Science.gov

Sample records for detector system measured

  1. Pyroelectric detector development for the Radiation Measurement system

    NASA Technical Reports Server (NTRS)

    Hubbard, G. S.; Mcmurray, Robert E., Jr.; Hanel, R. P.; Dominguez, D. E.; Valero, F. P. J.; Baumann, Hilary; Hansen, W. L.; Haller, E. E.

    1993-01-01

    A new class of high detectivity pyroelectric detectors developed for optimization of the radiation measurement system within the framework of the Atmospheric Radiation Measurement program is described. These devices are intended to provide detectivities of up to about 10 exp 11 cm Hz exp 0.5/W with cooling to about 100 K required for the detector focal plane.

  2. Tunnel effect measuring systems and particle detectors

    NASA Technical Reports Server (NTRS)

    Kaiser, William J. (Inventor); Waltman, Steven B. (Inventor); Kenny, Thomas W. (Inventor)

    1994-01-01

    Methods and apparatus for measuring gravitational and inertial forces, magnetic fields, or wave or radiant energy acting on an object or fluid in space provide an electric tunneling current through a gap between an electrode and that object or fluid in space and vary that gap with any selected one of such forces, magnetic fields, or wave or radiant energy acting on that object or fluid. These methods and apparatus sense a corresponding variation in an electric property of that gap and determine the latter force, magnetic fields, or wave or radiant energy in response to that corresponding variation, and thereby sense or measure such parameters as acceleration, position, particle mass, velocity, magnetic field strength, presence or direction, or wave or radiant energy intensity, presence or direction.

  3. Tunnel effect measuring systems and particle detectors

    NASA Technical Reports Server (NTRS)

    Kaiser, William J. (Inventor); Waltman, Steven B. (Inventor); Kenny, Thomas W. (Inventor)

    1993-01-01

    Methods and apparatus for measuring gravitational and inertial forces, magnetic fields, or wave or radiant energy acting on an object or fluid in space provide an electric tunneling current through a gap between an electrode and that object or fluid in space and vary that gap with any selected one of such forces, magnetic fields, or wave or radiant energy acting on that object or fluid. These methods and apparatus sense a corresponding variation in an electric property of that gap and determine the latter force, magnetic fields, or wave or radiant energy in response to that corresponding variation, and thereby sense or measure such parameters as acceleration, position, particle mass, velocity, magnetic field strength, presence or direction, or wave or radiant energy intensity, presence or direction.

  4. An automatic measuring system for the lifetime testing of infrared detectors

    NASA Astrophysics Data System (ADS)

    Cao, Lan; Zhang, Haiyan; Zhu, Xianliang; Gong, Haimei

    2012-10-01

    In this paper, an automatic measuring system based on LABVIEW and PLC is introduced; it uses the mutual controls of Single-Chip computer (MCU) and LABVIEW to accomplish the electrical parameter measurements of infrared detectors. This system can realize the multiple parameter measurements of no less than 160 IR detectors, it can realize the collection and storage of results by the LABVIEW; and it can avoid the damage of the IR detector during the measurement. After thousands times of test, the results show that the system runs stably and it can meet the accurate parameter measurement of detector.

  5. Shaped scintillation detector systems for measurements of gamma ray flux anisotropy

    NASA Technical Reports Server (NTRS)

    Trombka, J. I.; Vette, J. I.; Stecker, F. W.; Eller, E. L.; Wildes, W. T.

    1973-01-01

    The detection efficiencies of cylindrical detectors for various gamma ray photon angular distributions were studied in the energy range from .10 Mev to 15 Mev. These studies indicate that simple detector systems on small satellites can be used to measure flux anisotropy of cosmic gamma rays and the angular distribution of albedo gamma rays produced in planetary atmospheres. The results indicate that flat cylindrical detectors are most suitable for measuring flux anisotropy because of their angular response function. A general method for calculating detection efficiencies for such detectors is presented.

  6. Development of a System for Measuring the Shape of β Spectra Using a Semiconductor Si Detector

    SciTech Connect

    Bisch, C.; Mougeot, X.; Bé, M.-M.; Nourreddine, A.-M.

    2014-06-15

    A system for the measurement of beta energy spectra has been developed. It is based on a silicon semi-conductor detector operating at liquid nitrogen temperatures, under ultra high-vacuum. Monte-Carlo simulations were made to optimize the detection chamber and the source holder. Descriptions of the electronic and mechanical systems are included, as well as the first measured spectra.

  7. Setup and operation of gamma-ray measurement systems to maximize detector lifetime and stability

    NASA Astrophysics Data System (ADS)

    Penn, David G.; Grodsinsky, Carlos M.

    1999-10-01

    The details for optimizing gamma-ray measurement system for specific applications are not always well understood. The setup and operation of a system plays an important role in performance aspects such as maximizing detector lifetime, stability and minimizing the signal to noise ratio. In addition to system setup and operation, the effects of scintillation detector design and accompanying electronics (PMT) are discussed with respect to both gross counting and spectroscopy measurements in order to obtain reliable results. Data has been taken with various sodium iodide scintillation detectors to study system stability during transient such as power cycling and count rate fluctuations. These fluctuations may introduce substantial measurement uncertainty, and if not accounted for will propagate into an analyses. The above transients can also affect the detector lifetime, and if the system conditions are monitored properly, they can be used as a predictive tool for determining the useful life of a detector. Data is also presented to examine counting statistics in an overlapping spectrum as a function of spectral resolution and count rate. The objective is to determine the optimum counting time for the spectrum to reach a statistically stable shape. The data is reduced by examining the standard deviation of fitted Gaussian curves at ten second intervals. The result is a contour plat showing the time needed to reach stability, which increase with spectral resolution and decrease with a rising count rate.

  8. Next Generation Beta Decay Studies: Refinements in Detector System Calibration and Response Function Measurements

    NASA Astrophysics Data System (ADS)

    Jutz, Kenneth

    2013-10-01

    High precision β-decay studies provide constraints on extensions to the standard model of particle physics. In order to continue to provide competitive limits with LHC measurements for new tensor and scalar interactions, the uncertainties in neutron and nuclear β-decay studies must be pushed to the 0.1% level and below. In order to control the systematic errors in particle detection at these levels, new detector systems (highly-segmented, large area, thick Si detectors) are being implemented. In order to realize gains in detector response, new capabilities must be developed to calibrate the detectors and characterize their response function. As an alternative to conventional sources mounted on thin foils, an electron beam provides a regular grid of calibration and detector response measurements which are essentially unperturbed by scattering effects. We have developed a 1 MeV electron accelerator that will deliver electrons in a tunable range covering the energy spectrum of neutron β-decay. We present our efforts to implement this accelerator as well as our development of thin backing foils and detector systems in this poster.

  9. Modular optical detector system

    DOEpatents

    Horn, Brent A.; Renzi, Ronald F.

    2006-02-14

    A modular optical detector system. The detector system is designed to detect the presence of molecules or molecular species by inducing fluorescence with exciting radiation and detecting the emitted fluorescence. Because the system is capable of accurately detecting and measuring picomolar concentrations it is ideally suited for use with microchemical analysis systems generally and capillary chromatographic systems in particular. By employing a modular design, the detector system provides both the ability to replace various elements of the detector system without requiring extensive realignment or recalibration of the components as well as minimal user interaction with the system. In addition, the modular concept provides for the use and addition of a wide variety of components, including optical elements (lenses and filters), light sources, and detection means, to fit particular needs.

  10. Acquisition and tracking performance measurements for a high speed area array detector system

    NASA Technical Reports Server (NTRS)

    Short, R. C.; Cosgrove, M.; Clark, D. L.; Martino, A.; Park, H.; Seery, B.

    1991-01-01

    A proof-of-concept (POC) demonstration system has been developed which demonstrates acquisition, tracking and point-ahead angle sensing for a space optical communications terminal utilizing a single high speed area array detector. The detector is the 128 x 128 pixel Kodak HS-40 photodiode array. It has 64 parallel readout channels and can operate at frames rates up to 40,000 frames/sec with rms readout noise of 20 photoelectrons. A windowing scheme and special purpose digital signal processing electronics are employed to implement acquisition and tracking algorithms. The system operates at greater than 1 kHz sample (frame) rates. Acquisition can be performed in as little as 30 milliseconds with less than 1 picowatt of 0.85 micron beacon power on the detector. At the same power level, the rms tracking accuracy is approximately 1/16 pixel. Results of system analysis and measurements using the POC system are presented.

  11. Determination of the linear equations of position-sensing detectors for small motion measurement systems.

    PubMed

    Liu, Chien-Sheng; Lin, Psang Dain

    2010-11-01

    Small motion measurement systems are widely used in industry measurement fields to measure small positional/angular motions. These systems usually consist of two parts: a measuring assembly and a reference assembly. The position-sensing detectors (PSDs) are embedded in either measuring assembly or reference assembly to sense the variations of laser light incidence points when there are any small positional/angular motions. To use these systems, it is necessary to determine the linear equations of PSD readings, which relate the six-degrees-of-freedom small positional/angular motions and PSD readings. The purpose of this paper is to derive these equations based on the paraxial raytracing method. Two measurement systems are used as illustrative examples to validate the proposed methodology. The methodology of this study will be useful for system design of PSD-based measurement systems and their applications. PMID:21045913

  12. Rapid and automatic 3D body measurement system based on a GPU-Steger line detector.

    PubMed

    Liu, Xingjian; Zhao, Hengshuang; Zhan, Guomin; Zhong, Kai; Li, Zhongwei; Chao, Yuhjin; Shi, Yusheng

    2016-07-20

    This paper proposes a rapid and automatic measurement system to acquire a 3D shape of a human body. A flexible calibration method was developed to decrease the complexity in system calibration. To reduce the computation cost, a GPU-Steger line detector was proposed to more rapidly detect the center of the laser pattern and at subpixel level. The processing time of line detection is significantly shortened by the GPU-Steger line detector, which can be over 110 times faster than that by CPU. The key technologies are introduced, and the experimental results are presented in this paper to illustrate the performance of the proposed system. The system can be used to measure human body surfaces with nonuniform reflectance such as hair, skin, and clothes with rich texture. PMID:27463902

  13. Neutron fluence rate measurements in a PGNAA 208-liter drum assay system using silicon carbide detectors

    NASA Astrophysics Data System (ADS)

    Dulloo, A. R.; Ruddy, F. H.; Seidel, J. G.; Lee, S.; Petrović, B.; McIlwain, M. E.

    2004-01-01

    Pulsed prompt gamma neutron activation analysis (PGNAA) is being implemented for the nondestructive assay (NDA) of mercury, cadmium and lead in containers of radioactive waste. A PGNAA prototype system capable of assaying 208-liter (55-gallon) drums has already been built and demonstrated. As part of the evaluation of this system, the thermal neutron fluence rate distribution in a drum containing a combustible waste surrogate was measured during PGNAA runs using a silicon carbide neutron detector. The fast charge-collection time of this detector type enabled the investigation of the neutron kinetics at various locations within the matrix during and between pulses of the system's 14-MeV neutron source. As expected, the response of a SiC detector equipped with a lithium-6 fluoride layer is dominated by thermal neutron-induced events between pulses. The measurement results showed that the thermal neutron fluence rate is relatively uniform over a radial depth of several centimeters in the matrix region that contributes a significant fraction of the prompt gamma radiation incident on the system's photon detector.

  14. High-pressure plastic scintillation detector for measuring radiogenic gases in flow systems

    NASA Astrophysics Data System (ADS)

    Schell, W. R.; Vives-Batlle, J.; Yoon, S. R.; Tobin, M. J.

    1999-02-01

    Radioactive gases are emitted into the atmosphere from nuclear electric power and nuclear fuel reprocessing plants, from hospitals discarding xenon used in diagnostic medicine, as well as from nuclear weapons tests. A high-pressure plastic scintillation detector was constructed to measure atmospheric levels of such radioactive gases by detecting the beta and internal conversion (IC) electron decays. Operational tests and calibrations were made that permit integration of the flow detectors into a portable Gas Analysis, Separation and Purification system (GASP). The equipment developed can be used for measuring fission gases released from nuclear reactor sources and/or as part of monitoring equipment for enforcing the Comprehensive Test Ban Treaty. The detector is being used routinely for in-line gas separation efficiency measurements, at the elevated operational pressures used for the high-pressure swing analysis system (2070 kPa) and at flow rates of 5-15 l/min [1, 2]. This paper presents the design features, operational methods, calibration, and detector applications.

  15. An atom trap trace analysis system for measuring krypton contamination in xenon dark matter detectors

    SciTech Connect

    Aprile, E.; Yoon, T.; Loose, A.; Goetzke, L. W.; Zelevinsky, T.

    2013-09-15

    We have developed an atom trap trace analysis (ATTA) system to measure Kr in Xe at the part per trillion (ppt) level, a prerequisite for the sensitivity achievable with liquid xenon dark matter detectors beyond the current generation. Since Ar and Kr have similar laser cooling wavelengths, the apparatus has been tested with Ar to avoid contamination prior to measuring Xe samples. A radio-frequency plasma discharge generates a beam of metastable atoms which is optically collimated, slowed, and trapped using standard magneto-optical techniques. Based on the measured overall system efficiency of 1.2 × 10{sup −8} (detection mode), we expect the ATTA system to reach the design goal sensitivity to ppt concentrations of Kr in Xe in <2 h.

  16. Measurement of amorphous corundum layers by self-focusing optical coherence tomography system with matrix detector

    NASA Astrophysics Data System (ADS)

    Tomczewski, Slawomir; Salbut, Leszek

    We present detection of inhomogeneities in amorphous corundum layers by optical coherence tomography system with CMOS matrix detector. The presented setup is based on modified Twyman-Green interferometer with specially designed scanning module. The module consists of two beam directing mirrors, a beam splitter, an objective lens and it's illuminated by a high-power pig-tailed light emitting diode. The system is calibrated that the objective gives image of zero optical path difference plane in infinity. Due to this and because the matrix detector is placed in the focal plane of an imaging lens, therefore even if distance between the objective and the imaging lens changes during scanning process, the zero optical path difference plane is always in-focus. Hence the system focuses itself on imaged layers and there is no drop in transverse resolution coming from defocusing. In the paper we present, the idea of self-focusing tomographic system, its theoretical analysis and design aspects. Calibration of proposed system and its application for measurement of amorphous corundum layers are also presented. The measurements results show occurrences of the inhomogeneities in the investigated samples.

  17. Clinical Trials of a Urethral Dose Measurement System in Brachytherapy Using Scintillation Detectors

    SciTech Connect

    Suchowerska, Natalka; Jackson, Michael; Lambert, Jamil; Yin, Yong Bai; Hruby, George; McKenzie, David R.

    2011-02-01

    Purpose: To report on the clinical feasibility of a novel scintillation detector system with fiberoptic readout that measures the urethral dose during high-dose-rate brachytherapy treatment of the prostate. Methods and Materials: The clinical trial enrolled 24 patients receiving high-dose-rate brachytherapy treatment to the prostate. After the first 14 patients, three improvements were made to the dosimeter system design to improve clinical reliability: a dosimeter self-checking facility; a radiopaque marker to determine the position of the dosimeter, and a more robust optical extension fiber. Results: Improvements to the system design allowed for accurate dose measurements to be made in vivo. A maximum measured dose departure of 9% from the calculated dose was observed after dosimeter design improvements. Conclusions: Departures of the measured from the calculated dose, after improvements to the dosimetry system, arise primarily from small changes in patient anatomy. Therefore, we recommend that patient response be correlated with the measured in vivo dose rather than with the calculated dose.

  18. Multichannel reconfigurable measurement system for hot plasma diagnostics based on GEM-2D detector

    NASA Astrophysics Data System (ADS)

    Wojenski, A. J.; Kasprowicz, G.; Pozniak, K. T.; Byszuk, A.; Chernyshova, M.; Czarski, T.; Jablonski, S.; Juszczyk, B.; Zienkiewicz, P.

    2015-12-01

    In the future magnetically confined fusion research reactors (e.g. ITER tokamak), precise determination of the level of the soft X-ray radiation of plasma with temperature above 30 keV (around 350 mln K) will be very important in plasma parameters optimization. This paper presents the first version of a designed spectrography measurement system. The system is already installed at JET tokamak. Based on the experience gained from the project, the new generation of hardware for spectrography measurements, was designed and also described in the paper. The GEM detector readout structure was changed to 2D in order to perform measurements of i.e. laser generated plasma. The hardware structure of the system was redesigned in order to provide large number of high speed input channels. Finally, this paper also covers the issue of new control software, necessary to set-up a complete system of certain complexity and perform data acquisition. The main goal of the project was to develop a new version of the system, which includes upgraded structure and data transmission infrastructure (i.e. handling large number of measurement channels, high sampling rate).

  19. SU-E-I-40: New Method for Measurement of Task-Specific, High-Resolution Detector System Performance

    SciTech Connect

    Loughran, B; Singh, V; Jain, A; Bednarek, D; Rudin, S

    2014-06-01

    Purpose: Although generalized linear system analytic metrics such as GMTF and GDQE can evaluate performance of the whole imaging system including detector, scatter and focal-spot, a simplified task-specific measured metric may help to better compare detector systems. Methods: Low quantum-noise images of a neuro-vascular stent with a modified ANSI head phantom were obtained from the average of many exposures taken with the high-resolution Micro-Angiographic Fluoroscope (MAF) and with a Flat Panel Detector (FPD). The square of the Fourier Transform of each averaged image, equivalent to the measured product of the system GMTF and the object function in spatial-frequency space, was then divided by the normalized noise power spectra (NNPS) for each respective system to obtain a task-specific generalized signal-to-noise ratio. A generalized measured relative object detectability (GM-ROD) was obtained by taking the ratio of the integral of the resulting expressions for each detector system to give an overall metric that enables a realistic systems comparison for the given detection task. Results: The GM-ROD provides comparison of relative performance of detector systems from actual measurements of the object function as imaged by those detector systems. This metric includes noise correlations and spatial frequencies relevant to the specific object. Additionally, the integration bounds for the GM-ROD can be selected to emphasis the higher frequency band of each detector if high-resolution image details are to be evaluated. Examples of this new metric are discussed with a comparison of the MAF to the FPD for neuro-vascular interventional imaging. Conclusion: The GM-ROD is a new direct-measured task-specific metric that can provide clinically relevant comparison of the relative performance of imaging systems. Supported by NIH Grant: 2R01EB002873 and an equipment grant from Toshiba Medical Systems Corporation.

  20. Software for Control and Measuring Instrumentation of the GAMMA-400 Gamma-telescope Fast Scintillator Detector System

    NASA Astrophysics Data System (ADS)

    Naumov, P. P.; Naumov, P. Yu.; Runtso, M. F.; Solodovnikov, A. A.

    Currently, the final stage of the ground tests for the technological detector of the high-energy gamma-ray telescope (GRT) GAMMA-400 are finished. The new space GRT will accept the gamma-rays with energy more than 400 MeV and is aimed to open our eyes for so-called "dark matter" problem in the Universe. The high-speed scintillation detectors system (SDS) is used one of the main GRT particle detectors and the good ground test measurements will let the future space mission to get the reliable data. This paper describes the software and hardware of the laboratory control and calibration systems for physical measurements of GRT STDS properties.

  1. GRAVITY detector systems

    NASA Astrophysics Data System (ADS)

    Mehrgan, Leander H.; Finger, Gert; Accardo, Matteo; Lizon, Jean-Louis; Stegmeier, Joerg; Eisenhauer, Frank

    2014-07-01

    GRAVITY is a second generation instrument for the VLT Interferometer, designed to enhance the near-infrared astrometric and spectro-imaging capabilities of VLTI. It will combine the AO corrected beams of the four VLT telescopes. The GRAVITY instrument uses a total of five eAPD detectors, four of which are for wavefront sensing and one for the Fringe tracker. In addition two Hawaii2RG are used, one for the acquisition camera and one for the spectrometer. A compact bath cryostat is used for each WFS unit, one for each of the VLT Unit Telescopes. Both Hawaii2RG detectors have a cutoff wavelength of 2.5 microns. A new and unique element of GRAVITY is the use of infrared wavefront sensors. For this reason SELEX-Galileo has developed a new high speed avalanche photo diode detector for ESO. The SAPHIRA detector, which stands for Selex Avalanche Photodiodes for Highspeed Infra Red Applications, has been already evaluated by ESO. At a frame rate of 1 KHz, a read noise of less than one electron can be demonstrated. A more detailed presentation about the performance of the SPAHIRA detector will be given at this conference 1. Each SAPHIRA detector is installed in an LN2 bath cryostat. The detector stage, filter wheel and optics are mounted on the cold plate of the LN2 vessel and enclosed by a radiation shield. All seven detector systems are controlled and read out by the standard ESO NGC controller. The NGC is a controller platform which can be adapted and customized for all infrared and optical detectors. This paper will discuss specific controller modifications implemented to meet the special requirements of the GRAVITY detector systems and give an overview of the GRAVITY detector systems and their performance.

  2. High Performance Measurement System of Large Area Solid-State Track Detector Array for Ultra Heavy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Kodaira, S.; Doke, T.; Hareyama, M.; Hasebe, N.; Sakurai, K.; Ota, S.; Sato, M.; Yasuda, N.; Nakamura, S.; Kamei, T.; Tawara, H.; Ogura, K.

    The handling of solid-state track detector (SSTD) has been historically required for a long period and many human powers to scan and analyze etch-pits produced on the detector. Because a large area greater than a few m2 detector is required to observe ultraheavy nuclei in galactic cosmic rays, a high speed scanning system is practically important to realize our observation. We have developed the fast automated digital imaging optical microscope (HSP-1000) to scan and analyze the etch-pit produced on the detector, whose image acquisition speed is 50-100 times faster than conventional microscope system. Furthermore, analyzing massive cosmic ray track data produced in extremely large exposed area requires a completely automated multi-sample scanning system. The developed automated system consists of a modified HSP-1000 microscope for image acquisition, a robot arm to replace the sample trays, a magazine station for storing sample trays, and a scanning and analyzing computer to control the whole system. Moreover, since the improvement of thickness measurement accuracy in local area of SSTD will allow us to achieve higher charge and mass resolutions, the new system to measure the SSTD thickness located adjacent to etch-pit in SSTD with an excellent resolution of +/- 0.2 um has been developed.

  3. A real-time microprocessor QRS detector system with a 1-ms timing accuracy for the measurement of ambulatory HRV.

    PubMed

    Ruha, A; Sallinen, S; Nissilä, S

    1997-03-01

    The design, test methods and results of an ambulatory QRS detector are presented. The device is intended for the accurate measurement of heart rate variability (HRV) and reliable QRS detection in both ambulatory and clinical use. The aim of the design work was to achieve high QRS detection performance in terms of timing accuracy and reliability, without compromising the size and power consumption of the device. The complete monitor system consists of a host computer and the detector unit. The detector device is constructed of a commonly available digital signal processing (DSP) microprocessor and other components. The QRS detection algorithm uses optimized prefiltering in conjunction with a matched filter and dual edge threshold detection. The purpose of the prefiltering is to attenuate various noise components in order to achieve improved detection reliability. The matched filter further improves signal-to-noise ratio (SNR) and symmetries the QRS complex for the threshold detection, which is essential in order to achieve the desired performance. The decision for detection is made in real-time and no search-back method is employed. The host computer is used to configure the detector unit, which includes the setting of the matched filter impulse response, and in the retrieval and postprocessing of the measurement results. The QRS detection timing accuracy and detection reliability of the detector system was tested with an artificially generated electrocardiogram (ECG) signal corrupted with various noise types and a timing standard deviation of less than 1 ms was achieved with most noise types and levels similar to those encountered in real measurements. A QRS detection error rate (ER) of 0.1 and 2.2% was achieved with records 103 and 105 from the MIT-BIH Arrhythmia database, respectively. PMID:9216129

  4. Imaging MAMA detector systems

    NASA Astrophysics Data System (ADS)

    Slater, David C.; Timothy, J. G.; Morgan, Jeffrey S.; Kasle, David B.

    1990-07-01

    Imaging multianode microchannel array (MAMA) detector systems with 1024 x 1024 pixel formats have been produced for visible and UV wavelengths; the UV types employ 'solar blind' photocathodes whose detective quantum efficiencies are significantly higher than those of currently available CCDs operating at far-UV and EUV wavelengths. Attention is presently given to the configurations and performance capabilities of state-of-the-art MAMA detectors, with a view to the development requirements of the hybrid electronic circuits needed for forthcoming spacecraft-sensor applications. Gain, dark noise, uniformity, and dynamic range performance data are presented for the curved-channel 'chevron', 'Z-plate', and helical-channel high gain microchannel plate configurations that are currently under evaluation with MAMA detector systems.

  5. Seismic intrusion detector system

    DOEpatents

    Hawk, Hervey L.; Hawley, James G.; Portlock, John M.; Scheibner, James E.

    1976-01-01

    A system for monitoring man-associated seismic movements within a control area including a geophone for generating an electrical signal in response to seismic movement, a bandpass amplifier and threshold detector for eliminating unwanted signals, pulse counting system for counting and storing the number of seismic movements within the area, and a monitoring system operable on command having a variable frequency oscillator generating an audio frequency signal proportional to the number of said seismic movements.

  6. Optical detector calibrator system

    NASA Technical Reports Server (NTRS)

    Strobel, James P. (Inventor); Moerk, John S. (Inventor); Youngquist, Robert C. (Inventor)

    1996-01-01

    An optical detector calibrator system simulates a source of optical radiation to which a detector to be calibrated is responsive. A light source selected to emit radiation in a range of wavelengths corresponding to the spectral signature of the source is disposed within a housing containing a microprocessor for controlling the light source and other system elements. An adjustable iris and a multiple aperture filter wheel are provided for controlling the intensity of radiation emitted from the housing by the light source to adjust the simulated distance between the light source and the detector to be calibrated. The geared iris has an aperture whose size is adjustable by means of a first stepper motor controlled by the microprocessor. The multiple aperture filter wheel contains neutral density filters of different attenuation levels which are selectively positioned in the path of the emitted radiation by a second stepper motor that is also controlled by the microprocessor. An operator can select a number of detector tests including range, maximum and minimum sensitivity, and basic functionality. During the range test, the geared iris and filter wheel are repeatedly adjusted by the microprocessor as necessary to simulate an incrementally increasing simulated source distance. A light source calibration subsystem is incorporated in the system which insures that the intensity of the light source is maintained at a constant level over time.

  7. Detector absorptivity measuring method and apparatus

    NASA Technical Reports Server (NTRS)

    Sheets, R. E. (Inventor)

    1976-01-01

    A method and apparatus for measuring the absorptivity of a radiation detector by making the detector an integral part of a cavity radiometer are described. By substituting the detector for the surface of the cavity upon which the radiation first impinges a comparison is made between the quantity of radiation incident upon the detector and the quantity reflected from the detector. The difference between the two is a measurement of the amount of radiation absorbed by the detector.

  8. RADIATION DETECTOR SYSTEM

    DOEpatents

    Gundlach, J.C.; Kelley, G.G.

    1958-02-25

    This patent relates to radiation detection devices and presents a unique detection system especialiy desirable for portable type instruments using a Geiger-Mueller for a high voltage battery, thereby reducing the size and weight of the instrument, by arranging a one-shot multivibrator to recharge a capacitance applying operating potential to tho Geiger-Mueller tube each time a nuclear particle is detected. When detection occurs, the multivibrator further delivers a pulse to an appropriate indicator doing away with the necessity for the pulse amplifier conventionally intermediate between the detector and indicator in pulse detection systems.

  9. Modeling and measurement of the performance of a branched conduit sampling system in a mass spectrometer leak detector

    NASA Technical Reports Server (NTRS)

    Russell, John M.

    1994-01-01

    In the leak testing of a large engineering system, one may distinguish three stages, namely leakage measurement by an overall enclosure, leak location, and leakage measurement by a local enclosure. Sniffer probes attached to helium mass spectrometer leak detectors are normally designed for leak location, a qualitative inspection technique intended to pinpoint where a leak is but not to quantify its rate of discharge. The main conclusion of the present effort is that local leakage measurement by a leak detector with a sniffer probe is feasible provided one has: (1) quantitative data on the performance of the mass separator cell (a device interior to the unit where the stream of fluid in the sample line branches); and (2) a means of stabilizing the mass transfer boundary layer that is created near a local leak site when a sniffer probe is placed in its immediate vicinity. Theoretical models of the mass separator cell are provided and measurements of the machine-specific parameters in the formulas are presented. A theoretical model of a porous probe end for stabilizing the mass transfer boundary is also presented.

  10. A dual-inlet, single detector relaxed eddy accumulation system for long-term measurement of mercury flux

    NASA Astrophysics Data System (ADS)

    Osterwalder, S.; Fritsche, J.; Alewell, C.; Schmutz, M.; Nilsson, M. B.; Jocher, G.; Sommar, J.; Rinne, J.; Bishop, K.

    2016-02-01

    The fate of anthropogenic emissions of mercury (Hg) to the atmosphere is influenced by the exchange of elemental Hg with the earth surface. This exchange holds the key to a better understanding of Hg cycling from local to global scales, which has been difficult to quantify. To advance research about land-atmosphere Hg interactions, we developed a dual-inlet, single detector relaxed eddy accumulation (REA) system. REA is an established technique for measuring turbulent fluxes of trace gases and aerosol particles in the atmospheric surface layer. Accurate determination of gaseous elemental mercury (GEM) fluxes has proven difficult due to technical challenges presented by extremely small concentration differences (typically < 0.5 ng m-3) between updrafts and downdrafts. We present an advanced REA design that uses two inlets and two pairs of gold cartridges for continuous monitoring of GEM fluxes. This setup reduces the major uncertainty created by the sequential sampling in many previous designs. Additionally, the instrument is equipped with a GEM reference gas generator that monitors drift and recovery rates. These innovations facilitate continuous, autonomous measurement of GEM flux. To demonstrate the system performance, we present results from field campaigns in two contrasting environments: an urban setting with a heterogeneous fetch and a boreal peatland during snowmelt. The observed average emission rates were 15 and 3 ng m-2 h-1, respectively. We believe that this dual-inlet, single detector approach is a significant improvement of the REA system for ultra-trace gases and can help to advance our understanding of long-term land-atmosphere GEM exchange.

  11. Radiation detectors for occupational safety measurements

    NASA Astrophysics Data System (ADS)

    Kaase, Heinrich; Chen, Mai; Grothmann, Knut

    1995-09-01

    The effective radiant exposures for artificial and natural UV-sources are determined by temporal integration over an 8 h working day. Therefore the spectrally weighted integration of the spectral irradiance from the radiation source in the plane of the exposure is to measure. Such measaurements are made with two different detector systems: measurements of UV radiation according to the integral method should be possible according to a quasi partial filtering method using different individually filtered photodiodes. A spectroradiometer for UV radiation analysis was tested due to its application in field measurements for meteorology, medicin, and occupational safety. The optical part of this compact instrument consists of a cosentrance optic, a monochromator and detector system. A comparison with commercial instruments is described.

  12. Future particle detector systems

    NASA Astrophysics Data System (ADS)

    Clark, Allan G.

    2000-09-01

    Starting with a short summary of the major new experimental physics programs, we attempt to motivate the reasons why existing general-purpose detectors at Hadron Colliders are what they are, why they are being upgraded, and why new facilities are being constructed. The CDF and ATLAS detectors are used to illustrate these motivations. Selected physics results from the CDF experiment provide evidence for limitations on the detector performance, and new physics opportunities motivate both machine and detector upgrades. This is discussed with emphasis on the improved physics reach of the CDF experiment at the Fermilab Tevatron (√s =2 TeV). From 2005, the Large Hadron Collider (LHC) at CERN will become operational at a collision energy of √s =14 TeV, seven times larger than at the Tevatron Collider. To exploit the physics capability of the LHC, several large detectors are being constructed. The detectors are significantly more complex than those at the Tevatron Collider because of physics and operational constraints. The detector design and technology of the aspects of the large general-purpose detector ATLAS is described.

  13. A versatile detector system to measure the change states, mass compositions and energy spectra of interplanetary and magnetosphere ions

    NASA Technical Reports Server (NTRS)

    Gloeckler, G.

    1977-01-01

    An instrument is described for measuring the mass and charge state composition as well as the energy spectra and angular distributions of 0.5 to 350 kev/charge ions in interplanetary space and in magnetospheres of planets such as Jupiter and earth. Electrostatic deflection combined with a time-of-flight and energy measurement allows three-parameter analysis of output signals from which the mass, charge states, and energy are determined. Post-acceleration by 30 kV extends the energy range of the detector system into the solar wind and magnetosphere plasma regime. Isotopes of H and He are easily resolved as are individual elements up to Ne and the dominant elements up to and including Fe. This instrument has an extremely large dynamic range in intensity and is sensitive to rare elements even in the presence of high intensity radiation, and is adapted for interplanetary, deep-space, and out-of-the-ecliptic missions, as well as for flights on spacecraft orbiting Jupiter and earth.

  14. Full Scale Coated Fiber Neutron Detector Measurements

    SciTech Connect

    Kouzes, Richard T.; Ely, James H.; Erikson, Luke E.; Kernan, Warnick J.; Stromswold, David C.; Woodring, Mitchell L.

    2010-03-17

    Radiation portal monitors used for interdiction of illicit materials at borders include highly sensitive neutron detection systems. The main reason for having neutron detection capability is to detect fission neutrons from plutonium. The currently deployed radiation portal monitors (RPMs) from Ludlum and Science Applications International Corporation (SAIC) use neutron detectors based upon 3He-filled gas proportional counters, which are the most common large neutron detector. There is a declining supply of 3He in the world, and thus, methods to reduce the use of this gas in RPMs with minimal changes to the current system designs and sensitivity to cargo-borne neutrons are being investigated. Four technologies have been identified as being currently commercially available, potential alternative neutron detectors to replace the use of 3He in RPMs. These technologies are: 1) Boron trifluoride (BF3)-filled proportional counters, 2) Boron-lined proportional counters, 3) Lithium-loaded glass fibers, and 4) Coated non-scintillating plastic fibers. Reported here are the results of tests of the full-scale 6Li/ZnS(Ag)-coated non-scintillating plastic fibers option. This testing measured the required performance for neutron detection efficiency and gamma ray rejection capabilities of a system manufactured by Innovative American Technology (IAT) and Saint Gobain, and is a follow-up report to an earlier one on a smaller prototype system.

  15. Characteristic of HgCdTe photoconductive detector in energy distribution measurement system of laser spot in far field

    NASA Astrophysics Data System (ADS)

    Zhang, Jianmin; Feng, Guobin; Zhao, Jun

    2008-02-01

    Detector is an important device for the far-field laser spot measuring apparatus in form of photoelectrical detector array, for it acts as an optical-to-electrical converter in measure. Two working parameters of n-type HgCdTe photoconductor are discussed in this paper. The fundamental electrical properties of n-type Hg 1-xCd xTe material are summarized and related to device performance parameters. It can be found that the dark resistance R d and the voltage responsivity R v are closely bound up with temperature T and the alloy composition x, and the normalized calculating R d-T and R v-T characteristic curves are in good agreement with experimental results at temperature below 20°C. And then the dynamic responses of a detector under laser irradiation are studied by utilizing 2-D transient heat transfer model and empirical formulas. Furthermore, experimental investigation on laser damage in PC-type HgCdTe devices is operated by a means named 1on1. Detectable change in performance parameters has not been found under the irradiation of in-band laser, at power density beyond the detector linear response zone, and time of 200s. When the power of irradiation strengthened, the dark resistance increased, and the responsivity reduced. By observing the surface morphology of HgCdTe wafers, calculating the compositions x from R d-T characteristic, the causes for performance changing has been analyzed.

  16. Lanthanum Bromide Detectors for Safeguards Measurements

    SciTech Connect

    Wright, J.

    2011-05-25

    Lanthanum bromide has advantages over other popular inorganic scintillator detectors. Lanthanum bromide offers superior resolution, and good efficiency when compared to sodium iodide and lanthanum chloride. It is a good alternative to high purity germanium detectors for some safeguards applications. This paper offers an initial look at lanthanum bromide detectors. Resolution of lanthanum bromide will be compared lanthanum chloride and sodium-iodide detectors through check source measurements. Relative efficiency and angular dependence will be looked at. Nuclear material spectra, to include plutonium and highly enriched uranium, will be compared between detector types.

  17. Silicon surface barrier detectors used for liquid hydrogen density measurement

    NASA Technical Reports Server (NTRS)

    James, D. T.; Milam, J. K.; Winslett, H. B.

    1968-01-01

    Multichannel system employing a radioisotope radiation source, strontium-90, radiation detector, and a silicon surface barrier detector, measures the local density of liquid hydrogen at various levels in a storage tank. The instrument contains electronic equipment for collecting the density information, and a data handling system for processing this information.

  18. Seal system with integral detector

    DOEpatents

    Fiarman, Sidney

    1985-01-01

    There is disclosed a seal system for materials where security is of the essence, such as nuclear materials, which is tamper-indicating, which indicates changes in environmental conditions that evidence attempts to by-pass the seal, which is unique and cost effective, said seal system comprised of a seal where an optical signal is transmitted through a loop, with a detector to read said signal, and one or more additional detectors designed to detect environmental changes, these detectors being operatively associated with the seal so that detection of a break in the optical signal or detection of environmental changes will cause an observable change in the seal.

  19. Seal system with integral detector

    DOEpatents

    Fiarman, S.

    1982-08-12

    A seal system is disclosed for materials where security is of the essence, such as nuclear materials. The seal is tamper-indicating, indicates changes in environmental conditions that evidence attempts to bypass the seal, is unique and cost effective. The seal system is comprised of a seal where an optical signal is transmitted through a loop, with a detector to read said signal, and one or more additional detectors designed to detect environmental changes, these detectors being operatively associated with the seal so that detection of a break in the optical signal or detection of environmental changes will cause an observable change in the seal.

  20. Photon detector system

    DOEpatents

    Ekstrom, Philip A.

    1981-01-01

    A photon detector includes a semiconductor device, such as a Schottky barrier diode, which has an avalanche breakdown characteristic. The diode is cooled to cryogenic temperatures to eliminate thermally generated charge carriers from the device. The diode is then biased to a voltage level exceeding the avalanche breakdown threshold level such that, upon receipt of a photon, avalanche breakdown occurs. This breakdown is detected by appropriate circuitry which thereafter reduces the diode bias potential to a level below the avalanche breakdown threshold level to terminate the avalanche condition. Subsequently, the bias potential is reapplied to the diode in preparation for detection of a subsequently received photon.

  1. Detector systems for future HEP experiments

    SciTech Connect

    Savoy-Navarro, Aurore

    1998-02-01

    Some thoughts are presented on the development of detector systems for future high energy physics experiments. These systems must be able to achieve simultaneous, reliable, high-efficiency identification and measurement of all objects that make up an 'event'. This will require a world-wide collaborative effort, an active research and development program, and an upgrade of challenging running experiments. (AIP)

  2. A Chemiluminescence Detector for Ozone Measurement.

    ERIC Educational Resources Information Center

    Carroll, H.; And Others

    An ozone detector was built and evaluated for its applicability in smog chamber studies. The detection method is based on reaction of ozone with ethylene and measurement of resultant chemiluminescence. In the first phase of evaluation, the detector's response to ozone was studied as a function of several instrument parameters, and optimum…

  3. The detector control system of ALICETRD

    NASA Astrophysics Data System (ADS)

    Busch, O.; ALICE Collaboration

    2013-04-01

    The ALICE Transition Radiation Detector (TRD) is one of the largest TRDs ever built. The TRD Detector Controls (DCS) System was conceived to maintain safe detector conditions and allow failsafe, reliable and consistent operation of such a highly complex detector. We present the design and implementation of TRD DCS with emphasis on practical aspects of detector operation at the Large Hadron Collider.

  4. The Zero-Degree Detector System

    NASA Technical Reports Server (NTRS)

    Adams, James H.; Christl, Mark J.; Howell, Leonard W.; Kouznetsov, Evgueni

    2006-01-01

    We will report on a detector system used for accelerator measurement of nuclear fragmentation cross sections. This system consists of two detector planes, each carrying a ring of 8 detectors. Each detector has 64 pads. These two detector planes are arranged facing each other so that the matching detector pads on each plane form a two element charged particle telescope. Each of these telescopes is capable of determining the elemental identity of nuclear fragments passing through it. The system is used to measure light fragment production in the presence of heavier fragments. We will present a detailed discussion of the 64-pad detector design, the substrate design. The front-end electronics used to read out the signals is based on a custom VLSI chip developed for the Advanced Thin Ionization Calorimeter experiment which has been flown successfully twice in Antarctica. Each of these chips has 16 channels and each channel consists of a charge-sensitive preamplifier followed by a shaping amplifier and a track-and-hold circuit. The track-and-hold circuits are connected via a multiplexer to an output line driver. This allows the held signals to be presented, one-by-one via a common data line to a analog-to-digital converter. Because the output line driver can be placed in a high input impedance state when not in use, it is possible to daisy-change many chips on the same common data line. The front-end electronics and data readout scheme will be discussed in detail. The Zero Degree Detector has been used in several accelerator experiments conducted at the NASA Space Radiation Laboratory and the Alternating Gradient Synchrotron at Brookhaven National Laboratory as well as at the HIMAC accelerator in Japan. We will show examples of data taken at these accelerator runs to demonstrate how the system works.

  5. Focal spot measurements using a digital flat panel detector

    PubMed Central

    Jain, Amit; Panse, A.; Bednarek, Daniel R.; Rudin, Stephen

    2014-01-01

    Focal spot size is one of the crucial factors that affect the image quality of any x-ray imaging system. It is, therefore, important to measure the focal spot size accurately. In the past, pinhole and slit measurements of x-ray focal spots were obtained using direct exposure film. At present, digital detectors are replacing film in medical imaging so that, although focal spot measurements can be made quickly with such detectors, one must be careful to account for the generally poorer spatial resolution of the detector and the limited usable magnification. For this study, the focal spots of a diagnostic x-ray tube were measured with a 10-μm pinhole using a 194-μm pixel flat panel detector (FPD). The two-dimensional MTF, measured with the Noise Response (NR) Method was used for the correction for the detector blurring. The resulting focal spot sizes based on the FWTM (Full Width at Tenth Maxima) were compared with those obtained with a very high resolution detector with 8-μm pixels. This study demonstrates the possible effect of detector blurring on the focal spot size measurements with digital detectors with poor resolution and the improvement obtained by deconvolution. Additionally, using the NR method for measuring the two-dimensional MTF, any non-isotropies in detector resolution can be accurately corrected for, enabling routine measurement of non-isotropic x-ray focal spots. This work presents a simple, accurate and quick quality assurance procedure for measurements of both digital detector properties and x-ray focal spot size and distribution in modern x-ray imaging systems. PMID:25302004

  6. Novel detectors for traceable THz power measurements

    NASA Astrophysics Data System (ADS)

    Müller, Ralf; Bohmeyer, Werner; Kehrt, Mathias; Lange, Karsten; Monte, Christian; Steiger, Andreas

    2014-08-01

    Several novel types of detectors for the measurement of electromagnetic radiation in the THz spectral range are described. Firstly, detectors based on pyroelectric foil coated with different absorbers have been developed focusing on the following features: high accuracy due to well-characterized absorption, high sensitivity, large area absorbers and frequency and polarization independence. A three-dimensional design with five absorptions gave an overall absorption of more than 98 %. Secondly, detectors based on pyroelectric foils with thin metal layers were realized. An absorption of 50 % can be obtained if the thickness of the layers is carefully adjusted. According to electromagnetic theory this degree of absorption is independent of the polarization and frequency of the radiation in a wide range from at least 20 GHz to 5 THz. The third type of detector is based on a new type of volume absorber with a polished front surface and a gold-coated back side. It is the absorber of choice of the standard power detector for disseminating the spectral power responsivity scale. This standard detector allows the application of a physical model to calculate its spectral responsivity in the range from 1 THz to 5 THz if the detector has been calibrated at one single frequency. Finally, a THz detector calibration facility was set up and is now in operation at PTB to calibrate detectors from customers with an uncertainty as low as 1.7 %.

  7. Toroidal magnetic detector for high resolution measurement of muon momenta

    DOEpatents

    Bonanos, Peter

    1992-01-01

    A muon detector system including central and end air-core superconducting toroids and muon detectors enclosing a central calorimeter/detector. Muon detectors are positioned outside of toroids and all muon trajectory measurements are made in a nonmagnetic environment. Internal support for each magnet structure is provided by sheets, located at frequent and regularly spaced azimuthal planes, which interconnect the structural walls of the toroidal magnets. In a preferred embodiment, the shape of the toroidal magnet volume is adjusted to provide constant resolution over a wide range of rapidity.

  8. Toroidal magnetic detector for high resolution measurement of muon momenta

    DOEpatents

    Bonanos, P.

    1992-01-07

    A muon detector system including central and end air-core superconducting toroids and muon detectors enclosing a central calorimeter/detector. Muon detectors are positioned outside of toroids and all muon trajectory measurements are made in a nonmagnetic environment. Internal support for each magnet structure is provided by sheets, located at frequent and regularly spaced azimuthal planes, which interconnect the structural walls of the toroidal magnets. In a preferred embodiment, the shape of the toroidal magnet volume is adjusted to provide constant resolution over a wide range of rapidity. 4 figs.

  9. The ATLAS Detector Control System

    NASA Astrophysics Data System (ADS)

    Lantzsch, K.; Arfaoui, S.; Franz, S.; Gutzwiller, O.; Schlenker, S.; Tsarouchas, C. A.; Mindur, B.; Hartert, J.; Zimmermann, S.; Talyshev, A.; Oliveira Damazio, D.; Poblaguev, A.; Braun, H.; Hirschbuehl, D.; Kersten, S.; Martin, T.; Thompson, P. D.; Caforio, D.; Sbarra, C.; Hoffmann, D.; Nemecek, S.; Robichaud-Veronneau, A.; Wynne, B.; Banas, E.; Hajduk, Z.; Olszowska, J.; Stanecka, E.; Bindi, M.; Polini, A.; Deliyergiyev, M.; Mandic, I.; Ertel, E.; Marques Vinagre, F.; Ribeiro, G.; Santos, H. F.; Barillari, T.; Habring, J.; Huber, J.; Arabidze, G.; Boterenbrood, H.; Hart, R.; Iakovidis, G.; Karakostas, K.; Leontsinis, S.; Mountricha, E.; Ntekas, K.; Filimonov, V.; Khomutnikov, V.; Kovalenko, S.; Grassi, V.; Mitrevski, J.; Phillips, P.; Chekulaev, S.; D'Auria, S.; Nagai, K.; Tartarelli, G. F.; Aielli, G.; Marchese, F.; Lafarguette, P.; Brenner, R.

    2012-12-01

    The ATLAS experiment is one of the multi-purpose experiments at the Large Hadron Collider (LHC) at CERN, constructed to study elementary particle interactions in collisions of high-energy proton beams. Twelve different sub detectors as well as the common experimental infrastructure are controlled and monitored by the Detector Control System (DCS) using a highly distributed system of 140 server machines running the industrial SCADA product PVSS. Higher level control system layers allow for automatic control procedures, efficient error recognition and handling, manage the communication with external systems such as the LHC controls, and provide a synchronization mechanism with the ATLAS data acquisition system. Different databases are used to store the online parameters of the experiment, replicate a subset used for physics reconstruction, and store the configuration parameters of the systems. This contribution describes the computing architecture and software tools to handle this complex and highly interconnected control system.

  10. TCT measurements with slim edge strip detectors

    NASA Astrophysics Data System (ADS)

    Mandić, Igor; Cindro, Vladimir; Gorišek, Andrej; Kramberger, Gregor; Mikuž, Marko; Zavrtanik, Marko; Fadeyev, Vitaliy; Sadrozinski, Hartmut F.-W.; Christophersen, Marc; Phlips, Bernard

    2014-07-01

    Transient current technique (TCT) measurements with focused laser light on miniature silicon strip detectors (n+-type strips on p-type bulk) with one inactive edge thinned to about 100 μm using the Scribe-Cleave-Passivate (SCP) method are presented. Pulses of focused IR (λ=1064 nm) laser light were directed to the surface of the detector and charge collection properties near the slim edge were investigated. Measurements before and after irradiation with reactor neutrons up to 1 MeV equivalent fluence of 1.5×1015 neq/cm2 showed that SCP thinning of detector edge does not influence its charge collection properties. TCT measurements were done also with focused red laser beam (λ=640 nm) directed to the SCP processed side of the detector. The absorption length of red light in silicon is about 3 μm so with this measurement information about the electric field at the edge can be obtained. Observations of laser induced signals indicate that the electric field distribution along the depth of the detector at the detector edge is different than in the detector bulk: electric field is higher near the strip side and lower at the back side. This is a consequence of negative surface charge caused by passivation of the cleaved edge with Al2O3. The difference between bulk and edge electric field distributions gets smaller after irradiation.

  11. Diffraction measurements with a boron-based GEM neutron detector

    NASA Astrophysics Data System (ADS)

    Croci, Gabriele; Albani, Giorgia; Cazzaniga, Carlo; Perelli Cippo, Enrico; Schooneveld, Erik; Claps, Gerardo; Cremona, Anna; Grosso, Giovanni; Muraro, Andrea; Murtas, Fabrizio; Rebai, Marica; Scherillo, Antonella; Tardocchi, Marco; Gorini, Giuseppe

    2014-07-01

    The research of reliable substitutes of 3He detectors is an important task for the affordability of new neutron scattering instrumentation for future spallation sources like the European Spallation Source. GEM (Gas Electron Multiplier)-based detectors represent a valid alternative since they can combine high-rate capability, coverage of up to 1\\ \\text{m}^{2} area and good intrinsic spatial resolution (for this detector class it can be better than 0.5 mm). The first neutron diffraction measurements performed using a borated GEM detector are reported. The detector has an active area of 10 \\times 5\\ \\text{cm}^{2} and is equipped with a borated cathode. The GEM detector was read out using the standard ISIS Data Acquisition System. The comparison with measurements performed with standard 3He detectors shows that the broadening of the peaks measured on the diffractogram obtained with the GEM is 20-30% wider than the one obtained by 3He tubes but the active area of the GEM is twice that of 3He tubes. The GEM resolution is improved if half of its active area is considered. The signal-to-background ratio of the GEM is about 1.5 to 2 times lower than that of 3He. This measurement proves that GEM detectors can be used for neutron diffraction measurements and paves the way for their use at future neutron spallation sources.

  12. Spin physics with the PHENIX detector system

    SciTech Connect

    Saito, N.; PHENIX Collaboration

    1997-12-31

    The PHENIX experiment at RHIC has extended its scope to cover spin physics using polarized proton beams. The major goals of the spin physics at RHIC are elucidation of the spin structure of the nucleon and precision tests of the symmetries. Sensitivities of the spin physics measurements with the PHENIX detector system are reviewed.

  13. Metal detector system

    NASA Technical Reports Server (NTRS)

    Lee, R. D.

    1970-01-01

    Signal voltage resulting from the disturbance of an electromagnetic field within the volume of a sensitive area is compared with a reference ac voltage for polarity information, which identifies the material. System output amplitude and polarity indicate approximate size and type of metal, respectively.

  14. Overview of the CBM detector system

    NASA Astrophysics Data System (ADS)

    Balog, Tomáš

    2014-04-01

    The Compressed Baryonic Matter (CBM) experiment at the future Facility for Antiproton and Ion Research (FAIR) is a fixed target experiment designed to explore the QCD phase diagram in the region of high net-baryon densities. The CBM detector system will access beams directly from the superconducting synchrotrons SIS100 and SIS300. It is designed for interaction rates up to 107 Hz to enable measurements of rare observables and diagnostic probes created in the early and dense phase of the fireball evolution. The layout of the CBM detector system is adapted to the experimental requirements concerning the acceptance in the laboratory frame (mid and forward rapidities), reaction rates, radiation tolerance, determination of the vertices with accuracy of 50 μm, particle densities (up to 700 particles passing through the active area of the detector in single central Au+Au collision at 25 GeV/nucleon) and selectivity [1, 2].

  15. Characterization of a cable-free system based on p-type MOSFET detectors for 'in vivo' entrance skin dose measurements in interventional radiology

    SciTech Connect

    Falco, Maria Daniela; D'Andrea, Marco; Strigari, Lidia; D'Alessio, Daniela; Quagliani, Francesco; Santoni, Riccardo; Bosco, Alessia Lo

    2012-08-15

    Purpose: During radiological interventional procedures (RIP) the skin of a patient under examination may undergo a prolonged x-ray exposure, receiving a dose as high as 5 Gy in a single session. This paper describes the use of the OneDose{sup TM} cable-free system based on p-type MOSFET detectors to determine the entrance skin dose (ESD) at selected points during RIP. Methods: At first, some dosimetric characteristics of the detector, such as reproducibility, linearity, and fading, have been investigated using a C-arc as a source of radiation. The reference setting (RS) was: 80 kV energy, 40 cm Multiplication-Sign 40 cm field of view (FOV), current-time product of 50 mAs and source to skin distance (SSD) of 50 cm. A calibrated PMX III solid state detector was used as the reference detector and Gafchromic{sup Registered-Sign} films have been used as an independent dosimetric system to test the entire procedure. A calibration factor for the RS and correction factors as functions of tube voltage and FOV size have been determined. Results: Reproducibility ranged from 4% at low doses (around 10 cGy as measured by the reference detector) to about 1% for high doses (around 2 Gy). The system response was found to be linear with respect to both dose measured with the PMX III and tube voltage. The fading test has shown that the maximum deviation from the optimal reading conditions (3 min after a single irradiation) was 9.1% corresponding to four irradiations in one hour read 3 min after the last exposure. The calibration factor in the RS has shown that the system response at the kV energy range is about four times larger than in the MV energy range. A fifth order and fourth order polynomial functions were found to provide correction factors for tube voltage and FOV size, respectively, in measurement settings different than the RS. ESDs measured with the system after applying the proper correction factors agreed within one standard deviation (SD) with the corresponding ESDs

  16. SOLAR SYSTEM OBJECTS AS COSMIC RAYS DETECTORS

    SciTech Connect

    Privitera, P.; Motloch, P.

    2014-08-10

    In a recent Letter, Jupiter is presented as an efficient detector for Ultra-High Energy Cosmic Rays (UHECRs), through measurement by an Earth-orbiting satellite of gamma rays from UHECRs showers produced in Jupiter's atmosphere. We show that this result is incorrect, due to erroneous assumptions on the angular distribution of shower particles. We evaluated other solar system objects as potential targets for UHECRs detection, and found that the proposed technique is either not viable or not competitive with traditional ground-based UHECRs detectors.

  17. Cascaded systems analysis of photon counting detectors

    PubMed Central

    Xu, J.; Zbijewski, W.; Gang, G.; Stayman, J. W.; Taguchi, K.; Lundqvist, M.; Fredenberg, E.; Carrino, J. A.; Siewerdsen, J. H.

    2014-01-01

    Purpose: Photon counting detectors (PCDs) are an emerging technology with applications in spectral and low-dose radiographic and tomographic imaging. This paper develops an analytical model of PCD imaging performance, including the system gain, modulation transfer function (MTF), noise-power spectrum (NPS), and detective quantum efficiency (DQE). Methods: A cascaded systems analysis model describing the propagation of quanta through the imaging chain was developed. The model was validated in comparison to the physical performance of a silicon-strip PCD implemented on an experimental imaging bench. The signal response, MTF, and NPS were measured and compared to theory as a function of exposure conditions (70 kVp, 1–7 mA), detector threshold, and readout mode (i.e., the option for coincidence detection). The model sheds new light on the dependence of spatial resolution, charge sharing, and additive noise effects on threshold selection and was used to investigate the factors governing PCD performance, including the fundamental advantages and limitations of PCDs in comparison to energy-integrating detectors (EIDs) in the linear regime for which pulse pileup can be ignored. Results: The detector exhibited highly linear mean signal response across the system operating range and agreed well with theoretical prediction, as did the system MTF and NPS. The DQE analyzed as a function of kilovolt (peak), exposure, detector threshold, and readout mode revealed important considerations for system optimization. The model also demonstrated the important implications of false counts from both additive electronic noise and charge sharing and highlighted the system design and operational parameters that most affect detector performance in the presence of such factors: for example, increasing the detector threshold from 0 to 100 (arbitrary units of pulse height threshold roughly equivalent to 0.5 and 6 keV energy threshold, respectively), increased the f50 (spatial-frequency at

  18. Cascaded systems analysis of photon counting detectors

    SciTech Connect

    Xu, J.; Zbijewski, W.; Gang, G.; Stayman, J. W.; Taguchi, K.; Carrino, J. A.; Lundqvist, M.; Fredenberg, E.; Siewerdsen, J. H.

    2014-10-15

    Purpose: Photon counting detectors (PCDs) are an emerging technology with applications in spectral and low-dose radiographic and tomographic imaging. This paper develops an analytical model of PCD imaging performance, including the system gain, modulation transfer function (MTF), noise-power spectrum (NPS), and detective quantum efficiency (DQE). Methods: A cascaded systems analysis model describing the propagation of quanta through the imaging chain was developed. The model was validated in comparison to the physical performance of a silicon-strip PCD implemented on an experimental imaging bench. The signal response, MTF, and NPS were measured and compared to theory as a function of exposure conditions (70 kVp, 1–7 mA), detector threshold, and readout mode (i.e., the option for coincidence detection). The model sheds new light on the dependence of spatial resolution, charge sharing, and additive noise effects on threshold selection and was used to investigate the factors governing PCD performance, including the fundamental advantages and limitations of PCDs in comparison to energy-integrating detectors (EIDs) in the linear regime for which pulse pileup can be ignored. Results: The detector exhibited highly linear mean signal response across the system operating range and agreed well with theoretical prediction, as did the system MTF and NPS. The DQE analyzed as a function of kilovolt (peak), exposure, detector threshold, and readout mode revealed important considerations for system optimization. The model also demonstrated the important implications of false counts from both additive electronic noise and charge sharing and highlighted the system design and operational parameters that most affect detector performance in the presence of such factors: for example, increasing the detector threshold from 0 to 100 (arbitrary units of pulse height threshold roughly equivalent to 0.5 and 6 keV energy threshold, respectively), increased the f{sub 50} (spatial

  19. Detector systems for future HEP experiments

    SciTech Connect

    Savoy-Navarro, A.

    1998-02-01

    Some thoughts are presented on the development of detector systems for future high energy physics experiments. These systems must be able to achieve simultaneous, reliable, high-efficiency identification and measurement of all objects that make up an {open_quotes}event.{close_quotes} This will require a world-wide collaborative effort, an active research and development program, and an upgrade of challenging running experiments. (AIP)

  20. Cherenkov detector for beam quality measurement

    NASA Astrophysics Data System (ADS)

    Orfanelli, S.

    2016-07-01

    A new detector to measure the machine induced background at larger radii has been developed and installed in the CMS experiment at the LHC. It consists of forty modules, each comprising a quartz bar read out by a photomultiplier tube. Since Cherenkov radiation is emitted in a forward cone around the charged particle trajectory, these detectors can distinguish between the arrival directions of the machine induced background and the collision products. The back-end electronics consists of a uTCA readout with excellent time resolution. The installation in the CMS is described and first commissioning measurements with the LHC beams in Run II are presented.

  1. Measuring module of the Cherenkov water detector NEVOD

    NASA Astrophysics Data System (ADS)

    Kindin, V. V.; Amelchakov, M. B.; Barbashina, N. S.; Bogdanov, A. G.; Burtsev, V. D.; Chernov, D. V.; Khokhlov, S. S.; Khomyakov, V. A.; Kokoulin, R. P.; Kompaniets, K. G.; Kovylyaeva, E. A.; Kruglikova, V. S.; Ovchinnikov, V. V.; Petrukhin, A. A.; Shulzhenko, I. A.; Shutenko, V. V.; Yashin, I. I.; Zadeba, E. A.

    2015-08-01

    Quasispherical Module (QSM) of Cherenkov water detector NEVOD represents six low-noise FEU-200 photomultipliers with flat photocathodes (15 cm in diameter), oriented along the axes of orthogonal coordinate system. Such configuration allows to register Cherenkov radiation arriving from any direction with almost equal efficiency. The results of measurements of QSM characteristics in the sensitive volume of the NEVOD detector during the registration of Cherenkov radiation of single muons at different distances and angles are discussed.

  2. Topological detector: measuring continuous dosimetric quantities with few-element detector array

    NASA Astrophysics Data System (ADS)

    Han, Zhaohui; Brivio, Davide; Sajo, Erno; Zygmanski, Piotr

    2016-08-01

    A prototype topological detector was fabricated and investigated for quality assurance of radiation producing medical devices. Unlike a typical array or flat panel detector, a topological detector, while capable of achieving a very high spatial resolution, consists of only a few elements and therefore is much simpler in construction and more cost effective. The key feature allowing this advancement is a geometry-driven design that is customized for a specific dosimetric application. In the current work, a topological detector of two elements was examined for the positioning verification of the radiation collimating devices (jaws, MLCs, and blades etc). The detector was diagonally segmented from a rectangular thin film strip (2.5 cm  ×  15 cm), giving two contiguous but independent detector elements. The segmented area was the central portion of the strip measuring 5 cm in length. Under irradiation, signals from each detector element were separately digitized using a commercial multichannel data acquisition system. The center and size of an x-ray field, which were uniquely determined by the collimator positions, were shown mathematically to relate to the difference and sum of the two signals. As a proof of concept, experiments were carried out using slit x-ray fields ranging from 2 mm to 20 mm in size. It was demonstrated that, the collimator positions can be accurately measured with sub-millimeter precisions.

  3. Topological detector: measuring continuous dosimetric quantities with few-element detector array.

    PubMed

    Han, Zhaohui; Brivio, Davide; Sajo, Erno; Zygmanski, Piotr

    2016-08-21

    A prototype topological detector was fabricated and investigated for quality assurance of radiation producing medical devices. Unlike a typical array or flat panel detector, a topological detector, while capable of achieving a very high spatial resolution, consists of only a few elements and therefore is much simpler in construction and more cost effective. The key feature allowing this advancement is a geometry-driven design that is customized for a specific dosimetric application. In the current work, a topological detector of two elements was examined for the positioning verification of the radiation collimating devices (jaws, MLCs, and blades etc). The detector was diagonally segmented from a rectangular thin film strip (2.5 cm  ×  15 cm), giving two contiguous but independent detector elements. The segmented area was the central portion of the strip measuring 5 cm in length. Under irradiation, signals from each detector element were separately digitized using a commercial multichannel data acquisition system. The center and size of an x-ray field, which were uniquely determined by the collimator positions, were shown mathematically to relate to the difference and sum of the two signals. As a proof of concept, experiments were carried out using slit x-ray fields ranging from 2 mm to 20 mm in size. It was demonstrated that, the collimator positions can be accurately measured with sub-millimeter precisions. PMID:27452789

  4. Measurements of fast neutrons by bubble detectors

    NASA Astrophysics Data System (ADS)

    Castillo, F.; Leal, B.; Martınez, H.; Rangel, J.; Reyes, P. G.

    2013-07-01

    Neutron bubble detectors have been studied using Am-Be and D-D neuron sources, which give limited energy information. The Bubble Detector Spectrometer (BDS) have six different energy thresholds ranging from 10 KeV to 10 Mev. The number of bubbles obtained in each measurement is related to the dose (standardized response R) equivalent neutrons through sensitivity (b / μSv) and also with the neutron flux (neutrons per unit area) through a relationship that provided by the manufacturer. Bubble detectors were used with six different answers (0.11 b/ μSv, 0093 b/μSv, 0.14 b/μSv, 0.17 b/μSv, 0051 b/μSv). To test the response of the detectors (BDS) radiate a set of six of them with different energy threshold, with a source of Am-Be, placing them at a distance of one meter from it for a few minutes. Also, exposed to dense plasma focus Fuego Nuevo II (FN-II FPD) of ICN-UNAM, apparatus which produces fusion plasma, generating neutrons by nuclear reactions of neutrons whose energy emitting is 2.45 MeV. In this case the detectors were placed at a distance of 50 cm from the pinch at 90° this was done for a certain number of shots. In both cases, the standard response is reported (Dose in μSv) for each of the six detectors representing an energy range, this response is given by the expression Ri = Bi / Si where Bi is the number of bubbles formed in each and the detector sensitivity (Si) is given for each detector in (b / μSv). Also, reported for both cases, the detected neutron flux (n cm-2), by a given ratio and the response involves both standardized R, as the average cross section sigma. The results obtained have been compared with the spectrum of Am-Be source. From these measurements it can be concluded that with a combination of bubble detectors, with different responses is possible to measure the equivalent dose in a range of 10 to 100 μSv fields mixed neutron and gamma, and pulsed generated fusion devices.

  5. Measurements of fast neutrons by bubble detectors

    SciTech Connect

    Castillo, F.; Martinez, H.; Leal, B.; Rangel, J.; Reyes, P. G.

    2013-07-03

    Neutron bubble detectors have been studied using Am-Be and D-D neuron sources, which give limited energy information. The Bubble Detector Spectrometer (BDS) have six different energy thresholds ranging from 10 KeV to 10 Mev. The number of bubbles obtained in each measurement is related to the dose (standardized response R) equivalent neutrons through sensitivity (b / {mu}Sv) and also with the neutron flux (neutrons per unit area) through a relationship that provided by the manufacturer. Bubble detectors were used with six different answers (0.11 b/ {mu}Sv, 0093 b/{mu}Sv, 0.14 b/{mu}Sv, 0.17 b/{mu}Sv, 0051 b/{mu}Sv). To test the response of the detectors (BDS) radiate a set of six of them with different energy threshold, with a source of Am-Be, placing them at a distance of one meter from it for a few minutes. Also, exposed to dense plasma focus Fuego Nuevo II (FN-II FPD) of ICN-UNAM, apparatus which produces fusion plasma, generating neutrons by nuclear reactions of neutrons whose energy emitting is 2.45 MeV. In this case the detectors were placed at a distance of 50 cm from the pinch at 90 Degree-Sign this was done for a certain number of shots. In both cases, the standard response is reported (Dose in {mu}Sv) for each of the six detectors representing an energy range, this response is given by the expression R{sub i}= B{sub i} / S{sub i} where B{sub i} is the number of bubbles formed in each and the detector sensitivity (S{sub i}) is given for each detector in (b / {mu}Sv). Also, reported for both cases, the detected neutron flux (n cm{sup -2}), by a given ratio and the response involves both standardized R, as the average cross section sigma. The results obtained have been compared with the spectrum of Am-Be source. From these measurements it can be concluded that with a combination of bubble detectors, with different responses is possible to measure the equivalent dose in a range of 10 to 100 {mu}Sv fields mixed neutron and gamma, and pulsed generated fusion

  6. Performance of photomultiplier tubes and sodium iodide scintillation detector systems

    NASA Technical Reports Server (NTRS)

    Meegan, C. A.

    1981-01-01

    The performance of photomultiplier tubes (PMT's) and scintillation detector systems incorporating 50.8 by 1.27 cm NaI (T l) crystals was investigated to determine the characteristics of the photomultiplier tubes and optimize the detector geometry for the Burst and Transient Source Experiment on the Gamma Ray Observatory. Background information on performance characteristics of PMT's and NaI (T l) detectors is provided, procedures for measurement of relevant parameters are specified, and results of these measurements are presented.

  7. Dead layer measurements on diode detectors

    NASA Astrophysics Data System (ADS)

    Danagoulian, Areg; Barron-Palos, Libertad; Klein, Andreas; Wilburn, Scott

    2007-10-01

    The goal of the abBA experiment involves coincidence measurements of protons and electrons from the neutron beta decay. While electron detection is rather straightforward, the detection of the protons is complicated due to their low energies. In order to understand the detector reponse and to determine the lower cut off value for the energy a technique for determining the thickness of the dead layer has been developed. A discussion of the measurement and of the results will be presented.

  8. Quality control measurements for digital x-ray detectors.

    PubMed

    Marshall, N W; Mackenzie, A; Honey, I D

    2011-02-21

    This paper describes a digital radiography (DR) quality control protocol for DR detectors from the forthcoming report from the Institute of Physics and Engineering in Medicine (IPEM). The protocol was applied to a group of six identical caesium iodide (CsI) digital x-ray detectors to assess reproducibility of methods, while four further detectors were assessed to examine the wider applicability. Twelve images with minimal spatial frequency processing are required, from which the detector response, lag, modulation transfer function (MTF), normalized noise power spectrum (NNPS) and threshold contrast-detail (c-d) detectability are calculated. The x-ray spectrum used was 70 kV and 1 mm added copper filtration, with a target detector air kerma of 2.5 µGy for the NNPS and c-d results. In order to compare detector performance with previous imaging technology, c-d data from four screen/film systems were also acquired, at a target optical density of 1.5 and an average detector air kerma of 2.56 µGy. The DR detector images were typically acquired in 20 min, with a further 45 min required for image transfer and analysis. The average spatial frequency for the 50% point of the MTF for six identical detectors was 1.29 mm(-1) ± 0.05 (3.9% coefficient of variation (cov)). The air kerma set for the six systems was 2.57 µGy ± 0.13 (5.0% cov) and the NNPS at this air kerma was 1.42 × 10(-5) mm(2) (6.5% cov). The detective quantum efficiency (DQE) measured for the six identical detectors was 0.60 at 0.5 mm(-1), with a maximum cov of 10% at 2.9 mm(-1), while the average DQE was 0.56 at 0.5 mm(-1) for three CsI detectors from three different manufacturers. Comparable c-d performance was found for these detectors (5.9% cov) with an average threshold contrast of 0.46% for 11 mm circular discs. The average threshold contrast for the S/F systems was 0.70% at 11 mm, indicating superior imaging performance for the digital systems. The protocol was found to be quick, reproducible and

  9. Quality control measurements for digital x-ray detectors

    NASA Astrophysics Data System (ADS)

    Marshall, N. W.; Mackenzie, A.; Honey, I. D.

