Science.gov

Sample records for detects alterations induced

  1. Tumor-induced lymph node alterations detected by MRI lymphography using gadolinium nanoparticles

    PubMed Central

    Partridge, S. C.; Kurland, B. F.; Liu, C.-L.; Ho, R. J. Y.; Ruddell, A.

    2015-01-01

    Contrast-enhanced MRI lymphography shows potential to identify alterations in lymph drainage through lymph nodes (LNs) in cancer and other diseases. MRI studies have typically used low molecular weight gadolinium contrast agents, however larger gadolinium-loaded nanoparticles possess characteristics that could improve the specificity and sensitivity of lymphography. The performance of three gadolinium contrast agents with different sizes and properties was compared by 3T MRI after subcutaneous injection. Mice bearing B16-F10 melanoma footpad tumors were imaged to assess tumor-induced alterations in lymph drainage through tumor-draining popliteal and inguinal LNs versus contralateral uninvolved drainage. Gadolinium lipid nanoparticles were able to identify tumor-induced alterations in contrast agent drainage into the popliteal LN, while lower molecular weight or albumin-binding gadolinium agents were less effective. All of the contrast agents distributed in foci around the cortex and medulla of tumor-draining popliteal LNs, while they were restricted to the cortex of non-draining LNs. Surprisingly, second-tier tumor-draining inguinal LNs exhibited reduced uptake, indicating that tumors can also divert LN drainage. These characteristics of tumor-induced lymph drainage could be useful for diagnosis of LN pathology in cancer and other diseases. The preferential uptake of nanoparticle contrasts into tumor-draining LNs could also allow selective targeting of therapies to tumor-draining LNs. PMID:26497382

  2. Altered fingerprints: analysis and detection.

    PubMed

    Yoon, Soweon; Feng, Jianjiang; Jain, Anil K

    2012-03-01

    The widespread deployment of Automated Fingerprint Identification Systems (AFIS) in law enforcement and border control applications has heightened the need for ensuring that these systems are not compromised. While several issues related to fingerprint system security have been investigated, including the use of fake fingerprints for masquerading identity, the problem of fingerprint alteration or obfuscation has received very little attention. Fingerprint obfuscation refers to the deliberate alteration of the fingerprint pattern by an individual for the purpose of masking his identity. Several cases of fingerprint obfuscation have been reported in the press. Fingerprint image quality assessment software (e.g., NFIQ) cannot always detect altered fingerprints since the implicit image quality due to alteration may not change significantly. The main contributions of this paper are: 1) compiling case studies of incidents where individuals were found to have altered their fingerprints for circumventing AFIS, 2) investigating the impact of fingerprint alteration on the accuracy of a commercial fingerprint matcher, 3) classifying the alterations into three major categories and suggesting possible countermeasures, 4) developing a technique to automatically detect altered fingerprints based on analyzing orientation field and minutiae distribution, and 5) evaluating the proposed technique and the NFIQ algorithm on a large database of altered fingerprints provided by a law enforcement agency. Experimental results show the feasibility of the proposed approach in detecting altered fingerprints and highlight the need to further pursue this problem. PMID:21808092

  3. Early TBI-Induced Cytokine Alterations are Similarly Detected by Two Distinct Methods of Multiplex Assay

    PubMed Central

    Mukherjee, Sanjib; Katki, Khurshed; Arisi, Gabriel M.; Foresti, Maira L.; Shapiro, Lee A.

    2011-01-01

    Annually, more than a million persons experience traumatic brain injury (TBI) in the US and a substantial proportion of this population develop debilitating neurological disorders, such as, paralysis, cognitive deficits, and epilepsy. Despite the long-standing knowledge of the risks associated with TBI, no effective biomarkers or interventions exist. Recent evidence suggests a role for inflammatory modulators in TBI-induced neurological impairments. Current technological advances allow for the simultaneous analysis of the precise spatial and temporal expression patterns of numerous proteins in single samples which ultimately can lead to the development of novel treatments. Thus, the present study examined 23 different cytokines, including chemokines, in the ipsi and contralateral cerebral cortex of rats at 24 h after a fluid percussion injury (FPI). Furthermore, the estimation of cytokines were performed in a newly developed multiplex assay instrument, MAGPIX (Luminex Corp), and compared with an established instrument, Bio-Plex (Bio-Rad), in order to validate the newly developed instrument. The results show numerous inflammatory changes in the ipsi and contralateral side after FPI that were consistently reported by both technologies. PMID:21954376

  4. Infrared Microspectroscopy Detects Protein Misfolding Cyclic Amplification (PMCA)-induced Conformational Alterations in Hamster Scrapie Progeny Seeds*

    PubMed Central

    Daus, Martin L.; Wagenführ, Katja; Thomzig, Achim; Boerner, Susann; Hermann, Peter; Hermelink, Antje; Beekes, Michael; Lasch, Peter

    2013-01-01

    The self-replicative conformation of misfolded prion proteins (PrP) is considered a major determinant for the seeding activity, infectiousness, and strain characteristics of prions in different host species. Prion-associated seeding activity, which converts cellular prion protein (PrPC) into Proteinase K-resistant, infectious PrP particles (PrPTSE), can be monitored in vitro by protein misfolding cyclic amplification (PMCA). Thus, PMCA has been established as a valuable analytical tool in prion research. Currently, however, it is under discussion whether prion strain characteristics are preserved during PMCA when parent seeds are amplified in PrPC substrate from the identical host species. Here, we report on the comparative structural analysis of parent and progeny (PMCA-derived) PrP seeds by an improved approach of sensitive infrared microspectroscopy. Infrared microspectroscopy revealed that PMCA of native hamster 263K scrapie seeds in hamster PrPC substrate caused conformational alterations in progeny seeds that were accompanied by an altered resistance to Proteinase K, higher sedimentation velocities in gradient ultracentrifugations, and a longer incubation time in animal bioassays. When these progeny seeds were propagated in hamsters, misfolded PrP from brain extracts of these animals showed mixed spectroscopic and biochemical properties from both parental and progeny seeds. Thus, strain modifications of 263K prions induced by PMCA seem to have been partially reversed when PMCA products were reinoculated into the original host species. PMID:24163371

  5. Dynamic contrast-enhanced MRI detects acute radiotherapy-induced alterations in mandibular microvasculature: prospective assessment of imaging biomarkers of normal tissue injury

    PubMed Central

    Sandulache, Vlad C.; Hobbs, Brian P.; Mohamed, Abdallah S.R.; Frank, Steven J.; Song, Juhee; Ding, Yao; Ger, Rachel; Court, Laurence E.; Kalpathy-Cramer, Jayashree; Hazle, John D.; Wang, Jihong; Awan, Musaddiq J.; Rosenthal, David I.; Garden, Adam S.; Gunn, G. Brandon; Colen, Rivka R.; Elshafeey, Nabil; Elbanan, Mohamed; Hutcheson, Katherine A.; Lewin, Jan S.; Chambers, Mark S.; Hofstede, Theresa M.; Weber, Randal S.; Lai, Stephen Y.; Fuller, Clifton D.

    2016-01-01

    Normal tissue toxicity is an important consideration in the continued development of more effective external beam radiotherapy (EBRT) regimens for head and neck tumors. The ability to detect EBRT-induced changes in mandibular bone vascularity represents a crucial step in decreasing potential toxicity. To date, no imaging modality has been shown to detect changes in bone vascularity in real time during treatment. Based on our institutional experience with multi-parametric MRI, we hypothesized that DCE-MRI can provide in-treatment information regarding EBRT-induced changes in mandibular vascularity. Thirty-two patients undergoing EBRT treatment for head and neck cancer were prospectively imaged prior to, mid-course, and following treatment. DCE-MRI scans were co-registered to dosimetric maps to correlate EBRT dose and change in mandibular bone vascularity as measured by Ktrans and Ve. DCE-MRI was able to detect dose-dependent changes in both Ktrans and Ve in a subset of patients. One patient who developed ORN during the study period demonstrated decreases in Ktrans and Ve following treatment completion. We demonstrate, in a prospective imaging trial, that DCE-MRI can detect dose-dependent alterations in mandibular bone vascularity during chemoradiotherapy, providing biomarkers that are physiological correlates of acute of acute mandibular vascular injury and recovery temporal kinetics. PMID:27499209

  6. Dynamic contrast-enhanced MRI detects acute radiotherapy-induced alterations in mandibular microvasculature: prospective assessment of imaging biomarkers of normal tissue injury.

    PubMed

    2016-01-01

    Normal tissue toxicity is an important consideration in the continued development of more effective external beam radiotherapy (EBRT) regimens for head and neck tumors. The ability to detect EBRT-induced changes in mandibular bone vascularity represents a crucial step in decreasing potential toxicity. To date, no imaging modality has been shown to detect changes in bone vascularity in real time during treatment. Based on our institutional experience with multi-parametric MRI, we hypothesized that DCE-MRI can provide in-treatment information regarding EBRT-induced changes in mandibular vascularity. Thirty-two patients undergoing EBRT treatment for head and neck cancer were prospectively imaged prior to, mid-course, and following treatment. DCE-MRI scans were co-registered to dosimetric maps to correlate EBRT dose and change in mandibular bone vascularity as measured by Ktrans and Ve. DCE-MRI was able to detect dose-dependent changes in both Ktrans and Ve in a subset of patients. One patient who developed ORN during the study period demonstrated decreases in Ktrans and Ve following treatment completion. We demonstrate, in a prospective imaging trial, that DCE-MRI can detect dose-dependent alterations in mandibular bone vascularity during chemoradiotherapy, providing biomarkers that are physiological correlates of acute of acute mandibular vascular injury and recovery temporal kinetics. PMID:27499209

  7. ATR-FTIR spectroscopy detects alterations induced by organotin(IV) carboxylates in MCF-7 cells at sub-cytotoxic/-genotoxic concentrations

    PubMed Central

    Ahmad, Muhammad S; Mirza, Bushra; Hussain, Mukhtiar; Hanif, Muhammad; Ali, Saqib; Walsh, Michael J; Martin, Francis L

    2008-01-01

    The environmental impact of metal complexes such as organotin(IV) compounds is of increasing concern. Genotoxic effects of organotin(IV) compounds (0.01 μg/ml, 0.1 μg/ml or 1.0 μg/ml) were measured using the alkaline single-cell gel electrophoresis (comet) assay to measure DNA single-strand breaks (SSBs) and the cytokinesis-block micronucleus (CBMN) assay to determine micronucleus formation. Biochemical-cell signatures were also ascertained using attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy. In the comet assay, organotin(IV) carboxylates induced significantly-elevated levels of DNA SSBs. Elevated micronucleus-forming activities were also observed. Following interrogation using ATR-FTIR spectroscopy, infrared spectra in the biomolecular range (900 cm-1 – 1800 cm-1) derived from organotin-treated MCF-7 cells exhibited clear alterations in their biochemical-cell fingerprint compared to control-cell populations following exposures as low as 0.0001 μg/ml. Mono-, di- or tri-organotin(IV) carboxylates (0.1 μg/ml, 1.0 μg/ml or 10.0 μg/ml) were markedly cytotoxic as determined by the clonogenic assay following treatment of MCF-7 cells with ≥ 1.0 μg/ml. Our results demonstrate that ATR-FTIR spectroscopy can be applied to detect molecular alterations induced by organotin(IV) compounds at sub-cytotoxic and sub-genotoxic concentrations. This biophysical approach points to a novel means of assessing risk associated with environmental contaminants. PACS codes: 87.15.-v, 87.17.-d, 87.18.-h PMID:19351425

  8. Metabolic alterations accompanying oncogene-induced senescence

    PubMed Central

    Aird, Katherine M; Zhang, Rugang

    2014-01-01

    Senescence is defined as a stable cell growth arrest. Oncogene-induced senescence (OIS) occurs in normal primary human cells after activation of an oncogene in the absence of other cooperating oncogenic stimuli. OIS is therefore considered a bona fide tumor suppression mechanism in vivo. Indeed, overcoming OIS-associated stable cell growth arrest can lead to tumorigenesis. Although cells that have undergone OIS do not replicate their DNA, they remain metabolically active. A number of recent studies report significant changes in cellular metabolism during OIS, including alterations in nucleotide, glucose, and mitochondrial metabolism and autophagy. These alterations may be necessary for stable senescence-associated cell growth arrest, and overcoming these shifts in metabolism may lead to tumorigenesis. This review highlights what is currently known about alterations in cellular metabolism during OIS and the implication of OIS-associated metabolic changes in cellular transformation and the development of cancer therapeutic strategies. PMID:27308349

  9. In vivo detection of exercised-induced ultrastructural changes in genetically-altered murine skeletal muscle using polarization-sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Boppart, Stephen

    2006-02-01

    Skeletal muscle fibers are a known source of form birefringence in biological tissue. The birefringence present in skeletal muscle is associated with the ultrastructure of individual sarcomeres, specifically the arrangement of A-bands corresponding to the thick myosin filaments. Certain structural proteins that prevent damage and maintain the structural and functional health of the muscle fiber preserve the organization of the Abands in skeletal muscle. Therefore, the level of birefringence detected can estimate the health of the muscle as well as the damage incurred during exercise. Murine skeletal muscle from both genetically-altered (mdx) and normal (wild-type) specimens were imaged in vivo with a fiber-based PSOCT imaging system to quantitatively determine the level of birefringence present in the tissue before and after exercise. The mdx muscle lacks dystrophin, a structural protein that is mutated in Duchenne muscular dystrophy in humans. Muscle from these mdx mice exhibited a marked decrease in birefringence after exercise, whereas the wild-type muscle was highly birefringent before and after exercise. The quantitative results from this tissue optics study suggest for the first time that there is a distinct relationship between the degree of birefringence detected using PS-OCT and the sarcomeric ultrastructure present within skeletal muscle.

  10. Hypergravity-induced altered behavior in Drosophila

    NASA Astrophysics Data System (ADS)

    Hosamani, Ravikumar; Wan, Judy; Marcu, Oana; Bhattacharya, Sharmila

    2012-07-01

    Microgravity and mechanical stress are important factors of the spaceflight environment, and affect astronaut health and behavior. Structural, functional, and behavioral mechanisms of all cells and organisms are adapted to Earth's gravitational force, 1G, while altered gravity can pose challenges to their adaptability to this new environment. On ground, hypergravity paradigms have been used to predict and complement studies on microgravity. Even small changes that take place at a molecular and genetic level during altered gravity may result in changes in phenotypic behavior. Drosophila provides a robust and simple, yet very reliable model system to understand the complexity of hypergravity-induced altered behavior, due to availability of a plethora of genetic tools. Locomotor behavior is a sensitive parameter that reflects the array of molecular adaptive mechanisms recruited during exposure to altered gravity. Thus, understanding the genetic basis of this behavior in a hypergravity environment could potentially extend our understanding of mechanisms of adaptation in microgravity. In our laboratory we are trying to dissect out the cellular and molecular mechanisms underlying hypergravity-induced oxidative stress, and its potential consequences on behavioral alterations by using Drosophila as a model system. In the present study, we employed pan-neuronal and mushroom body specific knock-down adult flies by using Gal4/UAS system to express inverted repeat transgenes (RNAi) to monitor and quantify the hypergravity-induced behavior in Drosophila. We established that acute hypergravity (3G for 60 min) causes a significant and robust decrease in the locomotor behavior in adult Drosophila, and that this change is dependent on genes related to Parkinson's disease, such as DJ-1α , DJ-1β , and parkin. In addition, we also showed that anatomically the control of this behavior is significantly processed in the mushroom body region of the fly brain. This work links a molecular

  11. Southern analysis of genomic alterations in gamma-ray-induced aprt- hamster cell mutants

    SciTech Connect

    Grosovsky, A.J.; Drobetsky, E.A.; deJong, P.J.; Glickman, B.W.

    1986-06-01

    The role of genomic alterations in mutagenesis induced by ionizing radiation has been the subject of considerable speculation. By Southern blotting analysis we show here that 9 of 55 (approximately 1/6) gamma-ray-induced mutants at the adenine phosphoribosyl transferase (aprt) locus of Chinese hamster ovary (CHO) cells have a detectable genomic rearrangement. These fall into two classes: intragenic deletions and chromosomal rearrangements. In contrast, no major genomic alterations were detected among 67 spontaneous mutants, although two restriction site loss events were observed. Three gamma-ray-induced mutants were found to be intragenic deletions; all may have identical break-points. The remaining six gamma-ray-induced mutants demonstrating a genomic alteration appear to be the result of chromosomal rearrangements, possibly translocation or inversion events. None of the remaining gamma-ray-induced mutants showed any observable alteration in blotting pattern indicating a substantial role for point mutation in gamma-ray-induced mutagenesis at the aprt locus.

  12. ORIENTATION REQUIREMENT TO DETECT MAGNETIC FIELD-INDUCTED ALTERATION OF GAP JUNCTION COMMUNICATION IN EPITHELIAL CELLS

    EPA Science Inventory

    ORIENTATION REQUIREMENT TO DETECT MAGNETIC FIELD-INDUCED ALTERATION OF GAP JUNCTION COMMUNICATION IN EPITHELIAL CELLS.
    OBJECTIVE: We have shown that functional gap junction communication as measured by Lucifer yellow dye transfer (DT) in Clone-9 rat liver epithelial cells, c...

  13. Ultrastructural hepatocytic alterations induced by silver nanoparticle toxicity.

    PubMed

    Almansour, Mansour; Sajti, Laszlo; Melhim, Walid; Jarrar, Bashir M

    2016-01-01

    Silver nanoparticles (SNPs) are widely used in nanomedicine and consuming products with potential risk to human health. While considerable work was carried out on the molecular, biochemical, and physiological alterations induced by these particles, little is known of the ultrastructural pathological alterations that might be induced by nanosilver materials. The aim of the present work is to investigate the hepatocyte ultrastructural alterations that might be induced by SNP exposure. Male rats were subjected to a daily single dose (2 mg/kg) of SNPs (15-35 nm diameter) for 21 days. Liver biopsies from all rats under study were processed for transmission electron microscopy examination. The following hepatic ultrastructural alterations were demonstrated: mitochondria swelling and crystolysis, endoplasmic reticulum disruption, cytoplasmic vacuolization, lipid droplets accumulation, glycogen depletion, karyopyknosis, apoptosis, sinusoidal dilatation, Kupffer cells activation, and myelin figures formation. The current findings may indicate that SNPs can induce hepatocyte organelles alteration, leading to cellular damage that may affect the function of the liver. These findings might indicate that SNPs potentially trigger heptocyte ultrastructural alterations that may affect the function of the liver with potential risk on human health in relation to numerous applications of these particles. More work is needed to elucidate probable ultrastructural alterations in the vital organs that might result from nanosilver toxicity. PMID:26934218

  14. Laser-induced alteration of contaminated papers

    NASA Astrophysics Data System (ADS)

    Rudolph, P.; Ligterink, F. J.; Pedersoli, J. L., Jr.; Scholten, H.; Schipper, D.; Havermans, J. B. G. A.; Aziz, H. A.; Quillet, V.; Kraan, M.; van Beek, B.; Corr, S.; Hua-Ströfer, H.-Y.; Stokmans, J.; Dalen, P. van; Kautek, W.

    Cleaning of paper objects represents one of the most complex cases of laser ablation, since low volumes of dispersed material phases are evaporated while a sensitive and fragile fibrous organic matrix has to be preserved. Conventional chemical and mechanical cleaning methods suffer from the common phenomenon that the foreign matter is diluted into the substrate rather than removed. The application of a laser beam allows highly localized and optically specific interaction. However, the occurrence of extreme temperatures and light intensities may cause irreversible alteration of the paper matrix. Further, incomplete removal and/or chemical conversion of contaminations may result in insufficient cleaning or affect the ageing behaviour. Laser treatments were performed by Q-switched Nd:YAG lasers at three wavelengths (355 nm, 532 nm, and 1064 nm). Papers contaminated with inks and adhesive-tape remnants served as model samples. Multispectral imaging and colorimetric results served to quantify and systematize the results.

  15. Alterations in the rat electrocardiogram induced by stationary magnetic fields

    SciTech Connect

    Gaffey, C.T.; Tenforde, T.S.

    1981-01-01

    A field strength dependent increase in the amplitude of the T-wave signal in the rat electrocardiogram (ECG) was observed during exposure to homogeneous, stationary magnetic fields. For 24 adult Sprague-Dswley and Buffalo rats of both sexes, the T-wave amplitude was found to increase by an average of 408% in a 2.0 Tesla (1 Tesla = 10/sup 4/ Gauss) field. No significant magnetically induced changes were observed in other components of the ECG record, including the P wave and the QRS complex. The minimum field level at which augmentation of the T wave could be detected was 0.3 Tesla. The magnetically induced increase in T-wave amplitude occurred instantaneously, and was immediately reversible after exposure to fields as high as 2.0 Tesla. No abnormalities in any component of the ECG record, including the T wave, were noted during a period of 3 weeks following cessation of a continuous 5-h exposure of rats to a 1.5-Tesla field. The heart rate and breathing rate of adult rats were not altered during, or subsequent to, application of fields up to 2.0 Tesla. The effect of animal orientation within the field was tested using juvenile rats 3-14 days old. The maximum increase in T-wave amplitude was observed when subjects were placed with the long axis of the body perpendicular to the lines of magnetic induction. (JMT)

  16. Epigenetic Alterations Induced by Bacterial Lipopolysaccharides.

    PubMed

    Chiariotti, Lorenzo; Coretti, Lorena; Pero, Raffaela; Lembo, Francesca

    2016-01-01

    Lipopolysaccharide (LPS) is one of the principal bacterial products known to elicit inflammation. Cells of myeloid lineage such as monocytes and macrophages, but also epithelial cells give rise to an inflammatory response upon LPS stimulation. This phenomenon implies reprogramming of cell specific gene expression that can occur through different mechanisms including epigenetic modifications. Given their intrinsic nature, epigenetic modifications may be involved both in the acute response to LPS and in the establishment of a preconditioned genomic state (epigenomic memory) that may potentially influence the host response to further contacts with microorganisms. Information has accumulated during the last years aimed at elucidating the epigenetic mechanisms which underlie the cellular LPS response. These findings, summarized in this chapter, will hopefully be a good basis for a definition of the complete cascade of LPS-induced epigenetic events and their biological significance in different cell types. PMID:26659265

  17. Alterations in the rat electrocardiogram induced by stationary magnetic fields

    SciTech Connect

    Gaffey, C.T.; Tenforde, T.S.

    1981-01-01

    A field strength dependent increase in the amplitude of the T-wave signal in the rat electrocardiogram (ECG) was observed during exposure to homogeneous, stationary magnetic fields. For 24 adult Sprague-Dawley and Buffalo rats of both sexes, the T-wave amplitude was found to increase by an average of 408% in a 2.0 Tesla (1 Tesla - 10(4) Gauss) field. No significant magnetically induced changes were observed in other components of the ECG record, including the P wave and the QRS complex. The minimum field level at which augmentation of the T wave could be detected was 0.3 Tesla. The magnetically induced increase in T-wave amplitude occurred instantaneously, and was immediately reversible after exposure to fields as high as 2.0 Tesla. No abnormalities in any component of the ECG record, including the T wave, were noted during a period of 3 weeks following cessation of a continuous 5-h exposure of rats to a 1.5-Tesla field. The heart rate and breathing rate of adult rats were not altered during, or subsequent to, application of fields up to 2.0 Tesla. The effect of animal orientation within the field was tested using juvenile rats 3-14 days old. The maximum increase in T-wave amplitude was observed when subjects were placed with the long axis of the body perpendicular to the lines of magnetic induction. These experimental observations, as well as theoretical considerations, suggest that augmentation of the signal amplitude in the T-wave segment of the ECG may result from a superimposed electrical potential generated by aortic blood flow in the presence of a stationary magnetic field.

  18. Permeability alteration induced by drying of brines in porous media

    NASA Astrophysics Data System (ADS)

    Peysson, Y.

    2012-11-01

    Permeability of reservoir rocks can be strongly altered by salt precipitation induced by drying. Indeed, gas injection in deep saline aquifers leads first to the brine displacement. The liquid saturation decreases near the injection point and reaches a residual water saturation. But at longer time, the water mass transfer to the gas phase by evaporation can become significant and the dissolved salt can precipitate in the porous structure. The solid salts fill the pores and the permeability decreases. Permeability alteration by salting out is a risk of injectivity decline in the context of CO2 geological storage in saline aquifers where high level of gas injection has to be maintained over decades. However, this problem has been poorly investigated. It implies physical processes that are strongly coupled: drying, water and gas flows in the porous structure and precipitation. This work is an experimental investigation aiming at measuring on natural rock samples the permeability alteration induced by convective drying where dry gas is injected through the sample. We show that alteration of permeability is strong and total blockage of the flow is even possible. We also show that the change in porosity due to the solid salt is heterogeneous along the rock samples. A local permeability-porosity relationship has been estimated from the measurements and we could deduce the permeability alteration function of time by modeling the drying dynamic. We show that it starts very early because capillary backflows are extremely efficient in this process to accumulate solid salt near the injection surfaces.

  19. Radiation-induced functional connectivity alterations in nasopharyngeal carcinoma patients with radiotherapy.

    PubMed

    Ma, Qiongmin; Wu, Donglin; Zeng, Ling-Li; Shen, Hui; Hu, Dewen; Qiu, Shijun

    2016-07-01

    The study aims to investigate the radiation-induced brain functional alterations in nasopharyngeal carcinoma (NPC) patients who received radiotherapy (RT) using functional magnetic resonance imaging (fMRI) and statistic scale.The fMRI data of 35 NPC patients with RT and 24 demographically matched untreated NPC patients were acquired. Montreal Cognitive Assessment (MoCA) was also measured to evaluate their global cognition performance. Multivariate pattern analysis was performed to find the significantly altered functional connections between these 2 groups, while the linear correlation level was detected between the altered functional connections and the MoCA scores.Forty-five notably altered functional connections were found, which were mainly located between 3 brain networks, the cerebellum, sensorimotor, and cingulo-opercular. With strictly false discovery rate correction, 5 altered functional connections were shown to have significant linear correlations with the MoCA scores, that is, the connections between the vermis and hippocampus, cerebellum lobule VI and dorsolateral prefrontal cortex, precuneus and dorsal frontal cortex, cuneus and middle occipital lobe, and insula and cuneus. Besides, the connectivity between the vermis and hippocampus was also significantly correlated with the attention score, 1 of the 7 subscores of the MoCA.The present study provides new insights into the radiation-induced functional connectivity impairments in NPC patients. The results showed that the RT may induce the cognitive impairments, especially the attention alterations. The 45 altered functional connections, especially the 5 altered functional connections that were significantly correlated to the MoCA scores, may serve as the potential biomarkers of the RT-induced brain functional impairments and provide valuable targets for further functional recovery treatment. PMID:27442663

  20. Diphenyl diselenide prevents hepatic alterations induced by paraquat in rats.

    PubMed

    Costa, Michael D; de Freitas, Mayara L; Dalmolin, Laíza; Oliveira, Lia P; Fleck, Michelli A; Pagliarini, Paula; Acker, Carmine; Roman, Silvane S; Brandão, Ricardo

    2013-11-01

    This study aimed to investigate the beneficial effect of diphenyl diselenide (PhSe)₂ on paraquat (PQ) induced alterations in rats liver. Adult male Wistar rats received (PhSe)₂ at 10 mg kg(-1), by oral administration (p.o.), during five consecutive days. Twenty-four hours after the last (PhSe)₂ dose, rats received PQ at 15 mg kg(-1), in a single intraperitoneally injection (i.p.). Seventy-two hours after PQ exposure, animals were sacrificed by decapitation for blood and liver samples obtainment. Histological alterations induced by PQ exposure, such as inflammatory cells infiltration and edema, were prevented by (PhSe)₂ administration. Moreover, (PhSe)₂ prevented hepatic lipid peroxidation (LPO) induced by PQ and was effective in reducing the myeloperoxidase (MPO) activity in liver, which was enhanced by PQ exposure. (PhSe)₂ also was effective in protecting against the reduction in ascorbic acid and non-protein thiols (NPSH) levels induced by PQ. The inhibition of glutathione S-transferase (GST) activity, in rats exposed to PQ, was normalized by (PhSe)₂ pre-treatment, whereas the inhibition of catalase (CAT) activity was not prevented by (PhSe)₂. The serum alkaline phosphatase (ALP) inhibition, induced by PQ administration, was also prevented by (PhSe)₂ pre-treatment. Serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities were not modified by PQ and/or (PhSe)₂ administration. Therefore, (PhSe)₂ pre-treatment was effective in protecting against the hepatic alterations induced by PQ in rats. This protective effect can involve the antioxidant and anti-inflammatory properties of (PhSe)₂. PMID:23958967

  1. Histologic and temperature alterations induced by skin refrigerants.

    PubMed

    Dzubow, L M

    1985-05-01

    The histologic alterations induced by spray refrigerants independent of and in combination with dermabrasion were studied with the use of the domestic pig as a model. Tissue injury was found to be a function of spray duration and freeze intensity. Both preabrasion freezing and postabrasion refreezing could produce damage additive to that of mechanical planing. Skin surface and intradermal temperature variations during refrigeration were recorded. The possible implications of these findings as they pertain to clinical dermabrasion are discussed. PMID:4008684

  2. Congenital heart malformations induced by hemodynamic altering surgical interventions

    PubMed Central

    Midgett, Madeline; Rugonyi, Sandra

    2014-01-01

    Embryonic heart formation results from a dynamic interplay between genetic and environmental factors. Blood flow during early embryonic stages plays a critical role in heart development, as interactions between flow and cardiac tissues generate biomechanical forces that modulate cardiac growth and remodeling. Normal hemodynamic conditions are essential for proper cardiac development, while altered blood flow induced by surgical manipulations in animal models result in heart defects similar to those seen in humans with congenital heart disease. This review compares the altered hemodynamics, changes in tissue properties, and cardiac defects reported after common surgical interventions that alter hemodynamics in the early chick embryo, and shows that interventions produce a wide spectrum of cardiac defects. Vitelline vein ligation and left atrial ligation decrease blood pressure and flow; and outflow tract banding increases blood pressure and flow velocities. These three surgical interventions result in many of the same cardiac defects, which indicate that the altered hemodynamics interfere with common looping, septation and valve formation processes that occur after intervention and that shape the four-chambered heart. While many similar defects develop after the interventions, the varying degrees of hemodynamic load alteration among the three interventions also result in varying incidence and severity of cardiac defects, indicating that the hemodynamic modulation of cardiac developmental processes is strongly dependent on hemodynamic load. PMID:25136319

  3. Hypoxia-induced alterations of G2 checkpoint regulators.

    PubMed

    Hasvold, Grete; Lund-Andersen, Christin; Lando, Malin; Patzke, Sebastian; Hauge, Sissel; Suo, ZhenHe; Lyng, Heidi; Syljuåsen, Randi G

    2016-05-01

    Hypoxia promotes an aggressive tumor phenotype with increased genomic instability, partially due to downregulation of DNA repair pathways. However, genome stability is also surveilled by cell cycle checkpoints. An important issue is therefore whether hypoxia also can influence the DNA damage-induced cell cycle checkpoints. Here, we show that hypoxia (24 h 0.2% O2) alters the expression of several G2 checkpoint regulators, as examined by microarray gene expression analysis and immunoblotting of U2OS cells. While some of the changes reflected hypoxia-induced inhibition of cell cycle progression, the levels of several G2 checkpoint regulators, in particular Cyclin B, were reduced in G2 phase cells after hypoxic exposure, as shown by flow cytometric barcoding analysis of individual cells. These effects were accompanied by decreased phosphorylation of a Cyclin dependent kinase (CDK) target in G2 phase cells after hypoxia, suggesting decreased CDK activity. Furthermore, cells pre-exposed to hypoxia showed increased G2 checkpoint arrest upon treatment with ionizing radiation. Similar results were found following other hypoxic conditions (∼0.03% O2 20 h and 0.2% O2 72 h). These results demonstrate that the DNA damage-induced G2 checkpoint can be altered as a consequence of hypoxia, and we propose that such alterations may influence the genome stability of hypoxic tumors. PMID:26791779

  4. Altered Gravity Induces Oxidative Stress in Drosophila Melanogaster

    NASA Technical Reports Server (NTRS)

    Bhattacharya, Sharmila; Hosamani, Ravikumar

    2015-01-01

    Altered gravity environments can induce increased oxidative stress in biological systems. Microarray data from our previous spaceflight experiment (FIT experiment on STS-121) indicated significant changes in the expression of oxidative stress genes in adult fruit flies after spaceflight. Currently, our lab is focused on elucidating the role of hypergravity-induced oxidative stress and its impact on the nervous system in Drosophila melanogaster. Biochemical, molecular, and genetic approaches were combined to study this effect on the ground. Adult flies (2-3 days old) exposed to acute hypergravity (3g, for 1 hour and 2 hours) showed significantly elevated levels of Reactive Oxygen Species (ROS) in fly brains compared to control samples. This data was supported by significant changes in mRNA expression of specific oxidative stress and antioxidant defense related genes. As anticipated, a stress-resistant mutant line, Indy302, was less vulnerable to hypergravity-induced oxidative stress compared to wild-type flies. Survival curves were generated to study the combined effect of hypergravity and pro-oxidant treatment. Interestingly, many of the oxidative stress changes that were measured in flies showed sex specific differences. Collectively, our data demonstrate that altered gravity significantly induces oxidative stress in Drosophila, and that one of the organs where this effect is evident is the brain.

