Science.gov

Sample records for detector dynamic range

  1. Large dynamic range radiation detector and methods thereof

    DOEpatents

    Marrs, Roscoe E.; Madden, Norman W.

    2012-02-14

    According to one embodiment, a radiation detector comprises a scintillator and a photodiode optically coupled to the scintillator. The radiation detector also includes a bias voltage source electrically coupled to the photodiode, a first detector operatively electrically coupled to the photodiode for generating a signal indicative of a level of a charge at an output of the photodiode, and a second detector operatively electrically coupled to the bias voltage source for generating a signal indicative of an amount of current flowing through the photodiode.

  2. A large dynamic range readout design for the plastic scintillator detector of DAMPE

    NASA Astrophysics Data System (ADS)

    Zhou, Yong; Sun, Zhiyu; Yu, Yuhong; Zhang, Yongjie; Fang, Fang; Chen, Junling; Hu, Bitao

    2016-08-01

    A large dynamic range is required by the Plastic Scintillator Detector (PSD) of DArk Matter Particle Explorer (DAMPE) to detect particles from electron to heavy ions with Z ≤ 20. To expand the dynamic range, the readout design based on the double-dynodes signal extraction from the photomultiplier tube has been proposed and adopted by PSD. To verify this design, a prototype detector module has been constructed and tested with cosmic ray and relativistic ion beam. The results match with the estimation and the readout unit could easily cover the required dynamic range of about 4 orders of magnitude.

  3. Discussion on resolution and dynamic range of Se-TFT direct digital radiographic detector

    NASA Astrophysics Data System (ADS)

    Lee, Denny L. Y.; Cheung, Lawrence K.; Palecki, Eugene F.; Jeromin, Lothar S.

    1996-04-01

    The imaging performance of a new direct digital radiographic detector based on amorphous selenium and amorphous silicon TFT array which is under development is discussed. Progress has been made on the development of a multilayer digital x-ray detector panel with a structure consisting of a thin-film transistor pixel array, selenium x-ray photoconductor, dielectric layer and top electrode. An electronic system allows the rapid readout of image data which produces high resolution and wide dynamic range images. Using a straight edge, small wires and low contrast small holes targets, we have studied the spatial resolution, contrast detectability, and dynamic range of this new detector. Digital signals obtained from each pixel of this detector are almost linear with the total x-ray energy absorbed within the pixel area over a wide range of x-ray exposures. The resultant wide dynamic range allows extended latitude of exposure conditions and the enhancement or emphasis of different gray level regions from a single set of image data. For example, from one single exposure of the head, the soft tissue of the nose, detail structure of the teeth, as well as the bone structure of the neck can be examined by displaying and emphasizing selective gray levels of the image data. Image information obtained from this detector appears to be more evenly distributed over a wide dynamic range which is different from digital data obtained from other digital modalities such as the electrometer sensing of discharged potentials on photoconductors or from film digitization. Examples of images are shown. The discrete pixel structure of this detector and the higher intrinsic spatial resolution of selenium combine to produce image sharpness greater than those produced from digital detectors of similar pixel pitch using indirect conversion method or from digitizing film-screen images. The applicability of mathematical tools, such as the MTF which was developed primarily for analog images on a

  4. Force spectroscopy with a large dynamic range using small cantilevers and an array detector

    NASA Astrophysics Data System (ADS)

    Schäffer, Tilman E.

    2002-04-01

    The important characteristics of a detector for force spectroscopy measurements are sensitivity, linearity and dynamic range. The commonly used two-segment detector that measures the position of a light beam reflected from the force-sensing cantilever in an atomic force microscope becomes nonlinear when the beam shifts significantly onto one of the segments. For a detection setup optimized for high sensitivity, such as needed for the use with small cantilevers, it is shown both experimentally and theoretically that the dynamic range extends to an upper detection limit of only about 115 nm in cantilever deflection if <10% nonlinearity is required. A detector is presented that circumvents that limitation. This detector is based on a linear arrangement of multiple photodiode segments that are read out individually. With such an array detector, the irradiance distribution of the reflected beam is measured. The reflected beam not only shifts in position but also deforms when the cantilever deflects because the bent cantilever acts as a curved mirror. The mean of the distribution, however, is a linear function of cantilever deflection in both theory and experiment. An array detector is consequently well suited for force measurements for which both high sensitivity and a large dynamic range are required.

  5. High dynamic range CMOS-based mammography detector for FFDM and DBT

    NASA Astrophysics Data System (ADS)

    Peters, Inge M.; Smit, Chiel; Miller, James J.; Lomako, Andrey

    2016-03-01

    Digital Breast Tomosynthesis (DBT) requires excellent image quality in a dynamic mode at very low dose levels while Full Field Digital Mammography (FFDM) is a static imaging modality that requires high saturation dose levels. These opposing requirements can only be met by a dynamic detector with a high dynamic range. This paper will discuss a wafer-scale CMOS-based mammography detector with 49.5 μm pixels and a CsI scintillator. Excellent image quality is obtained for FFDM as well as DBT applications, comparing favorably with a-Se detectors that dominate the X-ray mammography market today. The typical dynamic range of a mammography detector is not high enough to accommodate both the low noise and the high saturation dose requirements for DBT and FFDM applications, respectively. An approach based on gain switching does not provide the signal-to-noise benefits in the low-dose DBT conditions. The solution to this is to add frame summing functionality to the detector. In one X-ray pulse several image frames will be acquired and summed. The requirements to implement this into a detector are low noise levels, high frame rates and low lag performance, all of which are unique characteristics of CMOS detectors. Results are presented to prove that excellent image quality is achieved, using a single detector for both DBT as well as FFDM dose conditions. This method of frame summing gave the opportunity to optimize the detector noise and saturation level for DBT applications, to achieve high DQE level at low dose, without compromising the FFDM performance.

  6. Dual-exposure technique for extending the dynamic range of x-ray flat panel detectors

    NASA Astrophysics Data System (ADS)

    Sisniega, A.; Abella, M.; Desco, M.; Vaquero, J. J.

    2014-01-01

    This work presents an approach to extend the dynamic range of x-ray flat panel detectors by combining two acquisitions of the same sample taken with two different x-ray photon flux levels and the same beam spectral configuration. In order to combine both datasets, the response of detector pixels was modelled in terms of mean and variance using a linear model. The model was extended to take into account the effect of pixel saturation. We estimated a joint probability density function (j-pdf) of the pixel values by assuming that each dataset follows an independent Gaussian distribution. This j-pdf was used for estimating the final pixel value of the high-dynamic-range dataset using a maximum likelihood method. The suitability of the pixel model for the representation of the detector signal was assessed using experimental data from a small-animal cone-beam micro-CT scanner equipped with a flat panel detector. The potential extension in dynamic range offered by our method was investigated for generic flat panel detectors using analytical expressions and simulations. The performance of the proposed dual-exposure approach in realistic imaging environments was compared with that of a regular single-exposure technique using experimental data from two different phantoms. Image quality was assessed in terms of signal-to-noise ratio, contrast, and analysis of profiles drawn on the images. The dynamic range, measured as the ratio between the exposure for saturation and the exposure equivalent to instrumentation noise, was increased from 76.9 to 166.7 when using our method. Dual-exposure results showed higher contrast-to-noise ratio and contrast resolution than the single-exposure acquisitions for the same x-ray dose. In addition, image artifacts were reduced in the combined dataset. This technique to extend the dynamic range of the detector without increasing the dose is particularly suited to image samples that contain both low and high attenuation regions.

  7. High-dynamic-range coherent diffractive imaging: ptychography using the mixed-mode pixel array detector

    PubMed Central

    Giewekemeyer, Klaus; Philipp, Hugh T.; Wilke, Robin N.; Aquila, Andrew; Osterhoff, Markus; Tate, Mark W.; Shanks, Katherine S.; Zozulya, Alexey V.; Salditt, Tim; Gruner, Sol M.; Mancuso, Adrian P.

    2014-01-01

    Coherent (X-ray) diffractive imaging (CDI) is an increasingly popular form of X-ray microscopy, mainly due to its potential to produce high-resolution images and the lack of an objective lens between the sample and its corresponding imaging detector. One challenge, however, is that very high dynamic range diffraction data must be collected to produce both quantitative and high-resolution images. In this work, hard X-ray ptychographic coherent diffractive imaging has been performed at the P10 beamline of the PETRA III synchrotron to demonstrate the potential of a very wide dynamic range imaging X-ray detector (the Mixed-Mode Pixel Array Detector, or MM-PAD). The detector is capable of single photon detection, detecting fluxes exceeding 1 × 108 8-keV photons pixel−1 s−1, and framing at 1 kHz. A ptychographic reconstruction was performed using a peak focal intensity on the order of 1 × 1010 photons µm−2 s−1 within an area of approximately 325 nm × 603 nm. This was done without need of a beam stop and with a very modest attenuation, while ‘still’ images of the empty beam far-field intensity were recorded without any attenuation. The treatment of the detector frames and CDI methodology for reconstruction of non-sensitive detector regions, partially also extending the active detector area, are described. PMID:25178008

  8. Increasing the energy dynamic range of solid-state nuclear track detectors using multiple surfaces.

    PubMed

    Zylstra, A B; Rinderknecht, H G; Sinenian, N; Rosenberg, M J; Manuel, M; Séguin, F H; Casey, D T; Frenje, J A; Li, C K; Petrasso, R D

    2011-08-01

    Solid-state nuclear track detectors, such as CR-39, are widely used in physics and in many inertial confinement fusion (ICF) experiments. In the ICF experiments, the particles of interest, such as D(3)He-protons, have ranges of order of the detector thickness. In this case, the dynamic range of the detector can be extended by recording data on both the front and back sides of the detector. Higher energy particles which are undetectable on the front surface can then be measured on the back of the detector. Studies of track formation under the conditions on the front and back of the detector reveal significant differences. Distinct front and back energy calibrations of CR-39 are therefore necessary and are presented for protons. Utilizing multiple surfaces with additional calibrations can extend the range of detectable energies on a single piece of CR-39 by up to 7-8 MeV. The track formation process is explored with a Monte Carlo code, which shows that the track formation difference between front and back is due to the non-uniform ion energy deposition in matter. PMID:21895237

  9. Two-phase low-power analogue CMOS peak detector with high dynamic range

    NASA Astrophysics Data System (ADS)

    Malankin, E.

    2016-02-01

    A low-power two-phase peak detector with wide dynamic range was developed. The PD was designed on the basis ofthe CMOS UMC 180 nm process. This block is considered as a part of the read-out electronics of the CBM experiment at upcoming FAIR accelerator (Germany). Peak detector has the following advantages: wide dynamic range of 5 - 1000 mV, low power consumption of 500 µW. The designed PD meets the requirements to the muon chamber read-out electronics of the CBM experiment. Due to the area efficiency (100×90 μm2) and low power consumption it can be used in different applications for high-energy physics read-out electronics.

  10. Dynamic range extension of SiPM detectors with the time-gated operation.

    PubMed

    Vilella, Eva; Diéguez, Angel

    2014-05-19

    The silicon photomultiplier (SiPM) is a novel detector technology that has undergone a fast development in the last few years, owing to its single-photon resolution and ultra-fast response time. However, the typical high dark count rates of the sensor may prevent the detection of low intensity radiation fluxes. In this article, the time-gated operation with short active periods in the nanosecond range is proposed as a solution to reduce the number of cells fired due to noise and thus increase the dynamic range. The technique is aimed at application fields that function under a trigger command, such as gated fluorescence lifetime imaging microscopy. PMID:24921320

  11. High Dynamic Range Pixel Array Detector for Scanning Transmission Electron Microscopy.

    PubMed

    Tate, Mark W; Purohit, Prafull; Chamberlain, Darol; Nguyen, Kayla X; Hovden, Robert; Chang, Celesta S; Deb, Pratiti; Turgut, Emrah; Heron, John T; Schlom, Darrell G; Ralph, Daniel C; Fuchs, Gregory D; Shanks, Katherine S; Philipp, Hugh T; Muller, David A; Gruner, Sol M

    2016-02-01

    We describe a hybrid pixel array detector (electron microscope pixel array detector, or EMPAD) adapted for use in electron microscope applications, especially as a universal detector for scanning transmission electron microscopy. The 128×128 pixel detector consists of a 500 µm thick silicon diode array bump-bonded pixel-by-pixel to an application-specific integrated circuit. The in-pixel circuitry provides a 1,000,000:1 dynamic range within a single frame, allowing the direct electron beam to be imaged while still maintaining single electron sensitivity. A 1.1 kHz framing rate enables rapid data collection and minimizes sample drift distortions while scanning. By capturing the entire unsaturated diffraction pattern in scanning mode, one can simultaneously capture bright field, dark field, and phase contrast information, as well as being able to analyze the full scattering distribution, allowing true center of mass imaging. The scattering is recorded on an absolute scale, so that information such as local sample thickness can be directly determined. This paper describes the detector architecture, data acquisition system, and preliminary results from experiments with 80-200 keV electron beams. PMID:26750260

  12. Dynamic range considerations for EUV MAMA detectors. [Extreme UV Multianode Microchannel Array

    NASA Technical Reports Server (NTRS)

    Illing, Rainer M. E.; Bybee, Richard L.; Timothy, J. G.

    1990-01-01

    The multianode microchannel array (MAMA) has been chosen as the detector for two instruments on the ESA/NASA Solar Heliospheric Observatory. The response of the MAMA to the two extreme types of solar spectra, disk and corona, have been modeled with a view toward evaluating dynamic range effects present. The method of MAMA operation is discussed, with emphasis given to modeling the effect of electron cloud charge spreading to several detector anodes and amplifiers (n-fold events). Representative synthetic EUV spectra have been created. The detector response to these spectra is modeled by dissecting the input photon radiation field across the detector array into contributions to the various amplifier channels. The results of this dissection are shown for spectral regions across the entire wavelength region of interest. These results are used to identify regions in which total array photon counting rate or individual amplifier rate may exceed the design limits. This allows the design or operational modes to be tailored to eliminate the problem areas.

  13. A high sensitive two-line detector with large dynamic range for intravenous coronary angiography

    NASA Astrophysics Data System (ADS)

    Lohmann, M.; Besch, H. J.; Dix, W.-R.; Dünger, O.; Jung, M.; Menk, R. H.; Reime, B.; Schildwächter, L.

    1998-12-01

    The medical community is highly interested in methods for non-invasive imaging of coronary arteries. One method under development is dichromography. This method allows imaging of small fast moving objects like the coronary arteries including distal parts and sidebranches after intravenous injection of contrast material. Two images with monochromatic X-rays at energies just below and above the K-edge of iodine at 33.17 keV are simultaneously taken. After logarithmic subtraction coronary arteries down to 0.7 mm diameter with extremely low iodine concentrations of 10 mg/ml become visible. At the Hamburger Synchrotronstrahlungslabor HASYLAB at DESY in Hamburg, Germany the system NIKOS was developed for dichromography. In this system the detector is one of the main components. This two-line detector is an ionization chamber for the two energies. The two gaps are separated by the drift cathode. A Frisch-grid for shielding the ions in a distance of 3 mm defines the conversion room. The 336 anode strips per line with a length of 56 mm in the direction of the beam are connected to the frontend electronics. The parameters of the current version of the detector in one setting are: noise equivalent of 7.6 photons, dynamic range of 300 000 : 1, readout time for the two lines (672 pixels) 0.18 ms.

  14. Front end ASIC for AGIPD, a high dynamic range fast detector for the European XFEL

    NASA Astrophysics Data System (ADS)

    Allahgholi, A.; Becker, J.; Bianco, L.; Delfs, A.; Dinapoli, R.; Ariño-Estrada, G.; Goettlicher, P.; Graafsma, H.; Greiffenberg, D.; Hirsemann, H.; Jack, S.; Klanner, R.; Klyuev, A.; Krueger, H.; Lange, S.; Marras, A.; Mezza, D.; Mozzanica, A.; Poehlsen, J.; Rah, S.; Xia, Q.; Schmitt, B.; Schwandt, J.; Sheviakov, I.; Shi, X.; Smoljanin, S.; Trunk, U.; Zhang, J.; Zimmer, M.

    2016-01-01

    The Adaptive Gain Integrating Pixel Detector (AGIPD) is a hybrid pixel X-ray detector for the European-XFEL. One of the detector's important parts is the radiation tolerant front end ASIC fulfilling the European-XFEL requirements: high dynamic range—from sensitivity to single 12.5keV-photons up to 104 photons. It is implemented using the dynamic gain switching technique with three possible gains of the charge sensitive preamplifier. Each pixel can store up to 352 images in memory operated in random-access mode at >=4.5 MHz frame rate. An external vetoing may be applied to overwrite unwanted frames.

  15. Extension of photomultiplier tube dynamic range for the LHAASO-KM2A electromagnetic particle detectors

    NASA Astrophysics Data System (ADS)

    Lv, Hongkui; Sheng, Xiangdong; He, Huihai; Liu, Jia; Zhang, Zhongquan; Hou, Chao; Zhao, Jing

    2015-05-01

    In the Large High Altitude Air Shower Observatory (LHAASO), the 1 km2 array (KM2A) requires linear measurement of optical intensity with a wide dynamic range. Over 5000 photomultiplier tubes (PMTs) are employed in this experiment and developed as "two outputs" device (anode and dynode) to meet the relevant requirements. In this study, the linearity of the anode and the eighth dynode (DY8), which is limited by space charge effects and mainly related to the relative dynode voltage ratios of the PMT divider, is examined. A voltage divider for the Hamamatsu R11102 PMT is designed and a dramatically enhanced linearity is demonstrated. Test results show that this design can cover a wide dynamic range from 20 to 2×105 photoelectrons and achieve a peak anode current of 380 mA at a PMT gain of 105, which satisfies the requirements of KM2A electromagnetic particle detectors. The circuit design has been successfully simulated using the simulation software Multisim. The details of PMT performance tests and simulations are described.

  16. Extension of the dynamic range of large photocathode PMTs for a UHECR detector

    NASA Astrophysics Data System (ADS)

    Aglietta, M.; Castellina, A.; Maldera, S.; Morello, C.

    2013-06-01

    Ground arrays for UHECR shower detection based on traditional counters, water Cerenkov tanks or scintillator modules, are unavoidably limited by the saturation suffered by the counters nearest to the shower axis. Reducing to a negligible level the amount of events recorded with saturated counters should be mandatory in a future UHECR ground array. The use of the signals extracted from the internal dynodes of the used photomultipliers can offer an elegant and inexpensive way to increase the dynamic range of such detectors. The viability of this technique has been explored studying in laboratory the performances of a sample of 3 Hamamatsu R5912-MOD photomultipliers. Exploiting the signal from the fifth dynode, a linear response up to an equivalent anodic peak current larger than 1A (at gain G = 2 ṡ 105) has been measured for all the studied PMTs. The feasibility of this technique in the frame of a new ground array for UHECR studies should be verified with a larger sample of photomultipliers.

  17. Flat panel X-ray detector with reduced internal scattering for improved attenuation accuracy and dynamic range

    DOEpatents

    Smith, Peter D.; Claytor, Thomas N.; Berry, Phillip C.; Hills, Charles R.

    2010-10-12

    An x-ray detector is disclosed that has had all unnecessary material removed from the x-ray beam path, and all of the remaining material in the beam path made as light and as low in atomic number as possible. The resulting detector is essentially transparent to x-rays and, thus, has greatly reduced internal scatter. The result of this is that x-ray attenuation data measured for the object under examination are much more accurate and have an increased dynamic range. The benefits of this improvement are that beam hardening corrections can be made accurately, that computed tomography reconstructions can be used for quantitative determination of material properties including density and atomic number, and that lower exposures may be possible as a result of the increased dynamic range.

  18. Imaging X-ray detector front-end with high dynamic range: IDeF-X HD

    NASA Astrophysics Data System (ADS)

    Gevin, O.; Lemaire, O.; Lugiez, F.; Michalowska, A.; Baron, P.; Limousin, O.; Delagnes, E.

    2012-12-01

    Presented circuit, IDeF-X HD (Imaging Detector Front-end) is a member of the IDeF-X ASICs family for space applications. It has been optimized for a half millimeter pitch CdTe or CdZnTe pixelated detector arranged in 16×16 array. It is aimed to operate in the hard X-ray range from few keV up to 250 keV or more. The ASIC has been realized in AMS 0.35 μm CMOS process. The IDeF-X HD is a 32 channel analog front-end with self-triggering capability. The architecture of the analog channel includes a chain of charge sensitive amplifier with continuous reset system and non-stationary noise suppressor, adjustable gain stage, pole-zero cancellation stage, adjustable shaping time low pass filter, baseline holder and peak detector with discriminator. The power consumption of the IDeF-X HD is 800 μW per channel. With the in-channel variable gain stage the nominal 250 keV dynamic range of the ASIC can be extended up to 1 MeV anticipating future applications using thick sensors. Measuring the noise performance without a detector at the input with minimized leakage current (programmable) at the input, we achieved ENC of 33 electrons rms at 10.7 μs peak time. Measurements with CdTe detector show good energy resolution FWHM of 1.1 keV at 60 keV and 4.3 keV at 662 keV with detection threshold below 4 keV. In addition, an absolute temperature sensor has been integrated with resolution of 1.5 °C.

  19. High dynamic range diamond detector acquisition system for beam wire scanner applications

    NASA Astrophysics Data System (ADS)

    Sirvent, J. L.; Dehning, B.; Piselli, E.; Emery, J.; Dieguez, A.

    2016-03-01

    The CERN Beam Instrumentation group has been working during the last years on the beam wire scanners upgrade to cope up with the increasing requirements of CERN experiments. These devices are used to measure the beam profile by crossing a thin wire through a circulating beam, the resulting secondary particles produced from beam/wire interaction are detected and correlated with the wire position to reconstruct the beam profile. The upgraded secondary particles acquisition electronics will use polycrystalline chemical vapour deposition (pCVD) diamond detectors for particle shower measurements, with low noise acquisitions performed on the tunnel, near the detector. The digital data is transmitted to the surface through an optical link with the GBT protocol. Two integrator ASICs (ICECAL and QIE10) are being characterized and compared for detector readout with the complete acquisition chain prototype. This contribution presents the project status, the QIE10 front-end performance and the first measurements with the complete acquisition system prototype. In addition, diamond detector signals from particle showers generated by an operational beam wire scanner are analysed and compared with an operational system.

  20. Monte Carlo Simulations of High-speed, Time-gated MCP-based X-ray Detectors: Saturation Effects in DC and Pulsed Modes and Detector Dynamic Range

    SciTech Connect

    Craig Kruschwitz, Ming Wu, Ken Moy, Greg Rochau

    2008-10-31

    We present here results of continued efforts to understand the performance of microchannel plate (MCP)–based, high-speed, gated, x-ray detectors. This work involves the continued improvement of a Monte Carlo simulation code to describe MCP performance coupled with experimental efforts to better characterize such detectors. Our goal is a quantitative description of MCP saturation behavior in both static and pulsed modes. We have developed a new model of charge buildup on the walls of the MCP channels and measured its effect on MCP gain. The results are compared to experimental data obtained with a short-pulse, high-intensity ultraviolet laser; these results clearly demonstrate MCP saturation behavior in both DC and pulsed modes. The simulations compare favorably to the experimental results. The dynamic range of the detectors in pulsed operation is of particular interest when fielding an MCP–based camera. By adjusting the laser flux we study the linear range of the camera. These results, too, are compared to our simulations.

  1. Novel image detail enhancement technology for high dynamic range infrared detector

    NASA Astrophysics Data System (ADS)

    Liu, Ning; Zhu, Caigao

    2014-11-01

    In this paper, we propose a novel image detail enhancement technology which is well solved the problem of how to suppress the noise and enhance the detail at the same time of the infrared image. This technology is based on the layer separation idea. In nowadays, this idea is studied by many researchers, and many detail enhancement algorithms have been come up through this idea such as the bilateral filter for detail enhancement. According to our research, these algorithms although have the advantages of enhancing the detail without enhancing the noise, they also have the disadvantages of massive calculation, low speed and the worst is the gradient flipping effect which cause the enhanced image distorted. Our solution is based on the Guided Image Filter (GIF) to deal the separated detail layer of an image. The gradient flipping effect will be greatly suppressed with the priority that the GIF is a linear filter. Which means that the processed image will become much closer to the original image. We determine an adaptive weighting coefficient as the filter kernel. After that, we compress the base component into the display range by our modified histogram projection and enhance the detail component using the gain mask of the filter weighting coefficient. At last, we recombine the two parts and quantize the result to 8-bit domain. Experimental verification and detailed realization have been provided in this paper. We also have done significant comparison between our method and the proposed algorithm to show the superiority of our algorithm.

  2. A low-noise wide-dynamic-range event-driven detector using SOI pixel technology for high-energy particle imaging

    NASA Astrophysics Data System (ADS)

    Shrestha, Sumeet; Kamehama, Hiroki; Kawahito, Shoji; Yasutomi, Keita; Kagawa, Keiichiro; Takeda, Ayaki; Tsuru, Takeshi Go; Arai, Yasuo

    2015-08-01

    This paper presents a low-noise wide-dynamic-range pixel design for a high-energy particle detector in astronomical applications. A silicon on insulator (SOI) based detector is used for the detection of wide energy range of high energy particles (mainly for X-ray). The sensor has a thin layer of SOI CMOS readout circuitry and a thick layer of high-resistivity detector vertically stacked in a single chip. Pixel circuits are divided into two parts; signal sensing circuit and event detection circuit. The event detection circuit consisting of a comparator and logic circuits which detect the incidence of high energy particle categorizes the incident photon it into two energy groups using an appropriate energy threshold and generate a two-bit code for an event and energy level. The code for energy level is then used for selection of the gain of the in-pixel amplifier for the detected signal, providing a function of high-dynamic-range signal measurement. The two-bit code for the event and energy level is scanned in the event scanning block and the signals from the hit pixels only are read out. The variable-gain in-pixel amplifier uses a continuous integrator and integration-time control for the variable gain. The proposed design allows the small signal detection and wide dynamic range due to the adaptive gain technique and capability of correlated double sampling (CDS) technique of kTC noise canceling of the charge detector.

  3. A Fully Digital AGC System with 100MHz Bandwidth and 35dB Dynamic Range Power Detectors for DVB-S2 Application

    NASA Astrophysics Data System (ADS)

    Pu, Younggun; Lee, Kang-Yoon

    This paper presents a fully digital gain control system with a new high bandwidth and wide dynamic range power detector for DVB-S2 application. Because the peak-to-average power ratio (PAPR) of DVB-S2 system is so high and the settling time requirement is so stringent, the conventional closed-loop analog gain control scheme cannot be used. The digital gain control is necessary for the robust gain control and the direct digital interface with the baseband modem. Also, it has several advantages over the analog gain control in terms of the settling time and insensitivity to the process, voltage and temperature variation. In order to have a wide gain range with fine step resolution, a new AGC system is proposed. The system is composed of high-bandwidth digital VGAs, wide dynamic range power detectors with RMS detector, low power SAR type ADC, and a digital gain controller. To reduce the power consumption and chip area, only one SAR type ADC is used, and its input is time-interleaved based on four power detectors. Simulation and measurement results show that the new AGC system converges with gain error less than 0.25dB to the desired level within 10µs. It is implemented in a 0.18µm CMOS process. The measurement results of the proposed IF AGC system exhibit 80-dB gain range with 0.25-dB resolution, 8nV/\\\\!\\\\sqrt{Hz} input referred noise, and 5-dBm IIP3 at 60-mW power consumption. The power detector shows the 35dB dynamic range for 100MHz input.

  4. Physical evaluation of a high-frame-rate extended dynamic range flat panel detector for real-time cone beam computed tomography applications

    NASA Astrophysics Data System (ADS)

    Boyce, Sarah J.; Chawla, Amarpreet; Samei, Ehsan

    2005-04-01

    The use of flat panel detectors in computed tomography (CT) systems can improve resolution, reduce system cost, and add operational flexibility by combining fluoroscopy and radiography applications within CT systems. However, some prior studies have suggested that flat panel detectors would not perform well in CT applications due to their lack of high dynamic range, lag artifacts, and inadequate frame rate. The purpose of this study was to perform a physical evaluation of a prototype flat panel detector capable of high frame rates and extended dynamic range. The flat panel detector used had a pixel size of 194 microns and a matrix size of 2048x1536. The detector could be configured for several combinations of frame rate and matrix size up to 750 frames per second for a 512x16 matrix size with 4x4 binning. The evaluation was performed in terms of the MTF and DQE as a function of frame rate and exposure at the IEC RQA5 (~75 kVp, 21 mm Al) beam quality. The image lag was evaluated in terms of temporal-frequency dependent transfer function. Offset shift were also evaluated. Preliminary results indicate 0.1 MTF at 0.92 cycles/mm and DQE(0) of approximately 0.8, 0.6, 0.4, and 0.22 at 0.144, 0.065, 0.035, and 0.008 mR per frame exposures. The temporal MTF exhibited a low-frequency drop and a value of 0.5 at the Nyquist frequency. Offset shift was negligible. Considering high frame rate capabilities of the new detector, the results suggest that the detector has potential for use in real-time CT applications including CT angiography.

  5. The Dynamic Range of LZ

    NASA Astrophysics Data System (ADS)

    Yin, Jun; LZ Collaboration

    2015-10-01

    The electronics of the LZ experiment, the 7-ton dark matter detector to be installed at the Sanford Underground Research Facility (SURF), is designed to provide a 70% efficiency for events that produce three photoelectrons in the photomultiplier tubes (PMTs). This corresponds approximately to the lowest energy threshold achievable in such a detector, and drives the noise specifications for the front end. The upper limit of the LZ dynamic range is defined by the electroluminescence (S2) signals. The low-energy channels of the LZ amplifiers provide the dynamic range required for the tritium and krypton calibrations. The high-energy channels provide the dynamic range required to measure the activated Xe lines. S2 signals induced by alpha particles from radon decay will saturate one or more channels of the top PMT array but techniques are being developed to recover the information lost due to saturation. This work was supported by the Department of Energy, Grant DE-SC0006605.

  6. Towards a microchannel-based X-ray detector with two-dimensional spatial and time resolution and high dynamic range

    SciTech Connect

    Adams, Bernhard W.; Mane, Anil; Elam, Jeffrey; Obaid, Razib; Wetstein, Matthew J.

    2015-09-01

    X-ray detectors that combine two-dimensional spatial resolution with a high time resolution are needed in numerous applications of synchrotron radiation. Most detectors with this combination of capabilities are based on semiconductor technology and are therefore limited in size. Furthermore, the time resolution is often realised through rapid time-gating of the acquisition, followed by a slower readout. Here, a detector technology is realised based on relatively inexpensive microchannel plates that uses GHz waveform sampling for a millimeter-scale spatial resolution and better than 100 ps time resolution. The technology is capable of continuous streaming of time- and location-tagged events at rates greater than 10(7) events per cm(2). Time-gating can be used for improved dynamic range.

  7. Long range alpha particle detector

    DOEpatents

    MacArthur, Duncan W.; Wolf, Michael A.; McAtee, James L.; Unruh, Wesley P.; Cucchiara, Alfred L.; Huchton, Roger L.

    1993-01-01

    An alpha particle detector capable of detecting alpha radiation from distant sources. In one embodiment, a high voltage is generated in a first electrically conductive mesh while a fan draws air containing air molecules ionized by alpha particles through an air passage and across a second electrically conductive mesh. The current in the second electrically conductive mesh can be detected and used for measurement or alarm. The detector can be used for area, personnel and equipment monitoring.

  8. Long range alpha particle detector

    DOEpatents

    MacArthur, D.W.; Wolf, M.A.; McAtee, J.L.; Unruh, W.P.; Cucchiara, A.L.; Huchton, R.L.

    1993-02-02

    An alpha particle detector capable of detecting alpha radiation from distant sources. In one embodiment, a high voltage is generated in a first electrically conductive mesh while a fan draws air containing air molecules ionized by alpha particles through an air passage and across a second electrically conductive mesh. The current in the second electrically conductive mesh can be detected and used for measurement or alarm. The detector can be used for area, personnel and equipment monitoring.

  9. The dynamic range of LZ

    NASA Astrophysics Data System (ADS)

    Yin, J.

    2016-02-01

    The electronics of the LZ experiment, the 7-tonne dark matter detector to be installed at the Sanford Underground Research Facility (SURF), is designed to permit studies of physics where the energies deposited range from 1 keV of nuclear-recoil energy up to 3,000 keV of electron-recoil energy. The system is designed to provide a 70% efficiency for events that produce three photoelectrons in the photomultiplier tubes (PMTs). This corresponds approximately to the lowest energy threshold achievable in multi-tonne time-projection chambers, and drives the noise specifications for the front end. The upper limit of the LZ dynamic range is defined to accommodate the electroluminescence (S2) signals. The low-energy channels of the LZ amplifiers provide the dynamic range required for the tritium and krypton calibrations. The high-energy channels provide the dynamic range required to measure the activated Xe lines.