    2011-02-01

    This paper describes a digital radiography (DR) quality control protocol for DR detectors from the forthcoming report from the Institute of Physics and Engineering in Medicine (IPEM). The protocol was applied to a group of six identical caesium iodide (CsI) digital x-ray detectors to assess reproducibility of methods, while four further detectors were assessed to examine the wider applicability. Twelve images with minimal spatial frequency processing are required, from which the detector response, lag, modulation transfer function (MTF), normalized noise power spectrum (NNPS) and threshold contrast-detail (c-d) detectability are calculated. The x-ray spectrum used was 70 kV and 1 mm added copper filtration, with a target detector air kerma of 2.5 µGy for the NNPS and c-d results. In order to compare detector performance with previous imaging technology, c-d data from four screen/film systems were also acquired, at a target optical density of 1.5 and an average detector air kerma of 2.56 µGy. The DR detector images were typically acquired in 20 min, with a further 45 min required for image transfer and analysis. The average spatial frequency for the 50% point of the MTF for six identical detectors was 1.29 mm-1 ± 0.05 (3.9% coefficient of variation (cov)). The air kerma set for the six systems was 2.57 µGy ± 0.13 (5.0% cov) and the NNPS at this air kerma was 1.42 × 10-5 mm2 (6.5% cov). The detective quantum efficiency (DQE) measured for the six identical detectors was 0.60 at 0.5 mm-1, with a maximum cov of 10% at 2.9 mm-1, while the average DQE was 0.56 at 0.5 mm-1 for three CsI detectors from three different manufacturers. Comparable c-d performance was found for these detectors (5.9% cov) with an average threshold contrast of 0.46% for 11 mm circular discs. The average threshold contrast for the S/F systems was 0.70% at 11 mm, indicating superior imaging performance for the digital systems. The protocol was found to be quick, reproducible and gave an in

  10. Design and construction of a large area detector system and neutron total cross section measurements in the energy range 0.4 to 20 MeV

    NASA Astrophysics Data System (ADS)

    Rapp, Michael James

    In an effort to extend the measurement capabilities of the Gaerttner LINAC Laboratory at Rensselaer Polytechnic Institute (RPI) into the MeV region, a new detector system and analysis methods were developed. A large volume modular proton recoil detector was constructed and placed in a collimated neutron beam at an effective distance of 99.95 meters from the neutron source. Transmission measurements were done on natural carbon (graphite), beryllium, molybdenum, zirconium, titanium and tantalum using the time-of-flight method. Combining the long flight path, fast detector response and electronics, and a narrow neutron pulse width, provided good energy resolution, enabling some of the measurements to resolve structure in neutron total cross section never before seen. In order to obtain accurate transmission calculations, a method was developed to determine the time-dependent background component associated with the measurement, using a combination of experimental data and Monte Carlo methods. This background, combined with the high neutron flux provided by the RPI LINAC, generated high signal-to-background ratios. This signal-to-background and low counting statistics error resulted in low uncertainties and highly accurate data, with uncertainties of less than one percent seen through much of the measured energy range. The carbon measurement, which has a well measured and agreed upon neutron total cross section in the energy range 0.4 to 20 MeV, provided verification of the accuracy in the measurement and analytical methods used, with an average difference of less than one percent seen between the experimental and evaluated data. The measurements of beryllium, molybdenum, zirconium, titanium and tantalum, also resulted in accurate measurements of neutron total cross section. These high-resolution, high-accuracy results showed that improvements can be made in the current neutron total cross section evaluations, some of which show differences up to 10 %. The experimental

  11. A novel forward and backward scattering wave measurement system for optimizing GPR standoff mine/IED detector

    NASA Astrophysics Data System (ADS)

    Fuse, Yukinori

    2012-06-01

    Standoff detection of mines and improvised explosive devices by ground penetrating radar has advantages in terms of safety and efficiency. However, the reflected signals from buried targets are often disturbed by those from the ground surface, which vary with the antennas angle, making it more difficult to detect at a safe distance. An understanding of the forward and backward scattering wave is thus essential for improving standoff detection capability. We present some experimental results from using our measurement system for such an analysis.

  12. Development of a phoswich detector system for radioxenon monitoring

    SciTech Connect

    Hennig, Wolfgang; Warburton, William K.; Fallu-Labruyere, A.; Sabourov, K.; Cooper, Matthew W.; McIntyre, Justin I.; Gleyzer, A.; Bean, Marc; Korpach, E.; Ungar, R. Kurt; Zhang, W.; Mekarski, P.

    2009-12-03

    Abstract Measurement of radioactive xenon in the atmosphere is one of several techniques to detect nuclear weapons testing. For high sensitivity, some existing systems use beta/gamma coincidence detection to suppress background, which is very effective, but increases complexity due to separate beta and gamma detectors that require careful calibration and gain matching. In this paper, we will describe the development and evaluation of a simpler detector system, named PhosWatch, consisting of a CsI(Tl)/ BC-404 phoswich well detector, digital readout electronics, and pulse shape analysis algorithms implemented in a digital signal processor on the electronics, and compare its performance to existing multi-detector systems.

  13. Study of the relative response factors of various gas chromatograph-flame ionisation detector systems for measurement of C2-C9 hydrocarbons in air.

    PubMed

    Slemr, J; Slemr, F; D'Souza, H; Partridge, R

    2004-12-17

    The assumption of an instrument response that is linear with carbon number is frequently used to quantify atmospheric non-methane hydrocarbons (NMHCs) when using gas chromatography (GC) and detection by flame ionisation detector (FID). In order to assess the validity of this widely used method the results of intercomparison measurements by 14 laboratories across Europe were evaluated. The intercomparison measurements were made on synthetic, gravimetrically-prepared, gas mixtures containing 30 hydrocarbons (C2-C9) in the low ppbv range, using various different GC-FID systems. The response per carbon atom of GC-FID systems to individual NMHCs, relative to that of butane, were found to differ by more than 25% across different systems. The differences were mostly caused by analytical errors within particular GC-FID systems and to a more minor degree by systematic deviations related to the molecular structure. (Correction factors due to the molecular structure would lessen the differences, e.g. by about 5% for olefin compounds.) The differences were larger than 10% even after elimination of obvious outliers. Thus, calibration of GC-FID systems with multicomponent NMHC mixtures is found to be essential whenever the accuracy of NMHC measurements is required to be better than about 10%. If calibration by multicomponent gas mixtures is not possible and effective carbon atom response factors are used to quantify the individual NMHC compounds then the particular analytical system should be carefully characterised and its responses to individual compounds be verified. PMID:15633746

  14. Unitary scintillation detector and system

    DOEpatents

    McElhaney, Stephanie A.; Chiles, Marion M.

    1994-01-01

    The invention is a unitary alpha, beta, and gamma scintillation detector and system for sensing the presence of alpha, beta, and gamma radiations selectively or simultaneously. The scintillators are mounted in a light-tight housing provided with an entrance window for admitting alpha, beta, and gamma radiation and excluding ambient light from the housing. Light pulses from each scintillator have different decay constants that are converted by a photosensitive device into corresponding differently shaped electrical pulses. A pulse discrimination system identifies the electrical pulses by their respective pulse shapes which are determined by decay time. The identified electrical pulses are counted in separate channel analyzers to indicate the respective levels of sensed alpha, beta, and gamma radiations.

  15. Unitary scintillation detector and system

    DOEpatents

    McElhaney, S.A.; Chiles, M.M.

    1994-05-31

    The invention is a unitary alpha, beta, and gamma scintillation detector and system for sensing the presence of alpha, beta, and gamma radiations selectively or simultaneously. The scintillators are mounted in a light-tight housing provided with an entrance window for admitting alpha, beta, and gamma radiation and excluding ambient light from the housing. Light pulses from each scintillator have different decay constants that are converted by a photosensitive device into corresponding differently shaped electrical pulses. A pulse discrimination system identifies the electrical pulses by their respective pulse shapes which are determined by decay time. The identified electrical pulses are counted in separate channel analyzers to indicate the respective levels of sensed alpha, beta, and gamma radiations. 10 figs.

  16. Measurements of speed of response of high-speed visible and IR optical detectors

    NASA Technical Reports Server (NTRS)

    Rowe, H. E.; Osmundson, J. S.

    1972-01-01

    A technique for measuring speed of response of high speed visible and IR optical detectors to mode-locked Nd:YAG laser pulses is described. Results of measurements of response times of four detectors are presented. Three detectors that can be used as receivers in a 500-MHz optical communication system are tested.

  17. Measurement of the relative width difference of the {B}^0-{overline{B}}^0 system with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aaboud, M.; Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; Aben, R.; AbouZeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agricola, J.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alstaty, M.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonelli, M.; Antonov, A.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Baines, J. T.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barranco Navarro, L.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, A. S.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez, J.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertram, I. A.; Bertsche, C.; Bertsche, D.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Biedermann, D.; Bielski, R.; Biesuz, N. V.; Biglietti, M.; Bilbao De Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biondi, S.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blanco, J. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bokan, P.; Bold, T.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Bossio Sola, J. D.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruni, L. S.; Brunt, BH; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burgard, C. D.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Cabrera Urbán, S.; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Caloba, L. P.; Calvet, D.; Calvet, S.; Calvet, T. P.; Camacho Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminal Armadans, R.; Camincher, C.; Campana, S.; Campanelli, M.; Camplani, A.; Campoverde, A.; Canale, V.; Canepa, A.; Cano Bret, M.; Cantero, J.; Cantrill, R.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, I.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Casper, D. W.; Castaneda-Miranda, E.; Castelijn, R.; Castelli, A.; Castillo Gimenez, V.; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerda Alberich, L.; Cerio, B. C.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, S. K.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chatterjee, A.; Chau, C. C.; Chavez Barajas, C. A.; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, M. R.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coffey, L.; Colasurdo, L.; Cole, B.; Colijn, A. P.; Collot, J.; Colombo, T.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consorti, V.; Constantinescu, S.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cormier, K. J. R.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Crispin Ortuzar, M.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Cúth, J.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; D'amen, G.; D'Auria, S.; D'Onofrio, M.; Da Cunha Sargedas De Sousa, M. J.; Da Via, C.; Dabrowski, W.; Dado, T.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Dann, N. S.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, M.; Davison, P.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Benedetti, A.; De Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Maria, A.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Dehghanian, N.; Deigaard, I.; Del Gaudio, M.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; DeMarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Ciaccio, A.; Di Ciaccio, L.; Di Clemente, W. K.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dohmae, T.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Duffield, E. M.; Duflot, L.; Duguid, L.; Dührssen, M.; Dumancic, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edwards, N. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; Ellajosyula, V.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Ennis, J. S.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, F.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, C.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Feremenga, L.; Fernandez Martinez, P.; Fernandez Perez, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, G. T.; Fletcher, R. R. M.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Flowerdew, M. J.; Forcolin, G. T.; Formica, A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, L. G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gascon Bravo, A.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gecse, Z.; Gee, C. N. P.; Geich-Gimbel, Ch.; Geisen, M.; Geisler, M. P.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; George, S.; Gerbaudo, D.; Gershon, A.; Ghasemi, S.; Ghazlane, H.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giannetti, P.; Gibbard, B.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuli, F.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Pinto Firmino Da Costa, J.; Gonella, G.; Gonella, L.; Gongadze, A.; González de la Hoz, S.; Gonzalez Parra, G.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Grafström, P.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gravila, P. M.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Grohs, J. P.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guan, W.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, Y.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Hadef, A.; Haefner, P.; Hageböck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Haley, J.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hartmann, N. M.; Hasegawa, M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Hellman, S.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Hernández Jiménez, Y.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hinman, R. R.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohn, D.; Holmes, T. R.; Homann, M.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, Q.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Huo, P.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Ince, T.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Ito, F.; Iturbe Ponce, J. M.; Iuppa, R.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, M.; Jackson, P.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansky, R.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Jeanneau, F.; Jeanty, L.; Jejelava, J.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Johansson, P.; Johns, K. A.; Johnson, W. J.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Juste Rozas, A.; Köhler, M. K.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneti, S.; Kanjir, L.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Kentaro, K.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khalil-zada, F.; Khanov, A.; Kharlamov, A. G.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Knapik, J.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Koi, T.; Kolanoski, H.; Kolb, M.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotwal, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozakai, C.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Lazzaroni, M.; Le, B.; Le Dortz, O.; Le Guirriec, E.; Le Quilleuc, E. P.; LeBlanc, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leisos, A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Lerner, G.; Leroy, C.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, D.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liberti, B.; Liblong, A.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limosani, A.; Lin, S. C.; Lin, T. H.; Lindquist, B. E.; Lionti, A. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, H.; Liu, H.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loew, K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; Lopes, L.; Lopez Mateos, D.; Lopez Paredes, B.; Lopez Paz, I.; Lopez Solis, A.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Luzi, P. M.; Lynn, D.; Lysak, R.; Lytken, E.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; Macdonald, C. M.; Maček, B.; Machado Miguens, J.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, B.; Mandelli, L.; Mandić, I.; Maneira, J.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J.; Mann, A.; Manousos, A.; Mansoulie, B.; Mansour, J. D.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Mapelli, L.; Marceca, G.; March, L.; Marchiori, G.; Marcisovsky, M.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti-Garcia, S.; Martin, B.; Martin, T. A.; Martin, V. J.; Martin dit Latour, B.; Martinez, M.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marx, M.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazza, S. M.; Mc Fadden, N. C.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McClymont, L. I.; McDonald, E. F.; McFarlane, K. W.; Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McPherson, R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Melini, D.; Mellado Garcia, B. R.; Melo, M.; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer Zu Theenhausen, H.; Miano, F.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Molander, S.; Moles-Valls, R.; Monden, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Mortensen, S. S.; Morvaj, L.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Munoz Sanchez, F. J.; Murillo Quijada, J. A.; Murray, W. J.; Musheghyan, H.; Muškinja, M.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Naranjo Garcia, R. F.; Narayan, R.; Narrias Villar, D. I.; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Nef, P. D.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Nguyen Manh, T.; Nickerson, R. B.; Nicolaidou, R.; Nielsen, J.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.; Nordberg, M.; Norjoharuddeen, N.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'grady, F.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Oleiro Seabra, L. F.; Olivares Pino, S. A.; Oliveira Damazio, D.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero y Garzon, G.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Pacheco Rodriguez, L.; Padilla Aranda, C.; Pagáčová, M.; Pagan Griso, S.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palestini, S.; Palka, M.; Pallin, D.; Palma, A.; Panagiotopoulou, E. St.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V. R.; Pasqualucci, E.; Passaggio, S.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Pedersen, M.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Pelikan, D.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.; Perez Codina, E.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pin, A. W. J.; Pinamonti, M.; Pinfold, J. L.; Pingel, A.; Pires, S.; Pirumov, H.; Pitt, M.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth, D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Pozo Astigarraga, M. E.; Pralavorio, P.; Pranko, A.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puddu, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Raine, J. A.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.; Ratti, M. G.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Ravinovich, I.; Raymond, M.; Read, A. L.; Readioff, N. P.; Reale, M.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reisin, H.; Rembser, C.; Ren, H.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rimoldi, M.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Rizzi, C.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Rodina, Y.; Rodriguez Perez, A.; Rodriguez Rodriguez, D.; Roe, S.; Rogan, C. S.; Røhne, O.; Romaniouk, A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, P.; Rosenthal, O.; Rosien, N.-A.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov, A.; Rzehorz, G. F.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Salazar Loyola, J. E.; Salek, D.; Sales De Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Sanchez Martinez, V.; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sandhoff, M.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sasaki, Y.; Sato, K.; Sauvage, G.; Sauvan, E.; Savage, G.; Savard, P.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schachtner, B. M.; Schaefer, D.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schier, S.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt-Sommerfeld, K. R.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, S.; Schneider, B.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schott, M.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schuh, N.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwarz, T. A.; Schwegler, Ph.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Seliverstov, D. M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shaikh, N. W.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Shoaleh Saadi, D.; Shochet, M. J.; Shojaii, S.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sickles, A. M.; Sidebo, P. E.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinner, M. B.; Skottowe, H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smiesko, J.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Sokhrannyi, G.; Solans Sanchez, C. A.; Solar, M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Song, H. Y.; Sood, A.; Sopczak, A.; Sopko, V.; Sorin, V.; Sosa, D.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Sperlich, D.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; St. Denis, R. D.; Stabile, A.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, G. H.; Stark, J.; Staroba, P.; Starovoitov, P.; Stärz, S.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Subramaniam, R.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tannenwald, B. B.; Tapia Araya, S.; Tapprogge, S.; Tarem, S.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, A. C.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teischinger, F. A.; Teixeira-Dias, P.; Temming, K. K.; Temple, D.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Tibbetts, M. J.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome, K.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Trofymov, A.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsui, K. M.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turgeman, D.; Turra, R.; Turvey, A. J.; Tuts, P. M.; Tyndel, M.; Ucchielli, G.; Ueda, I.; Ueno, R.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Valdes Santurio, E.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Vallecorsa, S.; Valls Ferrer, J. A.; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van Eldik, N.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vankov, P.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasquez, J. G.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veloce, L. M.; Veloso, F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Vigne, R.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wallangen, V.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, T.; Wang, W.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, M. D.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; Whallon, N. L.; Wharton, A. M.; White, A.; White, M. J.; White, R.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yakabe, R.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yuen, S. P. Y.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, R.; Zhang, R.; Zhang, X.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; zur Nedden, M.; Zurzolo, G.; Zwalinski, L.

    2016-06-01

    This paper presents the measurement of the relative width difference ΔΓ d /Γ d of the {B}^0-{overline{B}}^0 system using the data collected by the ATLAS experiment at the LHC in pp collisions at √{s}=7 TeV and √{s}=8 TeV and corresponding to an integrated luminosity of 25.2 fb-1. The value of ΔΓ d /Γ d is obtained by comparing the decay-time distributions of B 0 → J/ ψK S and B 0 → J/ ψK *0(892) decays. The result is ΔΓ d /Γ d = (-0.1±1.1 (stat.)± 0.9 (syst.)) × 10-2. Currently, this is the most precise single measurement of ΔΓ d /Γ d . It agrees with the Standard Model prediction and the measurements by other experiments. [Figure not available: see fulltext.

  18. Measurement of the relative width difference of the $$$ {B}^0\\hbox{-} {\\overline{B}}^0 $$$ system with the ATLAS detector

    DOE PAGESBeta

    Aaboud, M.; Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; Aben, R.; AbouZeid, O. S.; Abraham, N. L.; Abramowicz, H.; et al

    2016-06-14

    This study presents the measurement of the relative width difference ΔΓ d /Γ d of the B0-B¯¯¯¯0 system using the data collected by the ATLAS experiment at the LHC in pp collisions at √s=7 TeV and √s=8 TeV and corresponding to an integrated luminosity of 25.2 fb-1. The value of ΔΓ d /Γ d is obtained by comparing the decay-time distributions of B 0 → J/ψK S and B 0 → J/ψK *0(892) decays. The result is ΔΓ d /Γ d = (-0.1±1.1 (stat.)± 0.9 (syst.)) × 10-2. Currently, this is the most precise single measurement of ΔΓ d /Γmore » d . Finally, it agrees with the Standard Model prediction and the measurements by other experiments.« less

  19. Miniature detector measures deep space radiation

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2011-08-01

    The 1972 journey of Apollo 17 marked not only the last time a human walked on the Moon but also the most recent manned venture beyond the outer reaches of the Earth's atmosphere. With preparations being made for humans to once again explore deep space, important steps are under way to quantify the hazards of leaving low-Earth orbit. One significant risk for long-distance missions is the increased exposure to ionizing radiation—energetic particles that can strip electrons off of otherwise neutral materials, affecting human health and the functioning of spacecraft equipment. The deep space probes that are being sent to measure the risks from ionizing radiation and other hazards can be costly, so maximizing the scientific value of each launch is important. With this goal in mind, Mazur et al. designed and developed a miniature dosimeter that was sent into lunar orbit aboard NASA's Lunar Reconnaissance Orbiter (LRO) in 2009. Weighing only 20 grams, the detector is able to measure fluctuations in ionizing radiation as low as 1 microrad (equivalent to 1.0 × 10-8 joules of energy deposited into 1 kilogram) while requiring minimal power and computer processing. The postage stamp-sized detector tracked radiation dosages for the first year of LRO's mission, with the results being confirmed by other onboard and near-Earth detectors. (Space Weather, doi:10.1029/2010SW000641, 2011)

  20. Ionization-chamber smoke detector system

    DOEpatents

    Roe, Robert F.

    1976-10-19

    This invention relates to an improved smoke-detection system of the ionization-chamber type. In the preferred embodiment, the system utilizes a conventional detector head comprising a measuring ionization chamber, a reference ionization chamber, and a normally non-conductive gas triode for discharging when a threshold concentration of airborne particulates is present in the measuring chamber. The improved system is designed to reduce false alarms caused by fluctuations in ambient temperature. Means are provided for periodically firing the gas discharge triode and each time recording the triggering voltage required. A computer compares each triggering voltage with its predecessor. The computer is programmed to energize an alarm if the difference between the two compared voltages is a relatively large value indicative of particulates in the measuring chamber and to disregard smaller differences typically resulting from changes in ambient temperature.

  1. INO prototype detector and data acquisition system

    NASA Astrophysics Data System (ADS)

    Behere, Anita; Bhatia, M. S.; Chandratre, V. B.; Datar, V. M.; Mukhopadhyay, P. K.; Jena, Satyajit; Viyogi, Y. P.; Bhattacharya, Sudeb; Saha, Satyajit; Bhide, Sarika; Kalmani, S. D.; Mondal, N. K.; Nagaraj, P.; Nagesh, B. K.; Rao, Shobha K.; Reddy, L. V.; Saraf, M.; Satyanarayana, B.; Shinde, R. R.; Upadhya, S. S.; Verma, P.; Biswas, Saikat; Chattopadhyay, Subhasish; Sarma, P. R.

    2009-05-01

    India-based Neutrino Observatory (INO) collaboration is proposing to build a 50 kton magnetised iron calorimetric (ICAL) detector in an underground laboratory to be located in South India. Glass resistive plate chambers (RPCs) of about 2 m×2 m in size will be used as active elements for the ICAL detector. As a first step towards building the ICAL detector, a 35 ton prototype of the same is being set up over ground to track cosmic muons. Design and construction details of the prototype detector and its data acquisition system will be discussed. Some of the preliminary results from the detector stack will also be highlighted.

  2. Detectors

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore; Bounds, John Alan; Allander, Krag

    2002-01-01

    The apparatus and method provide techniques through which both alpha and beta emission determinations can be made simultaneously using a simple detector structure. The technique uses a beta detector covered in an electrically conducting material, the electrically conducting material discharging ions generated by alpha emissions, and as a consequence providing a measure of those alpha emissions. The technique also offers improved mountings for alpha detectors and other forms of detectors against vibration and the consequential effects vibration has on measurement accuracy.

  3. Three radioactivity detectors for liquid-chromatographic systems compared

    SciTech Connect

    Frey, B.M.; Frey, F.J.

    1982-04-01

    Three radioactivity detectors coupled to a ''high-performance'' liquid-chromatography system are compared with regard to static efficiency, dynamic efficiency, background measurements, and within- and between-day variabilities. Their advantages and disadvantages are discussed.

  4. Measurement techniques for characterizing and using low background germanium detectors

    NASA Astrophysics Data System (ADS)

    Zimmer, William H.; Wagner, Sanford E.

    1984-06-01

    An investigation has been undertaken to determine whether an order of magnitude background reduction from present typical cryostat-detector systems can be obtained through the use of low background components. In order to measure progress in this task, a standard, ten-centimeter lead shield was fitted with a five-centimeter, oxygen-free high-conductivity copper liner and a borated polyethylene neutron absorber. This reduced the contribution of uranium-238, thorium daughters, and radium daughters from the shield as seen by the detector by 1.3, 0.02, and 0.1 Bq respectively. The methodology of determining very low net photon peak areas in the presence of high continuum levels to assure maximum accuracy was verified and is presented. By these means the background activities of detectors are being measured at the -10 2 Bq per nuclide and detector component materials at the Bq per gram level, both with total uncertainties of less than 50% 1σ. The hardware and software developed is being used to measure the background activity of the detectors and for the analysis of low activity samples.

  5. Minefield reconnaissance and detector system

    DOEpatents

    Butler, M.T.; Cave, S.P.; Creager, J.D.; Johnson, C.M.; Mathes, J.B.; Smith, K.J.

    1994-04-26

    A multi-sensor system is described for detecting the presence of objects on the surface of the ground or buried just under the surface, such as anti-personnel or anti-tank mines or the like. A remote sensor platform has a plurality of metal detector sensors and a plurality of short pulse radar sensors. The remote sensor platform is remotely controlled from a processing and control unit and signals from the remote sensor platform are sent to the processing and control unit where they are individually evaluated in separate data analysis subprocess steps to obtain a probability score for each of the pluralities of sensors. These probability scores are combined in a fusion subprocess step by comparing score sets to a probability table which is derived based upon the historical incidence of object present conditions given that score set. A decision making rule is applied to provide an output which is optionally provided to a marker subprocess for controlling a marker device to mark the location of found objects. 7 figures.

  6. Minefield reconnaissance and detector system

    DOEpatents

    Butler, Millard T.; Cave, Steven P.; Creager, James D.; Johnson, Charles M.; Mathes, John B.; Smith, Kirk J.

    1994-01-01

    A multi-sensor system (10) for detecting the presence of objects on the surface of the ground or buried just under the surface, such as anti-personnel or anti-tank mines or the like. A remote sensor platform (12) has a plurality of metal detector sensors (22) and a plurality of short pulse radar sensors (24). The remote sensor platform (12) is remotely controlled from a processing and control unit (14) and signals from the remote sensor platform (12) are sent to the processing and control unit (14) where they are individually evaluated in separate data analysis subprocess steps (34, 36) to obtain a probability "score" for each of the pluralities of sensors (22, 24). These probability scores are combined in a fusion subprocess step (38) by comparing score sets to a probability table (130) which is derived based upon the historical incidence of object present conditions given that score set. A decision making rule is applied to provide an output which is optionally provided to a marker subprocess (40) for controlling a marker device (76) to mark the location of found objects.

  7. Minefield reconnaissance and detector system

    SciTech Connect

    Butler, M.T.; Cave, S.P.; Creager, J.D.; Johnson, C.M.; Mathes, J.B.; Smith, K.J.

    1991-12-31

    This invention is comprised of a multi-sensor system for detecting the presence of objects on the surface of the ground or buried just under the surface, such as anti-personnel or anti-tank mines or the like, is disclosed. A remote sensor platform has a plurality of metal detector sensors and a plurality of short pulse radar sensors. The remote sensor platform is remotely controlled from a processing and control unit and signals from the remote sensor platform are sent to the processing and control unit where they are individually evaluated in separate data analysis subprocess steps to obtain a probability ``score`` for each of the pluralities of sensors. These probability scores are combined in a fusion subprocess step by comparing score sets to a probability table which is derived based upon the historical incidence of object present conditions given that score set. A decision making rule is applied to provide an output which is optionally provided to a marker subprocess for controlling a marker device to mark the location of found objects.

  8. The detector system of the Daya Bay reactor neutrino experiment

    NASA Astrophysics Data System (ADS)

    An, F. P.; Bai, J. Z.; Balantekin, A. B.; Band, H. R.; Beavis, D.; Beriguete, W.; Bishai, M.; Blyth, S.; Brown, R. L.; Butorov, I.; Cao, D.; Cao, G. F.; Cao, J.; Carr, R.; Cen, W. R.; Chan, W. T.; Chan, Y. L.; Chang, J. F.; Chang, L. C.; Chang, Y.; Chasman, C.; Chen, H. Y.; Chen, H. S.; Chen, M. J.; Chen, Q. Y.; Chen, S. J.; Chen, S. M.; Chen, X. C.; Chen, X. H.; Chen, X. S.; Chen, Y. X.; Chen, Y.; Cheng, J. H.; Cheng, J.; Cheng, Y. P.; Cherwinka, J. J.; Chidzik, S.; Chow, K.; Chu, M. C.; Cummings, J. P.; de Arcos, J.; Deng, Z. Y.; Ding, X. F.; Ding, Y. Y.; Diwan, M. V.; Dong, L.; Dove, J.; Draeger, E.; Du, X. F.; Dwyer, D. A.; Edwards, W. R.; Ely, S. R.; Fang, S. D.; Fu, J. Y.; Fu, Z. W.; Ge, L. Q.; Ghazikhanian, V.; Gill, R.; Goett, J.; Gonchar, M.; Gong, G. H.; Gong, H.; Gornushkin, Y. A.; Grassi, M.; Greenler, L. S.; Gu, W. Q.; Guan, M. Y.; Guo, R. P.; Guo, X. H.; Hackenburg, R. W.; Hahn, R. L.; Han, R.; Hans, S.; He, M.; He, Q.; He, W. S.; Heeger, K. M.; Heng, Y. K.; Higuera, A.; Hinrichs, P.; Ho, T. H.; Hoff, M.; Hor, Y. K.; Hsiung, Y. B.; Hu, B. Z.; Hu, L. M.; Hu, L. J.; Hu, T.; Hu, W.; Huang, E. C.; Huang, H. Z.; Huang, H. X.; Huang, P. W.; Huang, X.; Huang, X. T.; Huber, P.; Hussain, G.; Isvan, Z.; Jaffe, D. E.; Jaffke, P.; Jen, K. L.; Jetter, S.; Ji, X. P.; Ji, X. L.; Jiang, H. J.; Jiang, W. Q.; Jiao, J. B.; Johnson, R. A.; Joseph, J.; Kang, L.; Kettell, S. H.; Kohn, S.; Kramer, M.; Kwan, K. K.; Kwok, M. W.; Kwok, T.; Lai, C. Y.; Lai, W. C.; Lai, W. H.; Langford, T. J.; Lau, K.; Lebanowski, L.; Lee, J.; Lee, M. K. P.; Lei, R. T.; Leitner, R.; Leung, J. K. C.; Lewis, C. A.; Li, B.; Li, C.; Li, D. J.; Li, F.; Li, G. S.; Li, J.; Li, N. Y.; Li, Q. J.; Li, S. F.; Li, S. C.; Li, W. D.; Li, X. B.; Li, X. N.; Li, X. Q.; Li, Y.; Li, Y. F.; Li, Z. B.; Liang, H.; Liang, J.; Lin, C. J.; Lin, G. L.; Lin, P. Y.; Lin, S. X.; Lin, S. K.; Lin, Y. C.; Ling, J. J.; Link, J. M.; Littenberg, L.; Littlejohn, B. R.; Liu, B. J.; Liu, C.; Liu, D. W.; Liu, H.; Liu, J. L.; Liu, J. C.; Liu, S.; Liu, S. S.; Liu, X.; Liu, Y. B.; Lu, C.; Lu, H. Q.; Lu, J. S.; Luk, A.; Luk, K. B.; Luo, T.; Luo, X. L.; Ma, L. H.; Ma, Q. M.; Ma, X. Y.; Ma, X. B.; Ma, Y. Q.; Mayes, B.; McDonald, K. T.; McFarlane, M. C.; McKeown, R. D.; Meng, Y.; Mitchell, I.; Mohapatra, D.; Monari Kebwaro, J.; Morgan, J. E.; Nakajima, Y.; Napolitano, J.; Naumov, D.; Naumova, E.; Newsom, C.; Ngai, H. Y.; Ngai, W. K.; Nie, Y. B.; Ning, Z.; Ochoa-Ricoux, J. P.; Olshevskiy, A.; Pagac, A.; Pan, H.-R.; Patton, S.; Pearson, C.; Pec, V.; Peng, J. C.; Piilonen, L. E.; Pinsky, L.; Pun, C. S. J.; Qi, F. Z.; Qi, M.; Qian, X.; Raper, N.; Ren, B.; Ren, J.; Rosero, R.; Roskovec, B.; Ruan, X. C.; Sands, W. R.; Seilhan, B.; Shao, B. B.; Shih, K.; Song, W. Y.; Steiner, H.; Stoler, P.; Stuart, M.; Sun, G. X.; Sun, J. L.; Tagg, N.; Tam, Y. H.; Tanaka, H. K.; Tang, W.; Tang, X.; Taychenachev, D.; Themann, H.; Torun, Y.; Trentalange, S.; Tsai, O.; Tsang, K. V.; Tsang, R. H. M.; Tull, C. E.; Tung, Y. C.; Viaux, N.; Viren, B.; Virostek, S.; Vorobel, V.; Wang, C. H.; Wang, L. S.; Wang, L. Y.; Wang, L. Z.; Wang, M.; Wang, N. Y.; Wang, R. G.; Wang, T.; Wang, W.; Wang, W. W.; Wang, X. T.; Wang, X.; Wang, Y. F.; Wang, Z.; Wang, Z.; Wang, Z. M.; Webber, D. M.; Wei, H. Y.; Wei, Y. D.; Wen, L. J.; Wenman, D. L.; Whisnant, K.; White, C. G.; Whitehead, L.; Whitten, C. A.; Wilhelmi, J.; Wise, T.; Wong, H. C.; Wong, H. L. H.; Wong, J.; Wong, S. C. F.; Worcester, E.; Wu, F. F.; Wu, Q.; Xia, D. M.; Xia, J. K.; Xiang, S. T.; Xiao, Q.; Xing, Z. Z.; Xu, G.; Xu, J. Y.; Xu, J. L.; Xu, J.; Xu, W.; Xu, Y.; Xue, T.; Yan, J.; Yang, C. G.; Yang, L.; Yang, M. S.; Yang, M. T.; Ye, M.; Yeh, M.; Yeh, Y. S.; Yip, K.; Young, B. L.; Yu, G. Y.; Yu, Z. Y.; Zeng, S.; Zhan, L.; Zhang, C.; Zhang, F. H.; Zhang, H. H.; Zhang, J. W.; Zhang, K.; Zhang, Q. X.; Zhang, Q. M.; Zhang, S. H.; Zhang, X. T.; Zhang, Y. C.; Zhang, Y. H.; Zhang, Y. M.; Zhang, Y. X.; Zhang, Y. M.; Zhang, Z. J.; Zhang, Z. Y.; Zhang, Z. P.; Zhao, J.; Zhao, Q. W.; Zhao, Y. F.; Zhao, Y. B.; Zheng, L.; Zhong, W. L.; Zhou, L.; Zhou, N.; Zhou, Z. Y.; Zhuang, H. L.; Zimmerman, S.; Zou, J. H.

    2016-03-01

    The Daya Bay experiment was the first to report simultaneous measurements of reactor antineutrinos at multiple baselines leading to the discovery of νbare oscillations over km-baselines. Subsequent data has provided the world's most precise measurement of sin2 2θ13 and the effective mass splitting Δ mee2. The experiment is located in Daya Bay, China where the cluster of six nuclear reactors is among the world's most prolific sources of electron antineutrinos. Multiple antineutrino detectors are deployed in three underground water pools at different distances from the reactor cores to search for deviations in the antineutrino rate and energy spectrum due to neutrino mixing. Instrumented with photomultiplier tubes, the water pools serve as shielding against natural radioactivity from the surrounding rock and provide efficient muon tagging. Arrays of resistive plate chambers over the top of each pool provide additional muon detection. The antineutrino detectors were specifically designed for measurements of the antineutrino flux with minimal systematic uncertainty. Relative detector efficiencies between the near and far detectors are known to better than 0.2%. With the unblinding of the final two detectors' baselines and target masses, a complete description and comparison of the eight antineutrino detectors can now be presented. This paper describes the Daya Bay detector systems, consisting of eight antineutrino detectors in three instrumented water pools in three underground halls, and their operation through the first year of eight detector data-taking.

  9. Pixelated Single-crystal Diamond Detector for fast neutron measurements

    NASA Astrophysics Data System (ADS)

    Rebai, M.; Cazzaniga, C.; Croci, G.; Tardocchi, M.; Perelli Cippo, E.; Calvani, P.; Girolami, M.; Trucchi, D. M.; Grosso, G.; Gorini, G.

    2015-03-01

    Single-crystal Diamond Detectors (SDDs), due to their high radiation hardness, fast response time and small size, are good candidates as fast neutron detectors in those environments where the high neutron flux is an issue, such as spallation neutron sources and the next generation thermonuclear fusion plasmas, i.e. the ITER experiment. Neutron detection in SDDs is based on the collection of electron-hole pairs produced by charged particles generated by neutron interactions with 12C. Recent measurements have demonstrated the SDD capability of measuring the neutron flux with a good energy resolution and at high rates. In this work a novel detector based on a 12-pixels SDD matrix will be presented. Each pixel is equipped with an independent electronic chain: the fast shaping preamplifier coupled to a digitizer is able to combine the high rate capability and the good energy resolution. Two CAEN digitizers are compared and the possibility of performing good energy resolution measurements (<2%) and at high rates (>1 MHz per channel) is described. Each pixel was characterized and calibrated using an 241Am source: the energy resolution was evaluated and gives a mean value of 1.73% at 5.5 MeV. The good energy resolution achieved and its uniformity between pixels are the demonstration of the capability of this novel detector as a spectrometer. This system will be installed during the next Deuterium-Tritium campaign on a collimated vertical line of sight at JET for 14 MeV neutron measurements.

  10. The calibration unit and detector system tests for MUSE

    NASA Astrophysics Data System (ADS)

    Kelz, A.; Bauer, S. M.; Biswas, I.; Fechner, T.; Hahn, T.; Olaya, J.-C.; Popow, E.; Roth, M. M.; Streicher, O.; Weilbacher, P.; Bacon, R.; Laurent, F.; Laux, U.; Lizon, J. L.; Loupias, M.; Reiss, R.; Rupprecht, G.

    2010-07-01

    The Multi-Unit Spectroscopic Explorer (MUSE) is an integral-field spectrograph for the ESO Very Large Telescope. After completion of the Final Design Review in 2009, MUSE is now in its manufacture and assembly phase. To achieve a relative large field-of-view with fine spatial sampling, MUSE features 24 identical spectrograph-detector units. The acceptance tests of the detector sub-systems, the design and manufacture of the calibration unit and the development of the Data Reduction Software for MUSE are under the responsibility of the AIP. The optical design of the spectrograph implies strict tolerances on the alignment of the detector systems to minimize aberrations. As part of the acceptance testing, all 24 detector systems, developed by ESO, are mounted to a MUSE reference spectrograph, which is illuminated by a set of precision pinholes. Thus the best focus is determined and the image quality of the spectrograph-detector subsystem across wavelength and field angle is measured.

  11. Flux measurements using the BATSE spectroscopic detectors

    NASA Technical Reports Server (NTRS)

    Mcnamara, Bernard

    1993-01-01

    Among the Compton Gama-Ray Observatory instruments, the BATSE Spectroscopic Detectors (SD) have the distinction of being able to detect photons of energies less than about 20 keV. This is an interesting energy range for the examination of low mass X-ray binaries (LMXB's). In fact, Sco X-1, the prototype LMXB, is easily seen even in the raw BATSE spectroscopic data. The all-sky coverage afforded by these detectors offers a unique opportunity to monitor this source over time periods never before possible. The aim of this investigation was to test a number of ways in which both continous and discrete flux measurements can be obtained using the BATSE spectroscopic datasets. A instrumental description of a SD can be found in the Compton Workshop of Apr. 1989, this report will deal only with methods which can be used to analyze its datasets. Many of the items discussed below, particularly in regard to the earth occultation technique, have been developed, refined, and applied by the BATSE team to the reduction of BATSE LAD data. Code written as part of this project utilizes portions of that work. The following discussions will first address issues related to the reduction of SD datasets using the earth occultation technique. It will then discuss methods for the recovery of the flux history of strong sources while they are above the earth's limb. The report will conclude with recommended reduction procedures.

  12. Characterization and optimization for detector systems of IGRINS

    NASA Astrophysics Data System (ADS)

    Jeong, Ueejeong; Chun, Moo-Young; Oh, Jae Sok; Park, Chan; Yuk, In-Soo; Oh, Heeyoung; Kim, Kang-Min; Ko, Kyeong Yeon; Pavel, Michael D.; Yu, Young Sam; Jaffe, Daniel T.

    2014-07-01

    IGRINS (Immersion GRating INfrared Spectrometer) is a high resolution wide-band infrared spectrograph developed by the Korea Astronomy and Space Science Institute (KASI) and the University of Texas at Austin (UT). This spectrograph has H-band and K-band science cameras and a slit viewing camera, all three of which use Teledyne's λc~2.5μm 2k×2k HgCdTe HAWAII-2RG CMOS detectors. The two spectrograph cameras employ science grade detectors, while the slit viewing camera includes an engineering grade detector. Teledyne's cryogenic SIDECAR ASIC boards and JADE2 USB interface cards were installed to control those detectors. We performed experiments to characterize and optimize the detector systems in the IGRINS cryostat. We present measurements and optimization of noise, dark current, and referencelevel stability obtained under dark conditions. We also discuss well depth, linearity and conversion gain measurements obtained using an external light source.

  13. Electromechanically cooled germanium radiation detector system

    NASA Astrophysics Data System (ADS)

    Lavietes, Anthony D.; Joseph Mauger, G.; Anderson, Eric H.

    1999-02-01

    We have successfully developed and fielded an electromechanically cooled germanium radiation detector (EMC-HPGe) at Lawrence Livermore National Laboratory (LLNL). This detector system was designed to provide optimum energy resolution, long lifetime, and extremely reliable operation for unattended and portable applications. For most analytical applications, high purity germanium (HPGe) detectors are the standard detectors of choice, providing an unsurpassed combination of high energy resolution performance and exceptional detection efficiency. Logistical difficulties associated with providing the required liquid nitrogen (LN) for cooling is the primary reason that these systems are found mainly in laboratories. The EMC-HPGe detector system described in this paper successfully provides HPGe detector performance in a portable instrument that allows for isotopic analysis in the field. It incorporates a unique active vibration control system that allows the use of a Sunpower Stirling cycle cryocooler unit without significant spectral degradation from microphonics. All standard isotopic analysis codes, including MGA and MGA++ [1], GAMANL [2], GRPANL [3]and MGAU [4], typically used with HPGe detectors can be used with this system with excellent results. Several national and international Safeguards organisations including the International Atomic Energy Agency (IAEA) and U.S. Department of Energy (DOE) have expressed interest in this system. The detector was combined with custom software and demonstrated as a rapid Field Radiometric Identification System (FRIS) for the U.S. Customs Service [5]. The European Communities' Safeguards Directorate (EURATOM) is field-testing the first Safeguards prototype in their applications. The EMC-HPGe detector system design, recent applications, and results will be highlighted.

  14. The detector system of the Daya Bay reactor neutrino experiment

    DOE PAGESBeta

    An, F. P.

    2015-12-15

    The Daya Bay experiment was the first to report simultaneous measurements of reactor antineutrinos at multiple baselines leading to the discovery of ν¯e oscillations over km-baselines. Subsequent data has provided the world's most precise measurement of sin 22θ13 and the effective mass splitting Δm2ee. The experiment is located in Daya Bay, China where the cluster of six nuclear reactors is among the world's most prolific sources of electron antineutrinos. Multiple antineutrino detectors are deployed in three underground water pools at different distances from the reactor cores to search for deviations in the antineutrino rate and energy spectrum due to neutrinomore » mixing. Instrumented with photomultiplier tubes, the water pools serve as shielding against natural radioactivity from the surrounding rock and provide efficient muon tagging. Arrays of resistive plate chambers over the top of each pool provide additional muon detection. The antineutrino detectors were specifically designed for measurements of the antineutrino flux with minimal systematic uncertainty. Relative detector efficiencies between the near and far detectors are known to better than 0.2%. With the unblinding of the final two detectors’ baselines and target masses, a complete description and comparison of the eight antineutrino detectors can now be presented. This study describes the Daya Bay detector systems, consisting of eight antineutrino detectors in three instrumented water pools in three underground halls, and their operation through the first year of eight detector data-taking.« less

  15. The detector system of the Daya Bay reactor neutrino experiment

    SciTech Connect

    An, F. P.

    2015-12-15

    The Daya Bay experiment was the first to report simultaneous measurements of reactor antineutrinos at multiple baselines leading to the discovery of ν¯e oscillations over km-baselines. Subsequent data has provided the world's most precise measurement of sin 213 and the effective mass splitting Δm2ee. The experiment is located in Daya Bay, China where the cluster of six nuclear reactors is among the world's most prolific sources of electron antineutrinos. Multiple antineutrino detectors are deployed in three underground water pools at different distances from the reactor cores to search for deviations in the antineutrino rate and energy spectrum due to neutrino mixing. Instrumented with photomultiplier tubes, the water pools serve as shielding against natural radioactivity from the surrounding rock and provide efficient muon tagging. Arrays of resistive plate chambers over the top of each pool provide additional muon detection. The antineutrino detectors were specifically designed for measurements of the antineutrino flux with minimal systematic uncertainty. Relative detector efficiencies between the near and far detectors are known to better than 0.2%. With the unblinding of the final two detectors’ baselines and target masses, a complete description and comparison of the eight antineutrino detectors can now be presented. This study describes the Daya Bay detector systems, consisting of eight antineutrino detectors in three instrumented water pools in three underground halls, and their operation through the first year of eight detector data-taking.

  16. Automatic control and detector for three-terminal resistance measurement

    DOEpatents

    Fasching, George E.

    1976-10-26

    A device is provided for automatic control and detection in a three-terminal resistance measuring instrument. The invention is useful for the rapid measurement of the resistivity of various bulk material with a three-terminal electrode system. The device maintains the current through the sample at a fixed level while measuring the voltage across the sample to detect the sample resistance. The three-electrode system contacts the bulk material and the current through the sample is held constant by means of a control circuit connected to a first of the three electrodes and works in conjunction with a feedback controlled amplifier to null the voltage between the first electrode and a second electrode connected to the controlled amplifier output. An A.C. oscillator provides a source of sinusoidal reference voltage of the frequency at which the measurement is to be executed. Synchronous reference pulses for synchronous detectors in the control circuit and an output detector circuit are provided by a synchronous pulse generator. The output of the controlled amplifier circuit is sampled by an output detector circuit to develop at an output terminal thereof a D.C. voltage which is proportional to the sample resistance R. The sample resistance is that segment of the sample between the area of the first electrode and the third electrode, which is connected to ground potential.

  17. A Rapid Turnaround Cryogenic Detector Characterization System

    NASA Technical Reports Server (NTRS)

    Benford, Dominic j.; Dipirro, Michael J.; Forgione, Joshua B.; Jackson, Clifton E.; Jackson, Michael L.; Kogut, Al; Moseley, S. Harvey; Shirron, Peter J.

    2004-01-01

    Upcoming major NASA missions such as the Einstein Inflation Probe and the Single Aperture Far-Infrared Observatory require arrays of detectors with thousands of elements, operating at temperatures near l00 mK and sensitive to wavelengths from approx. 100 microns to approx. 3 mm. Such detectors represent a substantial enabling technology for these missions, and must be demonstrated soon in order for them to proceed. In order to make rapid progress on detector development, the cryogenic testing cycle must be made convenient and quick. We have developed a cryogenic detector characterization system capable of testing superconducting detector arrays in formats up to 8 x 32, read out by SQUID multiplexers. The system relies on the cooling of a two-stage adiabatic demagnetization refrigerator immersed in a liquid helium bath. This approach permits a detector to be cooled from 300K to 50 mK in about 4 hours, so that a test cycle begun in the morning will be over by the end of the day. Tine system is modular, with two identical immersible units, so that while one unit is cooling, the second can be reconfigured for the next battery of tests. We describe the design, construction, and performance of this cryogenic detector testing facility.

  18. Automatic Whistler Detector and Analyzer system: Automatic Whistler Detector

    NASA Astrophysics Data System (ADS)

    Lichtenberger, J.; Ferencz, C.; BodnáR, L.; Hamar, D.; Steinbach, P.

    2008-12-01

    A new, unique system has been developed for the automatic detection and analysis of whistlers. The Automatic Whistler Detector and Analyzer (AWDA) system has two purposes: (1) to automatically provide plasmaspheric electron densities extracted from whistlers and (2) to collect statistical data for the investigation of whistler generation and propagation. This paper presents the details of and the first results obtained by the automatic detector segment. The detector algorithm is based on image correlation where the target image is a preprocessed spectrogram of raw VLF signals and the pattern is a model whistler. The first AWDA system has been working in Tihany, Hungary (L = 1.8), and has collected 100,000 whistler traces per year. The overall detection efficiency using a parameter set optimized for purpose 2 is 90% for misdetection and 50-80% for false detection. The statistical analysis over the period February 2002 to February 2008 including 600,000 whistler traces shows high diurnal variations; whistler were mainly, but not only, detected when both the source and receiver regions were unlit. The seasonal occurrence is high during austral summer and low during austral winter. Comparison with Tarcsai et al.'s (1988) statistical study on Tihany whistlers shows differences in both diurnal and seasonal variations, but the latter study was made on 1388 manually identified whistlers only. The L value distributions of both data sets are similar. A global network of AWDA systems (AWDAnet) has been set up to overcome the time and space limitations of a single station; the network consists of 13 nodes, and another 6 are envisaged for the near future.

  19. Daya Bay Antineutrino Detector gas system

    NASA Astrophysics Data System (ADS)

    Band, H. R.; Cherwinka, J. J.; Chu, M.-C.; Heeger, K. M.; Kwok, M. W.; Shih, K.; Wise, T.; Xiao, Q.

    2012-11-01

    The Daya Bay Antineutrino Detector gas system is designed to protect the liquid scintillator targets of the antineutrino detectors against degradation and contamination from exposure to ambient laboratory air. The gas system is also used to monitor the leak tightness of the antineutrino detector assembly. The cover gas system constantly flushes the gas volumes above the liquid scintillator with dry nitrogen to minimize oxidation of the scintillator over the five year lifetime of the experiment. This constant flush also prevents the infiltration of radon or other contaminants into these detecting liquids keeping the internal backgrounds low. Since the Daya Bay antineutrino detectors are immersed in the large water pools of the muon veto system, other gas volumes are needed to protect vital detector cables or gas lines. These volumes are also purged with dry gas. Return gas is monitored for oxygen content and humidity to provide early warning of potentially damaging leaks. The design and performance of the Daya Bay Antineutrino Detector gas system is described.

  20. The CMS Tracker Detector Control System

    NASA Astrophysics Data System (ADS)

    Yousaf Shah, S.; Tsirou, Andromachi; Verdini, Piero Giorgio; Hartmann, Frank; Masetti, Lorenzo; Dirkes, Guido H.; Stringer, Robert; Fahrer, Manuel

    2009-06-01

    The Compact Muon Solenoid DCS (CMS) Silicon Strip Tracker is by far the largest detector ever built in micro-strip technology. It has an active surface area of 198 m 2 consisting of 15,148 silicon modules with 9,316,352 readout channels read via 75,376 Analog Pipeline Voltage (APV) front-end chips and a total of 24,244 sensors. The Detector Control System (DCS) for the Tracker is a distributed control system that operates ˜2000 power supplies for the silicon modules and also monitors its environmental sensors. The DCS receives information from about 10 3 environmental probes (temperature and humidity sensors) located inside the detector's volume and values from these probes are driven through the Programmable Logic Controllers (PLC) of the Detector Safety System (DSS). A total of 10 5 parameters are read out from the dedicated chips in the front-end electronics of the detector via the data acquisition system, and a total of 10 5 parameters are read from the power supply modules. All these parameters are monitored, evaluated and correlated with the detector layout; actions are taken under specific conditions. The hardware for DCS consists of 10 PCs and 10 PLC systems that are continuously running the necessary control and safety routines. The DCS is a fundamental tool for the Tracker operation and its safety.

  1. The BTeV pixel detector and trigger system

    SciTech Connect

    Simon Kwan

    2002-12-03

    BTeV is an approved forward collider experiment at the Fermilab Tevatron dedicated to the precision studies of CP violation, mixing, and rare decays of beauty and charm hadrons. The BTeV detector has been designed to achieve these goals. One of the unique features of BTeV is a state-of-the-art pixel detector system, designed to provide accurate measurements of the decay vertices of heavy flavor hadrons that can be used in the first trigger level. The pixel vertex detector and the trigger design are described. Recent results on some of the achievements in the R and D effort are presented.

  2. Electrochemical sensor/detector system and method

    SciTech Connect

    Glass, R.S.; Perone, S.P.; Ciarlo, D.R.; Kimmons, J.F.

    1992-12-31

    An electrochemical detection system is described comprising in combination: (a) a multielement, microelectrode array detector containing means for acquiring a plurality of signals; (b) electronic means for receiving said signals and converting said signals into a readout or display providing information with respect to the nature and concentration of elements present in a solution being tested. Also described is the means of making the above described microelectrode detector.

  3. Electrochemical sensor/detector system and method

    DOEpatents

    Glass, Robert S.; Perone, Sam P.; Ciarlo, Dino R.; Kimmons, James F.

    1992-01-01

    An electrochemical detection system is described comprising in combination: (a) a multielement, microelectrode array detector containing means for acquiring a plurality of signals; (b) electronic means for receiving said signals and converting said signals into a readout or display providing information with respect to the nature and concentration of elements present in a solution being tested. Also described is the means of making the above described microelectrode detector.

  4. Electrochemical sensor/detector system and method

    DOEpatents

    Glass, Robert S.; Perone, Sam P.; Ciarlo, Dino R.; Kimmons, James F.

    1994-01-01

    An electrochemical detection system is described comprising in combination: (a) a multielement, microelectrode array detector containing means for acquiring a plurality of signals; (b) electronic means for receiving said signals and converting said signals into a readout or display providing information with respect to the nature and concentration of elements present in a solution being tested. Also described is the means of making the above described microelectrode detector.

  5. Embedded controller for GEM detector readout system

    NASA Astrophysics Data System (ADS)

    Zabołotny, Wojciech M.; Byszuk, Adrian; Chernyshova, Maryna; Cieszewski, Radosław; Czarski, Tomasz; Dominik, Wojciech; Jakubowska, Katarzyna L.; Kasprowicz, Grzegorz; Poźniak, Krzysztof; Rzadkiewicz, Jacek; Scholz, Marek

    2013-10-01

    This paper describes the embedded controller used for the multichannel readout system for the GEM detector. The controller is based on the embedded Mini ITX mainboard, running the GNU/Linux operating system. The controller offers two interfaces to communicate with the FPGA based readout system. FPGA configuration and diagnostics is controlled via low speed USB based interface, while high-speed setup of the readout parameters and reception of the measured data is handled by the PCI Express (PCIe) interface. Hardware access is synchronized by the dedicated server written in C. Multiple clients may connect to this server via TCP/IP network, and different priority is assigned to individual clients. Specialized protocols have been implemented both for low level access on register level and for high level access with transfer of structured data with "msgpack" protocol. High level functionalities have been split between multiple TCP/IP servers for parallel operation. Status of the system may be checked, and basic maintenance may be performed via web interface, while the expert access is possible via SSH server. System was designed with reliability and flexibility in mind.

  6. Integrating IR detector imaging systems

    NASA Technical Reports Server (NTRS)

    Bailey, G. C. (Inventor)

    1984-01-01

    An integrating IR detector array for imaging is provided in a hybrid circuit with InSb mesa diodes in a linear array, a single J-FET preamplifier for readout, and a silicon integrated circuit multiplexer. Thin film conductors in a fan out pattern deposited on an Al2O3 substrate connect the diodes to the multiplexer, and thick film conductors also connect the reset switch and preamplifier to the multiplexer. Two phase clock pulses are applied with a logic return signal to the multiplexer through triax comprised of three thin film conductors deposited between layers. A lens focuses a scanned image onto the diode array for horizontal read out while a scanning mirror provides vertical scan.

  7. He Puff System For Dust Detector Upgrade

    SciTech Connect

    B. Rais, C.H. Skinner A.L. Roquemore

    2010-10-01

    Local detection of surface dust is needed for the safe operation of next-step magnetic fusion devices such as ITER. An electrostatic dust detector, based on a 5 cm x 5 cm grid of interlocking circuit traces biased to 50 V, has been developed to detect dust on remote surfaces and was successfully tested for the first time on the National Spherical Torus Experiment (NSTX). We report on a helium puff system that clears residual dust from this detector and any incident debris or fibers that might cause a permanent short circuit. The entire surface of the detector was cleared of carbon particles by two consecutive helium puffs delivered by three nozzles of 0.45 mm inside diameter. The optimal configuration was found to be with the nozzles at an angle of 30o with respect to the surface of the detector and a helium backing pressure of 6 bar. __________________________________________________

  8. Novel Beta-Gamma Coincidence Measurements Using Phoswich Detectors

    SciTech Connect

    Ely, James H.; Aalseth, Craig E.; Hayes, James C.; Heimbigner, Tom R.; McIntyre, Justin I.; Miley, Harry S.; Panisko, Mark E.; Ripplinger, Mike D.

    2003-09-30

    The PNNL has developed an Automated Radio-xenon Sampler/Analyzer (ARSA) for the CTBT to measure four radio-xenon isotopes using a beta-gamma coincidence counting detector. A novel method to measure beta-gamma coincidences using a phoswich detector with state-of-the-art pulse shape discrimination techniqueses has been investigated.

  9. 47 CFR 15.35 - Measurement detector functions and bandwidths.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Measurement detector functions and bandwidths. 15.35 Section 15.35 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES General § 15.35 Measurement detector functions and bandwidths. The conducted and radiated emission limits shown in this part are based on...

  10. Predictive modeling of infrared detectors and material systems

    NASA Astrophysics Data System (ADS)

    Pinkie, Benjamin

    Detectors sensitive to thermal and reflected infrared radiation are widely used for night-vision, communications, thermography, and object tracking among other military, industrial, and commercial applications. System requirements for the next generation of ultra-high-performance infrared detectors call for increased functionality such as large formats (> 4K HD) with wide field-of-view, multispectral sensitivity, and on-chip processing. Due to the low yield of infrared material processing, the development of these next-generation technologies has become prohibitively costly and time consuming. In this work, it will be shown that physics-based numerical models can be applied to predictively simulate infrared detector arrays of current technological interest. The models can be used to a priori estimate detector characteristics, intelligently design detector architectures, and assist in the analysis and interpretation of existing systems. This dissertation develops a multi-scale simulation model which evaluates the physics of infrared systems from the atomic (material properties and electronic structure) to systems level (modulation transfer function, dense array effects). The framework is used to determine the electronic structure of several infrared materials, optimize the design of a two-color back-to-back HgCdTe photodiode, investigate a predicted failure mechanism for next-generation arrays, and predict the systems-level measurables of a number of detector architectures.

  11. High sensitivity, low profile neutron detector for safeguards measurements

    SciTech Connect

    Miley, H.S.; Abraham, J.R.; Thompson, R.C.; Sunberg, D.S.

    1993-12-01

    A neutron detector has been constructed and tested at Pacific Northwest Laboratory (PNL) for the purpose of making fast, high sensitivity measurements of neutron emitters in portal applications. The system is based upon glass fiber optic scintillators loaded with lithium-6 and operated to detect thermal neutrons. Due to their compact size. physical flexibility, freedom from microphonic pickup, and complete lack of environmental and safety concerns, these fibers are very suitable for some applications. The electronics needed for these fibers is somewhat more complex than for helium-3 proportional counters, but the entire electronics package (including the controlling computer) has been shrunk into a space of 20 {times} 25 {times} 2 cm. The prototype sensor is about 180 {times} 60 {times} 7 cm, but a final design now under construction measures 200 {times} 28 {times} 2.54 cm. The new, smaller detectors will be capable of ganging to achieve any needed sensitivity and will each weigh about 16 kg. The principles of operation of the fiber will be discussed as will the operational mode of the detector.

  12. Si(Li)-NaI(Tl) detector for direct measurement of plutonium in vivo

    SciTech Connect

    Sherman, I.S.; Strauss, M.G.; Pehl, R.H.

    1983-01-01

    The potential of a Si(Li)-NaI(Tl) detector system for measuring the UL x rays produced in the decay of Pu is discussed. In this paper we describe the conceptual design and expected performance of such a system. The detector can resolve the UL x rays from the NpL x ray thus permitting direct measurement of Pu in the presence of /sup 241/Am. The expected performance of the system was determined from measurements of lung phantoms using a prototype Si detector.

  13. Modulation transfer function measurement technique for small-pixel detectors

    NASA Technical Reports Server (NTRS)

    Marchywka, Mike; Socker, Dennis G.

    1992-01-01

    A modulation transfer function (MTF) measurement technique suitable for large-format, small-pixel detector characterization has been investigated. A volume interference grating is used as a test image instead of the bar or sine wave target images normally used. This technique permits a high-contrast, large-area, sinusoidal intensity distribution to illuminate the device being tested, avoiding the need to deconvolve raw data with imaging system characteristics. A high-confidence MTF result at spatial frequencies near 200 cycles/mm is obtained. We present results at several visible light wavelengths with a 6.8-micron-pixel CCD. Pixel response functions are derived from the MTF results.

  14. Nickel Foil as Transmutation Detector for Neutron Fluence Measurements

    NASA Astrophysics Data System (ADS)

    Klupák, Vít; Viererbl, Ladislav; Lahodová, Zdena; Šoltés, Jaroslav; Tomandl, Ivo; Kudějová, Petra

    2016-02-01

    Activation detectors are very often used for determination of the neutron fluence in reactor dosimetry. However, there are few disadvantages concerning these detectors; it is the demand of the knowledge of the irradiation history and a loss of information due to a radioactive decay in time. Transmutation detectors TMD could be a solution in this case. The transmutation detectors are materials in which stable or long-lived nuclides are produced by nuclear reactions with neutrons. From a measurement of concentration of these nuclides, neutron fluence can be evaluated regardless of the cooling time.

  15. Laser angle measurement system

    NASA Technical Reports Server (NTRS)

    Pond, C. R.; Texeira, P. D.; Wilbert, R. E.

    1980-01-01

    The design and fabrication of a laser angle measurement system is described. The instrument is a fringe counting interferometer that monitors the pitch attitude of a model in a wind tunnel. A laser source and detector are mounted above the mode. Interference fringes are generated by a small passive element on the model. The fringe count is accumulated and displayed by a processor in the wind tunnel control room. Optical and electrical schematics, system maintenance and operation procedures are included, and the results of a demonstration test are given.

  16. Device for calibrating a radiation detector system

    DOEpatents

    Mc Fee, Matthew C.; Kirkham, Tim J.; Johnson, Tippi H.

    1994-01-01

    A device for testing a radiation detector system that includes at least two arrays of radiation detectors that are movable with respect to each other. The device includes a "shield plate" or shell, and an opposing "source plate" containing a source of ionizing radiation. Guides are attached to the outer surface of the shell for engaging the forward ends of the detectors, thereby reproducibly positioning the detectors with respect to the source and with respect to each other, thereby ensuring that a predetermined portion of the radiation emitted by the source passes through the shell and reaches the detectors. The shell is made of an hydrogenous material having approximately the same radiological attenuation characteristics as composite human tissue. The source represents a human organ such as the lungs, heart, kidneys, heart, liver, spleen, pancreas, thyroid, testes, prostate, or ovaries. The source includes a source of ionizing radiation having a long half-life and an activity that is within the range typically searched for in human subjects.

  17. Device for calibrating a radiation detector system

    DOEpatents

    McFee, M.C.; Kirkham, T.J.; Johnson, T.H.

    1994-12-27

    A device is disclosed for testing a radiation detector system that includes at least two arrays of radiation detectors that are movable with respect to each other. The device includes a ''shield plate'' or shell, and an opposing ''source plate'' containing a source of ionizing radiation. Guides are attached to the outer surface of the shell for engaging the forward ends of the detectors, thereby reproducibly positioning the detectors with respect to the source and with respect to each other, thereby ensuring that a predetermined portion of the radiation emitted by the source passes through the shell and reaches the detectors. The shell is made of an hydrogenous material having approximately the same radiological attenuation characteristics as composite human tissue. The source represents a human organ such as the lungs, heart, kidneys, liver, spleen, pancreas, thyroid, testes, prostate, or ovaries. The source includes a source of ionizing radiation having a long half-life and an activity that is within the range typically searched for in human subjects. 3 figures.

  18. Method and system for improved resolution of a compensated calorimeter detector

    DOEpatents

    Dawson, John W.

    1991-01-01

    An improved method and system for a depleted uranium calorimeter detector used in high energy physics experiments. In a depleted uranium calorimeter detector, the energy of a particle entering the calorimeter detector is determined and the output response of the calorimeter detector is compensated so that the ratio of the integrated response of the calorimeter detector from a lepton to the integrated response of the calorimeter detector from a hadron of the same energy as the lepton is approximately equal to 1. In the present invention, the energy of a particle entering the calorimeter detector is determined as a function of time and the hadron content of the response of the calorimeter detector is inferred based upon the time structure of the energy pulse measured by the calorimeter detector. The energy measurement can be corrected based on the inference of the hadron content whereby the resolution of the calorimeter can be improved.

  19. Comparison of an electro-optical system and photo-conducting antenna employed as detectors of pulsed terahertz radiation by means of a new method for measuring spectral width

    SciTech Connect

    Grachev, Ya V; Osipova, M O; Bespalov, V G

    2014-12-31

    Two detection systems, electro-optical system and photoconducting system, are tested by the method suggested previously for determining the boundaries of broadband terahertz radiation in time-domain spectroscopy. From a series of measurements the error in determining the operation ranges is calculated. The terahertz spectrometer with an electro-optical detector based on a ZnTe (110) crystal of thickness 2 mm has the operation spectral range of 0.059 – 1.092 THz. The detector utilizing an iPCA-21-05-1000-800-h photo-conducting antenna with the same source of signal demonstrates a wider operation band ranging from 0.017 to 1.6 THz. The method developed makes it possible to experimentally compare the parameters of the considered terahertz spectrometers obtained under the same quality of adjustment. (laser applications and other topics in quantum electronics)

  20. Termosyphon cryogenic system for RED-100 detector

    NASA Astrophysics Data System (ADS)

    Sosnovtsev, V.; Tolstukhin, I.; Shakirov, A.; Shafigullin, R.

    2016-02-01

    A cryogenic system based on a two-phase closed tubular thermosyphon with 12 mm diameter copper tube is developed. It was used for thermal stabilization of the liquid xenon emission detector RED-100. The nitrogen refrigerant cooled down with a free-boiling liquid nitrogen bath has been used. It was shown that the system supports the RED100 operation at temperature 166 K with accuracy ±1K.

  1. Neutron Multiplicity Measurements With 3He Alternative: Straw Neutron Detectors

    DOE PAGESBeta

    Mukhopadhyay, Sanjoy; Wolff, Ronald S.; Meade, John A.; Detweiler, Ryan; Maurer, Richard J.; Mitchell, Stephen E.; Guss, Paul P.; Lacy, Jeffrey L.; Sun, Liang; Athanasiades, Athanasios

    2015-01-27

    Counting neutrons emitted by special nuclear material (SNM) and differentiating them from the background neutrons of various origins is the most effective passive means of detecting SNM. Unfortunately, neutron detection, counting, and partitioning in a maritime environment are complex due to the presence of high-multiplicity spallation neutrons (commonly known as “ship effect”) and to the complicated nature of the neutron scattering in that environment. In this study, a prototype neutron detector was built using 10B as the converter in a special form factor called “straws” that would address the above problems by looking into the details of multiplicity distributions ofmore » neutrons originating from a fissioning source. This paper describes the straw neutron multiplicity counter (NMC) and assesses the performance with those of a commercially available fission meter. The prototype straw neutron detector provides a large-area, efficient, lightweight, more granular (than fission meter) neutron-responsive detection surface (to facilitate imaging) to enhance the ease of application of fission meters. Presented here are the results of preliminary investigations, modeling, and engineering considerations leading to the construction of this prototype. This design is capable of multiplicity and Feynman variance measurements. This prototype may lead to a near-term solution to the crisis that has arisen from the global scarcity of 3He by offering a viable alternative to fission meters. This paper describes the work performed during a 2-year site-directed research and development (SDRD) project that incorporated straw detectors for neutron multiplicity counting. The NMC is a two-panel detector system. We used 10B (in the form of enriched boron carbide: 10B4C) for neutron detection instead of 3He. In the first year, the project worked with a panel of straw neutron detectors, investigated its characteristics, and developed a data acquisition (DAQ) system to collect

  2. A series of detector systems for MUSE

    NASA Astrophysics Data System (ADS)

    Lizon, J. L.; Kelz, A.; Dupuy, C.; Accardo, M.; Reiss, R.; Deiries, S.; Fechner, T.; Srivastava, M.; Streicher, O.; Weilbacher, P.; Hinterschuster, Renate

    2012-09-01

    The 24 IFU from MUSE are equipped with 4K x 4K CCD detectors which are operated at cryogenic temperature around 160 K. The large size of the chip combined with a rather fast camera (F/2) impose strong positioning constrains. The sensitive surface should remain in an angular envelope of less than 30 arc sec in both directions. The ambitious goal of having the same spectrum format on every detector imposes also a very accurate positioning in the image plane. The central pixel has to be located in a square smaller 50 microns relative to the external references. The first part of the paper describes the mechanical design of the detector head. We concentrate on the various aspects of the design with its very complex interfaces. The opto-mechanical concept is presented with an emphasis on the robustness and reliability. We present also the necessary steps for the extreme optimization of the cryogenic performance of this compact design driven with a permanent view of the production in series. The techniques and procedures developed in order to meet and verify the very tight positioning requirements are described in a second part. Then the 24 fully assembled systems undergo a system verification using one of the MUSE spectrographs. These tests include a focus series, the determination of the PSF across the chip and a subsequent calculation of the tip/tilt and shift rotation of the detector versus the optical axis.