  5. Change detection in remote sensing images using modified polynomial regression and spatial multivariate alteration detection

    NASA Astrophysics Data System (ADS)

    Dianat, Rouhollah; Kasaei, Shohreh

    2009-11-01

    A new and efficient method for incorporating the spatiality into difference-based change detection (CD) algorithms is introduced in this paper. It uses the spatial derivatives of image pixels to extract spatial relations among them. Based on this methodology, the performances of two famous difference-based CD methods, conventional polynomial regression (CPR) and multivariate alteration detection (MAD), are improved and called modified polynomial regression (MPR) and spatial multivariate alteration detection (SMAD), respectively. Various quantitative and qualitative evaluations have shown the superiority of MPR over CPR and SMAD over MAD. Also, the superiority of SMAD over all mentioned CD algorithms is shown. Moreover, it has been proved that both proposed methods enjoy the affine invariance property.

  6. Epigenetic alteration to activate Bmp2-Smad signaling in Raf-induced senescence

    PubMed Central

    Fujimoto, Mai; Mano, Yasunobu; Anai, Motonobu; Yamamoto, Shogo; Fukuyo, Masaki; Aburatani, Hiroyuki; Kaneda, Atsushi

    2016-01-01

    AIM: To investigate epigenomic and gene expression alterations during cellular senescence induced by oncogenic Raf. METHODS: Cellular senescence was induced into mouse embryonic fibroblasts (MEFs) by infecting retrovirus to express oncogenic Raf (RafV600E). RNA was collected from RafV600E cells as well as MEFs without infection and MEFs with mock infection, and a genome-wide gene expression analysis was performed using microarray. The epigenomic status for active H3K4me3 and repressive H3K27me3 histone marks was analyzed by chromatin immunoprecipitation-sequencing for RafV600E cells on day 7 and for MEFs without infection. These data for Raf-induced senescence were compared with data for Ras-induced senescence that were obtained in our previous study. Gene knockdown and overexpression were done by retrovirus infection. RESULTS: Although the expression of some genes including secreted factors was specifically altered in either Ras- or Raf-induced senescence, many genes showed similar alteration pattern in Raf- and Ras-induced senescence. A total of 841 commonly upregulated 841 genes and 573 commonly downregulated genes showed a significant enrichment of genes related to signal and secreted proteins, suggesting the importance of alterations in secreted factors. Bmp2, a secreted protein to activate Bmp2-Smad signaling, was highly upregulated with gain of H3K4me3 and loss of H3K27me3 during Raf-induced senescence, as previously detected in Ras-induced senescence, and the knockdown of Bmp2 by shRNA lead to escape from Raf-induced senescence. Bmp2-Smad inhibitor Smad6 was strongly repressed with H3K4me3 loss in Raf-induced senescence, as detected in Ras-induced senescence, and senescence was also bypassed by Smad6 induction in Raf-activated cells. Different from Ras-induced senescence, however, gain of H3K27me3 did not occur in the Smad6 promoter region during Raf-induced senescence. When comparing genome-wide alteration between Ras- and Raf-induced senescence, genes

  7. Environmental toxicants--induced epigenetic alterations and their reversers.

    PubMed

    Kim, Minju; Bae, Minji; Na, Hyunkyung; Yang, Mihi

    2012-01-01

    Epigenetics has been emphasized in the postgenome era to clarify obscure health risks of environmental toxicants including endocrine disrupting chemicals (EDCs). In addition, mixed exposure in real life can modify health consequences of the toxicants. Particularly, some nutritional and dietary materials modify individual susceptibility through changes in the epigenome. Therefore, we focused on some environmental toxicants that induce epigenetic alterations, and introduced chemopreventive materials to reverse the toxicants-induced epigenetic alterations. Methodologically, we used global and specific DNA methylation as epigenetic end points and searched epigenetic modulators in food. We reviewed various epigenetic end points induced by environmental toxicants including alcohol, asbestos, nanomaterials, benzene, EDCs, metals, and ionizing radiation. The epigenetic end points can be summarized into global hypomethylation and specific hypermethylation at diverse tumor suppress genes. Exposure timing, dose, sex, or organ specificity should be considered to use the epigenetic end points as biomarkers for exposure to the epimutagenic toxicants. Particularly, neonatal exposure to the epimutagens can influence their future adult health because of characteristics of the epimutagens, which disrupt epigenetic regulation in imprinting, organogenesis, development, etc. Considering interaction between epimutagenic toxicants and their reversers in food, we suggest that multiple exposures to them can alleviate or mask epigenetic toxicity in real life. Our present review provides useful information to find new end points of environmental toxicants and to prevention from environment-related diseases. PMID:23167630

  8. Alteration of Heterogeneous Ice Nucleation Properties Induced by Particle Aging

    NASA Astrophysics Data System (ADS)

    Sullivan, R. C.; Polen, M.; Beydoun, H.; Lawlis, E.; Ahern, A.; Jahn, L.; Hill, T. C. J.

    2015-12-01

    Aerosol particles that can serve as ice nuclei frequently experience rapid and extensive chemical aging during atmospheric transport. This is known to significantly alter some ice nucleation modes of the few types of ice nucleation particle systems where aging effects have been simulated, such as for mineral dust. Yet much of our understanding of atmospheric particle freezing properties is derived from measurements of fresh or unaged particles. We know almost nothing regarding how atmospheric aging might alter the freezing properties of biomass burning aerosol or biological particle nucleants. We have investigated the effects of simulated aging using a chamber reactor on the heterogeneous ice nucleation properties of biomass burning aerosol (BBA) and ice-active bacteria particles. Some types of aging were found to enhance the freezing ability of BBA, exhibited as a shift in a portion of the droplet freezing curve to warmer temperatures by a few °C. Ice-active bacteria were found to consistently loose their most ice-active nucleants after repeated aging cycles. The bacterial systems always retained significantly efficient ice active sites that still allowed them to induce freezing at mild/warm temperatures, despite this decrease in freezing ability. A comprehensive series of online single-particle mass spectrometry and offline spectromicroscopic analysis of individual particles was used to determine how the aging altered the aerosol's composition, and gain mechanistic insights into how this in turn altered the freezing properties. Our new ice nucleation framework that uses a continuous distribution of ice active site ability (contact angle) was used to interpret the droplet freezing spectra and understand how aging alters the internal and external variability, and rigidity, of the ice active sites.

  9. Light-induced voltage alteration for integrated circuit analysis

    DOEpatents

    Cole, Jr., Edward I.; Soden, Jerry M.

    1995-01-01

    An apparatus and method are described for analyzing an integrated circuit (IC), The invention uses a focused light beam that is scanned over a surface of the IC to generate a light-induced voltage alteration (LIVA) signal for analysis of the IC, The LIVA signal may be used to generate an image of the IC showing the location of any defects in the IC; and it may be further used to image and control the logic states of the IC. The invention has uses for IC failure analysis, for the development of ICs, for production-line inspection of ICs, and for qualification of ICs.

  10. Light-induced voltage alteration for integrated circuit analysis

    DOEpatents

    Cole, E.I. Jr.; Soden, J.M.

    1995-07-04

    An apparatus and method are described for analyzing an integrated circuit (IC). The invention uses a focused light beam that is scanned over a surface of the IC to generate a light-induced voltage alteration (LIVA) signal for analysis of the IC. The LIVA signal may be used to generate an image of the IC showing the location of any defects in the IC; and it may be further used to image and control the logic states of the IC. The invention has uses for IC failure analysis, for the development of ICs, for production-line inspection of ICs, and for qualification of ICs. 18 figs.

  11. Aging induced endoplasmic reticulum stress alters sleep and sleep homeostasis.

    PubMed

    Brown, Marishka K; Chan, May T; Zimmerman, John E; Pack, Allan I; Jackson, Nicholas E; Naidoo, Nirinjini

    2014-06-01

    Alterations in the quality, quantity, and architecture of baseline and recovery sleep have been shown to occur during aging. Sleep deprivation induces endoplasmic reticular (ER) stress and upregulates a protective signaling pathway termed the unfolded protein response. The effectiveness of the adaptive unfolded protein response is diminished by age. Previously, we showed that endogenous chaperone levels altered recovery sleep in Drosophila melanogaster. We now report that acute administration of the chemical chaperone sodium 4-phenylbutyrate (PBA) reduces ER stress and ameliorates age-associated sleep changes in Drosophila. PBA consolidates both baseline and recovery sleep in aging flies. The behavioral modifications of PBA are linked to its suppression of ER stress. PBA decreased splicing of X-box binding protein 1 and upregulation of phosphorylated elongation initiation factor 2 α, in flies that were subjected to sleep deprivation. We also demonstrate that directly activating ER stress in young flies fragments baseline sleep and alters recovery sleep. Alleviating prolonged or sustained ER stress during aging contributes to sleep consolidation and improves recovery sleep or sleep debt discharge. PMID:24444805

  12. Diethanolamine alters neurogenesis and induces apoptosis in fetal mouse hippocampus

    PubMed Central

    Craciunescu, Corneliu N.; Wu, Renan; Zeisel, Steven H.

    2006-01-01

    Diethanolamine (DEA) is present in many consumer products such as shampoo. Dermal administration of DEA diminishes hepatic stores of the essential nutrient choline, and we previously reported that dietary choline deficiency during pregnancy reduces neurogenesis and increases apoptosis in the hippocampus of fetal rats and mice. Therefore, DEA could also alter brain development. Timed-pregnant C57BL/6 mice were dosed dermally from gestation day 7 through 17 with DEA at 0, 20, 80, 160, 320, and 640 mg/kg body/day. At doses of DEA > 80 mg/kg body/day, we observed decreased litter size. In fetuses (embryonic day 17) collected from dams treated dermally with 80 mg/kg body/day DEA, we observed decreased neural progenitor cell mitosis at the ventricular surface of the ventricular zone of the hippocampus [to 56±14% (SE) histone 3 (H3) phosphorylation as compared to controls; P < 0.01]. We also observed increased apoptosis in fetal hippocampus (to 170±10% of control measured using TUNEL and to 178±7% of control measured using activated caspase 3; P < 0.01). Thus, maternal exposure to DEA reduces the number of neural progenitor cells in hippocampus by two mechanisms, and this could permanently alter memory function in offspring of mothers exposed to this common ingredient of shampoos and soaps.—Craciunescu, C. N., Wu, R., Zeisel, S. H. Diethanolamine alters neurogenesis and induces apoptosis in fetal mouse hippocampus. PMID:16873886

  13. Investigation of cadmium-induced alterations in renal glomerular function

    SciTech Connect

    Long, T.J.

    1982-01-01

    This research was designed to test the hypothesis that certain aspects of cadmium-induced renal dysfunction are the result of glomerular, rather than classic tubular, injury. To determine whether cadmium-induced proteinuria was due to altered glomerular function, cadmium was administered chronically at a concentration of 185 ppm in the drinking water. This protocol resulted in the production of proteinuria which when analyzed by high pressure liquid chromatography and radioimmunoassay was indistinguishable from that occurring in control rats. Glomerular filtration rate, renal blood flow, and filtration fraction were all significantly depressed after 20-30 weeks of exposure. In order to further investigate these alterations in glomerular function, an acute exposure model was developed. It was found that a single i.p. injection of cadmium in mercaptoethanol resulted in the onset of acute renal failure. The clinical picture was characterized by a reduction in glomerular filtrate rate of 50-90% within 24 hours, with partial to total recovery occurring by day 7 post-exposure. Histological evidence indicated that to a large extent the reduction in GFR was due to tubular blockade and/or backleak of filtrate across damaged tubules.

  14. Treadmill Exercise Induces Hippocampal Astroglial Alterations in Rats

    PubMed Central

    Bernardi, Caren; Tramontina, Ana Carolina; Nardin, Patrícia; Biasibetti, Regina; Costa, Ana Paula; Vizueti, Adriana Fernanda; Batassini, Cristiane; Tortorelli, Lucas Silva; Wartchow, Krista Minéia; Dutra, Márcio Ferreira; Bobermin, Larissa; Sesterheim, Patrícia; Quincozes-Santos, André; de Souza, Jaqueline; Gonçalves, Carlos Alberto

    2013-01-01

    Physical exercise effects on brain health and cognitive performance have been described. Synaptic remodeling in hippocampus induced by physical exercise has been described in animal models, but the underlying mechanisms remain poorly understood. Changes in astrocytes, the glial cells involved in synaptic remodeling, need more characterization. We investigated the effect of moderate treadmill exercise (20 min/day) for 4 weeks on some parameters of astrocytic activity in rat hippocampal slices, namely, glial fibrillary acidic protein (GFAP), glutamate uptake and glutamine synthetase (GS) activities, glutathione content, and S100B protein content and secretion, as well as brain-derived neurotrophic factor (BDNF) levels and glucose uptake activity in this tissue. Results show that moderate treadmill exercise was able to induce a decrease in GFAP content (evaluated by ELISA and immunohistochemistry) and an increase in GS activity. These changes could be mediated by corticosterone, whose levels were elevated in serum. BDNF, another putative mediator, was not altered in hippocampal tissue. Moreover, treadmill exercise caused a decrease in NO content. Our data indicate specific changes in astrocyte markers induced by physical exercise, the importance of studying astrocytes for understanding brain plasticity, as well as reinforce the relevance of physical exercise as a neuroprotective strategy. PMID:23401802

  15. Treadmill exercise induces hippocampal astroglial alterations in rats.

    PubMed

    Bernardi, Caren; Tramontina, Ana Carolina; Nardin, Patrícia; Biasibetti, Regina; Costa, Ana Paula; Vizueti, Adriana Fernanda; Batassini, Cristiane; Tortorelli, Lucas Silva; Wartchow, Krista Minéia; Dutra, Márcio Ferreira; Bobermin, Larissa; Sesterheim, Patrícia; Quincozes-Santos, André; de Souza, Jaqueline; Gonçalves, Carlos Alberto

    2013-01-01

    Physical exercise effects on brain health and cognitive performance have been described. Synaptic remodeling in hippocampus induced by physical exercise has been described in animal models, but the underlying mechanisms remain poorly understood. Changes in astrocytes, the glial cells involved in synaptic remodeling, need more characterization. We investigated the effect of moderate treadmill exercise (20 min/day) for 4 weeks on some parameters of astrocytic activity in rat hippocampal slices, namely, glial fibrillary acidic protein (GFAP), glutamate uptake and glutamine synthetase (GS) activities, glutathione content, and S100B protein content and secretion, as well as brain-derived neurotrophic factor (BDNF) levels and glucose uptake activity in this tissue. Results show that moderate treadmill exercise was able to induce a decrease in GFAP content (evaluated by ELISA and immunohistochemistry) and an increase in GS activity. These changes could be mediated by corticosterone, whose levels were elevated in serum. BDNF, another putative mediator, was not altered in hippocampal tissue. Moreover, treadmill exercise caused a decrease in NO content. Our data indicate specific changes in astrocyte markers induced by physical exercise, the importance of studying astrocytes for understanding brain plasticity, as well as reinforce the relevance of physical exercise as a neuroprotective strategy. PMID:23401802

  16. Detection of microvasculature alterations by synchrotron radiation in murine with delayed jellyfish envenomation syndrome.

    PubMed

    Wang, Beilei; Zhang, Bo; Huo, Hua; Wang, Tao; Wang, Qianqian; Wu, Yuanlin; Xiao, Liang; Ren, Yuqi; Zhang, Liming

    2014-04-01

    Using the tentacle extract (TE) from the jellyfish Cyanea capillata, we have previously established a delayed jellyfish envenomation syndrome (DJES) model, which is meaningful for clinical interventions against jellyfish stings. However, the mechanism of DJES still remains unclear. Thus, this study aimed to explore its potential mechanism by detecting TE-induced microvasculature alterations in vivo and ex vivo. Using a third-generation synchrotron radiation facility, we, for the first time, directly observed the blood vessel alterations induced by jellyfish venom in vivo and ex vivo. Firstly, microvasculature imaging of whole-body mouse in vivo indicated that the small blood vessel branches in the liver and kidney in the TE-treated group, seemed much thinner than those in the control group. Secondly, 3D imaging of kidney ex vivo showed that the kidneys in the TE-treated group had incomplete vascular trees where distal vessel branches were partly missing and disorderly disturbed. Finally, histopathological analysis found that obvious morphological changes, especially hemorrhagic effects, were also present in the TE-treated kidney. Thus, TE-induced microvasculature changes might be one of the important mechanisms of multiple organ dysfunctions in DJES. In addition, the methods we employed here will probably facilitate further studies on developing effective intervention strategies against DJES. PMID:24508769

  17. Artificial sweeteners induce glucose intolerance by altering the gut microbiota.

    PubMed

    Suez, Jotham; Korem, Tal; Zeevi, David; Zilberman-Schapira, Gili; Thaiss, Christoph A; Maza, Ori; Israeli, David; Zmora, Niv; Gilad, Shlomit; Weinberger, Adina; Kuperman, Yael; Harmelin, Alon; Kolodkin-Gal, Ilana; Shapiro, Hagit; Halpern, Zamir; Segal, Eran; Elinav, Eran

    2014-10-01

    Non-caloric artificial sweeteners (NAS) are among the most widely used food additives worldwide, regularly consumed by lean and obese individuals alike. NAS consumption is considered safe and beneficial owing to their low caloric content, yet supporting scientific data remain sparse and controversial. Here we demonstrate that consumption of commonly used NAS formulations drives the development of glucose intolerance through induction of compositional and functional alterations to the intestinal microbiota. These NAS-mediated deleterious metabolic effects are abrogated by antibiotic treatment, and are fully transferrable to germ-free mice upon faecal transplantation of microbiota configurations from NAS-consuming mice, or of microbiota anaerobically incubated in the presence of NAS. We identify NAS-altered microbial metabolic pathways that are linked to host susceptibility to metabolic disease, and demonstrate similar NAS-induced dysbiosis and glucose intolerance in healthy human subjects. Collectively, our results link NAS consumption, dysbiosis and metabolic abnormalities, thereby calling for a reassessment of massive NAS usage. PMID:25231862

  18. Thermally-induced voltage alteration for analysis of microelectromechanical devices

    DOEpatents

    Walraven, Jeremy A.; Cole, Jr., Edward I.

    2002-01-01

    A thermally-induced voltage alteration (TIVA) apparatus and method are disclosed for analyzing a microelectromechanical (MEM) device with or without on-board integrated circuitry. One embodiment of the TIVA apparatus uses constant-current biasing of the MEM device while scanning a focused laser beam over electrically-active members therein to produce localized heating which alters the power demand of the MEM device and thereby changes the voltage of the constant-current source. This changing voltage of the constant-current source can be measured and used in combination with the position of the focused and scanned laser beam to generate an image of any short-circuit defects in the MEM device (e.g. due to stiction or fabrication defects). In another embodiment of the TIVA apparatus, an image can be generated directly from a thermoelectric potential produced by localized laser heating at the location of any short-circuit defects in the MEM device, without any need for supplying power to the MEM device. The TIVA apparatus can be formed, in part, from a scanning optical microscope, and has applications for qualification testing or failure analysis of MEM devices.

  19. Thermally-induced voltage alteration for integrated circuit analysis

    DOEpatents

    Cole, Jr., Edward I.

    2000-01-01

    A thermally-induced voltage alteration (TIVA) apparatus and method are disclosed for analyzing an integrated circuit (IC) either from a device side of the IC or through the IC substrate to locate any open-circuit or short-circuit defects therein. The TIVA apparatus uses constant-current biasing of the IC while scanning a focused laser beam over electrical conductors (i.e. a patterned metallization) in the IC to produce localized heating of the conductors. This localized heating produces a thermoelectric potential due to the Seebeck effect in any conductors with open-circuit defects and a resistance change in any conductors with short-circuit defects, both of which alter the power demand by the IC and thereby change the voltage of a source or power supply providing the constant-current biasing. By measuring the change in the supply voltage and the position of the focused and scanned laser beam over time, any open-circuit or short-circuit defects in the IC can be located and imaged. The TIVA apparatus can be formed in part from a scanning optical microscope, and has applications for qualification testing or failure analysis of ICs.

  20. Hydrogen peroxide induces lysosomal protease alterations in PC12 cells.

    PubMed

    Lee, Daniel C; Mason, Ceceile W; Goodman, Carl B; Holder, Maurice S; Kirksey, Otis W; Womble, Tracy A; Severs, Walter B; Palm, Donald E

    2007-09-01

    Alterations in lysosomal proteases have been implicated in many neurodegenerative diseases. The current study demonstrates a concentration-dependent decrease in PC12 cell viability and transient changes in cystatin C (CYSC), cathepsin B (CATB), cathepsin D (CATD) and caspase-3 following exposure to H2O2. Furthermore, activation of CATD occurred following exposure to H2O2 and cysteine protease suppression, while inhibition of CATD with pepstatin A significantly improved cell viability. Additionally, significant PARP cleavage, suggestive of caspase-3-like activity, was observed following H2O2 exposure, while inhibition of caspase-3 significantly increased cell viability compared to H2O2 administration alone. Collectively, our data suggest that H2O2 induced cell death is regulated at least in part by caspase-3 and CATD. Furthermore, cysteine protease suppression increases CATD expression and activity. These studies provide insight for alternate pathways and potential therapeutic targets of cell death associated with oxidative stress and lysosomal protease alterations. PMID:17440810

  1. Epigenetic Alterations Induced by Ambient Particulate Matter in Mouse Macrophages

    PubMed Central

    Miousse, Isabelle R.; Chalbot, Marie-Cécile G.; Aykin-Burns, Nükhet; Wang, Xiaoying; Basnakian, Alexei; Kavouras, Ilias G.; Koturbash, Igor

    2014-01-01

    Respiratory mortality and morbidity has been associated with exposure to particulate matter (PM). Experimental evidence suggests involvement of cytotoxicity, oxidative stress, and inflammation in the development of PM-associated pathological states; however, the exact mechanisms remain unclear. In the current study, we analyzed short-term epigenetic response to PM10 (particles with aerodynamic diameter less than 10 μm) exposure in mouse ascitic RAW264.7 macrophages (BALB/C Abelson murine leukemia virus-induced tumor). Ambient PM10 was collected using a high volume sampler in Little Rock, AR. Analysis revealed that PM10 was composed mainly of Al and Fe, and the water soluble organic fraction was dominated by aliphatic and carbohydrate fragments and minor quantities of aromatic components. Exposure to PM10 compromised the cellular epigenome at concentrations 10–200 μg/ml. Specifically, epigenetic alterations were evident as changes in the methylation and expression of repetitive element-associated DNA and associated DNA methylation machinery. These results suggest that epigenetic alterations, in concert with cytotoxicity, oxidative stress, and inflammation, might contribute to the pathogenesis of PM-associated respiratory diseases. PMID:24535919

  2. Alcohol induced alterations to the human fecal VOC metabolome.

    PubMed

    Couch, Robin D; Dailey, Allyson; Zaidi, Fatima; Navarro, Karl; Forsyth, Christopher B; Mutlu, Ece; Engen, Phillip A; Keshavarzian, Ali

    2015-01-01

    Studies have shown that excessive alcohol consumption impacts the intestinal microbiota composition, causing disruption of homeostasis (dysbiosis). However, this observed change is not indicative of the dysbiotic intestinal microbiota function that could result in the production of injurious and toxic products. Thus, knowledge of the effects of alcohol on the intestinal microbiota function and their metabolites is warranted, in order to better understand the role of the intestinal microbiota in alcohol associated organ failure. Here, we report the results of a differential metabolomic analysis comparing volatile organic compounds (VOC) detected in the stool of alcoholics and non-alcoholic healthy controls. We performed the analysis with fecal samples collected after passage as well as with samples collected directly from the sigmoid lumen. Regardless of the approach to fecal collection, we found a stool VOC metabolomic signature in alcoholics that is different from healthy controls. The most notable metabolite alterations in the alcoholic samples include: (1) an elevation in the oxidative stress biomarker tetradecane; (2) a decrease in five fatty alcohols with anti-oxidant property; (3) a decrease in the short chain fatty acids propionate and isobutyrate, important in maintaining intestinal epithelial cell health and barrier integrity; (4) a decrease in alcohol consumption natural suppressant caryophyllene; (5) a decrease in natural product and hepatic steatosis attenuator camphene; and (6) decreased dimethyl disulfide and dimethyl trisulfide, microbial products of decomposition. Our results showed that intestinal microbiota function is altered in alcoholics which might promote alcohol associated pathologies. PMID:25751150

  3. Alcohol Induced Alterations to the Human Fecal VOC Metabolome

    PubMed Central

    Couch, Robin D.; Dailey, Allyson; Zaidi, Fatima; Navarro, Karl; Forsyth, Christopher B.; Mutlu, Ece; Engen, Phillip A.; Keshavarzian, Ali

    2015-01-01

    Studies have shown that excessive alcohol consumption impacts the intestinal microbiota composition, causing disruption of homeostasis (dysbiosis). However, this observed change is not indicative of the dysbiotic intestinal microbiota function that could result in the production of injurious and toxic products. Thus, knowledge of the effects of alcohol on the intestinal microbiota function and their metabolites is warranted, in order to better understand the role of the intestinal microbiota in alcohol associated organ failure. Here, we report the results of a differential metabolomic analysis comparing volatile organic compounds (VOC) detected in the stool of alcoholics and non-alcoholic healthy controls. We performed the analysis with fecal samples collected after passage as well as with samples collected directly from the sigmoid lumen. Regardless of the approach to fecal collection, we found a stool VOC metabolomic signature in alcoholics that is different from healthy controls. The most notable metabolite alterations in the alcoholic samples include: (1) an elevation in the oxidative stress biomarker tetradecane; (2) a decrease in five fatty alcohols with anti-oxidant property; (3) a decrease in the short chain fatty acids propionate and isobutyrate, important in maintaining intestinal epithelial cell health and barrier integrity; (4) a decrease in alcohol consumption natural suppressant caryophyllene; (5) a decrease in natural product and hepatic steatosis attenuator camphene; and (6) decreased dimethyl disulfide and dimethyl trisulfide, microbial products of decomposition. Our results showed that intestinal microbiota function is altered in alcoholics which might promote alcohol associated pathologies. PMID:25751150

  4. Altered brain energetics induces mitochondrial fission arrest in Alzheimer's Disease.

    PubMed

    Zhang, Liang; Trushin, Sergey; Christensen, Trace A; Bachmeier, Benjamin V; Gateno, Benjamin; Schroeder, Andreas; Yao, Jia; Itoh, Kie; Sesaki, Hiromi; Poon, Wayne W; Gylys, Karen H; Patterson, Emily R; Parisi, Joseph E; Diaz Brinton, Roberta; Salisbury, Jeffrey L; Trushina, Eugenia

    2016-01-01

    Altered brain metabolism is associated with progression of Alzheimer's Disease (AD). Mitochondria respond to bioenergetic changes by continuous fission and fusion. To account for three dimensional architecture of the brain tissue and organelles, we applied 3-dimensional electron microscopy (3D EM) reconstruction to visualize mitochondrial structure in the brain tissue from patients and mouse models of AD. We identified a previously unknown mitochondrial fission arrest phenotype that results in elongated interconnected organelles, "mitochondria-on-a-string" (MOAS). Our data suggest that MOAS formation may occur at the final stages of fission process and was not associated with altered translocation of activated dynamin related protein 1 (Drp1) to mitochondria but with reduced GTPase activity. Since MOAS formation was also observed in the brain tissue of wild-type mice in response to hypoxia or during chronological aging, fission arrest may represent fundamental compensatory adaptation to bioenergetic stress providing protection against mitophagy that may preserve residual mitochondrial function. The discovery of novel mitochondrial phenotype that occurs in the brain tissue in response to energetic stress accurately detected only using 3D EM reconstruction argues for a major role of mitochondrial dynamics in regulating neuronal survival. PMID:26729583

  5. Gastrointestinal motor alterations induced by precipitated benzodiazepine withdrawal in rats.

    PubMed

    Martinez, J; Fargeas, M J; Bueno, L

    1992-03-01

    The effects of benzodiazepine withdrawal on intestinal motor activity and propulsion were investigated in two groups of diazepam-dependent rats (15 mg/kg/day for 8 days). Withdrawal was precipitated by injection of two benzodiazepine antagonists (Ro 15.1788 and PK 11.95) acting on central and peripheral-type receptors, respectively. Intestinal motor activity was assessed by implanting electrodes for long-term electromyographic recordings. Gastrointestinal transit was evaluated after gavage by a marker (51CrO4Na2) and radioactivity counting. Both RO 15.1788 (15 mg/kg) and PK 11.195 (5 mg/kg) triggered an abstinence syndrome with behavioral and autonomic signs. At the intestinal level, Ro 15.1788 induced a phase of strong irregular spiking activity (173 +/- 63 min) which remained located in the duodenum. In contrast, PK 11.195 induced a period of propagated myoelectric complexes characterized by phases II and III of high amplitude. The cecal frequency was doubled during the 1st hr after withdrawal induced by the two antagonists. Both Ro 15.1788 and PK 11.195 at this dosage had no effect per se on intestinal motility in vehicle-treated rats. In the second group of rats, gastric emptying was enhanced by 49.4 and 45.6% by Ro 15.1788 and PK 11.195, respectively. In contrast, PK 11.195 was able to accelerate the intestinal transit more than did Ro 15.1788 (geometric center, 5.9 +/- 0.43 and 5.3 +/- 0.49, respectively, vs. 4.1 +/- 0.31 in control rats). Our study shows that precipitated benzodiazepine withdrawal in diazepam-dependent rats induces alterations of the intestinal myoelectrical activity leading to an increase of the gastrointestinal transit. Central and peripheral-type receptors are involved in these effects. PMID:1312156

  6. Galantamine reverses scopolamine-induced behavioral alterations in Dugesia tigrina.

    PubMed

    Ramakrishnan, Latha; Amatya, Christina; DeSaer, Cassie J; Dalhoff, Zachary; Eggerichs, Michael R

    2014-09-01

    In planaria (Dugesia tigrina), scopolamine, a nonselective muscarinic receptor antagonist, induced distinct behaviors of attenuated motility and C-like hyperactivity. Planarian locomotor velocity (pLMV) displayed a dose-dependent negative correlation with scopolamine concentrations from 0.001 to 1.0 mM, and a further increase in scopolamine concentration to 2.25 mM did not further decrease pLMV. Planarian hyperactivity counts was dose-dependently increased following pretreatment with scopolamine concentrations from 0.001 to 0.5 mM and then decreased for scopolamine concentrations ≥ 1 mM. Planarian learning and memory investigated using classical Pavlovian conditioning experiments demonstrated that scopolamine (1 mM) negatively influenced associative learning indicated by a significant decrease in % positive behaviors from 86 % (control) to 14 % (1 mM scopolamine) and similarly altered memory retention, which is indicated by a decrease in % positive behaviors from 69 % (control) to 27 % (1 mM scopolamine). Galantamine demonstrated a complex behavior in planarian motility experiments since co-application of low concentrations of galantamine (0.001 and 0.01 mM) protected planaria against 1 mM scopolamine-induced motility impairments; however, pLMV was significantly decreased when planaria were tested in the presence of 0.1 mM galantamine alone. Effects of co-treatment of scopolamine and galantamine on memory retention in planaria via classical Pavlovian conditioning experiments showed that galantamine (0.01 mM) partially reversed scopolamine (1 mM)-induced memory deficits in planaria as the % positive behaviors increased from 27 to 63 %. The results demonstrate, for the first time in planaria, scopolamine's effects in causing learning and memory impairments and galantamine's ability in reversing scopolamine-induced memory impairments. PMID:24402079

  7. Fracture-aperture alteration induced by calcite precipitation

    NASA Astrophysics Data System (ADS)

    Jones, T.; Detwiler, R. L.

