast." The model cancerous breast is assembled as a semi-cylindrical slab of uniform thickness using ex vivo human breast tissues with two pieces of tumors embedded in it. The experimental arrangement used a 750-nm light beam from a Ti:sapphire laser to illuminate an end face (source plane) of the sample in a multi-source probing scheme. A multi-detector signal acquisition scheme measured transmitted light intensity distribution on the other end face (detector plane). The perturbations in light intensity distribution in the detector plane were analyzed using TROT to obtain locations of the tumor pieces in three dimensions and estimate their cross sections. The estimated locations and dimensions of targets are in good agreement with the results of a corroborating magnetic resonance imaging experiment.

  9. Locating polyps by endoscopy with or without videolaparoscopy, radioguided occult colonic lesion identification or magnetic endoscopic imaging: the way forward to complete polyp removal.

    PubMed

    D'Annibale, A; Serventi, A; Orsini, C; Morpurgo, E

    2004-12-01

    Endoscopic polypectomy is the gold standard for the treatment of colorectal polyps. In the case of non-palpable lesions or to complete polyp removal, the lesions are located intra-operatively. With the advent of laparoscopy, identifying their position is even more important because there is no opportunity for intestinal palpation. Several methods of preoperative endoscopic marking have been proposed using different types of tattooing and recently using clips followed by ultrasonography detection. Innovative methods are analysed; magnetic endoscopic imaging is a reliable and accurate method for determining the anatomical position of the tip of the endoscope during colonoscopy. Radioguided colonic lesion identification needs a gamma detection probe. Endoscopic removal can be converted to endo-laparoscopic rendezvous, failing which, laparoscopic resection is a reliable and safe choice, offering all the advantages of minimally invasive surgical techniques. PMID:15666110

  10. Applying face identification to detecting hijacking of airplane

    NASA Astrophysics Data System (ADS)

    Luo, Xuanwen; Cheng, Qiang

    2004-09-01

    That terrorists hijacked the airplanes and crashed the World Trade Center is disaster to civilization. To avoid the happening of hijack is critical to homeland security. To report the hijacking in time, limit the terrorist to operate the plane if happened and land the plane to the nearest airport could be an efficient way to avoid the misery. Image processing technique in human face recognition or identification could be used for this task. Before the plane take off, the face images of pilots are input into a face identification system installed in the airplane. The camera in front of pilot seat keeps taking the pilot face image during the flight and comparing it with pre-input pilot face images. If a different face is detected, a warning signal is sent to ground automatically. At the same time, the automatic cruise system is started or the plane is controlled by the ground. The terrorists will have no control over the plane. The plane will be landed to a nearest or appropriate airport under the control of the ground or cruise system. This technique could also be used in automobile industry as an image key to avoid car stealth.

  11. Fracture identification based on remote detection acoustic reflection logging

    NASA Astrophysics Data System (ADS)

    Zhang, Gong; Li, Ning; Guo, Hong-Wei; Wu, Hong-Liang; Luo, Chao

    2015-12-01

    Fracture identification is important for the evaluation of carbonate reservoirs. However, conventional logging equipment has small depth of investigation and cannot detect rock fractures more than three meters away from the borehole. Remote acoustic logging uses phase-controlled array-transmitting and long sound probes that increase the depth of investigation. The interpretation of logging data with respect to fractures is typically guided by practical experience rather than theory and is often ambiguous. We use remote acoustic reflection logging data and high-order finite-difference approximations in the forward modeling and prestack reverse-time migration to image fractures. First, we perform forward modeling of the fracture responses as a function of the fracture-borehole wall distance, aperture, and dip angle. Second, we extract the energy intensity within the imaging area to determine whether the fracture can be identified as the formation velocity is varied. Finally, we evaluate the effect of the fracture-borehole distance, fracture aperture, and dip angle on fracture identification.

  12. Use of UV Sources for Detection and Identification of Explosives

    NASA Technical Reports Server (NTRS)

    Hug, William; Reid, Ray; Bhartia, Rohit; Lane, Arthur

    2009-01-01

    Measurement of Raman and native fluorescence emission using ultraviolet (UV) sources (<400 nm) on targeted materials is suitable for both sensitive detection and accurate identification of explosive materials. When the UV emission data are analyzed using a combination of Principal Component Analysis (PCA) and cluster analysis, chemicals and biological samples can be differentiated based on the geometric arrangement of molecules, the number of repeating aromatic rings, associated functional groups (nitrogen, sulfur, hydroxyl, and methyl), microbial life cycles (spores vs. vegetative cells), and the number of conjugated bonds. Explosive materials can be separated from one another as well as from a range of possible background materials, which includes microbes, car doors, motor oil, and fingerprints on car doors, etc. Many explosives are comprised of similar atomic constituents found in potential background samples such as fingerprint oils/skin, motor oil, and soil. This technique is sensitive to chemical bonds between the elements that lead to the discriminating separability between backgrounds and explosive materials.

  13. Location, Location, Location!

    ERIC Educational Resources Information Center

    Ramsdell, Kristin

    2004-01-01

    Of prime importance in real estate, location is also a key element in the appeal of romances. Popular geographic settings and historical periods sell, unpopular ones do not--not always with a logical explanation, as the author discovered when she conducted a survey on this topic last year. (Why, for example, are the French Revolution and the…

  14. Face detection and feature points location and tracking in video sequence

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaowe; Zhang, Wenjun

    2013-07-01

    In the basic study and analysis of the human face detection and feature point location and tracking algorithm in video sequence, this paper proposes a method that first to determine the like-face area in the video frame with local SMQT characteristics; then positioning the detected human face feature point with the modified ASM, which is improved by changing the 1D texture model which is easier to fall into minimum to 2D texture model; finally, grouping feature points based on their characteristics, tracking them by using optical flow method, elastic graph matching, and binary respectively. This method was tested to show good positioning of facial features based on fast detection, and gain well tracking results.

  15. Integrating Subcellular Location for Improving Machine Learning Models of Remote Homology Detection in Eukaryotic Organisms

    SciTech Connect

    Shah, Anuj R.; Oehmen, Chris S.; Harper, Jill K.; Webb-Robertson, Bobbie-Jo M.

    2007-02-23

    Motivation: At the center of bioinformatics, genomics, and pro-teomics is the need for highly accurate genome annotations. Producing high-quality reliable annotations depends on identifying sequences which are related evolutionarily (homologs) on which to infer function. Homology detection is one of the oldest tasks in bioinformatics, however most approaches still fail when presented with sequences that have low residue similarity despite a distant evolutionary relationship (remote homology). Recently, discriminative approaches, such as support vector machines (SVMs) have demonstrated a vast improvement in sensitivity for remote homology detection. These methods however have only focused on one aspect of the sequence at a time, e.g., sequence similarity or motif based scores. However, supplementary information, such as the sub-cellular location of a protein within the cell would give further clues as to possible homologous pairs, additionally eliminating false relationships due to simple functional roles that cannot exist due to location. We have developed a method, SVM-SimLoc that integrates sub-cellular location with sequence similarity information into a pro-tein family classifier and compared it to one of the most accurate sequence based SVM approaches, SVM-Pairwise. Results: The SCOP 1.53 benchmark data set was utilized to assess the performance of SVM-SimLoc. As cellular location prediction is dependent upon the type of sequence, eukaryotic or prokaryotic, the analysis is restricted to the 2630 eukaryotic sequences in the benchmark dataset, evaluating a total of 27 protein families. We demonstrate that the integration of sequence similarity and sub-cellular location yields notably more accurate results than using sequence similarity independently at a significance level of 0.006.

  16. Location and release time identification of pollution point source in river networks based on the Backward Probability Method.

    PubMed

    Ghane, Alireza; Mazaheri, Mehdi; Mohammad Vali Samani, Jamal

    2016-09-15

    The pollution of rivers due to accidental spills is a major threat to environment and human health. To protect river systems from accidental spills, it is essential to introduce a reliable tool for identification process. Backward Probability Method (BPM) is one of the most recommended tools that is able to introduce information related to the prior location and the release time of the pollution. This method was originally developed and employed in groundwater pollution source identification problems. One of the objectives of this study is to apply this method in identifying the pollution source location and release time in surface waters, mainly in rivers. To accomplish this task, a numerical model is developed based on the adjoint analysis. Then the developed model is verified using analytical solution and some real data. The second objective of this study is to extend the method to pollution source identification in river networks. In this regard, a hypothetical test case is considered. In the later simulations, all of the suspected points are identified, using only one backward simulation. The results demonstrated that all suspected points, determined by the BPM could be a possible pollution source. The proposed approach is accurate and computationally efficient and does not need any simplification in river geometry and flow. Due to this simplicity, it is highly recommended for practical purposes. PMID:27219462

  17. Can Handheld Plastic Detectors Do Both Gamma and Neutron Isotopic Identification with Directional Source Location?

    SciTech Connect

    Robert Hayes

    2008-04-18

    This paper demonstrates, through MCNPX simulations, that a compact hexagonal array of detectors can be utilized to do both gamma isotopic identification (ID) along with neutron identification while simultaneously finding the direction of the source relative to the detector array. The detector array itself is composed of seven borated polyvinyl toluene (PVT) hexagonal light pipes approximately 4 inches long and with a 1.25 inch face-to-face thickness assembled in a tight configuration. The gamma ID capability is realized through judicious windowing algorithms as is the neutron spectral unfolding. By having multiple detectors in different relative positions, directional determination of the source can be realized. By further adding multiplicity counters to the neutron counts, fission events can be measured.

  18. Impact location and load identification through inverse analysis with bounded uncertain measurements

    NASA Astrophysics Data System (ADS)

    Ahmari, Saeed; Yang, Mijia

    2013-08-01

    The growing demand for real-time damage assessment necessitates development of an efficient inverse analysis algorithm with consideration of practical issues such as uncertainty in measurement. A mathematical model-based inverse analysis scheme is proposed to identify impact locations and reconstruct impact load time history of a simply supported plate through multiple levels of analysis. The proximity of the impact location is first determined by the triangulation method and the impact location is then refined by minimization of an objective function through the particle swarm optimization method (PSO). Loss of data due to filtration is addressed in a further level by performing an interval analysis based on extreme measurement errors. The outcome of the analyses is a mean impact location, a load time history, and a range of likely deviations. The extreme deviation in impact location is shown by bounding lines, which form a rectangle. The deviation in load time history is also shown by upper and lower bounding sinusoidal curves. The results of the analyses indicate that the proposed method can effectively locate the impact point and reconstruct the load time history even with the existence of noise in the measured response.

  19. Oligonucleotide probe for detection and identification of Campylobacter pylori.

    PubMed Central

    Morotomi, M; Hoshina, S; Green, P; Neu, H C; LoGerfo, P; Watanabe, I; Mutai, M; Weinstein, I B

    1989-01-01

    We have developed a novel and practical DNA-RNA hybridization assay for the detection and identification of Campylobacter pylori in the gastric mucosa. This technique utilizes a [32P]ddATP-labeled synthetic oligonucleotide probe complementary to a nucleotide sequence present in C. pylori 16S rRNA. This probe is very sensitive and reacted with all 23 strains of C. pylori tested. It is also highly specific, since there was no cross-reactivity with the heterologous organisms Campylobacter coli, C. fetus subsp. fetus, C. jejuni, and C. laridis or with Escherichia coli. Hybridization of the oligonucleotide probe with C. pylori RNA was completely inhibited by treatment of the membrane filters with RNase but not DNase. Although a gastric mucosa tissue homogenate slightly inhibited the hybridization, as few as 10(4) C. pylori cells could be detected even in the presence of 5 mg of gastric mucosa. Gastric biopsy specimens obtained from patients referred for upper gastrointestinal tract endoscopy were tested for C. pylori infection by direct oligonucleotide hybridization, and the results were compared with those of bacteriological cultures, the urease test, and histological observations. A comparison of the urease test and the oligonucleotide hybridization results showed an excellent correlation between the two methods. The clinical usefulness of this oligonucleotide-RNA hybridization method is discussed. Images PMID:2480360

  20. Defect occurrence, detection, location and characterization; essential variables of the LBB concept application to primary piping

    SciTech Connect

    Crutzen, S.; Koble, T.D.; Lemaitre, P.

    1997-04-01

    Applications of the Leak Before Break (LBB) concept involve the knowledge of flaw presence and characteristics. In Service Inspection is given the responsibility of detecting flaws of a determined importance to locate them precisely and to classify them in broad families. Often LBB concepts application imply the knowledge of flaw characteristics such as through wall depth; length at the inner diameter (ID) or outer diameter (OD) surface; orientation or tilt and skew angles; branching; surface roughness; opening or width; crack tip aspect. Besides detection and characterization, LBB evaluations consider important the fact that a crack could be in the weld material or in the base material or in the heat affected zone. Cracks in tee junctions, in homogenous simple welds and in elbows are not considered in the same way. Essential variables of a flaw or defect are illustrated, and examples of flaws found in primary piping as reported by plant operators or service vendors are given. If such flaw variables are important in the applications of LBB concepts, essential is then the knowledge of the performance achievable by NDE techniques, during an ISI, in detecting such flaws, in locating them and in correctly evaluating their characteristics.

  1. CT detection and location of intraorbital foreign bodies. Experiments with wood and glass.

    PubMed

    Myllylä, V; Pyhtinen, J; Päivänsalo, M; Tervonen, O; Koskela, P

    1987-06-01

    The series comprises 27 patients examined by CT to detect, locate or exclude a foreign body. 22 of them actually had an orbital foreign body. In three cases CT was the primary method and showed the foreign body correctly, while in 18 it was first detected in plain films and CT was performed to locate it. 20 metallic foreign bodies were hyperdense in appearance. Two cases had wooden foreign bodies, one with a density of +10 HU and the other hypodense with a value of about -434 to -446 HU. The latter piece of wood was first interpreted falsely as a bubble of gas. The results proved that the detection of metal is easy, but differentiation between wood and gas is problematical. Experiments conducted to determine the CT densities of different pieces of wood gave results varying from -618 HU to +23 HU. The highest densities obtained for glass varied from +522 HU to +2000 HU. The density of a plastic lens was -105 HU. PMID:3037632

  2. Computerized detection of unruptured aneurysms in MRA images: reduction of false positives using anatomical location features

    NASA Astrophysics Data System (ADS)

    Uchiyama, Yoshikazu; Gao, Xin; Hara, Takeshi; Fujita, Hiroshi; Ando, Hiromichi; Yamakawa, Hiroyasu; Asano, Takahiko; Kato, Hiroki; Iwama, Toru; Kanematsu, Masayuki; Hoshi, Hiroaki

    2008-03-01

    The detection of unruptured aneurysms is a major subject in magnetic resonance angiography (MRA). However, their accurate detection is often difficult because of the overlapping between the aneurysm and the adjacent vessels on maximum intensity projection images. The purpose of this study is to develop a computerized method for the detection of unruptured aneurysms in order to assist radiologists in image interpretation. The vessel regions were first segmented using gray-level thresholding and a region growing technique. The gradient concentration (GC) filter was then employed for the enhancement of the aneurysms. The initial candidates were identified in the GC image using a gray-level threshold. For the elimination of false positives (FPs), we determined shape features and an anatomical location feature. Finally, rule-based schemes and quadratic discriminant analysis were employed along with these features for distinguishing between the aneurysms and the FPs. The sensitivity for the detection of unruptured aneurysms was 90.0% with 1.52 FPs per patient. Our computerized scheme can be useful in assisting the radiologists in the detection of unruptured aneurysms in MRA images.

  3. Development of an adaptive failure detection and identification system for detecting aircraft control element failures

    NASA Technical Reports Server (NTRS)

    Bundick, W. Thomas

    1990-01-01

    A methodology for designing a failure detection and identification (FDI) system to detect and isolate control element failures in aircraft control systems is reviewed. An FDI system design for a modified B-737 aircraft resulting from this methodology is also reviewed, and the results of evaluating this system via simulation are presented. The FDI system performed well in a no-turbulence environment, but it experienced an unacceptable number of false alarms in atmospheric turbulence. An adaptive FDI system, which adjusts thresholds and other system parameters based on the estimated turbulence level, was developed and evaluated. The adaptive system performed well over all turbulence levels simulated, reliably detecting all but the smallest magnitude partially-missing-surface failures.

  4. Identification of Impact Location in a Plate Based on Elastodynamics and Higher Order Time Frequency Method

    NASA Astrophysics Data System (ADS)

    Lee, S. K.; Kim, S. J.

    In a nuclear power plant, impact force due to loose part is related to the structural damage in the plant. In general, the steam generator of the nuclear power plant is structured by thick plate. The paper presents a novel approach to locate an impact load in a thick plate. The approach is based on the analysis of the acoustic waveforms measured by a sensor array located on the plate surface. For accurate estimation of the location of the impact source, the time differences in the arrival times of the waves at the sensors and their propagation velocities are determined. The dispersion curves for multi modes of Lamb wave are calculated by using exact plate theory and SDPT. It is difficult to measure directly the group velocity for Lamb mode of acoustic waveform in the thick plate because they are dispersive wave. However, most of the energy in the wave is carried by the flexural waves (A0 mode), the group velocity of this mode is extracted using the CHOTF technique for estimating the impact source location. The estimates are shown to be in excellent agreement with the actual locations and it is applied to the damage analysis due to the loose part in a nuclear power plant.

  5. Infrared detection, recognition and identification of handheld objects

    NASA Astrophysics Data System (ADS)

    Adomeit, Uwe

    2012-10-01

    A main criterion for comparison and selection of thermal imagers for military applications is their nominal range performance. This nominal range performance is calculated for a defined task and standardized target and environmental conditions. The only standardization available to date is STANAG 4347. The target defined there is based on a main battle tank in front view. Because of modified military requirements, this target is no longer up-to-date. Today, different topics of interest are of interest, especially differentiation between friend and foe and identification of humans. There is no direct way to differentiate between friend and foe in asymmetric scenarios, but one clue can be that someone is carrying a weapon. This clue can be transformed in the observer tasks detection: a person is carrying or is not carrying an object, recognition: the object is a long / medium / short range weapon or civil equipment and identification: the object can be named (e. g. AK-47, M-4, G36, RPG7, Axe, Shovel etc.). These tasks can be assessed experimentally and from the results of such an assessment, a standard target for handheld objects may be derived. For a first assessment, a human carrying 13 different handheld objects in front of his chest was recorded at four different ranges with an IR-dual-band camera. From the recorded data, a perception experiment was prepared. It was conducted with 17 observers in a 13-alternative forced choice, unlimited observation time arrangement. The results of the test together with Minimum Temperature Difference Perceived measurements of the camera and temperature difference and critical dimension derived from the recorded imagery allowed defining a first standard target according to the above tasks. This standard target consist of 2.5 / 3.5 / 5 DRI line pairs on target, 0.24 m critical size and 1 K temperature difference. The values are preliminary and have to be refined in the future. Necessary are different aspect angles, different

  6. Electrically conductive proppant and methods for detecting, locating and characterizing the electrically conductive proppant

    DOEpatents

    Cannan, Chad; Bartel, Lewis; Palisch, Terrence; Aldridge, David

    2015-01-13

    Electrically conductive proppants and methods for detecting, locating, and characterizing same are provided. The electrically conductive proppant can include a substantially uniform coating of an electrically conductive material having a thickness of at least 500 nm. The method can include injecting a hydraulic fluid into a wellbore extending into a subterranean formation at a rate and pressure sufficient to open a fracture therein, injecting into the fracture a fluid containing the electrically conductive proppant, electrically energizing the earth at or near the fracture, and measuring three dimensional (x, y, and z) components of electric and magnetic field responses at a surface of the earth or in an adjacent wellbore.

  7. Distress detection, location, and communications using advanced space technology. [satellite-borne synthetic aperture radar

    NASA Technical Reports Server (NTRS)

    Sivertson, W. E., Jr.

    1977-01-01

    This paper briefly introduces a concept for low-cost, global, day-night, all-weather disaster warning and assistance. Evolving, advanced space technology with passive radio frequency reflectors in conjunction with an imaging synthetic aperture radar is employed to detect, identify, locate, and provide passive communication with earth users in distress. This concept evolved from a broad NASA research on new global search and rescue techniques. Appropriate airborne radar test results from this research are reviewed and related to potential disaster applications. The analysis indicates the approach has promise for disaster communications relative to floods, droughts, earthquakes, volcanic eruptions, and severe storms.

  8. Identification of Alfvén mode location via multichannel interferometer measurements (abstract)

    NASA Astrophysics Data System (ADS)

    Chang, Z.; Fredrickson, E. D.; Park, H.; Nazikian, R.; Budny, R. V.; Wong, K. L.; McGuire, K. M.; TFTR Group

    1997-01-01

    Quasicoherent magnetohydrodynamics modes with an Alfvén frequency scaling are seen routinely in TFTR neutral beam heated plasmas as well as some Ohmic plasmas. So far, they are only observed in external magnetic fluctuation measurement (Mirnov coils). A close correlation is observed between the changes in the mode frequency and electron density measured by the multichannel infrared interferometer. This correlation allows us to determine the location of the Alfvén modes. The result shows that they are near the plasma edge, r/a>0.85. This method is also used to identify the location of the toroidicity-induced Alfvén eigenmode driven by fast ions in a radiowave heating experiment. The result is consistent with the location determined by the reflectometer measurement.

  9. Visual Detection and Identification Are Not the Same: Evidence from Psychophysics and fMRI

    ERIC Educational Resources Information Center

    Straube, Sirko; Fahle, Manfred

    2011-01-01

    Sometimes object detection as opposed to identification is sufficient to initiate the appropriate action. To explore the neural origin of behavioural differences between the two tasks, we combine psychophysical measurements and fMRI, specifically contrasting shape detection versus identification of a figure. This figure consisted of Gabor elements…

  10. Diffuse reflectance optical topography: location of inclusions in 3D and detectability limits

    PubMed Central

    Carbone, N. A.; Baez, G. R.; García, H. A.; Waks Serra, M. V.; Di Rocco, H. O.; Iriarte, D. I.; Pomarico, J. A.; Grosenick, D.; Macdonald, R.

    2014-01-01

    In the present contribution we investigate the images of CW diffusely reflected light for a point-like source, registered by a CCD camera imaging a turbid medium containing an absorbing lesion. We show that detection of μa variations (absorption anomalies) is achieved if images are normalized to background intensity. A theoretical analysis based on the diffusion approximation is presented to investigate the sensitivity and the limitations of our proposal and a novel procedure to find the location of the inclusions in 3D is given and tested. An analysis of the noise and its influence on the detection capabilities of our proposal is provided. Experimental results on phantoms are also given, supporting the proposed approach. PMID:24876999

  11. From dust to dust: ethical and practical issues involved in the location, exhumation, and identification of bodies from mass graves.

    PubMed

    Williams, Erin D; Crews, John D

    2003-06-01

    There are many potential purposes served by the investigation of human remains: criminal fact-finding, archaeological exploration, forensic research, and others. This paper focuses on the identification of remains from mass graves to find missing persons. The primary goal of such efforts is to honor the memory of the dead by bringing closure to living family members, thus supporting the human rights of both the living and the deceased. Cultures, customs, political, and interpersonal specifics will vary, but that singular goal should remain the central guiding principle. This article presents ethical and practical issues resulting from efforts to locate, exhume, and identify the remains of mass fatalities. PMID:12808715

  12. Automatic Infrasound Detection and Location of Sources in the western US

    NASA Astrophysics Data System (ADS)

    Park, J.; Arrowsmith, S.; Hayward, C.; Stump, B. W.

    2012-12-01

    Infrasound event catalogs can be used to study the characteristics of events as well as the time varying nature of the atmosphere. Additionally, these catalogs can be used to identify sources that repeat and thus provide ground truth for atmospheric studies. We focus on the production of a western US regional infrasound catalog for the time period of April 2011 to March 2012. Data from the University of Utah Seismograph Stations (UUSS) infrasonic arrays are supplemented with data from three additional infrasound arrays in Nevada. An automated detection procedure was applied to the observations based on an adaptive F-detector (Arrowsmith et al., 2009). The detection results document significant seasonal variations in time and space; detections during the winter tend to produce higher correlations relative to those from the summer, and a seasonal variation in azimuth is observed. These results indicate that the bulletin is seasonally variable. Association of detections and event localization was done utilizing the Bayesian infrasonic source location procedure (BISL, Modrak et al., 2010), accounting for unknown atmospheric propagation effects by adding a random component to the infrasonic group velocity. The resulting infrasonic catalog consists of 963 events for the one-year time period with indication of repeated events from a number of locations. The distribution of infrasound events in this study is well matched with the infrasound hot spots identified by Walker et al. (2011) which were based on a back projection procedure applied to seismic signals from USArray Transportable Array. There are common concentrations of events in both catalogs that include New Bomb in Nevada, Utah Test and Training Range (UTTR), and Dugway Proving Ground in Utah, as well as broader areas in central Nevada and southwest Idaho. The two bulletins document that the vast majority of events occur during work hours, suggesting they are related to human activities.

  13. Detection and Location of Icy Particles Surrounding 103P/Hartley 2

    NASA Astrophysics Data System (ADS)

    Hermalyn, B.; Farnham, T. L.; Schultz, P. H.; Kelley, M. S.; Lindler, D.; Thomas, P. C.; A'Hearn, M. F.

    2011-10-01

    The Deep Impact Flyby Spacecraft encountered comet 103P/Hartley 2 on November 4th, 2010 at a minimum distance of 694 km [1]. Both the High Resolution (HRI) and Medium Resolution Instruments (MRI) captured images of a field of debris enveloping the comet. Fine grain dust and ice (primarily detected in the HRI) and hundreds of discrete larger particles are apparent during encounter. The larger golf ball to basketball-sized particles are detected primarily near the nucleus (Fig. 1). This swarming of individual grains in the near-nucleus environment of Hartley 2 has not been observed in any other comet to date. The motion of the spacecraft instruments relative to the comet nucleus (including not only spacecraft velocity but pointing adjustments) provides sufficient parallax between successive images around closest approach to stereoscopically reconstruct the distance and displacement of these particles. In this study, we present an analysis of the identification, position, and motion of discrete ejected particles surrounding the comet.

  14. Integrating syndromic surveillance data across multiple locations: effects on outbreak detection performance.

    PubMed

    Reis, Ben Y; Mandl, Kenneth D

    2003-01-01

    Syndromic surveillance systems are being deployed widely to monitor for signals of covert bioterrorist attacks. Regional systems are being established through the integration of local surveillance data across multiple facilities. We studied how different methods of data integration affect outbreak detection performance. We used a simulation relying on a semi-synthetic dataset, introducing simulated outbreaks of different sizes into historical visit data from two hospitals. In one simulation, we introduced the synthetic outbreak evenly into both hospital datasets (aggregate model). In the second, the outbreak was introduced into only one or the other of the hospital datasets (local model). We found that the aggregate model had a higher sensitivity for detecting outbreaks that were evenly distributed between the hospitals. However, for outbreaks that were localized to one facility, maintaining individual models for each location proved to be better. Given the complementary benefits offered by both approaches, the results suggest building a hybrid system that includes both individual models for each location, and an aggregate model that combines all the data. We also discuss options for multi-level signal integration hierarchies. PMID:14728233

  15. Low-cost impact detection and location for automated inspections of 3D metallic based structures.

    PubMed

    Morón, Carlos; Portilla, Marina P; Somolinos, José A; Morales, Rafael

    2015-01-01

    This paper describes a new low-cost means to detect and locate mechanical impacts (collisions) on a 3D metal-based structure. We employ the simple and reasonably hypothesis that the use of a homogeneous material will allow certain details of the impact to be automatically determined by measuring the time delays of acoustic wave propagation throughout the 3D structure. The location of strategic piezoelectric sensors on the structure and an electronic-computerized system has allowed us to determine the instant and position at which the impact is produced. The proposed automatic system allows us to fully integrate impact point detection and the task of inspecting the point or zone at which this impact occurs. What is more, the proposed method can be easily integrated into a robot-based inspection system capable of moving over 3D metallic structures, thus avoiding (or minimizing) the need for direct human intervention. Experimental results are provided to show the effectiveness of the proposed approach. PMID:26029951

  16. Low-Cost Impact Detection and Location for Automated Inspections of 3D Metallic Based Structures

    PubMed Central

    Morón, Carlos; Portilla, Marina P.; Somolinos, José A.; Morales, Rafael

    2015-01-01

    This paper describes a new low-cost means to detect and locate mechanical impacts (collisions) on a 3D metal-based structure. We employ the simple and reasonably hypothesis that the use of a homogeneous material will allow certain details of the impact to be automatically determined by measuring the time delays of acoustic wave propagation throughout the 3D structure. The location of strategic piezoelectric sensors on the structure and an electronic-computerized system has allowed us to determine the instant and position at which the impact is produced. The proposed automatic system allows us to fully integrate impact point detection and the task of inspecting the point or zone at which this impact occurs. What is more, the proposed method can be easily integrated into a robot-based inspection system capable of moving over 3D metallic structures, thus avoiding (or minimizing) the need for direct human intervention. Experimental results are provided to show the effectiveness of the proposed approach. PMID:26029951

  17. Probablilistic evaluation of earthquake detection and location capability for Illinois, Indiana, Kentucky, Ohio, and West Virginia

    SciTech Connect

    Mauk, F.J.; Christensen, D.H.

    1980-09-01

    Probabilistic estimations of earthquake detection and location capabilities for the states of Illinois, Indiana, Kentucky, Ohio and West Virginia are presented in this document. The algorithm used in these epicentrality and minimum-magnitude estimations is a version of the program NETWORTH by Wirth, Blandford, and Husted (DARPA Order No. 2551, 1978) which was modified for local array evaluation at the University of Michigan Seismological Observatory. Estimations of earthquake detection capability for the years 1970 and 1980 are presented in four regional minimum m/sub b/ magnitude contour maps. Regional 90% confidence error ellipsoids are included for m/sub b/ magnitude events from 2.0 through 5.0 at 0.5 m/sub b/ unit increments. The close agreement between these predicted epicentral 90% confidence estimates and the calculated error ellipses associated with actual earthquakes within the studied region suggest that these error determinations can be used to estimate the reliability of epicenter location. 8 refs., 14 figs., 2 tabs.

  18. Radiometric responsivity determination for Feature Identification and Location Experiment (FILE) flown on space shuttle mission

    NASA Technical Reports Server (NTRS)

    Wilson, R. G.; Davis, R. E.; Wright, R. E., Jr.; Sivertson, W. E., Jr.; Bullock, G. F.

    1986-01-01

    A procedure was developed to obtain the radiometric (radiance) responsivity of the Feature Identification and Local Experiment (FILE) instrument in preparation for its flight on Space Shuttle Mission 41-G (November 1984). This instrument was designed to obtain Earth feature radiance data in spectral bands centered at 0.65 and 0.85 microns, along with corroborative color and color-infrared photographs, and to collect data to evaluate a technique for in-orbit autonomous classification of the Earth's primary features. The calibration process incorporated both solar radiance measurements and radiative transfer model predictions in estimating expected radiance inputs to the FILE on the Shuttle. The measured data are compared with the model predictions, and the differences observed are discussed. Application of the calibration procedure to the FILE over an 18-month period indicated a constant responsivity characteristic. This report documents the calibration procedure and the associated radiometric measurements and predictions that were part of the instrument preparation for flight.

  19. Determination of acoustic speed for improving leak detection and location in gas pipelines

    NASA Astrophysics Data System (ADS)

    Li, Shuaiyong; Wen, Yumei; Li, Ping; Yang, Jin; Yang, Lili

    2014-02-01

    The commonly used cross-correlation technique for leak location requires that the acoustic speed is known and invariable. In practice, the gas leakage-induced acoustic waves propagate along multiple paths including in-pipe gas and pipe wall, and the acoustic waves in different transmission paths exhibit different acoustic speeds and different dispersive behaviors, which bring a great challenge for leak detection and location in the gas pipelines. In this study, based on the vibration theory of cylindrical elastic thin shell, the wavenumber formulae in different transmission paths are derived to predict the acoustic speeds and the acoustical coupling between the in-pipe gas and the pipe wall is analyzed to determine the dominant transmission path. In addition, the velocity dispersions in the dominant transmission path are suppressed by selection of a characteristic frequency band of the gas leakage-induced acoustic waves. The theoretical predictions are verified in the experiment and the results show that the theoretical acoustic speed is slightly larger than the measured acoustic speed. Thus, the theoretical acoustic speed formula is modified considering the effect of the structural loss factor and consequently the location error using the modified acoustic speed is reduced by two times compared to that using the theoretical acoustic speed.

  20. Determination of acoustic speed for improving leak detection and location in gas pipelines.

    PubMed

    Li, Shuaiyong; Wen, Yumei; Li, Ping; Yang, Jin; Yang, Lili

    2014-02-01

    The commonly used cross-correlation technique for leak location requires that the acoustic speed is known and invariable. In practice, the gas leakage-induced acoustic waves propagate along multiple paths including in-pipe gas and pipe wall, and the acoustic waves in different transmission paths exhibit different acoustic speeds and different dispersive behaviors, which bring a great challenge for leak detection and location in the gas pipelines. In this study, based on the vibration theory of cylindrical elastic thin shell, the wavenumber formulae in different transmission paths are derived to predict the acoustic speeds and the acoustical coupling between the in-pipe gas and the pipe wall is analyzed to determine the dominant transmission path. In addition, the velocity dispersions in the dominant transmission path are suppressed by selection of a characteristic frequency band of the gas leakage-induced acoustic waves. The theoretical predictions are verified in the experiment and the results show that the theoretical acoustic speed is slightly larger than the measured acoustic speed. Thus, the theoretical acoustic speed formula is modified considering the effect of the structural loss factor and consequently the location error using the modified acoustic speed is reduced by two times compared to that using the theoretical acoustic speed. PMID:24593385

  1. Detection, location, and analysis of earthquakes using seismic surface waves (Beno Gutenberg Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Ekström, Göran

    2015-04-01

    For shallow sources, Love and Rayleigh waves are the largest seismic phases recorded at teleseismic distances. The utility of these waves for earthquake characterization was traditionally limited to magnitude estimation, since geographically variable dispersion makes it difficult to determine useful travel-time information from the waveforms. Path delays due to heterogeneity of several tens of seconds are typical for waves at 50 sec period, and these delays must be accounted for with precision and accuracy in order to extract propagation-phase and source-phase information. Advances in tomographic mapping of global surface-wave phase velocities, and continuous growth and improvements of seismographic networks around the world, now make possible new applications of surface waves for earthquake monitoring and analysis. Through continuous back propagation of the long-period seismic wave field recorded by globally distributed stations, nearly all shallow earthquakes greater than M=5 can be detected and located with a precision of 25 km. Some of the detected events do not appear in standard earthquake catalogs and correspond to non-tectonic earthquakes, including landslides, glacier calving, and volcanic events. With the improved ability to predict complex propagation effects of surface waves across a heterogeneous Earth, moment-tensor and force representations of seismic sources can be routinely determined for all earthquakes greater than M=5 by waveform fitting of surface waves. A current area of progress in the use of surface waves for earthquake studies is the determination of precise relative locations of remote seismicity by systematic cross correlation and analysis of surface waves generated by neighboring sources. Preliminary results indicate that a location precision of 5 km may be achievable in many areas of the world.

  2. Apparatus and method for detecting a magnetic anomaly contiguous to remote location by SQUID gradiometer and magnetometer systems

    DOEpatents

    Overton, W.C. Jr.; Steyert, W.A. Jr.

    1981-05-22

    A superconducting quantum interference device (SQUID) magnetic detection apparatus detects magnetic fields, signals, and anomalies at remote locations. Two remotely rotatable SQUID gradiometers may be housed in a cryogenic environment to search for and locate unambiguously magnetic anomalies. The SQUID magnetic detection apparatus can be used to determine the azimuth of a hydrofracture by first flooding the hydrofracture with a ferrofluid to create an artificial magnetic anomaly therein.

  3. Mass spectrometric detection, identification, and fragmentation of arseno-phytochelatins.

    PubMed

    Schmied-Tobies, Maria I H; Arroyo-Abad, Uriel; Mattusch, Jürgen; Reemtsma, Thorsten

    2014-11-01

    Phytochelatins (PC) are cystein-rich oligopeptides in plants for coordination with toxic metals and metalloids via their thiol groups. The composition, structure, and mass spectrometric fragmentation of arseno-PC (As-PC) with PC of different degree of oligomerization (PC2-PC5) in solution were studied using liquid chromatography coupled in parallel to inductively coupled plasma mass spectrometry and electrospray ionization quadrupole time-of-flight mass spectrometry. As-PC were detected from As(PC2) to As(PC5) with an increasing number of isomers that differ in the position of thiol groups bound to As. Thermodynamic modeling supported the identification process in case of these isomers. Mass spectrometric fragmentation of the As-PC does not follow the established pattern of peptides but is governed by the formation of series of As-containing annular cations, which coordinate to As via S, N, or O. Structure proposals for 30 As-PC fragment ions in the range m/z 147.92 to m/z 1290.18 are elaborated. Many of these fragment ions are characteristic to several As-PC and may be suited for a screening for As-PC in plant extracts. The mass spectrometric data offer the perspective for a future more sensitive determination of As-PC by means of liquid chromatography tandem mass spectrometry with multiple reaction monitoring. PMID:25395130

  4. Detection And Identification Of Inflammatory Bowel Disease Electronic Nose

    NASA Astrophysics Data System (ADS)

    Covington, J. A.; Ouaret, N.; Gardner, J. W.; Nwokolo, C.; Bardhan, K. D.; Arasaradnam, R. P.

    2011-11-01

    Inflammatory bowel disease (IBD) is an inflammation of the lining of the human bowel and a major health issue in Europe. IBD carries with it significant morbidity from toxic treatment, surgery and a risk of developing bowel cancer. Thus there is a need for early identification of the disease using non-invasive tests. Present diagnostic techniques are based around invasive tests (i.e. endoscopy) and laboratory culture; the latter is limited as only 50% of the gut bacteria can be identified. Here we explore the use of an e-nose as a tool to detect and identify two IBDs (i.e. Crohn's disease (CD) & Ulcerative Colitis (UC)) based on headspace analysis from urine samples. We believe that the gut bacterial flora is altered by disease (due to fermentation) that in-turn modulates the gas composition within urine samples. 24 samples (9 CD, 6 UC, 9 controls) were analysed with an in-house e-nose and an Owlstone IMS instrument. Data analysis was performed using linear discriminant analysis (LDA and principal components analysis (PCA). Using the e-nose, LDA separates both disease groups and control, whilst PCA shows a small overlap of classes. The IMS data are more complex but shows some disease/control separation. We are presently collecting further samples for a larger study using more advanced data processing methods.

  5. Location detection and tracking of moving targets by a 2D IR-UWB radar system.

    PubMed

    Nguyen, Van-Han; Pyun, Jae-Young

    2015-01-01

    In indoor environments, the Global Positioning System (GPS) and long-range tracking radar systems are not optimal, because of signal propagation limitations in the indoor environment. In recent years, the use of ultra-wide band (UWB) technology has become a possible solution for object detection, localization and tracking in indoor environments, because of its high range resolution, compact size and low cost. This paper presents improved target detection and tracking techniques for moving objects with impulse-radio UWB (IR-UWB) radar in a short-range indoor area. This is achieved through signal-processing steps, such as clutter reduction, target detection, target localization and tracking. In this paper, we introduce a new combination consisting of our proposed signal-processing procedures. In the clutter-reduction step, a filtering method that uses a Kalman filter (KF) is proposed. Then, in the target detection step, a modification of the conventional CLEAN algorithm which is used to estimate the impulse response from observation region is applied for the advanced elimination of false alarms. Then, the output is fed into the target localization and tracking step, in which the target location and trajectory are determined and tracked by using unscented KF in two-dimensional coordinates. In each step, the proposed methods are compared to conventional methods to demonstrate the differences in performance. The experiments are carried out using actual IR-UWB radar under different scenarios. The results verify that the proposed methods can improve the probability and efficiency of target detection and tracking. PMID:25808773

  6. Location Detection and Tracking of Moving Targets by a 2D IR-UWB Radar System

    PubMed Central

    Nguyen, Van-Han; Pyun, Jae-Young

    2015-01-01

    In indoor environments, the Global Positioning System (GPS) and long-range tracking radar systems are not optimal, because of signal propagation limitations in the indoor environment. In recent years, the use of ultra-wide band (UWB) technology has become a possible solution for object detection, localization and tracking in indoor environments, because of its high range resolution, compact size and low cost. This paper presents improved target detection and tracking techniques for moving objects with impulse-radio UWB (IR-UWB) radar in a short-range indoor area. This is achieved through signal-processing steps, such as clutter reduction, target detection, target localization and tracking. In this paper, we introduce a new combination consisting of our proposed signal-processing procedures. In the clutter-reduction step, a filtering method that uses a Kalman filter (KF) is proposed. Then, in the target detection step, a modification of the conventional CLEAN algorithm which is used to estimate the impulse response from observation region is applied for the advanced elimination of false alarms. Then, the output is fed into the target localization and tracking step, in which the target location and trajectory are determined and tracked by using unscented KF in two-dimensional coordinates. In each step, the proposed methods are compared to conventional methods to demonstrate the differences in performance. The experiments are carried out using actual IR-UWB radar under different scenarios. The results verify that the proposed methods can improve the probability and efficiency of target detection and tracking. PMID:25808773

  7. A Joint Location-Scale Test Improves Power to Detect Associated SNPs, Gene Sets, and Pathways

    PubMed Central

    Soave, David; Corvol, Harriet; Panjwani, Naim; Gong, Jiafen; Li, Weili; Boëlle, Pierre-Yves; Durie, Peter R.; Paterson, Andrew D.; Rommens, Johanna M.; Strug, Lisa J.; Sun, Lei

    2015-01-01

    Gene-based, pathway, and other multivariate association methods are motivated by the possibility of GxG and GxE interactions; however, accounting for such interactions is limited by the challenges associated with adequate modeling information. Here we propose an easy-to-implement joint location-scale (JLS) association testing framework for single-variant and multivariate analysis that accounts for interactions without explicitly modeling them. We apply the JLS method to a gene-set analysis of cystic fibrosis (CF) lung disease, which is influenced by multiple environmental and genetic factors. We identify and replicate an association between the constituents of the apical plasma membrane and CF lung disease (p = 0.0099 and p = 0.0180, respectively) and highlight a role for the SLC9A3-SLC9A3R1/2-EZR complex in contributing to CF lung disease. Many association studies could benefit from re-analysis with the JLS method that leverages complex genetic architecture for SNP, gene, and pathway identification. Analytical verification, simulation, and additional proof-of-principle applications support our approach. PMID:26140448

  8. A Joint Location-Scale Test Improves Power to Detect Associated SNPs, Gene Sets, and Pathways.

    PubMed

    Soave, David; Corvol, Harriet; Panjwani, Naim; Gong, Jiafen; Li, Weili; Boëlle, Pierre-Yves; Durie, Peter R; Paterson, Andrew D; Rommens, Johanna M; Strug, Lisa J; Sun, Lei

    2015-07-01

    Gene-based, pathway, and other multivariate association methods are motivated by the possibility of GxG and GxE interactions; however, accounting for such interactions is limited by the challenges associated with adequate modeling information. Here we propose an easy-to-implement joint location-scale (JLS) association testing framework for single-variant and multivariate analysis that accounts for interactions without explicitly modeling them. We apply the JLS method to a gene-set analysis of cystic fibrosis (CF) lung disease, which is influenced by multiple environmental and genetic factors. We identify and replicate an association between the constituents of the apical plasma membrane and CF lung disease (p = 0.0099 and p = 0.0180, respectively) and highlight a role for the SLC9A3-SLC9A3R1/2-EZR complex in contributing to CF lung disease. Many association studies could benefit from re-analysis with the JLS method that leverages complex genetic architecture for SNP, gene, and pathway identification. Analytical verification, simulation, and additional proof-of-principle applications support our approach. PMID:26140448

  9. Selecting Valid Correlation Areas for Automated Bullet Identification System Based on Striation Detection

    PubMed Central

    Chu, Wei; Song, John; Vorburger, Theodore V.; Thompson, Robert; Silver, Richard

    2011-01-01

    Some automated bullet identification systems calculate a correlation score between two land impressions to measure their similarity. When extracting a compressed profile from the land impression of a fired bullet, inclusion of areas that do not contain valid individual striation information may lead to sub-optimal extraction and therefore may deteriorate the correlation result. In this paper, an edge detection algorithm and selection process are used together to locate the edge points of all tool-mark features and filter out those not corresponding to striation marks. Edge points of the resulting striation marks are reserved and expanded to generate a mask image. By imposing the mask image on the topography image, the weakly striated area(s) are removed from the expressed profile extraction. Using this method, 48 bullets fired from 12 gun barrels of six manufacturers resulted in a higher matching rate than previous studies. PMID:26989589

  10. Automated identification, location, and volume estimation of rockfalls at Piton de la Fournaise volcano

    NASA Astrophysics Data System (ADS)

    Hibert, C.; Mangeney, A.; Grandjean, G.; Baillard, C.; Rivet, D.; Shapiro, N. M.; Satriano, C.; Maggi, A.; Boissier, P.; Ferrazzini, V.; Crawford, W.

    2014-05-01

    Since the collapse of the Dolomieu crater floor at Piton de la Fournaise Volcano (la Réunion) in 2007, hundreds of seismic signals generated by rockfalls have been recorded daily at the Observatoire Volcanologique du Piton de la Fournaise (OVPF). To study rockfall activity over a long period of time, automated methods are required to process the available continuous seismic records. We present a set of automated methods designed to identify, locate, and estimate the volume of rockfalls from their seismic signals. The method used to automatically discriminate seismic signals generated by rockfalls from other common events recorded at OVPF is based on fuzzy sets and has a success rate of 92%. A kurtosis-based automated picking method makes it possible to precisely pick the onset time and the final time of the rockfall-generated seismic signals. We present methods to determine rockfall locations based on these accurate pickings and a surface-wave propagation model computed for each station using a Fast Marching Method. These methods have successfully located directly observed rockfalls with an accuracy of about 100 m. They also make it possible to compute the seismic energy generated by rockfalls, which is then used to retrieve their volume. The methods developed were applied to a data set of 12,422 rockfalls that occurred over a period extending from the collapse of the Dolomieu crater floor in April 2007 to the end of the UnderVolc project in May 2011 to identify the most hazardous areas of the Piton de la Fournaise volcano summit.

  11. Location Performance and Detection Threshold of the Spanish National Seismic Network

    NASA Astrophysics Data System (ADS)

    D'Alessandro, Antonino; Badal, José; D'Anna, Giuseppe; Papanastassiou, Dimitris; Baskoutas, Ioannis; Özel, Nurcan M.

    2013-11-01

    Spain is a low-to-moderate seismicity area with relatively low seismic hazard. However, several strong shallow earthquakes have shaken the country causing casualties and extensive damage. Regional seismicity is monitored and surveyed by means of the Spanish National Seismic Network, maintenance and control of which are entrusted to the Instituto Geográfico Nacional. This array currently comprises 120 seismic stations distributed throughout Spanish territory (mainland and islands). Basically, we are interested in checking the noise conditions, reliability, and seismic detection capability of the Spanish network by analyzing the background noise level affecting the array stations, errors in hypocentral location, and detection threshold, which provides knowledge about network performance. It also enables testing of the suitability of the velocity model used in the routine process of earthquake location. To perform this study we use a method that relies on P and S wave travel times, which are computed by simulation of seismic rays from virtual seismic sources placed at the nodes of a regular grid covering the study area. Given the characteristics of the seismicity of Spain, we drew maps for M L magnitudes 2.0, 2.5, and 3.0, at a focal depth of 10 km and a confidence level 95 %. The results relate to the number of stations involved in the hypocentral location process, how these stations are distributed spatially, and the uncertainties of focal data (errors in origin time, longitude, latitude, and depth). To assess the extent to which principal seismogenic areas are well monitored by the network, we estimated the average error in the location of a seismic source from the semiaxes of the ellipsoid of confidence by calculating the radius of the equivalent sphere. Finally, the detection threshold was determined as the magnitude of the smallest seismic event detected at least by four stations. The northwest of the peninsula, the Pyrenees, especially the westernmost segment

  12. Neural network based system for damage identification and location in structural and mechanical systems

    SciTech Connect

    Farrar, C.R.; Doebling, S.W.; Prime, M.B.; Cornwell, P.; Kam, M.; Straser, E.G.; Hoerst, B.C.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Recent advances in wireless, remotely monitored data acquisition systems coupled with the development of vibration-based damage detection algorithms make the possibility of self- or remotely-monitored structures and mechanical systems appear to be within the capabilities of current technology. However, before such a system can be relied upon to perform this monitoring, the variability of the vibration properties that are the basis for the damage detection algorithm must be understood and quantified. This understanding is necessary so that the artificial intelligence/expert system that is employed to discriminate when changes in modal properties are indicative of damage will not yield false indications of damage. To this end, this project has focused on developing statistical methods for quantifying variability in identified vibration proper ties of structural and mechanical systems.

  13. Aftershocks of the 2014 M6 South Napa Earthquake: Detection, Location, and Focal Mechanisms

    NASA Astrophysics Data System (ADS)

    Hardebeck, J.; Shelly, D. R.

    2014-12-01

    The aftershock sequence of the South Napa earthquake is notable both for its low productivity and for its geometric complexity. The aftershocks do not clearly define a fault plane consistent with the NNW-striking vertical plane implied by the mainshock moment tensor and the mapped surface rupture, but instead seem to delineate multiple secondary structures at depth. We investigate this unusual sequence by identifying additional aftershocks that do not appear in the network catalog, relocating the combined aftershock catalog using waveform cross-correlation arrival times and double-difference techniques, and determining focal mechanisms for individual events and event clusters. Additional aftershocks are detected by applying a matched filter approach to the continuous seismic data at nearby stations, with the catalog earthquakes serving as the waveform templates. In tandem with new event detections, we measure precise differential arrival times between events, which we then use in double-difference event location. We detect about 4 times as many well-located aftershocks as in the network catalog. We relocate the events using double-difference in both a 1D and a 3D velocity model. Most of the aftershocks occur between 8 and 11 km depth, similar depth to the mainshock hypocenter and deeper than most of the slip imaged seismically and geodetically. The aftershocks form a diffuse NNW-trending structure, primarily to the north of the mainshock hypocenter and on the west side of the main surface rupture. Within this diffuse trend there are clusters of aftershocks, some suggesting a N-S strike, and some that appear to dip to the east or west. Preliminary single-event and composite focal mechanisms also imply N-S striking strike-slip structures. The mainshock hypocenter and many of the aftershocks occur near the intersection of a sharply defined NE-dipping seismicity structure and the probable location of the West Napa fault, suggesting that stress is concentrated at a

  14. Geological Layer Detection and Candidate Science Target Identification

    NASA Astrophysics Data System (ADS)

    Castano, R.; Bornstein, B.; Thompson, D. R.; Wagstaff, K.; Estlin, T.; Anderson, R. C.

    2012-12-01

    Geologic layers provide valuable information about the history of a planetary region. We have developed an approach to identifying candidate science targets within layered geologic deposits onboard an in-situ spacecraft, such as the Mars Exploration Rover (MER) Mission or the Mars Science Laboratory (MSL) Mission. The approach includes automated detection of layers in a scene and an algorithm for selecting science targets for further study that sample across the span of identified layers. Identifying targets in representative observed layers enables rapid collection of targeted remote sensing data on valuable layer targets without requiring multiple ground communication cycles. This type of automated image processing and target selection could enable increasingly informed, onboard decisions about when and where to take follow-up measurements and could easily be integrated into existing flight software that prioritizes science targets for follow-up measurements. The approach is divided into two elements. First, the presence of layers in a scene is ascertained. To determine the presence and location of layers within the image, the statistical properties of image regions are used. A supervised (trained on known examples) and unsupervised method have been developed. Performance assessment criteria include detection and false alarm rates, as well as computational requirements and run time. Upon detecting the presence of layering, candidate science targets are efficiently selected and prioritized to enable surveying the layers. The approach involves estimating the slope of the layering, selecting a transect perpendicular to the direction of the layers and then determining relatively homogeneous regions along the transect. We show results on images collected by the MER Mission rovers using both Pancam and Navcam imagery as well as scenes from a field experiment in the Mojave Desert.

  15. Improved Detection and Location of Ocean Microseism Signals using Array Techniques

    NASA Astrophysics Data System (ADS)

    Reading, A. M.; Gal, M.; Koper, K. D.; Tkalcic, H.