  3. Atmospheric Neutron Measurements using a Small Scintillator Based Detector

    NASA Astrophysics Data System (ADS)

    Kole, Merlin; Pearce, Mark; Fukazawa, Yasushi; Fukuda, Kentaro; Ishizu, Sumito; Jackson, Miranda; Kamae, Tune; Kawaguchi, Noriaki; Kawano, Takafumi; Kiss, Mozsi; Moretti, Elena; Yanagida, Takayuki; Chauvin, Maxime; Mikhalev, Victor; Rydstrom, Stefan; Takahashi, Hiromitsu

    PoGOLino is a standalone scintillator-based neutron detector designed for balloon-borne missions. Its main purpose is to provide data of the neutron flux in 2 different energy ranges in the high altitude / high latitude region where the highest neutron flux in the atmosphere is found. Furthermore the influence of the Solar activity upon the neutron environment in this region is relatively strong. As a result both short and long term time fluctuations are strongest in this region. At high altitudes neutrons can form a source of background for balloon-borne scientific measurements. They can furthermore form a major source for single event upsets in electronics. A good understanding of the high altitude / high latitude neutron environment is therefore important. Measurements of the neutron environment in this region are however lacking. PoGOLino contains two 5 mm thick Lithium Calcium Aluminium Fluoride (LiCAF) scintillators used for neutron detection. The LiCAF crystals are sandwiched between 2 Bismuth Germanium Oxide (BGO) scintillating crystals, which serve to veto signals produced by gamma-rays and charged particles. The veto system makes measurements of the neutron flux possible even in high radiation environments. One LiCAF detector is shielded with polyethylene while the second remains unshielded, making the detectors sensitive in different energy ranges. The choice of a scintillator crystals as the detection material ensures a high detection efficiency while keeping the instrument small, robust and light weight. The full standalone cylindrical instrument has a radius of 120 mm, a height of 670 mm and a total mass of 13 kg, making it suitable as a piggy back mission. PoGOLino was successfully launched on March 20th 2013 from the Esrange Space Center in Northern Sweden to an altitude of 30.9 km. A detailed description of the detector design is presented, along with results of of the flight. The neutron flux measured during flight is compared to predictions based

  4. Cross Section Measurements Using the Zero Degree Detector

    NASA Technical Reports Server (NTRS)

    Christl, M. J.; Adams, J. H., Jr.; Heilbronn, L.; Kuznetsov, E. N.; Miller, J.; Zeitlin, C.

    2007-01-01

    The Zero Degree Detector (ZDD) is an instrument that has been used in accelerator exposures to measure the angular dependence of particles produced in heavy ion fragmentation experiments. The ZDD uses two identical layers of pixelated silicon detectors that make coincident measurements over the active area of the instrument. The angular distribution of secondary particle produced in nuclear interactions for several heavy ions: and target materials will be presented along with performance characteristic of the instrument.

  5. Prompt neutron multiplicity measurements with portable detectors

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sanjoy; Wolff, Ronald; Maurer, Richard; Mitchell, Stephen; Smith, Ethan X.; Guss, Paul; Lacy, Jeffrey L.; Sun, L.; Athanasiades, A.

    2011-09-01

    Mobile detection of kilogram quantities of special nuclear materials (SNM) during maritime transportation is a challenging problem for the U.S. Department of Homeland Security. Counting neutrons emitted by the SNM and partitioning them from background neutrons of multiple origins is the most effective passive means of detecting the SNM. Unfortunately, neutron detection, counting, and partitioning in a maritime environment is complex due to the presence of spallation neutrons (commonly known as "ship effect") and to the complicated nature of the neutron scattering in that environment. This work studied the possibilities of building a prototype neutron detector using boron- 10 (10B) as the converter in a novel form factor called "straws" that would address the above problem by examining multiplicity distributions of neutrons originating from a fissioning source. Currently, commercially manufactured fission meters (FM) are available that separate cosmic neutrons from non-cosmic neutrons and quantitatively determine the strength of a fissioning source; however, these FMs use 3He, which is becoming increasingly difficult to procure; also the size and weight of a commercial FM is not conducive to manual neutron detection operations in a maritime environment. The current project may provide a near-term solution to the crisis that has arisen from the global scarcity of 3He by offering a viable alternative to the FM. The prototype detector provides a large-area, efficient, lightweight, more granular neutron responsive detection surface (to facilitate imaging) to ease the application of the new FMs.

  6. Validation of Monte Carlo model of HPGe detector for field-station measurement of airborne radioactivity

    NASA Astrophysics Data System (ADS)

    Šolc, J.; Kovář, P.; Dryák, P.

    2016-03-01

    A Monte Carlo (MC) model of a mechanically-cooled High Purity Germanium detection system IDM-200-V™ manufactured by ORTEC® was created, optimized and validated within the scope of the Joint Research Project ENV57 ``Metrology for radiological early warning networks in Europe''. The validation was performed for a planar source homogeneously distributed on a filter placed on top of the detector end cap and for point sources positioned farther from the detector by comparing simulated full-energy peak (FEP) detection efficiencies with the ones measured with two or three different pieces of the IDM detector. True coincidence summing correction factors were applied to the measured FEP efficiencies. Relative differences of FEP efficiencies laid within 8% that is fully satisfactory for the intended use of the detectors as instruments for airborne radioactivity measurement in field-stations. The validated MC model of the IDM-200-V™ detector is now available for further MC calculations planned in the ENV57 project.

  7. Measuring the Disappearance of Muon Neutrinos with the MINOS Detector

    SciTech Connect

    Radovic, Alexander

    2013-08-01

    MINOS is a long baseline neutrino oscillation experiment. It measures the flux from the predominately muon neutrino NuMI beam first 1 km from beam start and then again 735 km later using a pair of steel scintillator tracking calorimeters. The comparison of measured neutrino energy spectra at our Far Detector with the prediction based on our Near Detector measurement allows for a measurement of the parameters which define neutrino oscillations. This thesis will describe the most recent measurement of muon neutrino disappearance in the NuMI muon neutrino beam using the MINOS experiment.

  8. Power detectors for integrated microwave/mm-wave imaging systems in mainstream silicon technologies

    NASA Astrophysics Data System (ADS)

    Gu, Qun Jane; Li, James C.; Tang, Adrian

    2016-04-01

    This paper analyzes and compares three different types of detectors, including CMOS power detectors, bipolar power detectors, and super-regenerative detectors, deployed in the literature for integrated microwave/mm-wave imaging systems in mainstream silicon technologies. Each detector has unique working mechanism and demonstrates different behavior with respects to bias conditions, input signal power, as well as bandwidth responses. Two Figure-of-Merits for both wideband and narrowband imaging have been defined to quantify the detector performance comparison. CMOS and Bipolar detectors are good for passive imaging, while super regenerative detectors are superior for active imaging. The analytical results have been verified by both simulation and measurement results. These analyses intend to provide design insights and guidance for integrated microwave/mm-wave imaging power detectors.

  9. Position Ring System using Anger Type Detectors

    SciTech Connect

    Joel S. Karp, principal investigator

    2004-12-14

    The overall objective of our project was to develop PET scanners and imaging techniques that achieve high performance and excellent image quality. Our approach was based upon 3-D imaging (no septa) with position-sensitive Anger-logic detectors, whereby the encoding ratio of resolution elements to number of photo-multiplier tube channels is very high. This design led to a series of PET systems that emphasized cost-effectiveness and practicality in a clinical environment.

  10. A generic readout system for astrophysical detectors

    NASA Astrophysics Data System (ADS)

    Doumayrou, E.; Lortholary, M.

    2012-09-01

    We have developed a generic digital platform to fulfill the needs for the development of new detectors in astrophysics, which is used in lab, for ground-based telescopes instruments and also in prototype versions for space instruments development. This system is based on hardware FPGA electronic board (called MISE) together with software on a PC computer (called BEAR). The MISE board generates the fast clocking which reads the detectors thanks to a programmable digital sequencer and performs data acquisition, buffering of digitalized pixels outputs and interfaces with others boards. The data are then sent to the PC via a SpaceWire or Usb link. The BEAR software sets the MISE board up, makes data acquisition and enables the visualization, processing and the storage of data in line. These software tools are made of C++ and Labview (NI) on a Linux OS. MISE and BEAR make a generic acquisition architecture, on which dedicated analog boards are plugged, so that to accommodate with detectors specificity: number of pixels, the readout channels and frequency, analog bias and clock interfaces. We have used this concept to build a camera for the P-ARTEMIS project including a 256 pixels sub-millimeter bolometer detector at 10Kpixel/s (SPIE 7741-12 (2010)). For the EUCLID project, a lab camera is now working for the test of CCDs 4Mpixels at 4*200Kpixel/s. Another is working for the testing of new near infrared detectors (NIR LFSA for the ESA TRP program) 110Kpixels at 2*100Kpixels/s. Other projects are in progress for the space missions PLATO and SPICA.

  11. Automated Test Systems for Toxic Vapor Detectors

    NASA Technical Reports Server (NTRS)

    Mattson, C. B.; Hammond, T. A.; Schwindt, C. J.

    1997-01-01

    The NASA Toxic Vapor Detection Laboratory (TVDL) at the Kennedy Space Center (KSC), Florida, has been using Personal Computer based Data Acquisition and Control Systems (PCDAS) for about nine years. These systems control the generation of toxic vapors of known concentrations under controlled conditions of temperature and humidity. The PCDAS also logs the test conditions and the test article responses in data files for analysis by standard spreadsheets or custom programs. The PCDAS was originally developed to perform standardized qualification and acceptance tests in a search for a commercial off-the-shelf (COTS) toxic vapor detector to replace the hydrazine detectors for the Space Shuttle launch pad. It has since become standard test equipment for the TVDL and is indispensable in producing calibration standards for the new hydrazine monitors at the 10 part per billion (ppb) level. The standard TVDL PCDAS can control two toxic vapor generators (TVG's) with three channels each and two flow/temperature/humidity (FIFH) controllers and it can record data from up to six toxic vapor detectors (TVD's) under test and can deliver flows from 5 to 50 liters per minute (L/m) at temperatures from near zero to 50 degrees Celsius (C) using an environmental chamber to maintain the sample temperature. The concentration range for toxic vapors depends on the permeation source installed in the TVG. The PCDAS can provide closed loop control of temperature and humidity to two sample vessels, typically one for zero gas and one for the standard gas. This is required at very low toxic vapor concentrations to minimize the time required to passivate the sample delivery system. Recently, there have been several requests for information about the PCDAS by other laboratories with similar needs, both on and off KSC. The purpose of this paper is to inform the toxic vapor detection community of the current status and planned upgrades to the automated testing of toxic vapor detectors at the Kennedy

  12. Automated Test Systems for Toxic Vapor Detectors

    NASA Technical Reports Server (NTRS)

    Mattson, C. B.; Hammond, T. A.; Schwindt, C. J.

    1997-01-01

    The NASA Toxic Vapor Detection Laboratory (TVDL) at the Kennedy Space Center (KSC), Florida, has been using Personal Computer based Data Acquisition and Control Systems (PCDAS) for about nine years. These systems control the generation of toxic vapors of known concentrations under controlled conditions of temperature and humidity. The PCDAS also logs the test conditions and the test article responses in data files for analysis by standard spreadsheets or custom programs. The PCDAS was originally developed to perform standardized qualification and acceptance tests in a search for a commercial off-the-shelf (COTS) toxic vapor detector to replace the hydrazine detectors for the Space Shuttle launch pad. It has since become standard test equipment for the TVDL and is indispensable in producing calibration standards for the new hydrazine monitors at the 10 part per billion (ppb) level. The standard TVDL PCDAS can control two toxic vapor generators (TVG's) with three channels each and two flow/ temperature / humidity (FTH) controllers and it can record data from up to six toxic vapor detectors (TVD's) under test and can deliver flows from 5 to 50 liters per minute (L/m) at temperatures from near zero to 50 degrees Celsius (C) using an environmental chamber to maintain the sample temperature. The concentration range for toxic vapors depends on the permeation source installed in the TVG. The PCDAS can provide closed loop control of temperature and humidity to two sample vessels, typically one for zero gas and one for the standard gas. This is required at very low toxic vapor concentrations to minimize the time required to passivate the sample delivery system. Recently, there have been several requests for information about the PCDAS by other laboratories with similar needs, both on and off KSC. The purpose of this paper is to inform the toxic vapor detection community of the current status and planned upgrades to the automated testing of toxic vapor detectors at the

  13. Prompt Neutron Multiplicity Measurements with Portable Detectors

    SciTech Connect

    S. Mukhopadhyay, R. Wolff, R. Maurer, S. Mitchell, E. X. Smith, P. Guss, J. L. Lacy, L. Sun, A. Athanasiades

    2011-09-01

    Mobile detection of kilogram quantities of special nuclear materials (SNM) during maritime transportation is a challenging problem for the U.S. Department of Homeland Security. Counting neutrons emitted by the SNM and partitioning them from background neutrons of multiple origins is the most effective passive means of detecting the SNM. Unfortunately, neutron detection, counting, and partitioning in a maritime environment is complex due to the presence of spallation neutrons (commonly known as “ship effect”) and to the complicated nature of the neutron scattering in that environment. This work studied the possibilities of building a prototype neutron detector using boron- 10 (10B) as the converter in a novel form factor called “straws” that would address the above problem by examining multiplicity distributions of neutrons originating from a fissioning source. Currently, commercially manufactured fission meters (FM) are available that separate cosmic neutrons from non-cosmic neutrons and quantitatively determine the strength of a fissioning source; however, these FMs use 3He, which is becoming increasingly difficult to procure; also the size and weight of a commercial FM is not conducive to manual neutron detection operations in a maritime environment. The current project may provide a near-term solution to the crisis that has arisen from the global scarcity of 3He by offering a viable alternative to the FM. The prototype detector provides a large-area, efficient, lightweight, more granular neutron responsive detection surface (to facilitate imaging) to ease the application of the new FMs. A novel prototype fission meter is being designed at National Security Technologies, LLC, using a thin uniform coating of 10B as neutron converter (only 1 micron thick) inside a large array of thin (4 mm diameter) copper tubes. The copper tubes are only 2-mil thick, and each holds the stretched anode wire under tension and high voltage. The tubes are filled with

  14. Gamma detectors in explosives and narcotics detection systems

    NASA Astrophysics Data System (ADS)

    Bystritsky, V. M.; Zubarev, E. V.; Krasnoperov, A. V.; Porohovoi, S. Yu.; Rapatskii, V. L.; Rogov, Yu. N.; Sadovskii, A. B.; Salamatin, A. V.; Salmin, R. A.; Slepnev, V. M.; Andreev, E. I.

    2013-11-01

    Gamma detectors based on BGO crystals were designed and developed at the Joint Institute for Nuclear Research. These detectors are used in explosives and narcotics detection systems. Key specifications and design features of the detectors are presented. A software temperature-compensation method that makes it possible to stabilize the gamma detector response and operate the detector in a temperature range from -20 to 50°C is described.

  15. Low-Power Multi-Aspect Space Radiation Detector System

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave; Freeman, Jon C.; Burkebile, Stephen P.

    2012-01-01

    The advanced space radiation detector development team at NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of all of these detector technologies will result in an improved detector system in comparison to existing state-of-the-art (SOA) instruments for the detection and monitoring of the deep space radiation field.

  16. A new neutron time-of-flight detector for fuel-areal-density measurements on OMEGA

    NASA Astrophysics Data System (ADS)

    Glebov, V. Yu.; Forrest, C. J.; Marshall, K. L.; Romanofsky, M.; Sangster, T. C.; Shoup, M. J.; Stoeckl, C.

    2014-11-01

    A new neutron time-of-flight (nTOF) detector for fuel-areal-density measurements in cryogenic DT implosions was installed on the OMEGA Laser System. The nTOF detector has a cylindrical thin-wall, stainless-steel, 8-in.-diam, 4-in.-thick cavity filled with an oxygenated liquid xylene scintillator. Four gated photomultiplier tubes (PMTs) with different gains are used to measure primary DT and D2 neutrons, down-scattered neutrons in nT and nD kinematic edge regions, and to study tertiary neutrons in the same detector. The nTOF detector is located 13.4 m from target chamber center in a well-collimated line of sight. The design details of the nTOF detector, PMT optimization, and test results on OMEGA will be presented.

  17. A new neutron time-of-flight detector for fuel-areal-density measurements on OMEGA

    SciTech Connect

    Glebov, V. Yu. Forrest, C. J.; Marshall, K. L.; Romanofsky, M.; Sangster, T. C.; Shoup, M. J.; Stoeckl, C.

    2014-11-15

    A new neutron time-of-flight (nTOF) detector for fuel-areal-density measurements in cryogenic DT implosions was installed on the OMEGA Laser System. The nTOF detector has a cylindrical thin-wall, stainless-steel, 8-in.-diam, 4-in.-thick cavity filled with an oxygenated liquid xylene scintillator. Four gated photomultiplier tubes (PMTs) with different gains are used to measure primary DT and D{sub 2} neutrons, down-scattered neutrons in nT and nD kinematic edge regions, and to study tertiary neutrons in the same detector. The nTOF detector is located 13.4 m from target chamber center in a well-collimated line of sight. The design details of the nTOF detector, PMT optimization, and test results on OMEGA will be presented.

  18. A new neutron time-of-flight detector for fuel-areal-density measurements on OMEGA.

    PubMed

    Glebov, V Yu; Forrest, C J; Marshall, K L; Romanofsky, M; Sangster, T C; Shoup, M J; Stoeckl, C

    2014-11-01

    A new neutron time-of-flight (nTOF) detector for fuel-areal-density measurements in cryogenic DT implosions was installed on the OMEGA Laser System. The nTOF detector has a cylindrical thin-wall, stainless-steel, 8-in.-diam, 4-in.-thick cavity filled with an oxygenated liquid xylene scintillator. Four gated photomultiplier tubes (PMTs) with different gains are used to measure primary DT and D2 neutrons, down-scattered neutrons in nT and nD kinematic edge regions, and to study tertiary neutrons in the same detector. The nTOF detector is located 13.4 m from target chamber center in a well-collimated line of sight. The design details of the nTOF detector, PMT optimization, and test results on OMEGA will be presented. PMID:25430281

  19. Infrared Detector System with Controlled Thermal Conductance

    NASA Technical Reports Server (NTRS)

    Cunningham, Thomas J. (Inventor)

    2000-01-01

    A thermal infrared detector system includes a heat sink, a support member, a connection support member connecting the support member to the heat sink and including a heater unit is reviewed. An infrared detector element is mounted on the support member and a temperature signal representative of the infrared energy contacting the support member can then be derived by comparing the temperature of the support member and the heat sink. The temperature signal from a support member and a temperature signal from the connection support member can then be used to drive a heater unit mounted on the connection support member to thereby control the thermal conductance of the support member. Thus, the thermal conductance can be controlled so that it can be actively increased or decreased as desired.

  20. The LUCID detector ATLAS luminosity monitor and its electronic system

    NASA Astrophysics Data System (ADS)

    Manghi, F. Lasagni

    2016-07-01

    In 2015 LHC is starting a new run, at higher center of mass energy (13 TeV) and with 25 ns bunch-spacing. The ATLAS luminosity monitor LUCID has been completely rebuilt, both the detector and the electronics, in order to cope with the new running conditions. The new detector electronics features a new read-out board (LUCROD) for signal acquisition and digitization, PMT-charge integration and single-side luminosity measurements, and a revisited LUMAT board for combination of signals from the two detectors. This note describes the new board design, the firmware and software developments, the implementation of luminosity algorithms, the optical communication between boards and the integration into the ATLAS TDAQ system.

  1. Modulation transfer function measurement technique for small-pixel detectors.

    PubMed

    Marchywka, M; Socker, D G

    1992-12-01

    A modulation transfer function (MTF) measurement technique suitable for large-format, small-pixel detector characterization has been investigated. A volume interference grating is used as a test image instead of the bar or sine wave target images normally used. This technique permits a high-contrast, large-area, sinusoidal intensity distribution to illuminate the device being tested, avoiding the need to deconvolve raw data with imaging system characteristics. A high-confidence MTF result at spatial frequencies near 200 cycles/mm is obtained. We present results at several visible light wavelengths with a 6.8-microm-pixel CCD. Pixel response functions are derived from the MTF results. PMID:20802584

  2. Spillage detector for liquid chromatography systems

    NASA Technical Reports Server (NTRS)

    Jarvis, M. J.; Fulton, D. S. (Inventor)

    1986-01-01

    A spillage detector device for use in conjunction with fractionation of liquid chromatography systems which includes a spillage recieving enclosure beneath the fractionation area is described. A sensing device having a plurality of electrodes of alternating polarity is mounted within the spillage recieving enclosure. Detection circuitry, responsive to conductivity between electrodes, is operatively connected to the sensing device. The detection circuitry feeds into the output circuitry. The output circuit has relaying and switching circuitry directed to a solenoid, an alarm system and a pump. The solenoid is connected to the pliable conduit of the chromatography system. The alarm system comprises an audio alarm and a visual signal. A 115-volt power system interconnected with the pump, the solenoid, the sensing device, and the detection and output circuitry.

  3. Measurement Of Gas Electron Multiplier (GEM) Detector Characteristics

    NASA Astrophysics Data System (ADS)

    Park, Seongtae; Baldelomar, Edwin; Park, Kwangjune; Sosebee, Mark; White, Andy; Yu, Jaehoon

    2011-06-01

    The High Energy Physics group of the University of Texas at Arlington has been developing gas electron multiplier detectors to use them as sensitive gap detectors in digital hadron calorimeters for the International Linear Collider, a future high energy particle accelerator. For this purpose, we constructed numerous GEM detectors that employ double GEM layers. In this study, two kinds of prototype GEM detectors were tested; one with 28×28 cm2 active area double GEM structure with a 3 mm drift gap, a 1 mm transfer gap and a 1 mm induction gap and the other with two 3×3 cm2 GEM foils in the amplifier stage with a 5 mm drift gap, a 2 mm transfer gap and a 1 mm induction gap. The detectors' characteristics from exposure to high-energy charged particles and other radiations were measured using cosmic rays and 55Fe radioactive source. From the 55Fe tests, we observed two well separated characteristic X-ray emission peaks and confirmed the detectors' functionality. We also measured chamber gains to be over 6000 at a high voltage of 395 V across each GEM electrode. The responses to cosmic rays show the spectra that fit well to Landau distributions as expected from minimum ionizing particles.

  4. Measurement Of Gas Electron Multiplier (GEM) Detector Characteristics

    SciTech Connect

    Park, Seongtae; Baldelomar, Edwin; Sosebee, Mark; White, Andy; Yu, Jaehoon; Park, Kwangjune

    2011-06-01

    The High Energy Physics group of the University of Texas at Arlington has been developing gas electron multiplier detectors to use them as sensitive gap detectors in digital hadron calorimeters for the International Linear Collider, a future high energy particle accelerator. For this purpose, we constructed numerous GEM detectors that employ double GEM layers. In this study, two kinds of prototype GEM detectors were tested; one with 28x28 cm{sup 2} active area double GEM structure with a 3 mm drift gap, a 1 mm transfer gap and a 1 mm induction gap and the other with two 3x3 cm{sup 2} GEM foils in the amplifier stage with a 5 mm drift gap, a 2 mm transfer gap and a 1 mm induction gap. The detectors' characteristics from exposure to high-energy charged particles and other radiations were measured using cosmic rays and {sup 55}Fe radioactive source. From the {sup 55}Fe tests, we observed two well separated characteristic X-ray emission peaks and confirmed the detectors' functionality. We also measured chamber gains to be over 6000 at a high voltage of 395 V across each GEM electrode. The responses to cosmic rays show the spectra that fit well to Landau distributions as expected from minimum ionizing particles.

  5. Plasma detector for TEA CO2 laser pulse measurement

    NASA Astrophysics Data System (ADS)

    Ichikawa, Y.; Yamanaka, M.; Mitsuishi, A.; Fujita, S.; Yamanaka, T.; Yamanaka, C.; Tsunawaki, Y.; Iwasaki, T.; Takai, M.

    1983-10-01

    Laser-pulse evolution can be detected by measuring the emf generated by fast electrons in a laser-produced plasma when the laser radiation is focused onto a solid metal target in a vacuum. Using this phenomenon a 'plasma detector' is constructed, and its characteristics for the TEA CO2 laser radiation of intensity 10 to the 9th to 10 to the 10th W/sq cm are investigated experimentally. The plasma detector operates at room temperature and is strong against laser damages. For the evacuated plasma detector down to 0.1 torr, a maximum output voltage of 90 V and a rise time shorter than 1 ns are observed. The plasma detector, therefore, can be used as a power monitor for laser pulses and as a trigger voltage source.

  6. Measuring the Free Fall of Antihydrogen with Emulsion Detectors

    NASA Astrophysics Data System (ADS)

    Pistillo, C.

    2014-06-01

    The AEgIS experiment at CERN is designed to perform the first direct measurement of gravitational interaction between antimatter and matter by detecting the fall of a horizontally accelerated cold antihydrogen beam in the Earth's gravitational field. The spatial resolution of the position sensitive detector is a key issue for the success of the experiment. For this reason, the employment of emulsion film detectors is being considered and an intense R&D is being conducted to define the use of this technology in the AEgIS apparatus. We present the results of test beams conducted in 2012, when emulsion film detectors were directly exposed to a ˜ 100 keV antiproton beam and annihilation vertices successfully reconstructed with a few micrometers resolution. The prospects for the realization of the final detector are also presented.

  7. 14 CFR 121.273 - Fire-detector systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Fire-detector systems. 121.273 Section 121... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Special Airworthiness Requirements § 121.273 Fire-detector systems. Enough quick-acting fire detectors must be provided in each designated fire zone...

  8. Status of the CMS Detector Control System

    NASA Astrophysics Data System (ADS)

    Bauer, Gerry; Behrens, Ulf; Bowen, Matthew; Branson, James; Bukowiec, Sebastian; Cittolin, Sergio; Coarasa, Jose Antonio; Deldicque, Christian; Dobson, Marc; Dupont, Aymeric; Erhan, Samim; Flossdorf, Alexander; Gigi, Dominique; Glege, Frank; Gomez-Reino, Robert; Hartl, Christian; Hegeman, Jeroen; Holzner, Andre; Hwong, Yi Ling; Masetti, Lorenzo; Meijers, Frans; Meschi, Emilio; Mommsen, Remigius K.; O'Dell, Vivian; Orsini, Luciano; Paus, Christoph; Petrucci, Andrea; Pieri, Marco; Polese, Giovanni; Racz, Attila; Raginel, Olivier; Sakulin, Hannes; Sani, Matteo; Schwick, Christoph; Shpakov, Dennis; Simon, Michal; Cristian Spataru, Andrei; Sumorok, Konstanty

    2012-12-01

    The Compact Muon Solenoid (CMS) is a CERN multi-purpose experiment that exploits the physics of the Large Hadron Collider (LHC). The Detector Control System (DCS) is responsible for ensuring the safe, correct and efficient operation of the experiment, and has contributed to the recording of high quality physics data. The DCS is programmed to automatically react to the LHC operational mode. CMS sub-detectors’ bias voltages are set depending on the machine mode and particle beam conditions. An operator provided with a small set of screens supervises the system status summarized from the approximately 6M monitored parameters. Using the experience of nearly two years of operation with beam the DCS automation software has been enhanced to increase the system efficiency by minimizing the time required by sub-detectors to prepare for physics data taking. From the infrastructure point of view the DCS will be subject to extensive modifications in 2012. The current rack mounted control PCs will be replaced by a redundant pair of DELL Blade systems. These blade servers are a high-density modular solution that incorporates servers and networking into a single chassis that provides shared power, cooling and management. This infrastructure modification associated with the migration to blade servers will challenge the DCS software and hardware factorization capabilities. The on-going studies for this migration together with the latest modifications are discussed in the paper.

  9. Portable radiation detector and mapping system

    SciTech Connect

    Hofstetter, K.J.; Hayes, D.W.; Eakle, R.F.

    1995-09-01

    A portable radiation detector and mapping system (RADMAPS) has been developed to detect, locate and plot nuclear radiation intensities on commercially available digital maps and other images. The field unit records gamma-ray spectra or neutron signals together with positions from a Global Positioning System (GPS) on flash memory cards. The recorded information is then transferred to a lap-top computer for spectral data analyses and then georegistered graphically on maps, photographs, etc. RADMAPS integrates several existing technologies to produce a preprogrammable field unit uniquely suited for each survey, as required. The system presently records spectra from a Nal(Tl) gamma-ray detector or an enriched Li-6 doped glass neutron scintillator. Standard Geographic Information System software installed in a lap-top, complete with CD-ROM supporting digitally imaged maps, permits the characterization of nuclear material in the field when the presence of such material is not otherwise documented. This paper gives the results of a typical site survey of the Savannah River Site (SRS) using RADMAPS.

  10. Portable radiation detector and mapping system

    SciTech Connect

    Hofstetter, K.J.; Hayes, D.W.; Eakle, R.F.

    1995-12-31

    A portable radiation detector and mapping system (RADMAPS) has been developed to detect, locate, and plot nuclear radiation intensities on commercially available digital maps and other images. The field unit records gamma-ray spectra or neutron signals together with positions from a global positioning system (GPS) on flash memory cards. The recorded information is then transferred to a laptop computer for spectral data analyses and then georegistered graphically on maps, photographs, etc. RADMAPS integrates several existing technologies to produce a preprogrammable field unit uniquely suited for each survey, as required. The system records spectra from a NaI(Tl) gamma-ray detector or an enriched {sup 6}Li doped glass neutron scintillator. Standard Geographic Information System (GIS) software installed in a lap-top, complete with CD-ROM supporting digitally imaged maps, permits the characterization of nuclear material in the field when the presence of such material is not otherwise documented. This paper gives the results of a typical site survey of the Savannah River site (SRS) using RADMAPS. The ability to provide rapid field data should be of use in treaty verification, safeguards, decontamination, and nuclear weapons dismantlement.

  11. MAMA detector systems - A status report

    NASA Technical Reports Server (NTRS)

    Timothy, J. Gethyn; Morgan, Jeffrey S.; Slater, David C.; Kasle, David B.; Bybee, Richard L.

    1989-01-01

    Third-generation, 224 x 960 and 360 x 1024-pixel multianode microchannel (MAMA) detectors are under development for satellite-borne FUV and EUV observations, using pixel dimensions of 25 x 25 microns. An account is presently given of the configurations, modes of operation, and recent performance data of these systems. At UV and visible wavelengths, these MAMAs employ a semitransparent, proximity-focused photocathode structure. At FUV and EUV wavelengths below about 1500 A, opaque alkali-halide photocathodes deposited directly on the front surface of the MCP furnish the best detective quantum efficiencies.

  12. Ship Effect Measurements With Fiber Optic Neutron Detector

    SciTech Connect

    King, Kenneth L.; Dean, Rashe A.; Akbar, Shahzad; Kouzes, Richard T.; Woodring, Mitchell L.

    2010-08-10

    The main objectives of this research project was to assemble, operate, test and characterize an innovatively designed scintillating fiber optic neutron radiation detector manufactured by Innovative American Technology with possible application to the Department of Homeland Security screening for potential radiological and nuclear threats at US borders (Kouzes 2004). One goal of this project was to make measurements of the neutron ship effect for several materials. The Virginia State University DOE FaST/NSF summer student-faculty team made measurements with the fiber optic radiation detector at PNNL above ground to characterize the ship effect from cosmic neutrons, and underground to characterize the muon contribution.

  13. Measurement of Compton scattering in phantoms by germanium detectors

    SciTech Connect

    Zasadny, K.R.; Koral, K.F. . Medical Center); Floyd, C.E. Jr.; Jaszczak, R.J. . Dept. of Radiology)

    1990-04-01

    Quantitative Anger-camera tomography requires correction for Compton scattering. The Anger camera spectral-fitting technique can measure scatter fractions at designated positions in an image allowing for correction. To permit verification of those measurements for {sup 131}I, the authors have determined scatter fractions with a high-purity germanium (HPGe) detector and various phantom configurations. The scatter fraction values for {sup 99m}Tc were also measured and are compared to results from Monte Carlo simulation. The phantom consisted of a 22.2 cm diameter {times} 18.6 cm high cylinder filled with water and a 6 cm diameter water-filled sphere placed at various locations inside the cylinder. Radioisotope is added to either the sphere or the cylinder. The source is collimated by an Anger camera collimator and the active area of the HPGe detector is defined by a 0.6 cm diameter hole in a lead shielding mask. Corrections include accounting for the HPGe detector efficiency as a function of gamma-ray energy, the finite energy resolution of detector and the HPGe detector energy resolution compared to that for a NaI(Tl) Anger camera.

  14. Calibration of Micro Channel Plate Detector Systems

    NASA Astrophysics Data System (ADS)

    Dekat, S.; Kypreos, T.; Moore, J.; Gay, D.; Wiedenhoever, I.

    2004-10-01

    Two position-sensitive micro-channel plate (MCP) detector systems have been assembled and tested at the University of North Florida. These detectors track heavy-ions in Florida State University's radioactive beam facility, RESOLUT. Plans for the systems were supplied by C. J. Gross and D. Shapira of ORNL. Each system consists of an aluminized 0.9-micron Mylar foil facing a 40-mm diameter MCP sensor head with a resistive anode encoder (RAE). Delta electrons emitted as a heavy ion passes through the foil are accelerated toward the sensor head by an electric field. The divergence of the electrons is limited by a magnetic field from a NdFeB magnet which is coaxial with and behind the sensor head. A digital oscilloscope has been programmed to convert amplified and shaped pulses from the RAE into position coordinates. Calibration experiments were performed with the foil replaced by an aluminum grid of 1 mm wide strips. Using alpha particles from a ^241Am source incident on the grid, optimum operating parameters were established by resolving aluminum strips separated by 1 mm.

  15. A simple liquid detector for radiopharmaceutical processing systems

    SciTech Connect

    Alexoff, D.L.; Hallaba, K.; Schlyer, D.; Ferrieri, R.

    1995-03-01

    Sensing the presence of liquids in tubing and vessels in radiochemical processing equipment provides information important to the remote or automatic control of the production of clinical doses of radiopharmaceuticals. Although modern commercial automated radiopharmaceutical synthesis machines do not usually include liquid presence as a measured process variable, earlier more complex automated synthesis devices did; and the inclusion of such feedback can increase system reliability and simplify trouble-shooting tasks carried out by computer software or human operators. Commercial liquid level detectors are often designed for large-scale industrial processes and are therefore too large or expensive to be useful in many radiochemical hardware systems. An inexpensive miniature optical liquid detector originally by Kramer and Fuchs has been duplicated here for use in monitoring the presence of liquids in teflon tubing (1/16 in. O.D.) in an enriched oxygen-18 water recovery system.

  16. The laser calibration system of the TOP detector

    NASA Astrophysics Data System (ADS)

    Benettoni, M.; Gaz, A.; Lacaprara, S.; Posocco, M.; Sartori, P.; Stroili, R.; Torassa, E.; Mussa, R.; Tamponi, U.

    2015-07-01

    The TOP detector at the Belle II Experiment is a particle identification detector, devoted mainly to the separation of charged pions and kaons. The charged particles emit Cherenkov photons when traversing a quartz radiator and these photons are converted inside micro-channel plates photomultipliers. The time of arrival and position of the photoelectrons, detected with excellent spatial and time resolution, are used to reconstruct the angle of the Cherenkov light emitted by the charged particle. The monitoring of the time stability and the measurement of the quantum efficiency of the photomultipliers are performed with a laser calibration system, with a target time resolution better than 50 ps. The system is a combination of a picosecond laser source, long single mode fibers, fiber bundles, and microlenses, which are needed to illuminate all the channels of the photomultipliers. A detailed description of the laser calibration system and its properties is given.

  17. Mechanically Cooled Large-Volume Germanium Detector Systems for Nuclear Explosion Monitoring

    SciTech Connect

    Hull, Ethan L.; Pehl, Richard H.; Lathrop, James R.; Martin, Gregory N.; Mashburn, R. B.; Miley, Harry S.; Aalseth, Craig E.; Hossbach, Todd W.; Bowyer, Ted W.

    2006-09-21

    Compact maintenance free mechanical cooling systems are being developed to operate large volume (~570 cm3, ~3 kg, 140% or larger) germanium detectors for field applications. We are using a new generation of Stirling-cycle mechanical coolers for operating the very largest volume germanium detectors with absolutely no maintenance or liquid nitrogen requirements. The user will be able to leave these systems unplugged on the shelf until needed. The flip of a switch will bring a system to life in ~1 hour for measurements. The maintenance-free operating lifetime of these detector systems will exceed five years. These features are necessary for remote long-duration liquid-nitrogen free deployment of large-volume germanium gamma-ray detector systems for Nuclear Explosion Monitoring (NEM). The Radionuclide Aerosol Sampler/Analyzer (RASA) will greatly benefit from the availability of such detectors by eliminating the need for liquid nitrogen at RASA sites while still allowing the very largest available germanium detectors to be utilized. These mechanically cooled germanium detector systems being developed here will provide the largest, most sensitive detectors possible for use with the RASA. To provide such systems, the appropriate technical fundamentals are being researched. Mechanical cooling of germanium detectors has historically been a difficult endeavor. The success or failure of mechanically cooled germanium detectors stems from three main technical issues: temperature, vacuum, and vibration. These factors affect one another. There is a particularly crucial relationship between vacuum and temperature. These factors will be experimentally studied both separately and together to insure a solid understanding of the physical limitations each factor places on a practical mechanically cooled germanium detector system for field use. Using this knowledge, a series of mechanically cooled germanium detector prototype systems are being designed and fabricated. Our collaborators

  18. Mechanically Cooled Large-Volume Germanium Detector Systems for Nuclear Explosion Monitoring DOENA27323-1

    SciTech Connect

    Hull, E.L.

    2006-07-28

    Compact maintenance free mechanical cooling systems are being developed to operate large volume germanium detectors for field applications. To accomplish this we are utilizing a newly available generation of Stirling-cycle mechanical coolers to operate the very largest volume germanium detectors with no maintenance. The user will be able to leave these systems unplugged on the shelf until needed. The flip of a switch will bring a system to life in ~ 1 hour for measurements. The maintenance-free operating lifetime of these detector systems will exceed 5 years. These features are necessary for remote long-duration liquid-nitrogen free deployment of large-volume germanium gamma-ray detector systems for Nuclear Explosion Monitoring. The Radionuclide Aerosol Sampler/Analyzer (RASA) will greatly benefit from the availability of such detectors by eliminating the need for liquid nitrogen at RASA sites while still allowing the very largest available germanium detectors to be reliably utilized.

  19. Qubit Measurement with a Nonlinear Cavity Detector Beyond Linear Response

    NASA Astrophysics Data System (ADS)

    Laflamme, Catherine; Clerk, Aashish

    2012-02-01

    We consider theoretically the use of a driven, nonlinear superconducting microwave cavity to measure a coupled superconducting qubit. This is similar to setups studied in recent experiments.ootnotetextM. Hatridge et al. Phys.Rev.B, 83,134501 (2011)^,ootnotetextF.R. Ong et al. PRL 106,167002 (2011) In a previous work, we demonstrated that for weak coupling (where linear response theory holds) one misses the quantum limit on QND detection in this system by a large factor proportional to the parametric gain.ootnotetextC. Laflamme and A.A. Clerk, Phys. Rev. A 83, 033803 (2011) Here we calculate measurement backaction beyond linear response by using an approximate mapping to a detuned degenerate parametric amplifier having both linear and dispersive couplings to the qubit. We find surprisingly that the backaction dephasing rate is far more sensitive to corrections beyond linear response than the detector response. Thus, increasing the coupling strength can significantly increase the efficiency of the measurement. We interpret this behavior in terms of the non-Gaussian photon number fluctuations of the nonlinear cavity. Our results have applications to quantum information processing and quantum amplification with superconducting microwave circuits.

  20. Leakage current measurements of a pixelated polycrystalline CVD diamond detector

    NASA Astrophysics Data System (ADS)

    Zain, R. M.; Maneuski, D.; O'Shea, V.; Bates, R.; Blue, A.; Cunnigham, L.; Stehl, C.; Berderman, E.; Rahim, R. A.

    2013-01-01

    Diamond has several desirable features when used as a material for radiation detection. With the invention of synthetic growth techniques, it has become feasible to look at developing diamond radiation detectors with reasonable surface areas. Polycrystalline diamond has been grown using a chemical vapour deposition (CVD) technique by the University of Augsburg and detector structures fabricated at the James Watt Nanofabrication Centre (JWNC) in the University of Glasgow in order to produce pixelated detector arrays. The anode and cathode contacts are realised by depositing gold to produce ohmic contacts. Measurements of I-V characteristics were performed to study the material uniformity. The bias voltage is stepped from -1000V to 1000V to investigate the variation of leakage current from pixel to pixel. Bulk leakage current is measured to be less than 1nA.

  1. Order-sorting filter transmittance measured with an array detector

    NASA Technical Reports Server (NTRS)

    Heaney, James B.; Bradley, Scott E.; Bly, Vincent T.; Ewin, Audrey J.; La, Anh T.

    1993-01-01

    The simultaneous measurement of the spectrally and spatially variant transmittance of a linear variable order-sorting filter in a manner that closely resembles its conditions of actual use is described. The transmittance of a prototype order-sorting filter was measured in the 400- to 880-nm wavelength region by illuminating it with the output beam of a spectrophotometer while the filter was attached to the front of a 30 x 32 pixel silicon array detector. The filter was designed to be used in the output beam of a grating spectrometer to prevent the dispersal of higher diffracted orders onto an array detector. Areas of the filter that were spatially matched to the corresponding detector pixel column had measured peak transmittances of about 90 percent that were uniform to within +/- 1.5 percent along a given column. Transmittances for incident wavelengths shorter than the desired bandpass, corresponding to the order overlap region, were measured in the 0.003 range. Line spread function measurements made with the array detector indicated no significant beam spreading caused by inserting the filter into the beam.

  2. In-orbit demonstration of a magnetic measurement system for space-borne gravitational wave detectors with a CubeSat

    NASA Astrophysics Data System (ADS)

    Mateos, Ignacio

    2016-07-01

    Future space observatories for gravitational radiation such as eLISA require instrumentation capable of measuring magnetic fields with low-noise conditions at millihertz frequencies. The reason is that the main scientific payload can only operate successfully if the magnetic environment meets certain strict low-frequency requirements. Whit this purpose, a simplified version of the proposed magnetic measurement system for eLISA has been developed for a six-unit CubeSat called ^{3}Cat-2, which will make it possible to improve the technology readiness level (TRL) of the instrument. The special feature of the experiment is that the magnetic sensors integrated in the payload are magnetically shielded to low-frequency fluctuations by using a small cylindrical permalloy enclosure. This will allow the in-flight noise characterization of the system under the low Earth orbit (LEO) environment. Therefore, the ^{3}Cat-2 CubeSat will offer the opportunity to measure the capability of our instrument and will guide the progress towards the improved magnetic measurement system for eLISA. This talk will describe the principal characteristics and implementation of the on-board payload.

  3. Fast modular data acquisition system for GEM-2D detector

    NASA Astrophysics Data System (ADS)

    Kasprowicz, G.; Byszuk, Adrian; Wojeński, A.; Zienkiewicz, P.; Czarski, T.; Chernyshova, M.; Poźniak, K.; Rzadkiewicz, J.; Zabolotny, W.; Juszczyk, B.

    2014-11-01

    A novel approach to two dimensional Gas Electron Multiplier (GEM) detector readout is presented. Unlike commonly used methods, based on discriminators and analogue FIFOs, the method developed uses simulta- neously sampling high speed ADCs with fast hybrid integrator and advanced FPGA-based processing logic to estimate the energy of every single photon. Such a method is applied to every GEM strip / pixel signal. It is especially useful in case of crystal-based spectrometers for soft X-rays, 2D imaging for plasma tomography and all these applications where energy resolution of every single photon is required. For the purpose of the detector readout, a novel, highly modular and extendable conception of the measurement platform was developed. It is evolution of already deployed measurement system for JET Spectrometer.

  4. Modulation Transfer Function (MTF) measurement techniques for lenses and linear detector arrays

    NASA Technical Reports Server (NTRS)

    Schnabel, J. J., Jr.; Kaishoven, J. E., Jr.; Tom, D.

    1984-01-01

    Application is the determination of the Modulation Transfer Function (MTF) for linear detector arrays. A system set up requires knowledge of the MTF of the imaging lens. Procedure for this measurement is described for standard optical lab equipment. Given this information, various possible approaches to MTF measurement for linear arrays is described. The knife edge method is then described in detail.

  5. 47 CFR 15.35 - Measurement detector functions and bandwidths.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... device, e.g., the total peak power level. Note that the use of a pulse desensitization correction factor... measuring equipment employing a peak detector function, properly adjusted for such factors as pulse...: For pulse modulated devices with a pulse-repetition frequency of 20 Hz or less and for which...

  6. Measuring high-energy {gamma} rays with Ge detectors

    SciTech Connect

    Lipoglavsek, M.; Likar, A.; Vencelj, M.; Vidmar, T.; Bark, R. A.; Gueorguieva, E.; Komati, F.; Lawrie, J. J.; Maliage, S. M.; Mullins, S. M.; Murray, S. H. T.; Ramashidzha, T. M.

    2006-04-26

    Gamma rays with energies up to 21 MeV were measured with Ge detectors. Such {gamma} rays were produced in the 208Pb(p,{gamma})209Bi reaction. The position of the 2g9/2 single proton orbit in 209Bi has been determined indicating the size of the Z=126 shell gap.

  7. Neutron detector simultaneously measures fluence and dose equivalent

    NASA Technical Reports Server (NTRS)

    Dvorak, R. F.; Dyer, N. C.

    1967-01-01

    Neutron detector acts as both an area monitoring instrument and a criticality dosimeter by simultaneously measuring dose equivalent and fluence. The fluence is determined by activation of six foils one inch below the surface of the moderator. Dose equivalent is determined from activation of three interlocked foils at the center of the moderator.

  8. Luminosity measurement in the L3 detector at LEP

    NASA Astrophysics Data System (ADS)

    Brock, I. C.; Engler, A.; Ferguson, T.; Filthaut, F.; Kraemer, R. W.; Merk, M.; Rippich, C.; Shi, X.; Shukla, J.; Sutton, R. B.; Tsipolitis, G.; Vogel, H.; You, J.; Lecoq, P.; Bobbink, G. J.; Buskens, J.; Cerjak, I.; Groenstege, H.; Koffeman, E.; Linde, F. L.; Raven, G.; Rewiersma, P.; Schuijlenberg, H. W. A.; de Waard, A.; Commichau, V.; Hangarter, K.; Schmitz, P.

    1996-02-01

    One of the limiting factors in the determination of the electroweak parameters from cross section measurements of e +e - annihilation close to the Z pole is the precision of the luminosity measurement. The luminosity monitor of the L3 detector at LEP and the analysis of its data are described. Using a combination of a BGO calorimeter and a 3-layer silicon tracker, the absolute luminosity has been measured with an experimental precision of 0.08% in 1993 and 0.05% in 1994. The measurement relies on a detailed understanding of small-angle elastic e +e - (Bhabha) scattering from the experimental and theoretical point of view, as well as an excellent knowledge of the detector geometry.

  9. Timing resolution measurements of a 3 in. lanthanum bromide detector

    NASA Astrophysics Data System (ADS)

    Galli, L.; De Gerone, M.; Dussoni, S.; Nicolò, D.; Papa, A.; Tenchini, F.; Signorelli, G.

    2013-08-01

    Cerium-doped lanthanum bromide (LaBr3:Ce) is a scintillator that presents very good energy and timing resolutions and it is a perfect candidate for photon detector in future experiments to search for lepton flavor violation as in μ → eγ or μ → e conversion. While energy resolution was thoroughly investigated, timing resolution at several MeV presents some experimental challenge. We measured the timing resolution of a 3 in.×3 in. cylindrical LaBr3(Ce) crystal versus few reference detectors by means of a nuclear reaction from a Cockcroft-Walton accelerator that produces coincident γ-rays in the 4.4-11.6 MeV range. Preliminary results allow us to extrapolate the properties of a segmented γ-ray detector in the 50-100 MeV range.

  10. A micromegas detector for {sup 222}Rn emanations measurements

    SciTech Connect

    García, J. A.; Garza, J. G.; Irastorza, I. G.; Mirallas, H.

    2013-08-08

    The {sup 222}Rn emanation has significant contribution in the overall background for rare event searches experiments. In order to measure this emanations a high sensitivity detector has been designed. The detection method is based on the electrostatic collection of the {sup 222}Rn daughters on a Micromegas detector. Using a chamber with a volume of 21.2 l for the collection of {sup 218}Po and {sup 214}Po progeny of {sup 222}Rn and a 12 × 12cm{sup 2} pixelized Micromegas for the α detection. The advantages of the Micromegas detectors are the low intrinsic radioactivity and the track reconstruction of the α’s, having excellent capabilities for event discrimination.

  11. Design of a GEM-based detector for the measurement of fast neutrons

    NASA Astrophysics Data System (ADS)

    Esposito, B.; Murtas, F.; Villari, R.; Angelone, M.; Marocco, D.; Pillon, M.; Puddu, S.

    2010-05-01

    A novel neutron detector has been developed and tested in collaboration between LNF-INFN and ENEA-Frascati. The aim is to obtain a versatile system that can be employed for the simultaneous measurement of the neutron flux in various energy bands from 1 to 20 MeV. The main drive for this development is the need of neutron detectors with low sensitivity to γ-rays and high count rate capability for operation in the neutron flux environment ~3×108 n/cm2 s expected in future controlled thermonuclear fusion reactors. In these devices the fusion power is assessed through the measurement of the 2.5 and 14 MeV neutrons emitted by the plasma. A multilayer detector architecture, including a proton recoil converter, a proton absorber and a triple Gas Electron Multiplier (GEM), has been adopted. The detector read-out system consists of 128 pads (12.3×6 mm2) in a 8×16 matrix. The work on the detector design and optimization carried out with the MCNPX code and the experimental tests at the Frascati Neutron Generator (FNG) on a detector prototype for 2.5 and 14 MeV measurements are presented.

  12. Timing Measurements of Scintillator Bars with Silicon Phtotomultiplier Light Detectors

    NASA Astrophysics Data System (ADS)

    Shelor, Mark; Elizondo, Leonardo; Ritt, Stefan

    2016-03-01

    To track and analyze cosmic rays via precise measurements of muon and similarly penetrating particle's airshower axes directions, we constructed a prototype consisting of two 1-meter long scintillator bars. Each bar is embedded with green wavelength shifting fibers to increase detection rate of two silicon photomultiplier, SiPM, light detectors to record light produced by cosmic rays via scintillation. The focus of the experiment was to determine the performance of these devices. Evaluation was performed for two makes of SiPM models - from AdvanSiD and Hamamatsu. Timing measurements of the apparatus were performed under several trigger conditions to filter out noise such as coincidence trigger with 2 photomultiplier detectors, as well as SiPM detectors in self-triggered mode. The SiPM detector waveforms were digitized using a 4-channel fast waveform sampler, the DRS4 digitizer. Signals were analyzed with the CERN PAW package. From our results, we deduced the speed of light in the scintillator using the SiPM modules to be about 66% of the speed of light in a vacuum which is in accordance with the specifications of the index of refraction for the fibers given by the manufacturer's specifications. The results of our timing measurements would be presented. Dept. of Ed. Title V Grant PO31S090007.

  13. Neutron emission measurement at the HL-2A tokamak device with a liquid scintillation detector

    SciTech Connect

    Xie, Xufei; Chen, Zhongjing; Peng, Xingyu; Yuan, Xi; Zhang, Xing; Cui, Zhiqiang; Du, Tengfei; Hu, Zhimeng; Li, Tao; Fan, Tieshuan Chen, Jinxiang; Li, Xiangqing; Zhang, Guohui; Gorini, Giuseppe; Yuan, Guoliang; Yang, Jinwei; Yang, Qingwei

    2014-10-15

    Neutron emission measurement at the HL-2A tokamak device with a liquid scintillation detector is described. The detector was placed at a location with little structure material in the field of view, and equipped with a gain monitoring system which could provide the possibility to evaluate the gain variation as well as to correct for the detector response. Time trace of the neutron emissivity was obtained and it was consistent with the result of a standard {sup 235}U fission chamber. During the plasma discharge the neutron yield could vary by about four orders of magnitude and the fluctuation of the detector gain was up to about 6%. Pulse height spectrum of the liquid scintillation detector was constructed and corrected with the aid of the gain monitoring system, and the correction was found to be essential for the assessment of the neutron energy spectrum. This successful measurement offered experience and confidence for the application of liquid scintillation detectors in the upcoming neutron camera system.

  14. Solid-state detector and optical system for microchip analyzers

    DOEpatents

    Mathies, Richard A.; Kamei, Toshihiro; Scherer, James R.; Street, Robert A.

    2005-03-15

    A miniaturized optical excitation and detector system is described for detecting fluorescently labeled analytes in electrophoretic microchips and microarrays. The system uses miniature integrated components, light collection, optical fluorescence filtering, and an amorphous a-Si:H detector for detection. The collection of light is accomplished with proximity gathering and/or a micro-lens system. Optical filtering is accomplished by integrated optical filters. Detection is accomplished utilizing a-Si:H detectors.

  15. The fluid systems for the SLD Cherenkov ring imaging detector

    SciTech Connect

    Abe, K.; Hasegawa, K.; Hasegawa, Y.; Iwasaki, Y.; Suekane, F.; Yuta, H.; Antilogus, P.; Aston, D.; Bienz, T.; Bird, F.; Dasu, S.; Dolinsky, S.; Dunwoodie, W.; Hallewell, G.; Kawahara, H.; Kwon, Y.; Leith, D.W.G.S.; McCulloch, M.; McShurley, D.; Mueller, G.; Muller, D.; Nagamine, T.; Pavel, T.J.; Peterson, H.; Ratcliff, B.; Reif, R.; Rensing, P.; Schultz, D.; Shapiro, S.; Shaw, H.; Simopoulos, C.; Solodov, E.; Toge, N.; Vavra, J.; Watt, R.; Weber, T.; Williams, S.H.; Baird, K.; Jacques, P.; Kalelkar, M.; Plano, R.; Stamer, P.; Word, G.; Bean, A.; Caldwell, D.O.; Duboscq, J.; Huber, J.; Lu, A.; Mathys, L.; McHugh, S.; Yellin, S.; Ben-David, R.; Manly, S.; Snyder, J.; Turk, J.; Cavalli-Sforza, M.; Coyle, P.; Coyne, D.; Gagnon, P.; Liu, X.; Schneider, M.; Williams, D.A.; Coller, J.; Shank, J.T.; Whitaker, J.S.; d`Oliveira, A.; Johnson, R.A.; Martinez, J.; Nussbaum, M.; Santha, A.K.S.; Sokoloff, M.D.; Stockdale, I.; Wilson, R.J.

    1992-10-01

    We describe the design and operation of the fluid delivery, monitor and control systems for the SLD barrel Cherenkov Ring Imaging Detector (CRID). The systems deliver drift gas (C{sub 2}H{sub 6} + TMAE), radiator gas (C{sub 5}F{sub 12} + N{sub 2}) and radiator liquid (C{sub 6}F{sub 14}). Measured critical quantities such as electron lifetime in the drift gas and ultra-violet (UV) transparencies of the radiator fluids, together with the operational experience, are also reported.

  16. Development of Superconducting Detectors for Measurements of Cosmic Microwave Background

    NASA Astrophysics Data System (ADS)

    Hattori, K.; Hazumi, M.; Ishino, H.; Kawai, M.; Kibayashi, A.; Kimura, N.; Mima, S.; Noguchi, T.; Okamura, T.; Sato, N.; Tajima, O.; Tomaru, T.; Watanabe, H.; Yoshida, M.

    We present our recent development of superconducting detectors for measurements of cosmic microwave background. We have fabricated antenna-coupled superconducting tunnel junctions (STJs). Two different types of STJs have been fabricated: the parallel-connected twin junction and the microstrip. Both types of STJs made of Nb and Al have successfully detected 80 GHz millimeter wave radiation with photon-assisted tunneling. We have also developed microwave kinetic inductance detectors (MKIDs). The MKIDs offer us high multiplexing factors with a single readout line using the frequency-domain readout. We have developed abosrption-type and transmission-type MKIDs whose resonators are formed with either coplanar waveguides (CPW) or microstrips. The quality factor of the CPW MKID made of Nb is measured to be about 105. The microstrip MKID is being developed for the multichroic measurements.

  17. Characterization of liquid scintillation detector (BC-501A) and digital pulse shape discrimination (DPSD) system

    SciTech Connect

    Lombigit, L. Yussup, N. Ibrahim, Maslina Mohd; Rahman, Nur Aira Abd; Rawi, M. Z. M.

    2015-04-29

    A digital n/γ pulse shape discrimination (PSD) system is currently under development at Instrumentation and Automation Centre, Malaysian Nuclear Agency. This system aims at simultaneous detection of fast neutron and gamma ray in mixed radiations environment. This work reports the system characterization performed on the liquid scintillation detector (BC-501A) and digital pulse shape discrimination (DPSD) system. The characterization involves measurement of electron light output from the BC-501A detector and energy channels calibration of the pulse height spectra acquired with DPSD system using set of photon reference sources. The main goal of this experiment is to calibrate the ADC channel of our DPSD system, characterized the BC-501 detector and find the position of Compton edge which later could be used as threshold for the n/γ PSD experiment. The detector resolution however is worse as compared to other published data but it is expected as our detector has a smaller active volume.

  18. (Test, calibrate, and prepare a BGO photon detector system)

    SciTech Connect

    Awes, T.C.

    1990-10-19

    The traveler spent the year at CERN primarily to test, calibrate, and prepare a BGO photon detector system for use in the August 1990 run of WA80 with sulfur beams and for use in future planned runs with an expanded BGO detector. The BGO was used in test-beam runs in December 1989 and April--May 1990 and in the August data-taking run. The Midrapidity Calorimeters (MIRAC) were also prepared in a new geometry for the August run with a new transverse energy trigger. The traveler also continued to refine and carry out simulations of photon detector systems in present and future planned photon detection experiments. The traveler participated in several WA80 collaboration meetings, which were held at CERN throughout the period of stay. Invited talks were presented at the Workshop on High Resolution Electromagnetic Calorimetry in Stockholm, Sweden, November 9--11, 1989, and at the International Workshop on Software Engineering, Artificial Intelligence, and Expert Systems for High-Energy and Nuclear Physics at Lyon, France, March 19--24, 1990. The traveler participated in an experiment to measure particle--particle correlations at 30-MeV/nucleon incident energies at the SARA facility in Grenoble from November 11--24, 1989.

  19. High resolution collimator system for X-ray detector

    DOEpatents

    Eberhard, Jeffrey W.; Cain, Dallas E.

    1987-01-01

    High resolution in an X-ray computerized tomography (CT) inspection system is achieved by using a collimator/detector combination to limit the beam width of the X-ray beam incident on a detector element to the desired resolution width. In a detector such as a high pressure Xenon detector array, a narrow tapered collimator is provided above a wide detector element. The collimator slits have any desired width, as small as a few mils at the top, the slit width is easily controlled, and they are fabricated on standard machines. The slit length determines the slice thickness of the CT image.

  20. Trigger and Readout System for the Ashra-1 Detector

    NASA Astrophysics Data System (ADS)

    Aita, Y.; Aoki, T.; Asaoka, Y.; Morimoto, Y.; Motz, H. M.; Sasaki, M.; Abiko, C.; Kanokohata, C.; Ogawa, S.; Shibuya, H.; Takada, T.; Kimura, T.; Learned, J. G.; Matsuno, S.; Kuze, S.; Binder, P. M.; Goldman, J.; Sugiyama, N.; Watanabe, Y.

    Highly sophisticated trigger and readout system has been developed for All-sky Survey High Resolution Air-shower (Ashra) detector. Ashra-1 detector has 42 degree diameter field of view. Detection of Cherenkov and fluorescence light from large background in the large field of view requires finely segmented and high speed trigger and readout system. The system is composed of optical fiber image transmission system, 64 × 64 channel trigger sensor and FPGA based trigger logic processor. The system typically processes the image within 10 to 30 ns and opens the shutter on the fine CMOS sensor. 64 × 64 coarse split image is transferred via 64 × 64 precisely aligned optical fiber bundle to a photon sensor. Current signals from the photon sensor are discriminated by custom made trigger amplifiers. FPGA based processor processes 64 × 64 hit pattern and correspondent partial area of the fine image is acquired. Commissioning earth skimming tau neutrino observational search was carried out with this trigger system. In addition to the geometrical advantage of the Ashra observational site, the excellent tau shower axis measurement based on the fine imaging and the night sky background rejection based on the fine and fast imaging allow zero background tau shower search. Adoption of the optical fiber bundle and trigger LSI realized 4k channel trigger system cheaply. Detectability of tau shower is also confirmed by simultaneously observed Cherenkov air shower. Reduction of the trigger threshold appears to enhance the effective area especially in PeV tau neutrino energy region. New two dimensional trigger LSI was introduced and the trigger threshold was lowered. New calibration system of the trigger system was recently developed and introduced to the Ashra detector

  1. Comparative study of ionization chamber detectors vis-a-vis a CCD detector for dispersive XAS measurement in transmission geometry

    SciTech Connect

    Poswal, A. K.; Agrawal, A.; Bhattachryya, D.; Jha, S. N.; Sahoo, N. K.

    2013-02-05

    We have designed and fabricated parallel plate ionization chamber detectors and voltage vs. current characteristics (V-I curve) of the detectors were recorded with synchrotron radiation to qualify for use in X-ray Absorption Spectroscopy (XAS) measurements. After qualifying the ionization chambers, the detectors were used in the dispersive EXAFS beamline (BL-08) at INDUS-2 SRS in Turbo-XAS geometry. Using the same setup and under the same setting, XAS spectra were also recorded with a CCD detector and the observation on relative performance of the ionization chamber vis-a-vis the CCD detector is presented in this paper.

  2. Comparative study of ionization chamber detectors vis-à-vis a CCD detector for dispersive XAS measurement in transmission geometry

    NASA Astrophysics Data System (ADS)

    Poswal, A. K.; Agrawal, A.; Bhattachryya, D.; Jha, S. N.; Sahoo, N. K.

    2013-02-01

    We have designed and fabricated parallel plate ionization chamber detectors and voltage vs. current characteristics (V-I curve) of the detectors were recorded with synchrotron radiation to qualify for use in X-ray Absorption Spectroscopy (XAS) measurements. After qualifying the ionization chambers, the detectors were used in the dispersive EXAFS beamline (BL-08) at INDUS-2 SRS in Turbo-XAS geometry. Using the same setup and under the same setting, XAS spectra were also recorded with a CCD detector and the observation on relative performance of the ionization chamber vis-a-vis the CCD detector is presented in this paper.

  3. Proton Radiography: Cross Section Measurements and Detector Development

    SciTech Connect

    Michael J. Longo; H. R. Gustafson: Durga Rajaram; Turgun Nigmanov

    2010-04-16

    Proton radiography has become an important tool for predicting the performance of stockpiled nuclear weapons. Current proton radiography experiments at LANSCE are confined to relatively small targets on the order of centimeters in size because of the low beam energy. LANL scientists have made radiographs with 12 and 24 GeV protons produced by the accelerator at Brookhaven National Laboratory. These energies are in the range required for hydrotest radiography. The design of a facility for hydrotest radiography requires knowledge of the cross sections for producing high-energy particles in the forward direction, which are incorporated into the Monte Carlo simulation used in designing the beam and detectors. There are few existing measurements of neutron production cross sections for proton-nuclei interactions in the 50 GeV range, and almost no data exist for forward neutron production, especially for heavy target nuclei. Thus the data from the MIPP EMCAL and HCAL, for which our group was responsible, are critical to proton radiography. Since neutrons and photons cannot be focused by magnets, they cause a background “fog” on the images. This problem can be minimized by careful design of the focusing system and detectors. The purpose of our research was to measure forward production of neutrons produced by high-energy proton beams striking a variety of targets. The forward-going particles carry most of the energy from a high-energy proton interaction, so these are the most important to proton radiography. This work was carried out in conjunction with the Fermilab E-907 (MIPP) collaboration. Our group was responsible for designing and building the E907 forward neutron and photon calorimeters. With the support of our Stewardship Science Academic Alliances grants, we were able to design, build, and commission the calorimeters on budget and ahead of schedule. The MIPP experiment accumulated a large amount of data in the first run that ended in early 2006. Our group has

  4. Solar neutrino measurement with radiochemical gallium detector (GALLEX)

    NASA Astrophysics Data System (ADS)

    von Ammon, Reinhard

    1994-04-01

    The GALLEX experiment for the detection of solar neutrinos by means of a radiochemical gallium detector is operated by groups from Italy, France, Germany, Israel and the USA in the Gran Sasso underground laboratory (LNGS) near L'Aquila (Italy). It consists of (1) the technical scale tank made of glass fiber reinforced polyester fabric containing 101 metric tons (54 cu m) of a highly concentrated (8 moles per liter) GaCl3 solution; (2) a gas sparging system for desorption of GeCl4 which has been formed by interaction of the neutrinos with gallium according to Ga-71 + nue yields Ge-71 + e(-) and by addition of ca. 1 mg of a stable Ge isotope; (3) the absorption columns for concentration of GeCl4 into a volume of 1 l of water; (4) the laboratory scale apparatus for conversion of GeCl4 to GeH4 and mixing with the counting gas Xe; (5) the counter filling station, and (6) the low level proportional counters. Contributions of possible side reactions which have to be corrected for, e.g. by cosmic muons, fast neutrons and alpha-emitters are discussed, as well as the purification of the target solution from long-lived ( t1/2 = 271 d) cosmogenic Ge-68. A first preliminary result after one year of solar neutrino measurement is presented. This constitutes the first direct measurement of the basic proton-proton fusion reaction in the core of the sun. This result, appreciably below the predictions of the standard solar model (SSM) (132 Solar Neutrino Units (SNU)) can be interpreted, together with the results of the chlori ne and KAMIOKANDE experiments either by astrophysics or by neutrino oscillations (Mikheyev-Smirnov-Wolfenstein (MSW) effect). The solar neutrino measurements are continuing and a calibration experiment with a Cr-51 source is in preparation.

  5. Digital Pulse Shape Analysis with Phoswich Detectors to Simplify Coincidence Measurements of Radioactive Xenon

    SciTech Connect

    Hennig, Wolfgang; Tan, Hui; Warburton, William K.; McIntyre, Justin I.

    2005-08-31

    The Comprehensive Nuclear-Test-Ban Treaty establishes a network of monitoring stations to detect radioactive Xenon in the atmosphere from nuclear weapons testing. One such monitoring system is the Automated Radio-xenon Sampler/Analyzer (ARSA) developed at Pacific Northwest National Laboratory, which uses a complex arrangement of separate beta and gamma detectors to detect beta-gamma coincidences from the Xe isotopes of interest. The coincidence measurement is very sensitive, but the large number of detectors and photomultiplier tubes require careful calibration which makes the system hard to use. It has been suggested that beta-gamma coincidences could be detected with only a single photomultiplier tube and electronics channel by using a phoswich detector consisting of optically coupled beta and gamma detectors (Ely, 2003). In that work, rise time analysis of signals from a phoswich detector was explored as a method to determine if interactions occurred in either the beta or the gamma detector or in both simultaneously. However, this approach was not able to detect coincidences with the required sensitivity or to measure the beta and gamma energies with sufficient precision for Xenon monitoring. In this paper, we present a new algorithm to detect coincidences by pulse shape analysis of the signals from a BC-404/CsI(Tl) phoswich detector. Implemented on fast digital readout electronics, the algorithm achieves clear separation of beta only, gamma only and coincidence events, accurate measurement of both beta and gamma energies, and has an error rate for detecting coincidences of less than 0.1%. Monte Carlo simulations of radiation transport and light collection were performed to optimize design parameters for a replacement detector module for the ARSA system, obtaining an estimated coincidence detection efficiency of 82-92% and a background rejection rate better than 99%. The new phoswich/pulse shape analysis method is thus suitable to simplify the existing ARSA

  6. Iterative optimisation of Monte Carlo detector models using measurements and simulations

    NASA Astrophysics Data System (ADS)

    Marzocchi, O.; Leone, D.

    2015-04-01

    This work proposes a new technique to optimise the Monte Carlo models of radiation detectors, offering the advantage of a significantly lower user effort and therefore an improved work efficiency compared to the prior techniques. The method consists of four steps, two of which are iterative and suitable for automation using scripting languages. The four steps consist in the acquisition in the laboratory of measurement data to be used as reference; the modification of a previously available detector model; the simulation of a tentative model of the detector to obtain the coefficients of a set of linear equations; the solution of the system of equations and the update of the detector model. Steps three and four can be repeated for more accurate results. This method avoids the "try and fail" approach typical of the prior techniques.

  7. Optical comparison of detector arrays from modulation transfer function measurements with laser speckle patterns

    NASA Astrophysics Data System (ADS)

    Fernández-Oliveras, Alicia; Pozo, Antonio M.; Rubiño, Manuel

    2012-04-01

    Charge-coupled device (CCD) and complementary metal-oxide semiconductor (CMOS) matrices offer excellent features in imaging systems. A suitability evaluation of either technology according to a specific application requires a complete characterization of the different detector types. A system is optically characterized by the modulation transfer function (MTF), which represents its response in spatial frequency of this system. One of the methods to measure the MTF uses a laser speckle pattern as the object. Here, we comparatively examine the results provided by the speckle method to determine the MTF for detectors of two types: CCD and CMOS. We generate the speckle pattern using a laser and an integrating sphere with an aperture at its exit port. The aperture determined the spatial-frequency content of the pattern registered in the detector. The precision in determining the MTF of the CCD was studied using two different apertures: a single-slit and a double-slit. For the single-slit, we propose a new procedure of fitting the experimental data which resolves the drawbacks of the conventional procedure. To study the CMOS detector, we used the single-slit because it offered lower uncertainty and better reproducibility. The differences between the MTF values of the CCD and the CMOS detectors proved significant for the spatial frequencies higher than 50 cycles/mm, which is half of the interval studied with both arrays. For these spatial frequencies, our results demonstrate that the CCD detector presented MTF values higher than those of the CMOS array.