  10. Design and characterization of the ePix10k: a high dynamic range integrating pixel ASIC for LCLS detectors

    NASA Astrophysics Data System (ADS)

    Caragiulo, P.; Dragone, A.; Markovic, B.; Herbst, R.; Nishimura, K.; Reese, B.; Herrmann, S.; Hart, P.; Blaj, G.; Segal, J.; Tomada, A.; Hasi, J.; Carini, G.; Kenney, C.; Haller, G.

    2015-05-01

    ePix10k is a variant of a novel class of integrating pixel ASICs architectures optimized for the processing of signals in second generation LINAC Coherent Light Source (LCLS) X-Ray cameras. The ASIC is optimized for high dynamic range application requiring high spatial resolution and fast frame rates. ePix ASICs are based on a common platform composed of a random access analog matrix of pixel with global shutter, fast parallel column readout, and dedicated sigma-delta analog to digital converters per column. The ePix10k variant has 100um×100um pixels arranged in a 176×192 matrix, a resolution of 140e- r.m.s. and a signal range of 3.5pC (10k photons at 8keV). In its final version it will be able to sustain a frame rate of 2kHz. A first prototype has been fabricated and characterized. Performance in terms of noise, linearity, uniformity, cross-talk, together with preliminary measurements with bump bonded sensors are reported here.

  11. Isosceles detector provides maximum resolution in expanded range

    NASA Technical Reports Server (NTRS)

    Watterson, R. F.

    1971-01-01

    Dynamic range expansion system for radio frequency /RF/ signal detection equipment consists of RF amplifiers, RF amplitude modulated detectors, and operational amplifier. The analog output gives maximum resolution over fixed voltage range, without switching. Two minor drawbacks of this circuit are cited.

  12. Fan-less long range alpha detector

    DOEpatents

    MacArthur, Duncan W.; Bounds, John A.

    1994-01-01

    A fan-less long range alpha detector which operates by using an electrical field between a signal plane and the surface or substance to be monitored for air ions created by collisions with alpha radiation. Without a fan, the detector can operate without the possibility of spreading dust and potential contamination into the atmosphere. A guard plane between the signal plane and the electrically conductive enclosure and maintained at the same voltage as the signal plane, reduces leakage currents. The detector can easily monitor soil, or other solid or liquid surfaces.

  13. Fan-less long range alpha detector

    DOEpatents

    MacArthur, D.W.; Bounds, J.A.

    1994-05-10

    A fan-less long range alpha detector is disclosed which operates by using an electrical field between a signal plane and the surface or substance to be monitored for air ions created by collisions with alpha radiation. Without a fan, the detector can operate without the possibility of spreading dust and potential contamination into the atmosphere. A guard plane between the signal plane and the electrically conductive enclosure and maintained at the same voltage as the signal plane, reduces leakage currents. The detector can easily monitor soil, or other solid or liquid surfaces. 2 figures.

  14. Enabling photon counting detectors with dynamic attenuators

    NASA Astrophysics Data System (ADS)

    Hsieh, Scott S.; Pelc, Norbert J.

    2014-03-01

    Photon-counting x-ray detectors (PCXDs) are being investigated as a replacement for conventional x-ray detectors because they promise several advantages, including better dose efficiency, higher resolution and spectral imaging. However, many of these advantages disappear when the x-ray flux incident on the detector is too high. We recently proposed a dynamic, piecewise-linear attenuator (or beam shaping filter) that can control the flux incident on the detector. This can restrict the operating range of the PCXD to keep the incident count rate below a given limit. We simulated a system with the piecewise-linear attenuator and a PCXD using raw data generated from forward projected DICOM files. We investigated the classic paralyzable and nonparalyzable PCXD as well as a weighted average of the two, with the weights chosen to mimic an existing PCXD (Taguchi et al, Med Phys 2011). The dynamic attenuator has small synergistic benefits with the nonparalyzable detector and large synergistic benefits with the paralyzable detector. Real PCXDs operate somewhere between these models, and the weighted average model still shows large benefits from the dynamic attenuator. We conclude that dynamic attenuators can reduce the count rate performance necessary for adopting PCXDs.

  15. Wide range radioactive gas concentration detector

    DOEpatents

    Anderson, David F.

    1984-01-01

    A wide range radioactive gas concentration detector and monitor which is capable of measuring radioactive gas concentrations over a range of eight orders of magnitude. The device of the present invention is designed to have an ionization chamber which is sufficiently small to give a fast response time for measuring radioactive gases but sufficiently large to provide accurate readings at low concentration levels. Closely spaced parallel plate grids provide a uniform electric field in the active region to improve the accuracy of measurements and reduce ion migration time so as to virtually eliminate errors due to ion recombination. The parallel plate grids are fabricated with a minimal surface area to reduce the effects of contamination resulting from absorption of contaminating materials on the surface of the grids. Additionally, the ionization chamber wall is spaced a sufficient distance from the active region of the ionization chamber to minimize contamination effects.

  16. Streak camera dynamic range optimization

    SciTech Connect

    Wiedwald, J.D.; Lerche, R.A.

    1987-09-01

    The LLNL optical streak camera is used by the Laser Fusion Program in a wide range of applications. Many of these applications require a large recorded dynamic range. Recent work has focused on maximizing the dynamic range of the streak camera recording system. For our streak cameras, image intensifier saturation limits the upper end of the dynamic range. We have developed procedures to set the image intensifier gain such that the system dynamic range is maximized. Specifically, the gain is set such that a single streak tube photoelectron is recorded with an exposure of about five times the recording system noise. This ensures detection of single photoelectrons, while not consuming intensifier or recording system dynamic range through excessive intensifier gain. The optimum intensifier gain has been determined for two types of film and for a lens-coupled CCD camera. We have determined that by recording the streak camera image with a CCD camera, the system is shot-noise limited up to the onset of image intensifier nonlinearity. When recording on film, the film determines the noise at high exposure levels. There is discussion of the effects of slit width and image intensifier saturation on dynamic range. 8 refs.

  17. High dynamic range infrared radiometry and imaging

    NASA Technical Reports Server (NTRS)

    Coon, Darryl D.; Karunasiri, R. P. G.; Bandara, K. M. S. V.

    1988-01-01

    The use is described of cryogenically cooled, extrinsic silicon infrared detectors in an unconventional mode of operation which offers an unusually large dynamic range. The system performs intensity-to-frequency conversion at the focal plane via simple circuits with very low power consumption. The incident IR intensity controls the repetition rate of short duration output pulses over a pulse rate dynamic range of about 10(6). Theory indicates the possibility of monotonic and approx. linear response over the full dynamic range. A comparison between the theoretical and the experimental results shows that the model provides a reasonably good description of experimental data. Some measurements of survivability with a very intense IR source were made on these devices and found to be very encouraging. Evidence continues to indicate that some variations in interpulse time intervals are deterministic rather than probabilistic.

  18. Short-range laser obstacle detector

    NASA Technical Reports Server (NTRS)

    Kuriger, W. L.

    1974-01-01

    Detector, designed for slow-moving vehicle to explore surface of Mars, will automatically divert vehicle from obstacles as small as 0.5 m in its path. Detector comprises injection laser operating in pulse time-delay measurement, or radar, mode. It is capable of scanning area extending from few meters to approximately 30 m.

  19. Wide-range nuclear magnetic resonance detector

    NASA Technical Reports Server (NTRS)

    Sturman, J. C.; Jirberg, R. J.

    1972-01-01

    Compact and easy to use solid state nuclear magnetic resonance detector is designed for measuring field strength to 20 teslas in cryogenically cooled magnets. Extremely low noise and high sensitivity make detector applicable to nearly all types of analytical nuclear magnetic resonance measurements and can be used in high temperature and radiation environments.

  20. A Wide Dynamic Range Tapped Linear Array Image Sensor

    NASA Astrophysics Data System (ADS)

    Washkurak, William D.; Chamberlain, Savvas G.; Prince, N. Daryl

    1988-08-01

    Detectors for acousto-optic signal processing applications require fast transient response as well as wide dynamic range. There are two major choices of detectors: conductive or integration mode. Conductive mode detectors have an initial transient period before they reach then' i equilibrium state. The duration of 1 his period is dependent on light level as well as detector capacitance. At low light levels a conductive mode detector is very slow; response time is typically on the order of milliseconds. Generally. to obtain fast transient response an integrating mode detector is preferred. With integrating mode detectors. the dynamic range is determined by the charge storage capability of the tran-sport shift registers and the noise level of the image sensor. The conventional net hod used to improve dynamic range is to increase the shift register charge storage capability. To achieve a dynamic range of fifty thousand assuming two hundred noise equivalent electrons, a charge storage capability of ten million electrons would be required. In order to accommodate this amount of charge. unrealistic shift registers widths would be required. Therefore, with an integrating mode detector it is difficult to achieve a dynamic range of over four orders of magnitude of input light intensity. Another alternative is to solve the problem at the photodetector aml not the shift, register. DALSA's wide dynamic range detector utilizes an optimized, ion implant doped, profiled MOSFET photodetector specifically designed for wide dynamic range. When this new detector operates at high speed and at low light levels the photons are collected and stored in an integrating fashion. However. at bright light levels where transient periods are short, the detector switches into a conductive mode. The light intensity is logarithmically compressed into small charge packets, easily carried by the CCD shift register. As a result of the logarithmic conversion, dynamic ranges of over six orders of

  1. The solid state detector technology for picosecond laser ranging

    NASA Technical Reports Server (NTRS)

    Prochazka, Ivan

    1993-01-01

    We developed an all solid state laser ranging detector technology, which makes the goal of millimeter accuracy achievable. Our design and construction philosophy is to combine the techniques of single photon ranging, ultrashort laser pulses, and fast fixed threshold discrimination while avoiding any analog signal processing within the laser ranging chain. The all solid state laser ranging detector package consists of the START detector and the STOP solid state photon counting module. Both the detectors are working in an optically triggered avalanche switching regime. The optical signal is triggering an avalanche current buildup which results in the generation of a uniform, fast risetime output pulse.

  2. Wide Dynamic Range CCD Camera

    NASA Astrophysics Data System (ADS)

    Younse, J. M.; Gove, R. J.; Penz, P. A.; Russell, D. E.

    1984-11-01

    A liquid crystal attenuator (LCA) operated as a variable neutral density filter has been attached to a charge-coupled device (CCD) imager to extend the dynamic range of a solid-state TV camera by an order of magnitude. Many applications are best served by a camera with a dynamic range of several thousand. For example, outside security systems must operate unattended with "dawn-to-dusk" lighting conditions. Although this can be achieved with available auto-iris lens assemblies, more elegant solutions which provide the small size, low power, high reliability advantages of solid state technology are now available. This paper will describe one such unique way of achieving these dynamic ranges using standard optics by making the CCD imager's glass cover a controllable neutral density filter. The liquid crystal attenuator's structure and theoretical properties for this application will be described along with measured transmittance. A small integrated TV camera which utilizes a "virtual-phase" CCD sensor coupled to a LCA will be described and test results for a number of the camera's optical and electrical parameters will be given. These include the following camera parameters: dynamic range, Modulation Transfer Function (MTF), spectral response, and uniformity. Also described will be circuitry which senses the ambient scene illuminance and automatically provides feedback signals to appropriately adjust the transmittance of the LCA. Finally, image photographs using this camera, under various scene illuminations, will be shown.

  3. Wide dynamic range beam profile monitor

    SciTech Connect

    Lee, D.M.; van Dyck, O.B.; Bilskie, J.R.; Brown, D.; Hardekopf, R.

    1985-10-01

    An economical harp multiplexer system has been developed to achieve a wide dynamic range. The harp system incorporates a pneumatically actuated harp detector with ceramic boards and carbon wires; a high-sensitivity multiplexer packaged in a double-wide NIM module; and flat, shielded ribbon cable consisting of individual twisted pairs. The system multiplexes 30 wires in each of the x and y planes simultaneously and operates with or without computer control. The system has operated in beams of 100 nA to 1 mA, 1- to 120-Hz repetition rate, with a signal-to-noise ratio of greater than 10/1.

  4. Wide dynamic range beam profile monitor

    SciTech Connect

    Lee, D.M.; Brown, D.; Hardekopf, R.; Bilskie, J.R.; van Dyck, O.B.V.

    1985-01-01

    An economical harp multiplexer system has been developed to achieve a wide dynamic range. The harp system incorporates a pneumatically actuated harp detector with ceramic boards and carbon wires; a high-sensitivity multiplexer packaged in a double-wide NIM module; and flat, shielded ribbon cable consisting of individual twisted pairs. The system multiplexes 30 wires in each of the x and y planes simultaneously and operates with or without computer control. The system has operated in beams of 100 nA to 1 mA, 1- to 120-Hz repetition rate, with a signal-to-noise ratio of greater than 10/1.

  5. Alternating current long range alpha particle detector

    DOEpatents

    MacArthur, D.W.; McAtee, J.L.

    1993-02-16

    An alpha particle detector, utilizing alternating currents, which is capable of detecting alpha particles from distinct sources. The use of alternating currents allows use of simpler ac circuits which, in turn, are not susceptible to dc error components. It also allows the benefit of gas gain, if desired. In the invention, a voltage source creates an electric field between two conductive grids, and between the grids and a conductive enclosure. Air containing air ions created by collision with alpha particles is drawn into the enclosure and detected. In some embodiments, the air flow into the enclosure is interrupted, creating an alternating flow of ions. In another embodiment, a modulated voltage is applied to the grid, also modulating the detection of ions.

  6. Alternating current long range alpha particle detector

    DOEpatents

    MacArthur, Duncan W.; McAtee, James L.

    1993-01-01

    An alpha particle detector, utilizing alternating currents, whcih is capable of detecting alpha particles from distinct sources. The use of alternating currents allows use of simpler ac circuits which, in turn, are not susceptible to dc error components. It also allows the benefit of gas gain, if desired. In the invention, a voltage source creates an electric field between two conductive grids, and between the grids and a conductive enclosure. Air containing air ions created by collision with alpha particles is drawn into the enclosure and detected. In some embodiments, the air flow into the enclosure is interrupted, creating an alternating flow of ions. In another embodiment, a modulated voltage is applied to the grid, also modulating the detection of ions.

  7. Small long-range alpha detector (LRAD) with computer readout

    SciTech Connect

    MacArthur, D.W.; Allander, K.S.; Bounds, J.A.; Butterfield, K.B.

    1991-10-01

    The small long-range alpha detector developed by N-2 was described in detail in the Los Alamos publication LA-12073-MS, Long-Range Alpha Detector,'' published in 1991. Since publication of that report, a computerized data acquisition system has been added to the LRAD detector. In addition to detailing the new data acquisition system, we discuss new data generated with the enhanced system, including measurements of (1) ultimate sensitivity; (2) detector linearity; (3) ion lifetime; and (4) characteristics. Furthermore, we have expanded our understanding of ion recombination and statistical noise effects in the LRAD and have addressed them here as well as several proposed applications. 6 refs., 30 figs.

  8. Enhancement of concentration range of chromatographically detectable components with array detector mass spectrometry

    DOEpatents

    Enke, Christie

    2013-02-19

    Methods and instruments for high dynamic range analysis of sample components are described. A sample is subjected to time-dependent separation, ionized, and the ions dispersed with a constant integration time across an array of detectors according to the ions m/z values. Each of the detectors in the array has a dynamically adjustable gain or a logarithmic response function, producing an instrument capable of detecting a ratio of responses or 4 or more orders of magnitude.

  9. Wind dynamic range video camera

    NASA Technical Reports Server (NTRS)

    Craig, G. D. (Inventor)

    1985-01-01

    A television camera apparatus is disclosed in which bright objects are attenuated to fit within the dynamic range of the system, while dim objects are not. The apparatus receives linearly polarized light from an object scene, the light being passed by a beam splitter and focused on the output plane of a liquid crystal light valve. The light valve is oriented such that, with no excitation from the cathode ray tube, all light is rotated 90 deg and focused on the input plane of the video sensor. The light is then converted to an electrical signal, which is amplified and used to excite the CRT. The resulting image is collected and focused by a lens onto the light valve which rotates the polarization vector of the light to an extent proportional to the light intensity from the CRT. The overall effect is to selectively attenuate the image pattern focused on the sensor.

  10. HIGH DYNAMIC-RANGE HIGH SPEED LINAC CURRENT MEASUREMENTS

    SciTech Connect

    Deibele, Craig Edmond; Curry, Douglas E; Dickson, Richard W

    2012-01-01

    It is desired to measure the linac current of a charged particle beam with a consistent accuracy over a dynamic range of over 120 dB. Conventional current transformers suffer from droop, can be susceptible to electromagnetic interference (EMI), and can be bandwidth limited. A novel detector and electronics were designed to maximize dynamic range of about 120 dB and measure rise-times on the order of 10 nanoseconds.

  11. Multi-dimensional position sensor using range detectors

    DOEpatents

    Vann, Charles S.

    2000-01-01

    A small, non-contact optical sensor uses ranges and images to detect its relative position to an object in up to six degrees of freedom. The sensor has three light emitting range detectors which illuminate a target and can be used to determine distance and two tilt angles. A camera located between the three range detectors senses the three remaining degrees of freedom, two translations and one rotation. Various range detectors, with different light sources, e.g. lasers and LEDs, different collection options, and different detection schemes, e.g. diminishing return and time of flight can be used. This sensor increases the capability and flexibility of computer controlled machines, e.g. it can instruct a robot how to adjust automatically to different positions and orientations of a part.

  12. EMIR high-dynamic range readout modes

    NASA Astrophysics Data System (ADS)

    Nuñez, Miguel; Gago, Fernando; Garzón, Francisco; Díaz, José J.; Barreto, Mary; Patrón, Jesús; González-Fenández, Carlos; Hammersley, Peter L.; López, Luis; Castro, Nieves

    2012-07-01

    EMIR is the NIR imager and multiobject spectrograph being built as a common user instrument for the GTC and it is currently entering in the integration and verification phase at system level. EMIR is being built by a Consortium of Spanish and French institutes led by the IAC. In this paper we describe the readout modes of EMIR detector, a Hawaii2 FPA, after two full calibrations campaigns. Besides the standard set of modes (reset-read, CDS, Fowler, Follow-up the ramp), the modified SDSU-III hardware and home made software will also offer high dynamic range readout modes, which will improve the ability of the instrument to sound densely populated areas which often are made of objects with large differences in brightness. These new high dynamic range modes are: single readout with very short integration time, window mode and combination of both. The results show that the new modes behave linearly with different exposition times, improve the maximum frame rate and increase the saturation limit in image mode for EMIR instrument.

  13. Simple dynamic electromagnetic radiation detector

    NASA Technical Reports Server (NTRS)

    Been, J. F.

    1972-01-01

    Detector monitors gamma dose rate at particular position in a radiation facility where a mixed neutron-gamma environment exists, thus determining reactor power level changes. Device also maps gamma intensity profile across a neutron-gamma beam.

  14. Development of a wide-range tritium-concentration detector

    SciTech Connect

    Jun, F.; Zhe, L.; Shicheng, L.; Jiangfeng, S.; Deli, L.

    2015-03-15

    According to the requirements of the tritium related systems of the TBM (Test Blanket Module) for monitoring the on-line tritium concentration, a wide-range tritium-concentration detector has been developed to measure the tritium concentration in the range of 10{sup 4} Bq/ml - 5*10{sup 8} Bq/ml. This detector is combined with a low-memory helium ionization chamber. The weak current signal collected in the ionization chamber is converted to the voltage signal by an I-V converter. The minimum weak current which the detector could be measured is 10{sup -14} A. The performance of the background current and the current response linearity of the prototype have been tested. The test result indicates that the linear response of the current signal of the prototype without connecting the ionization chamber is good. The linear correlation coefficient is R{sup 2} = 0.998.

  15. Understanding synthesis imaging dynamic range

    NASA Astrophysics Data System (ADS)

    Braun, R.

    2013-03-01

    We develop a general framework for quantifying the many different contributions to the noise budget of an image made with an array of dishes or aperture array stations. Each noise contribution to the visibility data is associated with a relevant correlation timescale and frequency bandwidth so that the net impact on a complete observation can be assessed when a particular effect is not captured in the instrumental calibration. All quantities are parameterised as function of observing frequency and the visibility baseline length. We apply the resulting noise budget analysis to a wide range of existing and planned telescope systems that will operate between about 100 MHz and 5 GHz to ascertain the magnitude of the calibration challenges that they must overcome to achieve thermal noise limited performance. We conclude that calibration challenges are increased in several respects by small dimensions of the dishes or aperture array stations. It will be more challenging to achieve thermal noise limited performance using 15 m class dishes rather than the 25 m dishes of current arrays. Some of the performance risks are mitigated by the deployment of phased array feeds and more with the choice of an (alt,az,pol) mount, although a larger dish diameter offers the best prospects for risk mitigation. Many improvements to imaging performance can be anticipated at the expense of greater complexity in calibration algorithms. However, a fundamental limitation is ultimately imposed by an insufficient number of data constraints relative to calibration variables. The upcoming aperture array systems will be operating in a regime that has never previously been addressed, where a wide range of effects are expected to exceed the thermal noise by two to three orders of magnitude. Achieving routine thermal noise limited imaging performance with these systems presents an extreme challenge. The magnitude of that challenge is inversely related to the aperture array station diameter.

  16. Laser ranging and mapping with a photon-counting detector.

    PubMed

    Priedhorsky, W C; Smith, R C; Ho, C

    1996-01-20

    We propose a new technique for remote sensing: photon-counting laser mapping. MicroChannel plate detectors with a crossed delay-line (MCP/CDL) readout combine high position accuracy and subnanosecond photon timing, at event rates of 10(6) detected photons per second and more. A mapping system would combine an MCP/CDL detector with a fast-pulse, high-repetition-rate laser illuminator. The system would map solid targets with exceptional in-range and cross-range resolution. The resulting images would be intrinsically three dimensional, without resorting to multiple viewing angles, so that objects of identical albedo could be discriminated. For a detector time resolution and pulse width of the order of 10(-10) s, the in-range resolution would be a few centimeters, permitting the discrimination of surfaces by their textures. Images could be taken at night, at illumination levels up to full moonlight, from ground, airborne, or space platforms. We discuss signal to noise as a function of laser flux and background level and present simulated images. PMID:21069029

  17. Field Funneling and Range Straggling in Silicon Detectors

    NASA Technical Reports Server (NTRS)

    Zoutendyk, J. A.; Malone, C. J.

    1986-01-01

    Magnitudes of field funneling and range straggling determined in silicon-surface-barrier (Schottky-barrier) charged-particle detectors (SSBD's) through meaurement of charges collected from alpha-particle tracks. Method used extended to straightforward measurement of charge collection from heavy-ion tracks in these and other semiconductor devices. Such measurements used to assess single-event upsets in integratedcircuit chips, with view toward making them resistant to radiation. Field funneling and range straggling measured with electronic system in which charge collected from individual ions measured and recorded by multichannel analyzer.

  18. [A solar blind light source with long dynamic range].

    PubMed

    Zhou, Yue; Yan, Feng; Zhang, Ming-Chao; Gao, Song-Tao

    2012-06-01

    In order to realize the irradiance calibration of SBUV-ICCD (solar blind ultraviolent Intensified change-coupled device) with dynamic range reaching 120 dB, a light source with long dynamic range was designed and realized. Firstly, the irradiance dynamic range was estimated. Then using deuterium lamp, integrating sphere, precise stop and rail, an ultraviolent light source was developed, which has fixed structure of spectrum, but the irradiance can change continuously in long range. At last the light source's performance was tested. The result shows that the irradiance between 0.278 and 2.8 x 10(-7) microW x cm(-2) was covered, and the stability was 0.93%/3 h. So the demand of calibration of irradiance was satisfied. It will help for measuring the surface uniformity of detector and the calibration of imaging systems. PMID:22870617

  19. Use of high dynamic range imaging for quantitative combustion diagnostics.

    PubMed

    Giassi, Davide; Liu, Bolun; Long, Marshall B

    2015-05-10

    High dynamic range (HDR) imaging is applied to quantitative combustion diagnostics in coflow laminar diffusion flames as a way to improve the signal-to-noise ratio (SNR) and measurement sensitivity. The technique relies on the combination of partially saturated frames into a single unsaturated image; in this work, the effectiveness of the HDR approach is demonstrated when applied to two-color ratio pyrometry. Specifically, it is shown than an increase in SNR results in more precise temperature measurements for both soot and thin filament pyrometry. Linearity and reciprocity analysis under partially saturated conditions were performed on three selected detectors, and the camera response functions, which are required for HDR image reconstruction, were determined. The linearity/reciprocity of the detectors allowed the use of a simplified algorithm that was implemented to compute the HDR images; soot and flame temperature were calculated from those images by employing color-ratio pyrometry. The reciprocity analysis revealed that pixel cross talk can be a limiting factor in a detector's HDR capabilities. The comparison with low dynamic range results showed the advantage of the HDR approach. Due to the higher SNR, the measured temperature exhibits a smoother distribution, and the range is extended to lower temperature regions, where the pyrometry technique starts to lose sensitivity due to detector limitations. PMID:25967519

  20. A Wide Range Neutron Detector for Space Nuclear Reactor Applications

    SciTech Connect

    Nassif, Eduardo; Sismonda, Miguel; Matatagui, Emilio; Pretorius, Stephan

    2007-01-30

    We propose here a versatile and innovative solution for monitoring and controlling a space-based nuclear reactor that is based on technology already proved in ground based reactors. A Wide Range Neutron Detector (WRND) allows for a reduction in the complexity of space based nuclear instrumentation and control systems. A ground model, predecessor of the proposed system, has been installed and is operating at the OPAL (Open Pool Advanced Light Water Research Reactor) in Australia, providing long term functional data. A space compatible Engineering Qualification Model of the WRND has been developed, manufactured and verified satisfactorily by analysis, and is currently under environmental testing.

  1. Wide-range radioactive-gas-concentration detector

    DOEpatents

    Anderson, D.F.

    1981-11-16

    A wide-range radioactive-gas-concentration detector and monitor capable of measuring radioactive-gas concentrations over a range of eight orders of magnitude is described. The device is designed to have an ionization chamber sufficiently small to give a fast response time for measuring radioactive gases but sufficiently large to provide accurate readings at low concentration levels. Closely spaced parallel-plate grids provide a uniform electric field in the active region to improve the accuracy of measurements and reduce ion migration time so as to virtually eliminate errors due to ion recombination. The parallel-plate grids are fabricated with a minimal surface area to reduce the effects of contamination resulting from absorption of contaminating materials on the surface of the grids. Additionally, the ionization-chamber wall is spaced a sufficient distance from the active region of the ionization chamber to minimize contamination effects.

  2. Dynamic range tuning of graphene nanoresonators

    NASA Astrophysics Data System (ADS)

    Parmar, Marsha M.; Gangavarapu, P. R. Yasasvi; Naik, A. K.

    2015-09-01

    From sensing perspective, smaller electromechanical devices, in general, are expected to be more responsive to the stimuli. This enhanced performance, however, is contingent upon the noise sources remaining unchanged and the onset of nonlinear behavior not being precipitated by miniaturization. In this paper, we study the effect of strain on the nonlinearities and dynamic range in graphene nanoresonators. The dynamic response and the onset of nonlinearity in these devices are sensitive both to the electrostatic field used to actuate the device and the strain. By tuning the strain of the device by two orders of magnitude, we observe an enhancement of 25 dB in the dynamic range leading to a mass resolution of 100 yoctogram. The increase in dynamic range in our devices is modeled as a combined effect of strain and partial cancellation of elastic and electrostatic nonlinearities.

  3. Subjective evaluation of higher dynamic range video

    NASA Astrophysics Data System (ADS)

    Hanhart, Philippe; Korshunov, Pavel; Ebrahimi, Touradj

    2014-09-01

    High dynamic range (HDR) imaging is able to capture a wide range of luminance values, closer to what the human eye can perceive. However, for capture and display technologies, it is important to answer the question on the significance of higher dynamic range for user preference. This paper answers this question by investigating the added value of higher dynamic range via a rigorous set of subjective experiments using paired comparison methodology. Video sequences at four different peak luminance levels were displayed side-by-side on a Dolby Research HDR RGB backlight dual modulation display (aka `Pulsar'), which is capable of reliably displaying video content at 4000 cd=m2 peak luminance. The results of the subjective experiment demonstrate that the preference of an average viewer increases logarithmically with the increase in the maximum luminance level at which HDR content is displayed, with 4000 cd=m2 being the most attractive option.

  4. High dynamic range holographic data storage media

    NASA Astrophysics Data System (ADS)

    Askham, Fred; Ayres, Mark R.; Urness, Adam C.

    2015-08-01

    Holographic data storage (HDS) employs the physics of holography to record digital data in three dimensions in a highly stable photopolymer medium. The photopolymer medium must provide the essential characteristics of low scatter and high dynamic range while maintaining low recording induced physical shrinkage and long archival lifetimes. In this article, we report on media advancements employing Akonia's DREDTM technology which provide a 5x increase in media dynamic range with unchanged media shrinkage. We also discuss the implications of these results for photopolymer media mechanistic models.

  5. Dynamic cardiac volume imaging using area detectors

    NASA Astrophysics Data System (ADS)

    Bruder, Herbert; Hoelzel, Arne; Stierstorfer, Karl; Rauscher, Annabella; Flohr, Thomas

    2003-05-01

    We present a reconstruction scheme for dynamic cardiac volume imaging using Area Detector Computed Tomography (CT) named Multi-Sector Cardiac Volume Reconstruction (MCVR) which is based on a 3D-backprojection of the Feldkamp-type. It is intended for circular scanning using area detectors covering the whole heart volume, but the method can easily be extended to cardiac spiral imaging using multi-slice CT. In cardiac imaging with multi-slice CT continuous data acquisition combined with the parallel recording of the patient's ECG enables retrospective gating of data segments for image reconstruction. Using consecutive heart cycles MCVR identifies complementary and time consistent projection data segments <= π using temporal information of the ECG. After a row by row parallel rebinning and temporal rebinning the projection data have to be filtered using conventional convolution kernels and finally reconstructed to image space using a 3D-backprojection. A dynamic anthropomorphic computer model of the human heart was developed in order to validate the MCVR approach. A 256-slice detector system with 0.5mm slice collimation was simulated operating in a circular scanning mode at a gantry rotation time of 330ms and compared to state-of-the-art 16-slice technology. At enddiastole the coronary anatomy can be visualized with excellent image quality. Although an area detector with large cone angling covering the entire heart volume was used no cone-artifacts could be observed. Using a 2-sector approach a nearly motion free 3D visualization of the heart chambers was obtained even at endsystole.

  6. High Dynamic Range Digital Imaging of Spacecraft

    NASA Technical Reports Server (NTRS)

    Karr, Brian A.; Chalmers, Alan; Debattista, Kurt

    2014-01-01

    The ability to capture engineering imagery with a wide degree of dynamic range during rocket launches is critical for post launch processing and analysis [USC03, NNC86]. Rocket launches often present an extreme range of lightness, particularly during night launches. Night launches present a two-fold problem: capturing detail of the vehicle and scene that is masked by darkness, while also capturing detail in the engine plume.

  7. Nonperturbative short-range dynamics in TMDs

    SciTech Connect

    Weiss, Christian

    2013-05-01

    This presentation covers: deep inelastic processes and transverse momentum distributions; chiral symmetry breaking, including the physical picture, the dynamical model, and parton distributions; partonic structures, including transverse momentum distributions, coordinate space correlator, and short range correlations; and measurements of semi-inclusive deep inelastic scattering, correlations, and multi-parton processes in pp interactions.

  8. Shadow Attenuation With High Dynamic Range Images

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Shadow often interferes with accurate image analysis. To mitigate shadow effects in near-earth imagery (2 m above ground level), we created high dynamic range (HDR) nadir images and used them to measure grassland ground cover. HDR composites were created by merging three differentially-exposed image...

  9. Signal phase switches offer greater dynamic range

    NASA Technical Reports Server (NTRS)

    Crow, R. B.

    1970-01-01

    Circuit, placed in the signal path of a closed-loop receiver to modulate telemetered data in the 10-MHz spectrum, improves signal-to-noise ratio by 3 db in a communication receiver. The switch enables bandwidth reduction which reduces noise overload on the following stages, giving the system greater dynamic range.

  10. Integration of Dynamic Models in Range Operations

    NASA Technical Reports Server (NTRS)

    Bardina, Jorge; Thirumalainambi, Rajkumar

    2004-01-01

    This work addresses the various model interactions in real-time to make an efficient internet based decision making tool for Shuttle launch. The decision making tool depends on the launch commit criteria coupled with physical models. Dynamic interaction between a wide variety of simulation applications and techniques, embedded algorithms, and data visualizations are needed to exploit the full potential of modeling and simulation. This paper also discusses in depth details of web based 3-D graphics and applications to range safety. The advantages of this dynamic model integration are secure accessibility and distribution of real time information to other NASA centers.

