Sample records for detectors radiation

  1. Directional radiation detectors

    DOEpatents

    Dowell, Jonathan L.

    2017-09-12

    Directional radiation detectors and systems, methods, and computer-readable media for using directional radiation detectors to locate a radiation source are provided herein. A directional radiation detector includes a radiation sensor. A radiation attenuator partially surrounds the radiation sensor and defines an aperture through which incident radiation is received by the radiation sensor. The aperture is positioned such that when incident radiation is received directly through the aperture and by the radiation sensor, a source of the incident radiation is located within a solid angle defined by the aperture. The radiation sensor senses at least one of alpha particles, beta particles, gamma particles, or neutrons.

  2. Adaptors for radiation detectors

    DOEpatents

    Livesay, Ronald Jason

    2014-04-22

    Described herein are adaptors and other devices for radiation detectors that can be used to make accurate spectral measurements of both small and large bulk sources of radioactivity, such as building structures, soils, vessels, large equipment, and liquid bodies. Some exemplary devices comprise an adaptor for a radiation detector, wherein the adaptor can be configured to collimate radiation passing through the adapter from an external radiation source to the radiation detector and the adaptor can be configured to enclose a radiation source within the adapter to allow the radiation detector to measure radiation emitted from the enclosed radiation source.

  3. Adaptors for radiation detectors

    DOEpatents

    Livesay, Ronald Jason

    2015-07-28

    Described herein are adaptors and other devices for radiation detectors that can be used to make accurate spectral measurements of both small and large bulk sources of radioactivity, such as building structures, soils, vessels, large equipment, and liquid bodies. Some exemplary devices comprise an adaptor for a radiation detector, wherein the adaptor can be configured to collimate radiation passing through the adapter from an external radiation source to the radiation detector and the adaptor can be configured to enclose a radiation source within the adapter to allow the radiation detector to measure radiation emitted from the enclosed radiation source.

  4. Thallium bromide radiation detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shah, K.S.; Lund, J.C.; Olschner, F.

    1989-02-01

    Radiation detectors have been fabricated from crystals of the semiconductor material thallium bromide (TlBr) and the performance of these detectors as room temperature photon spectrometers has been measured. These detectors exhibit improved energy resolution over previously reported TlBr detectors. These results indicate that TlBr is a very promising radiation detector material.

  5. RADIATION DETECTOR

    DOEpatents

    Wilson, H.N.; Glass, F.M.

    1960-05-10

    A radiation detector of the type is described wherein a condenser is directly connected to the electrodes for the purpose of performing the dual function of a guard ring and to provide capacitance coupling for resetting the detector system.

  6. RADIATION WAVE DETECTOR

    DOEpatents

    Wouters, L.F.

    1958-10-28

    The detection of the shape and amplitude of a radiation wave is discussed, particularly an apparatus for automatically indicating at spaced lntervals of time the radiation intensity at a flxed point as a measure of a radiation wave passing the point. The apparatus utilizes a number of photomultiplier tubes surrounding a scintillation type detector, For obtainlng time spaced signals proportional to radiation at predetermined intervals the photolnultiplier tubes are actuated ln sequence following detector incidence of a predetermined radiation level by electronic means. The time spaced signals so produced are then separately amplified and relayed to recording means.

  7. Advanced Space Radiation Detector Technology Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at the NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  8. Advanced Space Radiation Detector Technology Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  9. Advanced Space Radiation Detector Technology Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art (SOA) instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  10. Underwater radiation detector

    DOEpatents

    Kruse, Lyle W.; McKnight, Richard P.

    1986-01-01

    A detector apparatus for differentiating between gamma and neutron radiation is provided. The detector includes a pair of differentially shielded Geiger-Mueller tubes. The first tube is wrapped in silver foil and the second tube is wrapped in lead foil. Both the silver and lead foils allow the passage of gamma rays at a constant rate in a gamma ray only field. When neutrons are present, however, the silver activates and emits beta radiation that is also detected by the silver wrapped Geiger-Mueller tube while the radiation detected by the lead wrapped Geiger-Mueller tube remains constant. The amount of radiation impinging on the separate Geiger-Mueller tubes is then correlated in order to distinguish between the neutron and gamma radiations.

  11. Mossbauer spectrometer radiation detector

    NASA Technical Reports Server (NTRS)

    Singh, J. J. (Inventor)

    1973-01-01

    A Mossbauer spectrometer with high efficiencies in both transmission and backscattering techniques is described. The device contains a sodium iodide crystal for detecting radiation caused by the Mossbauer effect, and two photomultipliers to collect the radiation detected by the crystal. When used in the transmission technique, the sample or scatterer is placed between the incident radiation source and the detector. When used in a backscattering technique, the detector is placed between the incident radiation source and the sample of scatterer such that the incident radiation will pass through a hole in the crystal and strike the sample. Diagrams of the instrument are provided.

  12. Electron gas grid semiconductor radiation detectors

    DOEpatents

    Lee, Edwin Y.; James, Ralph B.

    2002-01-01

    An electron gas grid semiconductor radiation detector (EGGSRAD) useful for gamma-ray and x-ray spectrometers and imaging systems is described. The radiation detector employs doping of the semiconductor and variation of the semiconductor detector material to form a two-dimensional electron gas, and to allow transistor action within the detector. This radiation detector provides superior energy resolution and radiation detection sensitivity over the conventional semiconductor radiation detector and the "electron-only" semiconductor radiation detectors which utilize a grid electrode near the anode. In a first embodiment, the EGGSRAD incorporates delta-doped layers adjacent the anode which produce an internal free electron grid well to which an external grid electrode can be attached. In a second embodiment, a quantum well is formed between two of the delta-doped layers, and the quantum well forms the internal free electron gas grid to which an external grid electrode can be attached. Two other embodiments which are similar to the first and second embodiment involve a graded bandgap formed by changing the composition of the semiconductor material near the first and last of the delta-doped layers to increase or decrease the conduction band energy adjacent to the delta-doped layers.

  13. 49 CFR 173.310 - Exceptions for radiation detectors.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Exceptions for radiation detectors. 173.310... for radiation detectors. Radiation detectors, radiation sensors, electron tube devices, or ionization chambers, herein referred to as “radiation detectors,” that contain only Division 2.2 gases, are excepted...

  14. 49 CFR 173.310 - Exceptions for radiation detectors.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Exceptions for radiation detectors. 173.310... for radiation detectors. Radiation detectors, radiation sensors, electron tube devices, or ionization chambers, herein referred to as “radiation detectors,” that contain only Division 2.2 gases, are excepted...

  15. 49 CFR 173.310 - Exceptions for radiation detectors.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Exceptions for radiation detectors. 173.310... for radiation detectors. Radiation detectors, radiation sensors, electron tube devices, or ionization chambers, herein referred to as “radiation detectors,” that contain only Division 2.2 gases, are excepted...

  16. Ionizing radiation detector

    DOEpatents

    Thacker, Louis H.

    1990-01-01

    An ionizing radiation detector is provided which is based on the principle of analog electronic integration of radiation sensor currents in the sub-pico to nano ampere range between fixed voltage switching thresholds with automatic voltage reversal each time the appropriate threshold is reached. The thresholds are provided by a first NAND gate Schmitt trigger which is coupled with a second NAND gate Schmitt trigger operating in an alternate switching state from the first gate to turn either a visible or audible indicating device on and off in response to the gate switching rate which is indicative of the level of radiation being sensed. The detector can be configured as a small, personal radiation dosimeter which is simple to operate and responsive over a dynamic range of at least 0.01 to 1000 R/hr.

  17. Low-Power Multi-Aspect Space Radiation Detector System

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave; Freeman, Jon C.; Burkebile, Stephen P.

    2012-01-01

    The advanced space radiation detector development team at NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of all of these detector technologies will result in an improved detector system in comparison to existing state-of-the-art (SOA) instruments for the detection and monitoring of the deep space radiation field.

  18. Wafer-fused semiconductor radiation detector

    DOEpatents

    Lee, Edwin Y.; James, Ralph B.

    2002-01-01

    Wafer-fused semiconductor radiation detector useful for gamma-ray and x-ray spectrometers and imaging systems. The detector is fabricated using wafer fusion to insert an electrically conductive grid, typically comprising a metal, between two solid semiconductor pieces, one having a cathode (negative electrode) and the other having an anode (positive electrode). The wafer fused semiconductor radiation detector functions like the commonly used Frisch grid radiation detector, in which an electrically conductive grid is inserted in high vacuum between the cathode and the anode. The wafer-fused semiconductor radiation detector can be fabricated using the same or two different semiconductor materials of different sizes and of the same or different thicknesses; and it may utilize a wide range of metals, or other electrically conducting materials, to form the grid, to optimize the detector performance, without being constrained by structural dissimilarity of the individual parts. The wafer-fused detector is basically formed, for example, by etching spaced grooves across one end of one of two pieces of semiconductor materials, partially filling the grooves with a selected electrical conductor which forms a grid electrode, and then fusing the grooved end of the one semiconductor piece to an end of the other semiconductor piece with a cathode and an anode being formed on opposite ends of the semiconductor pieces.

  19. Amorphous silicon radiation detectors

    DOEpatents

    Street, Robert A.; Perez-Mendez, Victor; Kaplan, Selig N.

    1992-01-01

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification.

  20. 49 CFR 173.310 - Exceptions for radiation detectors.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.310 Exceptions for radiation detectors. Radiation detectors, radiation sensors, electron tube devices, or ionization chambers, herein referred to as “radiation detectors,” that contain only Division 2.2 gases, are excepted...

  1. 49 CFR 173.310 - Exceptions for radiation detectors.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.310 Exceptions for radiation detectors. Radiation detectors, radiation sensors, electron tube devices, or ionization chambers, herein referred to as “radiation detectors,” that contain only Division 2.2 gases, are excepted...

  2. Ultra-thin plasma radiation detector

    DOEpatents

    Friedman, Peter S.

    2017-01-24

    A position-sensitive ionizing-radiation counting detector includes a radiation detector gas chamber having at least one ultra-thin chamber window and an ultra-thin first substrate contained within the gas chamber. The detector further includes a second substrate generally parallel to and coupled to the first substrate and defining a gas gap between the first substrate and the second substrate. The detector further includes a discharge gas between the substrates and contained within the gas chamber, where the discharge gas is free to circulate within the gas chamber and between the first and second substrates at a given gas pressure. The detector further includes a first electrode coupled to one of the substrates and a second electrode electrically coupled to the first electrode. The detector further includes a first discharge event detector coupled to at least one of the electrodes for detecting a gas discharge counting event in the electrode.

  3. Amorphous silicon radiation detectors

    DOEpatents

    Street, R.A.; Perez-Mendez, V.; Kaplan, S.N.

    1992-11-17

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification. 13 figs.

  4. Semiconductor radiation detector

    DOEpatents

    Bell, Zane W.; Burger, Arnold

    2010-03-30

    A semiconductor detector for ionizing electromagnetic radiation, neutrons, and energetic charged particles. The detecting element is comprised of a compound having the composition I-III-VI.sub.2 or II-IV-V.sub.2 where the "I" component is from column 1A or 1B of the periodic table, the "II" component is from column 2B, the "III" component is from column 3A, the "IV" component is from column 4A, the "V" component is from column 5A, and the "VI" component is from column 6A. The detecting element detects ionizing radiation by generating a signal proportional to the energy deposited in the element, and detects neutrons by virtue of the ionizing radiation emitted by one or more of the constituent materials subsequent to capture. The detector may contain more than one neutron-sensitive component.

  5. Tin Can Radiation Detector.

    ERIC Educational Resources Information Center

    Crull, John L.

    1986-01-01

    Provides instructions for making tin can radiation detectors from empty aluminum cans, aluminum foil, clear plastic, copper wire, silica gel, and fine, unwaxed dental floss put together with tape or glue. Also provides suggestions for activities using the detectors. (JN)

  6. Semiconductor radiation detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patt, Bradley E.; Iwanczyk, Jan S.; Tull, Carolyn R.

    A semiconductor radiation detector is provided to detect x-ray and light photons. The entrance electrode is segmented by using variable doping concentrations. Further, the entrance electrode is physically segmented by inserting n+ regions between p+ regions. The p+ regions and the n+ regions are individually biased. The detector elements can be used in an array, and the p+ regions and the n+ regions can be biased by applying potential at a single point. The back side of the semiconductor radiation detector has an n+ anode for collecting created charges and a number of p+ cathodes. Biased n+ inserts can bemore » placed between the p+ cathodes, and an internal resistor divider can be used to bias the n+ inserts as well as the p+ cathodes. A polysilicon spiral guard can be implemented surrounding the active area of the entrance electrode or surrounding an array of entrance electrodes.« less

  7. Device for calibrating a radiation detector system

    DOEpatents

    Mc Fee, Matthew C.; Kirkham, Tim J.; Johnson, Tippi H.

    1994-01-01

    A device for testing a radiation detector system that includes at least two arrays of radiation detectors that are movable with respect to each other. The device includes a "shield plate" or shell, and an opposing "source plate" containing a source of ionizing radiation. Guides are attached to the outer surface of the shell for engaging the forward ends of the detectors, thereby reproducibly positioning the detectors with respect to the source and with respect to each other, thereby ensuring that a predetermined portion of the radiation emitted by the source passes through the shell and reaches the detectors. The shell is made of an hydrogenous material having approximately the same radiological attenuation characteristics as composite human tissue. The source represents a human organ such as the lungs, heart, kidneys, heart, liver, spleen, pancreas, thyroid, testes, prostate, or ovaries. The source includes a source of ionizing radiation having a long half-life and an activity that is within the range typically searched for in human subjects.

  8. Studying radiation hardness of a cadmium tungstate crystal based radiation detector

    NASA Astrophysics Data System (ADS)

    Shtein, M. M.; Smekalin, L. F.; Stepanov, S. A.; Zatonov, I. A.; Tkacheva, T. V.; Usachev, E. Yu

    2016-06-01

    The given article considers radiation hardness of an X-ray detector used in production of non-destructive testing instruments and inspection systems. In the course of research, experiments were carried out to estimate radiation hardness of a detector based on cadmium tungstate crystal and its structural components individually. The article describes a layout of an experimental facility that was used for measurements of radiation hardness. The radiation dose dependence of the photodiode current is presented, when it is excited by a light flux of a scintillator or by an external light source. Experiments were carried out to estimate radiation hardness of two types of optical glue used in detector production; they are based on silicon rubber and epoxy. With the help of a spectrophotometer and cobalt gun, each of the glue samples was measured for a relative light transmission factor with different wavelengths, depending on the radiation dose. The obtained data are presented in a comprehensive analysis of the results. It was determined, which of the glue samples is most suitable for production of detectors working under exposure to strong radiation.

  9. Device for calibrating a radiation detector system

    DOEpatents

    McFee, M.C.; Kirkham, T.J.; Johnson, T.H.

    1994-12-27

    A device is disclosed for testing a radiation detector system that includes at least two arrays of radiation detectors that are movable with respect to each other. The device includes a ''shield plate'' or shell, and an opposing ''source plate'' containing a source of ionizing radiation. Guides are attached to the outer surface of the shell for engaging the forward ends of the detectors, thereby reproducibly positioning the detectors with respect to the source and with respect to each other, thereby ensuring that a predetermined portion of the radiation emitted by the source passes through the shell and reaches the detectors. The shell is made of an hydrogenous material having approximately the same radiological attenuation characteristics as composite human tissue. The source represents a human organ such as the lungs, heart, kidneys, liver, spleen, pancreas, thyroid, testes, prostate, or ovaries. The source includes a source of ionizing radiation having a long half-life and an activity that is within the range typically searched for in human subjects. 3 figures.

  10. Electromagnetic radiation detector

    DOEpatents

    Benson, Jay L.; Hansen, Gordon J.

    1976-01-01

    An electromagnetic radiation detector including a collimating window, a cathode member having a photoelectric emissive material surface angularly disposed to said window whereby radiation is impinged thereon at acute angles, an anode, separated from the cathode member by an evacuated space, for collecting photoelectrons emitted from the emissive cathode surface, and a negatively biased, high transmissive grid disposed between the cathode member and anode.

  11. Cadmium telluride photovoltaic radiation detector

    DOEpatents

    Agouridis, D.C.; Fox, R.J.

    A dosimetry-type radiation detector is provided which employs a polycrystalline, chlorine-compensated cadmium telluride wafer fabricated to operate as a photovoltaic current generator used as the basic detecting element. A photovoltaic junction is formed in the wafer by painting one face of the cadmium telluride wafer with an n-type semi-conductive material. The opposite face of the wafer is painted with an electrically conductive material to serve as a current collector. The detector is mounted in a hermetically sealed vacuum containment. The detector is operated in a photovoltaic mode (zero bias) while DC coupled to a symmetrical differential current amplifier having a very low input impedance. The amplifier converts the current signal generated by radiation impinging upon the barrier surface face of the wafer to a voltage which is supplied to a voltmeter calibrated to read quantitatively the level of radiation incident upon the detecting wafer.

  12. Cadmium telluride photovoltaic radiation detector

    DOEpatents

    Agouridis, Dimitrios C.; Fox, Richard J.

    1981-01-01

    A dosimetry-type radiation detector is provided which employs a polycrystalline, chlorine-compensated cadmium telluride wafer fabricated to operate as a photovoltaic current generator used as the basic detecting element. A photovoltaic junction is formed in the wafer by painting one face of the cadmium telluride wafer with an n-type semiconductive material. The opposite face of the wafer is painted with an electrically conductive material to serve as a current collector. The detector is mounted in a hermetically sealed vacuum containment. The detector is operated in a photovoltaic mode (zero bias) while DC coupled to a symmetrical differential current amplifier having a very low input impedance. The amplifier converts the current signal generated by radiation impinging upon the barrier surface face of the wafer to a voltage which is supplied to a voltmeter calibrated to read quantitatively the level of radiation incident upon the detecting wafer.

  13. Radiation detector system having heat pipe based cooling

    DOEpatents

    Iwanczyk, Jan S.; Saveliev, Valeri D.; Barkan, Shaul

    2006-10-31

    A radiation detector system having a heat pipe based cooling. The radiation detector system includes a radiation detector thermally coupled to a thermo electric cooler (TEC). The TEC cools down the radiation detector, whereby heat is generated by the TEC. A heat removal device dissipates the heat generated by the TEC to surrounding environment. A heat pipe has a first end thermally coupled to the TEC to receive the heat generated by the TEC, and a second end thermally coupled to the heat removal device. The heat pipe transfers the heat generated by the TEC from the first end to the second end to be removed by the heat removal device.

  14. CVD diamond detectors for ionizing radiation

    NASA Astrophysics Data System (ADS)

    Friedl, M.; Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; van Eijk, B.; Fallou, A.; Fizzotti, F.; Foulon, F.; Gan, K. K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Knöpfle, K. T.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P. F.; Manfredotti, C.; Marshall, R. D.; Meier, D.; Mishina, M.; Oh, A.; Pan, L. S.; Palmieri, V. G.; Pernegger, H.; Pernicka, M.; Peitz, A.; Pirollo, S.; Polesello, P.; Pretzl, K.; Re, V.; Riester, J. L.; Roe, S.; Roff, D.; Rudge, A.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Tapper, R. J.; Tesarek, R.; Thomson, G. B.; Trawick, M.; Trischuk, W.; Vittone, E.; Walsh, A. M.; Wedenig, R.; Weilhammer, P.; Ziock, H.; Zoeller, M.; RD42 Collaboration

    1999-10-01

    In future HEP accelerators, such as the LHC (CERN), detectors and electronics in the vertex region of the experiments will suffer from extreme radiation. Thus radiation hardness is required for both detectors and electronics to survive in this harsh environment. CVD diamond, which is investigated by the RD42 Collaboration at CERN, can meet these requirements. Samples of up to 2×4 cm2 have been grown and refined for better charge collection properties, which are measured with a β source or in a testbeam. A large number of diamond samples has been irradiated with hadrons to fluences of up to 5×10 15 cm-2 to study the effects of radiation. Both strip and pixel detectors were prepared in various geometries. Samples with strip metallization have been tested with both slow and fast readout electronics, and the first diamond pixel detector proved fully functional with LHC electronics.

  15. Ultra-thin plasma panel radiation detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedman, Peter S.

    An ultra-thin radiation detector includes a radiation detector gas chamber having at least one ultra-thin chamber window and an ultra-thin first substrate contained within the gas chamber. The detector further includes a second substrate generally parallel to and coupled to the first substrate and defining a gas gap between the first substrate and the second substrate. The detector further includes a discharge gas between the substrates and contained within the gas chamber, where the discharge gas is free to circulate within the gas chamber and between the first and second substrates at a given gas pressure. The detector further includesmore » a first electrode coupled to one of the substrates and a second electrode electrically coupled to the first electrode. The detector further includes a first discharge event detector coupled to at least one of the electrodes for detecting a gas discharge counting event in the electrode.« less

  16. Handheld CZT radiation detector

    DOEpatents

    Murray, William S.; Butterfield, Kenneth B.; Baird, William

    2004-08-24

    A handheld CZT radiation detector having a CZT gamma-ray sensor, a multichannel analyzer, a fuzzy-logic component, and a display component is disclosed. The CZT gamma-ray sensor may be a coplanar grid CZT gamma-ray sensor, which provides high-quality gamma-ray analysis at a wide range of operating temperatures. The multichannel analyzer categorizes pulses produce by the CZT gamma-ray sensor into channels (discrete energy levels), resulting in pulse height data. The fuzzy-logic component analyzes the pulse height data and produces a ranked listing of radioisotopes. The fuzzy-logic component is flexible and well-suited to in-field analysis of radioisotopes. The display component may be a personal data assistant, which provides a user-friendly method of interacting with the detector. In addition, the radiation detector may be equipped with a neutron sensor to provide an enhanced mechanism of sensing radioactive materials.

  17. A semiconductor radiation imaging pixel detector for space radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Kroupa, Martin; Bahadori, Amir; Campbell-Ricketts, Thomas; Empl, Anton; Hoang, Son Minh; Idarraga-Munoz, John; Rios, Ryan; Semones, Edward; Stoffle, Nicholas; Tlustos, Lukas; Turecek, Daniel; Pinsky, Lawrence

    2015-07-01

    Progress in the development of high-performance semiconductor radiation imaging pixel detectors based on technologies developed for use in high-energy physics applications has enabled the development of a completely new generation of compact low-power active dosimeters and area monitors for use in space radiation environments. Such detectors can provide real-time information concerning radiation exposure, along with detailed analysis of the individual particles incident on the active medium. Recent results from the deployment of detectors based on the Timepix from the CERN-based Medipix2 Collaboration on the International Space Station (ISS) are reviewed, along with a glimpse of developments to come. Preliminary results from Orion MPCV Exploration Flight Test 1 are also presented.

  18. Detectors for Particle Radiation

    NASA Astrophysics Data System (ADS)

    Kleinknecht, Konrad

    1999-01-01

    This textbook provides a clear, concise and comprehensive review of the physical principles behind the devices used to detect charged particles and gamma rays, and the construction and performance of these many different types of detectors. Detectors for high-energy particles and radiation are used in many areas of science, especially particle physics and nuclear physics experiments, nuclear medicine, cosmic ray measurements, space sciences and geological exploration. This second edition includes all the latest developments in detector technology, including several new chapters covering micro-strip gas chambers, silicion strip detectors and CCDs, scintillating fibers, shower detectors using noble liquid gases, and compensating calorimeters for hadronic showers. This well-illustrated textbook contains examples from the many areas in science in which these detectors are used. It provides both a coursebook for students in physics, and a useful introduction for researchers in other fields.

  19. Simulation of radiation environment for the LHeC detector

    NASA Astrophysics Data System (ADS)

    Nayaz, Abdullah; Piliçer, Ercan; Joya, Musa

    2017-02-01

    The detector response and simulation of radiation environment for the Large Hadron electron Collider (LHeC) baseline detector is estimated to predict its performance over the lifetime of the project. In this work, the geometry of the LHeC detector, as reported in LHeC Conceptual Design Report (CDR), built in FLUKA Monte Carlo tool in order to simulate the detector response and radiation environment. For this purpose, events of electrons and protons with high enough energy were sent isotropically from interaction point of the detector. As a result, the detector response and radiation background for the LHeC detector, with different USRBIN code (ENERGY, HADGT20M, ALL-CHAR, ALL-PAR) in FLUKA, are presented.

  20. Radiation damage effects on solid state detectors

    NASA Technical Reports Server (NTRS)

    Trainor, J. H.

    1972-01-01

    Totally depleted silicon diodes are discussed which are used as nuclear particle detectors in investigations of galactic and solar cosmic radiation and trapped radiation. A study of radiation and chemical effects on the diodes was conducted. Work on electron and proton irradiation of surface barrier detectors with thicknesses up to 1 mm was completed, and work on lithium-drifted silicon devices with thicknesses of several millimeters was begun.

  1. A semiconductor radiation imaging pixel detector for space radiation dosimetry.

    PubMed

    Kroupa, Martin; Bahadori, Amir; Campbell-Ricketts, Thomas; Empl, Anton; Hoang, Son Minh; Idarraga-Munoz, John; Rios, Ryan; Semones, Edward; Stoffle, Nicholas; Tlustos, Lukas; Turecek, Daniel; Pinsky, Lawrence

    2015-07-01

    Progress in the development of high-performance semiconductor radiation imaging pixel detectors based on technologies developed for use in high-energy physics applications has enabled the development of a completely new generation of compact low-power active dosimeters and area monitors for use in space radiation environments. Such detectors can provide real-time information concerning radiation exposure, along with detailed analysis of the individual particles incident on the active medium. Recent results from the deployment of detectors based on the Timepix from the CERN-based Medipix2 Collaboration on the International Space Station (ISS) are reviewed, along with a glimpse of developments to come. Preliminary results from Orion MPCV Exploration Flight Test 1 are also presented. Copyright © 2015 The Committee on Space Research (COSPAR). All rights reserved.

  2. Radiation detector having a multiplicity of individual detecting elements

    DOEpatents

    Whetten, Nathan R.; Kelley, John E.

    1985-01-01

    A radiation detector has a plurality of detector collection element arrays immersed in a radiation-to-electron conversion medium. Each array contains a multiplicity of coplanar detector elements radially disposed with respect to one of a plurality of positions which at least one radiation source can assume. Each detector collector array is utilized only when a source is operative at the associated source position, negating the necessity for a multi-element detector to be moved with respect to an object to be examined. A novel housing provides the required containment of a high-pressure gas conversion medium.

  3. Hybrid anode for semiconductor radiation detectors

    DOEpatents

    Yang, Ge; Bolotnikov, Aleksey E; Camarda, Guiseppe; Cui, Yonggang; Hossain, Anwar; Kim, Ki Hyun; James, Ralph B

    2013-11-19

    The present invention relates to a novel hybrid anode configuration for a radiation detector that effectively reduces the edge effect of surface defects on the internal electric field in compound semiconductor detectors by focusing the internal electric field of the detector and redirecting drifting carriers away from the side surfaces of the semiconductor toward the collection electrode(s).

  4. Nuclear radiation-warning detector that measures impedance

    DOEpatents

    Savignac, Noel Felix; Gomez, Leo S; Yelton, William Graham; Robinson, Alex; Limmer, Steven

    2013-06-04

    This invention is a nuclear radiation-warning detector that measures impedance of silver-silver halide on an interdigitated electrode to detect light or radiation comprised of alpha particles, beta particles, gamma rays, X rays, and/or neutrons. The detector is comprised of an interdigitated electrode covered by a layer of silver halide. After exposure to alpha particles, beta particles, X rays, gamma rays, neutron radiation, or light, the silver halide is reduced to silver in the presence of a reducing solution. The change from the high electrical resistance (impedance) of silver halide to the low resistance of silver provides the radiation warning that detected radiation levels exceed a predetermined radiation dose threshold.

  5. Flame detector operable in presence of proton radiation

    NASA Technical Reports Server (NTRS)

    Walker, D. J.; Turnage, J. E.; Linford, R. M. F.; Cornish, S. D. (Inventor)

    1974-01-01

    A detector of ultraviolet radiation for operation in a space vehicle which orbits through high intensity radiation areas is described. Two identical ultraviolet sensor tubes are mounted within a shield which limits to acceptable levels the amount of proton radiation reaching the sensor tubes. The shield has an opening which permits ultraviolet radiation to reach one of the sensing tubes. The shield keeps ultraviolet radiation from reaching the other sensor tube, designated the reference tube. The circuitry of the detector subtracts the output of the reference tube from the output of the sensing tube, and any portion of the output of the sensing tube which is due to proton radiation is offset by the output of the reference tube. A delay circuit in the detector prevents false alarms by keeping statistical variations in the proton radiation sensed by the two sensor tubes from developing an output signal.

  6. The Radiation Assessment Detector (RAD) Investigation

    NASA Astrophysics Data System (ADS)

    Hassler, D. M.; Zeitlin, C.; Wimmer-Schweingruber, R. F.; Böttcher, S.; Martin, C.; Andrews, J.; Böhm, E.; Brinza, D. E.; Bullock, M. A.; Burmeister, S.; Ehresmann, B.; Epperly, M.; Grinspoon, D.; Köhler, J.; Kortmann, O.; Neal, K.; Peterson, J.; Posner, A.; Rafkin, S.; Seimetz, L.; Smith, K. D.; Tyler, Y.; Weigle, G.; Reitz, G.; Cucinotta, F. A.

    2012-09-01

    The Radiation Assessment Detector (RAD) on the Mars Science Laboratory (MSL) is an energetic particle detector designed to measure a broad spectrum of energetic particle radiation. It will make the first-ever direct radiation measurements on the surface of Mars, detecting galactic cosmic rays, solar energetic particles, secondary neutrons, and other secondary particles created both in the atmosphere and in the Martian regolith. The radiation environment on Mars, both past and present, may have implications for habitability and the ability to sustain life. Radiation exposure is also a major concern for future human missions. The RAD instrument combines charged- and neutral-particle detection capability over a wide dynamic range in a compact, low-mass, low-power instrument. These capabilities are required in order to measure all the important components of the radiation environment. RAD consists of the RAD Sensor Head (RSH) and the RAD Electronics Box (REB) integrated together in a small, compact volume. The RSH contains a solid-state detector telescope with three silicon PIN diodes for charged particle detection, a thallium doped Cesium Iodide scintillator, plastic scintillators for neutron detection and anti-coincidence shielding, and the front-end electronics. The REB contains three circuit boards, one with a novel mixed-signal ASIC for processing analog signals and an associated control FPGA, another with a second FPGA to communicate with the rover and perform onboard analysis of science data, and a third board with power supplies and power cycling or "sleep"-control electronics. The latter enables autonomous operation, independent of commands from the rover. RAD is a highly capable and highly configurable instrument that paves the way for future compact energetic particle detectors in space.

  7. Large dynamic range radiation detector and methods thereof

    DOEpatents

    Marrs, Roscoe E [Livermore, CA; Madden, Norman W [Sparks, NV

    2012-02-14

    According to one embodiment, a radiation detector comprises a scintillator and a photodiode optically coupled to the scintillator. The radiation detector also includes a bias voltage source electrically coupled to the photodiode, a first detector operatively electrically coupled to the photodiode for generating a signal indicative of a level of a charge at an output of the photodiode, and a second detector operatively electrically coupled to the bias voltage source for generating a signal indicative of an amount of current flowing through the photodiode.

  8. Heat Transfer Issues in Thin-Film Thermal Radiation Detectors

    NASA Technical Reports Server (NTRS)

    Barry, Mamadou Y.

    1999-01-01

    The Thermal Radiation Group at Virginia Polytechnic Institute and State University has been working closely with scientists and engineers at NASA's Langley Research Center to develop accurate analytical and numerical models suitable for designing next generation thin-film thermal radiation detectors for earth radiation budget measurement applications. The current study provides an analytical model of the notional thermal radiation detector that takes into account thermal transport phenomena, such as the contact resistance between the layers of the detector, and is suitable for use in parameter estimation. It was found that the responsivity of the detector can increase significantly due to the presence of contact resistance between the layers of the detector. Also presented is the effect of doping the thermal impedance layer of the detector with conducting particles in order to electrically link the two junctions of the detector. It was found that the responsivity and the time response of the doped detector decrease significantly in this case. The corresponding decrease of the electrical resistance of the doped thermal impedance layer is not sufficient to significantly improve the electrical performance of the detector. Finally, the "roughness effect" is shown to be unable to explain the decrease in the thermal conductivity often reported for thin-film layers.

  9. Real-time self-networking radiation detector apparatus

    DOEpatents

    Kaplan, Edward [Stony Brook, NY; Lemley, James [Miller Place, NY; Tsang, Thomas Y [Holbrook, NY; Milian, Laurence W [East Patchogue, NY

    2007-06-12

    The present invention is for a radiation detector apparatus for detecting radiation sources present in cargo shipments. The invention includes the features of integrating a bubble detector sensitive to neutrons and a GPS system into a miniaturized package that can wirelessly signal the presence of radioactive material in shipping containers. The bubble density would be read out if such indicated a harmful source.

  10. Long-distance transmission of light in a scintillator-based radiation detector

    DOEpatents

    Dowell, Jonathan L.; Talbott, Dale V.; Hehlen, Markus P.

    2017-07-11

    Scintillator-based radiation detectors capable of transmitting light indicating the presence of radiation for long distances are disclosed herein. A radiation detector can include a scintillator layer and a light-guide layer. The scintillator layer is configured to produce light upon receiving incident radiation. The light-guide layer is configured to receive light produced by the scintillator layer and either propagate the received light through the radiation detector or absorb the received light and emit light, through fluorescence, that is propagated through the radiation detector. A radiation detector can also include an outer layer partially surrounding the scintillator layer and light-guide layer. The index of refraction of the light-guide layer can be greater than the index of refraction of adjacent layers.

  11. Monolithic active pixel radiation detector with shielding techniques

    DOEpatents

    Deptuch, Grzegorz W.

    2018-03-20

    A monolithic active pixel radiation detector including a method of fabricating thereof. The disclosed radiation detector can include a substrate comprising a silicon layer upon which electronics are configured. A plurality of channels can be formed on the silicon layer, wherein the plurality of channels are connected to sources of signals located in a bulk part of the substrate, and wherein the signals flow through electrically conducting vias established in an isolation oxide on the substrate. One or more nested wells can be configured from the substrate, wherein the nested wells assist in collecting charge carriers released in interaction with radiation and wherein the nested wells further separate the electronics from the sensing portion of the detector substrate. The detector can also be configured according to a thick SOA method of fabrication.

  12. Monolithic active pixel radiation detector with shielding techniques

    DOEpatents

    Deptuch, Grzegorz W.

    2016-09-06

    A monolithic active pixel radiation detector including a method of fabricating thereof. The disclosed radiation detector can include a substrate comprising a silicon layer upon which electronics are configured. A plurality of channels can be formed on the silicon layer, wherein the plurality of channels are connected to sources of signals located in a bulk part of the substrate, and wherein the signals flow through electrically conducting vias established in an isolation oxide on the substrate. One or more nested wells can be configured from the substrate, wherein the nested wells assist in collecting charge carriers released in interaction with radiation and wherein the nested wells further separate the electronics from the sensing portion of the detector substrate. The detector can also be configured according to a thick SOA method of fabrication.

  13. PAMELA Space Mission: The Transition Radiation Detector

    NASA Astrophysics Data System (ADS)

    Ambriola, M.; Bellotti, R.; Cafagna, F.; Circella, M.; De Marzo, C.; Giglietto, N.; Marangelli, B.; Mirizzi, N.; Romita, M.; Spinelli, P.

    2003-07-01

    PAMELA telescope is a satellite-b orne magnetic spectrometer built to fulfill the primary scientific objectives of detecting antiparticles (antiprotons and positrons) in the cosmic rays, and to measure spectra of particles in cosmic rays. The PAMELA telescope is currently under integration and is composed of: a silicon tracker housed in a permanent magnet, a time of flight and an anticoincidence system both made of plastic scintillators, a silicon imaging calorimeter, a neutron detector and a Transition Radiation Detector (TRD). The TRD detector is composed of 9 sensitive layers of straw tubes working in proportional mode for a total of 1024 channels. Each layer is interleaved with a radiator plane made of carbon fibers. The TRD detector characteristics will be described along with its performance studied exposing the detector to particle beams of electrons, pions, muons and protons of different momenta at both CERN-PS and CERN-SPS facilities.

  14. High resolution amorphous silicon radiation detectors

    DOEpatents

    Street, R.A.; Kaplan, S.N.; Perez-Mendez, V.

    1992-05-26

    A radiation detector employing amorphous Si:H cells in an array with each detector cell having at least three contiguous layers (n-type, intrinsic, p-type), positioned between two electrodes to which a bias voltage is applied. An energy conversion layer atop the silicon cells intercepts incident radiation and converts radiation energy to light energy of a wavelength to which the silicon cells are responsive. A read-out device, positioned proximate to each detector element in an array allows each such element to be interrogated independently to determine whether radiation has been detected in that cell. The energy conversion material may be a layer of luminescent material having a columnar structure. In one embodiment a column of luminescent material detects the passage therethrough of radiation to be detected and directs a light beam signal to an adjacent a-Si:H film so that detection may be confined to one or more such cells in the array. One or both electrodes may have a comb structure, and the teeth of each electrode comb may be interdigitated for capacitance reduction. The amorphous Si:H film may be replaced by an amorphous Si:Ge:H film in which up to 40 percent of the amorphous material is Ge. Two dimensional arrays may be used in X-ray imaging, CT scanning, crystallography, high energy physics beam tracking, nuclear medicine cameras and autoradiography. 18 figs.

  15. High resolution amorphous silicon radiation detectors

    DOEpatents

    Street, Robert A.; Kaplan, Selig N.; Perez-Mendez, Victor

    1992-01-01

    A radiation detector employing amorphous Si:H cells in an array with each detector cell having at least three contiguous layers (n type, intrinsic, p type), positioned between two electrodes to which a bias voltage is applied. An energy conversion layer atop the silicon cells intercepts incident radiation and converts radiation energy to light energy of a wavelength to which the silicon cells are responsive. A read-out device, positioned proximate to each detector element in an array allows each such element to be interrogated independently to determine whether radiation has been detected in that cell. The energy conversion material may be a layer of luminescent material having a columnar structure. In one embodiment a column of luminescent material detects the passage therethrough of radiation to be detected and directs a light beam signal to an adjacent a-Si:H film so that detection may be confined to one or more such cells in the array. One or both electrodes may have a comb structure, and the teeth of each electrode comb may be interdigitated for capacitance reduction. The amorphous Si:H film may be replaced by an amorphous Si:Ge:H film in which up to 40 percent of the amorphous material is Ge. Two dimensional arrays may be used in X-ray imaging, CT scanning, crystallography, high energy physics beam tracking, nuclear medicine cameras and autoradiography.

  16. Plural-wavelength flame detector that discriminates between direct and reflected radiation

    NASA Technical Reports Server (NTRS)

    Hall, Gregory H. (Inventor); Barnes, Heidi L. (Inventor); Medelius, Pedro J. (Inventor); Simpson, Howard J. (Inventor); Smith, Harvey S. (Inventor)

    1997-01-01

    A flame detector employs a plurality of wavelength selective radiation detectors and a digital signal processor programmed to analyze each of the detector signals, and determine whether radiation is received directly from a small flame source that warrants generation of an alarm. The processor's algorithm employs a normalized cross-correlation analysis of the detector signals to discriminate between radiation received directly from a flame and radiation received from a reflection of a flame to insure that reflections will not trigger an alarm. In addition, the algorithm employs a Fast Fourier Transform (FFT) frequency spectrum analysis of one of the detector signals to discriminate between flames of different sizes. In a specific application, the detector incorporates two infrared (IR) detectors and one ultraviolet (UV) detector for discriminating between a directly sensed small hydrogen flame, and reflections from a large hydrogen flame. The signals generated by each of the detectors are sampled and digitized for analysis by the digital signal processor, preferably 250 times a second. A sliding time window of approximately 30 seconds of detector data is created using FIFO memories.

  17. Direct detector for terahertz radiation

    DOEpatents

    Wanke, Michael C [Albuquerque, NM; Lee, Mark [Albuquerque, NM; Shaner, Eric A [Albuquerque, NM; Allen, S James [Santa Barbara, CA

    2008-09-02

    A direct detector for terahertz radiation comprises a grating-gated field-effect transistor with one or more quantum wells that provide a two-dimensional electron gas in the channel region. The grating gate can be a split-grating gate having at least one finger that can be individually biased. Biasing an individual finger of the split-grating gate to near pinch-off greatly increases the detector's resonant response magnitude over prior QW FET detectors while maintaining frequency selectivity. The split-grating-gated QW FET shows a tunable resonant plasmon response to FIR radiation that makes possible an electrically sweepable spectrometer-on-a-chip with no moving mechanical optical parts. Further, the narrow spectral response and signal-to-noise are adequate for use of the split-grating-gated QW FET in a passive, multispectral terahertz imaging system. The detector can be operated in a photoconductive or a photovoltaic mode. Other embodiments include uniform front and back gates to independently vary the carrier densities in the channel region, a thinned substrate to increase bolometric responsivity, and a resistive shunt to connect the fingers of the grating gate in parallel and provide a uniform gate-channel voltage along the length of the channel to increase the responsivity and improve the spectral resolution.

  18. Organic Scintillation Detectors for Spectroscopic Radiation Portal Monitors

    NASA Astrophysics Data System (ADS)

    Paff, Marc Gerrit

    Thousands of radiation portal monitors have been deployed worldwide to detect and deter the smuggling of nuclear and radiological materials that could be used in nefarious acts. Radiation portal monitors are often installed at bottlenecks where large amounts of people or goods must traverse. Examples of use include scanning cargo containers at shipping ports, vehicles at border crossings, and people at high profile functions and events. Traditional radiation portal monitors contain separate detectors for passively measuring neutron and gamma ray count rates. 3He tubes embedded in polyethylene and slabs of plastic scintillators are the most common detector materials used in radiation portal monitors. The radiation portal monitor alarm mechanism relies on measuring radiation count rates above user defined alarm thresholds. These alarm thresholds are set above natural background count rates. Minimizing false alarms caused by natural background and maximizing sensitivity to weakly emitting threat sources must be balanced when setting these alarm thresholds. Current radiation portal monitor designs suffer from frequent nuisance radiation alarms. These radiation nuisance alarms are most frequently caused by shipments of large quantities of naturally occurring radioactive material containing cargo, like kitty litter, as well as by humans who have recently undergone a nuclear medicine procedure, particularly 99mTc treatments. Current radiation portal monitors typically lack spectroscopic capabilities, so nuisance alarms must be screened out in time-intensive secondary inspections with handheld radiation detectors. Radiation portal monitors using organic liquid scintillation detectors were designed, built, and tested. A number of algorithms were developed to perform on-the-fly radionuclide identification of single and combination radiation sources moving past the portal monitor at speeds up to 2.2 m/s. The portal monitor designs were tested extensively with a variety of

  19. Enhanced radiation detectors using luminescent materials

    DOEpatents

    Vardeny, Zeev V.; Jeglinski, Stefan A.; Lane, Paul A.

    2001-01-01

    A radiation detecting device comprising a radiation sensing element, and a layer of luminescent material to expand the range of wavelengths over which the sensing element can efficiently detect radiation. The luminescent material being selected to absorb radiation at selected wavelengths, causing the luminescent material to luminesce, and the luminescent radiation being detected by the sensing element. Radiation sensing elements include photodiodes (singly and in arrays), CCD arrays, IR detectors and photomultiplier tubes. Luminescent materials include polymers, oligomers, copolymers and porphyrines, Luminescent layers include thin films, thicker layers, and liquid polymers.

  20. Simple dynamic electromagnetic radiation detector

    NASA Technical Reports Server (NTRS)

    Been, J. F.

    1972-01-01

    Detector monitors gamma dose rate at particular position in a radiation facility where a mixed neutron-gamma environment exists, thus determining reactor power level changes. Device also maps gamma intensity profile across a neutron-gamma beam.

  1. Photovoltaic radiation detector element

    DOEpatents

    Agouridis, Dimitrios C.

    1983-01-01

    A radiation detector element is formed of a body of semiconductor material, a coating on the body which forms a photovoltaic junction therewith, and a current collector consisting of narrow metallic strips, the aforesaid coating having an opening therein the edge of which closely approaches but is spaced from the current collector strips.

  2. Integrator Circuitry for Single Channel Radiation Detector

    NASA Technical Reports Server (NTRS)

    Holland, Samuel D. (Inventor); Delaune, Paul B. (Inventor); Turner, Kathryn M. (Inventor)

    2008-01-01

    Input circuitry is provided for a high voltage operated radiation detector to receive pulses from the detector having a rise time in the range of from about one nanosecond to about ten nanoseconds. An integrator circuit, which utilizes current feedback, receives the incoming charge from the radiation detector and creates voltage by integrating across a small capacitor. The integrator utilizes an amplifier which closely follows the voltage across the capacitor to produce an integrator output pulse with a peak value which may be used to determine the energy which produced the pulse. The pulse width of the output is stretched to approximately 50 to 300 nanoseconds for use by subsequent circuits which may then use amplifiers with lower slew rates.

  3. Radiation detector device for rejecting and excluding incomplete charge collection events

    DOEpatents

    Bolotnikov, Aleksey E.; De Geronimo, Gianluigi; Vernon, Emerson; Yang, Ge; Camarda, Giuseppe; Cui, Yonggang; Hossain, Anwar; Kim, Ki Hyun; James, Ralph B.

    2016-05-10

    A radiation detector device is provided that is capable of distinguishing between full charge collection (FCC) events and incomplete charge collection (ICC) events based upon a correlation value comparison algorithm that compares correlation values calculated for individually sensed radiation detection events with a calibrated FCC event correlation function. The calibrated FCC event correlation function serves as a reference curve utilized by a correlation value comparison algorithm to determine whether a sensed radiation detection event fits the profile of the FCC event correlation function within the noise tolerances of the radiation detector device. If the radiation detection event is determined to be an ICC event, then the spectrum for the ICC event is rejected and excluded from inclusion in the radiation detector device spectral analyses. The radiation detector device also can calculate a performance factor to determine the efficacy of distinguishing between FCC and ICC events.

  4. Radiation response issues for infrared detectors

    NASA Technical Reports Server (NTRS)

    Kalma, Arne H.

    1990-01-01

    Researchers describe the most important radiation response issues for infrared detectors. In general, the two key degradation mechanisms in infrared detectors are the noise produced by exposure to a flux of ionizing particles (e.g.; trapped electronics and protons, debris gammas and electrons, radioactive decay of neutron-activated materials) and permanent damage produced by exposure to total dose. Total-dose-induced damage is most often the result of charge trapping in insulators or at interfaces. Exposure to short pulses of ionization (e.g.; prompt x rays or gammas, delayed gammas) will cause detector upset. However, this upset is not important to a sensor unless the recovery time is too long. A few detector technologies are vulnerable to neutron-induced displacement damage, but fortunately most are not. Researchers compare the responses of the new technologies with those of the mainstream technologies of PV HgCdTe and IBC Si:As. One important reason for this comparison is to note where some of the newer technologies have the potential to provide significantly improved radiation hardness compared with that of the mainstream technologies, and thus to provide greater motivation for the pursuit of these technologies.

  5. Radiation Assessment Detector for Mars Science Laboratory

    NASA Image and Video Library

    2010-11-09

    The Radiation Assessment Detector, shown prior to its September 2010 installation onto NASA Mars rover Curiosity, will aid future human missions to Mars by providing information about the radiation environment on Mars and on the way to Mars.

  6. Low dose radiation damage effects in silicon strip detectors

    NASA Astrophysics Data System (ADS)

    Wiącek, P.; Dąbrowski, W.

    2016-11-01

    The radiation damage effects in silicon segmented detectors caused by X-rays have become recently an important research topic driven mainly by development of new detectors for applications at the European X-ray Free Electron Laser (E-XFEL). However, radiation damage in silicon strip is observed not only after extreme doses up to 1 GGy expected at E-XFEL, but also at doses in the range of tens of Gy, to which the detectors in laboratory instruments like X-ray diffractometers or X-ray spectrometers can be exposed. In this paper we report on investigation of radiation damage effects in a custom developed silicon strip detector used in laboratory diffractometers equipped with X-ray tubes. Our results show that significant degradation of detector performance occurs at low doses, well below 200 Gy, which can be reached during normal operation of laboratory instruments. Degradation of the detector energy resolution can be explained by increasing leakage current and increasing interstrip capacitance of the sensor. Another observed effect caused by accumulation of charge trapped in the surface oxide layer is change of charge division between adjacent strips. In addition, we have observed unexpected anomalies in the annealing process.

  7. Efficient Charge Collection in Coplanar-Grid Radiation Detectors

    NASA Astrophysics Data System (ADS)

    Kunc, J.; Praus, P.; Belas, E.; Dědič, V.; Pekárek, J.; Grill, R.

    2018-05-01

    We model laser-induced transient-current waveforms in radiation coplanar-grid detectors. Poisson's equation is solved by the finite-element method and currents induced by a photogenerated charge are obtained using the Shockley-Ramo theorem. The spectral response on a radiation flux is modeled by Monte Carlo simulations. We show a 10 × improved spectral resolution of the coplanar-grid detector using differential signal sensing. We model the current waveform dependence on the doping, depletion width, diffusion, and detector shielding, and their mutual dependence is discussed in terms of detector optimization. The numerical simulations are successfully compared to experimental data, and further model simplifications are proposed. The space charge below electrodes and a nonhomogeneous electric field on a coplanar-grid anode are found to be the dominant contributions to laser-induced transient-current waveforms.

  8. System for determining the type of nuclear radiation from detector output pulse shape

    DOEpatents

    Miller, William H.; Berliner, Ronald R.

    1994-01-01

    A radiation detection system determines the type of nuclear radiation received in a detector by producing a correlation value representative of the statistical cross correlation between the shape of the detector signal and pulse shape data previously stored in memory and characteristic of respective types of radiation. The correlation value is indicative of the type of radiation. The energy of the radiation is determined from the detector signal and is used to produce a spectrum of radiation energies according to radiation type for indicating the nature of the material producing the radiation.

  9. System for determining the type of nuclear radiation from detector output pulse shape

    DOEpatents

    Miller, W.H.; Berliner, R.R.

    1994-09-13

    A radiation detection system determines the type of nuclear radiation received in a detector by producing a correlation value representative of the statistical cross correlation between the shape of the detector signal and pulse shape data previously stored in memory and characteristic of respective types of radiation. The correlation value is indicative of the type of radiation. The energy of the radiation is determined from the detector signal and is used to produce a spectrum of radiation energies according to radiation type for indicating the nature of the material producing the radiation. 2 figs.

  10. Variable-Temperature Cryostat For Radiation-Damage Testing Of Germanium Detectors

    NASA Technical Reports Server (NTRS)

    Floyd, Samuel R.; Puc, Bernard P.

    1992-01-01

    Variable-temperature cryostats developed to study radiation damage to, and annealing of, germanium gamma-ray detectors. Two styles: one accommodates large single detector and one accommodates two medium-sized detectors. New cryostats allow complete testing of large-volume germanium gamma-ray detectors without breaking cryostat vacuum and removing detectors for annealing.

  11. Modeling radiation damage to pixel sensors in the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Ducourthial, A.

    2018-03-01

    Silicon pixel detectors are at the core of the current and planned upgrade of the ATLAS detector at the Large Hadron Collider (LHC) . As the closest detector component to the interaction point, these detectors will be subject to a significant amount of radiation over their lifetime: prior to the High-Luminosity LHC (HL-LHC) [1], the innermost layers will receive a fluence in excess of 1015 neq/cm2 and the HL-LHC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. Simulating radiation damage is essential in order to make accurate predictions for current and future detector performance that will enable searches for new particles and forces as well as precision measurements of Standard Model particles such as the Higgs boson. We present a digitization model that includes radiation damage effects on the ATLAS pixel sensors for the first time. In addition to thoroughly describing the setup, we present first predictions for basic pixel cluster properties alongside early studies with LHC Run 2 proton-proton collision data.

  12. Characteristics of detectors for prevention of nuclear radiation terrorism

    NASA Astrophysics Data System (ADS)

    Kolesnikov, S. V.; Ryabeva, E. V.; Samosadny, V. T.

    2017-01-01

    There is description of one type of detectors in use for the task of nuclear terrorism cases prevention to determine the direction to the radioactive source and geometrical structure of radiation field. This type is a modular detector with anisotropic sensitivity. The principle of work of a modular detecting device is the simultaneous operation of several detecting modules with anisotropic sensitivity to gamma radiation.

  13. DQE as detection probability of the radiation detectors

    NASA Astrophysics Data System (ADS)

    Zanella, Giovanni

    2008-02-01

    In this paper it is shown that quantum efficiency (DQE), as commonly defined for imaging detectors, can be extended to all radiation detectors with the meaning of detection probability, if Poisson statistics applies. This unified approach is possible in time-domain at zero spatial-frequency.

  14. Processing circuitry for single channel radiation detector

    NASA Technical Reports Server (NTRS)

    Holland, Samuel D. (Inventor); Delaune, Paul B. (Inventor); Turner, Kathryn M. (Inventor)

    2009-01-01

    Processing circuitry is provided for a high voltage operated radiation detector. An event detector utilizes a comparator configured to produce an event signal based on a leading edge threshold value. A preferred event detector does not produce another event signal until a trailing edge threshold value is satisfied. The event signal can be utilized for counting the number of particle hits and also for controlling data collection operation for a peak detect circuit and timer. The leading edge threshold value is programmable such that it can be reprogrammed by a remote computer. A digital high voltage control is preferably operable to monitor and adjust high voltage for the detector.

  15. RADIATION DETECTOR SYSTEM

    DOEpatents

    Gundlach, J.C.; Kelley, G.G.

    1958-02-25

    This patent relates to radiation detection devices and presents a unique detection system especialiy desirable for portable type instruments using a Geiger-Mueller for a high voltage battery, thereby reducing the size and weight of the instrument, by arranging a one-shot multivibrator to recharge a capacitance applying operating potential to tho Geiger-Mueller tube each time a nuclear particle is detected. When detection occurs, the multivibrator further delivers a pulse to an appropriate indicator doing away with the necessity for the pulse amplifier conventionally intermediate between the detector and indicator in pulse detection systems.

  16. Gold-coated copper cone detector as a new standard detector for F2 laser radiation at 157 nm.

    PubMed

    Kück, Stefan; Brandt, Friedhelm; Taddeo, Mario

    2005-04-20

    A new standard detector for high-accuracy measurements of F2 laser radiation at 157 nm is presented. This gold-coated copper cone detector permits the measurement of average powers up to 2 W with an uncertainty of approximately 1%. To the best of our knowledge, this is the first highly accurate standard detector for F2 laser radiation for this power level. It is fully characterized according to Guide to the Expression of Uncertainty in Measurement of the International Organization for Standardization and is connected to the calibration chain for laser radiation established by the German National Metrology Institute.

  17. Fast and broadband detector for laser radiation

    NASA Astrophysics Data System (ADS)

    Scorticati, Davide; Crapella, Giacomo; Pellegrino, Sergio

    2018-02-01

    We developed a fast detector (patent pending) based on the Laser Induced Transverse Voltage (LITV) effect. The advantage of detectors using the LITV effect over pyroelectric sensors and photodiodes for laser radiation measurements is the combination of an overall fast response time, broadband spectral acceptance, high saturation threshold to direct laser irradiation and the possibility to measure pulsed as well as cw-laser sources. The detector is capable of measuring the energy of single laser pulses with repetition frequencies up to the MHz range, adding the possibility to also measure the output power of cw-lasers. Moreover, the thermal nature of the sensor enables the capability to work in a broadband spectrum, from UV to THz as well as the possibility of operating in a broad-range (10-3-102 W/cm2 ) of incident average optical power densities of the laser radiation, without the need of adopting optical filters nor other precautions.

  18. Multi-directional radiation detector using photographic film

    NASA Astrophysics Data System (ADS)

    Junet, L. K.; Majid, Z. A. Abdul; Sapuan, A. H.; Sayed, I. S.; Pauzi, N. F.

    2014-11-01

    Ionising radiation has always been part of our surrounding and people are continuously exposed to it. Ionising radiation is harmful to human health, thus it is vital to monitor the radiation. To monitor radiation, there are three main points that should be observed cautiously, which are energy, quantity, and direction of the radiation sources. A three dimensional (3D) dosimeter is an example of a radiation detector that provide these three main points. This dosimeter is able to record the radiation dose distribution in 3D. Applying the concept of dose detection distribution, study has been done to design a multi-directional radiation detector of different filter thicknesses. This is obtained by designing a cylinder shaped aluminum filter with several layers of different thickness. Black and white photographic material is used as a radiation-sensitive material and a PVC material has been used as the enclosure. The device is then exposed to a radiation source with different exposure factors. For exposure factor 70 kVp, 16 mAs; the results have shown that optical density (OD) value at 135° is 1.86 higher compared with an OD value at 315° which is 0.71 as the 135° area received more radiation compare to 315° region. Furthermore, with an evidence of different angle of film give different value of OD shows that this device has a multidirectional ability. Materials used to develop this device are widely available in the market, thus reducing the cost of development and making it suitable for commercialisation.

  19. Three-dimensional architecture for solid state radiation detectors

    DOEpatents

    Parker, S.

    1999-03-30

    A radiation-damage resistant radiation detector is formed on a substrate formed of a material doped with a first conductivity type dopant. The detector includes at least one first electrode formed of first conductivity type dopant, and at least one second electrode that is spaced-apart from the first electrode and formed of a second conductivity type dopant. Each first and second electrode penetrates into the substrate from a substrate surface, and one or more electrodes may penetrate entirely through the substrate, that is traversing from one surface to the other surface. Particulate and/or electromagnetic radiation penetrating at least a surface of the substrate releases electrons and holes in substrate regions. Because the electrodes may be formed entirely through the substrate thickness, the released charges will be a relatively small distance from at least a portion of such an electrode, e.g., a distance less than the substrate thickness. The electrons and/or holes traverse the small distance and are collected by said electrodes, thus promoting rapid detection of the radiation. By providing one or more electrodes with a dopant profile radially graded in a direction parallel to a substrate surface, an electric field results that promotes rapid collection of released electrons and said holes. Monolithic combinations of such detectors may be fabricated including CMOS electronics to process radiation signals. 45 figs.

  20. Three-dimensional architecture for solid state radiation detectors

    DOEpatents

    Parker, Sherwood

    1999-01-01

    A radiation-damage resistant radiation detector is formed on a substrate formed of a material doped with a first conductivity type dopant. The detector includes at least one first electrode formed of first conductivity type dopant, and at least one second electrode that is spaced-apart from the first electrode and formed of a second conductivity type dopant. Each first and second electrode penetrates into the substrate from a substrate surface, and one or more electrodes may penetrate entirely through the substrate, that is traversing from one surface to the other surface. Particulate and/or electromagnetic radiation penetrating at least a surface of the substrate releases electrons and holes in substrate regions. Because the electrodes may be formed entirely through the substrate thickness, the released charges will be a relatively small distance from at least a portion of such an electrode, e.g., a distance less than the substrate thickness. The electrons and/or holes traverse the small distance and are collected by said electrodes, thus promoting rapid detection of the radiation. By providing one or more electrodes with a dopant profile radially graded in a direction parallel to a substrate surface, an electric field results that promotes rapid collection of released electrons and said holes. Monolithic combinations of such detectors may be fabricated including CMOS electronics to process radiation signals.

  1. Radiation Hazard Detector

    NASA Technical Reports Server (NTRS)

    1978-01-01

    NASA technology has made commercially available a new, inexpensive, conveniently-carried device for protection, of people exposed to potentially dangerous levels of microwave radiation. Microwaves are radio emissions of extremely high frequency. They can be hazardous but the degree of hazard is not yet well understood. Generally, it is believed that low intensity radiation of short duration is not harmful but that exposure to high levels can induce deep internal burns, affecting the circulatory and nervous systems, and particularly the eyes. The Department of Labor's Occupational Safety and Health Administration (OSHA) has established an allowable safe threshold of exposure. However, people working near high intensity sources of microwave energy-for example, radar antennas and television transmitters-may be unknowingly exposed to radiation levels beyond the safe limit. This poses not only a personal safety problem but also a problem for employers in terms of productivity loss, workman's compensation claims and possible liability litigation. Earlier-developed monitoring devices which warn personnel of dangerous radiation levels have their shortcomings. They can be cumbersome and awkward to use while working. They also require continual visual monitoring to determine if a person is in a dangerous area of radiation, and they are relatively expensive, another deterrent to their widespread adoption. In response to the need for a cheaper and more effective warning system, Jet Propulsion Laboratory developed, under NASA auspices, a new, battery-powered Microwave Radiation Hazard Detector. To bring the product to the commercial market, California Institute Research Foundation, the patent holder, granted an exclusive license to Cicoil Corporation, Chatsworth, California, an electronic components manufacturer.

  2. Method and system for determining depth distribution of radiation-emitting material located in a source medium and radiation detector system for use therein

    DOEpatents

    Benke, Roland R.; Kearfott, Kimberlee J.; McGregor, Douglas S.

    2003-03-04

    A method, system and a radiation detector system for use therein are provided for determining the depth distribution of radiation-emitting material distributed in a source medium, such as a contaminated field, without the need to take samples, such as extensive soil samples, to determine the depth distribution. The system includes a portable detector assembly with an x-ray or gamma-ray detector having a detector axis for detecting the emitted radiation. The radiation may be naturally-emitted by the material, such as gamma-ray-emitting radionuclides, or emitted when the material is struck by other radiation. The assembly also includes a hollow collimator in which the detector is positioned. The collimator causes the emitted radiation to bend toward the detector as rays parallel to the detector axis of the detector. The collimator may be a hollow cylinder positioned so that its central axis is perpendicular to the upper surface of the large area source when positioned thereon. The collimator allows the detector to angularly sample the emitted radiation over many ranges of polar angles. This is done by forming the collimator as a single adjustable collimator or a set of collimator pieces having various possible configurations when connected together. In any one configuration, the collimator allows the detector to detect only the radiation emitted from a selected range of polar angles measured from the detector axis. Adjustment of the collimator or the detector therein enables the detector to detect radiation emitted from a different range of polar angles. The system further includes a signal processor for processing the signals from the detector wherein signals obtained from different ranges of polar angles are processed together to obtain a reconstruction of the radiation-emitting material as a function of depth, assuming, but not limited to, a spatially-uniform depth distribution of the material within each layer. The detector system includes detectors having

  3. Neutron responsive self-powered radiation detector

    DOEpatents

    Brown, Donald P.; Cannon, Collins P.

    1978-01-01

    An improved neutron responsive self-powered radiation detector is disclosed in which the neutron absorptive central emitter has a substantially neutron transmissive conductor collector sheath spaced about the emitter and the space between the emitter and collector sheath is evacuated.

  4. On the radiation tolerance of SU-8, a new material for gaseous microstructure radiation detector fabrication

    NASA Astrophysics Data System (ADS)

    Key, M. J.; Cindro, V.; Lozano, M.

    2004-12-01

    SU-8 photosensitive epoxy resin was developed for the fabrication of high-aspect ratio microstructures in MEMS and microengineering applications, and has potential for use in the construction of novel gaseous micropattern radiation detectors. However, little is known of the behaviour of the cured material under irradiation. Mechanical properties of SU-8 film have been measured as a function of neutron exposure and compared with Kapton ® polyimide and Mylar ® PET polyester films, materials routinely used in gaseous radiation detectors, to asses the suitability of SU-8 based microstructures for gaseous detector applications. After exposure to a reactor core neutron fluence of 7.5×10 18 n cm -2, the new material showed a high level of resistance to radiation damage, comparable to Kapton film.

  5. Methods for radiation detection and characterization using a multiple detector probe

    DOEpatents

    Akers, Douglas William; Roybal, Lyle Gene

    2014-11-04

    Apparatuses, methods, and systems relating to radiological characterization of environments are disclosed. Multi-detector probes with a plurality of detectors in a common housing may be used to substantially concurrently detect a plurality of different radiation activities and types. Multiple multi-detector probes may be used in a down-hole environment to substantially concurrently detect radioactive activity and contents of a buried waste container. Software may process, analyze, and integrate the data from the different multi-detector probes and the different detector types therein to provide source location and integrated analysis as to the source types and activity in the measured environment. Further, the integrated data may be used to compensate for differential density effects and the effects of radiation shielding materials within the volume being measured.

  6. A radiation detector fabricated from silicon photodiode.

    PubMed

    Yamamoto, H; Hatakeyama, S; Norimura, T; Tsuchiya, T

    1984-12-01

    A silicon photodiode is converted to a low energy charged particle radiation detector. The window thickness of the fabricated detector is evaluated to be 50 micrograms/cm2. The area of the depletion region is 13.2 mm2 and the depth of it is estimated to be about 100 microns. The energy resolution (FWHM) is 14.5 ke V for alpha-particles from 241Am and 2.5 ke V for conversion electrons from 109Cd, respectively.