    2015-12-01

    We present and evaluate a range of approaches that may be used to investigate ocean microseisms using seismic array data. At amplitudes below the dominant incoming signal, the ambient seismic energy (background noise) associated with microseisms arrives from multiple directions at any one time. Thus we address the challenge of detecting weaker signals from unpredictable directions in the presence of other strong signals. Our aim is to extract the most accurate information possible from such weaker signals in order to expand the capability of ocean storm studies, using seismology, including the ability to extract storm patterns from archive seismic array records. Detection of weaker microseism signals may be improved using algorithms widely used in astronomy. One example is the CLEAN algorithm which has wide usage in radio astronomy. This algorithm operates by finding the position and strength of point sources and iteratively deconvolving their contribution to the image. It may be combined to optimum effect with the previously published (Incoherently Averaged Signal) IAS Capon implementation for an accurate detection of weaker sources. Having detected weaker sources, they may be backprojected using a suitable Earth model, taking into account a correction for the mislocation due to slowness-azimuth station corrections. The microseism generation locations inferred in this manner are strongly frequency dependent, even within relatively restricted frequency ranges (0.325-0.725 Hz) for some arrays. Our advances in seismic array processing, with a focus on methods appropriate to weaker ambient noise signals, have led to insights, for example, regarding the generation of seismic noise. We find that secondary microseisms in the lower frequency band are generated mainly by ocean swell whereas higher frequency bands are generated by local wind conditions. These arrivals are investigated over a two-decade time frame for the Southern Ocean and west Pacific Ocean.

  16. Metamaterials-based sensor to detect and locate nonlinear elastic sources

    NASA Astrophysics Data System (ADS)

    Gliozzi, Antonio S.; Miniaci, Marco; Bosia, Federico; Pugno, Nicola M.; Scalerandi, Marco

    2015-10-01

    In recent years, acoustic metamaterials have attracted increasing scientific interest for very diverse technological applications ranging from sound abatement to ultrasonic imaging, mainly due to their ability to act as band-stop filters. At the same time, the concept of chaotic cavities has been recently proposed as an efficient tool to enhance the quality of nonlinear signal analysis, particularly in the ultrasonic/acoustic case. The goal of the present paper is to merge the two concepts in order to propose a metamaterial-based device that can be used as a natural and selective linear filter for the detection of signals resulting from the propagation of elastic waves in nonlinear materials, e.g., in the presence of damage, and as a detector for the damage itself in time reversal experiments. Numerical simulations demonstrate the feasibility of the approach and the potential of the device in providing improved signal-to-noise ratios and enhanced focusing on the defect locations.

  17. Metamaterials-based sensor to detect and locate nonlinear elastic sources

    SciTech Connect

    Gliozzi, Antonio S.; Scalerandi, Marco; Miniaci, Marco; Bosia, Federico; Pugno, Nicola M.

    2015-10-19

    In recent years, acoustic metamaterials have attracted increasing scientific interest for very diverse technological applications ranging from sound abatement to ultrasonic imaging, mainly due to their ability to act as band-stop filters. At the same time, the concept of chaotic cavities has been recently proposed as an efficient tool to enhance the quality of nonlinear signal analysis, particularly in the ultrasonic/acoustic case. The goal of the present paper is to merge the two concepts in order to propose a metamaterial-based device that can be used as a natural and selective linear filter for the detection of signals resulting from the propagation of elastic waves in nonlinear materials, e.g., in the presence of damage, and as a detector for the damage itself in time reversal experiments. Numerical simulations demonstrate the feasibility of the approach and the potential of the device in providing improved signal-to-noise ratios and enhanced focusing on the defect locations.

  18. A method for detecting and locating geophysical events using groups of arrays

    NASA Astrophysics Data System (ADS)

    de Groot-Hedlin, Catherine D.; Hedlin, Michael A. H.

    2015-11-01

    We have developed a novel method to detect and locate geophysical events that makes use of any sufficiently dense sensor network. This method is demonstrated using acoustic sensor data collected in 2013 at the USArray Transportable Array (TA). The algorithm applies Delaunay triangulation to divide the sensor network into a mesh of three-element arrays, called triads. Because infrasound waveforms are incoherent between the sensors within each triad, the data are transformed into envelopes, which are cross-correlated to find signals that satisfy a consistency criterion. The propagation azimuth, phase velocity and signal arrival time are computed for each signal. Triads with signals that are consistent with a single source are bundled as an event group. The ensemble of arrival times and azimuths of detected signals within each group are used to locate a common source in space and time. A total of 513 infrasonic stations that were active for part or all of 2013 were divided into over 2000 triads. Low (0.5-2 Hz) and high (2-8 Hz) catalogues of infrasonic events were created for the eastern USA. The low-frequency catalogue includes over 900 events and reveals several highly active source areas on land that correspond with coal mining regions. The high-frequency catalogue includes over 2000 events, with most occurring offshore. Although their cause is not certain, most events are clearly anthropogenic as almost all occur during regular working hours each week. The regions to which the TA is most sensitive vary seasonally, with the direction of reception dependent on the direction of zonal winds. The catalogue has also revealed large acoustic events that may provide useful insight into the nature of long-range infrasound propagation in the atmosphere.

  19. Identification of slip surface location by TLS-GPS datafor landslide mitigation case study: Ciloto-Puncak, West Java

    SciTech Connect

    Sadarviana, Vera Hasanuddin, A. Z.; Joenil, G. K.; Irwan; Wijaya, Dudy; Ilman, H.; Agung, N.; Achmad, R. T.; Pangeran, C.; Martin, S.; Gamal, M.; Santoso, Djoko

    2015-04-24

    Landslide can prevented by understanding the direction of movement to the safety evacuation track or slip surface location to hold avalanches. Slip surface is separating between stable soil and unstable soil in the slope. The slip surface location gives information about stable material depth. The information can be utilize to mitigate technical step, such as pile installation to keep construction or settlement safe from avalanches.There are two kinds landslide indicators which are visualization and calculation. By visualization, landslide identified from soil crack or scarp. Scarp is a scar of exposed soil on the landslide. That identification can be done by Terrestrial Laser Scanner (TLS) Image. Shape of scarp shows type of slip surface, translation or rotational. By calculation, kinematic and dynamic mathematic model will give vector, velocity and acceleration of material movement. In this calculation need velocity trend line at GPS point from five GPS data campaign. From intersection of trend lines it will create curves or lines of slip surface location. The number of slip surface can be known from material movement direction in landslide zone.Ciloto landslide zone have complicated phenomenon because that zone have influence from many direction of ground water level pressure. The pressure is causes generating several slip surface in Ciloto zone. Types of Ciloto slip surface have mix between translational and rotational type.

  20. A New Self-Calibrated Procedure for Impact Detection and Location on Flat Surfaces

    PubMed Central

    Somolinos, José A.; López, Amable; Morales, Rafael; Morón, Carlos

    2013-01-01

    Many analyses of acoustic signals processing have been proposed for different applications over the last few years. When considering a bar-based structure, if the material through which the sound waves propagate is considered to be acoustically homogeneous and the sound speed is well known, then it is possible to determine the position and time of impact by a simple observation of the arrival times of the signals of all the transducers that are strategically disposed on the structure. This paper presents a generalized method for impact detection and location on a flat plate, together with a calibration procedure with which to obtain the sound speed from only one set of measurements. This propagation speed is not well known as a result of either imprecise material properties or the overlapping of longitudinal and transversal waves with different propagation velocities. The use of only three piezoelectric sensors allows the position and time of impact on the flat plate to be obtained when the sound speed is well known, while the use of additional sensors permits a larger detection area to be covered, helps to estimate the sound speed and/or avoids the wrong timing of difference measurements. Experimental results are presented using a robot with a specially designed knocking tool that produces impacts on a metallic flat plate. PMID:23722825

  1. A new self-calibrated procedure for impact detection and location on flat surfaces.

    PubMed

    Somolinos, José A; López, Amable; Morales, Rafael; Morón, Carlos

    2013-01-01

    Many analyses of acoustic signals processing have been proposed for different applications over the last few years. When considering a bar-based structure, if the material through which the sound waves propagate is considered to be acoustically homogeneous and the sound speed is well known, then it is possible to determine the position and time of impact by a simple observation of the arrival times of the signals of all the transducers that are strategically disposed on the structure. This paper presents a generalized method for impact detection and location on a flat plate, together with a calibration procedure with which to obtain the sound speed from only one set of measurements. This propagation speed is not well known as a result of either imprecise material properties or the overlapping of longitudinal and transversal waves with different propagation velocities. The use of only three piezoelectric sensors allows the position and time of impact on the flat plate to be obtained when the sound speed is well known, while the use of additional sensors permits a larger detection area to be covered, helps to estimate the sound speed and/or avoids the wrong timing of difference measurements. Experimental results are presented using a robot with a specially designed knocking tool that produces impacts on a metallic flat plate. PMID:23722825

  2. Impact detection, location, and characterization using spatially weighted distributed fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Spillman, William B., Jr.; Huston, Dryver R.

    1996-11-01

    The ability to detect, localize and characterize impacts in real time is of critical importance for the safe operation of aircraft, spacecraft and other vehicles, particularly in light of the increasing use of high performance composite materials with unconventional and often catastrophic failure modes. Although a number of systems based on fiber optic sensors have been proposed or demonstrated, they have generally proved not to be useful due to difficulty of implementation, limited accuracy or high cost. In this paper, we present the results of an investigation using two spatially weighted distributed fiber optic sensors to detect, localize and characterize impacts along an extended linear region. By having the sensors co-located with one having sensitivity to impacts ranging from low to high along its length while the other sensor has sensitivity ranging from high to low along the same path, impacts can be localized and their magnitudes determined using a very simple algorithm. A theoretical description of the techniques is given and compared with experimental results.

  3. Identification and location of symbionts associated with potato psyllid (Bactericera cockerelli) lifestages.

    PubMed

    Hail, Daymon; Dowd, Scot E; Bextine, Blake

    2012-02-01

    The potato psyllid (Bactericera cockerelli, Sulc) is an invasive pest of solenaceous plants including potatoes (Solanum tuberosum L.)and tomatoes (Solanum lycopersicum L.). The insect transmits the phytopathogen Candidatus Liberibacter solanacearum, which has been identified as the causal agent of Zebra Chip in potatoes. The microbiome of the potato psyllid provides knowledge of the insect's bacterial makeup which enables researchers to develop targeted biological control strategies. In this study, the microbes associated with four B. cockerelli life stages were evaluated by 16S bTEFAP pyrosequencing. The sequences were compared with a 16S-rDNA database derived from NCBI's GenBank. Some bacteria identified are initial discoveries. Species of Wolbachia, Rhizobium, Gordonia, Mycobacterium, Xanthomonas and others were also detected and an assessment of the microbiome associated with B. cockerelli was established. PMID:22525064

  4. The study of vehicle detection and identification in intelligent transportation system

    NASA Astrophysics Data System (ADS)

    Lv, Fang; Han, Dongmei

    2011-10-01

    With video detection technology as the core,this paper designed and implemented vehicle detection and identification in intelligent transportation system.The hardware design consisted of video capture module,video transmission module and image processing module;The software design primarily included motion detection,shadow segmentation,edge detection, feature extraction and vehicle classification.In the vehicle detection and identification algorithm,applied fusion concept and attempted to design a linear classifier with perceptive gradient descent method to identify vehicles.The experimental results validated that the methods used in this paper obtained good effect,and got a high recognition rate.

  5. Robust method to detect and locate local earthquakes by means of amplitude measurements.

    NASA Astrophysics Data System (ADS)

    del Puy Papí Isaba, María; Brückl, Ewald

    2016-04-01

    In this study we present a robust new method to detect and locate medium and low magnitude local earthquakes. This method is based on an empirical model of the ground motion obtained from amplitude data of earthquakes in the area of interest, which were located using traditional methods. The first step of our method is the computation of maximum resultant ground velocities in sliding time windows covering the whole period of interest. In the second step, these maximum resultant ground velocities are back-projected to every point of a grid covering the whole area of interest while applying the empirical amplitude - distance relations. We refer to these back-projected ground velocities as pseudo-magnitudes. The number of operating seismic stations in the local network equals the number of pseudo-magnitudes at each grid-point. Our method introduces the new idea of selecting the minimum pseudo-magnitude at each grid-point for further analysis instead of searching for a minimum of the L2 or L1 norm. In case no detectable earthquake occurred, the spatial distribution of the minimum pseudo-magnitudes constrains the magnitude of weak earthquakes hidden in the ambient noise. In the case of a detectable local earthquake, the spatial distribution of the minimum pseudo-magnitudes shows a significant maximum at the grid-point nearest to the actual epicenter. The application of our method is restricted to the area confined by the convex hull of the seismic station network. Additionally, one must ensure that there are no dead traces involved in the processing. Compared to methods based on L2 and even L1 norms, our new method is almost wholly insensitive to outliers (data from locally disturbed seismic stations). A further advantage is the fast determination of the epicenter and magnitude of a seismic event located within a seismic network. This is possible due to the method of obtaining and storing a back-projected matrix, independent of the registered amplitude, for each seismic

  6. Dominant Aerosol Particle Type/Mixture Identification at Worldwide Locations Using the Aerosol Robotic Network (AERONET)

    NASA Astrophysics Data System (ADS)

    Giles, D. M.; Holben, B.; Eck, T. F.; Sinyuk, A.; Smirnov, A.; Slutsker, I.; Dickerson, R. R.; Thompson, A. M.; Schafer, J. S.

    2011-12-01

    mean AAE by ~±0.1 for all aerosol types using SSA; AAE had negligible deviations for coarse mode aerosol categories within the uncertainty estimates of AOD but AAE varied by ~±0.05 from the unperturbed mean AAE for fine mode aerosol categories; and the increase/decrease in spectral AOD or SSA decreased/increased mean AAE for fine mode aerosols. In addition, AOD and SSA input parameters were varied to assess the impact on wavelength pairs (e.g., 440 and 870 nm) and the effects of non-linearity. The AAE and aerosol size [AE (440-870 nm) and FMF of AOD (500 nm)] relationships showed partitioning among dust and mixed aerosol types with significant overlap between urban/industrial and biomass burning categories. The SSA (440 nm) to the FMF of AOD (550 nm) relationship showed good consistency and partitioning with respect to the expected aerosol types/mixtures. Furthermore, aerosol identification techniques will be compared to results from recent field campaigns (e.g., DISCOVER-AQ).

  7. Biochemical Detection and Identification False Alarm Rate Dependence on Wavelength Using Laser Induced Fluorescence

    NASA Technical Reports Server (NTRS)

    Bhartia, R.; Hug, W. F.; Sala, E. C.; Sijapati, K.; Lane, A. L.; Reid, R. D.; Conrad, P. G.

    2006-01-01

    Most organic and many inorganic materials absorb strongly in specific wavelength ranges in the deep UV between about 220nm and 300nm. Excitation within these absorption bands results in native fluorescence emission. Each compound or composite material, such as a bacterial spore, has a unique excitation-emission fingerprint that can be used to provide information about the material. The sensitivity and specificity with which these materials can be detected and identified depends on the excitation wavelength and the number and location of observation wavelengths.We will present data on our deep ultraviolet Targeted Ultraviolet Chemical Sensors that demonstrate the sensitivity and specificity of the sensors. In particular, we will demonstrate the ability to quantitatively differentiate a wide range of biochemical agent targets against a wide range of background materials. We will describe the relationship between spectral resolution and specificity in target identification, as well as simple, fast, algorithms to identify materials.Hand-held, battery operated instruments using a deep UV laser and multi-band detection have been developed and deployed on missions to the Antarctic, the Arctic, and the deep ocean with the capability of detecting a single bacterial spore and to differentiate a wide range of organic and biological compounds.

  8. Identification of Unknown Interface Locations in a Source/Shield System Using the Mesh Adaptive Direct Search Method

    SciTech Connect

    Armstrong, Jerawan C.; Favorite, Jeffrey A.

    2012-06-20

    The Levenberg-Marquardt (or simply Marquardt) and differential evolution (DE) optimization methods were recently applied to solve inverse transport problems. The Marquardt method is fast but convergence of the method is dependent on the initial guess. While it has been shown to work extremely well at finding an optimum independent of the initial guess, the DE method does not provide a global optimal solution in some problems. In this paper, we apply the Mesh Adaptive Direct Search (MADS) algorithm to solve the inverse problem of material interface location identification in one-dimensional spherical radiation source/shield systems, and we compare the results obtained by MADS to those obtained by Levenberg-Marquardt and DE.

  9. Detection and location of leaks in district heating steam systems: Survey and review of current technology and practices

    SciTech Connect

    Kupperman, D.S.; Raptis, A.C.; Lanham, R.N.

    1992-03-01

    This report presents the results of a survey undertaken to identify and characterize current practices for detecting and locating leaks in district heating systems, particular steam systems. Currently used technology and practices are reviewed. In addition, the survey was used to gather information that may be important for the application of acoustic leak detection. A few examples of attempts to locate leaks in steam and hot water pipes by correlation of acoustic signals generated by the leaks are also discussed.

  10. Identification and location of the cocaine and amphetamine regulated transcript (CART) in the abomasum of cattle.

    PubMed

    Janiuk, Izabela; Młynek, Krzysztof; Wysocki, Jarosław

    2013-05-01

    The cocaine and amphetamine regulated transcript (CART) belongs to the group of peptides with anorexigenic properties and is present in many areas of the central and peripheral nervous systems of numerous mammalian species. Research has suggested an effect on the feeling of appetite and satiety; however, there are no clear clues as to the role of CART in specific organs, including the stomach. Considering the specificity of cattle feeding and digestion, CART may play a highly significant role possibly associated with the option of administering greater amounts of high-volume feeds. Based on the results of immunohistochemical staining of abomasum samples prepared from hybrid bulls, the presence of CART-positive structures and CART distribution were determined in the mucosa, submucosa and muscularis layers of the stomach. Abundant sites of CART were found in the myenteric plexus, nerve fibers innervating the myocytes of the myenteron, neuroendocrine cells of the diffuse neuroendocrine system and the submucous plexus. The preliminary stage of abomasal CART detection suggests that CART is an agent that strongly affects the regulation of motor activity involved in stomach emptying and in secretory functions of the stomach. However, further research is necessary to explain the relationship. PMID:23084786

  11. Species identification of airborne molds and its significance for the detection of indoor pollution

    SciTech Connect

    Fradkin, A.; Tobin, R.S.; Tario, S.M.; Tucic-Porretta, M.; Malloch, D.

    1987-01-01

    The present study was undertaken to investigate species composition and prevalence of culturable particles of airborne fungi in 27 homes in Toronto, Canada. Its major objective is to examine the significance of species identification for the detection of indoor pollution.

  12. Sensitive quantitative detection/identification of infectious Cryptosporidium parvum oocysts by signature lipid biomarker analysis

    SciTech Connect

    White, D.C. |; Alugupalli, S.; Schrum, D.P.

    1997-08-01

    Unique signature lipid biomarkers were found in the acid-fast oocytes of Cryptosporidium parvum. This makes possible the rapid detection/identification and potential infectivity directly from drinking water membrane filtrates.

  13. Mass and charge identification of fragments detected with the Chimera Silicon-CsI(Tl) telescopes

    NASA Astrophysics Data System (ADS)

    Le Neindre, N.; Alderighi, M.; Anzalone, A.; Barnà, R.; Bartolucci, M.; Berceanu, I.; Borderie, B.; Bougault, R.; Bruno, M.; Cardella, G.; Cavallaro, S.; D'Agostino, M.; Dayras, R.; de Filippo, E.; de Pasquale, D.; Geraci, E.; Giustolisi, F.; Grzeszczuk, A.; Guazzoni, P.; Guinet, D.; Iacono-Manno, M.; Italiano, A.; Kowalski, S.; Lanchais, A.; Lanzanó, G.; Lanzalone, G.; Li, S.; Lo Nigro, S.; Maiolino, C.; Manfredi, G.; Moisa, D.; Pagano, A.; Papa, M.; Paduszynski, T.; Petrovici, M.; Piasecki, E.; Pirrone, S.; Politi, G.; Pop, A.; Porto, F.; Rivet, M. F.; Rosato, E.; Russo, S.; Sambataro, S.; Sechi, G.; Simion, V.; Sperduto, M. L.; Steckmeyer, J. C.; Sutera, C.; Trifirò, A.; Tassan-Got, L.; Trimarchi, M.; Vannini, G.; Vigilante, M.; Wilczynski, J.; Wu, H.; Xiao, Z.; Zetta, L.; Zipper, W.

    2002-09-01

    Mass and charge identification of charged products detected with Silicon-CsI(Tl) telescopes of the Chimera apparatus are presented. An identification function, based on the Bethe-Bloch formula, is used to fit empirical correlations between ΔE and E ADC readings, in order to determine, event by event, the atomic and mass numbers of the detected charged reaction products prior to energy calibration.

  14. Time-series methods for fault detection and identification in vibrating structures.

    PubMed

    Fassois, Spilios D; Sakellariou, John S

    2007-02-15

    An overview of the principles and techniques of time-series methods for fault detection, identification and estimation in vibrating structures is presented, and certain new methods are introduced. The methods are classified, and their features and operation are discussed. Their practicality and effectiveness are demonstrated through brief presentations of three case studies pertaining to fault detection, identification and estimation in an aircraft panel, a scale aircraft skeleton structure and a simple nonlinear simulated structure. PMID:17255046

  15. CFD modelling of sampling locations for early detection of spontaneous combustion in long-wall gob areas

    PubMed Central

    Smith, Alex C.

    2015-01-01

    In this study, computational fluid dynamics (CFD) modeling was conducted to optimize gas sampling locations for the early detection of spontaneous heating in longwall gob areas. Initial simulations were carried out to predict carbon monoxide (CO) concentrations at various regulators in the gob using a bleeder ventilation system. Measured CO concentration values at these regulators were then used to calibrate the CFD model. The calibrated CFD model was used to simulate CO concentrations at eight sampling locations in the gob using a bleederless ventilation system to determine the optimal sampling locations for early detection of spontaneous combustion. PMID:26213572

  16. Investigation on experimental techniques to detect, locate and quantify gear noise in helicopter transmissions

    NASA Technical Reports Server (NTRS)

    Flanagan, P. M.; Atherton, W. J.

    1985-01-01

    A robotic system to automate the detection, location, and quantification of gear noise using acoustic intensity measurement techniques has been successfully developed. Major system components fabricated under this grant include an instrumentation robot arm, a robot digital control unit and system software. A commercial, desktop computer, spectrum analyzer and two microphone probe complete the equipment required for the Robotic Acoustic Intensity Measurement System (RAIMS). Large-scale acoustic studies of gear noise in helicopter transmissions cannot be performed accurately and reliably using presently available instrumentation and techniques. Operator safety is a major concern in certain gear noise studies due to the operating environment. The man-hours needed to document a noise field in situ is another shortcoming of present techniques. RAIMS was designed to reduce the labor and hazard in collecting data and to improve the accuracy and repeatability of characterizing the acoustic field by automating the measurement process. Using RAIMS a system operator can remotely control the instrumentation robot to scan surface areas and volumes generating acoustic intensity information using the two microphone technique. Acoustic intensity studies requiring hours of scan time can be performed automatically without operator assistance. During a scan sequence, the acoustic intensity probe is positioned by the robot and acoustic intensity data is collected, processed, and stored.

  17. Detection of low frequency external electronic identification devices using commercial panel readers.

    PubMed

    Stewart, S C; Rapnicki, P; Lewis, J R; Perala, M

    2007-09-01

    The ability of a commercially available panel reader system to read International Standards Organization-compliant electronic identification devices under commercial dairy conditions was examined. Full duplex (FDX-B) and half-duplex (HDX) low frequency radio-frequency identification external ear tags were utilized. The study involved 498 Holstein cows in the final 6 wk of gestation. There were 516 total electronic identification devices (n = 334 HDX and n = 182 FDX-B). Eighteen FDX-B were replaced with HDX during the study due to repeated detection failure. There were 6,679 HDX and 3,401 FDX-B device detection attempts. There were 220 (2.2%) unsuccessful and 9,860 (97.8%) successful identification detection attempts. There were 9 unsuccessful detection attempts for HDX (6,670/6,679 = 99.9% successful detection attempts) and 211 unsuccessful detection attempts for FDX-B (3,190/3,401 = 93.8% successful detection attempts). These results demonstrate that this panel system can achieve high detection rates of HDX devices and meet the needs of the most demanding management applications. The FDX-B detection rate was not sufficient for the most demanding applications, requiring a high degree of detection by panel readers. The lower FDX-B rate may not be inherent in the device technology itself, but could be due to other factors, including the particular panel reader utilized or the tuning of the panel reader. PMID:17699069

  18. Sex Differences in Object Location Memory: The Female Advantage of Immediate Detection of Changes

    ERIC Educational Resources Information Center

    Honda, Akio; Nihei, Yoshiaki

    2009-01-01

    Object location memory has been considered the only spatial ability in which females display an advantage over males. We examined sex differences in long-term object location memory. After participants studied an array of objects, they were asked to recall the locations of these objects three minutes later or one week later. Results showed a…

  19. a Uav Based 3-D Positioning Framework for Detecting Locations of Buried Persons in Collapsed Disaster Area

    NASA Astrophysics Data System (ADS)

    Moon, H.; Kim, C.; Lee, W.

    2016-06-01

    Regarding spatial location positioning, indoor location positioning theories based on wireless communication techniques such as Wi-Fi, beacon, UWB and Bluetooth has widely been developing across the world. These techniques are mainly focusing on spatial location detection of customers using fixed wireless APs and unique Tags in the indoor environment. Besides, since existing detection equipment and techniques using ultrasound or sound etc. to detect buried persons and identify survival status for them cause 2nd damages on the collapsed debris for rescuers. In addition, it might take time to check the buried persons. However, the collapsed disaster sites should consider both outdoor and indoor environments because empty spaces under collapsed debris exists. In order to detect buried persons from the empty spaces, we should collect wireless signals with Wi-Fi from their mobile phone. Basically, the Wi-Fi signal measure 2-D location. However, since the buried persons have Z value with burial depth, we also should collect barometer sensor data from their mobile phones in order to measure Z values according to weather conditions. Specially, for quick accessibility to the disaster area, a drone (UAV; Unmanned Arial Vehicle) system, which is equipped with a wireless detection module, was introduced. Using these framework, this study aims to provide the rescuers with effective rescue information by calculating 3-D location for buried persons based on the wireless and barometer sensor fusion.

  20. Detecting shallow mixing heights in two coastal locations with a scanning Doppler lidar

    NASA Astrophysics Data System (ADS)

    Vakkari, Ville; O'Connor, Ewan J.; Nisantzi, Argyro; Mamouri, Rodanthi E.; Hadjimitsis, Diofantos Gl.

    2015-04-01

    Turbulent mixing is one of the most important processes in the lower troposphere for climate, weather and air quality. A key parameter describing turbulent mixing in atmosphere is mixing height, i.e. the height of the layer that is constantly in contact with the surface. Doppler lidar offers a way to observe the vertical wind velocity profile with a high enough time resolution to retrieve information on turbulent mixing. However, Doppler lidars cannot retrieve wind velocity measurements below an instrument-specific threshold, typically 100 - 200 metres. Here, we introduce a method for identifying mixing heights below the vertical minimum range of a scanning Doppler lidar. The new method for detecting shallow mixing height is based on velocity variance in low elevation angle conical scanning, i.e. vertical azimuth display (VAD) scanning, which provides simultaneously the horizontal wind profile. This method is applied to measurements in two very different coastal environments: Limassol, Cyprus during summer; and Loviisa, Finland during winter. At Limassol the measurements were carried out from 22 August to 15 October 2013 at the Cyprus University of Technology campus, 600 metres NE from the Mediterranean Sea shoreline. At Loviisa, the measurement campaign took place from 10 December 2013 to 17 March 2014 on a 2000 m long, 500 m wide island in the Baltic Sea archipelago. At both locations, the new method agrees well with mixing heights derived from turbulent kinetic energy dissipation rate profiles obtained from vertically-pointing Doppler lidar measurements. Furthermore, when the vertically pointing measurements indicated the mixing height to be below the Doppler lidar minimum range, the VADs indicated a shallow mixing height on 87 % of the time at Loviisa and on 58 % of the time at Limassol. At Limassol such low mixing heights occurred only during the night; at Loviisa very low mixing heights were also common during the day.

  1. Atmospheric Transport Modelling confining potential source location of East-Asian radionuclide detections in May 2010

    NASA Astrophysics Data System (ADS)

    Ross, J. Ole; Ceranna, Lars

    2016-04-01

    The radionuclide component of the International Monitoring System (IMS) to verify compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT) is in place to detect tiny traces of fission products from nuclear explosions in the atmosphere. The challenge for the interpretation of IMS radionuclide data is to discriminate radionuclide sources of CTBT relevance against emissions from nuclear facilities. Remarkable activity concentrations of Ba/La-140 occurred at the IMS radionuclide stations RN 37 (Okinawa) and RN 58 (Ussurysk) mid of May 2010. In those days also an elevated Xe-133 level was measured at RN 38 (Takasaki). Additional regional measurements of radioxenon were reported in the press and further analyzed in various publications. The radionuclide analysis gives evidence for the presence of a nuclear fission source between 10 and 12 May 2010. Backward Atmospheric Transport Modelling (ATM) with HYSPLIT driven by 0.2° ECMWF meteorological data for the IMS samples indicates that, assuming a single source, a wide range of source regions is possible including the Korean Peninsula, the Sea of Japan (East Sea), and parts of China and Russia. Further confinement of the possible source location can be provided by atmospheric backtracking for the assumed sampling periods of the reported regional xenon measurements. New studies indicate a very weak seismic event at the DPRK test site on early 12 May 2010. Forward ATM for a pulse release caused by this event shows fairly good agreement with the observed radionuclide signature. Nevertheless, the underlying nuclear fission scenario remains quite unclear and speculative even if assuming a connection between the waveform and the radionuclide event.

  2. Tracking the MSL-SAM methane detection source location Through Mars Regional Atmospheric Modeling System (MRAMS)

    NASA Astrophysics Data System (ADS)

    Pla-García, Jorge

    2016-04-01

    1. Introduction: The putative in situ detection of methane by Sample Analysis at Mars (SAM) instrument suite on Curiosi-ty at Gale crater has garnered significant attention because of the potential implications for the presence of geological methane sources or indigenous Martian organisms [1, 2]. SAM reported detection of back-ground levels of atmospheric methane of mean value 0.69±0.25 parts per billion by volume (ppbv) at the 95% confidence interval (CI). Additionally, in four sequential measurements spanning a 60-sol period, SAM observed elevated levels of methane of 7.2±2.1 ppbv (95% CI), implying that Mars is episodically producing methane from an additional unknown source. There are many major unresolved questions regard-ing this detection: 1) What are the potential sources of the methane release? 2) What causes the rapid decrease in concentration? and 3) Where is the re-lease location? 4) How spatially extensive is the re-lease? 5) For how long is CH4 released? Regarding the first question, the source of methane, is so far not identified. It could be related with geo-logical process like methane release from clathrates [3], serpentinisation [4] and volcanism [5]; or due to biological activity from methanogenesis [6]. To answer the second question, the rapid decrease in concentration, it is important to note that the photo-chemical lifetime of methane is of order 100 years, much longer than the atmospheric mixing time scale, and thus the gas should tend to be well mixed except near a source or shortly after an episodic release. The observed spike of 7 ppb from the background of <1 ppb, and then the rapid return to the background lev-el could be due to a sink (destruction) or due to at-mospheric mixing. A wind mediated erosion process of ordinary quartz crystals was proposed to produce activated quartz grains, which sequester methane by forming covalent Si-C bonds. If this process is op-erational on Mars today, which some recent prelimi-nary studies on

  3. DETECTION AND IDENTIFICATION OF 'GIARDIA' CYSTS USING IMMUNOFLUORESCENCE AND PHASE CONTRAST MICROSCOPY

    EPA Science Inventory

    Detection and identification of Giardia cysts in water samples has been improved by the development of an immunofluorescent method that specifically stains Giardia cysts bright green and allows their easy detection against a black background. The report discusses aspects of the m...

  4. Radio Frequency Identification Queuing & Geo-Location (RAQGEO): A spatial solution to inventory management at XYZ Logistics, Inc

    NASA Astrophysics Data System (ADS)

    Griffiths, Bradley Joseph

    New supply chain management methods using radio frequency identification (RFID) and global positioning system (GPS) technology are quickly being adopted by companies as various inventory management benefits are being realized. For example, companies such as Nippon Yusen Kaisha (NYK) Logistics use the technology coupled with geospatial support systems for distributors to quickly find and manage freight containers. Traditional supply chain management methods require pen-to-paper reporting, searching inventory on foot, and human data entry. Some companies that prioritize supply chain management have not adopted the new technology, because they may feel that their traditional methods save the company expenses. This thesis serves as a pilot study that examines how information technology (IT) utilizing RFID and GPS technology can serve to increase workplace productivity, decrease human labor associated with inventorying, plus be used for spatial analysis by management. This pilot study represents the first attempt to couple RFID technology with Geographic Information Systems (GIS) in supply chain management efforts to analyze and locate mobile assets by exploring costs and benefits of implementation plus how the technology can be employed. This pilot study identified a candidate to implement a new inventory management method as XYZ Logistics, Inc. XYZ Logistics, Inc. is a fictitious company but represents a factual corporation. The name has been changed to provide the company with anonymity and to not disclose confidential business information. XYZ Logistics, Inc., is a nation-wide company that specializes in providing space solutions for customers including portable offices, storage containers, and customizable buildings.

  5. An optical sensor for detecting the contact location of a gas-liquid interface on a body

    NASA Astrophysics Data System (ADS)

    Belden, Jesse; Jandron, Michael

    2014-08-01

    An optical sensor for detecting the dynamic contact location of a gas-liquid interface along the length of a body is described. The sensor is developed in the context of applications to supercavitating bodies requiring measurement of the dynamic cavity contact location; however, the sensing method is extendable to other applications as well. The optical principle of total internal reflection is exploited to detect changes in refractive index of the medium contacting the body at discrete locations along its length. The derived theoretical operation of the sensor predicts a signal attenuation of 18 dB when a sensed location changes from air-contacting to water-contacting. Theory also shows that spatial resolution (d) scales linearly with sensor length (Ls) and a resolution of 0.01Ls can be achieved. A prototype sensor is constructed from simple components and response characteristics are quantified for different ambient light conditions as well as partial wetting states. Three methods of sensor calibration are described and a signal processing framework is developed that allows for robust detection of the gas-liquid contact location. In a tank draining experiment, the prototype sensor resolves the water level with accuracy limited only by the spatial resolution, which is constrained by the experimental setup. A more representative experiment is performed in which the prototype sensor accurately measures the dynamic contact location of a gas cavity on a water tunnel wall.

  6. An optical sensor for detecting the contact location of a gas-liquid interface on a body.

    PubMed

    Belden, Jesse; Jandron, Michael

    2014-08-01

    An optical sensor for detecting the dynamic contact location of a gas-liquid interface along the length of a body is described. The sensor is developed in the context of applications to supercavitating bodies requiring measurement of the dynamic cavity contact location; however, the sensing method is extendable to other applications as well. The optical principle of total internal reflection is exploited to detect changes in refractive index of the medium contacting the body at discrete locations along its length. The derived theoretical operation of the sensor predicts a signal attenuation of 18 dB when a sensed location changes from air-contacting to water-contacting. Theory also shows that spatial resolution (d) scales linearly with sensor length (L(s)) and a resolution of 0.01L(s) can be achieved. A prototype sensor is constructed from simple components and response characteristics are quantified for different ambient light conditions as well as partial wetting states. Three methods of sensor calibration are described and a signal processing framework is developed that allows for robust detection of the gas-liquid contact location. In a tank draining experiment, the prototype sensor resolves the water level with accuracy limited only by the spatial resolution, which is constrained by the experimental setup. A more representative experiment is performed in which the prototype sensor accurately measures the dynamic contact location of a gas cavity on a water tunnel wall. PMID:25173325

  7. Tracking the MSL-SAM methane detection source location Through Mars Regional Atmospheric Modeling System (MRAMS)

    NASA Astrophysics Data System (ADS)

    Pla-García, Jorge

    2016-04-01

    1. Introduction: The putative in situ detection of methane by Sample Analysis at Mars (SAM) instrument suite on Curiosi-ty at Gale crater has garnered significant attention because of the potential implications for the presence of geological methane sources or indigenous Martian organisms [1, 2]. SAM reported detection of back-ground levels of atmospheric methane of mean value 0.69±0.25 parts per billion by volume (ppbv) at the 95% confidence interval (CI). Additionally, in four sequential measurements spanning a 60-sol period, SAM observed elevated levels of methane of 7.2±2.1 ppbv (95% CI), implying that Mars is episodically producing methane from an additional unknown source. There are many major unresolved questions regard-ing this detection: 1) What are the potential sources of the methane release? 2) What causes the rapid decrease in concentration? and 3) Where is the re-lease location? 4) How spatially extensive is the re-lease? 5) For how long is CH4 released? Regarding the first question, the source of methane, is so far not identified. It could be related with geo-logical process like methane release from clathrates [3], serpentinisation [4] and volcanism [5]; or due to biological activity from methanogenesis [6]. To answer the second question, the rapid decrease in concentration, it is important to note that the photo-chemical lifetime of methane is of order 100 years, much longer than the atmospheric mixing time scale, and thus the gas should tend to be well mixed except near a source or shortly after an episodic release. The observed spike of 7 ppb from the background of <1 ppb, and then the rapid return to the background lev-el could be due to a sink (destruction) or due to at-mospheric mixing. A wind mediated erosion process of ordinary quartz crystals was proposed to produce activated quartz grains, which sequester methane by forming covalent Si-C bonds. If this process is op-erational on Mars today, which some recent prelimi-nary studies on

  8. Molecular identification of Ehrlichia species and host bloodmeal source in Amblyomma americanum L. from two locations in Tennessee, United States.

    PubMed

    Harmon, Jessica R; Scott, M Cathy; Baker, Ellen M; Jones, Carl J; Hickling, Graham J

    2015-04-01

    The current status of tick-borne diseases in the southeastern United States is challenging to define due to emerging pathogens, uncertain tick/host relationships, and changing disease case definitions. A golf-oriented retirement community on the Cumberland Plateau in Tennessee experienced an ehrlichiosis outbreak in 1993, prompting efforts to reduce the local tick population using '4-Poster' acaricide devices targeting white-tailed deer (Odocoileus virginianus). In 2009, the prevalence of Ehrlichia spp. in questing ticks was surveyed in the area and compared to a Tennessee state park where acaricide had not been applied. The range of wildlife hosts that immature Amblyomma americanum fed upon and the role that these hosts may play in pathogen dynamics were investigated using a reverse line blot (RLB) bloodmeal analysis technique. Amblyomma americanum was by far the most common tick species in both study areas (>99% of ticks collected). Of 303 adult and nymphal A. americanum tested at the retirement community, six were positive for Ehrlichia chaffeensis (2.0%), 16 were positive for E. ewingii (5.3%), and six were positive for Panola Mountain Ehrlichia (2.0%). This is the first confirmation of Panola Mountain Ehrlichia in A. americanum from the state of Tennessee. The 9.3% prevalence of Ehrlichia spp. in ticks from the retirement community was similar to that detected at the state park site (5.5%), suggesting that the 4-Poster treatment had not been sufficient to reduce Ehrlichia spp. cycling in the tick population. At both study sites, A. americanum fed on a wide range of mammal and bird species, with a minority of detectable bloodmeals coming from deer. Of the Ehrlichia-infected nymphs with positive bloodmeal identification, none fed on deer, indicating that multiple vertebrate species are contributing to sylvatic maintenance of Ehrlichia spp. at these sites. This highlights the difficulty of attempting to reduce the risk of tick-borne disease through host

  9. 46 CFR 108.409 - Location and spacing of tubing in pneumatic fire detection system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.409 Location... effectiveness of the tubing; and (3) Damage to the tubing, is unlikely to occur if it is not protected. (b)...

  10. Methods for detection, identification and specification of listerias

    DOEpatents

    Bochner, Barry

    1992-01-01

    The present invention relates generally to differential carbon source metabolism in the genus Listeria, metabolic, biochemical, immunological and genetic procedures to measure said differential carbon source metabolism and the use of these produces to detect, isolate and/or distinguish species of the genus Listeria as well as detect, isolate and/or distinguish strains of species of Listeria. The present invention also contemplates test kits and enrichment media to facilitate these procedures.

  11. Method of detection, classification, and identification of objects employing acoustic signal analysis

    NASA Astrophysics Data System (ADS)

    Orzanowski, Tomasz; Madura, Henryk; Sosnowski, Tomasz; Chmielewski, Krzysztof

    2008-10-01

    The methods of detection and identification of objects based on acoustic signal analysis are used in many applications, e.g., alarm systems, military battlefield reconnaissance systems, intelligent ammunition, and others. The construction of technical objects such as vehicle or helicopter gives some possibilities to identify them on the basis of acoustic signals generated by those objects. In this paper a method of automatic detection, classification and identification of military vehicles and helicopters using a digital analysis of acoustic signals is presented. The method offers a relatively high probability of object detection in attendance of other disturbing acoustic signals. Moreover, it provides low probability of false classification and identification of object. The application of this method to acoustic sensor for the anti-helicopter mine is also presented.

  12. FIELD DEMONSTRATION OF INNOVATIVE LEAK DETECTION/LOCATION TECHNOLOGIES COUPLED WITH WALL-THICKNESS SCREENING FOR WATER MAINS

    EPA Science Inventory

    The U.S. Environmental Protection Agency sponsored a large-scale field demonstration of innovative leak detection/location and condition assessment technologies on a 76-year old, 2,500-ft long, cement-lined, 24-in. cast iron water main in Louisville, KY from July through Septembe...

  13. Field Demonstration of Innovative Leak Detection/Location in Conjunction with Pipe Wall Thickness Testing for Water Mains

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) sponsored a large-scale field demonstration of innovative leak detection/location and condition assessment technologies on a 76-year old, 2,000-ft long, cement-lined, 24-in. cast iron water main in Louisville, KY from July through Se...

  14. Laser resonance ionization mass spectrometry for failed fuel detection and location in the experimental fast reactor JOYO

    NASA Astrophysics Data System (ADS)

    Harano, Hideki; Nose, Shoichi; Ito, Kazuhiro; Watanabe, Kenichi; Iguchi, Tetsuo

    2001-08-01

    For the improvement of the failed fuel detection and location technique base on a tagging gas method, we are developing a RIMS prototype system and plan to demonstrate its performance at the experimental fast reactor JOYO. We report the basic design of the system and preliminary experimental results for trace Xe isotopic analysis.

  15. Locating Sensors for Detecting Source-to-Target Patterns of Special Nuclear Material Smuggling: A Spatial Information Theoretic Approach

    PubMed Central

    Przybyla, Jay; Taylor, Jeffrey; Zhou, Xuesong

    2010-01-01

    In this paper, a spatial information-theoretic model is proposed to locate sensors for detecting source-to-target patterns of special nuclear material (SNM) smuggling. In order to ship the nuclear materials from a source location with SNM production to a target city, the smugglers must employ global and domestic logistics systems. This paper focuses on locating a limited set of fixed and mobile radiation sensors in a transportation network, with the intent to maximize the expected information gain and minimize the estimation error for the subsequent nuclear material detection stage. A Kalman filtering-based framework is adapted to assist the decision-maker in quantifying the network-wide information gain and SNM flow estimation accuracy. PMID:22163641

  16. Locating sensors for detecting source-to-target patterns of special nuclear material smuggling: a spatial information theoretic approach.

    PubMed

    Przybyla, Jay; Taylor, Jeffrey; Zhou, Xuesong

    2010-01-01

    In this paper, a spatial information-theoretic model is proposed to locate sensors for detecting source-to-target patterns of special nuclear material (SNM) smuggling. In order to ship the nuclear materials from a source location with SNM production to a target city, the smugglers must employ global and domestic logistics systems. This paper focuses on locating a limited set of fixed and mobile radiation sensors in a transportation network, with the intent to maximize the expected information gain and minimize the estimation error for the subsequent nuclear material detection stage. A Kalman filtering-based framework is adapted to assist the decision-maker in quantifying the network-wide information gain and SNM flow estimation accuracy. PMID:22163641

  17. Program plan: acoustic leak detection/location development at GE-ARSD

    SciTech Connect

    1980-02-01

    Provide the development and subsequent specification, design and testing of an acoustic leak protection system which will detect a leak within a LMFBR steam generator. The goal for this system is to be at least as rapid and no more expensive than the chemical leak detection system under development for the Clinch River Breeder Reactor Plant (CRBRP).

  18. An automatic system to detect and extract texts in medical images for de-identification

    NASA Astrophysics Data System (ADS)

    Zhu, Yingxuan; Singh, P. D.; Siddiqui, Khan; Gillam, Michael

    2010-03-01

    Recently, there is an increasing need to share medical images for research purpose. In order to respect and preserve patient privacy, most of the medical images are de-identified with protected health information (PHI) before research sharing. Since manual de-identification is time-consuming and tedious, so an automatic de-identification system is necessary and helpful for the doctors to remove text from medical images. A lot of papers have been written about algorithms of text detection and extraction, however, little has been applied to de-identification of medical images. Since the de-identification system is designed for end-users, it should be effective, accurate and fast. This paper proposes an automatic system to detect and extract text from medical images for de-identification purposes, while keeping the anatomic structures intact. First, considering the text have a remarkable contrast with the background, a region variance based algorithm is used to detect the text regions. In post processing, geometric constraints are applied to the detected text regions to eliminate over-segmentation, e.g., lines and anatomic structures. After that, a region based level set method is used to extract text from the detected text regions. A GUI for the prototype application of the text detection and extraction system is implemented, which shows that our method can detect most of the text in the images. Experimental results validate that our method can detect and extract text in medical images with a 99% recall rate. Future research of this system includes algorithm improvement, performance evaluation, and computation optimization.

  19. Immunostaining: detection of signaling protein location in tissues, cells and subcellular compartments.

    PubMed

    Maity, Biswanath; Sheff, David; Fisher, Rory A

    2013-01-01

    The purpose of this protocol is to describe various methodologies used to detect the distribution and localization of specific proteins within individual cells or tissues using immunostaining, defined as the use of specific antibodies to detect a single target protein. Detection of antigens in cultured cells is referred to as immunocytochemistry, whereas their detection in tissues is generally referred to as immunohistochemistry. Both methods involve exposure of fixed cells or tissues to primary antibodies directed against one or more proteins of interest. Bound antibodies are then detected using commercially available secondary antibodies directed against the invariant portion of the primary antibody. Two primary methodologies exist to visualize antigen-antibody complexes: immunofluorescence using fluorophore-conjugated antibodies or chemiluminescence using antibodies coupled to horse-radish peroxidase. This protocol details the steps involved and appropriate use of both methodologies. Immunostaining is used in cell biology to study differential protein expression, localization and distribution at the tissue, cellular, and subcellular level. PMID:23317899

  20. Detection and identification of protein citrullination in complex biological systems.

    PubMed

    Clancy, Kathleen W; Weerapana, Eranthie; Thompson, Paul R

    2016-02-01

    Protein citrullination is a post-translational modification of arginine that is catalyzed by the Protein Arginine Deiminase (PAD) family of enzymes. Aberrantly increased citrullination is associated with a host of inflammatory diseases and cancer and PAD inhibitors have shown remarkable efficacy in a range of diseases including rheumatoid arthritis, lupus, atherosclerosis, and ulcerative colitis. In rheumatoid arthritis, citrullinated proteins serve as key antigens for rheumatoid arthritis-associated autoantibodies. These data suggest that citrullinated proteins may serve more generally as biomarkers of specific disease states, however, the identification of citrullinated residues remains challenging due to the small 1Da mass change that occurs upon citrullination. Herein, we highlight the available techniques to identify citrullinated proteins/residues focusing on advanced MS techniques as well as chemical derivatization strategies that are currently being employed to identify citrullinated proteins as well as the specific residues modified within those proteins. PMID:26517730

  1. a Topic Modeling Based Representation to Detect Tweet Locations. Example of the Event "je Suis Charlie"

    NASA Astrophysics Data System (ADS)

    Morchid, M.; Josselin, D.; Portilla, Y.; Dufour, R.; Altman, E.; Linarès, G.

    2015-09-01

    Social Networks became a major actor in information propagation. Using the Twitter popular platform, mobile users post or relay messages from different locations. The tweet content, meaning and location, show how an event-such as the bursty one "JeSuisCharlie", happened in France in January 2015, is comprehended in different countries. This research aims at clustering the tweets according to the co-occurrence of their terms, including the country, and forecasting the probable country of a non-located tweet, knowing its content. First, we present the process of collecting a large quantity of data from the Twitter website. We finally have a set of 2,189 located tweets about "Charlie", from the 7th to the 14th of January. We describe an original method adapted from the Author-Topic (AT) model based on the Latent Dirichlet Allocation (LDA) method. We define an homogeneous space containing both lexical content (words) and spatial information (country). During a training process on a part of the sample, we provide a set of clusters (topics) based on statistical relations between lexical and spatial terms. During a clustering task, we evaluate the method effectiveness on the rest of the sample that reaches up to 95% of good assignment. It shows that our model is pertinent to foresee tweet location after a learning process.

  2. Forgery Detection and Value Identification of Euro Banknotes

    PubMed Central

    Bruna, Arcangelo; Farinella, Giovanni Maria; Guarnera, Giuseppe Claudio; Battiato, Sebastiano

    2013-01-01

    This paper describes both hardware and software components to detect counterfeits of Euro banknotes. The proposed system is also able to recognize the banknote values. Differently than other state-of-the-art methods, the proposed approach makes use of banknote images acquired with a near infrared camera to perform recognition and authentication. This allows one to build a system that can effectively deal with real forgeries, which are usually not detectable with visible light. The hardware does not use any mechanical parts, so the overall system is low-cost. The proposed solution is reliable for ambient light and banknote positioning. Users should simply lean the banknote to be analyzed on a flat glass, and the system detects forgery, as well as recognizes the banknote value. The effectiveness of the proposed solution has been properly tested on a dataset composed by genuine and fake Euro banknotes provided by Italy's central bank. PMID:23429514

  3. Forgery detection and value identification of Euro banknotes.

    PubMed

    Bruna, Arcangelo; Farinella, Giovanni Maria; Guarnera, Giuseppe Claudio; Battiato, Sebastiano

    2013-01-01

    This paper describes both hardware and software components to detect counterfeits of Euro banknotes. The proposed system is also able to recognize the banknote values. Differently than other state-of-the-art methods, the proposed approach makes use of banknote images acquired with a near infrared camera to perform recognition and authentication. This allows one to build a system that can effectively deal with real forgeries, which are usually not detectable with visible light. The hardware does not use any mechanical parts, so the overall system is low-cost. The proposed solution is reliable for ambient light and banknote positioning. Users should simply lean the banknote to be analyzed on a flat glass, and the system detects forgery, as well as recognizes the banknote value. The effectiveness of the proposed solution has been properly tested on a dataset composed by genuine and fake Euro banknotes provided by Italy's central bank.  PMID:23429514

  4. Remote sensing techniques for the detection of soil erosion and the identification of soil conservation practices

    NASA Technical Reports Server (NTRS)

    Pelletier, R. E.; Griffin, R. H.

    1985-01-01

    The following paper is a summary of a number of techniques initiated under the AgRISTARS (Agriculture and Resources Inventory Surveys Through Aerospace Remote Sensing) project for the detection of soil degradation caused by water erosion and the identification of soil conservation practices for resource inventories. Discussed are methods to utilize a geographic information system to determine potential soil erosion through a USLE (Universal Soil Loss Equation) model; application of the Kauth-Thomas Transform to detect present erosional status; and the identification of conservation practices through visual interpretation and a variety of enhancement procedures applied to digital remotely sensed data.

  5. The use of waveform cross correlation at a three-component seismic array for detection, location, and magnitude estimation

    NASA Astrophysics Data System (ADS)

    Kitov, Ivan; Sanina, Irina

    2016-04-01

    Using the waveform cross-correlation technique, we have re-estimated relative locations and magnitudes of 200 events detected by an array consisting of seven 3-C sensors. All these events were quarry blasts conducted at several local/regional mines, which were detected and identified in the course of regional seismotectonic monitoring. From all detected signals we selected those having the highest quality and created a set of three-component templates for further cross correlation study. By changing the length of correlation window and the frequency band of the templates we selected optimal parameters for robust estimates of cross correlation coefficients and relative amplitudes/magnitudes of all signals. The relative locations and magnitude estimates obtained by cross correlation are compared to those in the catalog created in standard interactive analysis.

  6. Ultrasonic detection and identification of fabrication defects in composites

    NASA Technical Reports Server (NTRS)

    Long, Edward R., Jr.; Kullerd, Susan M.; Johnston, Patrick H.; Madaras, Eric I.