  11. Adaptive optimal spectral range for dynamically changing scene

    NASA Astrophysics Data System (ADS)

    Pinsky, Ephi; Siman-tov, Avihay; Peles, David

    2012-06-01

    A novel multispectral video system that continuously optimizes both its spectral range channels and the exposure time of each channel autonomously, under dynamic scenes, varying from short range-clear scene to long range-poor visibility, is currently being developed. Transparency and contrast of high scattering medium of channels with spectral ranges in the near infrared is superior to the visible channels, particularly to the blue range. Longer wavelength spectral ranges that induce higher contrast are therefore favored. Images of 3 spectral channels are fused and displayed for (pseudo) color visualization, as an integrated high contrast video stream. In addition to the dynamic optimization of the spectral channels, optimal real-time exposure time is adjusted simultaneously and autonomously for each channel. A criterion of maximum average signal, derived dynamically from previous frames of the video stream is used (Patent Application - International Publication Number: WO2009/093110 A2, 30.07.2009). This configuration enables dynamic compatibility with the optimal exposure time of a dynamically changing scene. It also maximizes the signal to noise ratio and compensates each channel for the specified value of daylight reflections and sensors response for each spectral range. A possible implementation is a color video camera based on 4 synchronized, highly responsive, CCD imaging detectors, attached to a 4CCD dichroic prism and combined with a common, color corrected, lens. Principal Components Analysis (PCA) technique is then applied for real time "dimensional collapse" in color space, in order to select and fuse, for clear color visualization, the 3 most significant principal channels out of at least 4 characterized by high contrast and rich details in the image data.

  12. High dynamic range Josephson parametric amplifiers

    NASA Astrophysics Data System (ADS)

    Roch, Nicolas; Murch, Kater W.; Vijay, Rajamani

    Josephson parametric amplifiers (JPAs) have become the technology of choice to amplify small amplitude microwave signals since they show noise performances close to the quantum limit of amplification. An important challenge that faces this technology is the low dynamic range of current devices, which limits the number of measurements that can be performed concurrently and the rate of information acquisition for single measurements. We have fabricated and tested novel parametric amplifiers based on arrays of up to 100 SQUIDS. The amplifiers produce gain in excess of 20 dB over a large bandwidth and match the dynamic range achieved with traveling wave devices. Compared to the latter devices they are fabricated in a single lithography step and we will show that their bandwidth performance can be further extended using a recently developed impedance matching technique.

  13. Wide-range dynamic magnetic resonance elastography.

    PubMed

    Riek, Kerstin; Klatt, Dieter; Nuzha, Hassan; Mueller, Susanne; Neumann, Ulf; Sack, Ingolf; Braun, Jürgen

    2011-04-29

    Tissue mechanical parameters have been shown to be highly sensitive to disease by elastography. Magnetic resonance elastography (MRE) in the human body relies on the low-dynamic range of tissue mechanics <100 Hz. In contrast, MRE suited for investigations of mice or small tissue samples requires vibration frequencies 10-20 times higher than those used in human MRE. The dispersion of the complex shear modulus (G(⁎)) prevents direct comparison of elastography data at different frequency bands and, consequently, frequency-independent viscoelastic models that fit to G(*) over a wide dynamic range have to be employed. This study presents data of G(*) of samples of agarose gel, liver, brain, and muscle measured by high-resolution MRE in a 7T-animal scanner at 200-800 Hz vibration frequency. Material constants μ and α according to the springpot model and related to shear elasticity and slope of the G(*)-dispersion were determined. Both μ and α of calf brain and bovine liver were found to be similar, while a sample of fibrotic human liver (METAVIR score of 3) displayed about fifteen times higher shear elasticity, similar to μ of bovine muscle measured in muscle fiber direction. α was the highest in fibrotic liver, followed by normal brain and liver, while muscle had the lowest α-values of all biological samples investigated in this study. As expected, the least G(*)-dispersion was seen in soft gel. The proposed technique of wide-range dynamic MRE can provide baseline data for both human MRE and high-dynamic MRE for better understanding tissue mechanics of different tissue structures. PMID:21295305

  14. Novel Ultra-Sensitive Detectors in the 10–50 μm Wavelength Range

    PubMed Central

    Ueda, Takeji; Komiyama, Susumu

    2010-01-01

    We have developed novel single-photon detectors in the 10–50 μm wavelength region. The detectors are charge-sensitive infrared phototransistors (CSIPs) fabricated in GaAs/AlGaAs double quantum well (QW) structures, in which a photo-generated hole (+e) in the floating gate (upper QW) modulates the conductance of a capacitively-coupled channel located underneath (lower QW). The excellent noise equivalent power (NEP = 8.3 × 10−19 W/Hz1/2) and specific detectivity (D* = 8 × 1014 cm Hz1/2/W) are demonstrated for 15 micron detection up to 23 K, which are by a few orders of magnitude better than those of other state-of-the-art high-sensitivity detectors. The dynamic range exceeds 106 (∼aW to pW) by repeatedly resetting the accumulated holes in the upper QW. Simple device structure makes the detectors feasible for array fabrication: Furthermore, monolithic integration with reading circuits will be possible. PMID:22163662

  15. Temperature Dependence of Novel Single-Photon Detectors in the Long-Wavelength Infrared Range

    NASA Astrophysics Data System (ADS)

    Ueda, Takeji; An, Zhenghua; Komiyama, Susumu

    2011-05-01

    Novel single-photon detectors, called Charge-sensitive Infrared Phototransistor (CSIP), have been developed in the long wavelength infrared (LWIR) range. The devices are fabricated in GaAs/AlGaAs double-quantum-well (DQW) structure, and do not require ultralow temperatures ( T < 1 K) for operation. Figures of merit are determined in a T-range of 4.2 K˜30 K by using a homemade all-cryogenic spectrometer. We found that the photo-signal persists up to around 30 K. Excellent specific detectivity D * = 9.6 × 1014 cm Hz1/2/W and noise equivalent power NEP = 8.3 × 10-19 W/Hz1/2 are derived up to T = 23 K. The dynamic range of detection exceeds 106, roughly ranging from attowatt to picowatt levels. These values are by a few orders of magnitude higher than that of the state-of-the-art values of other detectors. Simple planar structure of CSIPs is feasible for array fabrication and will make it possible to monolithically integrate with reading circuit. CSIPs are, therefore, not only extremely sensitive but also suitable for practical use in wide ranging applications.

  16. Single and double grid long-range alpha detectors

    DOEpatents

    MacArthur, D.W.; Allander, K.S.

    1993-03-16

    Alpha particle detectors capable of detecting alpha radiation from distant sources. In one embodiment, a voltage is generated in a single electrically conductive grid while a fan draws air containing air molecules ionized by alpha particles through an air passage and across the conductive grid. The current in the conductive grid can be detected and used for measurement or alarm. Another embodiment builds on this concept and provides an additional grid so that air ions of both polarities can be detected. The detector can be used in many applications, such as for pipe or duct, tank, or soil sample monitoring.

  17. Single and double grid long-range alpha detectors

    DOEpatents

    MacArthur, Duncan W.; Allander, Krag S.

    1993-01-01

    Alpha particle detectors capable of detecting alpha radiation from distant sources. In one embodiment, a voltage is generated in a single electrically conductive grid while a fan draws air containing air molecules ionized by alpha particles through an air passage and across the conductive grid. The current in the conductive grid can be detected and used for measurement or alarm. Another embodiment builds on this concept and provides an additional grid so that air ions of both polarities can be detected. The detector can be used in many applications, such as for pipe or duct, tank, or soil sample monitoring.

  18. Mitochondrial uncouplers with an extraordinary dynamic range.

    PubMed

    Lou, Phing-How; Hansen, Birgit S; Olsen, Preben H; Tullin, Søren; Murphy, Michael P; Brand, Martin D

    2007-10-01

    We have discovered that some weak uncouplers (typified by butylated hydroxytoluene) have a dynamic range of more than 10(6) in vitro: the concentration giving measurable uncoupling is less than one millionth of the concentration causing full uncoupling. They achieve this through a high-affinity interaction with the mitochondrial adenine nucleotide translocase that causes significant but limited uncoupling at extremely low uncoupler concentrations, together with more conventional uncoupling at much higher concentrations. Uncoupling at the translocase is not by a conventional weak acid/anion cycling mechanism since it is also caused by substituted triphenylphosphonium molecules, which are not anionic and cannot protonate. Covalent attachment of the uncoupler to a mitochondrially targeted hydrophobic cation sensitizes it to membrane potential, giving a small additional effect. The wide dynamic range of these uncouplers in isolated mitochondria and intact cells reveals a novel allosteric activation of proton transport through the adenine nucleotide translocase and provides a promising starting point for designing safer uncouplers for obesity therapy. PMID:17608618

  19. Mitochondrial uncouplers with an extraordinary dynamic range

    PubMed Central

    Lou, Phing-How; Hansen, Birgit S.; Olsen, Preben H.; Tullin, Søren; Murphy, Michael P.; Brand, Martin D.

    2007-01-01

    We have discovered that some weak uncouplers (typified by butylated hydroxytoluene) have a dynamic range of more than 106 in vitro: the concentration giving measurable uncoupling is less than one millionth of the concentration causing full uncoupling. They achieve this through a high-affinity interaction with the mitochondrial adenine nucleotide translocase that causes significant but limited uncoupling at extremely low uncoupler concentrations, together with more conventional uncoupling at much higher concentrations. Uncoupling at the translocase is not by a conventional weak acid/anion cycling mechanism since it is also caused by substituted triphenylphosphonium molecules, which are not anionic and cannot protonate. Covalent attachment of the uncoupler to a mitochondrially targeted hydrophobic cation sensitizes it to membrane potential, giving a small additional effect. The wide dynamic range of these uncouplers in isolated mitochondria and intact cells reveals a novel allosteric activation of proton transport through the adenine nucleotide translocase and provides a promising starting point for designing safer uncouplers for obesity therapy. PMID:17608618

  20. High-dynamic-range MCP structures

    NASA Technical Reports Server (NTRS)

    Slater, David C.; Timothy, J. G.

    1991-01-01

    We report on the development of a new high-dynamic-range two-stage Multi-Anode Microchannel Array (MAMA) imaging tube designed for improved high count rate performance at FUV and EUV wavelengths. The new two-stage MAMA tube employs two 25-mm-diameter format MCPs placed in tandem with a small gap between the plates. The front (input) MCP is designed to be a low-gain converter plate that supports an opaque photocathode and converts the detected photons to electrons, while the second (output) MCP is of higher conductivity and thus maintains the overall gain of the multiplier at high count rates. The second MCP is mounted in proximity focus with a (224 x 960)-pixel fine-fine coincidence MAMA array for high-spatial-resolution imaging studies. The applied voltage across each MCP can be controlled independently. We report on the gain and dynamic range performance characteristics of the two-stage MAMA tube in two different configurations: first, with the output MCP having moderate conductivity (about 100 MOhm); and second, with the output MCP having very high conductivity (about 2 MOhm). These results are compared and contrasted with those of the more conventional MAMA tube configuration which employs a single high-gain curved-channel MCP.

  1. Large dynamic range relative B1+ mapping

    PubMed Central

    Hess, Aaron T.; Aljabar, Paul; Malik, Shaihan J.; Jezzard, Peter; Robson, Matthew D.; Hajnal, Joseph V.; Koopmans, Peter J.

    2015-01-01

    Purpose Parallel transmission (PTx) requires knowledge of the B1+ produced by each element. However, B1+ mapping can be challenging when transmit fields exhibit large dynamic range. This study presents a method to produce high quality relative B1+ maps when this is the case. Theory and Methods The proposed technique involves the acquisition of spoiled gradient echo (SPGR) images at multiple radiofrequency drive levels for each transmitter. The images are combined using knowledge of the SPGR signal equation using maximum likelihood estimation, yielding an image for each channel whose signal is proportional to the B1+ field strength. Relative B1+ maps are then obtained by taking image ratios. The method was tested using numerical simulations, phantom imaging, and through in vivo experiments. Results The numerical simulations demonstrated that the proposed method can reconstruct relative transmit sensitivities over a wide range of B1+ amplitudes and at several SNR levels. The method was validated at 3 Tesla (T) by comparing it with an alternative B1+ mapping method, and demonstrated in vivo at 7T. Conclusion Relative B1+ mapping in the presence of large dynamic range has been demonstrated through numerical simulations, phantom imaging at 3T and experimentally at 7T. The method will enable PTx to be applied in challenging imaging scenarios at ultrahigh field. Magn Reson Med 76:490–499, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:26308375

  2. Technology information profile: Long-Range Alpha Detector (LRAD)

    SciTech Connect

    Bounds, J.A.

    1995-02-01

    The idea to develop some sort of radiation detection using this knowledge was passed down and after extensive and ground-breaking development, practical and sensitive devices were invented that are particularly sensitive to alpha radiation. Well over twenty different LRAD detectors have been successfully built and plans exist for many more. No parallel work is known to exist, and the ability to detect alpha radiation at such distances is unequaled.

  3. High dynamic range, hyper-terahertz detection with silicon photoconductors

    NASA Astrophysics Data System (ADS)

    Muir, A. C.; Hussain, A.; Andrews, S. R.

    2016-06-01

    The frequency response of ion implanted silicon photoconductive devices designed for coherent detection in time domain terahertz spectroscopy has been studied between 0.2 and 30 THz. Unlike devices using polar photoconductors or ones having polar substrates, which have a complicated response spectrum in the region of their reststrahlen bands, the response of silicon detectors fabricated on silicon substrates is relatively featureless. When used with amplified laser systems, the dynamic range of Si detectors is shown to be very similar to that of GaAs devices with the same geometry over a 20 THz range, superior to air-biased coherent detection (ABCD) at frequencies below ˜7 THz and comparable with both ABCD and electro-optic sampling in thin ZnTe crystals between 7 and 20 THz. Together with their ease of use and linear response in terahertz fields approaching 1 MV/cm, this suggests that Si photoconductors could be a competitive choice for sensitive detection in nonlinear hyper-terahertz spectroscopy.

  4. Dual Transition Edge Sensor Bolometer for Enhanced Dynamic Range

    NASA Technical Reports Server (NTRS)

    Chervenak, J. A.; Benford, D. J.; Moseley, S. H.; Irwin, K. D.

    2004-01-01

    Broadband surveys at the millimeter and submillimeter wavelengths will require bolometers that can reach new limits of sensitivity and also operate under high background conditions. To address this need, we present results on a dual transition edge sensor (TES) device with two operating modes: one for low background, ultrasensitive detection and one for high background, enhanced dynamic range detection. The device consists of a detector element with two transition temperatures (T(sub c)) of 0.25 and 0.51 K located on the same micromachined, thermally isolated membrane structure. It can be biased on either transition, and features phonon-limited noise performance at the lower T(sub c). We measure noise performance on the lower transition 7 x 10(exp -18) W/rt(Hz) and the bias power on the upper transition of 12.5 pW, giving a factor of 10 enhancement of the dynamic range for the device. We discuss the biasable range of this type of device and present a design concept to optimize utility of the device.

  5. Photon Counting Detectors for the 1.0 - 2.0 Micron Wavelength Range

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.

    2004-01-01

    We describe results on the development of greater than 200 micron diameter, single-element photon-counting detectors for the 1-2 micron wavelength range. The technical goals include quantum efficiency in the range 10-70%; detector diameter greater than 200 microns; dark count rate below 100 kilo counts-per-second (cps), and maximum count rate above 10 Mcps.

  6. Performance optimization of detector electronics for millimeter laser ranging

    NASA Technical Reports Server (NTRS)

    Cova, Sergio; Lacaita, A.; Ripamonti, Giancarlo

    1993-01-01

    The front-end electronic circuitry plays a fundamental role in determining the performance actually obtained from ultrafast and highly sensitive photodetectors. We deal here with electronic problems met working with microchannel plate photomultipliers (MCP-PMTs) and single photon avalanche diodes (SPADs) for detecting single optical photons and measuring their arrival time with picosecond resolution. The performance of available fast circuits is critically analyzed. Criteria for selecting the most suitable electronics are derived and solutions for exploiting the detector performance are presented and discussed.

  7. Development of wide-ranged diamond-based detector unit for gamma radiation measurement

    NASA Astrophysics Data System (ADS)

    Baranova, M. A.; Boyko, A. V.; Chebyshev, S. B.; Cherkashin, I. I.; Kireev, V. P.; Petrov, V. I.

    2016-02-01

    In the article the description of wide-ranged diamond-based detector unit is given. Characteristics of the diamond detector were studied in current and in impulse mode. As well it was studied how detector's sensitivity depends on power doze within the limits from 10-3 to 0,4Gy/h (impulse mode) and from 10-1to 2 104Gy/h (current mode). On the basis of the obtained data it is possible to estimate about the possibility of using the detector to prevent emergency accident on a nuclear power plant and for everyday control at a nuclear power plant.

  8. Dynamic range multiwavelength particle characterization using analytical ultracentrifugation

    NASA Astrophysics Data System (ADS)

    Walter, Johannes; Peukert, Wolfgang

    2016-03-01

    We demonstrate how a sophisticated data analysis methodology enables us to perform multiwavelength evaluations of dynamic rotor speed gradient experiments obtained by analytical ultracentrifugation equipped with a multiwavelength detector. Our data evaluation tool HDR-MULTIFIT allows for the accurate analysis of sedimentation coefficient distributions which can be converted to particle size distributions. By means of multiwavelength evaluation, species dependent extinction spectra can be determined even for complex mixtures. Moreover, optical and hydrodynamic properties can be correlated for spherical particles of known optical properties applying multiwavelength evaluation and Mie's theory leading to a significant increase in the dynamic range of the experiment. We provide the theoretical background about the operation principle of our methodology and compare the performance of the multiwavelength analysis to the conventional single wavelength analysis as it is applied in turbidity analysis. We validate our technique using NIST traceable reference particles and show that our technique is universally applicable to materials of known and unknown optical properties, thus clearly extending the possibilities of particle analysis.

  9. Dynamic range multiwavelength particle characterization using analytical ultracentrifugation.

    PubMed

    Walter, Johannes; Peukert, Wolfgang

    2016-04-14

    We demonstrate how a sophisticated data analysis methodology enables us to perform multiwavelength evaluations of dynamic rotor speed gradient experiments obtained by analytical ultracentrifugation equipped with a multiwavelength detector. Our data evaluation tool HDR-MULTIFIT allows for the accurate analysis of sedimentation coefficient distributions which can be converted to particle size distributions. By means of multiwavelength evaluation, species dependent extinction spectra can be determined even for complex mixtures. Moreover, optical and hydrodynamic properties can be correlated for spherical particles of known optical properties applying multiwavelength evaluation and Mie's theory leading to a significant increase in the dynamic range of the experiment. We provide the theoretical background about the operation principle of our methodology and compare the performance of the multiwavelength analysis to the conventional single wavelength analysis as it is applied in turbidity analysis. We validate our technique using NIST traceable reference particles and show that our technique is universally applicable to materials of known and unknown optical properties, thus clearly extending the possibilities of particle analysis. PMID:26837517

  10. Dynamic range control of audio signals by digital signal processing

    NASA Astrophysics Data System (ADS)

    Gilchrist, N. H. C.

    It is often necessary to reduce the dynamic range of musical programs, particularly those comprising orchestral and choral music, for them to be received satisfactorily by listeners to conventional FM and AM broadcasts. With the arrival of DAB (Digital Audio Broadcasting) a much wider dynamic range will become available for radio broadcasting, although some listeners may prefer to have a signal with a reduced dynamic range. This report describes a digital processor developed by the BBC to control the dynamic range of musical programs in a manner similar to that of a trained Studio Manager. It may be used prior to transmission in conventional broadcasting, replacing limiters or other compression equipment. In DAB, it offers the possibility of providing a dynamic range control signal to be sent to the receiver via an ancillary data channel, simultaneously with the uncompressed audio, giving the listener the option of the full dynamic range or a reduced dynamic range.

  11. High dynamic range video transmission and display using standard dynamic range technologies

    NASA Astrophysics Data System (ADS)

    Léonce, A.; Hsu, Tao-i.; Wickramanayake, D. S.; Edirisinghe, E. A.

    2012-06-01

    This paper presents a novel system that makes effective use of High Dynamic Range (HDR) image data to improve and maintain the best viewing quality of video broadcast on current mobile display devices. The proposed approach combines bilateral filtering with an adaptive tone mapping method used to enable the enhancement of the perceptual quality of the video frames at the display device. The bilateral filter separates the frame into large-scale and detail layers. The large-scale layer is divided into bright, mid-tone and dark regions, which are each processed by an appropriate tone mapping function. Ambient and backlight sensors at the display device provide information about current illumination conditions, which are used to intelligently and dynamically vary the levels and thresholds of post-processing applied at the decoder, thereby maintaining a constant level of perceived quality.

  12. A composite tracking sensor with high accuracy and large dynamic range

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoyu; Wei, Kai; Zheng, Wenjia; Rao, Changhui

    2014-07-01

    A composite tracking sensor, in which a reflect mirror with a central hole is inserted in the imaging systems so that the reflective beam beyond the hole is directed to the large dynamic range detector and the beam passing the hole is reimaged by a lens to enter the high sensitivity detector, can be used for tip-tilt detecting with high accuracy and large dynamic range simultaneously. A composite tracking sensor prototype based on the multi-anode photo-multiplier tubes (MAPMT) is developed for 1.8 meter astronomical telescope in the Gaomeigu astronomical observation station. In this paper, the principle of the composite tracking sensor is introduced. The prototype is described in detailed and the experimental results are presented. The results show that this composite tracking sensor can reach the tracking accuracy of 0.2 μrad and higher within the dynamic range of 870 μrad.

  13. Optimal exposure sets for high dynamic range scenes

    NASA Astrophysics Data System (ADS)

    Valli Kumari, V.; RaviKiran, B.; Raju, K. V. S. V. N.; Shajahan Basha, S. A.

    2011-10-01

    The dynamic range of many natural scenes is far greater than the dynamic range of the imaging devices. These scenes present a challenge to the consumer digital cameras. The well-known technique to capture the full dynamic range of the scene is by fusing multiple images of the same scene. Usually people combine three or five different exposures to get the full dynamic range of the scene. Some cameras like Pentax K-7, always combines fixed exposures together to produce the output result. However, this should be adaptive to the scene characteristics. We propose an optimal solution for dynamically selecting the exposure sets.

  14. Development of a stacked detector system for the x-ray range and its possible applications

    NASA Astrophysics Data System (ADS)

    Maier, Daniel; Limousin, Olivier; Meuris, Aline; Pürckhauer, Sabina; Santangelo, Andrea; Schanz, Thomas; Tenzer, Christoph

    2014-07-01

    We have constructed a stacked detector system operating in the X-ray range from 0.5 keV to 250 keV that consists of a Si-based 64×64 DePFET-Matrix in front of a CdTe hybrid detector called Caliste-64. The setup is operated under laboratory conditions that approximate the expected environment of a space-borne observatory. The DePFET detector is an active pixel matrix that provides high count-rate capabilities with a near Fanolimited spectral resolution at energies up to 15 keV. The Caliste-64 hard X-ray camera consists of a 1mm thick CdTe crystal combined with very compact integrated readout electronics, constituting a high performance spectro-imager with event-triggered time-tagging capability in the energy range between 2 keV and 200 keV. In this combined geometry the DePFET detector works as the Low Energy Detector (LED) while the Caliste-64 - as the High Energy Detector (HED) - detects predominantly the high energetic photons that have passed the LED. In addition to the individual optimization of both detectors, we use the setup to test and optimize the performance of the combined detector system. Side-effects like X-ray fluorescence photons, electrical crosstalk, and mutual heating have negative impacts on the data quality and will be investigated. Besides the primary application as a combined imaging detector system with high sensitivity across a broad energy range, additional applications become feasible. Via the analysis of coincident events in both detectors we can estimate the capabilities of the setup to be used as a Compton camera and as an X-ray polarimeter - both desirable functionalities for use in the lab as well as for future X-ray missions.

  15. Conductance measurement circuit with wide dynamic range

    NASA Technical Reports Server (NTRS)

    Mount, Bruce E. (Inventor); Von Esch, Myron (Inventor)

    1994-01-01

    A conductance measurement circuit to measure conductance of a solution under test with an output voltage proportional to conductance over a 5-decade range, i.e., 0.01 uS to 1000 uS or from 0.1 uS to 10,000 uS. An increase in conductance indicates growth, or multiplication, of the bacteria in the test solution. Two circuits are used each for an alternate half-cycle time periods of an alternate squarewave in order to cause alternate and opposite currents to be applied to the test solution. The output of one of the two circuits may be scaled for a different range optimum switching frequency dependent upon the solution conductance and to enable uninterrupted measurement over the complete 5-decade range. This circuitry provides two overlapping ranges of conductance which can be read simultaneously without discontinuity thereby eliminating range switching within the basic circuitry. A VCO is used to automatically change the operating frequency according to the particular value of the conductance being measured, and comparators indicate which range is valid and also facilitate computer-controlled data acquisition. A multiplexer may be used to monitor any number of solutions under test continuously.

  16. Servomotor and Controller Having Large Dynamic Range

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean C.; Howard, David E.; Smith, Dennis A.; Dutton, Ken; Paulson, M. Scott

    2007-01-01

    A recently developed micro-commanding rotational-position-control system offers advantages of less mechanical complexity, less susceptibility to mechanical resonances, less power demand, less bulk, less weight, and lower cost, relative to prior rotational-position-control systems based on stepping motors and gear drives. This system includes a digital-signal- processor (DSP)-based electronic controller, plus a shaft-angle resolver and a servomotor mounted on the same shaft. Heretofore, micro-stepping has usually been associated with stepping motors, but in this system, the servomotor is micro-commanded in response to rotational-position feedback from the shaft-angle resolver. The shaft-angle resolver is of a four-speed type chosen because it affords four times the resolution of a single-speed resolver. A key innovative aspect of this system is its position-feedback signal- conditioning circuits, which condition the resolver output signal for multiple ranges of rotational speed. In the preferred version of the system, two rotational- speed ranges are included, but any number of ranges could be added to expand the speed range or increase resolution in particular ranges. In the preferred version, the resolver output is conditioned with two resolver-to-digital converters (RDCs). One RDC is used for speeds from 0.00012 to 2.5 rpm; the other RDC is used for speeds of 2.5 to 6,000 rpm. For the lower speed range, the number of discrete steps of RDC output per revolution was set at 262,144 (4 quadrants at 16 bits per quadrant). For the higher speed range, the number of discrete steps per revolution was set at 4,096 (4 quadrants at 10 bits per quadrant).

  17. Inertial Range Dynamics in Boussinesq Turbulence

    NASA Technical Reports Server (NTRS)

    Rubinstein, Robert

    1996-01-01

    L'vov and Falkovich have shown that the dimensionally possible inertial range scaling laws for Boussinesq turbulence, Kolmogorov and Bolgiano scaling, describe steady states with constant flux of kinetic energy and of entropy respectively. These scaling laws are treated as similarity solutions of the direct interaction approximation for Boussinesq turbulence. The Kolmogorov scaling solution corresponds to a weak perturbation by gravity of a state in which the temperature is a passive scalar but in which a source of temperature fluctuations exists. Using standard inertial range balances, the renormalized viscosity and conductivity, turbulent Prandtl number, and spectral scaling law constants are computed for Bolgiano scaling.

  18. Displacement response, detection limit, and dynamic range of fiber-optic lever sensors

    NASA Technical Reports Server (NTRS)

    He, Gang; Cuomo, Frank W.

    1991-01-01

    The authors present the evaluation of the displacement response, detection limit, and dynamic range of fiber-optic lever sensors in a general format to establish their dependence on fiber sizes, optoelectronic detector specifications, input power, and other relevant parameters. The formations for the normalized reflected optical power change are derived for the evaluation of the optimal sensor response, the linearity range, and the minimum detectable displacement. The theoretical models are verified by an experiment which determines sensor response, modulation index, reflected optical power change, and linear response range through dynamic measurement. The application of this theoretical model to the study of a fiber-optic microphone for acoustic pressure detection is considered.

  19. Logarithmic circuit with wide dynamic range

    NASA Technical Reports Server (NTRS)

    Wiley, P. H.; Manus, E. A. (Inventor)

    1978-01-01

    A circuit deriving an output voltage that is proportional to the logarithm of a dc input voltage susceptible to wide variations in amplitude includes a constant current source which forward biases a diode so that the diode operates in the exponential portion of its voltage versus current characteristic, above its saturation current. The constant current source includes first and second, cascaded feedback, dc operational amplifiers connected in negative feedback circuit. An input terminal of the first amplifier is responsive to the input voltage. A circuit shunting the first amplifier output terminal includes a resistor in series with the diode. The voltage across the resistor is sensed at the input of the second dc operational feedback amplifier. The current flowing through the resistor is proportional to the input voltage over the wide range of variations in amplitude of the input voltage.

  20. Ultra-wide Range Gamma Detector System for Search and Locate Operations

    SciTech Connect

    Odell, D. Mackenzie Odell; Harpring, Larry J.; Moore, Frank S. Jr.; French, Phillip J.; Gordon, John R.

    2005-10-26

    Collecting debris samples following a nuclear event requires that operations be conducted from a considerable stand-off distance. An ultra-wide range gamma detector system has been constructed to accomplish both long range radiation search and close range hot sample collection functions. Constructed and tested on a REMOTEC Andros platform, the system has demonstrated reliable operation over six orders of magnitude of gamma dose from 100's of uR/hr to over 100 R/hr. Functional elements include a remotely controlled variable collimator assembly, a NaI(Tl)/photomultiplier tube detector, a proprietary digital radiation instrument, a coaxially mounted video camera, a digital compass, and both local and remote control computers with a user interface designed for long range operations. Long range sensitivity and target location, as well as close range sample selection performance are presented.

  1. Dynamic range measurement and calibration of SiPMs

    NASA Astrophysics Data System (ADS)

    Bretz, T.; Hebbeker, T.; Lauscher, M.; Middendorf, L.; Niggemann, T.; Schumacher, J.; Stephan, M.; Bueno, A.; Navas, S.; Ruiz, A. G.

    2016-03-01

    Photosensors have played and will continue to play an important role in high-energy and Astroparticle cutting-edge experiments. As of today, the most common photon detection device in use is the photomultiplier tube (PMT). However, we are witnessing rapid progress in the field and new devices now show very competitive features when compared to PMTs. Among those state-of-the-art photo detectors, silicon photomultipliers (SiPMs) are a relatively new kind of semiconductor whose potential is presently studied by many laboratories. Their characteristics make them a very attractive candidate for future Astroparticle physics experiments recording fluorescence and Cherenkov light, both in the atmosphere and on the ground. Such applications may require the measurement of the light flux on the sensor for the purpose of energy reconstruction. This is a complex task due to the limited dynamic range of SiPMs and the presence of thermal and correlated noise. In this work we study the response of three SiPM types in terms of delivered charge when exposed to light pulses in a broad range of intensities: from single photon to saturation. The influence of the pulse time duration and the SiPM over-voltage on the response are also quantified. Based on the observed behaviour, a method is presented to reconstruct the real number of photons impinging on the SiPM surface directly from the measured SiPM charge. A special emphasis is placed on the description of the methodology and experimental design used to perform the measurements.

  2. Determining the dynamic range of MCPs based on pore size and strip current

    NASA Astrophysics Data System (ADS)

    Hunt, C.; Adrian, M. L.; Herrero, F.; James, P.; Jones, H. H.; Rodriguez, M.; Roman, P.; Shappirio, M.

    2010-12-01

    Micro-Channel Plates (MCPs) are used as detectors for almost all detectors measuring particles (both ions, electrons and neutrals) below 30 keV. Recent advances in the manufacturing technology of the MCPs have increased the number of options one has when selecting plates for an instrument. But it is not clear how many of these options affect the performance of the MCPs. In particular the dynamic range is not a clear cut calculation to make from the strip current. There is also some evidence that pore size and coating play a role. We measured the dynamic range and pulse height distribution of MCPs detector chevron stacks with a wide variety of strip currents from the low “normal” range in the EDR range. We also looked at the effects of varying the pore size from 25 microns to 10 microns, partial plating of the MCP surface and coating one surface on each MCP with gold rather than the standard zinc chromium. We will show how the dynamic range and pulse height distributions vary vs. strip current, pore size, and surface plating configurations.

  3. Missing data outside the detector range: Continuous-variable entanglement verification and quantum cryptography

    NASA Astrophysics Data System (ADS)

    Ray, Megan R.; van Enk, S. J.