  7. Radiation damage of the HEAO C-1 germanium detectors

    NASA Technical Reports Server (NTRS)

    Mahoney, W. A.; Ling, J. C.; Jacobson, A. S.

    1981-01-01

    The effects of radiation damage from proton bombardment of the four HEAO C-1 high purity germanium detectors have been measured and compared to predictions. Because of the presence of numerous gamma-ray lines in the detector background spectra and because of the relatively long exposure time of the HEAO 3 satellite to cosmic-ray and trapped protons, it has been possible to measure both the energy and time dependence of radiation damage. After 100 d in orbit, each of the four detectors has been exposed to approximately 3 x 10 to the 7th protons/sq cm, and the average energy resolution at 1460 keV had degraded from 3.2 keV fwhm to 8.6 keV fwhm. The lines were all broadened to the low energy side although the line profile was different for each of the four detectors. The damage-related contribution to the degradation in energy resolution was found to be linear in energy and proton influence.

  8. Radiation Effects on LWS Detectors and Deglitching of LWS Data

    NASA Astrophysics Data System (ADS)

    Burgdorf, M.; Harwood, A.; Sidher, S. D.

    Glitches are caused by the effects of ionising particles (either a primary cosmic ray, interplanetary or belt electron, or a secondary generated in the spacecraft structure) on the detectors. There was roughly one glitch per ten seconds per detector during the normal period of LWS operation. These energetic particles cause a sudden jump in the ramp voltage, due to a quantity of charge being dumped on the integrating amplifier. They also cause a change in the detector responsivity which affects the following ramps. Glitches were detected in the automatic pipeline processing for each observation with the LWS that was performed with a standard Astronomical Observation Template. We describe the method with which this deglitching was carried out. Based on the findings from the deglitching algorithms we compare proton and electron fluences with average glitch rates and look for correlations. >From the glitch statistics one can also derive the energy distribution of the ionising radiation that hit the detectors. This energy spectrum agrees roughly with model predictions and therefore shows that it is in principle possible to predict the properties of the ionising radiation to which the detectors of future missions will be exposed. This is important, because for the LWS we found that the effect of an ionising radiation hit on the detectors was rather different, and more severe, than had been predicted before launch: An ionising particle could cause the detector to become unstable and spike spontaneously for some seconds following a hit, resulting in a strongly increased noise and requiring a re-adjustment of the bias levels.

  9. Microstructured silicon radiation detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okandan, Murat; Derzon, Mark S.; Draper, Bruce L.

    2017-03-14

    A radiation detector comprises a silicon body in which are defined vertical pores filled with a converter material and situated within silicon depletion regions. One or more charge-collection electrodes are arranged to collect current generated when secondary particles enter the silicon body through walls of the pores. The pores are disposed in low-density clusters, have a majority pore thickness of 5 .mu.m or less, and have a majority aspect ratio, defined as the ratio of pore depth to pore thickness, of at least 10.

  10. Comparative Response of Microchannel Plate and Channel Electron Multiplier Detectors to Penetrating Radiation in Space

    DOE PAGES

    Funsten, Herbert O.; Harper, Ronnie W.; Dors, Eric E.; ...

    2015-10-02

    Channel electron multiplier (CEM) and microchannel plate (MCP) detectors are routinely used in space instrumentation for measurement of space plasmas. Here, our goal is to understand the relative sensitivities of these detectors to penetrating radiation in space, which can generate background counts and shorten detector lifetime. We use 662 keV γ-rays as a proxy for penetrating radiation such as γ-rays, cosmic rays, and high-energy electrons and protons that are ubiquitous in the space environment. We find that MCP detectors are ~20 times more sensitive to 662 keV γ-rays than CEM detectors. This is attributed to the larger total area ofmore » multiplication channels in an MCP detector that is sensitive to electronic excitation and ionization resulting from the interaction of penetrating radiation with the detector material. In contrast to the CEM detector, whose quantum efficiency ε γ for 662 keVγ -rays is found to be 0.00175 and largely independent of detector bias, the quantum efficiency of the MCP detector is strongly dependent on the detector bias, with a power law index of 5.5. Lastly, background counts in MCP detectors from penetrating radiation can be reduced using MCP geometries with higher pitch and smaller channel diameter.« less

  11. Detection of gamma-neutron radiation by solid-state scintillation detectors. Detection of gamma-neutron radiation by novel solid-state scintillation detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryzhikov, V.; Grinyov, B.; Piven, L.

    It is known that solid-state scintillators can be used for detection of both gamma radiation and neutron flux. In the past, neutron detection efficiencies of such solid-state scintillators did not exceed 5-7%. At the same time it is known that the detection efficiency of the gamma-neutron radiation characteristic of nuclear fissionable materials is by an order of magnitude higher than the efficiency of detection of neutron fluxes alone. Thus, an important objective is the creation of detection systems that are both highly efficient in gamma-neutron detection and also capable of exhibiting high gamma suppression for use in the role ofmore » detection of neutron radiation. In this work, we present the results of our experimental and theoretical studies on the detection efficiency of fast neutrons from a {sup 239}Pu-Be source by the heavy oxide scintillators BGO, GSO, CWO and ZWO, as well as ZnSe(Te, O). The most probable mechanism of fast neutron interaction with nuclei of heavy oxide scintillators is the inelastic scattering (n, n'γ) reaction. In our work, fast neutron detection efficiencies were determined by the method of internal counting of gamma-quanta that emerge in the scintillator from (n, n''γ) reactions on scintillator nuclei with the resulting gamma energies of ∼20-300 keV. The measured efficiency of neutron detection for the scintillation crystals we considered was ∼40-50 %. The present work included a detailed analysis of detection efficiency as a function of detector and area of the working surface, as well as a search for new ways to create larger-sized detectors of lower cost. As a result of our studies, we have found an unusual dependence of fast neutron detection efficiency upon thickness of the oxide scintillators. An explanation for this anomaly may involve the competition of two factors that accompany inelastic scattering on the heavy atomic nuclei. The transformation of the energy spectrum of neutrons involved in the (n, n'γ) reactions

  12. Development of an alpha/beta/gamma detector for radiation monitoring

    NASA Astrophysics Data System (ADS)

    Yamamoto, Seiichi; Hatazawa, Jun

    2011-11-01

    For radiation monitoring at the site of nuclear power plant accidents such as Fukushima Daiichi, radiation detectors not only for gamma photons but also for alpha and beta particles are needed because some nuclear fission products emit beta particles and gamma photons and some nuclear fuels contain plutonium that emits alpha particles. We developed a radiation detector that can simultaneously monitor alpha and beta particles and gamma photons for radiation monitoring. The detector consists of three-layered scintillators optically coupled to each other and coupled to a photomultiplier tube. The first layer, which is made of a thin plastic scintillator (decay time: 2.4 ns), detects alpha particles. The second layer, which is made of a thin Gd2SiO5 (GSO) scintillator with 1.5 mol.% Ce (decay time: 35 ns), detects beta particles. The third layer made of a thin GSO scintillator with 0.4 mol.% Ce (decay time: 70 ns) detects gamma photons. By using pulse shape discrimination, the count rates of these layers can be separated. With individual irradiation of alpha and beta particles and gamma photons, the count rate of the first layer represented the alpha particles, the second layer represented the beta particles, and the third layer represented the gamma photons. Even with simultaneous irradiation of the alpha and beta particles and the gamma photons, these three types of radiation can be individually monitored using correction for the gamma detection efficiency of the second and third layers. Our developed alpha, beta, and gamma detector is simple and will be useful for radiation monitoring, especially at nuclear power plant accident sites or other applications where the simultaneous measurements of alpha and beta particles and gamma photons are required.

  13. Development of an alpha/beta/gamma detector for radiation monitoring.

    PubMed

    Yamamoto, Seiichi; Hatazawa, Jun

    2011-11-01

    For radiation monitoring at the site of nuclear power plant accidents such as Fukushima Daiichi, radiation detectors not only for gamma photons but also for alpha and beta particles are needed because some nuclear fission products emit beta particles and gamma photons and some nuclear fuels contain plutonium that emits alpha particles. We developed a radiation detector that can simultaneously monitor alpha and beta particles and gamma photons for radiation monitoring. The detector consists of three-layered scintillators optically coupled to each other and coupled to a photomultiplier tube. The first layer, which is made of a thin plastic scintillator (decay time: 2.4 ns), detects alpha particles. The second layer, which is made of a thin Gd(2)SiO(5) (GSO) scintillator with 1.5 mol.% Ce (decay time: 35 ns), detects beta particles. The third layer made of a thin GSO scintillator with 0.4 mol.% Ce (decay time: 70 ns) detects gamma photons. By using pulse shape discrimination, the count rates of these layers can be separated. With individual irradiation of alpha and beta particles and gamma photons, the count rate of the first layer represented the alpha particles, the second layer represented the beta particles, and the third layer represented the gamma photons. Even with simultaneous irradiation of the alpha and beta particles and the gamma photons, these three types of radiation can be individually monitored using correction for the gamma detection efficiency of the second and third layers. Our developed alpha, beta, and gamma detector is simple and will be useful for radiation monitoring, especially at nuclear power plant accident sites or other applications where the simultaneous measurements of alpha and beta particles and gamma photons are required. © 2011 American Institute of Physics

  14. Radiation Hard Silicon Particle Detectors for Phase-II LHC Trackers

    NASA Astrophysics Data System (ADS)

    Oblakowska-Mucha, A.

    2017-02-01

    The major LHC upgrade is planned after ten years of accelerator operation. It is foreseen to significantly increase the luminosity of the current machine up to 1035 cm-2s-1 and operate as the upcoming High Luminosity LHC (HL-LHC) . The major detectors upgrade, called the Phase-II Upgrade, is also planned, a main reason being the aging processes caused by severe particle radiation. Within the RD50 Collaboration, a large Research and Development program has been underway to develop silicon sensors with sufficient radiation tolerance for HL-LHC trackers. In this summary, several results obtained during the testing of the devices after irradiation to HL-LHC levels are presented. Among the studied structures, one can find advanced sensors types like 3D silicon detectors, High-Voltage CMOS technologies, or sensors with intrinsic gain (LGAD). Based on these results, the RD50 Collaboration gives recommendation for the silicon detectors to be used in the detector upgrade.

  15. Review on the characteristics of radiation detectors for dosimetry and imaging

    NASA Astrophysics Data System (ADS)

    Seco, Joao; Clasie, Ben; Partridge, Mike

    2014-10-01

    The enormous advances in the understanding of human anatomy, physiology and pathology in recent decades have led to ever-improving methods of disease prevention, diagnosis and treatment. Many of these achievements have been enabled, at least in part, by advances in ionizing radiation detectors. Radiology has been transformed by the implementation of multi-slice CT and digital x-ray imaging systems, with silver halide films now largely obsolete for many applications. Nuclear medicine has benefited from more sensitive, faster and higher-resolution detectors delivering ever-higher SPECT and PET image quality. PET/MR systems have been enabled by the development of gamma ray detectors that can operate in high magnetic fields. These huge advances in imaging have enabled equally impressive steps forward in radiotherapy delivery accuracy, with 4DCT, PET and MRI routinely used in treatment planning and online image guidance provided by cone-beam CT. The challenge of ensuring safe, accurate and precise delivery of highly complex radiation fields has also both driven and benefited from advances in radiation detectors. Detector systems have been developed for the measurement of electron, intensity-modulated and modulated arc x-ray, proton and ion beams, and around brachytherapy sources based on a very wide range of technologies. The types of measurement performed are equally wide, encompassing commissioning and quality assurance, reference dosimetry, in vivo dosimetry and personal and environmental monitoring. In this article, we briefly introduce the general physical characteristics and properties that are commonly used to describe the behaviour and performance of both discrete and imaging detectors. The physical principles of operation of calorimeters; ionization and charge detectors; semiconductor, luminescent, scintillating and chemical detectors; and radiochromic and radiographic films are then reviewed and their principle applications discussed. Finally, a general

  16. Simulations of radiation-damaged 3D detectors for the Super-LHC

    NASA Astrophysics Data System (ADS)

    Pennicard, D.; Pellegrini, G.; Fleta, C.; Bates, R.; O'Shea, V.; Parkes, C.; Tartoni, N.

    2008-07-01

    Future high-luminosity colliders, such as the Super-LHC at CERN, will require pixel detectors capable of withstanding extremely high radiation damage. In this article, the performances of various 3D detector structures are simulated with up to 1×1016 1 MeV- neq/cm2 radiation damage. The simulations show that 3D detectors have higher collection efficiency and lower depletion voltages than planar detectors due to their small electrode spacing. When designing a 3D detector with a large pixel size, such as an ATLAS sensor, different electrode column layouts are possible. Using a small number of n+ readout electrodes per pixel leads to higher depletion voltages and lower collection efficiency, due to the larger electrode spacing. Conversely, using more electrodes increases both the insensitive volume occupied by the electrode columns and the capacitive noise. Overall, the best performance after 1×1016 1 MeV- neq/cm2 damage is achieved by using 4-6 n+ electrodes per pixel.

  17. Radiation imaging with optically read out GEM-based detectors

    NASA Astrophysics Data System (ADS)

    Brunbauer, F. M.; Lupberger, M.; Oliveri, E.; Resnati, F.; Ropelewski, L.; Streli, C.; Thuiner, P.; van Stenis, M.

    2018-02-01

    Modern imaging sensors allow for high granularity optical readout of radiation detectors such as MicroPattern Gaseous Detectors (MPGDs). Taking advantage of the high signal amplification factors achievable by MPGD technologies such as Gaseous Electron Multipliers (GEMs), highly sensitive detectors can be realised and employing gas mixtures with strong scintillation yield in the visible wavelength regime, optical readout of such detectors can provide high-resolution event representations. Applications from X-ray imaging to fluoroscopy and tomography profit from the good spatial resolution of optical readout and the possibility to obtain images without the need for extensive reconstruction. Sensitivity to low-energy X-rays and energy resolution permit energy resolved imaging and material distinction in X-ray fluorescence measurements. Additionally, the low material budget of gaseous detectors and the possibility to couple scintillation light to imaging sensors via fibres or mirrors makes optically read out GEMs an ideal candidate for beam monitoring detectors in high energy physics as well as radiotherapy. We present applications and achievements of optically read out GEM-based detectors including high spatial resolution imaging and X-ray fluorescence measurements as an alternative readout approach for MPGDs. A detector concept for low intensity applications such as X-ray crystallography, which maximises detection efficiency with a thick conversion region but mitigates parallax-induced broadening is presented and beam monitoring capabilities of optical readout are explored. Augmenting high resolution 2D projections of particle tracks obtained with optical readout with timing information from fast photon detectors or transparent anodes for charge readout, 3D reconstruction of particle trajectories can be performed and permits the realisation of optically read out time projection chambers. Combining readily available high performance imaging sensors with compatible

  18. Infrared response measurements on radiation-damaged Si/Li/ detectors.

    NASA Technical Reports Server (NTRS)

    Sher, A. H.; Liu, Y. M.; Keery, W. J.

    1972-01-01

    The improved infrared response (IRR) technique has been used to qualitatively compare radiation effects on Si(Li) detectors with energy levels reported for silicon in the literature. Measurements have been made on five commercial silicon detectors and one fabricated in-house, both before and after irradiation with fast neutrons, 1.9-MeV protons, and 1.6-MeV electrons. Effects dependent upon the extent of radiation damage have been observed. It seems likely that the photo-EMF, or photo-voltage, effect is the basic mechanism for the observation of IRR in p-i-n diodes with a wide i-region. Experimental characteristics of the IRR measurement are in agreement with those of the photovoltage effect.

  19. Principal Component Analysis for pulse-shape discrimination of scintillation radiation detectors

    NASA Astrophysics Data System (ADS)

    Alharbi, T.

    2016-01-01

    In this paper, we report on the application of Principal Component analysis (PCA) for pulse-shape discrimination (PSD) of scintillation radiation detectors. The details of the method are described and the performance of the method is experimentally examined by discriminating between neutrons and gamma-rays with a liquid scintillation detector in a mixed radiation field. The performance of the method is also compared against that of the conventional charge-comparison method, demonstrating the superior performance of the method particularly at low light output range. PCA analysis has the important advantage of automatic extraction of the pulse-shape characteristics which makes the PSD method directly applicable to various scintillation detectors without the need for the adjustment of a PSD parameter.

  20. Results of neutron irradiation of GEM detector for plasma radiation detection

    NASA Astrophysics Data System (ADS)

    Jednorog, S.; Bienkowska, B.; Chernyshova, M.; Łaszynska, E.; Prokopowicz, R.; Ziołkowski, A.

    2015-09-01

    The detecting devices dedicated for plasma monitoring will be exposed for massive fluxes of neutron, photons as well as other rays that are components of fusion reactions and their product interactions with plasma itself or surroundings. In result detecting module metallic components will be activated becoming a source of radiation. Moreover, electronics components could change their electronic properties. The prototype GEM detector constructed for monitoring soft X-ray radiation in ITER oriented tokamaks was used for plasma monitoring during experimental campaign on tokamak ASDEX Upgrade. After that it became a source of gamma radiation caused by neutrons. The present work contains description of detector activation in the laboratory conditions.

  1. A review of advances in pixel detectors for experiments with high rate and radiation

    NASA Astrophysics Data System (ADS)

    Garcia-Sciveres, Maurice; Wermes, Norbert

    2018-06-01

    The large Hadron collider (LHC) experiments ATLAS and CMS have established hybrid pixel detectors as the instrument of choice for particle tracking and vertexing in high rate and radiation environments, as they operate close to the LHC interaction points. With the high luminosity-LHC upgrade now in sight, for which the tracking detectors will be completely replaced, new generations of pixel detectors are being devised. They have to address enormous challenges in terms of data throughput and radiation levels, ionizing and non-ionizing, that harm the sensing and readout parts of pixel detectors alike. Advances in microelectronics and microprocessing technologies now enable large scale detector designs with unprecedented performance in measurement precision (space and time), radiation hard sensors and readout chips, hybridization techniques, lightweight supports, and fully monolithic approaches to meet these challenges. This paper reviews the world-wide effort on these developments.

  2. Simulation and experimental measurement of radon activity using a multichannel silicon-based radiation detector.

    PubMed

    Ozdemir, F B; Selcuk, A B; Ozkorucuklu, S; Alpat, A B; Ozdemir, T; Ӧzek, N

    2018-05-01

    In this study, high-precision radiation detector (HIPRAD), a new-generation semiconductor microstrip detector, was used for detecting radon (Rn-222) activity. The aim of this study was to detect radon (Rn-222) activity experimentally by measuring the energy of particles in this detector. Count-ADC channel, eta-charge, and dose-response values were experimentally obtained using HIPRAD. The radon simulation in the radiation detector was theoretically performed using the Geant4 software package. The obtained radioactive decay, energy generation, energy values, and efficiency values of the simulation were plotted using the root program. The new-generation radiation detector proved to have 95% reliability according to the obtained dose-response graphs. The experimental and simulation results were found to be compatible with each other and with the radon decays and literature studies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Examination system utilizing ionizing radiation and a flexible, miniature radiation detector probe

    DOEpatents

    Majewski, S.; Kross, B.J.; Zorn, C.J.; Majewski, L.A.

    1996-10-22

    An optimized examination system and method based on the Reverse Geometry X-Ray{trademark} (RGX{trademark}) radiography technique are presented. The examination system comprises a radiation source, at least one flexible, miniature radiation detector probe positioned in appropriate proximity to the object to be examined and to the radiation source with the object located between the source and the probe, a photodetector device attachable to an end of the miniature radiation probe, and a control unit integrated with a display device connected to the photodetector device. The miniature radiation detector probe comprises a scintillation element, a flexible light guide having a first end optically coupled to the scintillation element and having a second end attachable to the photodetector device, and an opaque, environmentally-resistant sheath surrounding the flexible light guide. The probe may be portable and insertable, or may be fixed in place within the object to be examined. An enclosed, flexible, liquid light guide is also presented, which comprises a thin-walled flexible tube, a liquid, preferably mineral oil, contained within the tube, a scintillation element located at a first end of the tube, closures located at both ends of the tube, and an opaque, environmentally-resistant sheath surrounding the flexible tube. The examination system and method have applications in non-destructive material testing for voids, cracks, and corrosion, and may be used in areas containing hazardous materials. In addition, the system and method have applications for medical and dental imaging. 5 figs.

  4. Examination system utilizing ionizing radiation and a flexible, miniature radiation detector probe

    DOEpatents

    Majewski, Stanislaw; Kross, Brian J.; Zorn, Carl J.; Majewski, Lukasz A.

    1996-01-01

    An optimized examination system and method based on the Reverse Geometry X-Ray.RTM. (RGX.RTM.) radiography technique are presented. The examination system comprises a radiation source, at least one flexible, miniature radiation detector probe positioned in appropriate proximity to the object to be examined and to the radiation source with the object located between the source and the probe, a photodetector device attachable to an end of the miniature radiation probe, and a control unit integrated with a display device connected to the photodetector device. The miniature radiation detector probe comprises a scintillation element, a flexible light guide having a first end optically coupled to the scintillation element and having a second end attachable to the photodetector device, and an opaque, environmentally-resistant sheath surrounding the flexible light guide. The probe may be portable and insertable, or may be fixed in place within the object to be examined. An enclosed, flexible, liquid light guide is also presented, which comprises a thin-walled flexible tube, a liquid, preferably mineral oil, contained within the tube, a scintillation element located at a first end of the tube, closures located at both ends of the tube, and an opaque, environmentally-resistant sheath surrounding the flexible tube. The examination system and method have applications in non-destructive material testing for voids, cracks, and corrosion, and may be used in areas containing hazardous materials. In addition, the system and method have applications for medical and dental imaging.

  5. Surface wave chemical detector using optical radiation

    DOEpatents

    Thundat, Thomas G.; Warmack, Robert J.

    2007-07-17

    A surface wave chemical detector comprising at least one surface wave substrate, each of said substrates having a surface wave and at least one measurable surface wave parameter; means for exposing said surface wave substrate to an unknown sample of at least one chemical to be analyzed, said substrate adsorbing said at least one chemical to be sensed if present in said sample; a source of radiation for radiating said surface wave substrate with different wavelengths of said radiation, said surface wave parameter being changed by said adsorbing; and means for recording signals representative of said surface wave parameter of each of said surface wave substrates responsive to said radiation of said different wavelengths, measurable changes of said parameter due to adsorbing said chemical defining a unique signature of a detected chemical.

  6. Radiation detection system using semiconductor detector with differential carrier trapping and mobility

    DOEpatents

    Whited, Richard C.

    1981-01-01

    A system for obtaining improved resolution in relatively thick semiconductor radiation detectors, such as HgI.sub.2, which exhibit significant hole trapping. Two amplifiers are used: the first measures the charge collected and the second the contribution of the electrons to the charge collected. The outputs of the two amplifiers are utilized to unfold the total charge generated within the detector in response to a radiation event.

  7. Calculating the Responses of Self-Powered Radiation Detectors.

    NASA Astrophysics Data System (ADS)

    Thornton, D. A.

    Available from UMI in association with The British Library. The aim of this research is to review and develop the theoretical understanding of the responses of Self -Powered Radiation Detectors (SPDs) in Pressurized Water Reactors (PWRs). Two very different models are considered. A simple analytic model of the responses of SPDs to neutrons and gamma radiation is presented. It is a development of the work of several previous authors and has been incorporated into a computer program (called GENSPD), the predictions of which have been compared with experimental and theoretical results reported in the literature. Generally, the comparisons show reasonable consistency; where there is poor agreement explanations have been sought and presented. Two major limitations of analytic models have been identified; neglect of current generation in insulators and over-simplified electron transport treatments. Both of these are developed in the current work. A second model based on the Explicit Representation of Radiation Sources and Transport (ERRST) is presented and evaluated for several SPDs in a PWR at beginning of life. The model incorporates simulation of the production and subsequent transport of neutrons, gamma rays and electrons, both internal and external to the detector. Neutron fluxes and fuel power ratings have been evaluated with core physics calculations. Neutron interaction rates in assembly and detector materials have been evaluated in lattice calculations employing deterministic transport and diffusion methods. The transport of the reactor gamma radiation has been calculated with Monte Carlo, adjusted diffusion and point-kernel methods. The electron flux associated with the reactor gamma field as well as the internal charge deposition effects of the transport of photons and electrons have been calculated with coupled Monte Carlo calculations of photon and electron transport. The predicted response of a SPD is evaluated as the sum of contributions from individual

  8. Radiation Measurements Performed with Active Detectors Relevant for Human Space Exploration.

    PubMed

    Narici, Livio; Berger, Thomas; Matthiä, Daniel; Reitz, Günther

    2015-01-01

    A reliable radiation risk assessment in space is a mandatory step for the development of countermeasures and long-duration mission planning in human spaceflight. Research in radiobiology provides information about possible risks linked to radiation. In addition, for a meaningful risk evaluation, the radiation exposure has to be assessed to a sufficient level of accuracy. Consequently, both the radiation models predicting the risks and the measurements used to validate such models must have an equivalent precision. Corresponding measurements can be performed both with passive and active devices. The former is easier to handle, cheaper, lighter, and smaller but they measure neither the time dependence of the radiation environment nor some of the details useful for a comprehensive radiation risk assessment. Active detectors provide most of these details and have been extensively used in the International Space Station. To easily access such an amount of data, a single point access is becoming essential. This review presents an ongoing work on the development of a tool that allows obtaining information about all relevant measurements performed with active detectors providing reliable inputs for radiation model validation.

  9. Recent progress in the transition radiation detector techniques

    NASA Technical Reports Server (NTRS)

    Yuan, L. C. L.

    1973-01-01

    A list of some of the major experimental achievements involving charged particles in the relativistic region are presented. With the emphasis mainly directed to the X-ray region, certain modes of application of the transition radiation for the identification and separation of relativistic charged particles are discussed. Some recent developments in detection techniques and improvements in detector performances are presented. Experiments were also carried out to detect the dynamic radiation, but no evidence of such an effect was observed.

  10. Prototypes of self-powered radiation detectors employing intrinsic high-energy current.

    PubMed

    Zygmanski, Piotr; Shrestha, Suman; Briovio, Davide; Karellas, Andrew; Sajo, Erno

    2016-01-01

    The authors experimentally investigate the effect of direct energy conversion of x-rays via selfpowered Auger- and photocurrent, potentially suitable to practical radiation detection and dosimetry in medical applications. Experimental results are compared to computational predictions. The detector the authors consider is a thin-film multilayer device, composed of alternating disparate electrically conductive and insulating layers. This paper focuses on the experiments while a companion paper introduces the fundamental concepts of high-energy current (HEC) detectors. The energy of ionizing radiation is directly converted to detector signal via electric current induced by high-energy secondary electrons generated in the detector material by the incident primary radiation. The HEC electrons also ionize the dielectric and the resultant charge carriers are selfcollected due to the contact potential of the disparate electrodes. Thus, an electric current is induced in the conductors in two different ways without the need for externally applied bias voltage or amplification. Thus, generated signal in turn is digitized by a data acquisition system. To determine the fundamental properties of the HEC detector and to demonstrate its feasibility for medical applications, the authors used a planar geometry composed of multilayer microstructures. Various detectors with up to seven conducting layers with different combinations of materials (250 μm Al, 35 μm Cu, 100 μm Pb) and air gaps (100 μm) were exposed to nearly plane-parallel 60-120 kVp x-ray beams. For the experimental design and verification, the authors performed coupled electron-photon radiation transport computations. The detector signal was measured using a commercial data acquisition system with 24 bits dynamic range, 0.4 fC sensitivity, and 0.9 ms sampling time. Measured signals for the prototype detector varied depending on the number of layers, material type, and incident photon energy, and it was in the range

  11. Stable room-temperature thallium bromide semiconductor radiation detectors

    NASA Astrophysics Data System (ADS)

    Datta, A.; Fiala, J.; Becla, P.; Motakef, Shariar

    2017-10-01

    Thallium bromide (TlBr) is a highly efficient ionic semiconductor with excellent radiation detection properties. However, at room temperature, TlBr devices polarize under an applied electric field. This phenomenon not only degrades the charge collection efficiency of the detectors but also promotes chemical reaction of the metal electrodes with bromine, resulting in an unstable electric field and premature failure of the device. This drawback has been crippling the TlBr semiconductor radiation detector technology over the past few decades. In this exhaustive study, this polarization phenomenon has been counteracted using innovative bias polarity switching schemes. Here the highly mobile Br- species, with an estimated electro-diffusion velocity of 10-8 cm/s, face opposing electro-migration forces during every polarity switch. This minimizes the device polarization and availability of Br- ions near the metal electrode. Our results indicate that it is possible to achieve longer device lifetimes spanning more than 17 000 h (five years of 8 × 7 operation) for planar and pixelated radiation detectors using this technique. On the other hand, at constant bias, 2500 h is the longest reported lifetime with most devices less than 1000 h. After testing several biasing switching schemes, it is concluded that the critical bias switching frequency at an applied bias of 1000 V/cm is about 17 μHz. Using this groundbreaking result, it will now be possible to deploy this highly efficient room temperature semiconductor material for field applications in homeland security, medical imaging, and physics research.

  12. Experiences with radiation portal detectors for international rail transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stromswold, David C.; McCormick, Kathleen R.; Todd, Lindsay C.

    Radiation detectors monitored trains at two international borders to evaluate the performance of NaI(Tl) and plastic (polyvinyltoluene: PVT) gamma-ray detectors to characterize rail cargo. The detectors included a prototype NaI(Tl) radiation-portal-monitor panel having four large detectors (10-cm × 10-cm × 41-cm) and a PVT panel with a 41 cm × 173 cm × 3.8-cm detector. Spectral data from the NaI(Tl) and PVT detectors were recorded. Of particular emphasis was the identification of naturally occurring radioactive material (NORM) and the resultant frequency of nuisance alarms. For rail monitoring, the difficulty in stopping trains to perform secondary inspection on alarming cars createsmore » a need for reliable identification of NORM during initial screening. Approximately 30 trains were monitored, and the commodities in individual railcars were ascertained from manifest information. At one test site the trains carried inter-modal containers that had been unloaded from ships, and at the other site the trains contained bulk cargo or individual items in boxcars or flatbeds. NORM encountered included potash, liquefied petroleum gas, fireworks, televisions, and clay-based products (e.g., pottery). Analysis of the spectral data included the use of the template-fitting program GADRAS/FitToDB from Sandia National Laboratories. For much of the NORM the NaI(Tl) data produced a correct identification of the radionuclides present in the railcars. The same analysis was also used for PVT data in which the spectral information (no peaks but only gradual spectral changes including Compton edges) was limited. However, the PVT analysis provided correct identification of 40K and 226Ra in many cases.« less

  13. Characterization of a novel two dimensional diode array the "magic plate" as a radiation detector for radiation therapy treatment.

    PubMed

    Wong, J H D; Fuduli, I; Carolan, M; Petasecca, M; Lerch, M L F; Perevertaylo, V L; Metcalfe, P; Rosenfeld, A B

    2012-05-01

    Intensity modulated radiation therapy (IMRT) utilizes the technology of multileaf collimators to deliver highly modulated and complex radiation treatment. Dosimetric verification of the IMRT treatment requires the verification of the delivered dose distribution. Two dimensional ion chamber or diode arrays are gaining popularity as a dosimeter of choice due to their real time feedback compared to film dosimetry. This paper describes the characterization of a novel 2D diode array, which has been named the "magic plate" (MP). It was designed to function as a 2D transmission detector as well as a planar detector for dose distribution measurements in a solid water phantom for the dosimetric verification of IMRT treatment delivery. The prototype MP is an 11 × 11 detector array based on thin (50 μm) epitaxial diode technology mounted on a 0.6 mm thick Kapton substrate using a proprietary "drop-in" technology developed by the Centre for Medical Radiation Physics, University of Wollongong. A full characterization of the detector was performed, including radiation damage study, dose per pulse effect, percent depth dose comparison with CC13 ion chamber and build up characteristics with a parallel plane ion chamber measurements, dose linearity, energy response and angular response. Postirradiated magic plate diodes showed a reproducibility of 2.1%. The MP dose per pulse response decreased at higher dose rates while at lower dose rates the MP appears to be dose rate independent. The depth dose measurement of the MP agrees with ion chamber depth dose measurements to within 0.7% while dose linearity was excellent. MP showed angular response dependency due to the anisotropy of the silicon diode with the maximum variation in angular response of 10.8% at gantry angle 180°. Angular dependence was within 3.5% for the gantry angles ± 75°. The field size dependence of the MP at isocenter agrees with ion chamber measurement to within 1.1%. In the beam perturbation study, the

  14. Window for radiation detectors and the like

    DOEpatents

    Sparks, C.J. Jr.; Ogle, J.C.

    1975-10-28

    An improved x- and gamma-radiation and particle transparent window for the environment-controlling enclosure of various types of radiation and particle detectors is provided by a special graphite foil of a thickness of from about 0.1 to 1 mil. The graphite must have very parallel hexagonal planes with a mosaic spread no greater than 5$sup 0$ to have the necessary strength in thin sections to support one atmosphere or more of pressure. Such graphite is formed by hot- pressing and annealing pyrolytically deposited graphite and thereafter stripping off layers of sufficient thickness to form the window.

  15. The transition radiation detector of the PAMELA space mission

    NASA Astrophysics Data System (ADS)

    Ambriola, M.; Bellotti, R.; Cafagna, F.; Circella, M.; de Marzo, C.; Giglietto, N.; Marangelli, B.; Mirizzi, N.; Romita, M.; Spinelli, P.

    2004-04-01

    PAMELA space mission objective is to flight a satellite-borne magnetic spectrometer built to fulfill the primary scientific goals of detecting antiparticles (antiprotons and positrons) and to measure spectra of particles in cosmic rays. The PAMELA telescope is composed of: a silicon tracker housed in a permanent magnet, a time-of-flight and an anticoincidence system both made of plastic scintillators, a silicon imaging calorimeter, a neutron detector and a Transition Radiation Detector (TRD). The TRD is composed of nine sensitive layers of straw tubes working in proportional mode for a total of 1024 channels. Each layer is interleaved with a radiator plane made of carbon fibers. The TRD characteristics will be described along with its performances studied at both CERN-PS and CERN-SPS facilities, using electrons, pions, muons and protons of different momenta.

  16. Method and system for determining depth distribution of radiation-emitting material located in a source medium and radiation detector system for use therein

    DOEpatents

    Benke, Roland R.; Kearfott, Kimberlee J.; McGregor, Douglas S.

    2004-04-27

    A radiation detector system includes detectors having different properties (sensitivity, energy resolution) which are combined so that excellent spectral information may be obtained along with good determinations of the radiation field as a function of position.

  17. Radiation Measurements Performed with Active Detectors Relevant for Human Space Exploration

    PubMed Central

    Narici, Livio; Berger, Thomas; Matthiä, Daniel; Reitz, Günther

    2015-01-01

    A reliable radiation risk assessment in space is a mandatory step for the development of countermeasures and long-duration mission planning in human spaceflight. Research in radiobiology provides information about possible risks linked to radiation. In addition, for a meaningful risk evaluation, the radiation exposure has to be assessed to a sufficient level of accuracy. Consequently, both the radiation models predicting the risks and the measurements used to validate such models must have an equivalent precision. Corresponding measurements can be performed both with passive and active devices. The former is easier to handle, cheaper, lighter, and smaller but they measure neither the time dependence of the radiation environment nor some of the details useful for a comprehensive radiation risk assessment. Active detectors provide most of these details and have been extensively used in the International Space Station. To easily access such an amount of data, a single point access is becoming essential. This review presents an ongoing work on the development of a tool that allows obtaining information about all relevant measurements performed with active detectors providing reliable inputs for radiation model validation. PMID:26697408

  18. Temperature characteristics of the radiation detector using TlBr crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shoji, T.; Hitomi, K.; Muroi, O.

    1999-12-01

    The radiation detector was fabricated from the TlBr crystals grown by TMZ (traveling molten zone) method and the FWHM and transit time of electrons and holes were measured as a function of temperature. The TlBr radiation detector shows the best response characteristics at about 313 K (3.19K{sup {sm{underscore}bullet}1}) in cases where holes mainly contributed to the output pulses. However, in the temperatures higher than 300 K (2.22 K{sup {sm{underscore}bullet}1}), the FWHM for {sup 241}Am {alpha}-particles (5.498 MeV) becomes worse. An activation energy of about 0.90eV has been deduced from the resistivity measurement.

  19. Experiences with radiation portal detectors for international rail transport

    NASA Astrophysics Data System (ADS)

    Stromswold, D. C.; McCormick, K.; Todd, L.; Ashbaker, E. D.; Evans, J. C.

    2006-08-01

    Radiation detectors monitored trains at two international borders to evaluate the performance of NaI(Tl) and plastic (polyvinyltoluene: PVT) gamma-ray detectors to characterize rail cargo. The detectors included a prototype NaI(Tl) radiation-portal-monitor panel having four large detectors (10-cm × 10-cm × 41-cm) and a PVT panel with a 41 cm × 173 cm × 3.8-cm detector. Spectral data from the NaI(Tl) and PVT detectors were recorded. Of particular emphasis was the identification of naturally occurring radioactive material (NORM) and the resultant frequency of nuisance alarms. For rail monitoring, the difficulty in stopping trains to perform secondary inspection on alarming cars creates a need for reliable identification of NORM during initial screening. Approximately 30 trains were monitored, and the commodities in individual railcars were ascertained from manifest information. At one test site, the trains carried inter-modal containers that had been unloaded from ships, and at the other site, the trains contained bulk cargo in tanker cars and hopper cars or individual items in boxcars or flatbeds. NORM encountered included potash, liquefied petroleum gas, fireworks, televisions, and clay-based products (e.g., pottery). Analysis of the spectral data included the use of the template-fitting portion of the program GADRAS developed at Sandia National Laboratories. For most of the NORM, the NaI(Tl) data produced a correct identification of the radionuclides present in the railcars. The same analysis was also used for PVT data in which the spectral information (no peaks but only gradual spectral changes including Compton edges) was limited. However, the PVT analysis provided correct identification of 40K and 226Ra in many cases.

  20. Room Temperature Hard Radiation Detectors Based on Solid State Compound Semiconductors: An Overview

    NASA Astrophysics Data System (ADS)

    Mirzaei, Ali; Huh, Jeung-Soo; Kim, Sang Sub; Kim, Hyoun Woo

    2018-05-01

    Si and Ge single crystals are the most common semiconductor radiation detectors. However, they need to work at cryogenic temperatures to decrease their noise levels. In contrast, compound semiconductors can be operated at room temperature due to their ability to grow compound materials with tunable densities, band gaps and atomic numbers. Highly efficient room temperature hard radiation detectors can be utilized in biomedical diagnostics, nuclear safety and homeland security applications. In this review, we discuss room temperature compound semiconductors. Since the field of radiation detection is broad and a discussion of all compound materials for radiation sensing is impossible, we discuss the most important materials for the detection of hard radiation with a focus on binary heavy metal semiconductors and ternary and quaternary chalcogenide compounds.

  1. Particle Detectors

    NASA Astrophysics Data System (ADS)

    Grupen, Claus; Shwartz, Boris

    2011-09-01

    Preface to the first edition; Preface to the second edition; Introduction; 1. Interactions of particles and radiation with matter; 2. Characteristic properties of detectors; 3. Units of radiation measurements and radiation sources; 4. Accelerators; 5. Main physical phenomena used for particle detection and basic counter types; 6. Historical track detectors; 7. Track detectors; 8. Calorimetry; 9. Particle identification; 10. Neutrino detectors; 11. Momentum measurement and muon detection; 12. Ageing and radiation effects; 13. Example of a general-purpose detector: Belle; 14. Electronics; 15. Data analysis; 16. Applications of particle detectors outside particle physics; 17. Glossary; 18. Solutions; 19. Resumé; Appendixes; Index.

  2. The ALICE Transition Radiation Detector: Construction, operation, and performance

    NASA Astrophysics Data System (ADS)

    Alice Collaboration

    2018-02-01

    The Transition Radiation Detector (TRD) was designed and built to enhance the capabilities of the ALICE detector at the Large Hadron Collider (LHC). While aimed at providing electron identification and triggering, the TRD also contributes significantly to the track reconstruction and calibration in the central barrel of ALICE. In this paper the design, construction, operation, and performance of this detector are discussed. A pion rejection factor of up to 410 is achieved at a momentum of 1 GeV/ c in p-Pb collisions and the resolution at high transverse momentum improves by about 40% when including the TRD information in track reconstruction. The triggering capability is demonstrated both for jet, light nuclei, and electron selection.

  3. Nano structural anodes for radiation detectors

    DOEpatents

    Cordaro, Joseph V.; Serkiz, Steven M.; McWhorter, Christopher S.; Sexton, Lindsay T.; Retterer, Scott T.

    2015-07-07

    Anodes for proportional radiation counters and a process of making the anodes is provided. The nano-sized anodes when present within an anode array provide: significantly higher detection efficiencies due to the inherently higher electric field, are amenable to miniaturization, have low power requirements, and exhibit a small electromagnetic field signal. The nano-sized anodes with the incorporation of neutron absorbing elements (e.g., .sup.10B) allow the use of neutron detectors that do not use .sup.3He.

  4. Collisional, radiative and total electron interaction in compound semiconductor detectors and solid state nuclear track detectors: effective atomic number and electron density.

    PubMed

    Kurudirek, Murat; Kurudirek, Sinem V

    2015-05-01

    Effective atomic numbers, Zeff and electron densities, Ne are widely used for characterization of interaction processes in radiation related studies. A variety of detectors are employed to detect different types of radiations i.e. photons and charged particles. In the present work, some compound semiconductor detectors (CSCD) and solid state nuclear track detectors (SSNTD) were investigated with respect to the partial as well as total electron interactions. Zeff and Ne of the given detectors were calculated for collisional, radiative and total electron interactions in the kinetic energy region 10keV-1GeV. Maximum values of Zeff and Ne were observed at higher kinetic energies of electrons. Significant variations in Zeff and Ne up to ≈20-25% were noticed for the detectors, GaN, ZnO, Amber and CR-39 for total electron interaction. Moreover, the obtained Zeff and Ne for electrons were compared to those obtained for photons in the entire energy region. Significant variations in Zeff were also noted not only for photons (up to ≈40% for GaN) but also between photons and electrons (up to ≈60% for CR-39) especially at lower energies. Except for the lower energies, Zeff and Ne keep more or less constant values for the given materials. The energy regions where Zeff and Ne keep constant clearly show the availability of using these parameters for characterization of the materials with respect to the radiation interaction processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. The iQID Camera: An Ionizing-Radiation Quantum Imaging Detector

    DOE PAGES

    Miller, Brian W.; Gregory, Stephanie J.; Fuller, Erin S.; ...

    2014-06-11

    We have developed and tested a novel, ionizing-radiation Quantum Imaging Detector (iQID). This scintillation-based detector was originally developed as a high-resolution gamma-ray imager, called BazookaSPECT, for use in single-photon emission computed tomography (SPECT). Recently, we have investigated the detectors response and imaging potential with other forms of ionizing radiation including alpha, neutron, beta, and fission fragment particles. The detector’s response to a broad range of ionizing radiation has prompted its new title. The principle operation of the iQID camera involves coupling a scintillator to an image intensifier. The scintillation light generated particle interactions is optically amplified by the intensifier andmore » then re-imaged onto a CCD/CMOS camera sensor. The intensifier provides sufficient optical gain that practically any CCD/CMOS camera can be used to image ionizing radiation. Individual particles are identified and their spatial position (to sub-pixel accuracy) and energy are estimated on an event-by-event basis in real time using image analysis algorithms on high-performance graphics processing hardware. Distinguishing features of the iQID camera include portability, large active areas, high sensitivity, and high spatial resolution (tens of microns). Although modest, iQID has energy resolution that is sufficient to discrimate between particles. Additionally, spatial features of individual events can be used for particle discrimination. An important iQID imaging application that has recently been developed is single-particle, real-time digital autoradiography. In conclusion, we present the latest results and discuss potential applications.« less

  6. The ALICE Transition Radiation Detector: Construction, operation, and performance

    DOE PAGES

    Acharya, S; Adam, J; Adamova, D; ...

    2017-09-21

    The Transition Radiation Detector (TRD) was designed and built to enhance the capabilities of the ALICE detector at the Large Hadron Collider (LHC). While aimed at providing electron identification and triggering, the TRD also contributes significantly to the track reconstruction and calibration in the central barrel of ALICE. In this article, the design, construction, operation, and performance of this detector are discussed. A pion rejection factor of up to 410 is achieved at a momentum of 1 GeV/c in p-Pb collisions and the resolution at high transverse momentum improves by about 40% when including the TRD information in track reconstruction.more » The triggering capability is demonstrated both for jet, light nuclei, and electron selection.« less

  7. The ALICE Transition Radiation Detector: Construction, operation, and performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acharya, S; Adam, J; Adamova, D

    The Transition Radiation Detector (TRD) was designed and built to enhance the capabilities of the ALICE detector at the Large Hadron Collider (LHC). While aimed at providing electron identification and triggering, the TRD also contributes significantly to the track reconstruction and calibration in the central barrel of ALICE. In this article, the design, construction, operation, and performance of this detector are discussed. A pion rejection factor of up to 410 is achieved at a momentum of 1 GeV/c in p-Pb collisions and the resolution at high transverse momentum improves by about 40% when including the TRD information in track reconstruction.more » The triggering capability is demonstrated both for jet, light nuclei, and electron selection.« less

  8. High-efficiency scintillation detector for combined of thermal and fast neutrons and gamma radiation

    DOEpatents

    Chiles, Marion M.; Mihalczo, John T.; Blakeman, Edward D.

    1989-02-07

    A scintillation based radiation detector for the combined detection of thermal neutrons, high-energy neutrons and gamma rays in a single detecting unit. The detector consists of a pair of scintillators sandwiched together and optically coupled to the light sensitive face of a photomultiplier tube. A light tight radiation pervious housing is disposed about the scintillators and a portion of the photomultiplier tube to hold the arrangement in assembly and provides a radiation window adjacent the outer scintillator through which the radiation to be detected enters the detector. The outer scintillator is formed of a material in which scintillations are produced by thermal-neutrons and the inner scintillator is formed of a material in which scintillations are produced by high-energy neutrons and gamma rays. The light pulses produced by events detected in both scintillators are coupled to the photomultiplier tube which produces a current pulse in response to each detected event. These current pulses may be processed in a conventional manner to produce a count rate output indicative of the total detected radiation even count rate. Pulse discrimination techniques may be used to distinguish the different radiations and their energy distribution.

  9. High-efficiency scintillation detector for combined of thermal and fast neutrons and gamma radiation

    DOEpatents

    Chiles, Marion M.; Mihalczo, John T.; Blakeman, Edward D.

    1989-01-01

    A scintillation based radiation detector for the combined detection of thermal neutrons, high-energy neutrons and gamma rays in a single detecting unit. The detector consists of a pair of scintillators sandwiched together and optically coupled to the light sensitive face of a photomultiplier tube. A light tight radiation pervious housing is disposed about the scintillators and a portion of the photomultiplier tube to hold the arrangement in assembly and provides a radiation window adjacent the outer scintillator through which the radiation to be detected enters the detector. The outer scintillator is formed of a material in which scintillations are produced by thermal-neutrons and the inner scintillator is formed of a material in which scintillations are produced by high-energy neutrons and gamma rays. The light pulses produced by events detected in both scintillators are coupled to the photomultiplier tube which produces a current pulse in response to each detected event. These current pulses may be processed in a conventional manner to produce a count rate output indicative of the total detected radiation even count rate. Pulse discrimination techniques may be used to distinguish the different radiations and their energy distribution.

  10. SiC detectors to monitor ionizing radiations emitted from nuclear events and plasmas

    NASA Astrophysics Data System (ADS)

    Torrisi, L.; Cannavò, A.

    2016-09-01

    Silicon Carbide (SiC) semiconductor detectors are increasingly employed in Nuclear Physics for their advantages with respect to traditional silicon (Si). Such detectors show an energy resolution, charge mobility, response velocity and detection efficiency similar to Si detectors. However, the higher band gap (3.26 eV), the lower leakage current (∼10 pA) maintained also at room temperature, the higher radiation hardness and the higher density with respect to Si represent some indisputable advantages characterizing such detectors. The devices can be employed at high temperatures, at high absorbed doses and in the case of high visible light intensities, for example, in plasma, for limited exposition times without damage. Generally SiC Schottky diodes are employed in reverse polarization with an active region depth of the order of 100 µm, purity below 1014 cm-3 and an active area lower than 1 cm2. Measurements in the regime of proportionality with the radiation energy released in the active region and measurements in time-of-flight configuration are employed for nuclear emission events produced at both low and high fluences. Alpha spectra demonstrated an energy resolution of about 1.3% at 5.8 MeV. Radiation emission from laser-generated plasma can be monitored in terms of detected photons, electrons and ions, using the laser pulse as a start signal and the radiation detection as a stop signal, enabling to measure the ion velocity by knowing the target-detector flight distance. SiC spectra acquired in the Messina University laboratories using radioactive ion sources and at the PALS laboratory facility in Prague (Czech Republic) are presented. A preliminary study of the use of SiC detectors, embedded in a water equivalent polymer, as a dosimeter is presented and discussed.

  11. Radiation Response of Emerging High Gain, Low Noise Detectors

    NASA Technical Reports Server (NTRS)

    Becker, Heidi N.; Farr, William H; Zhu, David Q.

    2007-01-01

    Data illustrating the radiation response of emerging high gain, low noise detectors are presented. Ionizing dose testing of silicon internal discrete avalanche photodiodes, and 51-MeV proton testing of InGaAs/InAlAs avalanche photodiodes operated in Geiger mode are discussed.

  12. Dual-Mode Nuclear Radiation Particle Detector

    NASA Astrophysics Data System (ADS)

    Zhang, Yali

    The design and fabrication of a "dual-mode" nuclear radiation detector using planar silicon technology is described. The device operates at 0.3 K and detects simultaneously the ionization and the phonons produced by nuclear radiation interacting in the substrate. The intended purpose of the device is to detect atomic silicon recoils from the scattering of massive neutral particles that are hypothesized to compose the dark matter halo of our galaxy. The "dual mode" functionality was designed to permit atomic recoils to be distinguished event-by-event from the background due to unavoidable low-level radioactivity in the detector and its surroundings. The device consists of a back contact biased negatively relative to a comb-shaped electrode structure on the opposite face of a high purity wafer. The spacing of the comb teeth is less than the wafer thickness, providing a uniform charge collection electric field throughout most of the wafer volume. Between the teeth of the comb are superconducting transition edge devices consisting of serpentines of 400 A thick, 2 μm wide Ti lines separated by 3 μm spaces. Investigations of ionization-detecting metal-on -silicon contacts at low temperatures are described, including diffused junctions, Au on Si, Au on oxidized Si, and Ti on Si. Diode characteristics continue to change qualitatively at temperatures below 4 K. The destruction of superconductivity in Ti by Au contamination during microfabrication procedures is also reported.

  13. High-energy proton radiation damage of high-purity germanium detectors

    NASA Technical Reports Server (NTRS)

    Pehl, R. H.; Varnell, L. S.; Metzger, A. E.

    1978-01-01

    Quantitative studies of radiation damage in high-purity germanium gamma-ray detectors due to high-energy charged particles have been carried out; two 1.0 cm thick planar detectors were irradiated by 6 GeV/c protons. Under proton bombardment, degradation in the energy resolution was found to begin below 7 x 10 to the 7th protons/sq cm and increased proportionately in both detectors until the experiment was terminated at a total flux of 5.7 x 10 to the 8th protons/sq cm, equivalent to about a six year exposure to cosmic-ray protons in space. At the end of the irradiation, the FWHM resolution measured at 1332 keV stood at 8.5 and 13.6 keV, with both detectors of only marginal utility as a spectrometer due to the severe tailing caused by charge trapping. Annealing these detectors after proton damage was found to be much easier than after neutron damage.

  14. Room temperature aluminum antimonide radiation detector and methods thereof

    DOEpatents

    Lordi, Vincenzo; Wu, Kuang Jen J.; Aberg, Daniel; Erhart, Paul; Coombs, III, Arthur W; Sturm, Benjamin W

    2015-03-03

    In one embodiment, a method for producing a high-purity single crystal of aluminum antimonide (AlSb) includes providing a growing environment with which to grow a crystal, growing a single crystal of AlSb in the growing environment which comprises hydrogen (H.sub.2) gas to reduce oxide formation and subsequent incorporation of oxygen impurities in the crystal, and adding a controlled amount of at least one impurity to the growing environment to effectively incorporate at least one dopant into the crystal. In another embodiment, a high energy radiation detector includes a single high-purity crystal of AlSb, a supporting structure for the crystal, and logic for interpreting signals obtained from the crystal which is operable as a radiation detector at a temperature of about 25.degree. C. In one embodiment, a high-purity single crystal of AlSb includes AlSb and at least one dopant selected from a group consisting of selenium (Se), tellurium (Te), and tin (Sn).

  15. SNM Movement Detection/Radiation Sensors and Advanced Materials Portfolio Review, CdMnTe (CMT) Gamma Ray Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolotnikov,A.

    2009-06-02

    The project goals are: (1) Develop CMT radiation detectors - Demonstrate feasibility (Phase 1 is complete) and Improve material properties and device performance; (2) This project will lead to novel radiation detectors - high detection efficiency, high energy-resolution, ambient-temperature operation, and low production cost; and (3) Such detectors are needed in areas of nonproliferation and national security for detection of SNM. Research highlights are: (1) We achieved our Phase-I goal - Demonstration of CMT detector performance approaching that of CZT detectors; (2) Demonstrated that In-doped CMT is much closer to its anticipated performance as radiation detectors than other alternative materials,more » TlBr and HgI{sub 2} - Large crystal volumes, 10{sup 10}{Omega}{center_dot}cm, 3 x 10{sup -3}cm{sup 2}/V, and stable response; and (3) Conducted material and device characterization experiments - Detectors: I-V, {mu}{sub e}, ({mu}{tau}){sub e}, internal E fields, energy spectra, and high-resolution x-ray response mapping data and Materials - DLTS, TCT, PL, EPDs, XRD, PCD and IR transmission.« less

  16. CMOS sensor as charged particles and ionizing radiation detector

    NASA Astrophysics Data System (ADS)

    Cruz-Zaragoza, E.; Piña López, I.

    2015-01-01

    This paper reports results of CMOS sensor suitable for use as charged particles and ionizing radiation detector. The CMOS sensor with 640 × 480 pixels area has been integrated into an electronic circuit for detection of ionizing radiation and it was exposed to alpha particle (Am-241, Unat), beta (Sr-90), and gamma photons (Cs-137). Results show after long period of time (168 h) irradiation the sensor had not loss of functionality and also the energy of the charge particles and photons were very well obtained.

  17. Developing Si(Li) nuclear radiation detectors by pulsed electric field treatment

    NASA Astrophysics Data System (ADS)

    Muminov, R. A.; Radzhapov, S. A.; Saimbetov, A. K.

    2009-08-01

    Fabrication of Si(Li) nuclear radiation detectors using lithium ion drift under the action of a pulsed electric field is considered. Optimum treatment regime parameters are determined, including the pulse amplitude, duration, and repetition rate. Experimental data are presented, which show that the ion drift in a pulsed electric field decreases the semiconductor bulk compensation time by a factor of two to four and significantly increases the efficiency of detectors.

  18. Up-conversion of MMW radiation to visual band using glow discharge detector and silicon detector

    NASA Astrophysics Data System (ADS)

    Aharon Akram, Avihai; Rozban, Daniel; Abramovich, Amir; Yitzhaky, Yitzhak; Kopeika, Natan S.

    2016-10-01

    In this work we describe and demonstrate a method for up-conversion of millimeter wave (MMW) radiation to the visual band using a very inexpensive miniature Glow Discharge Detector (GDD), and a silicon detector (photodetector). Here we present 100 GHz up-conversion images based on measuring the visual light emitting from the GDD rather than its electrical current. The results showed better response time of 480 ns and better sensitivity compared to the electronic detection that was performed in our previous work. In this work we performed MMW imaging based on this method using a GDD lamp, and a photodetector to measure GDD light emission.

  19. Elevated Radiation Exposure Associated With Above Surface Flat Detector Mini C-Arm Use.

    PubMed

    Martin, Dennis P; Chapman, Talia; Williamson, Christopher; Tinsley, Brian; Ilyas, Asif M; Wang, Mark L

    2017-11-01

    This study aims to test the hypothesis that: (1) radiation exposure is increased with the intended use of Flat Surface Image Intensifier (FSII) units above the operative surface compared with the traditional below-table configuration; (2) this differential increases in a dose-dependent manner; and (3) radiation exposure varies with body part and proximity to the radiation source. A surgeon mannequin was seated at a radiolucent hand table, positioned for volar distal radius plating. Thermoluminescent dosimeters measured exposure to the eyes, thyroid, chest, hand, and groin, for 1- and 15-minute trials from a mini C-arm FSII unit positioned above and below the operating surface. Background radiation was measured by control dosimeters placed within the operating theater. At 1-minute of exposure, hand and eye dosages were significantly greater with the flat detector positioned above the table. At 15-minutes of exposure, hand radiation dosage exceeded that of all other anatomic sites with the FSII in both positions. Hand exposure was increased in a dose-dependent manner with the flat detector in either position, whereas groin exposure saw a dose-dependent only with the flat detector beneath the operating table. These findings suggest that the surgeon's hands and eyes may incur greater radiation exposure compared with other body parts, during routine mini C-arm FSII utilization in its intended position above the operating table. The clinical impact of these findings remains unclear, and future long-term radiation safety investigation is warranted. Surgeons should take precautions to protect critical body parts, particularly when using FSII technology above the operating with prolonged exposure time.

  20. Dichroic filters to protect milliwatt far-infrared detectors from megawatt ECRH radiation.

    PubMed

    Bertschinger, G; Endres, C P; Lewen, F; Oosterbeek, J W

    2008-10-01

    Dichroic filters have been used to shield effectively the far infrared (FIR) detectors at the interferometer/polarimeter on TEXTOR. The filters consist of metal foils with regular holes, the hole diameter, the mutual spacing and the thickness of the foils are chosen to transmit radiation at the design frequency with transmission >90%. The attenuation at the low frequency end of the bandpass filter is about 30 dB per octave, the high frequency transmission is between 20% and 40%. The filters have been used to block the stray radiation from the megawatt microwave heating beam to the detectors of the FIR interferometer, operating with power on the detector in the milliwatt range. If required, the low frequency attenuation can be still enhanced, without compromising the transmission in the passband. The FIR interferometer used for plasma density and position control is no longer disturbed by electromagnetic waves used for plasma heating.

  1. High-efficiency scintillation detector for combined detection of thermal and fast neutrons and gamma radiation

    DOEpatents

    Chiles, M.M.; Mihalczo, J.T.; Blakeman, E.D.

    1987-02-27

    A scintillation based radiation detector for the combined detection of thermal neutrons, high-energy neutrons and gamma rays in a single detecting unit. The detector consists of a pair of scintillators sandwiched together and optically coupled to the light sensitive face of a photomultiplier tube. A light tight radiation pervious housing is disposed about the scintillators and a portion of the photomultiplier tube to hold the arrangement in assembly and provides a radiation window adjacent the outer scintillator through which the radiation to be detected enters the detector. The outer scintillator is formed of a material in which scintillations are produced by thermal-neutrons and the inner scintillator is formed of a material in which scintillations are produced by high-energy neutrons and gamma rays. The light pulses produced by events detected in both scintillators are coupled to the photomultiplier tube which produces a current pulse in response to each detected event. These current pulses may be processed in a conventional manner to produce a count rate output indicative of the total detected radiation event count rate. Pulse discrimination techniques may be used to distinguish the different radiations and their energy distribution.

  2. Charge carrier transport properties in thallium bromide crystalls used as radiation detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olschner, F.; Toledo-Quinones, M.; Shah, K.S.

    1990-06-01

    Thallium bromide (TlBr) is an attractive material for use in radiation detectors because of its wide bandgap (2.68 eV) and very high atomic number. Usefulness as a semiconductor detector material, however, also requires good charge carrier transport properties in order to maximize the magnitude of the signal from the detector. The authors report on measurements of the two most important transport parameters; the mobility {mu} and the mean trapping time {tau} for electrons and holes in TlBr crystals prepared in the laboratory.

  3. The simulation of the LANFOS-H food radiation contamination detector using Geant4 package

    NASA Astrophysics Data System (ADS)

    Piotrowski, Lech Wiktor; Casolino, Marco; Ebisuzaki, Toshikazu; Higashide, Kazuhiro

    2015-02-01

    Recent incident in the Fukushima power plant caused a growing concern about the radiation contamination and resulted in lowering the Japanese limits for the permitted amount of 137Cs in food to 100 Bq/kg. To increase safety and ease the concern we are developing LANFOS (Large Food Non-destructive Area Sampler)-a compact, easy to use detector for assessment of radiation in food. Described in this paper LANFOS-H has a 4 π coverage to assess the amount of 137Cs present, separating it from the possible 40K food contamination. Therefore, food samples do not have to be pre-processed prior to a test and can be consumed after measurements. It is designed for use by non-professionals in homes and small institutions such as schools, showing safety of the samples, but can be also utilized by specialists providing radiation spectrum. Proper assessment of radiation in food in the apparatus requires estimation of the γ conversion factor of the detectors-how many γ photons will produce a signal. In this paper we show results of the Monte Carlo estimation of this factor for various approximated shapes of fish, vegetables and amounts of rice, performed with Geant4 package. We find that the conversion factor combined from all the detectors is similar for all food types and is around 37%, varying maximally by 5% with sample length, much less than for individual detectors. The different inclinations and positions of samples in the detector introduce uncertainty of 1.4%. This small uncertainty validates the concept of a 4 π non-destructive apparatus.

  4. Electrical properties study under radiation of the 3D-open-shell-electrode detector

    NASA Astrophysics Data System (ADS)

    Liu, Manwen; Li, Zheng

    2018-05-01

    Since the 3D-Open-Shell-Electrode Detector (3DOSED) is proposed and the structure is optimized, it is important to study 3DOSED's electrical properties to determine the detector's working performance, especially in the heavy radiation environments, like the Large Hadron Collider (LHC) and it's upgrade, the High Luminosity (HL-LHC) at CERN. In this work, full 3D technology computer-aided design (TCAD) simulations have been done on this novel silicon detector structure. Simulated detector properties include the electric field distribution, the electric potential distribution, current-voltage (I-V) characteristics, capacitance-voltage (C-V) characteristics, charge collection property, and full depletion voltage. Through the analysis of calculations and simulation results, we find that the 3DOSED's electric field and potential distributions are very uniform, even in the tiny region near the shell openings with little perturbations. The novel detector fits the designing purpose of collecting charges generated by particle/light in a good fashion with a well defined funnel shape of electric potential distribution that makes these charges drifting towards the center collection electrode. Furthermore, by analyzing the I-V, C-V, charge collection property and full depletion voltage, we can expect that the novel detector will perform well, even in the heavy radiation environments.

  5. Multiple Detector Optimization for Hidden Radiation Source Detection

    DTIC Science & Technology

    2015-03-26

    important in achieving operationally useful methods for optimizing detector emplacement, the 2-D attenuation model approach promises to speed up the...process of hidden source detection significantly. The model focused on detection of the full energy peak of a radiation source. Methods to optimize... radioisotope identification is possible without using a computationally intensive stochastic model such as the Monte Carlo n-Particle (MCNP) code

  6. Comparison of cosmic rays radiation detectors on-board commercial jet aircraft.

    PubMed

    Kubančák, Ján; Ambrožová, Iva; Brabcová, Kateřina Pachnerová; Jakůbek, Jan; Kyselová, Dagmar; Ploc, Ondřej; Bemš, Július; Štěpán, Václav; Uchihori, Yukio

    2015-06-01

    Aircrew members and passengers are exposed to increased rates of cosmic radiation on-board commercial jet aircraft. The annual effective doses of crew members often exceed limits for public, thus it is recommended to monitor them. In general, the doses are estimated via various computer codes and in some countries also verified by measurements. This paper describes a comparison of three cosmic rays detectors, namely of the (a) HAWK Tissue Equivalent Proportional Counter; (b) Liulin semiconductor energy deposit spectrometer and (c) TIMEPIX silicon semiconductor pixel detector, exposed to radiation fields on-board commercial Czech Airlines company jet aircraft. Measurements were performed during passenger flights from Prague to Madrid, Oslo, Tbilisi, Yekaterinburg and Almaty, and back in July and August 2011. For all flights, energy deposit spectra and absorbed doses are presented. Measured absorbed dose and dose equivalent are compared with the EPCARD code calculations. Finally, the advantages and disadvantages of all detectors are discussed. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Cosmic radiation dose in aircraft--a neutron track etch detector.