    2013-12-01

    Mineral precipitation significantly alters the transport properties of fractured rock. Chemical solubility gradients that favor precipitation induce mineral growth, which decreases the local aperture and alters preferential flow paths. Understanding the resulting development of spatial heterogeneities is necessary to predict the evolution of transport properties in the subsurface. We present experimental results that quantify the relationship between mineral precipitation and aperture alteration in a transparent analog fracture, 7.62cm x 7.62cm, with a uniform aperture of ~200 μm. Prior to flow experiments, a pump circulated a super-saturated calcite solution over the bottom glass, coating the glass surface with calcite. This method of seeding resulted in clusters of calcite crystals with large reactive surface area and provided micro-scale variability in the aperture field. A continuous flow syringe pump injected a reactive fluid into the fracture at 0.5 ml/min. The fluid was a mixture of sodium bicarbonate (NaHCO3, 0.02M) and calcium chloride (CaCl2 0.0004M) with a saturation index, Ω, of 8.51 with respect to calcite. A strobed LED panel backlit the fracture and a high-resolution CCD camera monitored changes in transmitted light intensity. Light transmission techniques provided a quantitative measurement of fracture aperture over the flow field. Results from these preliminary experiments showed growth near the inlet of the fracture, with decreasing precipitation rates in the flow direction. Over a period of two weeks, the fracture aperture decreased by 17% within the first 4mm of the inlet. Newly precipitated calcite bridged individual crystal clusters and smoothed the reacting surface. This observation is an interesting contradiction to the expectation of surface roughening induced by mineral growth. Additionally, the aperture decreased uniformly across the width of the fracture due to the initial aperture distribution. Future experiments of precipitation

  8. Early biochemical alterations induced by 2-acetylaminofluorene in rat liver.

    PubMed

    Elliott, W L; Sawick, D P; Creek, K E; Deutscher, S L; Quinn, J F; Yeo, E; Webb, W R; Morré, D M; Harrington, D D; Heinstein, P F

    1984-01-01

    Livers from rats fed the carcinogen 2-acetylaminofluorene (AAF) were analyzed at weekly or semiweekly intervals to correlate appearance of enzymatic markers in total liver homogenates with histochemical events accompanying formation of hyperplastic liver nodules. gamma-Glutamyltranspeptidase (gamma-GT)-positive foci appeared by day 11 and visible nodules were present by days 28-35. Specific activity of homogenate gamma-GT increased in parallel to formation of hyperplastic foci and nodules, declined and then rose again to 20-fold that of controls by day 77. Specific activity of ornithine decarboxylase increased in advance of that of gamma-GT, to a level of 8-fold above control during the period of formation of hyperplastic foci. An early response was a 2-fold rise in the specific activity of nucleoside diphosphate phosphatase during the first week of carcinogen administration. The specific activity of 5'-nucleotidase, known to increase during liver regeneration, declined as the animals aged and was not increased by the dietary AAF. The enzymatic alterations induced by AAF could not be mimicked by cell proliferation, diet stress or the hepatotoxicity induced by feeding 1.87% 4-acetamidophenol. PMID:6148271

  9. Chronic ultraviolet exposure-induced p53 gene alterations in sencar mouse skin carcinogenesis model

    SciTech Connect

    Tong, Ying; Smith, M.A.; Tucker, S.B.

    1997-06-27

    Alterations of the tumor suppressor gene p53 have been found in ultraviolet radiation (UVR) related human skin cancers and in UVR-induced murine skin tumors. However, links between p53 gene alterations and the stages of carcinogenesis induced by UVR have not been clearly defined. We established a chronic UVR exposure-induced Sencar mouse skin carcinogenesis model to determine the frequency of p53 gene alterations in different stages of carcinogenesis, including UV-exposed skin, papillomas, squamous-cell carcinomas (SCCs), and malignant spindle-cell tumors (SCTs). A high incidence of SCCs and SCTs were found in this model. Positive p53 nuclear staining was found in 10137 (27%) of SCCs and 12124 (50%) of SCTs, but was not detected in normal skin or papillomas. DNA was isolated from 40 paraffin-embedded normal skin, UV-exposed skin, and tumor sections. The p53 gene (exons 5 and 6) was amplified from the sections by using nested polymerase chain reaction (PCR). Subsequent single-strand conformation polymorphism (SSCP) assay and sequencing analysis revealed one point mutation in exon 6 (coden 193, C {r_arrow} A transition) from a UV-exposed skin sample, and seven point mutations in exon 5 (codens 146, 158, 150, 165, and 161, three C {r_arrow} T, two C {r_arrow} A, one C {r_arrow} G, and one A {r_arrow} T transition, respectively) from four SCTs, two SCCs and one UV-exposed skin sample. These experimental results demonstrate that alterations in the p53 gene are frequent events in chronic UV exposure-induced SCCs and later stage SCTs in Sencar mouse skin. 40 refs., 5 figs., 1 tab.

  10. Isovolumetric elasticity alteration in the human heart detected by in vivo time-harmonic elastography.

    PubMed

    Tzschätzsch, Heiko; Hättasch, Robert; Knebel, Fabian; Klaua, Robert; Schultz, Michael; Jenderka, Klaus-Vitold; Braun, Jürgen; Sack, Ingolf

    2013-12-01

    Time harmonic elastography (THE) has recently been introduced for measurement of the periodic alteration in myocardial shear modulus based on externally induced low-frequency acoustic vibrations produced by a loudspeaker. In this study, we propose further developments of cardiac THE toward a clinical modality including integration of the vibration source into the patient bed and automated parameter extraction from harmonic shear wave amplitudes, wall motion profiles and synchronized electrocardiographic records. This method has enabled us to evaluate the delay between wall motion and wave amplitude alteration for the measurement of isovolumetric times of elasticity alteration during contraction (τ(C)) and relaxation (τ(R)) in a group of 32 healthy volunteers. On average, the wave amplitudes changed between systole and diastole by a factor of 1.7 ± 0.3, with a τ(C) of 137 ± 61 ms and a τ(R) of 68 ± 73 ms, which agrees with results obtained with the more time-consuming and expensive cardiac magnetic resonance elastography. Furthermore, because of the high sampling rate, elasto-morphometric parameters such as transition times and the area of wave amplitude-cardiac motion cycles can be processed in an automated way for the future clinical detection of myocardial relaxation abnormalities. PMID:24035628

  11. Alteration of sperm protein profile induced by cigarette smoking.

    PubMed

    Chen, Xiaohui; Xu, Wangjie; Miao, Maohua; Zhu, Zijue; Dai, Jingbo; Chen, Zhong; Fang, Peng; Wu, Junqing; Nie, Dongsheng; Wang, Lianyun; Wang, Zhaoxia; Qiao, Zhongdong; Shi, Huijuan

    2015-07-01

    Cigarette smoking is associated with lower semen quality, but how cigarette smoking changes the semen quality remains unclear. The aim of this study was to screen the differentially expressed proteins in the sperm of mice with daily exposure to cigarette smoke. The 2D gel electrophoresis (2DE) and mass spectrometry (MS) analyses results showed that the mouse sperm protein profile was altered by cigarette smoking. And 22 of the most abundant proteins that correspond to differentially expressed spots in 2DE gels of the sperm samples were identified. These proteins were classified into different groups based on their functions, such as energy metabolism, reproduction, and structural molecules. Furthermore, the 2DE and MS results of five proteins (Aldoa, ATP5a1, Gpx4, Cs, and Spatc1) were validated by western blot analysis and reverse transcriptase-polymerase chain reaction. Results showed that except Spatc1 the other four proteins showed statistically significant different protein levels between the smoking group and the control group (P < 0.05). The expressions of three genes (Aldoa, Gpx4, and Spatc1) were significantly different (P < 0.05) at transcription level between the smoking group and the control group. In addition, five proteins (Aldoa, ATP5a1, Spatc1, Cs, and Gpx4) in human sperm samples from 30 male smokers and 30 non-smokers were detected by western blot analysis. Two proteins (Aldoa and Cs) that are associated with energy production were found to be significantly altered, suggesting that these proteins may be potential diagnostic markers for evaluation of smoking risk in sperm. Further study of these proteins may provide insight into the pathogenic mechanisms underlying infertility in smoking persons. PMID:26063603

  12. Methylation Alterations at Imprinted Genes Detected Among Long Term Shiftworkers

    PubMed Central

    Jacobs, Daniel I.; Hansen, Johnni; Fu, Alan; Stevens, Richard G.; Tjonneland, Anne; Vogel, Ulla B.; Zheng, Tongzhang; Zhu, Yong

    2016-01-01

    Exposure to light at night through shiftwork has been linked to alterations in DNA methylation and increased risk of cancer development. Using an Illumina Infinium Methylation Assay, we analyzed methylation levels of 397 CpG sites in the promoter regions of 56 normally imprinted genes to investigate whether shiftwork is associated with alteration of methylation patterns. Methylation was significantly higher at 20 CpG sites and significantly lower at 30 CpG sites (P < 0.05) in 10 female long-term shiftworkers as compared to 10 female age- and folate intake-matched day workers. The strongest evidence for altered methylation patterns in shiftworkers was observed for DLX5, IGF2AS, and TP73 based on the magnitude of methylation change and consistency in the direction of change across multiple CpG sites, and consistent results were observed using quantitative DNA methylation analysis. We conclude that long-term shiftwork may alter methylation patterns at imprinted genes, which may be an important mechanism by which shiftwork has carcinogenic potential and warrants further investigation. PMID:23193016

  13. Alteration of fibroblast phenotype by asbestos-induced autoantibodies.

    PubMed

    Pfau, Jean C; Li, Sheng'ai; Holland, Sara; Sentissi, Jami J

    2011-06-01

    Pulmonary fibrosis is a relentlessly progressive disease for which the etiology can be idiopathic or associated with environmental or occupational exposures. There is not a clear explanation for the chronic and progressive nature of the disease, leaving treatment and prevention options limited. However, there is increasing evidence of an autoimmune component, since fibrotic diseases are often accompanied by production of autoantibodies. Because exposure to silicates such as silica and asbestos can lead to both autoantibodies and pulmonary/pleural fibrosis, these exposures provide an excellent tool for examining the relationship between these outcomes. This study explored the possibility that autoantibodies induced by asbestos exposure in mice would affect fibroblast phenotype. L929 fibroblasts and primary lung fibroblasts were treated with serum IgG from asbestos- or saline-treated mice, and tested for binding using cell-based ELISA, and for phenotypic changes using immunofluorescence, laser scanning cytometry and Sirius Red collagen assay. Autoantibodies in the serum of C57Bl/6 mice exposed to asbestos (but not sera from untreated mice) bound to mouse fibroblasts. The autoantibodies induced differentiation to a myofibroblast phenotype, as demonstrated by increased expression of smooth muscle α-actin (SMA), which was lost when the serum was cleared of IgG. Cells treated with purified IgG of exposed mice produced excess collagen. Using ELISA, we tested serum antibody binding to DNA topoisomerase (Topo) I, vimentin, TGFβ-R, and PDGF-Rα. Antibodies to DNA Topo I and to PDGF-Rα were detected, both of which have been shown by others to be able to affect fibroblast phenotype. The anti-fibroblast antibodies (AFA) also induced STAT-1 activation, implicating the PDGF-R pathway as part of the response to AFA binding. These data support the hypothesis that asbestos induces AFA that modify fibroblast phenotype, and suggest a mechanism whereby autoantibodies may mediate

  14. Drought induces alterations in the stomatal development program in Populus

    PubMed Central

    Campbell, Malcolm M

    2012-01-01

    Much is known about the physiological control of stomatal aperture as a means by which plants adjust to water availability. By contrast, the role played by the modulation of stomatal development to limit water loss has received much less attention. The control of stomatal development in response to water deprivation in the genus Populus is explored here. Drought induced declines in stomatal conductance as well as an alteration in stomatal development in two genotypes of Populus balsamifera. Leaves that developed under water-deficit conditions had lower stomatal indices than leaves that developed under well-watered conditions. Transcript abundance of genes that could hypothetically underpin drought-responsive changes in stomatal development was examined, in two genotypes, across six time points, under two conditions, well-watered and with water deficit. Populus homologues of STOMAGEN, ERECTA (ER), STOMATA DENSITY AND DISTRIBUTION 1 (SDD1), and FAMA had variable transcript abundance patterns congruent with their role in the modulation of stomatal development in response to drought. Conversely, there was no significant variation in transcript abundance between genotypes or treatments for the Populus homologues of YODA (YDA) and TOO MANY MOUTHS (TMM). The findings highlight the role that could be played by stomatal development during leaf expansion as a longer term means by which to limit water loss from leaves. Moreover, the results point to the key roles played by the regulation of the homologues of STOMAGEN, ER, SDD1, and FAMA in the control of this response in poplar. PMID:22760471

  15. Morphofunctional renal alterations in rats induced by intrauterine hyperglycemic environment

    PubMed Central

    França-Silva, Nathane; Oliveira, Natácia Dreyce Gonçalves

    2015-01-01

    Introduction The renal development of rats begins in intrauterine life, finishing by 15 days after birth. Diabetes and other diseases during pregnancy can cause systemic changes in the offspring. We evaluated the structural and functional renal alterations of the offspring from diabetic mothers. Material and methods Pregnant rats were separated and 1, 7, 30 and 90 days-old (DO) pups were divided into groups according to the treatment that the mothers received: G1: control, G2: untreated diabetic and G3: insulin-treated diabetic. The kidneys from offspring at 1, 7 and 30 DO were removed for immunohistochemical and histological studies. Furthermore, blood and urine samples were collected from animals at 30 DO to determine the glomerular filtration rate (GFR) by creatinine clearance, and the animals at 90 DO were subjected to blood pressure measurement by plethysmography. Results Our results show an increase of PCNA+ glomerular cells at 7 DO and a reduction in 30 DO animals as well as increased α-smooth muscle actin (α-SMA) tubulointerstitial expression at 1 and 7 DO in animals from G2, when compared with controls. The adult offspring from G2 showed reduced GFR and increased blood pressure. Conclusions Maternal diabetes may have induced programming of renal damage in offspring of hyperglycemic mothers, which may have contributed to the impairment of renal function. PMID:27186167

  16. Platelets Potentiate Brain Endothelial Alterations Induced by Plasmodium falciparum

    PubMed Central

    Wassmer, Samuel C.; Combes, Valéry; Candal, Francisco J.; Juhan-Vague, Irène; Grau, Georges E.

    2006-01-01

    Brain lesions of cerebral malaria (CM) are characterized by a sequestration of Plasmodium falciparum-parasitized red blood cells (PRBC) and platelets within brain microvessels, as well as by blood-brain barrier (BBB) disruption. In the present study, we evaluated the possibility that PRBC and platelets induce functional alterations in brain endothelium. In a human brain endothelial cell line, named HBEC-5i, exhibiting most of the features demanded for a pathophysiological study of BBB, tumor necrosis factor (TNF) or lymphotoxin α (LT-α) reduced transendothelial electrical resistance (TEER), enhanced the permeability to 70-kDa dextran, and increased the release of microparticles, a recently described indicator of disease severity in CM patients. In vitro cocultures showed that platelets or PRBC can have a direct cytotoxic effect on activated, but not on resting, HBEC-5i cells. Platelet binding was required, as platelet supernatant had no effect. Furthermore, platelets potentiated the cytotoxicity of PRBC for TNF- or LT-α-activated HBEC-5i cells when they were added prior to these cells on the endothelial monolayers. This effect was not observed when platelets were added after PRBC. Both permeability and TEER were strongly affected, and the apoptosis rate of HBEC-5i cells was dramatically increased. These findings provide insights into the mechanisms by which platelets can be deleterious to the brain endothelium during CM. PMID:16369021

  17. Radiation-Induced Alterations in Mitochondria of the Rat Heart

    PubMed Central

    Sridharan, Vijayalakshmi; Aykin-Burns, Nukhet; Tripathi, Preeti; Krager, Kimberly J.; Sharma, Sunil K.; Moros, Eduardo G.; Corry, Peter M.; Nowak, Grazyna; Hauer-Jensen, Martin; Boerma, Marjan

    2014-01-01

    Radiation therapy for the treatment of thoracic cancers may be associated with radiation-induced heart disease (RIHD), especially in long-term cancer survivors. Mechanisms by which radiation causes heart disease are largely unknown. To identify potential long-term contributions of mitochondria in the development of radiation-induced heart disease, we examined the time course of effects of irradiation on cardiac mitochondria. In this study, Sprague-Dawley male rats received image-guided local X irradiation of the heart with a single dose ranging from 3–21 Gy. Two weeks after irradiation, left ventricular mitochondria were isolated to assess the dose-dependency of the mitochondrial permeability transition pore (mPTP) opening in a mitochondrial swelling assay. At time points from 6 h to 9 months after a cardiac dose of 21 Gy, the following analyses were performed: left ventricular Bax and Bcl-2 protein levels; apoptosis; mitochondrial inner membrane potential and mPTP opening; mitochondrial mass and expression of mitophagy mediators Parkin and PTEN induced putative kinase-1 (PINK-1); mitochondrial respiration and protein levels of succinate dehydrogenase A (SDHA); and the 70 kDa subunit of complex II. Local heart irradiation caused a prolonged increase in Bax/Bcl-2 ratio and induced apoptosis between 6 h and 2 weeks. The mitochondrial membrane potential was reduced until 2 weeks, and the calcium-induced mPTP opening was increased from 6 h up to 9 months. An increased mitochondrial mass together with unaltered levels of Parkin suggested that mitophagy did not occur. Lastly, we detected a significant decrease in succinate-driven state 2 respiration in isolated mitochondria from 2 weeks up to 9 months after irradiation, coinciding with reduced mitochondrial levels of succinate dehydrogenase A. Our results suggest that local heart irradiation induces long-term changes in cardiac mitochondrial membrane functions, levels of SDH and state 2 respiration. At any time after

  18. 46 CFR 109.425 - Repairs and alterations: Fire detecting and extinguishing equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Repairs and alterations: Fire detecting and extinguishing equipment. 109.425 Section 109.425 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Reports, Notifications, and Records Reports and Notifications § 109.425 Repairs and alterations:...

  19. Gene expression patterns underlying parasite-induced alterations in host behaviour and life history.

    PubMed

    Feldmeyer, Barbara; Mazur, Johanna; Beros, Sara; Lerp, Hannes; Binder, Harald; Foitzik, Susanne

    2016-01-01

    Many parasites manipulate their hosts' phenotype. In particular, parasites with complex life cycles take control of their intermediate hosts' behaviour and life history to increase transmission to their definitive host. The proximate mechanisms underlying these parasite-induced alterations are poorly understood. The cestode Anomotaenia brevis affects the behaviour, life history and morphology of parasitized Temnothorax nylanderi ants and indirectly of their unparasitized nestmates. To gain insights on how parasites alter host phenotypes, we contrast brain gene expression patterns of T. nylanderi workers parasitized with the cestode, their unparasitized nestmates and unparasitized workers from unparasitized colonies. Over 400 differentially expressed genes between the three groups were identified, with most uniquely expressed genes detected in parasitized workers. Among these are genes that can be linked to the increased lifespan of parasitized workers. Furthermore, many muscle (functionality) genes are downregulated in these workers, potentially causing the observed muscular deformations and their inactive behaviour. Alterations in lifespan and activity could be adaptive for the parasite by increasing the likelihood that infected workers residing in acorns are eaten by their definitive host, a woodpecker. Our transcriptome analysis reveals numerous gene expression changes in parasitized workers and their uninfected nestmates and indicates possible routes of parasite manipulation. Although causality still needs to be established, parasite-induced alterations in lifespan and host behaviour appear to be partly explained by morphological muscle atrophy instead of central nervous system interference, which is often the core of behavioural regulation. Results of this study will shed light upon the molecular basis of antagonistic species interactions. PMID:26615010

  20. Tissue culture-induced genetic and epigenetic alterations in rice pure-lines, F1 hybrids and polyploids

    PubMed Central

    2013-01-01

    Background Genetic and epigenetic alterations can be invoked by plant tissue culture, which may result in heritable changes in phenotypes, a phenomenon collectively termed somaclonal variation. Although extensive studies have been conducted on the molecular nature and spectrum of tissue culture-induced genomic alterations, the issue of whether and to what extent distinct plant genotypes, e.g., pure-lines, hybrids and polyploids, may respond differentially to the tissue culture condition remains poorly understood. Results We investigated tissue culture-induced genetic and epigenetic alterations in a set of rice genotypes including two pure-lines (different subspecies), a pair of reciprocal F1 hybrids parented by the two pure-lines, and a pair of reciprocal tetraploids resulted from the hybrids. Using two molecular markers, amplified fragment length polymorphism (AFLP) and methylation-sensitive amplified polymorphism (MSAP), both genetic and DNA methylation alterations were detected in calli and regenerants from all six genotypes, but genetic alteration is more prominent than epigenetic alteration. While significant genotypic difference was observed in frequencies of both types of alterations, only genetic alteration showed distinctive features among the three types of genomes, with one hybrid (N/9) being exceptionally labile. Surprisingly, difference in genetic alteration frequencies between the pair of reciprocal F1 hybrids is much greater than that between the two pure-line subspecies. Difference also exists in the pair of reciprocal tetraploids, but is to a less extent than that between the hybrids. The steady-state transcript abundance of genes involved in DNA repair and DNA methylation was significantly altered in both calli and regenerants, and some of which were correlated with the genetic and/or epigenetic alterations. Conclusions Our results, based on molecular marker analysis of ca. 1,000 genomic loci, document that genetic alteration is the major cause of

  1. Detection of Ligand- and Solvent-Induced Shape Alterations of Cell-Growth-Regulatory Human Lectin Galectin-1 in Solution by Small Angle Neutron and X-Ray Scattering

    PubMed Central

    He, Lizhong; André, Sabine; Siebert, Hans-Christian; Helmholz, Heike; Niemeyer, Bernd; Gabius, Hans-Joachim

    2003-01-01

    The bioactivity of galectin-1 in cell growth regulation and adhesion prompted us to answer the questions whether ligand presence and a shift to an aprotic solvent typical for bioaffinity chromatography might alter the shape of the homodimeric human lectin in solution. We used small angle neutron and synchrotron x-ray scattering studies for this purpose. Upon ligand accommodation, the radius of gyration of human galectin-1 decreased from 19.1 ± 0.1 Å in the absence of ligand to 18.2 ± 0.1 Å. In the aprotic solvent dimethyl sulfoxide, which did not impair binding capacity, galectin-1 formed dimers of a dimer, yielding tetramers with a cylindrical shape. Intriguingly, no dissociation into subunits occurred. In parallel, NMR monitoring was performed. The spectral resolution was in accord with these data. In contrast to the properties of the human protein, a nonhomologous agglutinin from mistletoe sharing galactose specificity was subject to a reduction in the radius of gyration from ∼62 Å in water to 48.7 Å in dimethyl sulfoxide. Evidently, the solvent caused opposite responses in the two tested galactoside-binding lectins with different folding patterns. We have hereby proven that ligand presence and an aprotic solvent significantly affect the shape of galectin-1 in solution. PMID:12829506

  2. DETECTION OF MUTAGENIC/CARCINOGENIC ALTERATION IN FISH

    EPA Science Inventory

    The feasibility of using fish as bioassay organisms to detect mutagenic/carcinogenic substances in the aquatic environment was tested. The data in fish were compared to those in higher vertebrates including humans. Microsomal fractions from livers of channel catfish, fathead minn...

  3. Light-Induced Alterations in Basil Ganglia Kynurenic Acid Levels

    NASA Technical Reports Server (NTRS)

    Sroufe, Angela E.; Whittaker, J. A.; Patrickson, J. W.; Orr, M. C.

    1997-01-01

    The metabolic synthesis, release and breakdown of several known CNS neurotransmitters have been shown to follow a circadian pattern entrained to the environmental light/dark cycle. The levels of excitatory amino acid (EAA) transmitters such as glutamate, have been shown to vary with environmental lighting conditions. Kynurenic Acid (KA), an endogenous tryptophan metabolite and glutamate receptor antagonist, has been reported to have neuroprotective effects against EAA-induced excitotoxic cell damage. Changes in KA's activity within the mammalian basal ganglia has been proposed as being contributory to neurotoxicity in Huntington's Disease. It is not known whether CNS KA levels follow a circadian pattern or exhibit light-induced fluctuations. However, because the symptoms of certain degenerative motor disorders seem to fluctuate with daily 24 hour rhythm, we initiated studies to determine if basal ganglia KA were influenced by the daily light/dark cycle and could influence motor function. Therefore in this study, HPLC-EC was utilized to determine if basal ganglia KA levels in tissue extracts from adult male Long-Evans rats (200-250g) entrained to 24 and 48 hours constant light and dark conditions, respectively. Samples were taken one hour before the onset of the subjective day and one hour prior to the onset of the subjective night in order to detect possible phase differences in KA levels and to allow for accumulation of factors expressed in association with the light or dark phase. Data analysis revealed that KA levels in the basal ganglia vary with environmental lighting conditions; being elevated generally during the dark. Circadian phase differences in KA levels were also evident during the subjective night and subjective day, respectively. Results from these studies are discussed with respect to potential cyclic changes in neuronal susceptibility to excitotoxic damage during the daily 24 hour cycle and its possible relevance to future therapeutic approaches in

  4. Diet-induced and mono-genetic obesity alter volatile organic compound signature in mice.

    PubMed

    Kistler, Martin; Muntean, Andreea; Szymczak, Wilfried; Rink, Nadine; Fuchs, Helmut; Gailus-Durner, Valerie; Wurst, Wolfgang; Hoeschen, Christoph; Klingenspor, Martin; Hrabě de Angelis, Martin; Rozman, Jan

    2016-03-01

    The prevalence of obesity is still rising in many countries, resulting in an increased risk of associated metabolic diseases. In this study we aimed to describe the volatile organic compound (VOC) patterns symptomatic for obesity. We analyzed high fat diet (HFD) induced obese and mono-genetic obese mice (global knock-in mutation in melanocortin-4 receptor MC4R-ki). The source strengths of 208 VOCs were analyzed in ad libitum fed mice and after overnight food restriction. Volatiles relevant for a random forest-based separation of obese mice were detected (26 in MC4R-ki, 22 in HFD mice). Eight volatiles were found to be important in both obesity models. Interestingly, by creating a partial correlation network of the volatile metabolites, the chemical and metabolic origins of several volatiles were identified. HFD-induced obese mice showed an elevation in the ketone body acetone and acrolein, a marker of lipid peroxidation, and several unidentified volatiles. In MC4R-ki mice, several yet-unidentified VOCs were found to be altered. Remarkably, the pheromone (methylthio)methanethiol was found to be reduced, linking metabolic dysfunction and reproduction. The signature of volatile metabolites can be instrumental in identifying and monitoring metabolic disease states, as shown in the screening of the two obese mouse models in this study. Our findings show the potential of breath gas analysis to non-invasively assess metabolic alterations for personalized diagnosis. PMID:26860833

  5. Detection of subtle neurological alterations by the Catwalk XT gait analysis system

    PubMed Central

    2014-01-01

    Background A new version of the CatWalk XT system was evaluated as a tool for detecting very subtle alteration in gait based on higher speed sample rate; the system could also demonstrate minor changes in neurological function. In this study, we evaluated the neurological outcome of sciatic nerve injury intervened by local injection of hyaluronic acid. Using the CatWalk XT system, we looked for differences between treated and untreated groups and differences within the same group as a function of time so as to assess the power of the Catwalk XT system for detecting subtle neurological change. Methods Peripheral nerve injury was induced in 36 Sprague–Dawley rats by crushing the left sciatic nerve using a vessel clamp. The animals were randomized into one of two groups: Group I: crush injury as the control; Group II: crush injury and local application with hyaluronic acid. These animals were subjected to neurobehavior assessment, histomorphology evaluation, and electrophysiology study periodically. These data were retrieved for statistical analysis. Results The density of neurofilament and S-100 over the distal end of crushed nerve showed significant differences either in inter-group comparison at various time points or intra-group comparison from 7 to 28 days. Neuronal structure architecture, axon counts, intensity of myelination, electrophysiology, and collagen deposition demonstrate significant differences between the two groups. There was significant difference of SFI and angle of ankle in inter- group analysis from 7 to 28 days, but there were no significant differences in SFI and angle of ankle at time points of 7 and 14 days. In the Cat Walk XT analysis, the intensity, print area, stance duration, and swing duration all showed detectable differences at 7, 14, 21, and 28 days, whereas there were no significant difference at 7 and 14 days with CatWalk 7 testing. In addition, there were no significant differences of step sequence or regularity index

  6. Integrated circuit failure analysis by low-energy charge-induced voltage alteration

    DOEpatents

    Cole, Jr., Edward I.

    1996-01-01

    A scanning electron microscope apparatus and method are described for detecting and imaging open-circuit defects in an integrated circuit (IC). The invention uses a low-energy high-current focused electron beam that is scanned over a device surface of the IC to generate a charge-induced voltage alteration (CIVA) signal at the location of any open-circuit defects. The low-energy CIVA signal may be used to generate an image of the IC showing the location of any open-circuit defects. A low electron beam energy is used to prevent electrical breakdown in any passivation layers in the IC and to minimize radiation damage to the IC. The invention has uses for IC failure analysis, for production-line inspection of ICs, and for qualification of ICs.

  7. Integrated circuit failure analysis by low-energy charge-induced voltage alteration

    DOEpatents

    Cole, E.I. Jr.