  8. Measurement dimensions compressed spectral imaging with a single point detector

    NASA Astrophysics Data System (ADS)

    Liu, Xue-Feng; Yu, Wen-Kai; Yao, Xu-Ri; Dai, Bin; Li, Long-Zhen; Wang, Chao; Zhai, Guang-Jie

    2016-04-01

    An experimental demonstration of spectral imaging with measurement dimensions compressed has been performed. With the method of dual compressed sensing (CS) we derive, the spectral image of a colored object can be obtained with only a single point detector, and sub-sampling is achieved in both spatial and spectral domains. The performances of dual CS spectral imaging are analyzed, including the effects of dual modulation numbers and measurement noise on the imaging quality. Our scheme provides a stable, high-flux measurement approach of spectral imaging.

  9. Systematic Comparison of the MINOS Near and Far Detector Readout Systems

    SciTech Connect

    Cabrera, Anatael

    2005-05-01

    The MINOS experiment is a neutrino oscillation baseline experiment intending to use high resolution L/E neutrinos to measure the atmospheric neutrino oscillations parameters to unprecedented precision. Two detectors have been built to realize the measurements, a Near detector, located about 1km downstream from the beam target at the Fermi Laboratory, and a Far detector, located at 736km, at the Soudan Laboratory. The technique relies on the Near detector to measure the un-oscillated neutrino spectrum, while the Far detector measures the neutrino spectrum once oscillated. The comparison between the two measurements is expected to allow MINOS to measure {Delta}m{sup 2} beyond 10% precision level. The Near and Far detectors have been built similarly to minimize possible systematic effects. Both detectors have been endowed with different readout systems, as the beam event rates are very different. The MINOS calibration detector (CalDet), installed at CERN, was instrumented with both readout systems such that they can simultaneously measure and characterize the energy deposition (response and event topology) of incident known particle from test-beams. This thesis presents the investigations to quantify the impact of the performance of both readout systems on the MINOS results using the measurements obtained with CalDet. The relative comparison of the responses of both readout systems have been measured to be consistent with being identical within a systematic uncertainty of 0.6%. The event topologies have been found to be negligibly affected. In addition, the performance of the detector simulations have been thoroughly investigated and validated to be in agreement with data within similar level of uncertainties.

  10. Influence of detector motion in entanglement measurements with photons

    SciTech Connect

    Landulfo, Andre G. S.; Matsas, George E. A.; Torres, Adriano C.

    2010-04-15

    We investigate how the polarization correlations of entangled photons described by wave packets are modified when measured by moving detectors. For this purpose, we analyze the Clauser-Horne-Shimony-Holt Bell inequality as a function of the apparatus velocity. Our analysis is motivated by future experiments with entangled photons designed to use satellites. This is a first step toward the implementation of quantum information protocols in a global scale.

  11. Recent developments on the STAR detector system at RHIC

    SciTech Connect

    Wieman, H.; Adams, D.L.; Added, N.

    1997-12-01

    The STAR detector system is designed to provide tracking, momentum analysis and particle identification for many of the mid-rapidity charged particles produced in collisions at the RHIC collider. A silicon vertex detector (SVT) provides three layers of tracking near the interaction point. This is followed by the main time projection chamber (TPC), which continues tracking out to 200 cm radial distance from the interaction region. The detector design also includes an electromagnetic calorimeter, various trigger detectors, and radial TPCs in the forward region. The entire system is enclosed in a 0.5 T solenoid magnet. A progress report is given for the various components of the STAR detector system. The authors report on the recent developments in the detector proto-typing and construction, with an emphasis on the main TPC, recent TPC cosmic ray testing and shipping to Brookhaven National Laboratory.

  12. 14 CFR 23.1203 - Fire detector system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fire detector system. 23.1203 Section 23... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Powerplant Fire Protection § 23.1203 Fire detector system. (a) There must be means that ensure the prompt detection of a...

  13. Throughput of Coded Optical CDMA Systems with AND Detectors

    NASA Astrophysics Data System (ADS)

    Memon, Kehkashan A.; Umrani, Fahim A.; Umrani, A. W.; Umrani, Naveed A.

    2012-09-01

    Conventional detection techniques used in optical code-division multiple access (OCDMA) systems are not optimal and result in poor bit error rate performance. This paper analyzes the coded performance of optical CDMA systems with AND detectors for enhanced throughput efficiencies and improved error rate performance. The results show that the use of AND detectors significantly improve the performance of an optical channel.

  14. A scintillating gas detector for 2D dose measurements in clinical carbon beams.

    PubMed

    Seravalli, E; de Boer, M; Geurink, F; Huizenga, J; Kreuger, R; Schippers, J M; van Eijk, C W E; Voss, B

    2008-09-01

    A two-dimensional position sensitive dosimetry system based on a scintillating gas detector has been developed for pre-treatment verification of dose distributions in hadron therapy. The dosimetry system consists of a chamber filled with an Ar/CF4 scintillating gas mixture, inside which two cascaded gas electron multipliers (GEMs) are mounted. A GEM is a thin kapton foil with copper cladding structured with a regular pattern of sub-mm holes. The primary electrons, created in the detector's sensitive volume by the incoming beam, drift in an electric field towards the GEMs and undergo gas multiplication in the GEM holes. During this process, photons are emitted by the excited Ar/CF4 gas molecules and detected by a mirror-lens-CCD camera system. Since the amount of emitted light is proportional to the dose deposited in the sensitive volume of the detector by the incoming beam, the intensity distribution of the measured light spot is proportional to the 2D hadron dose distribution. For a measurement of a 3D dose distribution, the scintillating gas detector is mounted at the beam exit side of a water-bellows phantom, whose thickness can be varied in steps. In this work, the energy dependence of the output signal of the scintillating gas detector has been verified in a 250 MeV/u clinical 12C ion beam by means of a depth-dose curve measurement. The underestimation of the measured signal at the Bragg peak depth is only 9% with respect to an air-filled ionization chamber. This is much smaller than the underestimation found for a scintillating Gd2O2S:Tb ('Lanex') screen under the same measurement conditions (43%). Consequently, the scintillating gas detector is a promising device for verifying dose distributions in high LET beams, for example to check hadron therapy treatment plans which comprise beams with different energies. PMID:18695295

  15. A scintillating gas detector for 2D dose measurements in clinical carbon beams

    NASA Astrophysics Data System (ADS)

    Seravalli, E.; de Boer, M.; Geurink, F.; Huizenga, J.; Kreuger, R.; Schippers, J. M.; van Eijk, C. W. E.; Voss, B.

    2008-09-01

    A two-dimensional position sensitive dosimetry system based on a scintillating gas detector has been developed for pre-treatment verification of dose distributions in hadron therapy. The dosimetry system consists of a chamber filled with an Ar/CF4 scintillating gas mixture, inside which two cascaded gas electron multipliers (GEMs) are mounted. A GEM is a thin kapton foil with copper cladding structured with a regular pattern of sub-mm holes. The primary electrons, created in the detector's sensitive volume by the incoming beam, drift in an electric field towards the GEMs and undergo gas multiplication in the GEM holes. During this process, photons are emitted by the excited Ar/CF4 gas molecules and detected by a mirror-lens-CCD camera system. Since the amount of emitted light is proportional to the dose deposited in the sensitive volume of the detector by the incoming beam, the intensity distribution of the measured light spot is proportional to the 2D hadron dose distribution. For a measurement of a 3D dose distribution, the scintillating gas detector is mounted at the beam exit side of a water-bellows phantom, whose thickness can be varied in steps. In this work, the energy dependence of the output signal of the scintillating gas detector has been verified in a 250 MeV/u clinical 12C ion beam by means of a depth-dose curve measurement. The underestimation of the measured signal at the Bragg peak depth is only 9% with respect to an air-filled ionization chamber. This is much smaller than the underestimation found for a scintillating Gd2O2S:Tb ('Lanex') screen under the same measurement conditions (43%). Consequently, the scintillating gas detector is a promising device for verifying dose distributions in high LET beams, for example to check hadron therapy treatment plans which comprise beams with different energies.

  16. Earth radiation budget measurement from a spinning satellite: Conceptual design of detectors

    NASA Technical Reports Server (NTRS)

    Sromovsky, L. A.; Revercomb, H. E.; Suomi, V. E.

    1975-01-01

    The conceptual design, sensor characteristics, sensor performance and accuracy, and spacecraft and orbital requirements for a spinning wide-field-of-view earth energy budget detector were investigated. The scientific requirements for measurement of the earth's radiative energy budget are presented. Other topics discussed include the observing system concept, solar constant radiometer design, plane flux wide FOV sensor design, fast active cavity theory, fast active cavity design and error analysis, thermopile detectors as an alternative, pre-flight and in-flight calibration plane, system error summary, and interface requirements.

  17. A large detector for cosmic ray abundance and energy measurements

    NASA Astrophysics Data System (ADS)

    Alsop, C.

    A large aperture, balloon borne cosmic ray detector was designed to measure the energy spectra of individual cosmic ray species with Z greater than 8 in the energy range 0.3GeV/N to 400GeV/N. The energy dependence of the abundance spectrum extending up to such high energies will provide valuable data for determining the nature of the origin and propagation of cosmic rays in the Galaxy. The properties of cosmic ray nuclei and the interpretation of the energy dependence of the abundance spectrum are discussed. The design and response of the BUGS IV cosmic ray detector are described. The measurement techniques used are gas scintillation, gas proportional scintillation and Cerenkov radiation from both gases and solids. The light collection properties of the detector and several experimental investigations of the light collection efficiency of the drift chamber region are described. The expected signals from the gas scintillation and gas Cerenkov emissions are predicted and the choice of a suitable scintillating gas mixture for minimizing the uncertainty in the charge and energy measurements is considered. The theoretical aspects of electron drift and diffusion in gases and several experimental investigations on the electron drift in the BUGS IV drift chamber are given. Also some preliminary results from a uniform field drift chamber are included which demonstrate the sensitivity of the electron drift velocity in inert gas mixtures to water vapor contamination. The expected overall performance of BUGS IV and the results of an experimental simulation of the parachute landing of the detector are given.

  18. Radiation detector system having heat pipe based cooling

    DOEpatents

    Iwanczyk, Jan S.; Saveliev, Valeri D.; Barkan, Shaul

    2006-10-31

    A radiation detector system having a heat pipe based cooling. The radiation detector system includes a radiation detector thermally coupled to a thermo electric cooler (TEC). The TEC cools down the radiation detector, whereby heat is generated by the TEC. A heat removal device dissipates the heat generated by the TEC to surrounding environment. A heat pipe has a first end thermally coupled to the TEC to receive the heat generated by the TEC, and a second end thermally coupled to the heat removal device. The heat pipe transfers the heat generated by the TEC from the first end to the second end to be removed by the heat removal device.

  19. Characterizing X-ray detectors for prototype digital breast tomosynthesis systems

    NASA Astrophysics Data System (ADS)

    Kim, Y.-s.; Park, H.-s.; Park, S.-J.; Choi, S.; Lee, H.; Lee, D.; Choi, Y.-W.; Kim, H.-J.

    2016-03-01

    The digital breast tomosynthesis (DBT) system is a newly developed 3-D imaging technique that overcomes the tissue superposition problems of conventional mammography. Therefore, it produces fewer false positives. In DBT system, several parameters are involved in image acquisition, including geometric components. A series of projections should be acquired at low exposure. This makes the system strongly dependent on the detector's characteristic performance. This study compares two types of x-ray detectors developed by the Korea Electrotechnology Research Institute (KERI). The first prototype DBT system has a CsI (Tl) scintillator/CMOS based flat panel digital detector (2923 MAM, Dexela Ltd.), with a pixel size of 0.0748 mm. The second uses a-Se based direct conversion full field detector (AXS 2430, analogic) with a pixel size of 0.085 mm. The geometry of both systems is same, with a focal spot 665.8 mm from the detector, and a center of rotation 33 mm above the detector surface. The systems were compared with regard to modulation transfer function (MTF), normalized noise power spectrum (NNPS), detective quantum efficiency (DQE) and a new metric, the relative object detectability (ROD). The ROD quantifies the relative performance of each detector at detecting specified objects. The system response function demonstrated excellent linearity (R2>0.99). The CMOS-based detector had a high sensitivity, while the Anrad detector had a large dynamic range. The higher MTF and noise power spectrum (NPS) values were measured using an Anrad detector. The maximum DQE value of the Dexela detector was higher than that of the Anrad detector with a low exposure level, considering one projection exposure for tomosynthesis. Overall, the Dexela detector performed better than did the Anrad detector with regard to the simulated Al wires, spheres, test objects of ROD with low exposure level. In this study, we compared the newly developed prototype DBT system with two different types of x

  20. Measurement System and Method

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Ngo, Phong H. (Inventor); Carl, James R. (Inventor); Byerly, Kent A. (Inventor)

    2003-01-01

    System and methods are disclosed for fluid measurements which may be utilized to determine mass flow rates such as instantaneous mass flow of a fluid stream. In a preferred embodiment, the present invention may be utilized to compare an input mass flow to an output mass flow of a drilling fluid circulation stream. In one embodiment, a fluid flow rate is determined by utilizing a microwave detector in combination with an acoustic sensor. The acoustic signal is utilized to eliminate 2pi phase ambiguities in a reflected microwave signal. In another embodiment, a fluid flow rate may be determined by detecting a phase shift of an acoustic signal across two different predetermined transmission paths. A fluid density may be determined by detecting a calibrated phase shift of an acoustic signal through the fluid. In another embodiment, a second acoustic signal may be transmitted through the fluid to define a particular 2pi phase range which defines the phase shift. The present invention may comprise multiple transmitters/receivers operating at different frequencies to measure instantaneous fuel levels of cryogenic fuels within containers positioned in zero or near zero gravity environments. In one embodiment, a moveable flexible collar of transmitter/receivers may be utilized to determine inhomogenuities within solid rocket fuel tubes.

  1. Measurement of the atmospheric muon flux with the NEMO Phase-1 detector

    NASA Astrophysics Data System (ADS)

    Aiello, S.; Ameli, F.; Amore, I.; Anghinolfi, M.; Anzalone, A.; Barbarino, G.; Battaglieri, M.; Bazzotti, M.; Bersani, A.; Beverini, N.; Biagi, S.; Bonori, M.; Bouhadef, B.; Brunoldi, M.; Cacopardo, G.; Capone, A.; Caponetto, L.; Carminati, G.; Chiarusi, T.; Circella, M.; Cocimano, R.; Coniglione, R.; Cordelli, M.; Costa, M.; D'Amico, A.; De Bonis, G.; De Marzo, C.; De Rosa, G.; De Ruvo, G.; De Vita, R.; Distefano, C.; Falchini, E.; Flaminio, V.; Fratini, K.; Gabrielli, A.; Galatà, S.; Gandolfi, E.; Giacomelli, G.; Giorgi, F.; Giovanetti, G.; Grimaldi, A.; Habel, R.; Imbesi, M.; Kulikovsky, V.; Lattuada, D.; Leonora, E.; Lonardo, A.; Lo Presti, D.; Lucarelli, F.; Marinelli, A.; Margiotta, A.; Martini, A.; Masullo, R.; Migneco, E.; Minutoli, S.; Morganti, M.; Musico, P.; Musumeci, M.; Nicolau, C. A.; Orlando, A.; Osipenko, M.; Papaleo, R.; Pappalardo, V.; Piattelli, P.; Piombo, D.; Raia, G.; Randazzo, N.; Reito, S.; Ricco, G.; Riccobene, G.; Ripani, M.; Rovelli, A.; Ruppi, M.; Russo, G. V.; Russo, S.; Sapienza, P.; Sciliberto, D.; Sedita, M.; Shirokov, E.; Simeone, F.; Sipala, V.; Spurio, M.; Taiuti, M.; Trasatti, L.; Urso, S.; Vecchi, M.; Vicini, P.; Wischnewski, R.

    2010-05-01

    The NEMO Collaboration installed and operated an underwater detector including prototypes of the critical elements of a possible underwater km 3 neutrino telescope: a four-floor tower (called Mini-Tower) and a Junction Box. The detector was developed to test some of the main systems of the km 3 detector, including the data transmission, the power distribution, the timing calibration and the acoustic positioning systems as well as to verify the capabilities of a single tridimensional detection structure to reconstruct muon tracks. We present results of the analysis of the data collected with the NEMO Mini-Tower. The position of photomultiplier tubes (PMTs) is determined through the acoustic position system. Signals detected with PMTs are used to reconstruct the tracks of atmospheric muons. The angular distribution of atmospheric muons was measured and results compared to Monte Carlo simulations.

  2. Improved detectors for the new muon g-2 measurement

    NASA Astrophysics Data System (ADS)

    Damhorst, Gregory

    2009-10-01

    A precision measurement of the muon anomalous magnetic moment (g-2) is one of the most promising efforts for the detection of new physics beyond the standard model. A new proposal to perform the measurement at Fermi National Accelerator Laboratory promises to reduce uncertainty in the measurement from 0.54 ppm to 0.14 ppm, improving the measurement's power in discriminating various extensions to the standard model. To accomplish this greater precision, the new g-2 measurement will require improved detectors and data acquisition techniques. Calorimeters made of tungsten and scintillating fiber (SciFi) will be used for the detection of weak decay electrons. This design is preferred over the grooved lead/SciFi calorimeters used in past g-2 measurements for its simple assembly and smaller radiation length. Photons produced in the scintillation process will be directed to photomultipliers for electronic readout through foil-lined acrylic light guides which must concentrate photons with minimal loss within a limited available space. The challenge of developing an optimal detector design is being addressed by the University of Illinois Nuclear Physics Group through Monte Carlo simulations and tests of prototype calorimeters and light guides. Significant aspects of this project include determining optimal calorimeter module size, light guide geometry, and photomultiplier style.

  3. Nuclear radiation-warning detector that measures impedance

    SciTech Connect

    Savignac, Noel Felix; Gomez, Leo S; Yelton, William Graham; Robinson, Alex; Limmer, Steven

    2013-06-04

    This invention is a nuclear radiation-warning detector that measures impedance of silver-silver halide on an interdigitated electrode to detect light or radiation comprised of alpha particles, beta particles, gamma rays, X rays, and/or neutrons. The detector is comprised of an interdigitated electrode covered by a layer of silver halide. After exposure to alpha particles, beta particles, X rays, gamma rays, neutron radiation, or light, the silver halide is reduced to silver in the presence of a reducing solution. The change from the high electrical resistance (impedance) of silver halide to the low resistance of silver provides the radiation warning that detected radiation levels exceed a predetermined radiation dose threshold.

  4. Measurement of diffractive and exclusive processes with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Gach, Grzegorz

    2016-07-01

    The ATLAS Collaboration has carried out a study of diffractive dijet production in proton-proton collisions at a centre-of-mass energy of √s = 7 TeV at the LHC. The data distributions are compared with Monte Carlo models and the rapidity gap survival probability has been estimated in the kinematic region with high diffractive contribution. Prospects for exclusive jet production studies with the forward proton tagging capability of the AFP sub-detector of ATLAS are also discussed. First results based on data taken jointly with the ATLAS and the LHCf detectors in a p+Pb run will also be shown. In addition, the measurement of the cross-section for the exclusive production of di-lepton pairs in pp collisions at √s = 7 TeV is discussed.

  5. The Muon system of the run II D0 detector

    SciTech Connect

    Abazov, V.M.; Acharya, B.S.; Alexeev, G.D.; Alkhazov, G.; Anosov, V.A.; Baldin, B.; Banerjee, S.; Bardon, O.; Bartlett, J.F.; Baturitsky, M.A.; Beutel, D.; Bezzubov, V.A.; Bodyagin, V.; Butler, J.M.; Cease, H.; Chi, E.; Denisov, D.; Denisov, S.P.; Diehl, H.T.; Doulas, S.; Dugad, S.R.; /Beijing, Inst. High Energy Phys. /Charles U. /Prague, Tech. U. /Prague, Inst. Phys. /San Francisco de Quito U. /Tata Inst. /Dubna, JINR /Moscow, ITEP /Moscow State U. /Serpukhov, IHEP /St. Petersburg, INP /Arizona U. /Florida State U. /Fermilab /Northern Illinois U. /Indiana U. /Boston U. /Northeastern U. /Brookhaven /Washington U., Seattle /Minsk, Inst. Nucl. Problems

    2005-03-01

    The authors describe the design, construction and performance of the upgraded D0 muon system for Run II of the Fermilab Tevatron collider. Significant improvements have been made to the major subsystems of the D0 muon detector: trigger scintillation counters, tracking detectors, and electronics. The Run II central muon detector has a new scintillation counter system inside the iron toroid and an improved scintillation counter system outside the iron toroid. In the forward region, new scintillation counter and tracking systems have been installed. Extensive shielding has been added in the forward region. A large fraction of the muon system electronics is also new.

  6. The muon system of the Run II DØ detector

    NASA Astrophysics Data System (ADS)

    Abazov, V. M.; Acharya, B. S.; Alexeev, G. D.; Alkhazov, G.; Anosov, V. A.; Baldin, B.; Banerjee, S.; Bardon, O.; Bartlett, J. F.; Baturitsky, M. A.; Beutel, D.; Bezzubov, V. A.; Bodyagin, V.; Butler, J. M.; Cease, H.; Chi, E.; Denisov, D.; Denisov, S. P.; Diehl, H. T.; Doulas, S.; Dugad, S. R.; Dvornikov, O. V.; Dyshkant, A.; Eads, M.; Evdokimov, A.; Evdokimov, V. N.; Fitzpatrick, T.; Fortner, M.; Gavrilov, V.; Gershtein, Y.; Golovtsov, V.; Gómez, B.; Goodwin, R.; Gornushkin, Yu. A.; Green, D. R.; Gupta, A.; Gurzhiev, S. N.; Gutierrez, G.; Haggerty, H.; Hanlet, P.; Hansen, S.; Hazen, E.; Hedin, D.; Hoeneisen, B.; Ito, A. S.; Jayanti, R.; Johns, K.; Jouravlev, N.; Kalinin, A. M.; Kalmani, S. D.; Kharzheev, Y. N.; Kirsch, N.; Komissarov, E. V.; Korablev, V. M.; Kostritsky, A.; Kozelov, A. V.; Kozlovsky, M.; Kravchuk, N. P.; Krishnaswamy, M. R.; Kuchinsky, N. A.; Kuleshov, S.; Kupco, A.; Larwill, M.; Leitner, R.; Lipaev, V. V.; Lobodenko, A.; Lokajicek, M.; Lubatti, H. J.; Machado, E.; Maity, M.; Malyshev, V. L.; Mao, H. S.; Marcus, M.; Marshall, T.; Mayorov, A. A.; McCroskey, R.; Merekov, Y. P.; Mikhailov, V. A.; Mokhov, N.; Mondal, N. K.; Nagaraj, P.; Narasimham, V. S.; Narayanan, A.; Negret, J. P.; Neustroev, P.; Nozdrin, A. A.; Oshinowo, B.; Parashar, N.; Parua, N.; Podstavkov, V. M.; Polozov, P.; Porokhovoi, S. Y.; Prokhorov, I. K.; Rao, M. V. S.; Raskowski, J.; Reddy, L. V.; Regan, T.; Rotolo, C.; Russakovich, N. A.; Sabirov, B. M.; Satyanarayana, B.; Scheglov, Y.; Schukin, A. A.; Shankar, H. C.; Shishkin, A. A.; Shpakov, D.; Shupe, M.; Simak, V.; Sirotenko, V.; Smith, G.; Smolek, K.; Soustruznik, K.; Stefanik, A.; Steinberg, J.; Stolin, V.; Stoyanova, D. A.; Stutte, L.; Temple, J.; Terentyev, N.; Teterin, V. V.; Tokmenin, V. V.; Tompkins, D.; Uvarov, L.; Uvarov, S.; Vasilyev, I. A.; Vertogradov, L. S.; Vishwanath, P. R.; Vorobyov, A.; Vysotsky, V. B.; Willutzki, H.; Wobisch, M.; Wood, D. R.; Yamada, R.; Yatsunenko, Y. A.; Yoffe, F.; Zanabria, M.; Zhao, T.; Zieminska, D.; Zieminski, A.; Zvyagintsev, S. A.

    2005-11-01

    We describe the design, construction, and performance of the upgraded DØ muon system for Run II of the Fermilab Tevatron collider. Significant improvements have been made to the major subsystems of the DØ muon detector: trigger scintillation counters, tracking detectors, and electronics. The Run II central muon detector has a new scintillation counter system inside the iron toroid and an improved scintillation counter system outside the iron toroid. In the forward region, new scintillation counter and tracking systems have been installed. Extensive shielding has been added in the forward region. A large fraction of the muon system electronics is also new.

  7. SIS Detectors for Terahertz Photon Counting System

    NASA Astrophysics Data System (ADS)

    Ezawa, Hajime; Matsuo, Hiroshi; Ukibe, Masahiro; Fujii, Go; Shiki, Shigetomo

    2016-07-01

    An Intensity interferometer with photon counting detector is a candidate to realize a THz interferometer for astronomical observations. We have demonstrated that synthesis imaging is possible even with intensity interferometers. An SIS junction (or STJ) with low leakage current of 1 pA is a suitable device for photon counting detectors. Readout circuit utilizing FETs with low gate leakage, low gate capacitance, and fast response is discussed.

  8. System to quantify gamma-ray radial energy deposition in semiconductor detectors

    DOEpatents

    Kammeraad, Judith E.; Blair, Jerome J.

    2001-01-01

    A system for measuring gamma-ray radial energy deposition is provided for use in conjunction with a semiconductor detector. The detector comprises two electrodes and a detector material, and defines a plurality of zones within the detecting material in parallel with the two electrodes. The detector produces a charge signal E(t) when a gamma-ray interacts with the detector. Digitizing means are provided for converting the charge signal E(t) into a digitized signal. A computational means receives the digitized signal and calculates in which of the plurality of zones the gamma-ray deposited energy when interacting with the detector. The computational means produces an output indicating the amount of energy deposited by the gamma-ray in each of the plurality of zones.

  9. Superconducting Detector System for High-Resolution Energy-Dispersive Soft X-Ray Spectroscopy

    SciTech Connect

    Friedrich, S; Niedermayr, T; Drury, O; Funk, T; Frank, M; Labov, S E; Cramer, S

    2001-02-21

    Synchrotron-based soft x-ray spectroscopy is often limited by detector performance. Grating spectrometers have the resolution, but lack the efficiency for the analysis of dilute samples. Semiconducting Si(Li) or Ge detectors are efficient, but often lack the resolution to separate weak signals from strong nearby lines in multi-element samples. Superconducting tunnel junctions (STJs) operated at temperatures below 1 K can be used as high-resolution high-efficiency x-ray detectors. They combine high energy resolution around 10 eV FWHM with the broad band efficiency of energy-dispersive detectors. We have designed a two-stage adiabatic demagnetization refrigerator (ADR) to operate STJ detectors in x-ray fluorescence measurements at beam line 4 of the ALS. We demonstrate the capabilities of such a detector system for fluorescence analysis of dilute metal sites in proteins and inorganic model compounds.

  10. Small-Scale Readout System Prototype for the STAR PIXEL Detector

    SciTech Connect

    Szelezniak, Michal; Anderssen, Eric; Greiner, Leo; Matis, Howard; Ritter, Hans Georg; Stezelberger, Thorsten; Sun, Xiangming; Thomas, James; Vu, Chinh; Wieman, Howard

    2008-10-10

    Development and prototyping efforts directed towards construction of a new vertex detector for the STAR experiment at the RHIC accelerator at BNL are presented. This new detector will extend the physics range of STAR by allowing for precision measurements of yields and spectra of particles containing heavy quarks. The innermost central part of the new detector is a high resolution pixel-type detector (PIXEL). PIXEL requirements are discussed as well as a conceptual mechanical design, a sensor development path, and a detector readout architecture. Selected progress with sensor prototypes dedicated to the PIXEL detector is summarized and the approach chosen for the readout system architecture validated in tests of hardware prototypes is discussed.

  11. Diagnostics and performance evaluation of neutron monitoring system detectors

    SciTech Connect

    Kniss, T.; Doyle, J.

    2006-07-01

    Neutron monitoring detectors used in Boiling Water Reactor (BWR) power range monitoring control systems are typically miniature fission chambers that remain in the core for many years. Pressurized Water Reactors (PWR) also utilize movable miniature fission chambers for neutron flux mapping during power operations. The baseline performance of the detectors must be established at the time of installation and retested periodically during the life of the detector to evaluate its suitability for continued use. This paper reports on the characteristics that the power range detectors typically exhibit at the beginning of life and describes the normal changes in characteristics that are expected to occur as the detector ages in the in-core environment. Deviations from the normal aging effects that may be revealed through periodic testing are described. Possible root causes for some deviations from the expected performance are discussed. In addition to the power range monitoring detectors, the neutron monitoring system also utilizes other fission chambers for source range or intermediate range neutron monitoring during startup, and neutron or gamma detectors for periodic sensitivity re-calibration of the power range monitoring detectors. Each of the detectors has function specific requirements that call for additional diagnostic testing methods to evaluate performance. Diagnostic tests such as Time Domain Reflectometry and Current vs. Voltage (IV) characterization provide useful information about the condition of the detector and the signal path that links the detector to the reactor monitoring and control system. Typical test results of properly functioning detectors are described and the significance of deviations from a normal result is discussed. (authors)

  12. Optimization of the microcable and detector parameters towards low noise in the STS readout system

    NASA Astrophysics Data System (ADS)

    Kasinski, Krzysztof; Kleczek, Rafal; Schmidt, Christian J.

    2015-09-01

    Successful operation of the Silicon Tracking System requires charge measurement of each hit with equivalent noise charge lower than 1000 e- rms. Detector channels will not be identical, they will be constructed accordingly to the estimated occupancy, therefore for the readout electronics, detector system will exhibit various parameters. This paper presents the simulation-based study on the required microcable (trace width, dielectric material), detector (aluminum strip resistance) and external passives' (decoupling capacitors) parameters in the Silicon Tracking System. Studies will be performed using a front-end electronics (charge sensitive amplifier with shaper) designed for the power budget of 10 mA/channel.

  13. Performance characteristics of multi-anode microchannel array detector systems

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.

    1984-01-01

    The multi-anode microchannel arrays (MAMAs) are state-of-the-art, pulse-counting, photoelectric array detectors designed specifically for use in space astrophysics instruments. The present paper provides a description of recent progress related to the development of ultraviolet and visible-light versions of the MAMA detectors, taking into account a comparison of the operating characteristics of these devices with those of photoconductive array detectors, such as the CCDs. Attention is given to MAMA detector system design parameters, the operating characteristics of MAMAs and CCDs, MAMA performance characteristics, and future developments.

  14. Development of the detector system for β -decay spectroscopy at the KEK Isotope Separation System

    NASA Astrophysics Data System (ADS)

    Kimura, S.; Ishiyama, H.; Miyatake, H.; Hirayama, Y.; Watanabe, Y. X.; Jung, H. S.; Oyaizu, M.; Mukai, M.; Jeong, S. C.; Ozawa, A.

    2016-06-01

    The KEK Isotope Separation System has been developed to study the β -decay properties of the neutron-rich nuclei around the neutron magic number N = 126. These properties are essential for understanding the origin of the third peak in the r-process element abundance pattern. The detector system for β -decay spectroscopy at the KEK Isotope Separation System should have high detection efficiency for low-energy β -rays, and should be operated under a low-background environment. The detector system of the KEK Isotope Separation System consists of β -ray telescopes and a tape transport system. The solid angle covered by the β -ray telescopes is as large as 75% of 4 π in total. The Qβ -value dependence of the detection efficiency was estimated by Geant4 simulation. The background rate was 0.09 cps using a veto counter system and Pb shields. This background rate allows us to measure the lifetime of 202Os.

  15. Recent developments on the star detector system at RHIC

    NASA Astrophysics Data System (ADS)

    Wieman, H.; Adams, D. L.; Added, N.; Agakishiev, H.; Akimenko, S. A.; Aluyshin, A.; Aluyshin, M.; Amelin, N.; Anderson, B.; Anderson, G.; Aprahamian, A.; Arestov, Y. I.; Aslanyan, P.; Avdeichikov, V.; Averichev, G.; Bacher, A.; Badalian, R.; Baldwin, A.; Barish, K.; Batourine, V.; Belikov, N. L.; Bellwied, R.; Belousov, V.; Bennett, S.; Best, D.; Bichsel, H.; Bielecki, J.; Bieser, F.; Biswas, N. N.; Bland, L.; Blyth, C.; Bonner, B. E.; Bossingham, R.; Brady, F. P.; Braithwaite, W.; Brown, C.; Brown, R. L.; Budilov, V.; Caines, H.; Cameron, J.; Carlin, N.; Carroll, J.; Cebra, D.; Chalyguine, A.; Chance, J.; Chen, W.; Chernenko, S.; Cherney, M.; Chikanian, A.; Chrin, J.; Christie, W.; Chujko, B.; Consiglio, C.; Cooper, G.; Cormier, T. M.; Cramer, J.; Crawford, H. J.; Davidenko, A. M.; Das, A.; Dawson, J. W.; Dereschikov, A. A.; Deweerd, A.; Didenko, L.; Dominik, W.; Draper, J. E.; Duck, I.; Edwards, W. R.; Eckardt, V.; Emelianov, V.; Engelage, J. M.; Eppley, G.; Eremeev, R.; Erin, V.; Etkin, A.; Fachini, P.; Fadeev, N.; Faine, V.; Fateev, O.; Feshchenko, A.; Fisyak, Y.; Foley, K. J.; Ford, C. W., Jr.; Gagunashvili, N.; Garg, U.; Gavrichtchouk, O.; Gazdzicki, M.; Ghazikhanian, V.; Gilkes, M.; Grachov, A.; Greiner, D.; Greiner, L.; Grigoriev, V.; Guarino, V. J.; Gushin, E.; Haberichter, W. N.; Hackenburg, R. W.; Hall, J.; Hallman, T. J.; Harris, J.; Heppelmann, S.; Hill, D. A.; Hill, N.; Hirsch, A.; Hjort, E.; Hoffmann, J.; Huang, H.; Humanic, T.; Igo, G. J.; Ioukaev, A.; Jacobs, P.; Jacobs, W.; Jared, R.; Jensen, P.; Jones, P.; Judd, E.; Kadija, K.; Kaplan, M.; Kaplin, V.; Karakash, A.; Karev, A.; Karol, P. J.; Kasprzyk, T.; Keane, D.; Kinder-Geiger, K.; Klein, S.; Kolobashkina, L.; Kolomyichenko, A.; Komisarcík, K.; Konstantinov, A.; Kossarev, I.; Kotchenda, L.; Kotov, I.; Kouzmine, N.; Kovalenko, A.; Kramer, M.; Kravtsov, P.; Krivokhizhin, V.; Kunde, G.; Kutuev, R.; Kuznetsov, A.; Kwiatkowski, K.; Ladygin, V.; Lasiuk, B.; Lebedev, A.; Lecompte, T.; Levine, M. J.; Li, Q.; Lisa, M.; Ljubicic, A.; Llope, W.; Longacre, R. S.; Love, W. A.; Lynn, D.; Madansky, L.; Majka, R.; Margetis, S.; Marx, J.; Matheus, R.; Matis, H. S.; Matulenko, Y.; Matushevsky, E.; McShane, T. S.; Medved, K.; Mekhdiev, R.; Meschanin, A.; Middlekamp, P.; Miller, B.; Milosevich, Z.; Minaev, N.; Mitchell, J.; Mitsyn, V.; Moore, F.; Muresan, L.; Muresan, R.; Musulmanbekov, J.; Mutchler, G. S.; Mysnick, A.; Nann, H.; Nelson, J.; Nevski, P.; Nikitin, V.; Nikonov, E.; Nomokonov, P.; Nurushev, S. B.; Nystrand, J.; Odintsov, V.; Odyniec, G.; Ogawa, A.; Ogilivie, C.; Olson, D.; Oltchak, A.; Ososkov, G.; Ott, G.; Paic, G.; Pandey, S.; Panebratsev, Y.; Panitkin, S.; Pavlinov, A.; Pavluk, A.; Pawlak, T.; Pentia, M.; Peryt, W.; Peshekhonov, D.; Peshekhonov, V.; Pilipenko, D.; Piskunov, N.; Platner, E.; Pluta, J.; Porile, N.; Poskanzer, A. M.; Price, L.; Prindle, D.; Protrebenikova, E.; Pruneau, C.; Rai, G.; Ray, L.; Razin, S.; Renfordt, R. E.; Ridiger, A.; Riley, P.; Rinckel, T.; Riso, J.; Ritter, H.-G.; Roberts, J. B.; Rhrich, D.; Rollefson, A.; Romero, J. L.; Roufanov, I.; Runco, M.; Rykov, V.; Sakrejda, I.; Sandweiss, J.; Saulys, A. C.; Savin, I.; Schafer, E.; Schambach, J.; Scharenberg, R. P.; Schmitz, N.; Schroeder, L. S.; Schulz, M.; Sedlmeir, J.; Seger, J.; Seliverstov, D.; Seyboth, P.; Shabunov, A.; Shafranov, M.; Shafranova, M.; Shalnov, A.; Shestermanov, K.; Shimanskiy, S.; Skoro, G.; Slaughter, J.; Slavin, N.; Smirnoff, N.; Smirnov, G.; Smykov, L.; Soloviev, L.; Somov, S.; Sowinski, J.; Spinka, H. M.; Srivastava, B.; Stephenson, E.; Stock, R.; Stone, N.; Strikhanov, M.; Stringfellow, B.; Strbele, H.; Strokovsky, E.; Sugarbaker, E.; Sustich, A.; Symons, T. J.; Szanto, E.; Szanto de Toledo, A.; Thomas, J.; Tikhonov, V.; Trainor, T.; Trentalange, S.; Tokarev, M.; Trofimov, V.; Tsay, O.; Tull, C.; Turner, K.; Tustonic, T.; Ullrich, T.; Underwood, D. G.; Usubov, Z.; Vandermolen, S.; Vanyashin, A.; Vasendina, V.; Vasiliev, A. N.; Vasiliev, V.; Vigdor, S.; Viola, V.; Vorozhtsov, S.; Vranic, D.; Wang, F.; Ward, H.; Watson, J.; Weerasundara, D.; Wells, R.; Wenaus, T.; Westfall, G.; Whitten, C., Jr.; Wilson, K.; Wissink, S.; Wold, D.; Wood, L.; Xu, N.; Yepes, P.; Yokosawa, A.; Yurevich, V.; Zanevsky, Y.; Zhang, W.; Zhidkov, N.; Zhiltsov, V.; Zoulkarneev, R.

    1998-08-01

    A progress report is given for the various components of the STAR detector system. We report on the recent developments in the detector proto-typing and construction, with an emphasis on the main TPC, recent TPC cosmic ray testing and shipping to Brookhaven National Laboratory.

  16. Gamma ray measurement of earth formation properties using a position sensitive scintillation detector

    SciTech Connect

    Sonne, D.S.

    1986-10-21

    This patent describes a system for measuring properties of earth formations in the vicinity of a well borehole at different radial distances from the borehole, comprising: a fluid tight hollow body member sized and adapted for passage through a well borehole and housing therein; a source of gamma rays and means for directing gamma rays from the source outwardly from the body member into earth formations in the vicinity of the borehole; and a position sensitive scintillation detector for detecting gamma rays scattered back into the body member from the earth formation in the vicinity of the borehole and means for collimating the scattered gamma rays onto the detector.

  17. Research on application of several tracking detectors in APT system

    NASA Astrophysics Data System (ADS)

    Liu, Zhi

    2005-01-01

    APT system is the key technology in free space optical communication system, and acquisition and tracking detector is the key component in PAT system. There are several candidate detectors that can be used in PAT system, such as CCD, QAPD and CMOS Imager etc. The characteristics of these detectors are quite different, i.e., the structures and the working schemes. This paper gives thoroughly compare of the usage and working principle of CCD and CMOS imager, and discusses the key parameters like tracking error, noise analyses, power analyses etc. Conclusion is given at the end of this paper that CMOS imager is a good candidate detector for PAT system in free space optical communication system.

  18. Advanced Detector and Waveform Digitizer for Water Vapor DIAL Systems

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Luck, William S., Jr.; DeYoung, Russell J.

    1998-01-01

    Measurement of atmospheric water vapor has become a major requirement for understanding moist-air processes. Differential absorption lidar (DIAL) is a technique best suited for the measurement of atmospheric water vapor. NASA Langley Research Center is continually developing improved DIAL systems. One aspect of current development is focused on the enhancement of a DIAL receiver by applying state-of-the-art technology in building a new compact detection system that will be placed directly on the DIAL receiver telescope. The newly developed detection system has the capability of being digitally interfaced with a simple personal computer, using a discrete input/output interface. This has the potential of transmitting digital data over relatively long distances instead of analog signals, which greatly reduces measurement noise. In this paper, we discuss some results from the new compact water vapor DIAL detection system which includes a silicon based avalanche photodiode (APD) detector, a 14-bit, 10-MHz waveform digitizer, a microcontroller and other auxiliary electronics. All of which are contained on a small printed-circuit-board. This will significantly reduce the weight and volume over the current CAMAC system and eventually will be used in a water vapor DIAL system on an unpiloted atmospheric vehicle (UAV) aircraft, or alternatively on an orbiting spacecraft.

  19. Quantum Measurement Theory in Gravitational-Wave Detectors

    NASA Astrophysics Data System (ADS)

    Danilishin, Stefan L.; Khalili, Farid Ya.

    2012-04-01

    The fast progress in improving the sensitivity of the gravitational-wave detectors, we all have witnessed in the recent years, has propelled the scientific community to the point at which quantum behavior of such immense measurement devices as kilometer-long interferometers starts to matter. The time when their sensitivity will be mainly limited by the quantum noise of light is around the corner, and finding ways to reduce it will become a necessity. Therefore, the primary goal we pursued in this review was to familiarize a broad spectrum of readers with the theory of quantum measurements in the very form it finds application in the area of gravitational-wave detection. We focus on how quantum noise arises in gravitational-wave interferometers and what limitations it imposes on the achievable sensitivity. We start from the very basic concepts and gradually advance to the general linear quantum measurement theory and its application to the calculation of quantum noise in the contemporary and planned interferometric detectors of gravitational radiation of the first and second generation. Special attention is paid to the concept of the Standard Quantum Limit and the methods of its surmounting.

  20. Absolute luminosity measurements with the LHCb detector at the LHC

    NASA Astrophysics Data System (ADS)

    LHCb Collaboration

    2012-01-01

    Absolute luminosity measurements are of general interest for colliding-beam experiments at storage rings. These measurements are necessary to determine the absolute cross-sections of reaction processes and are valuable to quantify the performance of the accelerator. Using data taken in 2010, LHCb has applied two methods to determine the absolute scale of its luminosity measurements for proton-proton collisions at the LHC with a centre-of-mass energy of 7 TeV. In addition to the classic ``van der Meer scan'' method a novel technique has been developed which makes use of direct imaging of the individual beams using beam-gas and beam-beam interactions. This beam imaging method is made possible by the high resolution of the LHCb vertex detector and the close proximity of the detector to the beams, and allows beam parameters such as positions, angles and widths to be determined. The results of the two methods have comparable precision and are in good agreement. Combining the two methods, an overal precision of 3.5% in the absolute luminosity determination is reached. The techniques used to transport the absolute luminosity calibration to the full 2010 data-taking period are presented.

  1. Laser system for testing radiation imaging detector circuits

    NASA Astrophysics Data System (ADS)

    Zubrzycka, Weronika; Kasinski, Krzysztof

    2015-09-01

    Performance and functionality of radiation imaging detector circuits in charge and position measurement systems need to meet tight requirements. It is therefore necessary to thoroughly test sensors as well as read-out electronics. The major disadvantages of using radioactive sources or particle beams for testing are high financial expenses and limited accessibility. As an alternative short pulses of well-focused laser beam are often used for preliminary tests. There are number of laser-based devices available on the market, but very often their applicability in this field is limited. This paper describes concept, design and validation of laser system for testing silicon sensor based radiation imaging detector circuits. The emphasis is put on keeping overall costs low while achieving all required goals: mobility, flexible parameters, remote control and possibility of carrying out automated tests. The main part of the developed device is an optical pick-up unit (OPU) used in optical disc drives. The hardware includes FPGA-controlled circuits for laser positioning in 2 dimensions (horizontal and vertical), precision timing (frequency and number) and amplitude (diode current) of short ns-scale (3.2 ns) light pulses. The system is controlled via USB interface by a dedicated LabVIEW-based application enabling full manual or semi-automated test procedures.

  2. Development of a criticality alarm system neutron detector: Final project report

    SciTech Connect

    O'Dell, A.A.

    1989-05-01

    The primary objective of this project was to develop a prototype neutron detector for use in criticality alarm systems (CASs) at US Department of Energy (DOE) and contractor facilities wherever significant amounts of fissile material are processed or stored. Constraints placed on the design of the detector were that the overall size of the detector was to be as small as practical, the input voltage requirements were to be no more than 24 V, and that the gamma sensitivity would be as low as possible. Also, the detector should give dosimetric neutron response, and should have sufficient temporal capabilities to measure the entire range from fast (>1 ms) to slow (seconds to minutes) excursions, and sufficient dynamic range to measure from background to over 100 times background levels to insure proper activation of the Immediate Evacuation Alarm (IEA). Finally, the detector should insure rapid (<1 s) activation of the IEA in the event of a criticality excursion. 24 figs., 11 tabs.

  3. Detector to detector corrections: A comprehensive experimental study of detector specific correction factors for beam output measurements for small radiotherapy beams

    SciTech Connect

    Azangwe, Godfrey Grochowska, Paulina; Izewska, Joanna; Meghzifene, Ahmed; Georg, Dietmar; Hopfgartner, Johannes; Lechner, Wolfgang; Mizuno, Hideyuki; Fukumura, Akifumi; Yajima, Kaori; Gouldstone, Clare; Sharpe, Peter; Palmans, Hugo

    2014-07-15

    Purpose: The aim of the present study is to provide a comprehensive set of detector specific correction factors for beam output measurements for small beams, for a wide range of real time and passive detectors. The detector specific correction factors determined in this study may be potentially useful as a reference data set for small beam dosimetry measurements. Methods: Dose response of passive and real time detectors was investigated for small field sizes shaped with a micromultileaf collimator ranging from 0.6 × 0.6 cm{sup 2} to 4.2 × 4.2 cm{sup 2} and the measurements were extended to larger fields of up to 10 × 10 cm{sup 2}. Measurements were performed at 5 cm depth, in a 6 MV photon beam. Detectors used included alanine, thermoluminescent dosimeters (TLDs), stereotactic diode, electron diode, photon diode, radiophotoluminescent dosimeters (RPLDs), radioluminescence detector based on carbon-doped aluminium oxide (Al{sub 2}O{sub 3}:C), organic plastic scintillators, diamond detectors, liquid filled ion chamber, and a range of small volume air filled ionization chambers (volumes ranging from 0.002 cm{sup 3} to 0.3 cm{sup 3}). All detector measurements were corrected for volume averaging effect and compared with dose ratios determined from alanine to derive a detector correction factors that account for beam perturbation related to nonwater equivalence of the detector materials. Results: For the detectors used in this study, volume averaging corrections ranged from unity for the smallest detectors such as the diodes, 1.148 for the 0.14 cm{sup 3} air filled ionization chamber and were as high as 1.924 for the 0.3 cm{sup 3} ionization chamber. After applying volume averaging corrections, the detector readings were consistent among themselves and with alanine measurements for several small detectors but they differed for larger detectors, in particular for some small ionization chambers with volumes larger than 0.1 cm{sup 3}. Conclusions: The results demonstrate

  4. Measurements of W/Z production with the ATLAS detector

    SciTech Connect

    Köneke, Karsten; Collaboration: ATLAS Collaboration

    2013-10-21

    W and Z boson production have been measured in the electron, muon and tau decay channels at the LHC with the ATLAS detector. Total and differential cross sections, defined in terms of the decay lepton kinematics, have been measured as a function of rapidity and transverse momentum. Ratios of the cross sections demonstrate sensitivity to lepton universality. The kinematic distributions constrain parton densities and QCD calculations, including resummations of soft gluon radiation and the matching of NLO matrix elements (or high multiplicity tree-level matrix elements) to parton shower approximations. The polarization of W bosons is also measured, as, for the first time, is the polarization of the tau lepton in W → τν decays.

  5. Development of the RAIDS extreme ultraviolet wedge and strip detector. [Remote Atmospheric and Ionospheric Detector System

    NASA Technical Reports Server (NTRS)

    Kayser, D. C.; Chater, W. T.; Christensen, A. B.; Howey, C. K.; Pranke, J. B.

    1988-01-01

    In the next few years the Remote Atmospheric and Ionospheric Detector System (RAIDS) package will be flown on a Tiros spacecraft. The EUV spectrometer experiment contains a position-sensitive detector based on wedge and strip anode technology. A detector design has been implemented in brazed alumina and kovar to provide a rugged bakeable housing and anode. A stack of three 80:1 microchannel plates is operated at 3500-4100 V. to achieve a gain of about 10 to the 7th. The top MCP is to be coated with MgF for increased quantum efficiency in the range of 50-115 nm. A summary of fabrication techniques and detector performance characteristics is presented.

  6. Measurement of thermal radiation using regular glass optics and short-wave infrared detectors.

    PubMed

    Yoon, H W; Eppeldauer, G P

    2008-01-21

    The measurement of thermal radiation from ambient-temperature objects using short-wave infrared detectors and regular glass optics is described. The detectors are chosen to operate in the 2.0 microm to 2.5 microm atmospheric window. Selection of detectors with high shunt resistance along with the 4-stage thermo-electric cooling of the detectors to -85 degrees C results in detectivity, D*, of 4 x 10(13) cm Hz(1/2)/W which is near the background limited performance at 295 K. Furthermore, the use of regular-glass commercial optics to collect the thermal radiation results in diffraction-limited imaging. The use of a radiation thermometer constructed with these elements for the measurement of a blackbody from 20 degrees C to 50 degrees C results in noise-equivalent temperature difference (NETD) of < 3 mK at 50 degrees C. The operation at shorter wavelengths than traditional thermal sensors also leads to lower sensitivity to the emissivity of the object in determining the temperature of the object. These elements are used to construct a calibrator for an infrared collimator, and such a system demonstrates noise-equivalent irradiances of < 5 fW/cm(2). These results indicate that radiometers using short-wave infrared sensors could be constructed utilizing commercial glass optics with possible better performance and lower NETD than existing radiometers using cryogenically-cooled mid-infrared or thermal infrared detectors. PMID:18542168

  7. Detector signal correction method and system

    DOEpatents

    Carangelo, Robert M.; Duran, Andrew J.; Kudman, Irwin

    1995-07-11

    Corrective factors are applied so as to remove anomalous features from the signal generated by a photoconductive detector, and to thereby render the output signal highly linear with respect to the energy of incident, time-varying radiation. The corrective factors may be applied through the use of either digital electronic data processing means or analog circuitry, or through a combination of those effects.

  8. Timing performance measurements of Si-PM-based LGSO phoswich detectors

    NASA Astrophysics Data System (ADS)

    Yamamoto, Seiichi; Kobayashi, Takahiro; Okumura, Satoshi; Yeom, Jung Yeol

    2016-06-01

    Since the timing resolution was significantly improved using silicon photomultipliers (Si-PMs) combined with fast scintillators, we expect that phoswich detectors will be used in future TOF-PET systems. However, no practical phoswich detector has been proposed for TOF-PET detectors. We conducted timing performance measurements of phoswich detectors comprised of two types of Ce-doped LGSO scintillators with different decay times coupled to Si-PMs and digitized the output signals using a high bandwidth digital oscilloscope. We prepared three types of LGSOs (LGSO-fast, LGSO-standard, and LGSO-slow) with different Ce concentrations. After measuring the decay time, the energy performance, and the timing performance of each LGSO, we conducted pulse shape analysis and timing resolution measurements for two versions of phoswich LGSOs: LGSO-standard/LGSO-fast and LGSO-slow/LGSO-fast combinations. The pulse shape spectra for a 10-mm-long crystal LGSO-slow/LGSO-fast combination showed good separation of the front and back crystals with a peak-to-valley ratio of 2.0. The timing resolutions for the 20-mm-long crystal LGSO-slow/LGSO-fast combination were ~300 ps FWHM. The timing resolutions for the phoswich LGSOs were slightly inferior than that measured with the individual LGSO fast, but the acquired timing resolution for the phoswich configuration, ~300 ps with a LGSO-slow/LGSO-fast combination, is adequate for TOF-PET systems. We conclude that LGSO phoswich detectors are promising for TOF-DOI-PET systems.

  9. Elastic scattering measurement for the system 17O + 58Ni at Coulomb barrier energies with silicon strip detectors exploiting ASIC electronics

    NASA Astrophysics Data System (ADS)

    Signorini, C.; Mazzocco, M.; Molini, P.; Pierroutsakou, D.; Boiano, C.; Manea, C.; Strano, E.; Torresi, D.; Di Meo, P.; Nicoletto, M.; Boiano, A.; Glodariu, T.; Grebosz, J.; Guglielmetti, A.; La Commara, M.; Parascandolo, C.; Parascandolo, L.; Sandoli, M.; Soramel, F.; Stroe, L.; Toniolo, N.; Veronese, F.

    2013-03-01

    The quasi elastic scattering of a 17O projectile from a 58Ni target has been studied at beam energies ranging from 42.5 to 55.0 MeV in 2.5 MeV steps. The total reaction cross sections were derived from the measured angular distributions by using an optical model fit within the coupled-channel code FRESCO. These cross sections are very similar to those measured for 17F (loosely bound by 0.6 MeV), mirror nucleus of 17O (tightly bound by 4.14 MeV). This outcome points out that, in this energy range, the small binding energy of the 17F valence proton has negligible influence onto the reactivity of such a loosely bound projectile, contrary to simple expectations, and to what observed for other loosely bound nuclei. The reaction dynamics seems to be influenced mainly by the Coulomb interaction which is similar for both mirror projectiles.

  10. Singular value description of a digital radiographic detector: Theory and measurements

    SciTech Connect

    Kyprianou, Iacovos S.; Badano, Aldo; Gallas, Brandon D.; Myers, Kyle J.

    2008-10-15

    The H operator represents the deterministic performance of any imaging system. For a linear, digital imaging system, this system operator can be written in terms of a matrix, H, that describes the deterministic response of the system to a set of point objects. A singular value decomposition of this matrix results in a set of orthogonal functions (singular vectors) that form the system basis. A linear combination of these vectors completely describes the transfer of objects through the linear system, where the respective singular values associated with each singular vector describe the magnitude with which that contribution to the object is transferred through the system. This paper is focused on the measurement, analysis, and interpretation of the H matrix for digital x-ray detectors. A key ingredient in the measurement of the H matrix is the detector response to a single x ray (or infinitestimal x-ray beam). The authors have developed a method to estimate the 2D detector shift-variant, asymmetric ray response function (RRF) from multiple measured line response functions (LRFs) using a modified edge technique. The RRF measurements cover a range of x-ray incident angles from 0 deg. (equivalent location at the detector center) to 30 deg. (equivalent location at the detector edge) for a standard radiographic or cone-beam CT geometric setup. To demonstrate the method, three beam qualities were tested using the inherent, Lu/Er, and Yb beam filtration. The authors show that measures using the LRF, derived from an edge measurement, underestimate the system's performance when compared with the H matrix derived using the RRF. Furthermore, the authors show that edge measurements must be performed at multiple directions in order to capture rotational asymmetries of the RRF. The authors interpret the results of the H matrix SVD and provide correlations with the familiar MTF methodology. Discussion is made about the benefits of the H matrix technique with regards to signal

  11. Positional glow curve simulation for thermoluminescent detector (TLD) system design

    NASA Astrophysics Data System (ADS)

    Branch, C. J.; Kearfott, K. J.

    1999-02-01

    Multi- and thin element dosimeters, variable heating rate schemes, and glow-curve analysis have been employed to improve environmental and personnel dosimetry using thermoluminescent detectors (TLDs). Detailed analysis of the effects of errors and optimization of techniques would be highly desirable. However, an understanding of the relationship between TL light production, light attenuation, and precise heating schemes is made difficult because of experimental challenges involved in measuring positional TL light production and temperature variations as a function of time. This work reports the development of a general-purpose computer code, thermoluminescent detector simulator, TLD-SIM, to simulate the heating of any TLD type using a variety of conventional and experimental heating methods including pulsed focused or unfocused lasers with Gaussian or uniform cross sections, planchet, hot gas, hot finger, optical, infrared, or electrical heating. TLD-SIM has been used to study the impact on the TL light production of varying the input parameters which include: detector composition, heat capacity, heat conductivity, physical size, and density; trapped electron density, the frequency factor of oscillation of electrons in the traps, and trap-conduction band potential energy difference; heating scheme source terms and heat transfer boundary conditions; and TL light scatter and attenuation coefficients. Temperature profiles and glow curves as a function of position time, as well as the corresponding temporally and/or spatially integrated glow values, may be plotted while varying any of the input parameters. Examples illustrating TLD system functions, including glow curve variability, will be presented. The flexible capabilities of TLD-SIM promises to enable improved TLD system design.

  12. CMS Run-2 Instrumentation for beam radiation and luminosity measurement using novel detector technologies

    NASA Astrophysics Data System (ADS)

    Gomez Espinosa, Alejandro; CMS Collaboration Collaboration

    2016-03-01

    The higher energy and luminosity for Run 2 at the LHC initiated the development of dedicated technologies for beam radiation monitoring and luminosity measurement. A dedicated pixel luminosity detector measures coincidences in several three layer telescopes of silicon pixel detectors to arrive at a luminosity for each colliding LHC bunch pair. The full pixel data is also read out at a lower rate to reconstruct charged particle tracks for monitoring and beam spot determination. The upgraded fast beam conditions monitor measures the particle flux using 24 two pad single crystalline diamond sensors, equipped with a fast front-end ASIC, produced in 130 nm CMOS technology, for excellent time resolution. A new beam-halo monitor exploits Cerenkov light production in fused quartz crystals to provide direction sensitivity and excellent time resolution to separate incoming and outgoing particles. The back-end electronics of the beam monitoring systems include dedicated modules with high bandwidth digitizers developed in both VME and microTCA standards for per bunch beam measurements and gain monitoring. All sub-detectors have been taking data from the first day of LHC operation in April 2015. Detector performance results from the 2015 LHC Run II will be presented.

  13. [Flat Panel Detector Philips introduced and its system direction].

    PubMed

    Yamada, Shinichi

    2002-01-01

    We introduced digital X-ray diagnostic systems with Flat panel detector both in general X-ray systems and in Angiography systems. Our introduced Flat Panel Detector has the latest technology and has Cesium Iodide (CsI) that absorbs X-ray energy and generates visible light. Detected light signals make digital X-ray images. CsI is the most important material because its absorption rate of X-ray influences the strength of output digital signal. The purpose in this paper is checking that is latest Flat Panel Detector pulls out enough capability CsI has. Especially the thickness of CsI relates to X-ray absorption. X-ray absorption rate depended on the thickness of CsI was calculated by using simulated X-ray model and the future direction of Flat Panel Detector system was discussed. PMID:12766268

  14. Development of video processing based on coal flame detector system

    SciTech Connect

    He Wanqing; Yu Yuefeng; Xu Weiyong; Ma Liqun

    1999-07-01

    The principle and development of a set of pulverized coal combustion flame detection system, which is called intelligent image flame detector device based on digital video processing, is addressed in this paper. The system realizes multi-burner flame detection and processing using a distributive structure of engineering workstation and flame detectors via multi-serial-port communication. The software can deal with multi-tasks in a parallel way based on multi-thread mechanism. Streaming video capture and storage is provided to safe and playback the accidental Audio and Visual Interfaces (AVI) clips. The layer flame detectors can give the flame on/off signal through image processing. Pseudo-color visualization of flame temperature calculated from chromatic CCD signal is integrated into the system. The image flame detector system has been successfully used in thermal power generation units in China.

  15. Design and Performance of the ATLAS Muon Detector Control System

    NASA Astrophysics Data System (ADS)

    Polini, Alessandro; ATLAS Muon Collaboration

    2011-12-01

    Muon detection plays a key role at the Large Hadron Collider. The ATLAS Muon Spectrometer includes Monitored Drift Tubes (MDT) and Cathode Strip Chambers (CSC) for precision momentum measurement in the toroidal magnetic field. Resistive Plate Chambers (RPC) in the barrel region, and Thin Gap Chambers (TGC) in the end-caps, provide the level-1 trigger and a second coordinate used for tracking in conjunction with the MDT. The Detector Control System of each subdetector is required to monitor and safely operate tens of thousand of channels, which are distributed on several subsystems, including low and high voltage power supplies, trigger and front-end electronics, currents and thresholds monitoring, alignment and environmental sensors, gas and electronic infrastructure. The system is also required to provide a level of abstraction for ease of operation as well as expert level actions and detailed analysis of archived data. The hardware architecture and software solutions adopted are shown along with results from the commissioning phase and the routine operation with colliding beams at 3.5 + 3.5 TeV. Design peculiarities of each subsystem and their use to monitor the detector and the accelerator performance are discussed along with the effort for a simple and coherent operation in a running experiment. The material presented can be a base to future test facilities and projects.

  16. A new thoron atmosphere reference measurement system.

    PubMed

    Sabot, B; Pierre, S; Michielsen, N; Bondiguel, S; Cassette, P

    2016-03-01

    A new thoron reference ((220)Rn) in air measurement system is developed at the LNE-LNHB with the collaboration of the IRSN. This measurement system is based on a reference volume with an alpha detector which is able to directly measure thoron and its decay products at atmospheric pressure. In order to improve the spectrum quality of the thoron progenies, we have applied an electric field to catch the decay products on the detector surface. The developed system is a portative device which can be used to measure reference thoron atmosphere such as the BACCARA chamber at IRSN (Picolo et al., 1999). As this system also allows the measurement of radon ((222)Rn) in air, it was validated using the radon primary standards made at the LNE-LNHB. This thoron measurement system will be used, at IRSN, as a reference instrument in order to calibrate the thoron activity concentration in the BACCARA facility. PMID:26701661

  17. Induced Radioactivity Measured in a Germanium Detector After a Long Duration Balloon Flight

    NASA Technical Reports Server (NTRS)

    Starr, R.; Evans, L. G.; Floyed, S. R.; Drake, D. M.; Feldman, W. C.; Squyres, S. W.; Rester, A. C.

    1997-01-01

    A 13-day long duration balloon flight carrying a germanium detector was flown from Williams Field, Antartica in December 1992. After recovery of the payload the activity induced in the detector was measured.

  18. Hybrid Ion-Detector/Data-Acquisition System for a TOF-MS

    NASA Technical Reports Server (NTRS)

    Burton, William D., Jr.; Schultz, J. Albert; Vaughn, Valentine; McCully, Michael; Ulrich, Steven; Egan, Thomas F.

    2006-01-01

    A modified ion-detector/data-acquisition system has been devised to increase the dynamic range of a time-of-flight mass spectrometer (TOF-MS) that, previously, included a microchannel-plate detector and a data-acquisition system based on counting pulses and time-tagging them by use of a time-to-digital converter (TDC). The dynamic range of the TOF-MS was limited by saturation of the microchannel plate detector, which can handle no more than a few million counts per second. The modified system includes (1) a combined microchannel plate/discrete ion multiplier and (2) a hybrid data-acquisition system that simultaneously performs analog current or voltage measurements and multianode single-ion-pulse-counting time-of-flight measurements to extend the dynamic range of a TDC into the regime in which a mass peak comprises multiple ions arriving simultaneously at the detector. The multianode data are used to determine, in real time, whether the detector is saturated. When saturation is detected, the data-acquisition system selectively enables circuitry that simultaneously determines the ion-peak intensity by measuring the time profile of the analog current or voltage detector-output signal.

  19. Singular value description of a digital radiographic detector: Theory and measurements

    PubMed Central

    Kyprianou, Iacovos S.; Badano, Aldo; Gallas, Brandon D.; Myers, Kyle J.

    2008-01-01

    The H operator represents the deterministic performance of any imaging system. For a linear, digital imaging system, this system operator can be written in terms of a matrix, H, that describes the deterministic response of the system to a set of point objects. A singular value decomposition of this matrix results in a set of orthogonal functions (singular vectors) that form the system basis. A linear combination of these vectors completely describes the transfer of objects through the linear system, where the respective singular values associated with each singular vector describe the magnitude with which that contribution to the object is transferred through the system. This paper is focused on the measurement, analysis, and interpretation of the H matrix for digital x-ray detectors. A key ingredient in the measurement of the H matrix is the detector response to a single x ray (or infinitestimal x-ray beam). The authors have developed a method to estimate the 2D detector shift-variant, asymmetric ray response function (RRF) from multiple measured line response functions (LRFs) using a modified edge technique. The RRF measurements cover a range of x-ray incident angles from 0° (equivalent location at the detector center) to 30° (equivalent location at the detector edge) for a standard radiographic or cone-beam CT geometric setup. To demonstrate the method, three beam qualities were tested using the inherent, Lu∕Er, and Yb beam filtration. The authors show that measures using the LRF, derived from an edge measurement, underestimate the system’s performance when compared with the H matrix derived using the RRF. Furthermore, the authors show that edge measurements must be performed at multiple directions in order to capture rotational asymmetries of the RRF. The authors interpret the results of the H matrix SVD and provide correlations with the familiar MTF methodology. Discussion is made about the benefits of the H matrix technique with regards to signal

  20. Model LS-2X laser source detector test system

    NASA Astrophysics Data System (ADS)

    1980-05-01

    Proper, characterization of infrared photodiodes requires a series of optical tests that include blackbody response, spatial uniformity, pulse response, and wavelength sensitivity measurements. The results of these optical tests will depend upon many fundamental properties of the detector crystal, namely absorption depth of the radiation, bulk lifetimes of injected carriers, surface recombination effects, carrier drift and diffusion effects, trapping effects and other mechanisms. Some of these effects are not clearly understood but may play important roles in such application as high speed pulse detectors, laser heterodyne receivers, or large area high resolution detector arrays. Spears has shown that proper spatial and temporal characterization of HgCdTe CO2 laser heterodyne receivers must be done at the operating frequencies. A realistic characterization of the pulse response of an infrared detector must be made at the operating wavelength, generally that of peak detector response. Certain fixed frequency gas lasers such as CO2, CO, or HF can provide sufficient power and speed for detector characterization but they have limited wavelength coverage and are often cumbersome to use. On the other hand, Pb-salt tunable diode lasers can provide more than 100 micro w of power emitted from nearly a point source, subnanosecond risetime pulses and wavelength selectability between 2.8 and 30 micrometers. These characteristics make diode lasers an ideal source for pulse spatial response measurements of infrared detectors.

  1. Single crystal diamond detector measurements of deuterium-deuterium and deuterium-tritium neutrons in Joint European Torus fusion plasmas

    SciTech Connect

    Cazzaniga, C. Gorini, G.; Nocente, M.; Sundén, E. Andersson; Binda, F.; Ericsson, G.; Croci, G.; Grosso, G.; Cippo, E. Perelli; Tardocchi, M.; Giacomelli, L.; Rebai, M.; Griesmayer, E.; Kaveney, G.; Syme, B.; Collaboration: JET-EFDA Contributors

    2014-04-15

    First simultaneous measurements of deuterium-deuterium (DD) and deuterium-tritium neutrons from deuterium plasmas using a Single crystal Diamond Detector are presented in this paper. The measurements were performed at JET with a dedicated electronic chain that combined high count rate capabilities and high energy resolution. The deposited energy spectrum from DD neutrons was successfully reproduced by means of Monte Carlo calculations of the detector response function and simulations of neutron emission from the plasma, including background contributions. The reported results are of relevance for the development of compact neutron detectors with spectroscopy capabilities for installation in camera systems of present and future high power fusion experiments.

  2. Single crystal diamond detector measurements of deuterium-deuterium and deuterium-tritium neutrons in Joint European Torus fusion plasmas

    NASA Astrophysics Data System (ADS)

    Cazzaniga, C.; Sundén, E. Andersson; Binda, F.; Croci, G.; Ericsson, G.; Giacomelli, L.; Gorini, G.; Griesmayer, E.; Grosso, G.; Kaveney, G.; Nocente, M.; Cippo, E. Perelli; Rebai, M.; Syme, B.; Tardocchi, M.

    2014-04-01

    First simultaneous measurements of deuterium-deuterium (DD) and deuterium-tritium neutrons from deuterium plasmas using a Single crystal Diamond Detector are presented in this paper. The measurements were performed at JET with a dedicated electronic chain that combined high count rate capabilities and high energy resolution. The deposited energy spectrum from DD neutrons was successfully reproduced by means of Monte Carlo calculations of the detector response function and simulations of neutron emission from the plasma, including background contributions. The reported results are of relevance for the development of compact neutron detectors with spectroscopy capabilities for installation in camera systems of present and future high power fusion experiments.

  3. Python based integration of GEM detector electronics with JET data acquisition system

    NASA Astrophysics Data System (ADS)

    Zabołotny, Wojciech M.; Byszuk, Adrian; Chernyshova, Maryna; Cieszewski, Radosław; Czarski, Tomasz; Dalley, Simon; Hogben, Colin; Jakubowska, Katarzyna L.; Kasprowicz, Grzegorz; Poźniak, Krzysztof; Rzadkiewicz, Jacek; Scholz, Marek; Shumack, Amy

    2014-11-01

    This paper presents the system integrating the dedicated measurement and control electronic systems for Gas Electron Multiplier (GEM) detectors with the Control and Data Acquisition system (CODAS) in the JET facility in Culham, England. The presented system performs the high level procedures necessary to calibrate the GEM detector and to protect it against possible malfunctions or dangerous changes in operating conditions. The system also allows control of the GEM detectors from CODAS, setting of their parameters, checking their state, starting the plasma measurement and to reading the results. The system has been implemented using the Python language, using the advanced libraries for implementation of network communication protocols, for object based hardware management and for data processing.