    2013-10-01

    In continuous-variable quantum information processing, detectors are necessarily coarse grained and of finite range. We discuss how, especially, the latter feature is a bug and may easily lead to overoptimistic estimates of entanglement and of security when missed data outside the detector range are ignored. We demonstrate that a straightforward worst-case analysis is sufficient to avoid false positive statements about entanglement. We show that, for our worst-case analysis, entropic separability or security criteria are much superior to variance-based criteria.

  4. On image sensor dynamic range utilized by security cameras

    NASA Astrophysics Data System (ADS)

    Johannesson, Anders

    2012-03-01

    The dynamic range is an important quantity used to describe an image sensor. Wide/High/Extended dynamic range is often brought forward as an important feature to compare one device to another. The dynamic range of an image sensor is normally given as a single number, which is often insufficient since a single number will not fully describe the dynamic capabilities of the sensor. A camera is ideally based on a sensor that can cope with the dynamic range of the scene. Otherwise it has to sacrifice some part of the available data. For a security camera the latter may be critical since important objects might be hidden in the sacrificed part of the scene. In this paper we compare the dynamic capabilities of some image sensors utilizing a visual tool. The comparison is based on the use case, common in surveillance, where low contrast objects may appear in any part of a scene that through its uneven illumination, span a high dynamic range. The investigation is based on real sensor data that has been measured in our lab and a synthetic test scene is used to mimic the low contrast objects. With this technique it is possible to compare sensors with different intrinsic dynamic properties as well as some capture techniques used to create an effect of increased dynamic range.

  5. Local dynamic range compensation for scanning electron microscope imaging system.

    PubMed

    Sim, K S; Huang, Y H

    2015-01-01

    This is the extended project by introducing the modified dynamic range histogram modification (MDRHM) and is presented in this paper. This technique is used to enhance the scanning electron microscope (SEM) imaging system. By comparing with the conventional histogram modification compensators, this technique utilizes histogram profiling by extending the dynamic range of each tile of an image to the limit of 0-255 range while retains its histogram shape. The proposed technique yields better image compensation compared to conventional methods. PMID:25969945

  6. Silicon field-effect transistors as radiation detectors for the Sub-THz range

    SciTech Connect

    But, D. B. Golenkov, O. G.; Sakhno, N. V.; Sizov, F. F.; Korinets, S. V.; Gumenjuk-Sichevska, J. V.; Reva, V. P.; Bunchuk, S. G.

    2012-05-15

    The nonresonance response of silicon metal-oxide-semiconductor field-effect transistors (Si-MOSFETs) with a long channel (1-20 {mu}m) to radiation in the frequency range 43-135 GHz is studied. The transistors are fabricated by the standard CMOS technology with 1-{mu}m design rules. The volt-watt sensitivity and the noise equivalent power (NEP) for such detectors are estimated with the calculated effective area of the detecting element taken into account. It is shown that such transistors can operate at room temperature as broadband direct detectors of sub-THz radiation. In the 4-5 mm range of wavelengths, the volt-watt sensitivity can be as high as tens of kV/W and the NEP can amount to 10{sup -11} - 10{sup -12}W/{radical}Hz . The parameters of detectors under study can be improved by the optimization of planar antennas.

  7. Field funneling and range straggling in partially depleted silicon surface-barrier detectors

    NASA Technical Reports Server (NTRS)

    Zoutendyk, J. A.; Malone, C. J.

    1984-01-01

    The effects of field funneling and range straggling have been quantitatively observed in the measurement of charge collected from alpha-particle tracks in silicon surface-barrier charged-particle detectors. The method described may be used for the straight-forward measurement of charge collection from heavy ions in these and other semiconductor devices.

  8. Photon counting detector for space debris laser tracking and lunar laser ranging

    NASA Astrophysics Data System (ADS)

    Prochazka, Ivan; Kodet, Jan; Blazej, Josef; Kirchner, Georg; Koidl, Franz

    2014-08-01

    We are reporting on a design, construction and performance of solid state photon counting detector package which has been designed for laser tracking of space debris. The detector has been optimized for top photon detection efficiency and detection delay stability. The active area of the commercially available avalanche photodiode manufactured on Si (SAP500 supplied by Laser Components, Inc.) is circular with a diameter of 500 μm. The newly designed control circuit enables to operate the detection sensor at a broad range of biases 5-50 V above its breakdown voltage of 125 V. This permits to select a right trade-off between photon detection efficiency, timing resolution and dark count rate. The photon detection efficiency exceeds 70% at the wavelength of 532 nm. This is the highest photon detection efficiency ever reported for such a device. The timing properties of the detector have been investigated in detail. The timing resolution is better than 80 ps r.m.s, the detection delay is stable within units of picoseconds over several hours of operation. The detection delay stability in a sense of time deviation of 800 fs has been achieved. The temperature change of the detection delay is 0.5 ps/K. The detector has been tested as an echo signal detector in laser tracking of space debris at the satellite laser station in Graz, Austria. Its application in lunar laser ranging is under consideration by several laser stations.

  9. Signal integration enhances the dynamic range in neuronal systems

    NASA Astrophysics Data System (ADS)

    Gollo, Leonardo L.; Mirasso, Claudio; Eguíluz, Víctor M.

    2012-04-01

    The dynamic range measures the capacity of a system to discriminate the intensity of an external stimulus. Such an ability is fundamental for living beings to survive: to leverage resources and to avoid danger. Consequently, the larger is the dynamic range, the greater is the probability of survival. We investigate how the integration of different input signals affects the dynamic range, and in general the collective behavior of a network of excitable units. By means of numerical simulations and a mean-field approach, we explore the nonequilibrium phase transition in the presence of integration. We show that the firing rate in random and scale-free networks undergoes a discontinuous phase transition depending on both the integration time and the density of integrator units. Moreover, in the presence of external stimuli, we find that a system of excitable integrator units operating in a bistable regime largely enhances its dynamic range.

  10. Simulation of the dynamic inefficiency of the CMS pixel detector

    NASA Astrophysics Data System (ADS)

    Bartók, M.

    2015-05-01

    The Pixel Detector is the innermost part of the CMS Tracker. It therefore has to prevail in the harshest environment in terms of particle fluence and radiation. There are several mechanisms that may decrease the efficiency of the detector. These are mainly caused by data acquisition (DAQ) problems and/or Single Event Upsets (SEU). Any remaining efficiency loss is referred to as the dynamic inefficiency. It is caused by various mechanisms inside the Readout Chip (ROC) and depends strongly on the data occupancy. In the 2012 data, at high values of instantaneous luminosity the inefficiency reached 2% (in the region closest to the interaction point) which is not negligible. In the 2015 run higher instantaneous luminosity is expected, which will result in lower efficiencies; therefore this effect needs to be understood and simulated. A data-driven method has been developed to simulate dynamic inefficiency, which has been shown to successfully simulate the effects.

  11. The simulation of a readout integrated circuit with high dynamic range for long wave infrared FPA

    NASA Astrophysics Data System (ADS)

    Zhai, Yongcheng; Ding, Rui-jun; Chen, Guo-qiang; Wang, Pan; Hao, Li-chao

    2013-12-01

    This paper describes the simulation results of a high performance readout integrated circuit (ROIC) designed for long wave infrared (LWIR) detectors, which has high dynamic range (HDR). A special architecture is used to the input unit cell to accommodate the wide scene dynamic range requirement, thus providing over a factor of 70dB dynamic range. A capacitive feedback transimpedance amplifier (CTIA) provides a low noise detector interface circuit capable of operating at low input currents and a folded cascade amplifier with a gain of 73dB is designed. A 6.4pF integration capacitor is used for supporting a wide scene dynamic range, which can store 80Me. Because of the restriction of the layout area, four unit cells will share an integration capacitor. A sample and hold capacitor is also part of the input unit cell architecture, which allows the infrared focal plane arrays (IRFPA) to be operated in full frame snapshot mode and provides the maximum integration time available. The integration time is electronically controlled by an external clock pulse. The simulation results show that the circuit works well under 5V power supply and the nonlinearity is calculated less than 0.1%. The total power dissipation is less than 150mW.

  12. Wide Dynamic Range Front-end Electronics for Beam Current and Position Measurement

    SciTech Connect

    Rawnsley, W. R.; Potter, R. J.; Verzilov, V. A.; Root, L.

    2006-11-20

    An Analog Devices log detector, AD8306, and a Digital Signal Processor (DSP), ADSP-21992, have been found useful for building wide dynamic range, accurate and inexpensive front-end electronics to measure and process the RF signals from TRIUMF's beam monitors. The high-precision log detector has a useful dynamic range of over 100 dB. The 160 MHz mixed-signal DSP is used to digitize the log detector output, linearize it via a lookup table, perform temperature compensation, and remove the variable duty cycle 1 kHz pulse structure of the beam. This approach has been applied to two types of devices in a 500 MeV proton beamline. The 0.1% DC to CW total current monitor is based on a capacitive pickup resonant at 46.11 MHz, the second harmonic of the bunch frequency. The DSP software provides low pass filtering, calculates the antilog of the data and passes the output to a CAMAC input register. The BPM electronics process data from inductive pickup loops. The DSP controls a GaAs switch which multiplexes signals from four adjacent pickups to a single log detector. The DSP performs difference-over-sum or log-ratio data analysis along with averaging over an arbitrary number of samples.

  13. Dynamics of range margins for metapopulations under climate change.

    PubMed

    Anderson, B J; Akçakaya, H R; Araújo, M B; Fordham, D A; Martinez-Meyer, E; Thuiller, W; Brook, B W

    2009-04-22

    We link spatially explicit climate change predictions to a dynamic metapopulation model. Predictions of species' responses to climate change, incorporating metapopulation dynamics and elements of dispersal, allow us to explore the range margin dynamics for two lagomorphs of conservation concern. Although the lagomorphs have very different distribution patterns, shifts at the edge of the range were more pronounced than shifts in the overall metapopulation. For Romerolagus diazi (volcano rabbit), the lower elevation range limit shifted upslope by approximately 700 m. This reduced the area occupied by the metapopulation, as the mountain peak currently lacks suitable vegetation. For Lepus timidus (European mountain hare), we modelled the British metapopulation. Increasing the dispersive estimate caused the metapopulation to shift faster on the northern range margin (leading edge). By contrast, it caused the metapopulation to respond to climate change slower, rather than faster, on the southern range margin (trailing edge). The differential responses of the leading and trailing range margins and the relative sensitivity of range limits to climate change compared with that of the metapopulation centroid have important implications for where conservation monitoring should be targeted. Our study demonstrates the importance and possibility of moving from simple bioclimatic envelope models to second-generation models that incorporate both dynamic climate change and metapopulation dynamics. PMID:19324811

  14. Dynamics of range margins for metapopulations under climate change

    PubMed Central

    Anderson, B.J.; Akçakaya, H.R.; Araújo, M.B.; Fordham, D.A.; Martinez-Meyer, E.; Thuiller, W.; Brook, B.W.

    2009-01-01

    We link spatially explicit climate change predictions to a dynamic metapopulation model. Predictions of species' responses to climate change, incorporating metapopulation dynamics and elements of dispersal, allow us to explore the range margin dynamics for two lagomorphs of conservation concern. Although the lagomorphs have very different distribution patterns, shifts at the edge of the range were more pronounced than shifts in the overall metapopulation. For Romerolagus diazi (volcano rabbit), the lower elevation range limit shifted upslope by approximately 700 m. This reduced the area occupied by the metapopulation, as the mountain peak currently lacks suitable vegetation. For Lepus timidus (European mountain hare), we modelled the British metapopulation. Increasing the dispersive estimate caused the metapopulation to shift faster on the northern range margin (leading edge). By contrast, it caused the metapopulation to respond to climate change slower, rather than faster, on the southern range margin (trailing edge). The differential responses of the leading and trailing range margins and the relative sensitivity of range limits to climate change compared with that of the metapopulation centroid have important implications for where conservation monitoring should be targeted. Our study demonstrates the importance and possibility of moving from simple bioclimatic envelope models to second-generation models that incorporate both dynamic climate change and metapopulation dynamics. PMID:19324811

  15. DRACULA: Dynamic range control for broadcasting and other applications

    NASA Astrophysics Data System (ADS)

    Gilchrist, N. H. C.

    The BBC has developed a digital processor which is capable of reducing the dynamic range of audio in an unobtrusive manner. It is ideally suited to the task of controlling the level of musical programs. Operating as a self-contained dynamic range controller, the processor is suitable for controlling levels in conventional AM or FM broadcasting, or for applications such as the compression of program material for in-flight entertainment. It can, alternatively, be used to provide a supplementary signal in DAB (digital audio broadcasting) for optional dynamic compression in the receiver.

  16. Radon monitoring using long-range alpha detector-based technology

    SciTech Connect

    Bolton, R.D.

    1994-11-01

    Long-Range Alpha Detector (LRAD) technology is being studied for monitoring radon gas concentrations. LRAD-based instruments collect and measure the ionization produced in air by alpha decays. These ions can be moved to a collection grid via electrostatic ion-transport design collected approximately 95% of the radon produced ions, while instruments using an airflow transport design collected from 44% to 77% of these ions, depending on detector geometry. The current produced by collecting this ionization is linear with respect to {sup 222}Rn concentration over the available test range of 0.07 to 820 pCi/L. In the absence of statistical limitations due to low radon concentrations, the speed of response of LRAD-based instruments is determined by the air exchange rate, and therefore changes in radon concentration can be detected in just a few seconds. Recent tests show that at radon concentrations below 20 pCi/L current pulses produced by individual alpha decays can be counted, thus improving detector sensitivity and stability even further. Because these detectors are simple, rugged, and do not consume much power, they are natural candidates for portable, battery operation.

  17. A detector based on silica fibers for ion beam monitoring in a wide current range

    NASA Astrophysics Data System (ADS)

    Auger, M.; Braccini, S.; Carzaniga, T. S.; Ereditato, A.; Nesteruk, K. P.; Scampoli, P.

    2016-03-01

    A detector based on doped silica and optical fibers was developed to monitor the profile of particle accelerator beams of intensity ranging from 1 pA to tens of μA. Scintillation light produced in a fiber moving across the beam is measured, giving information on its position, shape and intensity. The detector was tested with a continuous proton beam at the 18 MeV Bern medical cyclotron used for radioisotope production and multi-disciplinary research. For currents from 1 pA to 20 μA, Ce3+ and Sb3+ doped silica fibers were used as sensors. Read-out systems based on photodiodes, photomultipliers and solid state photomultipliers were employed. Profiles down to the pA range were measured with this method for the first time. For currents ranging from 1 pA to 3 μA, the integral of the profile was found to be linear with respect to the beam current, which can be measured by this detector with an accuracy of ~1%. The profile was determined with a spatial resolution of 0.25 mm. For currents ranging from 5 μA to 20 μA, thermal effects affect light yield and transmission, causing distortions of the profile and limitations in monitoring capabilities. For currents higher than ~1 μA, non-doped optical fibers for both producing and transporting scintillation light were also successfully employed.

  18. Benchmarking novel approaches for modelling species range dynamics

    PubMed Central

    Zurell, Damaris; Thuiller, Wilfried; Pagel, Jörn; Cabral, Juliano S; Münkemüller, Tamara; Gravel, Dominique; Dullinger, Stefan; Normand, Signe; Schiffers, Katja H.; Moore, Kara A.; Zimmermann, Niklaus E.

    2016-01-01

    Increasing biodiversity loss due to climate change is one of the most vital challenges of the 21st century. To anticipate and mitigate biodiversity loss, models are needed that reliably project species’ range dynamics and extinction risks. Recently, several new approaches to model range dynamics have been developed to supplement correlative species distribution models (SDMs), but applications clearly lag behind model development. Indeed, no comparative analysis has been performed to evaluate their performance. Here, we build on process-based, simulated data for benchmarking five range (dynamic) models of varying complexity including classical SDMs, SDMs coupled with simple dispersal or more complex population dynamic models (SDM hybrids), and a hierarchical Bayesian process-based dynamic range model (DRM). We specifically test the effects of demographic and community processes on model predictive performance. Under current climate, DRMs performed best, although only marginally. Under climate change, predictive performance varied considerably, with no clear winners. Yet, all range dynamic models improved predictions under climate change substantially compared to purely correlative SDMs, and the population dynamic models also predicted reasonable extinction risks for most scenarios. When benchmarking data were simulated with more complex demographic and community processes, simple SDM hybrids including only dispersal often proved most reliable. Finally, we found that structural decisions during model building can have great impact on model accuracy, but prior system knowledge on important processes can reduce these uncertainties considerably. Our results reassure the clear merit in using dynamic approaches for modelling species’ response to climate change but also emphasise several needs for further model and data improvement. We propose and discuss perspectives for improving range projections through combination of multiple models and for making these approaches

  19. Benchmarking novel approaches for modelling species range dynamics.

    PubMed

    Zurell, Damaris; Thuiller, Wilfried; Pagel, Jörn; Cabral, Juliano S; Münkemüller, Tamara; Gravel, Dominique; Dullinger, Stefan; Normand, Signe; Schiffers, Katja H; Moore, Kara A; Zimmermann, Niklaus E

    2016-08-01

    Increasing biodiversity loss due to climate change is one of the most vital challenges of the 21st century. To anticipate and mitigate biodiversity loss, models are needed that reliably project species' range dynamics and extinction risks. Recently, several new approaches to model range dynamics have been developed to supplement correlative species distribution models (SDMs), but applications clearly lag behind model development. Indeed, no comparative analysis has been performed to evaluate their performance. Here, we build on process-based, simulated data for benchmarking five range (dynamic) models of varying complexity including classical SDMs, SDMs coupled with simple dispersal or more complex population dynamic models (SDM hybrids), and a hierarchical Bayesian process-based dynamic range model (DRM). We specifically test the effects of demographic and community processes on model predictive performance. Under current climate, DRMs performed best, although only marginally. Under climate change, predictive performance varied considerably, with no clear winners. Yet, all range dynamic models improved predictions under climate change substantially compared to purely correlative SDMs, and the population dynamic models also predicted reasonable extinction risks for most scenarios. When benchmarking data were simulated with more complex demographic and community processes, simple SDM hybrids including only dispersal often proved most reliable. Finally, we found that structural decisions during model building can have great impact on model accuracy, but prior system knowledge on important processes can reduce these uncertainties considerably. Our results reassure the clear merit in using dynamic approaches for modelling species' response to climate change but also emphasize several needs for further model and data improvement. We propose and discuss perspectives for improving range projections through combination of multiple models and for making these approaches

  20. Quench dynamics in long-range interacting quantum systems

    NASA Astrophysics Data System (ADS)

    Gong, Zhexuan

    2016-05-01

    A distinctive feature of atomic, molecular, and optical systems is that interactions between particles are often long-ranged. Control techniques from quantum optics often allow one to tune the pattern of these long-range interactions, creating an entirely new degree of freedom, absent in typical condensed matter systems. These tunable long-range interactions can result in very different far-from-equilibrium dynamics compared to systems with only short-range interactions. In the first half of the talk, I will describe how very general types of long-range interactions can qualitatively change the entanglement and correlation growth shortly after a quantum quench. In the second half of the talk I will show that, at longer times, long-range interactions can lead to exotic quasi-stationary states and dynamical phase transitions. These theoretical ideas have been explored in recent trapped-ion experiments, and connections to these experiments will be emphasized in both parts of the talk.

  1. Real time pre-detection dynamic range compression

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang (Inventor)

    1992-01-01

    A real time, pre-detection optical dynamic range compression system uses a photorefractive crystal, such as BaTiO3 or LiNbO3, in which light induced scattering from crystal inhomogeneities of the optical input occurs as a nonlinear function of the input intensity. The greater the intensity, the faster random interference gratings are created to scatter the incident light. The unscattered portion of the optical signal is therefore reduced in dynamic range over time. The amount or range of dynamic range compression may be controlled by adjusting the time of application of the unscattered crystal output to the photodetector with regard to the time of application of the optical input to the crystal.

  2. CMOS Active Pixel Sensors as energy-range detectors for proton Computed Tomography

    NASA Astrophysics Data System (ADS)

    Esposito, M.; Anaxagoras, T.; Evans, P. M.; Green, S.; Manolopoulos, S.; Nieto-Camero, J.; Parker, D. J.; Poludniowski, G.; Price, T.; Waltham, C.; Allinson, N. M.

    2015-06-01

    Since the first proof of concept in the early 70s, a number of technologies has been proposed to perform proton CT (pCT), as a means of mapping tissue stopping power for accurate treatment planning in proton therapy. Previous prototypes of energy-range detectors for pCT have been mainly based on the use of scintillator-based calorimeters, to measure proton residual energy after passing through the patient. However, such an approach is limited by the need for only a single proton passing through the energy-range detector in a read-out cycle. A novel approach to this problem could be the use of pixelated detectors, where the independent read-out of each pixel allows to measure simultaneously the residual energy of a number of protons in the same read-out cycle, facilitating a faster and more efficient pCT scan. This paper investigates the suitability of CMOS Active Pixel Sensors (APSs) to track individual protons as they go through a number of CMOS layers, forming an energy-range telescope. Measurements performed at the iThemba Laboratories will be presented and analysed in terms of correlation, to confirm capability of proton tracking for CMOS APSs.

  3. Photonic microwave bandpass filter with improved dynamic range.

    PubMed

    Yan, Yu; Yao, Jianping

    2008-08-01

    A technique to improve the dynamic range of a photonic microwave bandpass filter is proposed and experimentally demonstrated. The filter is implemented based on phase modulation to intensity modulation conversion using fiber Bragg gratings (FBGs) serving as frequency discriminators, with the optical carriers located at the left or right slopes of the FBGs, to generate positive or negative tap coefficients. The dynamic range of the photonic microwave bandpass filter is increased by reducing the optical-carrier-induced shot noise and relative intensity noise at the photodetector, which is realized by placing the optical carriers at the lower slopes of the FBG reflection spectra. A photonic microwave bandpass filter with an improvement in dynamic range of about 10 dB is demonstrated. PMID:18670527

  4. Real-time high dynamic range laser scanning microscopy

    PubMed Central

    Vinegoni, C.; Leon Swisher, C.; Fumene Feruglio, P.; Giedt, R. J.; Rousso, D. L.; Stapleton, S.; Weissleder, R.

    2016-01-01

    In conventional confocal/multiphoton fluorescence microscopy, images are typically acquired under ideal settings and after extensive optimization of parameters for a given structure or feature, often resulting in information loss from other image attributes. To overcome the problem of selective data display, we developed a new method that extends the imaging dynamic range in optical microscopy and improves the signal-to-noise ratio. Here we demonstrate how real-time and sequential high dynamic range microscopy facilitates automated three-dimensional neural segmentation. We address reconstruction and segmentation performance on samples with different size, anatomy and complexity. Finally, in vivo real-time high dynamic range imaging is also demonstrated, making the technique particularly relevant for longitudinal imaging in the presence of physiological motion and/or for quantification of in vivo fast tracer kinetics during functional imaging. PMID:27032979

  5. Real-time high dynamic range laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Vinegoni, C.; Leon Swisher, C.; Fumene Feruglio, P.; Giedt, R. J.; Rousso, D. L.; Stapleton, S.; Weissleder, R.

    2016-04-01

    In conventional confocal/multiphoton fluorescence microscopy, images are typically acquired under ideal settings and after extensive optimization of parameters for a given structure or feature, often resulting in information loss from other image attributes. To overcome the problem of selective data display, we developed a new method that extends the imaging dynamic range in optical microscopy and improves the signal-to-noise ratio. Here we demonstrate how real-time and sequential high dynamic range microscopy facilitates automated three-dimensional neural segmentation. We address reconstruction and segmentation performance on samples with different size, anatomy and complexity. Finally, in vivo real-time high dynamic range imaging is also demonstrated, making the technique particularly relevant for longitudinal imaging in the presence of physiological motion and/or for quantification of in vivo fast tracer kinetics during functional imaging.

  6. Real-time extended dynamic range imaging in shearography

    SciTech Connect

    Groves, Roger M.; Pedrini, Giancarlo; Osten, Wolfgang

    2008-10-20

    Extended dynamic range (EDR) imaging is a postprocessing technique commonly associated with photography. Multiple images of a scene are recorded by the camera using different shutter settings and are merged into a single higher dynamic range image. Speckle interferometry and holography techniques require a well-modulated intensity signal to extract the phase information, and of these techniques shearography is most sensitive to different object surface reflectivities as it uses self-referencing from a sheared image. In this paper the authors demonstrate real-time EDR imaging in shearography and present experimental results from a difficult surface reflectivity sample: a wooden panel painting containing gold and dark earth color paint.

  7. Real-time extended dynamic range imaging in shearography.

    PubMed

    Groves, Roger M; Pedrini, Giancarlo; Osten, Wolfgang

    2008-10-20

    Extended dynamic range (EDR) imaging is a postprocessing technique commonly associated with photography. Multiple images of a scene are recorded by the camera using different shutter settings and are merged into a single higher dynamic range image. Speckle interferometry and holography techniques require a well-modulated intensity signal to extract the phase information, and of these techniques shearography is most sensitive to different object surface reflectivities as it uses self-referencing from a sheared image. In this paper the authors demonstrate real-time EDR imaging in shearography and present experimental results from a difficult surface reflectivity sample: a wooden panel painting containing gold and dark earth color paint. PMID:18936802

  8. Real-Time Local Range On-Demand and Dynamic Regional Range Images

    SciTech Connect

    Tsap, L.V.

    2000-02-22

    This paper presents a new approach to a gesture tracking system using real-time range on-demand. The system represents a gesture-controlled interface for interactive visual exploration of large data sets. The paper describes a method performing range processing only when necessary and where necessary. Range data is processed only for non-static regions of interest. This is accomplished by a set of filters on the color, motion, and range data. The speedup achieved is between 41% and 54%. The algorithm also includes a robust skin color segmentation insensitive to illumination changes. Selective range processing results in dynamic regional range images (DRRIs). This development is also placed in a broader context of a biological visual system emulation, specifically redundancies and attention mechanisms.

  9. Real-Time Local Range On-Demand for Tracking Gestures and Dynamic Regional Range Images

    SciTech Connect

    Tsap, L.V.

    2000-05-30

    This paper presents a new approach to a gesture-tracking system using real-time range on-demand. The system represents a gesture-controlled interface for interactive visual exploration of large data sets. The paper describes a method performing range processing only when necessary and where necessary. Range data is processed only for non-static regions of interest. This is accomplished by a set of filters on the color, motion, and range data. The speedup achieved is between 41% and 54%. The algorithm also includes a robust skin-color segmentation insensitive to illumination changes. Selective range processing results in dynamic regional range images (DRRIs). This development is also placed in a broader context of a biological visual system emulation, specifically redundancies and attention mechanisms.

  10. A full range detector for the HIRRBS high resolution RBS magnetic spectrometer

    SciTech Connect

    Skala, Wayne G.; Haberl, Arthur W.; Bakhru, Hassaram; Lanford, William

    2013-04-19

    The UAlbany HIRRBS (High Resolution RBS) system has been updated for better use in rapid analysis. The focal plane detector now covers the full range from U down to O using a linear stepper motor to translate the 1-cm detector across the 30-cm range. Input is implemented with zero-back-angle operation in all cases. The chamber has been modified to allow for quick swapping of sample holders, including a channeling goniometer. A fixed standard surface-barrier detector allows for normal RBS simultaneously with use of the magnetic spectrometer. The user can select a region on the standard spectrum or can select an element edge or an energy point for collection of the expanded spectrum portion. The best resolution currently obtained is about 2-to-3 keV, probably representing the energy width of the incoming beam. Calibration is maintained automatically for any spectrum portion and any beam energy from 1.0 to 3.5 MeV. Element resolving power, sensitivity and depth resolution are shown using several examples. Examples also show the value of simultaneous conventional RBS.

  11. A full range detector for the HIRRBS high resolution RBS magnetic spectrometer

    NASA Astrophysics Data System (ADS)

    Skala, Wayne G.; Haberl, Arthur W.; Bakhru, Hassaram; Lanford, William

    2013-04-01

    The UAlbany HIRRBS (High Resolution RBS) system has been updated for better use in rapid analysis. The focal plane detector now covers the full range from U down to O using a linear stepper motor to translate the 1-cm detector across the 30-cm range. Input is implemented with zero-back-angle operation in all cases. The chamber has been modified to allow for quick swapping of sample holders, including a channeling goniometer. A fixed standard surface-barrier detector allows for normal RBS simultaneously with use of the magnetic spectrometer. The user can select a region on the standard spectrum or can select an element edge or an energy point for collection of the expanded spectrum portion. The best resolution currently obtained is about 2-to-3 keV, probably representing the energy width of the incoming beam. Calibration is maintained automatically for any spectrum portion and any beam energy from 1.0 to 3.5 MeV. Element resolving power, sensitivity and depth resolution are shown using several examples. Examples also show the value of simultaneous conventional RBS.

  12. A single-photon detector in the far-infrared range

    PubMed

    Komiyama; Astafiev; Antonov; Kutsuwa; Hirai

    2000-01-27

    The far-infrared region (wavelengths in the range 10 microm-1 mm) is one of the richest areas of spectroscopic research, encompassing the rotational spectra of molecules and vibrational spectra of solids, liquids and gases. But studies in this spectral region are hampered by the absence of sensitive detectors--despite recent efforts to improve superconducting bolometers, attainable sensitivities are currently far below the level of single-photon detection. This is in marked contrast to the visible and near-infrared regions (wavelengths shorter than about 1.5 microm), in which single-photon counting is possible using photomultiplier tubes. Here we report the detection of single far-infrared photons in the wavelength range 175-210 microm (6.0-7.1 meV), using a single-electron transistor consisting of a semiconductor quantum dot in high magnetic field. We detect, with a time resolution of a millisecond, an incident flux of 0.1 photons per second on an effective detector area of 0.1 mm2--a sensitivity that exceeds previously reported values by a factor of more than 10(4). The sensitivity is a consequence of the unconventional detection mechanism, in which one absorbed photon leads to a current of 10(6)-10(12) electrons through the quantum dot. By contrast, mechanisms of conventional detectors or photon assisted tunnelling in single-electron transistors produce only a few electrons per incident photon. PMID:10667787

  13. A low-noise large dynamic-range readout suitable for laser spectroscopy with photodiodes

    NASA Astrophysics Data System (ADS)

    Pullia, A.; Sanvito, T.; Potenza, M. A.; Zocca, F.

    2012-10-01

    An original low-noise large dynamic-range readout system for optical light spectroscopy with PIN diodes is presented. The front-end circuit is equipped with a smart device for automatic cancellation of the large dc offset brought about by the photodiode current. This device sinks away the exact amount of dc current from the preamplifier input, yielding auto zeroing of the output-voltage offset, while introducing the minimum electronic noise possible. As a result the measurement dynamic-range is maximized. Moreover, an auxiliary inspection point is provided which precisely tracks the dc component of the photodiode current. This output allows for precise beam alignment and may also be used for diagnostic purposes. The excellent gain stability and linearity make the circuit perfectly suited for optical-light pulse spectroscopy. Applications include particle sizing in the 100 nm range, two-dimensional characterization of semiconductor detectors, ultra-precise characterization of laser beam stability, confocal microscopy.

  14. True coincidence summing corrections for an extended energy range HPGe detector

    SciTech Connect

    Venegas-Argumedo, Y.; Montero-Cabrera, M. E.

    2015-07-23

    True coincidence summing (TCS) effect for natural radioactive families of U-238 and Th-232 represents a problem when an environmental sample with a close source-detector geometry measurement is performed. By using a certified multi-nuclide standard source to calibrate an energy extended range (XtRa) HPGe detector, it is possible to obtain an intensity spectrum slightly affected by the TCS effect with energies from 46 to 1836 keV. In this work, the equations and some other considerations required to calculate the TCS correction factor for isotopes of natural radioactive chains are described. It is projected a validation of the calibration, performed with the IAEA-CU-2006-03 samples (soil and water)

  15. Uncalibrated stereo rectification and disparity range stabilization: a comparison of different feature detectors

    NASA Astrophysics Data System (ADS)

    Luo, Xiongbiao; Jayarathne, Uditha L.; McLeod, A. Jonathan; Pautler, Stephen E.; Schlacta, Christopher M.; Peters, Terry M.

    2016-03-01

    This paper studies uncalibrated stereo rectification and stable disparity range determination for surgical scene three-dimensional (3-D) reconstruction. Stereoscopic endoscope calibration sometimes is not available and also increases the complexity of the operating-room environment. Stereo from uncalibrated endoscopic cameras is an alternative to reconstruct the surgical field visualized by binocular endoscopes within the body. Uncalibrated rectification is usually performed on the basis of a number of matched feature points (semi-dense correspondence) between the left and the right images of stereo pairs. After uncalibrated rectification, the corresponding feature points can be used to determine the proper disparity range that helps to improve the reconstruction accuracy and reduce the computational time of disparity map estimation. Therefore, the corresponding or matching accuracy and robustness of feature point descriptors is important to surgical field 3-D reconstruction. This work compares four feature detectors: (1) scale invariant feature transform (SIFT), (2) speeded up robust features (SURF), (3) affine scale invariant feature transform (ASIFT), and (4) gauge speeded up robust features (GSURF) with applications to uncalibrated rectification and stable disparity range determination. We performed our experiments on surgical endoscopic video images that were collected during robotic prostatectomy. The experimental results demonstrate that ASIFT outperforms other feature detectors in the uncalibrated stereo rectification and also provides a stable stable disparity range for surgical scene reconstruction.