    1996-06-04

    A scanning electron microscope apparatus and method are described for detecting and imaging open-circuit defects in an integrated circuit (IC). The invention uses a low-energy high-current focused electron beam that is scanned over a device surface of the IC to generate a charge-induced voltage alteration (CIVA) signal at the location of any open-circuit defects. The low-energy CIVA signal may be used to generate an image of the IC showing the location of any open-circuit defects. A low electron beam energy is used to prevent electrical breakdown in any passivation layers in the IC and to minimize radiation damage to the IC. The invention has uses for IC failure analysis, for production-line inspection of ICs, and for qualification of ICs. 5 figs.

  8. Paroxysmal Perceptual Alteration: Drug-Induced Phenomenon or Schizophrenic Psychopathology?

    PubMed

    Praharaj, Samir Kumar; Kongasseri, Sreejayan; Acharya, Mahima

    2016-01-01

    Brief and repetitive episodes of perceptual changes, termed paroxysmal perceptual alteration (PPA), have been described in association with antipsychotic treatment. We report a case of paranoid schizophrenia who had such perceptual changes akin to PPA for 15 years, which was not related to antipsychotic treatment. There was a rapid resolution of PPA after treatment with low-dose clonazepam. PMID:26954463

  9. Increased Klk9 Urinary Excretion Is Associated to Hypertension-Induced Cardiovascular Damage and Renal Alterations

    PubMed Central

    Blázquez-Medela, Ana M.; García-Sánchez, Omar; Quirós, Yaremi; Blanco-Gozalo, Victor; Prieto-García, Laura; Sancho-Martínez, Sandra M.; Romero, Miguel; Duarte, Juan M.; López-Hernández, Francisco J.; López-Novoa, José M.; Martínez-Salgado, Carlos

    2015-01-01

    Abstract Early detection of hypertensive end-organ damage and secondary diseases are key determinants of cardiovascular prognosis in patients suffering from arterial hypertension. Presently, there are no biomarkers for the detection of hypertensive target organ damage, most outstandingly including blood vessels, the heart, and the kidneys. We aimed to validate the usefulness of the urinary excretion of the serine protease kallikrein-related peptidase 9 (KLK9) as a biomarker of hypertension-induced target organ damage. Urinary, plasma, and renal tissue levels of KLK9 were measured by the Western blot in different rat models of hypertension, including angiotensin-II infusion, DOCA-salt, L-NAME administration, and spontaneous hypertension. Urinary levels were associated to cardiovascular and renal injury, assessed by histopathology. The origin of urinary KLK9 was investigated through in situ renal perfusion experiments. The urinary excretion of KLK9 is increased in different experimental models of hypertension in rats. The ACE inhibitor trandolapril significantly reduced arterial pressure and the urinary level of KLK9. Hypertension did not increase kidney, heart, liver, lung, or plasma KLK9 levels. Hypertension-induced increased urinary excretion of KLK9 results from specific alterations in its tubular reabsorption, even in the absence of overt nephropathy. KLK9 urinary excretion strongly correlates with cardiac hypertrophy and aortic wall thickening. KLK9 appears in the urine in the presence of hypertension as a result of subtle renal handling alterations. Urinary KLK9 might be potentially used as an indicator of hypertensive cardiac and vascular damage. PMID:26469898

  10. Prenatal hyperandrogenism induces alterations that affect liver lipid metabolism.

    PubMed

    Abruzzese, Giselle Adriana; Heber, Maria Florencia; Ferreira, Silvana Rocio; Velez, Leandro Martin; Reynoso, Roxana; Pignataro, Omar Pedro; Motta, Alicia Beatriz

    2016-07-01

    Prenatal hyperandrogenism is hypothesized as one of the main factors contributing to the development of polycystic ovary syndrome (PCOS). PCOS patients have high risk of developing fatty liver and steatosis. This study aimed to evaluate the role of prenatal hyperandrogenism in liver lipid metabolism and fatty liver development. Pregnant rats were hyperandrogenized with testosterone. At pubertal age, the prenatally hyperandrogenized (PH) female offspring displayed both ovulatory (PHov) and anovulatory (PHanov) phenotypes that mimic human PCOS features. We evaluated hepatic transferases, liver lipid content, the balance between lipogenesis and fatty acid oxidation pathway, oxidant/antioxidant balance and proinflammatory status. We also evaluated the general metabolic status through growth rate curve, basal glucose and insulin levels, glucose tolerance test, HOMA-IR index and serum lipid profile. Although neither PH group showed signs of liver lipid content, the lipogenesis and fatty oxidation pathways were altered. The PH groups also showed impaired oxidant/antioxidant balance, a decrease in the proinflammatory pathway (measured by prostaglandin E2 and cyclooxygenase-2 levels), decreased glucose tolerance, imbalance of circulating lipids and increased risk of metabolic syndrome. We conclude that prenatal hyperandrogenism generates both PHov and PHanov phenotypes with signs of liver alterations, imbalance in lipid metabolism and increased risk of developing metabolic syndrome. The anovulatory phenotype showed more alterations in liver lipogenesis and a more impaired balance of insulin and glucose metabolism, being more susceptible to the development of steatosis. PMID:27179108

  11. Impedance Alterations in Healthy and Diseased Mice During Electrically Induced Muscle Contraction.

    PubMed

    Sanchez, Benjamin; Li, Jia; Geisbush, Tom; Bardia, Ramon Bragos; Rutkove, Seward B

    2016-08-01

    Alterations in the health of muscles can be evaluated through the use of electrical impedance myography (EIM). To date, however, nearly all work in this field has relied upon the measurement of muscle at rest. To provide an insight into the contractile mechanisms of healthy and disease muscle, we evaluated the alterations in the spectroscopic impedance behavior of muscle during the active process of muscle contraction. The gastrocnemii from a total of 13 mice were studied (five wild type, four muscular dystrophy animals, and four amyotrophic lateral sclerosis animals). Muscle contraction was induced via monophasic current pulse stimulation of the sciatic nerve. Simultaneously, multisine EIM (1 kHz to 1 MHz) and force measurements of the muscle were performed. Stimulation was applied at three different rates to produce mild, moderate, and strong contractions. We identified changes in both single and multifrequency data, as assessed by the Cole impedance model parameters. The processes of contraction and relaxation were clearly identified in the impedance spectra and quantified via derivative plots. Reductions in the center frequency fc were observed during the contraction consistent with the increasing muscle fiber diameter. Different EIM stimulation rate-dependencies were also detected across the three groups of animals. PMID:24800834

  12. Chromosomal and Nuclear Alterations in Root Tip Cells of Allium Cepa L. Induced by Alprazolam

    PubMed Central

    Nefic, Hilada; Musanovic, Jasmin; Metovic, Azra; Kurteshi, Kemajl

    2013-01-01

    ABSTRACT Introduction: Alprazolam is a triazolobenzodiazepine used in panic disorders and other anxiety states. Target organ of Alprazolam is CNS, causing depression of respiration and consciousness. Aim: This study aimed to estimate the genotoxic potential of Alprazolam using Allium cepa test. Methods: Allium cepa is one of the most suitable plants for detecting different types of xenobiotics. The test enables the assessment of different genetic endpoints making possible damage to the DNA of humans to be predicted. Results: Alprazolam induced chromosomal (anaphase bridges, breaks, lagging and stickiness, abnormal spiralisation, multipolarity and polyploidy) and cytological aberrations, especially nuclear alterations (nuclear buds, fragmented nucleus and apoptotic bodies, cells without nucleus, binucleated and micronucleated cells), morphological alterations in shape and size of cells, spindle disturbance and polar deviation in root tip meristem cells of Allium cepa at all tested concentrations. Alprazolam also caused significant inhibition of mitotic index in these cells. Conclusion: These changes in cells are indicators of genotoxic potential of Alprazolam suggesting a need for further in vitro studies on animal and human lymphocytes as well as in vivo studies. PMID:25568504

  13. Localization of pellicle-induced open contacts using Charge-Induced Voltage Alteration

    SciTech Connect

    Cole, E.I. Jr.; Soden, J.M.

    1993-08-01

    The recently developed Charge-Induced Voltage Alteration (CIVA) technique for localizing open metal conductors was used successfully to identify transistors with electrically open metal-1 contacts to silicon. The transistors were in the I/O port circuitry of a failing microcontroller and were completely covered by a metal-2 power bus. The root cause of the open contacts was a subtle scratch in the pellicle over the contact reticle. The scratch prevented full exposure of the photoresist, resulting in incomplete removal of the interlevel oxide in several contact windows. In addition to this powerful new application of CIVA, a number of failure analysis techniques utilizing both the electrical and physical properties of the failing microcontrollers were employed to identify and confirm the open contacts. These techniques are reviewed and recommendations are given for improved pellicle/reticle inspection.

  14. Radiation-induced alterations of fracture healing biomechanics

    SciTech Connect

    Pelker, R.R.; Friedlaender, G.E.; Panjabi, M.M.; Kapp, D.; Doganis, A.

    1984-01-01

    The effects of irradiation on the normal temporal progression of the physical properties of healing fractures were studied in a rat model. Fractures were surgically produced in the femur, stabilized with an intramedullary pin, and irradiated. One group of rats was exposed to 2,500 rads in divided doses over 2 weeks, beginning 3 days after fracture, and compared to a control group with fractures which were not irradiated. Animals were sacrificed at periodic intervals and the bones were tested to failure in torsion. The torque, stiffness, and energy increased and the angle decreased for the nonirradiated specimens in the expected fashion. This progression was deleteriously altered in the irradiated femurs.

  15. Alterations and Abnormal Mitosis of Wheat Chromosomes Induced by Wheat-Rye Monosomic Addition Lines

    PubMed Central

    Fu, Shulan; Yang, Manyu; Fei, Yunyan; Tan, Feiquan; Ren, Zhenglong; Yan, Benju; Zhang, Huaiyu; Tang, Zongxiang

    2013-01-01

    Background Wheat-rye addition lines are an old topic. However, the alterations and abnormal mitotic behaviours of wheat chromosomes caused by wheat-rye monosomic addition lines are seldom reported. Methodology/Principal Findings Octoploid triticale was derived from common wheat T. aestivum L. ‘Mianyang11’×rye S. cereale L. ‘Kustro’ and some progeny were obtained by the controlled backcrossing of triticale with ‘Mianyang11’ followed by self-fertilization. Genomic in situ hybridization (GISH) using rye genomic DNA and fluorescence in situ hybridization (FISH) using repetitive sequences pAs1 and pSc119.2 as probes were used to analyze the mitotic chromosomes of these progeny. Strong pSc119.2 FISH signals could be observed at the telomeric regions of 3DS arms in ‘Mianyang11’. However, the pSc119.2 FISH signals were disappeared from the selfed progeny of 4R monosomic addition line and the changed 3D chromosomes could be transmitted to next generation stably. In one of the selfed progeny of 7R monosomic addition line, one 2D chromosome was broken and three 4A chromosomes were observed. In the selfed progeny of 6R monosomic addition line, structural variation and abnormal mitotic behaviour of 3D chromosome were detected. Additionally, 1A and 4B chromosomes were eliminated from some of the progeny of 6R monosomic addition line. Conclusions/Significance These results indicated that single rye chromosome added to wheat might cause alterations and abnormal mitotic behaviours of wheat chromosomes and it is possible that the stress caused by single alien chromosome might be one of the factors that induced karyotype alteration of wheat. PMID:23936213

  16. Protein-Induced Membrane Curvature Alters Local Membrane Tension

    PubMed Central

    Rangamani, Padmini; Mandadap, Kranthi K.; Oster, George

    2014-01-01

    Adsorption of proteins onto membranes can alter the local membrane curvature. This phenomenon has been observed in biological processes such as endocytosis, tubulation, and vesiculation. However, it is not clear how the local surface properties of the membrane, such as membrane tension, change in response to protein adsorption. In this article, we show that the partial differential equations arising from classical elastic model of lipid membranes, which account for simultaneous changes in shape and membrane tension due to protein adsorption in a local region, cannot be solved for nonaxisymmetric geometries using straightforward numerical techniques; instead, a viscous-elastic formulation is necessary to fully describe the system. Therefore, we develop a viscous-elastic model for inhomogeneous membranes of the Helfrich type. Using the newly available viscous-elastic model, we find that the lipids flow to accommodate changes in membrane curvature during protein adsorption. We show that, at the end of protein adsorption process, the system sustains a residual local tension to balance the difference between the actual mean curvature and the imposed spontaneous curvature. We also show that this change in membrane tension can have a functional impact such as altered response to pulling forces in the presence of proteins. PMID:25099814

  17. Radiation-induced motility alterations in medulloblastoma cells.

    PubMed

    Rieken, Stefan; Rieber, Juliane; Brons, Stephan; Habermehl, Daniel; Rief, Harald; Orschiedt, Lena; Lindel, Katja; Weber, Klaus J; Debus, Jürgen; Combs, Stephanie E

    2015-05-01

    Photon irradiation has been repeatedly suspected of increasing tumor cell motility and promoting locoregional recurrence of disease. This study was set up to analyse possible mechanisms underlying the potentially radiation-altered motility in medulloblastoma cells. Medulloblastoma cell lines D425 and Med8A were analyzed in migration and adhesion experiments with and without photon and carbon ion irradiation. Expression of integrins was determined by quantitative FACS analysis. Matrix metalloproteinase concentrations within cell culture supernatants were investigated by enzyme-linked immunosorbent assay (ELISA). Statistical analysis was performed using Student's t-test. Both photon and carbon ion irradiation significantly reduced chemotactic medulloblastoma cell transmigration through 8-μm pore size membranes, while simultaneously increasing adherence to fibronectin- and collagen I- and IV-coated surfaces. Correspondingly, both photon and carbon ion irradiation downregulate soluble MMP9 concentrations, while upregulating cell surface expression of proadhesive extracellular matrix protein-binding integrin α5. The observed phenotype of radiation-altered motility is more pronounced following carbon ion than photon irradiation. Both photon and (even more so) carbon ion irradiation are effective in inhibiting medulloblastoma cell migration through downregulation of matrix metalloproteinase 9 and upregulation of proadhesive cell surface integrin α5, which lead to increased cell adherence to extracellular matrix proteins. PMID:25736470

  18. Study on hematological alterations induced by amphistomosis in buffaloes

    PubMed Central

    Chauhan, Vandip. D.; Patel, P. V.; Hasnani, Jigar J.; Pandya, Suchit S.; Pandey, Sunanda; Pansuriya, Dhaval V.; Choudhary, Vijayata

    2015-01-01

    Aim: The study was undertaken to compare the alterations in the hematological parameters in buffaloes suffering from Amphistomosis with normal buffaloes and to correlate it with the subclinical infection that is hard to diagnose. Materials and Methods: Blood samples from 50 amphistomes infected as well as 50 non-infected buffaloes from slaughter houses were taken into vacutainer tubes containing ethylene diamine tetraacetic acid for estimation of various hematological parameters by Automatic Analyzer Hema-2062 manufactured by Analytical Technologies Ltd. Result: There was a significant reduction in the mean hemoglobin, total leukocyte count, total erythrocyte count and packed cell volume and significant increase in the neutrophils count and eosinophil count of infected buffaloes as compared to the non-infected buffaloes respectively. Conclusion: Amphistomosis is characterized by severe neutrophilia, eosinophilia, and anemia. Anemia of high intensity along with hepatic damage can lead to the death of the animal in severe cases. Alterations in the Hematological parameters can be used as an indicator to diagnose and check the severity of amphistomosis especially in young ones and in subclinical infection. PMID:27047107

  19. Low molecular weight heparin restores antithrombin III activity from hyperglycemia induced alterations.

    PubMed

    Ceriello, A; Marchi, E; Palazzni, E; Quatraro, A; Giugliano, D

    1990-01-01

    Alteration of antithrombin III (ATIII) activity, glycemia level dependent, exists in diabetes mellitus. In this study the ability of a low molecular weight heparin (LMWH) (Fluxum, Alfa-Wassermann S.p.A., Bologna, Italy), as well as unfractioned héparin, to preserve ATIII activity from glucose-induced alterations, both in vitro and in vivo, is reported. The subcutaneous and intravenous LMWH and heparin administration increases basal depressed ATIII activity in diabetic patients. Heparin shows an equivalent effect on both anti-IIa and anti-Xa activity of ATIII, while LMWH is more effective in preserving the anti-Xa activity. Similarity, heparin preserves ATIII activity from hyperglycemia-induced alterations, during hyperglycemic clamp, and LMWH infusion is able to preserve a significant amount of anti-Xa activity from glucose-induced alterations. Since diabetic patients show a high incidence of thrombotic accidents, LMWH appears to be a promising innovation for the prevention of diabetic thrombophylia. PMID:2196192

  20. Chronic Intake of Japanese Sake Mediates Radiation-Induced Metabolic Alterations in Mouse Liver

    PubMed Central

    Nakajima, Tetsuo; Vares, Guillaume; Wang, Bing; Nenoi, Mitsuru

    2016-01-01

    Sake is a traditional Japanese alcoholic beverage that is gaining popularity worldwide. Although sake is reported to have beneficial health effects, it is not known whether chronic sake consumption modulates health risks due to radiation exposure or other factors. Here, the effects of chronic administration of sake on radiation-induced metabolic alterations in the livers of mice were evaluated. Sake (junmai-shu) was administered daily to female mice (C3H/He) for one month, and the mice were exposed to fractionated doses of X-rays (0.75 Gy/day) for the last four days of the sake administration period. For comparative analysis, a group of mice were administered 15% (v/v) ethanol in water instead of sake. Metabolites in the liver were analyzed by capillary electrophoresis-time-of-flight mass spectrometry one day following the last exposure to radiation. The metabolite profiles of mice chronically administered sake in combination with radiation showed marked changes in purine, pyrimidine, and glutathione (GSH) metabolism, which were only partially altered by radiation or sake administration alone. Notably, the changes in GSH metabolism were not observed in mice treated with radiation following chronic administration of 15% ethanol in water. Changes in several metabolites, including methionine and valine, were induced by radiation alone, but were not detected in the livers of mice who received chronic administration of sake. In addition, the chronic administration of sake increased the level of serum triglycerides, although radiation exposure suppressed this increase. Taken together, the present findings suggest that chronic sake consumption promotes GSH metabolism and anti-oxidative activities in the liver, and thereby may contribute to minimizing the adverse effects associated with radiation. PMID:26752639

  1. Thiamine deficiency induced neurochemical, neuroanatomical, and neuropsychological alterations: a reappraisal.

    PubMed

    Nardone, Raffaele; Höller, Yvonne; Storti, Monica; Christova, Monica; Tezzon, Frediano; Golaszewski, Stefan; Trinka, Eugen; Brigo, Francesco

    2013-01-01

    Nutritional deficiency can cause, mainly in chronic alcoholic subjects, the Wernicke encephalopathy and its chronic neurological sequela, the Wernicke-Korsakoff syndrome (WKS). Long-term chronic ethanol abuse results in hippocampal and cortical cell loss. Thiamine deficiency also alters principally hippocampal- and frontal cortical-dependent neurochemistry; moreover in WKS patients, important pathological damage to the diencephalon can occur. In fact, the amnesic syndrome typical for WKS is mainly due to the damage in the diencephalic-hippocampal circuitry, including thalamic nuclei and mammillary bodies. The loss of cholinergic cells in the basal forebrain region results in decreased cholinergic input to the hippocampus and the cortex and reduced choline acetyltransferase and acetylcholinesterase activities and function, as well as in acetylcholine receptor downregulation within these brain regions. In this narrative review, we will focus on the neurochemical, neuroanatomical, and neuropsychological studies shedding light on the effects of thiamine deficiency in experimental models and in humans. PMID:24235882

  2. Thiamine Deficiency Induced Neurochemical, Neuroanatomical, and Neuropsychological Alterations: A Reappraisal

    PubMed Central

    Höller, Yvonne; Storti, Monica; Christova, Monica; Tezzon, Frediano; Golaszewski, Stefan; Trinka, Eugen

    2013-01-01

    Nutritional deficiency can cause, mainly in chronic alcoholic subjects, the Wernicke encephalopathy and its chronic neurological sequela, the Wernicke-Korsakoff syndrome (WKS). Long-term chronic ethanol abuse results in hippocampal and cortical cell loss. Thiamine deficiency also alters principally hippocampal- and frontal cortical-dependent neurochemistry; moreover in WKS patients, important pathological damage to the diencephalon can occur. In fact, the amnesic syndrome typical for WKS is mainly due to the damage in the diencephalic-hippocampal circuitry, including thalamic nuclei and mammillary bodies. The loss of cholinergic cells in the basal forebrain region results in decreased cholinergic input to the hippocampus and the cortex and reduced choline acetyltransferase and acetylcholinesterase activities and function, as well as in acetylcholine receptor downregulation within these brain regions. In this narrative review, we will focus on the neurochemical, neuroanatomical, and neuropsychological studies shedding light on the effects of thiamine deficiency in experimental models and in humans. PMID:24235882

  3. Metronidazole-induced alterations in murine spermatozoa morphology.

    PubMed

    Mudry, Marta D; Palermo, Ana M; Merani, María S; Carballo, Marta A

    2007-02-01

    The aim of this work was to assess the effect of metronidazole (MTZ) on the stages of the seminiferous epithelial cycle and spermatozoa morphology when the drug is administered in human therapeutic doses to 60-day-old CFW male mice. The frequency of the stages was established by counting spermatocytes in pachytene and spermatids. Abnormalities in the flagellum or the head, lack of maturity and multiple malformations, were considered in the morphological analysis. Murine control strain was compared with MTZ treated group (v.ip 130 mg/kg/bw) both kept in standard captivity conditions. Cellular composition or number of stages in the seminiferous tubules were not altered in MTZ exposed animals, though the number of cells in stages I, V and XII was increased. The sperm cell morphology was severely affected by the treatment with potentially serious consequences on the normal fertilization process. Thus, the MTZ has to be considered as a conceivable thread regarding male fertility. PMID:17184970

  4. Alcohol-induced alterations in dopamine modulation of prefrontal activity.

    PubMed

    Trantham-Davidson, Heather; Chandler, L Judson

    2015-12-01

    Long-term alcohol use leads to persistent cognitive deficits that may be associated with maladaptive changes in the neurocircuitry that mediates executive functions. Impairments caused by these changes can persist well into abstinence and have a negative impact on quality of life and job performance, and can increase the probability of relapse. Many of the changes that affect cognitive function appear to involve dysregulation of the mesocortical dopamine system. This includes changes in dopamine release and alterations in dopamine receptor expression and function in the medial prefrontal cortex (PFC). This review summarizes the cellular effects of acute and chronic ethanol exposure on dopamine release and dopamine receptor function in the PFC with the goal of providing greater understanding of the effects of alcohol-use disorders on the dopamine system and how this relates to deficits in the executive function of the PFC. PMID:26558348

  5. Alterations in Regulatory T Cells Induced by Specific Oligosaccharides Improve Vaccine Responsiveness in Mice

    PubMed Central

    Schijf, Marcel A.; Kerperien, JoAnn; Bastiaans, Jacqueline; Szklany, Kirsten; Meerding, Jenny; Hofman, Gerard; Boon, Louis; van Wijk, Femke; Garssen, Johan; van’t Land, Belinda

    2013-01-01

    Prophylactic vaccinations are generally performed to protect naïve individuals with or without suppressed immune responsiveness. In a mouse model for Influenza vaccinations the specific alterations of CD4+CD25+Foxp3+ regulatory T-cells (Tregs) in the immune modulation induced by orally supplied oligosaccharides containing scGOS/lcFOS/pAOS was assessed. This dietary intervention increased vaccine specific DTH responses. In addition, a significant increased percentage of T-bet+ (Th1) activated CD69+CD4+ T cells (p<0.001) and reduced percentage of Gata-3+ (Th2) activated CD69+CD4+T cells (p<0.001) was detected in the mesenteric lymph nodes (MLN) of mice receiving scGOS/lcFOS/pAOS compared to control mice. Although no difference in the number or percentage of Tregs (CD4+Foxp3+) could be determined after scGOS/lcFOS/pAOS intervention, the percentage of CXCR3 + /T-bet+ (Th1-Tregs) was significantly reduced (p<0.05) in mice receiving scGOS/lcFOS/pAOS as compared to mice receiving placebo diets. Moreover, although no absolute difference in suppressive capacity could be detected, an alteration in cytokine profile suggests a regulatory T cell shift towards a reducing Th1 suppression profile, supporting an improved vaccination response. In conclusion These data are indicative for improved vaccine responsiveness due to reduced Th1 suppressive capacity in the Treg population of mice fed the oligosaccharide specific diet, showing compartmentalization within the Treg population. The modulation of Tregs to control immune responses provides an additional arm of intervention using alternative strategies possibly leading to the development of improved vaccines. PMID:24073243

  6. Vanadium Exposure-Induced Neurobehavioral Alterations among Chinese Workers

    PubMed Central

    Li, Hong; Zhou, Dinglun; Zhang, Qin; Feng, Chengyong; Zheng, Wei; He, Keping; Lan, Yajia

    2014-01-01

    Vanadium-containing products are manufactured and widely used in the modern industry. Yet the neurobehavioral toxicity due to occupational exposure to vanadium remained elusive. This cross-sectional study was designed to examine the neurotoxic effects of occupational vanadium exposure. A total of 463 vanadium-exposed workers (exposed group) and 251 non-exposed workers (control group) were recruited from a Steel and Iron Group in Sichuan, China. A WHO-recommended neurobehavioral core test battery (NCTB) and event-related auditory evoked potentials test (P300) were used to assess the neurobehavioral functions of all study subjects. A general linear model was used to compare outcome scores between the two groups while controlling for possible confounders. The exposed group showed a statistically significant neurobehavioral alteration more than the control group in the NCTB tests. The exposed workers also exhibited an increased anger-hostility, depression-dejection and fatigue-inertia on the profile of mood states (p<0.05). Performances in the Simple Reaction Time, Digit Span, Benton Visual Retention and Pursuit Aiming were also poorer among exposed workers as compared to unexposed control workers(p<0.05). Some of these poor performances in tests were also significantly related to workers’ exposure duration. P300 latencies were longer in the exposed group than in the control (p<0.05). Longer mean reaction times and more counting errors were also found in the exposed workers (p<0.05). Given the findings of our study and the limitations of neurobehavioral workplace testing, we found evidence of altered neurobehavioral outcomes by occupational exposure to vanadium. PMID:23500660

  7. 46 CFR 109.425 - Repairs and alterations: Fire detecting and extinguishing equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Reports, Notifications, and Records Reports and... to fire detecting and extinguishing equipment, the master or person in charge must report the nature... person in charge must report the nature of the repairs or alterations to the OCMI. Records...

  8. ABILITY OF THE MALE RAT PUBERTAL ASSAY TO DETECT ENVIRONMENTAL CHEMICALS THAT ALTER THYROID HORMONE HOMEOSTASIS

    EPA Science Inventory

    ABILITY OF THE MALE RAT PUBERTAL ASSAY TO DETECT ENVIRONMENTAL CHEMICALS THAT ALTER THYROID HORMONE HOMEOSTASIS

    Stoker, Tammy E.1; Laws, Susan C.1; Ferrell, Janet M.1; Cooper, Ralph L.1.

    Endocrinology Branch, RTD, NHEERL, ORD, U.S. EPA, RTP, NC, 27711.

    The...

  9. Val66Met Polymorphism of BDNF Alters Prodomain Structure to Induce Neuronal Growth Cone Retraction

    PubMed Central

    Anastasia, Agustin; Deinhardt, Katrin; Chao, Moses V.; Will, Nathan E.; Irmady, Krithi; Lee, Francis S.; Hempstead, Barbara L.; Bracken, Clay

    2013-01-01

    A common single-nucleotide polymorphism in the human brain-derived neurotrophic factor (BDNF) gene results in a Val66Met substitution in the BDNF prodomain region. This single-nucleotide polymorphism is associated with alterations in memory and with enhanced risk to develop depression and anxiety disorders in humans. Here we show that the isolated BDNF prodomain is detected in the hippocampus and that it can be secreted from neurons in an activity-dependent manner. Using nuclear magnetic resonance spectroscopy and circular dichroism we find that the prodomain is intrinsically disordered, and the Val66Met substitution induces structural changes. Surprisingly, application of Met66 (but not Val66) BDNF prodomain induces acute growth cone retraction and a decrease in Rac activity in hippocampal neurons. Expression of p75NTR and differential engagement of the Met66 prodomain to the SorCS2 receptor are required for this effect. These results identify the Met66 prodomain as a new active ligand which modulates neuronal morphology. PMID:24048383

  10. Mechanically induced alterations in cultured skeletal muscle growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, H. H.; Hatfaludy, S.; Karlisch, P.; Shansky, J.

    1991-01-01

    Model systems are available for mechanically stimulating cultured skeletal muscle cells by passive tensile forces which simulate those found in vivo. When applied to embryonic muscle cells in vitro these forces induce tissue organogenesis, metabolic adaptations, and muscle cell growth. The mechanical stimulation of muscle cell growth correlates with stretch-induced increases in the efflux of prostaglandins PGE2 and PGF2(alpha) in a time and frequency dependent manner. These prostaglandins act as mechanical 'second messengers' regulating skeletal muscle protein turnover rates. Since they also effect bone remodelling in response to tissue loading and unloading, secreted prostaglandins may serve as paracrine growth factors, coordinating the growth rates of muscle and bone in response to external mechanical forces. Cell culture model systems will supplement other models in understanding mechanical transduction processes at the molecular level.

  11. Light-Induced Alterations in Striatal Neurochemical Profiles

    NASA Technical Reports Server (NTRS)

    Sroufe, Angela E.; Whittaker, J. A.; Patrickson, J. W.

    1997-01-01

    Much of our present knowledge regarding circadian rhythms and biological activity during space flight has been derived from those missions orbiting the Earth. During space missions, astronauts can become exposed to bright/dark cycles that vary considerably from those that entrain the mammalian biological timing system to the 24-hour cycle found on Earth. As a spacecraft orbits the Earth, the duration of the light/dark period experienced becomes a function of the time it takes to circumnavigate the planet which in turn depends upon the altitude of the craft. Orbiting the Earth at an altitude of 200-800 km provides a light/dark cycle lasting between 80 and 140 minutes, whereas a voyage to the moon or even another planet would provide a light condition of constant light. Currently, little is known regarding the effects of altered light/dark cycles on neurochemical levels within the central nervous system (CNS). Many biochemical, physiological and behavioral phenomena are under circadian control, governed primarily by the hypothalamic suprachiasmatic nucleus. As such, these phenomena are subject to influence by the environmental light/dark cycle. Circadian variations in locomotor and behavioral activities have been correlated to both the environmental light/dark cycle and to dopamine (DA) levels within the CNS. It has been postulated by Martin-Iverson et al. that DA's role in the control of motor activity is subject to modulation by circadian rhythms (CR), environmental lighting and excitatory amino acids (EAAs). In addition, DA and EAA receptor regulated pathways are involved in both the photic entrainment of CR and the control of motor activity. The cellular mechanisms by which DA and EAA-receptor ligands execute these functions, is still unclear. In order to help elucidate these mechanisms, we set out to determine the effects of altered environmental light/dark cycles on CNS neurotransmitter levels. In this study, we focused on the striatum, a region of the brain

  12. Epstein-Barr Virus Induced Epigenetic Alterations Following Transient Infection

    PubMed Central

    Queen, Krista J.; Shi, Mingxia; Zhang, Fangfang; Cvek, Urska; Scott, Rona S.