    PubMed

    Vuković, B; Radolić, V; Miklavcić, I; Poje, M; Varga, M; Planinić, J

    2007-01-01

    Cosmic radiation bombards us at high altitude by ionizing particles. The radiation environment is a complex mixture of charged particles of solar and galactic origin, as well as of secondary particles produced in interaction of the galactic cosmic particles with the nuclei of atmosphere of the Earth. The radiation field at aircraft altitude consists of different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The non-neutron component of cosmic radiation dose aboard ATR 42 and A 320 aircrafts (flight level of 8 and 11 km, respectively) was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter. The estimated occupational effective dose for the aircraft crew (A 320) working 500 h per year was 1.64 mSv. Other experiments, or dose rate measurements with the neutron dosimeter, consisting of LR-115 track detector and boron foil BN-1 or 10B converter, were performed on five intercontinental flights. Comparison of the dose rates of the non-neutron component (low LET) and the neutron one (high LET) of the radiation field at the aircraft flight level showed that the neutron component carried about 50% of the total dose. The dose rate measurements on the flights from the Middle Europe to the South and Middle America, then to Korea and Japan, showed that the flights over or near the equator region carried less dose rate; this was in accordance with the known geomagnetic latitude effect.

  8. High-energy cosmic-ray electrons - A new measurement using transition-radiation detectors

    NASA Technical Reports Server (NTRS)

    Hartmann, G.; Mueller, D.; Prince, T.

    1977-01-01

    A new detector for cosmic-ray electrons, consisting of a combination of a transition-radiation detector and a shower detector, has been constructed, calibrated at accelerator beams, and exposed in a balloon flight under 5 g/sq cm of atmosphere. The design of this instrument and the methods of data analysis are described. Preliminary results in the energy range 9-300 GeV are presented. The energy spectrum of electrons is found to be significantly steeper than that of protons, consistent with a long escape lifetime of cosmic rays in the galaxy.

  9. A novel radiation detector for removing scattered radiation in chest radiography: Monte Carlo simulation-based performance evaluation

    NASA Astrophysics Data System (ADS)

    Roh, Y. H.; Yoon, Y.; Kim, K.; Kim, J.; Kim, J.; Morishita, J.

    2016-10-01

    Scattered radiation is the main reason for the degradation of image quality and the increased patient exposure dose in diagnostic radiology. In an effort to reduce scattered radiation, a novel structure of an indirect flat panel detector has been proposed. In this study, a performance evaluation of the novel system in terms of image contrast as well as an estimation of the number of photons incident on the detector and the grid exposure factor were conducted using Monte Carlo simulations. The image contrast of the proposed system was superior to that of the no-grid system but slightly inferior to that of the parallel-grid system. The number of photons incident on the detector and the grid exposure factor of the novel system were higher than those of the parallel-grid system but lower than those of the no-grid system. The proposed system exhibited the potential for reduced exposure dose without image quality degradation; additionally, can be further improved by a structural optimization considering the manufacturer's specifications of its lead contents.

  10. Prototypes of Self-Powered Radiation Detectors Employing Intrinsic High-Energy Current (HEC) (POSTPRINT)

    DTIC Science & Technology

    2016-01-01

    neutron sensi- tivities of a Pt self - powered detector ,” IEEE Trans. Nucl. Sci. 25, 292–295 (1978). 6T. A. Dellin, R. E. Huddleston, and C. J...Gamma-sensitive self - powered detectors and their use for in-core flux -mapping,” IEEE Trans. Nucl. Sci. 28, 752–757 (1981). 9E. A. Burke and J. Wall...AFCEC-CX-TY-TP-2016-0006 PROTOTYPES OF SELF - POWERED RADIATION DETECTORS EMPLOYING INTRINSIC HIGH-ENERGY CURRENT (HEC) (POSTPRINT) Piotr

  11. Field-deployable gamma-radiation detectors for DHS use

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sanjoy

    2007-09-01

    Recently, the Department of Homeland Security (DHS) has integrated all nuclear detection research, development, testing, evaluation, acquisition, and operational support into a single office: the Domestic Nuclear Detection Office (DNDO). The DNDO has specific requirements set for all commercial off-the-shelf and government off-the-shelf radiation detection equipment and data acquisition systems. This article would investigate several recent developments in field deployable gamma radiation detectors that are attempting to meet the DNDO specifications. Commercially available, transportable, handheld radio isotope identification devices (RIID) are inadequate for DHS' requirements in terms of sensitivity, resolution, response time, and reach-back capability. The leading commercial vendor manufacturing handheld gamma spectrometer in the United States is Thermo Electron Corporation. Thermo Electron's identiFINDER TM, which primarily uses sodium iodide crystals (3.18 x 2.54cm cylinders) as gamma detectors, has a Full-Width-at-Half-Maximum energy resolution of 7 percent at 662 keV. Thermo Electron has just recently come up with a reach-back capability patented as RadReachBack TM that enables emergency personnel to obtain real-time technical analysis of radiation samples they find in the field1. The current project has the goal to build a prototype handheld gamma spectrometer, equipped with a digital camera and an embedded cell phone to be used as an RIID with higher sensitivity, better resolution, and faster response time (able to detect the presence of gamma-emitting radio isotopes within 5 seconds of approach), which will make it useful as a field deployable tool. The handheld equipment continuously monitors the ambient gamma radiation, and, if it comes across any radiation anomalies with higher than normal gamma gross counts, it sets an alarm condition. When a substantial alarm level is reached, the system automatically triggers the saving of relevant spectral data and

  12. A Self-Powered Thin-Film Radiation Detector Using Intrinsic High-Energy Current (HEC) (Author’s Final Version)

    DTIC Science & Technology

    2016-09-08

    10.1118/1.4935531. A new radiation detection method relies on high-energy current (HEC) formed by secondary charged particles in the detector material...photocurrent, radiation detection , self-powered, thin-film U U U SAR 17 Dr. Joseph Wander Reset A Self-powered thin-film radiation detector using intrinsic...Program, Lowell, MA 01854 Purpose: We introduce a radiation detection method that relies on high-energy current (HEC) formed by secondary 10 charged

  13. High field CdS detector for infrared radiation

    NASA Technical Reports Server (NTRS)

    Tyagi, R. C.; Robertson, J. B.; Boer, K. W.; Hadley, H. C., Jr. (Inventor)

    1974-01-01

    An infrared radiation detector including a cadmium sulfide platelet having a cathode formed on one of its ends and an anode formed on its other end is presented. The platelet is suitably doped such that stationary high-field domains are formed adjacent the cathode when based in the negative differential conductivity region. A negative potential is applied to the cathode such that a high-field domain is formed adjacent to the cathode. A potential measuring probe is located between the cathode and the anode at the edge of the high-field domain and means are provided for measuring the potential at the probe whereby this measurement is indicative of the infrared radiation striking the platelet.

  14. Radiation effects on ALICE V0 detector components

    NASA Astrophysics Data System (ADS)

    Cheynis, B.; Ducroux, L.; Grossiord, J.-Y.; Guichard, A.; Pillot, P.; Rapp, B.; Tieulent, R.; Tromeur, W.; Zoccarato, Y.

    2006-12-01

    The 60 MeV proton beam delivered by the RADEF facility of the University of Jyväskylä (Finland) was used to measure the radiation effects on the counter components of the V0 detector of ALICE. There are the scintillator BC404, the wavelength shifting fibres BCF9929A and the optical fibres BCF98 from Bicron (Saint-Gobain). The light yield and the time resolution given by a counter of the inner ring of the V0C array, mounted within a dedicated device, were measured as a function of the radiation dose up to about 300 krad. A global light attenuation of the order of 30% can be anticipated during 10 years of ALICE running.

  15. Evaluation of a GEM and CAT-based detector for radiation therapy beam monitoring

    NASA Astrophysics Data System (ADS)

    Brahme, A.; Danielsson, M.; Iacobaeus, C.; Ostling, J.; Peskov, V.; Wallmark, M.

    2000-11-01

    We are developing a radiation therapy beam monitor for the Karolinska Institute. This monitor will consist of two consecutive detectors confined in one gas chamber: a "keV-photon detector", which will allow diagnostic quality visualization of the patient, and a "MeV-photon detector", that will measure the absolute intensity of the therapy beam and its position with respect to the patient. Both detectors are based on highly radiation resistant gas and solid photon to electron converters, combined with GEMs and a CAT as amplification structures. We have performed systematic studies of the high-rate characteristics of the GEM and the CAT, as well as tested the electron transfer through these electron multipliers and various types of converters. The tests show that the GEM and the CAT satisfy all requirements for the beam monitoring system. As a result of these studies we successfully developed and tested a full section of the beam monitor equipped with a MeV-photon converter placed between the GEM and the CAT.

  16. Calibration of the active radiation detector for Spacelab-One

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The flight models of the active radiation detector (ARD) for the ENV-01 environmental monitor were calibrated using gamma radiation. Measured sensitivities of the ion chambers were 6.1 + or - 0.3 micron rad per count for ARD S/N1, and 10.4 + or - 0.5 micron rad per count for ARD S/N2. Both were linear over the measured range 0.10 to 500 m/rad hour. The particle counters (proportional counters) were set to respond to approximately 85% of minimum ionizing particles of unit charge passing through them. These counters were also calibrated in the gamma field.

  17. Laser system for testing radiation imaging detector circuits

    NASA Astrophysics Data System (ADS)

    Zubrzycka, Weronika; Kasinski, Krzysztof

    2015-09-01

    Performance and functionality of radiation imaging detector circuits in charge and position measurement systems need to meet tight requirements. It is therefore necessary to thoroughly test sensors as well as read-out electronics. The major disadvantages of using radioactive sources or particle beams for testing are high financial expenses and limited accessibility. As an alternative short pulses of well-focused laser beam are often used for preliminary tests. There are number of laser-based devices available on the market, but very often their applicability in this field is limited. This paper describes concept, design and validation of laser system for testing silicon sensor based radiation imaging detector circuits. The emphasis is put on keeping overall costs low while achieving all required goals: mobility, flexible parameters, remote control and possibility of carrying out automated tests. The main part of the developed device is an optical pick-up unit (OPU) used in optical disc drives. The hardware includes FPGA-controlled circuits for laser positioning in 2 dimensions (horizontal and vertical), precision timing (frequency and number) and amplitude (diode current) of short ns-scale (3.2 ns) light pulses. The system is controlled via USB interface by a dedicated LabVIEW-based application enabling full manual or semi-automated test procedures.

  18. COTS Silicon diodes as radiation detectors in proton and heavy charged particle radiotherapy 1.

    PubMed

    Kaiser, Franz-Joachim; Bassler, Niels; Jäkel, Oliver

    2010-08-01

    Modern radiotherapy facilities for cancer treatment such as the Heavy Ion Therapy Center (HIT) in Heidelberg, Germany, allow for sub-millimeter precision in dose deposition. For measurement of such dose distributions and characterization of the particle beams, detectors with high spatial resolution are necessary. Here, a detector based on the commercially available COTS photodiode (BPW-34) is presented. When applied in hadronic beams of protons and carbon ions, the detector reproduces dose distribution well, but its response decreases rapidly by radiation damage. However, for MeV photon beams, the detector exhibits a similar behavior as found in diode detectors usually applied in radiotherapy.

  19. Radiation dose of digital tomosynthesis for sinonasal examination: comparison with multi-detector CT.

    PubMed

    Machida, Haruhiko; Yuhara, Toshiyuki; Tamura, Mieko; Numano, Tomokazu; Abe, Shinji; Sabol, John M; Suzuki, Shigeru; Ueno, Eiko

    2012-06-01

    Using an anthropomorphic phantom, we have investigated the feasibility of digital tomosynthesis (DT) of flat-panel detector (FPD) radiography to reduce radiation dose for sinonasal examination compared to multi-detector computed tomography (MDCT). A female Rando phantom was scanned covering frontal to maxillary sinus using the clinically routine protocol by both 64-detector CT (120 kV, 200 mAs, and 1.375-pitch) and DT radiography (80 kV, 1.0 mAs per projection, 60 projections, 40° sweep, and posterior-anterior projections). Glass dosimeters were used to measure the radiation dose to internal organs including the thyroid gland, brain, submandibular gland, and the surface dose at various sites including the eyes during those scans. We compared the radiation dose to those anatomies between both modalities. In DT radiography, the doses of the thyroid gland, brain, submandibular gland, skin, and eyes were 230 ± 90 μGy, 1770 ± 560 μGy, 1400 ± 80 μGy, 1160 ± 2100 μGy, and 112 ± 6 μGy, respectively. These doses were reduced to approximately 1/5, 1/8, 1/12, 1/17, and 1/290 of the respective MDCT dose. For sinonasal examinations, DT radiography enables dramatic reduction in radiation exposure and dose to the head and neck region, particularly to the lens of the eye. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  20. Research on radiation detectors, boiling transients, and organic lubricants

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The accomplishments of a space projects research facility are presented. The subjects discussed are: (1) a study of radiation resistant semiconductor devices, (2) synthesis of high temperature organic lubricants, (3) departure from phase equilibrium during boiling transients, (4) effects of neutron irradiation on defect state in tungsten, and (5) determination of photon response function of NE-213 liquid scintillation detectors.

  1. Effect of chlorination on the TlBr band edges for improved room temperature radiation detectors: Effect of chlorination on the TlBr band edges for radiation detectors

    DOE PAGES

    Varley, J. B.; Conway, A. M.; Voss, L. F.; ...

    2015-02-09

    Thallium bromide (TlBr) crystals subjected to hydrochloric acid (HCl) chemical treatments have been shown to advantageously affect device performance and longevity in TlBr-based room temperature radiation detectors, yet the exact mechanisms of the improvements remain poorly understood. Here in this paper, we investigate the influence of several HCl chemical treatments on device-grade TlBr and describe the changes in the composition and electronic structure of the surface. Composition analysis and depth profiles obtained from secondary ion mass spectrometry (SIMS) identify the extent to which each HCl etch condition affects the detector surface region and forms of a graded TlBr/TlBr 1-xCL xmore » surface heterojunction. Using a combination of X-ray photoemission spectroscopy (XPS) and hybrid density functional calculations, we are able to determine the valence band offsets, band gaps, and conduction band offsets as a function of Cl content over the entire composition range of TIBr 1-xC1 X. This study establishes a strong correlation between device process conditions, surface chemistry, and electronic structure with the goal of further optimizing the long-term stability and radiation response of TlBr-based detectors.« less

  2. Mixed ionic-electronic conductor-based radiation detectors and methods of fabrication

    DOEpatents

    Conway, Adam; Beck, Patrick R; Graff, Robert T; Nelson, Art; Nikolic, Rebecca J; Payne, Stephen A; Voss, Lars; Kim, Hadong

    2015-04-07

    A method of fabricating a mixed ionic-electronic conductor (e.g. TlBr)-based radiation detector having halide-treated surfaces and associated methods of fabrication, which controls polarization of the mixed ionic-electronic MIEC material to improve stability and operational lifetime.

  3. A radiation detector design mitigating problems related to sawed edges

    NASA Astrophysics Data System (ADS)

    Aurola, A.; Marochkin, V.; Tuuva, T.

    2014-12-01

    In pixelated silicon radiation detectors that are utilized for the detection of UV, visible, and in particular Near Infra-Red (NIR) light it is desirable to utilize a relatively thick fully depleted Back-Side Illuminated (BSI) detector design providing 100% Fill Factor (FF), low Cross-Talk (CT), and high Quantum Efficiency (QE). The optimal thickness of such detectors is typically less than 300μm and above 40μm and thus it is more or less mandatory to thin the detector wafer from the backside after the front side of the detector has been processed and before a conductive layer is formed on the backside. A TAIKO thinning process is optimal for such a thickness range since neither a support substrate on the front side nor lithographic steps on the backside are required. The conductive backside layer should, however, be homogenous throughout the wafer and it should be biased from the front side of the detector. In order to provide good QE for blue and UV light the conductive backside layer should be of opposite doping type than the substrate. The problem with a homogeneous backside layer being of opposite doping type than the substrate is that a lot of leakage current is typically generated at the sawed chip edges, which may increase the dark noise and the power consumption. These problems are substantially mitigated with a proposed detector edge arrangement which 2D simulation results are presented in this paper.

  4. Radiation hardness studies of CdTe thin films for clinical high-energy photon beam detectors

    NASA Astrophysics Data System (ADS)

    Shvydka, Diana; Parsai, E. I.; Kang, J.

    2008-02-01

    In radiation oncology applications, the need for higher-quality images has been driven by recent advances in radiation delivery systems that require online imaging. The existing electronic imaging devices commonly used to acquire portal images implement amorphous silicon (a-Si) detector, which exhibits poor image quality. Efforts for improvement have mostly been in the areas of noise and scatter reduction through software. This has not been successful due to inherent shortcomings of a-Si material. Cadmium telluride (CdTe) semiconductor has long been recognized as highly suitable for use in X-ray detectors in both spectroscopic and imaging applications. Development of such systems has mostly concentrated on single crystal CdTe. Recent advances in thin-film deposition technology suggest replacement of crystalline material with its polycrystalline counterpart, offering ease of large-area device fabrication and achievement of higher resolution as well as a favorable cost difference. While bulk CdTe material was found to have superior radiation hardness, thin films have not been evaluated from that prospective, in particular under high-energy photon beam typical of radiation treatment applications. We assess the performance of thin-film CdTe devices utilizing 6 MeV photon beam and find no consistent trend for material degradation under doses far exceeding the typical radiation therapy detector lifetime dose.

  5. Measurement and analysis of the conversion gain degradation of the CIS detectors in harsh radiation environments

    NASA Astrophysics Data System (ADS)

    Wang, Zujun; Xue, Yuanyuan; Guo, Xiaoqiang; Bian, Jingying; Yao, Zhibin; He, Baoping; Ma, Wuying; Sheng, Jiangkun; Dong, Guantao; Liu, Yan

    2018-07-01

    The conversion gain of the CMOS image sensor (CIS) is one of the most important key parameters to the CIS detector. The conversion gain degradation induced by radiation damage will seriously affect the performances of the CIS detector. The experiments of the CISs irradiated by protons, neutrons, and gamma rays are presented. The CISs have 4 Megapixels and pinned photodiode (PPD) pixel architecture with a standard 0.18 μm CMOS technology. The conversion gains versus the proton fluence (including the proton ionizing dose), neutron fluence and gamma total ionizing dose are presented, respectively. The mechanisms of the conversion gain degradation induced by radiation damage are analyzed in details. The investigations will help to improve the PPD CIS detector design, reliability and applicability for applications in the harsh radiation environments such as space and nuclear environments.

  6. Dynamic Electrothermal Model of a Sputtered Thermopile Thermal Radiation Detector for Earth Radiation Budget Applications

    NASA Technical Reports Server (NTRS)

    Weckmann, Stephanie

    1997-01-01

    The Clouds and the Earth's Radiant Energy System (CERES) is a program sponsored by the National Aeronautics and Space Administration (NASA) aimed at evaluating the global energy balance. Current scanning radiometers used for CERES consist of thin-film thermistor bolometers viewing the Earth through a Cassegrain telescope. The Thermal Radiation Group, a laboratory in the Department of Mechanical Engineering at Virginia Polytechnic Institute and State University, is currently studying a new sensor concept to replace the current bolometer: a thermopile thermal radiation detector. This next-generation detector would consist of a thermal sensor array made of thermocouple junction pairs, or thermopiles. The objective of the current research is to perform a thermal analysis of the thermopile. Numerical thermal models are particularly suited to solve problems for which temperature is the dominant mechanism of the operation of the device (through the thermoelectric effect), as well as for complex geometries composed of numerous different materials. Feasibility and design specifications are studied by developing a dynamic electrothermal model of the thermopile using the finite element method. A commercial finite element-modeling package, ALGOR, is used.

  7. Assessment of the Influence of the RaD-X Balloon Payload on the Onboard Radiation Detectors

    NASA Technical Reports Server (NTRS)

    Gronoff, Guilluame; Mertens, Christopher J.; Norman, Ryan B.; Straume, Tore; Lusby, Terry C.

    2016-01-01

    The NASA Radiation Dosimetry Experiment (RaD-X) stratospheric balloon flight mission, launched on 25 September 2015, provided dosimetric measurements above the Pfotzer maximum. The goal of taking these measurements is to improve aviation radiation models by providing a characterization of cosmic ray primaries, which are the source of radiation exposure at aviation altitudes. The RaD-X science payload consists of four instruments. The main science instrument is a tissue-equivalent proportional counter (TEPC). The other instruments consisted of three solid state silicon dosimeters: Liulin, Teledyne total ionizing dose (TID) and RaySure detectors. The instruments were housed in an aluminum structure protected by a foam cover. The structure partially shielded the detectors from cosmic rays but also created secondary particles, modifying the ambient radiation environment observed by the instruments. Therefore, it is necessary to account for the influence of the payload structure on the measured doses. In this paper, we present the results of modeling the effect of the balloon payload on the radiation detector measurements using a Geant-4 (GEometry ANd Tracking) application. Payload structure correction factors derived for the TEPC, Liulin, and TID instruments are provided as a function of altitude. Overall, the payload corrections are no more than a 7% effect on the radiation environment measurements.

  8. Design of a synchrotron radiation detector for the test beam lines at the Superconducting Super Collider Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutton, R.D.

    1994-01-01

    As part of the particle- and momentum-tagging instrumentation required for the test beam lines of the Superconducting Super Collider (SSC), the synchrotron radiation detector (SRD) was designed to provide electron tagging at momentum above 75 GeV. In a parallel effort to the three test beam lines at the SSC, schedule demands required testing and calibration operations to be initiated at Fermilab. Synchrotron radiation detectors also were to be installed in the NM and MW beam lines at Femilab before the test beam lines at the SSC would become operational. The SRD is the last instrument in a series of threemore » used in the SSC test beam fines. It follows a 20-m drift section of beam tube downstream of the last silicon strip detector. A bending dipole just in of the last silicon strip detector produces the synchrotron radiation that is detected in a 50-mm-square cross section NaI crystal. A secondary scintillator made of Bicron BC-400 plastic is used to discriminate whether it is synchrotron radiation or a stray particle that causes the triggering of the NaI crystal`s photo multiplier tube (PMT).« less

  9. Gas mixtures for gas-filled radiation detectors

    DOEpatents

    Christophorou, Loucas G.; McCorkle, Dennis L.; Maxey, David V.; Carter, James G.

    1982-01-05

    Improved binary and ternary gas mixtures for gas-filled radiation detectors are provided. The components are chosen on the basis of the principle that the first component is one molecular gas or mixture of two molecular gases having a large electron scattering cross section at energies of about 0.5 eV and higher, and the second component is a noble gas having a very small cross section at and below about 1.0 eV, whereby fast electrons in the gaseous mixture are slowed into the energy range of about 0.5 eV where the cross section for the mixture is small and hence the electron mean free path is large. The reduction in both the cross section and the electron energy results in an increase in the drift velocity of the electrons in the gas mixtures over that for the separate components for a range of E/P (pressure-reduced electric field) values. Several gas mixtures are provided that provide faster response in gas-filled detectors for convenient E/P ranges as compared with conventional gas mixtures.

  10. Use of GaN as a Scintillating Ionizing Radiation Detector

    NASA Astrophysics Data System (ADS)

    Wensman, Johnathan; Guardala, Noel; Mathur, Veerendra; Alasagas, Leslie; Vanhoy, Jeffrey; Statham, John; Marron, Daniel; Millett, Marshall; Marsh, Jarrod; Currie, John; Price, Jack

    2017-09-01

    Gallium nitride (GaN) is a III/V direct bandgap semiconductor which has been used in light emitting diodes (LEDs) since the 1990s. Currently, due to a potential for increased efficiency, GaN is being investigated as a replacement for silicon in power electronics finding potential uses ranging from data centers to electric vehicles. In addition to LEDs and power electronics though, doped GaN can be used as a gamma insensitive fast neutron detector due to the direct band-gap, light propagation properties, and response to ionizing radiations. Investigation of GaN as a semiconductor scintillator for use in a radiation detection system involves mapping the response function of the detector crystal over a range of photon and neutron energies, and measurements of light generation in the GaN crystal due to proton, alpha, and nitrogen projectiles. In this presentation we discuss the measurements made to date, and plausible interpretations of the response functions. This work funded in part by the Naval Surface Warfare Center, Carderock Division In-house Laboratory Independent Research program.

  11. Micro-Fabricated Solid-State Radiation Detectors for Active Personal Dosimetry

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.; Chen, Liang-Yu

    2007-01-01

    Active radiation dosimetry is important to human health and equipment functionality for space applications outside the protective environment of a space station or vehicle. This is especially true for long duration missions to the moon, where the lack of a magnetic field offers no protection from space radiation to those on extravehicular activities. In order to improve functionality, durability and reliability of radiation dosimeters for future NASA lunar missions, single crystal silicon carbide devices and scintillating fiber detectors are currently being investigated for applications in advanced extravehicular systems. For many years, NASA Glenn Research Center has led significant efforts in silicon carbide semiconductor technology research and instrumentation research for sensor applications under extreme conditions. This report summarizes the technical progress and accomplishments toward characterization of radiation-sensing components for the recommendation of their fitness for advanced dosimetry development.

  12. Detector absorptivity measuring method and apparatus

    NASA Technical Reports Server (NTRS)

    Sheets, R. E. (Inventor)

    1976-01-01

    A method and apparatus for measuring the absorptivity of a radiation detector by making the detector an integral part of a cavity radiometer are described. By substituting the detector for the surface of the cavity upon which the radiation first impinges a comparison is made between the quantity of radiation incident upon the detector and the quantity reflected from the detector. The difference between the two is a measurement of the amount of radiation absorbed by the detector.

  13. CONCORD: comparison of cosmic radiation detectors in the radiation field at aviation altitudes

    NASA Astrophysics Data System (ADS)

    Meier, Matthias M.; Trompier, François; Ambrozova, Iva; Kubancak, Jan; Matthiä, Daniel; Ploc, Ondrej; Santen, Nicole; Wirtz, Michael

    2016-05-01

    Space weather can strongly affect the complex radiation field at aviation altitudes. The assessment of the corresponding radiation exposure of aircrew and passengers has been a challenging task as well as a legal obligation in the European Union for many years. The response of several radiation measuring instruments operated by different European research groups during joint measuring flights was investigated in the framework of the CONCORD (COmparisoN of COsmic Radiation Detectors) campaign in the radiation field at aviation altitudes. This cooperation offered the opportunity to measure under the same space weather conditions and contributed to an independent quality control among the participating groups. The CONCORD flight campaign was performed with the twin-jet research aircraft Dassault Falcon 20E operated by the flight facility Oberpfaffenhofen of the German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt, DLR). Dose rates were measured at four positions in the atmosphere in European airspace for about one hour at each position in order to obtain acceptable counting statistics. The analysis of the space weather situation during the measuring flights demonstrates that short-term solar activity did not affect the results which show a very good agreement between the readings of the instruments of the different institutes.

  14. Characterization of TlBrxCl1-x Crystals for Radiation Detectors

    NASA Astrophysics Data System (ADS)

    Onodera, Toshiyuki; Hitomi, Keitaro; Onodera, Chikara; Shoji, Tadayoshi; Mochizuki, Katsumi

    2012-08-01

    Thallium bromide chloride TlBrxCl1-x crystals have been evaluated as a material used for fabrication of room temperature radiation detectors. In this study, TlBrxCl1-x crystals with various chlorine (Cl) concentrations were grown by the travelling molten zone method and the detectors were fabricated from the crystals. The optical properties of the crystals were evaluated by measuring the transmittances. The charge transport properties were characterized by the Hecht analysis. The band gap energy of the crystals proportionally increased with Cl concentration. Mobility-lifetime products (μτ) of the crystals decreased with increasing Cl concentration.

  15. Advanced processing of CdTe pixel radiation detectors

    NASA Astrophysics Data System (ADS)

    Gädda, A.; Winkler, A.; Ott, J.; Härkönen, J.; Karadzhinova-Ferrer, A.; Koponen, P.; Luukka, P.; Tikkanen, J.; Vähänen, S.

    2017-12-01

    We report a fabrication process of pixel detectors made of bulk cadmium telluride (CdTe) crystals. Prior to processing, the quality and defect density in CdTe material was characterized by infrared (IR) spectroscopy. The semiconductor detector and Flip-Chip (FC) interconnection processing was carried out in the clean room premises of Micronova Nanofabrication Centre in Espoo, Finland. The chip scale processes consist of the aluminum oxide (Al2O3) low temperature thermal Atomic Layer Deposition (ALD), titanium tungsten (TiW) metal sputtering depositions and an electroless Nickel growth. CdTe crystals with the size of 10×10×0.5 mm3 were patterned with several photo-lithography techniques. In this study, gold (Au) was chosen as the material for the wettable Under Bump Metalization (UBM) pads. Indium (In) based solder bumps were grown on PSI46dig read out chips (ROC) having 4160 pixels within an area of 1 cm2. CdTe sensor and ROC were hybridized using a low temperature flip-chip (FC) interconnection technique. The In-Au cold weld bonding connections were successfully connecting both elements. After the processing the detector packages were wire bonded into associated read out electronics. The pixel detectors were tested at the premises of Finnish Radiation Safety Authority (STUK). During the measurement campaign, the modules were tested by exposure to a 137Cs source of 1.5 TBq for 8 minutes. We detected at the room temperature a photopeak at 662 keV with about 2 % energy resolution.

  16. Modeling of radiation damage recovery in particle detectors based on GaN

    NASA Astrophysics Data System (ADS)

    Gaubas, E.; Ceponis, T.; Pavlov, J.

    2015-12-01

    The pulsed characteristics of the capacitor-type and PIN diode type detectors based on GaN have been simulated using the dynamic and drift-diffusion models. The drift-diffusion current simulations have been implemented by employing the commercial software package Synopsys TCAD Sentaurus. The bipolar drift regime has been analyzed. The possible internal gain in charge collection through carrier multiplication processes determined by impact ionization has been considered in order to compensate carrier lifetime reduction due to radiation defects introduced into GaN material of detector.

  17. Earth radiation budget measurement from a spinning satellite: Conceptual design of detectors

    NASA Technical Reports Server (NTRS)

    Sromovsky, L. A.; Revercomb, H. E.; Suomi, V. E.

    1975-01-01

    The conceptual design, sensor characteristics, sensor performance and accuracy, and spacecraft and orbital requirements for a spinning wide-field-of-view earth energy budget detector were investigated. The scientific requirements for measurement of the earth's radiative energy budget are presented. Other topics discussed include the observing system concept, solar constant radiometer design, plane flux wide FOV sensor design, fast active cavity theory, fast active cavity design and error analysis, thermopile detectors as an alternative, pre-flight and in-flight calibration plane, system error summary, and interface requirements.

  18. Evaluation of a 3D diamond detector for medical radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Kanxheri, K.; Servoli, L.; Oh, A.; Munoz Sanchez, F.; Forcolin, G. T.; Murphy, S. A.; Aitkenhead, A.; Moore, C. J.; Morozzi, A.; Passeri, D.; Bellini, M.; Corsi, C.; Lagomarsino, S.; Sciortino, S.

    2017-01-01

    Synthetic diamond has several properties that are particularly suited to applications in medical radiation dosimetry. It is tissue equivalent, not toxic and shows a high resistance to radiation damage, low leakage current and stability of response. It is an electrical insulator, robust and realizable in small size; due to these features there are several examples of diamond devices, mainly planar single-crystalline chemical vapor depositation (sCVD) diamond, used for relative dose measurement in photon beams. Thanks to a new emerging technology, diamond devices with 3-dimensional structures are produced by using laser pulses to create graphitic paths in the diamond bulk. The necessary bias voltage to operate such detector decreases considerably while the signal response and radiation resistance increase. In order to evaluate the suitability of this new technology for measuring the dose delivered by radiotherapy beams in oncology a 3D polycrystalline (pCVD) diamond detector designed for single charged particle detection has been tested and the photon beam profile has been studied. The good linearity and high sensitivity to the dose observed in the 3D diamond, opens the way to the possibility of realizing a finely segmented device with the potential for dose distribution measurement in a single exposure for small field dosimetry that nowadays is still extremely challenging.

  19. State-of-the-art radiation detectors for medical imaging: Demands and trends

    NASA Astrophysics Data System (ADS)

    Darambara, Dimitra G.

    2006-12-01

    Over the last half-century a variety of significant technical advances in several scientific fields has been pointing to an exploding growth in the field of medical imaging leading to a better interpretation of more specific anatomical, biochemical and molecular pathways. In particular, the development of novel imaging detectors and readout electronics has been critical to the advancement of medical imaging allowing the invention of breakthrough platforms for simultaneous acquisition of multi-modality images at molecular level. The present paper presents a review of the challenges, demands and constraints on radiation imaging detectors imposed by the nature of the modality and the physics of the imaging source. This is followed by a concise review and perspective on various types of state-of-the-art detector technologies that have been developed to meet these requirements. Trends, prospects and new concepts for future imaging detectors are also highlighted.

  20. Performance limiting processes in room temperature thallium bromide radiation detectors

    NASA Astrophysics Data System (ADS)

    Datta, Amlan; Becla, Piotr; Moed, Demi; Motakef, Shariar

    2015-09-01

    Thallium Bromide (TlBr) is a promising room-temperature radiation detector candidate with excellent charge transport properties. However, several critical issues are needed to be addressed before deployment of this material for long-term field applications. In this paper, the relevance and, scientific and technological progress made towards solving these challenges for TlBr have been discussed. The possible research pathways to mitigate the concerns related to this material have been analyzed and clearly established. Findings from novel experiments performed at CapeSym have revealed that the most significant factors for achieving long-term performance stability for TlBr devices involve physical and chemical conditions of the surface, residual stress, and choice of metal contacts. Palladium electrodes on TlBr devices resulted in a 20-fold improvement in the device lifetime when compared to its Br-etched Pt counterpart. Electron and hole contributions towards the spectroscopic response of the TlBr detector significantly depend on the interaction position of the incoming radiation and was clearly observed in this study. TlBr device fabrication techniques need significant improvement in order to attain reliable, repeatable, and stable, long-term performance.

  1. Radiation detector based on a matrix of crossed wavelength-shifting fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kross, Brian J.; Weisenberger, Andrew; Zorn, Carl

    A radiation detection system comprising a detection grid of wavelength shifting fibers with a volume of scintillating material at the intersecting points of the fibers. Light detectors, preferably Silicon Photomultipliers, are positioned at the ends of the fibers. The position of radiation is determined from data obtained from the detection grid. The system is easily scalable, customizable, and also suitable for use in soil and underground applications. An alternate embodiment employs a fiber grid sheet or layer which is comprised of multiple fibers secured to one another within the same plane. This embodiment further includes shielding in order to preventmore » radiation cross-talk within the grid layer.« less

  2. Space Radiation Detector with Spherical Geometry

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D. (Inventor); Fralick, Gustave C. (Inventor); Wrbanek, Susan Y. (Inventor)

    2011-01-01

    A particle detector is provided, the particle detector including a spherical Cherenkov detector, and at least one pair of detector stacks. In an embodiment of the invention, the Cherenkov detector includes a sphere of ultraviolet transparent material, coated by an ultraviolet reflecting material that has at least one open port. The Cherenkov detector further includes at least one photodetector configured to detect ultraviolet light emitted from a particle within the sphere. In an embodiment of the invention, each detector stack includes one or more detectors configured to detect a particle traversing the sphere.

  3. Space Radiation Detector with Spherical Geometry

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D. (Inventor); Fralick, Gustave C. (Inventor); Wrbanek, Susan Y. (Inventor)

    2012-01-01

    A particle detector is provided, the particle detector including a spherical Cherenkov detector, and at least one pair of detector stacks. In an embodiment of the invention, the Cherenkov detector includes a sphere of ultraviolet transparent material, coated by an ultraviolet reflecting material that has at least one open port. The Cherenkov detector further includes at least one photodetector configured to detect ultraviolet light emitted from a particle within the sphere. In an embodiment of the invention, each detector stack includes one or more detectors configured to detect a particle traversing the sphere.

  4. Proton induced target fragmentation studies on solid state nuclear track detectors using Carbon radiators

    NASA Astrophysics Data System (ADS)

    Szabó, J.; Pálfalvi, J. K.; Strádi, A.; Bilski, P.; Swakoń, J.; Stolarczyk, L.

    2018-04-01

    One of the limiting factors of an astronaut's career is the dose received from space radiation. High energy protons, being the main components of the complex radiation field present on a spacecraft, give a significant contribution to the dose. To investigate the behavior of solid state nuclear track detectors (SSNTDs) if they are irradiated by such particles, SSNTD stacks containing carbon blocks were exposed to high energy proton beams (70, 100, 150 and 230 MeV) at the Proteus cyclotron, IFJ PAN -Krakow. The incident protons cannot be detected directly; however, tracks of secondary particles, recoils and fragments of the constituent atoms of the detector material and of the carbon radiator are formed. It was found that as the proton energy increases, the number of tracks induced in the PADC material by secondary particles decreases. From the measured geometrical parameters of the tracks the linear energy transfer (LET) spectrum and the dosimetric quantities were determined, applying appropriate calibration. In the LET spectra the LET range of the most important secondary particles could be identified and their abundance showed differences in the spectra if the detectors were short or long etched. The LET spectra obtained on the SSNTDs irradiated by protons were compared to LET spectra of detectors flown on the International Space Station (ISS): they were quite similar, resulting in a quality factor difference of only 5%. Thermoluminescent detectors (TLDs) were applied in each case to measure the dose from primary protons and other lower LET particles present in space. Comparing and analyzing the results of the TLD and SSNTD measurements, it was obtained that proton induced target fragments contributed to the total absorbed dose in 3.2% and to the dose equivalent in 14.2% in this particular space experiment.

  5. Radiation-Resistant Photon-Counting Detector Package Providing Sub-ps Stability for Laser Time Transfer in Space

    NASA Technical Reports Server (NTRS)

    Prochzaka, Ivan; Kodat, Jan; Blazej, Josef; Sun, Xiaoli (Editor)

    2015-01-01

    We are reporting on a design, construction and performance of photon-counting detector packages based on silicon avalanche photodiodes. These photon-counting devices have been optimized for extremely high stability of their detection delay. The detectors have been designed for future applications in fundamental metrology and optical time transfer in space. The detectors have been qualified for operation in space missions. The exceptional radiation tolerance of the detection chip itself and of all critical components of a detector package has been verified in a series of experiments.

  6. Charged particle detectors with active detector surface for partial energy deposition of the charged particles and related methods

    DOEpatents

    Gerts, David W; Bean, Robert S; Metcalf, Richard R

    2013-02-19

    A radiation detector is disclosed. The radiation detector comprises an active detector surface configured to generate charge carriers in response to charged particles associated with incident radiation. The active detector surface is further configured with a sufficient thickness for a partial energy deposition of the charged particles to occur and permit the charged particles to pass through the active detector surface. The radiation detector further comprises a plurality of voltage leads coupled to the active detector surface. The plurality of voltage leads is configured to couple to a voltage source to generate a voltage drop across the active detector surface and to separate the charge carriers into a plurality of electrons and holes for detection. The active detector surface may comprise one or more graphene layers. Timing data between active detector surfaces may be used to determine energy of the incident radiation. Other apparatuses and methods are disclosed herein.

  7. Cherenkov radiation-based three-dimensional position-sensitive PET detector: A Monte Carlo study.

    PubMed

    Ota, Ryosuke; Yamada, Ryoko; Moriya, Takahiro; Hasegawa, Tomoyuki

    2018-05-01

    Cherenkov radiation has recently received attention due to its prompt emission phenomenon, which has the potential to improve the timing performance of radiation detectors dedicated to positron emission tomography (PET). In this study, a Cherenkov-based three-dimensional (3D) position-sensitive radiation detector was proposed, which is composed of a monolithic lead fluoride (PbF 2 ) crystal and a photodetector array of which the signals can be readout independently. Monte Carlo simulations were performed to estimate the performance of the proposed detector. The position- and time resolution were evaluated under various practical conditions. The radiator size and various properties of the photodetector, e.g., readout pitch and single photon timing resolution (SPTR), were parameterized. The single photon time response of the photodetector was assumed to be a single Gaussian for the simplification. The photo detection efficiency of the photodetector was ideally 100% for all wavelengths. Compton scattering was included in simulations, but partly analyzed. To estimate the position at which a γ-ray interacted in the Cherenkov radiator, the center-of-gravity (COG) method was employed. In addition, to estimate the depth-of-interaction (DOI) principal component analysis (PCA), which is a multivariate analysis method and has been used to identify the patterns in data, was employed. The time-space distribution of Cherenkov photons was quantified to perform PCA. To evaluate coincidence time resolution (CTR), the time difference of two independent γ-ray events was calculated. The detection time was defined as the first photon time after the SPTR of the photodetector was taken into account. The position resolution on the photodetector plane could be estimated with high accuracy, by using a small number of Cherenkov photons. Moreover, PCA showed an ability to estimate the DOI. The position resolution heavily depends on the pitch of the photodetector array and the radiator

  8. Photoconductive detector of circularly polarized radiation based on a MIS structure with a CoPt layer

    NASA Astrophysics Data System (ADS)

    Kudrin, A. V.; Dorokhin, M. V.; Zdoroveishchev, A. V.; Demina, P. B.; Vikhrova, O. V.; Kalent'eva, I. L.; Ved', M. V.

    2017-11-01

    A photoconductive detector of circularly polarized radiation based on the metal-insulator-semiconductor structure of CoPt/(Al2O3/SiO2/Al2O3)/InGaAs/GaAs is created. The efficiency of detection of circularly polarized radiation is 0.75% at room temperature. The operation of the detector is based on the manifestation of the effect of magnetic circular dichroism in the CoPt layer, that is, the dependence of the CoPt transmission coefficient on the sign of the circular polarization of light and magnetization.

  9. Experiences in flip chip production of radiation detectors

    NASA Astrophysics Data System (ADS)

    Savolainen-Pulli, Satu; Salonen, Jaakko; Salmi, Jorma; Vähänen, Sami

    2006-09-01

    Modern imaging devices often require heterogeneous integration of different materials and technologies. Because of yield considerations, material availability, and various technological limitations, an extremely fine pitch is necessary to realize high-resolution images. Thus, there is a need for a hybridization technology that is able to join together readout amplifiers and pixel detectors at a very fine pitch. This paper describes radiation detector flip chip production at VTT. Our flip chip technology utilizes 25-μm diameter tin-lead solder bumps at a 50-μm pitch and is based on flux-free bonding. When preprocessed wafers are used, as is the case here, the total yield is defined only partly by the flip chip process. Wafer preprocessing done by a third-party silicon foundry and the flip chip process create different process defects. Wafer-level yield maps (based on probing) provided by the customer are used to select good readout chips for assembly. Wafer probing is often done outside of a real clean room environment, resulting in particle contamination and/or scratches on the wafers. Factors affecting the total yield of flip chip bonded detectors are discussed, and some yield numbers of the process are given. Ways to improve yield are considered, and finally guidelines for process planning and device design with respect to yield optimization are given.

  10. Wire-chamber radiation detector with discharge control

    DOEpatents

    Perez-Mendez, V.; Mulera, T.A.

    1982-03-29

    A wire chamber; radiation detector has spaced apart parallel electrodes and grids defining an ignition region in which charged particles or other ionizing radiations initiate brief localized avalanche discharges and defining an adjacent memory region in which sustained glow discharges are initiated by the primary discharges. Conductors of the grids at each side of the memory section extend in orthogonal directions enabling readout of the X-Y coordinates of locations at which charged particles were detected by sequentially transmitting pulses to the conductors of one grid while detecting transmissions of the pulses to the orthogonal conductors of the other grid through glow discharges. One of the grids bounding the memory region is defined by an array of conductive elements each of which is connected to the associated readout conductor through a separate resistance. The wire chamber avoids ambiguities and imprecisions in the readout of coordinates when large numbers of simultaneous or; near simultaneous charged particles have been detected. Down time between detection periods and the generation of radio frequency noise are also reduced.

  11. Improved detector for the measurement of gamma radiation

    NASA Astrophysics Data System (ADS)

    Zelt, F. B.

    1985-07-01

    The present invention lies in the field of gamma ray spectrometry of geologic deposits and other materials, such as building materials (cement, asphalt, etc.) More specifically, the invention is an improved device for the gamma ray spetcrometery of gelogical deposits as a tool for petroleum exploration, geologic research and monitoring of radio-active materials such as in uranium mill tailings and the like. Improvement consists in enlarging the area of the receptor face and without any necessarily substantial increase in the volume of the receptor crystal over the current cylindrical shapes. The invention also provides, as a corollary of the increase in area receptor crystal face, a reduction in the weight of the amount of material necessary to provide effective shielding of the crystal from atmospheric radiation and radiation from deposits not under examination. The area of the receptor crystal face is increased by forming the crystal as a truncated cone with the shielding shaped as a hollow frustrum of a cone. A photomultiplier device is secured to the smaller face of the crystal. The improved detector shape can also be used in scintillometers which measure total gamma radiation.

  12. Radiation dose reduction in chest radiography using a flat-panel amorphous silicon detector.

    PubMed

    Hosch, W P; Fink, C; Radeleff, B; kampschulte a, A; Kauffmann, G W; Hansmann, J

    2002-10-01

    The aim of this study was to evaluate the image quality and the potential for radiation dose reduction with a digital flat-panel amorphous silicon detector radiography system. Using flat-panel technology, radiographs of an anthropomorphic thorax phantom were taken with a range of technical parameters (125kV, 200mA and 5, 4, 3.2, 2, 1, 0.5, and 0.25mAs) which were equivalent to a radiation dose of 332, 263, 209, 127, 58.7, 29, and 14 microGy, respectively. These images were compared to radiographs obtained by a conventional film-screen radiography system at 125kV, 200mA and 5mAs (equivalent to 252 microGy) which served as reference. Three observers evaluated independently the visibility of simulated rounded lesions and anatomical structures, comparing printed films from the flat-panel amorphous silicon detector and conventional x-ray system films. With flat-panel technology, the visibility of rounded lesions and normal anatomical structures at 5, 4, and 3.2mAs was superior compared to the conventional film-screen radiography system. (P< or =0.0001). At 2mAs, improvement was only marginal (P=0.19). At 1.0, 0.5 and 0.25mAs, the visibility of simulated rounded lesions was worse (P< or =0.004). Comparing fine lung parenchymal structures, the flat-panel amorphous silicon detector showed improvement for all exposure levels down to 2mAs and equality at 1mAs. Compared to a conventional x-ray film system, the flat-panel amorphous silicon detector demonstrated improved image quality and the possibility for a reduction of the radiation dose by 50% without loss in image quality.

  13. Improved gas mixtures for gas-filled radiation detectors

    DOEpatents

    Christophorou, L.G.; McCorkle, D.L.; Maxey, D.V.; Carter, J.G.

    1980-03-28

    Improved binary and ternary gas mixtures for gas-filled radiation detectors are provided. The components are chosen on the basis of the principle that the first component is one molecular gas or mixture of two molecular gases having a large electron scattering cross section at energies of about 0.5 eV and higher, and the second component is a noble gas having a very small cross section at and below about 1.0 eV, whereby fast electrons in the gaseous mixture are slowed into the energy range of about 0.5 eV where the cross section for the mixture is small and hence the electron mean free path is large. The reduction in both the cross section and the electron energy results in an increase in the drift velocity of the electrons in the gas mixtures over that for the separate components for a range of E/P (pressure-reduced electric field) values. Several gas mixtures are provided that provide faster response in gas-filled detectors for convenient E/P ranges as compared with conventional gas mixtures.

  14. Radiation detector using a bulk high T.sub.c superconductor

    DOEpatents

    Artuso, Joseph F.; Franks, Larry A.; Hull, Kenneth L.; Symko, Orest G.

    1993-01-01

    A radiation detector (10) is provided, wherein a bulk high T.sub.c superconducting sample (11) is placed in a magnetic field and maintained at a superconducting temperature. Photons of incident radiation will cause localized heating in superconducting loops of the sample destroying trapped flux and redistributing the fluxons, and reducing the critical current of the loops. Subsequent cooling of the sample in the magnetic field will cause trapped flux redistributed Abrikosov fluxons and trapped Josephson fluxons. The destruction and trapping of the fluxons causes changes in the magnetization of the sample inducing currents in opposite directions in a pickup coil (12) which is coupled by an input coil (15) to an rf SQUID (16).

  15. Radiation detector using a bulk high T[sub c] superconductor

    DOEpatents

    Artuso, J.F.; Franks, L.A.; Hull, K.L.; Symko, O.G.

    1993-12-07

    A radiation detector is provided, wherein a bulk high T[sub c] superconducting sample is placed in a magnetic field and maintained at a superconducting temperature. Photons of incident radiation will cause localized heating in superconducting loops of the sample destroying trapped flux and redistributing the fluxons, and reducing the critical current of the loops. Subsequent cooling of the sample in the magnetic field will cause trapped flux redistributed Abrikosov fluxons and trapped Josephson fluxons. The destruction and trapping of the fluxons causes changes in the magnetization of the sample inducing currents in opposite directions in a pickup coil which is coupled by an input coil to an rf SQUID. 4 figures.

  16. Radiation detector

    DOEpatents

    Fultz, B.T.

    1980-12-05

    Apparatus is provided for detecting radiation such as gamma rays and x-rays generated in backscatter Moessbauer effect spectroscopy and x-ray spectrometry, which has a large window for detecting radiation emanating over a wide solid angle from a specimen and which generates substantially the same output pulse height for monoenergetic radiation that passes through any portion of the detection chamber. The apparatus includes a substantially toroidal chamber with conductive walls forming a cathode, and a wire anode extending in a circle within the chamber with the anode lying closer to the inner side of the toroid which has the least diameter than to the outer side. The placement of the anode produces an electric field, in a region close to the anode, which has substantially the same gradient in all directions extending radially from the anode, so that the number of avalanche electrons generated by ionizing radiation is independent of the path of the radiation through the chamber.

  17. Radiation detector

    DOEpatents

    Fultz, Brent T.

    1983-01-01

    Apparatus is provided for detecting radiation such as gamma rays and X-rays generated in backscatter Mossbauer effect spectroscopy and X-ray spectrometry, which has a large "window" for detecting radiation emanating over a wide solid angle from a specimen and which generates substantially the same output pulse height for monoenergetic radiation that passes through any portion of the detection chamber. The apparatus includes a substantially toroidal chamber with conductive walls forming a cathode, and a wire anode extending in a circle within the chamber with the anode lying closer to the inner side of the toroid which has the least diameter than to the outer side. The placement of the anode produces an electric field, in a region close to the anode, which has substantially the same gradient in all directions extending radially from the anode, so that the number of avalanche electrons generated by ionizing radiation is independent of the path of the radiation through the chamber.

  18. WE-AB-BRB-12: Nanoscintillator Fiber-Optic Detector System for Microbeam Radiation Therapy Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivera, J; Dooley, J; Chang, S

    2015-06-15

    Purpose: Microbeam Radiation Therapy (MRT) is an experimental radiation therapy that has demonstrated a higher therapeutic ratio than conventional radiation therapy in animal studies. There are several roadblocks in translating the promising treatment technology to clinical application, one of which is the lack of a real-time, high-resolution dosimeter. Current clinical radiation detectors have poor spatial resolution and, as such, are unsuitable for measuring microbeams with submillimeter-scale widths. Although GafChromic film has high spatial resolution, it lacks the real-time dosimetry capability necessary for MRT preclinical research and potential clinical use. In this work we have demonstrated the feasibility of using amore » nanoscintillator fiber-optic detector (nanoFOD) system for real-time MRT dosimetry. Methods: A microplanar beam array is generated using a x-ray research irradiator and a custom-made, microbeam-forming collimator. The newest generation nanoFOD has an effective size of 70 µm in the measurement direction and was calibrated against a kV ion chamber (RadCal Accu-Pro) in open field geometry. We have written a computer script that performs automatic data collection with immediate background subtraction. A computer-controlled detector positioning stage is used to precisely measure the microbeam peak dose and beam profile by translating the stage during data collection. We test the new generation nanoFOD system, with increased active scintillation volume, against the previous generation system. Both raw and processed data are time-stamped and recorded to enable future post-processing. Results: The real-time microbeam dosimetry system worked as expected. The new generation dosimeter has approximately double the active volume compared to the previous generation resulting in over 900% increase in signal. The active volume of the dosimeter still provided the spatial resolution that meets the Nyquist criterion for our microbeam widths. Conclusion

  19. Next Generation Semiconductor-Based Radiation Detectors Using Cadmium Magnesium Telluride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trivedi, Sudhir B; Kutcher, Susan W; Palsoz, Witold

    2014-11-17

    The primary objective of Phase I was to perform extensive studies on the purification, crystal growth and annealing procedures of CdMgTe to gain a clear understanding of the basic material properties to enable production of detector material with performance comparable to that of CdZnTe. Brimrose utilized prior experience in the growth and processing of II-VI crystals and produced high purity material and good quality single crystals of CdMgTe. Processing techniques for these crystals including annealing, mechanical and chemical polishing, surface passivation and electrode fabrication were developed. Techniques to characterize pertinent electronic characteristics were developed and gamma ray detectors were fabricated.more » Feasibility of the development of comprehensive defect modeling in this new class of material was demonstrated by our partner research institute SRI International, to compliment the experimental work. We successfully produced a CdMgTe detector that showed 662 keV gamma response with energy resolution of 3.4% (FWHM) at room temperature, without any additional signal correction. These results are comparable to existing CdZnTe (CZT) technology using the same detector size and testing conditions. We have successfully demonstrated detection of gamma-radiation from various isotopes/sources, using CdMgTe thus clearly proving the feasibility that CdMgTe is an excellent, low-cost alternative to CdZnTe.« less

  20. Radiation damage effects by 25 MeV protons and thermal annealing effects on thallium bromide nuclear radiation detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hitomi, K.; Shoji, T.; Suehiro, T.

    1999-06-01

    In this study, TlBr detectors were irradiated with 25 MeV protons accelerated by an AVF cyclotron. Isothermal annealing was performed to restore the performance of the detectors. In order to characterize the radiation damage and thermal annealing effects on the TlBr detectors, the authors measured current-voltage (I-V) characteristics, mobility-lifetime ({mu}{tau}) products and spectrometric responses. The I-V and {mu}{tau} measurements suggest that electron traps have been induced by 25 MeV protons in the TlBr crystals. X- and {gamma}-ray energy spectra were measured for two different electronic conditions: the electric signals induced mainly by electron carriers traversing the crystal were used formore » one case and the signal induced by hole carriers were used in the other case. After irradiation of 25 MeV protons, the {sup 241}Am X- and {gamma}-ray spectra obtained in the former showed significantly degraded energy resolution. No degradation of energy resolution, however, was observed in the latter case. Noticeable improvements of the degraded detector performance have been observed after the thermal annealing.« less

  1. Measuring ionizing radiation in the atmosphere with a new balloon-borne detector

    NASA Astrophysics Data System (ADS)

    Aplin, K. L.; Briggs, A. A.; Harrison, R. G.; Marlton, G. J.

    2017-05-01

    Increasing interest in energetic particle effects on weather and climate has motivated development of a miniature scintillator-based detector intended for deployment on meteorological radiosondes or unmanned airborne vehicles. The detector was calibrated with laboratory gamma sources up to 1.3 MeV and known gamma peaks from natural radioactivity of up to 2.6 MeV. The specifications of our device in combination with the performance of similar devices suggest that it will respond to up to 17 MeV gamma rays. Laboratory tests show that the detector can measure muons at the surface, and it is also expected to respond to other ionizing radiation including, for example, protons, electrons (>100 keV), and energetic helium nuclei from cosmic rays or during space weather events. Its estimated counting error is ±10%. Recent tests, when the detector was integrated with a meteorological radiosonde system and carried on a balloon to 25 km altitude, identified the transition region between energetic particles near the surface, which are dominated by terrestrial gamma emissions, to higher-energy particles in the free troposphere.

  2. Calibration of modified Liulin detector for cosmic radiation measurements on-board aircraft.

    PubMed

    Kyselová, D; Ambrožová, I; Krist, P; Kubančák, J; Uchihori, Y; Kitamura, H; Ploc, O

    2015-06-01

    The annual effective doses of aircrew members often exceed the limit of 1 mSv for the public due to the increased level of cosmic radiation at the flight altitudes, and thus, it is recommended to monitor them. Aircrew dosimetry is usually performed using special computer programs mostly based on results of Monte Carlo simulations. Contemporary, detectors are used mostly for validation of these computer codes, verification of effective dose calculations and for research purposes. One of such detectors is active silicon semiconductor deposited energy spectrometer Liulin. Output quantities of measurement with the Liulin detector are the absorbed dose in silicon D and the ambient dose equivalent H*(10); to determine it, two calibrations are necessary. The purpose of this work was to develop a calibration methodology that can be used to convert signal from the detector to D independently on calibration performed at Heavy Ion Medical Accelerator facility in Chiba, Japan. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Solid xenon radiation detectors

    NASA Astrophysics Data System (ADS)

    Dolinski, Michelle J.

    2014-03-01

    Cryogenic liquid xenon detectors have become a popular technology in the search for rare events, such as dark matter interactions and neutrinoless double beta decay. The power of the liquid xenon detector technology is in the combination of the ionization and scintillation signals, resulting in particle discrimination and improved energy resolution over the ionization-only signal. The improved energy resolution results from a unique anti-correlation phenomenon that has not been described from first principles. Solid xenon bolometers, under development at Drexel University, are expected to have excellent counting statistics in the phonon channel, with energy resolution of 0.1% or better. This additional energy channel may offer the final piece of the puzzle in understanding liquid xenon detector energy response. Supported by a grant from the Charles E. Kaufman Foundation.

  4. Development of 2D imaging of SXR plasma radiation by means of GEM detectors

    NASA Astrophysics Data System (ADS)

    Chernyshova, M.; Czarski, T.; Jabłoński, S.; Kowalska-Strzeciwilk, E.; Poźniak, K.; Kasprowicz, G.; Zabołotny, W.; Wojeński, A.; Byszuk, A.; Burza, M.; Juszczyk, B.; Zienkiewicz, P.

    2014-11-01

    Presented 2D gaseous detector system has been developed and designed to provide energy resolved fast dynamic plasma radiation imaging in the soft X-Ray region with 0.1 kHz exposure frequency for online, made in real time, data acquisition (DAQ) mode. The detection structure is based on triple Gas Electron Multiplier (GEM) amplification structure followed by the pixel readout electrode. The efficiency of detecting unit was adjusted for the radiation energy region of tungsten in high-temperature plasma, the main candidate for the plasma facing material for future thermonuclear reactors. Here we present preliminary laboratory results and detector parameters obtained for the developed system. The operational characteristics and conditions of the detector were designed to work in the X-Ray range of 2-17 keV. The detector linearity was checked using the fluorescence lines of different elements and was found to be sufficient for good photon energy reconstruction. Images of two sources through various screens were performed with an X-Ray laboratory source and 55Fe source showing a good imaging capability. Finally offline stream-handling data acquisition mode has been developed for the detecting system with timing down to the ADC sampling frequency rate (~13 ns), up to 2.5 MHz of exposure frequency, which could pave the way to invaluable physics information about plasma dynamics due to very good time resolving ability. Here we present results of studied spatial resolution and imaging properties of the detector for conditions of laboratory moderate counting rates and high gain.

  5. Portable Radiation Detectors

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Through a Small Business Innovation Research (SBIR) contract from Kennedy Space Center, General Pneumatics Corporation's Western Research Center satisfied a NASA need for a non-clogging Joule-Thomson cryostat to provide very low temperature cooling for various sensors. This NASA-supported cryostat development played a key part in the development of more portable high-purity geranium gamma-ray detectors. Such are necessary to discern between the radionuclides in medical, fuel, weapon, and waste materials. The outcome of the SBIR project is a cryostat that can cool gamma-ray detectors, without vibration, using compressed gas that can be stored compactly and indefinitely in a standby mode. General Pneumatics also produces custom J-T cryostats for other government, commercial and medical applications.

  6. Noncontact localized internal infrared radiation measurement using an infrared point detector

    NASA Astrophysics Data System (ADS)

    Hisaka, Masaki

    2017-12-01

    The techniques for temperature measurement within the human body are important for clinical applications. A method for noncontact local infrared (IR) radiation measurements was investigated deep within an object to simulate how the core human body temperature can be obtained. To isolate the IR light emitted from a specific area within the object from the external noise, the radiating IR light was detected using an IR point detector, which comprises a pinhole and a thermopile positioned at an imaging relation with the region of interest within the object. The structure of the helical filament radiating IR light inside a light bulb was thermally imaged by scanning the bulb in two dimensions. Moreover, this approach was used to effectively measure IR light in the range of human body temperature using a glass plate placed in front of the heat source, mimicking the ocular fundus.

  7. Noncontact localized internal infrared radiation measurement using an infrared point detector

    NASA Astrophysics Data System (ADS)

    Hisaka, Masaki

    2018-06-01

    The techniques for temperature measurement within the human body are important for clinical applications. A method for noncontact local infrared (IR) radiation measurements was investigated deep within an object to simulate how the core human body temperature can be obtained. To isolate the IR light emitted from a specific area within the object from the external noise, the radiating IR light was detected using an IR point detector, which comprises a pinhole and a thermopile positioned at an imaging relation with the region of interest within the object. The structure of the helical filament radiating IR light inside a light bulb was thermally imaged by scanning the bulb in two dimensions. Moreover, this approach was used to effectively measure IR light in the range of human body temperature using a glass plate placed in front of the heat source, mimicking the ocular fundus.

  8. PRD3000: A novel Personnel Radiation Detector with Radiation Exposure Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fallu-Labruyere, A.; Micou, C.; Schulcz, F.

    PRD3000{sup TM} is a novel Personal Radiation Detector (PRD) with personnel radiation dose exposure monitoring. It is intended for First Responders, Law Enforcement, Customs Inspectors protecting critical infrastructures for detecting unexpected radioactive sources, who also need real time Hp(10) dose equivalent information. Traditional PRD devices use scintillator materials instrumented through either a photomultiplier tube or a photodiode photodetector. While the former is bulky and sensitive to magnetic fields, the latter has to compromise radiation sensitivity and energy threshold given its current noise per unit of photo-detection surface. Recently, solid state photodetectors (SiPM), based on arrays of Geiger operated diodes, havemore » emerged as a scalable digital photodetector for photon counting. Their strong breakdown voltage temperature dependence (on the order of tens of milli-volts per K) has however limited their use for portable instruments where strong temperature gradients can be experienced, and limited power is available to temperature stabilize. The PRD3000 is based on the industry standard DMC3000 active dosimeter that complies with IEC 61526 Ed. 3 and ANSI 42.20 for direct reading personal dose equivalent meters and active personnel radiation monitors. An extension module is based on a CsI(Tl) scintillator readout by a temperature compensated SiPM. Preliminary nuclear tests combined with a measured continuous operation in excess of 240 hours from a single AAA battery cell indicate that the PRD3000 complies with the IEC 62401 Ed.2 and ANSI 42.32 without sacrificing battery life time. We present a summary of the device test results, starting with performance stability over a temperature range of - 20 deg. C to 50 deg. C, false alarm rates and dynamic response time. (authors)« less

  9. Cryogenic and radiation-hard asic for interfacing large format NIR/SWIR detector arrays

    NASA Astrophysics Data System (ADS)

    Gao, Peng; Dupont, Benoit; Dierickx, Bart; Müller, Eric; Verbruggen, Geert; Gielis, Stijn; Valvekens, Ramses

    2017-11-01

    For scientific and earth observation space missions, weight and power consumption is usually a critical factor. In order to obtain better vehicle integration, efficiency and controllability for large format NIR/SWIR detector arrays, a prototype ASIC is designed. It performs multiple detector array interfacing, power regulation and data acquisition operations inside the cryogenic chambers. Both operation commands and imaging data are communicated via the SpaceWire interface which will significantly reduce the number of wire goes in and out the cryogenic chamber. This "ASIC" prototype is realized in 0.18um CMOS technology and is designed for radiation hardness.