  4. Active noise canceling system for mechanically cooled germanium radiation detectors

    SciTech Connect

    Nelson, Karl Einar; Burks, Morgan T

    2014-04-22

    A microphonics noise cancellation system and method for improving the energy resolution for mechanically cooled high-purity Germanium (HPGe) detector systems. A classical adaptive noise canceling digital processing system using an adaptive predictor is used in an MCA to attenuate the microphonics noise source making the system more deployable.

  5. Conversion factor and uncertainty estimation for quantification of towed gamma-ray detector measurements in Tohoku coastal waters

    NASA Astrophysics Data System (ADS)

    Ohnishi, S.; Thornton, B.; Kamada, S.; Hirao, Y.; Ura, T.; Odano, N.

    2016-05-01

    Factors to convert the count rate of a NaI(Tl) scintillation detector to the concentration of radioactive cesium in marine sediments are estimated for a towed gamma-ray detector system. The response of the detector against a unit concentration of radioactive cesium is calculated by Monte Carlo radiation transport simulation considering the vertical profile of radioactive material measured in core samples. The conversion factors are acquired by integrating the contribution of each layer and are normalized by the concentration in the surface sediment layer. At the same time, the uncertainty of the conversion factors are formulated and estimated. The combined standard uncertainty of the radioactive cesium concentration by the towed gamma-ray detector is around 25 percent. The values of uncertainty, often referred to as relative root mean squat errors in other works, between sediment core sampling measurements and towed detector measurements were 16 percent in the investigation made near the Abukuma River mouth and 5.2 percent in Sendai Bay, respectively. Most of the uncertainty is due to interpolation of the conversion factors between core samples and uncertainty of the detector's burial depth. The results of the towed measurements agree well with laboratory analysed sediment samples. Also, the concentrations of radioactive cesium at the intersection of each survey line are consistent. The consistency with sampling results and between different lines' transects demonstrate the availability and reproducibility of towed gamma-ray detector system.

  6. A heuristic approach to the quantum measurement problem: How to distinguish particle detectors from ordinary objects

    NASA Astrophysics Data System (ADS)

    Merlin, R.

    2015-08-01

    Elementary particle detectors fall broadly into only two classes: phase-transformation devices, such as the bubble chamber, and charge-transfer devices like the Geiger-Müller tube. Quantum measurements are seen to involve transitions from a long-lived metastable state (e.g., superheated liquid or a gas of atoms between charged capacitor plates) to a thermodynamically stable condition. A detector is then a specially prepared object undergoing a metastable-to-stable transformation that is significantly enhanced by the presence of the measured particle, which behaves, in some sense, as the seed of a process of heterogeneous nucleation. Based on this understanding of the operation of a conventional detector, and using results of orthogonality-catastrophe theory, we argue that, in the thermodynamic limit, the pre-measurement Hamiltonian is not the same as that describing the detector during or after the interaction with a particle and, thus, that superpositions of pointer states (Schrödinger’s cats) are unphysical because their time evolution is ill defined. Examples of particle-induced changes in the Hamiltonian are also given for ordinary systems whose macroscopic parameters are susceptible to radiation damage, but are not modified by the interaction with a single particle.

  7. A mobile detector for measurements of the atmospheric muon flux

    NASA Astrophysics Data System (ADS)

    Mitrica, B.; Brancus, I. M.; Margineanu, R.; Petcu, M.; Dima, M.; Sima, O.; Haungs, A.; Rebel, H.; Petre, M.; Toma, G.; Saftoiu, A.; Apostu, A.

    2011-04-01

    Measurements of the underground atmospheric muon flux are important in order to determine accurately the overburden in mwe (meter water equivalent) of an underground laboratory for appreciating which kind of experiments are feasible for that location. Slanic- Prohava is one of the 7 possible locations for the European large underground experiment LAGUNA (Large Apparatus studying Grand Unification and Neutrino Astrophysics). A mobile device consisting of 2 scintillator plates (≍0.9 m2, each) one above the other and measuring in coincidence, was set-up for determining the muon flux. The detector it is installed on a van which facilitates measurements on different positions at the surface or in the underground and it is in operation since autumn 2009. The measurements of muon fluxes presented in this contribution have been performed in the underground salt mine Slanic-Prahova, Romania, where IFIN-HH has built a low radiation level laboratory, and at the surface on different sites of Romania, at different elevations from 0 m a.s.l up to 655 m a.s.l. Based on our measurements we can say that Slanic site is a feasible location for LAGUNA in Unirea salt mine at a water equivalent depth of 600 mwe. The results have been compared with Monte-Carlo simulations performed with the simulation codes CORSIKA and MUSIC.

  8. Measuring relative-story displacement and local inclination angle using multiple position-sensitive detectors.

    PubMed

    Matsuya, Iwao; Katamura, Ryuta; Sato, Maya; Iba, Miroku; Kondo, Hideaki; Kanekawa, Kiyoshi; Takahashi, Motoichi; Hatada, Tomohiko; Nitta, Yoshihiro; Tanii, Takashi; Shoji, Shuichi; Nishitani, Akira; Ohdomari, Iwao

    2010-01-01

    We propose a novel sensor system for monitoring the structural health of a building. The system optically measures the relative-story displacement during earthquakes for detecting any deformations of building elements. The sensor unit is composed of three position sensitive detectors (PSDs) and lenses capable of measuring the relative-story displacement precisely, even if the PSD unit was inclined in response to the seismic vibration. For verification, laboratory tests were carried out using an Xθ-stage and a shaking table. The static experiment verified that the sensor could measure the local inclination angle as well as the lateral displacement. The dynamic experiment revealed that the accuracy of the sensor was 150 μm in the relative-displacement measurement and 100 μrad in the inclination angle measurement. These results indicate that the proposed sensor system has sufficient accuracy for the measurement of relative-story displacement in response to the seismic vibration. PMID:22163434

  9. Detector driver systems and photometric estimates for RIMAS

    NASA Astrophysics Data System (ADS)

    Toy, Vicki L.; Kutyrev, Alexander S.; Lyness, Eric I.; Muench, Marius; Robinson, Frederick D.; Lotkin, Gennadiy N.; Capone, John I.; Veilleux, Sylvain; Moseley, Samuel H.; Gehrels, Neil A.; Vogel, Stuart N.

    2014-07-01

    The Rapid infrared IMAger-Spectrometer (RIMAS) is a rapid gamma-ray burst afterglow instrument that will provide photometric and spectroscopic coverage of the Y, J, H, and K bands. RIMAS separates light into two optical arms, YJ and HK, which allows for simultaneous coverage in two photometric bands. RIMAS utilizes two 2048 x 2048 pixel Teledyne HgCdTe (HAWAII-2RG) detectors along with a Spitzer Legacy Indium- Antimonide (InSb) guiding detector in spectroscopic mode to position and keep the source on the slit. We describe the software and hardware development for the detector driver and acquisition systems. The HAWAII- 2RG detectors simultaneously acquire images using Astronomical Research Cameras, Inc. driver, timing, and processing boards with two C++ wrappers running assembly code. The InSb detector clocking and acquisition system runs on a National Instruments cRIO-9074 with a Labview user interface and clocks written in an easily alterable ASCII file. We report the read noise, linearity, and dynamic range of our guide detector. Finally, we present RIMAS's estimated instrument efficiency in photometric imaging mode (for all three detectors) and expected limiting magnitudes. Our efficiency calculations include atmospheric transmission models, filter models, telescope components, and optics components for each optical arm.

  10. Measurement of the Radiation Field in Atlas with the Atlas-Mpx Detectors

    NASA Astrophysics Data System (ADS)

    Campbell, Michael; Heijne, Erik; Leroy, Claude; Martin, Jean-Pierre; Mornacchi, Giuseppe; Nessi, Marzio; Pospisil, Stanislav; Solc, Jaroslav; Soueid, Paul; Suk, Michal; Turecek, Daniel; Vykydal, Zdenek

    2012-08-01

    A network of 16 ATLAS-MPX (silicon pixelated) detectors has been installed by the ATLAS-MPX Collaboration at various positions within the ATLAS detector and its environment. The ATLAS-MPX detectors allow real-time measurements of spectral characteristics and composition of the radiation field inside and around the ATLAS detector during its operation. Results obtained with the ATLAS-MPX detectors are reported in this article. They include luminosity measurement obtained with van der Meer luminosity scans and measurement of induced radioactivity in between/after collision.

  11. Radiation detection system using semiconductor detector with differential carrier trapping and mobility

    DOEpatents

    Whited, Richard C.

    1981-01-01

    A system for obtaining improved resolution in relatively thick semiconductor radiation detectors, such as HgI.sub.2, which exhibit significant hole trapping. Two amplifiers are used: the first measures the charge collected and the second the contribution of the electrons to the charge collected. The outputs of the two amplifiers are utilized to unfold the total charge generated within the detector in response to a radiation event.

  12. X-ray and gamma ray detector readout system

    DOEpatents

    Tumer, Tumay O; Clajus, Martin; Visser, Gerard

    2010-10-19

    A readout electronics scheme is under development for high resolution, compact PET (positron emission tomography) imagers based on LSO (lutetium ortho-oxysilicate, Lu.sub.2SiO.sub.5) scintillator and avalanche photodiode (APD) arrays. The key is to obtain sufficient timing and energy resolution at a low power level, less than about 30 mW per channel, including all required functions. To this end, a simple leading edge level crossing discriminator is used, in combination with a transimpedance preamplifier. The APD used has a gain of order 1,000, and an output noise current of several pA/ Hz, allowing bipolar technology to be used instead of CMOS, for increased speed and power efficiency. A prototype of the preamplifier and discriminator has been constructed, achieving timing resolution of 1.5 ns FWHM, 2.7 ns full width at one tenth maximum, relative to an LSO/PMT detector, and an energy resolution of 13.6% FWHM at 511 keV, while operating at a power level of 22 mW per channel. Work is in progress towards integration of this preamplifier and discriminator with appropriate coincidence logic and amplitude measurement circuits in an ASIC suitable for a high resolution compact PET instrument. The detector system and/or ASIC can also be used for many other applications for medical to industrial imaging.

  13. Thermal crosstalk simulation and measurement of linear terahertz detector arrays

    NASA Astrophysics Data System (ADS)

    Li, Weizhi; Huang, Zehua; Wang, Jun; Li, Mingyu; Gou, Jun; Jiang, Yadong

    2015-11-01

    Thermal simulation of differently structured linear terahertz detector arrays (TDAs) based on lithium tantalate was performed by finite element analysis (FEA). Simulation results revealed that a relatively simple TDA structure can have good thermal insulation, i.e., low thermal crosstalk effect (TCE), between adjacent pixels, which was thus selected for the real fabrication of TDA sample. Current responsivity (Ri) of the sample for a 2.52 THz source was measured to be 6.66 × 10-6 A/W and non-uniformity (NU) of Ri was 4.1%, showing good performance of the sample. TCE test result demonstrated that small TCE existed in the sample, which was in good agreement with the simulation results.

  14. The Liquid Argon Calorimeter system for the SLC Large Detector

    SciTech Connect

    Haller, G.M.; Fox, J.D.; Smith, S.R.

    1988-09-01

    In this paper the physical packaging and the logical organization of the Liquid Argon Calorimeter (LAC) electronics system for the Stanford Linear Collider Large Detector (SLD) at SLAC are described. This system processes signals from approximately 44,000 calorimeter towers and is unusual in that most electronic functions are packaged within the detector itself as opposed to an external electronics support rack. The signal path from the towers in the liquid argon through the vacuum to the outside of the detector is explained. The organization of the control logic, analog electronics, power regulation, analog-to-digital conversion circuits, and fiber optic drivers mounted directly on the detector are described. Redundancy considerations for the electronics and cooling issues are discussed. 12 refs., 5 figs.

  15. Data quality management system (DQMS) for BAC detector in the ZEUS experiment at the HERA accelerator

    NASA Astrophysics Data System (ADS)

    Luszczak, Zbigniew; Jezynski, Tomasz; Romaniuk, Ryszard S.; Pozniak, Krzysztof T.; Kuthan, Marcin; Bigos, Grzegorz; Gierej, Artur

    2003-10-01

    The paper presents functional structure of database system of data measurement quality for BAC detector in ZEUS experiment. The system collects diagnostic and experimental data. Diagnostic data are: work parameters of the detector and electronics/photonics, tests of electronic/photonic blocks. These data are archived for certain period of time. The quality of current data collection process is estimated using these archived data. The result of such estimation is generated in a form of status map of the detector. Such maps, describing status of the hardware, are fundamental for elementary particle analysis by the calorimeter. The DAQ system, collecting data to the database, estimates data quality on-line during transmission and writing. This mechanism of fast on-line data quality management leads to early discoveries of detector work irregularities and faults.

  16. Interactive display system having a matrix optical detector

    DOEpatents

    Veligdan, James T.; DeSanto, Leonard

    2007-01-23

    A display system includes a waveguide optical panel having an inlet face and an opposite outlet face. An image beam is projected across the inlet face laterally and transversely for display on the outlet face. An optical detector including a matrix of detector elements is optically aligned with the inlet face for detecting a corresponding lateral and transverse position of an inbound light spot on the outlet face.

  17. LAMBDA: Large Area Modular BaF2 Detector Array for the measurement of high energy γ rays

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, S.; Bhattacharya, Srijit; Pandit, Deepak; Ray, A.; Pal, Surajit; Banerjee, K.; Kundu, S.; Rana, T. K.; Bhattacharya, S.; Bhattacharya, C.; De, A.; Banerjee, S. R.

    2007-11-01

    A large BaF 2 detector array along with its dedicated CAMAC electronics and VME based data acquisition system has been designed, constructed and installed successfully at VECC, Kolkata for studying high energy γ rays ( >8 MeV). The array consists of 162 detector elements. The detectors were fabricated from bare barium fluoride crystals (each measuring 35 cm in length and having cross-sectional area of 3.5×3.5 cm2). The basic properties of the detectors (energy resolution, time resolution, efficiency, uniformity, fast to slow ratio, etc.) were studied exhaustively. Complete GEANT3 Monte Carlo simulations were performed to optimize the detector design and also to generate the response function. The detector system has been used successfully to measure high energy photons from 113Sb, formed by bombarding 145 and 160 MeV 20Ne beams on a 93Nb target. The measured experimental spectra are in good agreement with those from a modified version of the statistical model code CASCADE. In this paper, we present the complete description of this detector array along with its in-beam performance.

  18. A scintillator purification system for the Borexino solar neutrino detector

    NASA Astrophysics Data System (ADS)

    Benziger, J.; Cadonati, L.; Calaprice, F.; Chen, M.; Corsi, A.; Dalnoki-Veress, F.; Fernholz, R.; Ford, R.; Galbiati, C.; Goretti, A.; Harding, E.; Ianni, Aldo; Ianni, Andrea; Kidner, S.; Leung, M.; Loeser, F.; McCarty, K.; McKinsey, D.; Nelson, A.; Pocar, A.; Salvo, C.; Schimizzi, D.; Shutt, T.; Sonnenschein, A.

    2008-03-01

    Purification of the 278 tons of liquid scintillator and 889 tons of buffer shielding for the Borexino solar neutrino detector is performed with a system that combines distillation, water extraction, gas stripping, and filtration. This paper describes the principles of operation, design, and construction of that purification system, and reviews the requirements and methods to achieve system cleanliness and leak-tightness.

  19. Ultracold neutron detector for the spectrometer of a neutron lifetime measuring

    NASA Astrophysics Data System (ADS)

    Andreev, V. A.; Vasiljev, A. V.; Ivanov, E. A.; Ilyin, D. S.; Krivshich, A. G.; Serebrov, A. P.

    2016-04-01

    The gas-discharge detector is designed for the neutron lifetime spectrometer. The detector is intended for ultracold neutron flux monitoring in measurement cycles at the specrtometer (ILL, Grenoble, France). The detector has been successively tested with a Pu-Be neutron source under laboratory conditions and as a part of the spectrometer.

  20. 21 CFR 870.1025 - Arrhythmia detector and alarm (including ST-segment measurement and alarm).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Arrhythmia detector and alarm (including ST... Diagnostic Devices § 870.1025 Arrhythmia detector and alarm (including ST-segment measurement and alarm). (a) Identification. The arrhythmia detector and alarm device monitors an electrocardiogram and is designed to...

  1. 21 CFR 870.1025 - Arrhythmia detector and alarm (including ST-segment measurement and alarm).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Arrhythmia detector and alarm (including ST... Diagnostic Devices § 870.1025 Arrhythmia detector and alarm (including ST-segment measurement and alarm). (a) Identification. The arrhythmia detector and alarm device monitors an electrocardiogram and is designed to...

  2. 21 CFR 870.1025 - Arrhythmia detector and alarm (including ST-segment measurement and alarm).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Arrhythmia detector and alarm (including ST... Diagnostic Devices § 870.1025 Arrhythmia detector and alarm (including ST-segment measurement and alarm). (a) Identification. The arrhythmia detector and alarm device monitors an electrocardiogram and is designed to...

  3. 21 CFR 870.1025 - Arrhythmia detector and alarm (including ST-segment measurement and alarm).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Arrhythmia detector and alarm (including ST... Diagnostic Devices § 870.1025 Arrhythmia detector and alarm (including ST-segment measurement and alarm). (a) Identification. The arrhythmia detector and alarm device monitors an electrocardiogram and is designed to...

  4. 21 CFR 870.1025 - Arrhythmia detector and alarm (including ST-segment measurement and alarm).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Arrhythmia detector and alarm (including ST... Diagnostic Devices § 870.1025 Arrhythmia detector and alarm (including ST-segment measurement and alarm). (a) Identification. The arrhythmia detector and alarm device monitors an electrocardiogram and is designed to...

  5. The digital trigger system for the RED-100 detector

    NASA Astrophysics Data System (ADS)

    Naumov, P. P.; Akimov, D. Yu.; Belov, V. A.; Bolozdynya, A. I.; Efremenko, Yu. V.; Kaplin, V. A.

    2015-12-01

    The system for forming a trigger for the liquid xenon detector RED-100 is developed. The trigger can be generated for all types of events that the detector needs for calibration and data acquisition, including the events with a single electron of ionization. In the system, a mechanism of event detection is implemented according to which the timestamp and event type are assigned to each event. The trigger system is required in the systems searching for rare events to select and keep only the necessary information from the ADC array. The specifications and implementation of the trigger unit which provides a high efficiency of response even to low-energy events are considered.

  6. The digital trigger system for the RED-100 detector

    SciTech Connect

    Naumov, P. P. Akimov, D. Yu.; Belov, V. A.; Bolozdynya, A. I.; Efremenko, Yu. V.; Kaplin, V. A.

    2015-12-15

    The system for forming a trigger for the liquid xenon detector RED-100 is developed. The trigger can be generated for all types of events that the detector needs for calibration and data acquisition, including the events with a single electron of ionization. In the system, a mechanism of event detection is implemented according to which the timestamp and event type are assigned to each event. The trigger system is required in the systems searching for rare events to select and keep only the necessary information from the ADC array. The specifications and implementation of the trigger unit which provides a high efficiency of response even to low-energy events are considered.

  7. Cherenkov Detector For Measurements Of Fast Electrons In CASTOR-Tokamak

    SciTech Connect

    Jakubowski, L.; Sadowski, M. J.; Stanislawski, J.; Malinowski, K.; Zebrowski, J.; Jakubowski, M.; Weinzettl, V.; Stockel, J.; Vacha, M.; Peterka, M.

    2008-04-07

    The paper reports on capabilities of an improved version of the Cherenkov detector designed for measurements of fast electrons. The described technique enables the identification of electron beams, the measurements of their temporal characteristics, as well as the estimation of their spatial properties to be performed. Results obtained in the last experimental campaign with the CASTOR facility show good measuring capabilities of such a detection system. The radial distributions of fast-electron streams at different plasma densities, as well as the electron fluency dependences on discharge currents and toroidal magnetic fields are also presented.

  8. Performance Measurement Analysis System

    Energy Science and Technology Software Center (ESTSC)

    1989-06-01

    The PMAS4.0 (Performance Measurement Analysis System) is a user-oriented system designed to track the cost and schedule performance of Department of Energy (DOE) major projects (MPs) and major system acquisitions (MSAs) reporting under DOE Order 5700.4A, Project Management System. PMAS4.0 provides for the analysis of performance measurement data produced from management control systems complying with the Federal Government''s Cost and Schedule Control Systems Criteria.

  9. Development of a proton Computed Tomography detector system

    NASA Astrophysics Data System (ADS)

    Naimuddin, Md.; Coutrakon, G.; Blazey, G.; Boi, S.; Dyshkant, A.; Erdelyi, B.; Hedin, D.; Johnson, E.; Krider, J.; Rukalin, V.; Uzunyan, S. A.; Zutshi, V.; Fordt, R.; Sellberg, G.; Rauch, J. E.; Roman, M.; Rubinov, P.; Wilson, P.

    2016-02-01

    Computer tomography is one of the most promising new methods to image abnormal tissues inside the human body. Tomography is also used to position the patient accurately before radiation therapy. Hadron therapy for treating cancer has become one of the most advantegeous and safe options. In order to fully utilize the advantages of hadron therapy, there is a necessity of performing radiography with hadrons as well. In this paper we present the development of a proton computed tomography system. Our second-generation proton tomography system consists of two upstream and two downstream trackers made up of fibers as active material and a range detector consisting of plastic scintillators. We present details of the detector system, readout electronics, and data acquisition system as well as the commissioning of the entire system. We also present preliminary results from the test beam of the range detector.

  10. Highly sensitive simple homodyne phase detector for ultrasonic pulse-echo measurements.

    PubMed

    Grossmann, John; Suslov, Alexey; Yong, Grace; Boatner, Lynn A; Svitelskiy, Oleksiy

    2016-04-01

    We have designed and built a modern versatile research-grade instrument for ultrasound pulse-echo probing of the elastic properties of a wide range of materials under laboratory conditions. The heart of the instrument lies in an AD8302 microchip: a gain and phase detector from Analog Devices, Inc. To construct the device, we have implemented a schematic that utilizes the homodyne principle for signal processing instead of the traditional superheterodyne approach. This design allows one to measure phase shifts with high precision and linearity over the entire range of 0°-360°. The system is simple in construction and usage; it makes ultrasound measurements easily accessible to a broad range of researchers. It was tested by measuring the temperature dependence of the ultrasound speed and attenuation in a KTa0.92Nb0.08O3 (KTN) single crystal at a frequency of ∼40 MHz. The tests were performed in the vicinity of the ferroelectric transitions where the large variations of the speed and attenuation demand a detector with outstanding characteristics. The described detector has a wide dynamic range and allows for measuring in a single run over the whole temperature range of the ferroelectric transitions, rather than just in limited intervals available previously. Moreover, due to the wide dynamic range of the gain measurements and high sensitivity this instrument was able to reveal previously unresolvable features associated with the development of the ferroelectric transitions of KTN crystals. PMID:27131694

  11. Highly sensitive simple homodyne phase detector for ultrasonic pulse-echo measurements

    NASA Astrophysics Data System (ADS)

    Grossmann, John; Suslov, Alexey; Yong, Grace; Boatner, Lynn A.; Svitelskiy, Oleksiy

    2016-04-01

    We have designed and built a modern versatile research-grade instrument for ultrasound pulse-echo probing of the elastic properties of a wide range of materials under laboratory conditions. The heart of the instrument lies in an AD8302 microchip: a gain and phase detector from Analog Devices, Inc. To construct the device, we have implemented a schematic that utilizes the homodyne principle for signal processing instead of the traditional superheterodyne approach. This design allows one to measure phase shifts with high precision and linearity over the entire range of 0°-360°. The system is simple in construction and usage; it makes ultrasound measurements easily accessible to a broad range of researchers. It was tested by measuring the temperature dependence of the ultrasound speed and attenuation in a KTa0.92Nb0.08O3 (KTN) single crystal at a frequency of ˜40 MHz. The tests were performed in the vicinity of the ferroelectric transitions where the large variations of the speed and attenuation demand a detector with outstanding characteristics. The described detector has a wide dynamic range and allows for measuring in a single run over the whole temperature range of the ferroelectric transitions, rather than just in limited intervals available previously. Moreover, due to the wide dynamic range of the gain measurements and high sensitivity this instrument was able to reveal previously unresolvable features associated with the development of the ferroelectric transitions of KTN crystals.

  12. The improved pyroelectric detectors for far-infrared laser interferometer measuring

    NASA Astrophysics Data System (ADS)

    Xiang, Gao

    1990-05-01

    In this paper, the application of the pyroelectric detectors for Far-Infrared laser diagnostics on TOKAMAK plasma is described. We discovered experimentally that the Fabry-Perot interference could affect the performance of the pyroelectric detectors (PED). The improved pyroelectric detector (IPD) was developed for FIR laser coheront measuring. Some designing considerations about the pyroelectric detectors used in high temperature plasma conditions are mentioned.

  13. The Global Light System for the JEM-EUSO detector

    NASA Astrophysics Data System (ADS)

    Wiencke, Lawrence; Adams, James; Christl, Mark; Eser, Johannes; Sarazin, Fred

    The origin of cosmic rays at the 100 EeV scale is unknown. The Extreme Universe Space Observatory on the Japanese Experiment Module (JEM-EUSO) instrument, planned for the International Space Station, will record the optical signatures generated by the interaction of extreme energy cosmic rays in the earth’s atmosphere. To address the measurement challenge posed by the low flux of particles at these energies, a global light system (GLS) of calibrated UV light sources will be deployed around the globe to calibrate the instrument in space. The GLS network will consist of 12 ground stations. Each will have a Xe flasher and 6 will have steered pulsed UV lasers in addition to their flashers. During dark periods, the GLS stations will be activated as the ISS passes overhead to will generate flashes and tracks that will be recorded by JEM-EUSO. This network will be supplemented by an aircraft-based system flown monthly over the open ocean. The GLS will have many applications. For example, the intrinsic brightness of the GLS flashers and lasers can be set to match the equivalent intrinsic brightness of 100 EeV cosmic ray extensive air showers. To test detector triggering and angular resolution, the lasers will be pointed at astrophysical objects of interest that are potential sources of cosmic rays. A ground based prototype GLS station with a flasher and laser will be used to test the TUS detector on the Lomonosov satellite. A prototype of the aircraft based GLS system will be flown under the EUSO-Balloon pathfinder.

  14. Prototype Radiation Detector Positioning System For The Automated Nondestructive Assay Of Uf6 Cylinders

    SciTech Connect

    Hatchell, Brian K.; Valdez, Patrick LJ; Orton, Christopher R.; Mace, Emily K.

    2011-08-07

    International Atomic Energy Agency (IAEA) inspectors currently perform periodic inspections at uranium enrichment plants to verify UF6 cylinder enrichment declarations. Measurements are typically performed with handheld high-resolution sensors on a sampling of cylinders taken to be representative of the facility’s entire cylinder inventory. These measurements are time-consuming, expensive, and assay only a small fraction of the total cylinder volume. An automated nondestructive assay system capable of providing enrichment measurements over the full volume of the cylinder could improve upon current verification practices in terms of efficiency and assay accuracy. This paper describes an approach denoted the Integrated Cylinder Verification Station (ICVS) that supports 100% cylinder verification, provides volume-averaged cylinder enrichment assay, and reduces inspector manpower needs. To allow field measurements to be collected to validate data collection algorithms, a prototype radiation detector positioning system was constructed. The system was designed to accurately position an array of radiation detectors along the length of a cylinder to measure UF6 enrichment. A number of alternative radiation shields for the detectors were included with the system. A collimated gamma-ray spectrometer module that allows translation of the detectors in the surrounding shielding to adjust the field of view, and a collimating plug in the end to further reduce the low-energy field of view, were also developed. Proof-of-principle measurements of neutron and high-energy gamma-ray signatures, using moderated neutron detectors and large-volume spectrometers in a fixed-geometry, portal-like configuration, supported an early assessment of the viability of the concept. The system has been used successfully on two testing campaigns at an AREVA fuel fabrication plant to scan over 30 product cylinders. This paper will describe the overall design of the detector positioning system and

  15. Helium cooling systems for large superconducting physics detector magnets

    NASA Astrophysics Data System (ADS)

    Green, M. A.

    The large superconducting detector magnets used for high energy physics experiments are virtually all indirectly cooled. In general, these detector magnets are not cryogenically stabilized. Therefore, there are a number of choices for cooling large indirectly cooled detector magnets. These choices include; 1) forced two-phase helium cooling driven by the helium refrigerator J-T circuit, 2) forced two-phase helium cooling driven by a helium pump, and 3) a peculation gravity feed cooling system which uses liquid helium from a large storage dewar. The choices for the cooling of a large detector magnet are illustrated by applying these concepts to a 4.2 meter diameter 0.5 tesla thin superconducting solenoid for an experiment at the Relativistic Heavy Ion Collider (RHIC).

  16. A prototype of wireless power and data acquisition system for large detectors

    NASA Astrophysics Data System (ADS)

    De Lurgio, P.; Djurcic, Z.; Drake, G.; Hashemian, R.; Kreps, A.; Oberling, M.; Pearson, T.; Sahoo, H.

    2015-06-01

    We have developed a prototype detector and data acquisition module that incorporates wireless power and wireless data transmission techniques. The module has no electrical connections. It receives power using photovoltaic devices, and communicates control, timing, trigger, and data using the 802.11n wireless communication standard. The work is part of a study for building a large detector having many readout channels, where it is desirable to reduce the cable plant and infrastructure. The system could also be deployed in smaller detectors that require mobility or are difficult to cable due to extreme conditions. We describe the design and operation of the prototype module, including benchmark performance measurements, and discuss aspect and issues in extrapolating to a large detector system.

  17. Bolometric detector systems for IR and mm-wave space astronomy

    NASA Technical Reports Server (NTRS)

    Church, S. E.; Lange, A. E.; Mauskopf, P. D.; Hristov, V.; Bock, J. J.; DelCastillo, H. M.; Beeman, J.; Ade, P. A. R.; Griffin, M. J.

    1996-01-01

    Recent developments in bolometric detector systems for millimeter and submillimeter wave space astronomy are described. Current technologies meet all the requirements for the high frequency instrument onboard the cosmic background radiation anisotropy satellite/satellite for the measurement of background anisotropies (COBRAS/SAMBA) platform. It is considered that the technologies that are currently being developed will significantly reduce the effective time constant and/or the cooling requirements of bolometric detectors. These technologies lend themselves to the fabrication of the large format arrays required for the Far Infrared and Submillimeter Space Telescope (FIRST). The scientific goals and detector requirements of the COBRAS/SAMBA platform that will use infrared bolometers are reviewed and the baseline detector system is described, including the feed optics, the infrared filters, the cold amplifiers and the warm readout electronics.

  18. Near optimal energy selective x-ray imaging system performance with simple detectors

    SciTech Connect

    Alvarez, Robert E.

    2010-02-15

    Purpose: This article describes a method to achieve near optimal performance with low energy resolution detectors. Tapiovaara and Wagner [Phys. Med. Biol. 30, 519-529 (1985)] showed that an energy selective x-ray system using a broad spectrum source can produce images with a larger signal to noise ratio (SNR) than conventional systems using energy integrating or photon counting detectors. They showed that there is an upper limit to the SNR and that it can be achieved by measuring full spectrum information and then using an optimal energy dependent weighting. Methods: A performance measure is derived by applying statistical detection theory to an abstract vector space of the line integrals of the basis set coefficients of the two function approximation to the x-ray attenuation coefficient. The approach produces optimal results that utilize all the available energy dependent data. The method can be used with any energy selective detector and is applied not only to detectors using pulse height analysis (PHA) but also to a detector that simultaneously measures the total photon number and integrated energy, as discussed by Roessl et al. [Med. Phys. 34, 959-966 (2007)]. A generalization of this detector that improves the performance is introduced. A method is described to compute images with the optimal SNR using projections in a ''whitened'' vector space transformed so the noise is uncorrelated and has unit variance in both coordinates. Material canceled images with optimal SNR can also be computed by projections in this space. Results: The performance measure is validated by showing that it provides the Tapiovaara-Wagner optimal results for a detector with full energy information and also a conventional detector. The performance with different types of detectors is compared to the ideal SNR as a function of x-ray tube voltage and subject thickness. A detector that combines two bin PHA with a simultaneous measurement of integrated photon energy provides near ideal

  19. Calibration of low-level beta-gamma coincidence detector systems for xenon isotope detection.

    PubMed

    Khrustalev, K; Wieslander, J S E; Auer, M; Gheddou, A

    2016-03-01

    The beta-gamma coincidence detector systems used for the measurement of the CTBT-relevant xenon isotopes (Xe-131m, Xe-133m, Xe-133 and Xe-135) in the International Monitoring System network and in the On-Site Inspection are reviewed. These detectors typically consist of a well-type or bore-through NaI crystal into which a measurement cell, serving also as a sample container, is inserted. This work describes the current calibration procedure for energy, resolution and efficiency, implementation challenges, availability and uncertainties of the specific nuclear decay data and the path forward to full calibration validation using GEANT4. PMID:26702548

  20. Photomultiplier tube detector performance and stability for the Earth Observing System's SOLSTICE II instrument

    NASA Astrophysics Data System (ADS)

    Drake, Virginia A.; McClintock, William E.; Kohnert, Richard A.; Woods, Thomas N.; Rottman, Gary J.

    2000-12-01

    The goal of the Earth Observing System (EOS) SOLar STellar Irradiance Comparison Experiment II (SOLSTICE II) is to measure the solar ultraviolet irradiance (115 nm - 320 nm) to within 5% of its absolute value with a 0.5% per year relative accuracy over the course of a minimum mission lifetime of five years. Most detectors degrade over time while studying the sun. The SOLSTICE instrument design is such that detector and optical system degradation is tracked by routinely observing a series of stable early-type stars. Any changes in the system may then be removed from the solar irradiance. Detector performance and stability lies at the heart of SOLSTICE experimental success. The SOLSTICE detectors are Hamamatsu R2078 PhotoMultiplier Tubes (PMTs). We have developed an integrated PMT package [PMT, PMT housing, (mu) -metal magnetic shield, high voltage divider, and pulse-amplifier discriminator (PAD)] that will achieve our performance objectives. We report here on both the design of the integrated detector package and the laboratory measurements of the operational lifetime performance characteristics of SOLSTICE detectors. These include pulse height distribution, quantum efficiency, photocathode surface uniformity, and magnetic susceptibility.

  1. Non-streaming high-efficiency perforated semiconductor neutron detectors, methods of making same and measuring wand and detector modules utilizing same

    DOEpatents

    McGregor, Douglas S.; Shultis, John K.; Rice, Blake B.; McNeil, Walter J.; Solomon, Clell J.; Patterson, Eric L.; Bellinger, Steven L.

    2010-12-21

    Non-streaming high-efficiency perforated semiconductor neutron detectors, method of making same and measuring wands and detector modules utilizing same are disclosed. The detectors have improved mechanical structure, flattened angular detector responses, and reduced leakage current. A plurality of such detectors can be assembled into imaging arrays, and can be used for neutron radiography, remote neutron sensing, cold neutron imaging, SNM monitoring, and various other applications.

  2. Application of radiochromic gel detector (FXG) for UVA dose measurements

    NASA Astrophysics Data System (ADS)

    Abukassem, Issam; Bero, Mamdouh A.

    2010-12-01

    Tissue equivalent radiochromic gel material containing ferrous ions, xylenol-orange ion indicator and gelatin as gelling agent (FXG) is known to be sensitive to γ- and X-rays; hence it has been used for ionizing radiation dosimetry. Changes in optical absorbance properties of FXG material over a wide region in the visible spectrum were found to be proportional to the radiation absorbed dose. An earlier study demonstrated the sensitivity of FXG gel detector to ultraviolet radiation and therefore that could give quantitative measure for UV exposure. This study focuses on the detection of UVA radiation (315-400 nm), which forms an important part (˜97%) of the natural solar UV radiation reaching the earth surface. A solar UV simulator device was used to deliver UVA radiation to FXG samples. The beam was optically modified to irradiate gel samples at an exposure level about 58 W/m 2, which is comparable to the summer natural UVA radiation measured outside the laboratory building at midday (˜60 W/m 2). Experimental results were used to generate mathematical second order formulas that give the relationship between UVA dose and optical absorbance changes observed at two wavelengths in the visible region of the spectrum—430 and 560 nm.

  3. Measurement of a high electrical quality factor in a niobium resonator for a gravitational radiation detector

    NASA Technical Reports Server (NTRS)

    Folkner, W. M.; Moody, M. V.; Richard, J.-P.

    1989-01-01

    The mechanical and electrical quality factors of a 10-g niobium resonator were measured at 4.4 K and were found to be 8.1 x 10 to the 6th, and 3.8 x 10 to the 6th, respectively. The value for the electrical quality factor is high enough for a system operating at 50 mK at a sensitivity level of one phonon. The resonator's low damping properties make it suitable for use as a transducer for a cryogenic three-mode gravitational radiation detector. A practical design is given for the mounting of the resonator on a 2400-kg aluminum-bar detector. Projections are made for the sensitivity of a 2400-kg bar instrumented as a three-mode system with this resonator inductively coupled to a SQUID.

  4. HPGe well-type detectors for neutron activation measurements on the Frascati Tokamak Upgrade tokamak

    SciTech Connect

    Bertalot, L.; Damiani, M.; Esposito, B.; Lagamba, L.; Podda, S.; Batistoni, P.; De Felice, P.; Biagini, R.

    1997-01-01

    We describe an improvement of the neutron activation system in operation on the Frascati Tokamak Upgrade (FTU) tokamak for the measurement of the total neutron yield. A HPGe well-type detector (200 cm{sup 3} active volume) is used to detect the photoemission from neutron activated samples ({sup 115m}In336.2 keV {gamma} rays from DD neutrons on indium for FTU). Due to their high geometrical efficiency, HPGe well-type detectors are particularly suited to the FTU low-level activity measurements. A particular effort has been devoted to the calibration of the measuring system. In particular, a multi-{gamma} calibration source (59{endash}1332 keV energy range) with a density of 7.31 g/cm{sup 3} consisting of a stack of indium foils has been prepared. This assures that the shape and volume of the calibration source are the same as those of the samples used in the actual measurements. The full-energy-peak efficiency at the {sup 115m}In336.2 keV line is 0.197 with an overall uncertainty of 2{percent} (1{sigma}). For a better characterization of the detector response as a function of the sample density, a further calibration source with the same geometry has been prepared in a gel aqueous solution (density {approximately}1 g/cm{sup 3}). The calibration curves for the well-type detector at the two different density values are compared. {copyright} {ital 1997 American Institute of Physics.}

  5. Development of a modular directional and spectral neutron detection system using solid-state detectors

    NASA Astrophysics Data System (ADS)

    Weltz, A.; Torres, B.; McElwain, L.; Dahal, R.; Huang, J.; Bhat, I.; Lu, J.; Danon, Y.

    2015-08-01

    A detection system using room-temperature, microstructured solid-state thermal neutron detectors with very low leakage current has been developed at Rensselaer Polytechnic Institute (RPI) with the ability to provide positional and spectral information about an unknown neutron source. The Directional and Spectral Neutron Detection System (DSNDS) utilizes a set of small-but-scalable, zero-bias solid-state thermal neutron detectors which have demonstrated high thermal neutron efficiency and adequate gamma insensitivity. The DSNDS can gather spectral information about an unknown neutron source with a relatively small number of detectors, simplifying the detector electronics and minimizing cost; however, the DSNDS is modular in design, providing the capability to increase the detection efficiency and angular resolution. The system used in this paper was comprised of a stack of five high-density polyethylene (HDPE) disks with a thickness of 5 cm and a diameter of 30 cm, the middle disk containing 16 detectors positioned as one internal (moderated) and one external (unmoderated) ring of solid-state neutron detectors. These two detector rings provide the ability to determine the directionality of a neutron source. The system gathers spectral information about a neutron source in two ways: by measuring the relative responses of the internal ring of detectors as well as measuring the ratio of the internal-to-external detector responses. Experiments were performed with variable neutron spectra: a 252Cf spontaneous fission neutron source which was HDPE moderated, HDPE reflected, lead (Pb) shielded, and bare in order to benchmark the system for spectral sensitivity. Simulations were performed in order to characterize the neutron spectra corresponding to each of the source configurations and showed agreement with experimental measurements. The DSNDS demonstrates the ability to determine the relative angle of the source and the hardness of the neutron spectrum. By using the

  6. The LHC Compact Muon Solenoid experiment Detector Control System

    NASA Astrophysics Data System (ADS)

    Bauer, G.; Beccati, B.; Behrens, U.; Biery, K.; Bouffet, O.; Branson, J.; Bukowiec, S.; Cano, E.; Cheung, H.; Ciganek, M.; Cittolin, S.; Coarasa, J. A.; Deldicque, C.; Dupont, A.; Erhan, S.; Gigi, D.; Glege, F.; Gomez-Reino, R.; Hatton, D.; Holzner, A.; Hwong, Y. L.; Masetti, L.; Meijers, F.; Meschi, E.; Mommsen, R. K.; Moser, R.; O'Dell, V.; Orsini, L.; Paus, C.; Petrucci, A.; Pieri, M.; Racz, A.; Raginel, O.; Sakulin, H.; Sani, M.; Schieferdecker, P.; Schwick, C.; Shpakov, D.; Simon, M.; Sumorok, K.

    2011-12-01

    The Compact Muon Solenoid (CMS) experiment at CERN is a multi-purpose experiment designed to exploit the physics of proton-proton collisions at the Large Hadron Collider collision energy (14TeV at centre of mass) over the full range of expected luminosities (up to 1034cm-2s-1). The CMS detector control system (DCS) ensures a safe, correct and efficient operation of the detector so that high quality physics data can be recorded. The system is also required to operate the detector with a small crew of experts who can take care of the maintenance of its software and hardware infrastructure. The subsystems size sum up to more than a million parameters that need to be supervised by the DCS. A cluster of roughly 100 servers is used to provide the required processing resources. A scalable approach has been chosen factorizing the DCS system as much as possible. CMS DCS has made clear a division between its computing resources and functionality by creating a computing framework allowing plugging in of functional components. DCS components are developed by the subsystems expert groups while the computing infrastructure is developed centrally. To ensure the correct operation of the detector, DCS organizes the communication between the accelerator and the experiment systems making sure that the detector is in a safe state during hazardous situations and is fully operational when stable conditions are present. This paper describes the current status of the CMS DCS focusing on operational aspects and the role of DCS in this communication.

  7. Cooling and shielding systems for infrared detectors - requirements and limits.

    PubMed

    Wiecek, B

    2005-01-01

    This paper presents three main cooling systems used for infrared detectors. At first thermoelectric devices are discussed. They allow cooling down the detector with low efficiency and not to the very low temperature. They do not generate any vibrations and therefore are suitable for thermal detectors, where the microphone effect can decrease their performance. Photon detectors need to be cooled down even to 77K or better. The only way to have such deep cooling is to use the cooler based on thermodynamic cycle such as Stirling one. With the high efficiency one can easily obtain cryogenic temperature for a detector. The electromagnetic noise and vibration generation are the main disadvantages of using such devices. Joule-Thomson effect during gas expansion is 3rdcooling system discussed in the paper. It is highly effective process, used for gas liquefaction too. The working gas is being removed during cooling into the atmosphere, so the need of continuous supplying with compressed one, what makes this system very difficult for remote applications. In the paper, simple calculations are presented to illustrate the advantages and disadvantages of the different cooling systems. PMID:17282258

  8. Data processing for soft X-ray diagnostics based on GEM detector measurements for fusion plasma imaging

    NASA Astrophysics Data System (ADS)

    Czarski, T.; Chernyshova, M.; Pozniak, K. T.; Kasprowicz, G.; Byszuk, A.; Juszczyk, B.; Wojenski, A.; Zabolotny, W.; Zienkiewicz, P.

    2015-12-01

    The measurement system based on GEM - Gas Electron Multiplier detector is developed for X-ray diagnostics of magnetic confinement fusion plasmas. The Triple Gas Electron Multiplier (T-GEM) is presented as soft X-ray (SXR) energy and position sensitive detector. The paper is focused on the measurement subject and describes the fundamental data processing to obtain reliable characteristics (histograms) useful for physicists. So, it is the software part of the project between the electronic hardware and physics applications. The project is original and it was developed by the paper authors. Multi-channel measurement system and essential data processing for X-ray energy and position recognition are considered. Several modes of data acquisition determined by hardware and software processing are introduced. Typical measuring issues are deliberated for the enhancement of data quality. The primary version based on 1-D GEM detector was applied for the high-resolution X-ray crystal spectrometer KX1 in the JET tokamak. The current version considers 2-D detector structures initially for the investigation purpose. Two detector structures with single-pixel sensors and multi-pixel (directional) sensors are considered for two-dimensional X-ray imaging. Fundamental output characteristics are presented for one and two dimensional detector structure. Representative results for reference source and tokamak plasma are demonstrated.

  9. Determination of TFTR far-field neutron detector efficiencies by local neutron flux spectrum measurement

    NASA Astrophysics Data System (ADS)

    Jassby, D. L.; Ascione, G.; Kugel, H. W.; Roquemore, A. L.; Barcelo, T. W.; Kumar, A.

    1997-01-01

    Neutron detectors have often been located on the tokamak fusion test reactor (TFTR) test cell floor 3 m or more from the vacuum vessel for ease of detector access, to reduce radiation damage, minimize count saturation problems, and to avoid high magnetic fields. These detectors include Si surface-barrier diodes, fission chambers, natural diamond detectors, and T2 production in a moderated 3He cell. To evaluate the performance of these detectors during deuterium-tritium (D-T) operation, we determined the neutron flux spectrum incident on the principal detector enclosure using nuclide sample sets containing Al, Ti, Fe, Co, Cu, Zn, Ni, Zr, Nb, In, and Au activation foils. Foils were installed and then removed after ample exposure to TFTR D-T neutrons. High efficiency, high purity Ge detectors were used for gamma spectroscopy of the irradiated foils. The incident neutron fluence and spectral distribution were unfolded from the measured results, and used to derive absolute detector efficiencies.

  10. Sub-millimeter wave frequency heterodyne detector system

    NASA Technical Reports Server (NTRS)

    Siegel, Peter H. (Inventor); Dengler, Robert (Inventor); Mueller, Eric R. (Inventor)

    2009-01-01

    The present invention relates to sub-millimeter wave frequency heterodyne imaging systems. More specifically, the present invention relates to a sub-millimeter wave frequency heterodyne detector system for imaging the magnitude and phase of transmitted power through or reflected power off of mechanically scanned samples at sub-millimeter wave frequencies.

  11. Sub-millimeter wave frequency heterodyne detector system

    NASA Technical Reports Server (NTRS)

    Siegel, Peter H. (Inventor); Dengler, Robert (Inventor); Mueller, Eric R. (Inventor)

    2010-01-01

    The present invention relates to sub-millimeter wave frequency heterodyne imaging systems. More specifically, the present invention relates to a sub-millimeter wave frequency heterodyne detector system for imaging the magnitude and phase of transmitted power through or reflected power off of mechanically scanned samples at sub-millimeter wave frequencies.

  12. Preliminary design study of astronomical detector cooling system

    NASA Technical Reports Server (NTRS)

    Norman, R. H.

    1976-01-01

    The preliminary design of an astronomical detector cooling system for possible use in the NASA C-141 Airborne Infrared Observatory is presented. The system consists of the following elements: supercritical helium tank, Joule-Thomson supply gas conditioner, Joule-Thomson expander (JTX), optical cavity dewar, optical cavity temperature controller, adjustable J-T discharge gas pressure controller, and vacuum pump.

  13. 46 CFR 108.407 - Detectors for electric fire detection system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.407 Detectors for electric fire... detract from the effectiveness of the detector; and (3) Damage to the detector is unlikely to occur if...

  14. Practical attacks on decoy-state quantum-key-distribution systems with detector efficiency mismatch

    NASA Astrophysics Data System (ADS)

    Fei, Yangyang; Gao, Ming; Wang, Weilong; Li, Chaobo; Ma, Zhi

    2015-05-01

    To the active-basis-choice decoy-state quantum-key-distribution systems with detector efficiency mismatch, we present a modified attack strategy, which is based on the faked states attack, with quantum nondemolition measurement ability to restress the threat of detector efficiency mismatch. Considering that perfect quantum nondemolition measurement ability doesn't exist in real life, we also propose a practical attack strategy using photon number resolving detectors. Theoretical analysis and numerical simulation results show that, without changing the channel, our attack strategies are serious threats to decoy-state quantum-key-distribution systems. The eavesdropper may get some information about the secret key without causing any alarms. Besides, the lower bound of detector efficiency mismatch to run our modified faked states attack successfully with perfect quantum nondemolition measurement ability is also given out, which provides the producers of quantum-key-distribution systems with a reference and can be treated as the approximate secure bound of detector efficiency mismatch in decoy-state quantum-key-distribution systems.

  15. Systemic risk measures

    NASA Astrophysics Data System (ADS)

    Guerra, Solange Maria; Silva, Thiago Christiano; Tabak, Benjamin Miranda; de Souza Penaloza, Rodrigo Andrés; de Castro Miranda, Rodrigo César

    2016-01-01

    In this paper we present systemic risk measures based on contingent claims approach and banking sector multivariate density. We also apply network measures to analyze bank common risk exposure. The proposed measures aim to capture credit risk stress and its potential to become systemic. These indicators capture not only individual bank vulnerability, but also the stress dependency structure between them. Furthermore, these measures can be quite useful for identifying systemically important banks. The empirical results show that these indicators capture with considerable fidelity the moments of increasing systemic risk in the Brazilian banking sector in recent years.

  16. Wideband 1.064 micrometer detector evaluation. [for application to space laser communication systems

    NASA Technical Reports Server (NTRS)

    Green, S. I.

    1977-01-01

    Several types of communications detectors for use in a 400 Mbps 1.064 micrometer laser communication system were evaluated and characterized. The communication system Bit Error Rate (BER) performance was measured, and test results for the best detector of each type are summarized. The complete BER curves are presented. The 400 Mbps 1.064 micrometer communication system receiver test bed is described. The best performance levels which can be achieved by focusing the signal to diffraction limited spots on the photosensitive area are cited.

  17. Indirect measurement sub floor radon using passive detectors

    SciTech Connect

    Chittaporn, P.; Harley, N.H.

    1996-06-01

    Hourly {sup 222}Rn measurements have been made in an 80-y-old wood frame house for about 6 y. The average {sup 222}Rn concentration in the basement is 40 Bq m{sup -3}. Two holes were drilled in the slab and standard 150 cfm fans installed via a short length of PVC pipe. The air from beneath the slab was blown directly into the basement to indirectly study the long term variability in the subslab gas concentration. Passive CR-39 {sup 222}Rn alpha track detectors of our design were placed weekly in the fan exit air to estimate the average subslab gas concentration. Instantaneous subslab gas {sup 222}Rn concentration was measured directly using scintillation flasks filled from adjacent floor ports once per week. The agreement with the indirect measurements was good. The average weekly basement {sup 222}Rn concentration correlated well with the weekly integrated soil gas {sup 222}Rn concentration. An increase from 44 to 74 Bq m{sup -3} in basement air corresponded to an increase of 1.8 to 3.7 MBq m{sup -3} in subslab soil gas. An increase in weekly average temperature from 10{degrees} to 30{degrees}C increased the integrated soil gas concentration from 1.8 to 3.7 MBq m{sup -3}, and an increase in average wind speed from calm to 0.5 in s{sup -1} decreased the subslab concentration from 3.7 to 1.8 MBq m{sup -3}.

  18. Clinical radiation therapy measurements with a new commercial synthetic single crystal diamond detector.

    PubMed

    Laub, Wolfram U; Crilly, Richard

    2014-01-01

    A commercial version of a synthetic single crystal diamond detector (SCDD) in a Schottky diode configuration was recently released as the new type 60019 microDiamond detector (PTW-Freiburg, Germany). In this study we investigate the dosimetric properties of this detector to independently confirm that findings from the developing group of the SCDDs still hold true for the commercial version of the SCDDs. We further explore if the use of the microDiamond detector can be expanded to high-energy photon beams of up to 15 MV and to large field measure- ments. Measurements were performed with an Elekta Synergy linear accelerator delivering 6, 10, and 15 MV X-rays, as well as 6, 9, 12, 15, and 20 MeV electron beams. The dependence of the microdiamond detector response on absorbed dose after connecting the detector was investigated. Furthermore, the dark current of the diamond detector was observed after irradiation. Results are compared to similar results from measurements with a diamond detector type 60003. Energy dependency was investigated, as well. Photon depth-dose curves were measured for field sizes 3 × 3, 10 × 10, and 30 × 30 cm2. PDDs were measured with the Semiflex type 31010 detector, microLion type 31018 detector, P Diode type 60016, SRS Diode type 60018, and the microDiamond type 60019 detector (all PTW-Freiburg). Photon profiles were measured at a depth of 10 cm. Electron depth-dose curves normalized to the dose maximum were measured with the 14 × 14 cm2 electron cone. PDDs were measured with a Markus chamber type 23343, an E Diode type 60017 and the microDiamond type 60019 detector (all PTW-Freiburg). Profiles were measured with the E Diode and microDiamond at half of D90, D90, D70, and D50 depths and for electron cone sizes of 6 × 6 cm2, 14 × 14 cm2, and 20 × 20 cm2. Within a tol- erance of 0.5% detector response of the investigated detector was stable without any preirradiation. After preirradition with approximately 250 cGy the detector response

  19. Status of the cryogenic payload system for the KAGRA detector

    NASA Astrophysics Data System (ADS)

    Kumar, R.; Chen, D.; Hagiwara, A.; Kajita, T.; Miyamoto, T.; Suzuki, T.; Sakakibara, Y.; Tanaka, H.; Yamamoto, K.; Tomaru, T.

    2016-05-01

    KAGRA is a large scale cryogenic gravitational wave telescope currently under construction in Japan. The detector is located 200 m underground in the Kamioka mine and will employ cryogenic technologies to achieve high sensitivity. The mirrors of the interferometer will be in the form of multiple pendulums and the final stages will employ cryogenic sapphire suspension system operating at 20 Kelvin. In this paper we report the ongoing activities of the cryogenic payload group involved in the design and fabrication of the cryogenic payload system for the KAGRA detector

  20. The James Webb Space Telescope and its Detector Systems

    NASA Technical Reports Server (NTRS)

    Rauscher, Bernard J.

    2009-01-01

    We describe the James Webb Space Telescope (JWST) mission, it's scientific goals, and how these drive detector systems technology. We describe the specific technologies that were developed (2.5 um and 5 um cutoff HgCdTe HAWAIIW2RG arrays for the 3 near-IR instruments, SIDECAR ASICs for the near-IR instruments, and Si:As arrays for the raid-IR instrument). We describe status in each of these areas with an emphasis on the performance of the flight detector systems themselves.

  1. Terrestrial detector for low-frequency gravitational waves based on full tensor measurement

    NASA Astrophysics Data System (ADS)

    Paik, H. J.; Moody, M. V.; Griggs, C. E.; Lee, H. M.; Majorana, E.

    2016-05-01

    Two serious obstacles in constructing terrestrial gravitational wave (GW) detectors that can resolve low-frequency signals (≤ 10 Hz) are seismic and Newtonian noises. Here we describe a new detector concept by adopting new measurement techniques and configurations to overcome the present low-frequency barrier due to these noises. Six magnetically levitated superconducting test masses, widely separated along three orthogonal axes, each with three degrees of freedom, constitute a tensor GW detector. The tensor outputs could be combined to better reject the Newtonian noise. Unlike current two-dimensional detectors, a single tensor detector is able to determine the polarization of GWs and the direction to sources on its own.

  2. Measurements of Si hybrid CMOS x-ray detector characteristics

    NASA Astrophysics Data System (ADS)

    Bongiorno, Stephen D.; Falcone, Abraham D.; Burrows, David N.; Cook, Robert

    2010-07-01

    The recent development of active pixel sensors as X-Ray focal plane arrays will place them in contention with CCDs on future satellite missions. Penn State University (PSU) is working with Teledyne Imaging Sensors (TIS) to develop X-Ray Hybrid CMOS devices (HCDs), a type of active pixel sensor with fast frame rates, adaptable readout timing and geometry, low power consumption, and inherent radiation hardness. CCDs have been used with great success on the current generation of X-Ray telescopes (e.g. Chandra, XMM, Suzaku, and Swift). However, their bucket-brigade readout architecture, which transfers charge across the chip with discrete component readout electronics, results in clockrate limited readout speeds that cause pileup (saturation) of bright sources and an inherent susceptibility to radiation induced displacement damage that limits mission lifetime. In contrast, HCDs read pixels through the detector substrate with low power, on-chip readout integrated circuits. Faster frame rates, achieved with adaptable readout timing and geometry, will allow the next generation's larger effective area telescopes to observe brighter sources free of pileup. In HCDs, radiation damaged lattice sites affect a single pixel instead of an entire row. The PSU X-ray group is currently testing 4 Teledyne HCDs, with low cross-talk CTIA devices in development. We will report laboratory measurements of HCD readnoise, interpixel-capacitance and its impact on event selection, linearity, and energy resolution as a function of energy.

  3. Imaging MAMA detector systems. [Multi-Anode Microchannel Array

    NASA Technical Reports Server (NTRS)

    Slater, David C.; Timothy, J. G.; Morgan, Jeffrey S.; Kasle, David B.

    1990-01-01

    Imaging multianode microchannel array (MAMA) detector systems with 1024 x 1024 pixel formats have been produced for visible and UV wavelengths; the UV types employ 'solar blind' photocathodes whose detective quantum efficiencies are significantly higher than those of currently available CCDs operating at far-UV and EUV wavelengths. Attention is presently given to the configurations and performance capabilities of state-of-the-art MAMA detectors, with a view to the development requirements of the hybrid electronic circuits needed for forthcoming spacecraft-sensor applications. Gain, dark noise, uniformity, and dynamic range performance data are presented for the curved-channel 'chevron', 'Z-plate', and helical-channel high gain microchannel plate configurations that are currently under evaluation with MAMA detector systems.

  4. READOUT SYSTEM FOR ARRAYS OF FRISCH-RING CDZNTE DETECTORS.

    SciTech Connect

    CUI, Y.; BOLOTNIKOV, A.E.; CAMARDA, G.S.; DE GERONIMO, G.; O'CONNOR, P.; JAMES, R.B.; KARGAR, A.; HARRISON, M.J.; MCGREGOR, D.S.

    2006-10-29

    Frisch-ring CdZnTe detectors have demonstrated good energy resolution for identifying isotopes, <1% FWHM at 662 keV, and good efficiency for detecting gamma rays. We will fabricate and test at Brookhaven National Laboratory an integrated module of a 64-element array of 6 x 6 x 12 mm{sup 3} Frisch-ring detectors, coupled with a readout electronics system. It supports 64 readout channels, and includes front-end electronics, signal processing circuit, USB interface and high-voltage power supply. The data-acquisition software is used to process the data stream, which includes amplitude and timing information for each detected event. This paper describes the design and assembly of the detector modules, readout electronics, and a conceptual prototype system. Some test results are also reported.

  5. A Wireless Sensor Network-Based Portable Vehicle Detector Evaluation System

    PubMed Central

    Yoo, Seong-eun

    2013-01-01

    In an upcoming smart transportation environment, performance evaluations of existing Vehicle Detection Systems are crucial to maintain their accuracy. The existing evaluation method for Vehicle Detection Systems is based on a wired Vehicle Detection System reference and a video recorder, which must be operated and analyzed by capable traffic experts. However, this conventional evaluation system has many disadvantages. It is inconvenient to deploy, the evaluation takes a long time, and it lacks scalability and objectivity. To improve the evaluation procedure, this paper proposes a Portable Vehicle Detector Evaluation System based on wireless sensor networks. We describe both the architecture and design of a Vehicle Detector Evaluation System and the implementation results, focusing on the wireless sensor networks and methods for traffic information measurement. With the help of wireless sensor networks and automated analysis, our Vehicle Detector Evaluation System can evaluate a Vehicle Detection System conveniently and objectively. The extensive evaluations of our Vehicle Detector Evaluation System show that it can measure the traffic information such as volume counts and speed with over 98% accuracy. PMID:23344388

  6. Development of a gated scintillation fiber neutron detector for areal density measurements of inertial confinement fusion capsules

    NASA Astrophysics Data System (ADS)

    Izumi, N.; Lerche, R. A.; Phillips, T. W.; Schmid, G. J.; Moran, M. J.; Koch, J. A.; Azechi, H.; Sangster, T. C.

    2003-03-01

    A detector for fuel areal density measurements in inertial confinement fusion capsules has been designed. Observation of neutrons scattered in an imploded deuterium capsule (0.27-0.6 MeV) is a promising method for areal density measurements in the National Ignition Facility DD surrogate capsules. In order to detect scattered neutrons, we need to (1) suppress interference due to the strong direct neutron burst and (2) suppress the background produced by neutrons scattering on nontarget material (mainly from the target chamber). In our detector system, we suppress direct neutrons by gating the detector. We suppress the nontarget background neutrons by placing the detector outside the target chamber and limiting the view of the detector with collimators. In addition, we are developing a lithium-glass scintillation-fiber detector (LG-SCIFI) to detect the scattered neutrons. The LG-SCIFI will work as a multichannel scintillator array. The scintillation signal will be amplified by a microchannel plate image intensifier, which is gated to accept signals only in a specific time-of-flight window for the scattered neutrons. The gated scintillation image will be recorded by a charge-coupled device. Since the detector is segmented, neutron detection events will be clearly identified as bright spots in the gated image.

  7. The Detector System for the Stratospheric Kinetic Inductance Polarimeter ( Skip)

    NASA Astrophysics Data System (ADS)

    Johnson, B. R.; Ade, P. A. R.; Araujo, D.; Bradford, K. J.; Chapman, D.; Day, P. K.; Didier, J.; Doyle, S.; Eriksen, H. K.; Flanigan, D.; Groppi, C.; Hillbrand, S.; Jones, G.; Limon, M.; Mauskopf, P.; McCarrick, H.; Miller, A.; Mroczkowski, T.; Reichborn-Kjennerud, B.; Smiley, B.; Sobrin, J.; Wehus, I. K.; Zmuidzinas, J.

    2014-09-01

    The stratospheric kinetic inductance polarimeter is a proposed balloon-borne experiment designed to study the cosmic microwave background, the cosmic infrared background and Galactic dust emission by observing 1,133 deg of sky in the Northern Hemisphere with launches from Kiruna, Sweden. The instrument contains 2,317 single-polarization, horn-coupled, aluminum lumped-element kinetic inductance detectors ( Lekids). The Lekids will be maintained at 100 mK with an adiabatic demagnetization refrigerator. The polarimeter operates in two configurations, one sensitive to a spectral band centered on 150 GHz and the other sensitive to 260 and 350 GHz bands. The detector readout system is based on the ROACH-1 board, and the detectors will be biased below 300 MHz. The detector array is fed by an F/2.4 crossed-Dragone telescope with a 500 mm aperture yielding a 15 arcmin FWHM beam at 150 GHz. To minimize detector loading and maximize sensitivity, the entire optical system will be cooled to 1 K. Linearly polarized sky signals will be modulated with a metal-mesh half-wave plate that is mounted at the telescope aperture and rotated by a superconducting magnetic bearing. The observation program consists of at least two, 5-day flights beginning with the 150 GHz observations.

  8. SU-E-T-390: Characterization of the PTW Synthetic Diamond Detector for Radiation Therapy Measurements

    SciTech Connect

    Stathakis, S; Markovic, M; Mavroidis, P; Papanikolaou, N

    2014-06-01

    Purpose: To investigate the dosimetric properties of new commercially available synthetic single crystal diamond detector under irradiation with therapeutic photon beams from linear accelerators. Methods: A single crystal diamond detector was tested using 6MV photon beam. The detector performance was evaluated for reproducibility, linearity with dose, dose rate dependence, angular dependence, collection efficiency, and measurement of output factors. Lateral field profiles, and percentage depth dose profiles were measured and compared against commercially available detectors. Results: Reproducibility of the detector measurement has a standard deviation of 0.1%. A good linear behavior of the detector response as a function of the delivered dose is observed with deviations below ±0.03% in the dose range from 0.1 to 5Gy. In addition, the detector response is dose rate independent, with deviations below 0.1% in the investigated dose rate range from 1 to 10Gy per min. Charge collection efficiency deviations were within 0.07% from 1 to 10Gy. No angular dependence along the radial direction while up to 1.3% angular dependence was observed in the axial direction. Percentage depth dose curves obtained from the diamond detector are in good agreement with the ones from the reference dosimeters. Lateral beam profile measurements show an overall good agreement among detectors, taking into account their respective geometrical features. The spatial resolution of solid state detectors is confirmed to be better than that of ionization chambers, being the one from the diamond detector comparable to that of the silicon diode. Conclusions: The observed dosimetric properties indicate that the tested diamond detector is a suitable candidate for clinical photon beam dosimetry. The agreement with reference dosimeters show that the detector is suitable for measurements for large fields as well as small fields as the ones used for stereotactic radiotherapy.

  9. Characterization of on-site digital mammography systems: Direct versus indirect conversion detectors

    NASA Astrophysics Data System (ADS)

    Youn, Hanbean; Han, Jong Chul; Yun, Seungman; Kam, Soohwa; Cho, Seungryong; Kim, Ho Kyung

    2015-06-01

    We investigated the performances of two digital mammography systems. The systems use a cesium-iodide (CsI) scintillator and an amorphous selenium ( a-Se) photoconductor for X-ray detection and are installed in the same hospital. As physical metrics, we measured the modulationtransfer function (MTF), the noise-power spectrum (NPS), and the detective quantum efficiency (DQE). In addition, we analyzed the contrast-detail performances of the two systems by using a commercial contrast-detail phantom. The CsI-based indirect conversion detector provided better MTF and DQE performances than the a-Se-based direct conversion detector whereas the former provided a poorer NPS performance than the latter. These results are explained by the fact that the CsI-based detector used an MTF restoration preprocessing algorithm. The a-Se-based detector showed better contrast-detail performance than the CsI-based detector. We believe that the highfrequency noise characteristic of a detector is more responsible for the visibility of small details than its spatial-resolution performance.

  10. Comparison of UV-B measurements performed with a Brewer spectrophotometer and a new UVB-1 broad band detector

    NASA Technical Reports Server (NTRS)

    Bais, Alkiviadis F.; Zerefos, Christos S.; Meleti, Charicleia; Ziomas, Ioannis C.

    1994-01-01

    Measurements of the UV-B erythemal dose, based on solar spectra acquired with a Brewer spectrophotometer at Thessaloniki, Greece, are compared to measurements performed with the recently introduced, by the Yankee Environmental Systems, (Robertson type) broad band solar UV-B detector. The spectral response function of this detector, when applied to the Brewer spectral UV-B measurements, results in remarkably comparable estimates of the erythemal UV-B dose. The two instruments provide similar information on the UV-B dose when they are cross-examined under a variety of meteorological and atmospheric conditions and over the a large range of solar zenith angles and total ozone.

  11. Development of a simple test device for spindle error measurement using a position sensitive detector

    NASA Astrophysics Data System (ADS)

    Liu, Chien-Hung; Jywe, Wen-Yuh; Lee, Hau-Wei

    2004-09-01

    A new spindle error measurement system has been developed in this paper. It employs a design development rotational fixture with a built-in laser diode and four batteries to replace a precision reference master ball or cylinder used in the traditional method. Two measuring devices with two position sensitive detectors (one is designed for the measurement of the compound X-axis and Y-axis errors and the other is designed with a lens for the measurement of the tilt angular errors) are fixed on the machine table to detect the laser point position from the laser diode in the rotational fixture. When the spindle rotates, the spindle error changes the direction of the laser beam. The laser beam is then divided into two separated beams by a beam splitter. The two separated beams are projected onto the two measuring devices and are detected by two position sensitive detectors, respectively. Thus, the compound motion errors and the tilt angular errors of the spindle can be obtained. Theoretical analysis and experimental tests are presented in this paper to separate the compound errors into two radial errors and tilt angular errors. This system is proposed as a new instrument and method for spindle metrology.

  12. An experimental comparison of detector performance for direct and indirect digital radiography systems.

    PubMed

    Samei, Ehsan; Flynn, Michael J

    2003-04-01

    Current flat-panel detectors either directly convert x-ray energy to electronic charge or use indirect conversion with an intermediate optical process. The purpose of this work was to compare direct and indirect detectors in terms of their modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE). Measurements were made on three flat-panel detectors, Hologic Direct-Ray DR-1000 (DRC), GE Revolution XQ/i (XQ/i), and Philips Digital Diagnost (DiDi) using the IEC-defined RQA5 (approximately 74 kVp, 21 mm Al) and RQA9 (approximately 120 kVp, 40 mm Al) radiographic techniques. The presampled MTFs of the systems were measured using an edge method [Samei et al., Med. Phys. 25, 102 (1998)]. The NPS of the systems were determined for a range of exposure levels by two-dimensional (2D) Fourier analysis of uniformly exposed radiographs [Flynn and Samei, Med. Phys. 26, 1612 (1999)]. The DQEs were assessed from the measured MTF, NPS, exposure, and estimated ideal signal-to-noise ratios. For the direct system, the MTF was found to be significantly higher than that for the indirect systems and very close to an ideal function associated with the detector pixel size. The NPS for the direct system was found to be constant in relation to frequency. For the XQ/i and DRC systems, the DQE results reflected expected differences based on the absorption efficiency of the different detector materials. Using RQA5, the measured DQE values in the diagonal (and axial) direction(s) at spatial frequencies of 0.15 mm(-1) and 2.5 mm(-1) were 64% (64%) and 20% (15%) for the XQ/i system, and 38% (38%) and 20% (20%) for the DRC, respectively. The DQE results of the DiDi system were difficult to interpret due to additional preprocessing steps in that system. PMID:12722813

  13. Ice Detector and Deicing Fluid Effectiveness Monitoring System

    NASA Technical Reports Server (NTRS)

    Seegmiller, H. Lee B. (Inventor)

    1996-01-01

    An ice detector and deicing fluid effectiveness monitoring system for an aircraft is disclosed. The ice detection portion is particularly suited for use in flight to notify the flight crew of an accumulation of ice on an aircraft lifting and control surfaces, or helicopter rotors, whereas the deicing fluid effectiveness monitoring portion is particularly suited for use on the ground to notify the flight crew of the possible loss of the effectiveness of the deicing fluid. The ice detection portion comprises a temperature sensor and a parallel arrangement of electrodes whose coefficient of coupling is indicative of the formation of the ice, as well as the thickness of the formed ice. The fluid effectiveness monitoring portion comprises a temperature sensor and an ionic-conduction cell array that measures the conductivity of the deicing fluid which is indicative of its concentration and, thus, its freezing point. By measuring the temperature and having knowledge of the freezing point of the deicing fluid, the fluid effectiveness monitoring portion predicts when the deicing fluid may lose its effectiveness because its freezing point may correspond to the temperature of the ambient.