    2012-01-01

    Epstein-Barr virus (EBV) is a known tumor virus associated with an increasing array of malignancies; however, the association of the virus with certain malignancies is often erratic. To determine EBV’s contributions to tumorigenesis in a setting of incomplete association, a transient model of infection was established where a clonal CCL185 carcinoma cell line infected with recombinant EBV was allowed to lose viral genomes by withdrawal of selection pressure. Global gene expression comparing EBV-negative, transiently infected clones to uninfected controls identified expression changes in over 1000 genes. Among downregulated genes, several genes known to be DNA methylated in cancer were identified including E-cadherin and PYCARD. A cadherin switch, increased motility and enhanced cellular invasiveness present in EBV-positive cells were retained following viral loss indicating an epigenetic effect. Repression of PYCARD expression was due to increased promoter CpG methylation, whereas loss of E-cadherin expression after transient EBV infection did not correlate with increased DNA methylation of the E-cadherin promoter. Rather, repression of E-cadherin was consistent with formation of a repressive chromatin state. Decreased histone 3 or 4 acetylation at the promoter and 5’ end of the E-cadherin gene was observed in an EBV-negative, transiently infected clone relative to the uninfected controls. These results suggest that EBV can stably alter gene expression in a heritable fashion in formerly infected cells, while its own contribution to the oncogenic process is masked. PMID:23047626

  13. Aging induced cortical drive alterations during sleep in rats.

    PubMed

    Ciric, Jelena; Lazic, Katarina; Petrovic, Jelena; Kalauzi, Aleksandar; Saponjic, Jasna

    2015-03-01

    We followed the impact of healthy aging on cortical drive during sleep in rats by using the corticomuscular coherence (CMC). We employed the chronic electrodes implantation for sleep recording in adult, male Wistar rats, and followed the aging impact during sleep from 3 to 5.5 months age. We have analyzed the sleep/wake states architecture, and the sleep/wake state related EEG microstructure and CMCs. We evidenced the topographically distinct impact of aging on sleep/wake states architecture within the sensorimotor (SMCx) vs. motor cortex (MCx) from 4.5 to 5.5 months age. Healthy aging consistently altered only the SMCx sleep/wake states architecture, and increased the delta and beta CMCs through both cortical drives during Wake, but only through the MCx drive during REM. According to the delta and beta CMCs values, aging impact through the SMCx drive was opposite, but it was convergent through the MCx drive during Wake vs. REM, and there was a dual and inverse mode for the motor control during REM. PMID:25773067

  14. Alterations in glucose kinetics induced by pentobarbital anesthesia

    SciTech Connect

    Lang, C.H.; Bagby, G.J.; Hargrove, D.M.; Hyde, P.M.; Spitzer, J.J. )

    1987-12-01

    Because pentobarbital is often used in investigations related to carbohydrate metabolism, the in vivo effect of this drug on glucose homeostasis was studied. Glucose kinetics assessed by the constant intravenous infusion of (6-{sup 3}H)- and (U-{sup 14}C)glucose, were determined in three groups of catheterized fasted rats: conscious, anesthetized and body temperature maintained, and anesthetized but body temperature not maintained. After induction of anesthesia, marked hypothermia developed in rats not provided with external heat. Anesthetized rats that developed hypothermia showed a decrease in mean arterial blood pressure (25%) and heart rate (40%). Likewise, the plasma lactate concentration and the rates of glucose appearance, recycling, and metabolic clearance were reduced by 30-50% in the hypothermic anesthetized rats. Changes in whole-body carbohydrate metabolism were prevented when body temperature was maintained. Because plasma pentobarbital levels were similar between the euthermic and hypothermic rats during the first 2 h of the experiment, the rapid reduction in glucose metabolism in this latter group appears related to the decrease in body temperature. The continuous infusion of epinephrine produced alterations in glucose kinetics that were not different between conscious animals and anesthetized rats with body temperature maintained. Thus pentobarbital-anesthetized rats became hypothermic when kept at room temperature and exhibited marked decreases in glucose metabolism. Such changes were absent when body temperature was maintained during anesthesia.

  15. Ceramide-induced alterations in dopamine transporter function.

    PubMed

    Riddle, Evan L; Rau, Kristi S; Topham, Matthew K; Hanson, Glen R; Fleckenstein, Annette E

    2003-01-01

    The purpose of this study was to determine the effects of ceramide on dopamine and serotonin (5-HT, 5-hydroxytryptamine) transporters. Exposure of rat striatal synaptosomes to C2-ceramide caused a reversible, concentration-dependent decrease in plasmalemmal dopamine uptake. In contrast, ceramide exposure increased striatal 5-HT synaptosomal uptake. This increase did not appear to be due to an increased uptake by the 5-HT transporter. Rather, the increase appeared to result from an increase in 5-HT transport through the dopamine transporter, an assertion evidenced by findings that this increase: (1) does not occur in hippocampal synaptosomes (i.e., a preparation largely devoid of dopamine transporters), (2) occurs in striatal synaptosomes prepared from para-chloroamphetamine-treated rats (i.e., a preparation lacking 5-HT transporters), (3) is attenuated by pretreatment with methylphenidate (i.e., a relatively selective dopamine reuptake inhibitor) and (4) is inhibited by exposure to exogenous dopamine (i.e., which presumably competes for uptake with 5-HT). Taken together, these results reveal that ceramide is a novel modulator of monoamine transporter function, and may alter the affinity of dopamine transporters for its primary substrate. PMID:12498904

  16. Parvovirus Induced Alterations in Nuclear Architecture and Dynamics

    PubMed Central

    Ihalainen, Teemu O.; Niskanen, Einari A.; Jylhävä, Juulia; Paloheimo, Outi; Dross, Nicolas; Smolander, Hanna; Langowski, Jörg; Timonen, Jussi; Vihinen-Ranta, Maija

    2009-01-01

    The nucleus of interphase eukaryotic cell is a highly compartmentalized structure containing the three-dimensional network of chromatin and numerous proteinaceous subcompartments. DNA viruses induce profound changes in the intranuclear structures of their host cells. We are applying a combination of confocal imaging including photobleaching microscopy and computational methods to analyze the modifications of nuclear architecture and dynamics in parvovirus infected cells. Upon canine parvovirus infection, expansion of the viral replication compartment is accompanied by chromatin marginalization to the vicinity of the nuclear membrane. Dextran microinjection and fluorescence recovery after photobleaching (FRAP) studies revealed the homogeneity of this compartment. Markedly, in spite of increase in viral DNA content of the nucleus, a significant increase in the protein mobility was observed in infected compared to non-infected cells. Moreover, analyzis of the dynamics of photoactivable capsid protein demonstrated rapid intranuclear dynamics of viral capsids. Finally, quantitative FRAP and cellular modelling were used to determine the duration of viral genome replication. Altogether, our findings indicate that parvoviruses modify the nuclear structure and dynamics extensively. Intranuclear crowding of viral components leads to enlargement of the interchromosomal domain and to chromatin marginalization via depletion attraction. In conclusion, parvoviruses provide a useful model system for understanding the mechanisms of virus-induced intranuclear modifications. PMID:19536327

  17. Methoxychlor induces atresia by altering Bcl2 factors and inducing caspase activity in mouse ovarian antral follicles in vitro

    PubMed Central

    Basavarajappa, Mallikarjuna S.; Karman, Bethany N.; Wang, Wei; Gupta, Rupesh K.; Flaws, Jodi A.

    2012-01-01

    Methoxychlor (MXC) is an organochlorine pesticide widely used in many countries against various species of insects that attack crops and domestic animals. MXC reduces fertility by increasing atresia (death) of antral follicles in vivo. MXC also induces atresia of antral follicles after 96 h in vitro. The current work tested the hypothesis that MXC induces morphological atresia at early time points (24 and 48 h) by altering pro-apoptotic (Bax, Bok, Casp3, and caspase activity) and anti-apoptotic (Bcl2 and Bcl-xL) factors in the follicles. The results indicate that at 24 h, MXC increased Bcl-xL and Bax mRNA levels and increased the ratio of Bax/Bcl2. At 48–96 h, MXC induced morphological atresia. At 24–96 h, MXC increased caspase activities. These data suggest that MXC may induce atresia by altering Bcl2 factors and inducing caspase activities in antral follicles. PMID:23000595

  18. Altered Acer Rubrum Fecundity Induced By Chemical Climate Change

    NASA Astrophysics Data System (ADS)

    Deforest, J. L.; Peters, A.

    2014-12-01

    Red maple (Acer rubrum L.) is becoming the most dominating tree in North American eastern deciduous forests. Concurrently, human activities have altered the chemical climate of terrestrial ecosystems via acidic deposition, which increases the available of nitrogen (N), while decreasing phosphorus (P) availability. Once a minor forest component prior to European settlement, the abundance of red maple may be a symptom of the modern age. The current paradigm explaining red maple's rise to prominence concerns fire suppression that excludes competitors. However, this still does not explain why red maple is unique compared to other functionally similar trees. The objective of this study was to investigate the interactive influence of acid rain mitigation on the fecundity of red maple. Objectives were achieved by measuring flowering, seed production, germination, and growth from red maple on plots that have been experimentally manipulated to increase soil pH, P, or both in three unglaciated eastern deciduous hardwood forests. At least 50% of the red maple population is seed bearing in our control soils, however the median percent of seed-bearing trees declined to zero when mitigating soils from acidic deposition. This can be explained by the curious fact that red maple is polygamodioecious, or has labile sex-expression, in which an individual tree can change its sex-expression in response to the environment. Furthermore, seed-bearing trees in the mitigated plots grew less, produced less seeds, and germinated at lower rates than their counterparts in control soils. Our results provide evidence that chemical climate change could be the primary contributing factor accelerating the dominance of red maple in eastern North American forests. Our observations can provide a boarder conceptual framework for understanding how nutrient limitations can be applied beyond plant productivity towards explaining distribution changes in vegetation.

  19. Loss of Bace1 in Mice Does Not Alter the Severity of Caerulein Induced Pancreatitis

    PubMed Central

    Heindl, Mario; Tuennemann, Jan; Sommerer, Ines; Mössner, Joachim; Hoffmeister, Albrecht

    2015-01-01

    Context Beta-site alpha-amyloid protein cleaving enzyme1 (BACE1) plays a key role in the pathogenesis of Alzheimer’s disease. Additional to its moderate expression in the brain, high levels of BACE1 mRNA were found in the pancreas. Murine Bace1 has been immunohistochemicaly detected at the apical pole of acinar cells within the exocrine pancreas of mice and Bace1 activity was observed in pancreatic juice. In vitro experiments revealed enteropeptidase as a putative substrate for Bace1 suggesting a role in acute pancreatitis. Objective The aim of this study was to address a protective mechanism of Bace1 in acute experimental pancreatitis in mice. Methods Acute experimental pancreatitis was induced by intraperitoneal injection of caerulein in homozygote Bace1-/- mice and wild type mice. Serum and tissue analyses were carried out after 4 h, 8 h and 24 h. Measurement of plasma amylase and lipase was performed to confirm pancreatitis induction. In order to assess the severity of pancreatitis H&E stained pancreatic sections were examined regarding edema, inflammation and apoptosis. Immunohistochemical detection of myeloperoxidase (MPO) positive cells was carried out to further quantify the extent of inflammation. Expression of Bace2 within the pancreas was analyzed by immunohistochemistry and RT-qPCR. Results We demonstrate that total loss of Bace1 in mice leads to no alterations in the course of acute experimental caerulein-pancreatitis. Bace1-/- mice develop a moderate pancreatitis that is comparable in histomorphological and serological features with those seen in wild type mice. Discussion We discuss the results in the context of the applied caerulein induced edematous pancreatitis model and possible compensatory mechanisms via Bace2 that might be responsible for the observed results. PMID:25961820

  20. Plasma-induced Escape and Alterations of Planetary Atmospheres

    NASA Astrophysics Data System (ADS)

    Johnson, R. E.; Tucker, O. J.; Ewrin, J.; Cassidy, T. A.; Leblanc, F.

    2009-12-01

    The atmospheres of planets and planetary satellites are typically imbedded in space plasmas. Depending on the interaction with the induced or intrinsic fields energetic ions can have access to the thermosphere and the corona affecting their composition and thermal structure and causing loss to space. These processes are often lumped together as ‘atmospheric sputtering’ (Johnson 1994). In this talk I will review the results of simulations of the plasma bombardment at a number of solar system bodies and use those data to describe the effect on the upper atmosphere and on escape. Of considerable recent interest is the modeling of escape from Titan. Prior to Cassini’s tour of the Saturnian system, plasma-induced escape was suggested to be the dominant loss process, but recent models of enhanced thermal escape, often referred to as ‘slow hydrodynamic’ escape, have been suggested to lead to much larger Titan atmospheric loss rates (Strobel 2008; Cui et al. 2008). Such a process has been suggested to be active at some point in time on a number of solar system bodies. I will present hybrid fluid/ kinetic models of the upper atmosphere of certain bodies in order to test both the plasma-induced and thermal escape processes. Preliminary results suggest that the loss rates estimated using the ‘slow hydrodynamic’ escape process can be orders of magnitude too large. The implications for Mars, Titan and Pluto will be discussed. Background for this talk is contained in the following papers (Johnson 2004; 2009; Chaufray et al. 2007; Johnson et al. 2008; 2009; Tucker and Johnson 2009). References: Chaufray, J.Y., R. Modolo, F. Leblanc, G. Chanteur, R.E. Johnson, and J.G. Luhmann, Mars Solar Wind interaction: formation of the Martian corona and atmosphric loss to space, JGR 112, E09009, doi:10.1029/2007JE002915 (2007) Cui, J., Yelle, R. V., Volk, K. Distribution and escape of molecular hydrogen in Titan's thermosphere and exosphere. J. Geophys. Res. 113, doi:10

  1. MCD diet-induced steatohepatitis is associated with alterations in asymmetric dimethylarginine (ADMA) and its transporters.

    PubMed

    Di Pasqua, Laura G; Berardo, Clarissa; Rizzo, Vittoria; Richelmi, Plinio; Croce, Anna Cleta; Vairetti, Mariapia; Ferrigno, Andrea

    2016-08-01

    Using an experimental model of NASH induced by a methionine-choline-deficient (MCD) diet, we investigated whether changes occur in serum and tissue levels of asymmetric dimethylarginine (ADMA). Male Wistar rats underwent NASH induced by 8-week feeding with an MCD diet. Serum and hepatic biopsies at 2, 4 and 8 weeks were taken, and serum enzymes, ADMA and nitrate/nitrite (NOx), were evaluated. Hepatic biopsies were used for mRNA and protein expression analysis of dimethylarginine dimethylaminohydrolase-1 (DDAH-1) and protein methyltransferases (PRMT-1), enzymes involved in ADMA metabolism and synthesis, respectively, and ADMA transporters (CAT-1, CAT-2A and CAT-2B). Lipid peroxides (TBARS), glutathione, ATP/ADP and DDAH activity were quantified. An increase in serum AST and ALT was detected in MCD animals. A time-dependent decrease in serum and tissue ADMA and increase in mRNA expression of DDAH-1 and PRMT-1 as well as higher rates of mRNA expression of CAT-1 and lower rates of CAT-2A and CAT-2B were found after 8-week MCD diet. An increase in serum NOx and no changes in protein expression in DDAH-1 and CAT-1 and higher content in CAT-2 and PRMT-1 were found at 8 weeks. Hepatic DDAH activity decreased with a concomitant increase in oxidative stress, as demonstrated by high TBARS levels and low glutathione content. In conclusion, a decrease in serum and tissue ADMA levels in the MCD rats was found associated with a reduction in DDAH activity due to the marked oxidative stress observed. Changes in ADMA levels and its transporters are innovative factors in the onset and progression of hepatic alterations correlated with MCD diet-induced NASH. PMID:27357826

  2. Thermal nociceptive threshold testing detects altered sensory processing in broiler chickens with spontaneous lameness.

    PubMed

    Hothersall, Becky; Caplen, Gina; Parker, Richard M A; Nicol, Christine J; Waterman-Pearson, Avril E; Weeks, Claire A; Murrell, Joanna C

    2014-01-01

    Lameness is common in commercially reared broiler chickens but relationships between lameness and pain (and thus bird welfare) have proved complex, partly because lameness is often partially confounded with factors such as bodyweight, sex and pathology. Thermal nociceptive threshold (TNT) testing explores the neural processing of noxious stimuli, and so can contribute to our understanding of pain. Using an acute model of experimentally induced articular pain, we recently demonstrated that TNT was reduced in lame broiler chickens, and was subsequently attenuated by administration of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs). This study extended these findings to a large sample of commercial broilers. It examined factors affecting thermal threshold (Part 1) and the effect of an NSAID drug (meloxicam, 5 mg/kg) and of an opioid (butorphanol; 4 mg/kg) (Part 2). Spontaneously lame and matched non-lame birds (n=167) from commercial farms were exposed to ramped thermal stimulations via a probe attached to the lateral aspect of the tarsometatarsus. Baseline skin temperature and temperature at which a behavioural avoidance response occurred (threshold) were recorded. In Part 1 bird characteristics influencing threshold were modelled; In Part 2 the effect of subcutaneous administration of meloxicam or butorphanol was investigated. Unexpectedly, after accounting for other influences, lameness increased threshold significantly (Part 1). In Part 2, meloxicam affected threshold differentially: it increased further in lame birds and decreased in non-lame birds. No effect of butorphanol was detected. Baseline skin temperature was also consistently a significant predictor of threshold. Overall, lameness significantly influenced threshold after other bird characteristics were taken into account. This, and a differential effect of meloxicam on lame birds, suggests that nociceptive processing may be altered in lame birds, though mechanisms for this require further investigation

  3. Psychosine-induced alterations in peroxisomes of Twitcher Mouse Liver

    PubMed Central

    Contreras, Miguel Agustin; Haq, Ehtishamul; Uto, Takuhiro; Singh, Inderjit; Singh, Avtar Kaur

    2008-01-01

    Krabbe’s disease is a neuroinflammatory disorder in which galactosylsphingosine (psychosine) accumulates in nervous tissue. To gain insight into whether the psychosine-induced effects in nervous tissue extend to peripheral organs, we investigated the expression of cytokines and their effects on peroxisomal structure/function in twitcher mouse liver (animal model of Krabbe disease). Immunofluorescence analysis demonstrated TNF-α and IL-6 expression, which was confirmed by mRNAs quantitation. Despite the presence of TNF-α, lipidomic analysis did not indicate a significant decrease in sphingomyelin or an increase in ceramide fractions. Ultrastructural analysis of catalase-dependent staining of liver sections showed reduced reactivity without significant changes in peroxisomal contents. This observation was confirmed by assaying catalase activity and quantitation of its mRNA, both of which were found significantly decreased in twitcher mouse liver. Western blot analysis demonstrated a generalized reduction of peroxisomal matrix and membrane proteins. These observations indicate that twitcher mouse pathobiology extends to the liver, where the induction of TNF-α and IL-6 compromise peroxisomal structure and function. PMID:18602885

  4. Alterations in enamel remineralization in vitro induced by blue light

    NASA Astrophysics Data System (ADS)

    Kato, I. T.; Zezell, D. M.; Mendes, F. M.; Wetter, N. U.

    2010-06-01

    Blue light, especially from LED devices, is a very frequently used tool in dental procedures. However, the investigations of its effects on dental enamel are focused primarily on enamel demineralization and fluoride retention. Despite the fact that this spectral region can inhibit enamel demineralization, the effects of the irradiation on demineralized enamel are not known. For this reason, we evaluated the effects of blue LED on remineralization of dental enamel. Artificial lesions were formed in bovine dental enamel blocks by immersing the samples in undersaturated acetate buffer. The lesions were irradiated with blue LED (455 nm, 1.38 W/cm2, 13.75 J/cm2, and 10 s) and remineralization was induced by pH-cycling process. Cross-sectional hardness was used to asses mineral changes after remineralization. Non-irradiated enamel lesions presented higher mineral content than irradiated ones. Furthermore, the mineral content of irradiated group was not significantly different from the lesion samples that were not submitted to the remineralization process. Results obtained in the present study show that the blue light is not innocuous for the dental enamel and inhibition of its remineralization can occur.

  5. HIV-Induced Epigenetic Alterations in Host Cells.

    PubMed

    Abdel-Hameed, Enass A; Ji, Hong; Shata, Mohamed Tarek

    2016-01-01

    Human immunodeficiency virus (HIV), a member of the Retroviridae family, is a positive-sense, enveloped RNA virus. HIV, the causative agent of acquired immunodeficiency syndrome (AIDS) has two major types, HIV-1 and HIV-2 In HIV-infected cells the single stranded viral RNA genome is reverse transcribed and the double-stranded viral DNA integrates into the cellular DNA, forming a provirus. The proviral HIV genome is controlled by the host epigenetic regulatory machinery. Cellular epigenetic regulators control HIV latency and reactivation by affecting the chromatin state in the vicinity of the viral promoter located to the 5' long terminal repeat (LTR) sequence. In turn, distinct HIV proteins affect the epigenotype and gene expression pattern of the host cells. HIV-1 infection of CD4(+) T cells in vitro upregulated DNMT activity and induced hypermethylation of distinct cellular promoters. In contrast, in the colon mucosa and peripheral blood mononuclear cells from HIV-infected patients demethylation of the FOXP3 promoter was observed, possibly due to the downregulation of DNA methyltransferase 1. For a curative therapy of HIV infected individuals and AIDS patients, a combination of antiretroviral drugs with epigenetic modifying compounds have been suggested for the reactivation of latent HIV-1 genomes. These epigenetic drugs include histone deacetylase inhibitors (HDACI), histone methyltransferase inhibitors (HMTI), histone demethylase inhibitors, and DNA methyltransferase inhibitors (DNMTI). PMID:26659262

  6. Chronic cola drinking induces metabolic and cardiac alterations in rats

    PubMed Central

    Milei, José; Losada, Matilde Otero; Llambí, Hernán Gómez; Grana, Daniel R; Suárez, Daniel; Azzato, Francisco; Ambrosio, Giuseppe

    2011-01-01

    AIM: To investigate the effects of chronic drinking of cola beverages on metabolic and echocardiographic parameters in rats. METHODS: Forty-eight male Wistar rats were divided in 3 groups and allowed to drink regular cola (C), diet cola (L), or tap water (W) ad libitum during 6 mo. After this period, 50% of the animals in each group were euthanized. The remaining rats drank tap water ad libitum for an additional 6 mo and were then sacrificed. Rat weight, food, and beverage consumption were measured regularly. Biochemical, echocardiographic and systolic blood pressure data were obtained at baseline, and at 6 mo (treatment) and 12 mo (washout). A complete histopathology study was performed after sacrifice. RESULTS: After 6 mo, C rats had increased body weight (+7%, P < 0.01), increased liquid consumption (+69%, P < 0.001), and decreased food intake (-31%, P < 0.001). C rats showed mild hyperglycemia and hypertriglyceridemia. Normoglycemia (+69%, P < 0.01) and sustained hypertriglyceridemia (+69%, P < 0.01) were observed in C after washout. Both cola beverages induced an increase in left ventricular diastolic diameter (C: +9%, L: +7%, P < 0.05 vs W) and volumes (diastolic C: +26%, L: +22%, P < 0.01 vs W; systolic C: +24%, L: +24%, P < 0.05 vs W) and reduction of relative posterior wall thickness (C: -8%, L: -10%, P < 0.05 vs W). Cardiac output tended to increase (C: +25%, P < 0.05 vs W; L: +17%, not significant vs W). Heart rate was not affected. Pathology findings were scarce, related to aging rather than treatment. CONCLUSION: This experimental model may prove useful to investigate the consequences of high consumption of soft drinks. PMID:21526048

  7. Methamphetamine alters occludin expression via NADPH oxidase-induced oxidative insult and intact caveolae

    PubMed Central

    Park, Minseon; Hennig, Bernhard; Toborek, Michal

    2012-01-01

    Abstract Methamphetamine (METH) is a drug of abuse with neurotoxic and vascular effects that may be mediated by reactive oxygen species (ROS). However, potential sources of METH-induced generation of ROS are not fully understood. This study is focused on the role of NAD(P)H oxidase (NOX) in METH-induced dysfunction of brain endothelial cells. Treatment with METH induced a time-dependent increase in phosphorylation of NOX subunit p47, followed by its binding with gp91 and p22, and the formation of an active NOX complex. An increase in NOX activity was associated with elevated production of ROS, alterations of occludin levels and increased transendothelial migration of monocytes. Inhibition of NOX by NSC 23766 attenuated METH-induced ROS generation, changes in occludin protein levels and monocyte migration. Because an active NOX complex is localized to caveolae, we next evaluated the role of caveolae in METH-mediated toxicity to brain endothelial cells. Treatment with METH induced phosphorylation of ERK1/2 and caveolin-1 protein. Inhibition of ERK1/2 activity or caveolin-1 silencing protected against METH-induced alterations of occludin levels. These findings indicate an important role of NOX and functional caveolae in METH-induced oxidative stress in brain endothelial cells that contribute to the subsequent alterations of occludin levels and transendothelial migration of inflammatory cells. PMID:21435178

  8. Laser-Induced Incandescence: Detection Issues

    NASA Technical Reports Server (NTRS)

    VanderWal, Randall L.

    1996-01-01

    Experimental LII (laser-induced incandescence) measurements were performed in a laminar gasjet flame to test the sensitivity of different LII signal collection strategies to particle size. To prevent introducing a particle size dependent bias in the LII signal, signal integration beginning with the excitation laser pulse is necessary . Signal integration times extending to 25 or 100 nsec after the laser pulse do not produce significant differences in radial profiles of the LII signal due to particle size effects with longer signal integration times revealing a decreased sensitivity to smaller primary particles. Long wavelength detection reduces the sensitivity of the LII signal to primary particle size. Excitation of LII using 1064 nm light is recommended to avoid creating photochemical interferences thus allowing LII signal collection to occur during the excitation pulse without spectral interferences.

  9. Mitomycin C induced alterations in antioxidant enzyme levels in a model insect species, Spodoptera eridania.

    PubMed

    Batcabe, J P; MacGill, R S; Zaman, K; Ahmad, S; Pardini, R S

    1994-05-01

    1. An insect species, the southern armyworm Spodoptera eridania, was used as an in vivo model to examine mitomycin C's (MMC) pro-oxidant effect reflected in alterations of antioxidant enzymes. 2. Following a 2-day exposure to 0.01 and 0.05% w/w dietary concentrations, MMC only induced superoxide dismutase activity. All other enzyme activities were not affected, indicating oxidative stress was mild. 3. Following a 5-day exposure to 0.05% w/w dietary MMC, the activities of superoxide dismutase, glutathione-S-transferase and its peroxidase activity and DT-diaphorase were induced. GR activity was not altered. The high constitutive catalase activity was also not affected. These responses of S. eridania's antioxidant enzymes are analogous to those of mammalian systems in alleviating MMC-induced oxidative stress. 4. S. eridania emerges as an appropriate non-mammalian model for initial and cost-effective screening of drug-induced oxidative stress. PMID:7926607

  10. Local and systemic biochemical alterations induced by Bothrops atrox snake venom in mice.

    PubMed

    de Souza, Carlos At; Kayano, Anderson M; Setúbal, Sulamita S; Pontes, Adriana S; Furtado, Juliana L; Kwasniewski, Fábio H; Zaqueo, Kayena D; Soares, Andreimar M; Stábeli, Rodrigo G; Zuliani, Juliana P

    2012-01-01

    The local and systemic alterations induced by Bothrops atrox snake venom (BaV) injection in mice were studied. BaV induced superoxide production by migrated neutrophils, mast cell degranulation and phagocytosis by macrophages. Moreover, BaV caused hemorrhage in dorsum of mice after 2hr post- injection. Three hours post-injection in gastrocnemius muscle, we also observed myonecrosis, which was assessed by the determination of serum and tissue CK besides the release of urea, but not creatinine and uric acid, indicating kidney alterations. BaV also induced the release of LDH and transaminases (ALT and AST) indicating tissue and liver abnormalities. In conclusion, the data indicate that BaV induces events of local and systemic importance. PMID:23487552

  11. Local and systemic biochemical alterations induced by Bothrops atrox snake venom in mice

    PubMed Central

    de Souza, Carlos AT; Kayano, Anderson M; Setúbal, Sulamita S; Pontes, Adriana S; Furtado, Juliana L; Kwasniewski, Fábio H; Zaqueo, Kayena D; Soares, Andreimar M; Stábeli, Rodrigo G; Zuliani, Juliana P

    2012-01-01

    The local and systemic alterations induced by Bothrops atrox snake venom (BaV) injection in mice were studied. BaV induced superoxide production by migrated neutrophils, mast cell degranulation and phagocytosis by macrophages. Moreover, BaV caused hemorrhage in dorsum of mice after 2hr post- injection. Three hours post-injection in gastrocnemius muscle, we also observed myonecrosis, which was assessed by the determination of serum and tissue CK besides the release of urea, but not creatinine and uric acid, indicating kidney alterations. BaV also induced the release of LDH and transaminases (ALT and AST) indicating tissue and liver abnormalities. In conclusion, the data indicate that BaV induces events of local and systemic importance. PMID:23487552

  12. [A study of epidermal alterations induced by PCDF on experimental carcinogenesis].