  10. Temperature differences within the detector of the Robertson-Berger sunburn meter, model 500, compared to global radiation

    NASA Astrophysics Data System (ADS)

    Kjeldstad, Berit; Grandum, Oddbjorn

    1993-11-01

    The Robertson-Berger sunburn meter, model 500, has no temperature compensation, and the effect of temperature on the instrument response has been investigated and discussed in several reports. It is recommended to control the temperature of the detector or at least measure it. The temperature sensor is recommended to be positioned within the detector unit. We have measured the temperature at three different positions in the detector: At the edge of the green filter where the phosphor layer is placed; at the glass tube covering the cathode; and, finally, the air temperature inside the instrument. These measurements have been performed outdoors since July 1991, with corresponding measurements of the global and direct solar radiation. There was no difference between the temperature of the glasstube covering the cathode and the air inside the instrument, at any radiation level. However, there was a difference between the green filter and the two others. The difference is linearly dependent on the amount of global radiation. The temperature difference, (Delta) T (temperature between the green filter and the air inside the sensor), increased 0.8 degree(s)C when the global irradiation increased by 100 W/m2. At maximum global radiation in Trondheim (latitude 63.4 degree(s)N) (Delta) T was approximately 5 - 6 K when the global radiation was about 700 W/m2. This was valid for temperatures between 7 degree(s)C and 30 degree(s)C. Only clear days were evaluated.

  11. Using Ionizing Radiation Detectors. Module 11. Vocational Education Training in Environmental Health Sciences.

    ERIC Educational Resources Information Center

    Consumer Dynamics Inc., Rockville, MD.

    This module, one of 25 on vocational education training for careers in environmental health occupations, contains self-instructional materials on using ionizing radiation detectors. Following guidelines for students and instructors and an introduction that explains what the student will learn are three lessons: (1) naming and telling the function…

  12. Exploiting different active silicon detectors in the International Space Station: ALTEA and DOSTEL galactic cosmic radiation (GCR) measurements

    NASA Astrophysics Data System (ADS)

    Narici, Livo; Berger, Thomas; Burmeister, Sönke; Di Fino, Luca; Rizzo, Alessandro; Matthiä, Daniel; Reitz, Günther

    2017-08-01

    The solar system exploration by humans requires to successfully deal with the radiation exposition issue. The scientific aspect of this issue is twofold: knowing the radiation environment the astronauts are going to face and linking radiation exposure to health risks. Here we focus on the first issue. It is generally agreed that the final tool to describe the radiation environment in a space habitat will be a model featuring the needed amount of details to perform a meaningful risk assessment. The model should also take into account the shield changes due to the movement of materials inside the habitat, which in turn produce changes in the radiation environment. This model will have to undergo a final validation with a radiation field of similar complexity. The International Space Station (ISS) is a space habitat that features a radiation environment inside which is similar to what will be found in habitats in deep space, if we use measurements acquired only during high latitude passages (where the effects of the Earth magnetic field are reduced). Active detectors, providing time information, that can easily select data from different orbital sections, are the ones best fulfilling the requirements for these kinds of measurements. The exploitation of the radiation measurements performed in the ISS by all the available instruments is therefore mandatory to provide the largest possible database to the scientific community, to be merged with detailed Computer Aided Design (CAD) models, in the quest for a full model validation. While some efforts in comparing results from multiple active detectors have been attempted, a thorough study of a procedure to merge data in a single data matrix in order to provide the best validation set for radiation environment models has never been attempted. The aim of this paper is to provide such a procedure, to apply it to two of the most performing active detector systems in the ISS: the Anomalous Long Term Effects in Astronauts (ALTEA

  13. X-ray radiation detectors of ``scintillator-photoreceiving device type'' for industrial digital radiography with improved spatial resolution

    NASA Astrophysics Data System (ADS)

    Ryzhykov, V. D.; Lysetska, O. K.; Opolonin, O. D.; Kozin, D. N.

    2003-06-01

    Main types of photoreceivers used in X-ray digital radiography systems are luminescent screens that transfer the optical image onto charge collection instruments, which require cooling, and semiconductor silicon detectors, which limit the contrast sensitivity. We have developed and produced X-ray radiation detectors of "scintillator-photoreceiving device" (S-PRD) type, which are integrally located on the inverse side of the photodiode (PD). The receiving-converting circuit (RCC) is designed for data conversion into digital form and their input into PC. Software is provided for RCC control and image visualization. Main advantages of these detectors are high industrial resolution (3-5 line pairs per mm), detecting activity up to 20 μm, controlled sensitivity, low weight and small size, imaging low (0.1-0.3 mrad) object dose in real time. In this work, main characteristics of 32-, 64- and 1024-channel detectors of S-PRD type were studied and compared for X-ray sensitivity with S-PD detectors. Images of the tested objects have been obtained. Recommendations are given on the use of different scintillation materials, depending upon the purpose of a digital radiographic system. The detectors operate in a broad energy range of ionizing radiation, hence the size of the controlled object is not limited. The system is sufficiently powerful to ensure frontal (through two walls) observation of pipelines with wall thickness up to 10 cm.

  14. Wire chamber radiation detector with discharge control

    DOEpatents

    Perez-Mendez, Victor; Mulera, Terrence A.

    1984-01-01

    A wire chamber radiation detector (11) has spaced apart parallel electrodes (16) and grids (17, 18, 19) defining an ignition region (21) in which charged particles (12) or other ionizing radiations initiate brief localized avalanche discharges (93) and defining an adjacent memory region (22) in which sustained glow discharges (94) are initiated by the primary discharges (93). Conductors (29, 32) of the grids (18, 19) at each side of the memory section (22) extend in orthogonal directions enabling readout of the X-Y coordinates of locations at which charged particles (12) were detected by sequentially transmitting pulses to the conductors (29) of one grid (18) while detecting transmissions of the pulses to the orthogonal conductors (36) of the other grid (19) through glow discharges (94). One of the grids (19) bounding the memory region (22) is defined by an array of conductive elements (32) each of which is connected to the associated readout conductor (36) through a separate resistance (37). The wire chamber (11) avoids ambiguities and imprecisions in the readout of coordinates when large numbers of simultaneous or near simultaneous charged particles (12) have been detected. Down time between detection periods and the generation of radio frequency noise are also reduced.

  15. Radiation measurement platform for balloon flights based on the TriTel silicon detector telescope

    NASA Astrophysics Data System (ADS)

    Zabori, Balazs; Hirn, Attila; Pazmandi, Tamas; Apathy, Istvan; Szanto, Peter; Deme, Sandor

    Several measurements have been performed on the cosmic radiation field from the surface of the Earth up to the maximum altitudes of research airplanes. However the cosmic radiation field is not well known between 15 km and 30 km. Our experiment idea based on to study the radiation environment in the stratosphere. The main technical goals of our experiment were to test at first time the TriTel 3D silicon detector telescope system for future ISS missons and to develop a balloon technology platform for advanced cosmic radiation and dosimetric measurements. The main scientific goals were to give an assessment of the cosmic radiation field at the altitude of the BEXUS balloons, to use the TriTel system to determine dosimetric and radiation quantities during the ballon flight and to intercompare the TriTel and Pille results to provide a correction factor definition method for the Pille ISS measurements. To fulfil the scientific and technological objectives several different dosimeter systems were included in the experiment: an advanced version of the TriTel silicon detector telescope, Geiger-Müller counters, Pille passive thermoluminescent dosimeters and Solid State Nuclear Track Detectors. The experiment was built by students from Hungarian universities and flew on board the BEXUS stratospheric balloon in Northern Sweden (from ESRANGE Space Center). The float altitude was approximately 28.6 km and the total flight time was about 4 hours. The active instruments measured in real time and the ground team received the collected data continuously during the mission. The main technical goals were received since the operation of the TriTel experienced no failures and the experiment worked as it expected. This paper presents the scientific goals and results. From the TriTel measurements the deposited energy spectra, the Linear Energy Transfer spectra, the average quality factor of the cosmic radiation as well as the absorbed dose and the dose equivalent were determined for the

  16. Ambient temperature cadmium zinc telluride radiation detector and amplifier circuit

    DOEpatents

    McQuaid, James H.; Lavietes, Anthony D.

    1998-05-29

    A low noise, low power consumption, compact, ambient temperature signal amplifier for a Cadmium Zinc Telluride (CZT) radiation detector. The amplifier can be used within a larger system (e.g., including a multi-channel analyzer) to allow isotopic analysis of radionuclides in the field. In one embodiment, the circuit stages of the low power, low noise amplifier are constructed using integrated circuit (IC) amplifiers , rather than discrete components, and include a very low noise, high gain, high bandwidth dual part preamplification stage, an amplification stage, and an filter stage. The low noise, low power consumption, compact, ambient temperature amplifier enables the CZT detector to achieve both the efficiency required to determine the presence of radio nuclides and the resolution necessary to perform isotopic analysis to perform nuclear material identification. The present low noise, low power, compact, ambient temperature amplifier enables a CZT detector to achieve resolution of less than 3% full width at half maximum at 122 keV for a Cobalt-57 isotope source. By using IC circuits and using only a single 12 volt supply and ground, the novel amplifier provides significant power savings and is well suited for prolonged portable in-field use and does not require heavy, bulky power supply components.

  17. Ambient temperature cadmium zinc telluride radiation detector and amplifier circuit

    DOEpatents

    McQuaid, J.H.; Lavietes, A.D.

    1998-05-26

    A low noise, low power consumption, compact, ambient temperature signal amplifier for a Cadmium Zinc Telluride (CZT) radiation detector is disclosed. The amplifier can be used within a larger system (e.g., including a multi-channel analyzer) to allow isotopic analysis of radionuclides in the field. In one embodiment, the circuit stages of the low power, low noise amplifier are constructed using integrated circuit (IC) amplifiers , rather than discrete components, and include a very low noise, high gain, high bandwidth dual part preamplification stage, an amplification stage, and an filter stage. The low noise, low power consumption, compact, ambient temperature amplifier enables the CZT detector to achieve both the efficiency required to determine the presence of radionuclides and the resolution necessary to perform isotopic analysis to perform nuclear material identification. The present low noise, low power, compact, ambient temperature amplifier enables a CZT detector to achieve resolution of less than 3% full width at half maximum at 122 keV for a Cobalt-57 isotope source. By using IC circuits and using only a single 12 volt supply and ground, the novel amplifier provides significant power savings and is well suited for prolonged portable in-field use and does not require heavy, bulky power supply components. 9 figs.

  18. Development of a stable and sensitive semiconductor detector by using a mixture of lead(II) iodide and lead monoxide for NDT radiation dose detection

    NASA Astrophysics Data System (ADS)

    Heo, Y. J.; Kim, K. T.; Han, M. J.; Moon, C. W.; Kim, J. E.; Park, J. K.; Park, S. K.

    2018-03-01

    Recently, high-energy radiation has been widely used in various industrial fields, including the medical industry, and increasing research efforts have been devoted to the development of radiation detectors to be used with high-energy radiation. In particular, nondestructive industrial applications use high-energy radiation for ships and multilayered objects for accurate inspection. Therefore, it is crucial to verify the accuracy of radiation dose measurements and evaluate the precision and reproducibility of the radiation output dose. Representative detectors currently used for detecting the dose in high-energy regions include Si diodes, diamond diodes, and ionization chambers. However, the process of preparing these detectors is complex in addition to the processes of conducting dosimetric measurements, analysis, and evaluation. Furthermore, the minimum size that can be prepared for a detector is limited. In the present study, the disadvantages of original detectors are compensated by the development of a detector made of a mixture of polycrystalline PbI2 and PbO powder, which are both excellent semiconducting materials suitable for detecting high-energy gamma rays and X-rays. The proposed detector shows characteristics of excellent reproducibility and stable signal detection in response to the changes in energy, and was analyzed for its applicability. Moreover, the detector was prepared through a simple process of particle-in-binder to gain control over the thickness and meet the specific value designated by the user. A mixture mass ratio with the highest reproducibility was determined through reproducibility testing with respect to changes in the photon energy. The proposed detector was evaluated for its detection response characteristics with respect to high-energy photon beam, in terms of dose-rate dependence, sensitivity, and linearity evaluation. In the reproducibility assessment, the detector made with 15 wt% PbO powder showed the best characteristics of 0

  19. Radiation hardness assessment of the charge-integrating hybrid pixel detector JUNGFRAU 1.0 for photon science

    NASA Astrophysics Data System (ADS)

    Jungmann-Smith, J. H.; Bergamaschi, A.; Brückner, M.; Cartier, S.; Dinapoli, R.; Greiffenberg, D.; Jaggi, A.; Maliakal, D.; Mayilyan, D.; Medjoubi, K.; Mezza, D.; Mozzanica, A.; Ramilli, M.; Ruder, Ch.; Schädler, L.; Schmitt, B.; Shi, X.; Tinti, G.

    2015-12-01

    JUNGFRAU (adJUstiNg Gain detector FoR the Aramis User station) is a two-dimensional hybrid pixel detector for photon science applications in free electron lasers, particularly SwissFEL, and synchrotron light sources. JUNGFRAU is an automatic gain switching, charge-integrating detector which covers a dynamic range of more than 104 photons of an energy of 12 keV with a good linearity, uniformity of response, and spatial resolving power. The JUNGFRAU 1.0 application-specific integrated circuit (ASIC) features a 256 × 256 pixel matrix of 75 × 75 μm2 pixels and is bump-bonded to a 320 μm thick Si sensor. Modules of 2 × 4 chips cover an area of about 4 × 8 cm2. Readout rates in excess of 2 kHz enable linear count rate capabilities of 20 MHz (at 12 keV) and 50 MHz (at 5 keV). The tolerance of JUNGFRAU to radiation is a key issue to guarantee several years of operation at free electron lasers and synchrotrons. The radiation hardness of JUNGFRAU 1.0 is tested with synchrotron radiation up to 10 MGy of delivered dose. The effect of radiation-induced changes on the noise, baseline, gain, and gain switching is evaluated post-irradiation for both the ASIC and the hybridized assembly. The bare JUNGFRAU 1.0 chip can withstand doses as high as 10 MGy with minor changes to its noise and a reduction in the preamplifier gain. The hybridized assembly, in particular the sensor, is affected by the photon irradiation which mainly shows as an increase in the leakage current. Self-healing of the system is investigated during a period of 11 weeks after the delivery of the radiation dose. Annealing radiation-induced changes by bake-out at 100 °C is investigated. It is concluded that the JUNGFRAU 1.0 pixel is sufficiently radiation-hard for its envisioned applications at SwissFEL and synchrotron beam lines.

  20. Towards radiation hard converter material for SiC-based fast neutron detectors

    NASA Astrophysics Data System (ADS)

    Tripathi, S.; Upadhyay, C.; Nagaraj, C. P.; Venkatesan, A.; Devan, K.

    2018-05-01

    In the present work, Geant4 Monte-Carlo simulations have been carried out to study the neutron detection efficiency of the various neutron to other charge particle (recoil proton) converter materials. The converter material is placed over Silicon Carbide (SiC) in Fast Neutron detectors (FNDs) to achieve higher neutron detection efficiency as compared to bare SiC FNDs. Hydrogenous converter material such as High-Density Polyethylene (HDPE) is preferred over other converter materials due to the virtue of its high elastic scattering reaction cross-section for fast neutron detection at room temperature. Upon interaction with fast neutrons, hydrogenous converter material generates recoil protons which liberate e-hole pairs in the active region of SiC detector to provide a detector signal. The neutron detection efficiency offered by HDPE converter is compared with several other hydrogenous materials viz., 1) Lithium Hydride (LiH), 2) Perylene, 3) PTCDA . It is found that, HDPE, though providing highest efficiency among various studied materials, cannot withstand high temperature and harsh radiation environment. On the other hand, perylene and PTCDA can sustain harsh environments, but yields low efficiency. The analysis carried out reveals that LiH is a better material for neutron to other charge particle conversion with competent efficiency and desired radiation hardness. Further, the thickness of LiH has also been optimized for various mono-energetic neutron beams and Am-Be neutron source generating a neutron fluence of 109 neutrons/cm2. The optimized thickness of LiH converter for fast neutron detection is found to be ~ 500 μm. However, the estimated efficiency for fast neutron detection is only 0.1%, which is deemed to be inadequate for reliable detection of neutrons. A sensitivity study has also been done investigating the gamma background effect on the neutron detection efficiency for various energy threshold of Low-Level Discriminator (LLD). The detection

  1. RADIATION WAVE DETECTION

    DOEpatents

    Wouters, L.F.

    1960-08-30

    Radiation waves can be detected by simultaneously measuring radiation- wave intensities at a plurality of space-distributed points and producing therefrom a plot of the wave intensity as a function of time. To this end. a detector system is provided which includes a plurality of nuclear radiation intensity detectors spaced at equal radial increments of distance from a source of nuclear radiation. Means are provided to simultaneously sensitize the detectors at the instant a wave of radiation traverses their positions. the detectors producing electrical pulses indicative of wave intensity. The system further includes means for delaying the pulses from the detectors by amounts proportional to the distance of the detectors from the source to provide an indication of radiation-wave intensity as a function of time.

  2. Borner Ball Neutron Detector

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Bonner Ball Neutron Detector measures neutron radiation. Neutrons are uncharged atomic particles that have the ability to penetrate living tissues, harming human beings in space. The Bonner Ball Neutron Detector is one of three radiation experiments during Expedition Two. The others are the Phantom Torso and Dosimetric Mapping.

  3. Improved mid infrared detector for high spectral or spatial resolution and synchrotron radiation use.

    PubMed

    Faye, Mbaye; Bordessoule, Michel; Kanouté, Brahim; Brubach, Jean-Blaise; Roy, Pascale; Manceron, Laurent

    2016-06-01

    When using bright, small effective size sources, such as synchrotron radiation light beam, for broadband spectroscopy at spectral or spatial high resolution for mid-IR FTIR measurements, a marked detectivity improvement can be achieved by setting up a device matching the detector optical étendue to that of the source. Further improvement can be achieved by reducing the background unmodulated flux and other intrinsic noise sources using a lower temperature cryogen, such as liquid helium. By the combined use of cooled apertures, cold reimaging optics, filters and adapted detector polarization, and preamplification electronics, the sensitivity of a HgCdTe photoconductive IR detector can be improved by a significant factor with respect to standard commercial devices (more than one order of magnitude on average over 6-20 μm region) and the usable spectral range extended to longer wavelengths. The performances of such an optimized detector developed on the AILES Beamline at SOLEIL are presented here.

  4. Characterization of GaAs:Cr-based Timepix detector using synchrotron radiation and charged particles

    NASA Astrophysics Data System (ADS)

    Smolyanskiy, P.; Chelkov, G.; Guskov, A.; Dedovich, D.; Kozhevnikov, D.; Kruchonak, U.; Leyva Fabelo, A.; Zhemchugov, A.

    2016-12-01

    The interest in the use of high resistivity gallium arsenide compensated by chromium (GaAs:Cr) for photon detection has been growing steadily due to its numerous advantages over silicon. At the same time, the prospects of this material as a sensor for pixel detectors in nuclear and high energy physics are much less studied. In this paper we report the results of characterization of the Timepix detectors hybridized with GaAs:Cr sensors of various thickness using synchrotron radiation and various charged particles, including alphas and heavy ions. The energy and spatial resolution have been determined. Interesting features of GaAs:Cr specific to the detector response to an extremely dense energy deposit by heavy ions have been observed for the first time. The long-term stability of the detector has been evaluated based on the measurements performed over one year. Possible limitation of GaAs:Cr as a sensor for high flux X-ray imaging is discussed.

  5. Comparative dosimetry of diode and diamond detectors in electron beams for intraoperative radiation therapy.

    PubMed

    Björk, P; Knöös, T; Nilsson, P

    2000-11-01

    The aim of the present study is to examine the validity of using silicon semiconductor detectors in degraded electron beams with a broad energy spectrum and a wide angular distribution. A comparison is made with diamond detector measurements, which is the dosimeter considered to give the best results provided that dose rate effects are corrected for. Two-dimensional relative absorbed dose distributions in electron beams (6-20 MeV) for intraoperative radiation therapy (IORT) are measured in a water phantom. To quantify deviations between the detectors, a dose comparison tool that simultaneously examines the dose difference and distance to agreement (DTA) is used to evaluate the results in low- and high-dose gradient regions, respectively. Uncertainties of the experimental measurement setup (+/- 1% and +/- 0.5 mm) are taken into account by calculating a composite distribution that fails this dose-difference and DTA acceptance limit. Thus, the resulting area of disagreement should be related to differences in detector performance. The dose distributions obtained with the diode are generally in very good agreement with diamond detector measurements. The buildup region and the dose falloff region show good agreement with increasing electron energy, while the region outside the radiation field close to the water surface shows an increased difference with energy. The small discrepancies in the composite distributions are due to several factors: (a) variation of the silicon-to-water collision stopping-power ratio with electron energy, (b) a more pronounced directional dependence for diodes than for diamonds, and (c) variation of the electron fluence perturbation correction factor with depth. For all investigated treatment cones and energies, the deviation is within dose-difference and DTA acceptance criteria of +/- 3% and +/- 1 mm, respectively. Therefore, p-type silicon diodes are well suited, in the sense that they give results in close agreement with diamond detectors

  6. The Use of 3D Printing in the Development of Gaseous Radiation Detectors

    NASA Astrophysics Data System (ADS)

    Fargher, Sam; Steer, Chris; Thompson, Lee

    2018-01-01

    Fused Deposition Modelling has been used to produce a small, single wire, Iarocci-style drift tube to demonstrate the feasibility of using the Additive Manufacturing technique to produce cheap detectors, quickly. Recent technological developments have extended the scope of Additive Manufacturing, or 3D printing, to the possibility of fabricating Gaseous Radiation Detectors, such as Single Wire Proportional Counters and Time Projection Chambers. 3D printing could allow for the production of customisable, modular detectors; that can be easily created and replaced and the possibility of printing detectors on-site in remote locations and even for outreach within schools. The 3D printed drift tube was printed using Polylactic acid to produce a gas volume in the shape of an inverted triangular prism; base length of 28 mm, height 24.25 mm and tube length 145 mm. A stainless steel anode wire was placed in the centre of the tube, mid-print. P5 gas (95% Argon, 5% Methane) was used as the drift gas and a circuit was built to capacitively decouple signals from the high voltage. The signal rate and average pulse height of cosmic ray muons were measured over a range of bias voltages to characterise and prove correct operation of the printed detector.

  7. Contrast-enhanced spectral mammography based on a photon-counting detector: quantitative accuracy and radiation dose

    NASA Astrophysics Data System (ADS)

    Lee, Seungwan; Kang, Sooncheol; Eom, Jisoo

    2017-03-01

    Contrast-enhanced mammography has been used to demonstrate functional information about a breast tumor by injecting contrast agents. However, a conventional technique with a single exposure degrades the efficiency of tumor detection due to structure overlapping. Dual-energy techniques with energy-integrating detectors (EIDs) also cause an increase of radiation dose and an inaccuracy of material decomposition due to the limitations of EIDs. On the other hands, spectral mammography with photon-counting detectors (PCDs) is able to resolve the issues induced by the conventional technique and EIDs using their energy-discrimination capabilities. In this study, the contrast-enhanced spectral mammography based on a PCD was implemented by using a polychromatic dual-energy model, and the proposed technique was compared with the dual-energy technique with an EID in terms of quantitative accuracy and radiation dose. The results showed that the proposed technique improved the quantitative accuracy as well as reduced radiation dose comparing to the dual-energy technique with an EID. The quantitative accuracy of the contrast-enhanced spectral mammography based on a PCD was slightly improved as a function of radiation dose. Therefore, the contrast-enhanced spectral mammography based on a PCD is able to provide useful information for detecting breast tumors and improving diagnostic accuracy.

  8. An evaluation of the Kearny Fallout Meter (KFM), a radiation detector constructed from commonly available household materials.

    PubMed

    McDonald, J T; West, W G; Kearfott, K J

    2004-11-01

    A radiation detector constructed of common household materials was developed at Oak Ridge National Laboratory (ORNL) by Cresson H. Kearny and has been referred to as the Kearny Fallout Meter (KFM). Developed during the height of the Cold War, the KFM was intended to place a radiation meter capable of measuring fallout from nuclear weapons in the hands of every U.S. citizen. Instructions for the construction of the meter, as well as information about radiation health effects, were developed in the form of multi-page newspaper insert. Subsequently, the sensitivity of the meter was refined by a high school teacher, Dr. Paul S. Lombardi, for use in demonstrations about radiation. The meter is currently being marketed for survivalists in light of potential radiation terrorist concerns. The KFM and Lombardi's variation of it are constructed and evaluated for this work. Calibrated tests of the response and variations in response are reported. A critique of the multi-page manual is made. In addition, the suitability of using such a detector, in terms of actual ease of construction and practical sensitivity, is discussed for its use in demonstrations and introductory classes on nuclear topics.

  9. Radiation Measurements in Cruise and on Mars by the MSL Radiation Assessment Detector

    NASA Astrophysics Data System (ADS)

    Zeitlin, C. J.; Hassler, D.; Wimmer-Schweingruber, R. F.; Appel, J. K.; Boehm, E.; Boettcher, S.; Brinza, D.; Burmeister, S.; Cucinotta, F.; Ehresmann, B.; Guo, J.; Kohler, J.; Lohf, H.; Martin, C.; Posner, A.; Rafkin, S. C.; Reitz, G.; Team, M.

    2013-12-01

    The Radiation Assessment Detector (RAD) is one of ten science instruments on the Curiosity rover. The RAD team's science objectives include the measurement of radiation dose (a purely physical quantity) and dose equivalent (a derived quantity that can be related to cancer risk) on the surface of Mars. In addition, RAD acquired data for most of the cruise to Mars, from Dec. 2011 through July 2012, providing a measurement of the radiation environment under conditions similar to those expected on a human trip to Mars or other deep space destinations. The dose and dose equivalent measurements made during cruise have been published, but are presented in more detail here. Rates measured in cruise are compared to similar measurements made during Curiosity's first 269 sols on the surface of Mars. In the simplest picture, one expects rates to be a factor of two lower on the surface of a large airless body compared to free space, owing to the two-pi shielding geometry. The situation on Mars is complicated by the non-negligible shielding effects of the atmosphere, particularly in Gale Crater where diurnal variations in atmospheric column depth are significant. The diurnal variations - caused by the well-known thermal tides on Mars - result in reduced shielding of the surface in the afternoon as compared to the night and early morning hours. A major challenge in analyzing the surface data is the treatment of the background radiation dose coming from Curiosity's Radioisotope Thermoelectric Generator (RTG). Prior to launch, RAD acquired data in the full cruise configuration so that this background could be measured with only sea-level cosmic ray muons present - that is, almost all of what was measured was due to the RTG. Those effects could therefore be subtracted from the cruise measurements in a straightforward way. However, the situation on the surface is somewhat different than in cruise, in that the mass that was present above RAD - and caused scattering of particles into

  10. Semiconductor neutron detector

    DOEpatents

    Ianakiev, Kiril D [Los Alamos, NM; Littlewood, Peter B [Cambridge, GB; Blagoev, Krastan B [Arlington, VA; Swinhoe, Martyn T [Los Alamos, NM; Smith, James L [Los Alamos, NM; Sullivan, Clair J [Los Alamos, NM; Alexandrov, Boian S [Los Alamos, NM; Lashley, Jason Charles [Santa Fe, NM

    2011-03-08

    A neutron detector has a compound of lithium in a single crystal form as a neutron sensor element. The lithium compound, containing improved charge transport properties, is either lithium niobate or lithium tantalate. The sensor element is in direct contact with a monitor that detects an electric current. A signal proportional to the electric current is produced and is calibrated to indicate the neutrons sensed. The neutron detector is particularly useful for detecting neutrons in a radiation environment. Such radiation environment may, e.g. include gamma radiation and noise.

  11. SCINTILLATION EXPOSURE RATE DETECTOR

    DOEpatents

    Spears, W.G.

    1960-11-01

    A radiation detector for gamma and x rays is described. The detector comprises a scintillation crystal disposed between a tantalum shield and the input of a photomultiplier tube, the crystal and the shield cooperating so that their combined response to a given quantity of radiation at various energy levels is substantially constant.

  12. SU-E-T-167: Characterization of In-House Plastic Scintillator Detectors Array for Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, T; Liu, H; Dimofte, A

    Purpose: To characterize basic performance of plastic scintillator detectors (PSD) array designed for dosimetry of radiation therapy. Methods: An in-house PSD array has been developed by placing single point PSD into customized 2D holder. Each point PSD is a plastic scintillating fiber-based detector designed for highly accurate measurement of small radiotherapy fields used in patient plan verification and machine commissioning and QA procedures. A parallel fiber without PSD is used for Cerenkov separation by subtracting from PSD readings. Cerenkov separation was confirmed by optical spectroscopy. Alternative Cerenkov separation approaches are also investigated. The optical signal was converted to electronic signalmore » with a photodiode and then subsequently amplified. We measured its dosimetry performance, including percentage depth dose and output factor, and compared with reference ion chamber measurements. The PSD array is then placed along the radiation beam for multiple point dose measurement, representing subsets of PDD measurements, or perpendicular to the beam for profile measurements. Results: The dosimetry results of PSD point measurements agree well with reference ion chamber measurements. For percentage depth dose, the maximal differences between PSD and ion chamber results are 3.5% and 2.7% for 6MV and 15MV beams, respectively. For the output factors, PSD measurements are within 3% from ion chamber results. PDD and profile measurement with PSD array are also performed. Conclusions: The current design of multichannel PSD array is feasible for the dosimetry measurement in radiation therapy. Dose distribution along or perpendicular to the beam path could be measured. It might as well be used as range verification in proton therapy.A PS hollow fiber detector will be investigated to eliminate the Cerenkov radiation effect so that all 32 channels can be used.« less

  13. Fluorescent nuclear track detectors for alpha radiation microdosimetry.

    PubMed

    Kouwenberg, J J M; Wolterbeek, H T; Denkova, A G; Bos, A J J

    2018-06-07

    While alpha microdosimetry dates back a couple of decades, the effects of localized energy deposition of alpha particles are often still unclear since few comparative studies have been performed. Most modern alpha microdosimetry studies rely for large parts on simulations, which negatively impacts both the simplicity of the calculations and the reliability of the results. A novel microdosimetry method based on the Fluorescent Nuclear Track Detector, a versatile tool that can measure individual alpha particles at sub-micron resolution, yielding accurate energy, fluence and dose rate measurements, was introduced to address these issues. Both the detectors and U87 glioblastoma cell cultures were irradiated using an external Am241 alpha source. The alpha particle tracks measured with a Fluorescent Nuclear Track Detector were used together with high resolution 3D cell geometries images to calculate the nucleus dose distribution in the U87 glioblastoma cells. The experimentally obtained microdosimetry parameters were thereafter applied to simulations of 3D U87 cells cultures (spheroids) with various spatial distributions of isotopes to evaluate the effect of the nucleus dose distribution on the expected cell survival. The new experimental method showed good agreement with the analytically derived nucleus dose distributions. Small differences (< 5%) in the relative effectiveness were found for isotopes in the cytoplasm and on the cell membrane versus external irradiation, while isotopes located in the nucleus or on the nuclear membrane showed a substantial increase in relative effectiveness (33 - 51%). The ease-of-use, good accuracy and use of experimentally derived characteristics of the radiation field make this method superior to conventional simulation-based microdosimetry studies. Considering the uncertainties found in alpha radionuclide carriers in-vivo and in-vitro, together with the large contributions from the relative biological effectiveness and the oxygen

  14. Energy dependent response of plastic scintillation detectors to photon radiation of low to medium energy.

    PubMed

    Ebenau, Melanie; Radeck, Désirée; Bambynek, Markus; Sommer, Holger; Flühs, Dirk; Spaan, Bernhard; Eichmann, Marion

    2016-08-01

    Plastic scintillation detectors are promising candidates for the dosimetry of low- to medium-energy photons but quantitative knowledge of their energy response is a prerequisite for their correct use. The purpose of this study was to characterize the energy dependent response of small scintillation detectors (active volume <1 mm(3)) made from the commonly used plastic scintillator BC400. Different detectors made from BC400 were calibrated at a number of radiation qualities ranging from 10 to 280 kV and at a (60)Co beam. All calibrations were performed at the Physikalisch-Technische Bundesanstalt, the National Metrology Institute of Germany. The energy response in terms of air kerma, dose to water, and dose to the scintillator was determined. Conversion factors from air kerma to dose to water and to dose to the scintillator were derived from Monte Carlo simulations. In order to quantitatively describe the energy dependence, a semiempirical model known as unimolecular quenching or Birks' formula was fitted to the data and from this the response to secondary electrons generated within the scintillator material BC400 was derived. The detector energy response in terms of air kerma differs for different scintillator sizes and different detector casings. It is therefore necessary to take attenuation within the scintillator and in the casing into account when deriving the response in terms of dose to water from a calibration in terms of air kerma. The measured energy response in terms of dose to water for BC400 cannot be reproduced by the ratio of mean mass energy-absorption coefficients for polyvinyl toluene to water but shows evidence of quenching. The quenching parameter kB in Birks' formula was determined to be kB = (12.3 ± 0.9) mg MeV(-1) cm(-2). The energy response was quantified relative to the response to (60)Co which is the common radiation quality for the calibration of therapy dosemeters. The observed energy dependence could be well explained with the

  15. GaSe and GaTe anisotropic layered semiconductors for radiation detectors

    NASA Astrophysics Data System (ADS)

    Mandal, Krishna C.; Choi, Michael; Kang, Sung Hoon; Rauh, R. David; Wei, Jiuan; Zhang, Hui; Zheng, Lili; Cui, Y.; Groza, M.; Burger, A.

    2007-09-01

    High quality detector grade GaSe and GaTe single crystals have been grown by a modified vertical Bridgman technique using high purity Ga (7N) and in-house zone refined (ZR) precursor materials (Se and Te). A state-of-the-art computer model, MASTRAPP, is used to model heat and mass transfer in the Bridgman growth system and to predict the stress distribution in the as-grown crystals. The model accounts for heat transfer in the multiphase system, convection in the melt, and interface dynamics. The crystals harvested from ingots of 8-10 cm length and 2.5 cm diameter, have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectroscopy, low temperature photoluminescence (PL), atomic force microscopy (AFM), and optical absorption/transmission measurements. Single element devices up to 1 cm2 in area have been fabricated from the crystals and tested as radiation detectors by measuring current-voltage (I-V) characteristics and pulse height spectra using 241Am source. The crystals have shown high promise as nuclear detectors with their high dark resistivity (>=10 9 Ω .cm), good charge transport properties (μτ e ~ 1.4x10 -5 cm2/V and μτ h ~ 1.5x10 -5 cm2/V), and relatively good energy resolution (~4% energy resolution at 60 keV). Details of numerical modeling and simulation, detector fabrication, and testing using a 241Am energy source (60 keV) is presented in this paper.

  16. GEM detectors development for radiation environment: neutron tests and simulations

    NASA Astrophysics Data System (ADS)

    Chernyshova, Maryna; Jednoróg, Sławomir; Malinowski, Karol; Czarski, Tomasz; Ziółkowski, Adam; Bieńkowska, Barbara; Prokopowicz, Rafał; Łaszyńska, Ewa; Kowalska-Strzeciwilk, Ewa; Poźniak, Krzysztof T.; Kasprowicz, Grzegorz; Zabołotny, Wojciech; Wojeński, Andrzej; Krawczyk, Rafał D.; Linczuk, Paweł; Potrykus, Paweł; Bajdel, Barcel

    2016-09-01

    One of the requests from the ongoing ITER-Like Wall Project is to have diagnostics for Soft X-Ray (SXR) monitoring in tokamak. Such diagnostics should be focused on tungsten emission measurements, as an increased attention is currently paid to tungsten due to a fact that it became a main candidate for the plasma facing material in ITER and future fusion reactor. In addition, such diagnostics should be able to withstand harsh radiation environment at tokamak during its operation. The presented work is related to the development of such diagnostics based on Gas Electron Multiplier (GEM) technology. More specifically, an influence of neutron radiation on performance of the GEM detectors is studied both experimentally and through computer simulations. The neutron induced radioactivity (after neutron source exposure) was found to be not pronounced comparing to an impact of other secondary neutron reaction products (during the exposure).

  17. Semiconductor Radiation Detectors: Basic principles and some uses of a recent tool that has revolutionized nuclear physics are described.

    PubMed

    Goulding, F S; Stone, Y

    1970-10-16

    The past decade has seen the rapid development and exploitation of one of the most significant tools of nuclear physics, the semiconductor radiation detector. Applications of the device to the analysis of materials promises to be one of the major contributions of nuclear research to technology, and may even assist in some aspects of our environmental problems. In parallel with the development of these applications, further developments in detectors for nuclear research are taking place: the use of very thin detectors for heavyion identification, position-sensitive detectors for nuclear-reaction studies, and very pure germanium for making more satisfactory detectors for many applications suggest major future contributions to physics.

  18. Electrical delay line multiplexing for pulsed mode radiation detectors

    NASA Astrophysics Data System (ADS)

    Vinke, Ruud; Yeom, Jung Yeol; Levin, Craig S.

    2015-04-01

    Medical imaging systems are composed of a large number of position sensitive radiation detectors to provide high resolution imaging. For example, whole-body Positron Emission Tomography (PET) systems are typically composed of thousands of scintillation crystal elements, which are coupled to photosensors. Thus, PET systems greatly benefit from methods to reduce the number of data acquisition channels, in order to reduce the system development cost and complexity. In this paper we present an electrical delay line multiplexing scheme that can significantly reduce the number of readout channels, while preserving the signal integrity required for good time resolution performance. We experimented with two 4 × 4 LYSO crystal arrays, with crystal elements having 3 mm × 3 mm × 5 mm and 3 mm × 3 mm × 20 mm dimensions, coupled to 16 Hamamatsu MPPC S10931-050P SiPM elements. Results show that each crystal could be accurately identified, even in the presence of scintillation light sharing and inter-crystal Compton scatter among neighboring crystal elements. The multiplexing configuration degraded the coincidence timing resolution from ∼243 ps FWHM to ∼272 ps FWHM when 16 SiPM signals were combined into a single channel for the 4 × 4 LYSO crystal array with 3 mm × 3 mm × 20 mm crystal element dimensions, in coincidence with a 3 mm × 3 mm × 5 mm LYSO crystal pixel. The method is flexible to allow multiplexing configurations across different block detectors, and is scalable to an entire ring of detectors.

  19. Gadolinium-doped water cerenkov-based neutron and high energy gamma-ray detector and radiation portal monitoring system

    DOEpatents

    Dazeley, Steven A; Svoboda, Robert C; Bernstein, Adam; Bowden, Nathaniel

    2013-02-12

    A water Cerenkov-based neutron and high energy gamma ray detector and radiation portal monitoring system using water doped with a Gadolinium (Gd)-based compound as the Cerenkov radiator. An optically opaque enclosure is provided surrounding a detection chamber filled with the Cerenkov radiator, and photomultipliers are optically connected to the detect Cerenkov radiation generated by the Cerenkov radiator from incident high energy gamma rays or gamma rays induced by neutron capture on the Gd of incident neutrons from a fission source. The PMT signals are then used to determine time correlations indicative of neutron multiplicity events characteristic of a fission source.

  20. Active Radiation Detectors for Use in Space Beyond Low Earth Orbit: Spatial and Energy Resolution Requirements and Methods for Heavy Ion Charge Classification

    NASA Astrophysics Data System (ADS)

    McBeth, Rafe A.

    Space radiation exposure to astronauts will need to be carefully monitored on future missions beyond low earth orbit. NASA has proposed an updated radiation risk framework that takes into account a significant amount of radiobiological and heavy ion track structure information. These models require active radiation detection systems to measure the energy and ion charge Z. However, current radiation detection systems cannot meet these demands. The aim of this study was to investigate several topics that will help next generation detection systems meet the NASA objectives. Specifically, this work investigates the required spatial resolution to avoid coincident events in a detector, the effects of energy straggling and conversion of dose from silicon to water, and methods for ion identification (Z) using machine learning. The main results of this dissertation are as follows: 1. Spatial resolution on the order of 0.1 cm is required for active space radiation detectors to have high confidence in identifying individual particles, i.e., to eliminate coincident events. 2. Energy resolution of a detector system will be limited by energy straggling effects and the conversion of dose in silicon to dose in biological tissue (water). 3. Machine learning methods show strong promise for identification of ion charge (Z) with simple detector designs.

  1. Study of gain homogeneity and radiation effects of Low Gain Avalanche Pad Detectors

    NASA Astrophysics Data System (ADS)

    Gallrapp, C.; Fernández García, M.; Hidalgo, S.; Mateu, I.; Moll, M.; Otero Ugobono, S.; Pellegrini, G.

    2017-12-01

    Silicon detectors with intrinsic charge amplification implementing a n++-p+-p structure are considered as a sensor technology for future tracking and timing applications in high energy physics experiments. The performance of the intrinsic gain in Low Gain Avalanche Detectors (LGAD) after irradiation is crucial for the characterization of radiation hardness and timing properties in this technology. LGAD devices irradiated with reactor neutrons or 800 MeV protons reaching fluences of 2.3 × 1016 neq/cm2 were characterized using Transient Current Technique (TCT) measurements with red and infra-red laser pulses. Leakage current variations observed in different production lots and within wafers were investigated using Thermally Stimulated Current (TSC). Results showed that the intrinsic charge amplification is reduced with increasing fluence up to 1015 neq/cm2 which is related to an effective acceptor removal. Further relevant issues were charge collection homogeneity across the detector surface and leakage current performance before and after irradiation.

  2. Optimized mounting of a polyethylene naphthalate scintillation material in a radiation detector.

    PubMed

    Nakamura, Hidehito; Yamada, Tatsuya; Shirakawa, Yoshiyuki; Kitamura, Hisashi; Shidara, Zenichiro; Yokozuka, Takayuki; Nguyen, Philip; Kanayama, Masaya; Takahashi, Sentaro

    2013-10-01

    Polyethylene naphthalate (PEN) has great potential as a scintillation material for radiation detection. Here the optimum mounting conditions to maximize the light collection efficiency from PEN in a radiation detector are discussed. To this end, we have determined light yields emitted from irradiated PEN for various optical couplings between the substrate and the photodetector, and for various substrate surface treatments. The results demonstrate that light extraction from PEN is more sensitive to the optical couplings due to its high refractive index. We also assessed the extent of radioactive impurities in PEN as background sources and found that the impurities are equivalent to the environmental background level. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Photoemission analysis of chemically modified TlBr surfaces for improved radiation detectors

    NASA Astrophysics Data System (ADS)

    Nelson, A. J.; Lee, J.-S.; Stanford, J. A.; Grant, W. K.; Voss, L. F.; Beck, P. R.; Graff, R. T.; Swanberg, E. L.; Conway, A. M.; Nikolic, R. J.; Payne, S. A.; Kim, H.; Cirignano, L. J.; Shah, K.

    2013-09-01

    Device-grade TlBr was subjected to various chemical treatments used in room temperature radiation detector fabrication to determine the resulting surface composition and electronic structure. Samples of as polished TlBr were treated separately with 2%Br:MeOH, 10%HF, 10%HCl and 96%SOCl2 solutions. High-resolution photoemission measurements on the valence band electronic structure and Tl 4f, Br 3d, Cl 2p and S 2p core lines were used to evaluate surface chemistry. Results suggest anion substitution at the surface with subsequent shallow heterojunction formation. Surface chemistry and valence band electronic structure were further correlated with the goal of optimizing the long-term stability and radiation response.

  4. Monte Carlo study of microdosimetric diamond detectors

    NASA Astrophysics Data System (ADS)

    Solevi, Paola; Magrin, Giulio; Moro, Davide; Mayer, Ramona

    2015-09-01

    Ion-beam therapy provides a high dose conformity and increased radiobiological effectiveness with respect to conventional radiation-therapy. Strict constraints on the maximum uncertainty on the biological weighted dose and consequently on the biological weighting factor require the determination of the radiation quality, defined as the types and energy spectra of the radiation at a specific point. However the experimental determination of radiation quality, in particular for an internal target, is not simple and the features of ion interactions and treatment delivery require dedicated and optimized detectors. Recently chemical vapor deposition (CVD) diamond detectors have been suggested as ion-beam therapy microdosimeters. Diamond detectors can be manufactured with small cross sections and thin shapes, ideal to cope with the high fluence rate. However the sensitive volume of solid state detectors significantly deviates from conventional microdosimeters, with a diameter that can be up to 1000 times the height. This difference requires a redefinition of the concept of sensitive thickness and a deep study of the secondary to primary radiation, of the wall effects and of the impact of the orientation of the detector with respect to the radiation field. The present work intends to study through Monte Carlo simulations the impact of the detector geometry on the determination of radiation quality quantities, in particular on the relative contribution of primary and secondary radiation. The dependence of microdosimetric quantities such as the unrestricted linear energy L and the lineal energy y are investigated for different detector cross sections, by varying the particle type (carbon ions and protons) and its energy.

  5. Photodiode radiation hardness, lyman-alpha emitting galaxies and photon detection in liquid argon neutrino detectors

    NASA Astrophysics Data System (ADS)

    Baptista, Brian

    2013-12-01

    My dissertation is comprised of three projects: 1) studies of Lyman-alpha Emitting galaxies (LAEs), 2) radiation hardness studies of InGaAs photodiodes (PDs), and 3) scintillation photon detection in liquid argon (LAr) neutrino detectors. I began work on the project that has now become WFIRST, developing a science case that would use WFIRST after launch for the observation of LAEs. The radiation hardness of PDs was as an effort to support the WFIRST calibration team. When WFIRST was significantly delayed, I joined an R&D effort that applied my skills to work on photon detection in LAr neutrino detectors. I report results on a broadband selection method developed to detect high equivalent width (EW) LAEs. Using photometry from the CFHT-Legacy Survey Deep 2 and 3 fields, I have spectroscopically confirmed 63 z=2.5-3.5 LAEs using the WIYN/Hydra spectrograph. Using UV continuum-fitting techniques I computed properties such as EWs, internal reddening and star formation rates. 62 of my LAEs show evidence to be normal dust-free LAEs. Second, I present an investigation into the effects of ionizing proton radiation on commercial off-the-shelf InGaAs PDs. I developed a monochromator-based test apparatus that utilized NIST-calibrated reference PDs. I tested the PDs for changes to their dark current, relative responsivity as a function of wavelength, and absolute responsivity. I irradiated the test PDs using 30, 52, and 98 MeV protons at the IU Cyclotron Facility. I found the InGaAs PDs showed increased dark current as the fluence increased with no evidence of broadband response degradation at the fluences expected at an L2 orbit and a 10-year mission lifetime. Finally, I detail my efforts on technology development of both optical detector technologies and waveshifting light guide construction for LAr vacuum UV scintillation light. Cryogenic neutrino detectors use photon detection for both accelerator based science and for SNe neutrino detection and proton decay. I have

  6. Radiation hardness study of semi-insulating GaAs detectors against 5 MeV electrons

    NASA Astrophysics Data System (ADS)

    Šagátová, A.; Zaťko, B.; Nečas, V.; Sedlačková, K.; Boháček, P.; Fülöp, M.; Pavlovič, M.

    2018-01-01

    A radiation hardness study of Semi-Insulating (SI) GaAs detectors against 5 MeV electrons is described in this paper. The influence of two parameters, the accumulative absorbed dose (from 1 to 200 kGy) and the applied dose rate (20, 40 or 80 kGy/h), on detector spectrometric properties were studied. The accumulative dose has influenced all evaluated spectrometric properties and also negatively affected the detector CCE (Charge Collection Efficiency). We have observed its systematic reduction from an initial 79% before irradiation down to about 51% at maximum dose of 200 kGy. Relative energy resolution was also influenced by electron irradiation. Its degradation was obvious in the range of doses from 24 up to a maximum dose of 200 kGy, where an increase from 19% up to 31% at 200 V reverse voltage was noticed. On the other hand, a global increase of detection efficiency with accumulative absorbed dose was observed for all samples. Concerning the actual detector degradation we can assume that the tested SI GaAs detectors will be able to operate up to a dose of 300 kGy at least, when irradiated by 5 MeV electrons. The second investigated parameter of irradiation, the dose rate of chosen ranges, did not greatly alter the spectrometric properties of studied detectors.

  7. Measurement of the energy spectrum of underground muons at Gran Sasso with a transition radiation detector

    NASA Astrophysics Data System (ADS)

    MACRO Collaboration; Ambrosio, M.; Antolini, R.; Aramo, C.; Auriemma, G.; Baldini, A.; Barbarino, G. C.; Barish, B. C.; Battistoni, G.; Bellotti, R.; Bemporad, C.; Bernardini, P.; Bilokon, H.; Bisi, V.; Bloise, C.; Bower, C.; Bussino, S.; Cafagna, F.; Calicchio, M.; Campana, D.; Carboni, M.; Castellano, M.; Cecchini, S.; Cei, F.; Chiarella, V.; Choudhary, B. C.; Coutu, S.; de Benedictis, L.; de Cataldo, G.; Dekhissi, H.; de Marzo, C.; de Mitri, I.; Derkaoui, J.; de Vincenzi, M.; di Credico, A.; Erriquez, O.; Favuzzi, C.; Forti, C.; Fusco, P.; Giacomelli, G.; Giannini, G.; Giglietto, N.; Giorgini, M.; Grassi, M.; Gray, L.; Grillo, A.; Guarino, F.; Guarnaccia, P.; Gustavino, C.; Habig, A.; Hanson, K.; Heinz, R.; Huang, Y.; Iarocci, E.; Katsavounidis, E.; Kearns, E.; Kim, H.; Kyriazopoulou, S.; Lamanna, E.; Lane, C.; Levin, D. S.; Lipari, P.; Longley, N. P.; Longo, M. J.; Maaroufi, F.; Mancarella, G.; Mandrioli, G.; Manzoor, S.; Margiotta Neri, A.; Marini, A.; Martello, D.; Marzari-Chiesa, A.; Mazziotta, M. N.; Mazzotta, C.; Michael, D. G.; Mikheyev, S.; Miller, L.; Monacelli, P.; Montaruli, T.; Monteno, M.; Mufson, S.; Musser, J.; Nicoló, D.; Orth, C.; Osteria, G.; Ouchrif, M.; Palamara, O.; Patera, V.; Patrizii, L.; Pazzi, R.; Peck, C. W.; Petrera, S.; Pistilli, P.; Popa, V.; Pugliese, V.; Rainò, A.; Reynoldson, J.; Ronga, F.; Rubizzo, U.; Satriano, C.; Satta, L.; Scapparone, E.; Scholberg, K.; Sciubba, A.; Serra-Lugaresi, P.; Severi, M.; Sioli, M.; Sitta, M.; Spinelli, P.; Spinetti, M.; Spurio, M.; Steinberg, R.; Stone, J. L.; Sulak, L. R.; Surdo, A.; Tarlè, G.; Togo, V.; Ugolotti, D.; Vakili, M.; Walter, C. W.; Webb, R.

    1999-01-01

    We have measured directly the residual energy of cosmic ray muons crossing the MACRO detector at the Gran Sasso Laboratory. For this measurement we have used a transition radiation detector consisting of three identical modules, each of about 12 m^2 area, operating in the energy region from 100 GeV to 1 TeV. The results presented here were obtained with the first module collecting data for more than two years. The average single muon energy is found to be 320 +/- 4 (stat.) +/- 11 (syst.) GeV in the rock depth range 3000-6500 hg/cm^2. The results are in agreement with calculations of the energy loss of muons in the rock above the detector.

  8. Environmental Monitoring and Characterization of Radiation Sources on UF Campus Using a Large Volume NaI Detector

    NASA Astrophysics Data System (ADS)

    Bruner, Jesse A.; Gardiner, Hannah E.; Jordan, Kelly A.; Baciak, James E.

    2016-09-01

    Environmental radiation surveys are important for applications such as safety and regulations. This is especially true for areas exposed to emissions from nuclear reactors, such as the University of Florida Training Reactor (UFTR). At the University of Florida, surveys are performed using the RSX-1 NaI detector, developed by Radiation Solutions Inc. The detector uses incoming gamma rays and an Advanced Digital Spectrometer module to produce a linear energy spectrum. These spectra can then be analyzed in real time with a personal computer using the built in software, RadAssist. We report on radiation levels around the University of Florida campus using two mobile detection platforms, car-borne and cart-borne. The car-borne surveys provide a larger, broader map of campus radiation levels. On the other hand, cart-borne surveys provide a more detailed radiation map because of its ability to reach places on campus cars cannot go. Throughout the survey data, there are consistent radon decay product energy peaks in addition to other sources such as medical I-131 found in a large crowd of people. Finally, we investigate further applications of this mobile detection platform, such as tracking the Ar-41 plume emitted from the UFTR and detection of potential environmental hazards.

  9. A new transition radiation detector to detect heavy nuclei around the knee

    NASA Astrophysics Data System (ADS)

    Boyle, Patrick J.; Swordy, Simon P.; Wakely, Scott P.

    2003-02-01

    The overall cosmic ray intensity spectrum falls as a constant power law over at least 11 decades of particle energy. One of the only features in this spectrum is the slight change in power law index near 1015 eV, often called the ‘knee" of the spectrum. Accurate measurements of cosmic ray elemental abundances into this energy region are expected to reveal the origin of this feature, and possibly the nature of cosmic ray sources. The extremely low intensity of particles at these energies (a few per m2 per year) makes the detection challenging. Since only direct measurements have so far proved reliable for the accurate determination of elemental composition, a large-area, light weight, device is needed to achieve long exposures above the atmosphere either on high-altitude balloons or spacecraft. Here we report on a detector which uses the x-ray transition radiation yield from plastic foams to provide a response into the knee region for heavy elements. We use individual xenon-filled gas proportional tubes as detectors, combined with Amplex ASIC chip electronics for readout. The construction of this type of detector, and its implementation in the upcoming NASA CREAM 100 day high-altitude balloon payload is described. Also discussed is the calibration of the detector in an accelerator beam at CERN and a comparison with GEANT4 Monet Carlo simulations.

  10. Radiation dosimeter

    DOEpatents

    Fox, Richard J.

    1983-01-01

    A radiation detector readout circuit is provided which produces a radiation dose-rate readout from a detector even though the detector output may be highly energy dependent. A linear charge amplifier including an output charge pump circuit amplifies the charge signal pulses from the detector and pumps the charge into a charge storage capacitor. The discharge rate of the capacitor through a resistor is controlled to provide a time-dependent voltage which when integrated provides an output proportional to the dose-rate of radiation detected by the detector. This output may be converted to digital form for readout on a digital display.

  11. Radiation dosimeter

    DOEpatents

    Fox, R.J.

    1981-09-01

    A radiation detector readout circuit is provided which produces a radiation dose-rate readout from a detector even through the detector output may be highly energy dependent. A linear charge amplifier including an output charge pump circuit amplifies the charge signal pulses from the detector and pumps the charge into a charge storage capacitor. The discharge rate of the capacitor through a resistor is controlled to provide a time-dependent voltage which when integrated provides an output proportional to the dose-rate of radiation detected by the detector. This output may be converted to digital form for readout on a digital display.

  12. Status of diamond particle detectors

    NASA Astrophysics Data System (ADS)

    Krammer, M.; Adam, W.; Bauer, C.; Berdermann, E.; Bogani, F.; Borchi, E.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; van Eijk, B.; Fallou, A.; Fish, D.; Foulon, F.; Friedl, M.; Gan, K. K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Knöpfle, K. T.; Manfredi, P. F.; Meier, D.; Mishina, M.; LeNormand, F.; Pan, L. S.; Pernegger, H.; Pernicka, M.; Re, V.; Riester, G. L.; Roe, S.; Roff, D.; Rudge, A.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Tapper, R. J.; Tesarek, R.; Thomson, G. B.; Trawick, M.; Trischuk, W.; Turchetta, R.; Walsh, A. M.; Wedenig, R.; Weilhammer, P.; Ziock, H.; Zoeller, M.

    1998-11-01

    To continue the exciting research in the field of particle physics new accelerators and experiments are under construction. In some of these experiments, e.g. ATLAS and CMS at the Large Hadron Collider at CERN or HERA-B at DESY, the detectors have to withstand an extreme environment. The detectors must be radiation hard, provide a very fast signal, and be as thin as possible. The properties of CVD diamond allow to fulfill these requirements and make it an ideal material for the detectors close to the interaction region of these experiments, i.e. the vertex detectors or the inner trackers. The RD42 collaboration is developing diamond detectors for these applications. The program of RD42 includes the improvement of the charge collection properties of CVD diamond, the study of the radiation hardness and the development of low-noise radiation hard readout electronics. An overview of the progress achieved during the last years will be given.

  13. Thermodynamics of post-growth annealing of cadmium zinc telluride nuclear radiation detectors

    NASA Astrophysics Data System (ADS)

    Adams, Aaron Lee

    Nuclear Radiation Detectors are used for detecting, tracking, and identifying radioactive materials which emit high-energy gamma and X-rays. The use of Cadmium Zinc Telluride (CdZnTe) detectors is particularly attractive because of the detector's ability to operate at room temperature and measure the energy spectra of gamma-ray sources with a high resolution, typically less than 1% at 662 keV. While CdZnTe detectors are acceptable imperfections in the crystals limit their full market potential. One of the major imperfections are Tellurium inclusions generated during the crystal growth process by the retrograde solubility of Tellurium and Tellurium-rich melt trapped at the growth interface. Tellurium inclusions trap charge carriers generated by gamma and X-ray photons and thus reduce the portion of generated charge carriers that reach the electrodes for collection and conversion into a readable signal which is representative of the ionizing radiation's energy and intensity. One approach in resolving this problem is post-growth annealing which has the potential of removing the Tellurium inclusions and associated impurities. The goal of this project is to use experimental techniques to study the thermodynamics of Tellurium inclusion migration in post-growth annealing of CdZnTe nuclear detectors with the temperature gradient zone migration (TGZM) technique. Systematic experiments will be carried out to provide adequate thermodynamic data that will inform the engineering community of the optimum annealing parameters. Additionally, multivariable correlations that involve the Tellurium diffusion coefficient, annealing parameters, and CdZnTe properties will be analyzed. The experimental approach will involve systematic annealing experiments (in Cd vapor overpressure) on different sizes of CdZnTe crystals at varying temperature gradients ranging from 0 to 60°C/mm (used to migrate the Tellurium inclusion to one side of the crystal), and at annealing temperatures ranging

  14. The CBM RICH detector

    NASA Astrophysics Data System (ADS)

    Adamczewski-Musch, J.; Akishin, P.; Becker, K.-H.; Belogurov, S.; Bendarouach, J.; Boldyreva, N.; Chernogorov, A.; Deveaux, C.; Dobyrn, V.; Dürr, M.; Eschke, J.; Förtsch, J.; Heep, J.; Höohne, C.; Kampert, K.-H.; Kochenda, L.; Kopfer, J.; Kravtsov, P.; Kres, I.; Lebedev, S.; Lebedeva, E.; Leonova, E.; Linev, S.; Mahmoud, T.; Michel, J.; Miftakhov, N.; Niebur, W.; Ovcharenko, E.; Pauly, C.; Pfeifer, D.; Querchfeld, S.; Rautenberg, J.; Reinecke, S.; Riabov, Y.; Roshchin, E.; Samsonov, V.; Tarasenkova, O.; Traxler, M.; Ugur, C.; Vznuzdaev, E.; Vznuzdaev, M.

    2016-05-01

    The CBM RICH detector will use CO2 as radiator gas, focussing glass mirrors with Al+MgF2 reflective and protective coating and Hamamatsu H12700 MAPMTs as photon detectors. The detector will serve for electron to pion separation up to momenta of 8 GeV/c and thus enable in CBM the measurement of electromagnetic radiation from the early and dense fireball in A+A collisions at SIS 100. In this article, the current status of the CBM RICH development will be presented including new measurements of the radiation hardness of the H12700 MAPMT and WLS coatings with p-terphenyl, the new concept for the readout electronics, and optimizations ongoing with respect to the mirror mount structure and overall geometry. Prior to the usage in CBM, part of the already ordered MAPMTs will be used to upgrade the HADES RICH detector for a new measurement campaign at SIS 18 from 2018-2020.

  15. Radiation hard blocked tunneling band {GaAs}/{AlGaAs} superlattice long wavelength infrared detectors

    NASA Astrophysics Data System (ADS)

    Wu, C. S.; Wen, C. P.; Reiner, P.; Tu, C. W.; Hou, H. Q.

    1996-09-01

    We have developed a novel multiple quantum well (MQW) long wavelength infrared (LWIR) detector which can operate in a photovoltaic detection mode with an intrinsic event discrimination (IED) capability. The detector was constructed using the {GaAs}/{AlGaAs} MQW technology to form a blocked tunneling band superlattice structure with a 10.2 micron wavelength and 2.2 micron bandwidth. The detector exhibited Schottky junction and photovoltaic detection characteristics with extremely low dark current and low noise as a result of a built-in tunneling current blocking layer structure. In order to enhance quantum efficiency, a built-in electric field was created by grading the doping concentration of each quantum well in the MQW region. The peak responsivity of the detector was 0.4 amps/W with a measured detectivity of 6.0 × 10 11 Jones. The external quantum efficiency was measured to be 4.4%. The detector demonstrated an excellent intrinsic event discrimination capability due to the presence of a p-type GaAs hole collector layer, which was grown on top of the n-type electron emitter region of the MQW detector. The best results show that an infrared signal which is as much as 100 times smaller than coincident nuclear radiation induced current can be distinguished and extracted from the noise signal. With this hole collector structure, our detector also demonstrated two-color detection.

  16. Deconvolving the temporal response of photoelectric x-ray detectors for the diagnosis of pulsed radiations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Shiyang; Song, Peng; Pei, Wenbing

    2013-09-15

    Based on the conjugate gradient method, a simple algorithm is presented for deconvolving the temporal response of photoelectric x-ray detectors (XRDs) to reconstruct the resolved time-dependent x-ray fluxes. With this algorithm, we have studied the impact of temporal response of XRD on the radiation diagnosis of hohlraum heated by a short intense laser pulse. It is found that the limiting temporal response of XRD not only postpones the rising edge and peak position of x-ray pulses but also smoothes the possible fluctuations of radiation fluxes. Without a proper consideration of the temporal response of XRD, the measured radiation flux canmore » be largely misinterpreted for radiation pulses of a hohlraum heated by short or shaped laser pulses.« less

  17. Effects of 1-MeV gamma radiation on a multi-anode microchannel array detector tube

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.; Bybee, R. L.

    1979-01-01

    A multianode microchannel array (MAMA) detector tube without a photocathode was exposed to a total dose of 1,000,000 rads of 1-MeV gamma radiation from a Co-60 source. The high-voltage characteristic of the microchannel array plate, average dark count, gain, and resolution of pulse height distribution characteristics showed no degradation after this total dose. In fact, the degassing of the microchannels induced by the high radiation flux had the effect of cleaning up the array plate and improving its characteristics.

  18. X-ray photoemission analysis of chemically modified TlBr surfaces for improved radiation detectors

    DOE PAGES

    Nelson, A. J.; Voss, L. F.; Beck, P. R.; ...

    2013-01-12

    We subjected device-grade TlBr to various chemical treatments used in room temperature radiation detector fabrication to determine the resulting surface composition and electronic structure. As-polished TlBr was treated separately with HCl, SOCl 2, Br:MeOH and HF solutions. High-resolution photoemission measurements on the valence band electronic structure and Tl 4f, Br 3d, Cl 2p and S 2p core lines were used to evaluate surface chemistry and shallow heterojunction formation. Surface chemistry and valence band electronic structure were correlated with the goal of optimizing the long-term stability and radiation response.

  19. X-ray photoemission analysis of chemically modified TlBr surfaces for improved radiation detectors

    NASA Astrophysics Data System (ADS)

    Nelson, A. J.; Voss, L. F.; Beck, P. R.; Graff, R. T.; Conway, A. M.; Nikolic, R. J.; Payne, S. A.; Lee, J.-S.; Kim, H.; Cirignano, L.; Shah, K.

    2013-04-01

    Device-grade TlBr was subjected to various chemical treatments used in room temperature radiation detector fabrication to determine the resulting surface composition and electronic structure. As-polished TlBr was treated separately with HCl, SOCl2, Br:MeOH, and HF solutions. High-resolution photoemission measurements on the valence band electronic structure and Tl 4f, Br 3d, Cl 2p, and S 2p core lines were used to evaluate surface chemistry and shallow heterojunction formation. Surface chemistry and valence band electronic structure were correlated with the goal of optimizing the long-term stability and radiation response.

  20. Light scattering apparatus and method for determining radiation exposure to plastic detectors

    DOEpatents

    Hermes, Robert E.

    2002-01-01

    An improved system and method of analyzing cumulative radiation exposure registered as pits on track etch foils of radiation dosimeters. The light scattering apparatus and method of the present invention increases the speed of analysis while it also provides the ability to analyze exposure levels beyond that which may be properly measured with conventional techniques. Dosimeters often contain small plastic sheets that register accumulated damage when exposed to a radiation source. When the plastic sheet from the dosimeter is chemically etched, a track etch foil is produced wherein pits or holes are created in the plastic. The number of these pits, or holes, per unit of area (pit density) correspond to the amount of cumulative radiation exposure which is being optically measured by the apparatus. To measure the cumulative radiation exposure of a track etch foil a high intensity collimated beam is passed through foil such that the pits and holes within the track etch foil cause a portion of the impinging light beam to become scattered upon exit. The scattered light is focused with a lens, while the primary collimated light beam (unscattered light) is blocked. The scattered light is focused by the lens onto an optical detector capable of registering the optical power of the scattered light which corresponds to the cumulative radiation to which the track etch foil has been exposed.