  14. Energy and coincidence time resolution measurements of CdTe detectors for PET

    PubMed Central

    Ariño, G.; Chmeissani, M.; De Lorenzo, G.; Puigdengoles, C.; Cabruja, E.; Calderón, Y.; Kolstein, M.; Macias-Montero, J.G.; Martinez, R.; Mikhaylova, E.; Uzun, D.

    2013-01-01

    We report on the characterization of 2 mm thick CdTe diode detector with Schottky contacts to be employed in a novel conceptual design of PET scanner. Results at −8°C with an applied bias voltage of −1000 V/mm show a 1.2% FWHM energy resolution at 511 keV. Coincidence time resolution has been measured by triggering on the preamplifier output signal to improve the timing resolution of the detector. Results at the same bias and temperature conditions show a FWHM of 6 ns with a minimum acceptance energy of 500 keV. These results show that pixelated CdTe Schottky diode is an excellent candidate for the development of next generation nuclear medical imaging devices such as PET, Compton gamma cameras, and especially PET-MRI hybrid systems when used in a magnetic field immune configuration. PMID:23750177

  15. Measurement and deconvolution of detector response time for short HPM pulses: Part 1, Microwave diodes

    SciTech Connect

    Bolton, P.R.

    1987-06-01

    A technique is described for measuring and deconvolving response times of microwave diode detection systems in order to generate corrected input signals typical of an infinite detection rate. The method has been applied to cases of 2.86 GHz ultra-short HPM pulse detection where pulse rise time is comparable to that of the detector; whereas, the duration of a few nanoseconds is significantly longer. Results are specified in terms of the enhancement of equivalent deconvolved input voltages for given observed voltages. The convolution integral imposes the constraint of linear detector response to input power levels. This is physically equivalent to the conservation of integrated pulse energy in the deconvolution process. The applicable dynamic range of a microwave diode is therefore limited to a smaller signal region as determined by its calibration.

  16. Multiplexed fluorescence detector system for capillary electrophoresis

    DOEpatents

    Yeung, Edward S.; Taylor, John A.

    1994-06-28

    A fluorescence detection system for capillary electrophoresis is provided wherein the detection system can simultaneously excite fluorescence and substantially simultaneously monitor separations in multiple capillaries. This multiplexing approach involves laser irradiation of a sample in a plurality of capillaries through optical fibers that are coupled individually with the capillaries. The array is imaged orthogonally through a microscope onto a charge-coupled device camera for signal analysis.

  17. Multiplexed fluorescence detector system for capillary electrophoresis

    DOEpatents

    Yeung, Edward S.; Taylor, John A.

    1996-03-12

    A fluorescence detection system for capillary electrophoresis is provided wherein the detection system can simultaneously excite fluorescence and substantially simultaneously monitor separations in multiple capillaries. This multiplexing approach involves laser irradiation of a sample in a plurality of capillaries through optical fibers that are coupled individually with the capillaries. The array is imaged orthogonally through a microscope onto a charge-coupled device camera for signal analysis.

  18. Multiplexed fluorescence detector system for capillary electrophoresis

    DOEpatents

    Yeung, E.S.; Taylor, J.A.

    1994-06-28

    A fluorescence detection system for capillary electrophoresis is provided wherein the detection system can simultaneously excite fluorescence and substantially simultaneously monitor separations in multiple capillaries. This multiplexing approach involves laser irradiation of a sample in a plurality of capillaries through optical fibers that are coupled individually with the capillaries. The array is imaged orthogonally through a microscope onto a charge-coupled device camera for signal analysis. 14 figures.

  19. Multiplexed fluorescence detector system for capillary electrophoresis

    DOEpatents

    Yeung, E.S.; Taylor, J.A.

    1996-03-12

    A fluorescence detection system for capillary electrophoresis is provided wherein the detection system can simultaneously excite fluorescence and substantially simultaneously monitor separations in multiple capillaries. This multiplexing approach involves laser irradiation of a sample in a plurality of capillaries through optical fibers that are coupled individually with the capillaries. The array is imaged orthogonally through a microscope onto a charge-coupled device camera for signal analysis. 14 figs.

  20. The magnetic design and field measurement of Fermilab collider detectors: CDF (the Collider Detector at Fermilab) and D0

    SciTech Connect

    Yamada, R.

    1990-02-01

    General magnetic characteristics of the CDF and D0 hadron collider detectors at Fermilab are described. The method and equipment for the field measurement for both detectors are described, and their field measurement data are presented. The magnetic field distribution inside the CDF solenoid magnet was measured extensively only at the boundaries, and the field values inside the volume were reconstructed. The effects due to the joints and the return conductor were measured and are discussed. The flux distribution inside the yokes and the fringing field of the D0 toroids were calculated and compared with measured data. A proposal to generate dipole magnetic field inside the D0 toroidal magnet is discussed. 9 refs., 6 figs.

  1. Measurement of the radiation field surrounding the Collider Detector at Fermilab

    SciTech Connect

    K. Kordas et al.

    2004-01-28

    We present here the first direct and detailed measurements of the spatial distribution of the ionizing radiation surrounding a hadron collider experiment. Using data from two different exposures we measure the effect of additional shielding on the radiation field around the Collider Detector at Fermilab (CDF). Employing a simple model we parameterize the ionizing radiation field surrounding the detector.

  2. Effects of detector geometry on measured lineshapes and intensities in surface scattering

    NASA Astrophysics Data System (ADS)

    Hinch, B. J.; Frankl, D. R.; Allison, W.

    1987-02-01

    A general expression for the detector response to a given beam flux distribution is given. Illustrative examples are worked out for some simple idealized cases and it is shown that both the measured lineshape and the measured intensity depend on the details of incident beam and detector geometry.

  3. The data acquisition system of the Belle II Pixel Detector

    NASA Astrophysics Data System (ADS)

    Münchow, D.; Dingfelder, J.; Geßler, T.; Konorov, I.; Kühn, W.; Lange, S.; Lautenbach, K.; Levit, D.; Liu, Z.; Marinas, C.; Schnell, M.; Spruck, B.; Zhao, J.

    2014-08-01

    At the future Belle II experiment the DEPFET (DEPleted Field Effect Transistor) pixel detector will consist of about 8 million channels and is placed as the innermost detector. Because of its small distance to the interaction region and the high luminosity in Belle II, for a trigger rate of about 30 kHz with an estimated occupancy of about 3 % a data rate of about 22 GB/s is expected. Due to the high data rate, a data reduction factor higher than 30 is needed in order to stay inside the specifications of the event builder. The main hardware to reduce the data rate is a xTCA based Compute Node (CN) developed in cooperation between IHEP Beijing and University Giessen. Each node has as main component a Xilinx Virtex-5 FX70T FPGA and is equipped with 2 × 2 GB RAM , GBit Ethernet and 4 × 6.25 Gb/s optical links. An ATCA carrier board is able to hold up to four CN and supplies high bandwidth connections between the four CNs and to the ATCA backplane. To achieve the required data reduction on the CNs, regions of interest (ROI) are used. These regions are calculated in two independent systems by projecting tracks back to the pixel detector. One is the High Level Trigger (HLT) which uses data from the Silicon Vertex Detector (SVD), a silicon strip detector, and outer detectors. The other is the Data Concentrator (DATCON) which calculates ROIs based on SVD data only, in order to get low momentum tracks. With this information, only PXD data inside these ROIs will be forwarded to the event builder, while data outside of these regions will be discarded. First results of the test beam time in January 2014 at DESY with a Belle II vertex detector prototype and full DAQ chain will be presented.

  4. Photon Detection System for LBNE Liquid Argon Detector

    NASA Astrophysics Data System (ADS)

    Djurcic, Zelimir

    2014-03-01

    The LBNE (Long-Baseline Neutrino Experiment) is the next generation accelerator-based neutrino oscillation experiment planned in US. The experiment will use a new muon-neutrino beam sent from Fermi National Accelerator Laboratory and will detect electron-neutrino appearance and muon-neutrino disappearance using a Liquid Argon TPC located at a distance of 1300 km at Sanford Underground Research Facility in South Dakota. The primary physics goal of the LBNE is a definitive determination the neutrino mass hierarchy, determination the octant of the neutrino mixing angle theta-23, and precise measurement of CP violation in neutrino oscillation. Neutrino interaction in LAr result in charged particles producing ionization and scintillation light signals. Dedicated photon detection system is under design for use in the LBNE LArTPC far detectors. The baseline design couples wavelength-shifter coated ultraviolet transmitting acrylic to 3 mm2 silicon photomultipliers. By detecting scintillation light we aim to improve event reconstruction capabilities and efficiently separate neutrino events from background. Current status of the system will be described.

  5. Absolute linearity measurements on a PV HgCdTe detector in the infrared

    NASA Astrophysics Data System (ADS)

    Theocharous, Evangelos

    2012-04-01

    The linearity-of-response characteristics of a photovoltaic (PV) HgCdTe detector were investigated at a number of wavelengths in the infrared, using the NPL linearity of detector response characterization facility. The measurements were performed with the test detector operating under conditions identical to those in which the detectors will be used in typical infrared radiometric applications. The deviation from linearity in the generated photocurrent was shown to be strongly dependent on the area of the detector being illuminated. Plots of the linearity factor versus generated photocurrent for different illuminated wavelengths were shown to overlap. The linearity factor was shown to be a function of the photon irradiance of the illuminating beam. This behaviour was similar to that exhibited by photoconductive (PC) HgCdTe detectors, indicating that Auger recombination was the dominant source of the deviation from linearity observed in the test detector.

  6. Absolute Linearity Measurements on HgCdTe Detectors in the Infrared Region

    NASA Astrophysics Data System (ADS)

    Theocharous, Evangelos; Ishii, Juntaro; Fox, Nigel P.

    2004-07-01

    The nonlinearity characteristics of photoconductive and photovoltaic HgCdTe detectors were experimentally investigated in the infrared wavelength region by use of the National Physical Laboratory detector linearity measurement facility. The nonlinearity of photoconductive HgCdTe detectors was shown to be a function of irradiance rather than the total radiant power incident on the detector. Photoconductive HgCdTe detectors supplied by different vendors were shown to have similar linearity characteristics for wavelengths around 10 µm. However, the nonlinearity of response of a photovoltaic HgCdTe detector was shown to be significantly lower than the corresponding value for photoconductive HgCdTe detectors at the same wavelength.

  7. Comparison of Phoswich and ARSA-type detectors for Radioxenon Measurements

    SciTech Connect

    Ward, Rebecca; Biegalski, Steven R.; Haas, Derek A.; Hennig, Wolfgang

    2009-12-01

    The monitoring of atmospheric radioxenon to ensure compliance with the Comprehensive Nuclear Test Ban Treaty has driven the development of improved detectors for measuring xenon, including the development of a phoswich detector. This detector uses only one PMT to detect beta-gamma coincidence, thus greatly reducing the bulk and electronics of the detector in comparison to the ARSA-type detector. In this experiment, 135Xe was produced through neutron activation and a phoswich detector was used to attain spectra from the gas. These results were compared to similar results from an ARSA-type beta-gamma coincidence spectrum. The spectral characteristics and resolution were compared for the coincidence and beta spectra. Using these metrics, the overall performance of the phoswich detector for beta-gamma coincidence of radioxenon was evaluated.

  8. First measurement of pp neutrinos in real time in the Borexino detector

    NASA Astrophysics Data System (ADS)

    Mosteiro, Pablo

    2014-09-01

    The Sun is fueled by a series of nuclear reactions that produce the energy that makes it shine. Neutrinos (nu) produced by these nuclear reactions exit the Sun and reach Earth within minutes, providing us with key information about what goes on at the core of our star. For over twenty years since the first detection of solar neutrinos in the late 1960's, an apparent deficit in their detection rate was known as the Solar Neutrino Problem. Today, the Mikheyev-Smirnov-Wolfenstein (MSW) effect is the accepted mechanism by which neutrinos oscillate inside the Sun, arriving at Earth as a mixture of nue, numu and nutau, the latter two of which were invisible to early detectors. Several experiments have now confirmed the observation of neutrino oscillations. These experiments, when their results are combined together, have demonstrated that neutrino oscillations are well described by the Large Mixing Angle (LMA) solution of the MSW effect. This thesis presents the first measurement of pp neutrinos in the Borexino detector, which is another validation of the LMA-MSW model of neutrino oscillations. In addition, it is one more step towards the completion of the spectroscopy of pp chain neutrinos in Borexino, leaving only the extremely faint hep neutrinos undetected. This advance validates the experiment itself and its previous results. This is, furthermore, the first direct real-time measurement of pp neutrinos. We find a pp neutrino detection rate of 143+/-16 (stat)+/-10 (syst) cpd/100 t in the Borexino experiment, which translates, according to the LMA-MSW model, to (6.42+/-0.85)x1010 cm -2 s-1. We also report on a measurement of neutrons in a dedicated system within the Borexino detector, which resulted in an improved understanding of neutron rates in liquid scintillator detectors at Gran Sasso depths. This result is crucial to the development of novel direct dark matter detection experiments.

  9. Cadmium zinc telluride detector system for nuclear material assay

    SciTech Connect

    Lavietes, A.D.; McQuaid, J.H.; Paulus, T.J.

    1997-07-15

    Three tools were developed towards design of an ambient temperature radiometric instrument, namely the CZT Probe--a cadmium zinc telluride based gamma and x ray detector probe, the MicroNOMAD--a low power, portable multichannel analyzed, and CZTU--spectral analysis software that provides uranium enrichment analysis. The combination of these three tools with an optimal sodium iodide (NaI) detector provides the ability to search for and then analyze uranium as well as other radionuclides in the field. Several national and international organizations including the International Atomic Energy Agency, the European Communities Safeguards Directorate, US Customs, and US DOE have expressed interest and are currently evaluating these systems.

  10. System characteristics of SPECT with a slat collimated strip detector.

    PubMed

    Vandenberghe, Stefaan; Van Holen, Roel; Staelens, Steven; Lemahieu, Ignace

    2006-01-21

    In classical SPECT with parallel hole collimation, the sensitivity is constant over the field of view (FOV). This is no longer the case if a rotating slat collimator with planar photon collection is used: there will be a significant variation of the sensitivity within the FOV. Since not compensating for this inhomogeneous sensitivity distribution would result in non-quantitative images, an accurate knowledge of the sensitivity is mandatory to account for it during reconstruction. On the other hand, the spatial resolution versus distance dependency remains unaltered compared to parallel hole collimation. For deriving the sensitivity, different factors have to be taken into account: a first factor concerns the intrinsic detector properties and will be incorporated into the calculations as a detection efficiency term depending on the incident angle. The calculations are based on a second and more pronounced factor: the collimator and detector geometry. Several assumptions will be made for the calculation of the sensitivity formulae and it will be proven that these calculations deliver a valid prediction of the sensitivity at points far enough from the collimator. To derive a close field model which also accounts for points close to the collimator surface, a modified calculation method is used. After calculating the sensitivity in one plane it is easy to obtain the tomographic sensitivity. This is done by rotating the sensitivity maps for spin and camera rotation. The results derived from the calculations are then compared to simulation results and both show good agreement after including the aforementioned detection efficiency term. The validity of the calculations is also proven by measuring the sensitivity in the FOV of a prototype rotating slat gamma camera. An expression for the resolution of these planar collimation systems is obtained. It is shown that for equal collimator dimensions the same resolution-distance relationship is obtained as for parallel hole

  11. Ultrasonic linear measurement system

    NASA Technical Reports Server (NTRS)

    Marshall, Scot H. (Inventor)

    1991-01-01

    An ultrasonic linear measurement system uses the travel time of surface waves along the perimeter of a three-dimensional curvilinear body to determine the perimeter of the curvilinear body. The system can also be used piece-wise to measure distances along plane surfaces. The system can be used to measure perimeters where use of laser light, optical means or steel tape would be extremely difficult, time consuming or impossible. It can also be used to determine discontinuities in surfaces of known perimeter or dimension.

  12. Measurement of Neutron and Muon Fluxes 100~m Underground with the SciBath Detector

    SciTech Connect

    Garrison, Lance

    2014-01-01

    The SciBath detector is an 80 liter liquid scintillator detector read out by a three dimensional grid of 768 wavelength-shifting fibers. Initially conceived as a fine-grained charged particle detector for neutrino studies that could image charged particle tracks in all directions, it is also sensitive to fast neutrons (15-200 MeV). In fall of 2011 the apparatus performed a three month run to measure cosmic-induced muons and neutrons 100~meters underground in the FNAL MINOS near-detector area. Data from this run has been analyzed and resulted in measurements of the cosmic muon flux as \

  13. Single crystal chemical vapor deposit diamond detector for energetic plasma measurement in space

    NASA Astrophysics Data System (ADS)

    Ogasawara, K.; Broiles, T. W.; Coulter, K. E.; Dayeh, M. A.; Desai, M. I.; Livi, S. A.; McComas, D. J.; Walther, B. C.

    2015-03-01

    This study reports the performance of single crystal chemical vapor deposit diamond detectors for measuring space plasma and energetic particles: ~7 keV energy resolution for protons with a 14 keV threshold level, and good response linearity for ions and electrons as expected from Monte-Carlo calculations of primary particle energy loss. We investigated that these diamond detectors are able to operate at high temperature (> 70 ° C) and have fast response times (< 1 ns rise time). While silicon detectors have proven capability over this energy range for space plasma measurements, diamond detectors offer a faster response, higher temperature operation, greater radiation tolerance, and immunity to light.

  14. Gamma ray measurement of earth formation properties using a position sensitive scintillation detector

    SciTech Connect

    Sonne, D.S.; Beard, W.J.

    1987-01-20

    This patent describes a system for measuring properties of earth formations in the vicinity of a well borehole at different radial distances from the borehole, comprising: a fluid tight hollow body member sized and adapted for passage through a well borehole and housing therein; a source of gamma rays and means for directing gamma rays from the source outwardly from the body member into earth formations in the vicinity of the borehole; and a position sensitive scintillation detector for detecting gamma rays scattered back into the body member from the earth formation in the vicinity of the borehole, means for collimating the scattered gamma rays onto the detector. The detector comprises scintillation crystal means having discrete longitudinally spaced active regions or bins and is longitudinally spaced from the gamma ray source. It has a longitudinal length L and two opposite ends and photomultiplier tubes optically coupled to the opposite ends for providing output voltage signals having voltage amplitudes A and B representative of the intensity of scintillation events occurring in the crystal and impinging at the opposite ends thereof. A means separates the bins for selectively attenuating light passing therebetween, and a means combines the output voltage signals A and B according to a predetermined relationship to derive the discrete bin along the length L of each of the scintillation events in the crystal, thereby providing measurements of the gamma ray scattering properties of the earth formations at different radial distances from the borehole.

  15. Measurement of loss of DT fusion products using scintillator detectors in TFTR

    SciTech Connect

    Darrow, D.S.; Herrmann, H.W.; Johnson, D.W.; Marsala, R.J.; Palladino, R.W.; Zweben, S.J.; Tuszewski, M.

    1995-03-01

    A poloidal array of MeV ion loss probes previously used to measure DD fusion product loss has been upgraded to measure the loss of alpha particles from DT plasmas in TFTR. The following improvements to the system have been made in preparation for the use of tritium in TFTR: (1) relocation of detectors to a neutronshielded enclosure in the basement to reduce neutron-induced background signals; (2) replacement of ZnS:Cu (P31) scintillators in the probes with the Y{sub 3}Al{sub 5}0{sub 12}:Ce(P46) variety to minimize damage and assure linearity at the fluxes anticipated from DT plasmas; and (3) shielding of the fiber optic bundles which carry the fight from the probes to the detectors to reduce neutron- and gamma-induced light within them. In addition to the above preparations, the probes have been absolutely calibrated for alpha particles by using the Van de Graaf accelerator at Los Alamos National Laboratory. Alpha particle losses from DT plasmas have been observed, and losses at the detector 901 below the midplane are consistent with first orbit loss.

  16. Diamond particle detectors systems in high energy physics

    NASA Astrophysics Data System (ADS)

    Oh, A.

    2015-04-01

    With the first three years of the LHC running complete, ATLAS and CMS are planning to upgrade their innermost tracking layers with more radiation hard technologies. Chemical Vapor Deposition (CVD) diamond is one such technology. CVD diamond has been used extensively in beam condition monitors as the innermost detectors in the highest radiation areas of BaBar, Belle, CDF and all LHC experiments. The lessons learned in constructing the ATLAS Beam Conditions Monitor (BCM), Diamond Beam Monitor (DBM) and the CMS Pixel Luminosity Telescope (PLT) all of which are based on CVD diamond with the goal of elucidating the issues that should be addressed for future diamond based detector systems. The first beam test results of prototype diamond devices with 3D detector geometry should further enhance the radiation tolerance of this material.

  17. Energy Detector Using a Hybrid Threshold in Cognitive Radio Systems

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Ho; Hwang, Seung-Hoon; Hwang, Deok-Kyu

    Cognitive radio systems offer the opportunity to improve the spectrum utilization by detecting unused frequency bands while avoiding interference to primary users. This paper proposes a new algorithm for spectrum sensing, which is an energy detector using a hybrid (adaptive and fixed) threshold, in order to compensate the weak points of the existing energy detector in the distorted communication channel environment. Simulation results are presented which show that the performance of the new proposed scheme is better than the existing scheme using a fixed threshold or an adaptive threshold. Additionally, the performance is investigated in terms of several parameters such as the mobile speed and the probability of false alarms. The simulation results also show that the proposed algorithm makes the detector highly robust against fading, shadowing, and interference.

  18. Homodyne detection with on-off detector systems

    NASA Astrophysics Data System (ADS)

    Lipfert, T.; Sperling, J.; Vogel, W.

    2015-11-01

    Phase-sensitive properties of light play a crucial role in a variety of quantum optical phenomena, which have been mostly discussed in the framework of photoelectric detection theory. However, modern detection schemes, such as arrays of on-off detectors, are not based on photoelectric counting. We demonstrate that the theory of homodyning with such click-counting detectors can be established by using a proper detection model. For practical applications, a variety of typically occurring imperfections are rigorously analyzed and directly observable nonclassicality criteria are studied. Fundamental examples demonstrate the general functionality of our technique. Thus, our approach of homodyne detection with on-off detector systems is able to bridge the gap between imperfect detection and the phase resolution demands for modern applications of quantum light.

  19. Energy resolving CT systems using Medipix2 and MHSP detectors

    NASA Astrophysics Data System (ADS)

    Carramate, L. F. N. D.; Nachtrab, F.; Firsching, M.; Silva, A. L. M.; da Silva, A. M.; Veloso, J. F. C. A.; Uhlmann, N.

    2013-03-01

    Energy resolved imaging has been possible with a newest generation of radiation detectors with photon counting and spectroscopic capabilities. This innovation gives the possibility to enhance the image quality by applying techniques using the energy information. In this work two X-ray Computed Tomography (CT) Systems were assembled with two different energy resolving detectors: Medipix2 and MicroHole & Strip Plate (MHSP). These detectors have the aforesaid characteristics and showed a good performance for X-ray imaging. The Energy Weighting Technique (EWT) and Basis Material Decomposition (BMD) techniques were applied with good results. An improvement of 31% in the CNR was achieved by applying the EWT in the MHSP data and, using Medipix2, two basis materials (Carbon based and Aluminium) were decomposed successfully with densities close to the real values.

  20. III-V Compound Detectors for CO2 DIAL Measurements

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Abedin, M. Nurul; Sulima, Oleg V.; Ismail, Syed; Singh, Upendra N.

    2005-01-01

    Profiling of atmospheric carbon dioxide (CO2) is important for understanding the natural carbon cycle on Earth and its influence on global warming and climate change. Differential absorption lidar is a powerful remote sensing technique used for profiling and monitoring atmospheric constituents. Recently there has been an interest to apply this technique, at the 2 m wavelength, for investigating atmospheric CO2. This drives the need for high quality detectors at this wavelength. Although 2 m detectors are commercially available, the quest for a better detector is still on. The detector performance, regarding quantum efficiency, gain and associated noise, affects the DIAL signal-to-noise ratio and background signal, thereby influencing the instrument sensitivity and dynamic range. Detectors based on the III-V based compound materials shows a strong potential for such application. In this paper the detector requirements for a long range CO2 DIAL profiles will be discussed. These requirements were compared to newly developed III-V compound infrared detectors. The performance of ternary InGaSb pn junction devices will be presented using different substrates, as well as quaternary InGaAsSb npn structure. The performance study was based on experimental characterization of the devices dark current, spectral response, gain and noise. The final results are compared to the current state-of-the-art InGaAs technology. Npn phototransistor structure showed the best performance, regarding the internal gain and therefore the device signal-to-noise ratio. 2-micrometers detectivity as high as 3.9 x 10(exp 11) cmHz(sup 1/2)/W was obtained at a temperature of -20 C and 4 V bias voltage. This corresponds to a responsivity of 2650 A/W with about 60% quantum efficiency.

  1. TH-C-19A-06: Measurements with a New Commercial Synthetic Single Crystal Diamond Detector

    SciTech Connect

    Laub, W; Crilly, R

    2014-06-15

    Purpose: A commercial version of a synthetic single crystal diamond detector in a Scottky diode configuration was recently released as the new type 60019 microDiamond detector (PTW-Freiburg). In this study we investigate the dosimetric properties of this detector and explore if the use of the microDiamond detector can be expanded to high energy photon beams of up to 15MV and to large field measurements. Methods: Energy dependency was investigated. Photon and electron depth-dose curves were measured. Photon PDDs were measured with the Semiflex type 31010, microLion type 31018, P-Diode type 60016, SRS Diode type 60018, and the microDiamond type 60019 detector. Electron depth-dose curves were measured with a Markus chamber type 23343, an E Diode type 60017 and the microDiamond type 60019 detector (all PTW-Freiburg). Profiles were measured with the E-Diode and microDiamond at dose maximum depths. Results: The microDiamond detector shows no energy dependence in high energy photon or electron dosimetry. Electron PDD measurements with the E-Diode and microDiamond are in good agreement except for the bremsstrahlungs region, where values are about 0.5 % lower with the microDiamond detector. Markus detector measurements agree with E-Diode measurements in this region. For depths larger than dmax, depth-dose curves of photon beams measured with the microDiamond detector are in close agreement to those measured with the microLion detector for small fields and with those measured with a Semiflex 0.125cc ionization chamber for large fields. For profile measurements, microDiamond detector measurements agree well with microLion and P-Diode measurements in the high-dose region and the penumbra region. For areas outside the open field, P-Diode measurements are about 0.5–1.0% higher than microDiamond and microLion measurements. Conclusion: The investigated diamond detector is suitable for a wide range of applications in high energy photon and electron dosimetry and is interesting

  2. Detector and front-end electronics of a fissile mass flow monitoring system

    SciTech Connect

    Paulus, M.J.; Uckan, T.; Lenarduzzi, R.; Mullens, J.A.; Castleberry, K.N.; McMillan, D.E.; Mihalczo, J.T.

    1997-07-20

    A detector and front-end electronics unit with secure data transmission has been designed and implemented for a fissile mass flow monitoring system for fissile mass flow of gases and liquids in a pipe. The unit consists of 4 bismuth germanate (BGO) scintillation detectors, pulse-shaping and counting electronics, local temperature sensors, and on-board local area network nodes which locally acquire data and report to the master computer via a secure network link. The signal gain of the pulse-shaping circuitry and energy windows of the pulse-counting circuitry are periodicially self calibrated and self adjusted in situ using a characteristic line in the fissile material pulse height spectrum as a reference point to compensate for drift such as in the detector gain due to PM tube aging. The temperature- dependent signal amplitude variations due to the intrinsic temperature coefficients of the PM tube gain and BGO scintillation efficiency have been characterized and real-time gain corrections introduced. The detector and electronics design, measured intrinsic performance of the detectors and electronics, and the performance of the detector and electronics within the fissile mass flow monitoring system are described.

  3. Pressure Measurement Systems

    NASA Technical Reports Server (NTRS)

    1990-01-01

    System 8400 is an advanced system for measurement of gas and liquid pressure, along with a variety of other parameters, including voltage, frequency and digital inputs. System 8400 offers exceptionally high speed data acquisition through parallel processing, and its modular design allows expansion from a relatively inexpensive entry level system by the addition of modular Input Units that can be installed or removed in minutes. Douglas Juanarena was on the team of engineers that developed a new technology known as ESP (electronically scanned pressure). The Langley ESP measurement system was based on miniature integrated circuit pressure-sensing transducers that communicated pressure information to a minicomputer. In 1977, Juanarena formed PSI to exploit the NASA technology. In 1978 he left Langley, obtained a NASA license for the technology, introduced the first commercial product, the 780B pressure measurement system. PSI developed a pressure scanner for automation of industrial processes. Now in its second design generation, the DPT-6400 is capable of making 2,000 measurements a second and has 64 channels by addition of slave units. New system 8400 represents PSI's bid to further exploit the $600 million U.S. industrial pressure measurement market. It is geared to provide a turnkey solution to physical measurement.

  4. The Data Acquisition System for a Kinetic Inductance Detector

    NASA Astrophysics Data System (ADS)

    Branchini, P.; Budano, A.; Capasso, L.; Marchetti, D.

    2015-12-01

    The Data Acquisition System (DAQ) and the Front-End electronics for an array of Kinetic Inductance Detectors (KIDs) are described. KIDs are superconductive detectors, in which electrons are organized in Cooper pairs. Any incident radiation could break a pair generating a couple of quasi-particles that increase the inductance of the detector. The DAQ system we developed is a hardware/software co-design, based on state machines and on a microprocessor embedded into an FPGA. A commercial DAC/ADC board is used to interface the FPGA to the array of KIDs. The DAQ system generates a Stimulus signal suitable for an array of up to 128 KIDs. Such signal is up-mixed with a 3 GHz carrier wave and it then excites the KIDs array. The read-out signal from the detector is down-mixed with respect to the 3 GHz sine wave and recovered Stimulus is read back by the ADC device. The microprocessor stores read out data via a PCI express bus (PCIe) into an external disk. It also computes the Fast Fourier Transform of the acquired read out signal: this allows extrapolating which KID interacted and the energy of the impinging radiation. Simulations and tests have been performed successfully and experimental results are presented.

  5. Bioelectric Signal Measuring System

    NASA Astrophysics Data System (ADS)

    Guadarrama-Santana, A.; Pólo-Parada, L.; García-Valenzuela, A.

    2015-01-01

    We describe a low noise measuring system based on interdigitated electrodes for sensing bioelectrical signals. The system registers differential voltage measurements in order of microvolts. The base noise during measurements was in nanovolts and thus, the sensing signals presented a very good signal to noise ratio. An excitation voltage of 1Vrms with 10 KHz frequency was applied to an interdigitated capacitive sensor without a material under test and to a mirror device simultaneously. The output signals of both devices was then subtracted in order to obtain an initial reference value near cero volts and reduce parasitic capacitances due to the electronics, wiring and system hardware as well. The response of the measuring system was characterized by monitoring temporal bioelectrical signals in real time of biological materials such as embryo chicken heart cells and bovine suprarenal gland cells.

  6. Three-axis asymmetric radiation detector system

    DOEpatents

    Martini, Mario Pierangelo; Gedcke, Dale A.; Raudorf, Thomas W.; Sangsingkeow, Pat

    2000-01-01

    A three-axis radiation detection system whose inner and outer electrodes are shaped and positioned so that the shortest path between any point on the inner electrode and the outer electrode is a different length whereby the rise time of a pulse derived from a detected radiation event can uniquely define the azimuthal and radial position of that event, and the outer electrode is divided into a plurality of segments in the longitudinal axial direction for locating the axial location of a radiation detection event occurring in the diode.

  7. SYNCHROTRON RADIATION, FREE ELECTRON LASER, APPLICATION OF NUCLEAR TECHNOLOGY, ETC. Employing a Cerenkov detector for the thickness measurement of X-rays in a scattering background

    NASA Astrophysics Data System (ADS)

    Li, Shu-Wei; Kang, Ke-Jun; Wang, Yi; Li, Jin; Li, Yuan-Jing; Zhang, Qing-Jun

    2010-12-01

    The variation in environmental scattering background is a major source of systematic errors in X-ray inspection and measurement systems. As the energy of these photons consisting of environmental scattering background is much lower generally, the Cerenkov detectors having the detection threshold are likely insensitive to them and able to exclude their influence. A thickness measurement experiment is designed to verify the idea by employing a Cerenkov detector and an ionizing chamber for comparison. Furthermore, it is also found that the application of the Cerenkov detectors is helpful to exclude another systematic error from the variation of low energy components in the spectrum incident on the detector volume.

  8. Electrochemical thermodynamic measurement system

    DOEpatents

    Reynier, Yvan; Yazami, Rachid; Fultz, Brent T.

    2009-09-29

    The present invention provides systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and electrochemical energy storage and conversion systems. Systems and methods of the present invention are configured for simultaneously collecting a suite of measurements characterizing a plurality of interconnected electrochemical and thermodynamic parameters relating to the electrode reaction state of advancement, voltage and temperature. Enhanced sensitivity provided by the present methods and systems combined with measurement conditions that reflect thermodynamically stabilized electrode conditions allow very accurate measurement of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and electrochemical systems, such as the energy, power density, current rate and the cycle life of an electrochemical cell.

  9. Metabolic rate measurement system

    NASA Technical Reports Server (NTRS)

    Koester, K.; Crosier, W.

    1980-01-01

    The Metabolic Rate Measurement System (MRMS) is an uncomplicated and accurate apparatus for measuring oxygen consumption and carbon dioxide production of a test subject. From this one can determine the subject's metabolic rate for a variety of conditions, such as resting or light exercise. MRMS utilizes an LSI/11-03 microcomputer to monitor and control the experimental apparatus.

  10. Error in measuring radon in soil gas by means of passive detectors

    USGS Publications Warehouse

    Tanner, A.B.

    1991-01-01

    Passive detection of radon isotopes depends on diffusion of radon atoms from the sites of their generation to the location of the detecting or collecting device. Because some radon decays en route to a passive detector in soil, the radon concentration measured by the detector must be less than the concentration in those soil pores where it is undiminished by diffusion to the detector cavity. The true radon concentration may be significantly underestimated in moist soils. -Author

  11. Current measuring system

    DOEpatents

    Dahl, David A.; Appelhans, Anthony D.; Olson, John E.

    1997-01-01

    A current measuring system comprising a current measuring device having a first electrode at ground potential, and a second electrode; a current source having an offset potential of at least three hundred volts, the current source having an output electrode; and a capacitor having a first electrode electrically connected to the output electrode of the current source and having a second electrode electrically connected to the second electrode of the current measuring device.

  12. Current measuring system

    DOEpatents

    Dahl, D.A.; Appelhans, A.D.; Olson, J.E.

    1997-09-09

    A current measuring system is disclosed comprising a current measuring device having a first electrode at ground potential, and a second electrode; a current source having an offset potential of at least three hundred volts, the current source having an output electrode; and a capacitor having a first electrode electrically connected to the output electrode of the current source and having a second electrode electrically connected to the second electrode of the current measuring device. 4 figs.

  13. Space Acceleration Measurement System

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This training video, presented by the Lewis Research Center's Space Experiments Division, gives a background and detailed instructions for preparing the space acceleration measurement system (SAMS) for use. The SAMS measures, conditions, and records forces of low gravity accelerations, and is used to determine the effect of these forces on various experiments performed in microgravity. Inertial sensors are used to measure positive and negative acceleration over a specified frequency range. The video documents the SAMS' uses in different configurations during shuttle missions.

  14. 3D sensors and micro-fabricated detector systems

    NASA Astrophysics Data System (ADS)

    Da Vià, Cinzia

    2014-11-01

    Micro-systems based on the Micro Electro Mechanical Systems (MEMS) technology have been used in miniaturized low power and low mass smart structures in medicine, biology and space applications. Recently similar features found their way inside high energy physics with applications in vertex detectors for high-luminosity LHC Upgrades, with 3D sensors, 3D integration and efficient power management using silicon micro-channel cooling. This paper reports on the state of this development.

  15. The Underwater Spectrometric System Based on CZT Detector for Survey of the Bottom of MR Reactor Pool - 13461

    SciTech Connect

    Potapov, Victor; Safronov, Alexey; Ivanov, Oleg; Smirnov, Sergey; Stepanov, Vyacheslav

    2013-07-01

    The underwater spectrometer system for detection of irradiated nuclear fuel on the pool bottom of the reactor was elaborated. During the development process metrological studies of CdZnTe (CZT) detectors were conducted. These detectors are designed for spectrometric measurements in high radiation fields. A mathematical model based on the Monte Carlo method was created to evaluate the capability of such a system. A few experimental models were realized and the characteristics of the spectrometric system are represented. (authors)

  16. Focal-plane detector system for the KATRIN experiment

    NASA Astrophysics Data System (ADS)

    Amsbaugh, J. F.; Barrett, J.; Beglarian, A.; Bergmann, T.; Bichsel, H.; Bodine, L. I.; Bonn, J.; Boyd, N. M.; Burritt, T. H.; Chaoui, Z.; Chilingaryan, S.; Corona, T. J.; Doe, P. J.; Dunmore, J. A.; Enomoto, S.; Formaggio, J. A.; Fränkle, F. M.; Furse, D.; Gemmeke, H.; Glück, F.; Harms, F.; Harper, G. C.; Hartmann, J.; Howe, M. A.; Kaboth, A.; Kelsey, J.; Knauer, M.; Kopmann, A.; Leber, M. L.; Martin, E. L.; Middleman, K. J.; Myers, A. W.; Oblath, N. S.; Parno, D. S.; Peterson, D. A.; Petzold, L.; Phillips, D. G.; Renschler, P.; Robertson, R. G. H.; Schwarz, J.; Steidl, M.; Tcherniakhovski, D.; Thümmler, T.; Van Wechel, T. D.; VanDevender, B. A.; Vöcking, S.; Wall, B. L.; Wierman, K. L.; Wilkerson, J. F.; Wüstling, S.

    2015-04-01

    The focal-plane detector system for the KArlsruhe TRItium Neutrino (KATRIN) experiment consists of a multi-pixel silicon p-i-n-diode array, custom readout electronics, two superconducting solenoid magnets, an ultra high-vacuum system, a high-vacuum system, calibration and monitoring devices, a scintillating veto, and a custom data-acquisition system. It is designed to detect the low-energy electrons selected by the KATRIN main spectrometer. We describe the system and summarize its performance after its final installation.

  17. Neodymium neutron transmission and capture measurements and development of a new transmission detector

    NASA Astrophysics Data System (ADS)

    Barry, Devin P.

    Neodymium is a 235U fission product and is important in reactor neutronic calculations. The aim of this thesis is to improve upon the existing neutron cross section data of neodymium. Neutron capture and transmission measurements were performed by the time-of-flight technique at the Rensselaer Polytechnic Institute LINAC using metallic neodymium samples. The capture measurements were made at the 25-m flight station with a 16-segment Nal multiplicity detector, and the transmission measurements were performed at 15-m and 25-m flight stations, respectively, with 6Li glass scintillation detectors. After the data were collected and reduced, resonance parameters were determined by simultaneously fitting the transmission and capture data with the multilevel R-matrix Bayesian code SAMMY. The resonance parameters for all naturally occurring neodymium isotopes were deduced within the energy range of 1.0 eV to 500 eV. The resulting resonance parameters were used to calculate the capture resonance integral with this energy region and were compared to calculations obtained when using the resonance parameters from ENDF-B/VI. The RPI parameters gave a resonance integral value of 32 +/- 1 barns that is approximately 7% lower than that obtained with the ENDF-B/VI parameters. The current measurements significantly reduce the statistical uncertainties on the resonance parameters when compared with previously published parameters. This thesis also explains the resolution function in detail and discusses its importance when fitting experimental data to extract resonance parameters. More accurate resolution function parameters were determined for epithermal transmission and capture measurements by fitting well known resonances in Uranium-238. Improved transmission bare-bounce target in-beam photomultiplier tube (PMT) resolution function parameters were found and compared to those used previously at the RPI LINAC and a marked improvement in the quality of the fits is shown. In addition

  18. Passive detector for measurement of the implanted (sup 210)Po activity in glass

    NASA Astrophysics Data System (ADS)

    Meesen, G.; Uyttenhove, J.; Poffijn, A.; van Laere, K.; Buysse, J.

    1994-08-01

    It is a well known fact that radon is the most important factor in the natural radiation background. For complete dose calculations we need information about the radon concentration up to 25 years ago. As suggested by C. Samuelsson et al. in 1988, the activity of the implanted radon daughter (sup 210)Po can be used to reconstruct the radon activity over the past decades. For large scale surveys in dwellings a passive detector based on polycarbonate foils has been investigated. This system has a sufficient sensitivity to detect (sup 210)Po levels down to 1 Bq/m(sup 2) with a 6 month measuring period.

  19. Track analysis of laser-illuminated etched track detectors using an opto-digital imaging system

    NASA Astrophysics Data System (ADS)

    Eghan, Moses J.; Buah-Bassuah, Paul K.; Oppon, Osborne C.

    2007-11-01

    An opto-digital imaging system for counting and analysing tracks on a LR-115 detector is described. One batch of LR-115 track detectors was irradiated with Am-241 for a determined period and distance for linearity test and another batch was exposed to radon gas. The laser-illuminated etched track detector area was imaged, digitized and analysed by the system. The tracks that were counted on the opto-digital system with the aid of media cybernetics software as well as spark gap counter showed comparable track density results ranging between 1500 and 2750 tracks cm-2 and 65 tracks cm-2 in the two different batch detector samples with 0.5% and 1% track counts, respectively. Track sizes of the incident alpha particles from the radon gas on the LR-115 detector demonstrating different track energies are statistically and graphically represented. The opto-digital imaging system counts and measures other track parameters at an average process time of 3-5 s.

  20. Magnetic Field Measurement System

    SciTech Connect

    Kulesza, Joe; Johnson, Eric; Lyndaker, Aaron; Deyhim, Alex; Waterman, Dave; Blomqvist, K. Ingvar; Dunn, Jonathan Hunter

    2007-01-19

    A magnetic field measurement system was designed, built and installed at MAX Lab, Sweden for the purpose of characterizing the magnetic field produced by Insertion Devices (see Figure 1). The measurement system consists of a large granite beam roughly 2 feet square and 14 feet long that has been polished beyond laboratory grade for flatness and straightness. The granite precision coupled with the design of the carriage yielded minimum position deviations as measured at the probe tip. The Hall probe data collection and compensation technique allows exceptional resolution and range while taking data on the fly to programmable sample spacing. Additional flip coil provides field integral data.

  1. Digital capacitance measuring system

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The hardware phase of a digital capacitance measuring system is presented with the major emphasis placed on the electrical design and operation. Test results are included of the three units fabricated. The system's interface is applicable to existing requirements for the space shuttle vehicle.

  2. Stress Measurement System

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Under the Aircraft Structural Integrity program, Langley Research Center and Stress Photonics developed an infrared-based stress measurement system for use in nondestructive evaluation of materials and structures. Stress Photonics commercialized the technology in the DeltaTherm 1000 system, used to compare designs and detect cracks in structures, especially for aging aircraft and bridges. The system combines digital signal processing technology with a special infrared camera to provide instantaneous thermal images and live differential images.

  3. Radioactive source localization by a two detector system

    NASA Astrophysics Data System (ADS)

    Papadimitropoulos, C.; Kaissas, I.; Potiriadis, C.; Karafasoulis, K.; Loukas, D.; Lambropoulos, C. P.

    2015-12-01

    The development of instruments utilizing coded apertures has become more feasible with the progress of the Cd(Zn)Te hybrid detector technology. The collective performance of systems comprised by such devices can be evaluated in all the fields where traditionally coded aperture imaging has been applied. Along this direction, we present the evaluation of the performance of a system, which consists of two identical coded aperture gamma cameras. Each detector has an active area of 4.4× 4.4 cm2 with 16384 pixels. The two cameras are used for the estimation of the spatial coordinates of a radioactive source by employing triangulation. The system source location accuracy and efficiency are analyzed using experimental data and simulations.

  4. Detector blur associated with MeV radiographic imaging systems

    NASA Astrophysics Data System (ADS)

    Baker, Stuart A.; Lutz, Stephen S.; Smalley, Duane D.; Brown, Kristina K.; Danielson, Jeremy; Haines, Todd J.; Howe, Russell A.; Mitchell, Stephen E.; Morgan, Dane; Schultz, Larry J.

    2015-08-01

    We are investigating scintillator performance in radiographic imaging systems at x-ray endpoint energies of 0.4 and 2.3 MeV in single-pulse x-ray machines. The effect of scene magnification and geometric setup will be examined along with differences between the detector response of radiation and optical scatter. Previous discussion has reviewed energy absorption and efficiency of various imaging scintillators with a 2.3 MeV x-ray source. The focal point of our study is to characterize scintillator blur to refine system models. Typical detector geometries utilize thin tiled LYSO:Ce (cerium-doped lutetium yttrium orthosilicate) assembled in a composite mosaic. Properties of individual tiles are being studied to understand system resolution effects present in the experimental setup. Comparison of two different experiments with different geometric configurations is examined. Results are then compared to different scene magnifications generated in a Monte-Carlo simulation.

  5. Ethernet-Based DAQ System for QUIET-II Detectors

    NASA Astrophysics Data System (ADS)

    Nagai, M.; Ishidoshiro, K.; Higuchi, T.; Ikeno, M.; Hasegawa, M.; Hazumi, M.; Tajima, O.; Tanaka, M.; Uchida, T.

    2012-06-01

    The B-modes in cosmic microwave background polarization are a smoking gun for the inflationary universe. For the detection of the B-modes, having a large detector array is a generic approach since the B-modes is so faint pattern ( T b≲0.1 μK). The Q/U Imaging ExperimenT Phase-II (QUIET-II) is proposed to search the B-modes, using an array with 500 HEMT-based polarimeters. Each polarimeter element has 4-outputs, therefore we have to manage 2000 channels in total. We developed a scalable DAQ system based on TCP/Ethernet for QUIET-II. The DAQ system is composed of the polarimeters, ADC boards, a Master Clock and a control computer (PC). The analog signals from the polarimeters are digitized on the ADC boards. On-board demodulation, which synchronizes the phase flip modulations on the polarimeter, extracts the polarized components in the digitized signal. The Master Clock distributes all necessary clocks to the ADC boards as well as the polarimeters. This scheme guarantees the synchronization of the modulations and demodulations. We employed Ethernet-based communication scheme between the data collection program (Collector) on the PC and the ADC boards as well as the Master Clock. Such an Ethernet-based communication scheme allows us to construct a simple structure of the upper level software, which results in the high scalability to increase the number of channels. All basic functions and requirements are confirmed by the laboratory tests; demonstration with test signals as well as the signals from the polarimeters, measurements of the data transfer rate, and the synchronous operation with two ADC boards. Therefore, the DAQ system is confirmed to be suitable for QUIET-II.

  6. Noise analysis in bolometer detector for microwave power measurements.

    PubMed

    Mario, Petrizzelli; Brunetti, Luciano

    2003-01-01

    A study of noise related with a thermal detector used as power standard on the 26.5-40GHz frequency band, is presented. This study starts with electromagnetic and thermal analysis, and is based on a cryogenic resistive thermometer functioning at liquid-He temperatures. In addition, the study fixes the theoretical limit of sensitivity. PMID:15916174

  7. A PET system design by using mixed detectors: resolution properties

    NASA Astrophysics Data System (ADS)

    Liu, Jingjing; Kao, Chien-Min; Gu, Shuguo; Xiao, Peng; Xie, Qingguo

    2014-07-01

    We investigate a cylindrical positron emission tomography (PET) system design strategy that employs two groups of detectors with different resolutions. The reason for considering this strategy is the observation that in many tasks one would want a higher resolution in a targeted region, which contains lesions or organs of interest, than that in the rest of the subject. Although one can design a PET system to meet the highest resolution required by the imaging task, this is not cost efficient because the superior resolution outside the target region is not needed. To address this issue, investigators have proposed the concept of an insert, in which a high-resolution detector (HRD) is inserted into a parent PET system to locally increase the image resolution. In this paper, we examine an alternative strategy in which the system is made of one arc of normal-resolution detectors with respect to, for example, whole-body imaging and one arc of HRDs. By using Monte Carlo simulations, we study the resolution properties of this system design and examine how they are affected by the location and size of the HRD arc. Our results show that the region obtained by connecting the edges of the HRD arc to the center of the field-of-view (FOV) can have significantly better resolution than that in the rest of the FOV, as well as better resolution uniformity.

  8. A PET system design by using mixed detectors: resolution properties.

    PubMed

    Liu, Jingjing; Kao, Chien-Min; Gu, Shuguo; Xiao, Peng; Xie, Qingguo

    2014-07-01

    We investigate a cylindrical positron emission tomography (PET) system design strategy that employs two groups of detectors with different resolutions. The reason for considering this strategy is the observation that in many tasks one would want a higher resolution in a targeted region, which contains lesions or organs of interest, than that in the rest of the subject. Although one can design a PET system to meet the highest resolution required by the imaging task, this is not cost efficient because the superior resolution outside the target region is not needed. To address this issue, investigators have proposed the concept of an insert, in which a high-resolution detector (HRD) is inserted into a parent PET system to locally increase the image resolution. In this paper, we examine an alternative strategy in which the system is made of one arc of normal-resolution detectors with respect to, for example, whole-body imaging and one arc of HRDs. By using Monte Carlo simulations, we study the resolution properties of this system design and examine how they are affected by the location and size of the HRD arc. Our results show that the region obtained by connecting the edges of the HRD arc to the center of the field-of-view (FOV) can have significantly better resolution than that in the rest of the FOV, as well as better resolution uniformity. PMID:24910321

  9. Monte Carlo simulation of the BEGe detector response function for in vivo measurements of 241Am in the skull

    NASA Astrophysics Data System (ADS)

    Fantínová, K.; Fojtík, P.

    2014-11-01

    This paper reports on the procedure of the BEGe detector characterization for the Monte Carlo calibrations. A project is under way to improve the counting and operating capabilities of the Whole Body Counter (WBC) installed in SÚRO, v.v.i. (NRPI) Prague, Czech Republic. Possible emergency monitoring should mainly benefit from the rapid, safe and flexible operation of the WBC. The system of the WBC for the detection of low energy X and gamma radiation comprises four HPGe detectors intended for the routine, emergency, and research measurements of persons internally contaminated with low-energy photon emitters, mainly actinides. Among them, 241Am is the main subject of interest. A precise detection efficiency calibration of the detector is required for the measurement of activity in individual organs and tissues. The use of physical phantoms in the calibrations is often supplemented with the application of voxel phantoms and a Monte Carlo technique that are used for the calculation of the detector response function and the full energy peak efficiency. Both experimental and computational approaches have been used for the calibration of the BEGe (Broad Energy Germanium) detector. In this paper, the process of the Monte Carlo simulation of the detector response function and the peak efficiency calculation is described. Results of the simulations are provided in the paper and discussed.

  10. Experimental neutron flux measurements with a diamond detector at the QUINTA setup

    NASA Astrophysics Data System (ADS)

    Berlev, A. I.; Rodionov, N. B.; Tyutyunnikov, S. I.; Amosov, V. N.; Meshchaninov, S. A.; Yudin, I. P.

    2016-05-01

    The operational capability of a diamond detector used to measure the neutron spectrum by the response function on the QUINTA setup [1] installed at the proton beam of the phasotron [2] (Laboratory of Nuclear Problems, Joint Institute for Nuclear Research) was demonstrated in the energy interval of 2.1-20 MeV. The neutron-flux count rate was measured. The energy of neutrons was estimated at 7.4-25.7 MeV based on the diamond-detector response spectrum. The dependence of the diamond-detector response spectra on the angle between the proton beam and the line going through the detector and the center of the QUINTA setup was investigated. The angular anisotropy of the neutron flux was demonstrated. Measurements at different distances from the detector to the QUINTA setup were performed.

  11. Low cost, high resolution x-ray detector system for digital radiography and computed tomography

    SciTech Connect

    Smith, C.R.; Erker, J.W.

    1993-12-31

    The authors have designed and evaluated a novel design of line array x-ray detector for use with digital radiography (DR) and computed tomography (CT) systems. The Radiographic Line Scan (RLS) detector is less than half the cost of discrete multi-channel line array detectors, yet provides the potential for resolution to less than 25 {micro}m at energies of 420 kV. The RLS detector consists of a scintillator fiber-optically coupled to a thermo-electrically cooled line array CCD. Gadolinium oxysulfide screen material has been used as the scintillator, in thicknesses up to 250 {micro}m. Scintillating glass, which is formed into a fiber optic bundle, has also been used in thicknesses up to 2 mm. The large 2.5 mm by 25 {micro}m CCD cells provide high dynamic range while preserving high resolution; the 2.5 mm dimension is oriented in the x-ray absorption direction while the 25 {micro}m dimension is oriented in the resolution direction. Servo controlled thermo-electric cooling of the CCD to a fixed temperature provides reduction of dark current and stabilization of the output. Greater dynamic range is achieved by reducing the dark current, while output stabilization reduces the need for frequent calibration of the detector. Measured performance characteristics are presented along with DR and CT images produced using the RLS detector.

  12. Radiation measurement platform for balloon flights based on the TriTel silicon detector telescope

    NASA Astrophysics Data System (ADS)

    Zabori, Balazs; Hirn, Attila; Pazmandi, Tamas; Apathy, Istvan; Szanto, Peter; Deme, Sandor

    Several measurements have been performed on the cosmic radiation field from the surface of the Earth up to the maximum altitudes of research airplanes. However the cosmic radiation field is not well known between 15 km and 30 km. Our experiment idea based on to study the radiation environment in the stratosphere. The main technical goals of our experiment were to test at first time the TriTel 3D silicon detector telescope system for future ISS missons and to develop a balloon technology platform for advanced cosmic radiation and dosimetric measurements. The main scientific goals were to give an assessment of the cosmic radiation field at the altitude of the BEXUS balloons, to use the TriTel system to determine dosimetric and radiation quantities during the ballon flight and to intercompare the TriTel and Pille results to provide a correction factor definition method for the Pille ISS measurements. To fulfil the scientific and technological objectives several different dosimeter systems were included in the experiment: an advanced version of the TriTel silicon detector telescope, Geiger-Müller counters, Pille passive thermoluminescent dosimeters and Solid State Nuclear Track Detectors. The experiment was built by students from Hungarian universities and flew on board the BEXUS stratospheric balloon in Northern Sweden (from ESRANGE Space Center). The float altitude was approximately 28.6 km and the total flight time was about 4 hours. The active instruments measured in real time and the ground team received the collected data continuously during the mission. The main technical goals were received since the operation of the TriTel experienced no failures and the experiment worked as it expected. This paper presents the scientific goals and results. From the TriTel measurements the deposited energy spectra, the Linear Energy Transfer spectra, the average quality factor of the cosmic radiation as well as the absorbed dose and the dose equivalent were determined for the

  13. The LED calibration system of the SPHERE-2 detector

    NASA Astrophysics Data System (ADS)

    Antonov, R. A.; Bonvech, E. A.; Chernov, D. V.; Podgrudkov, D. A.; Roganova, T. M.

    2016-04-01

    An absolute calibration method for the PMT mosaic used in the SPHERE-2 experiment is presented. The method is based on the relative calibration of all PMTs in the mosaic to a single stable PMT, incorporated in it, during each measurement event and subsequent absolute calibration of that single PMT using a known stable light source. The results of the SPHERE-2 detector PMTs calibration are presented and are discussed.

  14. Measurement of incident position of hypervelocity particles on piezoelectric lead zirconate titanate detector

    SciTech Connect

    Takechi, Seiji; Onishi, Toshiyuki; Minami, Shigeyuki; Miyachi, Takashi; Fujii, Masayuki; Hasebe, Nobuyuki; Nogami, Ken-ichi; Ohashi, Hideo; Sasaki, Sho; Shibata, Hiromi; Iwai, Takeo; Gruen, Eberhard; Srama, Ralf; Okada, Nagaya

    2008-04-15

    A cosmic dust detector for use onboard a satellite is currently being developed by using piezoelectric lead zirconate titanate (PZT). The characteristics of the PZT detector have been studied by bombarding it with hypervelocity iron (Fe) particles supplied by a Van de Graaff accelerator. One central electrode and four peripheral electrodes were placed on the front surface of the PZT detector to measure the impact positions of the incident Fe particles. It was demonstrated that the point of impact on the PZT detector could be identified by using information on the time at which the first peak of the output signal obtained from each electrode appeared.

  15. Measuring fast neutrons with large liquid scintillation detector for ultra-low background experiments

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Mei, D.-M.; Davis, P.; Woltman, B.; Gray, F.

    2013-11-01

    We developed a 12-liter volume neutron detector filled with the liquid scintillator EJ301 that measures neutrons in an underground laboratory where dark matter and neutrino experiments are located. The detector target is a cylindrical volume coated on the inside with reflective paint (95% reflectivity) that significantly increases the detector's light collection. We demonstrate several calibration techniques using point sources and cosmic-ray muons for energies up to 20 MeV for this large liquid scintillation detector. Neutron-gamma separation using pulse shape discrimination with a few MeV neutrons to hundreds of MeV neutrons is shown for the first time using a large liquid scintillator.

  16. Neutron measurements with Time-Resolved Event-Counting Optical Radiation (TRECOR) detector

    NASA Astrophysics Data System (ADS)

    Brandis, M.; Vartsky, D.; Dangendorf, V.; Bromberger, B.; Bar, D.; Goldberg, M. B.; Tittelmeier, K.; Friedman, E.; Czasch, A.; Mardor, I.; Mor, I.; Weierganz, M.

    2012-04-01

    Results are presented from the latest experiment with a new neutron/gamma detector, a Time-Resolved, Event-Counting Optical Radiation (TRECOR) detector. It is composed of a scintillating fiber-screen converter, bending mirror, lens and Event-Counting Image Intensifier (ECII), capable of specifying the position and time-of-flight of each event. TRECOR is designated for a multipurpose integrated system that will detect Special Nuclear Materials (SNM) and explosives in cargo. Explosives are detected by Fast-Neutron Resonance Radiography, and SNM by Dual Discrete-Energy gamma-Radiography. Neutrons and gamma-rays are both produced in the 11B(d,n+γ)12C reaction. The two detection modes can be implemented simultaneously in TRECOR, using two adjacent radiation converters that share a common optical readout. In the present experiment the neutron detection mode was studied, using a plastic scintillator converter. The measurements were performed at the PTB cyclotron, using the 9Be(d,n) neutron spectrum obtained from a thick Be-target at Ed ~ 13 MeV\\@. The basic characteristics of this detector were investigated, including the Contrast Transfer Function (CTF), Point Spread Function (PSF) and elemental discrimination capability.

  17. Measurements of Variable-Shaped Electron Beams with Solid-State Detector and Scattering Aperture

    NASA Astrophysics Data System (ADS)

    Sakakibara, Makoto; Ohta, Hiroya; Kanosue, Tadashi; Sohda, Yasunari; Ban, Naoma

    2007-09-01

    A highly accurate method for measuring beam properties in a variable-shaped electron beam (VSB) system has been developed. This method is based on a knife-edge method with a solid-state detector (SSD) and scattering apertures. In VSB system, it is necessary to measure both beam profile and beam position for a long time. To meet this requirement, many aperture marks on a silicon membrane were prepared in a measurement unit. Using this unit, the accuracy and stability of beam-size and beam position measurements were evaluated in VBS system (HL-7000D, Hitachi-HITEC). As a result, the repeatability error for beam size was obtained to be smaller than 2 nm (3σ) and the repeatability error for beam position was obtained to be 0.82 nm (3σ). Moreover, a multitude of repeat experiments showed that this measurement unit can be used for more than ten years. Consequently, it was confirmed that this measurement method is useful for the high accuracy of a VSB system.

  18. First Measurements of the Inclined Boron Layer Thermal-Neutron Detector for Reflectometry

    SciTech Connect

    Clonts, Lloyd G; Crow, Lowell; Van Vuure, Thorwald L; Robertson, Lee; Riedel, Richard A; Richards, John D; Cooper, Ronald G; Remec, Igor; Ankner, John Francis; Browning, Jim

    2010-01-01

    A prototype detector based on the inclined boron layer principle is introduced. For typical measurement conditions at the Liquids Reflectometer at the Spallation Neutron Source, its count rate capability is shown to be superior to that of the current detector by nearly two orders of magnitude.

  19. A measurement method of a detector response function for monochromatic electrons based on the Compton scattering

    NASA Astrophysics Data System (ADS)

    Bakhlanov, S. V.; Bazlov, N. V.; Derbin, A. V.; Drachnev, I. S.; Kayunov, A. S.; Muratova, V. N.; Semenov, D. A.; Unzhakov, E. V.

    2016-06-01

    In this paper we present a method of scintillation detector energy calibration using the gamma-rays. The technique is based on the Compton scattering of gamma-rays in a scintillation detector and subsequent photoelectric absorption of the scattered photon in the Ge-detector. The novelty of this method is that the source of gamma rays, the germanium and scintillation detectors are immediately arranged adjacent to each other. The method presents an effective solution for the detectors consisting of a low atomic number materials, when the ratio between Compton effect and photoelectric absorption is large and the mean path of gamma-rays is comparable to the size of the detector. The technique can be used for the precision measurements of the scintillator light yield dependence on the electron energy.

  20. Image reconstruction for single detector rosette scanning systems based on compressive sensing theory

    NASA Astrophysics Data System (ADS)

    Uzeler, Hande; Cakir, Serdar; Aytaç, Tayfun

    2016-02-01

    Compressive sensing (CS) is a signal processing technique that enables a signal that has a sparse representation in a known basis to be reconstructed using measurements obtained below the Nyquist rate. Single detector image reconstruction applications using CS have been shown to give promising results. In this study, we investigate the application of CS theory to single detector infrared (IR) rosette scanning systems which suffer from low performance compared to costly focal plane array (FPA) detectors. The single detector pseudoimaging rosette scanning system scans the scene with a specific pattern and performs processing to estimate the target location without forming an image. In this context, this generation of scanning systems may be improved by utilizing the samples obtained by the rosette scanning pattern in conjunction with the CS framework. For this purpose, we consider surface-to-air engagement scenarios using IR images containing aerial targets and flares. The IR images have been reconstructed from samples obtained with the rosette scanning pattern and other baseline sampling strategies. It has been shown that the proposed scheme exhibits good reconstruction performance and a large size FPA imaging performance can be achieved using a single IR detector with a rosette scanning pattern.

  1. Overview on Measured Properties of VTT's Edgeless Detectors and their use in High Energy Physics

    NASA Astrophysics Data System (ADS)

    Kalliopuska, Juha; Jakubek, Jan; Tlustos, Lukas

    During the past five years VTT has actively developed fabrication processes for the state-of-the-art edgeless strip and pixel detectors with a negligible dead region at the edges. The article summarizes the measured properties of VTT's edgeless detectors and gives references to the relevant journal papers. The measured properties include leakage current, breakdown voltage and capacitance dependences on the detector thickness and polarity. Earlier X-ray tube and radiation source characterization results are revised and new ones are introduced to reveal a pixel response as a function of bias voltage and pixel location in the detector's pixel matrix. Part of the article concentrates on alpha particle characterization of the detectors, especially to the pixel response properties at the edge regions of the detector. The article shows that the edgeless detectors are not losing charge collections efficiency at the edge and the spectroscopic response is comparable to the inner regions of the detector. In addition, the distortion of the electric field at the edge of the detector is almost independent on the applied reverse bias voltage.

  2. Measurement of the radiation field at the Collider Detector at Fermilab

    SciTech Connect

    K. Kordas et al.

    2003-01-12

    We present direct measurements of the spatial distribution of both ionizing radiation and low energy neutrons (E{sub n} < 200 keV) inside the tracking volume of the Collider Detector at Fermilab (CDF). Using data from multiple exposures we are able to separate the contributions from beam losses and proton-antiproton collisions. Initial measurements of leakage currents in the CDF silicon detectors show patterns consistent with predictions based on our measurements.

  3. A time-gating scintillation detector for the measurement of laser-induced fast neutrons

    SciTech Connect

    Lee, Sungman; Park, Sangsoon; Yea, Kwon-hae; Cha, Hyungki

    2009-06-15

    A time-gating scintillation detector, in which a fast high voltage switch is used for gating a channel photomultiplier, was developed for a measurement of laser-induced fast neutrons. The x rays generated from the intense femtosecond laser and the solid target interactions were suppressed selectively and a time-of-flight signal of a laser-generated fast neutron was measured effectively. The detector was used successfully to measure the neutron yield of a femtosecond, deuterated, polystyrene plasma.

  4. A time-gating scintillation detector for the measurement of laser-induced fast neutrons.

    PubMed

    Lee, Sungman; Park, Sangsoon; Yea, Kwon-hae; Cha, Hyungki

    2009-06-01

    A time-gating scintillation detector, in which a fast high voltage switch is used for gating a channel photomultiplier, was developed for a measurement of laser-induced fast neutrons. The x rays generated from the intense femtosecond laser and the solid target interactions were suppressed selectively and a time-of-flight signal of a laser-generated fast neutron was measured effectively. The detector was used successfully to measure the neutron yield of a femtosecond, deuterated, polystyrene plasma. PMID:19566199

  5. Measurement of neutrino velocity with the MINOS detectors and NuMI neutrino beam

    NASA Astrophysics Data System (ADS)

    Adamson, P.; Andreopoulos, C.; Arms, K. E.; Armstrong, R.; Auty, D. J.; Avvakumov, S.; Ayres, D. S.; Baller, B.; Barish, B.; Barnes, P. D., Jr.; Barr, G.; Barrett, W. L.; Beall, E.; Becker, B. R.; Belias, A.; Bergfeld, T.; Bernstein, R. H.; Bhattacharya, D.; Bishai, M.; Blake, A.; Bock, B.; Bock, G. J.; Boehm, J.; Boehnlein, D. J.; Bogert, D.; Border, P. M.; Bower, C.; Buckley-Geer, E.; Cabrera, A.; Chapman, J. D.; Cherdack, D.; Childress, S.; Choudhary, B. C.; Cobb, J. H.; Coleman, S. J.; Culling, A. J.; de Jong, J. K.; de Santo, A.; Dierckxsens, M.; Diwan, M. V.; Dorman, M.; Drakoulakos, D.; Durkin, T.; Erwin, A. R.; Escobar, C. O.; Evans, J. J.; Harris, E. Falk; Feldman, G. J.; Fields, T. H.; Fitzpatrick, T.; Ford, R.; Frohne, M. V.; Gallagher, H. R.; Giurgiu, G. A.; Godley, A.; Gogos, J.; Goodman, M. C.; Gouffon, P.; Gran, R.; Grashorn, E. W.; Grossman, N.; Grzelak, K.; Habig, A.; Harris, D.; Harris, P. G.; Hartnell, J.; Hartouni, E. P.; Hatcher, R.; Heller, K.; Holin, A.; Howcroft, C.; Hylen, J.; Indurthy, D.; Irwin, G. M.; Ishitsuka, M.; Jaffe, D. E.; James, C.; Jenner, L.; Jensen, D.; Joffe-Minor, T.; Kafka, T.; Kang, H. J.; Kasahara, S. M. S.; Kim, M. S.; Koizumi, G.; Kopp, S.; Kordosky, M.; Koskinen, D. J.; Kotelnikov, S. K.; Kreymer, A.; Kumaratunga, S.; Lang, K.; Lebedev, A.; Lee, R.; Ling, J.; Liu, J.; Litchfield, P. J.; Litchfield, R. P.; Lucas, P.; Luebke, W.; Mann, W. A.; Marchionni, A.; Marino, A. D.; Marshak, M. L.; Marshall, J. S.; Mayer, N.; McGowan, A. M.; Meier, J. R.; Merzon, G. I.; Messier, M. D.; Michael, D. G.; Milburn, R. H.; Miller, J. L.; Miller, W. H.; Mishra, S. R.; Mislivec, A.; Miyagawa, P. S.; Moore, C. D.; Morfín, J.; Mualem, L.; Mufson, S.; Murgia, S.; Musser, J.; Naples, D.; Nelson, J. K.; Newman, H. B.; Nichol, R. J.; Nicholls, T. C.; Ochoa-Ricoux, J. P.; Oliver, W. P.; Osiecki, T.; Ospanov, R.; Paley, J.; Paolone, V.; Para, A.; Patzak, T.; Pavlović, Ž.; Pearce, G. F.; Peck, C. W.; Perry, C.; Peterson, E. A.; Petyt, D. A.; Ping, H.; Piteira, R.; Pittam, R.; Plunkett, R. K.; Rahman, D.; Rameika, R. A.; Raufer, T. M.; Rebel, B.; Reichenbacher, J.; Reyna, D. E.; Rosenfeld, C.; Rubin, H. A.; Ruddick, K.; Ryabov, V. A.; Saakyan, R.; Sanchez, M. C.; Saoulidou, N.; Saranen, D.; Schneps, J.; Schreiner, P.; Semenov, V. K.; Seun, S.-M.; Shanahan, P.; Smart, W.; Smirnitsky, V.; Smith, C.; Sousa, A.; Speakman, B.; Stamoulis, P.; Symes, P. A.; Tagg, N.; Talaga, R. L.; Tetteh-Lartey, E.; Thomas, J.; Thompson, J.; Thomson, M. A.; Thron, J. L.; Tinti, G.; Trostin, I.; Tsarev, V. A.; Tzanakos, G.; Urheim, J.; Vahle, P.; Verebryusov, V.; Viren, B.; Ward, C. P.; Ward, D. R.; Watabe, M.; Weber, A.; Webb, R. C.; Wehmann, A.; West, N.; White, C.; Wojcicki, S. G.; Wright, D. M.; Wu, Q. K.; Yang, T.; Yumiceva, F. X.; Zheng, H.; Zois, M.; Zwaska, R.