    PubMed

    Hirose, R; Hori, M; Toyoshima, H; Shukuwa, T; Udono, M; Yoshida, H

    1991-05-01

    An effect of 2,3,4,7,8-pentachlorodibenzofuran (PCDF) as a promoter on a course of experimental skin carcinogenesis in mice by chemicals 20-methylcholanthrene (MC) has been proved by our previous studies. Details of ultrastructural epidermal alterations induced by MC and PCDF were observed and an attempt to differentiate benign tumor from malignant one in which a combined application of MC and PCDF on mice skin resulted was done electron microscopically. Four significant findings as follows were detected. First of all even the epidermal cells without tumor had some atypicality. Secondly both of benign tumor and normal-appeared skin without tumor had giant and round-shaped keratohyalin granules (KHGs) which show a tendency of less keratinization. Thirdly cytoplasmic projections of epidermal cells increased in number and sparse tonofilaments scattered in the cytoplasm of benign tumor. This is also an appearance of mucous metaplasia of keratinocytes as well as the form of KHGs mentioned above. Finally benign tumor had thick horny cells including numerous lipid droplets, and that is a sign of acceleration of epidermal turn over. Since epidermal cells have little chance to be exposed to carcinogens when they quickly keratinize, they rarely form a cancer. When epidermal cells have such tendency as less keratinization or more keratinization, they are supposed to be less sensitive to any stimuli of carcinogens, and consequently they incline to be benign tumor instead of malignant one. PMID:1916594

  13. Enteropathogenic E. coli-induced barrier function alteration is not a consequence of host cell apoptosis

    PubMed Central

    Viswanathan, V. K.; Weflen, Andrew; Koutsouris, Athanasia; Roxas, Jennifer L.; Hecht, Gail

    2012-01-01

    Enteropathogenic Escherichia coli (EPEC) is a diarrheagenic pathogen that perturbs intestinal epithelial function. Many of the alterations in the host cells are mediated by effector molecules that are secreted directly into epithelial cells by the EPEC type III secretion system. The secreted effector molecule EspF plays a key role in redistributing tight junction proteins and altering epithelial barrier function. EspF has also been shown to localize to mitochondria and trigger membrane depolarization and eventual host cell death. The relationship, if any, between EspF-induced host cell death and epithelial barrier disruption is presently not known. Site-directed mutation of leucine 16 (L16E) of EspF impairs both mitochondrial localization and consequent host cell death. Although the mutation lies within a region critical for type III secretion, EspF(L16E) is secreted efficiently from EPEC. Despite its inability to promote cell death, EspF(L16E) was not impaired for tight junction alteration or barrier disruption. Consistent with this, the pan-caspase inhibitor Q-VD-OPH, despite reducing EPEC-induced host cell death, had no effect on infection-mediated barrier function alteration. Thus EPEC alters the epithelial barrier independent of its ability to induce host cell death. PMID:18356531

  14. Ethanol-Induced Alterations in Fatty Acid-Related Lipids in Serum and Tissues in Mice

    PubMed Central

    Zhao, Zhenwen; Yu, Menggang; Crabb, David; Xu, Yan; Liangpunsakul, Suthat

    2010-01-01

    Background Chronic alcohol consumption is a major factor for several human diseases and alcoholism is associated with a host of societal problems. One of the major alcohol- induced metabolic changes is the increased NADH levels, which reduces glucose synthesis and increases fatty acid (FA) synthesis. Probably more important is the induction of FA synthesizing enzymes under the control of sterol regulatory element binding proteins (SREBP), plus increased malonyl-CoA which blocks FA entry to the mitochondria for oxidation. The changes in FA-related lipids, particularly lysophospholipids (LPLs) and ceramides (Cers), in different tissues in ethanol-fed have not been reported. Methods We systematically determined the levels of FA-related lipids, including FAs, phosphatidylcholines (PCs), phosphatidylethanolamines (PEs), lysophosphatidic acid (LPA), lysophosphatidylcholine (LPC), lysophosphatidylethanolamine (LPE), lysophosphatidylinositol (LPI), sphingomyelins (SMs), and ceramides (Cers) in the serum and different tissues by high-performance-liquid-chromatography electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). The study was performed in C57BL/6J mice fed with Lieber DeCarli diet; in which ethanol was added to account for 27.5% of total calories. The serum and tissues were collected at the time of sacrifice in these mice and the results were compared to pair-fed controls. Results The important observation was that ethanol induced tissue-specific changes, which were related to different FA chains. Several 22:6 FA, 18:0 FA, 18:0 to 18:3 FA-containing lipids were significantly increased in the serum, liver, and skeletal muscle, respectively. In the kidney, all 22:6 FA-containing lipids detected were increased. In addition, alterations of other lipids in tissues, except adipose tissue, were also observed. Conclusions We found tissue-specific alterations in the levels of FA-related lipids after ethanol administration. The implications of these findings

  15. Neuroglial alterations in rats submitted to the okadaic acid-induced model of dementia.

    PubMed

    Costa, Ana Paula; Tramontina, Ana Carolina; Biasibetti, Regina; Batassini, Cristiane; Lopes, Mark William; Wartchow, Krista Minéia; Bernardi, Caren; Tortorelli, Lucas Silva; Leal, Rodrigo Bainy; Gonçalves, Carlos-Alberto

    2012-01-15

    Several types of animal models have been developed to investigate Alzheimer's disease (AD). Okadaic acid (OA), a potent inhibitor of phosphatases 1 and 2A, induces characteristics that resemble AD-like pathology. Memory impairment induced by intra-hippocampal injection of OA has been reported, accompanied by remarkable neuropathological changes including hippocampal neurodegeneration, a paired helical filament-like phosphorylation of tau protein, and formation of β-amyloid containing plaque-like structures. Rats were submitted to bilateral intrahippocampal okadaic acid-injection (100 ng) and, 12 days after the surgery, behavioral and biochemical tests were performed. Using this model, we evaluated spatial cognitive deficit and neuroglial alterations, particularly astroglial protein markers such as glial fibrillary acidic protein (GFAP) and S100B, metabolism of glutamate, oxidative parameters and alterations in MAPKs. Our results indicate significant hippocampal changes, including increased GFAP, protein oxidation, and phosphorylation of p38(MAPK); and decreases in glutathione content, transporter EAAT2/GLT-1, and glutamine synthetase activity as well as a decrease in cerebrospinal fluid S100B. No alterations were observed in glutamate uptake activity and S100B content. In conclusion, the OA-induced model of dementia caused spatial cognitive deficit and oxidative stress in this model and, for the first time to our knowledge, specific astroglial alterations. Findings contribute to understanding diseases accompanied by cognitive deficits and the neural damage induced by AO administration. PMID:21982813

  16. ALTERED RA SIGNALING IN THE GENESIS OF ETHANOL-INDUCED LIMB DEFECTS

    EPA Science Inventory

    Altered RA Signaling in the Genesis of Ethanol-Induced Limb Defects

    Johnson CS(1), Sulik KK(1,2) Hunter, ES III(3)
    (1) Dept of Cell and Developmental Biology, UNC-Chapel Hill (2) Bowles Center for Alcohol Studies, UNC-CH (3) NHEERL, ORD, US EPA, RTP, NC

    Administr...

  17. Outcome of Children with Hyperventilation-Induced High-Amplitude Rhythmic Slow Activity with Altered Awareness

    ERIC Educational Resources Information Center

    Barker, Alexander; Ng, Joanne; Rittey, Christopher D. C.; Kandler, Rosalind H.; Mordekar, Santosh R.

    2012-01-01

    Hyperventilation-induced high-amplitude rhythmic slow activity with altered awareness (HIHARS) is increasingly being identified in children and is thought to be an age-related non-epileptic electrographic phenomenon. We retrospectively investigated the clinical outcome in 15 children (six males, nine females) with HIHARS (mean age 7y, SD 1y 11mo;…

  18. Hyperspectral hybrid method classification for detecting altered mucosa of the human larynx

    PubMed Central

    2012-01-01

    Background In the field of earth observation, hyperspectral detector systems allow precise target detections of surface components from remote sensing platforms. This enables specific land covers to be identified without the need to physically travel to the areas examined. In the medical field, efforts are underway to develop optical technologies that detect altering tissue surfaces without the necessity to perform an excisional biopsy. With the establishment of expedient classification procedures, hyperspectral imaging may provide a non-invasive diagnostic method that allows determination of pathological tissue with high reliability. In this study, we examined the performance of a hyperspectral hybrid method classification for the automatic detection of altered mucosa of the human larynx. Materials and methods Hyperspectral Imaging was performed in vivo and 30 bands from 390 to 680 nm for 5 cases of laryngeal disorders (2x hemorrhagic polyp, 3x leukoplakia) were obtained. Image stacks were processed with unsupervised clustering (linear spectral unmixing), spectral signatures were extracted from unlabeled cluster maps and subsequently applied as end-members for supervised classification (spectral angle mapper) of further medical cases with identical diagnosis. Results Linear spectral unmixing clearly highlighted altered mucosa as single spectral clusters in all cases. Matching classes were identified, and extracted spectral signatures could readily be applied for supervised classifications. Automatic target detection performed well, as the considered classes showed notable correspondence with pathological tissue locations. Conclusions Using hyperspectral classification procedures derived from remote sensing applications for diagnostic purposes can create concrete benefits for the medical field. The approach shows that it would be rewarding to collect spectral signatures from histologically different lesions of laryngeal disorders in order to build up a spectral

  19. Altered magnesium transport in slices of kidney cortex from chemically-induced diabetic rats

    SciTech Connect

    Hoskins, B.

    1981-10-01

    The uptake of magnesium-28 was measured in slices of kidney cortex from rats with alloxan-diabetes and from rats with streptozotocin-diabetes of increasing durations. In both forms of chemically-induced diabetes, magnesium-28 uptake by kidney cortex slices was significantly increased over uptake measured in kidney cortex slices from control rats. Immediate institution of daily insulin therapy to the diabetic rats prevented the diabetes-induced elevated uptake of magnesium without controlling blood glucose levels. Late institution of daily insulin therapy was ineffective in restoring the magnesium uptake to control values. These alterations in magnesium uptake occurred prior to any evidence of nephropathy (via the classic indices of proteinuria and increased BUN levels). The implications of these findings, together with our earlier demonstrations of altered calcium transport by kidney cortex slices from chemically-induced diabetic rats, are discussed in terms of disordered divalent cation transport being at least part of the basic pathogenesis underlying diabetic nephropathy.

  20. Dependence of Nociceptive Detection Thresholds on Physiological Parameters and Capsaicin-Induced Neuroplasticity: A Computational Study

    PubMed Central

    Yang, Huan; Meijer, Hil G. E.; Doll, Robert J.; Buitenweg, Jan R.; van Gils, Stephan A.

    2016-01-01

    Physiological properties of peripheral and central nociceptive subsystems can be altered over time due to medical interventions. The effective change for the whole nociceptive system can be reflected in changes of psychophysical characteristics, e.g., detection thresholds. However, it is challenging to separate contributions of distinct altered mechanisms with measurements of thresholds only. Here, we aim to understand how these alterations affect Aδ-fiber-mediated nociceptive detection of electrocutaneous stimuli. First, with a neurophysiology-based model, we study the effects of single-model parameters on detection thresholds. Second, we derive an expression of model parameters determining the functional relationship between detection thresholds and the interpulse interval for double-pulse stimuli. Third, in a case study with topical capsaicin treatment, we translate neuroplasticity into plausible changes of model parameters. Model simulations qualitatively agree with changes in experimental detection thresholds. The simulations with individual forms of neuroplasticity confirm that nerve degeneration is the dominant mechanism for capsaicin-induced increases in detection thresholds. In addition, our study suggests that capsaicin-induced central plasticity may last at least 1 month. PMID:27252644

  1. Dependence of Nociceptive Detection Thresholds on Physiological Parameters and Capsaicin-Induced Neuroplasticity: A Computational Study.

    PubMed

    Yang, Huan; Meijer, Hil G E; Doll, Robert J; Buitenweg, Jan R; van Gils, Stephan A

    2016-01-01

    Physiological properties of peripheral and central nociceptive subsystems can be altered over time due to medical interventions. The effective change for the whole nociceptive system can be reflected in changes of psychophysical characteristics, e.g., detection thresholds. However, it is challenging to separate contributions of distinct altered mechanisms with measurements of thresholds only. Here, we aim to understand how these alterations affect Aδ-fiber-mediated nociceptive detection of electrocutaneous stimuli. First, with a neurophysiology-based model, we study the effects of single-model parameters on detection thresholds. Second, we derive an expression of model parameters determining the functional relationship between detection thresholds and the interpulse interval for double-pulse stimuli. Third, in a case study with topical capsaicin treatment, we translate neuroplasticity into plausible changes of model parameters. Model simulations qualitatively agree with changes in experimental detection thresholds. The simulations with individual forms of neuroplasticity confirm that nerve degeneration is the dominant mechanism for capsaicin-induced increases in detection thresholds. In addition, our study suggests that capsaicin-induced central plasticity may last at least 1 month. PMID:27252644

  2. Intra-strain polymorphisms are detected but no genomic alteration is found in cloned mice

    SciTech Connect

    Gotoh, Koshichi . E-mail: koshichi@kazusa.or.jp; Inoue, Kimiko; Ogura, Atsuo; Oishi, Michio

    2006-09-15

    In-gel competitive reassociation (IGCR) is a method for differential subtraction of polymorphic (RFLP) DNA fragments between two DNA samples of interest without probes or specific sequence information. Here, we applied the IGCR procedure to two cloned mice derived from an F1 hybrid of the C57BL/6Cr and DBA/2 strains, in order to investigate the possibility of genomic alteration in the cloned mouse genomes. Each of the five of the genomic alterations we detected between the two cloned mice corresponded to the 'intra-strain' polymorphisms in the C57BL/6Cr and DBA/2 mouse strains. Our result suggests that no severe aberration of genome sequences occurs due to somatic cell nuclear transfer.

  3. Altered autophagic flux enhances inflammatory responses during inflammation-induced preterm labor

    PubMed Central

    Agrawal, Varkha; Jaiswal, Mukesh K.; Mallers, Timothy; Katara, Gajendra K.; Gilman-Sachs, Alice; Beaman, Kenneth D.; Hirsch, Emmet

    2015-01-01

    Cellular organelles and proteins are degraded and recycled through autophagy, a process during which vesicles known as autophagosomes fuse with lysosomes. Altered autophagy occurs in various diseases, but its role in preterm labor (PTL) is unknown. We investigated the role of autophagic flux in two mouse models of PTL compared to controls: 1) inflammation-induced PTL (IPTL), induced by toll-like receptor agonists; and 2) non-inflammation (hormonally)-induced PTL (NIPTL). We demonstrate that the autophagy related genes Atg4c and Atg7 (involved in the lipidation of microtubule-associated protein 1 light chain 3 (LC3) B-I to the autophagosome-associated form, LC3B-II) decrease significantly in uterus and placenta during IPTL but not NIPTL. Autophagic flux is altered in IPTL, as shown by the accumulation of LC3B paralogues and diminishment of lysosome associated membrane protein (LAMP)-1, LAMP-2 and the a2 isoform of V-ATPase (a2V, an enzyme involved in lysosome acidification). These alterations in autophagy are associated with increased activation of NF-κB and proinflammatory cytokines/chemokines in both uterus and placenta. Similar changes are seen in macrophages exposed to TLR ligands and are enhanced with blockade of a2V. These novel findings represent the first evidence of an association between altered autophagic flux and hyper-inflammation and labor in IPTL. PMID:25797357

  4. Fast and sensitive detection of indels induced by precise gene targeting.

    PubMed

    Yang, Zhang; Steentoft, Catharina; Hauge, Camilla; Hansen, Lars; Thomsen, Allan Lind; Niola, Francesco; Vester-Christensen, Malene B; Frödin, Morten; Clausen, Henrik; Wandall, Hans H; Bennett, Eric P

    2015-05-19

    The nuclease-based gene editing tools are rapidly transforming capabilities for altering the genome of cells and organisms with great precision and in high throughput studies. A major limitation in application of precise gene editing lies in lack of sensitive and fast methods to detect and characterize the induced DNA changes. Precise gene editing induces double-stranded DNA breaks that are repaired by error-prone non-homologous end joining leading to introduction of insertions and deletions (indels) at the target site. These indels are often small and difficult and laborious to detect by traditional methods. Here we present a method for fast, sensitive and simple indel detection that accurately defines indel sizes down to ±1 bp. The method coined IDAA for Indel Detection by Amplicon Analysis is based on tri-primer amplicon labelling and DNA capillary electrophoresis detection, and IDAA is amenable for high throughput analysis. PMID:25753669

  5. Comparison of methods to detect copy number alterations in cancer using simulated and real genotyping data

    PubMed Central

    2012-01-01

    Background The detection of genomic copy number alterations (CNA) in cancer based on SNP arrays requires methods that take into account tumour specific factors such as normal cell contamination and tumour heterogeneity. A number of tools have been recently developed but their performance needs yet to be thoroughly assessed. To this aim, a comprehensive model that integrates the factors of normal cell contamination and intra-tumour heterogeneity and that can be translated to synthetic data on which to perform benchmarks is indispensable. Results We propose such model and implement it in an R package called CnaGen to synthetically generate a wide range of alterations under different normal cell contamination levels. Six recently published methods for CNA and loss of heterozygosity (LOH) detection on tumour samples were assessed on this synthetic data and on a dilution series of a breast cancer cell-line: ASCAT, GAP, GenoCNA, GPHMM, MixHMM and OncoSNP. We report the recall rates in terms of normal cell contamination levels and alteration characteristics: length, copy number and LOH state, as well as the false discovery rate distribution for each copy number under different normal cell contamination levels. Assessed methods are in general better at detecting alterations with low copy number and under a little normal cell contamination levels. All methods except GPHMM, which failed to recognize the alteration pattern in the cell-line samples, provided similar results for the synthetic and cell-line sample sets. MixHMM and GenoCNA are the poorliest performing methods, while GAP generally performed better. This supports the viability of approaches other than the common hidden Markov model (HMM)-based. Conclusions We devised and implemented a comprehensive model to generate data that simulate tumoural samples genotyped using SNP arrays. The validity of the model is supported by the similarity of the results obtained with synthetic and real data. Based on these results and

  6. Satellite detection of vegetative damage and alteration caused by pollutants emitted by a zinc smelter

    NASA Technical Reports Server (NTRS)

    Mcmurtry, G. J.; Petersen, G. W. (Principal Investigator); Fritz, E. L.; Pennypacker, S. P.

    1974-01-01

    The author has identified the following significant results. Field observations and data collected by low flying aircraft were used to verify the accuracy of maps produced from the satellite data. Although areas of vegetation as small as six acres can accurately be detected, a white pine stand that was severely damaged by sulfur dioxide could not be differentiated from a healthy white pine stand because spectral differences were not large enough. When winter data were used to eliminate interference from herbaceous and deciduous vegetation, the damage was still undetectable. The analysis was able to produce a character map that accurately delineated areas of vegetative alteration due to high zinc levels accumulating in the soil. The map depicted a distinct gradient of less damage and alteration as the distance from the smelter increased. Although the satellite data will probably not be useful for detecting small acreages of damaged vegetation, it is concluded that the data may be very useful as an inventory tool to detect and delineate large vegetative areas possessing differing spectral signatures.

  7. ‘Druggable’ alterations detected by Ion Torrent in metastatic colorectal cancer patients

    PubMed Central

    FANG, WEIJIA; RADOVICH, MILAN; ZHENG, YULONG; FU, CAI-YUN; ZHAO, PENG; MAO, CHENGYU; ZHENG, YI; ZHENG, SHUSEN

    2014-01-01

    The frequency and poor prognosis of patients with metastatic colorectal cancer (mCRC) emphasizes the requirement for improved biomarkers for use in the treatment and prognosis of mCRC. In the present study, somatic variants in exonic regions of key cancer genes were identified in mCRC patients. Formalin-fixed, paraffin-embedded tissues obtained by biopsy of the metastases of mCRC patients were collected, and the DNA was extracted and sequenced using the Ion Torrent Personal Genome Machine. For the targeted amplification of known cancer genes, the Ion AmpliSeq™ Cancer Panel, which is designed to detect 739 Catalogue of Somatic Mutations in Cancer (COSMIC) mutations in 604 loci from 46 oncogenes and tumor suppressor genes using as little as 10 ng of input DNA, was used. The sequencing results were then analyzed using the Ampliseq™ Variant Caller plug-in within the Ion Torrent Suite software. In addition, Ingenuity Pathway software was used to perform a pathway analysis. The Cox regression analysis was also conducted to investigate the potential correlation between alteration numbers and clinical factors, including response rate, disease-free survival and overall survival. Among 10 specimens, 65 genetic alterations were identified in 24 genes following the exclusion of germline mutations using the SNP database, whereby 41% of the alterations were also present in the COSMIC database. No clinical factors were found to significantly correlate with the alteration numbers in the patients by statistical analysis. However, pathway analysis identified ‘colorectal cancer metastasis signaling’ as the most commonly mutated canonical pathway. This analysis further revealed mutated genes in the Wnt, phosphoinositide 3-kinase (PI3K)/AKT and transforming growth factor (TGF)-β/SMAD signaling pathways. Notably, 11 genes, including the expected APC, BRAF, KRAS, PIK3CA and TP53 genes, were mutated in at least two samples. Notably, 90% (9/10) of mCRC patients harbored at least

  8. Stressor-induced proteome alterations in zebrafish: a meta-analysis of response patterns.

    PubMed

    Groh, Ksenia J; Suter, Marc J-F

    2015-02-01

    Proteomics approaches are being increasingly applied in ecotoxicology on the premise that the identification of specific protein expression changes in response to a particular chemical would allow elucidation of the underlying molecular pathways leading to an adverse effect. This in turn is expected to promote the development of focused testing strategies for specific groups of toxicants. Although both gel-based and gel-free global characterization techniques provide limited proteome coverage, the conclusions regarding the cellular processes affected are still being drawn based on the few changes detected. To investigate how specific the detected responses are, we analyzed a set of studies that characterized proteome alterations induced by various physiological, chemical and biological stressors in zebrafish, a popular model organism. Our analysis highlights several proteins and protein groups, including heat shock and oxidative stress defense proteins, energy metabolism enzymes and cytoskeletal proteins, to be most frequently identified as responding to diverse stressors. In contrast, other potentially more specifically responding protein groups are detected much less frequently. Thus, zebrafish proteome responses to stress reported by different studies appear to depend mostly on the level of stress rather than on the specific stressor itself. This suggests that the most broadly used current proteomics technologies do not provide sufficient proteome coverage to allow in-depth investigation of specific mechanisms of toxicant action. We suggest that the results of any differential proteomics experiment performed with zebrafish should be interpreted keeping in mind the list of the most frequent responders that we have identified. Similar reservations should apply to any other species where proteome responses are analyzed by global proteomics methods. Careful consideration of the reliability and significance of observed changes is necessary in order not to over

  9. Alteration of liver glycopatterns during cirrhosis and tumor progression induced by HBV.

    PubMed

    Qin, Yannan; Zhong, Yaogang; Ma, Tianran; Wu, Fei; Wu, Haoxiang; Yu, Hanjie; Huang, Chen; Li, Zheng

    2016-04-01

    The incidence of hepatocellular carcinoma (HCC) is closely correlated with hepatitis B virus (HBV)-induced liver cirrhosis. Structural changes in the glycans of serum and tissue proteins are reliable indicators of liver damage. However, little is known about the alteration of liver glycopatterns during cirrhosis and tumor progression induced by HBV infection. This study compared the differential expression of liver glycopatterns in 7 sets of normal pericarcinomatous tissues (PCTs), cirrhotic, and tumor tissues from patients with liver cirrhosis and HCC induced by HBV using lectin microarrays. Fluorescence-based lectin histochemistry and lectin blotting were further utilized to validate and assess the expression and distribution of certain glycans in 9 sets of corresponding liver tissue sections. Eight lectins (e.g., Jacalin and AAL) revealed significant difference in cirrhotic tissues versus PCTs. Eleven lectins (e.g., EEL and SJA) showed significant alteration during cirrhotic and tumor progression. The expression of Galα1-3(Fucα1-2)Gal (EEL) and fucosyltransferase 1 was mainly increasing in the cytoplasm of hepatocytes during PCTs-cirrhotic-tumor tissues progression, while the expression of T antigen (ACA and PNA) was decreased sharply in cytoplasm of tumor hepatocytes. Understanding the precision alteration of liver glycopatterns related to the development of hepatitis, cirrhosis, and tumor induced by HBV infection may help elucidate the molecular mechanisms underlying the progression of chronic liver diseases and develop new antineoplastic therapeutic strategies. PMID:26833199

  10. Renal Oxidative Stress Induced by Long-Term Hyperuricemia Alters Mitochondrial Function and Maintains Systemic Hypertension

    PubMed Central

    Cristóbal-García, Magdalena; García-Arroyo, Fernando E.; Arellano-Buendía, Abraham S.; Madero, Magdalena; Rodríguez-Iturbe, Bernardo; Pedraza-Chaverrí, José; Zazueta, Cecilia; Johnson, Richard J.; Sánchez Lozada, Laura-Gabriela

    2015-01-01

    We addressed if oxidative stress in the renal cortex plays a role in the induction of hypertension and mitochondrial alterations in hyperuricemia. A second objective was to evaluate whether the long-term treatment with the antioxidant Tempol prevents renal oxidative stress, mitochondrial alterations, and systemic hypertension in this model. Long-term (11-12 weeks) and short-term (3 weeks) effects of oxonic acid induced hyperuricemia were studied in rats (OA, 750 mg/kg BW), OA+Allopurinol (AP, 150 mg/L drinking water), OA+Tempol (T, 15 mg/kg BW), or vehicle. Systolic blood pressure, renal blood flow, and vascular resistance were measured. Tubular damage (urine N-acetyl-β-D-glucosaminidase) and oxidative stress markers (lipid and protein oxidation) along with ATP levels were determined in kidney tissue. Oxygen consumption, aconitase activity, and uric acid were evaluated in isolated mitochondria from renal cortex. Short-term hyperuricemia resulted in hypertension without demonstrable renal oxidative stress or mitochondrial dysfunction. Long-term hyperuricemia induced hypertension, renal vasoconstriction, tubular damage, renal cortex oxidative stress, and mitochondrial dysfunction and decreased ATP levels. Treatments with Tempol and allopurinol prevented these alterations. Renal oxidative stress induced by hyperuricemia promoted mitochondrial functional disturbances and decreased ATP content, which represent an additional pathogenic mechanism induced by chronic hyperuricemia. Hyperuricemia-related hypertension occurs before these changes are evident. PMID:25918583

  11. High-Throughput Detection of Actionable Genomic Alterations in Clinical Tumor Samples by Targeted, Massively Parallel Sequencing

    PubMed Central

    Wagle, Nikhil; Berger, Michael F.; Davis, Matthew J.; Blumenstiel, Brendan; DeFelice, Matthew; Pochanard, Panisa; Ducar, Matthew; Van Hummelen, Paul; MacConaill, Laura E.; Hahn, William C.; Meyerson, Matthew; Gabriel, Stacey B.; Garraway, Levi A.

    2011-01-01

    Knowledge of “actionable” somatic genomic alterations present in each tumor (e.g., point mutations, small insertions/deletions, and copy number alterations that direct therapeutic options) should facilitate individualized approaches to cancer treatment. However, clinical implementation of systematic genomic profiling has rarely been achieved beyond limited numbers of oncogene point mutations. To address this challenge, we utilized a targeted, massively parallel sequencing approach to detect tumor genomic alterations in formalin-fixed, paraffin embedded (FFPE) tumor samples. Nearly 400-fold mean sequence coverage was achieved, and single nucleotide sequence variants, small insertions/deletions, and chromosomal copy number alterations were detected simultaneously with high accuracy compared to other methods in clinical use. Putatively actionable genomic alterations, including those that predict sensitivity or resistance to established and experimental therapies, were detected in each tumor sample tested. Thus, targeted deep sequencing of clinical tumor material may enable mutation-driven clinical trials and, ultimately, ”personalized” cancer treatment. PMID:22585170

  12. Phenobarbital Induces Alterations in the Proteome of Hepatocytes and Mesenchymal Cells of Rat Livers

    PubMed Central

    Klepeisz, Philip; Sagmeister, Sandra; Haudek-Prinz, Verena; Pichlbauer, Melanie; Grasl-Kraupp, Bettina; Gerner, Christopher

    2013-01-01

    Preceding studies on the mode of action of non-genotoxic hepatocarcinogens (NGCs) have concentrated on alterations induced in hepatocytes (HCs). A potential role of non-parenchymal liver cells (NPCs) in NGC-driven hepatocarcinogenesis has been largely neglected so far. The aim of this study is to characterize NGC-induced alterations in the proteome profiles of HCs as well as NPCs. We chose the prototypic NGC phenobarbital (PB) which was applied to male rats for a period of 14 days. The livers of PB-treated rats were perfused by collagenase and the cell suspensions obtained were subjected to density gradient centrifugation to separate HCs from NPCs. In addition, HCs and NPC isolated from untreated animals were treated with PB in vitro. Proteome profiling was done by CHIP-HPLC and ion trap mass spectrometry. Proteome analyses of the in vivo experiments showed many of the PB effects previously described in HCs by other methods, e.g. induction of phase I and phase II drug metabolising enzymes. In NPCs proteins related to inflammation and immune regulation such as PAI-1 and S100-A10, ADP-ribosyl cyclase 1 and to cell migration such as kinesin-1 heavy chain, myosin regulatory light chain RLC-A and dihydropyrimidinase-related protein 1 were found to be induced, indicating major PB effects on these cells. Remarkably, in vitro treatment of HCs and NPCs with PB hardly reproduced the proteome alterations observed in vivo, indicating differences of NGC induced responses of cells at culture conditions compared to the intact organism. To conclude, the present study clearly demonstrated that PB induces proteome alterations not only in HCs but also in NPCs. Thus, any profound molecular understanding on the mode of action of NGCs has to consider effects on cells of the hepatic mesenchyme. PMID:24204595

  13. Prenatal caffeine ingestion induces transgenerational neuroendocrine metabolic programming alteration in second generation rats

    SciTech Connect

    Luo, Hanwen; Deng, Zixin; Liu, Lian; Shen, Lang; Kou, Hao; He, Zheng; Ping, Jie; Xu, Dan; Ma, Lu; Chen, Liaobin; Wang, Hui

    2014-02-01

    Our previous studies have demonstrated that prenatal caffeine ingestion induces an increased susceptibility to metabolic syndrome with alterations of glucose and lipid metabolic phenotypes in adult first generation (F1) of intrauterine growth retardation (IUGR) rats, and the underlying mechanism is originated from a hypothalamic–pituitary–adrenal (HPA) axis-associated neuroendocrine metabolic programming alteration in utero. This study aims to investigate the transgenerational effects of this programming alteration in adult second generation (F2). Pregnant Wistar rats were administered with caffeine (120 mg/kg·d) from gestational day 11 until delivery. Four groups in F2 were set according to the cross-mating between control and caffeine-induced IUGR rats. F2 were subjected to a fortnight ice water swimming stimulus on postnatal month 4, and blood samples were collected before and after stress. Results showed that the majority of the activities of HPA axis and phenotypes of glucose and lipid metabolism were altered in F2. Particularly, comparing with the control group, caffeine groups had an enhanced corticosterone levels after chronic stress. Compared with before stress, the serum glucose levels were increased in some groups whereas the triglyceride levels were decreased. Furthermore, total cholesterol gain rates were enhanced but the high-density lipoprotein-cholesterol gain rates were decreased in most caffeine groups after stress. These transgenerational effects were characterized partially with gender and parental differences. Taken together, these results indicate that the reproductive and developmental toxicities and the neuroendocrine metabolic programming mechanism by prenatal caffeine ingestion have transgenerational effects in rats, which may help to explain the susceptibility to metabolic syndrome and associated diseases in F2. - Highlights: • Caffeine-induced neuroendocrine metabolic programming of HPA has hereditary effect. • Caffeine-induced

  14. Microcystin-LR and Cylindrospermopsin Induced Alterations in Chromatin Organization of Plant Cells

    PubMed Central

    Máthé, Csaba; M-Hamvas, Márta; Vasas, Gábor

    2013-01-01

    Cyanobacteria produce metabolites with diverse bioactivities, structures and pharmacological properties. The effects of microcystins (MCYs), a family of peptide type protein-phosphatase inhibitors and cylindrospermopsin (CYN), an alkaloid type of protein synthesis blocker will be discussed in this review. We are focusing mainly on cyanotoxin-induced changes of chromatin organization and their possible cellular mechanisms. The particularities of plant cells explain the importance of such studies. Preprophase bands (PPBs) are premitotic cytoskeletal structures important in the determination of plant cell division plane. Phragmoplasts are cytoskeletal structures involved in plant cytokinesis. Both cyanotoxins induce the formation of multipolar spindles and disrupted phragmoplasts, leading to abnormal sister chromatid segregation during mitosis. Thus, MCY and CYN are probably inducing alterations of chromosome number. MCY induces programmed cell death: chromatin condensation, nucleus fragmentation, necrosis, alterations of nuclease and protease enzyme activities and patterns. The above effects may be related to elevated reactive oxygen species (ROS) and/or disfunctioning of microtubule associated proteins. Specific effects: MCY-LR induces histone H3 hyperphosphorylation leading to incomplete chromatid segregation and the formation of micronuclei. CYN induces the formation of split or double PPB directly related to protein synthesis inhibition. Cyanotoxins are powerful tools in the study of plant cell organization. PMID:24084787

  15. [Cadmium-induced cytotoxicity and intracellular Ca2+ alteration in hepatocytes and protection by selenium].