  1. Radiation detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taleyarkhan, Rusi P.

    Alpha particle detecting devices are disclosed that have a chamber that can hold a fluid in a tensioned metastable state. The chamber is tuned with a suitable fluid and tension such that alpha emitting materials such as radon and one or more of its decay products can be detected. The devices can be portable and can be placed in areas, such as rooms in dwellings or laboratories and used to measure radon in these areas, in situ and in real time. The disclosed detectors can detect radon at and below 4 pCi/L in air; also, at and below 4,000 pCi/Lmore » or 300 pCi/L in water.« less

  2. Flame Detector

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Scientific Instruments, Inc. has now developed a second generation, commercially available instrument to detect flames in hazardous environments, typically refineries, chemical plants and offshore drilling platforms. The Model 74000 detector incorporates a sensing circuit that detects UV radiation in a 100 degree conical field of view extending as far as 250 feet from the instrument. It operates in a bandwidth that makes it virtually 'blind' to solar radiation while affording extremely high sensitivity to ultraviolet flame detection. A 'windowing' technique accurately discriminates between background UV radiation and ultraviolet emitted from an actual flame, hence the user is assured of no false alarms. Model 7410CP is a combination controller and annunciator panel designed to monitor and control as many as 24 flame detectors. *Model 74000 is no longer being manufactured.

  3. First results of experiments with a medical one-coordinate X-ray detector on synchrotron radiation of VEPP-4

    NASA Astrophysics Data System (ADS)

    Dementyev, E. N.; Dovga, E. Ya.; Kulipanov, G. N.; Medvedko, A. S.; Mezentsev, N. A.; Pindyurin, V. F.; Sheromov, M. A.; Skrinsky, A. N.; Sokolov, A. S.; Ushakov, V. A.; Zagorodnikov, E. I.; Kaidorin, A. G.; Neugodov, Yu. V.

    1986-05-01

    The first results of studying the performance of a fast X-ray one-coordinate detector on the SR beam from VEPP-4 are presented. The detector consists of 128 independent channels, each being a scintillation counter on the basis of NaI(Tl) crystals. The spatial resolution of the detector constitutes 1.5 mm and its speed of response is 128 × 1 MHz. The main purpose of the detector is to examine the human circulatory system by the method of difference angiography at an energy of quanta corresponding to the K-absorption edge of iodine (33.2 keV). The first results on radiation exposure of the blood vessels of a live dog with a spatial resolution of 0.75 mm are given.

  4. [The use of a detector of the extremely weak radiation as a variometer of gravitation field].

    PubMed

    Gorshkov, E S; Bondarenko, E G; Shapovalov, S N; Sokolovskiĭ, V V; Troshichev, O A

    2001-01-01

    It was shown that the detector of extremely weak radiation with selectively increased sensitivity to the nonelectromagnetic, including the gravitational component of the spectrum of active physical fields can be used as the basis for constructing a variometer of gravitational field of a new type.

  5. Calibration of solid state nuclear track detectors at high energy ion beams for cosmic radiation measurements: HAMLET results

    NASA Astrophysics Data System (ADS)

    Szabó, J.; Pálfalvi, J. K.

    2012-12-01

    The MATROSHKA experiments and the related HAMLET project funded by the European Commission aimed to study the dose burden of the crew working on the International Space Station (ISS). During these experiments a human phantom equipped with several thousands of radiation detectors was exposed to cosmic rays inside and outside the ISS. Besides the measurements realized in Earth orbit, the HAMLET project included also a ground-based program of calibration and intercomparison of the different detectors applied by the participating groups using high-energy ion beams. The Space Dosimetry Group of the Centre for Energy Research (formerly Atomic Energy Research Institute) participated in these experiments with passive solid state nuclear track detectors (SSNTDs). The paper presents the results of the calibration experiments performed in the years 2008-2011 at the Heavy Ion Medical Accelerator (HIMAC) of the National Institute of Radiological Sciences (NIRS), Chiba, Japan. The data obtained serve as update and improvement for the previous calibration curves which are necessary for the evaluation of the SSNTDs exposed in unknown space radiation fields.

  6. Neutron Radiation Shielding For The NIF Streaked X-Ray Detector (SXD) Diagnostic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, P; Holder, J; Young, B

    2006-11-02

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) is preparing for the National Ignition Campaign (NIC) scheduled in 2010. The NIC is comprised of several ''tuning'' physics subcampaigns leading up to a demonstration of Inertial Confinement Fusion (ICF) ignition. In some of these experiments, time-resolved x-ray imaging of the imploding capsule may be required to measure capsule trajectory (shock timing) or x-ray ''bang-time''. A capsule fueled with pure tritium (T) instead of a deutriun-tritium (DT) mixture is thought to offer useful physics surrogacy, with reduced yields of up to 5e14 neutrons. These measurements will require the usemore » of the NIF streak x-ray detector (SXD). The resulting prompt neutron fluence at the planned SXD location ({approx}1.7 m from the target) would be {approx}1.4e9/cm{sup 2}. Previous measurements suggest the onset of significant background at a neutron fluence of {approx} 1e8/cm{sup 2}. The radiation damage and operational upsets which starts at {approx}1e8 rad-Si/sec must be factored into an integrated experimental campaign plan. Monte Carlo analyses were performed to predict the neutron and gamma/x-ray fluences and radiation doses for the proposed diagnostic configuration. A possible shielding configuration is proposed to mitigate radiation effects. The primary component of this shielding is an 80 cm thickness of Polyethylene (PE) between target chamber center (TCC) and the SXD diagnostic. Additionally, 6-8 cm of PE around the detector provide from the large number of neutrons that scatter off the inside of the target chamber. This proposed shielding configuration reduces the high-energy neutron fluence at the SXD by approximately a factor {approx}50.« less

  7. Broadband optical radiation detector

    NASA Technical Reports Server (NTRS)

    Gupta, A.; Hong, S. D.; Moacanin, J. (Inventor)

    1981-01-01

    A method and apparatus for detecting optical radiation by optically monitoring temperature changes in a microvolume caused by absorption of the optical radiation to be detected is described. More specifically, a thermal lens forming material is provided which has first and second opposite, substantially parallel surfaces. A reflective coating is formed on the first surface, and a radiation absorbing coating is formed on the reflective coating. Chopped, incoming optical radiation to be detected is directed to irradiate a small portion of the radiation absorbing coating. Heat generated in this small area is conducted to the lens forming material through the reflective coating, thereby raising the temperature of a small portion of the lens forming material and causing a thermal lens to be formed therein.

  8. Advantages and Limits of 4H-SIC Detectors for High- and Low-Flux Radiations

    NASA Astrophysics Data System (ADS)

    Sciuto, A.; Torrisi, L.; Cannavò, A.; Mazzillo, M.; Calcagno, L.

    2017-11-01

    Silicon carbide (SiC) detectors based on Schottky diodes were used to monitor low and high fluxes of photons and ions. An appropriate choice of the epilayer thickness and geometry of the surface Schottky contact allows the tailoring and optimizing the detector efficiency. SiC detectors with a continuous front electrode were employed to monitor alpha particles in a low-flux regime emitted by a radioactive source with high energy (>5.0 MeV) or generated in an ion implanter with sub-MeV energy. An energy resolution value of 0.5% was measured in the high energy range, while, at energy below 1.0 MeV, the resolution becomes 10%; these values are close to those measured with a traditional silicon detector. The same SiC devices were used in a high-flux regime to monitor high-energy ions, x-rays and electrons of the plasma generated by a high-intensity (1016 W/cm2) pulsed laser. Furthermore, SiC devices with an interdigit Schottky front electrode were proposed and studied to overcome the limits of the such SiC detectors in the detection of low-energy (˜1.0 keV) ions and photons of the plasmas generated by a low-intensity (1010 W/cm2) pulsed laser. SiC detectors are expected to be a powerful tool for the monitoring of radioactive sources and ion beams produced by accelerators, for a complete characterization of radiations emitted from laser-generated plasmas at high and low temperatures, and for dosimetry in a radioprotection field.

  9. Mars science laboratory radiation assessment detector (MSL/RAD) modeling workshop proceedings

    NASA Astrophysics Data System (ADS)

    Hassler, Donald M.; Norbury, John W.; Reitz, Günther

    2017-08-01

    The Radiation Assessment Detector (RAD) (Hassler et al., 2012; Zeitlin et al., 2016) onboard the Mars Science Laboratory (MSL) Curiosity rover (Grotzinger et al., 2012) is a sophisticated charged and neutral particle radiation analyzer developed by an international team of scientists and engineers from Southwest Research Institute in Boulder, Colorado as the leading institution, the University of Kiel and the German Aerospace Center in Cologne, Germany. RAD is a compact, powerful instrument capable of distinguishing between ionizing particles and neutral particles and providing neutron, gamma, and charged particle spectra from protons to iron as well as absorbed dose measurements in tissue-equivalent material. During the 6 month cruise to Mars, inside the MSL spacecraft, RAD served as a proxy to validate models of the radiation levels expected inside a spacecraft that future astronauts might experience (Zeitlin et al., 2013). RAD was turned on one day after the landing on August 7, 2012, exactly 100 years to the day after the discovery of cosmic rays on Earth by Victor Hess. These measurements are the first of their kind on the surface of another planet (Hassler et al., 2014), and the radiation data collected by RAD on the surface of Mars will inform projections of crew health risks and the design of protective surface habitats and other countermeasures for future human missions in the coming decades.

  10. Evaluation of the UFXC32k photon-counting detector for pump-probe experiments using synchrotron radiation.

    PubMed

    Koziol, Anna; Bordessoule, Michel; Ciavardini, Alessandra; Dawiec, Arkadiusz; Da Silva, Paulo; Desjardins, Kewin; Grybos, Pawel; Kanoute, Brahim; Laulhe, Claire; Maj, Piotr; Menneglier, Claude; Mercere, Pascal; Orsini, Fabienne; Szczygiel, Robert

    2018-03-01

    This paper presents the performance of a single-photon-counting hybrid pixel X-ray detector with synchrotron radiation. The camera was evaluated with respect to time-resolved experiments, namely pump-probe-probe experiments held at SOLEIL. The UFXC camera shows very good energy resolution of around 1.5 keV and allows the minimum threshold setting to be as low as 3 keV keeping the high-count-rate capabilities. Measurements of a synchrotron characteristic filling mode prove the proper separation of an isolated bunch of photons and the usability of the detector in time-resolved experiments.

  11. Multiple cell radiation detector system, and method, and submersible sonde

    DOEpatents

    Johnson, Larry O.; McIsaac, Charles V.; Lawrence, Robert S.; Grafwallner, Ervin G.

    2002-01-01

    A multiple cell radiation detector includes a central cell having a first cylindrical wall providing a stopping power less than an upper threshold; an anode wire suspended along a cylindrical axis of the central cell; a second cell having a second cylindrical wall providing a stopping power greater than a lower threshold, the second cylindrical wall being mounted coaxially outside of the first cylindrical wall; a first end cap forming a gas-tight seal at first ends of the first and second cylindrical walls; a second end cap forming a gas-tight seal at second ends of the first and second cylindrical walls; and a first group of anode wires suspended between the first and second cylindrical walls.

  12. SU-E-I-107: Suitability of Various Radiation Detectors Used in Radiation Therapy for X-Ray Dosimetry in Computed Tomography.

    PubMed

    Liebmann, M; Poppe, B; von Boetticher, H

    2012-06-01

    Assessment of suitability for X-ray dosimetry in computed tomography of various ionization chambers, diodes and two-dimensional detector arrays primarily used in radiation therapy. An Oldelft X-ray simulation unit was used to irradiate PTW 60008, 60012 dosimetry diodes, PTW 23332, 31013, 31010, 31006 axial symmetrical ionization chambers, PTW 23343, 34001 plane parallel ionization chambers and PTW Starcheck and 2D-Array seven29 as well as a prototype Farmer chamber with a copper wall. Peak potential was varied from 50 kV up to 125 kV and beam qualities were quantified through half-value-layer measurements. Energy response was investigated free in air as well as in 2 cm depth in a solid water phantom and refers to a manufacturer calibrated PTW 60004 diode for kV-dosimetry. The thimble ionization chambers PTW 31010, 31013, the uncapsuled diode PTW 60012 and the PTW 2D-Array seven29 exhibit an energy response deviation in the investigated energy region of approximately 10% or lower thus proving good usability in X-ray dosimetry if higher spatial resolution is needed or rotational irradiations occur. It could be shown that in radiation therapy routinely used detectors are usable in a much lower energy region. The rotational symmetry is of advantage in computed tomography dosimetry and enables dose profile as well as point dose measurements in a suitable phantom for estimation of organ doses. Additional the PTW 2D-Array seven29 can give a quick overview of radiation fields in non-rotating tasks. © 2012 American Association of Physicists in Medicine.

  13. Zenith: A Radiosonde Detector for Rapid-Response Ionizing Atmospheric Radiation Measurements During Solar Particle Events

    NASA Astrophysics Data System (ADS)

    Dyer, A. C. R.; Ryden, K. A.; Hands, A. D. P.; Dyer, C.; Burnett, C.; Gibbs, M.

    2018-03-01

    Solar energetic particle events create radiation risks for aircraft, notably single-event effects in microelectronics along with increased dose to crew and passengers. In response to this, some airlines modify their flight routes after automatic alerts are issued. At present these alerts are based on proton flux measurements from instruments onboard satellites, so it is important that contemporary atmospheric radiation measurements are made and compared. This paper presents the development of a rapid-response system built around the use of radiosondes equipped with a radiation detector, Zenith, which can be launched from a Met Office weather station after significant solar proton level alerts are issued. Zenith is a compact, battery-powered solid-state radiation monitor designed to be connected to a Vaisala RS-92 radiosonde, which transmits all data to a ground station as it ascends to an altitude of 33 km. Zenith can also be operated as a stand-alone detector when connected to a laptop, providing real-time count rates. It can also be adapted for use on unmanned aerial vehicles. Zenith has been flown on the Met Office Civil Contingency Aircraft, taken to the European Organization for Nuclear Research-EU high energy Reference Field facility for calibration and launched on a meteorological balloon at the Met Office's weather station in Camborne, Cornwall, UK. During this sounding, Zenith measured the Pfotzer-Regener maximum to be at an altitude of 18-20 km where the count rate was measured to be 1.15 c s-1 cm-2 compared to 0.02 c s-1 cm-2 at ground level.

  14. Topological detector: measuring continuous dosimetric quantities with few-element detector array.

    PubMed

    Han, Zhaohui; Brivio, Davide; Sajo, Erno; Zygmanski, Piotr

    2016-08-21

    A prototype topological detector was fabricated and investigated for quality assurance of radiation producing medical devices. Unlike a typical array or flat panel detector, a topological detector, while capable of achieving a very high spatial resolution, consists of only a few elements and therefore is much simpler in construction and more cost effective. The key feature allowing this advancement is a geometry-driven design that is customized for a specific dosimetric application. In the current work, a topological detector of two elements was examined for the positioning verification of the radiation collimating devices (jaws, MLCs, and blades etc). The detector was diagonally segmented from a rectangular thin film strip (2.5 cm  ×  15 cm), giving two contiguous but independent detector elements. The segmented area was the central portion of the strip measuring 5 cm in length. Under irradiation, signals from each detector element were separately digitized using a commercial multichannel data acquisition system. The center and size of an x-ray field, which were uniquely determined by the collimator positions, were shown mathematically to relate to the difference and sum of the two signals. As a proof of concept, experiments were carried out using slit x-ray fields ranging from 2 mm to 20 mm in size. It was demonstrated that, the collimator positions can be accurately measured with sub-millimeter precisions.

  15. GADRAS Detector Response Function.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Dean J.; Harding, Lee; Thoreson, Gregory G

    2014-11-01

    The Gamma Detector Response and Analysis Software (GADRAS) applies a Detector Response Function (DRF) to compute the output of gamma-ray and neutron detectors when they are exposed to radiation sources. The DRF is fundamental to the ability to perform forward calculations (i.e., computation of the response of a detector to a known source), as well as the ability to analyze spectra to deduce the types and quantities of radioactive material to which the detectors are exposed. This document describes how gamma-ray spectra are computed and the significance of response function parameters that define characteristics of particular detectors.

  16. Optical detector calibrator system

    NASA Technical Reports Server (NTRS)

    Strobel, James P. (Inventor); Moerk, John S. (Inventor); Youngquist, Robert C. (Inventor)

    1996-01-01

    An optical detector calibrator system simulates a source of optical radiation to which a detector to be calibrated is responsive. A light source selected to emit radiation in a range of wavelengths corresponding to the spectral signature of the source is disposed within a housing containing a microprocessor for controlling the light source and other system elements. An adjustable iris and a multiple aperture filter wheel are provided for controlling the intensity of radiation emitted from the housing by the light source to adjust the simulated distance between the light source and the detector to be calibrated. The geared iris has an aperture whose size is adjustable by means of a first stepper motor controlled by the microprocessor. The multiple aperture filter wheel contains neutral density filters of different attenuation levels which are selectively positioned in the path of the emitted radiation by a second stepper motor that is also controlled by the microprocessor. An operator can select a number of detector tests including range, maximum and minimum sensitivity, and basic functionality. During the range test, the geared iris and filter wheel are repeatedly adjusted by the microprocessor as necessary to simulate an incrementally increasing simulated source distance. A light source calibration subsystem is incorporated in the system which insures that the intensity of the light source is maintained at a constant level over time.

  17. Modifications in the optical and thermal properties of a CR-39 polymeric detector induced by high doses of γ-radiation

    NASA Astrophysics Data System (ADS)

    Saad, A. F.; Ibraheim, Mona H.; Nwara, Aya M.; Kandil, S. A.

    2018-04-01

    Effects of γ-radiation on the optical and thermal properties of a poly allyl diglycol carbonate (PADC), a form of CR-39, polymer have been investigated. CR-39 detectors were exposed to γ-rays at very high doses ranging from 5.0 × 105 to 3.0 × 106 Gy. The induced changes were analyzed using ultraviolet-visible spectroscopy (UV-VIS) in absorbance mode, and thermogravimetric analysis (TGA). The UV-visible spectra of the virgin and γ-irradiated CR-39 polymer detectors displayed a significant decreasing trend in their optical energy band gaps for indirect transitions, whereas for the direct ones showed a little change. This drop in the energy band gap with increasing dose is discussed on the basis of the gamma irradiation induced modifications in the CR-39 polymeric detector. The TGA thermograms show that the weight loss rate increased with increase in dose, which may be due to the disordered system via scission followed by crosslinking in the irradiated polymer detector. The TGA thermograms also indicated that the CR-39 detector decomposed in three/four stages for the virgin and irradiated samples. The activation energy for thermal decomposition was determined using a type of Arrhenius equation based on the TGA experimental results. These experimental results so obtained can be well used in radiation dosimetry.

  18. A fast-neutron detection detector based on fission material and large sensitive 4H silicon carbide Schottky diode detector

    NASA Astrophysics Data System (ADS)

    Liu, Linyue; Liu, Jinliang; Zhang, Jianfu; Chen, Liang; Zhang, Xianpeng; Zhang, Zhongbing; Ruan, Jinlu; Jin, Peng; Bai, Song; Ouyang, Xiaoping

    2017-12-01

    Silicon carbide radiation detectors are attractive in the measurement of the total numbers of pulsed fast neutrons emitted from nuclear fusion and fission devices because of high neutron-gamma discrimination and good radiation resistance. A fast-neutron detection system was developed based on a large-area 4H-SiC Schottky diode detector and a 235U fission target. Excellent pulse-height spectra of fission fragments induced by mono-energy deuterium-tritium (D-T) fusion neutrons and continuous energy fission neutrons were obtained. The detector is proven to be a good candidate for pulsed fast neutron detection in a complex radiation field.

  19. Hole-Impeded-Doping-Superlattice LWIR Detectors

    NASA Technical Reports Server (NTRS)

    Maserjian, Joseph

    1991-01-01

    Hole-Impeded-Doping-Superlattice (HIDS) InAs devices proposed for use as photoconductive or photovoltaic detectors of radiation in long-wavelength infrared (LWIR) range of 8 to 17 micrometers. Array of HIDS devices fabricated on substrates GaAs or Si. Radiation incident on black surface, metal contacts for picture elements serve as reactors, effectively doubling optical path and thereby increasing absorption of photons. Photoconductive detector offers advantages of high gain and high impedance; photovoltaic detector offers lower noise and better interface to multiplexer readouts.

  20. High-resolution ionization detector and array of such detectors

    DOEpatents

    McGregor, Douglas S [Ypsilanti, MI; Rojeski, Ronald A [Pleasanton, CA

    2001-01-16

    A high-resolution ionization detector and an array of such detectors are described which utilize a reference pattern of conductive or semiconductive material to form interaction, pervious and measurement regions in an ionization substrate of, for example, CdZnTe material. The ionization detector is a room temperature semiconductor radiation detector. Various geometries of such a detector and an array of such detectors produce room temperature operated gamma ray spectrometers with relatively high resolution. For example, a 1 cm.sup.3 detector is capable of measuring .sup.137 Cs 662 keV gamma rays with room temperature energy resolution approaching 2% at FWHM. Two major types of such detectors include a parallel strip semiconductor Frisch grid detector and the geometrically weighted trapezoid prism semiconductor Frisch grid detector. The geometrically weighted detector records room temperature (24.degree. C.) energy resolutions of 2.68% FWHM for .sup.137 Cs 662 keV gamma rays and 2.45% FWHM for .sup.60 Co 1.332 MeV gamma rays. The detectors perform well without any electronic pulse rejection, correction or compensation techniques. The devices operate at room temperature with simple commercially available NIM bin electronics and do not require special preamplifiers or cooling stages for good spectroscopic results.

  1. Investigation of low leakage current radiation detectors on n-type 4H-SiC epitaxial layers

    NASA Astrophysics Data System (ADS)

    Nguyen, Khai V.; Chaudhuri, Sandeep K.; Mandal, Krishna C.

    2014-09-01

    The surface leakage current of high-resolution 4H-SiC epitaxial layer Schottky barrier detectors has been improved significantly after surface passivations of 4H-SiC epitaxial layers. Thin (nanometer range) layers of silicon dioxide (SiO2) and silicon nitride (Si3N4) were deposited on 4H-SiC epitaxial layers using plasma enhanced chemical vapor deposition (PECVD) on 20 μm thick n-type 4H-SiC epitaxial layers followed by the fabrication of large area (~12 mm2) Schottky barrier radiation detectors. The fabricated detectors have been characterized through current-voltage (I-V), capacitance-voltage (C-V), and alpha pulse height spectroscopy measurements; the results were compared with that of detectors fabricated without surface passivations. Improved energy resolution of ~ 0.4% for 5486 keV alpha particles was observed after passivation, and it was found that the performance of these detectors were limited by the presence of macroscopic and microscopic crystal defects affecting the charge transport properties adversely. Capacitance mode deep level transient studies (DLTS) revealed the presence of a titanium impurity related shallow level defects (Ec-0.19 eV), and two deep level defects identified as Z1/2 and Ci1 located at Ec-0.62 and ~ Ec-1.40 eV respectively.

  2. Test beam studies of possibilities to separate particles with gamma factors above 103 with straw based Transition Radiation Detector

    NASA Astrophysics Data System (ADS)

    Belyaev, N.; Cherry, M. L.; Doronin, S. A.; Filippov, K.; Fusco, P.; Konovalov, S.; Krasnopevtsev, D.; Kramarenko, V.; Loparco, F.; Mazziotta, M. N.; Ponomarenko, D.; Pyatiizbyantseva, D.; Radomskii, R.; Rembser, C.; Romaniouk, A.; Savchenko, A.; Shulga, E.; Smirnov, S.; Smirnov, Yu; Sosnovtsev, V.; Spinelli, P.; Teterin, P.; Tikhomirov, V.; Vorobev, K.; Zhukov, K.

    2017-12-01

    Measurements of hadron production in the TeV energy range are one of the tasks of the future studies at the Large Hadron Collider (LHC). The main goal of these experiments is a study of the fundamental QCD processes at this energy range, which is very important not only for probing of the Standard Model but also for ultrahigh-energy cosmic particle physics. One of the key elements of these experiments measurements are hadron identification. The only detector technology which has a potential ability to separate hadrons in this energy range is Transition Radiation Detector (TRD) technology. TRD prototype based on straw proportional chambers combined with a specially assembled radiator has been tested at the CERN SPS accelerator beam. The test beam results and comparison with detailed Monte Carlo simulations are presented here.

  3. The GBT-SCA, a radiation tolerant ASIC for detector control and monitoring applications in HEP experiments

    NASA Astrophysics Data System (ADS)

    Caratelli, A.; Bonacini, S.; Kloukinas, K.; Marchioro, A.; Moreira, P.; De Oliveira, R.; Paillard, C.

    2015-03-01

    The future upgrades of the LHC experiments will increase the beam luminosity leading to a corresponding growth of the amounts of data to be treated by the data acquisition systems. To address these needs, the GBT (Giga-Bit Transceiver optical link [1,2]) architecture was developed to provide the simultaneous transfer of readout data, timing and trigger signals as well as slow control and monitoring data. The GBT-SCA ASIC, part of the GBT chip-set, has the purpose to distribute control and monitoring signals to the on-detector front-end electronics and perform monitoring operations of detector environmental parameters. In order to meet the requirements of different front-end ASICs used in the experiments, it provides various user-configurable interfaces capable to perform simultaneous operations. It is designed employing radiation tolerant design techniques to ensure robustness against SEUs and TID radiation effects and is implemented in a commercial 130 nm CMOS technology. This work presents the GBT-SCA architecture, the ASIC interfaces, the data transfer protocol, and its integration with the GBT optical link.

  4. Synthesis, purification and bulk crystal growth of radiation detector materials using melt growth technique

    NASA Astrophysics Data System (ADS)

    Surabhi, Raja Rahul Reddy

    In the past decade, there has been new and increased usage of radiation-detection technologies for applications in homeland security, non-proliferation, and national defense. Most of these applications require a portable device with high gamma-ray energy resolution and detection efficiency, compact size, room-temperature operation, and low cost. Consequently, there is a renewed understanding of the material limitations for these technologies and a great demand to develop next-generation radiation-detection materials that can operate at room temperature. Mercuric iodide (HgI2), Lead iodide (PbI2), and CdZnTe (CZT) are the current leading candidates for radiation detector applications. This is because of their high atomic number and large band gap that makes them particularly well suited for fabrication of high resolution and high efficiency compact devices. PbI2 is a promising material for room temperature nuclear radiation detectors, characterized by its wide band gap (EG=2.32eV) and high-density (rho=6.2g/cm3). It has been reported that PbI2 crystal detectors are able to detect gamma-ray in the range of 1KeV-1MeV, with good energy resolution. However, PbI 2 detectors have not been studied in detail because of non-availability of high quality single crystals. This study presents the synthesis, purification, growth and characterization of PbI2 single crystals grown. In this research, solid-state synthesis technique has been utilized for obtaining PbI2 as a starting material. For the first time, a unique low-temperature purification technique has been developed to obtain high-purity starting material. The crystals were grown using 2-zone Bridgman-Stockbarger (B.S) technique wherein growth rate and temperature gradient at the solid-liquid interface were optimized. Single crystals of PbI2 were successfully grown in quartz glass ampoule under different growth conditions. Material purity was determined by measuring the elemental concentration using the Inductively

  5. Development of high pressure-high vacuum-high conductance piston valve for gas-filled radiation detectors

    NASA Astrophysics Data System (ADS)

    Prasad, D. N.; Ayyappan, R.; Kamble, L. P.; Singh, J. P.; Muralikrishna, L. V.; Alex, M.; Balagi, V.; Mukhopadhyay, P. K.

    2008-05-01

    Gas-filled radiation detectors need gas filling at pressures that range from few cms of mercury to as high as 25kg/cm2 at room temperature. Before gas-filling these detectors require evacuation to a vacuum of the order of ~1 × 10-5 mbar. For these operations of evacuation and gas filling a system consisting of a vacuum pump with a high vacuum gauge, gas cylinder with a pressure gauge and a valve is used. The valve has to meet the three requirements of compatibility with high-pressure and high vacuum and high conductance. A piston valve suitable for the evacuation and gas filling of radiation detectors has been designed and fabricated to meet the above requirements. The stainless steel body (80mm×160mm overall dimensions) valve with a piston arrangement has a 1/2 inch inlet/outlet opening, neoprene/viton O-ring at piston face & diameter for sealing and a knob for opening and closing the valve. The piston movement mechanism is designed to have minimum wear of sealing O-rings. The valve has been hydrostatic pressure tested up to 75bars and has Helium leak rate of less than 9.6×10-9 m bar ltr/sec in vacuum mode and 2×10-7 mbar ltr/sec in pressure mode. As compared to a commercial diaphragm valve, which needed 3 hours to evacuate a 7 litre chamber to 2.5×10-5 mbar, the new valve achieved vacuum 7.4×10-6mbar in the same time under the same conditions.

  6. Ionizing Radiation Detector

    DOEpatents

    Wright, Gomez W.; James, Ralph B.; Burger, Arnold; Chinn, Douglas A.

    2003-11-18

    A CdZnTe (CZT) crystal provided with a native CdO dielectric coating to reduce surface leakage currents and thereby, improve the resolution of instruments incorporating detectors using CZT crystals is disclosed. A two step process is provided for forming the dielectric coating which includes etching the surface of a CZT crystal with a solution of the conventional bromine/methanol etch treatment, and passivating the CZT crystal surface with a solution of 10 w/o NH.sub.4 F and 10 w/o H.sub.2 O.sub.2 in water after attaching electrical contacts to the crystal surface.

  7. Photocapacitive MIS infrared detectors

    NASA Technical Reports Server (NTRS)

    Sher, A.; Lu, S. S.-M.; Moriarty, J. A.; Crouch, R. K.; Miller, W. E.

    1978-01-01

    A new class of room-temperature infrared detectors has been developed through use of metal-insulator-semiconductor (MIS) or metal-insulator-semiconductor-insulator-metal (MISIM) slabs. The detectors, which have been fabricated from Si, Ge and GaAs, rely for operation on the electrical capacitance variations induced by modulated incident radiation. The peak detectivity for a 1000-A Si MISIM detector is comparable to that of a conventional Si detector functioning in the photovoltaic mode. Optimization of the photocapacitive-mode detection sensitivity is discussed.

  8. Calibration and Readiness of the ISS-RAD Charged Particle Detector

    NASA Technical Reports Server (NTRS)

    Rios, R.

    2015-01-01

    The International Space Station (ISS) Radiation Assessment Detector (RAD) is an intravehicular energetic particle detector designed to measure a broad spectrum of charged particle and neutron radiation unique to the ISS radiation environment. In this presentation, a summary of calibration and readiness of the RAD Sensor Head (RSH) - also referred to as the Charged Particle Detector (CPD) - for ISS will be presented. Calibration for the RSH consists of p, He, C, O, Si, and Fe ion data collected at the NASA Space Radiation Laboratory (NSRL) and Indiana University Cyclotron Facility (IUCF). The RSH consists of four detectors used in measuring the spectroscopy of charged particles - A, B, C, and D; high-energy neutral particles and charged particles are measured in E; and the last detector - F - is an anti-coincidence detector. A, B, and C are made from Si; D is made from BGO; E and F are made from EJ260XL plastic scintillator.

  9. Integration of a Fire Detector into a Spacecraft

    NASA Technical Reports Server (NTRS)

    Linford, R. M. F.

    1972-01-01

    A detector sensitive to only the ultraviolet radiation emitted by flames has been selected as the basic element of the NASA Skylab fire detection system. It is sensitive to approximately 10(exp -12)W of radiation and will detect small flames at distances in excess of 3m. The performance of the detector was verified by experiments in an aircraft flying zero-gravity parabolas to simulate the characteristics of a fire which the detector must sense. Extensive investigation and exacting design was necessary to exclude all possible sources of false alarms. Optical measurements were made on all the spacecraft windows to determine the amount of solar radiation transmitted. The lighting systems and the onboard experiments also were appraised for ultraviolet emissions. Proton-accelerator tests were performed to determine the interaction of the Earth's trapped radiation belts with the detectors and the design of the instrument was modified to negate these effects.

  10. Cryogenic and radiation hard ASIC design for large format NIR/SWIR detector

    NASA Astrophysics Data System (ADS)

    Gao, Peng; Dupont, Benoit; Dierickx, Bart; Müller, Eric; Verbruggen, Geert; Gielis, Stijn; Valvekens, Ramses

    2014-10-01

    An ASIC is developed to control and data quantization for large format NIR/SWIR detector arrays. Both cryogenic and space radiation environment issue are considered during the design. Therefore it can be integrated in the cryogenic chamber, which reduces significantly the vast amount of long wires going in and out the cryogenic chamber, i.e. benefits EMI and noise concerns, as well as the power consumption of cooling system and interfacing circuits. In this paper, we will describe the development of this prototype ASIC for image sensor driving and signal processing as well as the testing in both room and cryogenic temperature.

  11. Study of defects in TlBr, InI as potential semiconductor radiation detectors

    NASA Astrophysics Data System (ADS)

    Biswas, Koushik; Du, Mao-Hua

    2011-03-01

    Group III-halides such as TlBr and InI are receiving considerable attention for application in room temperature radiation detector devices. It is however, essential that these detector materials have favorable defect properties which enable good carrier transport when operating under an external bias voltage. We have studied the properties of native defects of InI and Tlbr and several important results emerge: (1) Schottky defects are the dominant low-energy defects in both materials that can potentially pin the Fermi level close to midgap, leading to high resistivity; (2) native defects in TlBr are benign in terms of electron trapping. However, anion-vacancy in InI induces a deep electron trap similar to the F -centers in alkali halides. This can reduce electron mobility-lifetime product in InI; (3) low diffusion barriers of vacancies and ionic conductivity could be responsible for the observed polarization phenomenon in both materials at room temperature. U.S. DOE Office of Nonproliferation Research and Development NA22.

  12. Application of the space-resolving flux detector for radiation measurements from an octahedral-aperture spherical hohlraum

    NASA Astrophysics Data System (ADS)

    Xie, Xufei; Du, Huabing; Chen, Jinwen; Liu, Shenye; Li, Zhichao; Yang, Dong; Huang, Yunbao; Ren, Kuan; Hou, Lifei; Li, Sanwei; Guo, Liang; Jiang, Xiaohua; Huo, Wenyi; Chen, Yaohua; Ren, Guoli; Lan, Ke; Wang, Feng; Jiang, Shaoen; Ding, Yongkun

    2018-06-01

    Space-resolving flux detection is an important technique for the diagnostic of the radiation field within the hohlraum in inertial confinement fusion, especially for the radiation field diagnostic in the novel spherical hohlraum with octahedral six laser entrance holes (LEHs), where localized measurements are necessary for the discrimination of the radiation flux from different LEHs. A novel space-resolving flux detector (SRFD) is developed at the SG-III laser facility for the radiation flux measurement in the first campaign of the octahedral spherical hohlraum energetics experiment. The principle and configuration of the SRFD system is introduced. The radiation flux from the wall of a gas-filled octahedral spherical hohlraum is measured for the first time by placing the SRFD system at the equatorial position of the SG-III laser facility, aiming at the hohlraum wall through one of the six LEHs. The absolute radiation flux from the re-emission area on the hohlraum wall is measured, and good consistency is found between the experimental data and the calculated data from a three-dimensional view factor analysis.

  13. Method and apparatus for electron-only radiation detectors from semiconductor materials

    DOEpatents

    Lund, James C.

    2000-01-01

    A system for obtaining improved resolution in room temperature semiconductor radiation detectors such as CdZnTe and Hgl.sub.2, which exhibit significant hole-trapping. A electrical reference plane is established about the perimeter of a semiconductor crystal and disposed intermediately between two oppositely biased end electrodes. The intermediate reference plane comprises a narrow strip of wire in electrical contact with the surface of the crystal, biased at a potential between the end electrode potentials and serving as an auxiliary electrical reference for a chosen electrode--typically the collector electrode for the more mobile charge carrier. This arrangement eliminates the interfering effects of the less mobile carriers as these are gathered by their electrode collector.

  14. Advances in TlBr detector development

    NASA Astrophysics Data System (ADS)

    Hitomi, Keitaro; Shoji, Tadayoshi; Ishii, Keizo

    2013-09-01

    Thallium bromide (TlBr) is a promising compound semiconductor for fabrication of gamma-ray detectors. The attractive physical properties of TlBr lie in its high photon stopping power, high resistivity and good charge transport properties. Gamma-ray detectors fabricated from TlBr crystals have exhibited excellent spectroscopic performance. In this paper, advances in TlBr radiation detector development are reviewed with emphasis on crystal growth, detector fabrication, physical properties and detector performance.

  15. Background canceling surface alpha detector

    DOEpatents

    MacArthur, D.W.; Allander, K.S.; Bounds, J.A.

    1996-06-11

    A background canceling long range alpha detector which is capable of providing output proportional to both the alpha radiation emitted from a surface and to radioactive gas emanating from the surface. The detector operates by using an electrical field between first and second signal planes, an enclosure and the surface or substance to be monitored for alpha radiation. The first and second signal planes are maintained at the same voltage with respect to the electrically conductive enclosure, reducing leakage currents. In the presence of alpha radiation and radioactive gas decay, the signal from the first signal plane is proportional to both the surface alpha radiation and to the airborne radioactive gas, while the signal from the second signal plane is proportional only to the airborne radioactive gas. The difference between these two signals is proportional to the surface alpha radiation alone. 5 figs.

  16. Background canceling surface alpha detector

    DOEpatents

    MacArthur, Duncan W.; Allander, Krag S.; Bounds, John A.

    1996-01-01

    A background canceling long range alpha detector which is capable of providing output proportional to both the alpha radiation emitted from a surface and to radioactive gas emanating from the surface. The detector operates by using an electrical field between first and second signal planes, an enclosure and the surface or substance to be monitored for alpha radiation. The first and second signal planes are maintained at the same voltage with respect to the electrically conductive enclosure, reducing leakage currents. In the presence of alpha radiation and radioactive gas decay, the signal from the first signal plane is proportional to both the surface alpha radiation and to the airborne radioactive gas, while the signal from the second signal plane is proportional only to the airborne radioactive gas. The difference between these two signals is proportional to the surface alpha radiation alone.

  17. Alpha-ray spectrometry at high temperature by using a compound semiconductor detector.

    PubMed

    Ha, Jang Ho; Kim, Han Soo

    2013-11-01

    The use of conventional radiation detectors in harsh environments is limited by radiation damage to detector materials and by temperature constraints. We fabricated a wide-band gap semiconductor radiation detector based on silicon carbide. All the detector components were considered for an application in a high temperature environment like a nuclear reactor core. The radiation response, especially to alpha particles, was measured using an (241)Am source at variable operating voltages at room temperature in the air. The temperature on detector was controlled from 30°C to 250°C. The alpha-particle spectra were measured at zero bias operation. Even though the detector is operated at high temperature, the energy resolution as a function of temperature is almost constant within 3.5% deviation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Properties of thin film radiation detectors and their application to dosimetry and quality assurance in x-ray imaging

    NASA Astrophysics Data System (ADS)

    Elshahat, Bassem

    The characteristics of two different types of thin-film radiation detectors are experimentally investigated: organic photovoltaic cells (OPV) and a new self-powered detector that operates based on high-energy secondary electrons (HEC). Although their working principles are substantially different, they both can be used for radiation detection and image formation in medical applications. OPVs with different active layer material thicknesses and aluminum electrode areas were fabricated. The OPV cell consisted of P3HT: PCBM photoactive materials, composed of donor and acceptor semiconducting organic materials, sandwiched between an aluminum electrode as anode and an indium tin oxide (ITO) electrode as a cathode. The detectors were exposed to 60150 kVp x rays, which generated photocurrent in the active layer. The electric charge production in the OPV cells was measured. The net current as function of beam energy (kVp) was proportional to ~1/kVp0.45 when adjusted for x-ray beam output. The best combination of parameters for these cells was 270-nm active layer thicknesses for 0.7cm-2 electrode area. The measured current ranged from about 0.7 to 2.4 nA/cm2 for 60-150 kVp, corresponding to about 0.09 -- 0.06 nA/cm2/mGy, respectively, when adjusted for the output x-ray source flux. The HEC detection concept was recently proposed and experimentally demonstrated by a UML/HMS research group. HEC detection employs direct conversion of high-energy electron current to detector signal without external power and amplification. The potential of using HEC detectors for diagnostic imaging application was investigated by using a heterogeneous phantom consisting of a water cylinder with Al and wax rod inserts.

  19. Arsenic activation neutron detector

    DOEpatents

    Jacobs, E.L.

    1980-01-28

    A detector of bursts of neutrons from a deuterium-deuteron reaction includes a quantity of arsenic adjacent a gamma detector such as a scintillator and photomultiplier tube. The arsenic is activated by the 2.5-MeV neutrons to release gamma radiation which is detected to give a quantitative representation of detected neutrons.

  20. Arsenic activation neutron detector

    DOEpatents

    Jacobs, Eddy L.

    1981-01-01

    A detector of bursts of neutrons from a deuterium-deuteron reaction includes a quantity of arsenic adjacent a gamma detector such as a scintillator and photomultiplier tube. The arsenic is activated by the 2.5 Mev neutrons to release gamma radiation which is detected to give a quantitative representation of detected neutrons.

  1. Apparatus and method for detecting gamma radiation

    DOEpatents

    Sigg, R.A.

    1994-12-13

    A high efficiency radiation detector is disclosed for measuring X-ray and gamma radiation from small-volume, low-activity liquid samples with an overall uncertainty better than 0.7% (one sigma SD). The radiation detector includes a hyperpure germanium well detector, a collimator, and a reference source. The well detector monitors gamma radiation emitted by the reference source and a radioactive isotope or isotopes in a sample source. The radiation from the reference source is collimated to avoid attenuation of reference source gamma radiation by the sample. Signals from the well detector are processed and stored, and the stored data is analyzed to determine the radioactive isotope(s) content of the sample. Minor self-attenuation corrections are calculated from chemical composition data. 4 figures.

  2. Apparatus and method for detecting gamma radiation

    DOEpatents

    Sigg, Raymond A.

    1994-01-01

    A high efficiency radiation detector for measuring X-ray and gamma radiation from small-volume, low-activity liquid samples with an overall uncertainty better than 0.7% (one sigma SD). The radiation detector includes a hyperpure germanium well detector, a collimator, and a reference source. The well detector monitors gamma radiation emitted by the reference source and a radioactive isotope or isotopes in a sample source. The radiation from the reference source is collimated to avoid attenuation of reference source gamma radiation by the sample. Signals from the well detector are processed and stored, and the stored data is analyzed to determine the radioactive isotope(s) content of the sample. Minor self-attenuation corrections are calculated from chemical composition data.

  3. Comparison of Martian Surface Radiation Predictions to the Measurements of Mars Science Laboratory Radiation Assessment Detector (MSL/RAD)

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Cucinotta, Francis A.; Zeitlin, Cary; Hassler, Donald M.; Ehresmann, Bent; Rafkin, Scot C. R.; Wimmer-Schweingruber, Robert F; Boettcher, Stephan; Boehm, Eckart; Guo, Jingnan; hide

    2014-01-01

    For the analysis of radiation risks to astronauts and planning exploratory space missions, detailed knowledge of particle spectra is an important factor. Detailed measurements of the energetic particle radiation environment on the surface of Mars have been made by the Mars Science Laboratory Radiation Assessment Detector (MSL-RAD) on the Curiosity rover since August 2012, and particle fluxes for a wide range of ion species (up to several hundred MeV/u) and high energy neutrons (8 - 1000 MeV) have been available for the first 200 sols. Although the data obtained on the surface of Mars for 200 sols are limited in the narrow energy spectra, the simulation results using the Badhwar-O'Neill galactic cosmic ray (GCR) environment model and the high-charge and energy transport (HZETRN) code are compared to the data. For the nuclear interactions of primary GCR through Mars atmosphere and Curiosity rover, the quantum multiple scattering theory of nuclear fragmentation (QMSFRG) is used, which includes direct knockout, evaporation and nuclear coalescence. Daily atmospheric pressure measurements at Gale Crater by the MSL Rover Environmental Monitoring Station are implemented into transport calculations for describing the daily column depth of atmosphere. Particles impinging on top of the Martian atmosphere reach the RAD after traversing varying depths of atmosphere that depend on the slant angles, and the model accounts for shielding of the RAD by the rest of the instrument. Calculations of stopping particle spectra are in good agreement with the RAD measurements for the first 200 sols by accounting changing heliospheric conditions and atmospheric pressure. Detailed comparisons between model predictions and spectral data of various particle types provide the validation of radiation transport models, and thus increase the accuracy of the predictions of future radiation environments on Mars. These contributions lend support to the understanding of radiation health risks to

  4. Ring Imaging Cerenkov Detector for CLAS12

    NASA Astrophysics Data System (ADS)

    Muhoza, Mireille; Aaron, Elise; Smoot, Waymond; Benmokhtar, Fatiha

    2017-09-01

    The CLAS12 detector at Thomas Jefferson National Accelerator Facility (TJNAF) is undergoing an upgrade. One of the additions to this detector is a Ring Imaging Cherenkov (RICH) detector to improve particle identification in the 3-8 GeV/c momentum range. Approximately 400 multi anode photomultiplier tubes (MAPMTs) will be used to detect Cherenkov Radiation in the single photoelectron spectra (SPS). Detector tests are taking place at Jefferson Lab, while analysis software development is ongoing at Duquesne. I will be summarizing the work done at Duquesne on the Database development and the analysis of the ADC and TDCs for the Hamamatsu Multi-Anode PMTs that are used for Cerenkov light radiation. National Science Foundation, Award 1615067.

  5. Crystal growth and characterization of europium doped lithium strontium iodide scintillator as an ionizing radiation detector

    NASA Astrophysics Data System (ADS)

    Uba, Samuel

    High performance detectors used in the detection of ionizing radiation is critical to nuclear nonproliferation applications and other radiation detectors applications. In this research we grew and tested Europium doped Lithium Strontium Iodide compound. A mixture of lithium iodide, strontium iodide and europium iodide was used as the starting materials for this research. Congruent melting and freezing temperature of the synthesized compound was determined by differential scanning calorimetry (DSC) using a Setaram Labsys Evo DSC-DTA instrument. The melting temperatures were recorded at 390.35°C, 407.59°C and freezing temperature was recorded at 322.84°C from a graph of heat flow plotted against temperature. The synthesized material was used as the charge for the vertical Bridgeman growth, and a 6.5 cm and 7.7cm length boule were grown in a multi-zone transparent Mullen furnace. A scintillating detector of thickness 2.53mm was fabricated by mechanical lapping in mineral oil, and scintillating response and timing were obtained to a cesium source using CS-137 isotope. An energy resolution (FWHM over peak position) of 12.1% was observed for the 662keV full absorption peak. Optical absorption in the UV-Vis wavelength range was recorded for the grown crystal using a U-2900 UV/VIS Spectrophotometer. Absorption peaks were recorded at 194nm, 273nm, and 344nm from the absorbance spectrum, various optical parameters such as absorption coefficient, extinction coefficient, refractive index, and optical loss were derived. The optical band gap energy was calculated using Tauc relation expression at 1.79eV.

  6. Resonant infrared detector with substantially unit quantum efficiency

    NASA Technical Reports Server (NTRS)

    Farhoomand, Jam (Inventor); Mcmurray, Robert E., Jr. (Inventor)

    1994-01-01

    A resonant infrared detector includes an infrared-active layer which has first and second parallel faces and which absorbs radiation of a given wavelength. The detector also includes a first tuned reflective layer, disposed opposite the first face of the infrared-active layer, which reflects a specific portion of the radiation incident thereon and allows a specific portion of the incident radiation at the given wavelength to reach the infrared-active layer. A second reflective layer, disposed opposite the second face of the infrared-active layer, reflects back into the infrared-active layer substantially all of the radiation at the given wavelength which passes through the infrared-active layer. The reflective layers have the effect of increasing the quantum efficiency of the infrared detector relative to the quantum efficiency of the infrared-active layer alone.

  7. Observation and analysis of microcirculation using high-spatial-resolution image detectors and synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Umetani, Keiji; Yagi, Naoto; Suzuki, Yoshio; Ogasawara, Yasuo; Kajiya, Fumihiko; Matsumoto, Takeshi; Tachibana, Hiroyuki; Goto, Masami; Yamashita, Takenori; Imai, Shigeki; Kajihara, Yasumasa

    2000-04-01

    A microangiography system using monochromatized synchrotron radiation has been investigated as a diagnostic tool for circulatory disorders and early stage malignant tumors. The monochromatized X-rays with energies just above the contrast agent K-absorption edge energy can produce the highest contrast image of the contrast agent in small blood vessels. At SPring-8, digital microradiography with 6 - 24 micrometer pixel sizes has been carried out using two types of detectors designed for X-ray indirect and direct detection. The indirect-sensing detectors are fluorescent-screen optical-lens coupling systems using a high-sensitivity pickup-tube camera and a CCD camera. An X-ray image on the fluorescent screen is focused on the photoconductive layer of the pickup tube and the photosensitive area of the CCD by a small F number lens. The direct-sensing detector consists of an X-ray direct- sensing pickup tube with a beryllium faceplate for X-ray incidence to the photoconductive layer. Absorbed X-rays in the photoconductive layer are directly converted to photoelectrons and then signal charges are readout by electron beam scanning. The direct-sensing detector was expected to have higher spatial resolution in comparison with the indict-sensing detectors. Performance of the X-ray image detectors was examined at the bending magnet beamline BL20B2 using monochromatized X-ray at SPring-8. Image signals from the camera are converted into digital format by an analog-to- digital converter and stored in a frame memory with image format of 1024 X 1024 pixels. In preliminary experiments, tumor vessel specimens using barium contrast agent were prepared for taking static images. The growth pattern of tumor-induced vessels was clearly visualized. Heart muscle specimens were prepared for imaging of 3-dimensional microtomography using the fluorescent-screen CCD camera system. The complex structure of small blood vessels with diameters of 30 - 40 micrometer was visualized as a 3

  8. A low-power, radiation-resistant, Silicon-Drift-Detector array for extraterrestrial element mapping

    NASA Astrophysics Data System (ADS)

    Ramsey, B. D.; Gaskin, J. A.; Elsner, R. F.; Chen, W.; Carini, G. A.; De Geronimo, G.; Keister, J.; Li, S.; Li, Z.; Siddons, D. P.; Smith, G.

    2012-02-01

    We are developing a modular Silicon Drift Detector (SDD) X-Ray Spectrometer (XRS) for measuring the abundances of light surface elements (C to Fe) fluoresced by ambient radiation on remote airless bodies. The value of fluorescence spectrometry for surface element mapping is demonstrated by its inclusion on three recent lunar missions and by exciting new data that have recently been announced from the Messenger Mission to Mercury. The SDD-XRS instrument that we have been developing offers excellent energy resolution and an order of magnitude lower power requirement than conventional CCDs, making much higher sensitivities possible with modest spacecraft resources. In addition, it is significantly more radiation resistant than x-ray CCDs and therefore will not be subject to the degradation that befell recent lunar instruments. In fact, the intrinsic radiation resistance of the SDD makes it applicable even to the harsh environment of the Jovian system where it can be used to map the light surface elements of Europa. In this paper, we first discuss our element-mapping science-measurement goals. We then derive the necessary instrument requirements to meet these goals and discuss our current instrument development status with respect to these requirements.

  9. Spatial response of synthetic microDiamond and diode detectors measured with kilovoltage synchrotron radiation.

    PubMed

    Butler, Duncan J; Beveridge, Toby; Lehmann, Joerg; Oliver, Christopher P; Stevenson, Andrew W; Livingstone, Jayde

    2018-02-01

    To map the spatial response of four solid-state radiation detectors of types commonly used for radiotherapy dosimetry. PTW model 60016 Diode P, 60017 Diode E, 60018 Diode SRS, and 60019 microDiamond detectors were radiographed using a high resolution conventional X-ray system. Their spatial response was then investigated using a 0.1 mm diameter beam of 95 keV average energy photons generated by a synchrotron. The detectors were scanned through the beam while their signal was recorded as a function of position, to map the response. These 2D response maps were created in both the end-on and side-on orientations. The results show the location and size of the active region. End-on, the active area was determined to be centrally located and within 0.2 mm of the manufacturer's specified diameter. The active areas of the 60016 Diode P, 60017 Diode E, 60018 Diode SRS detectors are uniform to within approximately 5%. The 60019 microDiamond showed local variations up to 30%. The extra-cameral signal in the microDiamond was calculated from the side-on scan to be approximately 8% of the signal from the active element. The spatial response of four solid-state detectors has been measured. The technique yielded information about the location and uniformity of the active area, and the extra-cameral signal, for the beam quality used. © 2017 Commonwealth of Australia. Medical Physics © 2017 American Association of Physicists in Medicine. This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced without prior written permission. Requests and enquiries concerning reproduction and rights should be directed in the first instance to John Wiley & Sons Ltd of The Atrium, Southern Gate, Chichester, West Sussex P019 8SQ UNITED KINGDOM; alternatively to ARPANSA.

  10. A search for a heavy Majorana neutrino and a radiation damage simulation for the HF detector

    NASA Astrophysics Data System (ADS)

    Wetzel, James William

    A search for heavy Majorana neutrinos is performed using an event signature defined by two same-sign muons accompanied by two jets. This search is an extension of previous searches, (L3, DELPHI, CMS, ATLAS), using 19.7 fb -1 of data from the 2012 Large Hadron Collider experimental run collected by the Compact Muon Solenoid experiment. A mass window of 40-500 GeV/ c2 is explored. No excess events above Standard Model backgrounds is observed, and limits are set on the mixing element squared, |VmuN|2, as a function of Majorana neutFnrino mass. The Hadronic Forward (HF) Detector's performance will degrade as a function of the number of particles delivered to the detector over time, a quantity referred to as integrated luminosity and measured in inverse femtobarns (fb-1). In order to better plan detector upgrades, the CMS Forward Calorimetry Task Force (FCAL) group and the CMS Hadronic Calorimeter (HCAL) group have requested that radiation damage be simulated and the subsequent performance of the HF subdetector be studied. The simulation was implemented into both the CMS FastSim and CMS FullSim simulation packages. Standard calorimetry performance metrics were computed and are reported. The HF detector can expect to perform well through the planned delivery of 3000 fb-1.

  11. SU-F-BRE-01: A Rapid Method to Determine An Upper Limit On a Radiation Detector's Correction Factor During the QA of IMRT Plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamio, Y; Bouchard, H

    2014-06-15

    Purpose: Discrepancies in the verification of the absorbed dose to water from an IMRT plan using a radiation dosimeter can be wither caused by 1) detector specific nonstandard field correction factors as described by the formalism of Alfonso et al. 2) inaccurate delivery of the DQA plan. The aim of this work is to develop a simple/fast method to determine an upper limit on the contribution of composite field correction factors to these discrepancies. Methods: Indices that characterize the non-flatness of the symmetrised collapsed delivery (VSC) of IMRT fields over detector-specific regions of interest were shown to be correlated withmore » IMRT field correction factors. The indices introduced are the uniformity index (UI) and the mean fluctuation index (MF). Each one of these correlation plots have 10 000 fields generated with a stochastic model. A total of eight radiation detectors were investigated in the radial orientation. An upper bound on the correction factors was evaluated by fitting values of high correction factors for a given index value. Results: These fitted curves can be used to compare the performance of radiation dosimeters in composite IMRT fields. Highly water-equivalent dosimeters like the scintillating detector (Exradin W1) and a generic alanine detector have been found to have corrections under 1% over a broad range of field modulations (0 – 0.12 for MF and 0 – 0.5 for UI). Other detectors have been shown to have corrections of a few percent over this range. Finally, a full Monte Carlo simulations of 18 clinical and nonclinical IMRT field showed good agreement with the fitted curve for the A12 ionization chamber. Conclusion: This work proposes a rapid method to evaluate an upper bound on the contribution of correction factors to discrepancies found in the verification of DQA plans.« less

  12. Radiation damage in room-temperature data acquisition with the PILATUS 6M pixel detector.

    PubMed

    Rajendran, Chitra; Dworkowski, Florian S N; Wang, Meitian; Schulze-Briese, Clemens

    2011-05-01

    The first study of room-temperature macromolecular crystallography data acquisition with a silicon pixel detector is presented, where the data are collected in continuous sample rotation mode, with millisecond read-out time and no read-out noise. Several successive datasets were collected sequentially from single test crystals of thaumatin and insulin. The dose rate ranged between ∼ 1320 Gy s(-1) and ∼ 8420 Gy s(-1) with corresponding frame rates between 1.565 Hz and 12.5 Hz. The data were analysed for global radiation damage. A previously unreported negative dose-rate effect is observed in the indicators of global radiation damage, which showed an approximately 75% decrease in D(1/2) at sixfold higher dose rate. The integrated intensity decreases in an exponential manner. Sample heating that could give rise to the enhanced radiation sensitivity at higher dose rate is investigated by collecting data between crystal temperatures of 298 K and 353 K. UV-Vis spectroscopy is used to demonstrate that disulfide radicals and trapped electrons do not accumulate at high dose rates in continuous data collection.

  13. Electric Field and Current Transport Mechanisms in Schottky CdTe X-ray Detectors under Perturbing Optical Radiation

    PubMed Central

    Cola, Adriano; Farella, Isabella

    2013-01-01

    Schottky CdTe X-ray detectors exhibit excellent spectroscopic performance but suffer from instabilities. Hence it is of extreme relevance to investigate their electrical properties. A systematic study of the electric field distribution and the current flowing in such detectors under optical perturbations is presented here. The detector response is explored by varying experimental parameters, such as voltage, temperature, and radiation wavelength. The strongest perturbation is observed under 850 nm irradiation, bulk carrier recombination becoming effective there. Cathode and anode irradiations evidence the crucial role of the contacts, the cathode being Ohmic and the anode blocking. In particular, under irradiation of the cathode, charge injection occurs and peculiar kinks, typical of trap filling, are observed both in the current-voltage characteristic and during transients. The simultaneous access to the electric field and the current highlights the correlation between free and fixed charges, and unveils carrier transport/collection mechanisms otherwise hidden. PMID:23881140

  14. SU-E-T-607: Performance Quantification of the Nine Detectors Used for Dosimetry Measurements in Advanced Radiation Therapy Treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markovic, M; Stathakis, S; Jurkovic, I

    2015-06-15

    Purpose: The purpose of this study was to quantify performance of the nine detectors used for dosimetry measurements in advanced radiation therapy treatments. Methods: The 6 MV beam was utilized for measurements of the field sizes with the lack of lateral charge particle equilibrium. For dose fidelity aspect, energy dependence was studied by measuring PDD and profiles at different depths. The volume effect and its influence on the measured dose profiles have been observed by measuring detector’s response function. Output factor measurements with respect to change in energy spectrum have been performed and collected data has been analyzed. The linearitymore » of the measurements with the dose delivered has been evaluated and relevant comparisons were done. Results: The measured values of the output factors with respect to change in energy spectrum indicated presence of the energy dependence. The detectors with active volume size ≤ 0.3 mm3 maximum deviation from the mean is 5.6% for the field size 0.5 x 0.5 cm2 while detectors with active volume size > 0.3 mm3 have maximum deviation from the mean 7.1%. Linearity with dose at highest dose rate examined for diode detectors showed maximum deviation of 4% while ion chambers showed maximum deviation of 2.2%. Dose profiles showed energy dependence at shallow depths (surface to dmax) influenced by low energy particles with 12 % maximum deviation from the mean for 5 mm2 field size. In relation to Monte Carlo calculation, the detector’s response function σ values were between (0.42±0.25) mm and (1.2±0.25) mm. Conclusion: All the detectors are appropriate for the dosimetry measurements in advanced radiation therapy treatments. The choice of the detectors has to be determined by the application and the scope of the measurements in respect to energy dependence and ability to accurately resolve dose profiles as well as to it’s intrinsic characteristics.« less

  15. AN EVALUATION OF THE BASIC CHARACTERISTICS OF A PLASTIC SCINTILLATING FIBRE DETECTOR IN CT RADIATION FIELDS.

    PubMed

    Terasaki, Kento; Fujibuchi, Toshioh; Toyoda, Takatoshi; Yoshida, Yutaka; Akasaka, Tsutomu; Nohtomi, Akihiro; Morishita, Junji

    2016-12-01

    The ionisation chamber for computed tomography (CT) is an instrument that is most commonly used to measure the computed tomography dose index. However, it has been reported that the 10 cm effective detection length of the ionisation chamber is insufficient due to the extent of the dose distribution outside the chamber. The purpose of this study was to estimate the basic characteristics of a plastic scintillating fibre (PSF) detector with a long detection length of 50 cm in CT radiation fields. The authors investigated position dependence using diagnostic X-ray equipment and dependencies for energy, dose rate and slice thickness using an X-ray CT system. The PSF detector outputs piled up at a count rate of 10 000 counts ms -1 in dose rate dependence study. With calibration, this detector may be useful as a CT dosemeter with a long detection length except for the measurement at high dose rate. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Directional gamma detector

    DOEpatents

    LeVert, Francis E.; Cox, Samson A.

    1981-01-01

    An improved directional gamma radiation detector has a collector sandwiched etween two layers of insulation of varying thicknesses. The collector and insulation layers are contained within an evacuated casing, or emitter, which releases electrons upon exposure to gamma radiation. Delayed electrons and electrons entering the collector at oblique angles are attenuated as they pass through the insulation layers on route to the collector.

  17. High-Sensitivity Fast Neutron Detector KNK-2-8M

    NASA Astrophysics Data System (ADS)

    Koshelev, A. S.; Dovbysh, L. Ye.; Ovchinnikov, M. A.; Pikulina, G. N.; Drozdov, Yu. M.; Chuklyaev, S. V.; Pepyolyshev, Yu. N.

    2017-12-01

    The design of the fast neutron detector KNK-2-8M is outlined. The results of he detector study in the pulse counting mode with pulses from 238U nuclei fission in the radiator of the neutron-sensitive section and in the current mode with separation of functional section currents are presented. The possibilities of determination of the effective number of 238U nuclei in the radiator of the neutron-sensitive section are considered. The diagnostic capabilities of the detector in the counting mode are demonstrated, as exemplified by the analysis of reference data on characteristics of neutron fields in the BR-1 reactor hall. The diagnostic capabilities of the detector in the current mode are demonstrated, as exemplified by the results of measurements of 238U fission intensity in the power startup of the BR-K1 reactor in the fission pulse generation mode with delayed neutrons and the detector placed in the reactor cavity in conditions of large-scale variation of the reactor radiation fields.

  18. Quantitative Features of Liver Lesions, Lung Nodules, and Renal Stones at Multi-Detector Row CT Examinations: Dependency on Radiation Dose and Reconstruction Algorithm.

    PubMed

    Solomon, Justin; Mileto, Achille; Nelson, Rendon C; Roy Choudhury, Kingshuk; Samei, Ehsan

    2016-04-01

    To determine if radiation dose and reconstruction algorithm affect the computer-based extraction and analysis of quantitative imaging features in lung nodules, liver lesions, and renal stones at multi-detector row computed tomography (CT). Retrospective analysis of data from a prospective, multicenter, HIPAA-compliant, institutional review board-approved clinical trial was performed by extracting 23 quantitative imaging features (size, shape, attenuation, edge sharpness, pixel value distribution, and texture) of lesions on multi-detector row CT images of 20 adult patients (14 men, six women; mean age, 63 years; range, 38-72 years) referred for known or suspected focal liver lesions, lung nodules, or kidney stones. Data were acquired between September 2011 and April 2012. All multi-detector row CT scans were performed at two different radiation dose levels; images were reconstructed with filtered back projection, adaptive statistical iterative reconstruction, and model-based iterative reconstruction (MBIR) algorithms. A linear mixed-effects model was used to assess the effect of radiation dose and reconstruction algorithm on extracted features. Among the 23 imaging features assessed, radiation dose had a significant effect on five, three, and four of the features for liver lesions, lung nodules, and renal stones, respectively (P < .002 for all comparisons). Adaptive statistical iterative reconstruction had a significant effect on three, one, and one of the features for liver lesions, lung nodules, and renal stones, respectively (P < .002 for all comparisons). MBIR reconstruction had a significant effect on nine, 11, and 15 of the features for liver lesions, lung nodules, and renal stones, respectively (P < .002 for all comparisons). Of note, the measured size of lung nodules and renal stones with MBIR was significantly different than those for the other two algorithms (P < .002 for all comparisons). Although lesion texture was significantly affected by the

  19. Binary-selectable detector holdoff circuit

    NASA Technical Reports Server (NTRS)

    Kadrmas, K. A.