    1991-01-01

    Methods for deliberate fabrication of porosity into carbon/epoxy composite panels and the influence of three-dimensional stitching on the detection of porosity were investigated. Two methods of introducing porosity were investigated. Porosity was simulated by inclusion of glass microspheres, and a more realistic form of porosity was introduced by using low pressure during consolidation. The panels were ultrasonically scanned and the frequency slope of the ultrasonic attenuation coefficient was used to evaluate the two forms of porosity. The influence of stitching on the detection of porosity was studied using panels which were resin transfer molded from stitched plies of knitted carbon fabric and epoxy resin.

  7. Explosives detection and identification using surface plasmon-coupled emission

    NASA Astrophysics Data System (ADS)

    Ja, Shiou-Jyh

    2012-06-01

    To fight against the explosives-related threats in defense and homeland security applications, a smarter sensing device that not only detects but differentiates multiple true threats from false positives caused by environmental interferents is essential. A new optical detection system is proposed to address these issues by using the temporal and spectroscopic information generated by the surface plasmon coupling emission (SPCE) effect. Innovative SPCE optics have been designed using Zemax software to project the fluorescence signal into clear "rainbow rings" on a CCD with subnanometer wavelength resolution. The spectroscopic change of the fluorescence signal and the time history of such changes due to the presence of a certain explosive analyte are unique and can be used to identify explosives. Thanks to high optical efficiency, reporter depositions as small as 160-μm in diameter can generate a sufficient signal, allowing a dense array of different reporters to be interrogated with wavelength multiplexing and detect a wide range of explosives. We have demonstrated detection and classification of explosives, such as TNT, NT, NM, RDX, PETN, and AN, with two sensing materials in a prototype.

  8. Detection and identification of wild yeasts in lager breweries.

    PubMed

    van der Aa Kühle, A; Jespersen, L

    1998-09-01

    Wild yeasts were detected in 41 out of 101 brewery yeast samples investigated using six different selective principles. Malt extract, yeast extract, glucose, peptone (MYGP) agar supplemented with 195 ppm CuSO4 was found to be the most effective selective principle, detecting wild yeasts in 80% of the contaminated samples. Both Saccharomyces and non-Saccharomyces wild yeasts were detected on this medium. Lysine medium, crystal violet medium and incubation of non-selective media at 37 degrees C detected wild yeasts in 46-56% of the contaminated samples. On using actidione medium, only 20% of the wild yeasts were detected. The combined use of MYGP supplemented with 195 ppm CuSO4 and one of the other selective principles did not improve the recovery of the wild yeasts. The wild yeasts found consisted of Saccharomyces cerevisiae (57%), Pichia spp. (28%) and Candida spp. (15%). Using the API ID 32 C kit, 35 different assimilation profiles were obtained for the 124 wild yeast isolates investigated. All isolates were capable of glucose assimilation, whereas only 79% of the isolates assimilated saccharose, 75% maltose, 70% galactose, 65% raffinose and 65% lactate. Lactose, inositol, rhamnose and glucuronate were not assimilated by any of the isolates. The differences in assimilation pattern did not reflect any differences in recovery by the selective principles investigated. The majority of the wild yeast isolates investigated were capable of growth in wort and beer, indicating their possible role as spoilage organisms. The Sacch. cerevisiae isolates were found to be the most hazardous, with some isolates being capable of extensive growth in bottled beer within seventeen days at ambient temperature. PMID:9801196

  9. Identification and detection of anomalies through SSME data analysis

    NASA Technical Reports Server (NTRS)

    Pereira, Lisa; Ali, Moonis

    1990-01-01

    The goal of the ongoing research described in this paper is to analyze real-time ground test data in order to identify patterns associated with the anomalous engine behavior, and on the basis of this analysis to develop an expert system which detects anomalous engine behavior in the early stages of fault development. A prototype of the expert system has been developed and tested on the high frequency data of two SSME tests, namely Test #901-0516 and Test #904-044. The comparison of our results with the post-test analyses indicates that the expert system detected the presence of the anomalies in a significantly early stage of fault development.

  10. Novel method for rapid identification of Nocardia species by detection of preformed enzymes.

    PubMed Central

    Biehle, J R; Cavalieri, S J; Felland, T; Zimmer, B L

    1996-01-01

    The purpose of the present study was to devise a method for the identification of Nocardia species that is more technically simple, accurate, and rapid than current standard methods of identification. We focused on a commercial bacteria identification system that contained chromogenic test substrates. Two MicroScan products were selected for use in the study on the basis of their content of chromogenic and conventional substrates. They were the Rapid Anaerobe Identification and the HNID panels. A total of 85 strains of Nocardia representing five species were used in the study. All isolates were identified as Nocardia species by the use of standard methods. The beta-naphthylamide-labeled substrate L-pyrrolidonyl-beta-naphthylamide (PYR), the nitrophenyl-labeled substrate p-nitrophenyl-alpha-D-mannopyranoside (MNP), and indoxyl phosphate were found to be useful for identification purposes. N. farcinica and N. nova were the only species positive for PYR, whereas N. brasiliensis was the only species that hydrolyzed MNP. All strains of N. brasiliensis, N. otitidiscavarium, and N. farcinica were positive for indoxyl phosphate, whereas strains of N. nova and N. asteroides sensu stricto were always negative. Agreement between the standard and enzymatic identification methods was 100%. In summary, detection of preformed enzymes appears to be a simple and reproducible method for the identification of Nocardia spp. PMID:8748283

  11. Pyrosequencing as a tool for rapid fish species identification and commercial fraud detection.

    PubMed

    De Battisti, Cristian; Marciano, Sabrina; Magnabosco, Cristian; Busato, Sara; Arcangeli, Giuseppe; Cattoli, Giovanni

    2014-01-01

    The increased consumption of fish products, as well as the occurrence of exotic fish species in the Mediterranean Sea and in the fish market, has increased the risk of commercial fraud. Furthermore, the great amount of processed seafood products has greatly limited the application of classic identification systems. DNA-based identification allows a clear and unambiguous detection of polymorphisms between species, permitting differentiation and identification of both commercial fraud and introduction of species with potential toxic effects on humans. In this study, a novel DNA-based approach for differentiation of fish species based on pyrosequencing technology has been developed. Raw and processed fish products were tested, and up to 25 species of fish belonging to Clupeiformes and Pleuronectiformes groups were uniquely and rapidly identified. The proper identification based on short and unique genetic sequence signatures demonstrates that this approach is promising and cost-effective for large-scale surveys. PMID:24350776

  12. Detection and identification of Phoma pathogens of potato.

    PubMed

    A'Hara, Denise

    2015-01-01

    Phoma foveata, Phoma exigua var. exigua, and Phoma eupyrena are fungal pathogens of potato, causing gangrene or pit rot symptoms in tubers, and they are responsible for significant crop losses. Various techniques are available to identify these pathogens in the laboratory. A multiplex Plexor(®) real-time PCR method which can detect and identify these pathogens in a single reaction will be presented. PMID:25981243

  13. Neutron Interrogation System For Underwater Threat Detection And Identification

    SciTech Connect

    Barzilov, Alexander P.; Novikov, Ivan S.; Womble, Phil C.

    2009-03-10

    Wartime and terrorist activities, training and munitions testing, dumping and accidents have generated significant munitions contamination in the coastal and inland waters in the United States and abroad. Although current methods provide information about the existence of the anomaly (for instance, metal objects) in the sea bottom, they fail to identify the nature of the found objects. Field experience indicates that often in excess of 90% of objects excavated during the course of munitions clean up are found to be non-hazardous items (false alarm). The technology to detect and identify waterborne or underwater threats is also vital for protection of critical infrastructures (ports, dams, locks, refineries, and LNG/LPG). We are proposing a compact neutron interrogation system, which will be used to confirm possible threats by determining the chemical composition of the suspicious underwater object. The system consists of an electronic d-T 14-MeV neutron generator, a gamma detector to detect the gamma signal from the irradiated object and a data acquisition system. The detected signal then is analyzed to quantify the chemical elements of interest and to identify explosives or chemical warfare agents.

  14. Neutron Interrogation System For Underwater Threat Detection And Identification

    NASA Astrophysics Data System (ADS)

    Barzilov, Alexander P.; Novikov, Ivan S.; Womble, Phil C.

    2009-03-01

    Wartime and terrorist activities, training and munitions testing, dumping and accidents have generated significant munitions contamination in the coastal and inland waters in the United States and abroad. Although current methods provide information about the existence of the anomaly (for instance, metal objects) in the sea bottom, they fail to identify the nature of the found objects. Field experience indicates that often in excess of 90% of objects excavated during the course of munitions clean up are found to be non-hazardous items (false alarm). The technology to detect and identify waterborne or underwater threats is also vital for protection of critical infrastructures (ports, dams, locks, refineries, and LNG/LPG). We are proposing a compact neutron interrogation system, which will be used to confirm possible threats by determining the chemical composition of the suspicious underwater object. The system consists of an electronic d-T 14-MeV neutron generator, a gamma detector to detect the gamma signal from the irradiated object and a data acquisition system. The detected signal then is analyzed to quantify the chemical elements of interest and to identify explosives or chemical warfare agents.

  15. A Blind OFDM Detection and Identification Method Based on Cyclostationarity for Cognitive Radio Application

    NASA Astrophysics Data System (ADS)

    Han, Ning; Sohn, Sung Hwan; Kim, Jae Moung

    The key issue in cognitive radio is to design a reliable spectrum sensing method that is able to detect the signal in the target channel as well as to recognize its type. In this paper, focusing on classifying different orthogonal frequency-division multiplexing (OFDM) signals, we propose a two-step detection and identification approach based on the analysis of the cyclic autocorrelation function. The key parameters to separate different OFDM signals are the subcarrier spacing and symbol duration. A symmetric peak detection method is adopted in the first step, while a pulse detection method is used to determine the symbol duration. Simulations validate the proposed method.

  16. GPS location history data mining and anomalous detection: the scenario of bar-headed geese migration

    USGS Publications Warehouse

    Luo, Ze; Xiong, Yan; Yan, Baoping; Prosser, Diann J.; Takekawa, John Y.

    2013-01-01

    It is important to discover common movement sequences and uncommon behaviors during the migration of wild birds. In this paper, we propose a new approach to analyze the GPS location history data of migratory birds. The stopover sites are first extracted from the location history data of birds, and their movement sequences are generated automatically. Then, a consistency calculation method is introduced for calculating the movement sequence consistency degrees among the birds. The common movement sequences and uncommon behaviors can be recognized on the basis of consistency. We conducted experiments on the data collected from bar-headed geese captured in the Qinghai Lake region. The experiment results indicate the correctness of our approach.

  17. Identification of volatiles by headspace gas chromatography with simultaneous flame ionization and mass spectrometric detection.

    PubMed

    Tiscione, Nicholas B; Yeatman, Dustin Tate; Shan, Xiaoqin; Kahl, Joseph H

    2013-10-01

    Volatiles are frequently abused as inhalants. The methods used for identification are generally nonspecific if analyzed concurrently with ethanol or require an additional analytical procedure that employs mass spectrometry. A previously published technique utilizing a capillary flow technology splitter to simultaneously quantitate and confirm ethyl alcohol by flame ionization and mass spectrometric detection after headspace sampling and gas chromatographic separation was evaluated for the detection of inhalants. Methanol, isopropanol, acetone, acetaldehyde, toluene, methyl ethyl ketone, isoamyl alcohol, isobutyl alcohol, n-butyl alcohol, 1,1-difluoroethane, 1,1,1-trifluoroethane, 1,1,1,2-tetrafluoroethane (Norflurane, HFC-134a), chloroethane, trichlorofluoromethane (Freon®-11), dichlorodifluoromethane (Freon®-12), dichlorofluoromethane (Freon®-21), chlorodifluoromethane (Freon®-22) and 1,2-dichlorotetrafluoroethane (Freon®-114) were validated for qualitative identification by this method. The validation for qualitative identification included evaluation of matrix effects, sensitivity, carryover, specificity, repeatability and ruggedness/robustness. PMID:24005155

  18. Analytical techniques for the detection and identification of chemical warfare materials from environmental samples

    SciTech Connect

    Beaudry, W.T.; Weimaster, J.F.

    1995-06-01

    The detection and identification of chemical warfare (CW) material in diverse and complex matrices has become increasingly important to support the environmental clean-up of military and industrial sites that were historically used in the research, production, use, storage and/or demilitarization of chemical weapons. Reliable and defensible identification of hazardous materials (HM) is necessary to comply with the increasingly stringent regulations imposed by local, state, and federal agencies which govern handling, treatment, storage, and disposal of HM. In addition, before sites can be reutilized, existing HM must be properly identified so that the proper methods of removal, treatment and disposal can be determined. An overview of sample preparation and analytical techniques for the detection and identification of CW materials is presented in this paper.

  19. Microwave detection system for locating hemorrhage sites within the cranium and other regions

    NASA Astrophysics Data System (ADS)

    Riechers, Ronald G., Sr.; Pasala, Krishna M.; Ling, Geoffrey S. F.

    1998-05-01

    A novel method for location and characterization of discontinuities in biological system is presented. The method uses electromagnetic waves in the microwave and RF region and a modified algorithm previously used for the estimation of the angle of arrival of radar signals. Results are presented for the case of a skull section backed by porcine brain and the same section backed by a layer of blood backed by porcine brain.

  20. Detection, location, and quantification of structural damage by neural-net-processed moiré profilometry

    NASA Astrophysics Data System (ADS)

    Grossman, Barry G.; Gonzalez, Frank S.; Blatt, Joel H.; Hooker, Jeffery A.

    1992-03-01

    The development of efficient high speed techniques to recognize, locate, and quantify damage is vitally important for successful automated inspection systems such as ones used for the inspection of undersea pipelines. Two critical problems must be solved to achieve these goals: the reduction of nonuseful information present in the video image and automatic recognition and quantification of extent and location of damage. Artificial neural network processed moire profilometry appears to be a promising technique to accomplish this. Real time video moire techniques have been developed which clearly distinguish damaged and undamaged areas on structures, thus reducing the amount of extraneous information input into an inspection system. Artificial neural networks have demonstrated advantages for image processing, since they can learn the desired response to a given input and are inherently fast when implemented in hardware due to their parallel computing architecture. Video moire images of pipes with dents of different depths were used to train a neural network, with the desired output being the location and severity of the damage. The system was then successfully tested with a second series of moire images. The techniques employed and the results obtained are discussed.

  1. Detection and location of pipe damage by artificial-neural-net-processed moire error maps

    NASA Astrophysics Data System (ADS)

    Grossman, Barry G.; Gonzalez, Frank S.; Blatt, Joel H.; Cahall, Scott C.

    1993-05-01

    A novel automated inspection technique to recognize, locate, and quantify damage is developed. This technique is based on two already existing technologies: video moire metrology and artificial neural networks. Contour maps generated by video moire techniques provide an accurate description of surface structure that can then be automated by means of neutral networks. Artificial neural networks offer an attractive solution to the automated interpretation problem because they can generalize from the learned samples and provide an intelligent response for similar patterns having missing or noisy data. Two dimensional video moire images of pipes with dents of different depths, at several rotations, were used to train a multilayer feedforward neural network by the backpropagation algorithm. The backpropagation network is trained to recognize and classify the video moire images according to the dent's depth. Once trained, the network outputs give an indication of the probability that a dent has been found, a depth estimate, and the axial location of the center of the dent. This inspection technique has been demonstrated to be a powerful tool for the automatic location and quantification of structural damage, as illustrated using dented pipes.

  2. Using unmanned aerial vehicle-borne magnetic sensors to detect and locate improvised explosive devices and unexploded ordnance

    NASA Astrophysics Data System (ADS)

    Trammell, Hoke S., III; Perry, Alexander R.; Kumar, Sankaran; Czipott, Peter V.; Whitecotton, Brian R.; McManus, Tobin J.; Walsh, David O.

    2005-05-01

    Magnetic sensors configured as a tensor magnetic gradiometer not only detect magnetic targets, but also determine their location and their magnetic moment. Magnetic moment information can be used to characterize and classify objects. Unexploded ordnance (UXO) and thus many types of improvised explosive device (IED) contain steel, and thus can be detected magnetically. Suitable unmanned aerial vehicle (UAV) platforms, both gliders and powered craft, can enable coverage of a search area much more rapidly than surveys using, for instance, total-field magnetometers. We present data from gradiometer passes over different shells using a gradiometer mounted on a moving cart. We also provide detection range and speed estimates for aerial detection by a UAV.

  3. Gas chromatographic identification of Clostridium difficile and detection of cytotoxin from a modified selective medium.

    PubMed Central

    Levett, P N; Phillips, K D

    1985-01-01

    A modification of an existing selective medium for Clostridium difficile is described. Inclusion in the medium of DL nor-leucine and p-hydroxyphenylacetic acid enables identification of C difficile to be made directly from primary isolation plates by gas chromatographic detection of caproic acid and p-cresol. Plugs of agar withdrawn from the selective medium also allow the detection of cytotoxin production in vitro. PMID:3968212

  4. Colorimetric Detection and Identification of Natural and Artificial Sweeteners

    PubMed Central

    Musto, Christopher J.; Lim, Sung H.; Suslick, Kenneth S.

    2009-01-01

    A disposable, low-cost colorimetric sensor array has been created by pin-printing onto a hydrophilic membrane 16 chemically responsive nanoporous pigments made from indicators immobilized in an organically modified silane (ormosil). The array has been used to detect and identify 14 different natural and artificial sweeteners at millimolar concentrations as well as commonly used individual serving sweetener packets. The array has shown excellent reproducibility and long shelf-life and has been optimized to work in the biological pH regime. PMID:20337402

  5. Smart radio-frequency identification tag for diaper moisture detection

    PubMed Central

    Ziai, M.A.

    2015-01-01

    A passive smart tag is described that responds to dampness in diapers once a pre-defined threshold value is reached. A high-frequency (HF) system at 13.56 MHz is used as this allows operation through water or human tissues with less absorption that would occur for an ultra-HF signal. A circular spiral coil and swelling substrate facilitate a reaction to dampness that can be detected without contact to the diaper wearer. A prototype design is simulated and measured results are provided together with a demonstration of a tag integrated into a worn diaper. PMID:26609399

  6. Moving towards an integrated approach to molecular detection and identification of Toxoplasma gondii

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Development of simple, sensitive and rapid methods for detection and identification of Toxoplasma gondii is important for diagnosis and epidemiological studies of the zoonotic disease toxoplasmosis. In the past two decades, molecular methods based on a variety of markers have been developed, each wi...

  7. Detecting Answer Copying Using Alternate Test Forms and Seat Locations in Small-Scale Examinations

    ERIC Educational Resources Information Center

    van der Ark, L. Andries; Emons, Wilco H. M.; Sijtsma, Klaas

    2008-01-01

    Two types of answer-copying statistics for detecting copiers in small-scale examinations are proposed. One statistic identifies the "copier-source" pair, and the other in addition suggests who is copier and who is source. Both types of statistics can be used when the examination has alternate test forms. A simulation study shows that the…

  8. CT image quality evaluation for detection of signals with unknown location, size, contrast and shape using unsupervised methods

    NASA Astrophysics Data System (ADS)

    Pezeshk, Aria X.; Popescu, Lucretiu; Sahiner, Berkman

    2015-03-01

    The advent of new image reconstruction and image processing techniques for CT images has increased the need for robust objective image quality assessment methods. One of the most common quality assessment methods is the measurement of signal detectability for a known signal at a known location using supervised classification techniques. However, this method requires a large number of simulations or physical measurements, and its underlying assumptions may be considered clinically unrealistic. In this study we focus on objective assessment of image quality in terms of detection of a signal with unknown location, size, shape, and contrast. We explore several unsupervised saliency detection methods which assume no knowledge about the signal, along with a template matching technique which uses information about the signal's size and shape in the object domain, for simulated phantoms that have been reconstructed using filtered back projection (FBP) and iterative reconstruction algorithms (IRA). The performance of each of the image reconstruction algorithms is then measured using the area under the localization receiver operating characteristic curve (LROC) and exponential transformation of the free response operating characteristic curve (EFROC). Our results indicate that unsupervised saliency detection methods can be effectively used to determine image quality in terms of signal detectability for unknown signals given only a small number of sample images.

  9. A geometric approach to failure detection and identification in linear systems

    NASA Technical Reports Server (NTRS)

    Massoumnia, M. A.

    1986-01-01

    Using concepts of (C,A)-invariant and unobservability (complementary observability) subspaces, a geometric formulation of the failure detection and identification filter problem is stated. Using these geometric concepts, it is shown that it is possible to design a causal linear time-invariant processor that can be used to detect and uniquely identify a component failure in a linear time-invariant system, assuming: (1) The components can fail simultaneously, and (2) The components can fail only one at a time. In addition, a geometric formulation of Beard's failure detection filter problem is stated. This new formulation completely clarifies of output separability and mutual detectability introduced by Beard and also exploits the dual relationship between a restricted version of the failure detection and identification problem and the control decoupling problem. Moreover, the frequency domain interpretation of the results is used to relate the concepts of failure sensitive observers with the generalized parity relations introduced by Chow. This interpretation unifies the various failure detection and identification concepts and design procedures.

  10. Resequencing Pathogen Microarray (RPM) for prospective detection and identification of emergent pathogen strains and variants

    NASA Astrophysics Data System (ADS)

    Tibbetts, Clark; Lichanska, Agnieszka M.; Borsuk, Lisa A.; Weslowski, Brian; Morris, Leah M.; Lorence, Matthew C.; Schafer, Klaus O.; Campos, Joseph; Sene, Mohamadou; Myers, Christopher A.; Faix, Dennis; Blair, Patrick J.; Brown, Jason; Metzgar, David

    2010-04-01

    High-density resequencing microarrays support simultaneous detection and identification of multiple viral and bacterial pathogens. Because detection and identification using RPM is based upon multiple specimen-specific target pathogen gene sequences generated in the individual test, the test results enable both a differential diagnostic analysis and epidemiological tracking of detected pathogen strains and variants from one specimen to the next. The RPM assay enables detection and identification of pathogen sequences that share as little as 80% sequence similarity to prototype target gene sequences represented as detector tiles on the array. This capability enables the RPM to detect and identify previously unknown strains and variants of a detected pathogen, as in sentinel cases associated with an infectious disease outbreak. We illustrate this capability using assay results from testing influenza A virus vaccines configured with strains that were first defined years after the design of the RPM microarray. Results are also presented from RPM-Flu testing of three specimens independently confirmed to the positive for the 2009 Novel H1N1 outbreak strain of influenza virus.

  11. Molecular identification and detection of Eutypa lata in grapevine.

    PubMed

    Lardner, Richard; Stummer, Belinda E; Sosnowskip, Mark R; Scott, Eileen S

    2005-07-01

    Eutypa lata, the causal agent of Eutypa dieback of grapevines, is difficult to identify on the basis of colony morphology and is often out-competed by other fungi when isolated from wood. To facilitate diagnosis of the pathogen, we designed SCAR primers capable of amplifying DNA of E. lata and constructed a genomic DNA library from which DNA sequences specific to E. lata were identified and sequenced. SCAR primers were used to identify E. lata directly from culture without the requirement for DNA extraction or prolonged incubation periods and could also detect the pathogen in DNA isolated from grapevine wood. RFLP probes were used in slot-blot assays to detect the pathogen in DNA isolated from 1 yr old cane as well as from mature grapevine trunks. The markers developed in this study have the potential to be used as a research tool to gather information on the epidemiology of the disease and to assess the efficacy of potential control agents against E. lata. PMID:16121566

  12. Rocket engine failure detection using system identification techiques

    NASA Technical Reports Server (NTRS)

    Meyer, Claudia M.; Zakrajsek, June F.

    1990-01-01

    The theoretical foundation and application of two univariate failure detection algorithms to Space Shuttle Main Engine (SSME) test firing data is presented. Both algorithms were applied to data collected during steady state operation of the engine. One algorithm, the time series algorithm, is based on time series techniques and involves the computation of autoregressive models. Times series techniques have been previously applied to SSME data. The second algorithm is based on standard signal processing techniques. It consists of tracking the variations in the average signal power with time. The average signal power algorithm is a newly proposed SSME failure detection algorithm. Seven nominal test firings were used to develop failure indication thresholds for each algorithm. These thresholds were tested using four anomalous firings and one additional nominal firing. Both algorithms provided significantly earlier failure indication times than did the current redline limit system. Neither algorithm gave false failure indications for the nominal firing. The strengths and weaknesses of the two algorithms are discussed and compared. The average signal algorithm was found to have several advantages over the time series algorithm.

  13. Phase coherence adaptive processor for automatic signal detection and identification

    NASA Astrophysics Data System (ADS)

    Wagstaff, Ronald A.

    2006-05-01

    A continuously adapting acoustic signal processor with an automatic detection/decision aid is presented. Its purpose is to preserve the signals of tactical interest, and filter out other signals and noise. It utilizes single sensor or beamformed spectral data and transforms the signal and noise phase angles into "aligned phase angles" (APA). The APA increase the phase temporal coherence of signals and leave the noise incoherent. Coherence thresholds are set, which are representative of the type of source "threat vehicle" and the geographic area or volume in which it is operating. These thresholds separate signals, based on the "quality" of their APA coherence. An example is presented in which signals from a submerged source in the ocean are preserved, while clutter signals from ships and noise are entirely eliminated. Furthermore, the "signals of interest" were identified by the processor's automatic detection aid. Similar performance is expected for air and ground vehicles. The processor's equations are formulated in such a manner that they can be tuned to eliminate noise and exploit signal, based on the "quality" of their APA temporal coherence. The mathematical formulation for this processor is presented, including the method by which the processor continuously self-adapts. Results show nearly complete elimination of noise, with only the selected category of signals remaining, and accompanying enhancements in spectral and spatial resolution. In most cases, the concept of signal-to-noise ratio looses significance, and "adaptive automated /decision aid" is more relevant.

  14. Automated detection and location of microseismicity at Mount St. Helens with a large-N geophone array

    NASA Astrophysics Data System (ADS)

    Hansen, Steven M.; Schmandt, Brandon

    2015-09-01

    In the summer of 2014 a dense array of 904 geophones was deployed at Mount St. Helens along the road and trail system within 15 km distance of the summit crater. The array recorded continuous data for approximately 2 weeks and presents an unprecedented seismic observation of an active volcano. A reverse-time imaging method is applied to short-term-average over long-term-average time series data to automatically detect and locate microseismicity. These efforts resulted in an order of magnitude increase in earthquake detections over the normal monitoring operations of the Pacific Northwest Seismic Network. Earthquake locations resolve a narrow, ≤1 km wide, vertical lineament of seismicity which extends from the surface to 4 km depth directly beneath the summit crater. This feature is interpreted as a fracture network that acts as a conduit connecting an underlying magma chamber to the surface.

  15. Polarimetric radars for detection and identification of marine oil pollution

    NASA Astrophysics Data System (ADS)

    Sineva, Anastasia

    2015-04-01

    The roughness of the sea surface that is responsible for the backscatter is due to the small gravitational waves generated by winds. Oil slicks suppress the waves and backscatter and manifest itself on radar images as dark spots. However, the other processes could be shown on the radar images similarly: upwelling, atmospheric convection, internal waves, calm area, etc. All of them may be falsely interpreted as oil pollution. Polarization SAR data carry additional information directly related to the vector nature of the reflected electromagnetic wave and can assist in the identification of different types of slicks. When polarized wave falls on a surface and reflects from it the reflected wave is also polarized. Sea surface is rough, i.e. consists essentially of a large number of differently oriented elementary areas. Consequently the signals reflected from different elementary areas are characterized by different polarization parameters and total signal carries information about all rough surface scanned [1]. When scanning sea surface, quad-polarization SAR generates scattering matrix for each pixel of radar data, which contains all the information regarding the polarimetric backscattering properties of the study area and that can be used for the classification of SAR images according to different scattering mechanisms. As mentioned above, various surface manifestations (calm area, biogenic film, etc.) may be falsely interpreted as oil slicks. In [2] was proposed a method to distinguish them, for which the following parameters were chosen: the polarization ratio (HH channel to VV) and the difference (VV minus HH channel). Normalized radar cross-section (NRCS) σ0pp can be represented as follows: σp0p = σp0pB + σwb, where σ0Bpp - Bragg scattering, σwb - non-polarized scattering. Thus the polarization ratio (PR) and the polarization difference (PD) can be expressed respectively as: PR = σH0H- = σH0HB-+σwb- σV0 V σV0BV+ σwb PD = σV0V - σH0H = σV0VB +

  16. Enhanced signal processing algorithms for buried unexploded ordnance detection and location estimation with magnetometer and electromagnetic induction measurements

    SciTech Connect

    Witten, A.

    1993-09-01

    Enhanced signal processing algorithms have been developed for the detection and location of buried unexploded ordnance using magnetometry and electromagnetic induction (EMI) measurements. These signal processing algorithms are related to those used to image with geophysical diffraction tomography (GDT) employing wave-based measurements. The underlying relationship of GDT is the Generalized Projection Slice Theorem (GPST) that relates the spatial Fourier transform of acquired data to the spatial Fourier transform of subsurface inhomogeneities of one higher dimension. This relationship can be used to simulate data templates for known targets and, by virtue of the shift property of Fourier transforms, a data simulation need only be computed for one reference target location. All other target locations are generated by an appropriate phase shift. These data templates can be correlated with acquired data to determine the spatial distribution of probable target location. This approach to target detection and location estimation, referred to as a maximum likelihood estimation, can be used to produce an {open_quotes}image{close_quotes} of the likelihood of a specified target`s position. For non wave-based methods, the relationship between data and target characteristics is not strictly associated with Fourier transforms. In the case of magnetometry, the appropriate GPST requires a Fourier-Laplace transform of the target characteristics while the EMI GPST is based on an integral transform with a complex wavenumber. Nevertheless, the shift rule for integral transforms can be invoked to yield GPST`s for these tools and the associated computationally efficient maximum likelihood estimators. The EMI detection algorithm was applied to data acquired at a known underground storage tank site and the algorithms for both magnetometry and EMI were applied to data acquired at the Magnetic Range of the Naval EOD Tech Center in Indian Head, Maryland.

  17. Pulsed Photofission Delayed Gamma Ray Detection for Nuclear Material Identification

    SciTech Connect

    John Kavouras; Xianfei Wen; Daren R. Norman; Dante R. Nakazawa; Haori Yang

    2012-11-01

    Innovative systems with increased sensitivity and resolution are in great demand to detect diversion and to prevent misuse in support of nuclear materials management for the U.S. fuel cycle. Nuclear fission is the most important multiplicative process involved in non-destructive active interrogation. This process produces the most easily recognizable signature for nuclear materials. High-energy gamma rays can also excite a nucleus and cause fission through a process known as photofission. After photofission reactions, delayed signals are easily distinguishable from the interrogating radiation. Linac-based, advanced inspection techniques utilizing the fission signals after photofission have been extensively studied for homeland security applications. Previous research also showed that a unique delayed gamma ray energy spectrum exists for each fissionable isotope. Isotopic composition measurement methods based on delayed gamma ray spectroscopy will be the primary focus of this work.

  18. Identification, detection and transmission of a new vitivirus from Mentha.

    PubMed

    Tzanetakis, I E; Postman, J D; Martin, R R

    2007-01-01

    Mentha x gracilis 'Variegata' is an ornamental clone with a phenotype caused by virus infection. Several clones were ordered from mail-order nurseries in an attempt to identify a virus consistently associated with symptoms. One of these clones did not exhibit typical 'Variegata' symptoms, and steps were taken to identify any agents causing the 'off-type' symptoms. One of the viruses identified in the atypical 'Variegata' clone is a previously unknown virus, a member of the family Flexiviridae. Sequence and phylogenetic analysis indicate that the virus, designated as mint virus-2, is related to members of the species Grapevine virus A, Grapevine virus B and Heracleum latent virus, placing it in the genus Vitivirus. A detection protocol for the virus has been developed, and the mint aphid (Ovatus crataegarius) was able to transmit the virus in the presence of a helper virus but not from single infected plants. PMID:17680328

  19. Development in the Detection and Identification of Explosive Residues.

    PubMed

    Beveridge, A D

    1992-06-01

    In the past 2 decades, developments in the sensitivity and selectivity of instrument detectors have significantly improved the detection limits for explosives, particularly nitrated organic compounds. Significant improvements have also been made in clean up and recovery procedures for explosive residues. Methods which also have met the criterion of proven effectiveness in identifying explosive components in "real-world" residues from test explosions have been incorporated into systematic analysis protocols for explosive residues. This article first reviews developments in the application of both traditional and novel methods to analysis of unreacted explosives and explosive residues. Compounds used to formulate commercial, military, and "homemade" explosives are then cross-referenced to the analytical methods that have been specifically applied to them, both as pure chemicals and in explosive mixtures. The subsequent focus is on the combinations of methods used to systematically analyze and positively identify residues from improvised explosive devices, from handswabs derived from persons suspected of handling explosives, and from organic gunshot residue. Technology is available to positively identify virtually any unreacted explosive in residue, but no one method can detect all components of all explosives. Investigators and the courts are best served by well-equipped forensic science laboratories staffed with scientists who have gained experience by the successful analysis of post-blast residues from an explosives range and have comprehensive reference collections of physical material, analytical data, and literature. The greatest progress has been made with respect to nitrated organic compounds, but the new generation of commercial explosive slurries and emulsions which are primarily formulated with inorganic salts and non-nitrated organic compounds offer an ongoing challenge. PMID:26267286

  20. Irradiated Xenon Isotopic Ratio Measurement for Failed Fuel Detection and Location in Fast Reactor

    NASA Astrophysics Data System (ADS)

    Ito, Chikara; Iguchi, Tetsuo; Harano, Hideki

    2009-08-01

    The accuracy of xenon isotopic ratio burn-up calculations used for failed fuel identification was evaluated by an irradiation test of xenon tag gas samples in the Joyo test reactor. The experiment was carried out using pressurized steel capsules containing unique blend ratios of stable xenon tag gases in an on-line creep rupture experiment in Joyo. The tag gas samples were irradiated to total neutron fluences of 1.6 to 4.8 × 1026 n/m2. Laser resonance ionization mass spectrometry was used to analyze the cover gas containing released tag gas diluted to isotopic ratios of 100 to 102 ppb. The isotopic ratios of xenon tag gases after irradiation were calculated using the ORIGEN2 code. The neutron cross sections of xenon nuclides were based on the JENDL-3.3 library. These cross sections were collapsed into one group using the neutron spectra of Joyo. The comparison of measured and calculated xenon isotopic ratios provided C/E values that ranged from 0.92 to 1.10. The differences between calculation and measurement were considered to be mainly due to the measurement errors and the xenon nuclide cross section uncertainties.

  1. Detecting broken-wire flaws at multiple locations in the same wire of prestressing strands using guided waves.

    PubMed

    Xu, Jiang; Wu, Xinjun; Sun, Pengfei

    2013-01-01

    Broken wires often occur at multiple locations in the same wire of a strand due to the recovery length, which is defined as the length of the wire taking up its full share of the axial load from the break point. The detection of broken-wire flaws at multiple locations along the same wire is investigated using guided waves below 400kHz. Herein, a sample with three broken-wire flaws in the same wire is analyzed using magnetostrictive guided waves. Our data show that three flaws are found using the low-frequency guided waves (50kHz) but only one flaw is found using the high-frequency guided waves (320kHz). By analyzing the reflection and transmission coefficients at the three different flaws, we observe that the energy exchange decreases as the frequency increases along the same propagating distance. Hence, the recovery length for elastic waves, the length of the wire taking up its full share of elastic-wave energy from the break point, is observed. The recovery length for elastic waves in prestressing strands increases with the frequency. To detect prestressing strands using magnetostrictive guided waves, several one-broken-wire flaws at different locations can be distinguished from in different wires or the same wire by employing both low-frequency waves and high-frequency waves. Nevertheless, we cannot identify in which wire the flaws are located because the magnetostrictive sensor analyzes the whole strand. PMID:22658860

  2. Detecting and locating whole genome duplications on a phylogeny: a probabilistic approach.

    PubMed

    Rabier, Charles-Elie; Ta, Tram; Ané, Cécile

    2014-03-01

    Whole genome duplications (WGDs) followed by massive gene loss occurred in the evolutionary history of many groups. WGDs are usually inferred from the age distribution of paralogs (Ks-based methods) or from gene collinearity data (synteny). However, Ks-based methods are restricted to detect the recent WGDs due to saturation effects and the difficulty to date old duplicates, and synteny is difficult to reconstruct for distantly related species. Recently, Jiao et al. (Jiao Y, Wickett N, Ayyampalayam S, Chanderbali AS, Landherr L, Ralph PE, Tomsho LP, Hu Y, Liang H, Soltis PS, et al. 2011. Ancestral polyploidy in seed plants and angiosperms. Nature 473:97-100) introduced an empirical method that aims to detect a peak in duplication ages among nodes selected from a previous phylogenetic analysis. In this context, we present here two rigorous methods based on data from multiple gene families and on a new probabilistic model. Our model assumes that all gene lineages are instantaneously duplicated at the WGD event with a possible almost-immediate loss of some extra copies. Our reconciliation method relies on aligned molecular sequences, whereas our gene count method relies only on gene count data across species. We show, using extensive simulations, that both methods have a good detection power. Surprisingly, the gene count method enjoys no loss of power compared with the reconciliation method, despite the fact that sequence information is not used. We finally illustrate the performance of our methods on a benchmark yeast data set. Both methods are able to detect the well-known WGD in the Saccharomyces cerevisiae clade and agree on a small retention rate at the WGD, as established by synteny-based methods. PMID:24361993

  3. Summary of detection, location, and characterization capabilities of AE for continuous monitoring of cracks in reactors

    SciTech Connect

    Hutton, P.H.; Kurtz, R.J.; Friesel, M.A.; Pappas, R.A.; Skorpik, J.R.; Dawson, J.F.

    1984-10-01

    The objective of the program is to develop acoustic emission (AE) methods for continuous monitoring of reactor pressure boundaries to detect and evaluate crack growth. The approach involves three phases: develop relationships to identify crack growth AE signals and to use identified crack growth AE data to estimate flaw severity; evaluate and refine AE/flaw relationships through fatigue testing a heavy section vessel under simulated reactor conditions; and demonstrate continuous AE monitoring on a nuclear power reactor system.

  4. Methods for detecting and locating leaks in containment facilities using electrical potential data and electrical resistance tomographic imaging techniques

    DOEpatents

    Daily, W.D.; Laine, D.L.; Laine, E.F.

    1997-08-26

    Methods are provided for detecting and locating leaks in liners used as barriers in the construction of landfills, surface impoundments, water reservoirs, tanks, and the like. Electrodes are placed in the ground around the periphery of the facility, in the leak detection zone located between two liners if present, and/or within the containment facility. Electrical resistivity data is collected using these electrodes. This data is used to map the electrical resistivity distribution beneath the containment liner between two liners in a double-lined facility. In an alternative embodiment, an electrode placed within the lined facility is driven to an electrical potential with respect to another electrode placed at a distance from the lined facility (mise-a-la-masse). Voltage differences are then measured between various combinations of additional electrodes placed in the soil on the periphery of the facility, the leak detection zone, or within the facility. A leak of liquid though the liner material will result in an electrical potential distribution that can be measured at the electrodes. The leak position is located by determining the coordinates of an electrical current source pole that best fits the measured potentials with the constraints of the known or assumed resistivity distribution. 6 figs.

  5. Methods for detecting and locating leaks in containment facilities using electrical potential data and electrical resistance tomographic imaging techniques

    DOEpatents

    Daily, William D.; Laine, Daren L.; Laine, Edwin F.

    2001-01-01

    Methods are provided for detecting and locating leaks in liners used as barriers in the construction of landfills, surface impoundments, water reservoirs, tanks, and the like. Electrodes are placed in the ground around the periphery of the facility, in the leak detection zone located between two liners if present, and/or within the containment facility. Electrical resistivity data is collected using these electrodes. This data is used to map the electrical resistivity distribution beneath the containment liner or between two liners in a double-lined facility. In an alternative embodiment, an electrode placed within the lined facility is driven to an electrical potential with respect to another electrode placed at a distance from the lined facility (mise-a-la-masse). Voltage differences are then measured between various combinations of additional electrodes placed in the soil on the periphery of the facility, the leak detection zone, or within the facility. A leak of liquid through the liner material will result in an electrical potential distribution that can be measured at the electrodes. The leak position is located by determining the coordinates of an electrical current source pole that best fits the measured potentials with the constraints of the known or assumed resistivity distribution.

  6. Methods for detecting and locating leaks in containment facilities using electrical potential data and electrical resistance tomographic imaging techniques

    DOEpatents

    Daily, William D.; Laine, Daren L.; Laine, Edwin F.

    1997-01-01

    Methods are provided for detecting and locating leaks in liners used as barriers in the construction of landfills, surface impoundments, water reservoirs, tanks, and the like. Electrodes are placed in the ground around the periphery of the facility, in the leak detection zone located between two liners if present, and/or within the containment facility. Electrical resistivity data is collected using these electrodes. This data is used to map the electrical resistivity distribution beneath the containment liner between two liners in a double-lined facility. In an alternative embodiment, an electrode placed within the lined facility is driven to an electrical potential with respect to another electrode placed at a distance from the lined facility (mise-a-la-masse). Voltage differences are then measured between various combinations of additional electrodes placed in the soil on the periphery of the facility, the leak detection zone, or within the facility. A leak of liquid though the liner material will result in an electrical potential distribution that can be measured at the electrodes. The leak position is located by determining the coordinates of an electrical current source pole that best fits the measured potentials with the constraints of the known or assumed resistivity distribution.

  7. Detection and accurate identification of new or emerging bacteria in cystic fibrosis patients.

    PubMed

    Bittar, F; Rolain, J-M

    2010-07-01

    Respiratory infections remain a major threat to cystic fibrosis (CF) patients. The detection and correct identification of the bacteria implicated in these infections is critical for the therapeutic management of patients. The traditional methods of culture and phenotypic identification of bacteria lack both sensitivity and specificity because many bacteria can be missed and/or misidentified. Molecular analyses have recently emerged as useful means to resolve these problems, including molecular methods for accurate identification or detection of bacteria and molecular methods for evaluation of microbial diversity. These recent molecular technologies have increased the list of new and/or emerging pathogens and epidemic strains associated with CF patients. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of intact cells has also emerged recently as a powerful and rapid method for the routine identification of bacteria in clinical microbiology laboratories and will certainly represent the method of choice also for the routine identification of bacteria in the context of CF. Finally, recent data derived from molecular culture-independent analyses indicate the presence of a previously underestimated, complex microbial community in sputa from CF patients. Interestingly, full genome sequencing of some bacteria frequently recovered from CF patients has highlighted the fact that the lungs of CF patients are hotspots for lateral gene transfer and the adaptation of these ecosystems to a specific chronic condition. PMID:20880410

  8. Common Pharmacophore Identification Using Frequent Clique Detection Algorithm

    PubMed Central

    Podolyan, Yevgeniy; Karypis, George

    2008-01-01

    The knowledge of a pharmacophore, or the 3D arrangement of features in the biologically active molecule that is responsible for its pharmacological activity, can help in the search and design of a new or better drug acting upon the same or related target. In this paper we describe two new algorithms based on the frequent clique detection in the molecular graphs. The first algorithm mines all frequent cliques that are present in at least one of the conformers of each (or a portion of all) molecules. The second algorithm exploits the similarities among the different conformers of the same molecule and achieves an order of magnitude performance speedup compared to the first algorithm. Both algorithms are guaranteed to find all common pharmacophores in the dataset, which is confirmed by the validation on the set of molecules for which pharmacophores have been determined experimentally. In addition, these algorithms are able to scale to datasets with arbitrarily large number of conformers per molecule and identify multiple ligand binding modes or multiple binding sites of the target. PMID:19072298

  9. Identification of Cyanobacteriochromes Detecting Far-Red Light.

    PubMed

    Rockwell, Nathan C; Martin, Shelley S; Lagarias, J Clark

    2016-07-19

    The opacity of mammalian tissue to visible light and the strong attenuation of infrared light by water at ≥900 nm have contributed to growing interest in the development of far-red and near-infrared absorbing tools for visualizing and actuating responses within live cells. Here we report the discovery of cyanobacteriochromes (CBCRs) responsive to light in this far-red window. CBCRs are linear tetrapyrrole (bilin)-based light sensors distantly related to plant phytochrome sensors. Our studies reveal far-red (λmax = 725-755 nm)/orange (λmax = 590-600 nm) and far-red/red (λmax = 615-685 nm) photoswitches that are small (<200 amino acids) and can be genetically reconstituted in living cells. Phylogenetic analysis and characterization of additional CBCRs demonstrated that far-red/orange CBCRs evolved after a complex transition from green/red CBCRs known for regulating complementary chromatic acclimation. Incorporation of different bilin chromophores demonstrated that tuning mechanisms responsible for red-shifted chromophore absorption act at the A-, B-, and/or C-rings, whereas photoisomerization occurs at the D-ring. Two such proteins exhibited detectable fluorescence extending well into the near-infrared region. This work extends the spectral window of CBCRs to the edge of the infrared, raising the possibility of using CBCRs in synthetic biology applications in the far-red region of the spectrum. PMID:27295035

  10. A novel multiplex isothermal amplification method for rapid detection and identification of viruses

    PubMed Central

    Nyan, Dougbeh-Chris; Swinson, Kevin L.

    2015-01-01

    A rapid multiplex isothermal amplification assay has been developed for detection and identification of multiple blood-borne viruses that infect millions of people world-wide. These infections may lead to chronic diseases or death if not diagnosed and treated in a timely manner. Sets of virus-specific oligonucleotides and oligofluorophores were designed and used in a reverse-transcription loop-mediated multiplexed isothermal amplification reaction for detection and gel electrophoretic identification of human Immunodeficiency virus (HIV), hepatitis-B virus (HBV), hepatitis-C virus (HCV), hepatitis-E virus (HEV), dengue virus (DENV), and West Nile (WNV) virus infection in blood plasma. Amplification was catalyzed with two thermostable enzymes for 30–60 minutes under isothermal condition, utilizing a simple digital heat source. Electrophoretic analysis of amplified products demonstrated simultaneous detection of 6 viruses that were distinctly identified by unique ladder-like banding patterns. Naked-eye fluorescent visualization of amplicons revealed intensely fluorescing products that indicated positive detection. The test demonstrated a 97% sensitivity and a 100% specificity, with no cross-reaction with other viruses observed. This portable detection tool may have clinical and field utility in the developing and developed world settings. This may enable rapid diagnosis and identification of viruses for targeted therapeutic intervention and prevention of disease transmission. PMID:26643761

  11. Optimizing a custom tiling microarray for low input detection and identification of unamplified virus targets.

    PubMed

    Yu, Christine; Wales, Samantha Q; Mammel, Mark K; Hida, Kaoru; Kulka, Michael

    2016-08-01

    Viruses are major pathogens causing foodborne illnesses and are often present at low levels in foods, thus requiring sensitive techniques for their detection in contaminated foods. The lack of efficient culture methods for many foodborne viruses and the potential for multi-species viral contamination have driven investigation toward non-amplification based methods for virus detection and identification. A custom DNA microarray (FDA_EVIR) was assessed for its sensitivity in the detection and identification of low-input virus targets, human hepatitis A virus, norovirus, and coxsackievirus, individually and in combination. Modifications to sample processing were made to accommodate low input levels of unamplified virus targets, which included addition of carrier cDNA, RNase treatment, and optimization of DNase I-mediated target fragmentation. Amplification-free detection and identification of foodborne viruses were achieved in the range of 250-500 copies of virus RNA. Alternative data analysis methods were employed to distinguish the genotypes of the viruses particularly at lower levels of target input and the single probe-based analysis approach made it possible to identify a minority species in a multi-virus complex. The oligonucleotide array is shown to be a promising platform to detect foodborne viruses at low levels close to what are anticipated in food or environmental samples. PMID:27033182

  12. SeqX: a tool to detect, analyze and visualize residue co-locations in protein and nucleic acid structures

    PubMed Central

    Biro, Jan C; Fördös, Gergely

    2005-01-01

    Background The interacting residues of protein and nucleic acid sequences are close to each other – they are co-located. Structure databases (like Protein Data Bank, PDB and Nucleic Acid Data Bank, NDB) contain all information about these co-locations; however it is not an easy task to penetrate this complex information. We developed a JAVA tool, called SeqX for this purpose. Results SeqX tool is useful to detect, analyze and visualize residue co-locations in protein and nucleic acid structures. The user a. selects a structure from PDB; b. chooses an atom that is commonly present in every residues of the nucleic acid and/or protein structure(s) c. defines a distance from these atoms (3–15 Å). The SeqX tool detects every residue that is located within the defined distances from the defined "backbone" atom(s); provides a DotPlot-like visualization (Residues Contact Map), and calculates the frequency of every possible residue pairs (Residue Contact Table) in the observed structure. It is possible to exclude +/- 1 to 10 neighbor residues in the same polymeric chain from detection, which greatly improves the specificity of detections (up to 60% when tested on dsDNA). Results obtained on protein structures showed highly significant correlations with results obtained from literature (p < 0.0001, n = 210, four different subsets). The co-location frequency of physico-chemically compatible amino acids is significantly higher than is calculated and expected in random protein sequences (p < 0.0001, n = 80). Conclusion The tool is simple and easy to use and provides a quick and reliable visualization and analyses of residue co-locations in protein and nucleic acid structures. Availability and requirements SeqX, Java J2SE Runtime Environment 5.0 (available from [see Additional file 1] ) and at least a 1 GHz processor and with a minimum 256 Mb RAM. Source codes are available from the authors. PMID:16011796

  13. An algorithm for image clusters detection and identification based on color for an autonomous mobile robot

    SciTech Connect

    Uy, D.L.

    1996-02-01

    An algorithm for detection and identification of image clusters or {open_quotes}blobs{close_quotes} based on color information for an autonomous mobile robot is developed. The input image data are first processed using a crisp color fuszzyfier, a binary smoothing filter, and a median filter. The processed image data is then inputed to the image clusters detection and identification program. The program employed the concept of {open_quotes}elastic rectangle{close_quotes}that stretches in such a way that the whole blob is finally enclosed in a rectangle. A C-program is develop to test the algorithm. The algorithm is tested only on image data of 8x8 sizes with different number of blobs in them. The algorithm works very in detecting and identifying image clusters.

  14. High effective algorithm of the detection and identification of substance using the noisy reflected THz pulse

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Varentsova, Svetlana A.; Trofimov, Vladislav V.; Tikhomirov, Vasily V.

    2015-08-01

    Principal limitations of the standard THz-TDS method for the detection and identification are demonstrated under real conditions (at long distance of about 3.5 m and at a high relative humidity more than 50%) using neutral substances thick paper bag, paper napkins and chocolate. We show also that the THz-TDS method detects spectral features of dangerous substances even if the THz signals were measured in laboratory conditions (at distance 30-40 cm from the receiver and at a low relative humidity less than 2%); silicon-based semiconductors were used as the samples. However, the integral correlation criteria, based on SDA method, allows us to detect the absence of dangerous substances in the neutral substances. The discussed algorithm shows high probability of the substance identification and a reliability of realization in practice, especially for security applications and non-destructive testing.

  15. Detection and location of multiple events by MARS. Final report. [Multiple Arrival Recognition System

    SciTech Connect

    Wang, J.; Masso, J.F.; Archambeau, C.B.; Savino, J.M.

    1980-09-01

    Seismic data from two explosions was processed using the Systems Science and Software MARS (Multiple Arrival Recognition System) seismic event detector in an effort to determine their relative spatial and temporal separation on the basis of seismic data alone. The explosions were less than 1.0 kilometer apart and were separated by less than 0.5 sec in origin times. The seismic data consisted of nine local accelerograms (r < 1.0 km) and four regional (240 through 400 km) seismograms. The MARS processing clearly indicates the presence of multiple explosions, but the restricted frequency range of the data inhibits accurate time picks and hence limits the precision of the event location.

  16. Detecting target velocity and location using a novel optoelectronic sensing system

    NASA Astrophysics Data System (ADS)

    Chang, Chi Ching

    2004-12-01

    We propose a cost-effective, compact, and robust optoelectronic sensing system for measuring ballistic impact velocity and distribution of the projectile motion. The key elements consisted of this system are four photo-gates hybridized by compound one-dimensional prism array and analog/digital electronic components. The number of light sources and photodetectors used in a photo-gate was reduced to one pair of that. The time interval passing each pair can be measured precisely (~10-8 s). The average velocity and location of projectile are carried out according the measured time intervals. The system can precisely measure the velocity of a bullet as it leaves a gun barrel and the velocity toward the trajectory outside the firearm. Furthermore, the system uses a commonly found low-powered laser pointer as light source. Compared with other optoelectronic sensing systems that use high-powered lasers, our system is both economical and safe.