    2007-10-01

    The velocity of a ˜3GeV neutrino beam is measured by comparing detection times at the near and far detectors of the MINOS experiment, separated by 734 km. A total of 473 far detector neutrino events was used to measure (v-c)/c=5.1±2.9×10-5 (at 68% C.L.). By correlating the measured energies of 258 charged-current neutrino events to their arrival times at the far detector, a limit is imposed on the neutrino mass of mν<50MeV/c2 (99% C.L.).

  6. Measurement of neutrino velocity with the MINOS detectors and NuMI neutrino beam

    SciTech Connect

    Not Available

    2007-06-01

    The velocity of a {approx}3 GeV neutrino beam is measured by comparing detection times at the Near and Far detectors of the MINOS experiment, separated by 734 km. A total of 473 Far Detector neutrino events was used to measure (v -c)/c = 5.1{+-}2.9x10{sup -5} (at 68% C.L.). By correlating the measured energies of 258 charged-current neutrino events to their arrival times at the Far Detector, a limit is imposed on the neutrino mass of m{sub v} < 50 MeV/c{sup 2} (99% C.L.).

  7. Spectral measurements of neutrons produced by 52 MeV protons with activation detectors

    NASA Astrophysics Data System (ADS)

    Shin, Kazuo; Saito, Takatsugu; Fujii, Masahiko; Nakamura, Takashi

    The accuracy of the neutron spectral measurement of energy up to ˜40 MeV with activation detectors was examined using high energy neutrons from thick targets bombarded by 52 MeV protons. The measured activation rates were unfolded with the modified SAND-II code and compared with the neutron spectra measured by the NE-213 scintillator. Quite good agreement in absolute values was obtained between the spectra recorded by these two different detectors. The activation detector was shown to be useful for neutron spectroscopy at energies higher than ˜ 10 MeV.

  8. Oceanic wave measurement system

    NASA Technical Reports Server (NTRS)

    Holmes, J. F.; Miles, R. T. (Inventor)

    1980-01-01

    An oceanic wave measured system is disclosed wherein wave height is sensed by a barometer mounted on a buoy. The distance between the trough and crest of a wave is monitored by sequentially detecting positive and negative peaks of the output of the barometer and by combining (adding) each set of two successive half cycle peaks. The timing of this measurement is achieved by detecting the period of a half cycle of wave motion.

  9. Measurements of an intensified CCD detector for the Solar and Heliospheric Observatory

    NASA Technical Reports Server (NTRS)

    Thompson, William T.; Poland, Arthur I.; Siegmund, Oswald H.; Swartz, Marvin; Leviton, Douglas B.; Payne, Leslie J.

    1992-01-01

    An engineering model intensified CCD detector for the SOHO Coronal Diagnostics Spectrometer has been built and tested at the NASA Goddard Space Flight Center. A windowless MCP intensifier tube converts EUV radiation (30-65 nm) into visible light, which is focused via a lens system onto a Tektronix 1024 x 1024 CCD. Tests have been made of this engineering model to determine the following characteristics: quantum efficiency, resolution, throughput, linearity, statistical variation, readout noise, scattering, and flat-field response. In almost all respects, the detector performed as expected. This detector has been delivered, and work is underway on the flight detector.

  10. FINAL SCIENTIFIC REPORT - PROTON RADIOGRAPHY: CROSS SECTION MEASUREMENTS AND DETECTOR DEVELOPMENT

    SciTech Connect

    Longo, Michael J.; Gustafson, H. Richard.; Rajaram, Durga; Nigmanov, Turgun

    2007-05-11

    Proton radiography offers significant advantages over conventional X-ray radiography, including the capability of looking into thick, dense materials, better contrast for a wide range of materials, sensitivity to different materials of similar density, and better resolution because of the ability to focus beams. In order to achieve this capability it is crucial to understand the background due to neutrons and photons and to develop techniques to reduce it to tolerable levels. The physics goal of this project is to measure forward production of neutrons and photons produced by high-energy proton beams striking a variety of targets. This work is being carried out in conjunction with the Fermilab Experiment 907 (MIPP) collaboration including physicists from Lawrence Livermore Laboratory. Our group is responsible for the E907 forward neu-tron/photon calorimeters. These are the only detectors in the experiment that provide informa-tion on neutrons and photons. We are taking a leading role in obtaining and analyzing the for-ward production data and in developing an optimal detector for proton radiography. With the support of our Stewardship Science Academic Alliances grant, we were able to design, build, and commission the calorimeters on budget and ahead of schedule. E-907 officially started physics running at Fermilab in January 2005, and data taking continued through February 2006. Data were taken on a range of targets, from liquid hydrogen to uranium, at beam energies from 5 GeV/c to 120 GeV/c. The analysis of the data is challenging because data from many different detector systems must be understood and merged and over 31 million events were accumulated. Our recent efforts have been devoted to the calibration of the neutron and photon detectors, to track and shower reconstruction, identification of forward-going neutrons, and simulation of the calorimeters in a Monte Carlo. Reconstruction of the data with improved tracking is underway.

  11. A productivity measurement system

    SciTech Connect

    Sweet, R.H.; Blain, D.A.

    1988-01-01

    The system for measuring productivity of the EG and G Idaho, Inc., Drafting Group was developed at the Idaho National Engineering Laboratory. The Productivity Measurement System, built on relational data base management software, provides up-to-date information on the productivity of the Drafting Group, the drafting units, and the individual Drafters. The system was developed using data collected in the Drafters Time and Activities Log and Task Baseline Agreement (TBA) that was input to the data base. Using these data, an average usage rate in hours per square foot of drawing, CAD and Manual, was established. This provided a benchmark for management reports that are depicted graphically for ease of trend analyses. In addition, the system provides each drafter an indicator as to where they stand in relation to their peers, and all of the information provided leads to more accurate drafting estimates. 11 figs.

  12. Characterization of a MOSkin detector for in vivo skin dose measurements during interventional radiology procedures

    SciTech Connect

    Safari, M. J.; Wong, J. H. D.; Ng, K. H.; Jong, W. L.; Cutajar, D. L.; Rosenfeld, A. B.

    2015-05-15

    Purpose: The MOSkin is a MOSFET detector designed especially for skin dose measurements. This detector has been characterized for various factors affecting its response for megavoltage photon beams and has been used for patient dose measurements during radiotherapy procedures. However, the characteristics of this detector in kilovoltage photon beams and low dose ranges have not been studied. The purpose of this study was to characterize the MOSkin detector to determine its suitability for in vivo entrance skin dose measurements during interventional radiology procedures. Methods: The calibration and reproducibility of the MOSkin detector and its dependency on different radiation beam qualities were carried out using RQR standard radiation qualities in free-in-air geometry. Studies of the other characterization parameters, such as the dose linearity and dependency on exposure angle, field size, frame rate, depth-dose, and source-to-surface distance (SSD), were carried out using a solid water phantom under a clinical x-ray unit. Results: The MOSkin detector showed good reproducibility (94%) and dose linearity (99%) for the dose range of 2 to 213 cGy. The sensitivity did not significantly change with the variation of SSD (±1%), field size (±1%), frame rate (±3%), or beam energy (±5%). The detector angular dependence was within ±5% over 360° and the dose recorded by the MOSkin detector in different depths of a solid water phantom was in good agreement with the Markus parallel plate ionization chamber to within ±3%. Conclusions: The MOSkin detector proved to be reliable when exposed to different field sizes, SSDs, depths in solid water, dose rates, frame rates, and radiation incident angles within a clinical x-ray beam. The MOSkin detector with water equivalent depth equal to 0.07 mm is a suitable detector for in vivo skin dosimetry during interventional radiology procedures.

  13. A drift detector system with anode and cathode readout in the GlueX experiment

    SciTech Connect

    Berdnikov, V V; Somov, S V; Pentchev, L; Zihlmann, B

    2015-01-01

    A drift detector system designed to detect charged particle tracks in the GlueX experiment dedicated to study the nature of confinement is described. The key design features of the drift chambers associated with the requirement of a minimum material budget in the path of secondary particles are presented. The spatial resolution and the detection efficiency have been measured with cosmic rays using the automatic data acquisition system.

  14. Radiometry spot measurement system

    NASA Technical Reports Server (NTRS)

    Chen, Harry H.; Lawn, Stephen J.

    1994-01-01

    The radiometry spot measurement system (RSMS) has been designed for use in the Diffusive And Radiative Transport in Fires (DARTFire) experiment, currently under development at the NASA Lewis Research Center. The RSMS can measure the radiation emitted from a spot of specific size located on the surface of a distant radiation source within a controlled wavelength range. If the spot is located on a blackbody source, its radiation and temperature can be measured directly or indirectly by the RSMS. This report presents computer simulation results used to verify RSMS performance.

  15. Technical Note: Response measurement for select radiation detectors in magnetic fields

    SciTech Connect

    Reynolds, M.; Fallone, B. G.; Rathee, S.

    2015-06-15

    Purpose: Dose response to applied magnetic fields for ion chambers and solid state detectors has been investigated previously for the anticipated use in linear accelerator–magnetic resonance devices. In this investigation, the authors present the measured response of selected radiation detectors when the magnetic field is applied in the same direction as the radiation beam, i.e., a longitudinal magnetic field, to verify previous simulation only data. Methods: The dose response of a PR06C ion chamber, PTW60003 diamond detector, and IBA PFD diode detector is measured in a longitudinal magnetic field. The detectors are irradiated with buildup caps and their long axes either parallel or perpendicular to the incident photon beam. In each case, the magnetic field dose response is reported as the ratio of detector signals with to that without an applied longitudinal magnetic field. The magnetic field dose response for each unique orientation as a function of magnetic field strength was then compared to the previous simulation only studies. Results: The measured dose response of each detector in longitudinal magnetic fields shows no discernable response up to near 0.21 T. This result was expected and matches the previously published simulation only results, showing no appreciable dose response with magnetic field. Conclusions: Low field longitudinal magnetic fields have been shown to have little or no effect on the dose response of the detectors investigated and further lend credibility to previous simulation only studies.

  16. Sensorimotor System Measurement Techniques

    PubMed Central

    Riemann, Bryan L.; Myers, Joseph B.; Lephart, Scott M.

    2002-01-01

    Objective: To provide an overview of currently available sensorimotor assessment techniques. Data Sources: We drew information from an extensive review of the scientific literature conducted in the areas of proprioception, neuromuscular control, and motor control measurement. Literature searches were conducted using MEDLINE for the years 1965 to 1999 with the key words proprioception, somatosensory evoked potentials, nerve conduction testing, electromyography, muscle dynamometry, isometric, isokinetic, kinetic, kinematic, posture, equilibrium, balance, stiffness, neuromuscular, sensorimotor, and measurement. Additional sources were collected using the reference lists of identified articles. Data Synthesis: Sensorimotor measurement techniques are discussed with reference to the underlying physiologic mechanisms, influential factors and locations of the variable within the system, clinical research questions, limitations of the measurement technique, and directions for future research. Conclusions/Recommendations: The complex interactions and relationships among the individual components of the sensorimotor system make measuring and analyzing specific characteristics and functions difficult. Additionally, the specific assessment techniques used to measure a variable can influence attained results. Optimizing the application of sensorimotor research to clinical settings can, therefore, be best accomplished through the use of common nomenclature to describe underlying physiologic mechanisms and specific measurement techniques. PMID:16558672

  17. The CMS hadron calorimeter detector control system upgrade

    NASA Astrophysics Data System (ADS)

    Sahin, M. O.; Behrens, U.; Campbell, A.; Martens, I.; Melzer-Pellmann, I. A.; Saxena, P.

    2015-04-01

    The detector control system of the CMS hadron calorimeter provides the 40.0788 MHz LHC clock to the front end electronics and supplies synchronization signals and I2C communication. Pedestals and diagnostic bits are controlled, and temperatures and voltages are read out. SIPM temperatures are actively stabilized by temperature readback and generation of correction voltages to drive the Peltier regulation system. Overall control and interfacing to databases and experimental DAQ software is provided by the software CCM Server. We report on design and development status, and implementation schedule of this system.

  18. Evaluation of a photoacoustic detector for water vapor measurements under simulated tropospheric/lower stratospheric conditions.

    PubMed

    Szakáll, M; Bozóki, Z; Kraemer, M; Spelten, N; Moehler, O; Schurath, U

    2001-12-15

    Although water vapor is one of the most important and certainly the most variable minor constituent of the atmosphere, accurate measurements of p(H20) with high time resolution are difficult, particularly in the cold upper troposphere/lower stratosphere. This work demonstrates that a diode laser-based photoacoustic (PA) water vapor detector is a viable alternative to current water vapor sensors for airborne measurements. The PA system was compared with a high-quality frost point hygrometer (FPH) and with a Lyman-alpha hygrometer in the pressure range of 1000-100 hPa at frost point temperatures between 202 and 216 K. These conditions were simulated in a large environmental chamberfor 14 h. Simultaneous measurements with the three instruments agreed within 6%. Nitric acid vapor interferes with the FPH measurements at low frost point temperatures but does not affect the other instruments. The sensitivity of the PA system is already sufficient for measurements in the upper troposphere, and straightforward improvements can extend its useful range above the tropopause. Rugged construction, extreme simplicity, small size, and potential for long-term automatic operation make the PA system potentially suitable for airborne measurements. PMID:11775165

  19. A modular solid state detector for measuring high energy heavy ion fragmentation near the beam axis

    NASA Technical Reports Server (NTRS)

    Zeitlin, C. J.; Frankel, K. A.; Gong, W.; Heilbronn, L.; Lampo, E. J.; Leres, R.; Miller, J.; Schimmerling, W.

    1994-01-01

    A multi-element solid state detector has been designed to measure fluences of fragments produced near the beam axis by high energy heavy ion beams in thick targets. The detector is compact and modular, so as to be readily reconfigured according to the range of fragment charges and energies to be measured. Preamplifier gain settings and detector calibrations are adjustable remotely under computer control. We describe the central detector, its associated detectors and electronics, triggering scheme, data acquisition and particle identification techniques, illustrated by data taken with 600 MeV/u 56Fe beams and thick polyethylene targets at the LBL Bevalac. The applications of this work to space radiation protection are discussed.

  20. Imaging performance of an amorphous selenium digital mammography detector in a breast tomosynthesis system

    SciTech Connect

    Zhao Bo; Zhao Wei

    2008-05-15

    In breast tomosynthesis a rapid sequence of N images is acquired when the x-ray tube sweeps through different angular views with respect to the breast. Since the total dose to the breast is kept the same as that in regular mammography, the exposure used for each image of tomosynthesis is 1/N. The low dose and high frame rate pose a tremendous challenge to the imaging performance of digital mammography detectors. The purpose of the present work is to investigate the detector performance in different operational modes designed for tomosynthesis acquisition, e.g., binning or full resolution readout, the range of view angles, and the number of views N. A prototype breast tomosynthesis system with a nominal angular range of {+-}25 deg. was used in our investigation. The system was equipped with an amorphous selenium (a-Se) full field digital mammography detector with pixel size of 85 {mu}m. The detector can be read out in full resolution or 2x1 binning (binning in the tube travel direction). The focal spot blur due to continuous tube travel was measured for different acquisition geometries, and it was found that pixel binning, instead of focal spot blur, dominates the detector modulation transfer function (MTF). The noise power spectrum (NPS) and detective quantum efficiency (DQE) of the detector were measured with the exposure range of 0.4-6 mR, which is relevant to the low dose used in tomosynthesis. It was found that DQE at 0.4 mR is only 20% less than that at highest exposure for both detector readout modes. The detector temporal performance was categorized as lag and ghosting, both of which were measured as a function of x-ray exposure. The first frame lags were 8% and 4%, respectively, for binning and full resolution mode. Ghosting is negligible and independent of the frame rate. The results showed that the detector performance is x-ray quantum noise limited at the low exposures used in each view of tomosynthesis, and the temporal performance at high frame rate

  1. Dark current measurement of Type-II superlattice infrared focal plane array detector

    NASA Astrophysics Data System (ADS)

    Sakai, Michito; Katayama, Haruyoshi; Murooka, Junpei; Kimata, Masafumi; Iguchi, Yasuhiro

    2014-06-01

    We report the result of a dark current measurement of a Type-II superlattice (T2SL) infrared focal plane array (FPA), which consists of a 6 μm cutoff T2SL detector array and the readout integration circuit (ROIC) ISC0903 of FLIR Systems. In order to measure the dark current of the FPA, we obtained images with different exposure times in a fully closed cold shield of 77 K. Using the temporal change rate of the output and considering the charge conversion efficiency of the ROIC, we obtained a dark current density with an average value of 4 × 10-5 A/cm2 at a bias of -100 mV. We also compare the result of the FPA dark current measurement with that of a test element group (TEG), which was a single pixel detector, fabricated by the same process as the FPA. The dark current density of the TEG was 3 × 10-6 A/cm2 at a bias of -100 mV, lower than that of the FPA. We discuss the discrepancy between the dark current densities of the FPA and the TEG.

  2. A new detector to measure γ and β decay power from radionuclides

    NASA Astrophysics Data System (ADS)

    Pillon, M.; Angelone, M.; Forrest, R. A.

    2001-04-01

    Neutron activation of structural materials gives rise to an energy release during the subsequent radioactive decay. In large devices for energy production like a fission reactor, the future proposed Energy Amplifier or a Fusion power plant, this energy release represents a source of heat, which although at a very much lower level than the heating during operations is of the order of MWs for large nuclear power plants. Accurate estimation of the decay power is essential for safety analyses of the power plant against loss of coolant accidents, etc. Some computer codes have been developed to predict the decay power, but validation of the computer codes through experimental measurements is essential. A new large, almost 4π detector, formed by coupling a well-type CsI scintillator and a small plastic β detector has been developed for accurate and efficient measurements of decay power from γ and β radiation. Preliminary measurements of decay power produced in neutron-activated tungsten are presented and compared with the predictions of the European Activation Code System, EASY-99.

  3. A new method for total OH reactivity measurements using a fast Gas Chromatographic Photo-Ionization Detector (GC-PID)

    NASA Astrophysics Data System (ADS)

    Nölscher, A. C.; Sinha, V.; Bockisch, S.; Klüpfel, T.; Williams, J.

    2012-05-01

    The primary and most important oxidant in the atmosphere is the hydroxyl radical (OH). Currently OH sinks, particularly gas phase reactions, are poorly constrained. One way to characterize the overall sink of OH is to measure directly the ambient loss rate of OH, the total OH reactivity. To date direct measurements of total OH reactivity have been either performed using a Laser Induced Fluorescence (LIF) system ("pump-and-probe" or "flow reactor") or the Comparative Reactivity Method (CRM) with a Proton Transfer Reaction Mass Spectrometer (PTR-MS). Both techniques require large, complex and expensive detection systems. This study presents a feasibility assessment for CRM total OH reactivity measurements using a new detector, a Gas Chromatographic Photo-Ionization Detector (GC-PID). Such a system is smaller, more portable, less power consuming and less expensive than other total OH reactivity measurement techniques. Total OH reactivity is measured by the CRM using a competitive reaction between a reagent (here pyrrole) with OH alone and in the presence of atmospheric reactive molecules. The new CRM method for total OH reactivity has been tested with parallel measurements of the GC-PID and the previously validated PTR-MS as detector for the reagent pyrrole during laboratory experiments, plant chamber and boreal field studies. Excellent agreement of both detectors was found when the GC-PID was operated under optimum conditions. Time resolution (60-70 s), sensitivity (LOD 3-6 s-1) and overall uncertainty (25% in optimum conditions) for total OH reactivity were equivalent to PTR-MS based total OH reactivity measurements. One drawback of the GC-PID system was the steady loss of sensitivity and accuracy during intensive measurements lasting several weeks, and a possible toluene interference. Generally, the GC-PID system has been shown to produce closely comparable results to the PTR-MS and thus in suitable environments (e.g. forests) it presents a viably economical

  4. Total OH reactivity measurements using a new fast Gas Chromatographic Photo-Ionization Detector (GC-PID)

    NASA Astrophysics Data System (ADS)

    Nölscher, A. C.; Sinha, V.; Bockisch, S.; Klüpfel, T.; Williams, J.

    2012-12-01

    The primary and most important oxidant in the atmosphere is the hydroxyl radical (OH). Currently OH sinks, particularly gas phase reactions, are poorly constrained. One way to characterize the overall sink of OH is to measure directly the ambient loss rate of OH, the total OH reactivity. To date, direct measurements of total OH reactivity have been either performed using a Laser-Induced Fluorescence (LIF) system ("pump-and-probe" or "flow reactor") or the Comparative Reactivity Method (CRM) with a Proton-Transfer-Reaction Mass Spectrometer (PTR-MS). Both techniques require large, complex and expensive detection systems. This study presents a feasibility assessment for CRM total OH reactivity measurements using a new detector, a Gas Chromatographic Photoionization Detector (GC-PID). Such a system is smaller, more portable, less power consuming and less expensive than other total OH reactivity measurement techniques. Total OH reactivity is measured by the CRM using a competitive reaction between a reagent (here pyrrole) with OH alone and in the presence of atmospheric reactive molecules. The new CRM method for total OH reactivity has been tested with parallel measurements of the GC-PID and the previously validated PTR-MS as detector for the reagent pyrrole during laboratory experiments, plant chamber and boreal field studies. Excellent agreement of both detectors was found when the GC-PID was operated under optimum conditions. Time resolution (60-70 s), sensitivity (LOD 3-6 s-1) and overall uncertainty (25% in optimum conditions) for total OH reactivity were similar to PTR-MS based total OH reactivity measurements. One drawback of the GC-PID system was the steady loss of sensitivity and accuracy during intensive measurements lasting several weeks, and a possible toluene interference. Generally, the GC-PID system has been shown to produce closely comparable results to the PTR-MS and thus in suitable environments (e.g. forests) it presents a viably economical

  5. High dynamic range diamond detector acquisition system for beam wire scanner applications

    NASA Astrophysics Data System (ADS)

    Sirvent, J. L.; Dehning, B.; Piselli, E.; Emery, J.; Dieguez, A.

    2016-03-01

    The CERN Beam Instrumentation group has been working during the last years on the beam wire scanners upgrade to cope up with the increasing requirements of CERN experiments. These devices are used to measure the beam profile by crossing a thin wire through a circulating beam, the resulting secondary particles produced from beam/wire interaction are detected and correlated with the wire position to reconstruct the beam profile. The upgraded secondary particles acquisition electronics will use polycrystalline chemical vapour deposition (pCVD) diamond detectors for particle shower measurements, with low noise acquisitions performed on the tunnel, near the detector. The digital data is transmitted to the surface through an optical link with the GBT protocol. Two integrator ASICs (ICECAL and QIE10) are being characterized and compared for detector readout with the complete acquisition chain prototype. This contribution presents the project status, the QIE10 front-end performance and the first measurements with the complete acquisition system prototype. In addition, diamond detector signals from particle showers generated by an operational beam wire scanner are analysed and compared with an operational system.

  6. Performance comparison of NE213 detectors for their application in moisture measurement

    PubMed

    Naqvi; Nagadi; Rehman; Kidwai

    2000-10-01

    The pulse shape discrimination (PSD) characteristic and neutron detection efficiency of NE213 detectors have been measured for their application in moisture measurements using 252Cf and 241Am-Be sources. In PSD studies, neutron peak to valley (Pn/V) ratio and figure of merit M were measured at four different bias values for cylindrical 50, 125 and 250 mm diameter NE213 detectors. The result of this study has shown that better PSD performance with the NE213 detector can be achieved with a smaller volume detector in conjunction with a neutron source with smaller gamma-ray/neutron ratio. The neutron detection efficiency of the 125 mm diameter NE213 detector for 241Am-Be and 252Cf source spectra was determined at 0.85, 1.25 and 1.75 MeV bias energies using the experimental neutron detection efficiency data of the same detector over 0.1-10 MeV energy range. Due to different energy spectra of the 241Am-Be and 252Cf sources, integrated efficiency of the 125 mm diameter NE213 detector for the two sources shows bias dependence. At smaller bias, 252Cf source has larger efficiency but as the bias is increased, the detector has larger efficiency for 241Am-Be source. This study has revealed that NE213 detector has better performance (such as PSD and neutron detection efficiency) in simultaneous detection of neutron and gamma-rays in moisture measurements, if it is used in conjunction with 241Am-Be source at higher detector bias. PMID:11003515

  7. Calibration of the Pierre Auger Observatory fluorescence detectors and the effect on measurements

    NASA Astrophysics Data System (ADS)

    Gookin, Ben

    The Pierre Auger Observatory is a high-energy cosmic ray observatory located in Malargue, Mendoza, Argentina. It is used to probe the highest energy particles in the Universe, with energies greater than 1018 eV, which strike the Earth constantly. The observatory uses two techniques to observe the air shower initiated by a cosmic ray: a surface detector composed of an array of more than 1600 water Cherenkov tanks covering 3000 km2, and 27 nitrogen fluorescence telescopes overlooking this array. The Cherenkov detectors run all the time and therefore have high statistics on the air showers. The fluorescence detectors run only on clear moonless nights, but observe the longitudinal development of the air shower and make a calorimetric measure of its energy. The energy measurement from the the fluorescence detectors is used to cross calibrate the surface detectors, and makes the measurements made by the Auger Observatory surface detector highly model-independent. The calibration of the fluorescence detectors is then of the utmost importance to the measurements of the Observatory. Described here are the methods of the absolute and multi-wavelength calibration of the fluorescence detectors, and improvements in each leading to a reduction in calibration uncertainties to 4% and 3.5%, respectively. Also presented here are the effects of introducing a new, and more detailed, multi-wavelength calibration on the fluorescence detector energy estimation and the depth of the air shower maximum measurement, leading to a change of 1+-0.03% in the absolute energy scale at 1018 eV, and a negligible change in the measurement on shower maximum.

  8. Design and performance of a modular low-radioactivity readout system for cryogenic detectors in the CDMS experiment

    NASA Astrophysics Data System (ADS)

    Akerib, D. S.; Barnes, P. D., Jr.; Brink, P. L.; Cabrera, B.; Clarke, R. M.; Gaitskell, R. J.; Golwala, S. R.; Huber, M. E.; Kurylowicz, M.; Mandic, V.; Martinis, J. M.; Meunier, P.; Mirabolfathi, N.; Nam, S. W.; Perillo-Isaac, M.; Saab, T.; Sadoulet, B.; Schnee, R. W.; Seitz, D. N.; Shutt, T.; Smith, G. W.; Stockwell, W. K.; Sundqvist, K. M.; White, S.

    2008-07-01

    The Cryogenic Dark Matter Search (CDMS) experiment employs ultra-cold solid-state detectors to search for rare events resulting from WIMP-nucleus scattering. An innovative detector packaging and readout system has been developed to meet the unusual combination of requirements for: low temperature, low radioactivity, low energy threshold, and large channel count. Features include use of materials with low radioactivity such as multi-layer KAPTON laminates for circuit boards; immunity to microphonic noise via a vacuum coaxial wiring design, manufacturability, and modularity. The detector readout design had to accommodate various electronic components which have to be operated in close proximity to the detector as well maintaining separate individual temperatures (ranging from 600 mK to 150 K) in order to achieve optimal noise performance. The paper will describe the general electrical, thermal, and mechanical designs of the CDMS readout system, as well as presenting the theoretical and measured performance of the detector readout channels.

  9. Neutron multiplicity measurements with 3He alternative: Straw neutron detectors

    SciTech Connect

    Mukhopadhyay, Sanjoy; Wolff, Ronald; Detwiler, Ryan; Maurer, Richard; Mitchell, Stephen; Guss, Paul; Lacy, Jeffrey L.; Sun, Liang; Athanasiades, Athanasios

    2015-01-27

    Counting neutrons emitted by special nuclear material (SNM) and differentiating them from the background neutrons of various origins is the most effective passive means of detecting SNM. Unfortunately, neutron detection, counting, and partitioning in a maritime environment are complex due to the presence of high-multiplicity spallation neutrons (commonly known as ‘‘ship effect ’’) and to the complicated nature of the neutron scattering in that environment. A prototype neutron detector was built using 10B as the converter in a special form factor called ‘‘straws’’ that would address the above problems by looking into the details of multiplicity distributions of neutrons originating from a fissioning source. This paper describes the straw neutron multiplicity counter (NMC) and assesses the performance with those of a commercially available fission meter. The prototype straw neutron detector provides a large-area, efficient, lightweight, more granular (than fission meter) neutron-responsive detection surface (to facilitate imaging) to enhance the ease of application of fission meters. Presented here are the results of preliminary investigations, modeling, and engineering considerations leading to the construction of this prototype. This design is capable of multiplicity and Feynman variance measurements. This prototype may lead to a near-term solution to the crisis that has arisen from the global scarcity of 3He by offering a viable alternative to fission meters. This paper describes the work performed during a 2-year site-directed research and development (SDRD) project that incorporated straw detectors for neutron multiplicity counting. The NMC is a two-panel detector system. We used 10B (in the form of enriched boron carbide: 10B4C) for neutron detection instead of 3He. In the first year, the project worked with a panel of straw neutron detectors, investigated its characteristics, and

  10. Field Testing of a Portable Radiation Detector and Mapping System

    SciTech Connect

    Hofstetter, K.J.; Hayes, D.W.; Eakle, R.F.

    1998-03-01

    Researchers at the Savannah River Site (SRS) have developed a man- portable radiation detector and mapping system (RADMAPS) which integrates the accumulation of radiation information with precise ground locations. RADMAPS provides field personnel with the ability to detect, locate, and characterize nuclear material at a site or facility by analyzing the gamma or neutron spectra and correlating them with position. the man-portable field unit records gamma or neutron count rate information and its location, along with date and time, using an embedded Global Positioning System (GPS). RADMAPS is an advancement in data fusion, integrating several off-the-shelf technologies with new computer software resulting in a system that is simple to deploy and provides information useful to field personnel in an easily understandable form. Decisions on subsequent actions can be made in the field to efficiently use available field resources. The technologies employed in this system include: recording GPS, radiation detection (typically scintillation detectors), pulse height analysis, analog-to-digital converters, removable solid-state (Flash or SRAM) memory cards, Geographic Information System (GIS) software and personal computers with CD-ROM supporting digital base maps. RADMAPS includes several field deployable data acquisition systems designed to simultaneously record radiation and geographic positions. This paper summarizes the capabilities of RADMAPS and some of the results of field tests performed with the system.

  11. Gamma radiation induced background determination for (n,γ) measurements with 4π detectors.

    SciTech Connect

    Reifarth, R.; Browne, J. C.; Esch, E. I.; Haight, R. C.; O'Donnell, J. M.; Kronenberg, A.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.; Greife, U.

    2003-07-29

    The main focus of this report is to investigate possibilities to disentangle the target originating γ- background from background caused by scattered neutrons at the sample assuming a DANCE like detector to measure detect the capture events.

  12. In situ measurement system

    DOEpatents

    Lord, D.E.

    1980-11-24

    A multipurpose in situ underground measurement system comprising a plurality of long electrical resistance elements in the form of rigid reinforcing bars, each having an open loop hairpin configuration of shorter length than the other resistance elements. The resistance elements are arranged in pairs in a unitized structure, and grouted in place in the underground volume. Measurement means are provided for obtaining for each pair the electrical resistance of each element and the difference in electrical resistance of the paired elements, which difference values may be used in analytical methods involving resistance as a function of temperature. A scanner means sequentially connects the resistance-measuring apparatus to each individual pair of elements. A source of heating current is also selectively connectable for heating the elements to an initial predetermined temperature prior to electrical resistance measurements when used as an anemometer.

  13. Interaction region design and auxiliary detector systems for an EIC

    NASA Astrophysics Data System (ADS)

    Petti, R.

    2016-03-01

    There are a number of exciting physics opportunities at a future electron-ion collider facility. One possible design for such a facility is eRHIC, where the current RHIC facility located at Brookhaven National Lab would be transformed into an electron-ion collider. It is imperative for a seamless integration of auxiliary detector systems into the interaction region design to have a machine that meets the needs for the planned physics analyses, as well as take into account the space constraints due to the tunnel geometry and the necessary beam line elements. In this talk, we describe the current ideas for integrating a luminosity detector, electron polarimeter, roman pots, and a low Q2-tagger into the interaction region for eRHIC.

  14. Performance characterization of compressed sensing positron emission tomography detectors and data acquisition system

    NASA Astrophysics Data System (ADS)

    Chang, Chen-Ming; Grant, Alexander M.; Lee, Brian J.; Kim, Ealgoo; Hong, KeyJo; Levin, Craig S.

    2015-08-01

    In the field of information theory, compressed sensing (CS) had been developed to recover signals at a lower sampling rate than suggested by the Nyquist-Shannon theorem, provided the signals have a sparse representation with respect to some base. CS has recently emerged as a method to multiplex PET detector readouts thanks to the sparse nature of 511 keV photon interactions in a typical PET study. We have shown in our previous numerical studies that, at the same multiplexing ratio, CS achieves higher signal-to-noise ratio (SNR) compared to Anger and cross-strip multiplexing. In addition, unlike Anger logic, multiplexing by CS preserves the capability to resolve multi-hit events, in which multiple pixels are triggered within the resolving time of the detector. In this work, we characterized the time, energy and intrinsic spatial resolution of two CS detectors and a data acquisition system we have developed for a PET insert system for simultaneous PET/MRI. The CS detector comprises a 2× 4 mosaic of 4× 4 arrays of 3.2× 3.2× 20 mm3 lutetium-yttrium orthosilicate crystals coupled one-to-one to eight 4× 4 silicon photomultiplier arrays. The total number of 128 pixels is multiplexed down to 16 readout channels by CS. The energy, coincidence time and intrinsic spatial resolution achieved by two CS detectors were 15.4+/- 0.1 % FWHM at 511 keV, 4.5 ns FWHM and 2.3 mm FWHM, respectively. A series of experiments were conducted to measure the sources of time jitter that limit the time resolution of the current system, which provides guidance for potential system design improvements. These findings demonstrate the feasibility of compressed sensing as a promising multiplexing method for PET detectors.

  15. Performance characterization of compressed sensing positron emission tomography detectors and data acquisition system.

    PubMed

    Chang, Chen-Ming; Grant, Alexander M; Lee, Brian J; Kim, Ealgoo; Hong, KeyJo; Levin, Craig S

    2015-08-21

    In the field of information theory, compressed sensing (CS) had been developed to recover signals at a lower sampling rate than suggested by the Nyquist-Shannon theorem, provided the signals have a sparse representation with respect to some base. CS has recently emerged as a method to multiplex PET detector readouts thanks to the sparse nature of 511 keV photon interactions in a typical PET study. We have shown in our previous numerical studies that, at the same multiplexing ratio, CS achieves higher signal-to-noise ratio (SNR) compared to Anger and cross-strip multiplexing. In addition, unlike Anger logic, multiplexing by CS preserves the capability to resolve multi-hit events, in which multiple pixels are triggered within the resolving time of the detector. In this work, we characterized the time, energy and intrinsic spatial resolution of two CS detectors and a data acquisition system we have developed for a PET insert system for simultaneous PET/MRI. The CS detector comprises a 2 x 4 mosaic of 4 x 4 arrays of 3.2 x 3.2 x 20 mm(3) lutetium-yttrium orthosilicate crystals coupled one-to-one to eight 4 x 4 silicon photomultiplier arrays. The total number of 128 pixels is multiplexed down to 16 readout channels by CS. The energy, coincidence time and intrinsic spatial resolution achieved by two CS detectors were 15.4±0.1% FWHM at 511 keV, 4.5 ns FWHM and 2.3 mm FWHM, respectively. A series of experiments were conducted to measure the sources of time jitter that limit the time resolution of the current system, which provides guidance for potential system design improvements. These findings demonstrate the feasibility of compressed sensing as a promising multiplexing method for PET detectors. PMID:26237671

  16. Precision measurement of the speed of propagation of neutrinos using the MINOS detectors

    DOE PAGESBeta

    Adamson, P.

    2015-09-17

    We report a two-detector measurement of the propagation speed of neutrinos over a baseline of 734 km. The measurement was made with the NuMI beam at Fermilab between the near and far MINOS detectors. Furthermore, the fractional difference between the neutrino speed and the speed of light is determined to be (v/c-1)=(1.0±1.1)×10-6, consistent with relativistic neutrinos.

  17. Precision measurement of the speed of propagation of neutrinos using the MINOS detectors

    SciTech Connect

    Adamson, P.

    2015-09-17

    We report a two-detector measurement of the propagation speed of neutrinos over a baseline of 734 km. The measurement was made with the NuMI beam at Fermilab between the near and far MINOS detectors. Furthermore, the fractional difference between the neutrino speed and the speed of light is determined to be (v/c-1)=(1.0±1.1)×10-6, consistent with relativistic neutrinos.

  18. Measurement of the decoherence function with the MACRO detector at Gran Sasso

    SciTech Connect

    Ahlen, S.; Ambrosio, M.; Antolini, R.; Auriemma, G.; Baldini, A.; Barbarino, G.C.; Barish, B.C.; Battistoni, G.; Bellotti, R.; Bemporad, C.; Bernardini, P.; Bilokon, H.; Bisi, V.; Bloise, C.; Bussino, S.; Cafagna, F.; Calicchio, M.; Campana, D.; Campana, P.; Carboni, M.; Cecchini, S.; Cei, F.; Chiarella, V.; Chiera, C.; Cobis, A.; Cormack, R.; Corona, A.; Coutu, S.; DeCataldo, G.; Dekhussi, H.; DeMarzo, C.; De Vincenzi, M.; Di Credico, A.; Diehl, E.; Erriquez, O.; Favuzzi, C.; Ficenec, D.; Forti, C.; Foti, L.; Fusco, P.; Giacomelli, G.; Giannini, G.; Giglietto, N.; Giubellino, P.; Grassi, M.; Green, P.; Grillo, A.; Guarino, F.; Gustavino, C.; Habig, A.; Heinz, R.; Hong, J.T.; Iarocci, E.; Katsavounidis, E.; Kearns, E.; Klein, S.; Kyriazopoulou, S.; Lamanna, E.; Lane, C.; Lee, C.; Levin, D.S.; Lipari, P.; Liu, G.; Liu, R.; Longo, M.J.; Ludlam, G.; Mancarella, G.; Mandrioli, G.; Margiotta-Neri, A.; Marin, A.; Marini, A.; Martello, D.; Marzari Chiesa, A.; Masera, M.; Matteuzzi, P.; Michae

    1992-12-01

    A measurement of the underground muon decoherence function has been performed using the multiple muon events collected by the MACRO detector at the Gran Sasso National Laboratory. A detector-independent analysis is presented for different zenith regions and rock depths; this allows direct comparison with any model of hadronic interactions. The measured decoherence function is compared with the predictions of a Monte Carlo simulation based on data taken by recent collider experiments.

  19. A scintillating fission detector for neutron flux measurements

    SciTech Connect

    Stange, Sy; Esch, Ernst I; Burgett, Eric A; May, Iain; Muenchausen, Ross E; Taw, Felicia; Tovesson, Fredrik K

    2010-01-01

    Neutron flux monitors are commonly used for a variety of nuclear physics applications. A scintillating neutron detector, consisting of a liquid scintillator loaded with fissionable material, has been developed, characterized, and tested in the beam line at the Los Alamos Neutron Science Center, and shows a significant improvement in neutron sensitivity compared with a conventional fission chamber. Recent research on nanocomposite-based scintillators for gamma-ray detection indicates that this approach can be extended to load nanoparticles of fissionable material into a scintillating matrix, with up to three orders of magnitude higher loading than typical fission chambers. This will result in a rugged, cost-efficient detector with high efficiency, a short signal rise time, and the ability to be used in low neutron-flux environments. Initial efforts to utilize the luminescence of uranyl oxide to eliminate the need for wavelength-shifting dyes were unsuccessful. Excitation of uranyl compounds has been reported at wavelengths ranging from 266 nm to 532 nm. However, neither the 300 nm emission of toluene, nor the 350 nm emission of PPO, nor the 410 nm emission of POPOP resulted in significant excitation of and emission by uranyl oxide. As indicated by UV/visible spectroscopy, light emitted at these wavelengths was absorbed by the colored solution. {sup 235}U remains the most attractive candidate for a fissionable scintillator, due to its high fission cross-section and lack of a threshold fission energy, but all solutions containing molecular uranium compounds will be colored, most more highly than the U{sup 6+} compounds used here. Research is therefore continuing toward the fabrication of uranium nanoparticles, in which, due to Rayleigh scattering, the coloration should be less pronounced. The characterization of the thorium-loaded liquid scintillator and the fabrication of the 100 mL detectors for use at LANSCE demonstrated the feasibility of loading fissionable

  20. Investigations of a flat-panel detector for quality assurance measurements in ion beam therapy

    NASA Astrophysics Data System (ADS)

    Hartmann, Bernadette; Telsemeyer, Julia; Huber, Lucas; Ackermann, Benjamin; Jäkel, Oliver; Martišíková, Mária

    2012-01-01

    Increased accuracy in radiation delivery to a patient provided by scanning particle beams leads to high demands on quality assurance (QA). To meet the requirements, an extensive quality assurance programme has been implemented at the Heidelberg Ion Beam Therapy Center. Currently, high-resolution radiographic films are used for beam spot position measurements and homogeneity measurements for scanned fields. However, given that using this film type is time and equipment demanding, considerations have been made to replace the radiographic films in QA by another appropriate device. In this study, the suitability of the flat-panel detector RID 256 L based on amorphous silicon was investigated as an alternative method. The currently used radiographic films were taken as a reference. Investigations were carried out for proton and carbon ion beams. The detectors were irradiated simultaneously to allow for a direct comparison. The beam parameters (e.g. energy, focus, position) currently used in the daily QA procedures were applied. Evaluation of the measurements was performed using newly implemented automatic routines. The results for the flat-panel detector were compared to the standard radiographic films. Additionally, a field with intentionally decreased homogeneity was applied to test the detector's sensitivities toward possible incorrect scan parameters. For the beam position analyses, the flat-panel detector results showed good agreement with radiographic films. For both detector types, deviations between measured and planned spot distances were found to be below 1% (1 mm). In homogeneously irradiated fields, the flat-panel detector showed a better dose response homogeneity than the currently used radiographic film. Furthermore, the flat-panel detector is sensitive to field irregularities. The flat-panel detector was found to be an adequate replacement for the radiographic film in QA measurements. In addition, it saves time and equipment because no post

  1. Ultra high vacuum pumping system and high sensitivity helium leak detector

    DOEpatents

    Myneni, Ganapati Rao

    1997-01-01

    An improved helium leak detection method and apparatus are disclosed which increase the leak detection sensitivity to 10.sup.-13 atm cc s.sup.-1. The leak detection sensitivity is improved over conventional leak detectors by completely eliminating the use of o-rings, equipping the system with oil-free pumping systems, and by introducing measured flows of nitrogen at the entrances of both the turbo pump and backing pump to keep the system free of helium background. The addition of dry nitrogen flows to the system reduces backstreaming of atmospheric helium through the pumping system as a result of the limited compression ratios of the pumps for helium.

  2. Ultra high vacuum pumping system and high sensitivity helium leak detector

    DOEpatents

    Myneni, G.R.

    1997-12-30

    An improved helium leak detection method and apparatus are disclosed which increase the leak detection sensitivity to 10{sup {minus}13} atm cc/s. The leak detection sensitivity is improved over conventional leak detectors by completely eliminating the use of o-rings, equipping the system with oil-free pumping systems, and by introducing measured flows of nitrogen at the entrances of both the turbo pump and backing pump to keep the system free of helium background. The addition of dry nitrogen flows to the system reduces back streaming of atmospheric helium through the pumping system as a result of the limited compression ratios of the pumps for helium. 2 figs.

  3. A detector system for neutron resonance capture imaging

    NASA Astrophysics Data System (ADS)

    Perelli Cippo, E.; Borella, A.; Gorini, G.; Kockelmann, W.; Pietropaolo, A.; Postma, H.; Rhodes, N. J.; Schillebeeckx, P.; Schooneveld, E. M.; Tardocchi, M.; Wynants, R.; Ancient Charm Collaboration

    2010-11-01

    Neutron resonance capture analysis (NRCA) is used in the Ancient Charm project to determine element concentrations in cultural heritage objects. NRCA employs gamma-ray detectors to determine time-of-flight spectra that reveal the resonance structure in neutron induced reaction cross sections. One of the objectives is to produce a high-detection efficient NRCA system capable of mapping element distributions. The detection system is described together with the results of neutron beam tests at the time-of-flight facility GELINA and at the pulsed neutron spallation source ISIS (UK).

  4. Physics Detector Simulation Facility Phase II system software description

    SciTech Connect

    Scipioni, B.; Allen, J.; Chang, C.; Huang, J.; Liu, J.; Mestad, S.; Pan, J.; Marquez, M.; Estep, P.

    1993-05-01

    This paper presents the Physics Detector Simulation Facility (PDSF) Phase II system software. A key element in the design of a distributed computing environment for the PDSF has been the separation and distribution of the major functions. The facility has been designed to support batch and interactive processing, and to incorporate the file and tape storage systems. By distributing these functions, it is often possible to provide higher throughput and resource availability. Similarly, the design is intended to exploit event-level parallelism in an open distributed environment.

  5. APD detector electronics for the NSTX Thomson scattering system

    SciTech Connect

    D.W. Johnson; B.P. LeBlanc; D.L. Long; G. Renda

    2000-08-07

    An electronics system has been installed and tested for the readout of APD detectors for the NSTX Thomson scattering system. Similar to previous designs, it features preamps with a fast and a slow output. The fast output uses pulse shaping to optimize sensitivity for the 8 nsec scattered light pulse while rejecting noise in the intrinsic plasma background. A low readout noise of {approximately}25 photoelectrons is achieved at an APD gain of 75. The design incorporates a number of features to provide flexibility for various modes of calibration.

  6. Application of Control System Studio for the NOνA Detector Control System.

    NASA Astrophysics Data System (ADS)

    Lukhanin, Gennadiy; Biery, Kurt; Foulkes, Stephen; Frank, Martin; Hatzikoutelis, Athanasios; Kowalkowski, Jim; Paterno, Marc; Rechenmacher, Ron

    2012-12-01

    In the NOνA experiment, the Detector Controls System (DCS) provides a method for controlling and monitoring important detector hardware and environmental parameters. It is essential for operating the detector and is required to have access to roughly 370,000 independent programmable channels via more than 11,600 physical devices. In this paper, we demonstrate an application of Control System Studio (CSS), developed by Oak Ridge National Laboratory, for the NOνA experiment. The application of CSS for the DCS of the NOνA experiment has been divided into three phases: (1) user requirements and concept prototype on a test-stand, (2) small scale deployment at the prototype Near Detector on the Surface, and (3) a larger scale deployment at the Far Detector. We also give an outline of the CSS integration with the NOνA online software and the alarm handling logic for the Front-End electronics.

  7. EUCLID detector system demonstrator model: a first demonstration of the NISP detection system

    NASA Astrophysics Data System (ADS)

    Clémens, J. C.; Serra, B.; Niclas, M.; Ealet, A.; Gillard, W.; Secroun, A.; Barbier, R.; Kubik, B.; Ferriol, S.; Smadja, G.; Prieto, E.; Beaumont, F.; Fabron, C.; Garcia, J.; Grassi, E.; Maciaszek, T.

    2015-09-01

    The detector system (DS) of Euclid NISP's instrument (Near-Infrared Spectro-Photometer) is a matrix of 16 H2RG infrared detectors acquired simultaneously. After their characterization done at CPPM (Centre de Physique des Particules de Marseille), these detectors are integrated into a mechanical structure designed at LAM (Laboratoire d'Astronomie de Marseille) and called NI-FPA (Focal Plane Array) Before delivering the full instrument to ESA several test models have to demonstrate the performances of the detector system. The first test model, the Demonstrator Model (DM), has been integrated and tested in dedicated facilities at LAM. The aim was to validate both the integration process and the simultaneous acquisition of the detectors. Dark, noise, self-compatibility and EMC performances are presented in this paper.

  8. Heated Surface Temperatures Measured by Infrared Detector in a Cascade Environment

    NASA Technical Reports Server (NTRS)

    Boyle, Robert J.

    2002-01-01

    Investigators have used infrared devices to accurately measure heated surface temperatures. Several of these applications have been for turbine heat transfer studies involving film cooling and surface roughness, typically, these measurements use an infrared camera positioned externally to the test section. In cascade studies, where several blades are used to ensure periodic flow, adjacent blades block the externally positioned camera's views of the test blade. To obtain a more complete mapping of the surface temperatures, researchers at the NASA Glenn Research Center fabricated a probe with an infrared detector to sense the blade temperatures. The probe size was kept small to minimize the flow disturbance. By traversing and rotating the probe, using the same approach as for total pressure surveys, one can find the blade surface temperatures. Probe mounted infrared detectors are appropriate for measuring surface temperatures where an externally positioned infrared camera is unable to completely view the test object. This probe consists of a 8-mm gallium arsenide (GaAs) lens mounted in front of a mercury-cadmium-zinc-tellurium (HgCdZnTe) detector. This type of photovoltaic detector was chosen because of its high sensitivity to temperature when the detector is uncooled. The particular application is for relatively low surface temperatures, typically ambient to 100 C. This requires a detector sensitive at long wavelengths. The detector is a commercial product enclosed in a 9-mm-diameter package. The GaAs lens material was chosen because of its glass-like hardness and its good long-wavelength transmission characteristics. When assembled, the 6.4-mm probe stem is held in the traversing actuator. Since the entire probe is above the measurement plane, the flow field disturbance in the measurement plane is minimized. This particular probe body is somewhat wider than necessary, because it was designed to have replaceable detectors and lenses. The signal for the detector is

  9. A rope-net support system for the liquid scintillator detector for the SNO+ experiment

    NASA Astrophysics Data System (ADS)

    Bialek, A.; Chen, M.; Cleveland, B.; Gorel, P.; Hallin, A.; Harvey, P. J.; Heise, J.; Kraus, C.; Krauss, C. B.; Lawson, I.; Ng, C. J.; Pinkney, B.; Rogowsky, D. M.; Sibley, L.; Soluk, R.; Soukup, J.; Vázquez-Jáuregui, E.

    2016-08-01

    The detector for the SNO+ experiment consists of 780 000 kg of liquid scintillator contained in an acrylic vessel that is surrounded by water. A mechanical system has been installed to counteract the 1.25 MN of buoyant force on the acrylic and prevent the vessel from moving. The system is a rope net, designed using a Finite Element Analysis to calculate the amount of stress on the acrylic induced by the ropes, hydrostatic pressures and gravity. A dedicated test was performed to measure strains in the acrylic arising from the complex geometry of the knots in the rope system. The ratio between measured and FEA calculated strains was 1.3.

  10. Coherent 1-micron lidar measurements of atmospheric-turbulence-induced spatial decorrelation using a multielement heterodyne detector array

    NASA Technical Reports Server (NTRS)

    Chan, Kin P.; Killinger, Dennis K.

    1992-01-01

    A coherent 1-micron Nd:YAG lidar system is employed to measure directly the reduced spatial coherence length rho 0 of the lidar returns caused by atmospheric turbulence. The experiments were conducted by using a 2 x 2 heterodyne detector array, which permitted real-time spatial correlation measurements of the lidar returns at two different detector spacings. The spatial correlation coefficients and spatial coherence length of the lidar returns from a hard target were measured during a day-to-night time period when the atmospheric turbulence parameter, Cn-squared, was measured to vary from 2 x 10 exp -13 to 2 x 10 exp -4 m exp -2/3. These directly measured values of rho 0 as a function of Cn-squared were found to be in good agreement with theoretical predictions.

  11. SU-E-P-24: Simplified EDW Profile Measurements Using Two Commonly Available Detector Arrays

    SciTech Connect

    Reynolds, T; Arentsen, L; Watanabe, Y; Alaei, P

    2015-06-15

    Purpose: Enhanced dynamic wedge (EDW) profiles are needed as part of the commissioning of a treatment planning system. This work compares the acquisition of EDW profiles using a linear diode array (LDA) with two commonly used detector arrays available in the clinics, with the goal of identifying the simplest approach for these measurements. Methods: The measurements of EDW profiles were performed on a Varian TrueBeam linear accelerator for 6, 10, and 18 MV photon beams for all seven wedge angles at four depths. The measurements were done using the LDA 99 in Blue Phantom2 (IBA Dosimetry), and IC Profiler and MapCHECK2 (Sun Nuclear) in solid water phantoms. The water phantom was set up at 100 cm SSD, whereas the two other devices were set up at 75 cm due to the size limitations of the devices. The largest possible field size was used. The average and maximum percentage differences were examined within the central 90% of the field and in the penumbra. Results: Dose profiles measured with IC Profiler were in a good agreement with LDA 99 data. The average percentage difference within the field did not exceed 0.5% for all energies. MapCHECK2 measurements matched well with LDA 99 for 10 and 18 MV (within 0.3%) with discrepancies of up to 1.4% observed for the 6 MV beam. The maximum percentage differences for both devices in the penumbra exhibited larger variations than LDA 99 results due to differences in detector spacing and high dose gradient, as expected. Conclusion: Common linac QA devices such as IC Profiler or MapCHECK2 provide EDW beam profile data of reasonable accuracy as compared to measurements performed using a linear diode array in a water phantom, saving the expense and time involved in acquiring and setting up a LDA.

  12. Characterization of a double-sided silicon strip detector autoradiography system

    SciTech Connect

    Örbom, Anders Ahlstedt, Jonas; Östlund, Karl; Strand, Sven-Erik; Serén, Tom; Auterinen, Iiro; Kotiluoto, Petri; Hauge, Håvard; Olafsen, Tove; Wu, Anna M.; Dahlbom, Magnus

    2015-02-15

    Purpose: The most commonly used technology currently used for autoradiography is storage phosphor screens, which has many benefits such as a large field of view but lacks particle-counting detection of the time and energy of each detected radionuclide decay. A number of alternative designs, using either solid state or scintillator detectors, have been developed to address these issues. The aim of this study is to characterize the imaging performance of one such instrument, a double-sided silicon strip detector (DSSD) system for digital autoradiography. A novel aspect of this work is that the instrument, in contrast to previous prototype systems using the same detector type, provides the ability for user accessible imaging with higher throughput. Studies were performed to compare its spatial resolution to that of storage phosphor screens and test the implementation of multiradionuclide ex vivo imaging in a mouse preclinical animal study. Methods: Detector background counts were determined by measuring a nonradioactive sample slide for 52 h. Energy spectra and detection efficiency were measured for seven commonly used radionuclides under representative conditions for tissue imaging. System dead time was measured by imaging {sup 18}F samples of at least 5 kBq and studying the changes in count rate over time. A line source of {sup 58}Co was manufactured by irradiating a 10 μm nickel wire with fast neutrons in a research reactor. Samples of this wire were imaged in both the DSSD and storage phosphor screen systems and the full width at half maximum (FWHM) measured for the line profiles. Multiradionuclide imaging was employed in a two animal study to examine the intratumoral distribution of a {sup 125}I-labeled monoclonal antibody and a {sup 131}I-labeled engineered fragment (diabody) injected in the same mouse, both targeting carcinoembryonic antigen. Results: Detector background was 1.81 × 10{sup −6} counts per second per 50 × 50 μm pixel. Energy spectra and

  13. First isochronous mass measurements with two time-of-flight detectors at CSRe

    NASA Astrophysics Data System (ADS)

    Xing, Y. M.; Wang, M.; Zhang, Y. H.; Shuai, P.; Xu, X.; Chen, R. J.; Yan, X. L.; Tu, X. L.; Zhang, W.; Fu, C. Y.; Xu, H. S.; Litvinov, Yu A.; Blaum, K.; Chen, X. C.; Ge, Z.; Gao, B. S.; Huang, W. J.; Litvinov, S. A.; Liu, D. W.; Ma, X. W.; Mao, R. S.; Xiao, G. Q.; Yang, J. C.; Yuan, Y. J.; Zeng, Q.; Zhou, X. H.

    2015-11-01

    Isochronous mass spectrometry (IMS) established in heavy-ion storage rings has proven to be a powerful tool for mass measurements of short-lived nuclides. In IMS, the revolution times of stored ions should be independent of their velocity spread. However, this isochronous condition is fulfilled only in the first order and in a small range of revolution times. To correct for non-isochronicity, an additional measure of the velocity or magnetic rigidity of each stored ion is required. For this purpose two new time-of-flight (TOF) detectors were installed in one of the straight sections of the experimental cooler storage ring in Lanzhou. It is expected that the resolving power of the IMS will significantly be improved with such a double-TOF arrangement. The double-TOF system was tested in a recent experiment with the 78Kr fragments. Some of the experimental results are presented in this contribution.

  14. Measurements of Differential Z/gamma*+jet+X Cross Sections with the D0 Detector

    SciTech Connect

    Lammers, Sabine

    2009-11-01

    We present measurements of differential cross sections in inclusive Z/{gamma}* plus jet production in a data sample of 1 fb{sup -1} collected with the D0 detector in proton antiproton collisions at {radical}s = 1.96 TeV. Measured variables include the Z/{gamma}* transverse momentum (p{sub T}{sup Z}) and rapidity (y{sup Z}), the leading jet transverse momentum (p{sub T}{sup jet}) and rapidity (y{sup jet}), as well as various angles of the Z+jet system. We compare the results to different Monte Carlo event generators and next-to-leading order perturbative QCD (NLO pQCD) predictions, with non-perturbative corrections applied.

  15. Security issues of quantum cryptographic systems with imperfect detectors

    NASA Astrophysics Data System (ADS)

    Burenkov, Viacheslav

    The laws of quantum physics can be used to secure communications between two distant parties in a scheme called quantum key distribution (QKD), even against a technologically unlimited eavesdropper. While the theoretical security of QKD has been proved rigorously, current implementations of QKD are generally insecure. In particular, mathematical models of devices, such as detectors, do not accurately describe their real-life behaviour. Such seemingly insignificant discrepancies can compromise the security of the entire scheme, especially as novel detector technologies are being developed with little regard for potential vulnerabilities. In this thesis, we study how detector imperfections can impact the security of QKD and how to overcome such technological limitations. We first analyze the security of a high-speed QKD system with finite detector dead time tau. We show that the previously reported sifting approaches are not guaranteed to be secure in this regime. More specifically, Eve can induce a basis-dependent detection efficiency at the receiver's end. Modified key sifting schemes that are basis-independent, and thus secure in the presence of dead time and an active eavesdropper, are discussed and compared. It is shown that the maximum key generation rate is 1/(2tau) for passive basis selection, and 1/tau for active basis selection. The security analysis is also extended to the decoy state BB84 protocol. We then study a relatively new type of single-photon detector called the superconducting nanowire single-photon detector (SNSPD), and discover some unexpected behaviour. We report an afterpulsing effect present when the SNSPD is operated in the high bias current regime. In our standard set-up, the afterpulsing is most likely to occur at around 180 ns following a detection event, for both real counts and dark counts. We characterize the afterpulsing behaviour and speculate that it is not due to the SNSPD itself but rather the associated read-out circuit. We also

  16. System for measuring film thickness

    DOEpatents

    Batishko, Charles R.; Kirihara, Leslie J.; Peters, Timothy J.; Rasmussen, Donald E.

    1990-01-01

    A system for determining the thicknesses of thin films of materials exhibiting fluorescence in response to exposure to excitation energy from a suitable source of such energy. A section of film is illuminated with a fixed level of excitation energy from a source such as an argon ion laser emitting blue-green light. The amount of fluorescent light produced by the film over a limited area within the section so illuminated is then measured using a detector such as a photomultiplier tube. Since the amount of fluorescent light produced is a function of the thicknesses of thin films, the thickness of a specific film can be determined by comparing the intensity of fluorescent light produced by this film with the intensity of light produced by similar films of known thicknesses in response to the same amount of excitation energy. The preferred embodiment of the invention uses fiber optic probes in measuring the thicknesses of oil films on the operational components of machinery which are ordinarily obscured from view.

  17. 500 MHz neutron detector

    SciTech Connect

    Yen, Yi-Fen; Bowman, J.D.; Matsuda, Y.

    1993-12-01

    A {sup 10}B-loaded scintillation detector was built for neutron transmission measurements at the Los Alamos Neutron Scattering Center. The efficiency of the detector is nearly 100% for neutron energies from 0 to 1 keV. The neutron moderation time in the scintillator is about 250 ns and is energy independent. The detector and data processing system are designed to handle an instantaneous rate as high as 500 MHz. The active area of the detector is 40 cm in diameter.

  18. Annual Scientific Report 2004-2005 Proton Radiography: Cross Section Measurements and Detector Development

    SciTech Connect

    Michael J. Longo

    2005-03-11

    Our research grant provides support for a program to measure forward production of neutrons and photons produced by high-energy proton beams striking a variety of targets. This will provide data essential to proton radiography. This work is carried out in conjunction with the Fermilab E-907 (MIPP) collaboration including physicists from Lawrence Livermore Laboratory. Our group is responsible for the E907 forward neutron/photon calorimeters. We are taking a leading role in obtaining and analyzing the forward production data and in helping to develop an optimal detector for proton radiography. With the support of our Stewardship Science Academic Alliances Grant DE-FG03-03NA00077, we were able to design, build, and commission the calorimeters on budget and ahead of schedule. E-907 officially started physics running at Fermilab in January 2005. We expect to continue data taking through October 2005. The analysis of the data, which we expect will be challenging because data from many different detector systems must be understood and merged, will take several years. Our group is in a unique position to complete the measurements, analyze the data, and help set up a database to be used by LLNL and LANL to make this information accessible for proton radiography. This work will be done in conjunction with the Livermore Laboratory High Energy Physics and Computational Nuclear Physics Groups. The project is meeting or exceeding its technical milestones, while remaining within its budget.

  19. CARS system for turbulent flame measurements

    NASA Technical Reports Server (NTRS)

    Antcliff, R. R.; Jarrett, O., Jr.; Rogers, R. C.

    1984-01-01

    Simultaneous nitrogen number density and rotational-vibrational temperatures were measured in a turbulent diffusion flame with a Coherent Anti-Stokes Raman Scattering (CARS) instrument. The fuel jet was diluted with nitrogen (20 percent by volume) to allow temperature measurements across the entire jet mixing region. These measurements were compared with fluid dynamics computations. The CARS system incorporated a neodymium YAG laser, an intensified silicon photodiode array detector, and unique dynamic range enhancement methods. Theoretical calculations were based on a parabolic Navier-Stokes computer code. The comparison of these techniques will aid their development in the study of complex flowfields.

  20. Neutron field parameter measurements on the JET tokamak by means of super-heated fluid detectors

    SciTech Connect

    Gherendi, M.; Craciunescu, T.; Pantea, A.; Zoita, V. L.; Johnson, M. Gatu; Hellesen, C.; Conroy, S.; Baltog, I.; Edlington, T.; Kiptily, V.; Popovichev, S.; Murari, A.; Collaboration: JET EFDA Contributors

    2012-10-15

    The neutron field parameters (fluence and energy distribution) at a specific location outside the JET Torus Hall have been measured by means of super-heated fluid detectors (or 'bubble detectors') in combination with an independent, time-of-flight, technique. The bubble detector assemblies were placed at the end of a vertical line of sight at about 16 m from the tokamak mid plane. Spatial distributions of the neutron fluence along the radial and toroidal directions have been obtained using two-dimensional arrays of bubble detectors. Using a set of three bubble detector spectrometers the neutron energy distribution was determined over a broad energy range, from about 10 keV to above 10 MeV, with an energy resolution of about 30% at 2.5 MeV. The very broad energy response allowed for the identification of energy features far from the main fusion component (around 2.45 MeV for deuterium discharges).

  1. Neutron field parameter measurements on the JET tokamak by means of super-heated fluid detectors.

    PubMed

    Gherendi, M; Zoita, V L; Craciunescu, T; Johnson, M Gatu; Pantea, A; Baltog, I; Edlington, T; Hellesen, C; Kiptily, V; Conroy, S; Murari, A; Popovichev, S

    2012-10-01

    The neutron field parameters (fluence and energy distribution) at a specific location outside the JET Torus Hall have been measured by means of super-heated fluid detectors (or "bubble detectors") in combination with an independent, time-of-flight, technique. The bubble detector assemblies were placed at the end of a vertical line of sight at about 16 m from the tokamak mid plane. Spatial distributions of the neutron fluence along the radial and toroidal directions have been obtained using two-dimensional arrays of bubble detectors. Using a set of three bubble detector spectrometers the neutron energy distribution was determined over a broad energy range, from about 10 keV to above 10 MeV, with an energy resolution of about 30% at 2.5 MeV. The very broad energy response allowed for the identification of energy features far from the main fusion component (around 2.45 MeV for deuterium discharges). PMID:23130800

  2. Wear Measurement System

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Lewis Research Center developed a tribometer for in-house wear tests. Implant Sciences Corporation (ISC), working on a NASA contract to develop coatings to enhance the wear capabilities of materials, adapted the tribometer for its own use and developed a commercial line of user-friendly systems. The ISC-200 is a pin-on-disk type of tribometer, functioning like a record player and creating a wear groove on the disk, with variables of speed and load. The system can measure the coefficient of friction, the wear behavior between materials, and the integrity of thin films or coatings. Applications include measuring wear on contact lenses and engine parts and testing disk drives.

  3. Progress in the development of a S-RETGEM-based detector for an early forest fire warning system

    NASA Astrophysics Data System (ADS)

    Charpak, G.; Benaben, P.; Breuil, P.; Martinengo, P.; Nappi, E.; Peskov, V.

    2009-12-01

    We present a prototype of a Strip Resistive Thick GEM (S-RETGEM) photosensitive gaseous detector filled with Ne and ethylferrocene (EF) vapours at a total pressure of 1 atm for an early forest fire detection system. Measurements show that it is one hundred times more sensitive than the best commercial ultraviolet (UV) flame detectors; and therefore, it is able to reliably detect a flame of ~ 1.5 × 1.5 × 1.5 m3 at a distance of about 1 km. An additional and unique feature of this detector is its imaging capability, which in combination with other techniques, may significantly reduce false fire alarms rate when operating in an automatic mode. Preliminary results conducted with air-filled photosensitive gaseous detectors are also presented. The main advantages of this approach include both the simplicity of manufacturing and affordability of construction materials such as plastics and glues specifically reducing detector production cost. The sensitivity of these air-filled detectors at certain conditions may be as high as those filled with Ne and EF. Long-term tests of such sealed detectors indicate a significant progress in this direction. We believe that our detectors utilized in addition to other flame and smoke sensors will exceptionally increase the capability to detect forest fire at a very early stage of development. Our future efforts will be focused on attempts to commercialize such detectors utilizing our aforementioned findings.

  4. Wireless Acoustic Measurement System

    NASA Technical Reports Server (NTRS)

    Anderson, Paul D.; Dorland, Wade D.; Jolly, Ronald L.

    2007-01-01

    A prototype wireless acoustic measurement system (WAMS) is one of two main subsystems of the Acoustic Prediction/ Measurement Tool, which comprises software, acoustic instrumentation, and electronic hardware combined to afford integrated capabilities for predicting and measuring noise emitted by rocket and jet engines. The other main subsystem is described in the article on page 8. The WAMS includes analog acoustic measurement instrumentation and analog and digital electronic circuitry combined with computer wireless local-area networking to enable (1) measurement of sound-pressure levels at multiple locations in the sound field of an engine under test and (2) recording and processing of the measurement data. At each field location, the measurements are taken by a portable unit, denoted a field station. There are ten field stations, each of which can take two channels of measurements. Each field station is equipped with two instrumentation microphones, a micro- ATX computer, a wireless network adapter, an environmental enclosure, a directional radio antenna, and a battery power supply. The environmental enclosure shields the computer from weather and from extreme acoustically induced vibrations. The power supply is based on a marine-service lead-acid storage battery that has enough capacity to support operation for as long as 10 hours. A desktop computer serves as a control server for the WAMS. The server is connected to a wireless router for communication with the field stations via a wireless local-area network that complies with wireless-network standard 802.11b of the Institute of Electrical and Electronics Engineers. The router and the wireless network adapters are controlled by use of Linux-compatible driver software. The server runs custom Linux software for synchronizing the recording of measurement data in the field stations. The software includes a module that provides an intuitive graphical user interface through which an operator at the control server

  5. Wireless Acoustic Measurement System

    NASA Technical Reports Server (NTRS)

    Anderson, Paul D.; Dorland, Wade D.