    1974-01-01

    High-speed switching circuit protects detectors from sudden, extremely-intense backscattered radiation that results from short-range atmospheric dust layers, or low-level clouds, entering laser/radar field of view. Function of circuit is to provide computer-controlled switching of photodiode detector, preamplifier power-supply voltages, in approximately 10 nanoseconds.

  20. The Fabrication and Characterization of Ni/4H-SiC Schottky Diode Radiation Detectors with a Sensitive Area of up to 4 cm².

    PubMed

    Liu, Lin-Yue; Wang, Ling; Jin, Peng; Liu, Jin-Liang; Zhang, Xian-Peng; Chen, Liang; Zhang, Jiang-Fu; Ouyang, Xiao-Ping; Liu, Ao; Huang, Run-Hua; Bai, Song

    2017-10-13

    Silicon carbide (SiC) detectors of an Ni/4H-SiC Schottky diode structure and with sensitive areas of 1-4 cm² were fabricated using high-quality lightly doped epitaxial 4H-SiC material, and were tested in the detection of alpha particles and pulsed X-rays/UV-light. A linear energy response to alpha particles ranging from 5.157 to 5.805 MeV was obtained. The detectors were proved to have a low dark current, a good energy resolution, and a high neutron/gamma discrimination for pulsed radiation, showing the advantages in charged particle detection and neutron detection in high-temperature and high-radiation environments.

  1. Flexible composite radiation detector

    DOEpatents

    Cooke, D Wayne [Santa Fe, NM; Bennett, Bryan L [Los Alamos, NM; Muenchausen, Ross E [Los Alamos, NM; Wrobleski, Debra A [Los Alamos, NM; Orler, Edward B [Los Alamos, NM

    2006-12-05

    A flexible composite scintillator was prepared by mixing fast, bright, dense rare-earth doped powdered oxyorthosilicate (such as LSO:Ce, LSO:Sm, and GSO:Ce) scintillator with a polymer binder. The binder is transparent to the scintillator emission. The composite is seamless and can be made large and in a wide variety of shapes. Importantly, the composite can be tailored to emit light in a spectral region that matches the optimum response of photomultipliers (about 400 nanometers) or photodiodes (about 600 nanometers), which maximizes the overall detector efficiency.

  2. Terahertz detectors and focal plane arrays

    NASA Astrophysics Data System (ADS)

    Rogalski, A.; Sizov, F.

    2011-09-01

    Terahertz (THz) technology is one of emerging technologies that will change our life. A lot of attractive applications in security, medicine, biology, astronomy, and non-destructive materials testing have been demonstrated already. However, the realization of THz emitters and receivers is a challenge because the frequencies are too high for conventional electronics and the photon energies are too small for classical optics. As a result, THz radiation is resistant to the techniques commonly employed in these well established neighbouring bands. In the paper, issues associated with the development and exploitation of THz radiation detectors and focal plane arrays are discussed. Historical impressive progress in THz detector sensitivity in a period of more than half century is analyzed. More attention is put on the basic physical phenomena and the recent progress in both direct and heterodyne detectors. After short description of general classification of THz detectors, more details concern Schottky barrier diodes, pair braking detectors, hot electron mixers and field-effect transistor detectors, where links between THz devices and modern technologies such as micromachining are underlined. Also, the operational conditions of THz detectors and their upper performance limits are reviewed. Finally, recent advances in novel nanoelectronic materials and technologies are described. It is expected that applications of nanoscale materials and devices will open the door for further performance improvement in THz detectors.

  3. The RICH detector of the CBM experiment

    NASA Astrophysics Data System (ADS)

    Adamczewski-Musch, J.; Akishin, P.; Becker, K.-H.; Belogurov, S.; Bendarouach, J.; Boldyreva, N.; Deveaux, C.; Dobyrn, V.; Dürr, M.; Eschke, J.; Förtsch, J.; Heep, J.; Höhne, C.; Kampert, K.-H.; Kochenda, L.; Kopfer, J.; Kravtsov, P.; Kres, I.; Lebedev, S.; Lebedeva, E.; Leonova, E.; Linev, S.; Mahmoud, T.; Michel, J.; Miftakhov, N.; Niebur, W.; Ovcharenko, E.; Patel, V.; Pauly, C.; Pfeifer, D.; Querchfeld, S.; Rautenberg, J.; Reinecke, S.; Riabov, Y.; Roshchin, E.; Samsonov, V.; Schetinin, V.; Tarasenkova, O.; Traxler, M.; Ugur, C.; Vznuzdaev, E.; Vznuzdaev, M.

    2017-12-01

    The CBM-RICH detector is designed to identify electrons with momenta up to 8 GeV/c and high purity as this is essential for the CBM physics program. The detector consist of a CO2-gaseous radiator, a spherical mirror system, and Multi-Anode PhotoMultiplier Tubes (MAPMT) of type H12700 from Hamamatsu as photon detectors. The detector concept was verified through R&D studies and a laterally scaled prototype. The results were summarized in a TDR, in which open issues were defined concerning the readout electronics, the shielding of the magnetic stray field in the MAPMT region, the radiation hardness of the MAPMT sensors, and the mechanical holding structure of the mirror system. In this article an overview is given on the CBM RICH development with focus on those open issues.

  4. Microradiography with Semiconductor Pixel Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jakubek, Jan; Cejnarova, Andrea; Dammer, Jiri

    High resolution radiography (with X-rays, neutrons, heavy charged particles, ...) often exploited also in tomographic mode to provide 3D images stands as a powerful imaging technique for instant and nondestructive visualization of fine internal structure of objects. Novel types of semiconductor single particle counting pixel detectors offer many advantages for radiation imaging: high detection efficiency, energy discrimination or direct energy measurement, noiseless digital integration (counting), high frame rate and virtually unlimited dynamic range. This article shows the application and potential of pixel detectors (such as Medipix2 or TimePix) in different fields of radiation imaging.

  5. A Low-Power, Radiation-Resistant, Silicon-Drift-Detector Array for Extraterrestrial Element Mapping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramsey B. D.; De Geronimo G.; Gaskin, J.A.

    2012-02-08

    We are developing a modular Silicon Drift Detector (SDD) X-Ray Spectrometer (XRS) for measuring the abundances of light surface elements (C to Fe) fluoresced by ambient radiation on remote airless bodies. The value of fluorescence spectrometry for surface element mapping is demonstrated by its inclusion on three recent lunar missions and by exciting new data that have recently been announced from the Messenger Mission to Mercury. The SDD-XRS instrument that we have been developing offers excellent energy resolution and an order of magnitude lower power requirement than conventional CCDs, making much higher sensitivities possible with modest spacecraft resources. In addition,more » it is significantly more radiation resistant than x-ray CCDs and therefore will not be subject to the degradation that befell recent lunar instruments. In fact, the intrinsic radiation resistance of the SDD makes it applicable even to the harsh environment of the Jovian system where it can be used to map the light surface elements of Europa. In this paper, we first discuss our element-mapping science-measurement goals. We then derive the necessary instrument requirements to meet these goals and discuss our current instrument development status with respect to these requirements.« less

  6. Radiation pager

    NASA Astrophysics Data System (ADS)

    Warren, John L.; Vadnais, Kenneth G.

    1997-01-01

    Recent advances in miniature photomultiplier tubes and low power electronics have made possible a new generation of small gamma-ray radiation detectors specifically designed for use by government and law enforcement agencies for the detection and interdiction of concealed nuclear materials. This paper describes an inexpensive pager sized radiation detector that can be worn on the belt or carried in a pocket for hands free operation, and which can quietly alert the operator to the presence of nuclear material. The sensitivity performance of the detector technology and the application of the instrument to law enforcement and nuclear smuggling are discussed.

  7. Radiation Protection

    NASA Astrophysics Data System (ADS)

    Grupen, Claus

    Radiation protection is a very important aspect for the application of particle detectors in many different fields, like high energy physics, medicine, materials science, oil and mineral exploration, and arts, to name a few. The knowledge of radiation units, the experience with shielding, and information on biological effects of radiation are vital for scientists handling radioactive sources or operating accelerators or X-ray equipment. This article describes the modern radiation units and their conversions to older units which are still in use in many countries. Typical radiation sources and detectors used in the field of radiation protection are presented. The legal regulations in nearly all countries follow closely the recommendations of the International Commission on Radiological Protection (ICRP). Tables and diagrams with relevant information on the handling of radiation sources provide useful data for the researcher working in this field.

  8. On the introduction of a measurement standard for high-purity germanium crystals to be used in radiation detectors

    NASA Astrophysics Data System (ADS)

    Darken, L.

    1994-02-01

    The IEEE and ANSI have recently approved "Standard Test Procedures for High-Purity Germanium Crystals for Radiation Detectors" proposed by the IEEE/NPSS/Nuclear Instruments and Detectors Committee. The standard addresses three aspects of the characterisation of high-purity germanium: (i) the determination by the van der Pauw method of the net carrier concentration and type; (ii) the measurement by capacitance transient techniques of the concentration of trapping levels; (iii) the description of the crystallographic properties revealed by preferential etching. In addition to describing the contents of this standard, the purpose of this work is also to place the issues faced in the context of professional consensus: points of agreement, points of disagreement, and subjects poorly understood.

  9. Fast CsI-phoswich detector

    DOEpatents

    Langenbrunner, James R.

    1996-01-01

    An improved phoswich radiation detector used pure CsI crystal and a fast plastic scintillator and a single photomultiplier tube. The plastic is arranged to receive incident radiation, and that which passed through then strikes the CsI crystal. Scintillation light from both the plastic and CsI crystal are applied to the photomultiplier tube, with the light from the plastic passing through the crystal without absorption therein. Electronics are provided for analyzing the output of the photomultiplier tube to discriminate responses due to the plastic and the CsI crystal, through short gate and long gate integration, to produce results which are indicative of the characteristics of the different types of incident radiation, even in the presence of large amounts of radiation. The phoswich detector has excellent timing resolution. The scintillators of the CsI- phoswich were chosen for their fast risetimes, of about 3 ns for NE102A, and 30 ns for the pure CsI.

  10. Fast CsI-phoswich detector

    DOEpatents

    Langenbrunner, J.R.

    1996-05-07

    An improved phoswich radiation detector used pure CsI crystal and a fast plastic scintillator and a single photomultiplier tube. The plastic is arranged to receive incident radiation, and that which passed through then strikes the CsI crystal. Scintillation light from both the plastic and CsI crystal are applied to the photomultiplier tube, with the light from the plastic passing through the crystal without absorption therein. Electronics are provided for analyzing the output of the photomultiplier tube to discriminate responses due to the plastic and the CsI crystal, through short gate and long gate integration, to produce results which are indicative of the characteristics of the different types of incident radiation, even in the presence of large amounts of radiation. The phoswich detector has excellent timing resolution. The scintillators of the CsI- phoswich were chosen for their fast risetimes, of about 3 ns for NE102A, and 30 ns for the pure CsI. 5 figs.

  11. Distributed imaging for liquid scintillation detectors

    NASA Astrophysics Data System (ADS)

    Dalmasson, J.; Gratta, G.; Jamil, A.; Kravitz, S.; Malek, M.; Wells, K.; Bentley, J.; Steven, S.; Su, J.

    2018-03-01

    We discuss a novel paradigm in the optical readout of scintillation radiation detectors. In one common configuration, such detectors are homogeneous and the scintillation light is collected and recorded by external photodetectors. It is usually assumed that imaging in such a photon-starved and large-emittance regime is not possible. Here we show that the appropriate optics, matched with highly segmented photodetector coverage and dedicated reconstruction software, can be used to produce images of the radiation-induced events. In particular, such a "distributed imaging" system can discriminate between events produced as a single cluster and those resulting from more delocalized energy depositions. This is crucial in discriminating many common backgrounds at MeV energies. With the use of simulation, we demonstrate the performance of a detector augmented with a practical, if preliminary, set of optics. Finally, we remark that this new technique lends itself to be adapted to different detector sizes and briefly discuss the implications for a number of common applications in science and technology.

  12. High-Rydberg Xenon Submillimeter-Wave Detector

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara

    1987-01-01

    Proposed detector for infrared and submillimeter-wavelength radiation uses excited xenon atoms as Rydberg sensors instead of customary beams of sodium, potassium, or cesium. Chemically inert xenon easily stored in pressurized containers, whereas beams of dangerously reactive alkali metals must be generated in cumbersome, unreliable ovens. Xenon-based detector potential for infrared astronomy and for Earth-orbiter detection of terrestrial radiation sources. Xenon atoms excited to high energy states in two stages. Doubly excited atoms sensitive to photons in submillimeter wavelength range, further excited by these photons, then ionized and counted.

  13. Gamma-Ray Detectors: From Homeland Security to the Cosmos (443rd Brookhaven Lecture)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolotnikov, Aleksey

    2008-12-03

    Many radiation detectors are first developed for homeland security or industrial applications. Scientists, however, are continuously realizing new roles that these detectors can play in high-energy physics and astrophysics experiments. On Wednesday, December 3, join presenter Aleksey Bolotnikov, a physicist in the Nonproliferation and National Security Department (NNSD) and a co-inventor of the cadmium-zinc-telluride Frisch-ring (CdZnTe) detector, for the 443rd Brookhaven Lecture, entitled Gamma-Ray Detectors: From Homeland Security to the Cosmos. In his lecture, Bolotnikov will highlight two primary radiation-detector technologies: CdZnTe detectors and fluid-Xeon (Xe) detectors.

  14. Method and apparatus for measuring spatial uniformity of radiation

    DOEpatents

    Field, Halden

    2002-01-01

    A method and apparatus for measuring the spatial uniformity of the intensity of a radiation beam from a radiation source based on a single sampling time and/or a single pulse of radiation. The measuring apparatus includes a plurality of radiation detectors positioned on planar mounting plate to form a radiation receiving area that has a shape and size approximating the size and shape of the cross section of the radiation beam. The detectors concurrently receive portions of the radiation beam and transmit electrical signals representative of the intensity of impinging radiation to a signal processor circuit connected to each of the detectors and adapted to concurrently receive the electrical signals from the detectors and process with a central processing unit (CPU) the signals to determine intensities of the radiation impinging at each detector location. The CPU displays the determined intensities and relative intensity values corresponding to each detector location to an operator of the measuring apparatus on an included data display device. Concurrent sampling of each detector is achieved by connecting to each detector a sample and hold circuit that is configured to track the signal and store it upon receipt of a "capture" signal. A switching device then selectively retrieves the signals and transmits the signals to the CPU through a single analog to digital (A/D) converter. The "capture" signal. is then removed from the sample-and-hold circuits. Alternatively, concurrent sampling is achieved by providing an A/D converter for each detector, each of which transmits a corresponding digital signal to the CPU. The sampling or reading of the detector signals can be controlled by the CPU or level-detection and timing circuit.

  15. Optical detectors based on thermoelastic effect in crystalline quartz

    NASA Astrophysics Data System (ADS)

    Chelibanov, V. P.; Ishanin, G. G.

    2015-06-01

    Optical detectors developed on base of thermo elastic effect In quartz crystalline (PTEK) attributed to the thermal detectors group. Such detectors occurred very effective for the registration of pulsed light energy or power of harmonically modulated laser radiation flux in a wide spectral (from UV to far IR) and dynamic ranges (from 10-6 to 300 W / cm2 with cooling) with a time constant up to10-6 seconds. When exposed to electromagnetic radiation occurs at the receiver thermal field which causes mechanical stress in the transient crystalline quartz, which in turn leads to a change in the polarization of crystalline quartz and, as a consequence, to an electric potential difference at the electrodes (the front surface with a conductive coating and damper). The capacitive characteristic of the detector, based on a thermo elastic effect in crystalline quartz, eliminates the possibility of working with constant flow of radiation, which also affects at the frequency response of the detector, since the potential difference appearance in the piezoelectric plate depends on the direction of the forces relative to the axes X, Y, Z of the crystal. Therefore, a certain choice of orientation of the receiving element is necessary in accordance with the physical properties of crystalline quartz. In this paper, a calculation of the sensitivity and frequency characteristics of optical detectors based on the thermo elastic effect in crystalline quartz at the harmonic effects of electromagnetic radiation flux are reported.

  16. Silicon surface barrier detectors used for liquid hydrogen density measurement

    NASA Technical Reports Server (NTRS)

    James, D. T.; Milam, J. K.; Winslett, H. B.

    1968-01-01

    Multichannel system employing a radioisotope radiation source, strontium-90, radiation detector, and a silicon surface barrier detector, measures the local density of liquid hydrogen at various levels in a storage tank. The instrument contains electronic equipment for collecting the density information, and a data handling system for processing this information.

  17. Using synchrotron radiation angiography with a highly sensitive detector to identify impaired peripheral perfusion in rat pulmonary emphysema

    PubMed Central

    Ito, Hiromichi; Matsushita, Shonosuke; Hyodo, Kazuyuki; Sato, Yukio; Sakakibara, Yuzuru

    2013-01-01

    Owing to limitations in spatial resolution and sensitivity, it is difficult for conventional angiography to detect minute changes of perfusion in diffuse lung diseases, including pulmonary emphysema (PE). However, a high-gain avalanche rushing amorphous photoconductor (HARP) detector can give high sensitivity to synchrotron radiation (SR) angiography. SR angiography with a HARP detector provides high spatial resolution and sensitivity in addition to time resolution owing to its angiographic nature. The purpose of this study was to investigate whether this SR angiography with a HARP detector could evaluate altered microcirculation in PE. Two groups of rats were used: group PE and group C (control). Transvenous SR angiography with a HARP detector was performed and histopathological findings were compared. Peak density of contrast material in peripheral lung was lower in group PE than group C (p < 0.01). The slope of the linear regression line in scattering diagrams was also lower in group PE than C (p < 0.05). The correlation between the slope and extent of PE in histopathology showed significant negative correlation (p < 0.05, r = 0.61). SR angiography with a HARP detector made it possible to identify impaired microcirculation in PE by means of its high spatial resolution and sensitivity. PMID:23412496

  18. 47 CFR 15.35 - Measurement detector functions and bandwidths.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Measurement detector functions and bandwidths... DEVICES General § 15.35 Measurement detector functions and bandwidths. The conducted and radiated emission... measuring equipment employing a CISPR quasi-peak detector function and related measurement bandwidths...

  19. 47 CFR 15.35 - Measurement detector functions and bandwidths.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Measurement detector functions and bandwidths... DEVICES General § 15.35 Measurement detector functions and bandwidths. The conducted and radiated emission... measuring equipment employing a CISPR quasi-peak detector function and related measurement bandwidths...

  20. 47 CFR 15.35 - Measurement detector functions and bandwidths.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Measurement detector functions and bandwidths... DEVICES General § 15.35 Measurement detector functions and bandwidths. The conducted and radiated emission... measuring equipment employing a CISPR quasi-peak detector function and related measurement bandwidths...

  1. 47 CFR 15.35 - Measurement detector functions and bandwidths.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Measurement detector functions and bandwidths... DEVICES General § 15.35 Measurement detector functions and bandwidths. The conducted and radiated emission... measuring equipment employing a CISPR quasi-peak detector function and related measurement bandwidths...

  2. 47 CFR 15.35 - Measurement detector functions and bandwidths.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Measurement detector functions and bandwidths... DEVICES General § 15.35 Measurement detector functions and bandwidths. The conducted and radiated emission... measuring equipment employing a CISPR quasi-peak detector function and related measurement bandwidths...

  3. Radiation hardness of thin Low Gain Avalanche Detectors

    NASA Astrophysics Data System (ADS)

    Kramberger, G.; Carulla, M.; Cavallaro, E.; Cindro, V.; Flores, D.; Galloway, Z.; Grinstein, S.; Hidalgo, S.; Fadeyev, V.; Lange, J.; Mandić, I.; Medin, G.; Merlos, A.; McKinney-Martinez, F.; Mikuž, M.; Quirion, D.; Pellegrini, G.; Petek, M.; Sadrozinski, H. F.-W.; Seiden, A.; Zavrtanik, M.

    2018-05-01

    Low Gain Avalanche Detectors (LGAD) are based on a n++-p+-p-p++ structure where an appropriate doping of the multiplication layer (p+) leads to high enough electric fields for impact ionization. Gain factors of few tens in charge significantly improve the resolution of timing measurements, particularly for thin detectors, where the timing performance was shown to be limited by Landau fluctuations. The main obstacle for their operation is the decrease of gain with irradiation, attributed to effective acceptor removal in the gain layer. Sets of thin sensors were produced by two different producers on different substrates, with different gain layer doping profiles and thicknesses (45, 50 and 80 μm). Their performance in terms of gain/collected charge and leakage current was compared before and after irradiation with neutrons and pions up to the equivalent fluences of 5 ṡ 1015 cm-2. Transient Current Technique and charge collection measurements with LHC speed electronics were employed to characterize the detectors. The thin LGAD sensors were shown to perform much better than sensors of standard thickness (∼300 μm) and offer larger charge collection with respect to detectors without gain layer for fluences < 2 ṡ 1015 cm-2. Larger initial gain prolongs the beneficial performance of LGADs. Pions were found to be more damaging than neutrons at the same equivalent fluence, while no significant difference was found between different producers. At very high fluences and bias voltages the gain appears due to deep acceptors in the bulk, hence also in thin standard detectors.

  4. Mercuric iodine room temperature gamma-ray detectors

    NASA Technical Reports Server (NTRS)

    Patt, Bradley E.; Markakis, Jeffrey M.; Gerrish, Vernon M.; Haymes, Robert C.; Trombka, Jacob I.

    1990-01-01

    high resolution mercuric iodide room temperature gamma-ray detectors have excellent potential as an essential component of space instruments to be used for high energy astrophysics. Mercuric iodide detectors are being developed both as photodetectors used in combination with scintillation crystals to detect gamma-rays, and as direct gamma-ray detectors. These detectors are highly radiation damage resistant. The list of applications includes gamma-ray burst detection, gamma-ray line astronomy, solar flare studies, and elemental analysis.

  5. Some results on radiation belt electrons from observations of satellite-borne semiconductor electron detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng Doug-yuan; Wu Ji-ping

    1987-04-01

    This paper presents some results from observations of a Chinese satellite-borne semiconductor electron detector. Data analysis yields typical values of electron fluxes in the central region of the inner radiation belt. The omnidirectional fluxes of electrons having energies greater than 0.5 MeV and 1.0 MeV are 1.9 x 10/sup 8/ and 6.7 x 10/sup 7/ elec./s-cm/sup 2/, respectively. The electron-flux profile on a typical orbit as a function of time is also given. In addition, the omnidirectional fluxes at the synchronous altitude for the two electron-energy levels mentioned are 2.43 x 10/sup 6/ and 4.25 x 10/sup 5/ elec./s-cm/sup 2/.more » The diurnal variations of electrons in the outer radiation belt observed at the synchronous altitude are also given. The results agree with those observed abroad.« less

  6. HEPD on NEXTSat-1: A High Energy Particle Detector for Measurements of Precipitating Radiation Belt Electrons

    NASA Astrophysics Data System (ADS)

    Sohn, Jongdae; Lee, Jaejin; Min, Kyoungwook; Lee, Junchan; Lee, Seunguk; Lee, Daeyoung; Jo, Gyeongbok; Yi, Yu; Na, Gowoon; Kang, Kyung-In; Shin, Goo-Hwan

    2018-05-01

    Radiation belt particles of the inner magnetosphere precipitate into the atmosphere in the subauroral regions when they are pitch-angle scattered into the loss cone by wave-particle interactions. Such particle precipitations are known to be especially enhanced during space storms, though they can also occur during quiet times. The observed characteristics of precipitating electrons can be distinctively different, in their time series as well as in their spectra, depending on the waves involved. The present paper describes the High Energy Particle Detector (HEPD) on board the Next Generation Small Satellite-1 (NEXTSat-1), which will measure these radiation belt electrons from a low-Earth polar orbit satellite to study the mechanisms related to electron precipitation in the sub-auroral regions. The HEPD is based on silicon barrier detectors and consists of three telescopes that are mounted on the satellite to have angles of 0°. 45°, and 90°, respectively with the local geomagnetic field during observations. With a high time resolution of 32 Hz and a high spectral resolution of 11 channels over the energy range from 350 keV to 2 MeV, together with the pitch angle information provided by the three telescopes, HEPD is capable of identifying physical processes, such as microbursts and dust-side relativistic electron precipitation (DREP) events associated with electron precipitations. NextSat-1 is scheduled for launch in early 2018.

  7. Modeling radon daughter deposition rates for low background detectors

    NASA Astrophysics Data System (ADS)

    Westerdale, S.; Guiseppe, V. E.; Rielage, K.; Elliot, S. R.; Hime, A.

    2009-10-01

    Detectors such as those looking for dark matter and those working to detect neutrinoless double-beta decay require record low levels of background radiation. One major source of background radiation is from radon daughters that decay from airborne radon. In particular, ^222Rn decay products may be deposited on any detector materials that are exposed to environmental radon. Long-lasting daughters, especially ^210Pb, can pose a long-term background radiation source that can interfere with the detectors' measurements by emitting alpha particles into sensitive parts of the detectors. A better understanding of this radon daughter deposition will allow for preventative actions to be taken to minimize the amount of noise from this source. A test stand has therefore been set up to study the impact of various environmental factors on the rate of radon daughter deposition so that a model can be constructed. Results from the test stand and a model of radon daughter deposition will be presented.

  8. Physics of cardiac imaging with multiple-row detector CT.

    PubMed

    Mahesh, Mahadevappa; Cody, Dianna D

    2007-01-01

    Cardiac imaging with multiple-row detector computed tomography (CT) has become possible due to rapid advances in CT technologies. Images with high temporal and spatial resolution can be obtained with multiple-row detector CT scanners; however, the radiation dose associated with cardiac imaging is high. Understanding the physics of cardiac imaging with multiple-row detector CT scanners allows optimization of cardiac CT protocols in terms of image quality and radiation dose. Knowledge of the trade-offs between various scan parameters that affect image quality--such as temporal resolution, spatial resolution, and pitch--is the key to optimized cardiac CT protocols, which can minimize the radiation risks associated with these studies. Factors affecting temporal resolution include gantry rotation time, acquisition mode, and reconstruction method; factors affecting spatial resolution include detector size and reconstruction interval. Cardiac CT has the potential to become a reliable tool for noninvasive diagnosis and prevention of cardiac and coronary artery disease. (c) RSNA, 2007.

  9. Design of a portable dose rate detector based on a double Geiger-Mueller counter

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Tang, Xiao-Bin; Gong, Pin; Huang, Xi; Wen, Liang-Sheng; Han, Zhen-Yang; He, Jian-Ping

    2018-01-01

    A portable dose rate detector was designed to monitor radioactive pollution and radioactive environments. The portable dose detector can measure background radiation levels (0.1 μSv/h) to nuclear accident radiation levels (>10 Sv/h). Both automatic switch technology of a double Geiger-Mueller counter and time-to-count technology were adopted to broaden the measurement range of the instrument. Global positioning systems and the 3G telecommunication protocol were installed to prevent radiation damage to the human body. In addition, the Monte Carlo N-Particle code was used to design the thin layer of metal for energy compensation, which was used to flatten energy response The portable dose rate detector has been calibrated by the standard radiation field method, and it can be used alone or in combination with additional radiation detectors.

  10. Progress Towards High-Sensitivity Arrays of Detectors of Sub-mm Radiation using Superconducting Tunnel Junctions with Radio-Frequency Single-Electron Transistors

    NASA Technical Reports Server (NTRS)

    Stevenson, T. R.; Hsieh, W.-T.; Li, M. J.; Stahle, C. M.; Wollack, E. J.; Schoelkopf, R. J.; Krebs, Carolyn (Technical Monitor)

    2002-01-01

    The science drivers for the SPIRIT/SPECS missions demand sensitive, fast, compact, low-power, large-format detector arrays for high resolution imaging and spectroscopy in the far infrared and submillimeter. Detector arrays with 10,000 pixels and sensitivity less than 10(exp 20)-20 W/Hz(exp 20)0.5 are needed. Antenna-coupled superconducting tunnel junction detectors with integrated rf single-electron transistor readout amplifiers have the potential for achieving this high level of sensitivity, and can take advantage of an rf multiplexing technique when forming arrays. The device consists of an antenna structure to couple radiation into a small superconducting volume and cause quasiparticle excitations, and a single-electron transistor to measure currents through tunnel junction contacts to the absorber volume. We will describe optimization of device parameters, and recent results on fabrication techniques for producing devices with high yield for detector arrays. We will also present modeling of expected saturation power levels, antenna coupling, and rf multiplexing schemes.

  11. "Edge-on" MOSkin detector for stereotactic beam measurement and verification.

    PubMed

    Jong, Wei Loong; Ung, Ngie Min; Vannyat, Ath; Jamalludin, Zulaikha; Rosenfeld, Anatoly; Wong, Jeannie Hsiu Ding

    2017-01-01

    Dosimetry in small radiation field is challenging and complicated because of dose volume averaging and beam perturbations in a detector. We evaluated the suitability of the "Edge-on" MOSkin (MOSFET) detector in small radiation field measurement. We also tested the feasibility for dosimetric verification in stereotactic radiosurgery (SRS) and stereotactic radiotherapy (SRT). "Edge-on" MOSkin detector was calibrated and the reproducibility and linearity were determined. Lateral dose profiles and output factors were measured using the "Edge-on" MOSkin detector, ionization chamber, SRS diode and EBT2 film. Dosimetric verification was carried out on two SRS and five SRT plans. In dose profile measurements, the "Edge-on" MOSkin measurements concurred with EBT2 film measurements. It showed full width at half maximum of the dose profile with average difference of 0.11mm and penumbral width with difference of ±0.2mm for all SRS cones as compared to EBT2 film measurement. For output factor measurements, a 1.1% difference was observed between the "Edge-on" MOSkin detector and EBT2 film for 4mm SRS cone. The "Edge-on" MOSkin detector provided reproducible measurements for dose verification in real-time. The measured doses concurred with the calculated dose for SRS (within 1%) and SRT (within 3%). A set of output correction factors for the "Edge-on" MOSkin detector for small radiation fields were derived from EBT2 film measurement and presented. This study showed that the "Edge-on" MOSkin detector is a suitable tool for dose verification in small radiation field. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  12. FPGA-based GEM detector signal acquisition for SXR spectroscopy system

    NASA Astrophysics Data System (ADS)

    Wojenski, A.; Pozniak, K. T.; Kasprowicz, G.; Kolasinski, P.; Krawczyk, R.; Zabolotny, W.; Chernyshova, M.; Czarski, T.; Malinowski, K.

    2016-11-01

    The presented work is related to the Gas Electron Multiplier (GEM) detector soft X-ray spectroscopy system for tokamak applications. The used GEM detector has one-dimensional, 128 channel readout structure. The channels are connected to the radiation-hard electronics with configurable analog stage and fast ADCs, supporting speeds of 125 MSPS for each channel. The digitalized data is sent directly to the FPGAs using fast serial links. The preprocessing algorithms are implemented in the FPGAs, with the data buffering made in the on-board 2Gb DDR3 memory chips. After the algorithmic stage, the data is sent to the Intel Xeon-based PC for further postprocessing using PCI-Express link Gen 2. For connection of multiple FPGAs, PCI-Express switch 8-to-1 was designed. The whole system can support up to 2048 analog channels. The scope of the work is an FPGA-based implementation of the recorder of the raw signal from GEM detector. Since the system will work in a very challenging environment (neutron radiation, intense electro-magnetic fields), the registered signals from the GEM detector can be corrupted. In the case of the very intense hot plasma radiation (e.g. laser generated plasma), the registered signals can overlap. Therefore, it is valuable to register the raw signals from the GEM detector with high number of events during soft X-ray radiation. The signal analysis will have the direct impact on the implementation of photon energy computation algorithms. As the result, the system will produce energy spectra and topological distribution of soft X-ray radiation. The advanced software was developed in order to perform complex system startup and monitoring of hardware units. Using the array of two one-dimensional GEM detectors it will be possible to perform tomographic reconstruction of plasma impurities radiation in the SXR region.

  13. Multiagency Urban Search Experiment Detector and Algorithm Test Bed

    NASA Astrophysics Data System (ADS)

    Nicholson, Andrew D.; Garishvili, Irakli; Peplow, Douglas E.; Archer, Daniel E.; Ray, William R.; Swinney, Mathew W.; Willis, Michael J.; Davidson, Gregory G.; Cleveland, Steven L.; Patton, Bruce W.; Hornback, Donald E.; Peltz, James J.; McLean, M. S. Lance; Plionis, Alexander A.; Quiter, Brian J.; Bandstra, Mark S.

    2017-07-01

    In order to provide benchmark data sets for radiation detector and algorithm development, a particle transport test bed has been created using experimental data as model input and validation. A detailed radiation measurement campaign at the Combined Arms Collective Training Facility in Fort Indiantown Gap, PA (FTIG), USA, provides sample background radiation levels for a variety of materials present at the site (including cinder block, gravel, asphalt, and soil) using long dwell high-purity germanium (HPGe) measurements. In addition, detailed light detection and ranging data and ground-truth measurements inform model geometry. This paper describes the collected data and the application of these data to create background and injected source synthetic data for an arbitrary gamma-ray detection system using particle transport model detector response calculations and statistical sampling. In the methodology presented here, HPGe measurements inform model source terms while detector response calculations are validated via long dwell measurements using 2"×4"×16" NaI(Tl) detectors at a variety of measurement points. A collection of responses, along with sampling methods and interpolation, can be used to create data sets to gauge radiation detector and algorithm (including detection, identification, and localization) performance under a variety of scenarios. Data collected at the FTIG site are available for query, filtering, visualization, and download at muse.lbl.gov.

  14. Beta ray spectroscopy based on a plastic scintillation detector/silicon surface barrier detector coincidence telescope

    NASA Astrophysics Data System (ADS)

    Horowitz, Y. S.; Hirning, C. R.; Yuen, P.; Aikens, M.

    1994-01-01

    Beta radiation is now recognized as a significant radiation safety problem and several international conferences have recently been devoted to the problems of mixed field beta/photon dosimetry. Conventional dosimetry applies algorithms to thermoluminescence dosimetry (TLD) multi-element badges which attempt to extract dose information based on the comparison of TL signals from ``thick/thin'' and/or ``bare/filtered'' elements. These may be grossly innacurate due to inadequate or non-existant knowledge of the energy spectrum of both the beta radiation and the accompanying photon field, as well as other factors. In this paper, we discuss the operation of a beta-ray energy spectrometer based on a two element, E × dE detector telescope intended to support dose algorithms with beta spectral information. Beta energies are measured via a 5 cm diameter × 2 cm thick BC-404 plastic scintillator preceded by a single, 100 μm thick, totally depleted, silicon dE detector. Photon events in the E detector are rejected by requiring a coincidence between the E and dE detectors. Photon rejection ratios vary from 225:1 at 1.25 MeV (60Co) to 360:1 at 0.36 MeV (133Ba). The spectrometer is capable of measuring electron energies from a lower energy coincidence threshold of approximately 125 keV to an upper limit of 3.5 MeV. This energy range spans the great majority of beta-emitting radionuclides in nuclear facilities.

  15. Wide-range nuclear magnetic resonance detector

    NASA Technical Reports Server (NTRS)

    Sturman, J. C.; Jirberg, R. J.

    1972-01-01

    Compact and easy to use solid state nuclear magnetic resonance detector is designed for measuring field strength to 20 teslas in cryogenically cooled magnets. Extremely low noise and high sensitivity make detector applicable to nearly all types of analytical nuclear magnetic resonance measurements and can be used in high temperature and radiation environments.

  16. In situ radiation test of silicon and diamond detectors operating in superfluid helium and developed for beam loss monitoring

    NASA Astrophysics Data System (ADS)

    Kurfürst, C.; Dehning, B.; Sapinski, M.; Bartosik, M. R.; Eisel, T.; Fabjan, C.; Rementeria, C. A.; Griesmayer, E.; Eremin, V.; Verbitskaya, E.; Zabrodskii, A.; Fadeeva, N.; Tuboltsev, Y.; Eremin, I.; Egorov, N.; Härkönen, J.; Luukka, P.; Tuominen, E.

    2015-05-01

    As a result of the foreseen increase in the luminosity of the Large Hadron Collider, the discrimination between the collision products and possible magnet quench-provoking beam losses of the primary proton beams is becoming more critical for safe accelerator operation. We report the results of ongoing research efforts targeting the upgrading of the monitoring system by exploiting Beam Loss Monitor detectors based on semiconductors located as close as possible to the superconducting coils of the triplet magnets. In practice, this means that the detectors will have to be immersed in superfluid helium inside the cold mass and operate at 1.9 K. Additionally, the monitoring system is expected to survive 20 years of LHC operation, resulting in an estimated radiation fluence of 1×1016 proton/cm2, which corresponds to a dose of about 2 MGy. In this study, we monitored the signal degradation during the in situ irradiation when silicon and single-crystal diamond detectors were situated in the liquid/superfluid helium and the dependences of the collected charge on fluence and bias voltage were obtained. It is shown that diamond and silicon detectors can operate at 1.9 K after 1×1016 p/cm2 irradiation required for application as BLMs, while the rate of the signal degradation was larger in silicon detectors than in the diamond ones. For Si detectors this rate was controlled mainly by the operational mode, being larger at forward bias voltage.

  17. Solid state neutron detector array

    DOEpatents

    Seidel, J.G.; Ruddy, F.H.; Brandt, C.D.; Dulloo, A.R.; Lott, R.G.; Sirianni, E.; Wilson, R.O.

    1999-08-17

    A neutron detector array is capable of measuring a wide range of neutron fluxes. The array includes multiple semiconductor neutron detectors. Each detector has a semiconductor active region that is resistant to radiation damage. In one embodiment, the array preferably has a relatively small size, making it possible to place the array in confined locations. The ability of the array to detect a wide range of neutron fluxes is highly advantageous for many applications such as detecting neutron flux during start up, ramp up and full power of nuclear reactors. 7 figs.

  18. Solid state neutron detector array

    DOEpatents

    Seidel, John G.; Ruddy, Frank H.; Brandt, Charles D.; Dulloo, Abdul R.; Lott, Randy G.; Sirianni, Ernest; Wilson, Randall O.

    1999-01-01

    A neutron detector array is capable of measuring a wide range of neutron fluxes. The array includes multiple semiconductor neutron detectors. Each detector has a semiconductor active region that is resistant to radiation damage. In one embodiment, the array preferably has a relatively small size, making it possible to place the array in confined locations. The ability of the array to detect a wide range of neutron fluxes is highly advantageous for many applications such as detecting neutron flux during start up, ramp up and full power of nuclear reactors.

  19. Charged particle spectra measured during the transit to Mars with the Mars Science Laboratory Radiation Assessment Detector (MSL/RAD).

    PubMed

    Ehresmann, Bent; Hassler, Donald M; Zeitlin, Cary; Guo, Jingnan; Köhler, Jan; Wimmer-Schweingruber, Robert F; Appel, Jan K; Brinza, David E; Rafkin, Scot C R; Böttcher, Stephan I; Burmeister, Sönke; Lohf, Henning; Martin, Cesar; Böhm, Eckart; Matthiä, Daniel; Reitz, Günther

    2016-08-01

    The Mars Science Laboratory (MSL) started its 253-day cruise to Mars on November 26, 2011. During cruise the Radiation Assessment Detector (RAD), situated on board the Curiosity rover, conducted measurements of the energetic-particle radiation environment inside the spacecraft. This environment consists mainly of galactic cosmic rays (GCRs), as well as secondary particles created by interactions of these GCRs with the spacecraft. The RAD measurements can serve as a proxy for the radiation environment a human crew would encounter during a transit to Mars, for a given part of the solar cycle, assuming that a crewed vehicle would have comparable shielding. The measurements of radiological quantities made by RAD are important in themselves, and, the same data set allow for detailed analysis of GCR-induced particle spectra inside the spacecraft. This provides important inputs for the evaluation of current transport models used to model the free-space (and spacecraft) radiation environment for different spacecraft shielding and different times in the solar cycle. Changes in these conditions can lead to significantly different radiation fields and, thus, potential health risks, emphasizing the need for validated transport codes. Here, we present the first measurements of charged particle fluxes inside a spacecraft during the transit from Earth to Mars. Using data obtained during the last two month of the cruise to Mars (June 11-July 14, 2012), we have derived detailed energy spectra for low-Z particles stopping in the instrument's detectors, as well as integral fluxes for penetrating particles with higher energies. Furthermore, we analyze the temporal changes in measured proton fluxes during quiet solar periods (i.e., when no solar energetic particle events occurred) over the duration of the transit (December 9, 2011-July 14, 2012) and correlate them with changing heliospheric conditions. Copyright © 2016 The Committee on Space Research (COSPAR). All rights reserved.

  20. Charged particle spectra measured during the transit to Mars with the Mars Science Laboratory Radiation Assessment Detector (MSL/RAD)

    NASA Astrophysics Data System (ADS)

    Ehresmann, Bent; Hassler, Donald M.; Zeitlin, Cary; Guo, Jingnan; Köhler, Jan; Wimmer-Schweingruber, Robert F.; Appel, Jan K.; Brinza, David E.; Rafkin, Scot C. R.; Böttcher, Stephan I.; Burmeister, Sönke; Lohf, Henning; Martin, Cesar; Böhm, Eckart; Matthiä, Daniel; Reitz, Günther

    2016-08-01

    The Mars Science Laboratory (MSL) started its 253-day cruise to Mars on November 26, 2011. During cruise the Radiation Assessment Detector (RAD), situated on board the Curiosity rover, conducted measurements of the energetic-particle radiation environment inside the spacecraft. This environment consists mainly of galactic cosmic rays (GCRs), as well as secondary particles created by interactions of these GCRs with the spacecraft. The RAD measurements can serve as a proxy for the radiation environment a human crew would encounter during a transit to Mars, for a given part of the solar cycle, assuming that a crewed vehicle would have comparable shielding. The measurements of radiological quantities made by RAD are important in themselves, and, the same data set allow for detailed analysis of GCR-induced particle spectra inside the spacecraft. This provides important inputs for the evaluation of current transport models used to model the free-space (and spacecraft) radiation environment for different spacecraft shielding and different times in the solar cycle. Changes in these conditions can lead to significantly different radiation fields and, thus, potential health risks, emphasizing the need for validated transport codes. Here, we present the first measurements of charged particle fluxes inside a spacecraft during the transit from Earth to Mars. Using data obtained during the last two month of the cruise to Mars (June 11-July 14, 2012), we have derived detailed energy spectra for low-Z particles stopping in the instrument's detectors, as well as integral fluxes for penetrating particles with higher energies. Furthermore, we analyze the temporal changes in measured proton fluxes during quiet solar periods (i.e., when no solar energetic particle events occurred) over the duration of the transit (December 9, 2011-July 14, 2012) and correlate them with changing heliospheric conditions.

  1. Design and R&D of RICH detectors for EIC experiments

    NASA Astrophysics Data System (ADS)

    Del Dotto, A.; Wong, C.-P.; Allison, L.; Awadi, M.; Azmoun, B.; Barbosa, F.; Brooks, W.; Cao, T.; Chiu, M.; Cisbani, E.; Contalbrigo, M.; Datta, A.; Demarteau, M.; Durham, J. M.; Dzhygadlo, R.; Fields, D.; Furletova, Y.; Gleason, C.; Grosse-Perdekamp, M.; Harris, J.; He, X.; van Hecke, H.; Horn, T.; Huang, J.; Hyde, C.; Ilieva, Y.; Kalicy, G.; Kimball, M.; Kistenev, E.; Kulinich, Y.; Liu, M.; Majka, R.; McKisson, J.; Mendez, R.; Nadel-Turonski, P.; Park, K.; Peters, K.; Rao, T.; Pisani, R.; Qiang, Y.; Rescia, S.; Rossi, P.; Sarsour, M.; Schwarz, C.; Schwiening, J.; da Silva, C. L.; Smirnov, N.; Stein, H.; Stevens, J.; Sukhanov, A.; Syed, S.; Tate, A.; Toh, J.; Towell, C.; Towell, R.; Tsang, T.; Wagner, R.; Wang, J.; Woody, C.; Xi, W.; Xie, J.; Zhao, Z. W.; Zihlmann, B.; Zorn, C.

    2017-12-01

    An Electron-Ion Collider (EIC) has been proposed to further explore the strong force and QCD, focusing on the structure and the interaction of gluon-dominated matter. A generic detector R&D program (EIC PID consortium) for the particle identification in EIC experiments was formed to explore technologically advanced solutions in this scope. In this context two Ring Imaging Cherenkov (RICH) counters have been proposed: a modular RICH detector which consists of an aerogel radiator, a Fresnel lens, a mirrored box, and pixelated photon sensor; a dual-radiator RICH, consisting of an aerogel radiator and C2F6 gas in a mirror-focused configuration. We present the simulations of the two detectors and their estimated performance.

  2. High-sensitivity fast neutron detector KNK-2-7M

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koshelev, A. S., E-mail: alexsander.coshelev@yandex.ru; Dovbysh, L. Ye.; Ovchinnikov, M. A.

    2015-12-15

    The construction of the fast neutron detector KNK-2-7M is briefly described. The results of the study of the detector in the pulse-counting mode are given for the fissions of {sup 237}Np nuclei in the radiator of the neutron-sensitive section and in the current mode with the separation of sectional currents of functional sections. The possibilities of determining the effective number of {sup 237}Np nuclei in the radiator of the neutronsensitive section are considered. The diagnostic possibilities of the detector in the counting mode are shown by example of the analysis of the reference data from the neutron-field characteristics in themore » working hall of the BR-K1 reactor. The diagnostic possibilities of the detector in the current operating mode are shown by example of the results of measuring the {sup 237}Np-fission intensity in the BR-K1 reactor power start-ups implemented in the mode of fission-pulse generation on delayed neutrons at the detector arrangement inside the reactor core cavity under conditions of a wide variation of the reactor radiation field.« less

  3. Organic liquid scintillation detectors for on-the-fly neutron/gamma alarming and radionuclide identification in a pedestrian radiation portal monitor

    NASA Astrophysics Data System (ADS)

    Paff, Marc Gerrit; Ruch, Marc L.; Poitrasson-Riviere, Alexis; Sagadevan, Athena; Clarke, Shaun D.; Pozzi, Sara

    2015-07-01

    We present new experimental results from a radiation portal monitor based on the use of organic liquid scintillators. The system was tested as part of a 3He-free radiation portal monitor testing campaign at the European Commission's Joint Research Centre in Ispra, Italy, in February 2014. The radiation portal monitor was subjected to a wide range of test conditions described in ANSI N42.35, including a variety of gamma-ray sources and a 20,000 n/s 252Cf source. A false alarm test tested whether radiation portal monitors ever alarmed in the presence of only natural background. The University of Michigan Detection for Nuclear Nonproliferation Group's system triggered zero false alarms in 2739 trials. It consistently alarmed on a variety of gamma-ray sources travelling at 1.2 m/s at a 70 cm source to detector distance. The neutron source was detected at speeds up to 3 m/s and in configurations with up to 8 cm of high density polyethylene shielding. The success of on-the-fly radionuclide identification varied with the gamma-ray source measured as well as with which of two radionuclide identification methods was used. Both methods used a least squares comparison between the measured pulse height distributions to library spectra to pick the best match. The methods varied in how the pulse height distributions were modified prior to the least squares comparison. Correct identification rates were as high as 100% for highly enriched uranium, but as low as 50% for 241Am. Both radionuclide identification algorithms produced mixed results, but the concept of using liquid scintillation detectors for gamma-ray and neutron alarming in radiation portal monitor was validated.

  4. Modular optical detector system

    DOEpatents

    Horn, Brent A [Livermore, CA; Renzi, Ronald F [Tracy, CA

    2006-02-14

    A modular optical detector system. The detector system is designed to detect the presence of molecules or molecular species by inducing fluorescence with exciting radiation and detecting the emitted fluorescence. Because the system is capable of accurately detecting and measuring picomolar concentrations it is ideally suited for use with microchemical analysis systems generally and capillary chromatographic systems in particular. By employing a modular design, the detector system provides both the ability to replace various elements of the detector system without requiring extensive realignment or recalibration of the components as well as minimal user interaction with the system. In addition, the modular concept provides for the use and addition of a wide variety of components, including optical elements (lenses and filters), light sources, and detection means, to fit particular needs.

  5. Effect of electron transport properties on unipolar CdZnTe radiation detectors: LUND, SpectrumPlus, and Coplanar Grid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ralph B. James

    2000-01-07

    Device simulations of (1) the laterally-contacted-unipolar-nuclear detector (LUND), (2) the SpectrumPlus, (3) and the coplanar grid made of Cd{sub 0.9}Zn{sub 0.1}Te (CZT) were performed for {sup 137}Cs irradiation by 662.15 keV gamma-rays. Realistic and controlled simulations of the gamma-ray interactions with the CZT material were done using the MCNP4B2 Monte Carlo program, and the detector responses were simulated using the Sandia three-dimensional multielectrode simulation program (SandTMSP). The simulations were done for the best and the worst expected carrier nobilities and lifetimes of currently commercially available CZT materials for radiation detector applications. For the simulated unipolar devices, the active device volumesmore » were relatively large and the energy resolutions were fairly good, but these performance characteristics were found to be very sensitive to the materials properties. The internal electric fields, the weighting potentials, and the charge induced efficiency maps were calculated to give insights into the operation of these devices.« less

  6. SiC As An Energetic Particle Detector

    NASA Technical Reports Server (NTRS)

    Yan, F.; Hicks, J.; Shappirio, Mark D.; Brown, S.; Smith, C.; Xin, X.; Zhao, J. H.

    2005-01-01

    Several new technologies have been introduced recently in the region of semiconductor material for solid state detectors (SSD). Of particular interest is silicon carbide (SIC) since its band gap is larger than that of pure silicon, reducing its dark current and making SIC capable of operating at high temperatures and more tolerant of radiation damage. But the trade off is that a higher band gap also means fewer electron hole pairs generated, and thus a smaller signal, for detecting incident radiation. To determine what the lower limit of SiC detectors to energetic particles is, we irradiated a SiC diode with particles ranging in energy from 50 keV to 1.6 MeV and masses from 1 to 16 amu. We found that the SiC detectors sensitivity was comparable to that of pure silicon, with the SiC detector being able to measure particles down to 50 keV/amu and possibly lower.

  7. Advanced crystal growth techniques for thallium bromide semiconductor radiation detectors

    NASA Astrophysics Data System (ADS)

    Datta, Amlan; Becla, Piotr; Guguschev, Christo; Motakef, Shariar

    2018-02-01

    Thallium Bromide (TlBr) is a promising room-temperature radiation detector candidate with excellent charge transport properties. Currently, Travelling Molten Zone (TMZ) technique is widely used for growth of semiconductor-grade TlBr crystals. However, there are several challenges associated with this type of crystal growth process including lower yield, high thermal stress, and low crystal uniformity. To overcome these shortcomings of the current technique, several different crystal growth techniques have been implemented in this study. These include: Vertical Bridgman (VB), Physical Vapor Transport (PVT), Edge-defined Film-fed Growth (EFG), and Czochralski Growth (Cz). Techniques based on melt pulling (EFG and Cz) were demonstrated for the first time for semiconductor grade TlBr material. The viability of each process along with the associated challenges for TlBr growth has been discussed. The purity of the TlBr crystals along with its crystalline and electronic properties were analyzed and correlated with the growth techniques. Uncorrected 662 keV energy resolutions around 2% were obtained from 5 mm x 5 mm x 10 mm TlBr devices with virtual Frisch-grid configuration.

  8. Gamma ray detector modules

    NASA Technical Reports Server (NTRS)

    Capote, M. Albert (Inventor); Lenos, Howard A. (Inventor)

    2009-01-01

    A radiation detector assembly has a semiconductor detector array substrate of CdZnTe or CdTe, having a plurality of detector cell pads on a first surface thereof, the pads having a contact metallization and a solder barrier metallization. An interposer card has planar dimensions no larger than planar dimensions of the semiconductor detector array substrate, a plurality of interconnect pads on a first surface thereof, at least one readout semiconductor chip and at least one connector on a second surface thereof, each having planar dimensions no larger than the planar dimensions of the interposer card. Solder columns extend from contacts on the interposer first surface to the plurality of pads on the semiconductor detector array substrate first surface, the solder columns having at least one solder having a melting point or liquidus less than 120 degrees C. An encapsulant is disposed between the interposer circuit card first surface and the semiconductor detector array substrate first surface, encapsulating the solder columns, the encapsulant curing at a temperature no greater than 120 degrees C.

  9. Single surface barrier detectors for neutron dosimetry and associated light-ion fluxes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Treado, P.A.; Allas, R.G.; Eman, B.

    1981-04-01

    In this paper the authors have attempted to perfect a simple, compact and inexpensive single surface barrier detection system to measure both the intensities and approximate spectral shape of continuous neutron and light ion fluxes. They have measured such fluxes for three known collimated and uncollimated neutron beams with two geometrical configurations and with at least two different thicknesses of CH/sub 2/ and CD/sub 2/ radiators. All neutron flux data were obtained with a Au shield in front of the detector; this was removed for LIF measurements. The known shapes of the impinging neutron beams were used to calculate themore » expected recoil-particle spectra and such predictions have been compared with the experimental data. Also, data have been obtained with telescopes, with carbon foil and thin detector-grade silicon foil radiators. These data allow the authors to estimate contributions to the higher-energy portion of the recoil-particle spectra from reactions due to the carbon in the CH/sub 2/ and CD/sub 2/ radiators and due to the silicon in the detector. Corrections for rim effects in the detector and multiple scattering in the radiator are calculable. The precipitous decrease in the number of observed events, expected at the maximum energy that can be deposited by a recoil particle from the radiator, was observed for each of the radiator/detector combinations studied. The data agree reasonably well with both the intensity and spectral shape predictions for recoil-particle energies above about 300 keV. The telescope data confirm the single-detector data and add significant information about the LIFs created by the collimation of the neutron beams. In fact, both the single-detector and telescope data indicate that (n,p) reactions in collimation and target-backing materials contribute significant proton components to the light-ion fluxes.« less

  10. Radiation detection system

    DOEpatents

    Whited, R.C.

    A system for obtaining improved resolution in relatively thick semiconductor radiation detectors, such as HgI/sub 2/, which exhibit significant hole trapping. Two amplifiers are used: the first measures the charge collected and the second the contribution of the electrons to the charge collected. The outputs of the two amplifiers are utilized to unfold the total charge generated within the detector in response to a radiation event.

  11. Design of FPGA-based radiation tolerant quench detectors for LHC

    NASA Astrophysics Data System (ADS)

    Steckert, J.; Skoczen, A.

    2017-04-01

    The Large Hadron Collider (LHC) comprises many superconducting circuits. Most elements of these circuits require active protection. The functionality of the quench detectors was initially implemented as microcontroller based equipment. After the initial stage of the LHC operation with beams the introduction of a new type of quench detector began. This article presents briefly the main ideas and architectures applied to the design and the validation of FPGA-based quench detectors.

  12. Design and R&D of RICH detectors for EIC experiments

    DOE PAGES

    Del Dotto, A.; Wong, C. -P.; Allison, L.; ...

    2017-03-18

    An Electron-Ion Collider (EIC) has been proposed to further explore the strong force and QCD, focusing on the structure and the interaction of gluon-dominated matter. A generic detector R&D program (EIC PID consortium) for the particle identification in EIC experiments was formed to explore technologically advanced solutions in this scope. In this context two Ring Imaging Cherenkov (RICH) counters have been proposed: a modular RICH detector which consists of an aerogel radiator, a Fresnel lens, a mirrored box, and pixelated photon sensor; a dual-radiator RICH, consisting of an aerogel radiator and C 2F 6 gas in a mirror-focused configuration. Asmore » a result, we present the simulations of the two detectors and their estimated performance.« less

  13. Device and Method of Scintillating Quantum Dots for Radiation Imaging

    NASA Technical Reports Server (NTRS)

    Burke, Eric R. (Inventor); DeHaven, Stanton L. (Inventor); Williams, Phillip A. (Inventor)

    2017-01-01

    A radiation imaging device includes a radiation source and a micro structured detector comprising a material defining a surface that faces the radiation source. The material includes a plurality of discreet cavities having openings in the surface. The detector also includes a plurality of quantum dots disclosed in the cavities. The quantum dots are configured to interact with radiation from the radiation source, and to emit visible photons that indicate the presence of radiation. A digital camera and optics may be used to capture images formed by the detector in response to exposure to radiation.

  14. The TORCH detector R&D: Status and perspectives

    NASA Astrophysics Data System (ADS)

    Gys, T.; Brook, N.; García, L. Castillo; Cussans, D.; Föhl, K.; Forty, R.; Frei, C.; Gao, R.; Harnew, N.; Piedigrossi, D.; Rademacker, J.; García, A. Ros; van Dijk, M.

    2017-12-01

    TORCH (Timing Of internally Reflected CHerenkov photons) is a time-of-flight detector for particle identification at low momentum. It has been originally proposed for the LHCb experiment upgrade. TORCH is using plates of quartz radiator in a modular design. A fraction of the Cherenkov photons produced by charged particles passing through this radiator propagate by total internal reflection, they emerge at the edges and are subsequently focused onto fast, position-sensitive single-photon detectors. The recorded position and arrival time of the photons are used to precisely reconstruct their trajectory and propagation time in the quartz. The on-going R&D programme aims at demonstrating the TORCH basic concept through the realization of a full detector module and has been organized on the following main development lines: micro-channel plate photon detectors featuring the required granularity and lifetime, dedicated fast front-end electronics preserving the picosecond timing information provided by single photons, and high-quality quartz radiator and focussing optics minimizing photon losses. The present paper reports on the TORCH results successfully achieved in the laboratory and in charged particle beam tests. It will also introduce the latest developments towards a final full-scale module prototype.

  15. Diamond Pixel Detectors

    NASA Astrophysics Data System (ADS)

    Adam, W.; Berdermann, E.; Bergonzo, P.; Bertuccio, G.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D'Angelo, P.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Doroshenko, J.; Dulinski, W.; van Eijk, B.; Fallou, A.; Fizzotti, F.; Foster, J.; Foulon, F.; Friedl, M.; Gan, K. K.; Gheeraert, E.; Gobbi, B.; Grim, G. P.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Koeth, T.; Krammer, M.; Lander, R.; Logiudice, A.; Lu, R.; mac Lynne, L.; Manfredotti, C.; Meier, D.; Mishina, M.; Moroni, L.; Oh, A.; Pan, L. S.; Pernicka, M.; Perera, L.; Pirollo, S.; Plano, R.; Procario, M.; Riester, J. L.; Roe, S.; Rott, C.; Rousseau, L.; Rudge, A.; Russ, J.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R. J.; Tesarek, R.; Trischuk, W.; Tromson, D.; Vittone, E.; Wedenig, R.; Weilhammer, P.; White, C.; Zeuner, W.; Zoeller, M.

    2001-06-01

    Diamond based pixel detectors are a promising radiation-hard technology for use at the LHC. We present first results on a CMS diamond pixel sensor. With a threshold setting of 2000 electrons, an average pixel efficiency of 78% was obtained for normally incident minimum ionizing particles.

  16. Oxygen ingress study of 3D printed gaseous radiation detector enclosures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steer, Christopher A.; Durose, Aaron

    2015-07-01

    As part of our ongoing studies into the potential application of 3D printing techniques to gaseous radiation detectors, we have studied the ability of 3D printed enclosures to resist environmental oxygen ingress. A set of cuboid and hexagonal prism shaped enclosures with wall thicknesses of 4 mm, 6 mm, 8 mm and 10 mm were designed and printed in nylon using a EOSINT P 730 Selective Laser Sintering 3D printer system These test enclosures provide a comparison of different environmental gas ingress for different 3D printing techniques. The rate of change of oxygen concentration was found to be linear, decreasingmore » as the wall thickness increases. It was also found that the hexagonal prism geometry produced a lower rate of change of oxygen concentration compared with the cuboid shaped enclosures. Possible reasons as to why these results were obtained are discussed The implications for the this study for deployable systems are also discussed (authors)« less

  17. Recent results on CVD diamond radiation sensors

    NASA Astrophysics Data System (ADS)

    Weilhammer, P.; Adam, W.; Bauer, C.; Berdermann, E.; Bogani, F.; Borchi, E.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; v. d. Eijk, R.; van Eijk, B.; Fallou, A.; Fish, D.; Fried, M.; Gan, K. K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Knopfle, K. T.; Krammer, M.; Manfredi, P. F.; Meier, D.; LeNormand; Pan, L. S.; Pernegger, H.; Pernicka, M.; Plano, R.; Re, V.; Riester, J. L.; Roe, S.; Roff; Rudge, A.; Schieber, M.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Tapper, R. J.; Tesarek, R.; Thomson, G. B.; Trawick, M.; Trischuk, W.; Turchetta, R.; RD 42 Collaboration

    1998-02-01

    CVD diamond radiation sensors are being developed for possible use in trackers in the LHC experiments. The diamond promises to be radiation hard well beyond particle fluences that can be tolerated by Si sensors. Recent results from the RD 42 collaboration on charge collection distance and on radiation hardness of CVD diamond samples will be reported. Measurements with diamond tracking devices, both strip detectors and pixel detectors, will be discussed. Results from beam tests using a diamond strip detector which was read out with fast, 25 ns shaping time, radiation-hard pipeline electronics will be presented.

  18. Actively driven thermal radiation shield

    DOEpatents

    Madden, Norman W.; Cork, Christopher P.; Becker, John A.; Knapp, David A.

    2002-01-01

    A thermal radiation shield for cooled portable gamma-ray spectrometers. The thermal radiation shield is located intermediate the vacuum enclosure and detector enclosure, is actively driven, and is useful in reducing the heat load to mechanical cooler and additionally extends the lifetime of the mechanical cooler. The thermal shield is electrically-powered and is particularly useful for portable solid-state gamma-ray detectors or spectrometers that dramatically reduces the cooling power requirements. For example, the operating shield at 260K (40K below room temperature) will decrease the thermal radiation load to the detector by 50%, which makes possible portable battery operation for a mechanically cooled Ge spectrometer.

  19. Generation-recombination noise in extrinsic photoconductive detectors

    NASA Technical Reports Server (NTRS)

    Brukilacchio, T. J.; Skeldon, M. D.; Boyd, R. W.

    1984-01-01

    A theory of generation-recombination noise is presented and applied to the analysis of the performance limitations of extrinsic photoconductive detectors. The theory takes account both of the photoinduced generation of carriers and of thermal generation that is due to the finite temperature of the detector. Explicit formulas are derived that relate the detector response time, responsivity, and noise equivalent power to the material properties of the photoconductor (such as the presence of compensating impurities) and to the detector's operating conditions, such as its temperature and the presence of background radiation. The detector's performance is shown to degrade at high background levels because of saturation effects.

  20. Imaging radiation detector with gain

    DOEpatents

    Morris, C.L.; Idzorek, G.C.; Atencio, L.G.

    1982-07-21

    A radiation imaging device which has application in x-ray imaging. The device can be utilized in CAT scanners and other devices which require high sensitivity and low x-ray fluxes. The device utilizes cumulative multiplication of charge carriers on the anode plane and the collection of positive ion charges to image the radiation intensity on the cathode plane. Parallel and orthogonal cathode wire arrays are disclosed as well as a two-dimensional grid pattern for collecting the positive ions on the cathode.

  1. Imaging radiation detector with gain

    DOEpatents

    Morris, Christopher L.; Idzorek, George C.; Atencio, Leroy G.

    1984-01-01

    A radiation imaging device which has application in x-ray imaging. The device can be utilized in CAT scanners and other devices which require high sensitivity and low x-ray fluxes. The device utilizes cumulative multiplication of charge carriers on the anode plane and the collection of positive ion charges to image the radiation intensity on the cathode plane. Parallel and orthogonal cathode wire arrays are disclosed as well as a two-dimensional grid pattern for collecting the positive ions on the cathode.

  2. Gaseous Electron Multiplier (GEM) Detectors

    NASA Astrophysics Data System (ADS)

    Gnanvo, Kondo

    2017-09-01

    Gaseous detectors have played a pivotal role as tracking devices in the field of particle physics experiments for the last fifty years. Recent advances in photolithography and micro processing techniques have enabled the transition from Multi Wire Proportional Chambers (MWPCs) and Drift Chambers to a new family of gaseous detectors refer to as Micro Pattern Gaseous Detectors (MPGDs). MPGDs combine the basic gas amplification principle with micro-structure printed circuits to provide detectors with excellent spatial and time resolution, high rate capability, low material budget and high radiation tolerance. Gas Electron Multiplier (GEMs) is a well-established MPGD technology invented by F. Sauli at CERN in 1997 and deployed various high energy physics (HEP) and nuclear NP experiment for tracking systems of current and future NP experiments. GEM detector combines an exceptional high rate capability (1 MHz / mm2) and robustness against harsh radiation environment with excellent position and timing resolution performances. Recent breakthroughs over the past decade have allowed the possibility for large area GEMs, making them cost effective and high-performance detector candidates to play pivotal role in current and future particle physics experiments. After a brief introduction of the basic principle of GEM technology, I will give a brief overview of the GEM detectors used in particle physics experiments over the past decades and especially in the NP community at Thomas Jefferson National Laboratory (JLab) and Brookhaven National Laboratory (BNL). I will follow by a review of state of the art of the new GEM development for the next generation of colliders such as Electron Ion Collider (EIC) or High Luminosity LHC and future Nuclear Physics experiments. I will conclude with a presentation of the CERN-based RD51 collaboration established in 2008 and its major achievements regarding technological developments and applications of MPGDs.