  17. A new method for producing automated seismic bulletins: Probabilistic event detection, association, and location

    SciTech Connect

    Draelos, Timothy J.; Ballard, Sanford; Young, Christopher J.; Brogan, Ronald

    2015-10-01

    Given a set of observations within a specified time window, a fitness value is calculated at each grid node by summing station-specific conditional fitness values. Assuming each observation was generated by a refracted P wave, these values are proportional to the conditional probabilities that each observation was generated by a seismic event at the grid node. The node with highest fitness value is accepted as a hypothetical event location, subject to some minimal fitness value, and all arrivals within a longer time window consistent with that event are associated with it. During the association step, a variety of different phases are considered. In addition, once associated with an event, an arrival is removed from further consideration. While unassociated arrivals remain, the search for other events is repeated until none are identified.

  18. A new method for producing automated seismic bulletins: Probabilistic event detection, association, and location

    DOE PAGESBeta

    Draelos, Timothy J.; Ballard, Sanford; Young, Christopher J.; Brogan, Ronald

    2015-10-01

    Given a set of observations within a specified time window, a fitness value is calculated at each grid node by summing station-specific conditional fitness values. Assuming each observation was generated by a refracted P wave, these values are proportional to the conditional probabilities that each observation was generated by a seismic event at the grid node. The node with highest fitness value is accepted as a hypothetical event location, subject to some minimal fitness value, and all arrivals within a longer time window consistent with that event are associated with it. During the association step, a variety of different phasesmore » are considered. In addition, once associated with an event, an arrival is removed from further consideration. While unassociated arrivals remain, the search for other events is repeated until none are identified.« less

  19. Detection and location of OP-degrading activity: A model to integrate education and research.

    PubMed

    Iyer, Rupa; Smith, Kevin; Kudrle, Bill; Leon, Alex

    2015-06-25

    The Environmental Sampling Research Module (ESRM) is an investigative/discovery module that provides undergraduate research experiences for students as part of an interdisciplinary research-based biotechnology curriculum at the University of Houston campus. As part of the ESRM, students collect soil samples from various locations to test for the presence of organophosphorous (OP) degrading bacteria. At the end of this research project students submit a research paper on their field and laboratory activities and discuss their experimental data and observations. Students also record the date, location of collection, and the results of testing the sample for the degradation of two pesticides, methyl parathion or paraoxon, in an electronic laboratory notebook (ELN). Each collection site is recorded on a Google Maps module and the data from student research activities is made available to other undergraduate students. This data is then used to generate a microorganism database of pesticide degrading activity and promote reading, critical thinking, and analytical skills as part of the curriculum. Our sampling of agricultural sites and wastewater within and around the city of Houston has identified seven distinct genera of OP degrading organisms, including Pseudomonas, Stenotrophomonas, Exiguobacterium, Delftia, Agrobacterium, Aeromonas, and Rhizobium. Collected strains exhibit phosphotriesterase-like enzymatic activity with isolates of Pseudomonas putida and Stenotrophomonas maltophilia capable of degrading both the phosphotriester paraoxon and the phosphorothioate methyl parathion. Using this collection of OP-degrading microorganisms, undergraduate students have evaluated their potential for enhancing the removal of harmful organophosphates and their toxic metabolites from contaminated agricultural soil and adjacent bodies of water. This analytical data can potentially be utilized for environmental and industrial applications in bioremediation and ecology providing an

  20. Acoustic emission source location and damage detection in a metallic structure using a graph-theory-based geodesic approach

    NASA Astrophysics Data System (ADS)

    Gangadharan, R.; Prasanna, G.; Bhat, M. R.; Murthy, C. R. L.; Gopalakrishnan, S.

    2009-11-01

    A geodesic-based approach using Lamb waves is proposed to locate the acoustic emission (AE) source and damage in an isotropic metallic structure. In the case of the AE (passive) technique, the elastic waves take the shortest path from the source to the sensor array distributed in the structure. The geodesics are computed on the meshed surface of the structure using graph theory based on Dijkstra's algorithm. By propagating the waves in reverse virtually from these sensors along the geodesic path and by locating the first intersection point of these waves, one can get the AE source location. The same approach is extended for detection of damage in a structure. The wave response matrix of the given sensor configuration for the healthy and the damaged structure is obtained experimentally. The healthy and damage response matrix is compared and their difference gives the information about the reflection of waves from the damage. These waves are backpropagated from the sensors and the above method is used to locate the damage by finding the point where intersection of geodesics occurs. In this work, the geodesic approach is shown to be suitable to obtain a practicable source location solution in a more general set-up on any arbitrary surface containing finite discontinuities. Experiments were conducted on aluminum specimens of simple and complex geometry to validate this new method.

  1. Implementation of a novel double-side technique for partial discharge detection and location in covered conductor overhead distribution networks

    NASA Astrophysics Data System (ADS)

    He, Weisheng; Li, Hongjie; Liang, Deliang; Sun, Haojie; Yang, Chenbo; Wei, Jinqu; Yuan, Zhijian

    2015-12-01

    Partial discharge (PD) detection has proven to be one of the most acceptable techniques for on-line condition monitoring and predictive maintenance of power apparatus. A powerful tool for detecting PD in covered-conductor (CC) lines is urgently needed to improve the asset management of CC overhead distribution lines. In this paper, an appropriate, portable and simple system designed to detect PD activity in CC lines and ultimately pinpoint the PD source is developed and tested. The system is based on a novel double-side synchronised PD measurement technique driven by pulse injection. Emphasis is placed on the proposed PD-location mechanism and hardware structure, with descriptions of the pulse-injection process, detection device, synchronisation principle and PD-location algorithm. The system is simulated using ATP-EMTP, and the simulated results are found to be consistent with the actual simulation layout. For further validation, the capability of the system is tested in a high-voltage laboratory experiment using a 10-kV CC line with cross-linked polyethylene insulation.

  2. Peculiarities of the detection and identification of substance at long distance

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Varentsova, Svetlana A.; Trofimov, Vladislav V.; Tikhomirov, Vasily V.

    2014-05-01

    Nowadays, the detection and identification of dangerous substances at long distance (several meters, for example) by using of THz pulse reflected from the object is an important problem. In this report we demonstrate possibility of THz signal measuring reflected from investigated object that is placed before a flat metallic mirror. A distance between the flat mirror and the parabolic mirror this mirror is equal to 3.5 meters. Therefore, at present time our measurements contain features of both transmission and reflection modes. The reflecting mirror is used because of weak average power of used femtosecond laser. Measurements were provided at room temperature and humidity about 60%. The aim of investigation was the detection of a substance in real condition. Chocolate and Cookies were used as samples for identification. We also discuss modified correlation criteria for the detection and identification of various substances using pulsed THz signal in the transmission and reflection mode at short distances of about 30-40 cm. These criteria are integral criteria in time and they are based on the SDA method. Proposed algorithms show both high probability of the substance identification and a reliability of realization in practice. We compare P-spectrum and SDA- methods in the paper and show that P-spectrum method is a partial case of SDAmethod.

  3. Identification and Detection of Simple 3D Objects with Severely Blurred Vision

    PubMed Central

    Kallie, Christopher S.; Legge, Gordon E.; Yu, Deyue

    2012-01-01

    Purpose. Detecting and recognizing three-dimensional (3D) objects is an important component of the visual accessibility of public spaces for people with impaired vision. The present study investigated the impact of environmental factors and object properties on the recognition of objects by subjects who viewed physical objects with severely reduced acuity. Methods. The experiment was conducted in an indoor testing space. We examined detection and identification of simple convex objects by normally sighted subjects wearing diffusing goggles that reduced effective acuity to 20/900. We used psychophysical methods to examine the effect on performance of important environmental variables: viewing distance (from 10–24 feet, or 3.05–7.32 m) and illumination (overhead fluorescent and artificial window), and object variables: shape (boxes and cylinders), size (heights from 2–6 feet, or 0.61–1.83 m), and color (gray and white). Results. Object identification was significantly affected by distance, color, height, and shape, as well as interactions between illumination, color, and shape. A stepwise regression analysis showed that 64% of the variability in identification could be explained by object contrast values (58%) and object visual angle (6%). Conclusions. When acuity is severely limited, illumination, distance, color, height, and shape influence the identification and detection of simple 3D objects. These effects can be explained in large part by the impact of these variables on object contrast and visual angle. Basic design principles for improving object visibility are discussed. PMID:23111613

  4. Model-based fault detection and identification with online aerodynamic model structure selection

    NASA Astrophysics Data System (ADS)

    Lombaerts, T.

    2013-12-01

    This publication describes a recursive algorithm for the approximation of time-varying nonlinear aerodynamic models by means of a joint adaptive selection of the model structure and parameter estimation. This procedure is called adaptive recursive orthogonal least squares (AROLS) and is an extension and modification of the previously developed ROLS procedure. This algorithm is particularly useful for model-based fault detection and identification (FDI) of aerospace systems. After the failure, a completely new aerodynamic model can be elaborated recursively with respect to structure as well as parameter values. The performance of the identification algorithm is demonstrated on a simulation data set.

  5. Gyro-based Maximum-Likelihood Thruster Fault Detection and Identification

    NASA Technical Reports Server (NTRS)

    Wilson, Edward; Lages, Chris; Mah, Robert; Clancy, Daniel (Technical Monitor)

    2002-01-01

    When building smaller, less expensive spacecraft, there is a need for intelligent fault tolerance vs. increased hardware redundancy. If fault tolerance can be achieved using existing navigation sensors, cost and vehicle complexity can be reduced. A maximum likelihood-based approach to thruster fault detection and identification (FDI) for spacecraft is developed here and applied in simulation to the X-38 space vehicle. The system uses only gyro signals to detect and identify hard, abrupt, single and multiple jet on- and off-failures. Faults are detected within one second and identified within one to five accords,

  6. Location and detection of explosive-contaminated human fingerprints on distant targets using standoff laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Lucena, P.; Gaona, I.; Moros, J.; Laserna, J. J.

    2013-07-01

    Detection of explosive-contaminated human fingerprints constitutes an analytical challenge of high significance in security issues and in forensic sciences. The use of a laser-induced breakdown spectroscopy (LIBS) sensor working at 31 m distance to the target, fitted with 2D scanning capabilities and designed for capturing spectral information from laser-induced plasmas of fingerprints is presented. Distribution chemical maps based on Na and CN emissions are used to locate and detect chloratite, DNT, TNT, RDX and PETN residues that have been deposited on the surface of aluminum and glass substrates. An effectiveness of 100% on fingerprints detection, regardless the substrate scanned, is reached. Environmental factors that affect the prevalence of the fingerprint LIBS response are discussed.

  7. BlueDetect: An iBeacon-Enabled Scheme for Accurate and Energy-Efficient Indoor-Outdoor Detection and Seamless Location-Based Service

    PubMed Central

    Zou, Han; Jiang, Hao; Luo, Yiwen; Zhu, Jianjie; Lu, Xiaoxuan; Xie, Lihua

    2016-01-01

    The location and contextual status (indoor or outdoor) is fundamental and critical information for upper-layer applications, such as activity recognition and location-based services (LBS) for individuals. In addition, optimizations of building management systems (BMS), such as the pre-cooling or heating process of the air-conditioning system according to the human traffic entering or exiting a building, can utilize the information, as well. The emerging mobile devices, which are equipped with various sensors, become a feasible and flexible platform to perform indoor-outdoor (IO) detection. However, power-hungry sensors, such as GPS and WiFi, should be used with caution due to the constrained battery storage on mobile device. We propose BlueDetect: an accurate, fast response and energy-efficient scheme for IO detection and seamless LBS running on the mobile device based on the emerging low-power iBeacon technology. By leveraging the on-broad Bluetooth module and our proposed algorithms, BlueDetect provides a precise IO detection service that can turn on/off on-board power-hungry sensors smartly and automatically, optimize their performances and reduce the power consumption of mobile devices simultaneously. Moreover, seamless positioning and navigation services can be realized by it, especially in a semi-outdoor environment, which cannot be achieved by GPS or an indoor positioning system (IPS) easily. We prototype BlueDetect on Android mobile devices and evaluate its performance comprehensively. The experimental results have validated the superiority of BlueDetect in terms of IO detection accuracy, localization accuracy and energy consumption. PMID:26907295

  8. BlueDetect: An iBeacon-Enabled Scheme for Accurate and Energy-Efficient Indoor-Outdoor Detection and Seamless Location-Based Service.

    PubMed

    Zou, Han; Jiang, Hao; Luo, Yiwen; Zhu, Jianjie; Lu, Xiaoxuan; Xie, Lihua

    2016-01-01

    The location and contextual status (indoor or outdoor) is fundamental and critical information for upper-layer applications, such as activity recognition and location-based services (LBS) for individuals. In addition, optimizations of building management systems (BMS), such as the pre-cooling or heating process of the air-conditioning system according to the human traffic entering or exiting a building, can utilize the information, as well. The emerging mobile devices, which are equipped with various sensors, become a feasible and flexible platform to perform indoor-outdoor (IO) detection. However, power-hungry sensors, such as GPS and WiFi, should be used with caution due to the constrained battery storage on mobile device. We propose BlueDetect: an accurate, fast response and energy-efficient scheme for IO detection and seamless LBS running on the mobile device based on the emerging low-power iBeacon technology. By leveraging the on-broad Bluetooth module and our proposed algorithms, BlueDetect provides a precise IO detection service that can turn on/off on-board power-hungry sensors smartly and automatically, optimize their performances and reduce the power consumption of mobile devices simultaneously. Moreover, seamless positioning and navigation services can be realized by it, especially in a semi-outdoor environment, which cannot be achieved by GPS or an indoor positioning system (IPS) easily. We prototype BlueDetect on Android mobile devices and evaluate its performance comprehensively. The experimental results have validated the superiority of BlueDetect in terms of IO detection accuracy, localization accuracy and energy consumption. PMID:26907295

  9. Demonstration of the BNL Continuous Dual Trap Analyzer to Detect Perfluorocarbon Tracers for the Tag, Track and Location Program

    SciTech Connect

    Heiser,J.H.; Adams, J.; Dietz, R..; Milian, L.; Watson, T.

    2008-10-07

    The Tag, Track and Location System (TTL) Program is investigating methods of tracking an asset using perfluorocarbon tracers (PFT). The success of any TTL method requires sound detection/location instrumentation. Tracer Detection Technologies Corp (TDT), through a contract with the Office of Naval Research (ONR), is investigating different detection systems. The detections systems generally fall into two categories; proximity detectors and standoff detectors. Proximity detectors, as the name implies, need to be in close proximity (e.g., meter to 10's of meters) to the PFT source. Standoff detection searches for the PFT from a greater distance away from the source (e.g., 100's of meters to kilometers). Gas Chromatographs (GC) are generally considered a proximity detection systems, but in the case of PFTs should be considered for both proximity and standoff detection with the caveat that in standoff use the GC needs to be somewhere in the PFT plume, i.e., generally downwind of the source. With a properly sized PFT source, the right GC can afford fairly large standoff (distance from the source) distances; 100's of meters to kilometers downwind. Brookhaven National Laboratory (BNL) has such a GC system and offered to demonstrate the CDTA for TTL as a no cost addition to the TDTTTL project, of which BNL was a participant. BNL is a leading authority on the sampling, collection, release and detection of PFTs. In addition, the BNL team has extensive background in atmospheric dispersion, the application of PFTs to such studies and the development of applications utilizing PFTs such as building infiltration measurements, control room integrity determination, leak location and environmental investigations. This experience and expertise is essential in developing any PFT application were dispersion, dilution and overcoming environmental conditions and interferences are integral to success. BNL has developed sophisticated gas chromatography methods and instruments that allow

  10. PCR applications in identification of saliva samples exposed to different conditions (streptococci detection based).

    PubMed

    Ali, M M; Shokry, D A; Zaghloul, H S; Rashed, L A; Nada, M G

    2013-06-15

    Oral streptococci represent about 20% of the total oral bacteria, so if it is possible to detect the presence of oral specific bacteria from a forensic specimen by Polymerase chain reaction, this could be used to verify the presence of saliva. Aim of this study is detection of Streptococcus salivarius which is one of the most common streptococci in oral bacteria and Streptococcus mutans which is common in cases of dental caries in various body fluids and skin swabs and assessment of which one of both organisms is more reliable in saliva identification, cross sectional study on Egypt population. Negative control samples (15 samples) were taken from various body fluids (urine, semen) and skin swabs. Mock forensic samples (85 samples) included fresh saliva, saliva, cotton fabrics contaminated with saliva, cigarette butts, bitten apple and semen mixed with saliva samples). DNA extraction was done using DNeasy blood and tissue kit (Qiagen, Tokyo, Japan). Polymerase chain reaction was done for DNA amplification using Polymerase chain reaction master mix then gel electrophoresis was done for samples qualification. Control bacteria were S. salivarius and Streptococcus mutans. Streptococcus salivarius was detected in 83.5% of all saliva contained samples and S. mutans was detected in 67% of saliva contained samples. Both bacteria were not detected in other body fluids and skin swabs, so S. salivarius is more reliable in saliva identification as well as differentiating it from other body fluids. Polymerase chain reaction is valuable in detection of saliva by detecting S. salivarius. PMID:24494527

  11. Automated detection and location of tectonic tremor along the entire Cascadia margin from 2005 to 2011

    NASA Astrophysics Data System (ADS)

    Boyarko, D. C.; Brudzinski, M. R.; Porritt, R. W.; Allen, R. M.; Tréhu, A. M.

    2015-11-01

    We have constructed an automated routine to identify prominent bursts of tectonic tremor and locate their source region during time periods of raised amplitude in the tremor passband. This approach characterizes 62 episodes of tectonic tremor between 2005 and 2011, with tremor epicenters forming a narrow band spanning the entire length of the Cascadia Subduction Zone. We find a range of along-strike lengths in individual episodes, but the length appears proportional to both duration and geodetic moment, consistent with proposed scaling laws for slow earthquake phenomena. Examination of individual episodes in detail reveals intriguing updip-downdip migration patterns, including slow updip migration during initiation and repetitive downdip migration between different episodes. The broader catalog of tremor episodes refines the inferences from earlier work that episodic tremor and slip are segmented along-strike and correlated with apparent seismogenic zone segmentation in most cases. The overall band of tremor is offset ∼ 50 km from the downdip edge of interseismic coupling along the central and northern parts of the subduction zone. Along the southern part of the subduction zone, it is adjacent to this boundary, suggesting that the locked and transition zones may be more closely linked in southern Cascadia.

  12. The detection and location of low magnitude earthquakes in northern Norway using multi-channel waveform correlation at regional distances

    NASA Astrophysics Data System (ADS)

    Gibbons, Steven J.; Bøttger Sørensen, Mathilde; Harris, David B.; Ringdal, Frode

    2007-03-01

    A fortuitous sequence of closely spaced earthquakes in the Rana region of northern Norway, during 2005, has provided an ideal natural laboratory for investigating event detectability using waveform correlation over networks and arrays at regional distances. A small number of events between magnitude 2.0 and 3.5 were recorded with a high SNR by the Fennoscandian IMS seismic arrays at distances over 600 km and three of these events, including the largest on 24 June, displayed remarkable waveform similarity even at relatively high frequencies. In an effort to detect occurrences of smaller earthquakes in the immediate geographical vicinity of the 24 June event, a multi-channel correlation detector for the NORSAR array was run for the whole calender year 2005 using the signal from the master event as a template. A total of 32 detections were made and all but 2 of these coincided with independent correlation detections using the other Nordic IMS array stations; very few correspond to signals detectable using traditional energy detectors. Permanent and temporary stations of the Norwegian National Seismic Network (NNSN) at far closer epicentral distances have confirmed that all but one of the correlation detections at NORSAR in fact correspond to real events. The closest stations at distances of approximately 10 km can confirm that the smallest of these events have magnitudes down to 0.5 which represents a detection threshold reduction of over 1.5 for the large-aperture NORSAR array and over 1.0 for the almost equidistant regional ARCES array. The incompleteness of the local network recordings precludes a comprehensive double-difference location for the full set of events. However, stable double-difference relative locations can be obtained for eight of the events using only the Lg phase recorded at the array stations. All events appear to be separated by less than 0.5 km. Clear peaks were observed in the NORSAR correlation coefficient traces during the coda of some of the

  13. The application of visible wavelength reflectance hyperspectral imaging for the detection and identification of blood stains.

    PubMed

    Li, Bo; Beveridge, Peter; O'Hare, William T; Islam, Meez

    2014-12-01

    Current methods of detection and identification of blood stains rely largely on visual examination followed by presumptive tests such as Kastle-Meyer, Leuco-malachite green or luminol. Although these tests are useful, they can produce false positives and can also have a negative impact on subsequent DNA tests. A novel application of visible wavelength reflectance hyperspectral imaging has been used for the detection and positive identification of blood stains in a non contact and non destructive manner on a range of coloured substrates. The identification of blood staining was based on the unique visible absorption spectrum of haemoglobin between 400 and 500 nm. Images illustrating successful discrimination of blood stains from nine red substances are included. It has also been possible to distinguish between blood and approximately 40 other reddish stains. The technique was also successfully used to detect latent blood stains deposited on white filter paper at dilutions of up to 1 in 512 folds and on red tissue at dilutions of up to 1 in 32 folds. Finally, in a blind trial, the method successfully detected and identified a total of 9 blood stains on a red T-shirt. PMID:25498930

  14. Software for Sunspots Automatic Detection, Heliographic Location and Area Measurement for Soho Images

    NASA Astrophysics Data System (ADS)

    Rivero Gavilán, H.; Guevara Day, W.

    2006-06-01

    Active regions (ARs) are the manifestation of the magnetic flux tubes because of the buoyancy action these emerge in the typical letter Greek Ω shape. The tracking and the respective study ARs permit us to study the global properties of the flow tubes (which form the active regions) and provide important information about the origin (formation and transports in the convective zone) and how the magnetic helicity is taken along the corona by pho-tos-phe-ric movements. In order to initiate an study of these behaviors we are developing a programming algorithm using IDL as base, moreover taking routines developed in SOLARSOFT, will allow us to pursue of some interesting active region. The program has obtained the year 2005 magnetograms data base provided by MDI-SOHO, in which we selected the ARs of interest to determine the location of the region in function of its heliographic coordinates. At the time of selecting this image, the level of intensity of the interest field is selected and the program calculates the position of different polarities and his geometric area (given in arcsec), these values are stored in a text file as well as a support image which shows the contour lines of magnetic field intensities chosen by the user. As a test of the algorithm we have taken several images MDI-SOHO of the 10715 NOAA region from 01 to 03 of January of the present year; we have used up to 43 images. These results by are part of an study of active zones evolution for the purpose of determining the origin of the RA's formation.

  15. Distributed fiber optic sensor employing phase generate carrier for disturbance detection and location

    NASA Astrophysics Data System (ADS)

    Xu, Haiyan; Wu, Hongyan; Zhang, Xuewu; Zhang, Zhuo; Li, Min

    2015-05-01

    Distributed optic fiber sensor is a new type of system, which could be used in the long-distance and strong-EMI condition for monitoring and inspection. A method of external modulation with a phase modulator is proposed in this paper to improve the positioning accuracy of the disturbance in a distributed optic-fiber sensor. We construct distributed disturbance detecting system based on Michelson interferometer, and a phase modulator has been attached to the fiber sensor in front of the Faraday rotation mirror (FRM), to elevate the signal produced by interfering of the two lights reflected by the Faraday rotation Mirror to a high frequency, while other signals remain in the low frequency. Through a high pass filter and phase retrieve circus, a signal which is proportional to the external disturbance is acquired. The accuracy of disturbance positioning with this signal can be largely improved. The method is quite simple and easy to achieve. Theoretical analysis and experimental results show that, this method can effectively improve the positioning accuracy.

  16. Synchrosqueezed wavelet transform-fractality model for locating, detecting, and quantifying damage in smart highrise building structures

    NASA Astrophysics Data System (ADS)

    Amezquita-Sanchez, Juan P.; Adeli, Hojjat

    2015-06-01

    A new methodology is presented for (a) detecting, (b) locating, and (c) quantifying the damage severity in a smart highrise building structure. The methodology consists of three steps: In step 1, the synchrosqueezed wavelet transform is used to eliminate the noise in the signals. In step 2, a nonlinear dynamics measure based on the chaos theory, fractality dimension (FD), is employed to detect features to be used for damage detection. In step 3, a new structural damage index, based on the estimated FD values, is proposed as a measure of the condition of the structure. Further, the damage location is obtained using the changes of the estimated FD values. Three different FD algorithms for computing the fractality of time series signals are investigated. They are Katz’s FD, Higuchi’s FD, and box dimension. The usefulness and effectiveness of the proposed methodology are validated using the sensed data obtained experimentally for the 1:20 scaled model of a 38-storey concrete building structure.

  17. Utilization of advanced clutter suppression algorithms for improved standoff detection and identification of radionuclide threats

    NASA Astrophysics Data System (ADS)

    Cosofret, Bogdan R.; Shokhirev, Kirill; Mulhall, Phil; Payne, David; Harris, Bernard

    2014-05-01

    Technology development efforts seek to increase the capability of detection systems in low Signal-to-Noise regimes encountered in both portal and urban detection applications. We have recently demonstrated significant performance enhancement in existing Advanced Spectroscopic Portals (ASP), Standoff Radiation Detection Systems (SORDS) and handheld isotope identifiers through the use of new advanced detection and identification algorithms. The Poisson Clutter Split (PCS) algorithm is a novel approach for radiological background estimation that improves the detection and discrimination capability of medium resolution detectors. The algorithm processes energy spectra and performs clutter suppression, yielding de-noised gamma-ray spectra that enable significant enhancements in detection and identification of low activity threats with spectral target recognition algorithms. The performance is achievable at the short integration times (0.5 - 1 second) necessary for operation in a high throughput and dynamic environment. PCS has been integrated with ASP, SORDS and RIID units and evaluated in field trials. We present a quantitative analysis of algorithm performance against data collected by a range of systems in several cluttered environments (urban and containerized) with embedded check sources. We show that the algorithm achieves a high probability of detection/identification with low false alarm rates under low SNR regimes. For example, utilizing only 4 out of 12 NaI detectors currently available within an ASP unit, PCS processing demonstrated Pd,ID > 90% at a CFAR (Constant False Alarm Rate) of 1 in 1000 occupancies against weak activity (7 - 8μCi) and shielded sources traveling through the portal at 30 mph. This vehicle speed is a factor of 6 higher than was previously possible and results in significant increase in system throughput and overall performance.

  18. Ability of bed bug-detecting canines to locate live bed bugs and viable bed bug eggs.

    PubMed

    Pfiester, Margie; Koehler, Philip G; Pereira, Roberto M

    2008-08-01

    The bed bug, Cimex lectularius L., like other bed bug species, is difficult to visually locate because it is cryptic. Detector dogs are useful for locating bed bugs because they use olfaction rather than vision. Dogs were trained to detect the bed bug (as few as one adult male or female) and viable bed bug eggs (five, collected 5-6 d after feeding) by using a modified food and verbal reward system. Their efficacy was tested with bed bugs and viable bed bug eggs placed in vented polyvinyl chloride containers. Dogs were able to discriminate bed bugs from Camponotus floridanus Buckley, Blattella germanica (L.), and Reticulitermes flavipes (Kollar), with a 97.5% positive indication rate (correct indication of bed bugs when present) and 0% false positives (incorrect indication of bed bugs when not present). Dogs also were able to discriminate live bed bugs and viable bed bug eggs from dead bed bugs, cast skins, and feces, with a 95% positive indication rate and a 3% false positive rate on bed bug feces. In a controlled experiment in hotel rooms, dogs were 98% accurate in locating live bed bugs. A pseudoscent prepared from pentane extraction of bed bugs was recognized by trained dogs as bed bug scent (100% indication). The pseudoscent could be used to facilitate detector dog training and quality assurance programs. If trained properly, dogs can be used effectively to locate live bed bugs and viable bed bug eggs. PMID:18767752

  19. An Analysis on Sensor Locations of the Human Body for Wearable Fall Detection Devices: Principles and Practice.

    PubMed

    Özdemir, Ahmet Turan

    2016-01-01

    Wearable devices for fall detection have received attention in academia and industry, because falls are very dangerous, especially for elderly people, and if immediate aid is not provided, it may result in death. However, some predictive devices are not easily worn by elderly people. In this work, a huge dataset, including 2520 tests, is employed to determine the best sensor placement location on the body and to reduce the number of sensor nodes for device ergonomics. During the tests, the volunteer's movements are recorded with six groups of sensors each with a triaxial (accelerometer, gyroscope and magnetometer) sensor, which is placed tightly on different parts of the body with special straps: head, chest, waist, right-wrist, right-thigh and right-ankle. The accuracy of individual sensor groups with their location is investigated with six machine learning techniques, namely the k-nearest neighbor (k-NN) classifier, Bayesian decision making (BDM), support vector machines (SVM), least squares method (LSM), dynamic time warping (DTW) and artificial neural networks (ANNs). Each technique is applied to single, double, triple, quadruple, quintuple and sextuple sensor configurations. These configurations create 63 different combinations, and for six machine learning techniques, a total of 63 × 6 = 378 combinations is investigated. As a result, the waist region is found to be the most suitable location for sensor placement on the body with 99.96% fall detection sensitivity by using the k-NN classifier, whereas the best sensitivity achieved by the wrist sensor is 97.37%, despite this location being highly preferred for today's wearable applications. PMID:27463719

  20. Detection and location of earthquakes in the central Aleutian subduction zone using island and ocean bottom seismograph stations

    SciTech Connect

    Frohlich, C.; Billington, S.; Engdahl, E.R.; Malahoff, A.

    1982-08-10

    A network of eight University of Texas ocean bottom seismographs (OBS) operated for 6 weeks in 1978 about 50 km offshore of Adak Island, Alaska, and nearly islands. In 1979 a similar network of nine instruments was deployed for 7 weeks farther offshore within and up to 100 km seaward of the Aleutian trench. For shallow earthquakes on the outer trench slope, for shallow earthquakes in the thrust zone, and for intermediate-depth events we have analyzed the OBS and island-based network data and evaluated the island network's capabilities for earthquake detection and location and for focal mechanism determination. Our three major conclusions are presented. The first concerns shallow earthquakes on the outer trench slope. In 1979 about 30 earthquakes occurred within the Aleutian trench and up to 60 km seaward of the trench axis. The island network located none of these events and detected P phases for only three of them. Ray tracing shows that the islands lie in a geometric shadow zone for events on the outer trench slope. The best located events are shallower than 20 km and exhibit first motions consistent with normal faulting. Several authors have suggested that these events are caused by bending of the oceanic lithosphere at the outer rise prior to subduction. If so, then the event locations reported here show that the bending stresses exceed the strength of lithosphere only in a narrow zone extending about 10 km landward and 60 km seaward of the trench axis. The second conclusion concerns shallow earthquakes in the thrust zone. Epicenters determined by island stations alone are virtually identical to epicenters determined using data from both island and OBS stations. The third conclusion concerns earthquakes deeper than 70 km. Epicenters determined using island network stations alone lie 10 to 80 km south of those determined using OBS and island stations, with the differences between epicenters depending both on event depth and on the velocity model used.

  1. Gyro and accelerometer failure detection and identification in redundant sensor systems

    NASA Technical Reports Server (NTRS)

    Potter, J. E.; Deckert, J. C.

    1972-01-01

    Algorithms for failure detection and identification for redundant noncolinear arrays of single degree of freedom gyros and accelerometers are described. These algorithms are optimum in the sense that detection occurs as soon as it is no longer possible to account for the instrument outputs as the outputs of good instruments operating within their noise tolerances, and identification occurs as soon as it is true that only a particular instrument failure could account for the actual instrument outputs within the noise tolerance of good instruments. An estimation algorithm is described which minimizes the maximum possible estimation error magnitude for the given set of instrument outputs. Monte Carlo simulation results are presented for the application of the algorithms to an inertial reference unit consisting of six gyros and six accelerometers in two alternate configurations.

  2. Low-cost backpack-portable robot system for mine and UXO detection and identification

    NASA Astrophysics Data System (ADS)

    Nelson, Carl V.; Arabian, Adam K.

    2002-08-01

    The Johns Hopkins University Applied Physics Laboratory (JHU/APL) has developed a prototype backpack-portable robot system for mine and unexploded ordnance (UXO) detection and identification. The robot system is compact, lightweight and is estimated to be inexpensive to construct. The robot has been designed with an inexpensive, highly accurate, wide bandwidth time-domain electromagnetic induction (EMI) sensor for the detection and identification of metal components in mines and UXO. The robot can be configured for autonomous or person-in-the-loop control. The robot system can be configured with additional light-weight and low-cost mine and UXO sensors such as ground penetrating radar (GPR) and chemical explosive detectors.

  3. Single-particle aerosol mass spectrometry for the detection and identification of chemical warfare agent simulants.

    PubMed

    Martin, Audrey N; Farquar, George R; Frank, Matthias; Gard, Eric E; Fergenson, David P

    2007-08-15

    Single-particle aerosol mass spectrometry (SPAMS) was used for the real-time detection of liquid nerve agent simulants. A total of 1000 dual-polarity time-of-flight mass spectra were obtained for micrometer-sized single particles each of dimethyl methyl phosphonate, diethyl ethyl phosphonate, diethyl phosphoramidate, and diethyl phthalate using laser fluences between 0.58 and 7.83 nJ/microm2, and mass spectral variation with laser fluence was studied. The mass spectra obtained allowed identification of single particles of the chemical warfare agent (CWA) simulants at each laser fluence used although lower laser fluences allowed more facile identification. SPAMS is presented as a promising real-time detection system for the presence of CWAs. PMID:17630721

  4. Set-membership identification and fault detection using a Bayesian framework

    NASA Astrophysics Data System (ADS)

    Fernández-Cantí, Rosa M.; Blesa, Joaquim; Puig, Vicenç; Tornil-Sin, Sebastian

    2016-05-01

    This paper deals with the problem of set-membership identification and fault detection using a Bayesian framework. The paper presents how the set-membership model estimation problem can be reformulated from the Bayesian viewpoint in order to, first, determine the feasible parameter set in the identification stage and, second, check the consistency between the measurement data and the model in the fault-detection stage. The paper shows that, assuming uniform distributed measurement noise and uniform model prior probability distributions, the Bayesian approach leads to the same feasible parameter set than the well-known set-membership technique based on approximating the feasible parameter set using sets. Additionally, it can deal with models that are nonlinear in the parameters. The single-output and multiple-output cases are addressed as well. The procedure and results are illustrated by means of the application to a quadruple-tank process.

  5. Feasibility of Trace Alcohol Congener Detection and Identification Using Laser-Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Jialiang; Wang, Shangmin; Zhao, Lixian; Liu, Liying; Wang, Dezhen

    2014-12-01

    In this paper, a feasible scheme is reported for the detection and identification of trace alcohol congeners that have identical elemental composition using laser-induced breakdown spectroscopy (LIBS). In the scheme, an intensive pulsed laser is used to break down trace alcohol samples and the optical emission spectra of the induced plasma are collected for the detection and identification of alcohol molecules. In order to prepare trace alcohol samples, pure ethanol or methanol is bubbled by argon carrier gas and then mixed into matrix gases. The key issue for the scheme is to constitute indices from the LIBS data of the alcohol samples. Two indices are found to be suitable for alcohol detection and identification. One is the emission intensity ratio (denoted as H/C) of the hydrogen line (653.3 nm) to the carbon line (247.9 nm) for identification and the other is the ratio of the carbon line (as C/Ar) or the hydrogen line (as H/Ar) to the argon lines (866.7 nm) for quantitative detection. The calibration experiment result shows that the index H/C is specific for alcohol congeners while almost being independent of alcohol concentration. In detail, the H/C keeps a specific constant of 34 and 23 respectively for ethanol and methanol. In the meanwhile, the C/Ar and H/Ar indices respond almost linearly to the alcohol concentration below 1300 ppm, and are therefore competent for concentration measurement. With the indices, trace alcohol concentration measurement achieves a limit of 140 ppm using a laser pulse energy of 300 mJ.

  6. Multidimensional evaluation of a radio frequency identification wi-fi location tracking system in an acute-care hospital setting.

    PubMed

    Okoniewska, Barbara; Graham, Alecia; Gavrilova, Marina; Wah, Dannel; Gilgen, Jonathan; Coke, Jason; Burden, Jack; Nayyar, Shikha; Kaunda, Joseph; Yergens, Dean; Baylis, Barry; Ghali, William A

    2012-01-01

    Real-time locating systems (RTLS) have the potential to enhance healthcare systems through the live tracking of assets, patients and staff. This study evaluated a commercially available RTLS system deployed in a clinical setting, with three objectives: (1) assessment of the location accuracy of the technology in a clinical setting; (2) assessment of the value of asset tracking to staff; and (3) assessment of threshold monitoring applications developed for patient tracking and inventory control. Simulated daily activities were monitored by RTLS and compared with direct research team observations. Staff surveys and interviews concerning the system's effectiveness and accuracy were also conducted and analyzed. The study showed only modest location accuracy, and mixed reactions in staff interviews. These findings reveal that the technology needs to be refined further for better specific location accuracy before full-scale implementation can be recommended. PMID:22298566

  7. Multidimensional evaluation of a radio frequency identification wi-fi location tracking system in an acute-care hospital setting

    PubMed Central

    Okoniewska, Barbara; Graham, Alecia; Gavrilova, Marina; Wah, Dannel; Gilgen, Jonathan; Coke, Jason; Burden, Jack; Nayyar, Shikha; Kaunda, Joseph; Yergens, Dean; Baylis, Barry

    2012-01-01

    Real-time locating systems (RTLS) have the potential to enhance healthcare systems through the live tracking of assets, patients and staff. This study evaluated a commercially available RTLS system deployed in a clinical setting, with three objectives: (1) assessment of the location accuracy of the technology in a clinical setting; (2) assessment of the value of asset tracking to staff; and (3) assessment of threshold monitoring applications developed for patient tracking and inventory control. Simulated daily activities were monitored by RTLS and compared with direct research team observations. Staff surveys and interviews concerning the system's effectiveness and accuracy were also conducted and analyzed. The study showed only modest location accuracy, and mixed reactions in staff interviews. These findings reveal that the technology needs to be refined further for better specific location accuracy before full-scale implementation can be recommended. PMID:22298566

  8. Application of ARMAV models to the identification and damage detection of mechanical and civil engineering structures

    NASA Astrophysics Data System (ADS)

    Bodeux, J. B.; Golinval, J. C.

    2001-06-01

    In this paper, the application of auto-regressive moving average vector models to system identification and damage detection is investigated. These parametric models have already been applied for the analysis of multiple input-output systems under ambient excitation. Their main advantage consists in the capability of extracting modal parameters from the recorded time signals, without the requirement of excitation measurement. The excitation is supposed to be a stationary Gaussian white noise. The method also allows the estimation of modal parameter uncertainties. On the basis of these uncertainties, a statistically based damage detection scheme is performed and it becomes possible to assess whether changes of modal parameters are caused by, e.g. some damage or simply by estimation inaccuracies. The paper reports first an example of identification and damage detection applied to a simulated system under random excitation. The `Steel-Quake' benchmark proposed in the framework of COST Action F3 `Structural Dynamics' is also analysed. This structure was defined by the Joint Research Centre in Ispra (Italy) to test steel building performance during earthquakes. The proposed method gives an excellent identification of frequencies and mode shapes, while damping ratios are estimated with less accuracy.

  9. A simple identification method of saliva by detecting Streptococcus salivarius using loop-mediated isothermal amplification.

    PubMed

    Nakanishi, Hiroaki; Ohmori, Takeshi; Hara, Masaaki; Takada, Aya; Shojo, Hideki; Adachi, Noboru; Saito, Kazuyuki

    2011-01-01

    We previously reported that detection of Streptococcus salivarius is feasible for proving the presence of saliva in a forensic sample. Here, a simple and rapid method for the detection of S. salivarius in forensic samples was developed that uses loop-mediated isothermal amplification (LAMP). The LAMP primer set was designed using S. salivarius-specific sequences of glucosyltransferase K. To simplify the procedure, the sample was prepared by boiling and mutanolysin treatment only, and the entire analytical process was completed within 2.5 h. The cut-off value was set at 0.1 absorbance units, measured at 660 nm, upon termination of the reaction. S. salivarius was identified in all saliva samples, but was not detected in other body fluids or on the skin surface. Using this method, S. salivarius was successfully detected in various mock forensic samples. We therefore suggest that this approach is useful for the identification of saliva in forensic practice. PMID:21198609

  10. Rapid detection and identification of Clostridium chauvoei by PCR based on flagellin gene sequence.

    PubMed

    Kojima, A; Uchida, I; Sekizaki, T; Sasaki, Y; Ogikubo, Y; Tamura, Y

    2001-02-26

    We developed a one-step polymerase chain reaction (PCR) system that specifically detects Clostridium chauvoei. Oligonucleotide primers were designed to amplify a 516-bp fragment of the structural flagellin gene. The specificity of the PCR was investigated by analyzing 59 strains of clostridia, and seven strain of other genera. A 516-bp fragment could be amplified from all the C. chauvoei strains tested, and no amplification was observed by using DNAs from the other strains tested, including Clostridium septicum. Similarly, this PCR-based method specifically detected C. chauvoei DNA sequences in samples of muscle and exudate of obtained from mice within 12h of inoculation. In tests using samples of muscle or liver, the limit of detection was about 200 organisms per reaction. These results suggest that the one-step PCR system may be useful for direct detection and identification of C. chauvoei in clinical specimens. PMID:11182502

  11. Detection and identification of infectious bronchitis virus by RT-PCR in Iran.

    PubMed

    Homayounimehr, Alireza; Pakbin, Ahmad; Momayyez, Reza; Fatemi, Seyyedeh Mahsa Rastegar

    2016-06-01

    Infectious bronchitis virus (IBV) causes severe diseases in poultry with significant economic consequences to the poultry industry in Iran. The aim of this study was the detection and identification of IBV by reverse transcription(RT)-PCR in Iran. Ten IB virus strains were detected by testing trachea, cecal tonsil, and kidney tissues collected from broiler and layer farms in Iran. In order to detect infectious bronchitis virus, an optimized RT-PCR was used. Primers targeting the conserved region of known IBV serotypes were used in the RT-PCR assay. Primers selectively detecting Massachusetts and 793/B type IB viruses were designed to amplify the S1 gene of the virus and used in the nested PCR test. Our findings indicate the circulation of at least three genotypes of IB viruses (Massachusetts, 793/B, and variant 2) among poultry flocks. PMID:27010714

  12. Usefulness of Time-Frequency Patterns of Somatosensory Evoked Potentials in Identification of the Location of Spinal Cord Injury.

    PubMed

    Wang, Yazhou; Zhang, Zhiguo; Li, Xiang; Cui, Hongyan; Xie, Xiaobo; Luk, Keith Dip-Kei; Hu, Yong

    2015-08-01

    Somatosensory evoked potentials (SEPs) have been widely used to monitor the neurological integrity of the spinal cord during spinal surgery. However, the location of neurologic impairment cannot be determined from SEPs. Previous studies imply that the time-frequency characteristics of SEPs may reflect the location of the spinal cord injury. To validate the hypothesis that time-frequency patterns of SEPs are associated with the location of neurologic deficits in the spinal cord, we studied the time-frequency distributions of SEPs at different injury levels. Twenty-four rats were equally divided into one normal group and three injury groups, in which weight-drop contusions were delivered to the spinal cord of the rats at C4, C5, or C6 level, respectively. By comparing the time-frequency patterns of SEPs across groups, we found significant differences in several time-frequency regions of interest in the time-frequency distributions of the normal group and the injury groups. Importantly, the regions of interest were different across injury groups, suggesting that these regions of interest could be specific to injury locations. The results imply that changes of the time-frequency patterns of SEPs may be related to the location of the spinal cord injury. PMID:25626775

  13. Comparison of third generation versus fourth generation electronic apex locators in detecting apical constriction: An in vivo study

    PubMed Central

    Swapna, DV; Krishna, Akash; Patil, Anand C; Rashmi, K; Pai, Veena S; Ranjini, MA

    2015-01-01

    Aim: The aim of this in vivo study was to compare the accuracy of Root ZX and Raypex 5 in detecting minor diameter in human permanent single-rooted teeth. Materials and Methods: Thirty-one patients with completely formed single-rooted permanent teeth indicated for extraction were selected for the study. Crown was flattened for stable reference point and access cavity prepared. Working length was determined with both apex locators. A 15 K file adjusted to that reading was placed in the root canal and stabilized with cement. The tooth was then extracted atraumatically. Following extraction apical 4 mm of root was shaved. The position of the minor diameter in relation to the anatomic apex was recorded for each tooth under stereomicroscope at ×10. The efficiency of two electronic apex locators to determine the minor diameter was statistically analyzed using paired sample t-test. Results: The minor diameter was located within the limits of ±0.5 mm in 96.6% of the samples with the Root ZX and 93.2% of the samples with Raypex 5. The paired sample t-test showed no significant difference. Conclusion: On analyzing the results of our study it can be concluded that Raypex 5 was as effective as Root ZX in determining the minor diameter. PMID:26180412

  14. Rapid Electrochemical Detection and Identification of Microbiological and Chemical Contaminants for Manned Spaceflight Project

    NASA Technical Reports Server (NTRS)

    Pierson, Duane; Botkin, Douglas; Gazda, Daniel

    2014-01-01

    Microbial control in the spacecraft environment is a daunting task, especially in the presence of human crew members. Currently, assessing the potential crew health risk associated with a microbial contamination event requires return of representative environmental samples that are analyzed in a ground-based laboratory. It is therefore not currently possible to quickly identify microbes during spaceflight. This project addresses the unmet need for spaceflight-compatible microbial identification technology. The electrochemical detection and identification platform is expected to provide a sensitive, specific, and rapid sample-to-answer capability for in-flight microbial monitoring that can distinguish between related microorganisms (pathogens and non-pathogens) as well as chemical contaminants. This will dramatically enhance our ability to monitor the spacecraft environment and the health risk to the crew. Further, the project is expected to eliminate the need for sample return while significantly reducing crew time required for detection of multiple targets. Initial work will focus on the optimization of bacterial detection and identification. The platform is designed to release nucleic acids (DNA and RNA) from microorganisms without the use of harmful chemicals. Bacterial DNA or RNA is captured by bacteria-specific probe molecules that are bound to a microelectrode, and that capture event can generate a small change in the electrical current (Lam, et al. 2012. Anal. Chem. 84(1): 21-5.). This current is measured, and a determination is made whether a given microbe is present in the sample analyzed. Chemical detection can be accomplished by directly applying a sample to the microelectrode and measuring the resulting current change. This rapid microbial and chemical detection device is designed to be a low-cost, low-power platform anticipated to be operated independently of an external power source, characteristics optimal for manned spaceflight and areas where power

  15. Electrochemical detection of commercial silver nanoparticles: identification, sizing and detection in environmental media

    NASA Astrophysics Data System (ADS)

    Stuart, E. J. E.; Tschulik, K.; Omanović, D.; Cullen, J. T.; Jurkschat, K.; Crossley, A.; Compton, R. G.

    2013-11-01

    The electrochemistry of silver nanoparticles contained in a consumer product has been studied. The redox properties of silver particles in a commercially available disinfectant cleaning spray were investigated via cyclic voltammetry before particle-impact voltammetry was used to detect single particles in both a typical aqueous electrolyte and authentic seawater media. We show that particle-impact voltammetry is a promising method for the detection of nanoparticles that have leached into the environment from consumer products, which is an important development for the determination of risks associated with the incorporation of nanotechnology into everyday products.

  16. A review of in-flight detection and identification of aircraft icing and reconfigurable control

    NASA Astrophysics Data System (ADS)

    Caliskan, Fikret; Hajiyev, Chingiz

    2013-07-01

    The recent improvements and research on aviation have focused on the subject of aircraft safe flight even in the severe weather conditions. As one type of such weather conditions, aircraft icing considerably has negative effects on the aircraft flight performance. The risks of the iced aerodynamic surfaces of the flying aircraft have been known since the beginning of the first flights. Until recent years, as a solution for this event, the icing conditions ahead flight route are estimated from radars or other environmental sensors, hence flight paths are changed, or, if it exists, anti-icing/de-icing systems are used. This work aims at the detection and identification of airframe icing based on statistical properties of aircraft dynamics and reconfigurable control protecting aircraft from hazardous icing conditions. In this review paper, aircraft icing identification based on neural network (NN), batch least-squares algorithm, Kalman filtering (KF), combined NN/KF, and H∞ parameter identification techniques are investigated, and compared with each other. Following icing identification, reconfigurable control is applied for protecting the aircraft from hazardous icing conditions.

  17. Locating Basic Spanish Colour Categories in CIE L*u*v* Space: Identification, Lightness Segregation and Correspondence with English Equivalents

    ERIC Educational Resources Information Center

    Lillo, Julio; Moreira, Humberto; Vitini, Isaac; Martin, Jesus

    2007-01-01

    Five experiments were performed to identify the basic Spanish colour categories (BCCs) and to locate them in the CIE L*u*v* space. The existence of 11 BCCs was confirmed using an elicited list task and a free monolexemic naming task. From the results provided by a synonymicity estimation task, it was concluded that, in Spanish, 2 synonymous terms…

  18. Single assay for simultaneous detection and differential identification of human and avian influenza virus types, subtypes, and emergent variants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rapid and accurate detection, identification and genetic characterization are essential for effective surveillance and epidemiological tracking of influenza viruses. This report describes applications of a resequencing pathogen microarray (RPM) assay that is capable of simultaneous sequencing of su...

  19. IDENTIFICATION AND QUANTITATION OF ALKYLATED NUCLEOBASIS BY HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY WITH UV PHOTODIODE ARRAY DETECTION

    EPA Science Inventory

    The application of UV diode array detection in high-performance liquid chromatographic (HPLC) identification and quantitation of several classes of synthetic and commercially available alkylated nucleobases is investigated. uantitative spectral overlays of these compounds to meth...

  20. Consistent detection and identification of individuals in a large camera network

    NASA Astrophysics Data System (ADS)

    Colombo, Alberto; Leung, Valerie; Orwell, James; Velastin, Sergio A.

    2007-10-01

    In the wake of an increasing number of terrorist attacks, counter-terrorism measures are now a main focus of many research programmes. An important issue for the police is the ability to track individuals and groups reliably through underground stations, and in the case of post-event analysis, to be able to ascertain whether specific individuals have been at the station previously. While there exist many motion detection and tracking algorithms, the reliable deployment of them in a large network is still ongoing research. Specifically, to track individuals through multiple views, on multiple levels and between levels, consistent detection and labelling of individuals is crucial. In view of these issues, we have developed a change detection algorithm to work reliably in the presence of periodic movements, e.g. escalators and scrolling advertisements, as well as a content-based retrieval technique for identification. The change detection technique automatically extracts periodically varying elements in the scene using Fourier analysis, and constructs a Markov model for the process. Training is performed online, and no manual intervention is required, making this system suitable for deployment in large networks. Experiments on real data shows significant improvement over existing techniques. The content-based retrieval technique uses MPEG-7 descriptors to identify individuals. Given the environment under which the system operates, i.e. at relatively low resolution, this approach is suitable for short timescales. For longer timescales, other forms of identification such as gait, or if the resolution allows, face recognition, will be required.

  1. Generic RT-PCR tests for detection and identification of tospoviruses.

    PubMed

    Hassani-Mehraban, A; Westenberg, M; Verhoeven, J T J; van de Vossenberg, B T L H; Kormelink, R; Roenhorst, J W

    2016-07-01

    A set of tests for generic detection and identification of tospoviruses has been developed. Based on a multiple sequence alignment of the nucleocapsid gene and its 5' upstream untranslated region sequence from 28 different species, primers were designed for RT-PCR detection of tospoviruses from all recognized clades, i.e. the American, Asian and Eurasian clades, and from the small group of distinct and floating species. Pilot experiments on isolates from twenty different species showed that the designed primer sets successfully detected all species by RT-PCR, as confirmed by nucleotide sequence analysis of the amplicons. In a final optimized design, the primers were applied in a setting of five RT-PCR tests. Seven different tospoviruses were successfully identified from diagnostic samples and in addition a non-described tospovirus species from alstroemeria plants. The results demonstrate that the newly developed generic RT-PCR tests provide a relevant tool for broad detection and identification of tospoviruses in plant quarantine and diagnostic laboratories. PMID:27036502

  2. Identification and detection of gaseous effluents from hyperspectral imagery using invariant algorithms

    NASA Astrophysics Data System (ADS)

    O'Donnell, Erin M.; Messinger, David W.; Salvaggio, Carl; Schott, John R.