    PubMed

    Wang, Sha Sha; Chen, Long; Xia, Shu Kai; Jiang, Shan Xiang

    2006-08-01

    Cadmium (Cd)-induced cytotoxicity and intracellular Ca2+ alteration ([Ca2+]i) in hepatocytes and intervention with selenium (Se) were studied to discuss mechanism of Cd-induced hepatocyte injury and protective effect by Se. Freshly primary culture hepatocytes isolated from neonatal mice were randomly divided into a normal control group, four treatment groups with cadmium chloride (CdCl2,5,25,100,250 micromol/L, respectively), two treatment groups with sodium selenite (Na2SeO3,10,20 micromol/L, respectively), and eight treatment groups with CdCl2 (5,25,100, 250 micromol/L,respectively) of administered Na2SeO3 (10,20 micromol/L, respectively). Hepatocyte viability and its malondialdehyde (MDA) content as well as lactate dehydrogenase (LDH) activity in cultured medium were assayed, and the intracellular free Ca2+ level ([Ca2+]i) in hepatocytes was detected with laser scanning confocal microscope (LSCM) at 12 h after treatment. The results showed that hepatocyte viability significantly decreased in Cd-exposed groups with dosages, and had no significant differences in Se-treated groups compared with that of control group. Administration of Se increased or obviously raised the viability in Cd-exposed hepatocytes. We observed a dose-dependent increase of LDH activity and significantly higher values in cultured medium of 100 and 250 micromol/L CdC12 groups compared with that in control group,while Se-treated groups had no significant change. LDH activity of administered Se in 25,100,250 micromol/L CdCl2 groups decreased or significant decreased, respectively. Different dosages of Cd induced significant elevation of MDA concentration in hepatocytes, but administration of Se to hepatocytes is incapable of eliciting the same consequences as Cd. 10 and 20 micromol/L Na2SeO3 inhibited or significantly reduced MDA production in hepatocytes induced by 25,100 and 250 micromol/L CdCl2, respectively. [Ca2+]i fluorescence intensity was significantly higher in Cd-exposed hepatocytes

  16. Metabolic alterations induced in cultured skeletal muscle by stretch-relaxation activity

    NASA Technical Reports Server (NTRS)

    Hatfaludy, Sophia; Shansky, Janet; Vandenburgh, Herman H.

    1989-01-01

    Muscle cells differentiated in vitro are repetitively stretched and relaxed in order to determine the presence of short- and long-term alterations occurring in glucose uptake and lactate efflux that are similar to the metabolic alterations occurring in stimulated organ-cultured muscle and in vivo skeletal muscle during the active state. It is observed that whereas mechanical stimulation increases these metabolic parameters within 4-6 h of starting activity, unstimulated basal rates in control cultures also increase during this period of time, and by 8 h, their rates have reached or exceeded the rates in continuously stimulated cells. Measurements of these parameters in media of different compositions show that activity-induced long-term alterations in the parameters occur independently of growth factors in serium and embryo extracts.

  17. Partial purification and characterization of an escherichia coli toxic factor that induces morphological cell alterations.

    PubMed Central

    Caprioli, A; Falbo, V; Roda, L G; Ruggeri, F M; Zona, C

    1983-01-01

    A factor produced by several strains of Escherichia coli isolated from enteritis-affected children has been shown to produce both a necrotizing effect on rabbit skin and striking morphological alterations on CHO, Vero, and HeLa cells. The same strains were found to have hemolytic activity on sheep erythrocytes. The toxic, cell-altering factor was demonstrated to be different from both heat-labile and heat-stable enterotoxins and from Vero toxin. The main effect induced by the isolated factor on cultured cells was the formation of large multinucleated cells. The partial purification achieved suggests that the same factor (most likely a protein with a molecular weight of 70,000 to 80,000) is responsible for toxic and cell-altering activities, whereas a different molecular species is responsible for hemolytic activity. Images PMID:6341235

  18. DNA demethylation caused by 5-Aza-2′-deoxycytidine induces mitotic alterations and aneuploidy

    PubMed Central

    Lentini, Laura; Cilluffo, Danilo; Di Leonardo, Aldo

    2016-01-01

    Aneuploidy, the unbalanced number of chromosomes in a cell, is considered a prevalent form of genetic instability and is largely acknowledged as a condition implicated in tumorigenesis. Epigenetic alterations like DNA hypomethylation have been correlated with cancer initiation/progression. Furthermore, a growing body of evidence suggests the involvement of epigenome-wide disruption as a cause of global DNA hypomethylation in aneuploidy generation. Here, we report that the DNA hypomethylating drug 5-aza-2′-deoxycytidine (DAC), affects the correct ploidy of nearly diploid HCT-116 human cells by altering the methylation pattern of the chromosomes. Specifically, we show that a DAC-induced reduction of 5-Methyl Cytosine at the pericentromeric region of chromosomes correlates with aneuploidy and mitotic defects. Our results suggest that DNA hypomethylation leads to aneuploidy by altering the DNA methylation landscape at the centromere that is necessary to ensure proper chromosomes segregation by recruiting the proteins necessary to build up a functional kinetochore. PMID:26771138

  19. Environmentally Induced Epigenetic Transgenerational Inheritance of Altered SRY Genomic Binding During Gonadal Sex Determination

    PubMed Central

    Skinner, Michael K.; Bhandari, Ramji K.; Haque, M. Muksitul; Nilsson, Eric E.

    2016-01-01

    A critical transcription factor required for mammalian male sex determination is SRY (sex determining region on the Y chromosome). The expression of SRY in precursor Sertoli cells is one of the initial events in testis development. The current study was designed to determine the impact of environmentally induced epigenetic transgenerational inheritance on SRY binding during gonadal sex determination in the male. The agricultural fungicide vinclozolin and vehicle control (DMSO) exposed gestating females (F0 generation) during gonadal sex determination promoted the transgenerational inheritance of differential DNA methylation in sperm of the F3 generation (great grand-offspring). The fetal gonads in F3 generation males were used to identify potential alterations in SRY binding sites in the developing Sertoli cells. Chromatin immunoprecipitation with an SRY antibody followed by genome-wide promoter tiling array (ChIP-Chip) was used to identify alterations in SRY binding. A total of 81 adjacent oligonucleotide sites and 173 single oligo SRY binding sites were identified to be altered transgenerationally in the Sertoli cell vinclozolin lineage F3 generation males. Observations demonstrate the majority of the previously identified normal SRY binding sites were not altered and the altered SRY binding sites were novel and new additional sites. The chromosomal locations, gene associations and potentially modified cellular pathways were investigated. In summary, environmentally induced epigenetic transgenerational inheritance of germline epimutations appears to alter the cellular differentiation and development of the precursor Sertoli cell SRY binding during gonadal sex determination that influence the developmental origins of adult onset testis disease. PMID:27175298

  20. Alteration patterns of trabecular bone microarchitectural characteristics induced by osteoarthritis over time

    PubMed Central

    Lee, Joo Hyung; Chun, Keyoung Jin; Kim, Han Sung; Kim, Sang Ho; Han, Paul; Jun, Yongtae; Lim, Dohyung

    2012-01-01

    Information regarding the alteration of trabecular bone microarchitecture, which is one of the important criteria to estimate bone condition, induced by osteoarthritis (OA) is sparse. The current study therefore aimed to identify and quantify patterns of alterations in trabecular bone microarchitectural characteristics at tibial epiphysis induced by OA using in vivo microcomputed tomography. Fourteen 8-week-old female Sprague Dawley rats were randomly divided into control (n = 7) and OA (n = 7) groups. Rats in the OA group were administered monoiodoacetate into the knee-joint cavity. The tibial joints were scanned by in vivo microcomputed tomography at 0, 4, and 8 weeks after administration. Two-way analysis of variance with Tukey’s honestly significant difference post hoc test was carried out for statistical analyses. The results showed that patterns of alterations in the trabecular bone microarchitectural characteristics in the OA group were not different from those in the control group from 0 to 4 weeks (P > 0.05), but differed from 4 to 8 weeks (P < 0.05). In particular, both trabecular bone thickness and trabecular bone separation distributions over time (4–8 weeks) differed significantly (P < 0.05). These findings suggest that the patterns of bone microarchitecture changes brought about by OA should be periodically considered in the diagnosis and management of arthritic symptoms over time. Improved understanding of the alteration pattern on trabecular bone microarchitecture may assist in developing more targeted treatment interventions for OA. PMID:22956865

  1. Gender differences in alcohol-induced oxidative stress and altered membrane properties in erythrocytes of rats.

    PubMed

    Reddy, Kindinti Rameshwar; Reddy, Vaddi Damodara; Padmavathi, Pannuru; Kavitha, Godugu; Saradamma, Bulle; Varadacharyulu, N C

    2013-02-01

    Alcohol-induced oxidative stress leads to imbalance between reactive oxygen species (ROS) and the antioxidant defense system, resulting in oxidative damage to membrane components such as lipids and proteins, ultimately altering membrane properties. In this study, we assessed oxidative stress status and alterations in erythrocyte membrane properties in alcohol-administered rats with respect to gender difference. Alcohol (20% v/v) administered rats of both genders showed significant changes in plasma lipid profile with elevated nitrite/nitrate levels. Furthermore, alcohol-administration significantly decreased erythrocyte antioxidant enzymes and enhanced erythrocyte membrane lipid peroxidation, cholesterol/phospholipid (C/P) ratio and Na+/K(+)-ATPase activity in both males and females. Besides, anisotropic studies revealed that alcohol-administration significantly decreased erythrocyte membrane fluidity. In conclusion, alcohol-administration significantly increased oxidative stress by decreasing antioxidant status, and subsequent generation of ROS altered membrane properties by altering fluidity and Na+/K(+)-ATPase activity. Female rats were more vulnerable to alcohol-induced biochemical and biophysical changes in plasma and erythrocyte including oxidative stress than male rats. PMID:23617072

  2. Anthropogenic habitat alteration induces rapid morphological divergence in a native stream fish

    PubMed Central

    Franssen, Nathan R

    2011-01-01

    Anthropogenic habitat alteration creates novel environments that can alter selection pressures. Construction of reservoirs worldwide has disturbed riverine ecosystems by altering biotic and abiotic environments of impounded streams. Changes to fish communities in impoundments are well documented, but effects of those changes on native species persisting in reservoirs, which are presumably subjected to novel selective pressures, are largely unexplored. I assessed body shape variation of a native stream fish in reservoir habitats and streams from seven reservoir basins in the Central Plains of the USA. Body shape significantly and consistently diverged in reservoirs compared with stream habitats within reservoir basins; individuals from reservoir populations were deeper-bodied and had smaller heads compared with stream populations. Individuals from reservoir habitats also exhibited lower overall shape variation compared with stream individuals. I assessed the contribution of genotypic divergence and predator-induced phenotypic plasticity on body shape variation by rearing offspring from a reservoir and a stream population with or without a piscivorous fish. Significant population-level differences in body shape persisted in offspring, and both populations demonstrated similar predator-induced phenotypic plasticity. My results suggest that, although components of body shape are plastic, anthropogenic habitat modification may drive trait divergence in native fish populations in reservoir-altered habitats. PMID:25568023

  3. In vitro radiation induced alterations in heavy metals and metallothionein content in Plantago ovata Forsk.

    PubMed

    Saha, Priyanka; Mishra, Debadutta; Chakraborty, Anindita; Sudarshan, Mathummal; Raychaudhuri, Sarmistha Sen

    2008-09-01

    Proton Induced X-ray emission (PIXE) and fluorescence-activated cell sorting (FACS) have been used to study the effects of gamma irradiation on heavy metal accumulation in callus tissue of Plantago ovata-an important cash crop of India. PIXE analysis revealed radiation-induced alteration in trace element profile during developmental stages of the callus of P. ovata. Subsequent experiments showed antagonism between Fe and Cu and also Cu and Zn and synergistic effect between Fe and Zn. FACS analysis showed significant induction of the metallothionein (MT) protein following gamma-irradiation, and maximum induction was noted at the 50-Gy absorbed dose. This indicated a progressive increment of MTs as a measure for protection against gamma-rays, to combat alteration in the homeostasis of heavy metals like Fe, Cu, Zn, and Mn. PMID:18493724

  4. Cytokine factors present in dengue patient sera induces alterations of junctional proteins in human endothelial cells.

    PubMed

    Appanna, Ramapraba; Wang, Seok Mui; Ponnampalavanar, Sasheela A; Lum, Lucy Chai See; Sekaran, Shamala Devi

    2012-11-01

    Plasma leakage in severe dengue has been postulated to be associated with skewed cytokine immune responses. In this study, the association of cytokines with vascular permeability in dengue patients was investigated. Human serum samples collected from 48 persons (13 with dengue fever, 29 with dengue hemorrhagic fever, and 6 healthy) were subjected to cytokines analysis by using Luminex Multiplex Technology. Selected serum samples from patients with dengue hemorrhagic fever sera and recombinant human cytokines were then tested for roles on inducing vascular permeability by treatment of human umbilical vein endothelial cells. Confocal immunofluorescence staining indicated morphologic alteration of human umbilical vein endothelial cells treated with serum samples from patients with dengue hemorrhagic fever compared with serum samples from healthy persons. The findings suggest that cytokines produced during dengue hemorrhagic infections could induce alterations in the vascular endothelium, which may play a fundamental role in the pathophysiology of dengue. PMID:22987650

  5. Retinoic acid metabolism proteins are altered in trichoblastomas induced by mouse papillomavirus 1.

    PubMed

    Everts, Helen B; Suo, Liye; Ghim, Shinge; Bennett Jenson, A; Sundberg, John P

    2015-12-01

    Skin cancer burden is significant as treatment costs have skyrocketed to $8.1 million annually and some forms metastasize, such as cutaneous squamous cell carcinoma (cSCC) and melanoma. cSCC is caused by altered growth factor signaling induced by chemical carcinogens, ultraviolet light (UV) exposure, and infections with papillomaviruses (PVs). One of the few options for preventing cSCC in high-risk patients is oral retinoids. While much is understood about retinoid treatments and metabolism in mouse models of chemically and UV exposure induced cSCC, little is known about the role of retinoids in PV-induced cSCC. To better understand how retinoid metabolism is altered in cSCC, we examined the expression of this pathway in the newly discovered mouse papillomavirus (MmuPV1), which produces trichoblastomas in dorsal skin but not cSCC. We found significant increases in a rate-limiting enzyme involved in retinoic acid synthesis and retinoic acid binding proteins, suggestive of increased RA synthesis, in MmuPV1-induced tumors in B6.Cg-Foxn1(nu)/J mice. Similar increases in these proteins were seen after acute UVB exposure in Crl:SKH1-Hr(hr) mice and in regressing pre-cancerous lesions in a chemically-induced mouse model, suggesting a common mechanism in limiting the progression of papillomas to full blown cSCC. PMID:26416148

  6. Modification of mercury-induced biochemical alterations by Triticum Aestivum Linn in rats.

    PubMed

    Lakshmi, B V S; Sudhakar, M; Nireesha, G

    2014-01-01

    The present investigation has been undertaken to evaluate role of Wheat grass extract in modifying mercury-induced biochemical alterations in albino rats. Mercuric chloride 5 mg/kg body weight i.p. was given on 11, 13 & 15th day of the experiment. Wheat grass extract (400 mg/kg) and Quercetin (10 mg/kg) were administered 10 days before mercuric chloride administration and continued up to 30 days after mercuric chloride administration. The animals were sacrificed on 1, 15 and 30 days, the activity of serum alkaline and acid phosphatase and the iron, calcium, BUN, creatinine, SGPT, SGOT, total bilirubin, total protein levels were measured. Tissue lipid peroxidation content, glutathione (GSH) level, anti-oxidant enzymes- CAT and GR were measured. Hematological indices were also estimated. Mercury intoxication causes significant increase (P < 0.001) in calcium level, acid phosphatase, BUN, creatinine, SGOT, SGPT, total bilirubin, lipid peroxidation content and significant decrease in iron level, alkaline phosphatase, total protein, and CAT, GR and glutathione level. Wheat grass extract pre- and post-treatment ameliorated mercury-induced alterations in terms of biochemical and hematological parameters. Concomitant treatment of Wheatgrass extract with Mercury showed prominent recovery and normal architecture with mild residual degeneration in the tissues. Thus from present investigation, it can be concluded that Wheat grass extract pre- and post-treatment with HgCl2 significantly modulate or modify mercury-induced biochemical alteration in albino rats. PMID:26215012

  7. Altered heart rate dynamics associated with antipsychotic-induced subjective restlessness in patients with schizophrenia

    PubMed Central

    Kim, Jong-Hoon; Ann, Jun-Hyung; Lee, Jinyoung; Kim, Mee-Hee; Han, Ah-Young

    2013-01-01

    Background Antipsychotic-induced subjective inner restlessness is one of the common and distressing adverse effects associated with antipsychotics; however, its underlying neurobiological basis is not well understood. We examined the relationship between antipsychotic-induced subjective inner restlessness and autonomic neurocardiac function. Methods Twenty-two schizophrenia patients with antipsychotic-induced subjective restlessness, 28 schizophrenia patients without antipsychotic-induced subjective restlessness, and 28 matched healthy control subjects were evaluated. Assessments of the linear and nonlinear complexity measures of heart rate dynamics were performed. Multivariate analysis of variance and correlation analysis were conducted. Results The mean interbeat (RR) interval value was significantly higher in control subjects than in patients with and without antipsychotic-induced subjective restlessness (P < 0.05). The low frequency/high frequency ratio was significantly higher in patients with antipsychotic-induced subjective restlessness than in control subjects and in patients without antipsychotic-induced subjective restlessness (P < 0.05), while the approximate entropy value was significantly lower in patients with antipsychotic-induced subjective restlessness than in control subjects and in patients without antipsychotic-induced subjective restlessness (P < 0.05). Correlation analyses controlling for psychotic symptom severity showed that the degree of antipsychotic-induced restlessness had a significant negative correlation with the value of approximate entropy (P < 0.05). Conclusion The results indicate that antipsychotic-induced subjective restlessness is associated with altered heart rate dynamics parameters, particularly the nonlinear complexity measure, suggesting that it might adversely affect autonomic neurocardiac integrity. Further prospective research is necessary to elucidate the precise interrelationships and causality. PMID:23986638

  8. RhoA GTPase regulates radiation-induced alterations in endothelial cell adhesion and migration

    SciTech Connect

    Rousseau, Matthieu; Gaugler, Marie-Helene; Rodallec, Audrey; Bonnaud, Stephanie; Paris, Francois; Corre, Isabelle

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer We explore the role of RhoA in endothelial cell response to ionizing radiation. Black-Right-Pointing-Pointer RhoA is rapidly activated by single high-dose of radiation. Black-Right-Pointing-Pointer Radiation leads to RhoA/ROCK-dependent actin cytoskeleton remodeling. Black-Right-Pointing-Pointer Radiation-induced apoptosis does not require the RhoA/ROCK pathway. Black-Right-Pointing-Pointer Radiation-induced alteration of endothelial adhesion and migration requires RhoA/ROCK. -- Abstract: Endothelial cells of the microvasculature are major target of ionizing radiation, responsible of the radiation-induced vascular early dysfunctions. Molecular signaling pathways involved in endothelial responses to ionizing radiation, despite being increasingly investigated, still need precise characterization. Small GTPase RhoA and its effector ROCK are crucial signaling molecules involved in many endothelial cellular functions. Recent studies identified implication of RhoA/ROCK in radiation-induced increase in endothelial permeability but other endothelial functions altered by radiation might also require RhoA proteins. Human microvascular endothelial cells HMEC-1, either treated with Y-27632 (inhibitor of ROCK) or invalidated for RhoA by RNA interference were exposed to 15 Gy. We showed a rapid radiation-induced activation of RhoA, leading to a deep reorganisation of actin cytoskeleton with rapid formation of stress fibers. Endothelial early apoptosis induced by ionizing radiation was not affected by Y-27632 pre-treatment or RhoA depletion. Endothelial adhesion to fibronectin and formation of focal adhesions increased in response to radiation in a RhoA/ROCK-dependent manner. Consistent with its pro-adhesive role, ionizing radiation also decreased endothelial cells migration and RhoA was required for this inhibition. These results highlight the role of RhoA GTPase in ionizing radiation-induced deregulation of essential endothelial

  9. Prenatal stress-induced alterations in major physiological systems correlate with gut microbiota composition in adulthood.

    PubMed

    Golubeva, Anna V; Crampton, Sean; Desbonnet, Lieve; Edge, Deirdre; O'Sullivan, Orla; Lomasney, Kevin W; Zhdanov, Alexander V; Crispie, Fiona; Moloney, Rachel D; Borre, Yuliya E; Cotter, Paul D; Hyland, Niall P; O'Halloran, Ken D; Dinan, Timothy G; O'Keeffe, Gerard W; Cryan, John F

    2015-10-01

    Early-life adverse experiences, including prenatal stress (PNS), are associated with a higher prevalence of neurodevelopmental, cardiovascular and metabolic disorders in affected offspring. Here, in a rat model of chronic PNS, we investigate the impact of late gestational stress on physiological outcomes in adulthood. Sprague-Dawley pregnant dams were subjected to repeated restraint stress from embryonic day 14 to day 20, and their male offspring were assessed at 4 months of age. PNS induced an exaggeration of the hypothalamic-pituitary-adrenal (HPA) axis response to stress, as well as an elevation of blood pressure and impairment of cognitive function. Altered respiratory control was also observed, as demonstrated by increased variability in basal respiratory frequency and abnormal frequency responses to both hypoxic and hypercapnic challenges. PNS also affected gastrointestinal neurodevelopment and function, as measured by a decrease in the innervation density of distal colon and an increase in the colonic secretory response to catecholaminergic stimulation. Finally, PNS induced long lasting alterations in the intestinal microbiota composition. 16S rRNA gene 454 pyrosequencing revealed a strong trend towards decreased numbers of bacteria in the Lactobacillus genus, accompanied by elevated abundance of the Oscillibacter, Anaerotruncus and Peptococcus genera in PNS animals. Strikingly, relative abundance of distinct bacteria genera significantly correlated with certain respiratory parameters and the responsiveness of the HPA axis to stress. Together, these findings provide novel evidence that PNS induces long-term maladaptive alterations in the gastrointestinal and respiratory systems, accompanied by hyper-responsiveness to stress and alterations in the gut microbiota. PMID:26135201

  10. In Situ Biospectroscopic Investigation of Rapid Ischemic and Postmortem Induced Biochemical Alterations in the Rat Brain

    PubMed Central

    2015-01-01

    Rapid advances in imaging technologies have pushed novel spectroscopic modalities such as Fourier transform infrared spectroscopy (FTIR) and X-ray absorption spectroscopy (XAS) at the sulfur K-edge to the forefront of direct in situ investigation of brain biochemistry. However, few studies have examined the extent to which sample preparation artifacts confound results. Previous investigations using traditional analyses, such as tissue dissection, homogenization, and biochemical assay, conducted extensive research to identify biochemical alterations that occur ex vivo during sample preparation. In particular, altered metabolism and oxidative stress may be caused by animal death. These processes were a concern for studies using biochemical assays, and protocols were developed to minimize their occurrence. In this investigation, a similar approach was taken to identify the biochemical alterations that are detectable by two in situ spectroscopic methods (FTIR, XAS) that occur as a consequence of ischemic conditions created during humane animal killing. FTIR and XAS are well suited to study markers of altered metabolism such as lactate and creatine (FTIR) and markers of oxidative stress such as aggregated proteins (FTIR) and altered thiol redox (XAS). The results are in accordance with previous investigations using biochemical assays and demonstrate that the time between animal death and tissue dissection results in ischemic conditions that alter brain metabolism and initiate oxidative stress. Therefore, future in situ biospectroscopic investigations utilizing FTIR and XAS must take into consideration that brain tissue dissected from a healthy animal does not truly reflect the in vivo condition, but rather reflects a state of mild ischemia. If studies require the levels of metabolites (lactate, creatine) and markers of oxidative stress (thiol redox) to be preserved as close as possible to the in vivo condition, then rapid freezing of brain tissue via decapitation into

  11. Dramatyping: a generic algorithm for detecting reasonable temporal correlations between drug administration and lab value alterations.

    PubMed

    Newe, Axel

    2016-01-01

    According to the World Health Organization, one of the criteria for the standardized assessment of case causality in adverse drug reactions is the temporal relationship between the intake of a drug and the occurrence of a reaction or a laboratory test abnormality. This article presents and describes an algorithm for the detection of a reasonable temporal correlation between the administration of a drug and the alteration of a laboratory value course. The algorithm is designed to process normalized lab values and is therefore universally applicable. It has a sensitivity of 0.932 for the detection of lab value courses that show changes in temporal correlation with the administration of a drug and it has a specificity of 0.967 for the detection of lab value courses that show no changes. Therefore, the algorithm is appropriate to screen the data of electronic health records and to support human experts in revealing adverse drug reactions. A reference implementation in Python programming language is available. PMID:27042396

  12. Dramatyping: a generic algorithm for detecting reasonable temporal correlations between drug administration and lab value alterations

    PubMed Central

    2016-01-01

    According to the World Health Organization, one of the criteria for the standardized assessment of case causality in adverse drug reactions is the temporal relationship between the intake of a drug and the occurrence of a reaction or a laboratory test abnormality. This article presents and describes an algorithm for the detection of a reasonable temporal correlation between the administration of a drug and the alteration of a laboratory value course. The algorithm is designed to process normalized lab values and is therefore universally applicable. It has a sensitivity of 0.932 for the detection of lab value courses that show changes in temporal correlation with the administration of a drug and it has a specificity of 0.967 for the detection of lab value courses that show no changes. Therefore, the algorithm is appropriate to screen the data of electronic health records and to support human experts in revealing adverse drug reactions. A reference implementation in Python programming language is available. PMID:27042396

  13. 13C-phenylalanine breath test detects altered phenylalanine kinetics in schizophrenia patients.

    PubMed

    Teraishi, T; Ozeki, Y; Hori, H; Sasayama, D; Chiba, S; Yamamoto, N; Tanaka, H; Iijima, Y; Matsuo, J; Kawamoto, Y; Kinoshita, Y; Hattori, K; Ota, M; Kajiwara, M; Terada, S; Higuchi, T; Kunugi, H

    2012-01-01

    Phenylalanine is an essential amino acid required for the synthesis of catecholamines including dopamine. Altered levels of phenylalanine and its metabolites in blood and cerebrospinal fluid have been reported in schizophrenia patients. This study attempted to examine for the first time whether phenylalanine kinetics is altered in schizophrenia using L-[1-(13)C]phenylalanine breath test ((13)C-PBT). The subjects were 20 chronically medicated schizophrenia patients (DSM-IV) and the same number of age- and sex-matched controls. (13)C-phenylalanine (99 atom% (13)C; 100 mg) was administered orally and the breath (13)CO(2) /(12)CO(2) ratio was monitored for 120 min. The possible effect of antipsychotic medication (risperidone (RPD) or haloperidol (HPD) treatment for 21 days) on (13)C-PBT was examined in rats. Body weight (BW), age and diagnostic status were significant predictors of the area under the curve of the time course of Δ(13)CO(2) (‰) and the cumulative recovery rate (CRR) at 120 min. A repeated measures analysis of covariance controlled for age and BW revealed that the patterns of CRR change over time differed between the patients and controls and that Δ(13)CO(2) was lower in the patients than in the controls at all sampling time points during the 120 min test, with an overall significant difference between the two groups. Chronic administration of RPD or HPD had no significant effect on (13)C-PBT indices in rats. Our results suggest that (13)C-PBT is a novel laboratory test that can detect altered phenylalanine kinetics in chronic schizophrenia patients. Animal experiments suggest that the observed changes are unlikely to be attributable to antipsychotic medication. PMID:22832963

  14. Molecular basis for T cell response induced by altered peptide ligand of type II collagen.

    PubMed

    Park, Jeoung-Eun; Cullins, David; Zalduondo, Lillian; Barnett, Stacey L; Yi, Ae-Kyung; Kleinau, Sandra; Stuart, John M; Kang, Andrew H; Myers, Linda K

    2012-06-01

    Mounting evidence from animal models has demonstrated that alterations in peptide-MHC interactions with the T cell receptor (TCR) can lead to dramatically different T cell outcomes. We have developed an altered peptide ligand of type II collagen, referred to as A9, which differentially regulates TCR signaling in murine T cells leading to suppression of arthritis in the experimental model of collagen-induced arthritis. This study delineates the T cell signaling pathway used by T cells stimulated by the A9·I-A(q) complex. We have found that T cells activated by A9 bypass the requirement for Zap-70 and CD3-ζ and signal via FcRγ and Syk. Using collagen-specific T cell hybridomas engineered to overexpress either Syk, Zap-70, TCR-FcRγ, or CD3-ζ, we demonstrate that A9·I-A(q) preferentially activates FcRγ/Syk but not CD3-ζ/Zap-70. Moreover, a genetic absence of Syk or FcRγ significantly reduces the altered peptide ligand induction of the nuclear factor GATA3. By dissecting the molecular mechanism of A9-induced T cell signaling we have defined a new alternate pathway that is dependent upon FcRγ and Syk to secrete immunoregulatory cytokines. Given the interest in using Syk inhibitors to treat patients with rheumatoid arthritis, understanding this pathway may be critical for the proper application of this therapy. PMID:22511761

  15. Regional alterations of type I collagen in rat tibia induced by skeletal unloading

    NASA Technical Reports Server (NTRS)

    Shiiba, Masashi; Arnaud, Sara B.; Tanzawa, Hideki; Kitamura, Eiji; Yamauchi, Mitsuo

    2002-01-01

    Skeletal unloading induces loss of mineral density in weight-bearing bones that leads to inferior bone mechanical strength. This appears to be caused by a failure of bone formation; however, its mechanisms still are not well understood. The objective of this study was to characterize collagen, the predominant matrix protein in bone, in various regions of tibia of rats that were subjected to skeletal unloading by 4 weeks tail suspension. Sixteen male Sprague-Dawley rats (4 months old) were divided into tail suspension and ambulatory controls (eight rats each). After the tail suspension, tibias from each animal were collected and divided into five regions and collagen was analyzed. The collagen cross-linking and the extent of lysine (Lys) hydroxylation in unloaded bones were significantly altered in proximal epiphysis, diaphysis, and, in particular, proximal metaphysis but not in distal regions. The pool of immature/nonmineralized collagen measured by its extractability with a chaotropic solvent was significantly increased in proximal metaphysis. These results suggest that skeletal unloading induced an accumulation of post-translationally altered nonmineralized collagen and that these changes are bone region specific. These alterations might be caused by impaired osteoblastic function/differentiation resulting in a mineralization defect.

  16. Epilepsy-induced electrocardiographic alterations following cardiac ischemia and reperfusion in rats

    PubMed Central

    Tavares, J.G.P.; Vasques, E.R.; Arida, R.M.; Cavalheiro, E.A.; Cabral, F.R.; Torres, L.B.; Menezes-Rodrigues, F.S.; Jurkiewicz, A.; Caricati-Neto, A.; Godoy, C.M.G.; Gomes da Silva, S.