  16. Evaluation of color encodings for high dynamic range pixels

    NASA Astrophysics Data System (ADS)

    Boitard, Ronan; Mantiuk, Rafal K.; Pouli, Tania

    2015-03-01

    Traditional Low Dynamic Range (LDR) color spaces encode a small fraction of the visible color gamut, which does not encompass the range of colors produced on upcoming High Dynamic Range (HDR) displays. Future imaging systems will require encoding much wider color gamut and luminance range. Such wide color gamut can be represented using floating point HDR pixel values but those are inefficient to encode. They also lack perceptual uniformity of the luminance and color distribution, which is provided (in approximation) by most LDR color spaces. Therefore, there is a need to devise an efficient, perceptually uniform and integer valued representation for high dynamic range pixel values. In this paper we evaluate several methods for encoding colour HDR pixel values, in particular for use in image and video compression. Unlike other studies we test both luminance and color difference encoding in a rigorous 4AFC threshold experiments to determine the minimum bit-depth required. Results show that the Perceptual Quantizer (PQ) encoding provides the best perceptual uniformity in the considered luminance range, however the gain in bit-depth is rather modest. More significant difference can be observed between color difference encoding schemes, from which YDuDv encoding seems to be the most efficient.

  17. Monolithic single-photon detectors and time-to-digital converters for picoseconds time-of-flight ranging

    NASA Astrophysics Data System (ADS)

    Markovic, Bojan; Tisa, Simone; Tosi, Alberto; Zappa, Franco

    2011-03-01

    We present a novel "smart-pixel" able to measure and record in-pixel the time delay (photon timing) between a START (e.g. given by laser excitation, cell stimulus, or LIDAR flash) and a STOP (e.g. arrival of the first returning photon from the fluorescence decay signal or back reflection from an object). Such smart-pixel relies of a SPAD detector and a Timeto- Digital Converter monolithically designed and manufactured in the same chip. Many pixels can be laid out in a rows by columns architecture, to give birth to expandable 2D imaging arrays for picoseconds-level single-photon timing applications. Distance measurements, by means of direct TOF detection (used in LIDAR systems) provided by each pixel, can open the way to the fabrication of single-chip 3D ranging arrays for scene reconstruction and intelligent object recognition. We report on the design and characterization of prototype circuits, fabricated in a 0.35 μm standard CMOS technology containing complete conversion channels, "smart-pixel" and ancillary electronics with 20 μm active area diameter SPAD detector and related quenching circuitry. With a 100 MHz reference clock, the TDC provides timeresolution of 10 ps, dynamic range of 160 ns and very high conversion linearity.

  18. Dynamic Range Size Analysis of Territorial Animals: An Optimality Approach.

    PubMed

    Tao, Yun; Börger, Luca; Hastings, Alan

    2016-10-01

    Home range sizes of territorial animals are often observed to vary periodically in response to seasonal changes in foraging opportunities. Here we develop the first mechanistic model focused on the temporal dynamics of home range expansion and contraction in territorial animals. We demonstrate how simple movement principles can lead to a rich suite of range size dynamics, by balancing foraging activity with defensive requirements and incorporating optimal behavioral rules into mechanistic home range analysis. Our heuristic model predicts three general temporal patterns that have been observed in empirical studies across multiple taxa. First, a positive correlation between age and territory quality promotes shrinking home ranges over an individual's lifetime, with maximal range size variability shortly before the adult stage. Second, poor sensory information, low population density, and large resource heterogeneity may all independently facilitate range size instability. Finally, aggregation behavior toward forage-rich areas helps produce divergent home range responses between individuals from different age classes. This model has broad applications for addressing important unknowns in animal space use, with potential applications also in conservation and health management strategies. PMID:27622879

  19. High dynamic range image display with halo and clipping prevention.

    PubMed

    Guarnieri, Gabriele; Marsi, Stefano; Ramponi, Giovanni

    2011-05-01

    The dynamic range of an image is defined as the ratio between the highest and the lowest luminance level. In a high dynamic range (HDR) image, this value exceeds the capabilities of conventional display devices; as a consequence, dedicated visualization techniques are required. In particular, it is possible to process an HDR image in order to reduce its dynamic range without producing a significant change in the visual sensation experienced by the observer. In this paper, we propose a dynamic range reduction algorithm that produces high-quality results with a low computational cost and a limited number of parameters. The algorithm belongs to the category of methods based upon the Retinex theory of vision and was specifically designed in order to prevent the formation of common artifacts, such as halos around the sharp edges and clipping of the highlights, that often affect methods of this kind. After a detailed analysis of the state of the art, we shall describe the method and compare the results and performance with those of two techniques recently proposed in the literature and one commercial software. PMID:21078576

  20. High resolution, large dynamic range field map estimation

    PubMed Central

    Dagher, Joseph; Reese, Timothy; Bilgin, Ali

    2013-01-01

    Purpose We present a theory and a corresponding method to compute high resolution field maps over a large dynamic range. Theory and Methods We derive a closed-form expression for the error in the field map value when computed from two echoes. We formulate an optimization problem to choose three echo times which result in a pair of maximally distinct error distributions. We use standard field mapping sequences at the prescribed echo times. We then design a corresponding estimation algorithm which takes advantage of the optimized echo times to disambiguate the field offset value. Results We validate our method using high resolution images of a phantom at 7T. The resulting field maps demonstrate robust mapping over both a large dynamic range, and in low SNR regions. We also present high resolution offset maps in vivo using both, GRE and MEGE sequences. Even though the proposed echo time spacings are larger than the well known phase aliasing cutoff, the resulting field maps exhibit a large dynamic range without the use of phase unwrapping or spatial regularization techniques. Conclusion We demonstrate a novel 3-echo field map estimation method which overcomes the traditional noise-dynamic range trade-off. PMID:23401245

  1. Log amplifier instrument measures physiological biopotentials over wide dynamic range

    NASA Technical Reports Server (NTRS)

    Kado, R. T.

    1970-01-01

    To record biopotentials with extreme dynamic ranges, biopotential inputs are capacitatively coupled to a miniature, low power, solid-state signal conditioner consisting of a two-stage differential preamplifier that has a low noise figure. The ouput of the preamplifier uses diodes to provide an overall gain which is nearly logarithmic.

  2. Motion adaptive signal integration-high dynamic range (MASI-HDR) video processing for dynamic platforms

    NASA Astrophysics Data System (ADS)

    Piacentino, Michael R.; Berends, David C.; Zhang, David C.; Gudis, Eduardo

    2013-05-01

    Two of the biggest challenges in designing U×V vision systems are properly representing high dynamic range scene content using low dynamic range components and reducing camera motion blur. SRI's MASI-HDR (Motion Adaptive Signal Integration-High Dynamic Range) is a novel technique for generating blur-reduced video using multiple captures for each displayed frame while increasing the effective camera dynamic range by four bits or more. MASI-HDR processing thus provides high performance video from rapidly moving platforms in real-world conditions in low latency real time, enabling even the most demanding applications on air, ground and water.

  3. Switched-capacitor neuromorphs with wide-range variable dynamics.

    PubMed

    Elias, J G; Northmore, D M

    1995-01-01

    The use of switched capacitors as wide-range, programmable resistive elements in spatially extensive artificial dendritic trees (ADT's) is described. We show that silicon neuro-morphs with ADT's can produce impulse responses that last millions of times longer than the initiating impulse and that dynamical responses are tunable in both shape and duration over a wide range. The switched-capacitor resistors forming a dendritic tree are shown indirectly to have a useful programmable resistance range between 500 KOmega and 1000 GOmega. Experimental results are presented that show variable impulse response functions, tunable frequency selectivity, and rate-invariance of spatiotemporal pattern responses. PMID:18263448

  4. Superconducting nanowire single photon detector at 532 nm and demonstration in satellite laser ranging.

    PubMed

    Li, Hao; Chen, Sijing; You, Lixing; Meng, Wengdong; Wu, Zhibo; Zhang, Zhongping; Tang, Kai; Zhang, Lu; Zhang, Weijun; Yang, Xiaoyan; Liu, Xiaoyu; Wang, Zhen; Xie, Xiaoming

    2016-02-22

    Superconducting nanowire single-photon detectors (SNSPDs) at a wavelength of 532 nm were designed and fabricated aiming to satellite laser ranging (SLR) applications. The NbN SNSPDs were fabricated on one-dimensional photonic crystals with a sensitive-area diameter of 42 μm. The devices were coupled with multimode fiber (ϕ = 50 μm) and exhibited a maximum system detection efficiency of 75% at an extremely low dark count rate of <0.1 Hz. An SLR experiment using an SNSPD at a wavelength of 532 nm was successfully demonstrated. The results showed a depth ranging with a precision of ~8.0 mm for the target satellite LARES, which is ~3,000 km away from the ground ranging station at the Sheshan Observatory. PMID:26907010

  5. Cryocooled terahertz photoconductive detector system with background-limited performance in 1.5-4 THz frequency range

    NASA Astrophysics Data System (ADS)

    Aoki, Makoto; Hiromoto, Norihisa

    2015-10-01

    We describe a 4-K-cryocooled dual-band terahertz (THz) photoconductive detector system with background-limited performance. The detector system comprises two THz photoconductive detectors covering a response in a wide frequency range from 1.5 to 4 THz, low noise amplifiers, optical low-pass filters to eliminate input radiation of higher frequencies, and a mechanical 4 K Gifford-McMahon refrigerator that provides practical and convenient operation without a liquid He container. The electrical and optical performances of the THz detector system were evaluated at a detector temperature of 4 K under 300 K background radiation. We proved that the detector system can achieve background-limited noise-equivalent-power on the order of 10-14 W/Hz1/2 in the frequency range from 1.5 to 4 THz even if the vibration noise of the mechanical refrigerator is present.

  6. Cryocooled terahertz photoconductive detector system with background-limited performance in 1.5-4 THz frequency range.

    PubMed

    Aoki, Makoto; Hiromoto, Norihisa

    2015-10-01

    We describe a 4-K-cryocooled dual-band terahertz (THz) photoconductive detector system with background-limited performance. The detector system comprises two THz photoconductive detectors covering a response in a wide frequency range from 1.5 to 4 THz, low noise amplifiers, optical low-pass filters to eliminate input radiation of higher frequencies, and a mechanical 4 K Gifford-McMahon refrigerator that provides practical and convenient operation without a liquid He container. The electrical and optical performances of the THz detector system were evaluated at a detector temperature of 4 K under 300 K background radiation. We proved that the detector system can achieve background-limited noise-equivalent-power on the order of 10(-14) W/Hz(1/2) in the frequency range from 1.5 to 4 THz even if the vibration noise of the mechanical refrigerator is present. PMID:26520978

  7. Cryocooled terahertz photoconductive detector system with background-limited performance in 1.5–4 THz frequency range

    SciTech Connect

    Aoki, Makoto; Hiromoto, Norihisa

    2015-10-15

    We describe a 4-K-cryocooled dual-band terahertz (THz) photoconductive detector system with background-limited performance. The detector system comprises two THz photoconductive detectors covering a response in a wide frequency range from 1.5 to 4 THz, low noise amplifiers, optical low-pass filters to eliminate input radiation of higher frequencies, and a mechanical 4 K Gifford-McMahon refrigerator that provides practical and convenient operation without a liquid He container. The electrical and optical performances of the THz detector system were evaluated at a detector temperature of 4 K under 300 K background radiation. We proved that the detector system can achieve background-limited noise-equivalent-power on the order of 10{sup −14} W/Hz{sup 1/2} in the frequency range from 1.5 to 4 THz even if the vibration noise of the mechanical refrigerator is present.

  8. Missing data outside the detector range. II. Application to time-frequency entanglement

    NASA Astrophysics Data System (ADS)

    Ray, Megan R.; van Enk, S. J.

    2013-12-01

    In a previous paper, we pointed out the problem of missing data outside the detector range for continuous-variable entanglement verification and quantum key distribution, and we provided a straightforward solution based on entropic separability criteria (as those work better than variance-based criteria). We apply that solution here to the verification of time-frequency entanglement of photon pairs, particularly to the quantum key distribution scheme proposed by Nunn [Opt. ExpressOPEXFF1094-408710.1364/OE.21.015959 21, 15959 (2013)]. We find that the scheme does lead to verifiable entanglement, but that transmission noise quickly destroys the ability to verify the entanglement.

  9. Dynamic Range Across Music Genres and the Perception of Dynamic Compression in Hearing-Impaired Listeners.

    PubMed

    Kirchberger, Martin; Russo, Frank A

    2016-01-01

    Dynamic range compression serves different purposes in the music and hearing-aid industries. In the music industry, it is used to make music louder and more attractive to normal-hearing listeners. In the hearing-aid industry, it is used to map the variable dynamic range of acoustic signals to the reduced dynamic range of hearing-impaired listeners. Hence, hearing-aided listeners will typically receive a dual dose of compression when listening to recorded music. The present study involved an acoustic analysis of dynamic range across a cross section of recorded music as well as a perceptual study comparing the efficacy of different compression schemes. The acoustic analysis revealed that the dynamic range of samples from popular genres, such as rock or rap, was generally smaller than the dynamic range of samples from classical genres, such as opera and orchestra. By comparison, the dynamic range of speech, based on recordings of monologues in quiet, was larger than the dynamic range of all music genres tested. The perceptual study compared the effect of the prescription rule NAL-NL2 with a semicompressive and a linear scheme. Music subjected to linear processing had the highest ratings for dynamics and quality, followed by the semicompressive and the NAL-NL2 setting. These findings advise against NAL-NL2 as a prescription rule for recorded music and recommend linear settings. PMID:26868955

  10. Dynamic Range Across Music Genres and the Perception of Dynamic Compression in Hearing-Impaired Listeners

    PubMed Central

    Kirchberger, Martin

    2016-01-01

    Dynamic range compression serves different purposes in the music and hearing-aid industries. In the music industry, it is used to make music louder and more attractive to normal-hearing listeners. In the hearing-aid industry, it is used to map the variable dynamic range of acoustic signals to the reduced dynamic range of hearing-impaired listeners. Hence, hearing-aided listeners will typically receive a dual dose of compression when listening to recorded music. The present study involved an acoustic analysis of dynamic range across a cross section of recorded music as well as a perceptual study comparing the efficacy of different compression schemes. The acoustic analysis revealed that the dynamic range of samples from popular genres, such as rock or rap, was generally smaller than the dynamic range of samples from classical genres, such as opera and orchestra. By comparison, the dynamic range of speech, based on recordings of monologues in quiet, was larger than the dynamic range of all music genres tested. The perceptual study compared the effect of the prescription rule NAL-NL2 with a semicompressive and a linear scheme. Music subjected to linear processing had the highest ratings for dynamics and quality, followed by the semicompressive and the NAL-NL2 setting. These findings advise against NAL-NL2 as a prescription rule for recorded music and recommend linear settings. PMID:26868955

  11. Slow and long-ranged dynamical heterogeneities in dissipative fluids.

    PubMed

    Avila, Karina E; Castillo, Horacio E; Vollmayr-Lee, Katharina; Zippelius, Annette

    2016-06-28

    A two-dimensional bidisperse granular fluid is shown to exhibit pronounced long-ranged dynamical heterogeneities as dynamical arrest is approached. Here we focus on the most direct approach to study these heterogeneities: we identify clusters of slow particles and determine their size, Nc, and their radius of gyration, RG. We show that , providing direct evidence that the most immobile particles arrange in fractal objects with a fractal dimension, df, that is observed to increase with packing fraction ϕ. The cluster size distribution obeys scaling, approaching an algebraic decay in the limit of structural arrest, i.e., ϕ→ϕc. Alternatively, dynamical heterogeneities are analyzed via the four-point structure factor S4(q,t) and the dynamical susceptibility χ4(t). S4(q,t) is shown to obey scaling in the full range of packing fractions, 0.6 ≤ϕ≤ 0.805, and to become increasingly long-ranged as ϕ→ϕc. Finite size scaling of χ4(t) provides a consistency check for the previously analyzed divergences of χ4(t) ∝ (ϕ-ϕc)(-γχ) and the correlation length ξ∝ (ϕ-ϕc)(-γξ). We check the robustness of our results with respect to our definition of mobility. The divergences and the scaling for ϕ→ϕc suggest a non-equilibrium glass transition which seems qualitatively independent of the coefficient of restitution. PMID:27230572

  12. Range image segmentation using Zernike moment-based generalized edge detector

    NASA Technical Reports Server (NTRS)

    Ghosal, S.; Mehrotra, R.

    1992-01-01

    The authors proposed a novel Zernike moment-based generalized step edge detection method which can be used for segmenting range and intensity images. A generalized step edge detector is developed to identify different kinds of edges in range images. These edge maps are thinned and linked to provide final segmentation. A generalized edge is modeled in terms of five parameters: orientation, two slopes, one step jump at the location of the edge, and the background gray level. Two complex and two real Zernike moment-based masks are required to determine all these parameters of the edge model. Theoretical noise analysis is performed to show that these operators are quite noise tolerant. Experimental results are included to demonstrate edge-based segmentation technique.

  13. A direct comparison of Ge and Si(Li) detectors in the 2--20 keV range

    SciTech Connect

    Rossington, C.S.; Giauque, R.D.; Jaklevic, J.M.

    1991-10-01

    The spectral response of high purity Ge (HPGe) and lithium-drifted Si (Si(Li)) surface barrier detectors of similar geometry has been measured over a range of x-ray energies under identical experimental conditions. Detector characteristics such as spectral background, escape peak intensity, entrance window absorption, and energy resolution are presented and compared. Although these characteristic have been discussed in the literature previously, this paper represents an attempt to consolidate the information by making comparisons under equivalent experimental conditions for the two types of detectors. A primary goal of the study is a comparison of the two types of detectors for use in x-ray fluorescence applications.

  14. Dynamic Kerr effect responses in the terahertz range

    NASA Astrophysics Data System (ADS)

    Häberle, Uli; Diezemann, Gregor

    2005-05-01

    Dynamic Kerr effect measurements provide a simple realization of a nonlinear experiment. We propose a field-off experiment where an electric field of one or several sinusoidal cycles with frequency Ω is applied to a sample in thermal equilibrium. Afterwards, the evolution of the polarizability is measured. If such an experiment is performed in the terahertz range it might provide valuable information about the low-frequency dynamics in disordered systems. We treat these dynamics in terms of a Brownian oscillator model and calculate the Kerr effect response. It is shown that frequency-selective behavior can be expected. In the interesting case of underdamped vibrational motion we find that the frequency dependence of the phonon damping can be determined from the experiment. Also the behavior of overdamped relaxational modes is discussed. For typical glassy materials we estimate the magnitude of all relevant quantities, which we believe will be helpful in experimental realizations.

  15. Protein lethality investigated in terms of long range dynamical interactions.

    PubMed

    Rodrigues, Francisco A; Costa, Luciano da Fontoura

    2009-04-01

    The relationship between network structure/dynamics and biological function constitutes a fundamental issue in systems biology. However, despite many related investigations, the correspondence between structure and biological functions is not yet fully understood. A related subject that has deserved particular attention recently concerns how essentiality is related to the structure and dynamics of protein interactions. In the current work, protein essentiality is investigated in terms of long range influences in protein-protein interaction networks by considering simulated dynamical aspects. This analysis is performed with respect to outward activations, an approach which models the propagation of interactions between proteins by considering self-avoiding random walks. The obtained results are compared to protein local connectivity. Both the connectivity and the outward activations were found to be strongly related to protein essentiality. PMID:19396375

  16. Expanding the dynamic range of short wave infrared (SWIR) imagery

    NASA Astrophysics Data System (ADS)

    Hansen, Marc; Stern, Mark C.

    2010-04-01

    Advances have been made in short wave infrared (SWIR) imaging technology to address the most demanding imaging and surveillance applications. Multiple techniques have been developed and deployed in Goodrich's SWIR indium gallium arsenide (InGaAs) cameras to optimize the dynamic range performance of standard, commercial off-the-shelf (COTS) products. New developments have been implemented on multiple levels to give these cameras the unique ability to automatically compensate for changes in light levels over more than 5 orders of magnitude, while improving intra-scenic dynamic range. Features recently developed and implemented include a new Automatic Gain Control (AGC) algorithm, image flash suppression, and a proprietary image-enhancement algorithm with a simplified but powerful user command structure.

  17. Enstrophy inertial range dynamics in generalized two-dimensional turbulence

    NASA Astrophysics Data System (ADS)

    Iwayama, Takahiro; Watanabe, Takeshi

    2016-07-01

    We show that the transition to a k-1 spectrum in the enstrophy inertial range of generalized two-dimensional turbulence can be derived analytically using the eddy damped quasinormal Markovianized (EDQNM) closure. The governing equation for the generalized two-dimensional fluid system includes a nonlinear term with a real parameter α . This parameter controls the relationship between the stream function and generalized vorticity and the nonlocality of the dynamics. An asymptotic analysis accounting for the overwhelming dominance of nonlocal triads allows the k-1 spectrum to be derived based upon a scaling analysis. We thereby provide a detailed analytical explanation for the scaling transition that occurs in the enstrophy inertial range at α =2 in terms of the spectral dynamics of the EDQNM closure, which extends and enhances the usual phenomenological explanations.

  18. Linear dynamic range enhancement in a CMOS imager

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata (Inventor)

    2008-01-01

    A CMOS imager with increased linear dynamic range but without degradation in noise, responsivity, linearity, fixed-pattern noise, or photometric calibration comprises a linear calibrated dual gain pixel in which the gain is reduced after a pre-defined threshold level by switching in an additional capacitance. The pixel may include a novel on-pixel latch circuit that is used to switch in the additional capacitance.

  19. High Dynamic Range Characterization of the Trauma Patient Plasma Proteome

    SciTech Connect

    Liu, Tao; Qian, Weijun; Gritsenko, Marina A.; Xiao, Wenzhong; Moldawer, Lyle L.; Kaushal, Amit; Monroe, Matthew E.; Varnum, Susan M.; Moore, Ronald J.; Purvine, Samuel O.; Maier, Ronald V.; Davis, Ronald W.; Tompkins, Ronald G.; Camp, David G.; Smith, Richard D.

    2006-06-08

    While human plasma represents an attractive sample for disease biomarker discovery, the extreme complexity and large dynamic range in protein concentrations present significant challenges for characterization, candidate biomarker discovery, and validation. Herein, we describe a strategy that combines immunoaffinity subtraction and chemical fractionation based on cysteinyl peptide and N-glycopeptide captures with 2D-LC-MS/MS to increase the dynamic range of analysis for plasma. Application of this ''divide-and-conquer'' strategy to trauma patient plasma significantly improved the overall dynamic range of detection and resulted in confident identification of 22,267 unique peptides from four different peptide populations (cysteinyl peptides, non-cysteinyl peptides, N-glycopeptides, and non-glycopeptides) that covered 3654 nonredundant proteins. Numerous low-abundance proteins were identified, exemplified by 78 ''classic'' cytokines and cytokine receptors and by 136 human cell differentiation molecules. Additionally, a total of 2910 different N-glycopeptides that correspond to 662 N-glycoproteins and 1553 N-glycosylation sites were identified. A panel of the proteins identified in this study is known to be involved in inflammation and immune responses. This study established an extensive reference protein database for trauma patients, which provides a foundation for future high-throughput quantitative plasma proteomic studies designed to elucidate the mechanisms that underlie systemic inflammatory responses.

  20. Joint focus stacking and high dynamic range imaging

    NASA Astrophysics Data System (ADS)

    Qian, Qinchun; Gunturk, Bahadir K.; Batur, Aziz U.

    2013-01-01

    Focus stacking and high dynamic range (HDR) imaging are two paradigms of computational photography. Focus stacking aims to produce an image with greater depth of field (DOF) from a set of images taken with different focus distances, whereas HDR imaging aims to produce an image with higher dynamic range from a set of images taken with different exposure settings. In this paper, we present an algorithm which combines focus stacking and HDR imaging in order to produce an image with both higher dynamic range and greater DOF than any of the input images. The proposed algorithm includes two main parts: (i) joint photometric and geometric registration and (ii) joint focus stacking and HDR image creation. In the first part, images are first photometrically registered using an algorithm that is insensitive to small geometric variations, and then geometrically registered using an optical flow algorithm. In the second part, images are merged through weighted averaging, where the weights depend on both local sharpness and exposure information. We provide experimental results with real data to illustrate the algorithm. The algorithm is also implemented on a smartphone with Android operating system.

  1. Development of automatic target recognition for infrared sensor-based close-range land mine detector

    NASA Astrophysics Data System (ADS)

    Ngan, Peter; Garcia, Sigberto A.; Cloud, Eugene L.; Duvoisin, Herbert A., III; Long, Daniel T.; Hackett, Jay K.

    1995-06-01

    Infrared imagery scenes change continuously with environmental conditions. Strategic targets embedded in them are often difficult to be identified with the naked eye. An IR sensor-based mine detector must include Automatic Target Recognition (ATR) to detect and extract land mines from IR scenes. In the course of the ATR development process, mine signature data were collected using a commercial 8-12 (mu) spectral range FLIR, model Inframetrics 445L, and a commercial 3-5 (mu) starting focal planar array FLIR, model Infracam. These sensors were customized to the required field-of-view for short range operation. These baseline data were then input into a specialized parallel processor on which the mine detection algorithm is developed and trained. The ATR is feature-based and consists of several subprocesses to progress from raw input IR imagery to a neural network classifier for final nomination of the targets. Initially, image enhancement is used to remove noise and sensor artifact. Three preprocessing techniques, namely model-based segmentation, multi-element prescreener, and geon detector are then applied to extract specific features of the targets and to reject all objects that do not resemble mines. Finally, to further reduce the false alarm rate, the extracted features are presented to the neural network classifier. Depending on the operational circumstances, one of three neural network techniques will be adopted; back propagation, supervised real-time learning, or unsupervised real-time learning. The Close Range IR Mine Detection System is an Army program currently being experimentally developed to be demonstrated in the Army's Advanced Technology Demonstration in FY95. The ATR resulting from this program will be integrated in the 21st Century Land Warrior program in which the mine avoidance capability is its primary interest.

  2. Highly mobile laser ranging facilities of the Crustal Dynamics Project

    NASA Technical Reports Server (NTRS)

    Coates, R. J.

    1984-01-01

    Technical specifications, performance, and applications of the NASA transportable laser ranging systems (TLRS-1 and -2) for use in the Crustal Dynamics Program are described. TLRS-1 is truck-mounted, with the laser deployed through the roof. Interacting with the LAGEOS satellite, TLRS has a photoelectric receiver for gathering data on the roundtrip time of the laser beam for calculations of the range gate. The laser has a 0.1 nsec pulse at 3.5 mJ/pulse. Range is measured to within an error of 9 cm. The TLRS-2 version is configured for ease of air transport and modular breakdown and assembly. It has been activated on Easter Island. TLRS-3 and -4 are in development to serve as mobile units in South America and the Mediterranean area.

  3. Range of acceptable stimulus intensities: an estimator of dynamic range for intensive perceptual continua.

    PubMed

    Teghtsoonian, R; Teghtsoonian, M

    1997-07-01

    The dynamic range (DR) of a sensory system is the span (usually given in log units) from the lowest to highest intensities over which a continuously graded response is evoked, and may be a distinctive feature of each such system. Teghtsoonian (1971) proposed that, although DR varies widely over sensory systems, its subjective size (SDR) is invariant. Assuming the psychophysical power law, the exponent for any continuum is given by the ratio of subjective span to DR, both quantities expressed logarithmically. Thus, exponents are inversely related to the DR and many be interpreted as indexes of it. Because DR can be difficult or even dangerous to measure directly, we sought to define a smaller range representing some fixed proportion of DR that could be used in its place to test the hypothesis of an invariant subjective range. Observations manipulated the intensities of five target continua to produce the broadest range they found acceptable and reasonably comfortable, a range of acceptable stimulus intensities (RASIN). Combined with an assumed constant SDR (derived from previous research), RASINs accurately predicted exponents obtained by magnitude production from the same observers on the five continua, as well as exponents reported in the literature. PMID:9259639

  4. Electro-optical detector for use in a wide mass range mass spectrometer

    NASA Technical Reports Server (NTRS)

    Giffin, Charles E. (Inventor)

    1976-01-01

    An electro-optical detector is disclosed for use in a wide mass range mass spectrometer (MS), in the latter the focal plane is at or very near the exit end of the magnetic analyzer, so that a strong magnetic field of the order of 1000G or more is present at the focal plane location. The novel detector includes a microchannel electron multiplier array (MCA) which is positioned at the focal plane to convert ion beams which are focused by the MS at the focal plane into corresponding electron beams which are then accelerated to form visual images on a conductive phosphored surface. These visual images are then converted into images on the target of a vidicon camera or the like for electronic processing. Due to the strong magnetic field at the focal plane, in one embodiment of the invention, the MCA with front and back parallel ends is placed so that its front end forms an angle of not less than several degrees, preferably on the order of 10.degree.-20.degree., with respect to the focal plane, with the center line of the front end preferably located in the focal plane. In another embodiment the MCA is wedge-shaped, with its back end at an angle of about 10.degree.-20.degree. with respect to the front end. In this embodiment the MCA is placed so that its front end is located at the focal plane.

  5. Dynamic range compression in a liquid argon calorimeter

    SciTech Connect

    Cleland, W.E.; Lissauer, D.; Radeka, V.; Rescia, S.; Takai, H.; Wingerter-Seez, I.

    1996-12-31

    The anticipated range of particle energies at the LHC, coupled with the need for precision, low noise calorimetry makes severe demands on the dynamic range of the calorimeter readout. A common approach to this problem is to use shapers with two or more gain scales. In this paper, the authors describe their experience with a new approach in which a preamplifier with dynamic gain compression is used. An unavoidable consequence of dynamic gain adjustment is that the peaking time of the shaper output signal becomes amplitude dependent. The authors have carried out a test of such a readout system in the RD3 calorimeter, a liquid argon device with accordion geometry. The calibration system is used to determine both the gain of the individual channels as well as to map the shape of the waveform as a function of signal amplitude. A new procedure for waveform analysis, in which the fitted parameters describe the impulse response of the system, permits a straightforward translation of the calibration waveform to the waveform generated by a particle crossing the ionization gap. They find that the linearity and resolution of the calorimeter is equivalent to that obtained with linear preamplifiers, up to an energy of 200 GeV.

  6. Large Dynamic Range Simulations of Galaxies Hosting Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    Levine, Robyn

    2011-08-01

    The co-evolution of supermassive black holes (SMBHs) and their host galaxies is a rich problem, spanning a large-dynamic range and depending on many physical processes. Simulating the transport of gas and angular momentum from super-galactic scales all the way down to the outer edge of the black hole's accretion disk requires sophisticated numerical techniques with extensive treatment of baryonic physics. We use a hydrodynamic adaptive mesh refinement simulation to follow the growth and evolution of a typical disk galaxy hosting an SMBH, in a cosmological context (covering a dynamical range of 10 million!). We have adopted a piecemeal approach, focusing our attention on the gas dynamics in the central few hundred parsecs of the simulated galaxy (with boundary conditions provided by the larger cosmological simulation), and beginning with a simplified picture (no mergers or feedback). In this scenario, we find that the circumnuclear disk remains marginally stable against catastrophic fragmentation, allowing stochastic fueling of gas into the vicinity of the SMBH. I will discuss the successes and the limitations of these simulations, and their future direction.

  7. Fast parallel algorithms for short-range molecular dynamics

    SciTech Connect

    Plimpton, S.