    2004-08-01

    The ability to detect and identify effluent gases is, and will continue to be, of great importance. This would not only aid in the regulation of pollutants but also in treaty enforcement and monitoring the production of weapons. Considering these applications, finding a way to remotely investigate a gaseous emission is highly desirable. This research utilizes hyperspectral imagery in the infrared region of the electromagnetic spectrum to evaluate an invariant method of detecting and identifying gases within a scene. The image is evaluated on a pixel-by-pixel basis and is studied at the subpixel level. A library of target gas spectra is generated using a simple slab radiance model. This results in a more robust description of gas spectra which are representative of real-world observations. This library is the subspace utilized by the detection and identification algorithms. The subspace will be evaluated for the set of basis vectors that best span the subspace. The Lee algorithm will be used to determine the set of basis vectors, which implements the Maximum Distance Method (MaxD). A Generalized Likelihood Ratio Test (GLRT) determines whether or not the pixel contains the target. The target can be either a single species or a combination of gases. Synthetically generated scenes will be used for this research. This work evaluates whether the Lee invariant algorithm will be effective in the gas detection and identification problem.

  3. Immunity-based detection, identification, and evaluation of aircraft sub-system failures

    NASA Astrophysics Data System (ADS)

    Moncayo, Hever Y.

    This thesis describes the design, development, and flight-simulation testing of an integrated Artificial Immune System (AIS) for detection, identification, and evaluation of a wide variety of sensor, actuator, propulsion, and structural failures/damages including the prediction of the achievable states and other limitations on performance and handling qualities. The AIS scheme achieves high detection rate and low number of false alarms for all the failure categories considered. Data collected using a motion-based flight simulator are used to define the self for an extended sub-region of the flight envelope. The NASA IFCS F-15 research aircraft model is used and represents a supersonic fighter which include model following adaptive control laws based on non-linear dynamic inversion and artificial neural network augmentation. The flight simulation tests are designed to analyze and demonstrate the performance of the immunity-based aircraft failure detection, identification and evaluation (FDIE) scheme. A general robustness analysis is also presented by determining the achievable limits for a desired performance in the presence of atmospheric perturbations. For the purpose of this work, the integrated AIS scheme is implemented based on three main components. The first component performs the detection when one of the considered failures is present in the system. The second component consists in the identification of the failure category and the classification according to the failed element. During the third phase a general evaluation of the failure is performed with the estimation of the magnitude/severity of the failure and the prediction of its effect on reducing the flight envelope of the aircraft system. Solutions and alternatives to specific design issues of the AIS scheme, such as data clustering and empty space optimization, data fusion and duplication removal, definition of features, dimensionality reduction, and selection of cluster/detector shape are also

  4. Global detection of explosive volcanic eruptions with the World Wide Lightning Location Network (WWLLN) and application to aviation safety (Invited)

    NASA Astrophysics Data System (ADS)

    Ewert, J. W.; Holzworth, R. H.; Diefenbach, A. K.

    2010-12-01

    The hazards of volcanic ash to modern aviation are now widely known, and there is a concerted global effort on the part of volcano observatories, meteorological services, and civil aviation authorities to keep aircraft out of harm’s way. A major issue with providing rapid notification of dangerous eruptions is that only about 50% of the world's volcanoes that currently threaten air operations have any sort of ground-based, real-time monitoring; thus, timely detection of explosive eruptions is more difficult owing to reliance on satellite remote sensing. We have been evaluating the World Wide Lightning Location Network (WWLLN, see http://wwlln.net) as a tool to detect volcanogenic lightning associated with explosive eruptions worldwide to aid rapid eruption reporting for aviation. The WWLLN has a data latency of one minute and thus can detect and report volcanogenic lightning in near-real time. We compared explosive volcanic activity worldwide (data from the Smithsonian’s Global Volcanism Program, volcano observatory reports, Volcanic Ash Advisory Center (VAAC) reports, and ancillary data sources) with the entire catalog of WWLLN data for 2008 and 2009 to determine the eruption-detection capabilities of the system. Duration and number of WWLLN lightning detections is positively correlated with eruption magnitude. In 2008 the WWLLN detected lightning from all eruptions VEI 4 or larger (Chaiten, Chile; Kasatochi and Okmok, Alaska, USA), as well as four out of six of the ~VEI 3 and two ~VEI 2 eruptions. In 2009 the WWLLN detected the single VEI 4 eruption (Sarychev Peak, Kurile Islands, Russia), four out six of the ~VEI 3 and a single VEI 2 eruption. At volcanoes where eruption-onset times are well determined by seismic or remote sensing means, lightning flashes started within 4 to 58 minutes of eruption onset. Lightning was detected from eruptions that produced ash clouds with heights that ranged from approximately 1-15 km above the vent, with most >9 km. Detected

  5. Development of conductive polymer analysis for the rapid detection and identification of phytopathogenic microbes.

    PubMed

    Wilson, A D; Lester, D G; Oberle, C S

    2004-05-01

    ABSTRACT Conductive polymer analysis, a type of electronic aroma detection technology, was evaluated for its efficacy in the detection, identification, and discrimination of plant-pathogenic microorganisms on standardized media and in diseased plant tissues. The method is based on the acquisition of a diagnostic electronic fingerprint derived from multisensor responses to distinct mixtures of volatile metabolites released into sampled headspace. Protocols were established to apply this technology specifically to plant disease diagnosis. This involved development of standardized cultural methods, new instrument architecture for sampling, sample preparation, prerun procedures, run parameters and schedules, recognition files and libraries, data manipulations, and validation protocols for interpretations of results. The collective output from a 32-sensor array produced unique electronic aroma signature patterns diagnostic of individual microbial species in culture and specific pathogen-host combinations associated with diseased plants. The level of discrimination applied in identifications of unknowns was regulated by confidence level and sensitivity settings during construction of application-specific reference libraries for each category of microbe or microbe-host combination identified. Applications of this technology were demonstrated for the diagnosis of specific disease systems, including bacterial and fungal diseases and decays of trees; for host identifications; and for determinations of levels of infection and relatedness between microbial species. Other potential applications to plant pathology are discussed with some advantages and limitations for each type of diagnostic application. PMID:18943759

  6. Identification of chemical warfare agents using a portable microchip-based detection device

    NASA Astrophysics Data System (ADS)

    Petkovic-Duran, K.; Swallow, A.; Sexton, B. A.; Glenn, F.; Zhu, Y.

    2011-12-01

    Analysis of chemical warfare agents (CWAs) and their degradation products is an important verification component in support of the Chemical Weapons Convention and urgently demanding rapid and reliable analytical methods. A portable microchip electrophoresis (ME) device with contactless conductivity (CCD) detection was developed for the in situ identification of CWA and their degradation products. A 10mM MES/His, 0.4mM CTAB - based separation electrolyte accomplished the analysis of Sarin (GB), Tabun( GA) and Soman (GD) in less than 1 min, which is the fastest screening of nerve agents achieved with portable ME and CCD based detection methods to date. Reproducibility of detection was successfully demonstrated on simultaneous detection of GB (200ppm) and GA (278ppm). Reasonable agreement for the four consecutive runs was achieved with the mean peak time for Sarin of 29.15s, and the standard error of 0.58s or 2%. GD and GA were simultaneously detected with their degradation products methylphosphonic acid (MPA), pinacolyl methylphosphonic acid (PMPA) and O-Ethyl Phosphorocyanidate (GAHP and GAHP1) respectively. The detection limit for Sarin was around 35ppb. To the best of our knowledge this is the best result achieved in microchip electrophoresis and contactless conductivity based detection to date.

  7. Reliable dual-redundant sensor failure detection and identification for the NASA F-8 DFBW aircraft

    NASA Technical Reports Server (NTRS)

    Deckert, J. C.; Desai, M. N.; Deyst, J. J., Jr.; Willsky, A. S.

    1978-01-01

    A technique was developed which provides reliable failure detection and identification (FDI) for a dual redundant subset of the flight control sensors onboard the NASA F-8 digital fly by wire (DFBW) aircraft. The technique was successfully applied to simulated sensor failures on the real time F-8 digital simulator and to sensor failures injected on telemetry data from a test flight of the F-8 DFBW aircraft. For failure identification the technique utilized the analytic redundancy which exists as functional and kinematic relationships among the various quantities being measured by the different control sensor types. The technique can be used not only in a dual redundant sensor system, but also in a more highly redundant system after FDI by conventional voting techniques reduced to two the number of unfailed sensors of a particular type. In addition the technique can be easily extended to the case in which only one sensor of a particular type is available.

  8. Rapid Detection and Identification of a Pathogen's DNA Using Phi29 DNA Polymerase

    SciTech Connect

    Xu, Y.; Dunn, J.; Gao, S.; Bruno, J. F.; Luft, B. J.

    2008-10-31

    Zoonotic pathogens including those transmitted by insect vectors are some of the most deadly of all infectious diseases known to mankind. A number of these agents have been further weaponized and are widely recognized as being potentially significant biothreat agents. We describe a novel method based on multiply-primed rolling circle in vitro amplification for profiling genomic DNAs to permit rapid, cultivation-free differential detection and identification of circular plasmids in infectious agents. Using Phi29 DNA polymerase and a two-step priming reaction we could reproducibly detect and characterize by DNA sequencing circular DNA from Borrelia burgdorferi B31 in DNA samples containing as little as 25 pg of Borrelia DNA amongst a vast excess of human DNA. This simple technology can ultimately be adapted as a sensitive method to detect specific DNA from both known and unknown pathogens in a wide variety of complex environments.

  9. Target detection and identification using a stepped-frequency ultrawideband radar

    NASA Astrophysics Data System (ADS)

    Rothwell, Edward J.; Chen, Kun Mu; Nyquist, Dennis P.; Norman, Adam; Wallinga, G.; Dai, Y.

    1996-11-01

    Ultra-wideband radar systems provide great potential for radar target detection, identification and imaging through their inherent high-resolution capabilities. This paper considers two applications of a stepped-frequency ultra- wideband radar--detection of targets close to a disturbed sea surface, and imaging of airborne targets. A new technique for target detection is presented, based on the E- pulse concept and designed to eradicate the sea clutter signal while enhancing the target response. A simulation of a missile travelling above an evolving sea-water model is considered, and results are compared to measurements made in an anechoic chamber. Finally, the effects of signal bandwidth and bistatic angle on image resolution are explored, using a time-domain imaging identity with measured, band-limited signals.

  10. Detection, identification, and estimation of biological aerosols and vapors with a Fourier-transform infrared spectrometer

    NASA Astrophysics Data System (ADS)

    Ben-David, Avishai; Ren, Hsuan

    2003-08-01

    Two experiments were conducted with a Fourier-transform infrared (FTIR) spectrometer. The purpose of the first experiment was to detect and identify Bacillus subtilis subsp. niger (BG) bioaerosol spores and kaolin dust in an open-air release for which the thermal contrast between the aerosol temperature and background brightness temperature is small. The second experiment estimated the concentration of a small amount of triethyl phosphate (TEP) vapor in a closed chamber in which an external blackbody radiation source was used and where the thermal contrast was large. The deduced BG (TEP) extinction spectrum (identification) showed an excellent match to the library BG (TEP) extinction spectrum. Analysis of the time sequence of the measurements coincided well with the presence (detection) of the BG during the measurements, and the estimated concentration of time-dependent TEP vapor was excellent. The data were analyzed with hyperspectral detection, identification, and estimation algorithms. The algorithms were based on radiative transfer theory and statistical signal-processing methods. A subspace orthogonal projection operator was used to statistically subtract the large thermal background contribution to the measurements, and a robust maximum-likelihood solution was used to deduce the target (aerosol or vapor cloud) spectrum and estimate its mass-column concentration. A Gaussian-mixture probability model for the deduced mass-column concentration was computed with an expectation-maximization algorithm to produce the detection threshold, the probability of detection, and the probability of false alarm. The results of this study are encouraging, as they suggest for the first time to the authors' knowledge the feasibility of detecting biological aerosols with passive FTIR sensors.

  11. Detection, identification, and estimation of biological aerosols and vapors with a Fourier-transform infrared spectrometer.

    PubMed

    Ben-David, Avishai; Ren, Hsuan

    2003-08-20

    Two experiments were conducted with a Fourier-transform infrared (FTIR) spectrometer. The purpose of the first experiment was to detect and identify Bacillus subtilis subsp. niger (BG) bioaerosol spores and kaolin dust in an open-air release for which the thermal contrast between the aerosol temperature and background brightness temperature is small. The second experiment estimated the concentration of a small amount of triethyl phosphate (TEP) vapor in a closed chamber in which an external blackbody radiation source was used and where the thermal contrast was large. The deduced BG (TEP) extinction spectrum (identification) showed an excellent match to the library BG (TEP) extinction spectrum. Analysis of the time sequence of the measurements coincided well with the presence (detection) of the BG during the measurements, and the estimated concentration of time-dependent TEP vapor was excellent. The data were analyzed with hyperspectral detection, identification, and estimation algorithms. The algorithms were based on radiative transfer theory and statistical signal-processing methods. A subspace orthogonal projection operator was used to statistically subtract the large thermal background contribution to the measurements, and a robust maximum-likelihood solution was used to deduce the target (aerosol or vapor cloud) spectrum and estimate its mass-column concentration. A Gaussian-mixture probability model for the deduced mass-column concentration was computed with an expectation-maximization algorithm to produce the detection threshold, the probability of detection, and the probability of false alarm. The results of this study are encouraging, as they suggest for the first time to the authors' knowledge the feasibility of detecting biological aerosols with passive FTIR sensors. PMID:12952336

  12. Lattice Location of 12B in Single-Crystal Ni3Al Studied by -Radiation Detected NMR

    NASA Astrophysics Data System (ADS)

    Fischer, B.; Ittermann, B.; Diehl, E.; Dippel, R.; Ergezinger, K. H.; Frank, H.-P.; Jäger, E.; Seelinger, W.; Sulzer, G.; Ackermann, H.; Stöckmann, H.-J.; Bohn, H. G.

    -radiation detected nuclear magnetic resonance was applied to determine the location of 12B probe nuclei in a Ni3Al single crystal. Combining our results with those of channeling experiments it turned out that more than 90% of the 12B ions occupy the octahedral interstitial site with six Ni ions as nearest neighbours.Translated AbstractGitterplatzbestimmung von 12B im Ni3Al-Einkristall mittels -strahlungsdetektierter NMRDer Einbauplatz des Sondenkerns 12B im Ni3Al-Einkristall wurde durch Kernresonanz mit β-Strahlungsnachweis bestimmt. Aus der Kombination mit Ergebnissen von Gitterführungsexperimenten ergab sich, daß über 90% der 12B-Ionen auf oktaedrischen Zwischengitterplätzen mit sechs Ni-Ionen als nächsten Nachbarn eingebaut werden.

  13. Reconstructing the Sky Location of Gravitational-Wave Detected Compact Binary Systems: Methodology for Testing and Comparison

    NASA Technical Reports Server (NTRS)

    Sidney, T.; Aylott, B.; Christensen, N.; Farr, B.; Farr, W.; Feroz, F.; Gair, J.; Grover, K.; Graff, P.; Hanna, C.; Kalogera, V.; Mandel, I.; O'Shaughnessy, R.; Pitkin, M.; Price, L.; Raymond, V.; Roever, C.; Singer, L.; vanderSluys, M.; Smith, R. J. E.; Vecchio, A.; Veitch, J.; Vitale, S.

    2014-01-01

    The problem of reconstructing the sky position of compact binary coalescences detected via gravitational waves is a central one for future observations with the ground-based network of gravitational-wave laser interferometers, such as Advanced LIGO and Advanced Virgo. Different techniques for sky localization have been independently developed. They can be divided in two broad categories: fully coherent Bayesian techniques, which are high latency and aimed at in-depth studies of all the parameters of a source, including sky position, and "triangulation-based" techniques, which exploit the data products from the search stage of the analysis to provide an almost real-time approximation of the posterior probability density function of the sky location of a detection candidate. These techniques have previously been applied to data collected during the last science runs of gravitational-wave detectors operating in the so-called initial configuration. Here, we develop and analyze methods for assessing the self consistency of parameter estimation methods and carrying out fair comparisons between different algorithms, addressing issues of efficiency and optimality. These methods are general, and can be applied to parameter estimation problems other than sky localization. We apply these methods to two existing sky localization techniques representing the two above-mentioned categories, using a set of simulated inspiralonly signals from compact binary systems with a total mass of equal to or less than 20M solar mass and nonspinning components. We compare the relative advantages and costs of the two techniques and show that sky location uncertainties are on average a factor approx. equals 20 smaller for fully coherent techniques than for the specific variant of the triangulation-based technique used during the last science runs, at the expense of a factor approx. equals 1000 longer processing time.

  14. Detection performance of power-law processors for random signals of unknown location, structure, extent, and strength

    SciTech Connect

    Nuttall, A.H.

    1996-06-01

    A signal (if present) is located somewhere in a band of frequencies characterized by a total of N search bins. The signal occupies an arbitrary set of M{underscore} of these bins, where not only is M{underscore} unknown, but also, the locations of the particular M{underscore} occupied bins are unknown. Also, the signal strength is unknown. A class of processors, called the power-law processors, is investigated, in which the available data is raised to the {nu}-th power prior to summation over all data values. The receiver operating characteristics have been determined for values of power {nu}=1, 2, 2.5, 3, {infinity} for a wide range of values of M{underscore}. These results allow for accurate extraction of required signal-to-noise ratios to achieve a specified level of performance, as measured by the false alarm and detection probabilities, P{sub f} and P{sub d}. One of the most surprising and useful results of this study is the discovery that the power-law processor with {nu}=2.4 performs near the absolute optimum, even without any knowledge of the number of occupied bins M{underscore} or the signal-to-noise ratio. {copyright} {ital 1996 American Institute of Physics.}

  15. Active-SWIR signatures for long-range night/day human detection and identification

    NASA Astrophysics Data System (ADS)

    Martin, Robert B.; Sluch, Mikhail; Kafka, Kristopher M.; Ice, Robert; Lemoff, Brian E.

    2013-05-01

    The capability to detect, observe, and positively identify people at a distance is important to numerous security and defense applications. Traditional solutions for human detection and observation include long-range visible imagers for daytime and thermal infrared imagers for night-time use. Positive identification, through computer face recognition, requires facial imagery that can be repeatably matched to a database of visible facial signatures (i.e. mug shots). Nighttime identification at large distance is not possible with visible imagers, due to lack of light, or with thermal infrared imagers, due to poor correlation with visible facial imagery. An active-SWIR imaging system was developed that is both eye-safe and invisible, capable of producing close-up facial imagery at distances of several hundred meters, even in total darkness. The SWIR facial signatures correlate well to visible signatures, allowing for biometric face recognition night or day. Night-time face recognition results for several distances will be presented. Human detection and observation results at larger distances will also be presented. Example signatures will be presented and discussed.

  16. [Molecular techniques for detection and identification of pathogens in food: advantages and limitations].

    PubMed

    Palomino-Camargo, Carolina; González-Muñoz, Yuniesky

    2014-01-01

    Foodborne diseases, caused by pathogenic microorganisms, are a major public health problem worldwide. Microbiological methods commonly used in the detection of these foodborne pathogens are laborious and time consuming. This situation, coupled with the demand for immediate results and with technological advances, has led to the development of a wide range of rapid methods in recent decades. On this basis, this review describes the advantages and limitations of the main molecular methods used in detection and identification of foodborne pathogens. To this end, we considered how recent the information was published, the objective analysis of the topic and its scope. Recent literature reports a significant number of alternative, sensitive and selective molecular techniques for detection, enumeration and identification of pathogenic microorganisms in food. Polymerase chain reaction (PCR) is the most popular platform, while high performance sequencing is emerging as a technique of wide applicability for the future. However, even with all the advantages of these new methodologies, their limitations should not be overlooked. For example, molecular methods are not standardized protocols, which hinders its use in some cases. For this reason, hard work should be done to overcome these limitations and improve the application of these techniques in complex matrices such as food systems. PMID:25418655

  17. Chemical agent standoff detection and identification with a hyperspectral imaging infrared sensor

    NASA Astrophysics Data System (ADS)

    Lagueux, Philippe; Vallières, Alexandre; Villemaire, André; Chamberland, Martin; Farley, Vincent; Giroux, Jean

    2009-09-01

    Standoff detection, identification and quantification of chemical agents are fundamental needs in several fields of applications. Additional required sensor characteristics include high sensitivity, low false alarms and high-speed (ideally real-time) operation, all in a compact and robust package. The thermal infrared portion of the electromagnetic spectrum has been utilized to implement such chemical sensors, either with spectrometers (with none or moderate imaging capability) or with imagers (with moderate spectral capability). Only with the recent emergence of high-speed, large format infrared imaging arrays, has it been possible to design chemical sensors offering uncompromising performance in the spectral, spatial, as well as the temporal domain. Telops has developed an innovative instrument that can not only provide an early warning for chemical agents and toxic chemicals, but also one that provides a "Chemical Map" in the field of view. To provide to best field imaging spectroscopy instrument, Telops has developed the FIRST, Field-portable Imaging Radiometric Spectrometer Technology, instrument. This instrument is based on a modular design that includes: a high-performance infrared FPA and data acquisition electronics, onboard data processing electronics, a high-performance Fourier transform modulator, dual integrated radiometric calibration targets and a visible boresight camera. These modules, assembled together in an environmentally robust structure, used in combination with Telops' proven radiometric and spectral calibration algorithms make this instrument a world-class passive standoff detection system for chemical imaging. This paper presents chemical detection and identification results obtained with the FIRST sensor.

  18. Hyperspectral imaging of the crime scene for detection and identification of blood stains

    NASA Astrophysics Data System (ADS)

    Edelman, G. J.; van Leeuwen, T. G.; Aalders, M. C. G.

    2013-05-01

    Blood stains are an important source of information in forensic investigations. Extraction of DNA may lead to the identification of victims or suspects, while the blood stain pattern may reveal useful information for the reconstruction of a crime. Consequently, techniques for the detection and identification of blood stains are ideally non-destructive in order not to hamper both DNA and the blood stain pattern analysis. Currently, forensic investigators mainly detect and identify blood stains using chemical or optical methods, which are often either destructive or subject to human interpretation. We demonstrated the feasibility of hyperspectral imaging of the crime scene to detect and identify blood stains remotely. Blood stains outside the human body comprise the main chromophores oxy-hemoglobin, methemoglobin and hemichrome. Consequently, the reflectance spectra of blood stains are influenced by the composite of the optical properties of the individual chromophores and the substrate. Using the coefficient of determination between a non-linear least squares multi-component fit and the measured spectra blood stains were successfully distinguished from other substances visually resembling blood (e.g. ketchup, red wine and lip stick) with a sensitivity of 100 % and a specificity of 85 %. The practical applicability of this technique was demonstrated at a mock crime scene, where blood stains were successfully identified automatically.

  19. Fault detection and identification in missile system guidance and control: a filtering approach

    NASA Astrophysics Data System (ADS)

    Padgett, Mary Lou; Evers, Johnny; Karplus, Walter J.

    1996-03-01

    Real-world applications of computational intelligence can enhance the fault detection and identification capabilities of a missile guidance and control system. A simulation of a bank-to- turn missile demonstrates that actuator failure may cause the missile to roll and miss the target. Failure of one fin actuator can be detected using a filter and depicting the filter output as fuzzy numbers. The properties and limitations of artificial neural networks fed by these fuzzy numbers are explored. A suite of networks is constructed to (1) detect a fault and (2) determine which fin (if any) failed. Both the zero order moment term and the fin rate term show changes during actuator failure. Simulations address the following questions: (1) How bad does the actuator failure have to be for detection to occur, (2) How bad does the actuator failure have to be for fault detection and isolation to occur, (3) are both zero order moment and fine rate terms needed. A suite of target trajectories are simulated, and properties and limitations of the approach reported. In some cases, detection of the failed actuator occurs within 0.1 second, and isolation of the failure occurs 0.1 after that. Suggestions for further research are offered.

  20. Gas and flame detection and identification using uncooled MWIR imaging sensors

    NASA Astrophysics Data System (ADS)

    Linares, Rodrigo; Vergara, Germán.; Gutiérrez, Raúl; Fernández, Carlos; Villamayor, Víctor; Gómez, Luis; González-Camino, María.; Baldasano, Arturo

    2015-05-01

    Gas detectors are nowadays widely spread for safety purposes in industrial facilities. They are categorized by the type of gas they detect: combustible and/or toxic. Whereas electrochemical sensors have limited lifetime and maintenance issues, infrared sensors are reliable and free of maintenance devices used for detecting a wide variety of VOCs and inflammable gases such as hydrocarbon vapors. They usually work via a system of transmitters (light sources) which power is interfered when a gas is present in the optical path. A spectral analysis of this optical interference allows the gas detection and identification. Optical flame detectors are sensors intended to sight and respond to the presence of a flame, faster than a smoke detector or a heat detector would do. Many of these systems operate in the infrared band in order to detect the heat radiation, most of the times by comparison of three specific wavelength bands. Most of the present infrared gas and optical flame detectors traditionally make use of MWIR single point sensors rather than imaging sensors; this is mainly due to the lack of affordable imaging sensing technologies in this band of the infrared spectrum. However, the appearance of uncooled imaging MWIR sensors made of VPD PbSe, with spectral detection range from 1 to 5 microns, opens the possibility to incorporate these sensors into gas and flame detection systems to allow area monitoring.

  1. Identification of novel craniofacial regulatory domains located far upstream of SOX9 and disrupted in Pierre Robin sequence

    PubMed Central

    Gordon, Christopher T.; Attanasio, Catia; Bhatia, Shipra; Benko, Sabina; Ansari, Morad; Tan, Tiong Y.; Munnich, Arnold; Pennacchio, Len A.; Abadie, Véronique; Temple, I. Karen; Goldenberg, Alice; van Heyningen, Veronica; Amiel, Jeanne; FitzPatrick, David; Kleinjan, Dirk A.; Visel, Axel; Lyonnet, Stanislas

    2015-01-01

    Mutations in the coding sequence of SOX9 cause campomelic dysplasia (CD), a disorder of skeletal development associated with 46,XY disorders of sex development (DSDs). Translocations, deletions and duplications within a ~2 Mb region upstream of SOX9 can recapitulate the CD-DSD phenotype fully or partially, suggesting the existence of an unusually large cis-regulatory control region. Pierre Robin sequence (PRS) is a craniofacial disorder that is frequently an endophenotype of CD and a locus for isolated PRS at ~1.2-1.5 Mb upstream of SOX9 has been previously reported. The craniofacial regulatory potential within this locus, and within the greater genomic domain surrounding SOX9, remains poorly defined. We report two novel deletions upstream of SOX9 in families with PRS, allowing refinement of the regions harbouring candidate craniofacial regulatory elements. In parallel, ChIP-Seq for p300 binding sites in mouse craniofacial tissue led to the identification of several novel craniofacial enhancers at the SOX9 locus, which were validated in transgenic reporter mice and zebrafish. Notably, some of the functionally validated elements fall within the PRS deletions. These studies suggest that multiple non-coding elements contribute to the craniofacial regulation of SOX9 expression, and that their disruption results in PRS. PMID:24934569

  2. Geometric identification and damage detection of structural elements by terrestrial laser scanner

    NASA Astrophysics Data System (ADS)

    Hou, Tsung-Chin; Liu, Yu-Wei; Su, Yu-Min

    2016-04-01

    In recent years, three-dimensional (3D) terrestrial laser scanning technologies with higher precision and higher capability are developing rapidly. The growing maturity of laser scanning has gradually approached the required precision as those have been provided by traditional structural monitoring technologies. Together with widely available fast computation for massive point cloud data processing, 3D laser scanning can serve as an efficient structural monitoring alternative for civil engineering communities. Currently most research efforts have focused on integrating/calculating the measured multi-station point cloud data, as well as modeling/establishing the 3D meshes of the scanned objects. Very little attention has been spent on extracting the information related to health conditions and mechanical states of structures. In this study, an automated numerical approach that integrates various existing algorithms for geometric identification and damage detection of structural elements were established. Specifically, adaptive meshes were employed for classifying the point cloud data of the structural elements, and detecting the associated damages from the calculated eigenvalues in each area of the structural element. Furthermore, kd-tree was used to enhance the searching efficiency of plane fitting which were later used for identifying the boundaries of structural elements. The results of geometric identification were compared with M3C2 algorithm provided by CloudCompare, as well as validated by LVDT measurements of full-scale reinforced concrete beams tested in laboratory. It shows that 3D laser scanning, through the established processing approaches of the point cloud data, can offer a rapid, nondestructive, remote, and accurate solution for geometric identification and damage detection of structural elements.

  3. Determination of the Rubbing Location in a Multi-Disk Rotor System by Means of Dynamic Stiffness Identification

    NASA Astrophysics Data System (ADS)

    CHU, F.; LU, W.

    2001-11-01

    The rotor-to-stator rub is one of the main serious malfunctions that often occur in rotating machinery. Previous research has provided enough tools to judge the existence of this fault. However, it is still a difficult task to detect the rubbing position in a multi-disk rotor system. In this paper, the stiffness is considered as variable and the rub-impact effect is included in this dynamic stiffness. Based on simulation data the least-square method is used to identify the dynamic stiffness at different positions along the rotor. It is found that the dynamic stiffness at the position where the rub-impact occurs is increasing as the rubbing develops and this stiffness at other positions shows very little change. The damping coefficients have similar trends. This method is found to be very effective in detecting the rubbing position.

  4. Sound vibration signal processing for detection and identification detonation (knock) to optimize performance Otto engine

    NASA Astrophysics Data System (ADS)

    Sujono, A.; Santoso, B.; Juwana, W. E.

    2016-03-01

    Problems of detonation (knock) on Otto engine (petrol engine) is completely unresolved problem until now, especially if want to improve the performance. This research did sound vibration signal processing engine with a microphone sensor, for the detection and identification of detonation. A microphone that can be mounted is not attached to the cylinder block, that's high temperature, so that its performance will be more stable, durable and inexpensive. However, the method of analysis is not very easy, because a lot of noise (interference). Therefore the use of new methods of pattern recognition, through filtration, and the regression function normalized envelope. The result is quite good, can achieve a success rate of about 95%.

  5. Electrospray/Ion Trap Mass Spectrometry for the Detection and Identification of Organisms

    SciTech Connect

    McLuckey, Scott A.; Stephenson, James L., Jr.

    1997-12-31

    Current electrospray ion trap methodology for rapid mixture analysis of proteins used for the identification of microorganisms is described. Development of ion/ion reaction techniques (e.g. reactions of multiply-charged protein cations with singly-charged anions) from both a fundamental and practical approach are presented, detailing the necessary steps and considerations involved in complex mixture analysis. Data describing the reduction of the initial charge states of electrospray ions to arbitrarily low values, the utility of ion/ion reactions for mixture separation on the millisecond time scale, and effects of excess singly-charged reactants on detection and storage efficiency are illustrated.

  6. Detection and identification of protein interactions of S100 proteins by ProteinChip technology.

    PubMed

    Lehmann, Roland; Melle, Christian; Escher, Niko; von Eggeling, Ferdinand

    2005-01-01

    The aim of this work was to establish an approach for identification of protein interactions. This assay used an anti-S100A8 antibody coupled on beads and incubated with cell extract. The bead eluates were analyzed using ProteinChip technology and subsequently subjected to an appropriate digestion. Molecular masses of digestion fragments were determined by SELDI-MS, and database analysis revealed S100A10 as interacting protein. This result was confirmed by co-immunoprecipitation and immunocapturing. Using S100A10 as new bait, a specific interaction with S100A7 was detectable. PMID:16212425

  7. Multi-Gene Detection and Identification of Mosquito-Borne RNA Viruses Using an Oligonucleotide Microarray

    PubMed Central

    Grubaugh, Nathan D.; McMenamy, Scott S.; Turell, Michael J.; Lee, John S.

    2013-01-01

    Background Arthropod-borne viruses are important emerging pathogens world-wide. Viruses transmitted by mosquitoes, such as dengue, yellow fever, and Japanese encephalitis viruses, infect hundreds of millions of people and animals each year. Global surveillance of these viruses in mosquito vectors using molecular based assays is critical for prevention and control of the associated diseases. Here, we report an oligonucleotide DNA microarray design, termed ArboChip5.1, for multi-gene detection and identification of mosquito-borne RNA viruses from the genera Flavivirus (family Flaviviridae), Alphavirus (Togaviridae), Orthobunyavirus (Bunyaviridae), and Phlebovirus (Bunyaviridae). Methodology/Principal Findings The assay utilizes targeted PCR amplification of three genes from each virus genus for electrochemical detection on a portable, field-tested microarray platform. Fifty-two viruses propagated in cell-culture were used to evaluate the specificity of the PCR primer sets and the ArboChip5.1 microarray capture probes. The microarray detected all of the tested viruses and differentiated between many closely related viruses such as members of the dengue, Japanese encephalitis, and Semliki Forest virus clades. Laboratory infected mosquitoes were used to simulate field samples and to determine the limits of detection. Additionally, we identified dengue virus type 3, Japanese encephalitis virus, Tembusu virus, Culex flavivirus, and a Quang Binh-like virus from mosquitoes collected in Thailand in 2011 and 2012. Conclusions/Significance We demonstrated that the described assay can be utilized in a comprehensive field surveillance program by the broad-range amplification and specific identification of arboviruses from infected mosquitoes. Furthermore, the microarray platform can be deployed in the field and viral RNA extraction to data analysis can occur in as little as 12 h. The information derived from the ArboChip5.1 microarray can help to establish public health

  8. The influence of host species and location in the host detection ability of tiphiid (Hymenoptera: Tiphiidae) parasitoids.

    PubMed

    Obeysekara, Piyumi T; Legrand, Ana

    2014-12-01

    Tiphia vernalis Rohwer and Tiphia popilliavora Rohwer are ectoparasitoids of root-feeding larvae of the Japanese beetle, Popillia japonica Newman, and oriental beetles, Anomala orientalis Waterhouse (Coleoptera: Scarabaeidae). Little is known about the influence of host species and location in the host detection ability of tiphiid wasps. In this study, we examined the response of female T. popilliavora wasps, an understudied Tiphia species, to potential host stimuli using dual choice tests in an observation chamber filled with soil. T. popilliavora wasps were able to successfully discriminate the trails containing body odor or frass of P. japonica grubs from trails without cues. Frass trails of P. japonica grubs elicited stronger responses than body odor trails. We also examined the preference of host cues by tiphiid wasps using dual choice behavioral assays. Both T. vernalis and T. popilliavora wasps did not show preference toward trails that either contained P. japonica or A. orientalis cues. In addition, we also determined the detection of host cues by tiphiid wasps in a dual-choice test for cues presented at varying soil depths. Wasps were able to successfully discriminate between the Y-tube arms with and without cues when the cues of P. japonica were buried at a depth of 2 cm. In contrast, both Tiphia species were unable to distinguish between the Y-tube arms with and without cues when the cues were buried at a depth of 5 cm. Thus, our findings suggest that once Tiphia wasps land on the ground, they can detect the presence of their specific hosts, just below the soil surface by exploiting the kairomones present in grub body odor trails and frass and once the wasps are in the soil, they use the same cues to direct themselves to the host grubs. PMID:25289963

  9. CME flux rope and shock identifications and locations: Comparison of white light data, Graduated Cylindrical Shell model, and MHD simulations

    NASA Astrophysics Data System (ADS)

    Schmidt, J. M.; Cairns, Iver H.; Xie, Hong; St. Cyr, O. C.; Gopalswamy, N.

    2016-03-01

    Coronal mass ejections (CMEs) are major transient phenomena in the solar corona that are observed with ground-based and spacecraft-based coronagraphs in white light or with in situ measurements by spacecraft. CMEs transport mass and momentum and often drive shocks. In order to derive the CME and shock trajectories with high precision, we apply the graduated cylindrical shell (GCS) model to fit a flux rope to the CME directed toward STEREO A after about 19:00 UT on 29 November 2013 and check the quality of the heliocentric distance-time evaluations by carrying out a three-dimensional magnetohydrodynamic (MHD) simulation of the same CME with the Block Adaptive Tree Solar-Wind Roe Upwind Scheme (BATS-R-US) code. Heliocentric distances of the CME and shock leading edges are determined from the simulated white light images and magnetic field strength data. We find very good agreement between the predicted and observed heliocentric distances, showing that the GCS model and the BATS-R-US simulation approach work very well and are consistent. In order to assess the validity of CME and shock identification criteria in coronagraph images, we also compute synthetic white light images of the CME and shock. We find that the outer edge of a cloud-like illuminated area in the observed and predicted images in fact coincides with the leading edge of the CME flux rope and that the outer edge of a faint illuminated band in front of the CME leading edge coincides with the CME-driven shock front.

  10. Identification of migratory bird flyways in North America using community detection on biological networks.

    PubMed

    Buhnerkempe, Michael G; Webb, Colleen T; Merton, Andrew A; Buhnerkempe, John E; Givens, Geof H; Miller, Ryan S; Hoeting, Jennifer A

    2016-04-01

    Migratory behavior of waterfowl populations in North America has traditionally been broadly characterized by four north-south flyways, and these flyways have been central to the management of waterfowl populations for more than 80 yr. However, previous flyway characterizations are not easily updated with current bird movement data and fail to provide assessments of the importance of specific geographical regions to the identification of flyways. Here, we developed a network model of migratory movement for four waterfowl species, Mallard (Anas platyrhnchos), Northern Pintail (A. acuta), American Green-winged Teal (A. carolinensis), and Canada Goose (Branta canadensis), in North America, using bird band and recovery data. We then identified migratory flyways using a community detection algorithm and characterized the importance of smaller geographic regions in identifying flyways using a novel metric, the consolidation factor. We identified four main flyways for Mallards, Northern Pintails, and American Green-winged Teal, with the flyway identification in Canada Geese exhibiting higher complexity. For Mallards, flyways were relatively consistent through time. However, consolidation factors revealed that for Mallards and Green-winged Teal, the presumptive Mississippi flyway was potentially a zone of high mixing between other flyways. Our results demonstrate that the network approach provides a robust method for flyway identification that is widely applicable given the relatively minimal data requirements and is easily updated with future movement data to reflect changes in flyway definitions and management goals. PMID:27411247

  11. Hyperspectral imaging using novel LWIR OPO for hazardous material detection and identification

    NASA Astrophysics Data System (ADS)

    Ruxton, Keith; Robertson, Gordon; Miller, Bill; Malcolm, Graeme P. A.; Maker, Gareth T.

    2014-05-01

    Current stand-off hyperspectral imaging detection solutions that operate in the mid-wave infrared (MWIR), nominally 2.5 - 5 μm spectral region, are limited by the number of absorption bands that can be addressed. This issue is most apparent when evaluating a scene with multiple absorbers with overlapping spectral features making accurate material identification challenging. This limitation can be overcome by moving to the long wave IR (LWIR) region, which is rich in characteristic absorption features, which can provide ample molecular information in order to perform presumptive identification relative to a spectral library. This work utilises an instrument platform to perform negative contrast imaging using a novel LWIR optical parametric oscillator (OPO) as the source. The OPO offers continuous tuning in the region 5.5 - 9.5 μm, which includes a number of molecular vibrations associated with the target material compositions. Scanning the scene of interest whilst sweeping the wavelength of the OPO emission will highlight the presence of a suspect material and by analysing the resulting absorption spectrum, presumptive identification is possible. This work presents a selection of initial results using the LWIR hyperspectral imaging platform on a range of white powder materials to highlight the benefit operating in the LWIR region compared to the MWIR.

  12. Update of information on perkinsosis in NW Mediterranean coast: Identification of Perkinsus spp. (Protista) in new locations and hosts.

    PubMed

    Ramilo, Andrea; Carrasco, Noelia; Reece, Kimberly S; Valencia, José M; Grau, Amalia; Aceituno, Patricia; Rojas, Mauricio; Gairin, Ignasi; Furones, M Dolores; Abollo, Elvira; Villalba, Antonio

    2015-02-01

    This study addressed perkinsosis in commercially important mollusc species in the western Mediterranean area. Perkinsus olseni was found in Santa Gilla Lagoon (Sardinia) infecting Ruditapes decussatus, Cerastoderma glaucum and Venerupis aurea, in Balearic Islands infecting Venus verrucosa and in Delta de l'Ebre (NE Spain) parasitising Ruditapes philippinarum and R. decussatus. Perkinsus mediterraneus was detected infecting Ostrea edulis from the Gulf of Manfredonia (SE Italy) and Alacant (E Spain), V. verrucosa and Arca noae from Balearic Islands and Chlamys varia from Balearic Islands, Alacant and Delta de l'Ebre. PMID:25553580

  13. Active coherent laser spectrometer for remote detection and identification of chemicals

    NASA Astrophysics Data System (ADS)

    MacLeod, Neil A.; Weidmann, Damien

    2012-10-01

    Currently, there exists a capability gap for the remote detection and identification of threat chemicals. We report here on the development of an Active Coherent Laser Spectrometer (ACLaS) operating in the thermal infrared and capable of multi-species stand-off detection of chemicals at sub ppm.m levels. A bench top prototype of the instrument has been developed using distributed feedback mid-infrared quantum cascade lasers as spectroscopic sources. The instrument provides active eye-safe illumination of a topographic target and subsequent spectroscopic analysis through optical heterodyne detection of the diffuse backscattered field. Chemical selectivity is provided by the combination of the narrow laser spectral bandwidth (typically < 2 MHz) and frequency tunability that allows the recording of the full absorption spectrum of any species within the instrument line of sight. Stand-off detection at distances up to 12 m has been demonstrated on light molecules such as H2O, CH4 and N2O. A physical model of the stand-off detection scenario including ro-vibrational molecular absorption parameters was used in conjunction with a fitting algorithm to retrieve quantitative mixing ratio information on multiple absorbers.

  14. Rapid Detection and Identification of Yersinia pestis from Food Using Immunomagnetic Separation and Pyrosequencing.

    PubMed

    Amoako, Kingsley K; Shields, Michael J; Goji, Noriko; Paquet, Chantal; Thomas, Matthew C; Janzen, Timothy W; Bin Kingombe, Cesar I; Kell, Arnold J; Hahn, Kristen R

    2012-01-01

    Interest has recently been renewed in the possible use of Y. pestis, the causative agent of plague, as a biological weapon by terrorists. The vulnerability of food to intentional contamination coupled with reports of humans having acquired plague through eating infected animals that were not adequately cooked or handling of meat from infected animals makes the possible use of Y. pestis in a foodborne bioterrorism attack a reality. Rapid, efficient food sample preparation and detection systems that will help overcome the problem associated with the complexity of the different matrices and also remove any ambiguity in results will enable rapid informed decisions to be made regarding contamination of food with biothreat agents. We have developed a rapid detection assay that combines the use of immunomagnetic separation and pyrosequencing in generating results for the unambiguous identification of Y. pestis from milk (0.9 CFU/mL), bagged salad (1.6 CFU/g), and processed meat (10 CFU/g). The low detection limits demonstrated in this assay provide a novel tool for the rapid detection and confirmation of Y. pestis in food without the need for enrichment. The combined use of the iCropTheBug system and pyrosequencing for efficient capture and detection of Y. pestis is novel and has potential applications in food biodefence. PMID:23091729

  15. Rapid detection and identification of Bacillus anthracis in food using pyrosequencing technology.

    PubMed

    Amoako, Kingsley K; Janzen, Timothy W; Shields, Michael J; Hahn, Kristen R; Thomas, Matthew C; Goji, Noriko

    2013-08-01

    The development of advanced methodologies for the detection of Bacillus anthracis has been evolving rapidly since the release of the anthrax spores in the mail in 2001. Recent advances in detection and identification techniques could prove to be an essential component in the defense against biological attacks. Sequence based such as pyrosequencing, which has the capability to determine short DNA stretches in real-time using biotinylated PCR amplicons, has potential biodefense applications. Using markers from the virulence plasmids (pXO1 and pXO2) and chromosomal regions, we have demonstrated the power of this technology in the rapid, specific and sensitive detection of B. anthracis spores in food matrices including milk, juice, bottled water, and processed meat. The combined use of immunomagnetic separation and pyrosequencing showed positive detection when liquid foods (bottled water, milk, juice), and processed meat were experimentally inoculated with 6CFU/mL and 6CFU/g, respectively, without an enrichment step. Pyrosequencing is completed in about 60min (following PCR amplification) and yields accurate and reliable results with an added layer of confidence. The entire assay (from sample preparation to sequencing information) can be completed in about 7.5h. A typical run on food samples yielded 67-80bp reads with 94-100% identity to the expected sequence. This sequence based approach is a novel application for the detection of anthrax spores in food with potential application in foodborne bioterrorism response and biodefense involving the use of anthrax spores. PMID:23810955

  16. Detection and identification of dyes in blue writing inks by LC-DAD-orbitrap MS.

    PubMed

    Sun, Qiran; Luo, Yiwen; Yang, Xu; Xiang, Ping; Shen, Min

    2016-04-01

    In the field of forensic questioned document examination, to identify dyes detected in inks not only provides a solid foundation for ink discrimination in forged contents identification, but also facilitates the investigation of ink origin or the study regarding ink dating. To detect and identify potential acid and basic dyes in blue writing inks, a liquid chromatography-diode array detection-Orbitrap mass spectrometry (LC-DAD-Orbitrap MS) method was established. Three sulfonic acid dyes (Acid blue 1, Acid blue 9 and Acid red 52) and six triphenylmethane basic dyes (Ethyl violet, Crystal violet, Methyl violet 2B, Basic blue 7, Victoria blue B and Victoria blue R) were employed as reference dyes for method development. Determination of the nine dyes was validated to evaluate the instrument performance, and it turned out to be sensitive and stable enough for quantification. The method was then applied in the screening analysis of ten blue roller ball pen inks and twenty blue ballpoint pen inks. As a result, including TPR (a de-methylated product of Crystal violet), ten known dyes and four unknown dyes were detected in the inks. The latter were further identified as a de-methylated product of Victoria blue B, Acid blue 104, Acid violet 49 and Acid blue 90, through analyzing their characteristic precursor and product ions acquired by Orbitrap MS with good mass accuracy. The results showed that the established method is capable of detecting and identifying potential dyes in blue writing inks. PMID:26894843

  17. A novel algorithm for real-time adaptive signal detection and identification

    SciTech Connect

    Sleefe, G.E.; Ladd, M.D.; Gallegos, D.E.; Sicking, C.W.; Erteza, I.A.

    1998-04-01

    This paper describes a novel digital signal processing algorithm for adaptively detecting and identifying signals buried in noise. The algorithm continually computes and updates the long-term statistics and spectral characteristics of the background noise. Using this noise model, a set of adaptive thresholds and matched digital filters are implemented to enhance and detect signals that are buried in the noise. The algorithm furthermore automatically suppresses coherent noise sources and adapts to time-varying signal conditions. Signal detection is performed in both the time-domain and the frequency-domain, thereby permitting the detection of both broad-band transients and narrow-band signals. The detection algorithm also provides for the computation of important signal features such as amplitude, timing, and phase information. Signal identification is achieved through a combination of frequency-domain template matching and spectral peak picking. The algorithm described herein is well suited for real-time implementation on digital signal processing hardware. This paper presents the theory of the adaptive algorithm, provides an algorithmic block diagram, and demonstrate its implementation and performance with real-world data. The computational efficiency of the algorithm is demonstrated through benchmarks on specific DSP hardware. The applications for this algorithm, which range from vibration analysis to real-time image processing, are also discussed.

  18. Leishmania species: Detection and identification by nested PCR assay from skin samples of rodent reservoirs

    PubMed Central

    Akhavan, Amir Ahmad; Mirhendi, Hossein; Khamesipour, Ali; Alimohammadian, Mohammad Hossein; Rassi, Yavar; Bates, Paul; Kamhawi, Shaden; Valenzuela, Jesus G.; Arandian, Mohammad Hossein; Abdoli, Hamid; Jalali-zand, Niloufar; Jafari, Reza; Shareghi, Niloufar; Ghanei, Maryam; Yaghoobi-Ershadi, Mohammad Reza

    2010-01-01

    Many rodent species act as reservoir hosts of zoonotic cutaneous leishmaniasis in endemic areas. In the present study a simple and reliable assay based on nested PCR was developed for the detection and identification of Leishmania parasites from rodent skin samples. We designed Leishmania-specific primers that successfully amplified ITS regions of Leishmania major, Leishmania gerbilli and Leishmania turanica using nested PCR. Out of 95 field collected Rhombomys opimus, 21 were positive by microscopic examination and 48 by nested PCR. The percentage of gerbils infected with L. major, L. gerbilli and L. turanica was 3.2%, 1.1% and 27.4%, respectively. In 15.8% of the rodents, we found mixed natural infections by L. major and L. turanica, 1.1% by L. major and L. gerbilli, and 2.1% by the three species. We concluded that this method is simple and reliable for detecting and identifying Leishmania species circulating in rodent populations. PMID:20566364

  19. Identification and map location of TTR1, a single locus in Arabidopsis thaliana that confers tolerance to tobacco ringspot nepovirus.

    PubMed

    Lee, J M; Hartman, G L; Domier, L L; Bent, A F

    1996-11-01

    The interaction between Arabidopsis and the nepovirus tobacco ringspot virus (TRSV) was characterized. Of 97 Arabidopsis lines tested, all were susceptible when inoculated with TRSV grape strain. Even though there was systemic spread of the virs, there was a large degree of variation in symptoms as the most sensitive lines died 10 days after inoculation, while the most tolerant lines either were symptomless or developed only mild symptoms. Four lines were selected for further study based on their differential reactions to TRSV. Infected plants of line Col-0 and Col-0 gl1 flowered and produced seeds like noninfected plants, while those of lines Estland and H55 died before producing seeds. Symptoms appeared on sensitive plants approximately 5 to 6 days after inoculation. Serological studies indicated that in mechanically inoculated seedlings, the virus, as measured by coat protein accumulation, developed at essentially the same rates and to the same levels in each of the four lines, demonstrating that differences in symptom development were not due to a suppression of virus accumulation. Two additional TRSV strains gave similar results when inoculated on the four lines. Genetic studies with these four Arabidopsis lines revealed segregation of a single incompletely dominant locus controlling tolerance to TRSV grape strain. We have designated this locus TTR1. By using SSLP and CAPS markers, TTR1 was mapped to chromosome V near the nga129 marker. Seed transmission frequency of TRSV for Col-0 and Col-0 gl1 was over 95% and their progeny from crosses all had seed transmission frequencies of over 83%, which made it possible to evaluate the segregation of TTR1 in F2 progeny from infected F1 plants without inoculating F2 plants. Seed transmission of TRSV will be further exploited to streamline selection of individuals for fine mapping the TTR1 gene. The identification of tolerant and sensitive interactions between TRSV and A. thaliana lines provides a model system for

  20. 40 CFR Table 6 to Subpart IIIii of... - Examples of Techniques for Equipment Problem Identification, Leak Detection and Mercury Vapor

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Problem Identification, Leak Detection and Mercury Vapor 6 Table 6 to Subpart IIIII of Part 63 Protection... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Pt. 63, Subpt. IIIII..., Leak Detection and Mercury Vapor As stated in Tables 1 and 2 of Subpart IIIII, examples of...

  1. 40 CFR Table 6 to Subpart IIIii of... - Examples of Techniques for Equipment Problem Identification, Leak Detection and Mercury Vapor

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Problem Identification, Leak Detection and Mercury Vapor 6 Table 6 to Subpart IIIII of Part 63 Protection... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Pt. 63, Subpt. IIIII..., Leak Detection and Mercury Vapor As stated in Tables 1 and 2 of Subpart IIIII, examples of...

  2. Clinical evaluation of a disposable amperometric magneto-genosensor for the detection and identification of Streptococcus pneumoniae.

    PubMed

    Sotillo, Alma; Pedrero, María; de Pablos, Manuela; García, José Luis; García, Ernesto; García, Pedro; Pingarrón, José Manuel; Mingorance, Jesús; Campuzano, Susana

    2014-08-01

    A disposable PCR-based amperometric magneto-genosensor for detection and identification of Streptococcus pneumoniae was evaluated. ROC curve analysis used to determine optimal signal cutoff values yielded a sensitivity of 91% and a specificity of 90%. The method was also tested for the direct detection of pneumococci in clinical samples. PMID:24858449

  3. Detection and location of shallow very low frequency earthquakes along the Nankai trough and the Ryukyu trench

    NASA Astrophysics Data System (ADS)

    Asano, Y.; Matsuzawa, T.; Obara, K.