  3. On the possibility to use semiconductive hybrid pixel detectors for study of radiation belt of the Earth.

    NASA Astrophysics Data System (ADS)

    Guskov, A.; Shelkov, G.; Smolyanskiy, P.; Zhemchugov, A.

    2016-02-01

    The scientific apparatus GAMMA-400 designed for study of electromagnetic and hadron components of cosmic rays will be launched to an elliptic orbit with the apogee of about 300 000 km and the perigee of about 500 km. Such a configuration of the orbit allows it to cross periodically the radiation belt and the outer part of magnetosphere. We discuss the possibility to use hybrid pixel detecters based on the Timepix chip and semiconductive sensors on board the GAMMA-400 apparatus. Due to high granularity of the sensor (pixel size is 55 mum) and possibility to measure independently an energy deposition in each pixel, such compact and lightweight detector could be a unique instrument for study of spatial, energy and time structure of electron and proton components of the radiation belt.

  4. Noble liquid detectors for fundamental physics and applications

    NASA Astrophysics Data System (ADS)

    Curioni, A.

    2009-12-01

    Noble liquid detectors come in many sizes and configurations and cover a lot of ground as particle and radiation detectors: from calorimeters for colliders to imaging detectors for neutrino physics and proton decay to WIMP Dark Matter detectors. It turns out that noble liquid detectors are a mature technology for imaging and spectroscopy of gamma rays and for neutron detection, a fact that makes them suitable for applications, e.g. cargo scanning and Homeland Security. In this short paper I will focus on liquid xenon and liquid argon, which make excellent detectors for hypothetical WIMP Dark Matter and neutrinos and for much less exotic gamma rays.

  5. Multispectral Superconducting Quantum Detectors

    DTIC Science & Technology

    1995-08-01

    Noise 30 2.2.6.3 YBCO QSKIP Noise Equivalent Power 31 2.2.7 Competing LWIR Semiconductor Based Quantum Detectors 33 2.2.8 Conclusions on Operation...spectrum. Of particular interest are photodetectors operating in the midwave 3-5um (MWIR) and longwave 8-12um ( LWIR ) infrared spectra. Interest in...body photon radiation in the MWIR and LWIR spectral bands. With a significant black body photon radiation, passive night imaging and target

  6. Detector Developments for the High Luminosity LHC Era (2/4)

    ScienceCinema

    Straessner, Arno

    2018-04-16

    Calorimetry and Muon Spectromers - Part II: When upgrading the LHC to higher luminosities, the detector and trigger performance shall be preserved - if not improved - with respect to the nominal performance. The ongoing R&D; for new radiation tolerant front-end electronics for calorimeters with higher read-out bandwidth are summarized and new possibilities for the trigger systems are presented. Similar developments are foreseen for the muon spectrometers, where also radiation tolerance of the muon detectors and functioning at high background rates is important. The corresponding plans and research work for the calorimeter and muon detectors at a LHC with highest luminsity are presented.

  7. Fabrication and characterization of a 3D Positive ion detector and its applications

    NASA Astrophysics Data System (ADS)

    Venkatraman, Pitchaikannu; Sureka, Chandrasekaran Senbagavadivoo

    2017-11-01

    There is a growing interest to experimentally evaluate the track structure induced by ionizing particles in order to characterize the radiobiological quality of ionizing radiation for applications in radiotherapy and radiation protection. To do so, a novel positive ion detector based on the multilayer printed circuit board (PCB) technology has been proposed previously, which works under the principle of ion induced impact ionization. Based on this, an upgraded 3D positive ion detector was fabricated in order to improve its efficiency and use it for various applications. To improve the efficiency of the detector, cathodes with different insulators (Bakelite plate and Steatite Ceramics) and conducting layers (ITO, FTO, and Gold coated cathode) were studied under various gaseous media (methane, nitrogen, and air) using Am-241, Co-60, Co-57, Na-22, Cs-137, and Ba-133 sources. From this study, it is confirmed that the novel 3D positive ion detector that has been upgraded using gold as strip material, tungsten (87%) coated copper (13%) as the core wire, gold coated ceramic as cathode, and thickness of 3.483 mm showed 9.2% efficiency under methane medium at 0.9 Torr pressure using an Am-241 source. It is also confirmed that when the conductivity of the cathode and thickness of the detector is increased, the performance of the detector is improved significantly. Further, the scope of the detector to use in the field of radiation protection, radiation dosimetry, gamma spectrometry, radiation biology, and oncology are reported here.

  8. Characterization of Silicon Photomultiplier Detectors using Cosmic Radiation

    NASA Astrophysics Data System (ADS)

    Zavala, Favian; Castro, Juan; Niduaza, Rexavalmar; Wedel, Zachary; Fan, Sewan; Ritt, Stefan; Fatuzzo, Laura

    2014-03-01

    The silicon photomultiplier light detector has gained a lot of attention lately in fields such as particle physics, astrophysics, and medical physics. Its popularity stems from its lower cost, compact size, insensitivity to magnetic fields, and its excellent ability to distinguish a quantized number of photons. They are normally operated at room temperature and biased above their breakdown voltages. As such, they may also exhibit properties that may hinder their optimal operation which include a thermally induced high dark count rate, after pulse effects, and cross talk from photons in nearby pixels. At this poster session, we describe our data analysis and our endeavor to characterize the multipixel photon counter (MPPC) detectors from Hamamatsu under different bias voltages and temperature conditions. Particularly, we describe our setup which uses cosmic rays to induce scintillation light delivered to the detector by wavelength shifting optical fibers and the use of a fast 1 GHz waveform sampler, the domino ring sampler (DRS4) digitizer board. Department of Education grant number P031S90007.

  9. Fan-less long range alpha detector

    DOEpatents

    MacArthur, D.W.; Bounds, J.A.

    1994-05-10

    A fan-less long range alpha detector is disclosed which operates by using an electrical field between a signal plane and the surface or substance to be monitored for air ions created by collisions with alpha radiation. Without a fan, the detector can operate without the possibility of spreading dust and potential contamination into the atmosphere. A guard plane between the signal plane and the electrically conductive enclosure and maintained at the same voltage as the signal plane, reduces leakage currents. The detector can easily monitor soil, or other solid or liquid surfaces. 2 figures.

  10. Fan-less long range alpha detector

    DOEpatents

    MacArthur, Duncan W.; Bounds, John A.

    1994-01-01

    A fan-less long range alpha detector which operates by using an electrical field between a signal plane and the surface or substance to be monitored for air ions created by collisions with alpha radiation. Without a fan, the detector can operate without the possibility of spreading dust and potential contamination into the atmosphere. A guard plane between the signal plane and the electrically conductive enclosure and maintained at the same voltage as the signal plane, reduces leakage currents. The detector can easily monitor soil, or other solid or liquid surfaces.

  11. Three-axis asymmetric radiation detector system

    DOEpatents

    Martini, Mario Pierangelo; Gedcke, Dale A.; Raudorf, Thomas W.; Sangsingkeow, Pat

    2000-01-01

    A three-axis radiation detection system whose inner and outer electrodes are shaped and positioned so that the shortest path between any point on the inner electrode and the outer electrode is a different length whereby the rise time of a pulse derived from a detected radiation event can uniquely define the azimuthal and radial position of that event, and the outer electrode is divided into a plurality of segments in the longitudinal axial direction for locating the axial location of a radiation detection event occurring in the diode.

  12. Hawking radiation, Unruh radiation, and the equivalence principle.

    PubMed

    Singleton, Douglas; Wilburn, Steve

    2011-08-19

    We compare the response function of an Unruh-DeWitt detector for different space-times and different vacua and show that there is a detailed violation of the equivalence principle. In particular comparing the response of an accelerating detector to a detector at rest in a Schwarzschild space-time we find that both detectors register thermal radiation, but for a given, equivalent acceleration the fixed detector in the Schwarzschild space-time measures a higher temperature. This allows one to locally distinguish the two cases. As one approaches the horizon the two temperatures have the same limit so that the equivalence principle is restored at the horizon. © 2011 American Physical Society

  13. Characterization of Thallium Bromide (TlBr) for Room Temperature Radiation Detectors

    NASA Astrophysics Data System (ADS)

    Smith, Holland McTyeire

    Thallium bromide (TlBr) has emerged as a remarkably well-suited material for room temperature radiation detection. The unique combination of high-Z elements, high density, suitable band gap, and excellent electrical transport properties present in TlBr have brought device performance up to par with CdZnTe (CZT), the current market-leading room temperature radiation detector material. TlBr research is at an earlier stage than that of CZT, giving hope that the material will see even further improvement in electronic properties. Improving a resistive semiconductor material requires knowledge of deep levels present in the material and the effects of these deep levels on transport properties. Very few deep level studies have been conducted on TlBr, and none with the depth required to generate useful growth suggestions. In this dissertation, deep levels in nominally undoped and doped TlBr samples are studied with electrical and optical methods. Photo-Induced Conductivity Transient Spectroscopy (PICTS) is used to discover many deep levels in TlBr electrically. These levels are compared to sub-band gap optical transitions originating from defects observed in emission spectra. The results of this research indicate that the origin of resistivity in TlBr is likely due to deep level defects pinning the Fermi level at least ˜0.7 eV from either the conduction or valence band edge. The effect of dopants and deep levels on transport in TlBr is assessed with microwave photoconductivity decay analysis. It is found that Pb-, Se-, and O-doping decreases carrier lifetime in TlBr, whereas C-doping does not. TlBr exhibits weak ionic conductivity at room temperature, which both negatively affects the leakage current of detectors and leads to device degradation over time. Researchers are actively looking for ways to reduce or eliminate the ionic conductivity, but are faced with an intriguing challenge of materials engineering: is it possible to mitigate the ionic conduction of Tl

  14. Radiation monitoring container device (16-IML-1)

    NASA Technical Reports Server (NTRS)

    Nagaoka, S.

    1992-01-01

    In this experiment, layers of radiation detectors and biological specimens, bacterial spores (Bacillus subtillis), shrimp eggs (Altemia salina), and maize seeds (Zea mays) are sandwiched together in the Radiation Monitoring Container. The detectors, sheets of plastic materials, record the nuclear track of cosmic radiation. The dosimeter package contains conventional detectors made of materials such as lithium fluoride or magnesium-silica-terbium. The thermoluminescent materials (TLD) will, when moderately heated, emit luminescent photons linearly depending upon the dose of radiation received. The experiment, enclosed in a box-like container, is mounted on the aft end cone of the Spacelab, the area where the shielding is somewhat less than other locations.

  15. Cherenkov Water Detectors in Particle Physics and Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Petrukhin, A. A.; Yashin, I. I.

    2017-12-01

    Among various types of Cherenkov detectors (solid, liquid and gaseous) created for different studies, the most impressive development was gained by water detectors: from the first detector with a volume of several liters in which the Cherenkov radiation was discovered, to the IceCube detector with a volume of one cubic kilometer. The review of the development of Cherenkov water detectors for various purposes and having different locations - ground-based, underground and underwater-is presented in the paper. The prospects of their further development are also discussed.

  16. TH-CD-201-12: Preliminary Evaluation of Organic Field Effect Transistors as Radiation Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Syme, A; Lin, H; Rubio-Sanchez, J

    Purpose: To fabricate organic field effect transistors (OFETs) and evaluate their performance before and after exposure to ionizing radiation. To determine if OFETs have potential to function as radiation dosimeters. Methods: OFETs were fabricated on both Si/SiO{sub 2} wafers and flexible polymer substrates using standard processing techniques. Pentacene was used as the organic semiconductor material and the devices were fabricated in a bottom gate configuration. Devices were irradiated using an orthovoltage treatment unit (120 kVp x-rays). Threshold voltage values were measured with the devices in saturation mode and quantified as a function of cumulative dose. Current-voltage characteristics of the devicesmore » were measured using a Keithley 2614 SourceMeter SMU Instrument. The devices were connected to the reader but unpowered during irradiations. Results: Devices fabricated on Si/SiO2 wafers demonstrated excellent linearity (R{sup 2} > 0.997) with threshold voltages that ranged between 15 and 36 V. Devices fabricated on a flexible polymer substrate had substantially smaller threshold voltages (∼ 4 – 8 V) and slightly worse linearity (R{sup 2} > 0.98). The devices demonstrated excellent stability in I–V characteristics over a large number (>2000) cycles. Conclusion: OFETs have demonstrated excellent potential in radiation dosimetry applications. A key advantage of these devices is their composition, which can be substantially more tissue-equivalent at low photon energies relative to many other types of radiation detector. In addition, fabrication of organic electronics can employ techniques that are faster, simpler and cheaper than conventional silicon-based devices. These results support further development of organic electronic devices for radiation detection purposes. Funding Support, Disclosures, and Conflict of Interest: This work was funded by the Natural Sciences and Engineering Research Council of Canada.« less

  17. Higher operation temperature quadrant photon detectors of 2-11 μm wavelength radiation with large photosensitive areas

    NASA Astrophysics Data System (ADS)

    Pawluczyk, J.; Sosna, A.; Wojnowski, D.; Koźniewski, A.; Romanis, M.; Gawron, W.; Piotrowski, J.

    2017-10-01

    We report on the quadrant photon HgCdTe detectors optimized for 2-11 μm wavelength spectral range and Peltier or no cooling, and photosensitive area of a quad-cell of 1×1 to 4×4 mm. The devices are fabricated as photoconductors or multiple photovoltaic cells connected in series (PVM). The former are characterized by a relatively uniform photosensitive area. The PVM photovoltaic cells are distributed along the wafer surface, comprising a periodical stripe structure with a period of 20 μm. Within each period, there is an insensitive gap/trench < 9 μm wide between stripe mesas. The resulting spatial quantization error prevents positioning of the beam spot of size close to the period, but becomes negligible for the optimal spot size comparable to a quadrant-cell area. The photoconductors produce 1/f noise with about 10 kHz knee frequency, due to bias necessary for their operation. The PVM photodiodes are typically operated at 0 V bias, so they generate no 1/f noise and operation from DC is enabled. At 230 K, upper corner frequency of 16 to 100 MHz is obtained for photoconductor and 60 to 80 MHz for PVM, normalized detectivity D* 6×107 cm×Hz1/2/W to >1.4×108 cm×Hz1/2/W for photoconductor and >1.7×108 cm·Hz1/2/W for PVM, allowing for position control of the radiation beam with submicron accuracy at 16 MHz, 10.6 μm wavelength of pulsed radiation spot of 0.8 mm dia at the close-to-maximal input radiation power density in a range of detector linear operation.

  18. Fabrication of Compact Superconducting Lowpass Filters for Ultrasensitive Detectors

    NASA Technical Reports Server (NTRS)

    Brown, Ari; Chervenak, James; Chuss, David; Mikula, Vilem; Ray, Christopher; Rostem, Karwan; U-Yen, Kongpop; Wassell, Edward; Wollack, Edward

    2012-01-01

    It is extremely important for current and future far-infrared and sub-millimeter ultrasensitive detectors, which include transition edge sensors (TES) and microwave kinetic inductance detectors, to be adequately filtered from stray electromagnetic radiation in order to achieve their optimal performance. One means of filtering stray radiation is to block leakage associated with electrical connections in the detector environment. Here we discuss a fabrication methodology for realizing non-dissipative planar filters imbedded in the wall of the detector enclosure to limit wave propagation modes up to far-infrared frequencies. Our methodology consists of fabricating a boxed stripline transmission line, in which a superconducting (Nb, Mo, or Al) transmission line is encased in a silicon dioxide dielectric insulator coated with a metallic shell. We report on achieved attenuation and return loss and find that it replicates the simulated data to a high degree.

  19. GaTe semiconductor for radiation detection

    DOEpatents

    Payne, Stephen A [Castro Valley, CA; Burger, Arnold [Nashville, TN; Mandal, Krishna C [Ashland, MA

    2009-06-23

    GaTe semiconductor is used as a room-temperature radiation detector. GaTe has useful properties for radiation detectors: ideal bandgap, favorable mobilities, low melting point (no evaporation), non-hygroscopic nature, and availability of high-purity starting materials. The detector can be used, e.g., for detection of illicit nuclear weapons and radiological dispersed devices at ports of entry, in cities, and off shore and for determination of medical isotopes present in a patient.

  20. Development of silicon detectors for Beam Loss Monitoring at HL-LHC

    NASA Astrophysics Data System (ADS)

    Verbitskaya, E.; Eremin, V.; Zabrodskii, A.; Bogdanov, A.; Shepelev, A.; Dehning, B.; Bartosik, M. R.; Alexopoulos, A.; Glaser, M.; Ravotti, F.; Sapinski, M.; Härkönen, J.; Egorov, N.; Galkin, A.

    2017-03-01

    Silicon detectors were proposed as novel Beam Loss Monitors (BLM) for the control of the radiation environment in the vicinity of the superconductive magnets of the High-Luminosity Large Hadron Collider. The present work is aimed at enhancing the BLM sensitivity and therefore the capability of triggering the beam abort system before a critical radiation load hits the superconductive coils. We report here the results of three in situ irradiation tests of Si detectors carried out at the CERN PS at 1.9-4.2 K. The main experimental result is that all silicon detectors survived irradiation up to 1.22× 1016 p/cm2. The third test, focused on the detailed characterization of the detectors with standard (300 μm) and reduced (100 μm) thicknesses, showed only a marginal difference in the sensitivity of thinned detectors in the entire fluence range and a smaller rate of signal degradation that promotes their use as BLMs. The irradiation campaigns produced new information on radiation damage and carrier transport in Si detectors irradiated at the temperatures of 1.9-4.2 K. The results were encouraging and permitted to initiate the production of the first BLM prototype modules which were installed at the end of the vessel containing the superconductive coil of a LHC magnet immersed in superfluid helium to be able to test the silicon detectors in real operational conditions.

  1. Radiation damage effects by electrons, protons, and neutrons in Si/Li/ detectors.

    NASA Technical Reports Server (NTRS)

    Liu, Y. M.; Coleman, J. A.

    1972-01-01

    The degradation in performance of lithium-compensated silicon nuclear particle detectors induced by irradiation at room temperature with 0.6-MeV and 1.5-MeV electrons, 1.9-MeV protons, and fast neutrons from a plutonium-beryllium source has been investigated. With increasing fluence, the irradiations produced an increase of detector leakage current, noise, capacitance, and a degradation in the performance of the detector as a charged-particle energy spectrometer. Following the irradiations, annealing effects were observed when the detectors were reverse-biased at their recommended operating voltages. Upon removal of bias, a continuous degradation of detector performance characteristics occurred. Detectors which had been damaged by electrons and protons exhibited a stabilization in their characteristics within two weeks after irradiation, whereas detectors damaged by neutrons had a continuous degradation of performance over a period of several months.

  2. Space radiation studies

    NASA Technical Reports Server (NTRS)

    Gregory, J. C.

    1986-01-01

    Instrument design and data analysis expertise was provided in support of several space radiation monitoring programs. The Verification of Flight Instrumentation (VFI) program at NASA included both the Active Radiation Detector (ARD) and the Nuclear Radiation Monitor (NRM). Design, partial fabrication, calibration and partial data analysis capability to the ARD program was provided, as well as detector head design and fabrication, software development and partial data analysis capability to the NRM program. The ARD flew on Spacelab-1 in 1983, performed flawlessly and was returned to MSFC after flight with unchanged calibration factors. The NRM, flown on Spacelab-2 in 1985, also performed without fault, not only recording the ambient gamma ray background on the Spacelab, but also recording radiation events of astrophysical significance.

  3. Candidates to replace R-12 as a radiator gas in Cherenkov detectors

    NASA Astrophysics Data System (ADS)

    Harvey, Allan H.; Paulechka, Eugene; Egan, Patrick F.

    2018-06-01

    Dichlorodifluoromethane (R-12) has been widely used as a radiator gas in pressure threshold Cherenkov detectors for high-energy particle physics. However, that compound is becoming unavailable due to the Montreal Protocol. To find a replacement with suitably high refractive index, we use a combination of theory and experiment to examine the polarizability and refractivity of several non-ozone-depleting compounds. Our measurements show that the fourth-generation refrigerants R-1234yf (2,3,3,3-tetrafluoropropene) and R-1234ze(E) (trans-1,3,3,3-tetrafluoropropene) have sufficient refractivity to replace R-12 in this application. If the slight flammability of these compounds is a problem, two nonflammable alternatives are R-218 (octafluoropropane), which has a high Global Warming Potential, and R-13I1 (trifluoroiodomethane), which has low Ozone Depletion Potential and Global Warming Potential but may not be sufficiently inert.

  4. Design and optimization of a novel 3D detector: The 3D-open-shell-electrode detector

    NASA Astrophysics Data System (ADS)

    Liu, Manwen; Tan, Jian; Li, Zheng

    2018-04-01

    A new type of three-dimensional (3D) detector, namely 3D-Open-Shell-Electrode Detector (3DOSED), is proposed in this study. In a 3DOSED, the trench electrode can be etched all the way through the detector thickness, totally eliminating the low electric field region existed in the conventional 3D-Trench-Electrode detector. Full 3D technology computer-aided design (TCAD) simulations have been done on this novel silicon detector structure. Through comparing of the simulation results of the detector, we can obtain the best design of the 3SOSED. In addition, simulation results show that, as compared to the conventional 3D detector, the proposed 3DOSED can improve not only detector charge collection efficiency but also its radiation hardness with regard to solving the trapping problem in the detector bulk. What is more, it has been shown that detector full depletion voltage is also slightly reduced, which can improve the utility aspects of the detector. When compared to the conventional 3D detector, we find that the proposed novel 3DOSED structure has better electric potential and electric field distributions, and better electrical properties such as detector full depletion voltage. In 3DOSED array, each pixel cell is isolated from each other by highly doped trenches, but also electrically and physically connected with each other through the remaining silicon bulk between broken electrodes.

  5. Universal EUV in-band intensity detector

    DOEpatents

    Berger, Kurt W.

    2004-08-24

    Extreme ultraviolet light is detected using a universal in-band detector for detecting extreme ultraviolet radiation that includes: (a) an EUV sensitive photodiode having a diode active area that generates a current responsive to EUV radiation; (b) one or more mirrors that reflects EUV radiation having a defined wavelength(s) to the diode active area; and (c) a mask defining a pinhole that is positioned above the diode active area, wherein EUV radiation passing through the pinhole is restricted substantially to illuminating the diode active area.

  6. Long range alpha particle detector

    DOEpatents

    MacArthur, Duncan W.; Wolf, Michael A.; McAtee, James L.; Unruh, Wesley P.; Cucchiara, Alfred L.; Huchton, Roger L.

    1993-01-01

    An alpha particle detector capable of detecting alpha radiation from distant sources. In one embodiment, a high voltage is generated in a first electrically conductive mesh while a fan draws air containing air molecules ionized by alpha particles through an air passage and across a second electrically conductive mesh. The current in the second electrically conductive mesh can be detected and used for measurement or alarm. The detector can be used for area, personnel and equipment monitoring.

  7. Long range alpha particle detector

    DOEpatents

    MacArthur, D.W.; Wolf, M.A.; McAtee, J.L.; Unruh, W.P.; Cucchiara, A.L.; Huchton, R.L.

    1993-02-02

    An alpha particle detector capable of detecting alpha radiation from distant sources. In one embodiment, a high voltage is generated in a first electrically conductive mesh while a fan draws air containing air molecules ionized by alpha particles through an air passage and across a second electrically conductive mesh. The current in the second electrically conductive mesh can be detected and used for measurement or alarm. The detector can be used for area, personnel and equipment monitoring.

  8. Current response of a TlBr detector to {sup 137}Cs {gamma}-ray radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gazizov, I. M., E-mail: gazizov@isotop.dubna.ru; Zaletin, V. M.; Kukushkin, V. M.

    2011-05-15

    The current response of a TlBr detector to {sup 137}Cs {gamma}-ray radiation has been studied in the dose-rate range 0.033-3.84 Gy/min and within the voltage range 1-300 V; the detectors are based on pure and doped TlBr crystals grown from the melt by the Bridgman-Stockbarger method. The mass fraction of Pb or Ca introduced into the TlBr crystals was 1-10 ppm for Pb and 150 ppm for Ca. The current response of nominally undoped TlBr samples was nearly linear over two decades of studied dose rates. Deep hole levels associated with cationic vacancies V{sub c}{sup -} determine the dependence ofmore » the current response on the voltage in the high electric fields. The parameters of the carriers' transport {mu}{tau} are determined. The TlBr crystals grown in vacuum and in the bromine vapor exhibit a large mobility-lifetime product of 4.3 Multiplication-Sign 10{sup -4} and 6.4 Multiplication-Sign 10{sup -5} cm{sup 2}V{sup -1}, respectively. The value of {mu}{tau} is in the range (4-9) Multiplication-Sign 10{sup -5} cm{sup 2}V{sup -1} for crystals doped with a divalent cation.« less

  9. Technological aspects of GEM detector design and assembling for soft x-ray application

    NASA Astrophysics Data System (ADS)

    Kowalska-Strzeciwilk, E.; Chernyshova, M.

    2016-09-01

    Various types of Micro Pattern Gas Detectors (MPGDs) found applications as tracking detectors in high energy particle physics experiments and as well as imaging detectors, especially for soft X-rays. These detectors offer several advantages like high count rate capability, good spatial and energy resolution, low cost and possibility of constructing large area detectors with very small dead area. Construction, like the triple Gas Electron Multiplier (GEM) detector has become a standard detector, which is widely used for different imaging applications. Some examples of such applications are: monitoring the impurity in plasma, imaging system for mapping of some parameters like pigment distributions using X-ray fluorescence technique[1], proton range radiography system for quality assurance in hadron therapy. Measuring of the Soft X-Ray (SXR) radiation of magnetic fusion plasma is a standard way of accessing valuable information, for example, about particle transport and MHD. The paper is focused on the design of GEM based soft Xray radiation detecting system which is under development. It is dedicated to study soft X-ray emission of plasma radiation with focus on tungsten emission lines energy region. The paper presents the designing, construction and assembling of a prototype of two triple-GEM detectors for soft-X ray application on the WEST device.

  10. Radiation detector spectrum simulator

    DOEpatents

    Wolf, Michael A.; Crowell, John M.

    1987-01-01

    A small battery operated nuclear spectrum simulator having a noise source nerates pulses with a Gaussian distribution of amplitudes. A switched dc bias circuit cooperating therewith generates several nominal amplitudes of such pulses and a spectral distribution of pulses that closely simulates the spectrum produced by a radiation source such as Americium 241.

  11. Externally-Modulated Electro-Optically Coupled Detector Architecture for Nuclear Physics Instrumentation

    NASA Astrophysics Data System (ADS)

    Xi, Wenze; McKisson, J. E.; Weisenberger, Andrew G.; Zhang, Shukui; Zorn, Carl

    2014-06-01

    A new laser-based externally-modulated electro-optically coupled detector (EOCD) architecture is being developed to enable high-density readout for radiation detectors with accurate analog radiation pulse shape and timing preservation. Unlike digital conversion before electro-optical modulation, the EOCD implements complete analog optical signal modulation and multiplexing in its detector front-end. The result is a compact, high performance detector readout that can be both radiation tolerant and immune to magnetic fields. In this work, the feasibility of EOCD was explored by constructing a two-wavelength laser-based externally-modulated EOCD, and testing analog pulse shape preservation and wavelength-division multiplexing (WDM) crosstalk. Comparisons were first made between the corresponding initial pulses and the electro-optically coupled analog pulses. This confirmed an excellent analog pulse preservation over 29% of the modulator's switching voltage range. Optical spectrum analysis revealed less than -14 dB crosstalk with 1.2 nm WDM wavelength bandgap, and provided insight on experimental conditions that could lead to increased inter-wavelength crosstalk. Further discussions and previous research on the radiation tolerance and magnetic field immunity of the candidate materials were also given, and quantitative device testing is proposed in the future.

  12. Radiation detector spectrum simulator

    DOEpatents

    Wolf, M.A.; Crowell, J.M.

    1985-04-09

    A small battery operated nuclear spectrum simulator having a noise source generates pulses with a Gaussian distribution of amplitudes. A switched dc bias circuit cooperating therewith to generate several nominal amplitudes of such pulses and a spectral distribution of pulses that closely simulates the spectrum produced by a radiation source such as Americium 241.

  13. Coal-rock interface detector

    NASA Technical Reports Server (NTRS)

    Rose, S. D.; Crouch, C. E.; Jones, E. W. (Inventor)

    1979-01-01

    A coal-rock interface detector is presented which employs a radioactive source and radiation sensor. The source and sensor are separately and independently suspended and positioned against a mine surface of hydraulic pistons, which are biased from an air cushioned source of pressurized hydraulic fluid.

  14. Thin-film CdTe detector for microdosimetric study of radiation dose enhancement at gold-tissue interface.

    PubMed

    Paudel, Nava Raj; Shvydka, Diana; Parsai, E Ishmael

    2016-09-08

    Presence of interfaces between high and low atomic number (Z) materials, often encountered in diagnostic imaging and radiation therapy, leads to radiation dose perturbation. It is characterized by a very narrow region of sharp dose enhancement at the interface. A rapid falloff of dose enhancement over a very short distance from the interface makes the experimental dosimetry nontrivial. We use an in-house-built inexpensive thin-film Cadmium Telluride (CdTe) photodetector to study this effect at the gold-tissue interface and verify our experimental results with Monte Carlo (MC) modeling. Three-micron thick thin-film CdTe photodetectors were fabricated in our lab. One-, ten- or one hundred-micron thick gold foils placed in a tissue-equivalent-phantom were irradiated with a clinical Ir-192 high-dose-rate (HDR) source and current measured with a CdTe detector in each case was compared with the current measured for all uniform tissue-equivalent phantom. Percentage signal enhancement (PSE) due to each gold foil was then compared against MC modeled percentage dose enhancement (PDE), obtained from the geometry mimicking the experimental setup. The experimental PSEs due to 1, 10, and 100 μm thick gold foils at the closest measured distance of 12.5μm from the interface were 42.6 ± 10.8 , 137.0 ± 11.9, and 203.0 ± 15.4, respectively. The corresponding MC modeled PDEs were 38.1 ± 1, 164 ± 1, and 249 ± 1, respectively. The experimental and MC modeled values showed a closer agreement at the larger distances from the interface. The dose enhancement in the vicinity of gold-tissue interface was successfully measured using an in-house-built, high-resolution CdTe-based photodetector and validated with MC simulations. A close agreement between experimental and the MC modeled results shows that CdTe detector can be utilized for mapping interface dose distribution encountered in the application of ionizing radiation. © 2016 The Authors.

  15. Thin‐film CdTe detector for microdosimetric study of radiation dose enhancement at gold‐tissue interface

    PubMed Central

    Paudel, Nava Raj; Shvydka, Diana

    2016-01-01

    Presence of interfaces between high and low atomic number (Z) materials, often encountered in diagnostic imaging and radiation therapy, leads to radiation dose perturbation. It is characterized by a very narrow region of sharp dose enhancement at the interface. A rapid falloff of dose enhancement over a very short distance from the interface makes the experimental dosimetry nontrivial. We use an in‐house‐built inexpensive thin‐film Cadmium Telluride (CdTe) photodetector to study this effect at the gold‐tissue interface and verify our experimental results with Monte Carlo (MC) modeling. Three‐micron thick thin‐film CdTe photodetectors were fabricated in our lab. One‐, ten‐ or one hundred‐micron thick gold foils placed in a tissue‐equivalent‐phantom were irradiated with a clinical Ir‐192 high‐dose‐rate (HDR) source and current measured with a CdTe detector in each case was compared with the current measured for all uniform tissue‐equivalent phantom. Percentage signal enhancement (PSE) due to each gold foil was then compared against MC modeled percentage dose enhancement (PDE), obtained from the geometry mimicking the experimental setup. The experimental PSEs due to 1, 10, and 100 μm thick gold foils at the closest measured distance of 12.5 μm from the interface were 42.6±10.8, 137.0±11.9, and 203.0±15.4, respectively. The corresponding MC modeled PDEs were 38.1±1., 164±1, and 249±1, respectively. The experimental and MC modeled values showed a closer agreement at the larger distances from the interface. The dose enhancement in the vicinity of gold‐tissue interface was successfully measured using an in‐house‐built, high‐resolution CdTe‐based photodetector and validated with MC simulations. A close agreement between experimental and the MC modeled results shows that CdTe detector can be utilized for mapping interface dose distribution encountered in the application of ionizing radiation. PACS number(s): 29.40.Wk, 73

  16. Hand-held, mechanically cooled, radiation detection system for gamma-ray spectroscopy

    DOEpatents

    Burks, Morgan Thomas; Eckels, Joel Del

    2010-06-08

    In one embodiment, a radiation detection system is provided including a radiation detector and a first enclosure encapsulating the radiation detector, the first enclosure including a low-emissivity infra-red (IR) reflective coating used to thermally isolate the radiation detector. Additionally, a second enclosure encapsulating the first enclosure is included, the first enclosure being suspension mounted to the second enclosure. Further, a cooler capable of cooling the radiation detector is included. Still yet, a first cooling interface positioned on the second enclosure is included for coupling the cooler and the first enclosure. Furthermore, a second cooling interface positioned on the second enclosure and capable of coupling the first enclosure to a cooler separate from the radiation detection system is included. Other embodiments are also presented.

  17. Characterization of a new commercial single crystal diamond detector for photon- and proton-beam dosimetry.

    PubMed

    Akino, Yuichi; Gautam, Archana; Coutinho, Len; Würfel, Jan; Das, Indra J

    2015-11-01

    A synthetic single crystal diamond detector (SCDD) is commercially available and is characterized for radiation dosimetry in various radiation beams in this study. The characteristics of the commercial SCDD model 60019 (PTW) with 6- and 15-MV photon beams, and 208-MeV proton beams, were investigated and compared with the pre-characterized detectors: Semiflex (model 31010) and PinPoint (model 31006) ionization chambers (PTW), the EDGE diode detector (Sun Nuclear Corp) and the SFD Stereotactic Dosimetry Diode Detector (IBA). To evaluate the effects of the pre-irradiation, the diamond detector, which had not been irradiated on the day, was set up in the water tank, and the response to 100 MU was measured every 20 s. The depth-dose and profiles data were collected for various field sizes and depths. For all radiation types and field sizes, the depth-dose data of the diamond chamber showed identical curves to those of the ionization chambers. The profile of the diamond detector was very similar to those of the EDGE and SFD detectors, although the Semiflex and PinPoint chambers showed volume-averaging effects in the penumbrae region. The temperature dependency was within 0.7% in the range of 4-41°C. A dose of 900 cGy and 1200 cGy was needed to stabilize the chamber to the level within 0.5% and 0.2%, respectively. The PTW type 60019 SCDD detector showed suitable characteristics for radiation dosimetry, for relative dose, depth-dose and profile measurements for a wide range of field sizes. However, at least 1000 cGy of pre-irradiation will be needed for accurate measurements. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  18. Design and Technical Study of Neutrino Detector Spacecraft

    NASA Technical Reports Server (NTRS)

    Solomey, Niclolas

    2017-01-01

    A neutrino detector is proposed to be developed for use on a space probe in close orbit of the Sun. The detector will also be protected from radiation by a tungsten shield Sun shade, active veto array and passive cosmic shielding. With the intensity of solar neutrinos substantially greater in a close solar orbit than on the Earth only a small 250 kg detector is needed. It is expected that this detector and space probe studying the core of the Sun, its nuclear furnace and particle physics basic properties will bring new knowledge beyond what is currently possible for Earth bound solar neutrino detectors.

  19. Junction-side illuminated silicon detector arrays

    DOEpatents

    Iwanczyk, Jan S.; Patt, Bradley E.; Tull, Carolyn

    2004-03-30

    A junction-side illuminated detector array of pixelated detectors is constructed on a silicon wafer. A junction contact on the front-side may cover the whole detector array, and may be used as an entrance window for light, x-ray, gamma ray and/or other particles. The back-side has an array of individual ohmic contact pixels. Each of the ohmic contact pixels on the back-side may be surrounded by a grid or a ring of junction separation implants. Effective pixel size may be changed by separately biasing different sections of the grid. A scintillator may be coupled directly to the entrance window while readout electronics may be coupled directly to the ohmic contact pixels. The detector array may be used as a radiation hardened detector for high-energy physics research or as avalanche imaging arrays.

  20. LaCl3:Ce Coincidence Signatures to Calibrate Gamma-ray Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McIntyre, Justin I.; Schrom, Brian T.; Cooper, Matthew W.

    Abstract Calibrating the gamma-ray detection efficiency of radiation detectors in a field environment is difficult under most circumstances. To counter this problem we have developed a technique that uses a Cerium doped Lanthanum-Tri-Chloride (LaCl3:Ce) scintillation detector to provide gated gammas[ , ]. Exploiting the inherent radioactivity of the LaCl3:Ce due to the long-lived radioactive isotope 138La (t1/2 = 1.06 x 1011 yrs) allows the use of the 788 and 1436-keV gammas as a measure of efficiency. In this paper we explore the effectiveness of using the beta-gamma coincidences radiation LaCl3:Ce detector to calibrate the energy and efficiency of a numbermore » of gamma-ray detectors.« less

  1. Measuring Optical Component Radiation Damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wenzl, Derek; Tesarek, Richard

    2017-08-01

    Scintillator based detectors are used to monitor beam losses in the Fermilab accelerator complex. These detectors are approximately 500 times faster than traditional ionization chamber loss monitors and can see beam losses 20 nanoseconds apart. These fast loss monitors are used in areas of the accelerator known to be sources of heavy beam loss and as such, are exposed to high doses of radiation. Over time, radiation exposure reduces the ability of optical components to transmit light by darkening the material. The most dramatic effects are seen in the optical cement and light guide materials comprising the detector. We exploremore » this darkening effect by measuring the transmittance spectra of the detector materials for varying irradiation exposures. Presented here, are the optical transmittance spectra for a variety of radiation exposures and optical materials. The data has revealed an epoxy which withstands exposure far better than traditional optical cements.« less

  2. History of infrared detectors

    NASA Astrophysics Data System (ADS)

    Rogalski, A.

    2012-09-01

    This paper overviews the history of infrared detector materials starting with Herschel's experiment with thermometer on February 11th, 1800. Infrared detectors are in general used to detect, image, and measure patterns of the thermal heat radiation which all objects emit. At the beginning, their development was connected with thermal detectors, such as thermocouples and bolometers, which are still used today and which are generally sensitive to all infrared wavelengths and operate at room temperature. The second kind of detectors, called the photon detectors, was mainly developed during the 20th Century to improve sensitivity and response time. These detectors have been extensively developed since the 1940's. Lead sulphide (PbS) was the first practical IR detector with sensitivity to infrared wavelengths up to ˜3 μm. After World War II infrared detector technology development was and continues to be primarily driven by military applications. Discovery of variable band gap HgCdTe ternary alloy by Lawson and co-workers in 1959 opened a new area in IR detector technology and has provided an unprecedented degree of freedom in infrared detector design. Many of these advances were transferred to IR astronomy from Departments of Defence research. Later on civilian applications of infrared technology are frequently called "dual-use technology applications." One should point out the growing utilisation of IR technologies in the civilian sphere based on the use of new materials and technologies, as well as the noticeable price decrease in these high cost technologies. In the last four decades different types of detectors are combined with electronic readouts to make detector focal plane arrays (FPAs). Development in FPA technology has revolutionized infrared imaging. Progress in integrated circuit design and fabrication techniques has resulted in continued rapid growth in the size and performance of these solid state arrays.

  3. Measurement of energy transitions for the decay radiations of 75Ge and 69Ge in a high purity germanium detector

    NASA Astrophysics Data System (ADS)

    Aydın, Güral; Usta, Metin; Oktay, Adem

    2018-06-01

    Photoactivation experiments have a wide range of application areas in nuclear, particle physics, and medical physics such as measuring energy levels and half-lifes of nuclei, experiments for understanding imaging methods in medicine, isotope production for patient treatment, radiation security and transportation, radiation therapy, and astrophysics processes. In this study, some energy transition values of the decay radiations of 75Ge and 69Ge, which are the products of photonuclear reactions (γ, n) with germanium isotopes (75Ge and 69Ge), were measured. The gamma spectrum as a result of atomic transitions were analysed by using a high purity semiconductor germanium detector and the energy transition values which are presented here were compared with the ones which are the best in literature. It was observed that the results presented are in agreement with literature in error range and some results have better precisions.

  4. An ultra-thin Schottky diode as a transmission particle detector for biological microbeams.

    PubMed

    Grad, Michael; Harken, Andrew; Randers-Pehrson, Gerhard; Attinger, Daniel; Brenner, David J

    2012-12-01

    We fabricated ultrathin metal-semiconductor Schottky diodes for use as transmission particle detectors in the biological microbeam at Columbia University's Radiological Research Accelerator Facility (RARAF). The RARAF microbeam can deliver a precise dose of ionizing radiation in cell nuclei with sub-micron precision. To ensure an accurate delivery of charged particles, the facility currently uses a commercial charged-particle detector placed after the sample. We present here a transmission detector that will be placed between the particle accelerator and the biological specimen, allowing the irradiation of samples that would otherwise block radiation from reaching a detector behind the sample. Four detectors were fabricated with co-planar gold and aluminum electrodes thermally evaporated onto etched n-type crystalline silicon substrates, with device thicknesses ranging from 8.5 μm - 13.5 μm. We show coincident detections and pulse-height distributions of charged particles in both the transmission detector and the commercial detector above it. Detections are demonstrated at a range of operating conditions, including incoming particle type, count rate, and beam location on the detectors. The 13.5 μm detector is shown to work best to detect 2.7 MeV protons (H + ), and the 8.5 μm detector is shown to work best to detect 5.4 MeV alpha particles ( 4 He ++ ). The development of a transmission detector enables a range of new experiments to take place at RARAF on radiation-stopping samples such as thick tissues, targets that need immersion microscopy, and integrated microfluidic devices for handling larger quantities of cells and small organisms.

  5. An ultra-thin Schottky diode as a transmission particle detector for biological microbeams

    PubMed Central

    Harken, Andrew; Randers-Pehrson, Gerhard; Attinger, Daniel; Brenner, David J.

    2013-01-01

    We fabricated ultrathin metal-semiconductor Schottky diodes for use as transmission particle detectors in the biological microbeam at Columbia University’s Radiological Research Accelerator Facility (RARAF). The RARAF microbeam can deliver a precise dose of ionizing radiation in cell nuclei with sub-micron precision. To ensure an accurate delivery of charged particles, the facility currently uses a commercial charged-particle detector placed after the sample. We present here a transmission detector that will be placed between the particle accelerator and the biological specimen, allowing the irradiation of samples that would otherwise block radiation from reaching a detector behind the sample. Four detectors were fabricated with co-planar gold and aluminum electrodes thermally evaporated onto etched n-type crystalline silicon substrates, with device thicknesses ranging from 8.5 μm – 13.5 μm. We show coincident detections and pulse-height distributions of charged particles in both the transmission detector and the commercial detector above it. Detections are demonstrated at a range of operating conditions, including incoming particle type, count rate, and beam location on the detectors. The 13.5 μm detector is shown to work best to detect 2.7 MeV protons (H+), and the 8.5 μm detector is shown to work best to detect 5.4 MeV alpha particles (4He++). The development of a transmission detector enables a range of new experiments to take place at RARAF on radiation-stopping samples such as thick tissues, targets that need immersion microscopy, and integrated microfluidic devices for handling larger quantities of cells and small organisms. PMID:24058378

  6. Methods of and apparatus for radiation measurement, and specifically for in vivo radiation measurement

    DOEpatents

    Huffman, D.D.; Hughes, R.C.; Kelsey, C.A.; Lane, R.; Ricco, A.J.; Snelling, J.B.; Zipperian, T.E.

    1986-08-29

    Methods of and apparatus for in vivo radiation measurements rely on a MOSFET dosimeter of high radiation sensitivity which operates in both the passive mode to provide an integrated dose detector and active mode to provide an irradiation rate detector. A compensating circuit with a matched unirradiated MOSFET is provided to operate at a current designed to eliminate temperature dependence of the device. Preferably, the MOSFET is rigidly mounted in the end of a miniature catheter and the catheter is implanted in the patient proximate the radiation source.

  7. CERN@school: demonstrating physics with the Timepix detector

    NASA Astrophysics Data System (ADS)

    Whyntie, T.; Bithray, H.; Cook, J.; Coupe, A.; Eddy, D.; Fickling, R. L.; McKenna, J.; Parker, B.; Paul, A.; Shearer, N.

    2015-10-01

    This article shows how the Timepix hybrid silicon pixel detector, developed by the Medipix2 Collaboration, can be used by students and teachers alike to demonstrate some key aspects of any well-rounded physics curriculum with CERN@school. After an overview of the programme, the detector's capabilities for measuring and visualising ionising radiation are examined. The classification of clusters - groups of adjacent pixels - is discussed with respect to identifying the different types of particles. Three demonstration experiments - background radiation measurements, radiation profiles and the attenuation of radiation - are described; these can used as part of lessons or as inspiration for independent research projects. Results for exemplar data-sets are presented for reference, as well as details of ongoing research projects inspired by these experiments. Interested readers are encouraged to join the CERN@school Collaboration and so contribute to achieving the programme's aim of inspiring the next generation of scientists and engineers.

  8. PantherPix hybrid pixel γ-ray detector for radio-therapeutic applications

    NASA Astrophysics Data System (ADS)

    Neue, G.; Benka, T.; Havránek, M.; Hejtmánek, M.; Janoška, Z.; Kafka, V.; Korchak, O.; Lednický, D.; Marčišovská, M.; Marčišovský, M.; Popule, J.; Şmarhák, J.; Şvihra, P.; Tomášek, L.; Vrba, V.; Konček, O.; Semmler, M.

    2018-02-01

    This work focuses on the design of a semiconductor pixelated γ-ray camera with a pixel size of 1 mm2. The cost of semiconductor manufacturing is mainly driven by economies of scale, which makes silicon the cheapest semiconductor material due to its widespread utilization. The energy of γ-photons used in radiation therapy are in a range, in which the dominant interaction mechanism is Compton scattering in every conceivable sensor material. Since the Compton scattering cross section is linearly dependent upon Z, it is less rewarding to utilize high Z sensor materials, than it is in the case of X-ray detectors (X-rays interact also via the photoelectric effect whose cross section scales proportional to Zn, where n is ≈ 4,5). For the stated reasons it was decided to use the low Z material silicon (Z = 14) despite its worse detection efficiency. The proposed detector is designed as a portal detector to be used in radiation cancer therapy. The purpose of the detector is to ensure correct patient alignment, spatial dose monitoring and to provide the feedback necessary for an emergency shutdown should the spatial dose rate profile deviate from the treatment plan. Radiation therapy equipment is complex and thus failure prone and the consequences of malfunction are often life threatening. High spatial resolution and high detection efficiency are not a high design priority. The detector design priorities are focused up on radiation hardness, robustness and the ability to cover a large area cost efficiently. The quintessential idea of the PanterPix detector exploits the relaxed spatial resolution requirement to achieve the stated goals. The detector is composed of submodules, each submodule consisting of a Si sensor with an array of fully depleted detection diodes and 8 miniature custom design readout ASICs collecting and measuring the minuscule charge packets generated due to ionization in the PN junctions.

  9. 4 Gbps Scalable Low-Voltage Signaling (SLVS) transceiver for pixel radiation detectors

    NASA Astrophysics Data System (ADS)

    Kadlubowski, Lukasz A.; Kmon, Piotr

    2017-08-01

    We report on the design of 4 Gbps Scalable Low-Voltage Signaling (SLVS) transceiver in 40nm CMOS technology for application-specific integrated circuits (ASICs) dedicated to pixel radiation detectors. Serial data are transmitted with +/-200mV differential swing around 200mV nominal common-mode level. The common-mode interference minimization is crucial in such a design, due to EMC requirements. For multi-gigabit-per-second speeds, the influence of power supply path becomes one of the most challenging design issues. Accurate modeling of supply pads at each step of the design is necessary. Our analysis shows that the utilization of multiple bond wires as well as separate power supply pads for bulk terminals connection of the transistors is essential to ensure proper operation of the transceiver. The design is a result of various trade-offs between speed, required operating conditions, common-mode interference as well as power and area consumption.

  10. In-situ X-ray diffraction system using sources and detectors at fixed angular positions

    DOEpatents

    Gibson, David M [Voorheesville, NY; Gibson, Walter M [Voorheesville, NY; Huang, Huapeng [Latham, NY

    2007-06-26

    An x-ray diffraction technique for measuring a known characteristic of a sample of a material in an in-situ state. The technique includes using an x-ray source for emitting substantially divergent x-ray radiation--with a collimating optic disposed with respect to the fixed source for producing a substantially parallel beam of x-ray radiation by receiving and redirecting the divergent paths of the divergent x-ray radiation. A first x-ray detector collects radiation diffracted from the sample; wherein the source and detector are fixed, during operation thereof, in position relative to each other and in at least one dimension relative to the sample according to a-priori knowledge about the known characteristic of the sample. A second x-ray detector may be fixed relative to the first x-ray detector according to the a-priori knowledge about the known characteristic of the sample, especially in a phase monitoring embodiment of the present invention.

  11. Position sensitive and energy dispersive x-ray detector based on silicon strip detector technology

    NASA Astrophysics Data System (ADS)

    Wiącek, P.; Dąbrowski, W.; Fink, J.; Fiutowski, T.; Krane, H.-G.; Loyer, F.; Schwamberger, A.; Świentek, K.; Venanzi, C.

    2015-04-01

    A new position sensitive detector with a global energy resolution for the entire detector of about 380 eV FWHM for 8.04 keV line at ambient temperature is presented. The measured global energy resolution is defined by the energy spectra summed over all strips of the detector, and thus it includes electronic noise of the front-end electronics, charge sharing effects, matching of parameters across the channels and other system noise sources. The target energy resolution has been achieved by segmentation of the strips to reduce their capacitance and by careful optimization of the front-end electronics. The key design aspects and parameters of the detector are discussed briefly in the paper. Excellent noise and matching performance of the readout ASIC and negligible system noise allow us to operate the detector with a discrimination threshold as low as 1 keV and to measure fluorescence radiation lines of light elements, down to Al Kα of 1.49 keV, simultaneously with measurements of the diffraction patterns. The measurement results that demonstrate the spectrometric and count rate performance of the developed detector are presented and discussed in the paper.

  12. [Combined use of wide-detector and adaptive statistical iterative reconstruction-V technique in abdominal CT with low radiation dose].

    PubMed

    Wang, H X; Lü, P J; Yue, S W; Chang, L Y; Li, Y; Zhao, H P; Li, W R; Gao, J B

    2017-12-05

    Objective: To investigate the image quality and radiation dose with wide-detector(80 mm) and adaptive statistical iterative reconstruction-V (ASIR-V) technique at abdominal contrast enhanced CT scan. Methods: In the first phantom experiment part, the percentage of ASIR-V for half dose of combined wide detector with ASIR-V technique as compared with standard-detector (40 mm) technique was determined. The human experiment was performed based on the phantom study, 160 patients underwent contrast-enhanced abdominal CT scan were prospectively collected and divided into the control group ( n =40) with image reconstruction using 40% ASIR (group A) and the study group ( n =120) with random number table. According to pre-ASIR-V percentage, the study group was assigned into three groups[40 cases in each group, group B: 0 pre-ASIR-V scan with image reconstruction of 0-100% post-ASIR-V (interval 10%, subgroups B0-B10); group C: 20% pre-ASIR-V with 20%, 40% and 60% post-ASIR-V (subgroups C1-C3); group D: 40%pre-ASIR-V with 40% and 60% post-ASIR-V (subgroups D1-D2)]. Image noise, CT attenuation values and CNR of the liver, pancreas, aorta and portal vein were compared by using two sample t test and One-way ANOVA. Qualitative visual parameters (overall image quality as graded on a 5-point scale) was compared by Mann-Whitney U test and Kruskal-Wallis H test. Results: The phantom experiment showed that the percentage of pre-ASIR-V for half dose was 40%. With the 40% pre-ASIR-V, radiation dose in the study group was reduced by 35.5% as compared with the control group. Image noise in the subgroups of B2-B10, C2-C3 and D1-D2 were lower ( t =-14.681--3.046, all P <0.05) while CNR in the subgroups of B4-B10, C2-3 and D1-D2 were higher( t =2.048-9.248, all P <0.05)than those in group A, except the CNR of liver in the arterial phase (AP) in C2, D1 and D2 and the CNR of pancreas in AP in D1 ( t =0.574-1.327, all P >0.05). The subjective image quality scores increased gradually in the range

  13. Direct imaging detectors for electron microscopy

    NASA Astrophysics Data System (ADS)

    Faruqi, A. R.; McMullan, G.

    2018-01-01

    Electronic detectors used for imaging in electron microscopy are reviewed in this paper. Much of the detector technology is based on the developments in microelectronics, which have allowed the design of direct detectors with fine pixels, fast readout and which are sufficiently radiation hard for practical use. Detectors included in this review are hybrid pixel detectors, monolithic active pixel sensors based on CMOS technology and pnCCDs, which share one important feature: they are all direct imaging detectors, relying on directly converting energy in a semiconductor. Traditional methods of recording images in the electron microscope such as film and CCDs, are mentioned briefly along with a more detailed description of direct electronic detectors. Many applications benefit from the use of direct electron detectors and a few examples are mentioned in the text. In recent years one of the most dramatic advances in structural biology has been in the deployment of the new backthinned CMOS direct detectors to attain near-atomic resolution molecular structures with electron cryo-microscopy (cryo-EM). The development of direct detectors, along with a number of other parallel advances, has seen a very significant amount of new information being recorded in the images, which was not previously possible-and this forms the main emphasis of the review.

  14. Origins of the changing detector response in small megavoltage photon radiation fields.

    PubMed

    Fenwick, John D; Georgiou, Georgios; Rowbottom, Carl G; Underwood, Tracy S A; Kumar, Sudhir; Nahum, Alan E

    2018-06-08

    Differences in detector response between measured small fields, f clin, and wider reference fields, f msr , can be overcome by using correction factors [Formula: see text] or by designing detectors with field-size invariant responses. The changing response in small fields is caused by perturbations of the electron fluence within the detector sensitive volume. For solid-state detectors, it has recently been suggested that these perturbations might be caused by the non-water-equivalent effective atomic numbers Z of detector materials, rather than by their non-water-like densities. Using the EGSnrc Monte Carlo code we have analyzed the response of a PTW 60017 diode detector in a 6 MV beam, calculating the [Formula: see text] correction factor from computed doses absorbed by water and by the detector sensitive volume in 0.5  ×  0.5 and 4  ×  4 cm 2 fields. In addition to the 'real' detector, fully modelled according to the manufacturer's blue-prints, we calculated doses and [Formula: see text] factors for a 'Z  →  water' detector variant in which mass stopping-powers and microscopic interaction coefficients were set to those of water while preserving real material densities, and for a 'density  →  1' variant in which densities were set to 1 g cm -3 , leaving mass stopping-powers and interaction coefficients at real levels. [Formula: see text] equalled 0.910  ±  0.005 (2 standard deviations) for the real detector, was insignificantly different at 0.912  ±  0.005 for the 'Z  →  H 2 O' variant, but equalled 1.012  ±  0.006 for the 'density  →  1' variant. For the 60017 diode in a 6 MV beam, then, [Formula: see text] was determined primarily by the detector's density rather than its atomic composition. Further calculations showed this remained the case in a 15 MV beam. Interestingly, the sensitive volume electron fluence was perturbed more by detector atomic composition than by density

  15. Photoconducting positions monitor and imaging detector

    DOEpatents

    Shu, Deming; Kuzay, Tuncer M.

    2000-01-01

    A photoconductive, high energy photon beam detector/monitor for detecting x-rays and gamma radiation, having a thin, disk-shaped diamond substrate with a first and second surface, and electrically conductive coatings, or electrodes, of a predetermined configuration or pattern, disposed on the surfaces of the substrate. A voltage source and a current amplifier is connected to the electrodes to provide a voltage bias to the electrodes and to amplify signals from the detector.

  16. Novel infrared detector based on a tunneling displacement transducer

    NASA Technical Reports Server (NTRS)

    Kenny, T. W.; Kaiser, W. J.; Waltman, S. B.; Reynolds, J. K.

    1991-01-01

    The paper describes the design, fabrication, and characteristics of a novel infrared detector based on the principle of Golay's (1947) pneumatic infrared detector, which uses the expansion of a gas to detect infrared radiation. The present detector is constructed entirely from micromachined silicon and uses an electron tunneling displacement transducer for the detection of gas expansion. The sensitivity of the new detector is competitive with the best commercial pyroelectric sensors and can be readily improved by an order of magnitude through the use of an optimized transducer.

  17. Measuring Charge Collection Efficiency in Diamond Vertex Detectors

    NASA Astrophysics Data System (ADS)

    Josey, Brian; Seidel, Sally; Hoeferkamp, Martin

    2011-10-01

    As currently used at the Large Hadron Collider, vertex detectors are composed primarily of silicon sensors that image particle tracks by detecting the creation of electron-hole pairs caused by the excitation of the silicon atoms. We are investigating replacing these silicon detectors with detectors made out of diamond. Diamond is advantageous due to its radiation hardness. We are measuring the charge collection efficiency of diamond as a function of fluence. We are building a characterization station. Diamond samples will be placed into the characterization station and exposed to a strontium-90 beta source, before and after I irradiate them with 800 MeV protons at LANL. The radiation from the Sr-90 source will create electron-hole pairs. These will be read out by applying an electric field across the sample. The system is triggered by a scintillator-photomultiplier tube assembly. The goal of this measurement is to record collected charge as a function of bias voltage. The diamond charge collection data will be compared to silicon and predictions about detector operation at the LHC will be made.

  18. Realization of deep 3D metal electrodes in diamond radiation detectors

    NASA Astrophysics Data System (ADS)

    Wulz, Thomas; Gerding, William; Lavrik, Nickolay; Briggs, Dayrl; Srijanto, Bernadeta; Lester, Kevin; Hensley, Dale; Spanier, Stefan; Lukosi, Eric

    2018-05-01

    A fabrication technique to create 3D diamond detectors is presented. Deep reactive ion etching was used to create an array of through-diamond vias (TDVs) in a 2 × 2 × 0.15 mm3 electronic grade single crystal diamond detector. The diameter of the TDVs was nominally 30 μm with a pitch of 100 μm between them. The TDVs were filled with chromium using hexavalent chromium electroplating to create 3D electrodes, which were connected electrically by interdigitated electrodes. The fabricated 3D diamond detector responded to both alpha particles and X-rays, exhibiting a charge collection efficiency of 52.3% at 200 V. Comparing to a diamond detector with the same interdigitated electrodes, but no 3D electrodes, confirms that the 3D electrodes are electrically active within the device. The average resistivity of the 3D electrodes is 2.89 ± 0.03 × 10-5 Ω cm, near that of bulk chromium. These results indicate that this fabrication technique is a potential option for 3D diamond detector fabrication.

  19. Clinical radiation therapy measurements with a new commercial synthetic single crystal diamond detector

    PubMed Central

    Crilly, Richard

    2014-01-01

    A commercial version of a synthetic single crystal diamond detector (SCDD) in a Schottky diode configuration was recently released as the new type 60019 microDiamond detector (PTW‐Freiburg, Germany). In this study we investigate the dosimetric properties of this detector to independently confirm that findings from the developing group of the SCDDs still hold true for the commercial version of the SCDDs. We further explore if the use of the microDiamond detector can be expanded to high‐energy photon beams of up to 15 MV and to large field measurements. Measurements were performed with an Elekta Synergy linear accelerator delivering 6, 10, and 15 MV X‐rays, as well as 6, 9, 12, 15, and 20 MeV electron beams. The dependence of the microdiamond detector response on absorbed dose after connecting the detector was investigated. Furthermore, the dark current of the diamond detector was observed after irradiation. Results are compared to similar results from measurements with a diamond detector type 60003. Energy dependency was investigated, as well. Photon depth‐dose curves were measured for field sizes 3×3,10×10, and 30×30cm2. PDDs were measured with the Semiflex type 31010 detector, microLion type 31018 detector, P Diode type 60016, SRS Diode type 60018, and the microDiamond type 60019 detector (all PTW‐Freiburg). Photon profiles were measured at a depth of 10 cm. Electron depth‐dose curves normalized to the dose maximum were measured with the 14×14cm2 electron cone. PDDs were measured with a Markus chamber type 23343, an E Diode type 60017 and the microDiamond type 60019 detector (all PTW‐Freiburg). Profiles were measured with the E Diode and microDiamond at half of D90,D90,D70, and D50 depths and for electron cone sizes of 6×6cm2, 14×14cm2, and 20×20cm2. Within a tolerance of 0.5% detector response of the investigated detector was stable without any preirradiation. After preirradition with approximately 250 cGy the detector response was stable

  20. Power monitoring in space nuclear reactors using silicon carbide radiation detectors

    NASA Technical Reports Server (NTRS)

    Ruddy, Frank H.; Patel, Jagdish U.; Williams, John G.

    2005-01-01

    Space reactor power monitors based on silicon carbide (SiC) semiconductor neutron detectors are proposed. Detection of fast leakage neutrons using SiC detectors in ex-core locations could be used to determine reactor power: Neutron fluxes, gamma-ray dose rates and ambient temperatures have been calculated as a function of distance from the reactor core, and the feasibility of power monitoring with SiC detectors has been evaluated at several ex-core locations. Arrays of SiC diodes can be configured to provide the required count rates to monitor reactor power from startup to full power Due to their resistance to temperature and the effects of neutron and gamma-ray exposure, SiC detectors can be expected to provide power monitoring information for the fill mission of a space reactor.

  1. Experimental realization of a metamaterial detector focal plane array.

    PubMed

    Shrekenhamer, David; Xu, Wangren; Venkatesh, Suresh; Schurig, David; Sonkusale, Sameer; Padilla, Willie J

    2012-10-26

    We present a metamaterial absorber detector array that enables room-temperature, narrow-band detection of gigahertz (GHz) radiation in the S band (2-4 GHz). The system is implemented in a commercial printed circuit board process and we characterize the detector sensitivity and angular dependence. A modified metamaterial absorber geometry allows for each unit cell to act as an isolated detector pixel and to collectively form a focal plane array . Each pixel can have a dedicated microwave receiver chain and functions together as a hybrid device tuned to maximize the efficiency of detected power. The demonstrated subwavelength pixel shows detected sensitivity of -77 dBm, corresponding to a radiation power density of 27 nW/m(2), with pixel to pixel coupling interference below -14 dB at 2.5 GHz.

  2. Neutron threshold activation detectors (TAD) for the detection of fissions

    NASA Astrophysics Data System (ADS)

    Gozani, Tsahi; Stevenson, John; King, Michael J.

    2011-10-01

    Prompt fission neutrons are one of the strongest signatures of the fission process. Depending on the fission inducing radiation, their average number ranges from 2.5 to 4 neutrons per fission. They are more energetic and abundant, by about 2 orders of magnitude, than the delayed neutrons (≈3 vs. ≈0.01) that are commonly used as indicators for the presence of fissionable materials. The detection of fission prompt neutrons, however, has to be done in the presence of extremely intense probing radiation that stimulated them. During irradiation, the fission stimulation radiation, X-rays or neutrons, overwhelms the neutron detectors and temporarily incapacitate them. Consequently, by the time the detectors recover from the source radiation, fission prompt neutrons are no longer emitted. In order to measure the prompt fission signatures under these circumstances, special measures are usually taken with the detectors such as heavy shielding with collimation, use of inefficient geometries, high pulse height bias and gamma-neutron separation via pulse-shape discrimination with an appropriate organic scintillator. These attempts to shield the detector from the flash of radiation result in a major loss of sensitivity. It can lead to a complete inability to detect the fission prompt neutrons. In order to overcome the blinding induced background from the source radiation, the detection of prompt fission neutrons needs to occur long after the fission event and after the detector has fully recovered from the source overload. A new approach to achieve this is to detect the delayed activation induced by the fission neutrons. The approach demonstrates a good sensitivity in adverse overload situations (gamma and neutron "flash") where fission prompt neutrons could normally not be detected. The new approach achieves the required temporal separation between the detection of prompt neutrons and the detector overload by the neutron activation of the detector material. The technique

  3. Origins of the changing detector response in small megavoltage photon radiation fields

    NASA Astrophysics Data System (ADS)

    Fenwick, John D.; Georgiou, Georgios; Rowbottom, Carl G.; Underwood, Tracy S. A.; Kumar, Sudhir; Nahum, Alan E.