    1993-05-01

    Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a subset of atoms; the second assigns each a subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently -- those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 10,000,000 atoms on three parallel supercomputers, the nCUBE 2, Intel iPSC/860, and Intel Delta. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and the Intel Delta performs about 30 times faster than a single Y-MP processor and 12 times faster than a single C90 processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

  8. Frequency-Modulated, Continuous-Wave Laser Ranging Using Photon-Counting Detectors

    NASA Technical Reports Server (NTRS)

    Erkmen, Baris I.; Barber, Zeb W.; Dahl, Jason

    2014-01-01

    Optical ranging is a problem of estimating the round-trip flight time of a phase- or amplitude-modulated optical beam that reflects off of a target. Frequency- modulated, continuous-wave (FMCW) ranging systems obtain this estimate by performing an interferometric measurement between a local frequency- modulated laser beam and a delayed copy returning from the target. The range estimate is formed by mixing the target-return field with the local reference field on a beamsplitter and detecting the resultant beat modulation. In conventional FMCW ranging, the source modulation is linear in instantaneous frequency, the reference-arm field has many more photons than the target-return field, and the time-of-flight estimate is generated by balanced difference- detection of the beamsplitter output, followed by a frequency-domain peak search. This work focused on determining the maximum-likelihood (ML) estimation algorithm when continuous-time photoncounting detectors are used. It is founded on a rigorous statistical characterization of the (random) photoelectron emission times as a function of the incident optical field, including the deleterious effects caused by dark current and dead time. These statistics enable derivation of the Cramér-Rao lower bound (CRB) on the accuracy of FMCW ranging, and derivation of the ML estimator, whose performance approaches this bound at high photon flux. The estimation algorithm was developed, and its optimality properties were shown in simulation. Experimental data show that it performs better than the conventional estimation algorithms used. The demonstrated improvement is a factor of 1.414 over frequency-domainbased estimation. If the target interrogating photons and the local reference field photons are costed equally, the optimal allocation of photons between these two arms is to have them equally distributed. This is different than the state of the art, in which the local field is stronger than the target return. The optimal

  9. Nonlinear tuning of microresonators for dynamic range enhancement

    PubMed Central

    Saghafi, M.; Dankowicz, H.; Lacarbonara, W.

    2015-01-01

    This paper investigates the development of a novel framework and its implementation for the nonlinear tuning of nano/microresonators. Using geometrically exact mechanical formulations, a nonlinear model is obtained that governs the transverse and longitudinal dynamics of multilayer microbeams, and also takes into account rotary inertia effects. The partial differential equations of motion are discretized, according to the Galerkin method, after being reformulated into a mixed form. A zeroth-order shift as well as a hardening effect are observed in the frequency response of the beam. These results are confirmed by a higher order perturbation analysis using the method of multiple scales. An inverse problem is then proposed for the continuation of the critical amplitude at which the transition to nonlinear response characteristics occurs. Path-following techniques are employed to explore the dependence on the system parameters, as well as on the geometry of bilayer microbeams, of the magnitude of the dynamic range in nano/microresonators. PMID:26345078

  10. Better forecasts of range dynamics using genetic data.

    PubMed

    Fordham, Damien A; Brook, Barry W; Moritz, Craig; Nogués-Bravo, David

    2014-08-01

    The spatiotemporal response of species to past global change must be understood for adaptive management and to make useful predictions. Characteristics of past population dynamics are imprinted in genes, yet these molecular 'log books' are just beginning to be used to improve forecasts of biotic responses to climate change. This is despite there now being robust quantitative frameworks to incorporate such information. A tighter integration of genetic data into models of species range dynamics should lead to more robust and validated predictions of the response of demographic and evolutionary processes to large-scale environmental change. The use of these multidisciplinary methods will help conservation scientists to better connect theory to the on-ground design and implementation of effective measures to protect biodiversity. PMID:24951394

  11. Shadow correction in high dynamic range images for generating orthophotos

    NASA Astrophysics Data System (ADS)

    Suzuki, Hideo; Chikatsu, Hirofumi

    2011-07-01

    High dynamic range imagery is widely used in remote sensing. With the widespread use of aerial digital cameras such as the DMC, ADS40, RMK-D, and UltraCamD, high dynamic range imaging is generally expected for generating minuteness orthophotos in digital aerial photogrammetry. However, high dynamic range images (12-bit, 4,096 gray levels) are generally compressed into an 8-bit depth digital image (256 gray levels) owing to huge amount of data and interface with peripherals such as monitors and printers. This means that a great deal of image data is eliminated from the original image, and this introduces a new shadow problem. In particular, the influence of shadows in urban areas causes serious problems when generating minuteness orthophotos and performing house detection. Therefore, shadow problems can be solved by addressing the image compression problems. There is a large body of literature on image compression techniques such as logarithmic compression and tone mapping algorithms. However, logarithmic compression tends to cause loss of details in dark and/or light areas. Furthermore, the logarithmic method intends to operate on the full scene. This means that high-resolution luminance information can not be obtained. Even though tone mapping algorithms have the ability to operate over both full scene and local scene, background knowledge is required. To resolve the shadow problem in digital aerial photogrammetry, shadow areas should be recognized and corrected automatically without the loss of luminance information. To this end, a practical shadow correction method using 12-bit real data acquired by DMC is investigated in this paper.

  12. Large dynamic range diagnostics for high current electron LINACs

    SciTech Connect

    Evtushenko, P.

    2013-11-07

    The Jefferson Lab FEL driver accelerator - Energy Recovery Linac has provided a beam with average current of up to 9 mA and beam energy of 135 MeV. The high power beam operations have allowed developing and testing methods and approaches required to set up and tune such a facility simultaneously for the high beam power and high beam quality required for high performance FEL operations. In this contribution we briefly review this experience and outline problems that are specific to high current - high power non-equilibrium linac beams. While the original strategy for beam diagnostics and tuning have proven to be quite successful, some shortcomings and unresolved issues were also observed. The most important issues are the non-equilibrium (non-Gaussian) nature of the linac beam and the presence of small intensity - large amplitude fraction of the beam a.k.a. beam halo. Thus we also present a list of the possible beam halo sources and discuss possible mitigations means. We argue that for proper understanding and management of the beam halo large dynamic range (>10{sup 6}) transverse and longitudinal beam diagnostics can be used. We also present results of transverse beam profile measurements with the dynamic range approaching 10{sup 5} and demonstrate the effect the increased dynamic range has on the beam characterization, i.e., emittance and Twiss parameters measurements. We also discuss near future work planned in this field and where the JLab FEL facility will be used for beam tests of the developed of new diagnostics.

  13. Large dynamic range diagnostics for high current electron LINACs

    SciTech Connect

    Evtushenko, Pavel

    2013-11-01

    The Jefferson Lab FEL driver accelerator - Energy Recovery Linac has provided a beam with average current of up to 9 mA and beam energy of 135 MeV. The high power beam operations have allowed developing and testing methods and approaches required to set up and tune such a facility simultaneously for the high beam power and high beam quality required for high performance FEL operations. In this contribution we briefly review this experience and outline problems that are specific to high current - high power non-equilibrium linac beams. While the original strategy for beam diagnostics and tuning have proven to be quite successful, some shortcomings and unresolved issues were also observed. The most important issues are the non-equilibrium (non-Gaussian) nature of the linac beam and the presence of small intensity - large amplitude fraction of the beam a.k.a. beam halo. Thus we also present a list of the possible beam halo sources and discuss possible mitigations means. We argue that for proper understanding and management of the beam halo large dynamic range (>10{sup 6}) transverse and longitudinal beam diagnostics can be used. We also present results of transverse beam profile measurements with the dynamic range approaching 10{sup 5} and demonstrate the effect the increased dynamic range has on the beam characterization, i.e., emittance and Twiss parameters measurements. We also discuss near future work planned in this field and where the JLab FEL facility will be used for beam tests of the developed of new diagnostics.

  14. Reconfigurable long-range phonon dynamics in optomechanical arrays.

    PubMed

    Xuereb, André; Genes, Claudiu; Pupillo, Guido; Paternostro, Mauro; Dantan, Aurélien

    2014-04-01

    We investigate periodic optomechanical arrays as reconfigurable platforms for engineering the coupling between multiple mechanical and electromagnetic modes and for exploring many-body phonon dynamics. Exploiting structural resonances in the coupling between light fields and collective motional modes of the array, we show that tunable effective long-range interactions between mechanical modes can be achieved. This paves the way towards the implementation of controlled phononic walks and heat transfer on densely connected graphs as well as the coherent transfer of excitations between distant elements of optomechanical arrays. PMID:24745417

  15. Low Power, Wide Dynamic Range Carbon Nanotube Vacuum Gauges

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama B.; Manohara, Harish M.

    2008-01-01

    This slide presentation presents carbon nanotube vacuum pressure sensor gauges that operate at low power and exhibit a wide-dynamic range based on microelectromechanical systems (MEMS) technology. The fabrication facility, and the formation process are shown. Pressure sensitivity was found to increase rapidly as the bias power was increased. In addition, by etching part of the thermal SiO2 beneath the tubes and minimizing heat conduction through the substrate, pressure sensitivity was extended toward lower pressures. Results are compared to a conventional thin film meander resistor, which was fabricated and whose pressure response was also measured for comparative purposes.

  16. Application of commercial star couplers to increase signal dynamic range

    SciTech Connect

    Whitcomb, B.M.; Smiley, V.N.; Flurer, R.L.; Nelson, L.K.

    1984-01-01

    Fused biconical tapered (FBT) fiber optic star couplers have been used in a variety of applications at the Nevada Test Site (NTS) in several diagnostic experiments to provide increased dynamic range for the recording devices or to divide the available signal between different recording devices. A number of installation problems have been manifested in this application of FBT couplers. The most severe problem results from the modal selection mechanism inherent in the design of FBT couplers. Substantial work has been done to characterize a variety of commercial couplers for this application.

  17. Tuning properties and dynamic range of type 1 vomeronasal receptors

    PubMed Central

    Haga-Yamanaka, Sachiko; Ma, Limei; Yu, C. Ron

    2015-01-01

    The mouse vomeronasal organ (VNO) expresses chemosensory receptors that detect intra-species as well as inter-species cues. The vomeronasal neurons are thought to be highly selective in their responses. The tuning properties of individual receptors remain difficult to characterize due to the lack of a robust heterologous expression system. Here, we take a transgenic approach to ectopically express two type 1 vomeronasal receptors in the mouse VNO and characterize their responses to steroid compounds. We find that V1rj2 and V1rj3 are sensitive to two sulfated estrogens (SEs) and can be activated by a broad variety of sulfated and glucuronidated steroids at high concentrations. Individual neurons exhibit narrow range of concentration-dependent activation. Collectively, a neuronal population expressing the same receptor covers a wide dynamic range in their responses to SEs. These properties recapitulate the response profiles of endogenous neurons to SEs. PMID:26236183

  18. Tuning properties and dynamic range of type 1 vomeronasal receptors.

    PubMed

    Haga-Yamanaka, Sachiko; Ma, Limei; Yu, C Ron

    2015-01-01

    The mouse vomeronasal organ (VNO) expresses chemosensory receptors that detect intra-species as well as inter-species cues. The vomeronasal neurons are thought to be highly selective in their responses. The tuning properties of individual receptors remain difficult to characterize due to the lack of a robust heterologous expression system. Here, we take a transgenic approach to ectopically express two type 1 vomeronasal receptors in the mouse VNO and characterize their responses to steroid compounds. We find that V1rj2 and V1rj3 are sensitive to two sulfated estrogens (SEs) and can be activated by a broad variety of sulfated and glucuronidated steroids at high concentrations. Individual neurons exhibit narrow range of concentration-dependent activation. Collectively, a neuronal population expressing the same receptor covers a wide dynamic range in their responses to SEs. These properties recapitulate the response profiles of endogenous neurons to SEs. PMID:26236183

  19. The MOLDY short-range molecular dynamics package

    NASA Astrophysics Data System (ADS)

    Ackland, G. J.; D'Mellow, K.; Daraszewicz, S. L.; Hepburn, D. J.; Uhrin, M.; Stratford, K.

    2011-12-01

    We describe a parallelised version of the MOLDY molecular dynamics program. This Fortran code is aimed at systems which may be described by short-range potentials and specifically those which may be addressed with the embedded atom method. This includes a wide range of transition metals and alloys. MOLDY provides a range of options in terms of the molecular dynamics ensemble used and the boundary conditions which may be applied. A number of standard potentials are provided, and the modular structure of the code allows new potentials to be added easily. The code is parallelised using OpenMP and can therefore be run on shared memory systems, including modern multicore processors. Particular attention is paid to the updates required in the main force loop, where synchronisation is often required in OpenMP implementations of molecular dynamics. We examine the performance of the parallel code in detail and give some examples of applications to realistic problems, including the dynamic compression of copper and carbon migration in an iron-carbon alloy. Program summaryProgram title: MOLDY Catalogue identifier: AEJU_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJU_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License version 2 No. of lines in distributed program, including test data, etc.: 382 881 No. of bytes in distributed program, including test data, etc.: 6 705 242 Distribution format: tar.gz Programming language: Fortran 95/OpenMP Computer: Any Operating system: Any Has the code been vectorised or parallelized?: Yes. OpenMP is required for parallel execution RAM: 100 MB or more Classification: 7.7 Nature of problem: Moldy addresses the problem of many atoms (of order 10 6) interacting via a classical interatomic potential on a timescale of microseconds. It is designed for problems where statistics must be gathered over a number of equivalent runs, such as

  20. Design of a ROIC with high dynamic range for LWIR FPAs

    NASA Astrophysics Data System (ADS)

    Zhai, Yongcheng; Ding, Ruijun

    2014-11-01

    In this paper, a high performance readout integrated circuit (ROIC) designed for long wave infrared (LWIR) detectors is introduced, which has high dynamic range (HDR). To accommodate the wide scene dynamic range requirement, special circuit architecture is used to the input unit cell. A capacitive feedback transimpedance amplifier (CTIA) as input circuit is used to provide high injection efficiency, low input resistance, good linearity, precise voltage bias. Because of the restriction of the layout area, four unit cells will share an integration capacitor and each unit cell has a correlated double sampling (CDS) circuit, which allows the infrared focal plane arrays (IRFPA) to be operated in full frame snapshot mode and provides the maximum integration time available. The charge transfer circuit is used and we don't need to consider the drive ability of the unit cell. The simulation results confirm that the ROIC provides over a factor of 70dB dynamic range with the 5.0v power supply.

  1. High dynamic range measurement of the pulse contrast in a Ti:sapphire/Nd:glass multiterawatt laser

    NASA Astrophysics Data System (ADS)

    Castanheira, Ana; Cardoso, Luís; Pires, Hugo; Figueira, Gonçalo

    2011-05-01

    We describe the design and implementation study of a high dynamic range, third order contrast-ratio measurement diagnostic for a high power laser chain. The device, known as Optical Parametric Amplification Correlator (OPAC) is based on degenerate three-wave mixing in a nonlinear crystal, it is self-referencing and compact. By measuring the idler pulse with a slow detector and a set of calibrated filters, a dynamic range of up to 1010 is achievable. The pulse contrast is to be characterized at the mJ-level, 10 Hz, Ti:sapphire pre-amplifier stage, in a time window of 100 ps.

  2. Generational Spreading Speed and the Dynamics of Population Range Expansion.

    PubMed

    Bateman, Andrew W; Neubert, Michael G; Krkošek, Martin; Lewis, Mark A

    2015-09-01

    Some of the most fundamental quantities in population ecology describe the growth and spread of populations. Population dynamics are often characterized by the annual rate of increase, λ, or the generational rate of increase, R0. Analyses involving R0 have deepened our understanding of disease dynamics and life-history complexities beyond that afforded by analysis of annual growth alone. While range expansion is quantified by the annual spreading speed, a spatial analog of λ, an R0-like expression for the rate of spread is missing. Using integrodifference models, we derive the appropriate generational spreading speed for populations with complex (stage-structured) life histories. The resulting measure, relevant to locations near the expanding edge of a (re)colonizing population, incorporates both local population growth and explicit spatial dispersal rather than solely growth across a population, as is the case for R0. The calculations for generational spreading speed are often simpler than those for annual spreading speed, and analytic or partial analytic solutions can yield insight into the processes that facilitate or slow a population's spatial spread. We analyze the spatial dynamics of green crabs, sea otters, and teasel as examples to demonstrate the flexibility of our methods and the intuitive insights that they afford. PMID:26655354

  3. Optimizing bandwidth and dynamic range of lumped Josephson parametric amplifiers

    NASA Astrophysics Data System (ADS)

    Eddins, A.; Vijay, R.; Macklin, C.; Minev, Z.; Siddiqi, I.

    2013-03-01

    Superconducting parametric amplifiers have revolutionized the field of quantum measurement by providing high gain, ultra-low noise amplification. They have been used successfully for high-fidelity qubit state measurements, probing nano-mechanical resonators, quantum feedback, and for microwave quantum optics experiments. Though several designs exist, a simple and robust architecture is the Lumped Josephson Parametric Amplifier (LJPA). This device consists of a capacitively shunted SQUID directly coupled to a transmission line to form a low quality factor (Q) nonlinear resonator. We discuss amplifiers which can be tuned over the full 4-8 GHz band with 20-25 dB of gain and 10 - 50 MHz of signal bandwidth. However, similar to other parametric amplifiers employing a resonant circuit, the LJPA suffers from low dynamic range and has a -1 dB gain compression point of order -130 dBm. We explore new designs comprised of an array of SQUIDs to improve the dynamic range. We will present the results of numerical simulations and preliminary experiments. We will also briefly discuss improvements obtained from different biasing methods and packaging. This research was supported by the Army Research Office under a QCT grant.

  4. Alternating-Z tripler with high dynamic range

    SciTech Connect

    Eimerl, D.; Milam, D.

    1996-10-10

    A KD*P alternating-Z tripler suitable for NIF consists of two detuned Type I doublers and one aligned Type II mixer. The dynamic range for efficient tripling is predicted to be larger for this arrangement than for a standard 2-crystal tripler. We tested an alternating-Z tripler that had doublers with thicknesses of 13 and 10 mm, and a 10-mm-thick mixer. All of the crystals were 80% deuterated. The model of this tripler provided an excellent description of the efficiencies that were measured using pulses with duration of 1 or 6 ns. We confirmed the importance for alternating-Z triplers of controlling the phase differences arising from wavelength dispersion in the air gap between the doublers. The confirmed wide dynamic range of this arrangement is of interest for conversion of the 21-ns Haan pulse, or for conversion of beams with significant intensity fluctuations. Compensation for wavelength dispersion in the gap between the crystals is not an issue if the crystals are in vacuum.

  5. Increasing Linear Dynamic Range of a CMOS Image Sensor

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata

    2007-01-01

    A generic design and a corresponding operating sequence have been developed for increasing the linear-response dynamic range of a complementary metal oxide/semiconductor (CMOS) image sensor. The design provides for linear calibrated dual-gain pixels that operate at high gain at a low signal level and at low gain at a signal level above a preset threshold. Unlike most prior designs for increasing dynamic range of an image sensor, this design does not entail any increase in noise (including fixed-pattern noise), decrease in responsivity or linearity, or degradation of photometric calibration. The figure is a simplified schematic diagram showing the circuit of one pixel and pertinent parts of its column readout circuitry. The conventional part of the pixel circuit includes a photodiode having a small capacitance, CD. The unconventional part includes an additional larger capacitance, CL, that can be connected to the photodiode via a transfer gate controlled in part by a latch. In the high-gain mode, the signal labeled TSR in the figure is held low through the latch, which also helps to adapt the gain on a pixel-by-pixel basis. Light must be coupled to the pixel through a microlens or by back illumination in order to obtain a high effective fill factor; this is necessary to ensure high quantum efficiency, a loss of which would minimize the efficacy of the dynamic- range-enhancement scheme. Once the level of illumination of the pixel exceeds the threshold, TSR is turned on, causing the transfer gate to conduct, thereby adding CL to the pixel capacitance. The added capacitance reduces the conversion gain, and increases the pixel electron-handling capacity, thereby providing an extension of the dynamic range. By use of an array of comparators also at the bottom of the column, photocharge voltages on sampling capacitors in each column are compared with a reference voltage to determine whether it is necessary to switch from the high-gain to the low-gain mode. Depending upon

  6. Calibration of semiconductor detectors in the 200-8500 keV range at VNIIM.

    PubMed

    Tereshchenko, Evgeny E; Moiseev, Nikolay

    2012-09-01

    At the ionising radiation department of the D.I. Mendeleyev Institute for Metrology, a semiconductor detector was calibrated in the energy range 200-8500 keV using (n,2γ) and (n,γ) reactions. Separate cylindrical targets (77 mm diameter and 10mm height) were made from mercuric sulphate, sodium chloride and metallic titanium. A (252)Cf spontaneous fission neutron source, placed in 150 mm diameter polyethylene ball, was used to generate thermal neutrons. The optimal target dimensions were determined taking into account the thermal neutron cross-sections and gamma-radiation attenuations in the target materials. The influence of the background radiation induced by neutrons from the walls, floors and ceilings was also taken into account. The shapes of the efficiency curves for point and volume sources in the 200-8500 keV range have been investigated. The experimental results are in good agreement with Monte-Carlo calculations. The emission rate of the 6.13 MeV photons from a (238)Pu-(13)C source was determined with an expanded uncertainty, U(c), of 10% (k=2). PMID:22512978

  7. Validating plastic scintillation detectors for photon dosimetry in the radiologic energy range

    PubMed Central

    Lessard, François; Archambault, Louis; Plamondon, Mathieu; Després, Philippe; Therriault-Proulx, François; Beddar, Sam; Beaulieu, Luc

    2012-01-01

    Purpose: Photon dosimetry in the kilovolt (kV) energy range represents a major challenge for diagnostic and interventional radiology and superficial therapy. Plastic scintillation detectors (PSDs) are potentially good candidates for this task. This study proposes a simple way to obtain accurate correction factors to compensate for the response of PSDs to photon energies between 80 and 150 kVp. The performance of PSDs is also investigated to determine their potential usefulness in the diagnostic energy range. Methods: A 1-mm-diameter, 10-mm-long PSD was irradiated by a Therapax SXT 150 unit using five different beam qualities made of tube potentials ranging from 80 to 150 kVp and filtration thickness ranging from 0.8 to 0.2 mmAl + 1.0 mmCu. The light emitted by the detector was collected using an 8-m-long optical fiber and a polychromatic photodiode, which converted the scintillation photons to an electrical current. The PSD response was compared with the reference free air dose rate measured with a calibrated Farmer NE2571 ionization chamber. PSD measurements were corrected using spectra-weighted corrections, accounting for mass energy-absorption coefficient differences between the sensitive volumes of the ionization chamber and the PSD, as suggested by large cavity theory (LCT). Beam spectra were obtained from x-ray simulation software and validated experimentally using a CdTe spectrometer. Correction factors were also obtained using Monte Carlo (MC) simulations. Percent depth dose (PDD) measurements were compensated for beam hardening using the LCT correction method. These PDD measurements were compared with uncorrected PSD data, PDD measurements obtained using Gafchromic films, Monte Carlo simulations, and previous data. Results: For each beam quality used, the authors observed an increase of the energy response with effective energy when no correction was applied to the PSD response. Using the LCT correction, the PSD response was almost energy independent, with

  8. Validating plastic scintillation detectors for photon dosimetry in the radiologic energy range

    SciTech Connect

    Lessard, Francois; Archambault, Louis; Plamondon, Mathieu; and others

    2012-09-15

    Purpose: Photon dosimetry in the kilovolt (kV) energy range represents a major challenge for diagnostic and interventional radiology and superficial therapy. Plastic scintillation detectors (PSDs) are potentially good candidates for this task. This study proposes a simple way to obtain accurate correction factors to compensate for the response of PSDs to photon energies between 80 and 150 kVp. The performance of PSDs is also investigated to determine their potential usefulness in the diagnostic energy range. Methods: A 1-mm-diameter, 10-mm-long PSD was irradiated by a Therapax SXT 150 unit using five different beam qualities made of tube potentials ranging from 80 to 150 kVp and filtration thickness ranging from 0.8 to 0.2 mmAl + 1.0 mmCu. The light emitted by the detector was collected using an 8-m-long optical fiber and a polychromatic photodiode, which converted the scintillation photons to an electrical current. The PSD response was compared with the reference free air dose rate measured with a calibrated Farmer NE2571 ionization chamber. PSD measurements were corrected using spectra-weighted corrections, accounting for mass energy-absorption coefficient differences between the sensitive volumes of the ionization chamber and the PSD, as suggested by large cavity theory (LCT). Beam spectra were obtained from x-ray simulation software and validated experimentally using a CdTe spectrometer. Correction factors were also obtained using Monte Carlo (MC) simulations. Percent depth dose (PDD) measurements were compensated for beam hardening using the LCT correction method. These PDD measurements were compared with uncorrected PSD data, PDD measurements obtained using Gafchromic films, Monte Carlo simulations, and previous data. Results: For each beam quality used, the authors observed an increase of the energy response with effective energy when no correction was applied to the PSD response. Using the LCT correction, the PSD response was almost energy independent, with

  9. Long-range forces: atmospheric neutrino oscillation at a magnetized detector

    SciTech Connect

    Samanta, Abhijit

    2011-09-01

    Among the combinations L{sub e}-L{sub μ}, L{sub e}-L{sub τ} and L{sub μ}-L{sub τ} any one can be gauged in anomaly free way with the standard model gauge group. The masses of these gauge bosons can be so light that it can induce long-range forces on the Earth due to the electrons in the Sun. This type of forces can be constrained significantly from neutrino oscillation. As the sign of the potential is opposite for neutrinos and antineutrinos, a magnetized iron calorimeter detector (ICAL) would be able to produce strong constraint on it. We have made conservative studies of these long-range forces with atmospheric neutrinos at ICAL considering only the muons of charge current interactions. We find stringent bounds on the couplings α{sub eμ,eτ} ∼< 1.65 × 10{sup −53} at 3σ CL with an exposure of 1 Mton·yr if there is no such force. For nonzero input values of the couplings we find that the potential V{sub eμ} opposes and V{sub eτ} helps to discriminate the mass hierarchy. However, both potentials help significantly to discriminate the octant of θ{sub 23}. The explanation of the anomaly in recent MINOS data (the difference of Δm{sub 32}{sup 2} for neutrinos and antineutrinos), using long-range force originated from the mixing of the gauge boson Z' of L{sub μ}-L{sub τ} with the standard model gauge boson Z, can be tested at ICAL at more than 5σ CL. We have also discussed how to disentangle this from the solution with CPT violation using the seasonal change of the distance between the Earth and the Sun.

  10. Detectors

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore; Bounds, John Alan; Allander, Krag

    2002-01-01

    The apparatus and method provide techniques through which both alpha and beta emission determinations can be made simultaneously using a simple detector structure. The technique uses a beta detector covered in an electrically conducting material, the electrically conducting material discharging ions generated by alpha emissions, and as a consequence providing a measure of those alpha emissions. The technique also offers improved mountings for alpha detectors and other forms of detectors against vibration and the consequential effects vibration has on measurement accuracy.

  11. Image sensor with high dynamic range linear output

    NASA Technical Reports Server (NTRS)

    Yadid-Pecht, Orly (Inventor); Fossum, Eric R. (Inventor)

    2007-01-01

    Designs and operational methods to increase the dynamic range of image sensors and APS devices in particular by achieving more than one integration times for each pixel thereof. An APS system with more than one column-parallel signal chains for readout are described for maintaining a high frame rate in readout. Each active pixel is sampled for multiple times during a single frame readout, thus resulting in multiple integration times. The operation methods can also be used to obtain multiple integration times for each pixel with an APS design having a single column-parallel signal chain for readout. Furthermore, analog-to-digital conversion of high speed and high resolution can be implemented.

  12. Fractional dynamics of coupled oscillators with long-range interaction

    SciTech Connect

    Tarasov, Vasily E.; Zaslavsky, George M.

    2006-06-15

    We consider a one-dimensional chain of coupled linear and nonlinear oscillators with long-range powerwise interaction. The corresponding term in dynamical equations is proportional to 1/|n-m|{sup {alpha}}{sup +1}. It is shown that the equation of motion in the infrared limit can be transformed into the medium equation with the Riesz fractional derivative of order {alpha}, when 0<{alpha}<2. We consider a few models of coupled oscillators and show how their synchronization can appear as a result of bifurcation, and how the corresponding solutions depend on {alpha}. The presence of a fractional derivative also leads to the occurrence of localized structures. Particular solutions for fractional time-dependent complex Ginzburg-Landau (or nonlinear Schroedinger) equation are derived. These solutions are interpreted as synchronized states and localized structures of the oscillatory medium.

  13. High-dynamic range DMD-based IR scene projector

    NASA Astrophysics Data System (ADS)

    Dupuis, Julia R.; Mansur, David J.; Vaillancourt, Robert; Benedict-Gill, Ryan; Newbry, Scott P.

    2013-03-01

    OPTRA is developing a next-generation digital micromirror device (DMD) based two-band infrared scene projector (IRSP) with infinite bit-depth independent of frame rate and an order of magnitude improvement in contrast over the state of the art. Traditionally DMD-based IRSPs have offered larger format and superior uniformity and pixel operability relative to resistive and diode arrays, however, they have been limited in contrast and also by the inherent bitdepth / frame rate tradeoff imposed by pulse width modulation (PWM). OPTRA's high dynamic range IRSP (HIDRA SP) has broken this dependency with a dynamic structured illumination solution. The HIDRA SP uses a source conditioning DMD to impose the structured illumination on two projector DMDs - one for each spectral band. The source conditioning DMD is operated in binary mode, and the relay optics which form the structured illumination act as a low pass spatial filter. The structured illumination is therefore spatially grayscaled and more importantly is analog with no PWM. In addition, the structured illumination concentrates energy where bright object will be projected and extinguishes energy in dark regions; the result is a significant improvement in contrast. The projector DMDs are operated with 8-bit PWM, however the total projected image is analog with no bit-depth / frame rate dependency. In this paper we describe our progress towards the development, build, and test of a prototype HIDRA SP.

  14. High-dynamic range DMD-based infrared scene projector

    NASA Astrophysics Data System (ADS)

    Mansur, David J.; Vaillancourt, Robert; Benedict-Gill, Ryan; Newbry, Scott P.; Rentz Dupuis, Julia

    2013-05-01

    OPTRA is developing a next-generation digital micromirror device (DMD) based two-band infrared scene projector (IRSP) with infinite bit-depth independent of frame rate and an order of magnitude improvement in contrast over the state of the art. Traditionally DMD-based IRSPs have offered larger format and superior uniformity and pixel operability relative to resistive and diode arrays, however, they have been limited in contrast and also by the inherent bitdepth / frame rate tradeoff imposed by pulse width modulation (PWM). OPTRA's high dynamic range IRSP (HIDRA SP) has broken this dependency with a dynamic structured illumination solution. The HIDRA SP uses a source conditioning DMD to impose the structured illumination on two projector DMDs - one for each spectral band. The source conditioning DMD is operated in binary mode, and the relay optics which form the structured illumination act as a low pass spatial filter. The structured illumination is therefore spatially grayscaled and more importantly is analog with no PWM. In addition, the structured illumination concentrates energy where bright object will be projected and extinguishes energy in dark regions; the result is a significant improvement in contrast. The projector DMDs are operated with 8-bit PWM, however the total projected image is analog with no bit-depth / frame rate dependency. In this paper we describe our progress towards the development, build, and test of a prototype HIDRA SP.

  15. Dynamic range in the C. elegans brain network

    NASA Astrophysics Data System (ADS)

    Antonopoulos, Chris G.

    2016-01-01

    We study external electrical perturbations and their responses in the brain dynamic network of the Caenorhabditis elegans soil worm, given by the connectome of its large somatic nervous system. Our analysis is inspired by a realistic experiment where one stimulates externally specific parts of the brain and studies the persistent neural activity triggered in other cortical regions. In this work, we perturb groups of neurons that form communities, identified by the walktrap community detection method, by trains of stereotypical electrical Poissonian impulses and study the propagation of neural activity to other communities by measuring the corresponding dynamic ranges and Steven law exponents. We show that when one perturbs specific communities, keeping the rest unperturbed, the external stimulations are able to propagate to some of them but not to all. There are also perturbations that do not trigger any response. We found that this depends on the initially perturbed community. Finally, we relate our findings for the former cases with low neural synchronization, self-criticality, and large information flow capacity, and interpret them as the ability of the brain network to respond to external perturbations when it works at criticality and its information flow capacity becomes maximal.

  16. Adaptive detection of range-spread targets by the generalized detector

    NASA Astrophysics Data System (ADS)

    Tuzlukov, Vyacheslav

    2011-06-01

    In this paper, we address an adaptive detection of range-spread targets or targets embedded in Gaussian noise with unknown covariance matrix by the generalized detector (GD) based on the generalized approach to signal processing (GASP) in noise. We assume that cells or secondary data that are free of signal components are available. Those secondary data are supposed to process either the same covariance matrix or the same structure of the covariance matrix of the cells under test. In this context, under designing GD we use a two-step procedure. The criteria lead to receivers ensuring the constant false alarm rate (CFAR) property with respect to unknown quantities. A thorough performance assessment of the proposed detection strategies highlights that the two-step design procedure of decision-making rule in accordance with GASP is to be preferred with respect to the plain one. In fact, the proposed design procedure leads to GD that achieves significant improvement in detection performance under several situation of practical interest. For estimation purposes, we resort to a set of secondary data. In addition to the classical homogeneous scenario, we consider the case wherein the power value of primary and secondary data vectors is not the same. The design of adaptive detection algorithms based on GASP in the case of mismatch is a problem of primary concern for radar applications. We demonstrate that two-step design procedure based on GASP ensures minimal loss.