    2013-12-01

    We have investigated spatiotemporal distribution of shallow very low frequency earthquakes (VLFEs) along the Nankai trough and the Ryukyu trench. Three component seismograms recorded at broadband stations of the NIED F-net were analyzed by using waveform-correlation and back-projection techniques after processing a band-pass filter (0.02 to 0.05 Hz). Here we used known VLFEs and regular interplate earthquakes near the trench axis as template events. Time series of cross-correlation function (CC) at each station was calculated from continuous waveform data and triggered seismograms of template events with a length of 180 s. Assuming surface wave propagation with a velocity of 3.8 km/s, CCs are back-propagated onto possible origin times and horizontal locations. We obtained VLFE epicenters by performing a grid search in time and space domains with spacing of 1 s and 0.025 degrees, respectively, to maximize the averaged CCs from all stations. At first, we choose grid points with averaged CCs larger than 0.5. If these grid points have similar origin times within 180 s, we assume that these grid points reflect a same event and choose the VLFE candidate having the largest averaged CC. If some grid points are detected in the same time window from different template events, we choose the VLFE candidate with the largest averaged CC from grid points located within 100 km from the template event. VLFEs were finally identified by removing regular earthquakes listed in the JMA catalogue from all candidates. As a result of the analysis for data from October, 2009 to February, 2010, two episodes of VLFE activity were detected. One episode was located east of the M6.8 interplate earthquake which occurred on October 30, 2009 along the Ryukyu trench. The VLFE seismicity was quite active just after the M6.8 earthquake and had been smoothly decreasing with the elapsed time. Such time dependent seismicity may be related to the post-seismic slip following the M6.8 earthquake. Another

  4. An evaluation of generalized likelihood Ratio Outlier Detection to identification of seismic events in Western China

    SciTech Connect

    Taylor, S.R.; Hartse, H.E.

    1996-09-24

    The Generalized Likelihood Ratio Outlier Detection Technique for seismic event identification is evaluated using synthetic test data and frequency-dependent P{sub g}/L{sub g} measurements from western China. For most seismic stations that are to be part of the proposed International Monitoring System for the Comprehensive Test Ban Treaty, there will be few or no nuclear explosions in the magnitude range of interest (e.g. M{sub b} < 4) on which to base an event-identification system using traditional classification techniques. Outlier detection is a reasonable alternative approach to the seismic discrimination problem when no calibration explosions are available. Distance-corrected P{sub g}/L{sub g} data in seven different frequency bands ranging from 0.5 to 8 Hz from the Chinese Digital Seismic Station WMQ are used to evaluate the technique. The data are collected from 157 known earthquakes, 215 unknown events (presumed earthquakes and possibly some industrial explosions), and 18 known nuclear explosions (1 from the Chinese Lop Nor test site and 17 from the East Kazakh test site). A feature selection technique is used to find the best combination of discriminants to use for outlier detection. Good discrimination performance is found by combining a low-frequency (0.5 to 1 Hz) P{sub g}/L{sub g} ratio with high-frequency ratios (e.g. 2 to 4 and 4 to 8 Hz). Although the low-frequency ratio does not discriminate between earthquakes and nuclear explosions well by itself, it can be effectively combined with the high-frequency discriminants. Based on the tests with real and synthetic data, the outlier detection technique appears to be an effective approach to seismic monitoring in uncalibrated regions.

  5. Authenticity examination of compressed audio recordings using detection of multiple compression and encoders' identification.

    PubMed

    Korycki, Rafal

    2014-05-01

    Since the appearance of digital audio recordings, audio authentication has been becoming increasingly difficult. The currently available technologies and free editing software allow a forger to cut or paste any single word without audible artifacts. Nowadays, the only method referring to digital audio files commonly approved by forensic experts is the ENF criterion. It consists in fluctuation analysis of the mains frequency induced in electronic circuits of recording devices. Therefore, its effectiveness is strictly dependent on the presence of mains signal in the recording, which is a rare occurrence. Recently, much attention has been paid to authenticity analysis of compressed multimedia files and several solutions were proposed for detection of double compression in both digital video and digital audio. This paper addresses the problem of tampering detection in compressed audio files and discusses new methods that can be used for authenticity analysis of digital recordings. Presented approaches consist in evaluation of statistical features extracted from the MDCT coefficients as well as other parameters that may be obtained from compressed audio files. Calculated feature vectors are used for training selected machine learning algorithms. The detection of multiple compression covers up tampering activities as well as identification of traces of montage in digital audio recordings. To enhance the methods' robustness an encoder identification algorithm was developed and applied based on analysis of inherent parameters of compression. The effectiveness of tampering detection algorithms is tested on a predefined large music database consisting of nearly one million of compressed audio files. The influence of compression algorithms' parameters on the classification performance is discussed, based on the results of the current study. PMID:24637036

  6. The optical identification of events with poorly defined locations: the case of the Fermi GBM GRB 140801A

    NASA Astrophysics Data System (ADS)

    Lipunov, V. M.; Gorosabel, J.; Pruzhinskaya, M. V.; Postigo, A. de Ugarte; Pelassa, V.; Tsvetkova, A. E.; Sokolov, I. V.; Kann, D. A.; Xu, Dong; Gorbovskoy, E. S.; Krushinski, V. V.; Kornilov, V. G.; Balanutsa, P. V.; Boronina, S. V.; Budnev, N. M.; Cano, Z.; Castro-Tirado, A. J.; Chazov, V. V.; Connaughton, V.; Delvaux, C.; Frederiks, D. D.; Fynbo, J. F. U.; Gabovich, A. V.; Goldstein, A.; Greiner, J.; Gress, O. A.; Ivanov, K. I.; Jakobsson, P.; Klose, S.; Knust, F.; Komarova, V. N.; Konstantinov, E.; Krylov, A. V.; Kuvshinov, D. A.; Kuznetsov, A. S.; Lipunova, G. V.; Moskvitin, A. S.; Pal'shin, V. D.; Pandey, S. B.; Poleshchuk, V. A.; Schmidl, S.; Sergienko, Yu. P.; Sinyakov, E. V.; Schulze, S.; Sokolov, V. V.; Sokolova, T. N.; Sparre, M.; Thöne, C. C.; Tlatov, A. G.; Tyurina, N. V.; Ulanov, M. V.; Yazev, S. A.; Yurkov, V. V.

    2016-01-01

    We report the early discovery of the optical afterglow of gamma-ray burst (GRB) 140801A in the 137 deg2 3-σ error-box of the Fermi Gamma-ray Burst Monitor (GBM). MASTER is the only observatory that automatically reacts to all Fermi alerts. GRB 140801A is one of the few GRBs whose optical counterpart was discovered solely from its GBM localization. The optical afterglow of GRB 140801A was found by MASTER Global Robotic Net 53 s after receiving the alert, making it the fastest optical detection of a GRB from a GBM error-box. Spectroscopy obtained with the 10.4-m Gran Telescopio Canarias and the 6-m Big Telescope Alt-azimuth of the Special Astrophysical Observatory of the Russian Academy of Sciences reveals a redshift of z = 1.32. We performed optical and near-infrared photometry of GRB 140801A using different telescopes with apertures ranging from 0.4 to 10.4 m. GRB 140801A is a typical burst in many ways. The rest-frame bolometric isotropic energy release and peak energy of the burst are E_iso = 5.54_{-0.24}^{+0.26} {×} 10^{52} erg and Ep, rest ≃ 280 keV, respectively, which is consistent with the Amati relation. The absence of a jet break in the optical light curve provides a lower limit on the half-opening angle of the jet θ = 6.1°. The observed Epeak is consistent with the limit derived from the Ghirlanda relation. The joint Fermi GBM and Konus-Wind analysis show that GRB 140801A could belong to the class of intermediate duration. The rapid detection of the optical counterpart of GRB 140801A is especially important regarding the upcoming experiments with large coordinate error-box areas.

  7. Evaluation of BBL CHROMagar orientation medium for detection and presumptive identification of urinary tract pathogens.

    PubMed Central

    Hengstler, K A; Hammann, R; Fahr, A M

    1997-01-01

    The microbiological performance of BBL CHROMagar Orientation medium and CPS ID2 agar was compared to that of Columbia agar with 5% sheep blood and MacConkey agar without crystal violet for the enumeration and presumptive identification of bacteria responsible for urinary tract infections. Of a total of 658 clinical urine specimens, 118 specimens yielded no growth, 402 specimens yielded growth with cell counts of > or = 10(5) CFU/ml, and 138 specimens yielded growth with cell counts of < 10(5) CFU/ml. Of the specimens with cell counts of > or = 10(5) CFU/ml, 163 were pure cultures and 239 were mixed cultures. A total of 266 Escherichia coli organisms were isolated on both chromogenic media, 260 were isolated on blood agar, and 248 were isolated on MacConkey agar. One strain (0.4%) failed to develop the expected pink color on CHROMagar Orientation medium, and 23 strains (8.7%) failed to develop the expected pink color on CPS ID2 agar. Enterococci (CHROMagar Orientation medium, n = 266; CPS ID2 agar, n = 265) produced small blue-green colonies on both chromogenic media. Fifty of the mixed cultures contained enterococci that were detected only on the chromogenic media. The Klebsiella-Enterobacter-Serratia (KES) and the Proteus-Morganella-Providencia (PMP) groups could be identified on both chromogenic media. Of 66 isolates of the KES group, 63 grew with the expected color on CHROMagar Orientation medium and 58 of 64 isolates grew with the expected color on CPS ID2 agar. Other microorganisms required further identification. The use of chromogenic medium formulations offers a time-saving method for the reliable detection, enumeration, and presumptive identification of urinary tract pathogens. One of the greatest advantages of these media is the easy recognition of mixed cultures. PMID:9350731

  8. Detection and identification of multiple genetically modified events using DNA insert fingerprinting.

    PubMed

    Raymond, Philippe; Gendron, Louis; Khalf, Moustafa; Paul, Sylvianne; Dibley, Kim L; Bhat, Somanath; Xie, Vicki R D; Partis, Lina; Moreau, Marie-Eve; Dollard, Cheryl; Coté, Marie-José; Laberge, Serge; Emslie, Kerry R

    2010-03-01

    Current screening and event-specific polymerase chain reaction (PCR) assays for the detection and identification of genetically modified organisms (GMOs) in samples of unknown composition or for the detection of non-regulated GMOs have limitations, and alternative approaches are required. A transgenic DNA fingerprinting methodology using restriction enzyme digestion, adaptor ligation, and nested PCR was developed where individual GMOs are distinguished by the characteristic fingerprint pattern of the fragments generated. The inter-laboratory reproducibility of the amplified fragment sizes using different capillary electrophoresis platforms was compared, and reproducible patterns were obtained with an average difference in fragment size of 2.4 bp. DNA insert fingerprints for 12 different maize events, including two maize hybrids and one soy event, were generated that reflected the composition of the transgenic DNA constructs. Once produced, the fingerprint profiles were added to a database which can be readily exchanged and shared between laboratories. This approach should facilitate the process of GMO identification and characterization. PMID:19943159

  9. Detection and identification of Malassezia species in domestic animals and aquatic birds by PCR-RFLP

    PubMed Central

    Zia, M.; Mirhendi, H.; Toghyani, M.

    2015-01-01

    The present study aimed at detection and species-level identification of the Malassezia yeasts in domestic animals and aquatic birds by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Samples were collected using tape strips and swabs from 471 animals including 97 horses, 102 cattle, 105 sheep, 20 camels, 60 dogs, 30 cats, 1 hamster, 1 squirrel, 50 aquatic birds and 5 turkeys. Tape-strip samples were examined by direct microscopy. All samples were inoculated on modified Leeming and Notman agar medium. DNA extracted from the yeast colonies was amplified by PCR using primers specific for 26S rDNA. RFLP of the PCR products was performed using Hin6I enzyme, and PCR and RFLP products were visualized by agarose gel electrophoresis. Malassezia yeasts were detected at the following frequencies: 15.46% in horses, 12.74% in cattle, 12.38% in sheep, 28.33% in dogs, 26.66% in cats and 26% in aquatic birds. Eighty colonies of 6 species were isolated: Malassezia globosa 41.25%, Malassezia furfur 22.5%, Malassezia restricta 15%, Malassezia sympodialis 15%, Malassezia pachydermatis 5% and Malassezia slooffiae 1.25%. Therefore different lipophilic Malassezia species are found in a wide diversity of animals and aquatic birds. PCR-RFLP is a suitable technique for identification of different Malassezia species. PMID:27175148

  10. Automatic Detection and Identification of Seismic Signals Recorded at Krakatau Volcano (Indonesia) Using Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Ibs-von Seht, M.; Kniess, R.

    2006-12-01

    A number of different event types can be observed in the records of seismic stations operated on Krakatau volcano (Indonesia). These include volcano-induced signals such as LP, VT, and hybrid-type events as well as signals not originating from the volcano such as local and regional tectonic earthquakes and transient noise signals. The work presented here aims at the realization of a system that automatically detects and identifies the signals in order to estimate and monitor current activity states of the volcano. An artificial neural network (ANN) approach was chosen for the identification task. A set of parameters were defined, describing waveform and spectrogram properties of events detected by an STA/LTA algorithm. The parameters are fed into an ANN which is, after a training phase, able to generalize input data and identify corresponding event types. The success of the identification depends on the network architecture and training strategy. Several tests have been performed in order to determine an appropriate network layout and training intensity for the given problem. The resulting network shows a good performance. A practical implementation of the system for the volcano observatory routine is sketched.

  11. Detection and identification of seismic signals recorded at Krakatau volcano (Indonesia) using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Ibs-von Seht, M.

    2008-10-01

    The Anak Krakatau volcano (Indonesia) has been monitored by a multi-parametric system since 2005. A variety of signal types can be observed in the records of the seismic stations installed on the island volcano. These include volcano-induced signals such as LP, VT, and tremor-type events as well as signals not originating from the volcano such as regional tectonic earthquakes and transient noise signals. The work presented here aims at the realization of a system that automatically detects and identifies the signals in order to estimate and monitor current activity states of the volcano. An artificial neural network approach was chosen for the identification task. A set of parameters was defined, describing waveform and spectrogram properties of events detected by an amplitude-ratio-based (STA/LTA) algorithm. The parameters are fed into a neural network which is, after a training phase, able to generalize input data and identify corresponding event types. The success of the identification depends on the network architecture and training strategy. Several tests have been performed in order to determine appropriate network layout and training for the given problem. The performance of the final system is found to be well suited to get an overview of the seismic activity recorded at the volcano. The reliability of the network classifier, as well as general drawbacks of the methods used, are discussed.

  12. Colorimetric sensor array for detection and identification of organophosphorus and carbamate pesticides.

    PubMed

    Qian, Sihua; Lin, Hengwei

    2015-01-01

    Due to relatively low persistence and high effectiveness for insect and pest eradication, organophosphates (OPs) and carbamates are the two major classes of pesticides that broadly used in agriculture. Hence, the sensitive and selective detection of OPs and carbamates is highly significant. In this current study, a colorimetric sensor array comprising five inexpensive and commercially available thiocholine and H2O2 sensitive indicators for the simultaneous detection and identification of OPs and carbamates is developed. The sensing mechanism of this array is based on the irreversible inhibition capability of OPs and carbamates to the activity of acetylcholinesterase (AChE), preventing production of thiocholine and H2O2 from S-acetylthiocholine and acetylcholine and thus resulting in decreased or no color reactions to thiocholine and H2O2 sensitive indicators. Through recognition patterns and standard statistical methods (i.e., hierarchical clustering analysis and principal component analysis), the as-developed array demonstrates not only discrimination of OPs and carbamates from other kinds of pesticides but, more interestingly, identification of them exactly from each other. Moreover, this array is experimentally confirmed to have high selectivity and sensitivity, good anti-interference capability, and potential applications in real samples for OPs and carbamates. PMID:25913282

  13. Possibility of the detection and identification of substance at long distance at using broad THz pulse

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Varentsova, Svetlana A.; Trofimov, Vladislav V.

    2014-10-01

    The spectral properties of THz pulses containing a few cycles reflected from a flat metallic mirror placed at long distance about 3.5 meters from the parabolic mirror are investigated. The samples for analysis were placed before this mirror. Measurements were provided at room temperature of about 18-20° C and humidity of about 70%. The aim of investigation was the detection of a substance under real conditions. At the present time our measurements contain features of both transmission and reflection modes. This leads to a strong modulation of the spectrum and makes difficulties for identification. As samples for our current research we used several neutral substances: paper layers, a thick paper bag, chocolate and cookies. The first problem deals with the detection of common and mismatched spectral properties of samples with paper layers, a thick paper bag and explosives. HMX, PETN and RDX were used as explosive samples. The dependence of the accuracy of identification of samples with paper layers and a thick bag is studied when using short transmitted THz signals with opposite absolute phases as calibration signals. Common and mismatched spectral features of neutral substances: chocolate, cookies and drugs MA, MDMA were investigated by modified integral criteria as well.

  14. Detection and identification of Malassezia species in domestic animals and aquatic birds by PCR-RFLP.

    PubMed

    Zia, M; Mirhendi, H; Toghyani, M

    2015-01-01

    The present study aimed at detection and species-level identification of the Malassezia yeasts in domestic animals and aquatic birds by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Samples were collected using tape strips and swabs from 471 animals including 97 horses, 102 cattle, 105 sheep, 20 camels, 60 dogs, 30 cats, 1 hamster, 1 squirrel, 50 aquatic birds and 5 turkeys. Tape-strip samples were examined by direct microscopy. All samples were inoculated on modified Leeming and Notman agar medium. DNA extracted from the yeast colonies was amplified by PCR using primers specific for 26S rDNA. RFLP of the PCR products was performed using Hin6I enzyme, and PCR and RFLP products were visualized by agarose gel electrophoresis. Malassezia yeasts were detected at the following frequencies: 15.46% in horses, 12.74% in cattle, 12.38% in sheep, 28.33% in dogs, 26.66% in cats and 26% in aquatic birds. Eighty colonies of 6 species were isolated: Malassezia globosa 41.25%, Malassezia furfur 22.5%, Malassezia restricta 15%, Malassezia sympodialis 15%, Malassezia pachydermatis 5% and Malassezia slooffiae 1.25%. Therefore different lipophilic Malassezia species are found in a wide diversity of animals and aquatic birds. PCR-RFLP is a suitable technique for identification of different Malassezia species. PMID:27175148

  15. Dual redundant sensor FDI techniques applied to the NASA F8C DFBW aircraft. [Failure Detection and Identification

    NASA Technical Reports Server (NTRS)

    Desai, M. N.; Deckert, J. C.; Deyst, J. J.; Willsky, A. S.; Chow, E. Y.

    1976-01-01

    An onboard failure detection and identification (FDI) technique for dual redundant sensors on the NASA F8C digital fly-by-wire (DFBW) aircraft is presented. The failure of one of a pair of sensors of the same type is detected by a direct redundancy trigger which observes the difference between the outputs of these two sensors. Identification of the failed sensor is accomplished utilizing the analytic redundancy that exists as kinematic and functional relationships among the variables being measured by dissimilar instruments. In addition, identification of generic failures, common to both instruments of a given type, is accomplished by using a time trigger to periodically initiate analytic redundancy failure identification tests for individual sensors. The basic form of these tests is the comparison of the measurement of a variable using the suspect instrument with another measurement of the same variable obtained using other instrument types.

  16. Modal Acoustic Emission Used at Elevated Temperatures to Detect Damage and Failure Location in Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.

    1999-01-01

    Ceramic matrix composites are being developed for elevated-temperature engine applications. A leading material system in this class of materials is silicon carbide (SiC) fiber-reinforced SiC matrix composites. Unfortunately, the nonoxide fibers, matrix, and interphase (boron nitride in this system) can react with oxygen or water vapor in the atmosphere, leading to strength degradation of the composite at elevated temperatures. For this study, constant-load stress-rupture tests were performed in air at temperatures ranging from 815 to 960 C until failure. From these data, predictions can be made for the useful life of such composites under similar stressed-oxidation conditions. During these experiments, the sounds of failure events (matrix cracking and fiber breaking) were monitored with a modal acoustic emission (AE) analyzer through transducers that were attached at the ends of the tensile bars. Such failure events, which are caused by applied stress and oxidation reactions, cause these composites to fail prematurely. Because of the nature of acoustic waveform propagation in thin tensile bars, the location of individual source events and the eventual failure event could be detected accurately.

  17. Identification, Detection, and Enumeration of Human Bifidobacterium Species by PCR Targeting the Transaldolase Gene

    PubMed Central

    Requena, Teresa; Burton, Jeremy; Matsuki, Takahiro; Munro, Karen; Simon, Mary Alice; Tanaka, Ryuichiro; Watanabe, Koichi; Tannock, Gerald W.

    2002-01-01

    Methods that enabled the identification, detection, and enumeration of Bifidobacterium species by PCR targeting the transaldolase gene were tested. Bifidobacterial species isolated from the feces of human adults and babies were identified by PCR amplification of a 301-bp transaldolase gene sequence and comparison of the relative migrations of the DNA fragments in denaturing gradient gel electrophoresis (DGGE). Two subtypes of Bifidobacterium longum, five subtypes of Bifidobacterium adolescentis, and two subtypes of Bifidobacterium pseudocatenulatum could be differentiated using PCR-DGGE. Bifidobacterium angulatum and B. catenulatum type cultures could not be differentiated from each other. Bifidobacterial species were also detected directly in fecal samples by this combination of PCR and DGGE. The number of species detected was less than that detected by PCR using species-specific primers targeting 16S ribosomal DNA (rDNA). Real-time quantitative PCR targeting a 110-bp transaldolase gene sequence was used to enumerate bifidobacteria in fecal samples. Real-time quantitative PCR measurements of bifidobacteria in fecal samples from adults correlated well with results obtained by culture when either a 16S rDNA sequence or the transaldolase gene sequence was targeted. In the case of samples from infants, 16S rDNA-targeted PCR was superior to PCR targeting the transaldolase gene for the quantification of bifidobacterial populations. PMID:11976117

  18. Autonomous Component Health Management with Failed Component Detection, Identification, and Avoidance

    NASA Technical Reports Server (NTRS)

    Davis, Robert N.; Polites, Michael E.; Trevino, Luis C.

    2004-01-01

    This paper details a novel scheme for autonomous component health management (ACHM) with failed actuator detection and failed sensor detection, identification, and avoidance. This new scheme has features that far exceed the performance of systems with triple-redundant sensing and voting, yet requires fewer sensors and could be applied to any system with redundant sensing. Relevant background to the ACHM scheme is provided, and the simulation results for the application of that scheme to a single-axis spacecraft attitude control system with a 3rd order plant and dual-redundant measurement of system states are presented. ACHM fulfills key functions needed by an integrated vehicle health monitoring (IVHM) system. It is: autonomous; adaptive; works in realtime; provides optimal state estimation; identifies failed components; avoids failed components; reconfigures for multiple failures; reconfigures for intermittent failures; works for hard-over, soft, and zero-output failures; and works for both open- and closed-loop systems. The ACHM scheme combines a prefilter that generates preliminary state estimates, detects and identifies failed sensors and actuators, and avoids the use of failed sensors in state estimation with a fixed-gain Kalman filter that generates optimal state estimates and provides model-based state estimates that comprise an integral part of the failure detection logic. The results show that ACHM successfully isolates multiple persistent and intermittent hard-over, soft, and zero-output failures. It is now ready to be tested on a computer model of an actual system.

  19. Ultrasensitive detection and rapid identification of multiple foodborne pathogens with the naked eyes.

    PubMed

    Zhang, Heng; Zhang, Yali; Lin, Yankui; Liang, Tongwen; Chen, Zhihua; Li, Jinfeng; Yue, Zhenfeng; Lv, Jingzhang; Jiang, Qing; Yi, Changqing

    2015-09-15

    In this study, a novel approach for ultrasensitive detection and rapid high-throughput identification of a panel of common foodborne pathogens with the naked eyes is presented. As a proof-of-concept application, a multiple pathogen analysis array is fabricated through immobilizing three specific polyT-capture probes which can respectively recognize rfbE gene (Escherichia coli O157:H7), invA gene (Salmonella enterica), inlA gene (Listeria monocytogenes) on the plastic substrates. PCR has been developed for amplification and labeling target genes of rfbE, invA, inlA with biotin. The biotinated target DNA is then captured onto the surface of plastic strips through specific DNA hybridization. The succeeding staining of biotinated DNA duplexes with avidin-horseradish peroxidise (AV-HRP) and biotinated anti-HRP antibody greatly amplifies the detectable signal through the multiple cycle signal amplification strategy, and thus realizing ultrasensitive and specific detection of the above three pathogens in food samples with the naked eyes. Results showed approximately 5 copies target pathogenic DNA could be detected with the naked eyes. This simple but very efficient colorimetric assay also show excellent anti-interference capability and good stability, and can be readily applied to point-of-care diagnosis. PMID:25909338

  20. Automated feature detection and identification in digital point-ordered signals

    DOEpatents

    Oppenlander, Jane E.; Loomis, Kent C.; Brudnoy, David M.; Levy, Arthur J.

    1998-01-01

    A computer-based automated method to detect and identify features in digital point-ordered signals. The method is used for processing of non-destructive test signals, such as eddy current signals obtained from calibration standards. The signals are first automatically processed to remove noise and to determine a baseline. Next, features are detected in the signals using mathematical morphology filters. Finally, verification of the features is made using an expert system of pattern recognition methods and geometric criteria. The method has the advantage that standard features can be, located without prior knowledge of the number or sequence of the features. Further advantages are that standard features can be differentiated from irrelevant signal features such as noise, and detected features are automatically verified by parameters extracted from the signals. The method proceeds fully automatically without initial operator set-up and without subjective operator feature judgement.

  1. Aircraft Abnormal Conditions Detection, Identification, and Evaluation Using Innate and Adaptive Immune Systems Interaction

    NASA Astrophysics Data System (ADS)

    Al Azzawi, Dia

    Abnormal flight conditions play a major role in aircraft accidents frequently causing loss of control. To ensure aircraft operation safety in all situations, intelligent system monitoring and adaptation must rely on accurately detecting the presence of abnormal conditions as soon as they take place, identifying their root cause(s), estimating their nature and severity, and predicting their impact on the flight envelope. Due to the complexity and multidimensionality of the aircraft system under abnormal conditions, these requirements are extremely difficult to satisfy using existing analytical and/or statistical approaches. Moreover, current methodologies have addressed only isolated classes of abnormal conditions and a reduced number of aircraft dynamic parameters within a limited region of the flight envelope. This research effort aims at developing an integrated and comprehensive framework for the aircraft abnormal conditions detection, identification, and evaluation based on the artificial immune systems paradigm, which has the capability to address the complexity and multidimensionality issues related to aircraft systems. Within the proposed framework, a novel algorithm was developed for the abnormal conditions detection problem and extended to the abnormal conditions identification and evaluation. The algorithm and its extensions were inspired from the functionality of the biological dendritic cells (an important part of the innate immune system) and their interaction with the different components of the adaptive immune system. Immunity-based methodologies for re-assessing the flight envelope at post-failure and predicting the impact of the abnormal conditions on the performance and handling qualities are also proposed and investigated in this study. The generality of the approach makes it applicable to any system. Data for artificial immune system development were collected from flight tests of a supersonic research aircraft within a motion-based flight

  2. Neutron Detection With Ultra-Fast Digitizer and Pulse Identification Techniques on DIII-D

    NASA Astrophysics Data System (ADS)

    Zhu, Y. B.; Heidbrink, W. W.; Piglowski, D. A.

    2013-10-01

    A prototype system for neutron detection with an ultra-fast digitizer and pulse identification techniques has been implemented on the DIII-D tokamak. The system consists of a cylindrical neutron fission chamber, a charge sensitive amplifier, and a GaGe Octopus 12-bit CompuScope digitizer card installed in a Linux computer. Digital pulse identification techniques have been successfully performed at maximum data acquisition rate of 50 MSPS with on-board memory of 2 GS. Compared to the traditional approach with fast nuclear electronics for pulse counting, this straightforward digital solution has many advantages, including reduced expense, improved accuracy, higher counting rate, and easier maintenance. The system also provides the capability of neutron-gamma pulse shape discrimination and pulse height analysis. Plans for the upgrade of the old DIII-D neutron counting system with these techniques will be presented. Work supported by the US Department of Energy under SC-G903402, and DE-FC02-04ER54698.

  3. Detection, identification and typing of Acidithiobacillus species and strains: a review.

    PubMed

    Nuñez, Harold; Covarrubias, Paulo C; Moya-Beltrán, Ana; Issotta, Francisco; Atavales, Joaquín; Acuña, Lillian G; Johnson, D Barrie; Quatrini, Raquel

    2016-09-01

    The genus Acidithiobacillus comprises several species of Gram-negative acidophilic bacteria that thrive in natural and man-made low pH environments in a variety of geo-climatic contexts. Beyond their fundamental interest as model extreme acidophiles, these bacteria are involved in the processing of minerals and the desulfurization of coal and natural gas, and are also sources of environmental pollution due to their generation of acid mine drainage and corrosion of cement and concrete structures. Acidithiobacillus spp. are therefore considered a biotechnologically relevant group of bacteria, and their identification and screening in natural and industrial environments is of great concern. Several molecular typing methodologies have been instrumental in improving knowledge of the inherent diversity of acidithiobacilli by providing information on the genetic subtypes sampled in public and private culture collections; more recently, they have provided specific insight into the diversity of acidithiobacilli present in industrial and natural environments. The aim of this review is to provide an overview of techniques used in molecular detection, identification and typing of Acidithiobacillus spp. These methods will be discussed in the context of their contribution to the general and specific understanding of the role of the acidithiobacilli in microbial ecology and industrial biotechnology. Emerging opportunities for industrial and environmental surveillance of acidithiobacilli using next-generation molecular typing methodologies are also reviewed. PMID:27288569

  4. Comprehensive temporal information detection from clinical text: medical events, time, and TLINK identification

    PubMed Central

    Sohn, Sunghwan; Wagholikar, Kavishwar B; Li, Dingcheng; Jonnalagadda, Siddhartha R; Tao, Cui; Komandur Elayavilli, Ravikumar; Liu, Hongfang

    2013-01-01

    Background Temporal information detection systems have been developed by the Mayo Clinic for the 2012 i2b2 Natural Language Processing Challenge. Objective To construct automated systems for EVENT/TIMEX3 extraction and temporal link (TLINK) identification from clinical text. Materials and methods The i2b2 organizers provided 190 annotated discharge summaries as the training set and 120 discharge summaries as the test set. Our Event system used a conditional random field classifier with a variety of features including lexical information, natural language elements, and medical ontology. The TIMEX3 system employed a rule-based method using regular expression pattern match and systematic reasoning to determine normalized values. The TLINK system employed both rule-based reasoning and machine learning. All three systems were built in an Apache Unstructured Information Management Architecture framework. Results Our TIMEX3 system performed the best (F-measure of 0.900, value accuracy 0.731) among the challenge teams. The Event system produced an F-measure of 0.870, and the TLINK system an F-measure of 0.537. Conclusions Our TIMEX3 system demonstrated good capability of regular expression rules to extract and normalize time information. Event and TLINK machine learning systems required well-defined feature sets to perform well. We could also leverage expert knowledge as part of the machine learning features to further improve TLINK identification performance. PMID:23558168

  5. Nucleic acid approaches for detection and identification of biological warfare and infectious disease agents.

    PubMed

    Ivnitski, Dmitri; O'Neil, Daniel J; Gattuso, Anthony; Schlicht, Roger; Calidonna, Michael; Fisher, Rodney

    2003-10-01

    Biological warfare agents are the most problematic of the weapons of mass destruction and terror. Both civilian and military sources predict that over the next decade the threat from proliferation of these agents will increase significantly. In this review we summarize the state of the art in detection and identification of biological threat agents based on PCR technology with emphasis on the new technology of microarrays. The advantages and limitations of real-time PCR technology and a review of the literature as it applies to pathogen and virus detection are presented. The paper covers a number of issues related to the challenges facing biological threat agent detection technologies and identifies critical components that must be overcome for the emergence of reliable PCR-based DNA technologies as bioterrorism countermeasures and for environmental applications. The review evaluates various system components developed for an integrated DNA microchip and the potential applications of the next generation of fully automated DNA analyzers with integrated sample preparation and biosensing elements. The article also reviews promising devices and technologies that are near to being, or have been, commercialized. PMID:14579752

  6. Inertial Aided Cycle Slip Detection and Identification for Integrated PPP GPS and INS

    PubMed Central

    Du, Shuang; Gao, Yang

    2012-01-01

    The recently developed integrated Precise Point Positioning (PPP) GPS/INS system can be useful to many applications, such as UAV navigation systems, land vehicle/machine automation and mobile mapping systems. Since carrier phase measurements are the primary observables in PPP GPS, cycle slips, which often occur due to high dynamics, signal obstructions and low satellite elevation, must be detected and repaired in order to ensure the navigation performance. In this research, a new algorithm of cycle slip detection and identification has been developed. With the aiding from INS, the proposed method jointly uses WL and EWL phase combinations to uniquely determine cycle slips in the L1 and L2 frequencies. To verify the efficiency of the algorithm, both tactical-grade and consumer-grade IMUs are tested by using a real dataset collected from two field tests. The results indicate that the proposed algorithm can efficiently detect and identify the cycle slips and subsequently improve the navigation performance of the integrated system. PMID:23202164

  7. Inertial aided cycle slip detection and identification for integrated PPP GPS and INS.

    PubMed

    Du, Shuang; Gao, Yang

    2012-01-01

    The recently developed integrated Precise Point Positioning (PPP) GPS/INS system can be useful to many applications, such as UAV navigation systems, land vehicle/machine automation and mobile mapping systems. Since carrier phase measurements are the primary observables in PPP GPS, cycle slips, which often occur due to high dynamics, signal obstructions and low satellite elevation, must be detected and repaired in order to ensure the navigation performance. In this research, a new algorithm of cycle slip detection and identification has been developed. With the aiding from INS, the proposed method jointly uses WL and EWL phase combinations to uniquely determine cycle slips in the L1 and L2 frequencies. To verify the efficiency of the algorithm, both tactical-grade and consumer-grade IMUs are tested by using a real dataset collected from two field tests. The results indicate that the proposed algorithm can efficiently detect and identify the cycle slips and subsequently improve the navigation performance of the integrated system. PMID:23202164

  8. Incipient fault detection and identification in process systems using accelerating neural network learning

    SciTech Connect

    Parlos, A.G.; Muthusami, J.; Atiya, A.F. . Dept. of Nuclear Engineering)

    1994-02-01

    The objective of this paper is to present the development and numerical testing of a robust fault detection and identification (FDI) system using artificial neural networks (ANNs), for incipient (slowly developing) faults occurring in process systems. The challenge in using ANNs in FDI systems arises because of one's desire to detect faults of varying severity, faults from noisy sensors, and multiple simultaneous faults. To address these issues, it becomes essential to have a learning algorithm that ensures quick convergence to a high level of accuracy. A recently developed accelerated learning algorithm, namely a form of an adaptive back propagation (ABP) algorithm, is used for this purpose. The ABP algorithm is used for the development of an FDI system for a process composed of a direct current motor, a centrifugal pump, and the associated piping system. Simulation studies indicate that the FDI system has significantly high sensitivity to incipient fault severity, while exhibiting insensitivity to sensor noise. For multiple simultaneous faults, the FDI system detects the fault with the predominant signature. The major limitation of the developed FDI system is encountered when it is subjected to simultaneous faults with similar signatures. During such faults, the inherent limitation of pattern-recognition-based FDI methods becomes apparent. Thus, alternate, more sophisticated FDI methods become necessary to address such problems. Even though the effectiveness of pattern-recognition-based FDI methods using ANNs has been demonstrated, further testing using real-world data is necessary.

  9. Development of a fractionation method for the detection and identification of oak ellagitannins in red wines.

    PubMed

    García-Estévez, Ignacio; Escribano-Bailón, M Teresa; Rivas-Gonzalo, Julián C; Alcalde-Eon, Cristina

    2010-02-15

    During maturation and ageing in oak barrels wines improve their organoleptic properties. Ellagitannins can be released from wood to the wine and be involved in oxidation reactions and seem to influence the astringency and colour properties of the wine. Nevertheless, the ellagitannins levels are lower than those of other wine constituents and, consequently, they are not easily detected. This study has developed a two-step fractionation method consisting of a solid phase extraction in C-18 Sep-Pak cartridges followed by size exclusion chromatography in hand-packed Sephadex LH-20 minicolumn for the detection of oak ellagitannins in different types of wines. An HPLC method has also been developed which allows the separation of compounds with the same m/z ratios, facilitating the ellagitannin identification by means of the mass spectrometric analyses. The main oak ellagitannins (grandinin, vescalagin, roburin E and castalagin) were isolated, detected separately and identified in a spiked wine and in three real ones, proving the usefulness of the fractionation method. PMID:20103159

  10. Association between Seminal Vesicle Invasion and Prostate Cancer Detection Location after Transrectal Systemic Biopsy among Men Who Underwent Radical Prostatectomy

    PubMed Central

    Lee, Young Ik; Lee, Hak Min; Jo, Jung Ki; Lee, Sangchul; Hong, Sung Kyu; Byun, Seok-Soo; Lee, Sang Eun; Oh, Jong Jin

    2016-01-01

    Background Our hypothesis is that the location of the seminal vesicles near the base of the prostate, the more positive cores are detected in the base, the greater the risk of seminal vesicle invasion. Therefore we investigate the clinical outcomes of base dominant prostate cancer (BDPC) in transrectal ultrasound (TRUS) -guided biopsies compared with anteromiddle dominant prostate cancer (AMPC). Methods From November 2003 to June 2014, a total of 990 intermediate and high risk prostate cancer (PCa) patients who underwent radical prostatectomy (RP) were enrolled and stratified into two groups according to proportion of positive cores–BDPC group had ≥ 33.3% ratio of positive cores from the prostate base among all positive cores and AMPC group < 33.3% in systemic biopsy. Between two groups, we compared the rate of pathologic outcomes and biochemical recurrence (BCR). We performed multivariate logistic regression model to confirm the significance of BDPC to seminal vesicle invasion (SVI) and Cox proportional hazard analysis to BCR. Results Among these 990 PCa patients, the 487 patients in BDPC group had more advanced clinical stage (p<0.001), a higher biopsy GS (p = 0.002), and a higher rate of extracapsular extension (ECE), SVI and BCR (all p<0.001) than AMPC group. The patients in BDPC group had poor BCR free survival rate via Kaplan-meier analysis (p<0.001). The ratio of the base positive cores was a significant predictor to SVI in multivariate analysis (p < 0.001) and significant predictor of BCR in multivariate Cox proportional analysis (hazard ratio: 1.466, p = 0.004). Conclusions BDPC in TRUS-guided prostate biopsies was significantly associated with SVI and BCR after adjusting for other clinical factors. Therefore, BDPC should be considered to be a more aggressive tumor despite an otherwise similar cancer profile. PMID:26848747

  11. Towards metal detection and identification for humanitarian demining using magnetic polarizability tensor spectroscopy

    NASA Astrophysics Data System (ADS)

    Dekdouk, B.; Ktistis, C.; Marsh, L. A.; Armitage, D. W.; Peyton, A. J.

    2015-11-01

    This paper presents an inversion procedure to estimate the location and magnetic polarizability tensor of metal targets from broadband electromagnetic induction (EMI) data. The solution of this inversion produces a spectral target signature, which may be used in identifying metal targets in landmines from harmless clutter. In this process, the response of the metal target is modelled with dipole moment and fitted to planar EMI data by solving a minimization least squares problem. A computer simulation platform has been developed using a modelled EMI sensor to produce synthetic data for inversion. The reconstructed tensor is compared with an assumed true solution estimated using a modelled tri-axial Helmholtz coil array. Using some test examples including a sphere which has a known analytical solution, results show the inversion routine produces accurate tensors to within 12% error of the true tensor. A good convergence rate is also demonstrated even when the target location is mis-estimated by a few centimeters. Having verified the inversion routine using finite element modelling, a swept frequency EMI experimental setup is used to compute tensors for a set of test samples representing examples of metallic landmine components and clutter for a broadband range of frequencies (kHz to tens of kHz). Results show the reconstructed spectral target signatures are very distinctive and hence potentially offer an efficient physical approach for landmine identification. The accuracy of the evaluated spectra is similarly verified using a uniform field forming sensor.

  12. OPCW Proficiency Test: A Practical Approach Also for Interlaboratory Test on Detection and Identification of Pesticides in Environmental Matrices

    PubMed Central

    Śliwakowski, Maciej

    2014-01-01

    An overview of general strategy, standard procedures, and critical points, which may be found during carrying out an OPCW Proficiency Test concerning detection and identification of scheduled compounds relevant to Chemical Weapon Convention, has been presented. The observations have been illustrated following the case of the Eight OPCW Designated Laboratories Proficiency Test, which was performed in the OPCW Laboratory in Rijswijk in November and December 2000. Various useful hints, comments, and practical observations concerning the case study have been included as well. The same methodology and procedures may be also applied for detection, identification, and environmental analyses of pesticides and biocides, especially organophosphorus compounds. PMID:24578644

  13. OPCW Proficiency Test: a practical approach also for interlaboratory test on detection and identification of pesticides in environmental matrices.

    PubMed

    Konopski, Leszek; Liu, Pingfeng; Wuryani, Wuri; Sliwakowski, Maciej

    2014-01-01

    An overview of general strategy, standard procedures, and critical points, which may be found during carrying out an OPCW Proficiency Test concerning detection and identification of scheduled compounds relevant to Chemical Weapon Convention, has been presented. The observations have been illustrated following the case of the Eight OPCW Designated Laboratories Proficiency Test, which was performed in the OPCW Laboratory in Rijswijk in November and December 2000. Various useful hints, comments, and practical observations concerning the case study have been included as well. The same methodology and procedures may be also applied for detection, identification, and environmental analyses of pesticides and biocides, especially organophosphorus compounds. PMID:24578644

  14. Individual Detection and Electrochemically Assisted Identification of Adsorbed Nanoparticles by Using Surface Plasmon Microscopy.

    PubMed

    Nizamov, Shavkat; Kasian, Olga; Mirsky, Vladimir M

    2016-06-13

    The increasing production and application of nanoparticles necessitates a highly sensitive analytical method for the quantification and identification of these potentially hazardous materials. We describe here an application of surface plasmon microscopy for the individual detection of each adsorbed nanoparticle and for visualization of its electrochemical conversion. Whereas the adsorption rate characterizes the number concentration of nanoparticles, the potential at which the adsorbed nanoparticles disappear during an anodic potential sweep characterizes the type of material. All the adsorbed nanoparticles are subjected to the potential sweep simultaneously; nevertheless, each of the up to a million adsorbed nanoparticles is identified individually by its electrochemical dissolution potential. The technique has been tested with silver and copper nanoparticles, but can be extended to many other electrochemically active nanomaterials. PMID:27139913

  15. [Detection of short tandem repeat (STR) polymorphisms by microchip electrophoresis for individual identification of cattle].

    PubMed

    Yamaguchi, Akihiro; Shimizu, Kaori; Mishima, Takashi; Hattori, Hideki; Katsuda, Shin-ichi; Sato, Hidetaka; Ueda, Nobuo; Sato, Noriyuki

    2006-12-01

    A simple and rapid detection of short tandem repeat (STR) markers was studied as a screening test for individual identification of cattle. DNAs were extracted from eight commercial beef samples by a proteinase K-boil method followed by purification with 2-propanol precipitation. Five STR markers, known to be highly polymorphic, were amplified by PCR and analyzed both by a conventional sequencing analysis (SEQ) and by a proposed microchip electrophoresis (MEP). Every marker revealed high polymorphism, such as 5-9 alleles in SEQ analysis, and 4-6 alleles in MEP analysis. This simple and rapid MEP analysis is expected to be an effective screening tool with use of confirmatory SEQ analysis. PMID:17228791

  16. Preliminary input to the space shuttle reaction control subsystem failure detection and identification software requirements (uncontrolled)

    NASA Technical Reports Server (NTRS)

    Bergmann, E.

    1976-01-01

    The current baseline method and software implementation of the space shuttle reaction control subsystem failure detection and identification (RCS FDI) system is presented. This algorithm is recommended for conclusion in the redundancy management (RM) module of the space shuttle guidance, navigation, and control system. Supporting software is presented, and recommended for inclusion in the system management (SM) and display and control (D&C) systems. RCS FDI uses data from sensors in the jets, in the manifold isolation valves, and in the RCS fuel and oxidizer storage tanks. A list of jet failures and fuel imbalance warnings is generated for use by the jet selection algorithm of the on-orbit and entry flight control systems, and to inform the crew and ground controllers of RCS failure status. Manifold isolation valve close commands are generated in the event of failed on or leaking jets to prevent loss of large quantities of RCS fuel.

  17. Simultaneous Detection and Identification of Candida, Aspergillus, and Cryptococcus Species by Reverse Line Blot Hybridization

    PubMed Central

    Playford, E. Geoffrey; Kong, Fanrong; Sun, Ying; Wang, Hui; Halliday, Catriona; Sorrell, Tania C.

    2006-01-01

    We report on a reverse line blot (RLB) assay, utilizing fungal species-specific oligonucleotide probes to hybridize with internal transcribed spacer 2 region sequences amplified using a nested panfungal PCR. Reference and clinical strains of 16 Candida species (116 strains), Cryptococcus neoformans (five strains of Cryptococcus neoformans var. neoformans, five strains of Cryptococcus neoformans var. grubii, and six strains of Cryptococcus gatti), and five Aspergillus species (68 strains) were all correctly identified by the RLB assay. Additional fungal species (16 species and 26 strains) not represented on the assay did not exhibit cross-hybridization with the oligonucleotide probes. In simulated clinical specimens, the sensitivity of the assay for Candida spp. and Aspergillus spp. was 100.5 cells/ml and 102 conidia/ml, respectively. This assay allows sensitive and specific simultaneous detection and identification of a broad range of fungal pathogens. PMID:16517870

  18. Space shuttle orbital maneuvering system failure detection and identification software requirements (uncontrolled)

    NASA Technical Reports Server (NTRS)

    Damario, L. A.; Vullo, J. P.

    1976-01-01

    Candidate designs and their software implementation are presented for the Orbital Maneuvering System (OMS) Failure Detection and Identification (FDI) algorithms in the Redundance Management (RM) module of the Space Shuttle Guidance, Navigation, and Control (GN&C) software. The OMS engine FDI algorithm monitors OMS engine thrust performance, and the OMS actuator FDI algorithm monitors OMS gimbal actuator performance. The software functional requirements of the algorithms are described along with the objective of each algorithm. A list of the assumptions which have governed its design, input/output requirements, a functional description of the algorithm (including a functional block diagram), and input interface requirements are given. The HAL (the language of the space shuttle flight computer) software formulation of the algorithms is considered including structured flowcharts of the procedures, estimates of flight computer core storage and CPU time, and processing requirements. A glossary of the symbols used to define the software requirements and formulations is included.

  19. Rapid, Bioassay-Guided Process for the Detection and Identification of Antibacterial Neem Oil Compounds.

    PubMed

    Krüzselyi, Dániel; Nagy, Róbert; Ott, Péter G; Móricz, Ágnes M

    2016-08-01

    Bioassay guidance was used along the whole process including method development, isolation and identification of antibacterial neem (Azadirachta indica) oil compounds. The biomonitoring was performed by direct bioautography (DB), a combination of thin-layer chromatography (TLC) and antimicrobial detection. DB of neem oil showed one antibacterial zone that was not UV-active; therefore, the TLC separation was improved under DB control. The chromatographic zone that exhibited activity against Bacillus subtilis, Xanthomonas euvesicatoria, Aliivibrio fischeri, Staphylococcus aureus and methicillin-resistant Staphylococcus aureus was characterized by TLC reagents, indicating a lipophilic, fatty acid-like chemical feature. Two compounds were found and identified in the active zone by high-performance liquid chromatography-electrospray ionization mass spectrometry as linoleic and oleic acids. Both fatty acids inhibited B. subtilis, but A. fischeri was sensitive only against linoleic acid. PMID:26951543

  20. Virtual Sensor for Failure Detection, Identification and Recovery in the Transition Phase of a Morphing Aircraft

    PubMed Central

    Heredia, Guillermo; Ollero, Aníbal

    2010-01-01

    The Helicopter Adaptive Aircraft (HADA) is a morphing aircraft which is able to take-off as a helicopter and, when in forward flight, unfold the wings that are hidden under the fuselage, and transfer the power from the main rotor to a propeller, thus morphing from a helicopter to an airplane. In this process, the reliable folding and unfolding of the wings is critical, since a failure may determine the ability to perform a mission, and may even be catastrophic. This paper proposes a virtual sensor based Fault Detection, Identification and Recovery (FDIR) system to increase the reliability of the HADA aircraft. The virtual sensor is able to capture the nonlinear interaction between the folding/unfolding wings aerodynamics and the HADA airframe using the navigation sensor measurements. The proposed FDIR system has been validated using a simulation model of the HADA aircraft, which includes real phenomena as sensor noise and sampling characteristics and turbulence and wind perturbations. PMID:22294922

  1. Virtual sensor for failure detection, identification and recovery in the transition phase of a morphing aircraft.

    PubMed

    Heredia, Guillermo; Ollero, Aníbal

    2010-01-01

    The Helicopter Adaptive Aircraft (HADA) is a morphing aircraft which is able to take-off as a helicopter and, when in forward flight, unfold the wings that are hidden under the fuselage, and transfer the power from the main rotor to a propeller, thus morphing from a helicopter to an airplane. In this process, the reliable folding and unfolding of the wings is critical, since a failure may determine the ability to perform a mission, and may even be catastrophic. This paper proposes a virtual sensor based Fault Detection, Identification and Recovery (FDIR) system to increase the reliability of the HADA aircraft. The virtual sensor is able to capture the nonlinear interaction between the folding/unfolding wings aerodynamics and the HADA airframe using the navigation sensor measurements. The proposed FDIR system has been validated using a simulation model of the HADA aircraft, which includes real phenomena as sensor noise and sampling characteristics and turbulence and wind perturbations. PMID:22294922

  2. Fluorescent identification and detection of Staphylococcus aureus with carboxymethyl chitosan/CdS quantum dots bioconjugates.

    PubMed

    Wang, Xiaohui; Du, Yumin; Li, Yan; Li, Dong; Sun, Runcang

    2011-01-01

    A fast and sensitive method based on fluorescent carboxymethyl chitosan/CdS quantum dots (CMCS-CdS QDs) composites was developed for specific detection of Staphylococcus aureus in food and the environment. Fluorescent CMCS-CdS QDs were prepared in aqueous solution through a green method. A human immunoglobulin (IgG) antibody was then bioconjugated to the QDs in the presence of 1-ethyl-3-(3)-dimethylaminopropyl carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) to make a novel type of mono-dispersed water-soluble fluorescent bioprobes. The fluorescent bioprobes were employed to identify S. aureus by incubating them with the bacteria for a certain time and observing the marked cells under fluorescence microscopy after removing free fluorescent QDs. Fluorescence microscopy images showed the S. aureus cells were successfully recognized by the bioprobes. Several other bacteria commonly found in environment such as Escherichia coli and Bacillus subtilis were also incubated with the bioprobes to test their specificity. It was found that the novel QDs-CMCS-IgG bioprobes had specific identification to S. aureus cells. Fluorescence measurement using a luminescence spectrometer could be applied to quantify S. aureus cells. The fluorescence intensity of the samples at 600 nm was proportional to the cell concentration in the range of 10(3)-10(7) cfu/ml, and the detection limit was as low as 900 cfu/ml. Considering the simplicity and cost-efficiency of this method, its application in the identification and quantification of bacteria in clinical, food and environmental samples is anticipated. PMID:20961493

  3. Rapid Detection and Identification of Human Hookworm Infections through High Resolution Melting (HRM) Analysis

    PubMed Central

    Ngui, Romano; Lim, Yvonne A. L.; Chua, Kek Heng

    2012-01-01

    Background Hookworm infections are still endemic in low and middle income tropical countries with greater impact on the socioeconomic and public health of the bottom billion of the world's poorest people. In this study, a real-time polymerase chain reaction (PCR) coupled with high resolution melting-curve (HRM) analysis was evaluated for an accurate, rapid and sensitive tool for species identification focusing on the five human hookworm species. Methods Real-time PCR coupled with HRM analysis targeting the second internal transcribed spacer (ITS-2) of nuclear ribosomal DNA as the genetic marker was used to identify and distinguish hookworm species in human samples. Unique and distinct characteristics of HRM patterns were produced for each of the five hookworm species. The melting curves were characterized by peaks of 79.24±0.05°C and 83.00±0.04°C for Necator americanus, 79.12±0.10°C for Ancylostoma duodenale, 79.40±0.10°C for Ancylostoma ceylanicum, 79.63±0.05°C for Ancylostoma caninum and 79.70±0.14°C for Ancylostoma braziliense. An evaluation of the method's sensitivity and specificity revealed that this assay was able to detect as low as 0.01 ng/µl hookworm DNA and amplification was only recorded for hookworm positive samples. Conclusion The HRM assay developed in this study is a rapid and straightforward method for the diagnosis, identification and discrimination of five human hookworms. This assay is simple compared to other probe-based genotyping methods as it does not require multiplexing, DNA sequencing or post-PCR processing. Therefore, this method offers a new alternative for rapid detection of human hookworm species. PMID:22844538

  4. Possibility of the detection and identification of substance at long distance using the noisy reflected THz pulse under real conditions

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Varentsova, Svetlana A.; Trofimov, Vladislav V.