    2018-06-01

    Differences in detector response between measured small fields, f clin, and wider reference fields, f msr , can be overcome by using correction factors or by designing detectors with field-size invariant responses. The changing response in small fields is caused by perturbations of the electron fluence within the detector sensitive volume. For solid-state detectors, it has recently been suggested that these perturbations might be caused by the non-water-equivalent effective atomic numbers Z of detector materials, rather than by their non-water-like densities. Using the EGSnrc Monte Carlo code we have analyzed the response of a PTW 60017 diode detector in a 6 MV beam, calculating the correction factor from computed doses absorbed by water and by the detector sensitive volume in 0.5  ×  0.5 and 4  ×  4 cm2 fields. In addition to the ‘real’ detector, fully modelled according to the manufacturer’s blue-prints, we calculated doses and factors for a ‘Z  →  water’ detector variant in which mass stopping-powers and microscopic interaction coefficients were set to those of water while preserving real material densities, and for a ‘density  →  1’ variant in which densities were set to 1 g cm‑3, leaving mass stopping-powers and interaction coefficients at real levels. equalled 0.910  ±  0.005 (2 standard deviations) for the real detector, was insignificantly different at 0.912  ±  0.005 for the ‘Z  →  H2O’ variant, but equalled 1.012  ±  0.006 for the ‘density  →  1’ variant. For the 60017 diode in a 6 MV beam, then, was determined primarily by the detector’s density rather than its atomic composition. Further calculations showed this remained the case in a 15 MV beam. Interestingly, the sensitive volume electron fluence was perturbed more by detector atomic composition than by density; however, the density-dependent perturbation varied with field-size, whereas

  4. EUV mirror based absolute incident flux detector

    DOEpatents

    Berger, Kurt W.

    2004-03-23

    A device for the in-situ monitoring of EUV radiation flux includes an integrated reflective multilayer stack. This device operates on the principle that a finite amount of in-band EUV radiation is transmitted through the entire multilayer stack. This device offers improvements over existing vacuum photo-detector devices since its calibration does not change with surface contamination.

  5. X-ray GEM Detectors for Burning Plasma Experiments

    NASA Astrophysics Data System (ADS)

    Puddu, S.; Bombarda, F.; Pizzicaroli, G.; Murtas, F.

    2009-11-01

    The harsh environment and higher values of plasma parameters to be expected in future burning plasma experiments (and even more so in future power producing fusion reactors) is prompting the development of new, advanced diagnostic systems. The detection of radiation emitted by the plasma in the X-ray spectral region is likely to play the role that visible or UV radiation have in present day experiments. GEM gas detectors, developed at CERN, are the natural evolution of Multiwire Proportional Chambers, with a number of advantages: higher counting rates, lower noise, good energy resolution, low sensitivity to background radiation. GEM's can be used in several different ways, but two specific applications are being explored in the framework of the Ignitor program, one for plasma position control and the other for high resolution spectroscopy. The diagnostic layout on the Ignitor machine is such that the detectors will not be in direct view of the plasma, at locations where they can be efficiently screened by the background radiation. Prototype detectors 10 x 10 cm^2 in area have been assembled and will be tested to assess the optimal geometrical parameters and operating conditions, regarding in particular the choice between Single and Triple GEM configurations, the gas mixture, and the problem of fan-out associated with the high number of output channels required for high resolution crystal spectrometers.

  6. Silicon diodes as an alternative to diamond detectors for depth dose curves and profile measurements of photon and electron radiation.

    PubMed

    Scherf, Christian; Peter, Christiane; Moog, Jussi; Licher, Jörg; Kara, Eugen; Zink, Klemens; Rödel, Claus; Ramm, Ulla

    2009-08-01

    Depth dose curves and lateral dose profiles should correspond to relative dose to water in any measured point, what can be more or less satisfied with different detectors. Diamond as detector material has similar dosimetric properties like water. Silicon diodes and ionization chambers are also commonly used to acquire dose profiles. The authors compared dose profiles measured in an MP3 water phantom with a diamond detector 60003, unshielded and shielded silicon diodes 60008 and 60012 and a 0.125-cm(3) thimble chamber 233642 (PTW, Freiburg, Germany) for 6- and 25-MV photons. Electron beams of 6, 12 and 18 MeV were investigated with the diamond detector, the unshielded diode and a Markus chamber 23343. The unshielded diode revealed relative dose differences at the water surface below +10% for 6-MV and +4% for 25-MV photons compared to the diamond data. These values decreased to less than 1% within the first millimeters of water depth. The shielded diode was only required to obtain correct data of the fall-off zones for photon beams larger than 10 x 10 cm(2) because of important contributions of low-energy scattered photons. For electron radiation the largest relative dose difference of -2% was observed with the unshielded silicon diode for 6 MeV within the build-up zone. Spatial resolutions were always best with the small voluminous silicon diodes. Relative dose profiles obtained with the two silicon diodes have the same degree of accuracy as with the diamond detector.

  7. Bolometric kinetic inductance detector technology for sub-millimeter radiometric imaging

    NASA Astrophysics Data System (ADS)

    Hassel, Juha; Timofeev, Andrey V.; Vesterinen, Visa; Sipola, Hannu; Helistö, Panu; Aikio, Mika; Mäyrä, Aki; Grönberg, Leif; Luukanen, Arttu

    2015-10-01

    Radiometric sub-millimeter imaging is a candidate technology especially in security screening applications utilizing the property of radiation in the band of 0.2 - 1.0 THz to penetrate through dielectric substances such as clothing. The challenge of the passive technology is the fact that the irradiance corresponding to the blackbody radiation is very weak in this spectral band: about two orders of magnitude below that of the infrared band. Therefore the role of the detector technology is of ultimate importance to achieve sufficient sensitivity. In this paper we present results related to our technology relying on superconducting kinetic inductance detectors operating in a thermal (bolometric) mode. The detector technology is motivated by the fact that it is naturally suitable for scalable multiplexed readout systems, and operates with relatively simple cryogenics. We will review the basic concepts of the detectors, and provide experimental figures of merit. Furthermore, we will discuss the issues related to the scale-up of our detector technology into large 2D focal plane arrays.

  8. Ship Effect Measurements With Fiber Optic Neutron Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, Kenneth L.; Dean, Rashe A.; Akbar, Shahzad

    2010-08-10

    The main objectives of this research project was to assemble, operate, test and characterize an innovatively designed scintillating fiber optic neutron radiation detector manufactured by Innovative American Technology with possible application to the Department of Homeland Security screening for potential radiological and nuclear threats at US borders (Kouzes 2004). One goal of this project was to make measurements of the neutron ship effect for several materials. The Virginia State University DOE FaST/NSF summer student-faculty team made measurements with the fiber optic radiation detector at PNNL above ground to characterize the ship effect from cosmic neutrons, and underground to characterize themore » muon contribution.« less

  9. Reducing image noise in computed tomography (CT) colonography: effect of an integrated circuit CT detector.

    PubMed

    Liu, Yu; Leng, Shuai; Michalak, Gregory J; Vrieze, Thomas J; Duan, Xinhui; Qu, Mingliang; Shiung, Maria M; McCollough, Cynthia H; Fletcher, Joel G

    2014-01-01

    To investigate whether the integrated circuit (IC) detector results in reduced noise in computed tomography (CT) colonography (CTC). Three hundred sixty-six consecutive patients underwent clinically indicated CTC using the same CT scanner system, except for a difference in CT detectors (IC or conventional). Image noise, patient size, and scanner radiation output (volume CT dose index) were quantitatively compared between patient cohorts using each detector system, with separate comparisons for the abdomen and pelvis. For the abdomen and pelvis, despite significantly larger patient sizes in the IC detector cohort (both P < 0.001), image noise was significantly lower (both P < 0.001), whereas volume CT dose index was unchanged (both P > 0.18). Based on the observed image noise reduction, radiation dose could alternatively be reduced by approximately 20% to result in similar levels of image noise. Computed tomography colonography images acquired using the IC detector had significantly lower noise than images acquired using the conventional detector. This noise reduction can permit further radiation dose reduction in CTC.

  10. Calculation of the static in-flight telescope-detector response by deconvolution applied to point-spread function for the geostationary earth radiation budget experiment.

    PubMed

    Matthews, Grant

    2004-12-01

    The Geostationary Earth Radiation Budget (GERB) experiment is a broadband satellite radiometer instrument program intended to resolve remaining uncertainties surrounding the effect of cloud radiative feedback on future climate change. By use of a custom-designed diffraction-aberration telescope model, the GERB detector spatial response is recovered by deconvolution applied to the ground calibration point-spread function (PSF) measurements. An ensemble of randomly generated white-noise test scenes, combined with the measured telescope transfer function results in the effect of noise on the deconvolution being significantly reduced. With the recovered detector response as a base, the same model is applied in construction of the predicted in-flight field-of-view response of each GERB pixel to both short- and long-wave Earth radiance. The results of this study can now be used to simulate and investigate the instantaneous sampling errors incurred by GERB. Also, the developed deconvolution method may be highly applicable in enhancing images or PSF data for any telescope system for which a wave-front error measurement is available.

  11. Expanding the detection efficiency of silicon drift detectors

    NASA Astrophysics Data System (ADS)

    Schlosser, D. M.; Lechner, P.; Lutz, G.; Niculae, A.; Soltau, H.; Strüder, L.; Eckhardt, R.; Hermenau, K.; Schaller, G.; Schopper, F.; Jaritschin, O.; Liebel, A.; Simsek, A.; Fiorini, C.; Longoni, A.

    2010-12-01

    To expand the detection efficiency Silicon Drift Detectors (SDDs) with various customized radiation entrance windows, optimized detector areas and geometries have been developed. Optimum values for energy resolution, peak to background ratio (P/B) and high count rate capability support the development. Detailed results on sensors optimized for light element detection down to Boron or even lower will be reported. New developments for detecting medium and high X-ray energies by increasing the effective detector thickness will be presented. Gamma-ray detectors consisting of a SDD coupled to scintillators like CsI(Tl) and LaBr 3(Ce) have been examined. Results of the energy resolution for the 137Cs 662 keV line and the light yield (LY) of such detector systems will be reported.

  12. Detecting Upward Directed Charged Particle Fluxes in the Mars Science Laboratory Radiation Assessment Detector

    NASA Astrophysics Data System (ADS)

    Appel, J. K.; Köehler, J.; Guo, J.; Ehresmann, B.; Zeitlin, C.; Matthiä, D.; Lohf, H.; Wimmer-Schweingruber, R. F.; Hassler, D.; Brinza, D. E.; Böhm, E.; Böttcher, S.; Martin, C.; Burmeister, S.; Reitz, G.; Rafkin, S.; Posner, A.; Peterson, J.; Weigle, G.

    2018-01-01

    The Mars Science Laboratory rover Curiosity, operating on the surface of Mars, is exposed to radiation fluxes from above and below. Galactic Cosmic Rays travel through the Martian atmosphere, producing a modified spectrum consisting of both primary and secondary particles at ground level. These particles produce an upward directed secondary particle spectrum as they interact with the Martian soil. Here we develop a method to distinguish the upward and downward directed particle fluxes in the Radiation Assessment Detector (RAD) instrument, verify it using data taken during the cruise to Mars, and apply it to data taken on the Martian surface. We use a combination of Geant4 and Planetocosmics modeling to find discrimination criteria for the flux directions. After developing models of the cruise phase and surface shielding conditions, we compare model-predicted values for the ratio of upward to downward flux with those found in RAD observation data. Given the quality of available information on Mars Science Laboratory spacecraft and rover composition, we find generally reasonable agreement between our models and RAD observation data. This demonstrates the feasibility of the method developed and tested here. We additionally note that the method can also be used to extend the measurement range and capabilities of the RAD instrument to higher energies.

  13. Development of Micro and Nano Crystalline CVD Diamond TL/OSL Radiation Detectors for Clinical Applications

    NASA Astrophysics Data System (ADS)

    Barboza-Flores, Marcelino

    2015-03-01

    Modern radiotherapy methods requires the use of high photon radiation doses delivered in a fraction to small volumes of cancer tumors. An accurate dose assessment for highly energetic small x-ray beams in small areas, as in stereotactic radiotherapy, is necessary to avoid damage to healthy tissue surrounding the tumor. Recent advances on the controlled synthesis of CVD diamond have demonstrated the possibility of using high quality micro and nano crystalline CVD as an efficient detector and dosimeter suitable for high energy photons and energetic particle beams. CVD diamond is a very attractive material for applications in ionizing radiation dosimetry, particularly in the biomedical field since the radiation absorption by a CVD diamond is very close to that of soft tissue. Furthermore, diamond is stable, non-toxic and radiation hard. In the present work we discuss the CVD diamond properties and dosimeter performance and discuss its relevance and advantages of various dosimetry methods, including thermally stimulated luminescence (TL) as well as optically stimulated luminescence (OSL). The recent CVD improved method of growth allows introducing precisely controlled impurities into diamond to provide it with high dosimetry sensitivity. For clinical dosimetry applications, high accuracy of dose measurements, low fading, high sensitivity, good reproducibility and linear dose response characteristics are very important parameters which all are found in CVD diamonds specimens. In some cases, dose linearity and reproducibility in CVD diamond have been found to be higher than standard commercial TLD materials like LiF. In the present work, we discuss the state-of-the art developments in dosimetry applications using CVD diamond. The financial support from Conacyt (Mexico) is greatly acknowledged

  14. Dosimetry with diamond detectors

    NASA Astrophysics Data System (ADS)

    Gervino, G.; Marino, C.; Silvestri, F.; Lavagno, A.; Truc, F.

    2010-05-01

    In this paper we present the dosimetry analysis in terms of stability and repeatability of the signal and dose rate dependence of a synthetic single crystal diamond grown by Chemical Vapor Deposition (CVD) technique. The measurements carried out by 5 MeV X-ray photons beam show very promising results, even if the dose rate detector response points out that the charge trapping centers distribution is not uniform inside the crystal volume. This handicap that affects the detectors performances, must be ascribed to the growing process. Synthetic single crystal diamonds could be a valuable alternative to air ionization chambers for quality beam control and for intensity modulated radiation therapy beams dosimetry.

  15. Fiber optic thermal/fast neutron and gamma ray scintillation detector

    DOEpatents

    Neal, John S.; Mihalczo, John T.

    2006-11-28

    A detector system that combines a .sup.6Li loaded glass fiber scintillation thermal neutron detector with a fast scintillation detector in a single layered structure. Detection of thermal and fast neutrons and ionizing electromagnetic radiation is achieved in the unified detector structure. The fast scintillator replaces the polyethelene moderator layer adjacent the .sup.6Li loaded glass fiber panel of the neutron detector and acts as the moderator for the glass fibers. Fast neutrons, x-rays and gamma rays are detected in the fast scintillator. Thermal neutrons, x-rays and gamma rays are detected in the glass fiber scintillator.

  16. Semiconductor radiation detector with internal gain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwanczyk, Jan; Patt, Bradley E.; Vilkelis, Gintas

    An avalanche drift photodetector (ADP) incorporates extremely low capacitance of a silicon drift photodetector (SDP) and internal gain that mitigates the surface leakage current noise of an avalanche photodetector (APD). The ADP can be coupled with scintillators such as CsI(Tl), NaI(Tl), LSO or others to form large volume scintillation type gamma ray detectors for gamma ray spectroscopy, photon counting, gamma ray counting, etc. Arrays of the ADPs can be used to replace the photomultiplier tubes (PMTs) used in conjunction with scintillation crystals in conventional gamma cameras for nuclear medical imaging.

  17. Growth of CdZnTe Crystals for Radiation Detector Applications by Directional Solidification

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua

    2014-01-01

    Advances in Cadmium Zinc Telluride (Cd(sub 1-x)Zn(sub x)Te) growth techniques are needed for the production of large-scale arrays of gamma and x-ray astronomy. The research objective is to develop crystal growth recipes and techniques to obtain large, high quality CdZnTe single crystal with reduced defects, such as charge trapping, twinning, and tellurium precipitates, which degrade the performance of CdZnTe and, at the same time, to increase the yield of usable material from the CdZnTe ingot. A low gravity material experiment, "Crystal Growth of Ternary Compound Semiconductors in Low Gravity Environment", will be performed in the Material Science Research Rack (MSRR) on International Space Station (ISS). One section of the flight experiment is the melt growth of CdZnTe ternary compounds. This talk will focus on the ground-based studies on the growth of Cd(sub 0.80)Zn(sub 0.20)Te crystals for radiation detector applications by directional solidification. In this investigation, we have improved the properties that are most critical for the detector applications (electrical properties and crystalline quality): a) Electrical resistivity: use high purity starting materials (with reproducible impurity levels) and controlled Cd over pressure during growth to reproducibly balance the impurity levels and Cd vacancy concentration b) Crystalline quality: use ultra-clean growth ampoule (no wetting after growth), optimized thermal profile and ampoule design, as well as a technique for supercool reduction to growth large single crystal with high crystalline quality

  18. Curiosity First Radiation Measurements on Mars

    NASA Image and Video Library

    2012-08-08

    Like a human working in a radiation environment, NASA Curiosity rover carries its own version of a dosimeter to measure radiation from outer space and the sun. This graphic shows the flux of radiation detected the rover Radiation Assessment Detector.

  19. Beta-spectrometer with Si-detectors for the study of 144Ce-144Pr decays

    NASA Astrophysics Data System (ADS)

    Alexeev, I. E.; Bakhlanov, S. V.; Bazlov, N. V.; Chmel, E. A.; Derbin, A. V.; Drachnev, I. S.; Kotina, I. M.; Muratova, V. N.; Pilipenko, N. V.; Semyonov, D. A.; Unzhakov, E. V.; Yeremin, V. K.

    2018-05-01

    Here we present the specifications of a newly developed beta-spectrometer, based on full absorption Si(Li) detector and thin transmission detector, allowing one to perform efficient separation beta-radiation and accompanying X-rays and gamma radiation. Our method is based on registration of coincident events from both detectors. The spectrometer can be used for precision measurements of various beta-spectra, namely for the beta-spectrum shape study of 144Pr, which is considered to be an advantageous anti-neutrino source for sterile neutrino searches.

  20. Detection system for high-resolution gamma radiation spectroscopy with neutron time-of-flight filtering

    DOEpatents

    Dioszegi, Istvan; Salwen, Cynthia; Vanier, Peter

    2014-12-30

    A .gamma.-radiation detection system that includes at least one semiconductor detector such as HPGe-Detector, a position-sensitive .alpha.-Detector, a TOF Controller, and a Digitizer/Integrator. The Digitizer/Integrator starts to process the energy signals of a .gamma.-radiation sent from the HPGe-Detector instantly when the HPGe-Detector detects the .gamma.-radiation. Subsequently, it is determined whether a coincidence exists between the .alpha.-particles and .gamma.-radiation signal, based on a determination of the time-of-flight of neutrons obtained from the .alpha.-Detector and the HPGe-Detector. If it is determined that the time-of-flight falls within a predetermined coincidence window, the Digitizer/Integrator is allowed to continue and complete the energy signal processing. If, however, there is no coincidence, the Digitizer/Integrator is instructed to be clear and reset its operation instantly.

  1. Realization of the electrical Sentinel 4 detector integration

    NASA Astrophysics Data System (ADS)

    Hermsen, M.; Hohn, R.; Skegg, M.; Woffinden, C.; Reulke, R.

    2017-09-01

    The detectors of the Sentinel 4 multi spectral imager are operated in flight at 215K while the analog electronics is operated at ambient temperature. The detector is cooled by means of a radiator. For thermal reasons no active component has been allowed in the cooled area closest to the detector as the passive radiator is restricted in its size. For thermal decoupling of detector and electronics a long distance between detector and electronics is considered ideal as thermal conductivity decreases with the length of the connection. In contradiction a short connection between detector and electronics is ideal for the electronic signals. Only a short connection ensures the signal integrity of both the weak detector output signal but similarly also the clock signals for driving the detector. From a mechanical and thermal point of view the connection requires a certain minimum length. The selected solution serves all these needs but had to approach the limits of what is electrically, mechanically and thermally feasible. In addition, shielding from internal (self distortion) and external distorting signals has to be realized for the connection between FEE(Front End Electronics) and detectors. At the time of the design of the flex it was not defined whether the mechanical structure between FEE and FPA (Focal Plane Assembly) would act as a shielding structure. The physical separation between CCD detector and the Front-end Electronics, the adverse EMI environment in which the instrument will be operated in (the location of the instrument on the satellite is in vicinity to a down-link K-band communication antenna of the S/C) require at least the video output signals to be shielded. Both detectors (a NIR and a UVVIS detector) are sensitive to contamination and difficult to be cleaned in case of any contamination. This brings up extreme cleanliness requirements for the detector in manufacturing and assembly. Effectively the detector has to be kept in an ISO 5 environment and

  2. Bolometric detectors for the Planck surveyor

    NASA Technical Reports Server (NTRS)

    Yun, M.; Koch, T.; Bock, J.; Holmes, W.; Hustead, L.; Wild, L.; Mulder, J.; Turner, A.; Lange, A.; Bhatia, R.

    2002-01-01

    The High Frequency Instrument on the NASA/ESA Planck Surveyor, scheduled for launch in 2007, will map the entire sky in 6 frequency bands ranging from 100 GHz to 857 GHz to probe Cosmic Microwave Background (CMB) anisotropy and polarization with angular resolution ranging from 9' to 5'. The HFI focal plane will contain 48 silicon nitride micromesh bolometers operating from a 100 mK heat sink. Four detectors in each of the 6 bands will detect unpolarized radiation. An additional 4 pairs of detectors will provide sensitivity to linear polarization of emission at 143, 217 and 353 GHz. We report on the development and characterization of these detectors before delivery to the European HFI consortium.

  3. High resolution scintillation detector with semiconductor readout

    DOEpatents

    Levin, Craig S.; Hoffman, Edward J.

    2000-01-01

    A novel high resolution scintillation detector array for use in radiation imaging such as high resolution Positron Emission Tomography (PET) which comprises one or more parallelepiped crystals with at least one long surface of each crystal being in intimate contact with a semiconductor photodetector such that photons generated within each crystal by gamma radiation passing therethrough is detected by the photodetector paired therewith.

  4. Detectors in Extreme Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blaj, G.; Carini, G.; Carron, S.

    2015-08-06

    Free Electron Lasers opened a new window on imaging the motion of atoms and molecules. At SLAC, FEL experiments are performed at LCLS using 120Hz pulses with 10 12 - 10 13 photons in 10 femtoseconds (billions of times brighter than the most powerful synchrotrons). This extreme detection environment raises unique challenges, from obvious to surprising. Radiation damage is a constant threat due to accidental exposure to insufficiently attenuated beam, focused beam and formation of ice crystals reflecting the beam onto the detector. Often high power optical lasers are also used (e.g., 25TW), increasing the risk of damage or impedingmore » data acquisition through electromagnetic pulses (EMP). The sample can contaminate the detector surface or even produce shrapnel damage. Some experiments require ultra high vacuum (UHV) with strict design, surface contamination and cooling requirements - also for detectors. The setup is often changed between or during experiments with short turnaround times, risking mechanical and ESD damage, requiring work planning, training of operators and sometimes continuous participation of the LCLS Detector Group in the experiments. The detectors used most often at LCLS are CSPAD cameras for hard x-rays and pnCCDs for soft x-rays.« less

  5. Micromachined Electron-Tunneling Infrared Detectors

    NASA Technical Reports Server (NTRS)

    Kenny, Thomas W.; Kaiser, William J.; Waltman, Stephen B.

    1993-01-01

    Pneumatic/thermal infrared detectors based partly on Golay-cell concept, but smaller and less fragile. Include containers filled with air or other gas trapped behind diaphragms. Infrared radiation heats sensors, causing gas to expand. Resulting deflections of diaphragms measured by displacement sensors based on principle of electron-tunneling transducers of scanning tunneling microscopes. Exceed sensitivity of all other miniature, uncooled infrared sensors presently available. Expected to include low consumption of power, broadband sensitivity, room-temperature operation, and invulnerability to ionizing radiation.

  6. Development of a silicon microstrip detector with single photon sensitivity for fast dynamic diffraction experiments at a synchrotron radiation beam

    NASA Astrophysics Data System (ADS)

    Arakcheev, A.; Aulchenko, V.; Kudashkin, D.; Shekhtman, L.; Tolochko, B.; Zhulanov, V.

    2017-06-01

    Time-resolved experiments on the diffraction of synchrotron radiation (SR) from crystalline materials provide information on the evolution of a material structure after a heat, electron beam or plasma interaction with a sample under study. Changes in the material structure happen within a microsecond scale and a detector with corresponding parameters is needed. The SR channel 8 of the VEPP-4M storage ring provides radiation from the 7-pole wiggler that allows to reach several tens photons within one μs from a tungsten crystal for the most intensive diffraction peak. In order to perform experiments that allow to measure the evolution of tungsten crystalline structure under the impact of powerful laser beam, a new detector is developed, that can provide information about the distribution of a scattered SR flux in space and its evolution in time at a microsecond scale. The detector is based on the silicon p-in-n microstrip sensor with DC-coupled metal strips. The sensor contains 1024 30 mm long strips with a 50 μm pitch. 64 strips are bonded to the front-end electronics based on APC128 ASICs. The APC128 ASIC contains 128 channels that consist of a low noise integrator with 32 analogue memory cells each. The integrator equivalent noise charge is about 2000 electrons and thus the signal from individual photons with energy above 40 keV can be observed. The signal can be stored at the analogue memory with 10 MHz rate. The first measurements with the beam scattered from a tungsten crystal with energy near 60 keV demonstrated the capability of this prototype to observe the spatial distribution of the photon flux with the intensity from below one photon per channel up to 0~10 photons per channel with a frame rate from 10 kHz up to 1 MHz.

  7. Seeing tobacco mosaic virus through direct electron detectors

    PubMed Central

    Fromm, Simon A.; Bharat, Tanmay A.M.; Jakobi, Arjen J.; Hagen, Wim J.H.; Sachse, Carsten

    2015-01-01

    With the introduction of direct electron detectors (DED) to the field of electron cryo-microscopy, a wave of atomic-resolution structures has become available. As the new detectors still require comparative characterization, we have used tobacco mosaic virus (TMV) as a test specimen to study the quality of 3D image reconstructions from data recorded on the two direct electron detector cameras, K2 Summit and Falcon II. Using DED movie frames, we explored related image-processing aspects and compared the performance of micrograph-based and segment-based motion correction approaches. In addition, we investigated the effect of dose deposition on the atomic-resolution structure of TMV and show that radiation damage affects negative carboxyl chains first in a side-chain specific manner. Finally, using 450,000 asymmetric units and limiting the effects of radiation damage, we determined a high-resolution cryo-EM map at 3.35 Å resolution. Here, we provide a comparative case study of highly ordered TMV recorded on different direct electron detectors to establish recording and processing conditions that enable structure determination up to 3.2 Å in resolution using cryo-EM. PMID:25528571

  8. Temperature behavior of CLYC/MPPC detectors

    NASA Astrophysics Data System (ADS)

    Glodo, Jarek; McClish, Mickel; Hawrami, Rastgo; O'Dougherty, Patrick; Tower, Josh; Gueorguiev, Andrey; Shah, Kanai S.

    2013-09-01

    He-3 tubes are the most popular thermal neutron detectors. They are easy to use, have good sensitivity for neutron detection, and are insensitive to gamma radiation. Due to low stockpiles of the He-3 gas, alternatives are being sought to replace these devices in many applications. One of the possible alternatives to these devices are scintillators incorporating isotopes with high cross-section for neutron capture (e.g. Li-6 or B-10). Cs2LiYCl6:Ce (CLYC) is one of the scintillators that recently has been considered for neutron detection. This material offers good detection efficiency (~80%), bright response (70,000 photons/neutron), high gamma ray equivalent energy of the neutron signal (>3MeV), and excellent separation between gamma and neutron radiation with pulse shape discrimination. A He-3 tube alternative based on a CLYC scintillator was constructed using a silicon photomultiplier (SiPM) for the optical readout. SiPMs are very compact optical detectors that are an alternative to usually bulky photomultiplier tubes. Constructed detector was characterized for its behavior across a temperature range of -20°C to 50°C.

  9. Methods of in vivo radiation measurement

    DOEpatents

    Huffman, Dennis D.; Hughes, Robert C.; Kelsey, Charles A.; Lane, Richard; Ricco, Antonio J.; Snelling, Jay B.; Zipperian, Thomas E.

    1990-01-01

    Methods of and apparatus for in vivo radiation measurements relay on a MOSFET dosimeter of high radiation sensitivity with operates in both the passive mode to provide an integrated dose detector and active mode to provide an irradiation rate detector. A compensating circuit with a matched unirradiated MOSFET is provided to operate at a current designed to eliminate temperature dependence of the device. Preferably, the MOSFET is rigidly mounted in the end of a miniature catheter and the catheter is implanted in the patient proximate the radiation source.

  10. Radiation Measured for Chinese Satellite SJ-10 Space Mission

    NASA Astrophysics Data System (ADS)

    Zhou, Dazhuang; Sun, Yeqing; Zhang, Binquan; Zhang, Shenyi; Sun, Yueqiang; Liang, Jinbao; Zhu, Guangwu; Jing, Tao; Yuan, Bin; Zhang, Huanxin; Zhang, Meng; Wang, Wei; Zhao, Lei

    2018-02-01

    Space biological effects are mainly a result of space radiation particles with high linear energy transfer (LET); therefore, accurate measurement of high LET space radiation is vital. The radiation in low Earth orbits is composed mainly of high-energy galactic cosmic rays (GCRs), solar energetic particles, particles of radiation belts, the South Atlantic Anomaly, and the albedo neutrons and protons scattered from the Earth's atmosphere. CR-39 plastic nuclear track detectors sensitive to high LET are the best passive detectors to measure space radiation. The LET method that employs CR-39 can measure all the radiation LET spectra and quantities. CR-39 detectors can also record the incident directions and coordinates of GCR heavy ions that pass through both CR-39 and biosamples, and the impact parameter, the distance between the particle's incident point and the seed's spore, can then be determined. The radiation characteristics and impact parameter of GCR heavy ions are especially beneficial for in-depth research regarding space radiation biological effects. The payload returnable satellite SJ-10 provided an excellent opportunity to investigate space radiation biological effects with CR-39 detectors. The space bio-effects experiment was successfully conducted on board the SJ-10 satellite. This paper introduces space radiation in low Earth orbits and the LET method in radiation-related research and presents the results of nuclear tracks and biosamples hitting distributions of GCR heavy ions, the radiation LET spectra, and the quantities measured for the SJ-10 space mission. The SJ-10 bio-experiment indicated that radiation may produce significant bio-effects.

  11. Organic scintillator detector response simulations with DRiFT

    NASA Astrophysics Data System (ADS)

    Andrews, M. T.; Bates, C. R.; McKigney, E. A.; Solomon, C. J.; Sood, A.

    2016-09-01

    This work presents the organic scintillation simulation capabilities of DRiFT, a post-processing Detector Response Function Toolkit for MCNP® output. DRiFT is used to create realistic scintillation detector response functions to incident neutron and gamma mixed-field radiation. As a post-processing tool, DRiFT leverages the extensively validated radiation transport capabilities of MCNP® 6 , which also provides the ability to simulate complex sources and geometries. DRiFT is designed to be flexible, it allows the user to specify scintillator material, PMT type, applied PMT voltage, and quenching data used in simulations. The toolkit's capabilities, which include the generation of pulse shape discrimination plots and full-energy detector spectra, are demonstrated in a comparison of measured and simulated neutron contributions from 252Cf and PuBe, and photon spectra from 22Na and 228Th sources. DRiFT reproduced energy resolution effects observed in EJ-301 measurements through the inclusion of scintillation yield variances, photon transport noise, and PMT photocathode and multiplication noise.

  12. Design and performances of a low-noise and radiation-hardened readout ASIC for CdZnTe detectors

    NASA Astrophysics Data System (ADS)

    Bo, Gan; Tingcun, Wei; Wu, Gao; Yongcai, Hu

    2016-06-01

    In this paper, we present the design and performances of a low-noise and radiation-hardened front-end readout application specific integrated circuit (ASIC) dedicated to CdZnTe detectors for a hard X-ray imager in space applications. The readout channel is comprised of a charge sensitive amplifier, a CR-RC shaping amplifier, an analog output buffer, a fast shaper, and a discriminator. An 8-channel prototype ASIC is designed and fabricated in TSMC 0.35-μm mixed-signal CMOS technology, the die size of the prototype chip is 2.2 × 2.2 mm2. The input energy range is from 5 to 350 keV. For this 8-channel prototype ASIC, the measured electrical characteristics are as follows: the overall gain of the readout channel is 210 V/pC, the linearity error is less than 2%, the crosstalk is less than 0.36%, The equivalent noise charge of a typical channel is 52.9 e- at zero farad plus 8.2 e- per picofarad, and the power consumption is less than 2.4 mW/channel. Through the measurement together with a CdZnTe detector, the energy resolution is 5.9% at the 59.5-keV line under the irradiation of the radioactive source 241Am. The radiation effect experiments show that the proposed ASIC can resist the total ionization dose (TID) irradiation of higher than 200 krad(Si). Project supported by the National Key Scientific Instrument and Equipment Development Project (No. 2011YQ040082), the National Natural Science Foundation of China (Nos. 11475136, 11575144, 61176094), and the Shaanxi Natural Science Foundation of China (No. 2015JM1016).

  13. Anomalous effects on radiation detectors and capacitance measurements inside a modified Faraday cage

    NASA Astrophysics Data System (ADS)

    Milián-Sánchez, V.; Mocholí-Salcedo, A.; Milián, C.; Kolombet, V. A.; Verdú, G.

    2016-08-01

    We present experimental results showing certain anomalies in the measurements performed inside a modified Faraday cage of decay rates of Ra-226, Tl-204 and Sr-90/I-90, of the gamma spectrum of a Cs-137 preparation, and of the capacitance of both a class-I multilayer ceramic capacitor and of the interconnection cable between the radiation detector and the scaler. Decay rates fluctuate significantly up to 5% around the initial value and differently depending on the type of nuclide, and the spectrum photopeak increases in 4.4%. In the case of the capacitor, direct capacitance measurements at 100 Hz, 10 kHz and 100 kHz show variations up to 0.7%, the most significant taking place at 100 Hz. In the case of the interconnection cable, the capacitance varies up to 1%. Dispersion also tends to increase inside the enclosure. However, the measured capacitance variations do not explain the variations observed in decay rates.

  14. Electromagnetic and nuclear radiation detector using micromechanical sensors

    DOEpatents

    Thundat, Thomas G.; Warmack, Robert J.; Wachter, Eric A.

    2000-01-01

    Electromagnetic and nuclear radiation is detected by micromechanical sensors that can be coated with various interactive materials. As the micromechanical sensors absorb radiation, the sensors bend and/or undergo a shift in resonance characteristics. The bending and resonance changes are detected with high sensitivity by any of several detection methods including optical, capacitive, and piezoresistive methods. Wide bands of the electromagnetic spectrum can be imaged with picoJoule sensitivity, and specific absorptive coatings can be used for selective sensitivity in specific wavelength bands. Microcantilevers coated with optical cross-linking polymers are useful as integrating optical radiation dosimeters. Nuclear radiation dosimetry is possible by fabricating cantilevers from materials that are sensitive to various nuclear particles or radiation. Upon exposure to radiation, the cantilever bends due to stress and its resonance frequency shifts due to changes in elastic properties, based on cantilever shape and properties of the coating.

  15. Controlling alpha tracks registration in Makrofol DE 1-1 detector

    NASA Astrophysics Data System (ADS)

    Hassan, N. M.; Hanafy, M. S.; Naguib, A.; El-Saftawy, A. A.

    2017-09-01

    Makrofol DE 1-1 is a recent type of solid state nuclear track detectors could be used to measure radon concentration in the environment throughout the detection of α-particles emitted from radon decay. Thus, studying the physical parameters that control the formation of alpha tracks is vital for environmental radiation protection. Makrofol DE 1-1 polycarbonate detector was irradiated by α-particles of energies varied from 2 to 5 MeV emitted from the 241Am source of α-particle energy of 5.5 MeV. Then, the detector was etched in an optimum etching solution of mixed ethyl alcohol in KOH aqueous solution of (85% (Vol.) of 6 M KOH + 15% (Vol.) C2H5OH) at 50 °C for 3 h. Afterward, the bulk etch rate, etching sensitivity, and the registration efficiency of the detector, which control the tracks registration, were measured. The bulk etch rate of Makrofol detector was found to be 3.71 ± 0.71 μm h-1. The etching sensitivity and the detector registration efficiency were decreased exponentially with α-particles' energies following Bragg curve. A precise registration of α-particle was presented in this study. Therefore, Makrofol DE 1-1 can be applied as a radiation dosimeter as well as radon and thoron monitors.

  16. MicroCT with energy-resolved photon-counting detectors

    PubMed Central

    Wang, X; Meier, D; Mikkelsen, S; Maehlum, G E; Wagenaar, D J; Tsui, BMW; Patt, B E; Frey, E C

    2011-01-01

    The goal of this paper was to investigate the benefits that could be realistically achieved on a microCT imaging system with an energy-resolved photon-counting x-ray detector. To this end, we built and evaluated a prototype microCT system based on such a detector. The detector is based on cadmium telluride (CdTe) radiation sensors and application-specific integrated circuit (ASIC) readouts. Each detector pixel can simultaneously count x-ray photons above six energy thresholds, providing the capability for energy-selective x-ray imaging. We tested the spectroscopic performance of the system using polychromatic x-ray radiation and various filtering materials with Kabsorption edges. Tomographic images were then acquired of a cylindrical PMMA phantom containing holes filled with various materials. Results were also compared with those acquired using an intensity-integrating x-ray detector and single-energy (i.e. non-energy-selective) CT. This paper describes the functionality and performance of the system, and presents preliminary spectroscopic and tomographic results. The spectroscopic experiments showed that the energy-resolved photon-counting detector was capable of measuring energy spectra from polychromatic sources like a standard x-ray tube, and resolving absorption edges present in the energy range used for imaging. However, the spectral quality was degraded by spectral distortions resulting from degrading factors, including finite energy resolution and charge sharing. We developed a simple charge-sharing model to reproduce these distortions. The tomographic experiments showed that the availability of multiple energy thresholds in the photon-counting detector allowed us to simultaneously measure target-to-background contrasts in different energy ranges. Compared with single-energy CT with an integrating detector, this feature was especially useful to improve differentiation of materials with different attenuation coefficient energy dependences. PMID:21464527

  17. MicroCT with energy-resolved photon-counting detectors.

    PubMed

    Wang, X; Meier, D; Mikkelsen, S; Maehlum, G E; Wagenaar, D J; Tsui, B M W; Patt, B E; Frey, E C

    2011-05-07

    The goal of this paper was to investigate the benefits that could be realistically achieved on a microCT imaging system with an energy-resolved photon-counting x-ray detector. To this end, we built and evaluated a prototype microCT system based on such a detector. The detector is based on cadmium telluride (CdTe) radiation sensors and application-specific integrated circuit (ASIC) readouts. Each detector pixel can simultaneously count x-ray photons above six energy thresholds, providing the capability for energy-selective x-ray imaging. We tested the spectroscopic performance of the system using polychromatic x-ray radiation and various filtering materials with K-absorption edges. Tomographic images were then acquired of a cylindrical PMMA phantom containing holes filled with various materials. Results were also compared with those acquired using an intensity-integrating x-ray detector and single-energy (i.e. non-energy-selective) CT. This paper describes the functionality and performance of the system, and presents preliminary spectroscopic and tomographic results. The spectroscopic experiments showed that the energy-resolved photon-counting detector was capable of measuring energy spectra from polychromatic sources like a standard x-ray tube, and resolving absorption edges present in the energy range used for imaging. However, the spectral quality was degraded by spectral distortions resulting from degrading factors, including finite energy resolution and charge sharing. We developed a simple charge-sharing model to reproduce these distortions. The tomographic experiments showed that the availability of multiple energy thresholds in the photon-counting detector allowed us to simultaneously measure target-to-background contrasts in different energy ranges. Compared with single-energy CT with an integrating detector, this feature was especially useful to improve differentiation of materials with different attenuation coefficient energy dependences.

  18. Thallium halide radiation detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ijaz-ur-Rahman; Hofstadter, R.

    1984-03-15

    During a series of experiments on crystal conduction counters performed at Stanford University on thallium halide crystals, we have observed motion of both hole and electron carriers in a TlBr crystal. At a temperature near -90 /sup 0/C the hole motion produces larger pulses than electron motion. We have studied the behavior of TlBr, TlCl, and KRS-5 (40 mol % TlBr + 60 mol % TlI) crystals and examined them as possible crystal conduction detectors of ..cap alpha.. particles and ..gamma.. rays. TlBr appears to be a promising candidate for applications to nuclear physics and high-energy ..gamma..-ray physics. Modules ofmore » TlBr in ''crystal-ball'' geometry may lead to new detection possibilities. At -20 /sup 0/C space-charge accumulation in TlBr decreases to such an extent that operation at this temperature seems possible with moderate electrical gradients. In the long-neglected field of crystal conduction counters, we have potentially removed the space-charge limitation in TlBr and, allowing for both hole and electron motion, raised the possibility for spectroscopic performance of this material for ..gamma..-ray studies.« less

  19. High field CdS detector for infrared radiation

    NASA Technical Reports Server (NTRS)

    Tyagi, R. C.; Boer, K. W.; Hadley, H. C.; Robertson, J. B.

    1972-01-01

    New and highly sensitive method of detecting infrared irradiation makes possible solid state infrared detector which is more sensitive near room temperature than usual photoconductive low band gap semiconductor devices. Reconfiguration of high field domains in cadmium sulphide crystals provides basis for discovery.

  20. Charge collection in Si detectors irradiated in situ at superfluid helium temperature

    NASA Astrophysics Data System (ADS)

    Verbitskaya, Elena; Eremin, Vladimir; Zabrodskii, Andrei; Dehning, Bernd; Kurfürst, Christoph; Sapinski, Mariusz; Bartosik, Marcin R.; Egorov, Nicolai; Härkönen, Jaakko

    2015-10-01

    Silicon and diamond detectors operated in a superfluid helium bath are currently being considered for the upgrade of the LHC beam loss monitoring system. The detectors would be installed in immediate proximity of the superconducting coils of the triplet magnets. We present here the results of the in situ irradiation test for silicon detectors using 23 GeV protons while keeping the detectors at a temperature of 1.9 K. Red laser (630 nm) Transient Current Technique and DC current measurements were used to study the pulse response and collected charge for silicon detectors irradiated to a maximum radiation fluence of 1×1016 p/cm2. The dependence between collected charge and irradiation fluence was parameterized using the Hecht equation and assumption of a uniform electric field distribution. The collected charge was found to degrade with particle fluence for both bias polarities. We observed that the main factor responsible for this degradation was related to trapping of holes on the donor-type radiation-induced defects. In contrast to expectations, along with formation of donors, acceptor-type defects (electron traps) are introduced into the silicon bulk. This suggests that the current models describing charge collection in irradiated silicon detectors require an extension for taking into account trapping at low temperatures with a contribution of shallow levels. New in situ irradiation tests are needed and planned now to extend statistics of the results and gain a deeper insight into the physics of low temperature detector operation in harsh radiation environment.

  1. Proton Straggling in Thick Silicon Detectors

    NASA Technical Reports Server (NTRS)

    Selesnick, R. S.; Baker, D. N.; Kanekal, S. G.

    2017-01-01

    Straggling functions for protons in thick silicon radiation detectors are computed by Monte Carlo simulation. Mean energy loss is constrained by the silicon stopping power, providing higher straggling at low energy and probabilities for stopping within the detector volume. By matching the first four moments of simulated energy-loss distributions, straggling functions are approximated by a log-normal distribution that is accurate for Vavilov k is greater than or equal to 0:3. They are verified by comparison to experimental proton data from a charged particle telescope.

  2. Amorphous silicon ionizing particle detectors

    DOEpatents

    Street, Robert A.; Mendez, Victor P.; Kaplan, Selig N.

    1988-01-01

    Amorphous silicon ionizing particle detectors having a hydrogenated amorphous silicon (a--Si:H) thin film deposited via plasma assisted chemical vapor deposition techniques are utilized to detect the presence, position and counting of high energy ionizing particles, such as electrons, x-rays, alpha particles, beta particles and gamma radiation.

  3. Investigation of 3D diamond detector dosimetric characteristics

    NASA Astrophysics Data System (ADS)

    Kanxheri, K.; Alunni Solestizi, L.; Biasini, M.; Caprai, M.; Dipilato, A. C.; Iacco, M.; Ionica, M.; Lagomarsino, S.; Menichelli, M.; Morozzi, A.; Passeri, D.; Sciortino, S.; Talamonti, C.; Zucchetti, C.; Servoli, L.

    2018-06-01

    Recently, a polycrystalline chemical vapor deposited (pCVD) 3D diamond detector with graphitic in bulk electrodes, fabricated using a pulsed laser technique has been evaluated for photon beam radiation dosimetry during in-air exposure. The same 3D diamond detector, has now been investigated to evaluate its performance under clinically relevant conditions putting the detector inside a Polymethylmethacrylate (PMMA) phantom, to obtain higher precision dosimetric measurements. The detector leakage current was of the order of ± 25 pA or less for bias voltages up to ‑100 V. The 3D detector was tested for time stability and repeatability showing excellent performance with less than 0.6% signal variation. It also showed a linear response for low dose rates with a deviation from linearity of 2%. It was also possible to verify the detector response as a function of the depth in PMMA up to 18 cm.

  4. TomoTherapy MLC verification using exit detector data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Quan; Westerly, David; Fang Zhenyu

    2012-01-15

    Purpose: Treatment delivery verification (DV) is important in the field of intensity modulated radiation therapy (IMRT). While IMRT and image guided radiation therapy (IGRT), allow us to create more conformal plans and enables the use of tighter margins, an erroneously executed plan can have detrimental effects on the treatment outcome. The purpose of this study is to develop a DV technique to verify TomoTherapy's multileaf collimator (MLC) using the onboard mega-voltage CT detectors. Methods: The proposed DV method uses temporal changes in the MVCT detector signal to predict actual leaf open times delivered on the treatment machine. Penumbra and scatteredmore » radiation effects may produce confounding results when determining leaf open times from the raw detector data. To reduce the impact of the effects, an iterative, Richardson-Lucy (R-L) deconvolution algorithm is applied. Optical sensors installed on each MLC leaf are used to verify the accuracy of the DV technique. The robustness of the DV technique is examined by introducing different attenuation materials in the beam. Additionally, the DV technique has been used to investigate several clinical plans which failed to pass delivery quality assurance (DQA) and was successful in identifying MLC timing discrepancies as the root cause. Results: The leaf open time extracted from the exit detector showed good agreement with the optical sensors under a variety of conditions. Detector-measured leaf open times agreed with optical sensor data to within 0.2 ms, and 99% of the results agreed within 8.5 ms. These results changed little when attenuation was added in the beam. For the clinical plans failing DQA, the dose calculated from reconstructed leaf open times played an instrumental role in discovering the root-cause of the problem. Throughout the retrospective study, it is found that the reconstructed dose always agrees with measured doses to within 1%. Conclusions: The exit detectors in the TomoTherapy treatment

  5. Light-weight spherical mirrors for Cherenkov detectors

    NASA Astrophysics Data System (ADS)

    Cisbani, E.; Colilli, S.; Crateri, R.; Cusanno, F.; Fratoni, R.; Frullani, S.; Garibaldi, F.; Giuliani, F.; Gricia, M.; Iodice, M.; Iommi, R.; Lucentini, M.; Mostarda, A.; Pierangeli, L.; Santavenere, F.; Urciuoli, G. M.; De Leo, R.; Lagamba, L.; Nappi, E.; Braem, A.; Vernin, P.

    2003-01-01

    Light-weight spherical mirrors have been appositely designed and built for the gas threshold Cherenkov detectors of the two Hall A spectrometers. The mirrors are made of a 1 mm thick aluminized plexiglass sheet, reinforced by a rigid backing consisting of a phenolic honeycomb sandwiched between two carbon fiber mats epoxy glued. The produced mirrors have a thickness equivalent to 0.55% of radiation length, and an optical slope error of about 5.5 mrad. These characteristics make these mirrors suitable for the implementation in Cherenkov threshold detectors. Ways to improve the mirror features are also discussed in view of their possible employment in RICH detectors.

  6. CdTe Timepix detectors for single-photon spectroscopy and linear polarimetry of high-flux hard x-ray radiation.

    PubMed

    Hahn, C; Weber, G; Märtin, R; Höfer, S; Kämpfer, T; Stöhlker, Th

    2016-04-01

    Single-photon spectroscopy of pulsed, high-intensity sources of hard X-rays - such as laser-generated plasmas - is often hampered by the pileup of several photons absorbed by the unsegmented, large-volume sensors routinely used for the detection of high-energy radiation. Detectors based on the Timepix chip, with a segmentation pitch of 55 μm and the possibility to be equipped with high-Z sensor chips, constitute an attractive alternative to commonly used passive solutions such as image plates. In this report, we present energy calibration and characterization measurements of such devices. The achievable energy resolution is comparable to that of scintillators for γ spectroscopy. Moreover, we also introduce a simple two-detector Compton polarimeter setup with a polarimeter quality of (98 ± 1)%. Finally, a proof-of-principle polarimetry experiment is discussed, where we studied the linear polarization of bremsstrahlung emitted by a laser-driven plasma and found an indication of the X-ray polarization direction depending on the polarization state of the incident laser pulse.

  7. CdTe Timepix detectors for single-photon spectroscopy and linear polarimetry of high-flux hard x-ray radiation

    NASA Astrophysics Data System (ADS)

    Hahn, C.; Weber, G.; Märtin, R.; Höfer, S.; Kämpfer, T.; Stöhlker, Th.

    2016-04-01

    Single-photon spectroscopy of pulsed, high-intensity sources of hard X-rays — such as laser-generated plasmas — is often hampered by the pileup of several photons absorbed by the unsegmented, large-volume sensors routinely used for the detection of high-energy radiation. Detectors based on the Timepix chip, with a segmentation pitch of 55 μm and the possibility to be equipped with high-Z sensor chips, constitute an attractive alternative to commonly used passive solutions such as image plates. In this report, we present energy calibration and characterization measurements of such devices. The achievable energy resolution is comparable to that of scintillators for γ spectroscopy. Moreover, we also introduce a simple two-detector Compton polarimeter setup with a polarimeter quality of (98 ± 1)%. Finally, a proof-of-principle polarimetry experiment is discussed, where we studied the linear polarization of bremsstrahlung emitted by a laser-driven plasma and found an indication of the X-ray polarization direction depending on the polarization state of the incident laser pulse.

  8. CdTe Timepix detectors for single-photon spectroscopy and linear polarimetry of high-flux hard x-ray radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahn, C., E-mail: christoph.hahn@uni-jena.de; Höfer, S.; Kämpfer, T.

    Single-photon spectroscopy of pulsed, high-intensity sources of hard X-rays — such as laser-generated plasmas — is often hampered by the pileup of several photons absorbed by the unsegmented, large-volume sensors routinely used for the detection of high-energy radiation. Detectors based on the Timepix chip, with a segmentation pitch of 55 μm and the possibility to be equipped with high-Z sensor chips, constitute an attractive alternative to commonly used passive solutions such as image plates. In this report, we present energy calibration and characterization measurements of such devices. The achievable energy resolution is comparable to that of scintillators for γ spectroscopy.more » Moreover, we also introduce a simple two-detector Compton polarimeter setup with a polarimeter quality of (98 ± 1)%. Finally, a proof-of-principle polarimetry experiment is discussed, where we studied the linear polarization of bremsstrahlung emitted by a laser-driven plasma and found an indication of the X-ray polarization direction depending on the polarization state of the incident laser pulse.« less

  9. Design of a muonic tomographic detector to scan travelling containers

    NASA Astrophysics Data System (ADS)

    Pugliatti, C.; Antonuccio, V.; Bandieramonte, M.; Becciani, U.; Belluomo, F.; Belluso, M.; Billotta, S.; Blancato, A. A.; Bonanno, D. L.; Bonanno, G.; Costa, A.; Fallica, G.; Garozzo, S.; Indelicato, V.; La Rocca, P.; Leonora, E.; Longhitano, F.; Longo, S.; Lo Presti, D.; Massimino, P.; Petta, C.; Pistagna, C.; Puglisi, M.; Randazzo, N.; Riggi, F.; Riggi, S.; Romeo, G.; Russo, G. V.; Santagati, G.; Valvo, G.; Vitello, F.; Zaia, A.; Zappalà, G.

    2014-05-01

    The Muon Portal Project aims at the construction of a large volume detector to inspect the content of travelling containers for the identification of high-Z hidden materials (U, Pu or other fissile samples), exploiting the secondary cosmic-ray muon radiation. An image of these materials is achieved reconstructing the deviations of the muons from their original trajectories inside the detector volume, by means of two particle trackers, placed one below and one above the container. The scan is performed without adding any external radiation, in a few minutes and with a high spatial and angular resolution. The detector consists of 4800 scintillating strips with two wavelength shifting (WLS) fibers inside each strip, coupled to Silicon photomultipliers (SiPMs). A smart strategy for the read out system allows a considerable reduction of the number of the read-out channels. Actually, an intense measurement campaign is in progress to carefully characterize any single component of the detector. A prototype of one of the 48 detection modules (1 × 3 m2) is actually under construction. This paper presents the detector architecture and the preliminary results.

  10. Multidirectional Cosmic Ray Ion Detector for Deep Space CubeSats

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.

    2016-01-01

    Understanding the nature of anisotropy of solar energetic protons (SEPs) and galactic cosmic ray (GCR) fluxes in the interplanetary medium is crucial in characterizing time-dependent radiation exposure in interplanetary space for future exploration missions. NASA Glenn Research Center has proposed a CubeSat-based instrument to study solar and cosmic ray ions in lunar orbit or deep space. The objective of Solar Proton Anisotropy and Galactic cosmic ray High Energy Transport Instrument (SPAGHETI) is to provide multi-directional ion data to further understand anisotropies in SEP and GCR flux. The instrument is to be developed using large area detectors fabricated from high density, high purity silicon carbide (SiC) to measure linear energy transfer (LET) of ions. Stacks of these LET detectors are arranged in a CubeSat at orthogonal directions to provide multidirectional measurements. The low-noise, thermally-stable nature of silicon carbide and its radiation tolerance allows the multidirectional array of detector stacks to be packed in a 6U CubeSat without active cooling. A concept involving additional coincidence/anticoincidence detectors and a high energy Cherenkov detector is possible to further expand ion energy range and sensitivity.

  11. Nanocomposite scintillator, detector, and method

    DOEpatents

    Cooke, D Wayne [Santa Fe, NM; McKigney, Edward A [Los Alamos, NM; Muenchausen, Ross E [Los Alamos, NM; Bennett, Bryan L [Los Alamos, NM

    2009-04-28

    A compact includes a mixture of a solid binder and at least one nanopowder phosphor chosen from yttrium oxide, yttrium tantalate, barium fluoride, cesium fluoride, bismuth germanate, zinc gallate, calcium magnesium pyrosilicate, calcium molybdate, calcium chlorovanadate, barium titanium pyrophosphate, a metal tungstate, a cerium doped nanophosphor, a bismuth doped nanophosphor, a lead doped nanophosphor, a thallium doped sodium iodide, a doped cesium iodide, a rare earth doped pyrosilicate, or a lanthanide halide. The compact can be used in a radiation detector for detecting ionizing radiation.

  12. Bubble-detector measurements of neutron radiation in the international space station: ISS-34 to ISS-37

    PubMed Central

    Smith, M. B.; Khulapko, S.; Andrews, H. R.; Arkhangelsky, V.; Ing, H.; Koslowksy, M. R.; Lewis, B. J.; Machrafi, R.; Nikolaev, I.; Shurshakov, V.

    2016-01-01

    Bubble detectors have been used to characterise the neutron dose and energy spectrum in several modules of the International Space Station (ISS) as part of an ongoing radiation survey. A series of experiments was performed during the ISS-34, ISS-35, ISS-36 and ISS-37 missions between December 2012 and October 2013. The Radi-N2 experiment, a repeat of the 2009 Radi-N investigation, included measurements in four modules of the US orbital segment: Columbus, the Japanese experiment module, the US laboratory and Node 2. The Radi-N2 dose and spectral measurements are not significantly different from the Radi-N results collected in the same ISS locations, despite the large difference in solar activity between 2009 and 2013. Parallel experiments using a second set of detectors in the Russian segment of the ISS included the first characterisation of the neutron spectrum inside the tissue-equivalent Matroshka-R phantom. These data suggest that the dose inside the phantom is ∼70 % of the dose at its surface, while the spectrum inside the phantom contains a larger fraction of high-energy neutrons than the spectrum outside the phantom. The phantom results are supported by Monte Carlo simulations that provide good agreement with the empirical data. PMID:25899609

  13. Point Defect Properties of Cd(Zn)Te and TlBr for Room-Temperature Gamma Radiation Detectors

    NASA Astrophysics Data System (ADS)

    Lordi, Vincenzo

    2013-03-01

    The effects of various crystal defects in CdTe, Cd1-xZnxTe (CZT), and TlBr are critical for their performance as room-temperature gamma radiation detectors. We use predictive first principles theoretical methods to provide fundamental, atomic scale understanding of the defect properties of these materials to enable design of optimal growth and processing conditions, such as doping, annealing, and stoichiometry. Several recent cases will be reviewed, including (i) accurate calculations of the thermodynamic and electronic properties of native point defects and point defect complexes in CdTe and CZT; (ii) the effects of Zn alloying on the native point defect properties of CZT; (iii) point defect diffusion and binding related to Te clustering in Cd(Zn)Te; (iv) the profound effect of native point defects--principally vacancies--on the intrinsic material properties of TlBr, particularly electronic and ionic conductivity; (v) tailored doping of TlBr to independently control the electronic and ionic conductivity; and (vi) the effects of metal impurities on the electronic properties and device performance of TlBr detectors. Prepared by LLNL under Contract DE-AC52-07NA27344 with support from the National Nuclear Security Administration Office of Nonproliferation and Verification Research and Development NA-22.

  14. Analog pixel array detectors.

    PubMed

    Ercan, A; Tate, M W; Gruner, S M

    2006-03-01

    X-ray pixel array detectors (PADs) are generally thought of as either digital photon counters (DPADs) or X-ray analog-integrating pixel array detectors (APADs). Experiences with APADs, which are especially well suited for X-ray imaging experiments where transient or high instantaneous flux events must be recorded, are reported. The design, characterization and experimental applications of several APAD designs developed at Cornell University are discussed. The simplest design is a ;flash' architecture, wherein successive integrated X-ray images, as short as several hundred nanoseconds in duration, are stored in the detector chips for later off-chip digitization. Radiography experiments using a prototype flash APAD are summarized. Another design has been implemented that combines flash capability with the ability to continuously stream X-ray images at slower (e.g. milliseconds) rates. Progress is described towards radiation-hardened APADs that can be tiled to cover a large area. A mixed-mode PAD, design by combining many of the attractive features of both APADs and DPADs, is also described.

  15. A novel flat-response x-ray detector in the photon energy range of 0.1-4 keV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Zhichao; Guo Liang; Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan 621900

    2010-07-15

    A novel flat-response x-ray detector has been developed for the measurement of radiation flux from a hohlraum. In order to obtain a flat response in the photon energy range of 0.1-4 keV, it is found that both the cathode and the filter of the detector can be made of gold. A further improvement on the compound filter can then largely relax the requirement of the calibration x-ray beam. The calibration of the detector, which is carried out on Beijing Synchrotron Radiation Facility at Institute of High Energy Physics, shows that the detector has a desired flat response in the photonmore » energy range of 0.1-4 keV, with a response flatness smaller than 13%. The detector has been successfully applied in the hohlraum experiment on Shenguang-III prototype laser facility. The radiation temperatures inferred from the detector agree well with those from the diagnostic instrument Dante installed at the same azimuth angle from the hohlraum axis, demonstrating the feasibility of the detector.« less

  16. A novel flat-response x-ray detector in the photon energy range of 0.1-4 keV.

    PubMed

    Li, Zhichao; Jiang, Xiaohua; Liu, Shenye; Huang, Tianxuan; Zheng, Jian; Yang, Jiamin; Li, Sanwei; Guo, Liang; Zhao, Xuefeng; Du, Huabin; Song, Tianming; Yi, Rongqing; Liu, Yonggang; Jiang, Shaoen; Ding, Yongkun

    2010-07-01

    A novel flat-response x-ray detector has been developed for the measurement of radiation flux from a hohlraum. In order to obtain a flat response in the photon energy range of 0.1-4 keV, it is found that both the cathode and the filter of the detector can be made of gold. A further improvement on the compound filter can then largely relax the requirement of the calibration x-ray beam. The calibration of the detector, which is carried out on Beijing Synchrotron Radiation Facility at Institute of High Energy Physics, shows that the detector has a desired flat response in the photon energy range of 0.1-4 keV, with a response flatness smaller than 13%. The detector has been successfully applied in the hohlraum experiment on Shenguang-III prototype laser facility. The radiation temperatures inferred from the detector agree well with those from the diagnostic instrument Dante installed at the same azimuth angle from the hohlraum axis, demonstrating the feasibility of the detector.

  17. Entangled γ-photons—classical laboratory exercise with modern detectors

    NASA Astrophysics Data System (ADS)

    Hetfleiš, Jakub; Lněnička, Jindřich; Šlégr, Jan

    2018-03-01

    This paper describes the application of modern semiconductor detectors of γ and β radiation, which can be used in undergraduate laboratory experiments and lecture demonstrations as a replacement for Geiger-Müller (GM) tubes. Unlike GM tubes, semiconductor detectors do not require a high voltage power source or shaping circuits. The principle of operation of semiconductor detectors is discussed briefly, and classical experiments from nuclear physics are described, ranging from the measurements of linear and mass attenuation coefficient to a demonstration of entangled γ-photons.

  18. Amorphous silicon ionizing particle detectors

    DOEpatents

    Street, R.A.; Mendez, V.P.; Kaplan, S.N.

    1988-11-15

    Amorphous silicon ionizing particle detectors having a hydrogenated amorphous silicon (a--Si:H) thin film deposited via plasma assisted chemical vapor deposition techniques are utilized to detect the presence, position and counting of high energy ionizing particles, such as electrons, x-rays, alpha particles, beta particles and gamma radiation. 15 figs.

  19. Integrating Wireless Networking for Radiation Detection

    NASA Astrophysics Data System (ADS)

    Board, Jeremy; Barzilov, Alexander; Womble, Phillip; Paschal, Jon

    2006-10-01

    As wireless networking becomes more available, new applications are being developed for this technology. Our group has been studying the advantages of wireless networks of radiation detectors. With the prevalence of the IEEE 802.11 standard (``WiFi''), we have developed a wireless detector unit which is comprised of a 5 cm x 5 cm NaI(Tl) detector, amplifier and data acquisition electronics, and a WiFi transceiver. A server may communicate with the detector unit using a TCP/IP network connected to a WiFi access point. Special software on the server will perform radioactive isotope determination and estimate dose-rates. We are developing an enhanced version of the software which utilizes the receiver signal strength index (RSSI) to estimate source strengths and to create maps of radiation intensity.

  20. SuperCDMS Underground Detector Fabrication Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Platt, M.; Mahapatra, R.; Bunker, Raymond A.

    The SuperCDMS SNOLAB dark matter experiment processes Ge and Si crystals into fully tested phonon and ionization detectors at surface fabrication and test facilities. If not mitigated, it is anticipated that trace-level production of radioisotopes in the crystals due to exposure to cosmic rays at (or above) sea level will result in the dominant source of background events in future dark matter searches using the current SuperCDMS detector technology. Fabrication and testing of detectors in underground facilities shielded from cosmic radiation is one way to directly reduce production of trace levels of radioisotopes, thereby improving experimental sensitivity for the discoverymore » of dark matter beyond the level of the current experiment. In this report, we investigate the cost and feasibility to establish a complete detector fabrication processing chain in an underground location to mitigate cosmogenic activation of the Ge and Si detector substrates. For a specific and concrete evaluation, we explore options for such a facility located at SNOLAB, an underground laboratory in Sudbury, Canada hosting the current and future experimental phases of SuperCDMS.« less