    2005-01-01

    A prototype wireless acoustic measurement system (WAMS) is one of two main subsystems of the Acoustic Prediction/Measurement Tool, which comprises software, acoustic instrumentation, and electronic hardware combined to afford integrated capabilities for predicting and measuring noise emitted by rocket and jet engines. The other main subsystem is described in "Predicting Rocket or Jet Noise in Real Time" (SSC-00215-1), which appears elsewhere in this issue of NASA Tech Briefs. The WAMS includes analog acoustic measurement instrumentation and analog and digital electronic circuitry combined with computer wireless local-area networking to enable (1) measurement of sound-pressure levels at multiple locations in the sound field of an engine under test and (2) recording and processing of the measurement data. At each field location, the measurements are taken by a portable unit, denoted a field station. There are ten field stations, each of which can take two channels of measurements. Each field station is equipped with two instrumentation microphones, a micro-ATX computer, a wireless network adapter, an environmental enclosure, a directional radio antenna, and a battery power supply. The environmental enclosure shields the computer from weather and from extreme acoustically induced vibrations. The power supply is based on a marine-service lead-acid storage battery that has enough capacity to support operation for as long as 10 hours. A desktop computer serves as a control server for the WAMS. The server is connected to a wireless router for communication with the field stations via a wireless local-area network that complies with wireless-network standard 802.11b of the Institute of Electrical and Electronics Engineers. The router and the wireless network adapters are controlled by use of Linux-compatible driver software. The server runs custom Linux software for synchronizing the recording of measurement data in the field stations. The software includes a module that

  6. Optical absorption measurement system

    DOEpatents

    Draggoo, Vaughn G.; Morton, Richard G.; Sawicki, Richard H.; Bissinger, Horst D.

    1989-01-01

    The system of the present invention contemplates a non-intrusive method for measuring the temperature rise of optical elements under high laser power optical loading to determine the absorption coefficient. The method comprises irradiating the optical element with a high average power laser beam, viewing the optical element with an infrared camera to determine the temperature across the optical element and calculating the absorption of the optical element from the temperature.

  7. Microgravity Acceleration Measurement System

    NASA Technical Reports Server (NTRS)

    Foster, William

    2009-01-01

    Microgravity Acceleration Measurement System (MAMS) is an ongoing study of the small forces (vibrations and accelerations) on the ISS that result from the operation of hardware, crew activities, as well as dockings and maneuvering. Results will be used to generalize the types of vibrations affecting vibration-sensitive experiments. Investigators seek to better understand the vibration environment on the space station to enable future research.

  8. Wind measurement system

    NASA Technical Reports Server (NTRS)

    Cliff, W. C.; Huffaker, R. M.; Dahm, W. K.; Thomson, J. A. L.; Lawrence, T. R.; Krause, M. C.; Wilson, D. J. (Inventor)

    1976-01-01

    A system for remotely measuring vertical and horizontal winds present in discrete volumes of air at selected locations above the ground is described. A laser beam is optically focused in range by a telescope, and the output beam is conically scanned at an angle about a vertical axis. The backscatter, or reflected light, from the ambient particulates in a volume of air, the focal volume, is detected for shifts in wavelength, and from these, horizontal and vertical wind components are computed.

  9. Contour measurement system

    NASA Technical Reports Server (NTRS)

    Currie, J. R.; Kissel, R. R.; Deaton, E. T., Jr.; Campbell, R. A. (Inventor)

    1979-01-01

    A measurement system for measuring the departures from a straight line of discrete track sections of a track along a coal face in a mine employing a vehicle having a pair of spaced wheel assemblies which align with the track is presented. A reference arm pivotally connects between the wheel assemblies, and there is indicating means for measuring the angle of pivot between the arm and each of the wheel assemblies. The length of the device is less than the length of a track section, and thus when one of the wheel assemblies is on one track section and one is on an adjoining track section, the sum of the indicated angles will be indicative of the angle between track sections. Thus, from the length of a track section and angle, the departure of each track section from the line may be calculated.

  10. System for Measuring Capacitance

    NASA Technical Reports Server (NTRS)

    McNichol, Randal S. (Inventor)

    2001-01-01

    A system has been developed for detecting the level of a liquid in a tank wherein a capacitor positioned in the tank has spaced plates which are positioned such that the dielectric between the plates will be either air or the liquid, depending on the depth of the liquid in the tank. An oscillator supplies a sine wave current to the capacitor and a coaxial cable connects the capacitor to a measuring circuit outside the tank. If the cable is very long or the capacitance to be measured is low, the capacitance inherent in the coaxial cable will prevent an accurate reading. To avoid this problem, an inductor is connected across the cable to form with the capacitance of the cable a parallel resonant circuit. The impedance of the parallel resonant circuit is infinite, so that attenuation of the measurement signal by the stray cable capacitance is avoided.

  11. INGAS: Iranian Noble Gas Analyzing System for radioxenon measurement

    NASA Astrophysics Data System (ADS)

    Doost-Mohammadi, V.; Afarideh, H.; Etaati, G. R.; Safari, M. J.; Rouhi, H.

    2016-03-01

    In this article, Iranian Noble Gas Analyzing System (INGAS) will be introduced. This system is based on beta-gamma coincidence technique and consists of a well-type NaI(Tl) as gamma or X radiation detector and a cylindrical plastic scintillator to detect beta or conversion electron. Standard NIM modules were utilized to detect coincidence events of detectors. Both the beta and gamma detectors were appropriately calibrated. The efficiency curve of gamma detector for volume geometry was obtained by comparing the results of gamma point sources measurements and simulations of GATE V7.0 Monte Carlo code. The performance of detection system was checked by injection of 222Rn and 131mXe gaseous source in the detection cell. The minimum detectable activity of the system for 133Xe is 1.240±0.024 mBq for 24 h measurement time.

  12. A New Neutron Time-of-Flight Detector for DT Yield and Ion-Temperature Measurements on OMEGA

    NASA Astrophysics Data System (ADS)

    Glebov, V. Yu.; Forrest, C. J.; Knauer, J. P.; Regan, S. P.; Sangster, T. C.; Stoeckl, C.

    2015-11-01

    A new neutron time-of-flight (nTOF) detector for DT yield and ion-temperature measurements in DT implosions on the OMEGA Laser System was designed, fabricated, tested, and calibrated. The goal of this detector is to provide a second line of sight for DT yield and ion-temperature measurements in the 1 ×1012 to 1014 yield range. The nTOF detector consists of a 40-mm-diam, 20-mm-thick BC-422Q(1%) scintillator coupled with a one-stage Photek PMT-140 photomultiplier tube. To avoid PMT saturation at high yields a neutral density filter ND1 is inserted between the scintillator and PMT. Both the scintillator and PMT are shielded from hard x rays by 5 mm of lead on all sides and 10 mm in the direction of the target. The nTOF detector is located at 15.8 m from target chamber center in the OMEGA Target Bay. The design details and calibration results of this nTOF detector in DT implosions on OMEGA will be presented. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  13. Detectors and electronics for real time measurement of radiation dose and quality using the variance method

    NASA Astrophysics Data System (ADS)

    Hsu, Wen-Hsing

    The product of the radiation dose and radiation quality indicates the biological consequences of radiation exposure. Therefore, quantifying both radiation dose and radiation quality is important to biological experiments as well as radiation protection. A small, specialized amplifier based on commercial ICs was developed to measure the radiation dose and quality in real-time using a microdosimetric detector, operated in the current mode, and the variance method. The random nature of radiation induces variance in the dose (in a small volume such as that of cell or DNA) for a specific radiation field that is proportional to the radiation quality. The charges from the microdosimetric detector, operated in the current mode, were repeatedly collected for a fixed period of time for 20 cycles of 100 integrations, and processed by the specialized amplifier to produce signals of pulse height between 0 and 10 volts. These signals with various amplitudes, which are proportional to the channel number, were then recorded by the MCA and stored in a computer. FORTRAN programs written in this study then calculated the average dose and the average dose variance from the stored data. Benchmarks of different brand's ICs were conducted to select a component with the best performance versus cost. The specialized amplifier showed the following characteristics: low input capacitance, low output impedance, adjustable integration time for controlling the amount of charge collected from the detector, linearity of system response to input currents, adjustable gain control, and low background noise. Standardized procedures of constructing a functional device (the specialized amplifier) were established, including arrangements of circuit diagram, processing of a printed circuit board, and construction of an aluminum-shielding box that served as a united ground point. In addition, procedures for determining the inner dimensions of the detector using radiography are also presented along with

  14. In-vitro corneal transparency measuring system

    NASA Astrophysics Data System (ADS)

    Ventura, Liliane; da Costa Vieira, Marcelo A.; Isaac, Flavio; Chiaradia, Caio; Faria de Sousa, Sidney J.

    2001-06-01

    A system for measuring the average corneal transparency of preserved corneas has been developed in order to provide a more accurate and standard report of the corneal tissue. The donated cornea transparency is one of the features to be analyzed previously to its indication for the transplant. The small portable system consists of two main parts: the optical and the electronic parts. The optical system consists of a white light, lenses and pin-holes that collimate white light beams that illuminates the cornea in its preservative medium. The light that passes through the cornea is detected by a resistive detector and the average corneal transparency is shown in a display. In order to obtain just the tissue transparency, the electronic circuit was built in a way that there is a baseline input of the preservative medium, previous to the measurement of the corneal transparency. Manipulating the system consists of three steps: (1) Adjusting the zero percentage in the absence of light (at this time the detectors in the dark); (2) Placing the preservative medium in the system and adjusting the 100% value (this is the baseline input); (3) Preserving the cornea and placing it in the system. The system provides the tissue transparency. The system is connected to an endothelium evaluation system for Slit Lamp, that we have developed, and statistics about the relationship of the corneal transparency and density of the endothelial cells will be provided in the next years. The system is being used in a public Eye Bank in Brasil.

  15. A crystal detector for measuring beta and internal conversion electrons in flowing air containing fission gases

    NASA Astrophysics Data System (ADS)

    Schell, W. R.; Vives-Batlle, J.; Yoon, S. R.; Tobin, M. J.

    1999-02-01

    Low levels of radioactive gases are released from nuclear electric power generation, nuclear fuel reprocessing plants, nuclear weapons tests and from diagnostic medical uses of radioactive gas tracers. A prototype model of an inorganic scintillator - Crystal Gas Electron Detector (CGED) - was built for measurements of xenon isotopes in-line by detecting the beta and internal conversion (IC) electrons present in atmospheric samples. The detection and quantification of the radionuclide spectra are accomplished, during air flow, without complete purification of the fission gases. Initial operational tests and calibrations made permit the integration of the CGED into a portable Gas Analysis, Separation and Purification (GASP) system [1-3]. The CGED detector, Pulse Shaping and Timing (PSA) electronics, and mathematical treatment of the accumulated spectra are used to resolve the K and LMNO-IC electrons and beta continuum. These data are used, in-line, for dating the age of an air parcel containing fission gases released from nuclear reactors and/or from nuclear weapons tests, as part of the monitoring equipment required to enforce the Comprehensive Test Ban Treaty, CTBT. This report is one of a series of papers providing the design features, operational methods, calibration, and applications of radioactive gas analysis system to the International CTBT.

  16. Measurement of the neutrino velocity with the OPERA detector in the CNGS neutrino beam

    NASA Astrophysics Data System (ADS)

    Autiero, Dario

    2012-03-01

    The OPERA neutrino experiment at the underground Gran Sasso Laboratory measured the velocity of neutrinos from the CERN CNGS beam over a baseline of about 730 km with much higher accuracy than previous studies conducted with accelerator neutrinos. The measurement was based on high statistics data taken by OPERA in the years 2009, 2010 and 2011. Dedicated upgrades of the CNGS timing system and of the OPERA detector, as well as a high precision geodesy campaign for the measurement of the neutrino baseline, allowed reaching comparable systematic and statistical accuracies and limiting the overall uncertainty on the neutrinos time of flight measurement to 10 ns. The time of flight was measured by comparing the time distributions of neutrino interactions in OPERA and of protons hitting the CNGS target in 10.5 μs long extractions. The above result, indicating an early arrival time of about 60 ns of CNGS muon neutrinos with respect to the one computed assuming the speed of light in vacuum, was confirmed by a test performed using a beam with a short-bunch time-structure allowing to measure the neutrino time of flight at the single interaction level. The OPERA neutrino velocity measurement will be review as well as the latest developments and perspectives.

  17. Particle measurement systems and methods

    SciTech Connect

    Steele, Paul T.

    2011-10-04

    A system according to one embodiment includes a light source for generating light fringes; a sampling mechanism for directing a particle through the light fringes; and at least one light detector for detecting light scattered by the particle as the particle passes through the light fringes. A method according to one embodiment includes generating light fringes using a light source; directing a particle through the light fringes; and detecting light scattered by the particle as the particle passes through the light fringes using at least one light detector.

  18. Measurements of X-ray selected AGN and novel superconducting X-ray detectors

    NASA Astrophysics Data System (ADS)

    Eckart, Megan Elizabeth

    2007-07-01

    The second part of this thesis focuses on microwave kinetic inductance detectors (MKIDs), a superconducting detector technology that has breakthrough potential for providing megapixel imagers with several eV energy resolution for use in future X-ray missions. These detectors utilize simple, thin-film lithographed microwave resonators as photon detectors in a multiplexed readout approach. X-ray absorption in a superconductor creates quasiparticle excitations, with number proportional to the X-ray energy. The surface impedance of a superconductor changes with the quasiparticle density, and if operated at T<measured using the thin-film resonant circuit and microwave readout techniques. This provides a sensitive detector with excellent energy resolution. MKIDs offer the advantage over many other cryogenic detector technologies that they can be easily multiplexed by coupling many resonators to a single microwave transmission line. In addition, the readout electronics can be operated at room temperature, a significant advantage for space applications. The practical application of MKIDs for photon detection requires a method of efficiently coupling the photon energy to the MKID. To this end we have been studying MKIDs in a strip detector architecture. The second part of this thesis presents our results using strip detectors with tantalum absorbers coupled to aluminum MKIDs.

  19. Blade Vibration Measurement System

    NASA Technical Reports Server (NTRS)

    Platt, Michael J.

    2014-01-01

    The Phase I project successfully demonstrated that an advanced noncontacting stress measurement system (NSMS) could improve classification of blade vibration response in terms of mistuning and closely spaced modes. The Phase II work confirmed the microwave sensor design process, modified the sensor so it is compatible as an upgrade to existing NSMS, and improved and finalized the NSMS software. The result will be stand-alone radar/tip timing radar signal conditioning for current conventional NSMS users (as an upgrade) and new users. The hybrid system will use frequency data and relative mode vibration levels from the radar sensor to provide substantially superior capabilities over current blade-vibration measurement technology. This frequency data, coupled with a reduced number of tip timing probes, will result in a system capable of detecting complex blade vibrations that would confound traditional NSMS systems. The hardware and software package was validated on a compressor rig at Mechanical Solutions, Inc. (MSI). Finally, the hybrid radar/tip timing NSMS software package and associated sensor hardware will be installed for use in the NASA Glenn spin pit test facility.

  20. Compressive spectral imaging systems based on linear detector

    NASA Astrophysics Data System (ADS)

    Liu, Yanli; Zhong, Xiaoming; Zhao, Haibo; Li, Huan

    2015-08-01

    The spectrometers capture large amount of raw and 3-dimensional (3D) spatial-spectral scene information with 2- dimensional (2D) focal plane arrays(FPA). In many applications, including imaging system and video cameras, the Nyquist rate is so high that too many samples result, making compression a precondition to storage or transmission. Compressive sensing theory employs non-adaptive linear projections that preserve the structure of the signal, the signal is then reconstructed from these projections using an optimization process. This article overview the fundamental spectral imagers based on compressive sensing, the coded aperture snapshot spectral imagers (CASSI) and high-resolution imagers via moving random exposure. Besides that, the article propose a new method to implement spectral imagers with linear detector imager systems based on spectrum compressed. The article describes the system introduction and code process, and it illustrates results with real data and imagery. Simulations are shown to illustrate the performance improvement attained by the new model and complexity of the imaging system greatly reduced by using linear detector.

  1. A 90GHz Bolometer Camera Detector System for the Green

    NASA Technical Reports Server (NTRS)

    Benford, Dominic J.; Allen, Christine A.; Buchanan, Ernest; Chen, Tina C.; Chervenak, James A.; Devlin, Mark J.; Dicker, Simon R.; Forgione, Joshua B.

    2004-01-01

    We describe a close-packed, two-dimensional imaging detector system for operation at 90GHz (3.3 mm) for the 100m Green Bank Telescope (GBT). This system will provide high sensitivity (less than 1mJy in 1s) rapid imaging (15'x15' to 150 micron Jy in 1 hr) at the world's largest steerable aperture. The heart of this camera is an 8x8 close-packed, Nyquist-sampled array of superconducting transition edge sensor (TES) bolometers. We have designed and are producing a functional superconducting bolometer array system using a monolithic planar architecture and high-speed multiplexed readout electronics. With an NEP of approximately 2 x 10(exp -17) W/square root of Hz, the TES bolometers will provide fast, linear, sensitive response for high performance imaging. The detectors are read out by an 8x8 time domain SQUID multiplexer. A digital/analog electronics system has been designed to enable read out by SQUID multiplexers. First light for this instrument on the GBT is expected within a year.

  2. SSC detector muon sub-system beam tests

    SciTech Connect

    Downing, R.; Errede, S.; Gauthier, A.; Haney, M.; Karliner, I.; Liss, T.; O`Halloran, T.; Sheldon, P.; Simiatis, V.; Thaler, J.; Wiss, J.; Green, D.; Martin, P.; Morfin, J.; Kunori, S.; Skuja, A.; Okusawa, T.; Takahashi, T.; Teramoto, Y.; Yoshida, T.; Asano, Y.; Mann, T.; Davisson, R.; Liang, G.; Lubatti, H.; Wilkes, R.; Zhao, T.; Carlsmith, D.

    1993-08-01

    We propose to start a test-beam experiment at Fermilab studying the problems associated with tracking extremely high energy muons through absorbers. We anticipate that in this energy range the observation of the muons will be complicated by associated electromagnetic radiation Monte Carlo simulations of this background need to be tuned by direct observations. These beam tests are essential to determine important design parameters of a SSC muon detector, such as the choice of the tracking, geometry, hardware triggering schemes, the number of measuring stations, the amount of iron between measuring stations, etc. We intend to begin the first phase of this program in November of 1990 utilizing the Tevatron muon beam. We plan to measure the multiplicity, direction, and separation of secondary particles associated with the primary muon track as it emerges from an absorber. The second phase of beam test in 1992 or later will be a full scale test for the final design chosen in our muon subsystem proposal.

  3. Applications of a Fast Neutron Detector System to Verification of Special Nuclear Materials

    NASA Astrophysics Data System (ADS)

    Mayo, Douglas R.; Byrd, Roger C.; Ensslin, Norbert; Krick, Merlyn S.; Mercer, David J.; Miller, Michael C.; Prettyman, Thomas H.; Russo, Phyllis A.

    1998-04-01

    An array of boron-loaded plastic optically coupled to bismuth germanate scintillators has been developed to detect neutrons for measurement of special nuclear materials. The phoswiched detection system has the advantage of a high neutron detection efficiency and short die-away time. This is achieved by mixing the moderator (plastic) and the detector (^10B) at the molecular level. Simulations indicate that the neutron capture probabilities equal or exceed those of the current thermal neutron multiplicity techniques which have the moderator (polyethylene) and detectors (^3He gas proportional tubes) macroscopically separate. Experiments have been performed to characterize the response of these detectors and validate computer simulations. The fast neutron detection system may be applied to the quantitative assay of plutonium in high (α,n) backgrounds, with emphasis on safeguards and enviromental scenarios. Additional applications of the insturment, in a non-quantative mode, has been tested for possible verification activities involving dismantlement of nuclear weapons. A description of the detector system, simulations and preliminary data will be presented.

  4. Performance Measurements of the Flight Detector for SPICE on SolarOrbiter

    NASA Astrophysics Data System (ADS)

    Thompson, W. T.; Davila, J. M.; Caldwell, M.; Siegmund, O.

    2015-12-01

    The Spectral Imaging of the Coronal Environment (SPICE) instrument for theSolar Orbiter mission will make spectroscopic observations of the Sun's lowcorona to characterize the plasma properties of the source regions of the solarwind. The detector package for SPICE, provided by the NASA Goddard SpaceFLight Center, consists of two microchannel-plate (MCP) intensified ActivePixel Sensor (APS) detectors covering the short (702-792 Angstroms) and long(972-1050 Angstroms) wavelength bandpasses. The long wavelength detector willalso provide coverage in second order between 485-525 Angstroms. We previouslyreported on measurements of the engineering model detector. Here, we report onmeasurements made on the flight SPICE detector in the same vacuum tank facilityat the Rutherford Appleton Laboratory in Harwell, UK. These measurementsinclude the detector flat field, sensitivity, resolution, linearity, andstatistical noise. A krypton resonance lamp operating at 1236 Angstroms wasused to stimulate the detector. Results at this wavelength are combined withthe quantum efficiency measurements of the individual MCPs at this and otherwavelengths covering the entire wavelength range to provide a completecalibration curve for the instrument. A calibrated NIST photodiode was used todetermine the absolute brightness of the lamp.

  5. Compact Full-Field Ion Detector System for SmallSats Beyond LEO

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.; Clark, Pamela E.; McNeil, Roger R.

    2014-01-01

    NASA Glenn Research Center (GRC) is applying its expertise and facilities in harsh environment instrumentation to develop a Compact Full-Field Ion Detector System (CFIDS). The CFIDS is designed to be an extremely compact, low cost instrument, capable of being flown on a wide variety of deep space platforms, to provide multi-directional, comprehensive (composition, velocity, and direction) in-situ measurements of heavy ions in space plasma environments.

  6. Compact Full-Field Ion Detector System for CubeSat Science Beyond LEO

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.; Clark, Pamela E.

    2013-01-01

    NASA Glenn Research Center (GRC) is applying its expertise and facilities in harsh environment instrumentation to develop a Compact Full-Field Ion Detector System (CFIDS). The CFIDS is designed to be an extremely compact, low cost instrument, capable of being flown on a wide variety of deep space platforms, to provide comprehensive (composition, velocity, and direction) in situ measurements of heavy ions in space plasma environments with higher fidelity, than previously available.

  7. New bridge-circuit-type detector to measure precise resistance change of strain gauge at low temperature and magnetic field

    NASA Astrophysics Data System (ADS)

    Ohashi, Masashi; Kishii, Nobuya; Tateno, Shota

    2016-04-01

    We report a new highly accurate and versatile bridge-circuit-type detector that has a simple structure and demonstrates a low degree of error for measurements of thermal expansion and magnetostriction by the strain gauge method. As an example, a commercial physical property measurement system (PPMS) is combined with a compact bridge-circuit box. Thermal expansion and magnetostriction are calculated from the resistance of the bridge and bridge voltage, measured by the operation of a standard PPMS resistivity option. The performance of the new detector is demonstrated by measuring the temperature and magnetic field dependences of the strain to obtain the thermal expansion coefficient and magnetostriction of the single crystals of rare-earth compounds RAl2 (R = Dy, Tb).

  8. Measurement of gamma and neutron radiations inside spent fuel assemblies with passive detectors

    NASA Astrophysics Data System (ADS)

    Viererbl, L.; Lahodová, Z.; Voljanskij, A.; Klupák, V.; Koleška, M.; Cabalka, M.; Turek, K.

    2011-10-01

    During operation of a fission nuclear reactor, many radionuclides are generated in fuel by fission and activation of 235U, 238U and other nuclides present in the assembly. After removal of a fuel assembly from the core, these radionuclides are sources of different types of radiation. Gamma and neutron radiation emitted from an assembly can be non-destructively detected with different types of detectors. In this paper, a new method of measurement of radiation from a spent fuel assembly is presented. It is based on usage of passive detectors, such as alanine dosimeters for gamma radiation and track detectors for neutron radiation. Measurements are made on the IRT-2M spent fuel assemblies used in the LVR-15 research reactor. During irradiation of detectors, the fuel assembly is located in a water storage pool at a depth of 6 m. Detectors are inserted into central hole of the assembly, irradiated for a defined time interval, and after the detectors removed from the assembly, gamma dose or neutron fluence are evaluated. Measured profiles of gamma dose rate and neutron fluence rate inside of the spent fuel assembly are presented. This measurement can be used to evaluate relative fuel burn-up.

  9. Measurement of the Fluorescence Quantum Yield Using a Spectrometer With an Integrating Sphere Detector.

    PubMed

    Gaigalas, Adolfas K; Wang, Lili

    2008-01-01

    A method is proposed for measuring the fluorescence quantum yield (QY) using a commercial spectrophotometer with a 150 mm integrating sphere (IS) detector. The IS detector is equipped with an internal cuvette holder so that absorbance measurements can be performed with the cuvette inside the IS. In addition, the spectrophotometer has a cuvette holder outside the IS for performing conventional absorbance measurements. It is shown that the fluorescence quantum yield can be obtained from a combination of absorbance measurements of the buffer and the analyte solution inside and outside the IS detector. Due to the simultaneous detection of incident and fluorescent photons, the absorbance measurements inside the IS need to be adjusted for the wavelength dependence of the photomultiplier detector and the wavelength dependence of the IS magnification factor. An estimate of the fluorescence emission spectrum is needed for proper application of the wavelength-dependent adjustments. Results are presented for fluorescein, quinine sulfate, myoglobin, rhodamine B and erythrosin B. The QY of fluorescein in 0.1 mol/L NaOH was determined as 0.90±0.02 where the uncertainty is equal to the standard deviation of three independent measurements. The method provides a convenient and rapid estimate of the fluorescence quantum yield. Refinements of the measurement model and the characteristics of the IS detector can in principle yield an accurate value of the absolute fluorescence quantum yield. PMID:27096110

  10. Precise topographic surface measurements of warm and cold large image detectors for astronomical instrumentations

    NASA Astrophysics Data System (ADS)

    Deiries, Sebastian; Iwert, Olaf; Stroebele, Stefan

    2014-07-01

    This paper describes ESO's surface measurement device for large image detectors in astronomy. The machine was equipped with a sub-micrometer laser displacement sensor and is fully automated with LabView. On the example of newly developed curved CCDs, which are envisaged for future astronomical instruments, it was demonstrated that this machine can exactly determine the topographic surfaces of detectors. This works even at cryogenic temperatures through a dewar window. Included is the calculation of curvature radii from these cold curved CCDs after spherical fitting with MATLAB. In addition (and interesting for calibration of instruments) the micro-movements of the detector inside the cryostat are mapped.

  11. Measurements of Cosmic Ray Muons Performed with WILLI Detector - Status and Perspectives

    SciTech Connect

    Mitrica, B.; Brancus, I. M.; Bercuci, A.; Petcu, M.; Toma, G.; Duma, M.; Aiftimiei, C.; Saftoiu, A.; Cata-Danil, G.; Rebel, H.; Haungs, A.; Sima, O.; Radu, A.

    2007-04-23

    The WILLI detector, installed in the National Institute of Physics and Nuclear Engineering - Horia Hulubei Bucharest has been devised for studies of atmospheric muons, in particular of the muon charge ratio. We report on the results of studies for various muon energies (p{mu} < 1 GeV/c). The results are compared with Monte-Carlo simulations performed with the CORSIKA and GEANT codes. We are exploring the potential of a small detector array to be set up nearby the actual WILLI detector for triggering the muon charge ratio measurements by Extended Air Shower (EAS) events.

  12. High-spatial resolution and high-spectral resolution detector for use in the measurement of solar flare hard X-rays

    NASA Technical Reports Server (NTRS)

    Desai, U. D.; Orwig, Larry E.

    1988-01-01

    In the areas of high spatial resolution, the evaluation of a hard X-ray detector with 65 micron spatial resolution for operation in the energy range from 30 to 400 keV is proposed. The basic detector is a thick large-area scintillator faceplate, composed of a matrix of high-density scintillating glass fibers, attached to a proximity type image intensifier tube with a resistive-anode digital readout system. Such a detector, combined with a coded-aperture mask, would be ideal for use as a modest-sized hard X-ray imaging instrument up to X-ray energies as high as several hundred keV. As an integral part of this study it was also proposed that several techniques be critically evaluated for X-ray image coding which could be used with this detector. In the area of high spectral resolution, it is proposed to evaluate two different types of detectors for use as X-ray spectrometers for solar flares: planar silicon detectors and high-purity germanium detectors (HPGe). Instruments utilizing these high-spatial-resolution detectors for hard X-ray imaging measurements from 30 to 400 keV and high-spectral-resolution detectors for measurements over a similar energy range would be ideally suited for making crucial solar flare observations during the upcoming maximum in the solar cycle.

  13. Application of Natural Diamond Detector to Energetic Neutral Particle Measurements on NSTX

    SciTech Connect

    A.G. Alekseyev; D.S. Darrow; A.L. Roquemore; V.N. Amosov; A.V. Krasilnikov; D.V. Prosvirin; A.Yu. Tsutskikh

    2003-03-01

    Two natural diamond detectors have been installed on the National Spherical Torus Experiment (NSTX) to look at escaping neutrals at or near the neutral-beam-injection energy. Time-resolved measurements have been obtained from these detectors at various tangency radii. The close proximity of the detector to the vessel required the development of a very fast low-noise preamplifier, which has been shown to be superior to similar commercial units. With this amplifier arrangement, electromagnetic pick-up noise was reduced to acceptable levels. However, radiation shielding was required to reduce the background levels from neutron-induced pulses in the detector. Calibration data along with the measured energy resolution is presented in the useful energy range of NSTX. Example data from plasma discharges will also be presented.

  14. Centroid position measurements and subpixel sensitivity variations with the MAMA detector

    NASA Technical Reports Server (NTRS)

    Morgan, Jeffrey S.; Slater, D. C.; Timothy, John G.; Jenkins, E. B.

    1989-01-01

    Initial measurements of the position sensitivity of a visible-light multianode microchannel array detector show that centroid calculations for image spots are accurate to better than 0.04 pixels even with sources that are essentially delta functions at the photocathode.Subpixel sensitivity variations of 10-15 percent are typically found for pixels in the array. Variations as large as 30 percent are possible in the worst conditions. These variations limit the photometric accuracy of the detector when very small scale features are observed. The photometric accuracy and the position sensitivity of the detector appear to be limited by cross-coupling effects within the anode array. Initial measurements with more recent designs of the detector show that most or all of this cross-coupling has been eliminated.

  15. A Prototype Detector for a Novel High-Resolution PET System: BazookaPET

    PubMed Central

    Park, Ryeojin; Miller, Brian W.; Jha, Abhinav K.; Furenlid, Lars R.; Hunter, William C. J.; Barrett, Harrison H.

    2015-01-01

    We have designed and are developing a novel proof-of-concept PET system called BazookaPET. In order to complete the PET configuration, at least two detector elements are required to detect positron-electron annihilation events. Each detector element of the BazookaPET has two independent data acquisition channels. One side of the scintillation crystal is optically coupled to a 4×4 silicon photomultiplier (SiPM) array and the other side is a CCD-based gamma camera. Using these two separate channels, we can obtain data with high energy, temporal and spatial resolution data by associating the data outputs via several maximum-likelihood estimation (MLE) steps. In this work, we present the concept of the system and the prototype detector element. We focus on characterizing individual detector channels, and initial experimental calibration results are shown along with preliminary performance-evaluation results. We measured energy resolution and the integrated traces of the slit-beam images from both detector channel outputs. A photo-peak energy resolution of ~5.3% FWHM was obtained from the SiPM and ~48% FWHM from the CCD at 662 keV. We assumed SiPM signals follow Gaussian statistics and estimated the 2D interaction position using MLE. Based on our the calibration experiments, we computed the Cramér-Rao bound (CRB) for the SiPM detector channel and found that the CRB resolution is better than 1 mm in the center of the crystal. PMID:26316682

  16. Impact of high energy resolution detectors on the performance of a PET system dedicated to breast cancer imaging.

    PubMed

    Levin, Craig S; Foudray, Angela M K; Habte, Frezghi

    2006-01-01

    We are developing a high resolution, high sensitivity PET camera dedicated to breast cancer imaging. We are studying two novel detector technologies for this imaging system: a scintillation detector comprising layers of small lutetium oxyorthosilicate (LSO) crystals coupled to new position sensitive avalanche photodiodes (PSAPDs), and a pure semiconductor detector comprising cadmium zinc telluride (CZT) crystal slabs with thin anode and cathode strips deposited in orthogonal directions on either side of each slab. Both detectors achieve 1 mm spatial resolution with 3-5 mm directly measured photon interaction depth resolution, which promotes uniform reconstructed spatial resolution throughout a compact, breast-size field of view. Both detector types also achieve outstanding energy resolution (<3% and <12%, respectively for LSO-PSAPD and CZT at 511 keV). This paper studies the effects that this excellent energy resolution has on the expected system performance. Results indicate the importance that high energy resolution and narrow energy window settings have in reducing background random as well as scatter coincidences without compromising statistical quality of the dedicated breast PET data. Simulations predict that using either detector type the excellent performance and novel arrangement of these detectors proposed for the system facilitate approximately 20% instrument sensitivity at the system center and a peak noise-equivalent count rate of >4 kcps for 200 microCi in a simulated breast phantom. PMID:17645990

  17. Managing operational documentation in the ALICE Detector Control System

    NASA Astrophysics Data System (ADS)

    Lechman, M.; Augustinus, A.; Bond, P.; Chochula, P.; Kurepin, A.; Pinazza, O.; Rosinsky, P.

    2012-12-01

    ALICE (A Large Ion Collider Experiment) is one of the big LHC (Large Hadron Collider) experiments at CERN in Geneve, Switzerland. The experiment is composed of 18 sub-detectors controlled by an integrated Detector Control System (DCS) that is implemented using the commercial SCADA package PVSSII. The DCS includes over 1200 network devices, over 1,000,000 monitored parameters and numerous custom made software components that are prepared by over 100 developers from all around the world. This complex system is controlled by a single operator via a central user interface. One of his/her main tasks is the recovery of anomalies and errors that may occur during operation. Therefore, clear, complete and easily accessible documentation is essential to guide the shifter through the expert interfaces of different subsystems. This paper describes the idea of the management of the operational documentation in ALICE using a generic repository that is built on a relational database and is integrated with the control system. The experience gained and the conclusions drawn from the project are also presented.

  18. Phase-Measuring System

    NASA Technical Reports Server (NTRS)

    Davis, W. T.

    1986-01-01

    System developed and used at Langley Research Center measures phase between two signals of same frequency or between two signals, one of which is harmonic multiple of other. Simple and inexpensive device combines digital and analog components to give accurate phase measurements. One signal at frequency f fed to pulse shaper, produces negative pulse at time t4. Pulse applied to control input of sample-and-hold module 1. Second signal, at frequency nf, fed to zero-crossover amplifier, producing square wave at time t. Signal drives first one-shot producing narrow negative pulse at t1. Signal then drives second one-shot producing narrow positive pulse at time t2. This pulse used to turn on solid-state switch and reset integrator circuit to zero.

  19. A 1200 element detector system for synchrotron-based coronary angiography

    SciTech Connect

    Thompson, A.C.; Lavender, W.M.; Rubenstein, E.; Giacomini, J.C.; Rosso, V.; Schulze, C.; Chapman, D.; Thomlinson, W.

    1993-08-23

    A 1200 channel Si(Li) detector system has been developed for transvenous coronary angiography experiments using synchrotron radiation. It is part of the synchrotron medical imaging facility at the National Synchrotron Light Source. The detector is made from a single crystal of lithium-drifted silicon with an active area 150 mm long {times} 11 mm high {times} 5 mm thick. The elements are arranged in two parallel rows of 600 elements with a center-to-center spacing of 0.25 mm. All 1200 elements are read out simultaneously every 4 ms. A Intel 80486 based computer with a high speed digital signal processing interface is used to control the beamline hardware and to acquire a series of images. The signal-to-noise, linearity and resolution of the system have been measured. Human images have been taken with this system.

  20. The Ring of Fire - an internal illimination system for detector sensitivity and filter bandpass characterization

    SciTech Connect

    Scarpine, Victor E.; Kent, Stephen M.; Deustua, Susana E.; Sholl, Michael J.; Mufson, Stuart L.; Ott, Melanie N.; Wiesner, Matthew P.; Baptitst, Brian J.; /Indiana U.

    2010-07-01

    We describe a prototype of an illumination system, the Ring of Fire (ROF), which is used as part of an internal calibration system for large focal plane detector arrays in TMA (Three Mirror Anastigmat) telescope designs. Such designs have been proposed for the SNAP (SuperNova Acceleration Probe) version of a Joint Dark Energy Mission (JDEM). The ROF system illuminates the focal plane with a light beam the closely matches that of the telescope and is used for creating high spatial frequency flat fields and monitoring filter bandpasses for experiments that demand a highly accurate characterization of the detectors. We present measurements of a mockup of this prototype ROF design including studies in variations in illumination across a large focal plane.

  1. Physics-based modeling of X-ray CT measurements with energy-integrating detectors

    NASA Astrophysics Data System (ADS)

    Long, Yong; Gao, Hewei; Wu, Mingye; Pack, Jed D.; Xu, Hao; Tao, Kun; Fitzgerald, Paul F.; De Man, Bruno

    2014-03-01

    Computer simulation tools for X-ray CT are important for research efforts in developing reconstructionmethods, designing new CT architectures, and improving X-ray source and detector technologies. In this paper, we propose a physics-based modeling method for X-ray CT measurements with energy-integrating detectors. It accurately accounts for the dependence characteristics on energy, depth and spatial location of the X-ray detection process, which is either ignored or over simplified in most existing CT simulation methods. Compared with methods based on Monte Carlo simulations, it is computationally much more efficient due to the use of a look-up table for optical collection efficiency. To model the CT measurments, the proposed model considers five separate effects: energy- and location-dependent absorption of the incident X-rays, conversion of the absorbed X-rays into the optical photons emitted by the scintillator, location-dependent collection of the emitted optical photons, quantumefficiency of converting fromoptical photons to electrons, and electronic noise. We evaluated the proposed method by comparing the noise levels in the reconstructed images from measured data and simulations of a GE LightSpeed VCT system. Using the results of a 20 cm water phantom and a 35 cm polyethylene (PE) disk at various X-ray tube voltages (kVp) and currents (mA), we demonstrated that the proposed method produces realistic CT simulations. The difference in noise standard deviation between measurements and simulations is approximately 2% for the water phantom and 10% for the PE phantom.

  2. Angular measurement system

    NASA Technical Reports Server (NTRS)

    Currie, J. R.; Kissel, R. R.

    1986-01-01

    A system for the measurement of shaft angles is disclosed wherein a synchro resolver is sequentially pulsed, and alternately, a sine and then a cosine representative voltage output of it are sampled. Two like type, sine or cosine, succeeding outputs (V sub S1, V sub S2) are averaged and algebraically related to the opposite type output pulse (V sub c) occurring between the averaged pulses to provide a precise indication of the angle of a shaft coupled to the resolver at the instant of the occurrence of the intermediately occurring pulse (V sub c).

  3. Angular measurement system

    NASA Astrophysics Data System (ADS)

    Currie, J. R.; Kissel, R. R.

    1986-06-01

    A system for the measurement of shaft angles is disclosed wherein a synchro resolver is sequentially pulsed, and alternately, a sine and then a cosine representative voltage output of it are sampled. Two like type, sine or cosine, succeeding outputs (V sub S1, V sub S2) are averaged and algebraically related to the opposite type output pulse (V sub c) occurring between the averaged pulses to provide a precise indication of the angle of a shaft coupled to the resolver at the instant of the occurrence of the intermediately occurring pulse (V sub c).

  4. SUMP MEASURING SYSTEM

    SciTech Connect

    Vrettos, N; Athneal Marzolf, A; Casandra Robinson, C; James Fiscus, J; Daniel Krementz, D; Thomas Nance, T

    2007-11-26

    The process sumps in H-Canyon at the Savannah River Site (SRS) collect leaks from process tanks and jumpers. To prevent build-up of fissile material the sumps are frequently flushed which generates liquid waste and is prone to human error. The development of inserts filled with a neutron poison will allow a reduction in the frequency of flushing. Due to concrete deterioration and deformation of the sump liners the current dimensions of the sumps are unknown. Knowledge of these dimensions is necessary for development of the inserts. To solve this problem a remote Sump Measurement System was designed, fabricated, and tested to aid development of the sump inserts.

  5. Atmospheric measurements of carbonyl sulfide, dimethyl sulfide, and carbon disulfide using the electron capture sulfur detector

    NASA Technical Reports Server (NTRS)

    Johnson, James E.; Bates, Timothy S.

    1993-01-01

    Measurements of atmospheric dimethyl sulfide (DMS), carbonyl sulfide (COS), and carbon disulfide (CS2) were conducted over the Atlantic Ocean on board the NASA Electra aircraft during the Chemical Instrumentation Test and Evaluation (CITE 3) project using the electron capture sulfur detector (ECD-S). The system employed cryogenic preconcentration of air samples, gas chromatographic separation, catalytic fluorination, and electron capture detection. Samples collected for DMS analysis were scrubbed of oxidants with NaOH impregnated glass fiber filters to preconcentration. The detection limits (DL) of the system for COS, DMS, and CS2 were 5, 5, and 2 ppt, respectively. COS concentrations ranged from 404 to 603 ppt with a mean of 489 ppt for measurements over the North Atlantic Ocean (31 deg N to 41 deg N), and from 395 to 437 ppt with a mean of 419 ppt for measurements over the Tropical Atlantic Ocean (11 deg S to 2 deg N). DMS concentrations in the lower marine boundary layer, below 600-m altitude, ranged from below DL to 150 ppt from flights over the North Atlantic, and from 9 to 104 ppt over the Tropical Atlantic. CS2 concentrations ranged from below DL to 29 ppt over the North Atlantic. Almost all CS2 measurements over the Tropical Atlantic were below DL.

  6. Development of 1.45-mm resolution four-layer DOI-PET detector for simultaneous measurement in 3T MRI.

    PubMed

    Nishikido, Fumihiko; Tachibana, Atsushi; Obata, Takayuki; Inadama, Naoko; Yoshida, Eiji; Suga, Mikio; Murayama, Hideo; Yamaya, Taiga

    2015-01-01

    Recently, various types of PET-MRI systems have been developed by a number of research groups. However, almost all of the PET detectors used in these PET-MRI systems have no depth-of-interaction (DOI) capability. The DOI detector can reduce the parallax error and lead to improvement of the performance. We are developing a new PET-MRI system which consists of four-layer DOI detectors positioned close to the measured object to achieve high spatial resolution and high scanner sensitivity. As a first step, we are investigating influences the PET detector and the MRI system have on each other using a prototype four-layer DOI-PET detector. This prototype detector consists of a lutetium yttrium orthosilicate crystal block and a 4 × 4 multi-pixel photon counter array. The size of each crystal element is 1.45 mm × 1.45 mm × 4.5 mm, and the crystals are arranged in 6 × 6 elements × 4 layers with reflectors. The detector and some electric components are packaged in an aluminum shielding box. Experiments were carried out with 3.0 T MRI (GE, Signa HDx) and a birdcage-type RF coil. We demonstrated that the DOI-PET detector was normally operated in simultaneous measurements with no influence of the MRI measurement. A slight influence of the PET detector on the static magnetic field of the MRI was observed near the PET detector. The signal-to-noise ratio was decreased by presence of the PET detector due to environmental noise entering the MRI room through the cables, even though the PET detector was not powered up. On the other hand, no influence of electric noise from the PET detector in the simultaneous measurement on the MRI images was observed, even though the PET detector was positioned near the RF coil. PMID:25348721

  7. Directional spectral emissivity measurement system

    NASA Technical Reports Server (NTRS)

    Halyo, Nesim (Inventor); Pandey, Dhirendra K. (Inventor)

    1992-01-01

    Apparatus and process for determining the emissivity of a test specimen including an integrated sphere having two concentric walls with a coolant circulating therebetween, and disposed within a chamber which may be under ambient, vacuum or inert gas conditions. A reference sample is disposed within the sphere with a monochromatic light source in optical alignment therewith. A pyrometer is in optical alignment with the test sample for obtaining continuous test sample temperature measurements during a test. An arcuate slit port is provided through the spaced concentric walls of the integrating sphere with a movable monochromatic light source extending through and movable along the arcuate slit port. A detector system extends through the integrating sphere for continuously detecting an integrated signal indicative of all radiation within its field of view, as a function of the emissivity of the test specimen at various temperatures and various angle position of the monochromatic light source. A furnace for heating the test sample to approximately 3000 K. and control mechanism for transferring the heated sample from the furnace to the test sample port in the integrating sphere is also contained within the chamber.

  8. Design and development of a fNIRS system prototype based on SiPM detectors

    NASA Astrophysics Data System (ADS)

    Sanfilippo, D.; Valvo, G.; Mazzillo, M.; Piana, A.; Carbone, B.; Renna, L.; Fallica, P. G.; Agrò, D.; Morsellino, G.; Pinto, M.; Canicattı, R.; Galioto, N.; Tomasino, A.; Adamo, G.; Stivala, S.; Parisi, A.; Curcio, L.; Giaconia, C.; Busacca, A. C.; Pagano, R.; Libertino, S.; Lombardo, S.

    2014-03-01

    Functional Near Infrared Spectroscopy (fNIRS) uses near infrared sources and detectors to measure changes in absorption due to neurovascular dynamics in response to brain activation. The use of Silicon Photomultipliers (SiPMs) in a fNIRS system has been estimated potentially able to increase the spatial resolution. Dedicated SiPM sensors have been designed and fabricated by using an optimized process. Electrical and optical characterizations are presented. The design and implementation of a portable fNIRS embedded system, hosting up to 64 IR-LED sources and 128 SiPM sensors, has been carried out. The system has been based on a scalable architecture whose elementary leaf is a flexible board with 16 SiPMs and 4 couples of LEDs each operating at two wavelengths. An ARM based microcontroller has been joined with a multiplexing interface, able to control power supply for the LEDs and collect data from the SiPMs in a time-sharing fashion and with configurable temporal slots. The system will be validated by using a phantom made by materials of different scattering and absorption indices layered to mimic a human head. A preliminary characterization of the optical properties of the single material composing the phantom has been performed using the SiPM in the diffuse radial reflectance measurement technique. The first obtained results confirm the high sensitivity of such kind of detector in the detection of weak light signal even at large distance between the light source and the detector.

  9. A new-speckle interferometry system for the MAMA detector

    NASA Technical Reports Server (NTRS)

    Horch, E.; Morgan, J. S.; Giaretta, G.; Kasle, D. B.

    1992-01-01

    We have developed a new system for making speckle observations with the multianode microchannel array (MAMA) detector. This system is a true photon-counting imaging device which records the arrival time of every detected photon and allows for reconstruction of image features near the diffraction limit of the telescope. We present a description of the system and summary of observational results obtained at the Lick Observatory 1-m reflector in 1991 September. The diffraction limit of the 1-m telescope at 5029 A is about 0.125 arcsec and we have successfully resolved the catalogued interferometric binary HD 202582 with a separation of 0.157 +/- 0.031 arcsec. A pair of stars in the open cluster Chi Persei separated by 2.65 +/- 0.22 arcsec with approximate V magnitudes 8.6 and 11.5 has also been successfully analyzed with the speckle technique.

  10. The Dosepix detector—an energy-resolving photon-counting pixel detector for spectrometric measurements

    NASA Astrophysics Data System (ADS)

    Zang, A.; Anton, G.; Ballabriga, R.; Bisello, F.; Campbell, M.; Celi, J. C.; Fauler, A.; Fiederle, M.; Jensch, M.; Kochanski, N.; Llopart, X.; Michel, N.; Mollenhauer, U.; Ritter, I.; Tennert, F.; Wölfel, S.; Wong, W.; Michel, T.

    2015-04-01

    The Dosepix detector is a hybrid photon-counting pixel detector based on ideas of the Medipix and Timepix detector family. 1 mm thick cadmium telluride and 300 μm thick silicon were used as sensor material. The pixel matrix of the Dosepix consists of 16 x 16 square pixels with 12 rows of (200 μm)2 and 4 rows of (55 μm)2 sensitive area for the silicon sensor layer and 16 rows of pixels with 220 μm pixel pitch for CdTe. Besides digital energy integration and photon-counting mode, a novel concept of energy binning is included in the pixel electronics, allowing energy-resolved measurements in 16 energy bins within one acquisition. The possibilities of this detector concept range from applications in personal dosimetry and energy-resolved imaging to quality assurance of medical X-ray sources by analysis of the emitted photon spectrum. In this contribution the Dosepix detector, its response to X-rays as well as spectrum measurements with Si and CdTe sensor layer are presented. Furthermore, a first evaluation was carried out to use the Dosepix detector as a kVp-meter, that means to determine the applied acceleration voltage from measured X-ray tubes spectra.

  11. New measurement of antineutrino oscillation with the full detector configuration at Daya Bay.

    PubMed

    An, F P; Balantekin, A B; Band, H R; Bishai, M; Blyth, S; Butorov, I; Cao, G F; Cao, J; Cen, W R; Chan, Y L; Chang, J F; Chang, L C; Chang, Y; Chen, H S; Chen, Q Y; Chen, S M; Chen, Y X; Chen, Y; Cheng, J H; Cheng, J; Cheng, Y P; Cherwinka, J J; Chu, M C; Cummings, J P; de Arcos, J; Deng, Z Y; Ding, X F; Ding, Y Y; Diwan, M V; Draeger, E; Dwyer, D A; Edwards, W R; Ely, S R; Gill, R; Gonchar, M; Gong, G H; Gong, H; Grassi, M; Gu, W Q; Guan, M Y; Guo, L; Guo, X H; Hackenburg, R W; Han, R; Hans, S; He, M; Heeger, K M; Heng, Y K; Higuera, A; Hor, Y K; Hsiung, Y B; Hu, B Z; Hu, L M; Hu, L J; Hu, T; Hu, W; Huang, E C; Huang, H X; Huang, X T; Huber, P; Hussain, G; Jaffe, D E; Jaffke, P; Jen, K L; Jetter, S; Ji, X P; Ji, X L; Jiao, J B; Johnson, R A; Kang, L; Kettell, S H; Kramer, M; Kwan, K K; Kwok, M W; Kwok, T; Langford, T J; Lau, K; Lebanowski, L; Lee, J; Lei, R T; Leitner, R; Leung, K Y; Leung, J K C; Lewis, C A; Li, D J; Li, F; Li, G S; Li, Q J; Li, S C; Li, W D; Li, X N; Li, X Q; Li, Y F; Li, Z B; Liang, H; Lin, C J; Lin, G L; Lin, P Y; Lin, S K; Ling, J J; Link, J M; Littenberg, L; Littlejohn, B R; Liu, D W; Liu, H; Liu, J L; Liu, J C; Liu, S S; Lu, C; Lu, H Q; Lu, J S; Luk, K B; Ma, Q M; Ma, X Y; Ma, X B; Ma, Y Q; Martinez Caicedo, D A; McDonald, K T; McKeown, R D; Meng, Y; Mitchell, I; Monari Kebwaro, J; Nakajima, Y; Napolitano, J; Naumov, D; Naumova, E; Ngai, H Y; Ning, Z; Ochoa-Ricoux, J P; Olshevski, A; Park, J; Patton, S; Pec, V; Peng, J C; Piilonen, L E; Pinsky, L; Pun, C S J; Qi, F Z; Qi, M; Qian, X; Raper, N; Ren, B; Ren, J; Rosero, R; Roskovec, B; Ruan, X C; Shao, B B; Steiner, H; Sun, G X; Sun, J L; Tang, W; Taychenachev, D; Themann, H; Tsang, K V; Tull, C E; Tung, Y C; Viaux, N; Viren, B; Vorobel, V; Wang, C H; Wang, M; Wang, N Y; Wang, R G; Wang, W; Wang, W W; Wang, X; Wang, Y F; Wang, Z; Wang, Z; Wang, Z M; Wei, H Y; Wen, L J; Whisnant, K; White, C G; Whitehead, L; Wise, T; Wong, H L H; Wong, S C F; Worcester, E; Wu, Q; Xia, D M; Xia, J K; Xia, X; Xing, Z Z; Xu, J Y; Xu, J L; Xu, J; Xu, Y; Xue, T; Yan, J; Yang, C G; Yang, L; Yang, M S; Yang, M T; Ye, M; Yeh, M; Yeh, Y S; Young, B L; Yu, G Y; Yu, Z Y; Zang, S L; Zhan, L; Zhang, C; Zhang, H H; Zhang, J W; Zhang, Q M; Zhang, Y M; Zhang, Y X; Zhang, Y M; Zhang, Z J; Zhang, Z Y; Zhang, Z P; Zhao, J; Zhao, Q W; Zhao, Y F; Zhao, Y B; Zheng, L; Zhong, W L; Zhou, L; Zhou, N; Zhuang, H L; Zou, J H

    2015-09-11

    We report a new measurement of electron antineutrino disappearance using the fully constructed Daya Bay Reactor Neutrino Experiment. The final two of eight antineutrino detectors were installed in the summer of 2012. Including the 404 days of data collected from October 2012 to November 2013 resulted in a total exposure of 6.9×10^{5} GW_{th}  ton days, a 3.6 times increase over our previous results. Improvements in energy calibration limited variations between detectors to 0.2%. Removal of six ^{241}Am-^{13}C radioactive calibration sources reduced the background by a factor of 2 for the detectors in the experimental hall furthest from the reactors. Direct prediction of the antineutrino signal in the far detectors based on the measurements in the near detectors explicitly minimized the dependence of the measurement on models of reactor antineutrino emission. The uncertainties in our estimates of sin^{2}2θ_{13} and |Δm_{ee}^{2}| were halved as a result of these improvements. An analysis of the relative antineutrino rates and energy spectra between detectors gave sin^{2}2θ_{13}=0.084±0.005 and |Δm_{ee}^{2}|=(2.42±0.11)×10^{-3}  eV^{2} in the three-neutrino framework. PMID:26406819

  12. New measurement of antineutrino oscillation with the full detector configuration at Daya Bay

    DOE PAGESBeta

    An, F. P.; Balantekin, A. B.; Band, H. R.; Bishai, M.; Blyth, S.; Butorov, I.; Cao, G. F.; Cao, J.; Cen, W. R.; Chan, Y. L.; et al

    2015-09-11

    We report a new measurement of electron antineutrino disappearance using the fully constructed Daya Bay Reactor Neutrino Experiment. The final two of eight antineutrino detectors were installed in the summer of 2012. Including the 404 days of data collected from October 2012 to November 2013 resulted in a total exposure of 6.9×105 GWth ton days, a 3.6 times increase over our previous results. Improvements in energy calibration limited variations between detectors to 0.2%. Removal of six 241Am- 13C radioactive calibration sources reduced the background by a factor of 2 for the detectors in the experimental hall furthest from the reactors.more » Direct prediction of the antineutrino signal in the far detectors based on the measurements in the near detectors explicitly minimized the dependence of the measurement on models of reactor antineutrino emission. The uncertainties in our estimates of 2sin2θ13 and |Δm2ee| were halved as a result of these improvements. An analysis of the relative antineutrino rates and energy spectra between detectors gave 2sin2θ13=0.084±0.005 and |Δm2ee|=(2.42±0.11)×10–3 eV2 in the three-neutrino framework.« less

  13. Theory and measurement of plasmonic terahertz detector response to large signals

    SciTech Connect

    Rudin, S.; Rupper, G.; Gutin, A.; Shur, M.

    2014-02-14

    Electron gas in the conduction channel of a Field Effect Transistor (FET) can support collective plasma oscillations tunable by the gate voltage. In the Dyakonov-Shur terahertz (THz) detector, nonlinearities in the plasma wave propagation in the gated channel of a FET lead to a constant source-to-drain voltage providing the detector output. We present the detector theory in the frame of the hydrodynamic model using the electron plasma Navier-Stokes and thermal transport equations, thus fully accounting for the hydrodynamic non-linearity, the viscosity, and pressure gradients in the detector response. Both resonant and broadband operations of the high electron mobility transistor (HEMT) based plasmonic detectors are described by this model. The relation between the electron channel density and gate voltage was modeled by the unified charge control model applicable both above and below the threshold voltage. The theoretical results are compared with the response measured in the short channel InGaAs HEMT and the analytical approximation. The THz source was operating at 1.63 THz, and the response was measured at varying signal intensities. The response of the detector operated in the open drain mode was measured above and below the threshold, and the theoretical and experimental results are shown to be in good agreement.

  14. New Measurement of Antineutrino Oscillation with the Full Detector Configuration at Daya Bay

    NASA Astrophysics Data System (ADS)

    An, F. P.; Balantekin, A. B.; Band, H. R.; Bishai, M.; Blyth, S.; Butorov, I.; Cao, G. F.; Cao, J.; Cen, W. R.; Chan, Y. L.; Chang, J. F.; Chang, L. C.; Chang, Y.; Chen, H. S.; Chen, Q. Y.; Chen, S. M.; Chen, Y. X.; Chen, Y.; Cheng, J. H.; Cheng, J.; Cheng, Y. P.; Cherwinka, J. J.; Chu, M. C.; Cummings, J. P.; de Arcos, J.; Deng, Z. Y.; Ding, X. F.; Ding, Y. Y.; Diwan, M. V.; Draeger, E.; Dwyer, D. A.; Edwards, W. R.; Ely, S. R.; Gill, R.; Gonchar, M.; Gong, G. H.; Gong, H.; Grassi, M.; Gu, W. Q.; Guan, M. Y.; Guo, L.; Guo, X. H.; Hackenburg, R. W.; Han, R.; Hans, S.; He, M.; Heeger, K. M.; Heng, Y. K.; Higuera, A.; Hor, Y. K.; Hsiung, Y. B.; Hu, B. Z.; Hu, L. M.; Hu, L. J.; Hu, T.; Hu, W.; Huang, E. C.; Huang, H. X.; Huang, X. T.; Huber, P.; Hussain, G.; Jaffe, D. E.; Jaffke, P.; Jen, K. L.; Jetter, S.; Ji, X. P.; Ji, X. L.; Jiao, J. B.; Johnson, R. A.; Kang, L.; Kettell, S. H.; Kramer, M.; Kwan, K. K.; Kwok, M. W.; Kwok, T.; Langford, T. J.; Lau, K.; Lebanowski, L.; Lee, J.; Lei, R. T.; Leitner, R.; Leung, K. Y.; Leung, J. K. C.; Lewis, C. A.; Li, D. J.; Li, F.; Li, G. S.; Li, Q. J.; Li, S. C.; Li, W. D.; Li, X. N.; Li, X. Q.; Li, Y. F.; Li, Z. B.; Liang, H.; Lin, C. J.; Lin, G. L.; Lin, P. Y.; Lin, S. K.; Ling, J. J.; Link, J. M.; Littenberg, L.; Littlejohn, B. R.; Liu, D. W.; Liu, H.; Liu, J. L.; Liu, J. C.; Liu, S. S.; Lu, C.; Lu, H. Q.; Lu, J. S.; Luk, K. B.; Ma, Q. M.; Ma, X. Y.; Ma, X. B.; Ma, Y. Q.; Martinez Caicedo, D. A.; McDonald, K. T.; McKeown, R. D.; Meng, Y.; Mitchell, I.; Monari Kebwaro, J.; Nakajima, Y.; Napolitano, J.; Naumov, D.; Naumova, E.; Ngai, H. Y.; Ning, Z.; Ochoa-Ricoux, J. P.; Olshevski, A.; Park, J.; Patton, S.; Pec, V.; Peng, J. C.; Piilonen, L. E.; Pinsky, L.; Pun, C. S. J.; Qi, F. Z.; Qi, M.; Qian, X.; Raper, N.; Ren, B.; Ren, J.; Rosero, R.; Roskovec, B.; Ruan, X. C.; Shao, B. B.; Steiner, H.; Sun, G. X.; Sun, J. L.; Tang, W.; Taychenachev, D.; Themann, H.; Tsang, K. V.; Tull, C. E.; Tung, Y. C.; Viaux, N.; Viren, B.; Vorobel, V.; Wang, C. H.; Wang, M.; Wang, N. Y.; Wang, R. G.; Wang, W.; Wang, W. W.; Wang, X.; Wang, Y. F.; Wang, Z.; Wang, Z.; Wang, Z. M.; Wei, H. Y.; Wen, L. J.; Whisnant, K.; White, C. G.; Whitehead, L.; Wise, T.; Wong, H. L. H.; Wong, S. C. F.; Worcester, E.; Wu, Q.; Xia, D. M.; Xia, J. K.; Xia, X.; Xing, Z. Z.; Xu, J. Y.; Xu, J. L.; Xu, J.; Xu, Y.; Xue, T.; Yan, J.; Yang, C. G.; Yang, L.; Yang, M. S.; Yang, M. T.; Ye, M.; Yeh, M.; Yeh, Y. S.; Young, B. L.; Yu, G. Y.; Yu, Z. Y.; Zang, S. L.; Zhan, L.; Zhang, C.; Zhang, H. H.; Zhang, J. W.; Zhang, Q. M.; Zhang, Y. M.; Zhang, Y. X.; Zhang, Y. M.; Zhang, Z. J.; Zhang, Z. Y.; Zhang, Z. P.; Zhao, J.; Zhao, Q. W.; Zhao, Y. F.; Zhao, Y. B.; Zheng, L.; Zhong, W. L.; Zhou, L.; Zhou, N.; Zhuang, H. L.; Zou, J. H.; Daya Bay Collaboration

    2015-09-01

    We report a new measurement of electron antineutrino disappearance using the fully constructed Daya Bay Reactor Neutrino Experiment. The final two of eight antineutrino detectors were installed in the summer of 2012. Including the 404 days of data collected from October 2012 to November 2013 resulted in a total exposure of 6.9 × 105 GWth ton days , a 3.6 times increase over our previous results. Improvements in energy calibration limited variations between detectors to 0.2%. Removal of six 241Am 241- 13C radioactive calibration sources reduced the background by a factor of 2 for the detectors in the experimental hall furthest from the reactors. Direct prediction of the antineutrino signal in the far detectors based on the measurements in the near detectors explicitly minimized the dependence of the measurement on models of reactor antineutrino emission. The uncertainties in our estimates of sin22 θ13 and |Δ mee 2| were halved as a result of these improvements. An analysis of the relative antineutrino rates and energy spectra between detectors gave sin22 θ13=0.084 ±0.005 and |Δ mee 2|=(2.42 ±0.11 )×10-3 eV2 in the three-neutrino framework.

  15. Segmented scintillation detectors with silicon photomultiplier readout for measuring antiproton annihilations.

    PubMed

    Sótér, A; Todoroki, K; Kobayashi, T; Barna, D; Horváth, D; Hori, M

    2014-02-01

    The Atomic Spectroscopy and Collisions Using Slow Antiprotons experiment at the Antiproton Decelerator (AD) facility of CERN constructed segmented scintillators to detect and track the charged pions which emerge from antiproton annihilations in a future superconducting radiofrequency Paul trap for antiprotons. A system of 541 cast and extruded scintillator bars were arranged in 11 detector modules which provided a spatial resolution of 17 mm. Green wavelength-shifting fibers were embedded in the scintillators, and read out by silicon photomultipliers which had a sensitive area of 1 × 1 mm(2). The photoelectron yields of various scintillator configurations were measured using a negative pion beam of momentum p ≈ 1 GeV/c. Various fibers and silicon photomultipliers, fiber end terminations, and couplings between the fibers and scintillators were compared. The detectors were also tested using the antiproton beam of the AD. Nonlinear effects due to the saturation of the silicon photomultiplier were seen at high annihilation rates of the antiprotons. PMID:24593349

  16. Segmented scintillation detectors with silicon photomultiplier readout for measuring antiproton annihilations

    SciTech Connect

    Sótér, A.; Todoroki, K.; Kobayashi, T.; Barna, D.; Wigner Research Center of Physics, H-1525 Budapest ; Horváth, D.; Hori, M.; Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033

    2014-02-15

    The Atomic Spectroscopy and Collisions Using Slow Antiprotons experiment at the Antiproton Decelerator (AD) facility of CERN constructed segmented scintillators to detect and track the charged pions which emerge from antiproton annihilations in a future superconducting radiofrequency Paul trap for antiprotons. A system of 541 cast and extruded scintillator bars were arranged in 11 detector modules which provided a spatial resolution of 17 mm. Green wavelength-shifting fibers were embedded in the scintillators, and read out by silicon photomultipliers which had a sensitive area of 1 × 1 mm{sup 2}. The photoelectron yields of various scintillator configurations were measured using a negative pion beam of momentum p ≈ 1 GeV/c. Various fibers and silicon photomultipliers, fiber end terminations, and couplings between the fibers and scintillators were compared. The detectors were also tested using the antiproton beam of the AD. Nonlinear effects due to the saturation of the silicon photomultiplier were seen at high annihilation rates of the antiprotons.

  17. Method and system for determining depth distribution of radiation-emitting material located in a source medium and radiation detector system for use therein

    DOEpatents

    Benke, Roland R.; Kearfott, Kimberlee J.; McGregor, Douglas S.

    2003-03-04

    A method, system and a radiation detector system for use therein are provided for determining the depth distribution of radiation-emitting material distributed in a source medium, such as a contaminated field, without the need to take samples, such as extensive soil samples, to determine the depth distribution. The system includes a portable detector assembly with an x-ray or gamma-ray detector having a detector axis for detecting the emitted radiation. The radiation may be naturally-emitted by the material, such as gamma-ray-emitting radionuclides, or emitted when the material is struck by other radiation. The assembly also includes a hollow collimator in which the detector is positioned. The collimator causes the emitted radiation to bend toward the detector as rays parallel to the detector axis of the detector. The collimator may be a hollow cylinder positioned so that its central axis is perpendicular to the upper surface of the large area source when positioned thereon. The collimator allows the detector to angularly sample the emitted radiation over many ranges of polar angles. This is done by forming the collimator as a single adjustable collimator or a set of collimator pieces having various possible configurations when connected together. In any one configuration, the collimator allows the detector to detect only the radiation emitted from a selected range of polar angles measured from the detector axis. Adjustment of the collimator or the detector therein enables the detector to detect radiation emitted from a different range of polar angles. The system further includes a signal processor for processing the signals from the detector wherein signals obtained from different ranges of polar angles are processed together to obtain a reconstruction of the radiation-emitting material as a function of depth, assuming, but not limited to, a spatially-uniform depth distribution of the material within each layer. The detector system includes detectors having

  18. Detector density and small field dosimetry: Integral versus point dose measurement schemes

    SciTech Connect

    Underwood, T. S. A. Hill, M. A.; Fenwick, J. D.

    2013-08-01

    Purpose: TheAlfonso et al. [Med. Phys.35, 5179–5186 (2008)] formalism for small field dosimetry proposes a set of correction factors (k{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}}) which account for differences between the detector response in nonstandard (clinical) and machine-specific-reference fields. In this study, the Monte Carlo method was used to investigate the viability of such small field correction factors for four different detectors irradiated under a variety of conditions. Because k{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}} values for single detector position measurements are influenced by several factors, a new theoretical formalism for integrated-detector-position [dose area product (DAP)] measurements is also presented and was tested using Monte Carlo simulations. Methods: A BEAMnrc linac model was built and validated for a Varian Clinac iX accelerator. Using the egs++ geometry package, detailed virtual models were built for four different detectors: a PTW 60012 unshielded diode, a PTW 60003 Diamond detector, a PTW 31006 PinPoint (ionization chamber), and a PTW 31018 MicroLion (liquid-filled ionization chamber). The egs-chamber code was used to investigate the variation ofk{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}} with detector type, detector construction, field size, off-axis position, and the azimuthal angle between the detector and beam axis. Simulations were also used to consider the DAP obtained by each detector: virtual detectors and water voxels were scanned through high resolution grids of positions extending far beyond the boundaries of the fields under consideration. Results: For each detector, the correction factor (k{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s

  19. Small-Scale Readout Systems Prototype for the STAR PIXEL Detector

    SciTech Connect

    Szelezniak, Michal A.; Besson, Auguste; Colledani, Claude; Dorokhov, Andrei; Dulinski, Wojciech; Greiner, Leo C.; Himmi, Abdelkader; Hu, Christine; Matis, Howard S.; Ritter, Hans Georg; Rose, Andrew; Shabetai, Alexandre; Stezelberger, Thorsten; Sun, Xiangming; Thomas, Jim H.; Valin, Isabelle; Vu, Chinh Q.; Wieman, Howard H.; Winter, Marc

    2008-10-01

    A prototype readout system for the STAR PIXEL detector in the Heavy Flavor Tracker (HFT) vertex detector upgrade is presented. The PIXEL detector is a Monolithic Active Pixel Sensor (MAPS) based silicon pixel vertex detector fabricated in a commercial CMOS process that integrates the detector and front-end electronics layers in one silicon die. Two generations ofMAPS prototypes designed specifically for the PIXEL are discussed. We have constructed a prototype telescope system consisting of three small MAPS sensors arranged in three parallel and coaxial planes with a readout system based on the readout architecture for PIXEL. This proposed readout architecture is simple and scales to the size required to readout the final detector. The real-time hit finding algorithm necessary for data rate reduction in the 400 million pixel detector is described, and aspects of the PIXEL system integration into the existing STAR framework are addressed. The complete system has been recently tested and shown to be fully functional.

  20. The development and test of multi-anode microchannel array detector systems. Part 2: Soft X-ray detectors

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.

    1986-01-01

    Detector systems based on the high gain microchannel plate (MCP) electron multiplier were used extensively for imaging at soft X-ray wavelengths both on the ground and in space. The latest pulse counting electronic readout systems provide zero readout noise, spatial resolutions (FWHM) of 25 microns or better and can determine the arrival times of detected photons to an accuracy of the order of 100 ns. These systems can be developed to produce detectors with active areas of 100 nm in diameter or greater. The use of CsI photocathodes produces very high detective quantum efficiencies at wavelengths between about 100 and 1A (approximately 0.1 to 10 keV) with moderate energy resolution. The operating characteristics of the different types of soft X-ray MCP detector systems are described and the prospects for future developments are discussed.