    2015-05-01

    We show possibility of the detection and identification of substance at long distance (several metres, for example) using the THz pulse reflected from the object under the real conditions: at room temperature and humidity of about 70%. The main feature of this report consists in a demonstration of the detection and identification of substance using the computer processing of the noisy THz pulse. Amplitude of the useful signal is less than the amplitude of a noise. Nevertheless, it is possible to detect "fingerprint" frequencies of substance if these frequencies are known and the SDA method is used together with new assessments for probability estimation for presence of detected frequencies. Essential restrictions of the commonly used THz TDS method for the detection and identification under real conditions (at long distance about 3.5 m and at a high relative humidity more than 50%) are demonstrated using the physical experiment with chocolate bar and thick paper bag. We show also that the THz TDS method detects spectral features of dangerous substances even in the THz signals measured in laboratory conditions (at distance 30-40 cm from the receiver and at a low relative humidity less than 2%); the n-Si and p-Si semiconductors were used as neutral substances. However, the integral correlation and likeness criteria, based on SDA method, allow us to detect the absence of dangerous substances in the samples. Current results show feasibility of using the discussed method of the THz pulsed spectroscopy for the counter-terrorism problem.

  5. Application of reverse dot blot hybridization to simultaneous detection and identification of harmful algae.

    PubMed

    Chen, Guo Fu; Zhang, Chun Yun; Wang, Yuan Yuan; Chen, Wen

    2015-07-01

    Warning and monitoring projects of harmful algal blooms require simple and rapid methods for simultaneous and accurate detection and identification of causative algae present in the environmental samples. Here, reverse dot blot hybridization (RDBH) was employed to simultaneously detect several harmful algae by using five representative bloom-forming microalgae along the Chinese coast. A set of specific probes for RDBH were developed by PCR, cloning, and sequencing of the internal transcribed spacer (ITS), alignment analysis, and probe design. Each probe was oligo (dT)-tailed and spotted onto positively charged nylon membrane to make up a low-density oligonucleotide array. Universal primers designed within the conserved regions were used to amplify the ITS sequences by using genomic DNA of target as templates. The digoxigenin (Dig)-labeled PCR products were denatured and then hybridized to the oligonucleotide array. The array produced a unique hybridization pattern for each target species differentiating them from each other. The preparations of oligonucleotide array and hybridization conditions were optimized. The developed RDBH demonstrated a detection limit up to 10 cells. The detection performance of RDBH was relatively stable and not affected by non-target species and the fixation time of target species over at least 30 days. The RDBH could recover all the target species from the simulated field samples and target species confirmed by the subsequent microscopy examination in the environmental samples. These results indicate that RDBH can be a new technical platform for parallel discrimination of harmful algae and is promising for environmental monitoring of these microorganisms. PMID:25731086

  6. An Innovative Method for Rapid Identification and Detection of Vibrio alginolyticus in Different Infection Models

    PubMed Central

    Fu, Kaifei; Li, Jun; Wang, Yuxiao; Liu, Jianfei; Yan, He; Shi, Lei; Zhou, Lijun

    2016-01-01

    Vibrio alginolyticus is one of the most common pathogenic marine Vibrio species, and has been found to cause serious seafood-poisoning or fatal extra-intestinal infections in humans, such as necrotizing soft-tissue infections, bacteremia, septic shock, and multiple organ failures. Delayed accurate diagnosis and treatment of most Vibrio infections usually result to high mortality rates. The objective of this study was to establish a rapid diagnostic method to detect and identify the presence of V. alginolyticus in different samples, so as to facilitate timely treatment. The widely employed conventional methods for detection of V. alginolyticus include biochemical identification and a variety of PCR methods. The former is of low specificity and time-consuming (2–3 days), while the latter has improved accuracy and processing time. Despite such advancements, these methods are still complicated, time-consuming, expensive, require expertise and advanced laboratory systems, and are not optimal for field use. With the goal of providing a simple and efficient way to detect V. alginolyticus, we established a rapid diagnostic method based on loop-mediated Isothermal amplification (LAMP) technology that is feasible to use in both experimental and field environments. Three primer pairs targeting the toxR gene of V. alginolyticus were designed, and amplification was carried out in an ESE tube scanner and Real-Time PCR device. We successfully identified 93 V. alginolyticus strains from a total of 105 different bacterial isolates and confirmed their identity by 16s rDNA sequencing. We also applied this method on infected mouse blood and contaminated scallop samples, and accurate results were both easily and rapidly (20–60 min) obtained. Therefore, the RT-LAMP assay we developed can be conveniently used to detect the presence of V. alginolyticus in different samples. Furthermore, this method will also fulfill the gap for real-time screening of V. alginolyticus infections

  7. Corn plant locating by image processing

    NASA Astrophysics Data System (ADS)

    Jia, Jiancheng; Krutz, Gary W.; Gibson, Harry W.

    1991-02-01

    The feasibility investigation of using machine vision technology to locate corn plants is an important issue for field production automation in the agricultural industry. This paper presents an approach which was developed to locate the center of a corn plant using image processing techniques. Corn plants were first identified using a main vein detection algorithm by detecting a local feature of corn leaves leaf main veins based on the spectral difference between mains and leaves then the center of the plant could be located using a center locating algorithm by tracing and extending each detected vein line and evaluating the center of the plant from intersection points of those lines. The experimental results show the usefulness of the algorithm for machine vision applications related to corn plant identification. Such a technique can be used for pre. cisc spraying of pesticides or biotech chemicals. 1.

  8. The importance of background in the detection and identification of gas plumes using emissive infrared hyperspectral sensing

    NASA Astrophysics Data System (ADS)

    Mitchell, Herbert J.; Jellison, Gerard P.; Miller, David P.; Salvaggio, Carl; Miller, Craig J.

    2003-09-01

    Using a Fourier transform infrared field spectrometer, spectral infrared radiance measurements were made of several generated gas plumes against both a uniform sky and terrestrial background. Background temperature, spectral complexity, and physical homogeneity each influenced the success of emissive infrared spectral sensing technology in detecting and identifying the presence of a gas plume and its component constituents. As expected, high temperature contrast and uniform backgrounds provided the best conditions for detectibility and diagnostic identification. This report will summarize some of SITAC's findings concerning plume detectability, including the importance of plume cooling, plumes in emission and absorption, the effects of optical thickness, and the effects of condensing plumes on gas detection.

  9. CATSI EDM: a new sensor for the real-time passive stand-off detection and identification of chemicals

    NASA Astrophysics Data System (ADS)

    Thériault, Jean-Marc; Lacasse, Paul; Lavoie, Hugo; Bouffard, François; Montembeault, Yan; Farley, Vincent; Belhumeur, Louis; Lagueux, Philippe

    2010-04-01

    DRDC Valcartier recently completed the development of the CATSI EDM (Compact Atmospheric Sounding Interferometer Engineering Development Model) for the Canadian Forces (CF). It is a militarized sensor designed to meet the needs of the CF in the development of area surveillance capabilities for the detection and identification of chemical Warfare Agents (CWA) and toxic industrial chemicals (TIC). CATSI EDM is a passive infrared double-beam Fourier spectrometer system designed for real-time stand-off detection and identification of chemical vapours at distances up to 5 km. It is based on the successful passive differential detection technology. This technique known as optical subtraction, results in a target gas spectrum which is almost free of background, thus making possible detection of weak infrared emission in strong background emission. This paper summarizes the system requirements, achievements, hardware and software characteristics and test results.

  10. A novel microbial source tracking microarray for pathogen detection and fecal source identification in environmental systems.

    PubMed

    Li, Xiang; Harwood, Valerie J; Nayak, Bina; Staley, Christopher; Sadowsky, Michael J; Weidhaas, Jennifer

    2015-06-16

    Pathogen detection and the identification of fecal contamination sources are challenging in environmental waters. Factors including pathogen diversity and ubiquity of fecal indicator bacteria hamper risk assessment and remediation of contamination sources. A custom microarray targeting pathogens (viruses, bacteria, protozoa), microbial source tracking (MST) markers, and antibiotic resistance genes was tested against DNA obtained from whole genome amplification (WGA) of RNA and DNA from sewage and animal (avian, cattle, poultry, and swine) feces. Perfect and mismatch probes established the specificity of the microarray in sewage, and fluorescence decrease of positive probes over a 1:10 dilution series demonstrated semiquantitative measurement. Pathogens, including norovirus, Campylobacter fetus, Helicobacter pylori, Salmonella enterica, and Giardia lamblia were detected in sewage, as well as MST markers and resistance genes to aminoglycosides, beta-lactams, and tetracycline. Sensitivity (percentage true positives) of MST results in sewage and animal waste samples (21-33%) was lower than specificity (83-90%, percentage of true negatives). Next generation DNA sequencing revealed two dominant bacterial families that were common to all sample types: Ruminococcaceae and Lachnospiraceae. Five dominant phyla and 15 dominant families comprised 97% and 74%, respectively, of sequences from all fecal sources. Phyla and families not represented on the microarray are possible candidates for inclusion in subsequent array designs. PMID:25970344

  11. Molecular identification of Salmonella Infantis isolated from backyard chickens and detection of their resistance genesby PCR

    PubMed Central

    Ghoddusi, A; Nayeri Fasaei, B; Karimi, V; Ashrafi Tamai, I; Moulana, Z; Zahraei Salehi, T

    2015-01-01

    This study aims at molecular identification of Salmonella Infantis isolated from backyard chickens and the detection of their antibiotic resistance genes. A total of 46 Salmonella-suspected samples isolated from backyard chickens of northern Iran were collected. Serotyping was done by the traditional method and then confirmed by PCR. Antimicrobial susceptibility of the isolates against 13 antimicrobial agents was determined by the standard disk diffusion method. There were 44 samples identified as Salmonella. Serotyping results showed that all 44 isolates belonged to serogroup C1 and serovar Infantis. The most resistance observed was to tetracycline and doxycycline (100%), chloramphenicol (79%) and florfenicol (72%). The floR, catI, tetA and tetG genes were used for the detection of florfenicol chloramphenicol and tetracycline resistance. In order to identify the phenotypic resistance in strains which showed resistance genes by PCR, colony PCR and culture on plates each containing antibiotic was performed simultaneously. All the Salmonella Infantis resistant to florfenicol and chloramphenicol harbored floR and catI. None of the Salmonella resistant to tetracycline carried tetA or tetG. The result of colony PCR and culture in antibiotic medium confirmed the results of PCR and indicated phenotypic resistance in these samples. PMID:27175192

  12. Network of wireless gamma ray sensors for radiological detection and identification

    NASA Astrophysics Data System (ADS)

    Barzilov, A.; Womble, P.; Novikov, I.; Paschal, J.; Board, J.; Moss, K.

    2007-04-01

    The paper describes the design and development of a network of wireless gamma-ray sensors based on cell phone or WiFi technology. The system is intended for gamma-ray detection and automatic identification of radioactive isotopes and nuclear materials. The sensor is a gamma-ray spectrometer that uses wireless technology to distribute the results. A small-size sensor module contains a scintillation detector along with a small size data acquisition system, PDA, battery, and WiFi radio or a cell phone modem. The PDA with data acquisition and analysis software analyzes the accumulated spectrum on real-time basis and returns results to the screen reporting the isotopic composition and intensity of detected radiation source. The system has been programmed to mitigate false alarms from medical isotopes and naturally occurring radioactive materials. The decision-making software can be "trained" to indicate specific signatures of radiation sources like special nuclear materials. The sensor is supplied with GPS tracker coupling radiological information with geographical coordinates. The sensor is designed for easy use and rapid deployment in common wireless networks.

  13. Identification of Porphyromonas gingivalis Strains by Heteroduplex Analysis and Detection of Multiple Strains

    PubMed Central

    Leys, Eugene J.; Smith, James H.; Lyons, Sharon R.; Griffen, Ann L.

    1999-01-01

    Heteroduplex analysis has been used extensively to identify allelic variation among mammalian genes. It provides a rapid and reliable method for determining and cataloging minor differences between two closely related DNA sequences. We have adapted this technique to distinguish among strains or clonal types of Porphyromonas gingivalis. The ribosomal intergenic spacer region (ISR) was amplified directly from a subgingival plaque sample by PCR with species-specific primers, avoiding the need for culturing the bacteria. The PCR products were then directly compared by heteroduplex analysis with known strains of P. gingivalis for identification. We identified 22 distinct but closely related heteroduplex types of P. gingivalis in 1,183 clinical samples. Multiple strains were found in 34% of the samples in which P. gingivalis was detected. Heteroduplex types were identified from these multistrain samples without separating them by culturing or molecular cloning. PCR with species-specific primers and heteroduplex analysis makes it possible to reliably and sensitively detect and identify strains of P. gingivalis in large numbers of samples. PMID:10565905

  14. Flow-cytometric identification of vinegars using a multi-parameter analysis optical detection module

    NASA Astrophysics Data System (ADS)

    Verschooten, T.; Ottevaere, H.; Vervaeke, M.; Van Erps, J.; Callewaert, M.; De Malsche, W.; Thienpont, H.

    2015-09-01

    We show a proof-of-concept demonstration of a multi-parameter analysis low-cost optical detection system for the flowcytometric identification of vinegars. This multi-parameter analysis system can simultaneously measure laser induced fluorescence, absorption and scattering excited by two time-multiplexed lasers of different wavelengths. To our knowledge no other polymer optofluidic chip based system offers more simultaneous measurements. The design of the optofluidic channels is aimed at countering the effects that viscous fingering, air bubbles, and emulsion samples can have on the correct operation of such a detection system. Unpredictable variations in viscosity and refractive index of the channel content can be turned into a source of information. The sample is excited by two laser diodes that are driven by custom made low-cost laser drivers. The optofluidic chip is built to be robust and easy to handle and is reproducible using hot embossing. We show a custom optomechanical holder for the optofluidic chip that ensures correct alignment and automatic connection to the external fluidic system. We show an experiment in which 92 samples of vinegar are measured. We are able to identify 9 different kinds of vinegar with an accuracy of 94%. Thus we show an alternative approach to the classic optical spectroscopy solution at a lowered. Furthermore, we have shown the possibility of predicting the viscosity and turbidity of vinegars with a goodness-of-fit R2 over 0.947.

  15. Ion mobility spectrometer, spectrometer analyte detection and identification verification system, and method

    DOEpatents

    Atkinson, David A.

    2002-01-01

    Methods and apparatus for ion mobility spectrometry and analyte detection and identification verification system are disclosed. The apparatus is configured to be used in an ion mobility spectrometer and includes a plurality of reactant reservoirs configured to contain a plurality of reactants which can be reacted with the sample to form adducts having varying ion mobilities. A carrier fluid, such as air or nitrogen, is used to carry the sample into the spectrometer. The plurality of reactants are configured to be selectively added to the carrier stream by use inlet and outlet manifolds in communication with the reagent reservoirs, the reservoirs being selectively isolatable by valves. The invention further includes a spectrometer having the reagent system described. In the method, a first reactant is used with the sample. Following a positive result, a second reactant is used to determine whether a predicted response occurs. The occurrence of the second predicted response tends to verify the existence of a component of interest within the sample. A third reactant can also be used to provide further verification of the existence of a component of interest. A library can be established of known responses of compounds of interest with various reactants and the results of a specific multi-reactant survey of a sample can be compared against the library to determine whether a component detected in the sample is likely to be a specific component of interest.

  16. Detection and Identification of Probiotic Lactobacillus plantarum Strains by Multiplex PCR Using RAPD-Derived Primers

    PubMed Central

    Galanis, Alex; Kourkoutas, Yiannis; Tassou, Chrysoula C.; Chorianopoulos, Nikos

    2015-01-01

    Lactobacillus plantarum 2035 and Lactobacillus plantarum ACA-DC 2640 are two lactic acid bacteria (LAB) strains that have been isolated from Feta cheese. Both display significant potential for the production of novel probiotic food products. The aim of the present study was the development of an accurate and efficient method for the molecular detection and identification of the above strains in a single reaction. A multiplex PCR assay was designed for each strain, based on specific primers derived from Random Amplified Polymorphic DNA (RAPD) Sequenced Characterized Amplified Region (SCAR) analysis. The specificity of the assay was tested with a total of 23 different LAB strains, for L. plantarum 2035 and L. plantarum ACA-DC 2640. The multiplex PCR assay was also successfully applied for the detection of the above cultures in yogurt samples prepared in our lab. The proposed methodology may be applied for monitoring the presence of these strains in food products, thus evaluating their probiotic character. Moreover, our strategy may be adapted for other novel LAB strains with probiotic potential, thus providing a powerful tool for molecular discrimination that could be invaluable to the food industry. PMID:26506345

  17. USE OF IMMUNOFLUORESCENCE AND PHASE-CONTRAST MICROSCOPY FOR DETECTION AND IDENTIFICATION OF 'GIARDIA' CYSTS IN WATER SAMPLES

    EPA Science Inventory

    A method was developed in which indirect immunofluorescence and phase-contrast microscopy are used for rapid detection and identification of Giardia cysts in raw and finished water supplies. When anti-Giardia cyst antiserum and fluorescein conjugate were applied to known Giardia ...

  18. Multiplex PCR assay for identification of six different Staphylococcus spp. and simultaneous detection of methicillin and mupirocin resistance.

    PubMed

    Campos-Peña, E; Martín-Nuñez, E; Pulido-Reyes, G; Martín-Padrón, J; Caro-Carrillo, E; Donate-Correa, J; Lorenzo-Castrillejo, I; Alcoba-Flórez, J; Machín, F; Méndez-Alvarez, S

    2014-07-01

    We describe a new, efficient, sensitive, and fast single-tube multiple-PCR protocol for the identification of the most clinically significant Staphylococcus spp. and the simultaneous detection of the methicillin and mupirocin resistance loci. The protocol identifies at the species level isolates belonging to S. aureus, S. epidermidis, S. haemolyticus, S. hominis, S. lugdunensis, and S. saprophyticus. PMID:24829244

  19. Detection and identification of alkylphosphonic acids by positive electrospray ionization tandem mass spectrometry using a tricationic reagent.

    PubMed

    Tak, Vijay; Pardasani, Deepak; Purohit, Ajay; Dubey, D K

    2011-11-30

    The retrospective detection and identification of degradation products of chemical warfare agents are of immense importance in order to prove their spillage and use. A highly sensitive liquid chromatography/electrospray ionization tandem mass spectrometric (LC/ESI-MS/MS) method--using an imidazolium-based tricationic reagent--was developed for the detection and identification of the anionic degradation products of nerve agents. A commercially available solution of 1,3-imidazolium-bis-(1-hexylbenzylimidazolium) trifluoride (IBHBI) formed adducts with alkylphosphonic acids (APAs), allowing detection of the APAs by positive mode ESI-MS. Tandem mass spectrometry was used for the unambiguous identification of the APAs. Parameters influencing the formation and stability of these adduct during mass spectrometric analysis, such as solvent composition, concentration of IBHBI, effect of pH and interferences by salts, were optimized. The absolute limits of detection (0.1 ng) for achieved for the APAs were better than those previously reported, and linear dynamic ranges of 10-2000 ng mL(-1) were achieved. The method was repeatable with a relative standard deviation ≤7.3%. APAs present in aqueous samples provided by the Organization for the Prohibition of Chemical Weapons during the 22(nd) and 24(th) Official Proficiency tests were detected and identified as IBHBI adducts. The added advantage of this method is that low-mass analytes are detected at higher mass, thus obviating the problem with background noise at low mass. PMID:22002694

  20. Identification and Analysis of Immunodominant Antigens for ELISA-Based Detection of Theileria annulata

    PubMed Central

    Bakırcı, Serkan; Tait, Andrew; Kinnaird, Jane; Eren, Hasan

    2016-01-01

    Tropical or Mediterranean theileriosis, caused by the protozoan parasite Theileria annulata, remains an economically important bovine disease in North Africa, Southern Europe, India, the Middle East and Asia. The disease affects mainly exotic cattle and imposes serious constraints upon livestock production and breed improvement programmes. While microscopic and molecular methods exist which are capable of detecting T. annulata during acute infection, the identification of animals in the carrier state is more challenging. Serological tests, which detect antibodies that react against parasite-encoded antigens, should ideally have the potential to identify carrier animals with very high levels of sensitivity and specificity. However, assays developed to date have suffered from a lack of sensitivity and/or specificity and it is, therefore, necessary to identify novel parasite antigens, which can be developed for this purpose. In the present study, genes encoding predicted antigens were bioinformatically identified in the T. annulata genome. These proteins, together with a panel of previously described antigens, were assessed by western blot analysis for immunoreactivity, and this revealed that four novel candidates and five previously described antigens were recognised by immune bovine serum. Using a combination of immunoprecipitation and mass spectrophotometric analysis, an immunodominant protein (encoded by TA15705) was identified as Ta9, a previously defined T cell antigen. Western blotting revealed another of the five proteins in the Ta9 family, TA15710, also to be an immunodominant protein. However, validation by Enzyme-Linked Immunosorbent Assay indicated that due to either allelic polymorphism or differential immune responses of individual hosts, none of the novel candidates can be considered ideal for routine detection of T. annulata-infected/carrier animals. PMID:27270235

  1. Identification and Analysis of Immunodominant Antigens for ELISA-Based Detection of Theileria annulata.

    PubMed

    Bilgic, Huseyin Bilgin; Karagenc, Tulin; Bakırcı, Serkan; Shiels, Brian; Tait, Andrew; Kinnaird, Jane; Eren, Hasan; Weir, William

    2016-01-01

    Tropical or Mediterranean theileriosis, caused by the protozoan parasite Theileria annulata, remains an economically important bovine disease in North Africa, Southern Europe, India, the Middle East and Asia. The disease affects mainly exotic cattle and imposes serious constraints upon livestock production and breed improvement programmes. While microscopic and molecular methods exist which are capable of detecting T. annulata during acute infection, the identification of animals in the carrier state is more challenging. Serological tests, which detect antibodies that react against parasite-encoded antigens, should ideally have the potential to identify carrier animals with very high levels of sensitivity and specificity. However, assays developed to date have suffered from a lack of sensitivity and/or specificity and it is, therefore, necessary to identify novel parasite antigens, which can be developed for this purpose. In the present study, genes encoding predicted antigens were bioinformatically identified in the T. annulata genome. These proteins, together with a panel of previously described antigens, were assessed by western blot analysis for immunoreactivity, and this revealed that four novel candidates and five previously described antigens were recognised by immune bovine serum. Using a combination of immunoprecipitation and mass spectrophotometric analysis, an immunodominant protein (encoded by TA15705) was identified as Ta9, a previously defined T cell antigen. Western blotting revealed another of the five proteins in the Ta9 family, TA15710, also to be an immunodominant protein. However, validation by Enzyme-Linked Immunosorbent Assay indicated that due to either allelic polymorphism or differential immune responses of individual hosts, none of the novel candidates can be considered ideal for routine detection of T. annulata-infected/carrier animals. PMID:27270235

  2. Detection and boundary identification of phonocardiogram sounds using an expert frequency-energy based metric.

    PubMed

    Naseri, H; Homaeinezhad, M R

    2013-02-01

    This paper presents a new method to detect and to delineate phonocardiogram (PCG) sounds. Toward this objective, after preprocessing the PCG signal, two windows were moved on the preprocessed signal, and in each analysis window, two frequency-and amplitude-based features were calculated from the excerpted segment. Then, a synthetic decision making basis was devised by combining these two features for being used as an efficient detection-delineation decision statistic, (DS). Next, local extremums and locations of minimum slopes of the DS were determined by conducting forward-backward local investigations with the purpose of detecting sound incidences and their boundaries. In order to recognize the delineated PCG sounds, first, S1 and S2 were detected. Then, a new DS was regenerated from the signal whose S1 and S2 were eliminated to detect occasional S3 and S4 sounds. Finally, probable murmurs and souffles were spotted. The proposed algorithm was applied to 52 min PCG signals gathered from patients with different valve diseases. The provided database was annotated by some cardiology experts equipped by echocardiography and appropriate computer interfaces. The acquisition landmarks were in 2R (aortic), 2L (pulmonic), 4R (apex) and 4L (tricuspid) positions. The acquisition sensor was an electronic stethoscope (3 M Littmann® 3200, 4 kHz sampling frequency). The operating characteristics of the proposed method have an average sensitivity Se = 99.00% and positive predictive value PPV = 98.60% for sound type recognition (i.e., S1, S2, S3 or S4). PMID:22956159

  3. Surface-enhanced raman detection of 2,4-dinitrotoluene impurity vapor as a marker to locate landmines.

    PubMed

    Sylvia, J M; Janni, J A; Klein, J D; Spencer, K M

    2000-12-01

    Time, cost, and casualties associated with demining efforts underscore the need for improved detection techniques. Reduction in the number of false positives by directly detecting the explosive material, rather than casing material, is desirable. The desired field sensor must, at a minimum, demonstrate reproducibility, the necessary level of sensitivity, portability, instrumental stability, and fast system response times. Ideally, vibrational spectroscopic techniques have the potential to remove false positives, since every chemical has a unique bond structure. Herein, we demonstrate the capabilities of surface-enhanced Raman spectroscopy to detect the chemical vapor signature emanating from buried TNT-based landmines. We present reproducible results obtained from blind tests controlled by the Defense Advanced Research Projects Agency (DARPA) that demonstrate vapor detection of 2,4-dinitrotoluene at concentration levels of 5 ppb or less. The results presented used acquisition times of 30 s on a fieldable system and showed that SERS can be a significant improvement over current landmine detection methods. PMID:11128944

  4. Automated night/day standoff detection, tracking, and identification of personnel for installation protection

    NASA Astrophysics Data System (ADS)

    Lemoff, Brian E.; Martin, Robert B.; Sluch, Mikhail; Kafka, Kristopher M.; McCormick, William; Ice, Robert

    2013-06-01

    The capability to positively and covertly identify people at a safe distance, 24-hours per day, could provide a valuable advantage in protecting installations, both domestically and in an asymmetric warfare environment. This capability would enable installation security officers to identify known bad actors from a safe distance, even if they are approaching under cover of darkness. We will describe an active-SWIR imaging system being developed to automatically detect, track, and identify people at long range using computer face recognition. The system illuminates the target with an eye-safe and invisible SWIR laser beam, to provide consistent high-resolution imagery night and day. SWIR facial imagery produced by the system is matched against a watch-list of mug shots using computer face recognition algorithms. The current system relies on an operator to point the camera and to review and interpret the face recognition results. Automation software is being developed that will allow the system to be cued to a location by an external system, automatically detect a person, track the person as they move, zoom in on the face, select good facial images, and process the face recognition results, producing alarms and sharing data with other systems when people are detected and identified. Progress on the automation of this system will be presented along with experimental night-time face recognition results at distance.

  5. Real-Time PCR System for Detection of Orthopoxviruses and Simultaneous Identification of Smallpox Virus

    PubMed Central

    Olson, Victoria A.; Laue, Thomas; Laker, Miriam T.; Babkin, Igor V.; Drosten, Christian; Shchelkunov, Sergei N.; Niedrig, Matthias; Damon, Inger K.; Meyer, Hermann

    2004-01-01

    A screening assay for real-time LightCycler (Roche Applied Science, Mannheim, Germany) PCR identification of smallpox virus DNA was developed and compiled in a kit system under good manufacturing practice conditions with standardized reagents. In search of a sequence region unique to smallpox virus, the nucleotide sequence of the 14-kDa fusion protein gene of each of 14 variola virus isolates of the Russian World Health Organization smallpox virus repository was determined and compared to published sequences. PCR primers were designed to detect all Eurasian-African species of the genus Orthopoxvirus. A single nucleotide mismatch resulting in a unique amino acid substitution in smallpox virus was used to design a hybridization probe pair with a specific sensor probe that allows reliable differentiation of smallpox virus from other orthopoxviruses by melting-curve analysis. The applicability was demonstrated by successful amplification of 120 strains belonging to the orthopoxvirus species variola, vaccinia, camelpox, mousepox, cowpox, and monkeypox virus. The melting temperatures (Tms) determined for 46 strains of variola virus (Tms, 55.9 to 57.8°C) differed significantly (P = 0.005) from those obtained for 11 strains of vaccinia virus (Tms, 61.7 to 62.7°C), 15 strains of monkeypox virus (Tms, 61.9 to 62.2°C), 40 strains of cowpox virus (Tms, 61.3 to 63.7°C), 8 strains of mousepox virus (Tm, 61.9°C), and 8 strains of camelpox virus (Tms, 64.0 to 65.0°C). As most of the smallpox virus samples were derived from infected cell cultures and tissues, smallpox virus DNA could be detected in a background of human DNA. By applying probit regression analysis, the analytical sensitivity was determined to be 4 copies of smallpox virus target DNA per sample. The DNAs of several human herpesviruses as well as poxviruses other than orthopoxviruses were not detected by this method. The assay proved to be a reliable technique for the detection of orthopoxviruses, with the

  6. Detection and identification of free-living amoeba from aquatic environment in different seasons in Taiwan

    NASA Astrophysics Data System (ADS)

    Tzeng, K.; Hsu, B.; Tsai, H.; Huang, P.; Tsai, J.; Kao, P.; Huang, K.; Chen, J.

    2013-12-01

    Free-living amoeba includes Acanthamoeba and Naegleria, which are widely distributed in water and soil. Human infection with free-living amoeba leads to serious illness, even lethal. For example, central nervous system infection will cause amoebic meningoencephalitis, and infections will cause amoebic keratitis. The presence of free-living amoeba in environment water can be used as a water quality indicator in ecosystem assessment. In Taiwan, reservoirs are indispensable because of the water source are limited by the steep terrain and the short river flow. Therefore, we need to pay more attention in the quality control of reservoirs water. The aims of this study are to investigate the presence of free-living amoeba in Taiwan reservoirs, and to compare the differences among seasons. At last, the identification and genotyping of Acanthamoeba and Naegleria are investigated. In this study, we use polymerase chain reaction with specific primers to analyze the presence of free-living amoeba in aquatic environment. We collected total 60 samples from reservoirs in Taiwan. The water samples are divided into two parts for both direct concentration method and culture method. The results show the different detection rates among seasons. For Acanthamoeba, the detection rates were 28.3% (17 of 60 water samples), 21.7% (13 of 60 water samples) and 8.3% (5 of 60 water samples) in autumn, winter and spring, respectively. For Naegleria, the detection rates were 6.7% (4 of 60 water samples), 0% (0 of 60 water samples) and 0% (0 of 60 water samples) were detected positive in autumn, winter and spring, respectively. Sequence analysis showed that the major genotypes in Acanthamoeba were T3, T4, T10 and T11 in autumn, T2, T4 and T10 in winter, T4 in spring. Due to the presences of Acanthamoeba and Naegleria in reservoirs, we should pay more attention in water quality monitoring to prevent the potential risks of diseases. Keywords: free-living amoeba, Acanthamoeba, Naegleria, polymerase

  7. Rapid detection and identification of Brachyspira aalborgi from rectal biopsies and faeces of a patient.

    PubMed

    Calderaro, Adriana; Villanacci, Vincenzo; Conter, Mauro; Ragni, Patrizia; Piccolo, Giovanna; Zuelli, Claudia; Bommezzadri, Simona; Guégan, Rozenn; Zambelli, Claudia; Perandin, Francesca; Arcangeletti, Maria Cristina; Medici, Maria Cristina; Manca, Nino; Dettori, Giuseppe; Chezzi, Carlo

    2003-03-01

    This study reports for the first time the detection of Brachyspira aalborgi in faeces and rectal biopsies of a female suffering for 3-4 months of abdominal pain with long-standing mucosal diarrhoea, rectal bleeding and suspected carcinoma of the rectum. After pre-treatment of samples (faeces and biopsies) with a liquid medium (trypticase soy broth-TSB) containing foetal calf serum (FCS, 10%) and spectinomycin and rifampicin (TSB-SR) the first detection of B. aalborgi isolate HBS1 was observed after 48 h in the primary plates of selective blood agar modified medium (BAM) containing spectinomycin and rifampicin (BAM-SR), where growth zones were signalled by a small weakly beta-haemolytic halo. Attempts to subculture spirochaetes in agar media failed. The new HBS1 isolate was only propagated in TSB broth and at electron microscopy it showed 4 endoflagella inserted at each tapered end. The phenotypic characterization of HBS1 demonstrated absence of hippurate hydrolysis, indole production, alpha-galactosidase, alpha- and beta-glucosidase activities in accordance with the B. aalborgi type strain. Rapid identification of B. aalborgi isolate HBS1 was performed directly from faeces and rectal biopsies and subsequently from pure cultures by a genetic method based on 16S DNA restriction fragment length polymorphism (RFLP)-polymerase chain reaction (PCR). The sequence of 16S DNA amplicon of the isolate HBS1 was found 99.2% corresponding to that of the B. aalborgi type strain. Our results encourage further investigations for the development of a suitable selective agar medium for the isolating and cultivating B. aalborgi from human specimens. PMID:12648729

  8. Noninvasive forward-scattering system for rapid detection, characterization, and identification of bacterial colonies

    NASA Astrophysics Data System (ADS)

    Rajwa, Bartek; Bayraktar, Bulent; Banada, Padmapriya P.; Huff, Karleigh; Bae, Euiwon; Hirleman, E. Daniel; Bhunia, Arun K.; Robinson, J. Paul

    2007-04-01

    Bacterial contamination of food products puts the public at risk and also generates a substantial cost for the food-processing industry. One of the greatest challenges in the response to these incidents is rapid recognition of the bacterial agents involved. Only a few currently available technologies allow testing to be performed outside of specialized microbiological laboratories. Most current systems are based on the use of expensive PCR or antibody-based techniques, and require complicated sample preparation for reliable results. Herein, we report our efforts to develop a noninvasive optical forward-scattering system for rapid, automated identification of bacterial colonies grown on solid surfaces. The presented system employs computer-vision and pattern-recognition techniques to classify scatter patterns produced by bacterial colonies irradiated with laser light. Application of Zernike and Chebyshev moments, as well as Haralick texture descriptors for image feature extraction, allows for a very high recognition rate. An SVM algorithm was used for classification of patterns. Low error rates determined by cross-validation, reproducibility of the measurements, and robustness of the system prove that the proposed technology can be implemented in automated devices for bacterial detection.

  9. Motion-Based System Identification and Fault Detection and Isolation Technologies for Thruster Controlled Spacecraft

    NASA Technical Reports Server (NTRS)

    Wilson, Edward; Sutter, David W.; Berkovitz, Dustin; Betts, Bradley J.; Kong, Edmund; delMundo, Rommel; Lages, Christopher R.; Mah, Robert W.; Papasin, Richard

    2003-01-01

    By analyzing the motions of a thruster-controlled spacecraft, it is possible to provide on-line (1) thruster fault detection and isolation (FDI), and (2) vehicle mass- and thruster-property identification (ID). Technologies developed recently at NASA Ames have significantly improved the speed and accuracy of these ID and FDI capabilities, making them feasible for application to a broad class of spacecraft. Since these technologies use existing sensors, the improved system robustness and performance that comes with the thruster fault tolerance and system ID can be achieved through a software-only implementation. This contrasts with the added cost, mass, and hardware complexity commonly required by FDI. Originally developed in partnership with NASA - Johnson Space Center to provide thruster FDI capability for the X-38 during re-entry, these technologies are most recently being applied to the MIT SPHERES experimental spacecraft to fly on the International Space Station in 2004. The model-based FDI uses a maximum-likelihood calculation at its core, while the ID is based upon recursive least squares estimation. Flight test results from the SPHERES implementation, as flown aboard the NASA KC-1 35A 0-g simulator aircraft in November 2003 are presented.

  10. In situ detection and identification of hair dyes using surface-enhanced Raman spectroscopy (SERS).

    PubMed

    Kurouski, Dmitry; Van Duyne, Richard P

    2015-03-01

    Hair is one of the most common types of physical evidence found at a crime scene. Forensic examination may suggest a connection between a suspect and a crime scene or victim, or it may demonstrate an absence of such associations. Therefore, forensic analysis of hair evidence is invaluable to criminal investigations. Current hair forensic examinations are primarily based on a subjective microscopic comparison of hair found at the crime scene with a sample of suspect's hair. Since this is often inconclusive, the development of alternative and more-accurate hair analysis techniques is critical. In this study, we utilized surface-enhanced Raman spectroscopy (SERS) to demonstrate that artificial dyes can be directly detected on hair. This spectroscopic technique is capable of a confirmatory identification of analytes with single molecule resolution, requires minimal sample, and has the advantage of fluorescence quenching. Our study reveals that SERS can (1) identify whether hair was artificially dyed or not, (2) determine if a permanent or semipermanent colorants were used, and (3) distinguish the commercial brands that are utilized to dye hair. Such analysis is rapid, minimally destructive, and can be performed directly at the crime scene. This study provides a novel perspective of forensic investigations of hair evidence. PMID:25635868

  11. Active layer identification of photonic crystal waveguide biosensor chip for the detection of Escherichia coli

    NASA Astrophysics Data System (ADS)

    Painam, Balveer; Kaler, Rajinder S.; Kumar, Mukesh

    2016-07-01

    This work represents experimental and simulation analysis of photonic crystal waveguide (PCW)-based biosensor structures, which is used for detection of the Escherichia coli (E. coli) cell. A method is adopted for E. coli culture to measure length, diameter, and refractive index to finalize the structural design and to verify the suitability of PCW as a biosensor. This method is tested using DH5α strains of E. coli. The typical precisions of measurements are varied in ranges from 1.132 to 1.825 μm and from 0.447 to 0.66 μm for pathogen's length and diameter, respectively. The measured distribution of samples over length and diameter are in correlation with the measurements performed by scanning electron microscope. After obtaining average length and diameter of cylindrical shaped E. coli cell, we consider these values for simulation analysis of designed PCW biosensor. E. coli cell is trapped in the middle of the PCW biosensor having three different types of waveguides, i.e., gallium arsenide/silicon dioxide (GaAs/SiO2), silicon/silicon dioxide (Si/SiO2), or silicon nitride/silicon dioxide (Si3N4/SiO2) to observe the maximum resonance shift and sensitivity. It is observed from the simulation data analysis that GaAs/SiO2 is the preferred PCW biosensor for the identification of E. coli.

  12. Detection of dispersed radio pulses: a machine learning approach to candidate identification and classification

    NASA Astrophysics Data System (ADS)

    Devine, Thomas Ryan; Goseva-Popstojanova, Katerina; McLaughlin, Maura

    2016-06-01

    Searching for extraterrestrial, transient signals in astronomical data sets is an active area of current research. However, machine learning techniques are lacking in the literature concerning single-pulse detection. This paper presents a new, two-stage approach for identifying and classifying dispersed pulse groups (DPGs) in single-pulse search output. The first stage identified DPGs and extracted features to characterize them using a new peak identification algorithm which tracks sloping tendencies around local maxima in plots of signal-to-noise ratio versus dispersion measure. The second stage used supervised machine learning to classify DPGs. We created four benchmark data sets: one unbalanced and three balanced versions using three different imbalance treatments. We empirically evaluated 48 classifiers by training and testing binary and multiclass versions of six machine learning algorithms on each of the four benchmark versions. While each classifier had advantages and disadvantages, all classifiers with imbalance treatments had higher recall values than those with unbalanced data, regardless of the machine learning algorithm used. Based on the benchmarking results, we selected a subset of classifiers to classify the full, unlabelled data set of over 1.5 million DPGs identified in 42 405 observations made by the Green Bank Telescope. Overall, the classifiers using a multiclass ensemble tree learner in combination with two oversampling imbalance treatments were the most efficient; they identified additional known pulsars not in the benchmark data set and provided six potential discoveries, with significantly less false positives than the other classifiers.

  13. Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi.

    PubMed

    Lee, Jaikoo; Lee, Sangsun; Young, J Peter W

    2008-08-01

    A set of PCR primers that should amplify all subgroups of arbuscular mycorrhizal fungi (AMF, Glomeromycota), but exclude sequences from other organisms, was designed to facilitate rapid detection and identification directly from field-grown plant roots. The small subunit rRNA gene was targeted for the new primers (AML1 and AML2) because phylogenetic relationships among the Glomeromycota are well understood for this gene. Sequence comparisons indicate that the new primers should amplify all published AMF sequences except those from Archaeospora trappei. The specificity of the new primers was tested using 23 different AMF spore morphotypes from trap cultures and Miscanthus sinensis, Glycine max and Panax ginseng roots sampled from the field. Non-AMF DNA of 14 plants, 14 Basidiomycota and 18 Ascomycota was also tested as negative controls. Sequences amplified from roots using the new primers were compared with those obtained using the established NS31 and AM1 primer combination. The new primers have much better specificity and coverage of all known AMF groups. PMID:18631176

  14. Detection, identification, and typing of Listeria species from baled silages fed to dairy cows.

    PubMed

    Nucera, D M; Grassi, M A; Morra, P; Piano, S; Tabacco, E; Borreani, G

    2016-08-01

    Anaerobiosis, critical for successful ensilage, constitutes a challenge in baled silages. The loss of complete anaerobiosis causes aerobic deterioration and silages undergo dry matter and nutrient losses, pathogen growth, and mycotoxin production. Silage may represent an ideal substrate for Listeria monocytogenes, a pathogen of primary concern in several cheeses. The aim of this research was to investigate the occurrence of Listeria in baled silage fed to cows producing milk for a protected designation of origin cheese, and to characterize isolates by repetitive sequence-based PCR. Listeria spp. were detected in 21 silages and L. monocytogenes in 6 out of 80 of the analyzed silages; 67% of positives were found in molded zones. Results of the PCR typing showed genotypic homogeneity: 72.9 and 78.8% similarity between strains of Listeria spp. (n=56) and L. monocytogenes (n=24), respectively. Identical profiles were recovered in molded and nonmolded areas, indicating that contamination may have occurred during production. The application of PCR allowed the unambiguous identification of Listeria isolated from baled silages, and repetitive sequence-based PCR allowed a rapid and effective typing of isolates. Results disclose the potential of the systematic typing of Listeria in primary production, which is needed for the understanding of its transmission pathways. PMID:27209131

  15. Drag detection and identification by whispering gallery mode optical resonance based sensor

    NASA Astrophysics Data System (ADS)

    Saetchnikov, Vladimir A.; Tcherniavskaia, Elina A.; Saetchnikov, Anton V.; Schweiger, Gustav; Ostendorf, Andreas

    2013-06-01

    Experimental data on optical resonance spectra of whispering gallery modes of dielectric microspheres in antibiotic solutions under varied in wide range concentration are represented. Optical resonance was demonstrated could be detected at a laser power of less than 1 microwatt. Several antibiotics of different generations: Amoxicillin, Azithromycin, Cephazolin, Chloramphenicol, Levofloxacin, Lincomicin Benzylpenicillin, Riphampicon both in deionized water and physiological solution had been used for measurements. Both spectral shift and the structure of resonance spectra were of specific interest in this investigation. Drag identification has been performed by developed multilayer perceptron network. The network topology was designed included: a number of the hidden layers of multilayered perceptron, a number of neurons in each of layers, a method of training of a neural network, activation functions of layers, type and size of a deviation of the received values from required values. For a network training the method of the back propagation error in various modifications has been used. Input vectors correspond to 6 classes of biological substances under investigation. The result of classification was considered as positive when each of the region, representing a certain substance in a space: relative spectral shift of an optical resonance maxima - relative efficiency of excitation of WGM, was singly connected. It was demonstrated that the approach described in the paper can be a promising platform for the development of sensitive, lab-on-chip type sensors that can be used as an express diagnostic tools for different drugs and instrumentation for proteomics, genomics, drug discovery, and membrane studies.

  16. UXO detection and identification based on intrinsic target polarizabilities: A case history

    SciTech Connect

    Gasperikova, E.; Smith, J.T.; Morrison, H.F.; Becker, A.; Kappler, K.

    2008-07-15

    Electromagnetic induction data parameterized in time dependent object intrinsic polarizabilities allow discrimination of unexploded ordnance (UXO) from false targets (scrap metal). Data from a cart-mounted system designed for discrimination of UXO with 20 mm to 155 mm diameters are used. Discrimination of UXO from irregular scrap metal is based on the principal dipole polarizabilities of a target. A near-intact UXO displays a single major polarizability coincident with the long axis of the object and two equal smaller transverse polarizabilities, whereas metal scraps have distinct polarizability signatures that rarely mimic those of elongated symmetric bodies. Based on a training data set of known targets, object identification was made by estimating the probability that an object is a single UXO. Our test survey took place on a military base where both 4.2-inch mortar shells and scrap metal were present. The results show that we detected and discriminated correctly all 4.2-inch mortars, and in that process we added 7%, and 17%, respectively, of dry holes (digging scrap) to the total number of excavations in two different survey modes. We also demonstrated a mode of operation that might be more cost effective than the current practice.

  17. A multiplex nested PCR for the detection and identification of Candida species in blood samples of critically ill paediatric patients

    PubMed Central

    2014-01-01

    Background Nosocomial candidaemia is associated with high mortality rates in critically ill paediatric patients; thus, the early detection and identification of the infectious agent is crucial for successful medical intervention. The PCR-based techniques have significantly increased the detection of Candida species in bloodstream infections. In this study, a multiplex nested PCR approach was developed for candidaemia detection in neonatal and paediatric intensive care patients. Methods DNA samples from the blood of 54 neonates and children hospitalised in intensive care units with suspected candidaemia were evaluated by multiplex nested PCR with specific primers designed to identify seven Candida species, and the results were compared with those obtained from blood cultures. Results The multiplex nested PCR had a detection limit of four Candida genomes/mL of blood for all Candida species. Blood cultures were positive in 14.8% of patients, whereas the multiplex nested PCR was positive in 24.0% of patients, including all culture-positive patients. The results obtained with the molecular technique were available within 24 hours, and the assay was able to identify Candida species with 100% of concordance with blood cultures. Additionally, the multiplex nested PCR detected dual candidaemia in three patients. Conclusions Our proposed PCR method may represent an effective tool for the detection and identification of Candida species in the context of candidaemia diagnosis in children, showing highly sensitive detection and the ability to identify the major species involved in this infection. PMID:25047415

  18. Detection and identification of potential land mine hazards by waterjet use

    NASA Astrophysics Data System (ADS)

    Mitchell, O. Robert; Herrick, Thomas J.; Summers, David A.; Stuller, John A.; Denier, Robert; Qiu, Shixi J.; Bloomquist, Scott; Rao, Vittal S.

    1998-09-01

    The impact of a waterjet stream emits an acoustic signal when the jet strikes a buried target object. The structure of the sound emitted depends on the energy in the jet, the target which is struck, and the surrounding media. A high pressure (less than 5000 psi) waterjet of diameter 0.01 inches can penetrate into the ground to a depth of greater than 8 inches in less than 0.02 seconds and will generate a distinct acoustic signal from any obstruction it encounters as it makes that hole. By analyzing the sounds generated from a series of jets, located at 2 - 3 inch intervals over the path width of a remotely controlled detection unit, it is possible to identify the location of suspicious objects ahead of a vehicle. Flow rates for such a system, which can cover a path width of 36 inches at walking speeds, are anticipated to be around 5 gallons per minute. We have made initial measurements on acoustic signals generated by waterjet impact and found that the response from buried land mines appears to be Gaussian, thus allowing second order statistics to characterize the signals. We have shown that under laboratory conditions, the power spectrum can be used to discriminate land mines from other underground objects such as rocks and metal pipes.

  19. Raft and floating radio frequency identification (RFID) antenna systems for detecting and estimating abundance of PIT-tagged fish in rivers

    USGS Publications Warehouse

    Fetherman, Eric R.; Avila, Brian W.; Winkelman, Dana L.

    2016-01-01

    Portable radio frequency identification (RFID) PIT tag antenna systems are increasingly being used in studies examining aquatic animal movement, survival, and habitat use, and their design flexibility permits application in a wide variety of settings. We describe the construction, use, and performance of two portable floating RFID PIT tag antenna systems designed to detect fish that were unavailable for recapture using stationary antennas or electrofishing. A raft antenna system was designed to detect and locate PIT-tagged fish in relatively long (i.e., ≥10 km) river reaches, and consisted of two antennas: (1) a horizontal antenna (4 × 1.2 m) installed on the bottom of the raft and used to detect fish in shallower river reaches (<1 m), and (2) a vertical antenna (2.7 × 1.2 m) for detecting fish in deeper pools (≥1 m). Detection distances of the horizontal antenna were between 0.7 and 1.0 m, and detection probability was 0.32 ± 0.02 (mean ± SE) in a field test using rocks marked with 32-mm PIT tags. Detection probability of PIT-tagged fish in the Cache la Poudre River, Colorado, using the raft antenna system, which covered 21% of the wetted area, was 0.14 ± 0.14. A shore-deployed floating antenna (14.6 × 0.6 m), which covered 100% of the wetted area, was designed for use by two operators for detecting and locating PIT-tagged fish in shorter (i.e., <2 km) river reaches. Detection distances of the shore-deployed floating antenna were between 0.7 and 0.8 m, and detection probabilities during field deployment in the St. Vrain River exceeded 0.52. The shore-deployed floating antenna was also used to estimate abundance of PIT-tagged fish. Results suggest that the shore-deployed floating antenna could be used as an alternative to estimating abundance using traditional sampling methods such as electrofishing.

  20. Usefulness of a PCR-based method in the detection and species identification of Leishmania from clinical samples.

    PubMed

    Chargui, N; Haouas, N; Jaouadi, K; Gorcii, M; Pratlong, F; Dedet, J P; Mezhoud, H; Babba, H

    2012-12-01

    The aim of this study is to assess the usefulness of a simple, low-cost method for the detection and species identification of Leishmania isolated by in vitro culture or detected directly from clinical samples. A total of 110 samples were used in this study. Among these, 21 were human and canine peripheral bloods, 63 skin lesion material samples, eight reference strains and 18 Leishmania culture. Detection of Leishmania DNA with PCR using primers designed to amplify the internal transcribed spacer 1 (ITS1) region of the rRNA gene proved sufficiently sensitive at the level of 0.1 parasites per PCR reaction. Furthermore, followed by single-strand conformational polymorphism (SSCP), the PCR-ITS1 allowed the species identification of Leishmania. The inter-specific polymorphism of Leishmania was first validated on reference strains, and then this method was applied on clinical samples and culture. Typing identified all human and canine visceral leishmaniasis samples (21 samples) as L. infantum, 95.23% of the cutaneous leishmaniasis samples as L. major and 3.17% as L. killicki and 1.58% as L. infantum. A scheme of the PCR diagnosis procedure for the detection and identification of Leishmania parasites is proposed in this study. PMID:22326417

  1. PCR detection, identification to species level, and fingerprinting of Campylobacter jejuni and Campylobacter coli direct from diarrheic samples.

    PubMed Central

    Linton, D; Lawson, A J; Owen, R J; Stanley, J

    1997-01-01

    Three sets of primers were designed for PCR detection and differentiation of Campylobacter jejuni and Campylobacter coli. The first PCR assay was designed to coidentify C. jejuni and C. coli based on their 16S rRNA gene sequences. The second PCR assay, based on the hippuricase gene sequence, identified all tested reference strains of C. jejuni and also strains of that species which lack detectable hippuricase activity. The third PCR assay, based on the sequence of a cloned (putative) aspartokinase gene and the downstream open reading frame, identified all tested reference strains of C. coli. The assays will find immediate application in the rapid identification to species level of isolates. The assays combine with a protocol for purification of total DNA from fecal samples to allow reproducible PCR identification of campylobacters directly from stools. Of 20 clinical samples from which campylobacters had been cultured, we detected C. jejuni in 17, C. coli in 2, and coinfection of C. jejuni and Campylobacter hyointestinalis in 1. These results were concordant with culture and phenotypic identification to species level. Strain typing by PCR-restriction fragment length polymorphism of the flagellin (flaA) gene detected identical flaA types in fecal DNA and the corresponding campylobacter isolate. Twenty-five Campylobacter-negative stool samples gave no reaction with the PCR assays. These PCR assays can rapidly define the occurrence, species incidence, and flaA genotypes of enteropathogenic campylobacters. PMID:9316909

  2. Detection and Identification of Salmonella spp. in Surface Water by Molecular Technology in Taiwan

    NASA Astrophysics Data System (ADS)

    Tseng, S. F.; Hsu, B. M.; Huang, K. H.; Hsiao, H. Y.; Kao, P. M.; Shen, S. M.; Tsai, H. F.; Chen, J. S.