  17. Molecular dynamics simulations of bubble nucleation in dark matter detectors

    NASA Astrophysics Data System (ADS)

    Denzel, Philipp; Diemand, Jürg; Angélil, Raymond

    2016-01-01

    Bubble chambers and droplet detectors used in dosimetry and dark matter particle search experiments use a superheated metastable liquid in which nuclear recoils trigger bubble nucleation. This process is described by the classical heat spike model of F. Seitz [Phys. Fluids (1958-1988) 1, 2 (1958), 10.1063/1.1724333], which uses classical nucleation theory to estimate the amount and the localization of the deposited energy required for bubble formation. Here we report on direct molecular dynamics simulations of heat-spike-induced bubble formation. They allow us to test the nanoscale process described in the classical heat spike model. 40 simulations were performed, each containing about 20 million atoms, which interact by a truncated force-shifted Lennard-Jones potential. We find that the energy per length unit needed for bubble nucleation agrees quite well with theoretical predictions, but the allowed spike length and the required total energy are about twice as large as predicted. This could be explained by the rapid energy diffusion measured in the simulation: contrary to the assumption in the classical model, we observe significantly faster heat diffusion than the bubble formation time scale. Finally we examine α -particle tracks, which are much longer than those of neutrons and potential dark matter particles. Empirically, α events were recently found to result in louder acoustic signals than neutron events. This distinction is crucial for the background rejection in dark matter searches. We show that a large number of individual bubbles can form along an α track, which explains the observed larger acoustic amplitudes.

  18. Molecular dynamics simulations of bubble nucleation in dark matter detectors.

    PubMed

    Denzel, Philipp; Diemand, Jürg; Angélil, Raymond

    2016-01-01

    Bubble chambers and droplet detectors used in dosimetry and dark matter particle search experiments use a superheated metastable liquid in which nuclear recoils trigger bubble nucleation. This process is described by the classical heat spike model of F. Seitz [Phys. Fluids (1958-1988) 1, 2 (1958)PFLDAS0031-917110.1063/1.1724333], which uses classical nucleation theory to estimate the amount and the localization of the deposited energy required for bubble formation. Here we report on direct molecular dynamics simulations of heat-spike-induced bubble formation. They allow us to test the nanoscale process described in the classical heat spike model. 40 simulations were performed, each containing about 20 million atoms, which interact by a truncated force-shifted Lennard-Jones potential. We find that the energy per length unit needed for bubble nucleation agrees quite well with theoretical predictions, but the allowed spike length and the required total energy are about twice as large as predicted. This could be explained by the rapid energy diffusion measured in the simulation: contrary to the assumption in the classical model, we observe significantly faster heat diffusion than the bubble formation time scale. Finally we examine α-particle tracks, which are much longer than those of neutrons and potential dark matter particles. Empirically, α events were recently found to result in louder acoustic signals than neutron events. This distinction is crucial for the background rejection in dark matter searches. We show that a large number of individual bubbles can form along an α track, which explains the observed larger acoustic amplitudes. PMID:26871185

  19. He II Liquid/Vapor Phase Separator for Large Dynamic Range Operation

    NASA Technical Reports Server (NTRS)

    Nakano, A.; Petrac, D.

    1995-01-01

    A phase separator, which separates helium vapor from liquid superfluid helium (He II), is an indispensable device for space cryogenics. The most recent approach to the Space Infrared Telescope Facility (SIRTF) uses a new design concept in which only the detector package is cold at launch, the remainder of the telescope being subsequently cooled to operating temperature on orbit. Therefore, a large dynamic operational range is required of the cryogen system. This is a report of initial laboratory test results with candidate porous plugs as phase separators. Mass flow rates and pressure and temperature differences across a porous plug were measured in this experiment. Relatively large mass flow rates were observed even at small pressure differences. In the high mass flow rate region, a hysteresis was observed with increases and decreases of the pressure difference. A linear theory is proposed and compared with experimental data to explain several phenomena observed in this system.

  20. MRI dynamic range and its compatibility with signal transmission media

    NASA Astrophysics Data System (ADS)

    Gabr, Refaat E.; Schär, Michael; Edelstein, Arthur D.; Kraitchman, Dara L.; Bottomley, Paul A.; Edelstein, William A.

    2009-06-01

    As the number of MRI phased array coil elements grows, interactions among cables connecting them to the system receiver become increasingly problematic. Fiber optic or wireless links would reduce electromagnetic interference, but their dynamic range (DR) is generally less than that of coaxial cables. Raw MRI signals, however, have a large DR because of the high signal amplitude near the center of k-space. Here, we study DR in MRI in order to determine the compatibility of MRI multicoil imaging with non-coaxial cable signal transmission. Since raw signal data are routinely discarded, we have developed an improved method for estimating the DR of MRI signals from conventional magnitude images. Our results indicate that the DR of typical surface coil signals at 3 T for human subjects is less than 88 dB, even for three-dimensional acquisition protocols. Cardiac and spine coil arrays had a maximum DR of less than 75 dB and head coil arrays less than 88 dB. The DR derived from magnitude images is in good agreement with that measured from raw data. The results suggest that current analog fiber optic links, with a spurious-free DR of 60-70 dB at 500 kHz bandwidth, are not by themselves adequate for transmitting MRI data from volume or array coils with DR ˜90 dB. However, combining analog links with signal compression might make non-coaxial cable signal transmission viable.

  1. High Dynamic Range Beam Imaging with Two Simultaneously Sampling CCDs

    SciTech Connect

    Evtushenko, Pavel; Douglas, David R.; Legg, Robert A.; Tennant, Christopher D.

    2013-05-01

    Transverse beam profile measurement with sufficiently high dynamic range (HDR) is a key diagnostic to measure the beam halo, understand its sources and evolution. In this contribution we describe our initial experience with the HDR imaging of the electron beam at the JLab FEL. On contrary to HDR measurements made with wire scanners in counting mode, which provide only two or three 1D projections of transverse beam distribution, imaging allows to measure the distribution itself. That is especially important for non-equilibrium beams in the LINACs. The measurements were made by means of simultaneous imaging with two CCD sensors with different exposure time. Two images are combined then numerically in to one HDR image. The system works as an online tool providing HDR images at 4 Hz. An optically polished YAG:Ce crystal with the thickness of 100 {micro}m was used for the measurements. When tested with a laser beam images with the DR of about 10{sup 5} were obtained. With the electron beam the DR was somewhat smaller due to the limitations in the time structure of the tune-up beam macro pulse.

  2. Quantitative high dynamic range beam profiling for fluorescence microscopy

    SciTech Connect

    Mitchell, T. J. Saunter, C. D.; O’Nions, W.; Girkin, J. M.; Love, G. D.

    2014-10-15

    Modern developmental biology relies on optically sectioning fluorescence microscope techniques to produce non-destructive in vivo images of developing specimens at high resolution in three dimensions. As optimal performance of these techniques is reliant on the three-dimensional (3D) intensity profile of the illumination employed, the ability to directly record and analyze these profiles is of great use to the fluorescence microscopist or instrument builder. Though excitation beam profiles can be measured indirectly using a sample of fluorescent beads and recording the emission along the microscope detection path, we demonstrate an alternative approach where a miniature camera sensor is used directly within the illumination beam. Measurements taken using our approach are solely concerned with the illumination optics as the detection optics are not involved. We present a miniature beam profiling device and high dynamic range flux reconstruction algorithm that together are capable of accurately reproducing quantitative 3D flux maps over a large focal volume. Performance of this beam profiling system is verified within an optical test bench and demonstrated for fluorescence microscopy by profiling the low NA illumination beam of a single plane illumination microscope. The generality and success of this approach showcases a widely flexible beam amplitude diagnostic tool for use within the life sciences.

  3. High dynamic range imaging of non-static scenes

    NASA Astrophysics Data System (ADS)

    Hossain, Imtiaz; Gunturk, Bahadir K.

    2011-01-01

    A well-known technique in high dynamic range (HDR) imaging is to take multiple photographs, each one with a different exposure time, and then combine them to produce an HDR image. Unless the scene is static and the camera position is fixed, this process creates the so-called "ghosting" artifacts. In order to handle non-static scenes or moving camera, images have to be spatially registered. This is a challenging problem because most optical flow estimation algorithm depends on the constant brightness assumption, which is obviously not the case in HDR imaging. In this paper, we present an algorithm to estimate the dense motion field in image sequences with photometric variations. In an alternating optimization scheme, the algorithm estimates both the dense motion field and the photometric mapping. As a latent information, the occluded regions are extracted and excluded from the photometric mapping estimation. We include experiments with both synthetic and real imagery to demonstrate the efficacy of the proposed algorithm. We show that the ghosting artifacts are reduced significantly in HDR imaging of non-static scenes.

  4. Dynamic range of atomically thin vibrating nanomechanical resonators

    SciTech Connect

    Wang, Zenghui; Feng, Philip X.-L.

    2014-03-10

    Atomically thin two-dimensional (2D) crystals offer attractive properties for making resonant nanoelectromechanical systems (NEMS) operating at high frequencies. While the fundamental limits of linear operation in such systems are important, currently there is very little quantitative knowledge of the linear dynamic range (DR) and onset of nonlinearity in these devices, which are different than in conventional 1D NEMS such as nanotubes and nanowires. Here, we present theoretical analysis and quantitative models that can be directly used to predict the DR of vibrating 2D circular drumhead NEMS resonators. We show that DR has a strong dependence ∝10log(E{sub Y}{sup 3/2}ρ{sub 3D}{sup -1/2}rtε{sup 5/2}) on device parameters, in which strain ε plays a particularly important role in these 2D systems, dominating over dimensions (radius r, thickness t). This study formulizes the effects from device physical parameters upon DR and sheds light on device design rules toward achieving high DR in 2D NEMS vibrating at radio and microwave frequencies.

  5. High dynamic range coherent imaging using compressed sensing.

    PubMed

    He, Kuan; Sharma, Manoj Kumar; Cossairt, Oliver

    2015-11-30

    In both lensless Fourier transform holography (FTH) and coherent diffraction imaging (CDI), a beamstop is used to block strong intensities which exceed the limited dynamic range of the sensor, causing a loss in low-frequency information, making high quality reconstructions difficult or even impossible. In this paper, we show that an image can be recovered from high-frequencies alone, thereby overcoming the beamstop problem in both FTH and CDI. The only requirement is that the object is sparse in a known basis, a common property of most natural and manmade signals. The reconstruction method relies on compressed sensing (CS) techniques, which ensure signal recovery from incomplete measurements. Specifically, in FTH, we perform compressed sensing (CS) reconstruction of captured holograms and show that this method is applicable not only to standard FTH, but also multiple or extended reference FTH. For CDI, we propose a new phase retrieval procedure, which combines Fienup's hybrid input-output (HIO) method and CS. Both numerical simulations and proof-of-principle experiments are shown to demonstrate the effectiveness and robustness of the proposed CS-based reconstructions in dealing with missing data in both FTH and CDI. PMID:26698723

  6. Method for increasing the dynamic range of mass spectrometers

    DOEpatents

    Belov, Mikhail; Smith, Richard D.; Udseth, Harold R.

    2004-09-07

    A method for enhancing the dynamic range of a mass spectrometer by first passing a sample of ions through the mass spectrometer having a quadrupole ion filter, whereupon the intensities of the mass spectrum of the sample are measured. From the mass spectrum, ions within this sample are then identified for subsequent ejection. As further sampling introduces more ions into the mass spectrometer, the appropriate rf voltages are applied to a quadrupole ion filter, thereby selectively ejecting the undesired ions previously identified. In this manner, the desired ions may be collected for longer periods of time in an ion trap, thus allowing better collection and subsequent analysis of the desired ions. The ion trap used for accumulation may be the same ion trap used for mass analysis, in which case the mass analysis is performed directly, or it may be an intermediate trap. In the case where collection is an intermediate trap, the desired ions are accumulated in the intermediate trap, and then transferred to a separate mass analyzer. The present invention finds particular utility where the mass analysis is performed in an ion trap mass spectrometer or a Fourier transform ion cyclotron resonance mass spectrometer.

  7. High Dynamic Range Beam Imaging with Two Simultaneously Sampling CCDs

    SciTech Connect

    Evtushenko, Pavel E.; Douglas, David R.

    2013-06-01

    Transverse beam profile measurement with sufficiently high dynamic range (HDR) is a key diagnostic to measure the beam halo, understand its sources and evolution. In this contribution we describe our initial experience with the HDR imaging of the electron beam at the JLab FEL. On contrary to HDR measurements made with wire scanners in counting mode, which provide only two or three 1D projections of transverse beam distribution, imaging allows to measure the distribution itself. That is especially important for non-equilibrium beams in the LINACs. The measurements were made by means of simultaneous imaging with two CCD sensors with different exposure time. Two images are combined then numerically in to one HDR image. The system works as an online tool providing HDR images at 4 Hz. An optically polished YAG:Ce crystal with the thickness of 100 {micro}m was used for the measurements. When tested with a laser beam images with the DR of about 10{sup 5} were obtained. With the electron beam the DR was somewhat smaller due to the limitations in the time structure of the tune-up beam macro pulse.

  8. Joint high dynamic range imaging and color demosaicing

    NASA Astrophysics Data System (ADS)

    Herwig, Johannes; Pauli, Josef

    2011-11-01

    A non-parametric high dynamic range (HDR) fusion approach is proposed that works on raw images of single-sensor color imaging devices which incorporate the Bayer pattern. Thereby the non-linear opto-electronic conversion function (OECF) is recovered before color demosaicing, so that interpolation artifacts do not aect the photometric calibration. Graph-based segmentation greedily clusters the exposure set into regions of roughly constant radiance in order to regularize the OECF estimation. The segmentation works on Gaussian-blurred sensor images, whereby the articial gray value edges caused by the Bayer pattern are smoothed away. With the OECF known the 32-bit HDR radiance map is reconstructed by weighted summation from the dierently exposed raw sensor images. Because the radiance map contains lower sensor noise than the individual images, it is nally demosaiced by weighted bilinear interpolation which prevents the interpolation across edges. Here, the previous segmentation results from the photometric calibration are utilized. After demosaicing, tone mapping is applied, whereby remaining interpolation artifacts are further damped due to the coarser tonal quantization of the resulting image.

  9. Quantitative high dynamic range beam profiling for fluorescence microscopy.

    PubMed

    Mitchell, T J; Saunter, C D; O'Nions, W; Girkin, J M; Love, G D

    2014-10-01

    Modern developmental biology relies on optically sectioning fluorescence microscope techniques to produce non-destructive in vivo images of developing specimens at high resolution in three dimensions. As optimal performance of these techniques is reliant on the three-dimensional (3D) intensity profile of the illumination employed, the ability to directly record and analyze these profiles is of great use to the fluorescence microscopist or instrument builder. Though excitation beam profiles can be measured indirectly using a sample of fluorescent beads and recording the emission along the microscope detection path, we demonstrate an alternative approach where a miniature camera sensor is used directly within the illumination beam. Measurements taken using our approach are solely concerned with the illumination optics as the detection optics are not involved. We present a miniature beam profiling device and high dynamic range flux reconstruction algorithm that together are capable of accurately reproducing quantitative 3D flux maps over a large focal volume. Performance of this beam profiling system is verified within an optical test bench and demonstrated for fluorescence microscopy by profiling the low NA illumination beam of a single plane illumination microscope. The generality and success of this approach showcases a widely flexible beam amplitude diagnostic tool for use within the life sciences. PMID:25362409

  10. Fast-gated single-photon avalanche diode for extremely wide dynamic-range applications

    NASA Astrophysics Data System (ADS)

    Tosi, A.; Dalla Mora, A.; Zappa, F.; Cova, S.; Contini, D.; Pifferi, A.; Spinelli, L.; Torricelli, A.; Cubeddu, R.

    2009-02-01

    Near-Infrared (NIR) picosecond pulsed light shined in biological tissues (e.g. brain, breast, muscle) offers the opportunity for non-invasive quantitative spectroscopy and imaging. Tissue optical properties determine high attenuation levels of optical signals and nanosecond scale dynamics. Therefore high-performance set-ups are needed. We aimed at developing a winning photodetector-electronics pairing for a broad field of multiple-wavelengths faint-signal optical investigations, like brain functional imaging, optical mammography, in-vivo spectroscopy, drugs characterization, molecular imaging. We present an electronic instrumentation based on silicon Single-Photon Avalanche Diode (SPAD) and fast-gating frontend electronics, in a Time-Correlated Single-Photon Counting (TCSPC) set-up. Detection efficiency is very high (50% at 550 nm and 15% at 800 nm), allowing acquisition of very faint optical signals on a wide spectral range. Furthermore, the fast-gating circuitry enables the detector very quickly (500 ps) and for user-selectable (200 ps - 510 ns) durations, thus allowing the rejection of very intense optical signals (e.g. scattered light from more superficial layers of the tissue under investigation) preceding useful faint signals (e.g. scattered light from sub-cellular components or coming from "deep" tissue layers), which would be otherwise overwhelmed and made undetectable. We attain photon-counting dynamic ranges up to 107 with photon-timing resolutions of 95 ps.

  11. High dynamic range pixel architecture for advanced diagnostic medical x-ray imaging applications

    SciTech Connect

    Izadi, Mohammad Hadi; Karim, Karim S.

    2006-05-15

    The most widely used architecture in large-area amorphous silicon (a-Si) flat panel imagers is a passive pixel sensor (PPS), which consists of a detector and a readout switch. While the PPS has the advantage of being compact and amenable toward high-resolution imaging, small PPS output signals are swamped by external column charge amplifier and data line thermal noise, which reduce the minimum readable sensor input signal. In contrast to PPS circuits, on-pixel amplifiers in a-Si technology reduce readout noise to levels that can meet even the stringent requirements for low noise digital x-ray fluoroscopy (<1000 noise electrons). However, larger voltages at the pixel input cause the output of the amplified pixel to become nonlinear thus reducing the dynamic range. We reported a hybrid amplified pixel architecture based on a combination of PPS and amplified pixel designs that, in addition to low noise performance, also resulted in large-signal linearity and consequently higher dynamic range [K. S. Karim et al., Proc. SPIE 5368, 657 (2004)]. The additional benefit in large-signal linearity, however, came at the cost of an additional pixel transistor. We present an amplified pixel design that achieves the goals of low noise performance and large-signal linearity without the need for an additional pixel transistor. Theoretical calculations and simulation results for noise indicate the applicability of the amplified a-Si pixel architecture for high dynamic range, medical x-ray imaging applications that require switching between low exposure, real-time fluoroscopy and high-exposure radiography.

  12. Parsimonious snow model explains reindeer population dynamics and ranging behavior

    NASA Astrophysics Data System (ADS)

    Kohler, J.; Aanes, R.; Hansen, B. B.; Loe, L.; Severinsen, T.; Stien, A.

    2008-12-01

    Winter snow is a key factor affecting polar ecosystems. One example is the strong negative correlation of winter precipitation with fluctuations in population in some high-arctic animal populations. Ice layers within and at the base of the snowpack have particularly deleterious effects on such populations. Svalbard reindeer have small home ranges and are vulnerable to local "locked pasture" events due to ground-ice formation. When pastures are locked, reindeer are faced with the decision of staying, living off a diminishing fat store, or trying to escape beyond the unknown spatial borders of the ice. Both strategies may inhibit reproduction and increase mortality, leading to population declines. Here we assess the impact of winter snow and ice on the population dynamics of an isolated herd of Svalbard reindeer near Ny-Ålesund, monitored annually since 1978, with a retrospective analysis of the winter snowpack. Because there are no long-term observational records of snow or snow properties, such as ice layers, we must recourse to snowpack modeling. A parsimonious model of snow and ground-ice thickness is driven with daily temperature and precipitation data collected at a nearby weather station. The model uses the degree-day concept and has three adjustable parameters which are tuned to correlate model snow and ground-ice thicknesses to the limited observations available: April snow accumulation measurements on two local glaciers, and a limited number of ground-ice observations made in recent years. Parameter values used are comparable to those reported elsewhere. We find that modeled mean winter ground-ice thickness explains a significant percentage of the observed variance in reindeer population growth rate. Adding other explanatory parameters, such as modeled mean winter snowpack thickness or previous years' population size does not significanly improve the relation. Furthermore, positioning data from a small subset of reindeer show that model icing events are

  13. High dynamic range active pixel sensor arrays for digital x-ray imaging using a-Si:H

    SciTech Connect

    Lai, Jackson; Nathan, Arokia; Rowlands, John

    2006-05-15

    Hydrogenated amorphous silicon (a-Si:H) active matrix flat panel imagers have gained considerable significance in large area digital imaging applications, in view of their large area readout capability. Current interests lie in a multifaceted a-Si:H array which is compatible with multiple x-ray imaging modalities. This concept entails a single detector system with sufficient dynamic range and variable signal gain. This article reports on an active pixel sensor (APS) array with high dynamic range and programable gain for multimodality x-ray imaging. Initial results have demonstrated sensitivity from subpicoampere to nanoampere photocurrent, which proves amenable for both low-dosage dynamic imaging and high input static imaging. In addition, the programable system signal gain alleviates problems such as output saturation and ensures signal readout linearity to further improve the exploitable dynamic range. Together with external amplification, this APS circuit delivers the performance needed in terms of signal gain, dynamic range, and readout rate entailed by fluoroscopic and radiographic imaging applications.

  14. A dynamic attenuator improves spectral imaging with energy-discriminating, photon counting detectors.

    PubMed

    Hsieh, Scott S; Pelc, Norbert J

    2015-03-01

    Energy-discriminating, photon counting (EDPC) detectors have high potential in spectral imaging applications but exhibit degraded performance when the incident count rate approaches or exceeds the characteristic count rate of the detector. In order to reduce the requirements on the detector, we explore the strategy of modulating the X-ray flux field using a recently proposed dynamic, piecewise-linear attenuator. A previous paper studied this modulation for photon counting detectors but did not explore the impact on spectral applications. In this work, we modeled detection with a bipolar triangular pulse shape (Taguchi et al., 2011) and estimated the Cramer-Rao lower bound (CRLB) of the variance of material selective and equivalent monoenergetic images, assuming deterministic errors at high flux could be corrected. We compared different materials for the dynamic attenuator and found that rare earth elements, such as erbium, outperformed previously proposed materials such as iron in spectral imaging. The redistribution of flux reduces the variance or dose, consistent with previous studies on benefits with conventional detectors. Numerical simulations based on DICOM datasets were used to assess the impact of the dynamic attenuator for detectors with several different characteristic count rates. The dynamic attenuator reduced the peak incident count rate by a factor of 4 in the thorax and 44 in the pelvis, and a 10 Mcps/mm (2) EDPC detector with dynamic attenuator provided generally superior image quality to a 100 Mcps/mm (2) detector with reference bowtie filter for the same dose. The improvement is more pronounced in the material images. PMID:25265628

  15. A phenomenological model to study the energy discrimination potential of GEM detectors in the X-ray range

    NASA Astrophysics Data System (ADS)

    Causa, F.; Pacella, D.; Romano, A.; Claps, G.; Gabellieri, L.

    2015-11-01

    An empirical model is presented to study the operational characteristics of GEM detectors in the X-ray range and, in particular, its energy discrimination potential. Physical processes are modelled from a macroscopic point of view, to provide a simple but effective simulation tool. Experimental data from monochromatic and combined, two-line fluorescence sources, are used to validate the model and provide realistic estimates of the empirical parameters used in the description. The model is instrumental in understanding the role of threshold, gain and operational conditions to achieve energy-discriminating response. Appropriate choices of gas mixtures, threshold and gain will permit to best utilise this new functionality of the GEM to improve the efficiency of image detectors in applications ranging from in-situ imaging in harsh environments, such as tokamaks, to composite materials analysis and medical imaging of tissues.

  16. A compendium of results from long-range alpha detector soil surface monitoring: June 1992--May 1994

    SciTech Connect

    Garner, S.E.; Bounds, J.A.; Allander, K.S.; Johnson, J.D.; MacArthur, D.W.; Caress, R.W.

    1994-11-01

    Soil surface monitors based on long-range alpha detector (LRAD) technology are being used to monitor alpha contamination at various sites in the Department of Energy complex. These monitors, the large soil-surface monitor (LSSM) and the small soil-surface monitor (SSSM), were used to help characterize sites at Fernald, Ohio, and active or inactive firing sites at Sandia National Laboratories and Los Alamos National Laboratory. Monitoring results are presented herein in chronological order.

  17. Toward real-time dynamic close-range photogrammetry

    NASA Astrophysics Data System (ADS)

    Urquhart, Colin W.; Siebert, J. P.

    1993-10-01

    The goal of the Active Stereo Probe (ASP) project is the on-line recovery of 3D surfaces from stereo images captured using a dynamic binocular robot vision system. In this paper, we present results of 3D surface recovery using scale-space automatic stereo-matching. These results have been considerably enhanced by bathing the scene in textured light provided by the ASP active illumination source. We also describe a two stage approach that incorporates photogrammetric techniques into the ASP system to maintain calibration during dynamic system operation. Direct Linear Transform based calibration provides an initial static calibration. Thereafter, dynamic calibration is maintained by exploiting high resolution encoders to track the systems external orientation parameters and thereby constrain the search space of subsequent bundle adjustment. We expect this strategy to achieve the speed and accuracy required to satisfy many on-line 3D surface recovery applications.

  18. Satellite laser ranging using superconducting nanowire single-photon detectors at 1064  nm wavelength.

    PubMed

    Xue, Li; Li, Zhulian; Zhang, Labao; Zhai, Dongsheng; Li, Yuqiang; Zhang, Sen; Li, Ming; Kang, Lin; Chen, Jian; Wu, Peiheng; Xiong, Yaoheng

    2016-08-15

    Satellite laser ranging operating at 1064 nm wavelength using superconducting nanowire single-photon detectors (SNSPDs) is successfully demonstrated. A SNSPD with an intrinsic quantum efficiency of 80% and a dark count rate of 100 cps at 1064 nm wavelength is developed and introduced to Yunnan Observatory in China. With improved closed-loop telescope systems (field of view of about 26''), satellites including Cryosat, Ajisai, and Glonass with ranges of 1600 km, 3100 km, and 19,500 km, respectively, are experimentally ranged with mean echo rates of 1200/min, 4200/min, and 320/min, respectively. To the best of our knowledge, this is the first demonstration of laser ranging for satellites using SNSPDs at 1064 nm wavelength. Theoretical analysis of the detection efficiency and the mean echo rate for typical satellites indicate that it is possible for a SNSPD to range satellites from low Earth orbit to geostationary Earth orbit. PMID:27519105

  19. Dynamically stable check valve concept for wide flow range

    NASA Technical Reports Server (NTRS)

    Absalom, J. G.

    1968-01-01

    Poppet-type check valve design accommodates a wide flow range without the usual chatter problem at low flow conditions. This pressure isolation check valve is proposed for the J-2 rocket pneumatic package.

  20. A high-dynamic range (HDR) back-side illuminated (BSI) CMOS image sensor for extreme UV detection

    NASA Astrophysics Data System (ADS)

    Wang, Xinyang; Wolfs, Bram; Bogaerts, Jan; Meynants, Guy; BenMoussa, Ali

    2012-03-01

    This paper describes a back-side illuminated 1 Megapixel CMOS image sensor made in 0.18um CMOS process for EUV detection. The sensor applied a so-call "dual-transfer" scheme to achieve low noise, high dynamic range. The EUV sensitivity is achieved with backside illumination use SOI-based solution. The epitaxial silicon layer is thinned down to less than 3um. The sensor is tested and characterized at 5nm to 30nm illumination. At 17.4nm targeted wavelength, the detector external QE (exclude quantum yield factor) reaches almost 60%. The detector reaches read noise of 1.2 ph- (@17.4nm), i.e. close to performance of EUV photon counting.

  1. An LC-IMS-MS Platform Providing Increased Dynamic Range for High-Throughput Proteomic Studies

    SciTech Connect

    Baker, Erin Shammel; Livesay, Eric A.; Orton, Daniel J.; Moore, Ronald J.; Danielson, William F.; Prior, David C.; Ibrahim, Yehia M.; Lamarche, Brian L.; Mayampurath, Anoop M.; Schepmoes, Athena A.; Hopkins, Derek F.; Tang, Keqi; Smith, Richard D.; Belov, Mikhail E.

    2010-02-05

    A high-throughput approach and platform using 15 minute reversed-phase capillary liquid chromatography (RPLC) separations in conjunction with ion mobility spectrometry-mass spectrometry (IMS-MS) measurements was evaluated for the rapid analysis of complex proteomics samples. To test the separation quality of the short LC gradient, a sample was prepared by spiking twenty reference peptides at varying concentrations from 1 ng/mL to 10 µg/mL into a tryptic digest of mouse blood plasma and analyzed with both a LC-Linear Ion Trap Fourier Transform (FT) MS and LC-IMS-TOF MS. The LC-FT MS detected thirteen out of the twenty spiked peptides that had concentrations ≥100 ng/mL. In contrast, the drift time selected mass spectra from the LC-IMS-TOF MS analyses yielded identifications for nineteen of the twenty peptides with all spiking level present. The greater dynamic range of the LC-IMS-TOF MS system could be attributed to two factors. First, the LC-IMS-TOF MS system enabled drift time separation of the low concentration spiked peptides from the high concentration mouse peptide matrix components, reducing signal interference and background, and allowing species to be resolved that would otherwise be obscured by other components. Second, the automatic gain control (AGC) in the linear ion trap of the hybrid FT MS instrument limits the number of ions that are accumulated to reduce space charge effects, but in turn limits the achievable dynamic range compared to the TOF detector.

  2. A 1-channel 3-band wide dynamic range compression chip for vibration transducer of implantable hearing aids.

    PubMed

    Kim, Dongwook; Seong, Kiwoong; Kim, Myoungnam; Cho, Jinho; Lee, Jyunghyun

    2014-01-01

    In this paper, a digital audio processing chip which uses a wide dynamic range compression (WDRC) algorithm is designed and implemented for implantable hearing aids system. The designed chip operates at a single voltage of 3.3V and drives a 16 bit parallel input and output at 32 kHz sample. The designed chip has 1-channel 3-band WDRC composed of a FIR filter bank, a level detector, and a compression part. To verify the performance of the designed chip, we measured the frequency separations of bands and compression gain control to reflect the hearing threshold level. PMID:24211991

  3. Dynamic flat panel detector versus image intensifier in cardiac imaging: dose and image quality

    NASA Astrophysics Data System (ADS)

    Vano, E.; Geiger, B.; Schreiner, A.; Back, C.; Beissel, J.

    2005-12-01

    The practical aspects of the dosimetric and imaging performance of a digital x-ray system for cardiology procedures were evaluated. The system was configured with an image intensifier (II) and later upgraded to a dynamic flat panel detector (FD). Entrance surface air kerma (ESAK) to phantoms of 16, 20, 24 and 28 cm of polymethyl methacrylate (PMMA) and the image quality of a test object were measured. Images were evaluated directly on the monitor and with numerical methods (noise and signal-to-noise ratio). Information contained in the DICOM header for dosimetry audit purposes was also tested. ESAK values per frame (or kerma rate) for the most commonly used cine and fluoroscopy modes for different PMMA thicknesses and for field sizes of 17 and 23 cm for II, and 20 and 25 cm for FD, produced similar results in the evaluated system with both technologies, ranging between 19 and 589 µGy/frame (cine) and 5 and 95 mGy min-1 (fluoroscopy). Image quality for these dose settings was better for the FD version. The 'study dosimetric report' is comprehensive, and its numerical content is sufficiently accurate. There is potential in the future to set those systems with dynamic FD to lower doses than are possible in the current II versions, especially for digital cine runs, or to benefit from improved image quality.

  4. High-performance quantum ring detector for the 1-3 terahertz range

    SciTech Connect

    Bhowmick, S.; Huang, G.; Guo, W.; Lee, C. S.; Bhattacharya, P.; Ariyawansa, G.; Perera, A. G. U.

    2010-06-07

    Molecular beam epitaxy of InAs/GaAs quantum dots and their subsequent transformation to quantum rings by postepitaxy thermal annealing have been investigated. Photoconductive detectors with multiple quantum ring layers in the active region exhibit dark current density approx10{sup -8} A/cm{sup 2} at a bias of 2 V at 4.2 K. The rings have a single bound state, and emission of photoexcited carriers gives rise to a spectral response peaking at 1.82 THz (165 mum) at 5.2 K. Peak responsivity of 25 A/W, specific detectivity, D*, of 1x10{sup 16} Jones and a total quantum efficiency of 19% are measured with 1 V bias at 5.2 K. At 10 K and 1 V, D*approx3x10{sup 15} Jones is measured.