    2012-04-01

    Salmonella spp. is classified to gram-negative bacterium and is one of the most important causal agents of waterborne diseases. The genus of Salmonella comprises more than 2,500 serotypes and its taxonomy is also very complicated. In tradition, the detection of Salmonella in environmental water samples by routines culture methods using selective media and characterization of suspicious colonies based on biochemical tests and serological assay are generally time and labor consuming. To overcome this disadvantage, it is desirable to use effective method which provides a higher discrimination and more rapid identification about Salmonella in environmental water. The aim of this study is to investigate the occurrence of Salmonella using novel procedures of detection method and to identify the serovars of Salmonella isolates from 157 surface water samples in Taiwan. The procedures include membrane filtration, non-selective pre-enrichment, selective enrichment of Salmonella, and then isolation of Salmonella strains by selective culture plates. The selective enrichment and culture plates were both detected by PCR. Finally, we used biochemical tests and serological assay to confirm the serovars of Salmonella and also used Pulsed-field gel electrophoresis (PFGE) to identify their sarovar catagories by the genetic pattern. In this study, 44 water samples (28%) were indentified as Salmonella. The 44 positive water samples by culture method were further identified as S. Agona(1/44), S. Albany (10/44), S. Bareilly (13/44),S. Choleraesuis (2/44),S. Derby (4/44),S. Isangi (3/44),S.Kedougou(3/44),S. Mbandaka(1/44),S.Newport (3/44), S. Oranienburg(1/44), S. Potsdam (1/44),S. Typhimurium (1/44), andS. Weltevreden(1/44) by PFGE. The presence of Salmonella in surface water indicates the possibility of waterborne transmission in drinking watershed if water is not adequately treated. Therefore, the authorities need to have operating systems that currently provide adequate source

  3. On the Use of the Polynomial Annihilation Edge Detection for Locating Cracks in Beam-Like Structures

    SciTech Connect

    Saxena, Rishu; Surace, Cecilia; Archibald, Richard K

    2013-01-01

    A crack in a structure causes a discontinuity in the first derivative of the mode shapes: On this basis, a numerical method for detecting discontinuities in smooth piecewise functions and their derivatives, based on a polynomial annihilation technique, has been applied to the problem of crack detection and localisation in beam-like structures for which only post-damage mode shapes are available. Using a finite-element model of a cracked beam, the performance of this methodology has been analysed for different crack depths and increasing amounts of noise. Given the crack position, a procedure to estimate its depth is also proposed and corresponding results shown.

  4. Reactive and multiphase modelling for the identification of monitoring parameters to detect CO2 intrusion into freshwater aquifers

    NASA Astrophysics Data System (ADS)

    Fahrner, S.; Schaefer, D.; Wiegers, C.; Köber, R.; Dahmke, A.

    2011-12-01

    A monitoring at geological CO2 storage sites has to meet environmental, regulative, financial and public demands and thus has to enable the detection of CO2 leakages. Current monitoring concepts for the detection of CO2 intrusion into freshwater aquifers located above saline storage formations in course of leakage events lack the identification of monitoring parameters. Their response to CO2 intrusion still has to be enlightened. Scenario simulations of CO2 intrusion in virtual synthetic aquifers are performed using the simulators PhreeqC and TOUGH2 to reveal relevant CO2-water-mineral interactions and multiphase behaviour on potential monitoring parameters. The focus is set on pH, total dissolved inorganic carbon (TIC) and the hydroelectric conductivity (EC). The study aims at identifying at which conditions the parameters react rapidly, durable and in a measurable degree. The depth of the aquifer, the mineralogy, the intrusion rates, the sorption specification and capacities, and groundwater flow velocities are varied in the course of the scenario modelling. All three parameters have been found suited in most scenarios. However, in case of a lack of calcite combined with low saturation of the water with respect to CO2 and shallow conditions, changes are close to the measurement resolution. Predicted changes in EC result from the interplay between carbonic acid production and its dissociation, and pH buffering by mineral dissolution. The formation of a discrete gas phase in cases of full saturation of the groundwater in confined aquifers illustrates the potential bipartite resistivity response: An increased hydroelectric conductivity at locations with dissolved CO2, and a high resistivity where the gas phase dominates the pore volume occupation. Increased hydrostatic pressure with depth and enhanced groundwater flow velocities enforce gas dissolution and diminish the formation of a discrete gas phase. Based on the results, a monitoring strategy is proposed which

  5. Sensitive detection of KRAS mutations using enhanced-ice-COLD-PCR mutation enrichment and direct sequence identification.

    PubMed

    How Kit, Alexandre; Mazaleyrat, Nicolas; Daunay, Antoine; Nielsen, Helene Myrtue; Terris, Benoît; Tost, Jörg

    2013-11-01

    A number of methods allowing the detection of low levels of KRAS mutations have been developed in the last years. However, although these methods have become increasingly sensitive, they can rarely identify the mutated base directly without prior knowledge on the mutated base and are often incompatible with a sequencing-based read-out desirable in clinical practice. Here, we present a modified version of the ice-COLD-PCR assay called Enhanced-ice-COLD-PCR (E-ice-COLD-PCR) for KRAS mutation detection and identification, which allows the enrichment of the six most frequent KRAS mutations. The method is based on a nonextendable chemically modified blocker sequence, complementary to the wild-type (WT) sequence leading to the enrichment of mutated sequences. This assay permits the reliable detection of down to 0.1% mutated sequences in a WT background. A single genotyping assay of the amplification product by pyrosequencing directly following the E-ice-COLD-PCR is performed to identify the mutated base. This developed two-step method is rapid and cost-effective, and requires only a small amount of starting material permitting the sensitive detection and sequence identification of KRAS mutations within 3 hr. This method is applied in the current study to clinical colorectal cancer samples and enables detection of mutations in samples, which appear as WT using standard detection technologies. PMID:24038839

  6. Model application for rapid detection of the exact location when calling an ambulance using OGC Open GeoSMS Standards

    NASA Astrophysics Data System (ADS)

    Sukic, Enes; Stoimenov, Leonid

    2016-02-01

    The web has penetrated just about every sphere of human interest and using information from the web has become ubiquitous among different categories of users. Medicine has long being using the benefits of modern technologies and without them it cannot function. This paper offers a proposal of use and mutual collaboration of several modern technologies within facilitating the location and communication between persons in need of emergency medical assistance and the emergency head offices, i.e., the ambulance. The main advantage of the proposed model is the technical possibility of implementation and use of these technologies in developing countries and low implementation cost.

  7. Identification techniques for SARSAT signals

    NASA Astrophysics Data System (ADS)

    El-Naga, S.; Carter, C. R.

    1987-03-01

    A process for the identification of emergency locator transmitter (ELT) signals related to search and rescue satellite-aided tracking (SARSAT) is presented. The ELT identification process is particularly important in order to increase the probability of detection and eliminate sources of interference from the data set. A set of ELT signal parameters is introduced and methods for estimating these parameters are developed. A theoretical analysis and performance evaluation of these methods is provided.

  8. A technique for real-time detection, location and quantification of damage in large polymer composite structures made of electrically non-conductive fibers and carbon nanotube networks.

    PubMed

    Naghashpour, Ali; Van Hoa, Suong

    2013-11-15

    In this work, we have developed a novel, practical and real-time structural health monitoring (SHM) technique to detect, locate and quantify damage that occurs at one or more locations in large polymer composite structures (LPCSs) made of electrically non-conductive fibers and carbon nanotube networks. Our technique exploits the piezoresistive effect of multiwalled carbon nanotubes (MWCNTs) in epoxy resin. The electrically conductive epoxy resin was used to prepare glass fiber reinforced composite plates. The plates were marked with grid points where electrically conductive silver-epoxy pastes were deposited. The electrical resistances between the grid points were measured and used as a reference set. Two new concepts are introduced. One is uniformity of MWCNT distribution which gives rise to uniformity in electrical conductivity. The second is maximum sensitivity to change in electrical resistance due to the occurrence of damage. These issues are demonstrated as criteria to determine the optimal quantity of MWCNTs. This optimal quantity is used to assure damage detectability at any region in the large plates. Drilled holes and impact testing were conducted to simulate damage. The damage causes the electrical resistance between the contact points surrounding the damage to increase. This increase is used to detect, locate and quantify damage. PMID:24141251

  9. A method of detecting heartbeat locations in the ballistocardiographic signal from the fiber-optic vital signs sensor.

    PubMed

    Krej, Mariusz; Dziuda, Lukasz; Skibniewski, Franciszek Wojciech

    2015-07-01

    We present a flexible, easy-to-expand digital signal processing method for detecting heart rate (HR) for cardiac vibration signals of fiber Bragg grating (FBG) sensor. The FBG-based method of measuring HR is possible to use during the magnetic resonance imaging procedure, which is its unique advantage. Our goal was to design a detection method with plurality of parameters and to subject these parameters to genetic algorithm optimization technique. In effect, we arrived at a method that is well able to deal with much distorted signals with low SNR. We proved that the method we developed allows automatic adjustment to the shape of the waves of signal carrying useful information about the moments of heartbeat. Thus, we can easily adapt our technique to the analysis of signals, which contains information on HR, from sensors employing different techniques of strain detection. The proposed method has the capabilities of analyzing signals in semi-real-time (online) with beat-to-beat resolution, significantly low delay, and negligible computational power requirements. We verified our method on recordings in a group of seven subjects. Verification included over 6000 heartbeats (82 min 47 s of recordings). The root-mean-square error of our method does not exceed 6.0 bpm. PMID:25622330

  10. Phylogenetic identification and in situ detection of individual microbial cells without cultivation.

    PubMed Central

    Amann, R I; Ludwig, W; Schleifer, K H

    1995-01-01

    The frequent discrepancy between direct microscopic counts and numbers of culturable bacteria from environmental samples is just one of several indications that we currently know only a minor part of the diversity of microorganisms in nature. A combination of direct retrieval of rRNA sequences and whole-cell oligonucleotide probing can be used to detect specific rRNA sequences of uncultured bacteria in natural samples and to microscopically identify individual cells. Studies have been performed with microbial assemblages of various complexities ranging from simple two-component bacterial endosymbiotic associations to multispecies enrichments containing magnetotactic bacteria to highly complex marine and soil communities. Phylogenetic analysis of the retrieved rRNA sequence of an uncultured microorganism reveals its closest culturable relatives and may, together with information on the physicochemical conditions of its natural habitat, facilitate more directed cultivation attempts. For the analysis of complex communities such as multispecies biofilms and activated-sludge flocs, a different approach has proven advantageous. Sets of probes specific to different taxonomic levels are applied consecutively beginning with the more general and ending with the more specific (a hierarchical top-to-bottom approach), thereby generating increasingly precise information on the structure of the community. Not only do rRNA-targeted whole-cell hybridizations yield data on cell morphology, specific cell counts, and in situ distributions of defined phylogenetic groups, but also the strength of the hybridization signal reflects the cellular rRNA content of individual cells. From the signal strength conferred by a specific probe, in situ growth rates and activities of individual cells might be estimated for known species. In many ecosystems, low cellular rRNA content and/or limited cell permeability, combined with background fluorescence, hinders in situ identification of autochthonous

  11. SU-E-J-149: Secondary Emission Detection for Improved Proton Relative Stopping Power Identification

    SciTech Connect

    Saunders, J; Musall, B; Erickson, A

    2015-06-15

    Purpose: This research investigates application of secondary prompt gamma (PG) emission spectra, resulting from nuclear reactions induced by protons, to characterize tissue composition along the particle path. The objective of utilizing the intensity of discrete high-energy peaks of PG is to improve the accuracy of relative stopping power (RSP) values available for proton therapy treatment planning on a patient specific basis and to reduce uncertainty in dose depth calculations. Methods: In this research, MCNP6 was used to simulate PG emission spectra generated from proton induced nuclear reactions in medium of varying composition of carbon, oxygen, calcium and nitrogen, the predominant elements found in human tissue. The relative peak intensities at discrete energies predicted by MCNP6 were compared to the corresponding atomic composition of the medium. Results: The results have shown a good general agreement with experimentally measured values reported by other investigators. Unexpected divergence from experimental spectra was noted in the peak intensities for some cases depending on the source of the cross-section data when using compiled proton table libraries vs. physics models built into MCNP6. While the use of proton cross-section libraries is generally recommended when available, these libraries lack data for several less abundant isotopes. This limits the range of their applicability and forces the simulations to rely on physics models for reactions with natural atomic compositions. Conclusion: Current end-of-range proton imaging provides an average RSP for the total estimated track length. The accurate identification of tissue composition along the incident particle path using PG detection and characterization allows for improved determination of the tissue RSP on the local level. While this would allow for more accurate depth calculations resulting in tighter treatment margins, precise understanding of proton beam behavior in tissue of various

  12. Fiber optic sensor employing successively destroyed coupled points or reflectors for detecting shock wave speed and damage location

    DOEpatents

    Weiss, J.D.

    1995-08-29

    A shock velocity and damage location sensor providing a means of measuring shock speed and damage location is disclosed. The sensor consists of a long series of time-of-arrival ``points`` constructed with fiber optics. The fiber optic sensor apparatus measures shock velocity as the fiber sensor is progressively crushed as a shock wave proceeds in a direction along the fiber. The light received by a receiving means changes as time-of-arrival points are destroyed as the sensor is disturbed by the shock. The sensor may comprise a transmitting fiber bent into a series of loops and fused to a receiving fiber at various places, time-of-arrival points, along the receiving fibers length. At the ``points`` of contact, where a portion of the light leaves the transmitting fiber and enters the receiving fiber, the loops would be required to allow the light to travel backwards through the receiving fiber toward a receiving means. The sensor may also comprise a single optical fiber wherein the time-of-arrival points are comprised of reflection planes distributed along the fibers length. In this configuration, as the shock front proceeds along the fiber it destroys one reflector after another. The output received by a receiving means from this sensor may be a series of downward steps produced as the shock wave destroys one time-of-arrival point after another, or a nonsequential pattern of steps in the event time-of-arrival points are destroyed at any point along the sensor. 6 figs.

  13. Fiber optic sensor employing successively destroyed coupled points or reflectors for detecting shock wave speed and damage location

    DOEpatents

    Weiss, Jonathan D.

    1995-01-01

    A shock velocity and damage location sensor providing a means of measuring shock speed and damage location. The sensor consists of a long series of time-of-arrival "points" constructed with fiber optics. The fiber optic sensor apparatus measures shock velocity as the fiber sensor is progressively crushed as a shock wave proceeds in a direction along the fiber. The light received by a receiving means changes as time-of-arrival points are destroyed as the sensor is disturbed by the shock. The sensor may comprise a transmitting fiber bent into a series of loops and fused to a receiving fiber at various places, time-of-arrival points, along the receiving fibers length. At the "points" of contact, where a portion of the light leaves the transmitting fiber and enters the receiving fiber, the loops would be required to allow the light to travel backwards through the receiving fiber toward a receiving means. The sensor may also comprise a single optical fiber wherein the time-of-arrival points are comprised of reflection planes distributed along the fibers length. In this configuration, as the shock front proceeds along the fiber it destroys one reflector after another. The output received by a receiving means from this sensor may be a series of downward steps produced as the shock wave destroys one time-of-arrival point after another, or a nonsequential pattern of steps in the event time-of-arrival points are destroyed at any point along the sensor.

  14. ViriChip: a solid phase assay for detection and identification of viruses by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Nettikadan, Saju R.; Johnson, James C.; Vengasandra, Srikanth G.; Muys, James; Henderson, Eric

    2004-03-01

    Bionanotechnology can be viewed as the integration of tools and concepts in nanotechnology with the attributes of biomolecules. We report here on an atomic force microscopy-immunosensor assay (AFMIA) that couples AFM with solid phase affinity capture of biological entities for the rapid detection and identification of group B coxsackievirus particles. Virus identification is based on type-specific immunocapture and the morphological properties of the captured viruses as obtained by the AFM. Representatives of the six group B coxsackieviruses have been specifically captured from 1 µl volumes of clarified cell lysates, body fluids and environmental samples. Concentration and kinetic profiles for capture indicate that detection is possible at 103 TCID50 µl-1 and the dynamic range of the assay spans three logs. The results demonstrate that the melding of a nanotechnological tool (AFM) with biotechnology (solid phase immunocapture of virus particles) can create a clinically relevant platform, useful for the detection and identification of enterovirus particles in a variety of samples.

  15. Sink detection on tilted terrain for automated identification of glacial cirques

    NASA Astrophysics Data System (ADS)

    Prasicek, Günther; Robl, Jörg; Lang, Andreas

    2016-04-01

    Glacial cirques are morphologically distinct but complex landforms and represent a vital part of high mountain topography. Their distribution, elevation and relief are expected to hold information on (1) the extent of glacial occupation, (2) the mechanism of glacial cirque erosion, and (3) how glacial in concert with periglacial processes can limit peak altitude and mountain range height. While easily detectably for the expert's eye both in nature and on various representations of topography, their complicated nature makes them a nemesis for computer algorithms. Consequently, manual mapping of glacial cirques is commonplace in many mountain landscapes worldwide, but consistent datasets of cirque distribution and objectively mapped cirques and their morphometrical attributes are lacking. Among the biggest problems for algorithm development are the complexity in shape and the great variability of cirque size. For example, glacial cirques can be rather circular or longitudinal in extent, exist as individual and composite landforms, show prominent topographic depressions or can entirely be filled with water or sediment. For these reasons, attributes like circularity, size, drainage area and topology of landform elements (e.g. a flat floor surrounded by steep walls) have only a limited potential for automated cirque detection. Here we present a novel, geomorphometric method for automated identification of glacial cirques on digital elevation models that exploits their genetic bowl-like shape. First, we differentiate between glacial and fluvial terrain employing an algorithm based on a moving window approach and multi-scale curvature, which is also capable of fitting the analysis window to valley width. We then fit a plane to the valley stretch clipped by the analysis window and rotate the terrain around the center cell until the plane is level. Doing so, we produce sinks of considerable size if the clipped terrain represents a cirque, while no or only very small sinks

  16. On Identifiability of Bias-Type Actuator-Sensor Faults in Multiple-Model-Based Fault Detection and Identification

    NASA Technical Reports Server (NTRS)

    Joshi, Suresh M.

    2012-01-01

    This paper explores a class of multiple-model-based fault detection and identification (FDI) methods for bias-type faults in actuators and sensors. These methods employ banks of Kalman-Bucy filters to detect the faults, determine the fault pattern, and estimate the fault values, wherein each Kalman-Bucy filter is tuned to a different failure pattern. Necessary and sufficient conditions are presented for identifiability of actuator faults, sensor faults, and simultaneous actuator and sensor faults. It is shown that FDI of simultaneous actuator and sensor faults is not possible using these methods when all sensors have biases.

  17. Microbial agent detection using near-IR electrophoretic and spectral signatures (MADNESS) for rapid identification in detect-to-warn applications.

    SciTech Connect

    Gomez, Anthony Lee; Bambha, Ray P.; VanderNoot, Victoria A.; Fruetel, Julia A.; Renzi, Ronald F.; Krafcik, Karen Lee

    2009-10-01

    Rapid identification of aerosolized biological agents following an alarm by particle triggering systems is needed to enable response actions that save lives and protect assets. Rapid identifiers must achieve species level specificity, as this is required to distinguish disease-causing organisms (e.g., Bacillus anthracis) from benign neighbors (e.g., Bacillus subtilis). We have developed a rapid (1-5 minute), novel identification methodology that sorts intact organisms from each other and particulates using capillary electrophoresis (CE), and detects using near-infrared (NIR) absorbance and scattering. We have successfully demonstrated CE resolution of Bacillus spores and vegetative bacteria at the species level. To achieve sufficient sensitivity for detection needs ({approx}10{sup 4} cfu/mL for bacteria), we have developed fiber-coupled cavity-enhanced absorbance techniques. Using this method, we have demonstrated {approx}two orders of magnitude greater sensitivity than published results for absorbing dyes, and single particle (spore) detection through primarily scattering effects. Results of the integrated CE-NIR system for spore detection are presented.

  18. Identification of polymorphisms and transcriptional activity of the proto-oncogene KIT located on both autosomal and B chromosomes of the Chinese raccoon dog.

    PubMed

    Li, Y M; Zhang, Y; Zhu, W J; Yan, S Q; Sun, J H

    2016-01-01

    B chromosomes are dispensable and co-exist with autosomal and sex chromosomes. The karyotype of the Chinese raccoon dog (Nyctereutes procyonoides procyonoides) comprises 0-4 B chromosomes. The proto-oncogene KIT is found on all B chromosomes of the Chinese raccoon dog. In the present study, partial DNA and mRNA sequences of KIT were amplified and sequenced from four individuals containing B chromosomes. Sequence analyses revealed that polymorphisms including single nucleotide polymorphisms (SNPs) and inserts/deletions were rich in the KIT gene of Chinese raccoon dog at the genomic level. However, no polymorphism was detected at the mRNA level. A comparison of mRNA sequences from Chinese raccoon dogs with the corresponding sequences derived from arctic fox and dog, which do not contain B chromosomes, revealed the mRNA sequences of the 10 SNPs to be identical between these three species. Therefore, these findings suggest that KIT located on the B chromosomes in Chinese raccoon dog lacks transcriptional activity. PMID:26909958

  19. Knowledge guided object detection and identification in 3D point clouds

    NASA Astrophysics Data System (ADS)

    Karmacharya, A.; Boochs, F.; Tietz, B.

    2015-05-01

    Modern instruments like laser scanner and 3D cameras or image based techniques like structure from motion produce huge point clouds as base for further object analysis. This has considerably changed the way of data compilation away from selective manually guided processes towards automatic and computer supported strategies. However it's still a long way to achieve the quality and robustness of manual processes as data sets are mostly very complex. Looking at existing strategies 3D data processing for object detections and reconstruction rely heavily on either data driven or model driven approaches. These approaches come with their limitation on depending highly on the nature of data and inability to handle any deviation. Furthermore, the lack of capabilities to integrate other data or information in between the processing steps further exposes their limitations. This restricts the approaches to be executed with strict predefined strategy and does not allow deviations when and if new unexpected situations arise. We propose a solution that induces intelligence in the processing activities through the usage of semantics. The solution binds the objects along with other related knowledge domains to the numerical processing to facilitate the detection of geometries and then uses experts' inference rules to annotate them. The solution was tested within the prototypical application of the research project "Wissensbasierte Detektion von Objekten in Punktwolken für Anwendungen im Ingenieurbereich (WiDOP)". The flexibility of the solution is demonstrated through two entirely different USE Case scenarios: Deutsche Bahn (German Railway System) for the outdoor scenarios and Fraport (Frankfort Airport) for the indoor scenarios. Apart from the difference in their environments, they provide different conditions, which the solution needs to consider. While locations of the objects in Fraport were previously known, that of DB were not known at the beginning.

  20. Helicopter Based Magnetic Detection Of Wells At The Teapot Dome (Naval Petroleum Reserve No. 3 Oilfield: Rapid And Accurate Geophysical Algorithms For Locating Wells

    NASA Astrophysics Data System (ADS)

    Harbert, W.; Hammack, R.; Veloski, G.; Hodge, G.

    2011-12-01

    In this study Airborne magnetic data was collected by Fugro Airborne Surveys from a helicopter platform (Figure 1) using the Midas II system over the 39 km2 NPR3 (Naval Petroleum Reserve No. 3) oilfield in east-central Wyoming. The Midas II system employs two Scintrex CS-2 cesium vapor magnetometers on opposite ends of a transversely mounted, 13.4-m long horizontal boom located amidships (Fig. 1). Each magnetic sensor had an in-flight sensitivity of 0.01 nT. Real time compensation of the magnetic data for magnetic noise induced by maneuvering of the aircraft was accomplished using two fluxgate magnetometers mounted just inboard of the cesium sensors. The total area surveyed was 40.5 km2 (NPR3) near Casper, Wyoming. The purpose of the survey was to accurately locate wells that had been drilled there during more than 90 years of continuous oilfield operation. The survey was conducted at low altitude and with closely spaced flight lines to improve the detection of wells with weak magnetic response and to increase the resolution of closely spaced wells. The survey was in preparation for a planned CO2 flood to enhance oil recovery, which requires a complete well inventory with accurate locations for all existing wells. The magnetic survey was intended to locate wells that are missing from the well database and to provide accurate locations for all wells. The well location method used combined an input dataset (for example, leveled total magnetic field reduced to the pole), combined with first and second horizontal spatial derivatives of this input dataset, which were then analyzed using focal statistics and finally combined using a fuzzy combination operation. Analytic signal and the Shi and Butt (2004) ZS attribute were also analyzed using this algorithm. A parameter could be adjusted to determine sensitivity. Depending on the input dataset 88% to 100% of the wells were located, with typical values being 95% to 99% for the NPR3 field site.

  1. Development and in silico evaluation of large-scale metabolite identification methods using functional group detection for metabolomics

    PubMed Central

    Mitchell, Joshua M.; Fan, Teresa W.-M.; Lane, Andrew N.; Moseley, Hunter N. B.

    2014-01-01

    Large-scale identification of metabolites is key to elucidating and modeling metabolism at the systems level. Advances in metabolomics technologies, particularly ultra-high resolution mass spectrometry (MS) enable comprehensive and rapid analysis of metabolites. However, a significant barrier to meaningful data interpretation is the identification of a wide range of metabolites including unknowns and the determination of their role(s) in various metabolic networks. Chemoselective (CS) probes to tag metabolite functional groups combined with high mass accuracy provide additional structural constraints for metabolite identification and quantification. We have developed a novel algorithm, Chemically Aware Substructure Search (CASS) that efficiently detects functional groups within existing metabolite databases, allowing for combined molecular formula and functional group (from CS tagging) queries to aid in metabolite identification without a priori knowledge. Analysis of the isomeric compounds in both Human Metabolome Database (HMDB) and KEGG Ligand demonstrated a high percentage of isomeric molecular formulae (43 and 28%, respectively), indicating the necessity for techniques such as CS-tagging. Furthermore, these two databases have only moderate overlap in molecular formulae. Thus, it is prudent to use multiple databases in metabolite assignment, since each major metabolite database represents different portions of metabolism within the biosphere. In silico analysis of various CS-tagging strategies under different conditions for adduct formation demonstrate that combined FT-MS derived molecular formulae and CS-tagging can uniquely identify up to 71% of KEGG and 37% of the combined KEGG/HMDB database vs. 41 and 17%, respectively without adduct formation. This difference between database isomer disambiguation highlights the strength of CS-tagging for non-lipid metabolite identification. However, unique identification of complex lipids still needs additional

  2. Echolocation characteristics of free-swimming bottlenose dolphins during object detection and identification.

    PubMed

    Houser, Dorian; Martin, Stephen W; Bauer, Eric J; Phillips, Michael; Herrin, Tim; Cross, Matt; Vidal, Andrea; Moore, Patrick W

    2005-04-01

    A biosonar measurement tool (BMT) was created to investigate dolphin echolocation search strategies by recording echolocation clicks, returning echoes, and three-dimensional angular motion, velocity, and depth of free-swimming dolphins performing open-water target detections. Trial start and stop times, locations determined from a differential global positioning system (DGPS), and BMT motion and acoustic data were used to produce spatial and acoustic representations of the searches. Two dolphins (LUT, FLP) searched for targets lying on the seafloor of a bay environment while carrying the BMT. LUT searched rapidly (< 10 s), produced few clicks, and varied click-peak frequency (20-120 kHz); FLP searched relatively slowly (tens of seconds) and produced many hundreds of clicks with stereotypical frequency-dependent energy distributions dominating from 30-60 kHz. Dolphins amplified target echo returns by either increasing the click source level or reducing distance to the target but without reducing source level. The distribution of echolocation click-peak frequencies suggested a bias in the dominant frequency components of clicks, possibly due to mechanical constraints of the click generator. Prior training and hearing loss accommodation potentially explain differences in the search strategies of the two dolphins. PMID:15898671

  3. Echolocation characteristics of free-swimming bottlenose dolphins during object detection and identification

    NASA Astrophysics Data System (ADS)

    Houser, Dorian; Martin, Stephen W.; Bauer, Eric J.; Phillips, Michael; Herrin, Tim; Cross, Matt; Vidal, Andrea; Moore, Patrick W.

    2005-04-01

    A biosonar measurement tool (BMT) was created to investigate dolphin echolocation search strategies by recording echolocation clicks, returning echoes, and three-dimensional angular motion, velocity, and depth of free-swimming dolphins performing open-water target detections. Trial start and stop times, locations determined from a differential global positioning system (DGPS), and BMT motion and acoustic data were used to produce spatial and acoustic representations of the searches. Two dolphins (LUT, FLP) searched for targets lying on the seafloor of a bay environment while carrying the BMT. LUT searched rapidly (<10 s), produced few clicks, and varied click-peak frequency (20-120 kHz); FLP searched relatively slowly (tens of seconds) and produced many hundreds of clicks with stereotypical frequency-dependent energy distributions dominating from 30-60 kHz. Dolphins amplified target echo returns by either increasing the click source level or reducing distance to the target but without reducing source level. The distribution of echolocation click-peak frequencies suggested a bias in the dominant frequency components of clicks, possibly due to mechanical constraints of the click generator. Prior training and hearing loss accommodation potentially explain differences in the search strategies of the two dolphins. .

  4. Unsupervised algorithms for intrusion detection and identification in wireless ad hoc sensor networks

    NASA Astrophysics Data System (ADS)

    Hortos, William S.

    2009-05-01

    In previous work by the author, parameters across network protocol layers were selected as features in supervised algorithms that detect and identify certain intrusion attacks on wireless ad hoc sensor networks (WSNs) carrying multisensor data. The algorithms improved the residual performance of the intrusion prevention measures provided by any dynamic key-management schemes and trust models implemented among network nodes. The approach of this paper does not train algorithms on the signature of known attack traffic, but, instead, the approach is based on unsupervised anomaly detection techniques that learn the signature of normal network traffic. Unsupervised learning does not require the data to be labeled or to be purely of one type, i.e., normal or attack traffic. The approach can be augmented to add any security attributes and quantified trust levels, established during data exchanges among nodes, to the set of cross-layer features from the WSN protocols. A two-stage framework is introduced for the security algorithms to overcome the problems of input size and resource constraints. The first stage is an unsupervised clustering algorithm which reduces the payload of network data packets to a tractable size. The second stage is a traditional anomaly detection algorithm based on a variation of support vector machines (SVMs), whose efficiency is improved by the availability of data in the packet payload. In the first stage, selected algorithms are adapted to WSN platforms to meet system requirements for simple parallel distributed computation, distributed storage and data robustness. A set of mobile software agents, acting like an ant colony in securing the WSN, are distributed at the nodes to implement the algorithms. The agents move among the layers involved in the network response to the intrusions at each active node and trustworthy neighborhood, collecting parametric values and executing assigned decision tasks. This minimizes the need to move large amounts

  5. Native T1-mapping detects the location, extent and patterns of acute myocarditis without the need for gadolinium contrast agents

    PubMed Central

    2014-01-01

    Background Acute myocarditis can be diagnosed on cardiovascular magnetic resonance (CMR) using multiple techniques, including late gadolinium enhancement (LGE) imaging, which requires contrast administration. Native T1-mapping is significantly more sensitive than LGE and conventional T2-weighted (T2W) imaging in detecting myocarditis. The aims of this study were to demonstrate how to display the non-ischemic patterns of injury and to quantify myocardial involvement in acute myocarditis without the need for contrast agents, using topographic T1-maps and incremental T1 thresholds. Methods We studied 60 patients with suspected acute myocarditis (median 3 days from presentation) and 50 controls using CMR (1.5 T), including: (1) dark-blood T2W imaging; >(2) native T1-mapping (ShMOLLI); (3) LGE. Analysis included: (1) global myocardial T2 signal intensity (SI) ratio compared to skeletal muscle; (2) myocardial T1 times; (3) areas of injury by T2W, T1-mapping and LGE. Results Compared to controls, patients had more edema (global myocardial T2 SI ratio 1.71 ± 0.27 vs.1.56 ± 0.15), higher mean myocardial T1 (1011 ± 64 ms vs. 946 ± 23 ms) and more areas of injury as detected by T2W (median 5% vs. 0%), T1 (median 32% vs. 0.7%) and LGE (median 11% vs. 0%); all p < 0.001. A threshold of T1 > 990 ms (sensitivity 90%, specificity 88%) detected significantly larger areas of involvement than T2W and LGE imaging in patients, and additional areas of injury when T2W and LGE were negative. T1-mapping significantly improved the diagnostic confidence in an additional 30% of cases when at least one of the conventional methods (T2W, LGE) failed to identify any areas of abnormality. Using incremental thresholds, T1-mapping can display the non-ischemic patterns of injury typical of myocarditis. Conclusion Native T1-mapping can display the typical non-ischemic patterns in acute myocarditis, similar to LGE imaging but without the need for contrast agents. In

  6. Using Multiple Barometers to Detect the Floor Location of Smart Phones with Built-in Barometric Sensors for Indoor Positioning

    PubMed Central

    Xia, Hao; Wang, Xiaogang; Qiao, Yanyou; Jian, Jun; Chang, Yuanfei

    2015-01-01

    Following the popularity of smart phones and the development of mobile Internet, the demands for accurate indoor positioning have grown rapidly in recent years. Previous indoor positioning methods focused on plane locations on a floor and did not provide accurate floor positioning. In this paper, we propose a method that uses multiple barometers as references for the floor positioning of smart phones with built-in barometric sensors. Some related studies used barometric formula to investigate the altitude of mobile devices and compared the altitude with the height of the floors in a building to obtain the floor number. These studies assume that the accurate height of each floor is known, which is not always the case. They also did not consider the difference in the barometric-pressure pattern at different floors, which may lead to errors in the altitude computation. Our method does not require knowledge of the accurate heights of buildings and stories. It is robust and less sensitive to factors such as temperature and humidity and considers the difference in the barometric-pressure change trends at different floors. We performed a series of experiments to validate the effectiveness of this method. The results are encouraging. PMID:25835189

  7. Using multiple barometers to detect the floor location of smart phones with built-in barometric sensors for indoor positioning.

    PubMed

    Xia, Hao; Wang, Xiaogang; Qiao, Yanyou; Jian, Jun; Chang, Yuanfei

    2015-01-01

    Following the popularity of smart phones and the development of mobile Internet, the demands for accurate indoor positioning have grown rapidly in recent years. Previous indoor positioning methods focused on plane locations on a floor and did not provide accurate floor positioning. In this paper, we propose a method that uses multiple barometers as references for the floor positioning of smart phones with built-in barometric sensors. Some related studies used barometric formula to investigate the altitude of mobile devices and compared the altitude with the height of the floors in a building to obtain the floor number. These studies assume that the accurate height of each floor is known, which is not always the case. They also did not consider the difference in the barometric-pressure pattern at different floors, which may lead to errors in the altitude computation. Our method does not require knowledge of the accurate heights of buildings and stories. It is robust and less sensitive to factors such as temperature and humidity and considers the difference in the barometric-pressure change trends at different floors. We performed a series of experiments to validate the effectiveness of this method. The results are encouraging. PMID:25835189

  8. Radio System for Locating Emergency Workers

    NASA Technical Reports Server (NTRS)

    Larson, William; Medelius, Pedro; Starr, Stan; Bedette, Guy; Taylor, John; Moerk, Steve

    2003-01-01

    A system based on low-power radio transponders and associated analog and digital electronic circuitry has been developed for locating firefighters and other emergency workers deployed in a building or other structure. The system has obvious potential for saving lives and reducing the risk of injuries. The system includes (1) a central station equipped with a computer and a transceiver; (2) active radio-frequency (RF) identification tags, each placed in a different room or region of the structure; and (3) transponder units worn by the emergency workers. The RF identification tags can be installed in a new building as built-in components of standard fire-detection devices or ground-fault electrical outlets or can be attached to such devices in a previously constructed building, without need for rewiring the building. Each RF identification tag contains information that uniquely identifies it. When each tag is installed, information on its location and identity are reported to, and stored at, the central station. In an emergency, if a building has not been prewired with RF identification tags, leading emergency workers could drop sequentially numbered portable tags in the rooms of the building, reporting the tag numbers and locations by radio to the central station as they proceed.

  9. Comparison of two chromogenic media and evaluation of two molecular based identification systems for Enterobacter sakazakii detection

    PubMed Central

    Lehner, Angelika; Nitzsche, Sabine; Breeuwer, Pieter; Diep, Benjamin; Thelen, Karin; Stephan, Roger

    2006-01-01

    Background Enterobacter sakazakii is a foodborne pathogen that has been associated with sporadic cases and outbreaks causing meningitis, necrotizing enterocolitis and sepsis especially in neonates. The current FDA detection method includes two enrichment steps, the subculturing of the second enrichment broth on a selective agar (VRBG), a further subculturing of selected grown colonies on TSA and the subsequent biochemical identification of yellow-pigmented colonies by API20E. However, there is a strong need for simplified methods for isolation and identification of E. sakazakii. In this study, two chromogenic media, which allow to indicate presumptive E. sakazakii colonies by the alpha glucosidase activity, as well as a newly developed 1,6-alpha-glucosidase based conventional PCR assay and a rRNA oligonucleotide probe based commercial test system for identification of presumptive E. sakazakii were evaluated on 98 target and non-target strains. The methods were compared with respect to specificity aspects. Results A total of 75 presumptive E. sakazakii and 23 non-target strains were analysed by using chromogenic media, alpha-glucosidase based PCR assay, and the VIT assay. For most presumptive E. sakazakii strains on the chromogenic media, the PCR and VIT assay confirmed the identification. However, for a number of presumptive E. sakazakii isolates from fruit powder, the alpha-glucosidase PCR and VIT assay did not correspond to the typical E. sakazakii colonies on DFI and ESIA. Further characterization by API32E identification, phylogenetic analysis of partial 16S rRNA sequences and ribotyping strongly suggested, that these strains did not belong to the species E. sakazakii. The newly developed alpha-glucosidase based PCR assay as well as the commercially available VIT Enterobacter sakazakii identification test showed an excellent correlation with the 16S rRNA data, and are thus well suited for identification of E. sakazakii. Conclusion The results indicate that

  10. Detection and identification of Rift Valley fever virus in mosquito vectors by quantitative real-time PCR.

    PubMed

    Mwaengo, D; Lorenzo, G; Iglesias, J; Warigia, M; Sang, R; Bishop, R P; Brun, A

    2012-10-01

    Diagnostic methods allowing for rapid identification of pathogens are crucial for controlling and preventing dissemination after disease outbreaks as well as for use in surveillance programs. For arboviruses, detection of the presence of virus in their arthropod hosts is important for monitoring of viral activity and quantitative information is useful for modeling of transmission dynamics. In this study, molecular detection of Rift Valley fever virus (RVFV) in mosquito samples from the 2006 to 2007 East African outbreaks was performed using quantitative real-time PCR assay (qRT-PCR). Specific RVFV sequence-based primer/fluorogenic (TaqMan) probe sets were derived from the L and S RNA segments of the virus. Both primer-probe L and S segment-based combinations detected genomic RVFV sequences, with generally comparable levels of sensitivity. Viral loads from three mosquito species, Aedes mcintoshi, Aedes ochraceus and Mansonia uniformis were estimated and significant differences of between 5- and 1000-fold were detected between Ae. mcintoshi and M. uniformis using both the L and S primer-probe-based assays. The genetic relationships of the viral sequences in mosquito samples were established by partial M segment sequencing and assigned to the two previously described viral lineages defined by analysis of livestock isolates obtained during the 2006-2007 outbreak, confirming that similar viruses were present in both the vector and mammalian host. The data confirms the utility of qRT-PCR for identification and initial quantification of virus in mosquito samples during RVFV outbreaks. PMID:22841800

  11. The non-contact detection and identification of blood stained fingerprints using visible wavelength reflectance hyperspectral imaging: Part 1.

    PubMed

    Cadd, Samuel; Li, Bo; Beveridge, Peter; O'Hare, William T; Campbell, Andrew; Islam, Meez

    2016-05-01

    Blood is one of the most commonly encountered types of biological evidence found at scenes of violent crime and one of the most commonly observed fingerprint contaminants. Current visualisation methods rely on presumptive tests or chemical enhancement methods. Although these can successfully visualise ridge detail, they are destructive, do not confirm the presence of blood and can have a negative impact on DNA sampling. A novel application of visible wavelength reflectance hyperspectral imaging (HSI) has been used for the detection and positive identification of blood stained fingerprints in a non-contact and non-destructive manner on white ceramic tiles. The identification of blood was based on the unique visible absorption spectrum of haemoglobin between 400 and 500 nm. HSI has been used to successfully visualise ridge detail in blood stained fingerprints to the ninth depletion. Ridge detail was still detectable with diluted blood to 20-fold dilutions. Latent blood stains were detectable to 15,000-fold dilutions. Ridge detail was detectable for fingerprints up to 6 months old. HSI was also able to conclusively distinguish blood stained fingerprints from fingerprints in six paints and eleven other red/brown media with zero false positives. PMID:27162016

  12. Metabolite profiling of licorice (Glycyrrhiza glabra) from different locations using comprehensive two-dimensional liquid chromatography coupled to diode array and tandem mass spectrometry detection.

    PubMed

    Montero, Lidia; Ibáñez, Elena; Russo, Mariateresa; di Sanzo, Rosa; Rastrelli, Luca; Piccinelli, Anna Lisa; Celano, Rita; Cifuentes, Alejandro; Herrero, Miguel

    2016-03-24

    Profiling of the main metabolites from several licorice (Glycyrrhiza glabra) samples collected at different locations is carried out in this work by using comprehensive two-dimensional liquid chromatography (LC × LC) coupled to diode array (DAD) and mass spectrometry (MS) detectors. The optimized method was based on the application of a HILIC-based separation in the first dimension combined with fast RP-based second dimension separation. This set-up was shown to possess powerful separation capabilities allowing separating as much as 89 different metabolites in a single sample. Identification and grouping of metabolites according to their chemical class were achieved using the DAD, MS and MS/MS data. Triterpene saponins were the most abundant metabolites followed by glycosylated flavanones and chalcones, whereas glycyrrhizic acid, as expected, was confirmed as the main component in all the studied samples. LC × LC-DAD-MS/MS was able to resolve these complex licorice samples providing with specific metabolite profiles to the different licorice samples depending on their geographical origin. Namely, from 19 to 50 specific compounds were exclusively determined in the 2D-chromatograms from the different licorice samples depending on their geographical origin, which can be used as a typical pattern that could potentially be related to their geographical location and authentication. PMID:26944999

  13. PCR-Based Detection and Identification of Burkholderia cepacia Complex Pathogens in Sputum from Cystic Fibrosis Patients

    PubMed Central

    McDowell, Andrew; Mahenthiralingam, Eshwar; Moore, John E.; Dunbar, Kerstin E. A.; Webb, A. Kevin; Dodd, Mary E.; Martin, S. Lorraine; Millar, B. Cherie; Scott, Christopher J.; Crowe, Mary; Elborn, J. Stuart

    2001-01-01

    PCR amplification of the recA gene followed by restriction fragment length polymorphism (RFLP) analysis was investigated for the rapid detection and identification of Burkholderia cepacia complex genomovars directly from sputum. Successful amplification of the B. cepacia complex recA gene from cystic fibrosis (CF) patient sputum samples containing B. cepacia genomovar I, Burkholderia multivorans, B. cepacia genomovar III, Burkholderia stabilis, and Burkholderia vietnamiensis was demonstrated. In addition, the genomovar identifications determined directly from sputum were the same as those obtained after selective culturing. Sensitivity experiments revealed that recA-based PCR could reliably detect B. cepacia complex organisms to concentrations of 106 CFU g of sputum−1. To fully assess the diagnostic value of the method, sputum samples from 100 CF patients were screened for B. cepacia complex infection by selective culturing and recA-based PCR. Selective culturing identified 19 samples with presumptive B. cepacia complex infection, which was corroborated by phenotypic analyses. Of the culture-positive sputum samples, 17 were also detected directly by recA-based PCR, while 2 samples were negative. The isolates cultured from both recA-negative sputum samples were subsequently identified as Burkholderia gladioli. RFLP analysis of the recA amplicons revealed 2 patients (12%) infected with B. multivorans, 11 patients (65%) infected with B. cepacia genomovar III-A, and 4 patients (23%) infected with B. cepacia genomovar III-B. These results demonstrate the potential of recA-based PCR-RFLP analysis for the rapid detection and identification of B. cepacia complex genomovars directly from sputum. Where the sensitivity of the assay proves a limitation, sputum samples can be analyzed by selective culturing followed by recA-based analysis of the isolate. PMID:11724828

  14. Array analysis methods for detection, classification and location of seismic sources: a first evaluation for aftershock analysis using dense temporary post-seismic array network

    NASA Astrophysics Data System (ADS)

    Poiata, N.; Satriano, C.; Vilotte, J.; Bernard, P.

    2012-12-01

    Detection, separation, classification and location of distributed non stationary seismic sources in broadband noisy environment is an important problem in seismology, in particular for monitoring the high-level post-seismic activity following large subduction earthquakes, like the off-shore Maule (Mw 8.8, 2010) earthquake in Central Chile. Multiple seismic arrays, and local antenna, distributed over a region allow exploiting frequency selective coherence of the signals that arrive at widely-separated array stations, leading to improved detection, convolution blind source separation, and location of distributed non stationary sources. We present here first results on the investigation of time-frequency adaptive array analysis techniques for detection and location of broadband distributed seismic events recorded by the dense temporary seismic network (International Maule Aftershock Deployment, IMAD) installed for monitoring the high-level seismic activity following the 27 February 2010 Maule earthquake (Mw 8.8). This seismic network is characterized by a large aperture, with variable inter-station distances, corroborated with a high level of distributed near and far field seismic source activity and noise. For this study, we first extract from the post-seismic network a number of seismic arrays distributed over the region covered by this network. A first aspect is devoted to passive distributed seismic sources detection, classification and separation. We investigate a number of narrow and wide band signal analysis methods both in time and time-frequency domains for energy arrival detection and tracking, including time adaptive higher order statistics, e.g. like kurtosis, and multiband band-pass filtering, together with adaptive time-frequency transformation and extraction techniques. We demonstrate that these techniques provide superior resolution and robustness than classical STA/LTA techniques in particular in the case of distributed sources with potential signal

  15. Sensitive detection of Porphyromonas gingivalis based on magnetic capture and upconversion fluorescent identification with multifunctional nanospheres.

    PubMed

    Qin, Wei; Zheng, Bin; Yuan, Yuan; Li, Meng; Bai, Yang; Chang, Jin; Wang, Hanjie; Wang, Yonglan

    2016-08-01

    A specific and sensitive detection system was designed to detect Porphyromonas gingivalis, a major periodontal pathogen, in mixed bacterial fluids. This new detection system was based on the use of fluorescent and magnetic encoding nanospheres that were conjugated with monoclonal antibodies specific to P. gingivalis, thus enabling rapid detection of the target bacterium. This strategy simplifies the detection process and improves the sensitivity compared with conventional methods, with a detection limit of approximately 10 colony-forming units (CFU) ml(-1) . This new method shows strong anti-interference ability and excellent selectivity and specificity to detect P. gingivalis in mixed solutions. PMID:27334431

  16. Species and hybrid identification of sturgeon caviar: a new molecular approach to detect illegal trade.

    PubMed

    Boscari, E; Barmintseva, A; Pujolar, J M; Doukakis, P; Mugue, N; Congiu, L

    2014-05-01

    Overexploitation of wild populations due to the high economic value of caviar has driven sturgeons to near extinction. The high prices commanded by caviar on world markets have made it a magnet for illegal and fraudulent caviar trade, often involving low-value farmed caviar being sold as top-quality caviar. We present a new molecular approach for the identification of pure sturgeon species and hybrids that are among the most commercialized species in Europe and North America. Our test is based on the discovery of species-specific single nucleotide polymorphisms (SNPs) in the ribosomal protein S7, supplemented with the Vimentin gene and the mitochondrial D-loop. Test validations performed in 702 specimens of target and nontarget sturgeon species demonstrated a 100% identification success for Acipenser naccarii, A. fulvescens, A. stellatus, A. sinensis and A. transmontanus. In addition to species identification, our approach allows the identification of Bester and AL hybrids, two of the most economically important hybrids in the world, with 80% and 100% success, respectively. Moreover, the approach has the potential to identify many other existing sturgeon hybrids. The development of a standardized sturgeon identification tool will directly benefit trade law enforcement, providing the tools to monitor and regulate the legal trade of caviar and protect sturgeon stocks from illicit producers and traders, hence contributing to safeguarding this group of heavily threatened species. PMID:24219811

  17. Detection, identification and differentiation of Pectobacterium and Dickeya species causing potato blackleg and tuber soft rot: a review

    PubMed Central

    Czajkowski, R; Pérombelon, MCM; Jafra, S; Lojkowska, E; Potrykus, M; van der Wolf, JM; Sledz, W

    2015-01-01

    The soft rot Enterobacteriaceae (SRE) Pectobacterium and Dickeya species (formerly classified as pectinolytic Erwinia spp.) cause important diseases on potato and other arable and horticultural crops. They may affect the growing potato plant causing blackleg and are responsible for tuber soft rot in storage thereby reducing yield and quality. Efficient and cost-effective detection and identification methods are essential to investigate the ecology and pathogenesis of the SRE as well as in seed certification programmes. The aim of this review was to collect all existing information on methods available for SRE detection. The review reports on the sampling and preparation of plant material for testing and on over thirty methods to detect, identify and differentiate the soft rot and blackleg causing bacteria to species and subspecies level. These include methods based on biochemical characters, serology, molecular techniques which rely on DNA sequence amplification as well as several less-investigated ones. PMID:25684775

  18. Quantitative Real-Time PCR Assays for Detection of Human Adenoviruses and Identification of Serotypes 40 and 41

    PubMed Central

    Jothikumar, Narayanan; Cromeans, Theresa L.; Hill, Vincent R.; Lu, Xiaoyan; Sobsey, Mark D.; Erdman, Dean D.

    2005-01-01

    A quantitative real-time TaqMan PCR assay for detection of human adenoviruses (HAdV) was developed using broadly reactive consensus primers and a TaqMan probe targeting a conserved region of the hexon gene. The TaqMan assay correctly identified 56 representative adenovirus prototype strains and field isolates from all six adenovirus species (A to F). Based on infectious units, the TaqMan assay was able to detect as few as 0.4 and 0.004 infectious units of adenovirus serotype 2 (AdV2) and AdV41, respectively, with results obtained in less than 90 min. Using genomic equivalents, the broadly reactive TaqMan assay was able to detect 5 copies of AdV40 (which had zero mismatches with the PCR primers and probe), 8 copies of AdV41, and 350 copies of AdV3 (which had the most mismatches [seven] of any adenovirus serotype tested). For specific detection and identification of F species serotypes AdV40 and AdV41, a second real-time PCR assay was developed using fluorescence resonance energy transfer (FRET) probes that target the adenovirus fiber gene. The FRET-based assay had a detection limit of 3 to 5 copies of AdV40 and AdV41 standard DNA and was able to distinguish between AdV40 and AdV41 based on melting curve analysis. Both the TaqMan and FRET PCR assays were quantitative over a wide range of virus titers. Application of these assays for detection of adenoviruses and type-specific identification of AdV40 and AdV41 will be useful for identifying these viruses in environmental and clinical samples. PMID:15933012

  19. ERTS-1 data in support of the national program of inspection of dams. [computer-aided detection and location of surface waters

    NASA Technical Reports Server (NTRS)

    Graybeal, G. E.; Hall, F. G.; Moore, B. H.; Schlosser, E. H.

    1974-01-01

    A computer-aided procedure, for use in the detection and location of areas of surface water, has been developed. The procedure was developed in support of the National Program of Inspection of Dams established by Public Law 92-367. The procedure utilizes data acquired by the unmanned Earth Resources Technology Satellite in conjunction with ancillary data in the form of topographic and highway maps, and meteorological data summaries. The procedure is divided into several distinct phases. A five-volume manual has been prepared to instruct potential users of the procedure.

  20. Location of Spirit's Home

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image shows where Earth would set on the martian horizon from the perspective of the Mars Exploration Rover Spirit if it were facing northwest atop its lander at Gusev Crater. Earth cannot be seen in this image, but engineers have mapped its location. This image mosaic was taken by the hazard-identification camera onboard Spirit.