  5. Motor Controller System For Large Dynamic Range of Motor Operation

    NASA Technical Reports Server (NTRS)

    Howard, David E. (Inventor); Alhorn, Dean C. (Inventor); Smith, Dennis A. (Inventor); Dutton, Kenneth R. (Inventor); Paulson, Mitchell Scott (Inventor)

    2006-01-01

    A motor controller system uses a rotary sensor with a plurality of signal conditioning units, coupled to the rotary sensor. Each of these units, which is associated with a particular range of motor output shaft rotation rates, generate a feedback signal indicative of the position of the motor s output shaft. A controller (i) converts a selected motor output shaft rotation rate to a corresponding incremental amount of rotational movement for a selected fixed time period, (ii) selects, at periodic completions of the selected fixed time period, the feedback signal from one of the signal conditioning units for which the particular range of motor output shaft rotation rates associated therewith encompasses the selected motor output shaft rotation rate, and (iii) generates a motor drive signal based on a difference between the incremental amount of rotational movement and the feedback signal from the selected one of the signal conditioning Units.

  6. The dynamics of biogeographic ranges in the deep sea.

    PubMed

    McClain, Craig R; Hardy, Sarah Mincks

    2010-12-01

    Anthropogenic disturbances such as fishing, mining, oil drilling, bioprospecting, warming, and acidification in the deep sea are increasing, yet generalities about deep-sea biogeography remain elusive. Owing to the lack of perceived environmental variability and geographical barriers, ranges of deep-sea species were traditionally assumed to be exceedingly large. In contrast, seamount and chemosynthetic habitats with reported high endemicity challenge the broad applicability of a single biogeographic paradigm for the deep sea. New research benefiting from higher resolution sampling, molecular methods and public databases can now more rigorously examine dispersal distances and species ranges on the vast ocean floor. Here, we explore the major outstanding questions in deep-sea biogeography. Based on current evidence, many taxa appear broadly distributed across the deep sea, a pattern replicated in both the abyssal plains and specialized environments such as hydrothermal vents. Cold waters may slow larval metabolism and development augmenting the great intrinsic ability for dispersal among many deep-sea species. Currents, environmental shifts, and topography can prove to be dispersal barriers but are often semipermeable. Evidence of historical events such as points of faunal origin and climatic fluctuations are also evident in contemporary biogeographic ranges. Continued synthetic analysis, database construction, theoretical advancement and field sampling will be required to further refine hypotheses regarding deep-sea biogeography. PMID:20667884

  7. The dynamics of biogeographic ranges in the deep sea

    PubMed Central

    McClain, Craig R.; Hardy, Sarah Mincks

    2010-01-01

    Anthropogenic disturbances such as fishing, mining, oil drilling, bioprospecting, warming, and acidification in the deep sea are increasing, yet generalities about deep-sea biogeography remain elusive. Owing to the lack of perceived environmental variability and geographical barriers, ranges of deep-sea species were traditionally assumed to be exceedingly large. In contrast, seamount and chemosynthetic habitats with reported high endemicity challenge the broad applicability of a single biogeographic paradigm for the deep sea. New research benefiting from higher resolution sampling, molecular methods and public databases can now more rigorously examine dispersal distances and species ranges on the vast ocean floor. Here, we explore the major outstanding questions in deep-sea biogeography. Based on current evidence, many taxa appear broadly distributed across the deep sea, a pattern replicated in both the abyssal plains and specialized environments such as hydrothermal vents. Cold waters may slow larval metabolism and development augmenting the great intrinsic ability for dispersal among many deep-sea species. Currents, environmental shifts, and topography can prove to be dispersal barriers but are often semipermeable. Evidence of historical events such as points of faunal origin and climatic fluctuations are also evident in contemporary biogeographic ranges. Continued synthetic analysis, database construction, theoretical advancement and field sampling will be required to further refine hypotheses regarding deep-sea biogeography. PMID:20667884

  8. Testing the Equivalence Principle in an Einstein Elevator: Detector Dynamics and Gravity Perturbations

    NASA Technical Reports Server (NTRS)

    Hubbard, Dorthy (Technical Monitor); Lorenzini, E. C.; Shapiro, I. I.; Cosmo, M. L.; Ashenberg, J.; Parzianello, G.; Iafolla, V.; Nozzoli, S.

    2003-01-01

    We discuss specific, recent advances in the analysis of an experiment to test the Equivalence Principle (EP) in free fall. A differential accelerometer detector with two proof masses of different materials free falls inside an evacuated capsule previously released from a stratospheric balloon. The detector spins slowly about its horizontal axis during the fall. An EP violation signal (if present) will manifest itself at the rotational frequency of the detector. The detector operates in a quiet environment as it slowly moves with respect to the co-moving capsule. There are, however, gravitational and dynamical noise contributions that need to be evaluated in order to define key requirements for this experiment. Specifically, higher-order mass moments of the capsule contribute errors to the differential acceleration output with components at the spin frequency which need to be minimized. The dynamics of the free falling detector (in its present design) has been simulated in order to estimate the tolerable errors at release which, in turn, define the release mechanism requirements. Moreover, the study of the higher-order mass moments for a worst-case position of the detector package relative to the cryostat has led to the definition of requirements on the shape and size of the proof masses.

  9. High Dynamic Range Complex Impedance Measurement System for Petrophysical Usage

    NASA Astrophysics Data System (ADS)

    Chen, R.; He, X.; Yao, H.; Tan, S.; Shi, H.; Shen, R.; Yan, C.; Zeng, P.; He, L.; Qiao, N.; Xi, F.; Zhang, H.; Xie, J.

    2015-12-01

    Spectral induced polarization method (SIP) or complex resistivity method is increasing its application in metalliferous ore exploration, hydrocarbon exploration, underground water exploration, monitoring of environment pollution, and the evaluation of environment remediation. And the measurement of complex resistivity or complex impedance of rock/ore sample and polluted water plays a fundamental role in improving the application effect of SIP and the application scope of SIP. However, current instruments can't guaranty the accuracy of measurement when the resistance of sample is less than 10Ω or great than 100kΩ. A lot of samples, such as liquid, polluted sea water, igneous rock, limestone, and sandstone, can't be measured with reliable complex resistivity result. Therefore, this problem projects a shadow in the basic research and application research of SIP. We design a high precision measurement system from the study of measurement principle, sample holder, and measurement instrument. We design input buffers in a single board. We adopt operation amplifier AD549 in this system because of its ultra-high input impedance and ultra-low current noise. This buffer is good in acquiring potential signal across high impedance sample. By analyzing the sources of measurement error and errors generated by the measurement system, we propose a correction method to remove the error in order to achieve high quality complex impedance measurement for rock and ore samples. This measurement system can improve the measurement range of the complex impedance to 0.1 Ω ~ 10 GΩ with amplitude error less than 0.1% and phase error less than 0.1mrad when frequency ranges as 0.01 Hz ~ 1 kHz. We tested our system on resistors with resistance as 0.1Ω ~ 10 GΩ in frequency range as 1 Hz ~ 1000 Hz, and the measurement error is less than 0.1 mrad. We also compared the result with LCR bridge and SCIP, we can find that the bridge's measuring range only reaches 100 MΩ, SCIP's measuring range

  10. Population dynamics and range expansion in nine-banded armadillos.

    PubMed

    Loughry, William J; Perez-Heydrich, Carolina; McDonough, Colleen M; Oli, Madan K

    2013-01-01

    Understanding why certain species can successfully colonize new areas while others do not is a central question in ecology. The nine-banded armadillo (Dasypus novemcinctus) is a conspicuous example of a successful invader, having colonized much of the southern United States in the last 200 years. We used 15 years (1992-2006) of capture-mark-recapture data from a population of armadillos in northern Florida in order to estimate, and examine relationships among, various demographic parameters that may have contributed to this ongoing range expansion. Modeling across a range of values for γ, the probability of juveniles surviving in the population until first capture, we found that population growth rates varied from 0.80 for γ = 0.1, to 1.03 for γ = 1.0. Growth rates approached 1.0 only when γ ≥ 0.80, a situation that might not occur commonly because of the high rate of disappearance of juveniles. Net reproductive rate increased linearly with γ, but life expectancy (estimated at 3 years) was independent of γ. We also found that growth rates were lower during a 3-year period of hardwood removal that removed preferred habitat than in the years preceding or following. Life-table response experiment (LTRE) analysis indicated the decrease in growth rate during logging was primarily due to changes in survival rates of adults. Likewise, elasticity analyses of both deterministic and stochastic population growth rates revealed that survival parameters were more influential on population growth than were those related to reproduction. Collectively, our results are consistent with recent theories regarding biological invasions which posit that populations no longer at the leading edge of range expansion do not exhibit strong positive growth rates, and that high reproductive output is less critical in predicting the likelihood of successful invasion than are life-history strategies that emphasize allocation of resources to future, as opposed to current, reproduction

  11. Population Dynamics and Range Expansion in Nine-Banded Armadillos

    PubMed Central

    Loughry, William J.; Perez-Heydrich, Carolina; McDonough, Colleen M.; Oli, Madan K.

    2013-01-01

    Understanding why certain species can successfully colonize new areas while others do not is a central question in ecology. The nine-banded armadillo (Dasypus novemcinctus) is a conspicuous example of a successful invader, having colonized much of the southern United States in the last 200 years. We used 15 years (1992–2006) of capture-mark-recapture data from a population of armadillos in northern Florida in order to estimate, and examine relationships among, various demographic parameters that may have contributed to this ongoing range expansion. Modeling across a range of values for γ, the probability of juveniles surviving in the population until first capture, we found that population growth rates varied from 0.80 for γ = 0.1, to 1.03 for γ = 1.0. Growth rates approached 1.0 only when γ ≥0.80, a situation that might not occur commonly because of the high rate of disappearance of juveniles. Net reproductive rate increased linearly with γ, but life expectancy (estimated at 3 years) was independent of γ. We also found that growth rates were lower during a 3-year period of hardwood removal that removed preferred habitat than in the years preceding or following. Life-table response experiment (LTRE) analysis indicated the decrease in growth rate during logging was primarily due to changes in survival rates of adults. Likewise, elasticity analyses of both deterministic and stochastic population growth rates revealed that survival parameters were more influential on population growth than were those related to reproduction. Collectively, our results are consistent with recent theories regarding biological invasions which posit that populations no longer at the leading edge of range expansion do not exhibit strong positive growth rates, and that high reproductive output is less critical in predicting the likelihood of successful invasion than are life-history strategies that emphasize allocation of resources to future, as opposed to current

  12. Large dynamic range Atomic Force Microscope for overlay improvements

    NASA Astrophysics Data System (ADS)

    Kuiper, Stefan; Fritz, Erik; Crowcombe, Will; Liebig, Thomas; Kramer, Geerten; Witvoet, Gert; Duivenvoorde, Tom; Overtoom, Ton; Rijnbeek, Ramon; van Zwet, Erwin; van Dijsseldonk, Anton; den Boef, Arie; Beems, Marcel; Levasier, Leon

    2016-03-01

    Nowadays most overlay metrology tools assess the overlay performance based on marker features which are deposited next to the functional device features within each layer of the semiconductor device. However, correct overlay of the relatively coarse marker features does not directly guarantee correct overlay of the much smaller device features. This paper presents the development of a tool that allows to measure the relative distance between the marker and device features within each layer of the semiconductor device, which can be used to improve the overlay at device feature level. In order to be effective, the marker to device feature distance should be measured with sub-nanometer measurement uncertainty over several millimeters range. Furthermore, the tool should be capable of profiling the marker features to allows prediction of the location interpretation of the optical diffraction based alignment sensors, which are sensitive for potential asymmetry of the marker features. To enable this, a highly stable Atomic Force Microscope system is being developed. The probe is positioned relative to the wafer with a 6DOF controlled hexapod stage, which has a relatively large positioning range of 8x8mm. The position and orientation of this stage is measured relative to the wafer using 6 interferometers via a highly stable metrology frame. A tilted probe concept is utilized to allow profiling of the high aspect ratio marker and device features. Current activities are aimed at demonstrating the measurement capabilities of the developed AFM system.

  13. Calibration and GEANT4 Simulations of the Phase II Proton Compute Tomography (pCT) Range Stack Detector

    SciTech Connect

    Uzunyan, S. A.; Blazey, G.; Boi, S.; Coutrakon, G.; Dyshkant, A.; Francis, K.; Hedin, D.; Johnson, E.; Kalnins, J.; Zutshi, V.; Ford, R.; Rauch, J. E.; Rubinov, P.; Sellberg, G.; Wilson, P.; Naimuddin, M.

    2015-12-29

    Northern Illinois University in collaboration with Fermi National Accelerator Laboratory (FNAL) and Delhi University has been designing and building a proton CT scanner for applications in proton treatment planning. The Phase II proton CT scanner consists of eight planes of tracking detectors with two X and two Y coordinate measurements both before and after the patient. In addition, a range stack detector consisting of a stack of thin scintillator tiles, arranged in twelve eight-tile frames, is used to determine the water equivalent path length (WEPL) of each track through the patient. The X-Y coordinates and WEPL are required input for image reconstruction software to find the relative (proton) stopping powers (RSP) value of each voxel in the patient and generate a corresponding 3D image. In this Note we describe tests conducted in 2015 at the proton beam at the Central DuPage Hospital in Warrenville, IL, focusing on the range stack calibration procedure and comparisons with the GEANT~4 range stack simulation.

  14. Single-Photon Detectors for Time-of-Flight Range Imaging

    NASA Astrophysics Data System (ADS)

    Stoppa, David; Simoni, Andrea

    We live in a three-dimensional (3D) world and thanks to the stereoscopic vision provided by our two eyes, in combination with the powerful neural network of the brain we are able to perceive the distance of the objects. Nevertheless, despite the huge market volume of digital cameras, solid-state image sensors can capture only a two-dimensional (2D) projection, of the scene under observation, losing a variable of paramount importance, i.e., the scene depth. On the contrary, 3D vision tools could offer amazing possibilities of improvement in many areas thanks to the increased accuracy and reliability of the models representing the environment. Among the great variety of distance measuring techniques and detection systems available, this chapter will treat only the emerging niche of solid-state, scannerless systems based on the TOF principle and using a detector SPAD-based pixels. The chapter is organized into three main parts. At first, TOF systems and measuring techniques will be described. In the second part, most meaningful sensor architectures for scannerless TOF distance measurements will be analyzed, focusing onto the circuital building blocks required by time-resolved image sensors. Finally, a performance summary is provided and a perspective view for the near future developments of SPAD-TOF sensors is given.

  15. A long-range, wide field-of-view infrared eyeblink detector.

    PubMed

    Ryan, Steven B; Detweiler, Krystal L; Holland, Kyle H; Hord, Michael A; Bracha, Vlastislav

    2006-04-15

    Classical conditioning of the eyeblink response in the rabbit is one of the most advanced models of learning and memory in the mammalian brain. Successful use of the eyeblink conditioning paradigm requires precise measurements of the eyeblink response. One common technique of eyelid movement detection utilizes measurements of infrared (IR) light reflected from the surface of the eye. The performance of current IR sensors, however, is limited by their sensitivity to ambient infrared noise, by their small field-of-view and by short working distances. To address these limitations, we developed an IR eyeblink detector consisting of a pulsing (62.5 kHz) IR light emitting diode (LED) paired with a silicon IR photodiode and circuit that synchronously demodulates the recorded signal and rejects background IR noise. The working distance of the sensor exceeds 20 mm, and the field-of-view is larger than the area of a rabbit's eye. Due to its superior characteristics, the new sensor is ideally suited for both standard eyeblink conditioning and for studies that utilize IR-containing visual stimuli and/or that are conducted in an environment contaminated with IR noise. PMID:16257057

  16. Holarctic genetic structure and range dynamics in the woolly mammoth

    PubMed Central

    Palkopoulou, Eleftheria; Dalén, Love; Lister, Adrian M.; Vartanyan, Sergey; Sablin, Mikhail; Sher, Andrei; Edmark, Veronica Nyström; Brandström, Mikael D.; Germonpré, Mietje; Barnes, Ian; Thomas, Jessica A.

    2013-01-01

    Ancient DNA analyses have provided enhanced resolution of population histories in many Pleistocene taxa. However, most studies are spatially restricted, making inference of species-level biogeographic histories difficult. Here, we analyse mitochondrial DNA (mtDNA) variation in the woolly mammoth from across its Holarctic range to reconstruct its history over the last 200 thousand years (kyr). We identify a previously undocumented major mtDNA lineage in Europe, which was replaced by another major mtDNA lineage 32–34 kyr before present (BP). Coalescent simulations provide support for demographic expansions at approximately 121 kyr BP, suggesting that the previous interglacial was an important driver for demography and intraspecific genetic divergence. Furthermore, our results suggest an expansion into Eurasia from America around 66 kyr BP, coinciding with the first exposure of the Bering Land Bridge during the Late Pleistocene. Bayesian inference indicates Late Pleistocene demographic stability until 20–15 kyr BP, when a severe population size decline occurred. PMID:24026825

  17. Ultrafast pump-probe microscopy with high temporal dynamic range.

    PubMed

    Domke, Matthias; Rapp, Stephan; Schmidt, Michael; Huber, Heinz P

    2012-04-23

    Ultrafast pump-probe microscopy is a common method for time and space resolved imaging of short and ultra-short pulse laser ablation. The temporal delay between the ablating pump pulse and the illuminating probe pulse is tuned either by an optical delay, resulting in several hundred femtoseconds temporal resolution for delay times up to a few ns, or by an electronic delay, resulting in several nanoseconds resolution for longer delay times. In this work we combine both delay types for temporally high resolved observations of complete ablation processes ranging from femtoseconds to microseconds, while ablation is initiated by an ultrafast 660 fs laser pump pulse. For this purpose, we also demonstrate the calibration of the delay time zero point, the synchronization of both probe sources, as well as a method for image quality enhancing. In addition, we present for the first time to our knowledge pump-probe microscopy investigations of the complete substrate side selective ablation process of molybdenum films on glass. The initiation of mechanical film deformation is observed at about 400 ps, continues until approximately 15 ns, whereupon a Mo disk is sheared off free from thermal effects due to a directly induced laser lift-off ablation process. PMID:22535122

  18. Development of a longer range standoff millimetre wave radar concealed threat detector

    NASA Astrophysics Data System (ADS)

    Bowring, Nicholas J.; Southgate, Matthew J.; Andrews, David A.; Rezgui, Nacer D.; Harmer, Stuart W.; O'Reilly, Dean

    2013-05-01

    A millimeter wave (75 - 110 GHz) polarimetric radar system (MiRTLE) has been developed for the detection of threat objects, such as guns, knives, or explosive devices, which have been concealed under clothing upon the human body. The system uses a Gaussian lens antenna to enable operation at stand-off ranges up to 25 meters. By utilizing ultra-wideband Swept Frequency Continuous Wave Radar very high range resolution (~ 10mm) is realized. The system is capable of detecting objects positioned in front of the body and of measuring the range of a target. By interpretation of the scattered waveform, the presence of a wide spectrum of threat items concealed on the human body may be detected. Threat detection is autonomously rendered by application of a neural network to the scattered time domain, polarimetric radar returns and the system may be taught to alarm or reject certain classes of objects; this allows for highly specific or broad spectrum threat detection. The radar system is portable and operator steerable allowing standoff monitoring of moving human targets in real time. Rapid (1ms) sweep times and fast signal acquisition and processing allow decisions to be made at video frame rates (30 fps) and integrated directly to a video feed providing the operator with a field of view and facilitating aiming. Performance parameters for detection of guns and simulated explosive devices are presented for ranges up to 25 meters.

  19. Estimability and simple dynamical analyses of range (range-rate range-difference) observations to artificial satellites. [laser range observations to LAGEOS using non-Bayesian statistics

    NASA Technical Reports Server (NTRS)

    Vangelder, B. H. W.

    1978-01-01

    Non-Bayesian statistics were used in simulation studies centered around laser range observations to LAGEOS. The capabilities of satellite laser ranging especially in connection with relative station positioning are evaluated. The satellite measurement system under investigation may fall short in precise determinations of the earth's orientation (precession and nutation) and earth's rotation as opposed to systems as very long baseline interferometry (VLBI) and lunar laser ranging (LLR). Relative station positioning, determination of (differential) polar motion, positioning of stations with respect to the earth's center of mass and determination of the earth's gravity field should be easily realized by satellite laser ranging (SLR). The last two features should be considered as best (or solely) determinable by SLR in contrast to VLBI and LLR.

  20. Experimental and MC determination of HPGe detector efficiency in the 40-2754 keV energy range for measuring point source geometry with the source-to-detector distance of 25 cm.

    PubMed

    Dryak, Pavel; Kovar, Petr

    2006-01-01

    A precise model of a 40% relative efficiency p-type HPGe detector was created for photon detection efficiency calculation using the MCNP code. All detector parameters were determined by different experiments. No experimental calibration points were used for the modification of detector parameters. The model was validated by comparing calculated and experimental full energy peak efficiencies in the 40-2754 keV energy range, for point-source geometry with the source-to-detector distance of 25 cm. PMID:16564693

  1. NASA’s new High Dynamic Range Camera Records Rocket Test

    NASA Video Gallery

    This is footage of Orbital ATK’s QM-2 solid rocket booster test taken by NASA’s High Dynamic Range Stereo X (HiDyRS-X) camera. HiDyRS-X records high speed, high dynamic range footage in multiple ex...

  2. A gaze-contingent high-dynamic range display for medical imaging applications

    NASA Astrophysics Data System (ADS)

    Cheng, Wei-Chung; Badano, Aldo

    2010-02-01

    The grayscale resolution of current liquid crystal display technology limits its applications in medical imaging with wide dynamic range and dense grayscales are required. We propose an approach that dynamically processes the display image such that the luminance and contrast of the gazed area is optimized. A gazecontingent interactive display system based on an 8-bit LCD and an eye-tracker was implemented to emulate the proposed concept for a high-dynamic range display.

  3. Characterization of a fiber-optic-coupled radioluminescent detector for application in the mammography energy range

    SciTech Connect

    Benevides, Luis A.; Huston, Alan L.; Justus, Brian L.; Falkenstein, Paul; Brateman, Libby F.; Hintenlang, David E.

    2007-06-15

    Fiber-optic-coupled radioluminescent (FOC) dosimeters are members of a new family of dosimeters that are finding increased clinical applications. This study provides the first characterization of a Cu doped quartz FOC dosimeter at diagnostic energies, specifically across the range of x-ray energies and intensities used in mammographies. We characterize the calibration factors, linearity, angular dependence, and reproducibility of the FOC dosimeters. The sensitive element of each dosimeter was coupled to a photon counting photomultiplier module via 1 m long optical fibers. A computer controlled interface permitted real-time monitoring of the dosimeter output and rapid data acquisition. The axial-angular responses for all dosimeter models show nearly uniform response without any marked decrease in sensitivity. However, the normal-to-axial angular response showed a marked decrease in sensitivity of about 0 deg. C and 180 deg. C. In most clinical applications, appropriate dosimeter positioning can minimize the contributions of the varying normal-to-axial response. The FOC dosimeters having the greatest sensitive length provided the greatest sensitivity, with greatest to lowest sensitivity observed for 4.0, 1.9, 1.6, and 1.1 mm length sensitive elements. The average sensitivity of the dosimeters varies linearly with sensitive volume (R{sup 2}=95%) and as a function of tube potential and target/filter combinations, generally exhibiting an increased sensitivity for higher energies. The dosimeter sensitivity as a function of tube potential had an average increase of 4.72{+-}2.04% for dosimeter models and three target-filter combinations tested (Mo/Mo, Mo/Rh, and Rh/Rh) over a range of 25-31 kVp. All dosimeter models exhibited a linear response (R{sup 2}{>=}0.997) to exposure for all target-filter combinations, tube potentials, and tube current-time product stations evaluated and demonstrated reproducibility within 2%. All of the dosimeters examined in this study provided a

  4. Characterization of a fiber-optic-coupled radioluminescent detector for application in the mammography energy range.

    PubMed

    Benevides, Luis A; Huston, Alan L; Justus, Brian L; Falkenstein, Paul; Brateman, Libby F; Hintenlang, David E

    2007-06-01

    Fiber-optic-coupled radioluminescent (FOC) dosimeters are members of a new family of dosimeters that are finding increased clinical applications. This study provides the first characterization of a Cu doped quartz FOC dosimeter at diagnostic energies, specifically across the range of x-ray energies and intensities used in mammographies. We characterize the calibration factors, linearity, angular dependence, and reproducibility of the FOC dosimeters. The sensitive element of each dosimeter was coupled to a photon counting photomultiplier module via 1 m long optical fibers. A computer controlled interface permitted real-time monitoring of the dosimeter output and rapid data acquisition. The axial-angular responses for all dosimeter models show nearly uniform response without any marked decrease in sensitivity. However, the normal-to-axial angular response showed a marked decrease in sensitivity of about 0 degrees C and 180 degrees C. In most clinical applications, appropriate dosimeter positioning can minimize the contributions of the varying normal-to-axial response. The FOC dosimeters having the greatest sensitive length provided the greatest sensitivity, with greatest to lowest sensitivity observed for 4.0, 1.9, 1.6, and 1.1 mm length sensitive elements. The average sensitivity of the dosimeters varies linearly with sensitive volume (R2=95%) and as a function of tube potential and target/filter combinations, generally exhibiting an increased sensitivity for higher energies. The dosimeter sensitivity as a function of tube potential had an average increase of 4.72 +/- 2.04% for dosimeter models and three target-filter combinations tested (Mo/Mo, Mo/Rh, and Rh/Rh) over a range of 25-31 kVp. All dosimeter models exhibited a linear response (R2 > or = 0.997) to exposure for all target-filter combinations, tube potentials, and tube current-time product stations evaluated and demonstrated reproducibility within 2%. All of the dosimeters examined in this study provided a

  5. EMCCD-Based High Resolution Dynamic X-Ray Detector for Neurovascular Interventions

    PubMed Central

    Sharma, P.; Vasan, S.N. Swetadri; Jain, A.; Panse, A.; Titus, A.H.; Cartwright, A. N.; Bednarek, D. R; Rudin, S.

    2012-01-01

    We have designed and developed from the discrete component level a high resolution dynamic detector for neurovascular interventions. The heart of the detector is a 1024 × 1024 pixel electron multiplying charge coupled device (EMCCD) with a pixel size of 13 × 13 μm2, bonded to a fiber optic plate (FOP), and optically coupled to a 350 μm micro-columnar CsI(TI) scintillator via a 3.3:1 fiber optic taper (FOT). The detector provides x-ray images of 9 cycles/mm resolution at 15 frames/sec and real time live video at 30 frames/sec with binning at a lower resolution, both independent of gain applied to EMCCD, as needed for region-of-interest (ROI) image guidance during neurovascular interventions. PMID:22256144

  6. Predicted image quality of a CMOS APS X-ray detector across a range of mammographic beam qualities

    NASA Astrophysics Data System (ADS)

    Konstantinidis, A.

    2015-09-01

    Digital X-ray detectors based on Complementary Metal-Oxide- Semiconductor (CMOS) Active Pixel Sensor (APS) technology have been introduced in the early 2000s in medical imaging applications. In a previous study the X-ray performance (i.e. presampling Modulation Transfer Function (pMTF), Normalized Noise Power Spectrum (NNPS), Signal-to-Noise Ratio (SNR) and Detective Quantum Efficiency (DQE)) of the Dexela 2923MAM CMOS APS X-ray detector was evaluated within the mammographic energy range using monochromatic synchrotron radiation (i.e. 17-35 keV). In this study image simulation was used to predict how the mammographic beam quality affects image quality. In particular, the experimentally measured monochromatic pMTF, NNPS and SNR parameters were combined with various mammographic spectral shapes (i.e. Molybdenum/Molybdenum (Mo/Mo), Rhodium/Rhodium (Rh/Rh), Tungsten/Aluminium (W/Al) and Tungsten/Rhodium (W/Rh) anode/filtration combinations at 28 kV). The image quality was measured in terms of Contrast-to-Noise Ratio (CNR) using a synthetic breast phantom (4 cm thick with 50% glandularity). The results can be used to optimize the imaging conditions in order to minimize patient's Mean Glandular Dose (MGD).

  7. A simulation study investigating a radiation detector utilizing the prompt gamma range verification technique for proton radiotherapy

    NASA Astrophysics Data System (ADS)

    Lau, Andrew David

    Proton therapy has shown to be a viable therapy for radiation oncology applications. The advantages of using protons as compared to photons in the treatments of diseases with radiation are numerous including the ability to deliver overall lower amounts of lethal radiation doses to the patient. This advantage is due to the fundamental interaction mechanism of the incident therapeutic protons with the patient, which produces a characteristic dose-distribution unique only to protons. Unlike photons, the entire proton beam is absorbed within the patent and the dose-distribution's maximum occurs near the end of the proton's path. Protons deliver less dose on the skin and intervening tissues, tighter dose conformality to the disease site, as well as no dose past the target volume, sparring healthy tissue distally in the patient. Current research in proton therapy is geared towards minimizing proton range uncertainty and monitoring in-vivo the location of the proton's path. Monitoring the beam's path serves also to verify which healthy structures/tissues were irradiated and whether the target volume has met the prescription dose. Among the many techniques used for in-vivo proton monitoring, the technique based on the emitted secondary particles, specifically the Prompt Gamma (PG) method, can be used for clinical implementation. This work focuses on developing a radiation detector system for using the PG method by investigating the characterizing the secondary particle field emitted from plastic and water phantoms as well as a radiation detector based on glass materials that exploits the Cherenkov phenomenon.

  8. Image dynamic range test and evaluation of Gaofen-2 dual cameras

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenhua; Gan, Fuping; Wei, Dandan

    2015-12-01

    In order to fully understand the dynamic range of Gaofen-2 satellite data and support the data processing, application and next satellites development, in this article, we evaluated the dynamic range by calculating some statistics such as maximum ,minimum, average and stand deviation of four images obtained at the same time by Gaofen-2 dual cameras in Beijing area; then the maximum ,minimum, average and stand deviation of each longitudinal overlap of PMS1,PMS2 were calculated respectively for the evaluation of each camera's dynamic range consistency; and these four statistics of each latitudinal overlap of PMS1,PMS2 were calculated respectively for the evaluation of the dynamic range consistency between PMS1 and PMS2 at last. The results suggest that there is a wide dynamic range of DN value in the image obtained by PMS1 and PMS2 which contains rich information of ground objects; in general, the consistency of dynamic range between the single camera images is in close agreement, but also a little difference, so do the dual cameras. The consistency of dynamic range between the single camera images is better than the dual cameras'.

  9. Plasmonic substrates for multiplexed protein microarrays with femtomolar sensitivity and broad dynamic range

    PubMed Central

    Tabakman, Scott M.; Lau, Lana; Robinson, Joshua T.; Price, Jordan; Sherlock, Sarah P.; Wang, Hailiang; Zhang, Bo; Chen, Zhuo; Tangsombatvisit, Stephanie; Jarrell, Justin A.; Utz, Paul J.; Dai, Hongjie

    2012-01-01

    Protein chips are widely used for high-throughput proteomic analysis, but to date, the low sensitivity and narrow dynamic range have limited their capabilities in diagnostics and proteomics. Here we present protein microarrays on a novel nanostructured, plasmonic gold film with near-infrared fluorescence enhancement of up to 100-fold, extending the dynamic range of protein detection by three orders of magnitude towards the fM regime. We employ plasmonic protein microarrays for the early detection of a cancer biomarker, carcinoembryonic antigen, in the sera of mice bearing a xenograft tumour model. Further, we demonstrate a multiplexed autoantigen array for human autoantibodies implicated in a range of autoimmune diseases with superior signal-to-noise ratios and broader dynamic range compared with commercial nitrocellulose and glass substrates. The high sensitivity, broad dynamic range and easy adaptability of plasmonic protein chips presents new opportunities in proteomic research and diagnostics applications. PMID:21915108

  10. Wide dynamic range neutron flux monitor having fast time response for the Large Helical Device.

    PubMed

    Isobe, M; Ogawa, K; Miyake, H; Hayashi, H; Kobuchi, T; Nakano, Y; Watanabe, K; Uritani, A; Misawa, T; Nishitani, T; Tomitaka, M; Kumagai, T; Mashiyama, Y; Ito, D; Kono, S; Yamauchi, M; Takeiri, Y

    2014-11-01

    A fast time response, wide dynamic range neutron flux monitor has been developed toward the LHD deuterium operation by using leading-edge signal processing technologies providing maximum counting rate up to ∼5 × 10(9) counts/s. Because a maximum total neutron emission rate over 1 × 10(16) n/s is predicted in neutral beam-heated LHD plasmas, fast response and wide dynamic range capabilities of the system are essential. Preliminary tests have demonstrated successful performance as a wide dynamic range monitor along the design. PMID:25430293