    2015-01-01

    The present study evaluated electrocardiographic alterations in rats with epilepsy submitted to an acute myocardial infarction (AMI) model induced by cardiac ischemia and reperfusion. Rats were randomly divided into two groups: control (n=12) and epilepsy (n=14). It was found that rats with epilepsy presented a significant reduction in atrioventricular block incidence following the ischemia and reperfusion procedure. In addition, significant alterations were observed in electrocardiogram intervals during the stabilization, ischemia, and reperfusion periods of rats with epilepsy compared to control rats. It was noted that rats with epilepsy presented a significant increase in the QRS interval during the stabilization period in relation to control rats (P<0.01). During the ischemia period, there was an increase in the QRS interval (P<0.05) and a reduction in the P wave and QT intervals (P<0.05 for both) in rats with epilepsy compared to control rats. During the reperfusion period, a significant reduction in the QT interval (P<0.01) was verified in the epilepsy group in relation to the control group. Our results indicate that rats submitted to an epilepsy model induced by pilocarpine presented electrical conductivity alterations of cardiac tissue, mainly during an AMI episode. PMID:25590352

  17. Rifaximin Alters Intestinal Bacteria and Prevents Stress-Induced Gut Inflammation and Visceral Hyperalgesia in Rats

    PubMed Central

    Xu, Dabo; Gao, Jun; Gillilland, Merritt; Wu, Xiaoyin; Song, Il; Kao, John Y.; Owyang, Chung

    2014-01-01

    Background & Aims Rifaximin is used to treat patients with functional gastrointestinal disorders, but little is known about its therapeutic mechanism. We propose that rifaximin modulates the ileal bacterial community, reduces subclinical inflammation of the intestinal mucosa, and improves gut barrier function to reduce visceral hypersensitivity. Methods We induced visceral hyperalgesia in rats, via chronic water avoidance or repeat restraint stressors, and investigated whether rifaximin altered the gut microbiota, prevented intestinal inflammation, and improved gut barrier function. Quantitative polymerase chain reaction and 454 pyrosequencing were used to analyze bacterial 16S rRNA in ileal contents from the rats. Reverse transcription, immunoblot, and histologic analyses were used to evaluate levels of cytokines, the tight junction protein occludin, and mucosal inflammation, respectively. Intestinal permeability and rectal sensitivity were measured. Results Water avoidance and repeat restraint stress each led to visceral hyperalgesia, accompanied by mucosal inflammation and impaired mucosal barrier function. Oral rifaximin altered the composition of bacterial communities in the ileum (Lactobacillus species became the most abundant) and prevented mucosal inflammation, impairment to intestinal barrier function, and visceral hyperalgesia in response to chronic stress. Neomycin also changed the composition of the ileal bacterial community (Proteobacteria became the most abundant species). Neomycin did not prevent intestinal inflammation or induction of visceral hyperalgesia induced by water avoidance stress. Conclusions Rifaximin alters the bacterial population in the ileum of rats, leading to a relative abundance of Lactobacillus. These changes prevent intestinal abnormalities and visceral hyperalgesia in response to chronic psychological stress. PMID:24161699

  18. Alterations in left ventricular diastolic function in conscious dogs with pacing-induced heart failure

    NASA Technical Reports Server (NTRS)

    Komamura, K.; Shannon, R. P.; Pasipoularides, A.; Ihara, T.; Lader, A. S.; Patrick, T. A.; Bishop, S. P.; Vatner, S. F.

    1992-01-01

    We investigated in conscious dogs (a) the effects of heart failure induced by chronic rapid ventricular pacing on the sequence of development of left ventricular (LV) diastolic versus systolic dysfunction and (b) whether the changes were load dependent or secondary to alterations in structure. LV systolic and diastolic dysfunction were evident within 24 h after initiation of pacing and occurred in parallel over 3 wk. LV systolic function was reduced at 3 wk, i.e., peak LV dP/dt fell by -1,327 +/- 105 mmHg/s and ejection fraction by -22 +/- 2%. LV diastolic dysfunction also progressed over 3 wk of pacing, i.e., tau increased by +14.0 +/- 2.8 ms and the myocardial stiffness constant by +6.5 +/- 1.4, whereas LV chamber stiffness did not change. These alterations were associated with increases in LV end-systolic (+28.6 +/- 5.7 g/cm2) and LV end-diastolic stresses (+40.4 +/- 5.3 g/cm2). When stresses and heart rate were matched at the same levels in the control and failure states, the increases in tau and myocardial stiffness were no longer observed, whereas LV systolic function remained depressed. There were no increases in connective tissue content in heart failure. Thus, pacing-induced heart failure in conscious dogs is characterized by major alterations in diastolic function which are reversible with normalization of increased loading condition.

  19. Alterations in left ventricular diastolic function in conscious dogs with pacing-induced heart failure.

    PubMed Central

    Komamura, K; Shannon, R P; Pasipoularides, A; Ihara, T; Lader, A S; Patrick, T A; Bishop, S P; Vatner, S F

    1992-01-01

    We investigated in conscious dogs (a) the effects of heart failure induced by chronic rapid ventricular pacing on the sequence of development of left ventricular (LV) diastolic versus systolic dysfunction and (b) whether the changes were load dependent or secondary to alterations in structure. LV systolic and diastolic dysfunction were evident within 24 h after initiation of pacing and occurred in parallel over 3 wk. LV systolic function was reduced at 3 wk, i.e., peak LV dP/dt fell by -1,327 +/- 105 mmHg/s and ejection fraction by -22 +/- 2%. LV diastolic dysfunction also progressed over 3 wk of pacing, i.e., tau increased by +14.0 +/- 2.8 ms and the myocardial stiffness constant by +6.5 +/- 1.4, whereas LV chamber stiffness did not change. These alterations were associated with increases in LV end-systolic (+28.6 +/- 5.7 g/cm2) and LV end-diastolic stresses (+40.4 +/- 5.3 g/cm2). When stresses and heart rate were matched at the same levels in the control and failure states, the increases in tau and myocardial stiffness were no longer observed, whereas LV systolic function remained depressed. There were no increases in connective tissue content in heart failure. Thus, pacing-induced heart failure in conscious dogs is characterized by major alterations in diastolic function which are reversible with normalization of increased loading condition. Images PMID:1601992

  20. Genetic and epigenetic alterations induced by different levels of rye genome integration in wheat recipient.

    PubMed

    Zheng, X L; Zhou, J P; Zang, L L; Tang, A T; Liu, D Q; Deng, K J; Zhang, Y

    2016-01-01

    The narrow genetic variation present in common wheat (Triticum aestivum) varieties has greatly restricted the improvement of crop yield in modern breeding systems. Alien addition lines have proven to be an effective means to broaden the genetic diversity of common wheat. Wheat-rye addition lines, which are the direct bridge materials for wheat improvement, have been wildly used to produce new wheat cultivars carrying alien rye germplasm. In this study, we investigated the genetic and epigenetic alterations in two sets of wheat-rye disomic addition lines (1R-7R) and the corresponding triticales. We used expressed sequence tag-simple sequence repeat, amplified fragment length polymorphism, and methylation-sensitive amplification polymorphism analyses to analyze the effects of the introduction of alien chromosomes (either the entire genome or sub-genome) to wheat genetic background. We found obvious and diversiform variations in the genomic primary structure, as well as alterations in the extent and pattern of the genomic DNA methylation of the recipient. Meanwhile, these results also showed that introduction of different rye chromosomes could induce different genetic and epigenetic alterations in its recipient, and the genetic background of the parents is an important factor for genomic and epigenetic variation induced by alien chromosome addition. PMID:27323191

  1. Role of neutrophilic inflammation in ozone-induced epithelial alterations in the nasal airways of rats

    NASA Astrophysics Data System (ADS)

    Cho, Hye Youn

    Ozone is a principal oxidant air pollutant in photochemical smog. Epithelial cells lining the centriacinar region of lung and the proximal aspects of nasal passage are primary target sites for ozone-induced injury in laboratory animals. Acute exposure of rats to high ambient concentrations of ozone (e.g., 0.5 ppm) results in neutrophilic inflammation, epithelial hyperplasia and mucous cell metaplasia (MCM) in the nasal transitional epithelium (NTE) lining the proximal nasal airways. The principal purpose of the present study was to investigate the role of pre-metaplastic cellular responses, especially neutrophilic inflammation, in the pathogenesis of ozone-induced MCM in rat NTE. For this purpose, three specific hypotheses-based whole-animal inhalation studies were conducted. Male F344/N rats were exposed in whole-body inhalation chambers to 0 (filtered air) or 0.5 ppm ozone for 1-3 days (8 h/day). Histochemical, immunochemical, molecular and morphometric techniques were used to investigate the ozone-induced cellular and molecular events in the NTE. Two in vitro studies were also conducted to examine the effects of ozone-inducible cytokines (i.e., tumor necrosis factor-alpha; TNF- a, and interleukin-6; IL-6) on mucin gene (rMuc-5AC) expression. Ozone induced a rapid increase of rMuc-5AC mRNA in nasal tissues within hours after the start of exposure. It preceded the appearance of MCM, and persisted with MCM. Ozone-induced neutrophilic inflammation accompanied the mucin gene upregulation, but was resolved when MCM first appeared in the NTE. Antibody-mediated depletion of circulating neutrophils attenuated ozone-induced MCM, although it did not affect the ozone-induced epithelial hyperplasia and mucin mRNA upregulation. In another study, it was found that preexisting neutrophilic rhinitis induced by endotoxin augmented the ozone-induced MCM. However, pre-existing rhinitis did not alter the severity of ozone-induced epithelial hyperplasia and mucin gene upregulation

  2. Gamma radiation alters cell cycle and induces apoptosis in p53 mutant E6.1 Jurkat cells.

    PubMed

    Ahmadianpour, Mohammad Reza; Abdolmaleki, Parviz; Mowla, Seyed Javad; Hosseinkhani, Saman

    2013-01-01

    This study aimed at investigating the effect of gamma radiation with 1.5, 3.0 and 7.5 Gy doses on apoptosis induction, cell cycle alteration and increment of amount of p-ATM (phosphorylated ATM) and p-E2F1 (phosphorylated E2F1) proteins in Jurkat T-lymphoblastoid E6.1 cells. Exposure of human p53 mutant Jurkat cells to gamma radiation resulted in apoptosis, which was detected by luminometric and flow cytometric analysis. Also, phosphorylated ATM (ataxia telangiectasia mutated) and E2F1 (elongation factor) proteins were detected by western blot analysis. Based on luminescence detection data the lethal dose of 7.5 Gy induced cell death 12 h after exposure (p<0.05) while sub-lethal doses of 1.5 and 3.0 Gy induced apoptosis 18 h after exposure (p<0.05). Flow cytometric analysis revealed a G2 arrest 24h after exposure to 3.0 and 7.5 Gy. This arrest was accompanied by cell death with an increasing rate of occurrence up to 72 h after exposure. Western blot analysis showed that 1 h after cell irradiation by 1.5, 3.0 and 7.5 Gy, the amount of p-ATM increased to its maximum rate and remained constant up to 6 h, and then it decreased. Moreover, the amount of phosphorylated E2F1 (Ser-31) increased 2 h after exposure to the same doses and remained constant up to 12 h after irradiation. Survival and cell division of treated Jurkat cells showed a decrease compared to the control group. We believe that ionizing radiation-induced DNA damage activates a p53-independent apoptosis pathway via back-up systems in which the phosphorylation of ATM and E2F1 proteins was involved. Thus, gamma radiation can induce apoptosis and cell cycle alteration in Jurkat cells via a P53-independent pathway. PMID:23079488

  3. Gold nanostar based biosensor detects epigenetic alterations on promoter of real cells.

    PubMed

    Nguyen, Anh H; Ma, Xingyi; Sim, Sang Jun

    2015-04-15

    Epigenetic changes, particularly in cancer suppressor genes, are novel biomarkers for cancer diagnostics and therapeutics. However, epigenetic studies should not only provide an estimation of the amount of 5-methylcytosine, but also examine the presence of epigenetic proteins to reveal the complete epigenetic alterations for downstream molecular process. The challenge of natural epigenetics is to unveil key factors of epigenetics in one assay, containing low concentrations. This would be valuable for the monitoring of early-stage cancer. On the basic of the nanoplasmonic biosensor, here we report a sensitive sensor to study epigenetics of DNA promoter. The results show detection limit for dual epigenetic biomarkers methyl-CpG group and methyl-CpG binding domain protein 2 (MBD2) are one 5-methylcytosine molecule and 125fM MBD2. Moreover, DNA structure bending, steric competition under interaction of epigenetic proteins and transcription factors; and epigenetics-mediated suppression of transcription are observed during epigenetic alterations. This study provides a platform for full story of epigenetics, as compared with that of methylcytosine-based techniques only. PMID:25500525

  4. Detection of time-varying harmonic amplitude alterations due to spectral interpolations between musical instrument tones.

    PubMed

    Horner, Andrew B; Beauchamp, James W; So, Richard H Y

    2009-01-01

    Gradated spectral interpolations between musical instrument tone pairs were used to investigate discrimination as a function of time-averaged spectral difference. All possible nonidentical pairs taken from a collection of eight musical instrument sounds consisting of bassoon, clarinet, flute, horn, oboe, saxophone, trumpet, and violin were tested. For each pair, several tones were generated with different balances between the primary and secondary instruments, where the balance was fixed across the duration of each tone. Among primary instruments it was found that changes to horn and bassoon [corrected] were most easily discriminable, while changes to saxophone and trumpet timbres were least discriminable. Among secondary instruments, the clarinet had the strongest effect on discrimination, whereas the bassoon had the least effect. For primary instruments, strong negative correlations were found between discrimination and their spectral incoherences, suggesting that the presence of dynamic spectral variations tends to increase the difficulty of detecting time-varying alterations such as spectral interpolation. PMID:19173434

  5. Protective effect of Labisia pumila on stress-induced behavioral, biochemical, and immunological alterations.

    PubMed

    Kour, Kiranjeet; Sharma, Neelam; Chandan, Bal Krishan; Koul, Surrinder; Sangwan, Payare Lal; Bani, Sarang

    2010-10-01

    The aim of the present study was to investigate the antistress potential of LABISIA PUMILA aqueous extract (LPPM/A003) using a battery of tests widely employed in different stressful situations. Pretreatment of experimental animals with LPPM/A003 caused an increase in the swimming endurance and hypoxia time and also showed the recovery of physical stress-induced depletion of neuromuscular coordination and scopolamine induced memory deficit. LPPM/A003 at graded doses reversed the chronic restraint stress (RST), induced depletion of CD4 (+) and CD8 (+) T lymphocytes, NK cell population, and corresponding cytokines expression besides downregulating the stress-induced increase in plasma corticosterone, a major stress hormone. In addition, LPPM/A003 reversed the chronic stress-induced increase in adrenal gland weight, serum alanine aminotransferase (ALT), alkaline phosphatase (ALP), and hepatic lipid peroxidation (LP) levels and augmented the RST induced decrease in hepatic glutathione (GSH), thymus and spleen weight. Thus, we conclude that LPPM/A003 has the ability to reverse the alterations produced by various stressful stimuli and therefore restores homeostasis. PMID:20217640

  6. Detection of Greenhouse-Gas-Induced Climatic Change

    SciTech Connect

    Jones, P.D.; Wigley, T.M.L.

    1998-05-26

    The objective of this report is to assemble and analyze instrumental climate data and to develop and apply climate models as a basis for (1) detecting greenhouse-gas-induced climatic change, and (2) validation of General Circulation Models.

  7. Propiconazole induces alterations in the hepatic metabolome of mice: relevance to propiconazole-induced hepatocarcinogenesis

    EPA Science Inventory

    Propiconazole is a mouse hepatotumorigenic fungicide and has been the subject of recent mechanistic investigations on its carcinogenic mechanism of action. The goals of this study were: 1. To identify metabolomic changes induced in the liver by increasing doses of propiconazole i...

  8. Propiconazole induces alterations in the hepatic metabolome of mice: relevance to propiconazole-induced hepatocarcinogenesis

    EPA Science Inventory

    Propiconazole is a mouse hepatotumorigenic fungicide and has been the subject of recent investigations into its carcinogenic mechanism of action. The goals of this study were: 1. To identify metabolomic changes induced in the liver by increasing doses of propiconazole in mice; 2...

  9. Cytosine Methylation Alteration in Natural Populations of Leymus chinensis Induced by Multiple Abiotic Stresses

    PubMed Central

    Yu, Yingjie; Yang, Xuejiao; Wang, Huaying; Shi, Fengxue; Liu, Ying; Liu, Jushan; Li, Linfeng; Wang, Deli; Liu, Bao

    2013-01-01

    Background Human activity has a profound effect on the global environment and caused frequent occurrence of climatic fluctuations. To survive, plants need to adapt to the changing environmental conditions through altering their morphological and physiological traits. One known mechanism for phenotypic innovation to be achieved is environment-induced rapid yet inheritable epigenetic changes. Therefore, the use of molecular techniques to address the epigenetic mechanisms underpinning stress adaptation in plants is an important and challenging topic in biological research. In this study, we investigated the impact of warming, nitrogen (N) addition, and warming+nitrogen (N) addition stresses on the cytosine methylation status of Leymus chinensis Tzvel. at the population level by using the amplified fragment length polymorphism (AFLP), methylation-sensitive amplified polymorphism (MSAP) and retrotransposon based sequence-specific amplification polymorphism (SSAP) techniques. Methodology/Principal Findings Our results showed that, although the percentages of cytosine methylation changes in SSAP are significantly higher than those in MSAP, all the treatment groups showed similar alteration patterns of hypermethylation and hypomethylation. It meant that the abiotic stresses have induced the alterations in cytosine methylation patterns, and the levels of cytosine methylation changes around the transposable element are higher than the other genomic regions. In addition, the identification and analysis of differentially methylated loci (DML) indicated that the abiotic stresses have also caused targeted methylation changes at specific loci and these DML might have contributed to the capability of plants in adaptation to the abiotic stresses. Conclusions/Significance Our results demonstrated that abiotic stresses related to global warming and nitrogen deposition readily evoke alterations of cytosine methylation, and which may provide a molecular basis for rapid adaptation by

  10. Apigenin ameliorates gamma radiation-induced cytogenetic alterations in cultured human blood lymphocytes.

    PubMed

    Begum, Naziya; Prasad, N Rajendra; Kanimozhi, G; Hasan, Annie Q

    2012-08-30

    The aim of the present study was to assess the protective effect of apigenin, a dietary flavone, against cytogenetic alterations in human peripheral blood lymphocytes (HPBL) induced by Cobalt-60 radiation (3Gy). Results of MTT [3-(4, 5-dimethyl-2-thiaozolyl)-2,5-diphenyl-2H tetrazolium bromide] assay revealed that 37.2μM of apigenin was found to be non-toxic in HPBL. At this dose (37.2μM) of apigenin, the LD(50) radiation dose of HPBL increased from 2.9Gy to 3.4Gy, which resulted in a DMF of 1.17. Apigenin (37.2μM) treatment 1h before irradiation significantly (p<0.05) reduced DNA damage in irradiated HPBL as measured by comet assay (% tail DNA, tail length, tail moment, and olive tail moment). Moreover, apigenin treatment significantly decreased the frequencies of dicentric (DC), acentric fragments (AF), and acentric rings (AR) in irradiated HPBL. Apigenin pretreatment also reduced the radiation-induced CBMN (cytokinesis blocked micronuclei) anomalies such as micronuclei (MNi), nucleoplasmic bridges (NPB) and nuclear buds (NBUD) in HPBL. These results also showed that there was a significant correlation between NPB and DC frequencies and MNi and AF+AR. Treatment with apigenin alone had no significant effect on DNA damage and chromosomal aberrations in HPBL. Thus, the current studies indicate that apigenin protects HPBL from radiation-induced cytogenetic alterations. PMID:22516036

  11. Neonatal exposure to monosodium glutamate induces morphological alterations in suprachiasmatic nucleus of adult rat.

    PubMed

    Rojas-Castañeda, Julio César; Vigueras-Villaseñor, Rosa María; Chávez-Saldaña, Margarita; Rojas, Patricia; Gutiérrez-Pérez, Oscar; Rojas, Carolina; Arteaga-Silva, Marcela

    2016-02-01

    Neonatal exposure to monosodium glutamate (MSG) induces circadian disorders in several physiological and behavioural processes regulated by the suprachiasmatic nucleus (SCN). The objective of this study was to evaluate the effects of neonatal exposure to MSG on locomotor activity, and on morphology, cellular density and expression of proteins, as evaluated by optical density (OD), of vasopressin (VP)-, vasoactive intestinal polypeptide (VIP)- and glial fibrillary acidic protein (GFAP)-immunoreactive cells in the SCN. Male Wistar rats were used: the MSG group was subcutaneously treated from 3 to 10 days of age with 3.5 mg/g/day. Locomotor activity was evaluated at 90 days of age using 'open-field' test, and the brains were processed for immunohistochemical studies. MSG exposure induced a significant decrease in locomotor activity. VP- and VIP-immunoreactive neuronal densities showed a significant decrease, while the somatic OD showed an increase. Major axes and somatic area were significantly increased in VIP neurons. The cellular and optical densities of GFAP-immunoreactive sections of SCN were significantly increased. These results demonstrated that newborn exposure to MSG induced morphological alterations in SCN cells, an alteration that could be the basis for behavioural disorders observed in the animals. PMID:26799547

  12. Inducible Arginase 1 Deficiency in Mice Leads to Hyperargininemia and Altered Amino Acid Metabolism

    PubMed Central

    St. Amand, Tim; Kyriakopoulou, Lianna; Schulze, Andreas; Funk, Colin D.

    2013-01-01

    Arginase deficiency is a rare autosomal recessive disorder resulting from a loss of the liver arginase isoform, arginase 1 (ARG1), which is the final step in the urea cycle for detoxifying ammonia. ARG1 deficiency leads to hyperargininemia, characterized by progressive neurological impairment, persistent growth retardation and infrequent episodes of hyperammonemia. Using the Cre/loxP-directed conditional gene knockout system, we generated an inducible Arg1-deficient mouse model by crossing “floxed” Arg1 mice with CreERT2 mice. The resulting mice (Arg-Cre) die about two weeks after tamoxifen administration regardless of the starting age of inducing the knockout. These treated mice were nearly devoid of Arg1 mRNA, protein and liver arginase activity, and exhibited symptoms of hyperammonemia. Plasma amino acid analysis revealed pronounced hyperargininemia and significant alterations in amino acid and guanidino compound metabolism, including increased citrulline and guanidinoacetic acid. Despite no alteration in ornithine levels, concentrations of other amino acids such as proline and the branched-chain amino acids were reduced. In summary, we have generated and characterized an inducible Arg1-deficient mouse model exhibiting several pathologic manifestations of hyperargininemia. This model should prove useful for exploring potential treatment options of ARG1 deficiency. PMID:24224027

  13. Inducible arginase 1 deficiency in mice leads to hyperargininemia and altered amino acid metabolism.

    PubMed

    Sin, Yuan Yan; Ballantyne, Laurel L; Mukherjee, Kamalika; St Amand, Tim; Kyriakopoulou, Lianna; Schulze, Andreas; Funk, Colin D

    2013-01-01

    Arginase deficiency is a rare autosomal recessive disorder resulting from a loss of the liver arginase isoform, arginase 1 (ARG1), which is the final step in the urea cycle for detoxifying ammonia. ARG1 deficiency leads to hyperargininemia, characterized by progressive neurological impairment, persistent growth retardation and infrequent episodes of hyperammonemia. Using the Cre/loxP-directed conditional gene knockout system, we generated an inducible Arg1-deficient mouse model by crossing "floxed" Arg1 mice with CreER(T2) mice. The resulting mice (Arg-Cre) die about two weeks after tamoxifen administration regardless of the starting age of inducing the knockout. These treated mice were nearly devoid of Arg1 mRNA, protein and liver arginase activity, and exhibited symptoms of hyperammonemia. Plasma amino acid analysis revealed pronounced hyperargininemia and significant alterations in amino acid and guanidino compound metabolism, including increased citrulline and guanidinoacetic acid. Despite no alteration in ornithine levels, concentrations of other amino acids such as proline and the branched-chain amino acids were reduced. In summary, we have generated and characterized an inducible Arg1-deficient mouse model exhibiting several pathologic manifestations of hyperargininemia. This model should prove useful for exploring potential treatment options of ARG1 deficiency. PMID:24224027

  14. Experimental pathophysiology of systemic alterations induced by Bothrops asper snake venom.

    PubMed

    Gutiérrez, José María; Escalante, Teresa; Rucavado, Alexandra

    2009-12-01

    Moderate and severe envenomations by the snake Bothrops asper provoke systemic alterations, such as systemic bleeding, coagulopathy, hypovolemia, hemodynamic instability and shock, and acute renal failure. Systemic hemorrhage is a typical finding of these envenomations, and is primarily caused by the action of P-III snake venom metalloproteinases (SVMPs). This venom also contains a thrombin-like serine proteinase and a prothrombin-activating P-III SVMP, both of which cause defibrin(ogen)ation. Thrombocytopenia, predominantly induced by a C-type lectin-like protein, and platelet hypoaggregation, caused by the two defibrin(ogen)ating enzymes, also contribute to hemostatic disturbances, which potentiate the systemic bleeding induced by hemorrhagic SVMPs. Cardiovascular disturbances leading to shock are due to the combined effects of hemorrhagic toxins, other venom components that increase vascular permeability, the action of hypotensive agents in the venom and of endogenous mediators, and the potential cardiotoxic effect of some toxins. Renal alterations are likely to be caused by direct cytotoxicity of venom components in the kidney, and by renal ischemia resultant from hypovolemia and hypoperfusion. Lethality induced by B. asper venom is the consequence of several combined effects among which the action of P-III SVMPs is especially relevant. PMID:19303034

  15. A large-scale perspective on stress-induced alterations in resting-state networks.

    PubMed

    Maron-Katz, Adi; Vaisvaser, Sharon; Lin, Tamar; Hendler, Talma; Shamir, Ron

    2016-01-01

    Stress is known to induce large-scale neural modulations. However, its neural effect once the stressor is removed and how it relates to subjective experience are not fully understood. Here we used a statistically sound data-driven approach to investigate alterations in large-scale resting-state functional connectivity (rsFC) induced by acute social stress. We compared rsfMRI profiles of 57 healthy male subjects before and after stress induction. Using a parcellation-based univariate statistical analysis, we identified a large-scale rsFC change, involving 490 parcel-pairs. Aiming to characterize this change, we employed statistical enrichment analysis, identifying anatomic structures that were significantly interconnected by these pairs. This analysis revealed strengthening of thalamo-cortical connectivity and weakening of cross-hemispheral parieto-temporal connectivity. These alterations were further found to be associated with change in subjective stress reports. Integrating report-based information on stress sustainment 20 minutes post induction, revealed a single significant rsFC change between the right amygdala and the precuneus, which inversely correlated with the level of subjective recovery. Our study demonstrates the value of enrichment analysis for exploring large-scale network reorganization patterns, and provides new insight on stress-induced neural modulations and their relation to subjective experience. PMID:26898227

  16. Maternal Diet-Induced Obesity Alters Mitochondrial Activity and Redox Status in Mouse Oocytes and Zygotes

    PubMed Central

    Igosheva, Natalia; Abramov, Andrey Y.; Poston, Lucilla; Eckert, Judith J.; Fleming, Tom P.; Duchen, Michael R.; McConnell, Josie

    2010-01-01

    The negative impact of obesity on reproductive success is well documented but the stages at which development of the conceptus is compromised and the mechanisms responsible for the developmental failure still remain unclear. Recent findings suggest that mitochondria may be a contributing factor. However to date no studies have directly addressed the consequences of maternal obesity on mitochondria in early embryogenesis. Using an established murine model of maternal diet induced obesity and a live cell dynamic fluorescence imaging techniques coupled with molecular biology we have investigated the underlying mechanisms of obesity-induced reduced fertility. Our study is the first to show that maternal obesity prior to conception is associated with altered mitochondria in mouse oocytes and zygotes. Specifically, maternal diet-induced obesity in mice led to an increase in mitochondrial potential, mitochondrial DNA content and biogenesis. Generation of reactive oxygen species (ROS) was raised while glutathione was depleted and the redox state became more oxidised, suggestive of oxidative stress. These altered mitochondrial properties were associated with significant developmental impairment as shown by the increased number of obese mothers who failed to support blastocyst formation compared to lean dams. We propose that compromised oocyte and early embryo mitochondrial metabolism, resulting from excessive nutrient exposure prior to and during conception, may underlie poor reproductive outcomes frequently reported in obese women. PMID:20404917

  17. Transient and persistent pain induced connectivity alterations in pediatric complex regional pain syndrome.

    PubMed

    Linnman, Clas; Becerra, Lino; Lebel, Alyssa; Berde, Charles; Grant, P Ellen; Borsook, David

    2013-01-01

    Evaluation of pain-induced changes in functional connectivity was performed in pediatric complex regional pain syndrome (CRPS) patients. High field functional magnetic resonance imaging was done in the symptomatic painful state and at follow up in the asymptomatic pain free/recovered state. Two types of connectivity alterations were defined: (1) Transient increases in functional connectivity that identified regions with increased cold-induced functional connectivity in the affected limb vs. unaffected limb in the CRPS state, but with normalized connectivity patterns in the recovered state; and (2) Persistent increases in functional connectivity that identified regions with increased cold-induced functional connectivity in the affected limb as compared to the unaffected limb that persisted also in the recovered state (recovered affected limb versus recovered unaffected limb). The data support the notion that even after symptomatic recovery, alterations in brain systems persist, particularly in amygdala and basal ganglia systems. Connectivity analysis may provide a measure of temporal normalization of different circuits/regions when evaluating therapeutic interventions for this condition. The results add emphasis to the importance of early recognition and management in improving outcome of pediatric CRPS. PMID:23526938

  18. Transient and Persistent Pain Induced Connectivity Alterations in Pediatric Complex Regional Pain Syndrome

    PubMed Central

    Linnman, Clas; Becerra, Lino; Lebel, Alyssa; Berde, Charles; Grant, P. Ellen; Borsook, David

    2013-01-01

    Evaluation of pain-induced changes in functional connectivity was performed in pediatric complex regional pain syndrome (CRPS) patients. High field functional magnetic resonance imaging was done in the symptomatic painful state and at follow up in the asymptomatic pain free/recovered state. Two types of connectivity alterations were defined: (1) Transient increases in functional connectivity that identified regions with increased cold-induced functional connectivity in the affected limb vs. unaffected limb in the CRPS state, but with normalized connectivity patterns in the recovered state; and (2) Persistent increases in functional connectivity that identified regions with increased cold-induced functional connectivity in the affected limb as compared to the unaffected limb that persisted also in the recovered state (recovered affected limb versus recovered unaffected limb). The data support the notion that even after symptomatic recovery, alterations in brain systems persist, particularly in amygdala and basal ganglia systems. Connectivity analysis may provide a measure of temporal normalization of different circuits/regions when evaluating therapeutic interventions for this condition. The results add emphasis to the importance of early recognition and management in improving outcome of pediatric CRPS. PMID:23526938

  19. A large-scale perspective on stress-induced alterations in resting-state networks

    PubMed Central

    Maron-Katz, Adi; Vaisvaser, Sharon; Lin, Tamar; Hendler, Talma; Shamir, Ron

    2016-01-01

    Stress is known to induce large-scale neural modulations. However, its neural effect once the stressor is removed and how it relates to subjective experience are not fully understood. Here we used a statistically sound data-driven approach to investigate alterations in large-scale resting-state functional connectivity (rsFC) induced by acute social stress. We compared rsfMRI profiles of 57 healthy male subjects before and after stress induction. Using a parcellation-based univariate statistical analysis, we identified a large-scale rsFC change, involving 490 parcel-pairs. Aiming to characterize this change, we employed statistical enrichment analysis, identifying anatomic structures that were significantly interconnected by these pairs. This analysis revealed strengthening of thalamo-cortical connectivity and weakening of cross-hemispheral parieto-temporal connectivity. These alterations were further found to be associated with change in subjective stress reports. Integrating report-based information on stress sustainment 20 minutes post induction, revealed a single significant rsFC change between the right amygdala and the precuneus, which inversely correlated with the level of subjective recovery. Our study demonstrates the value of enrichment analysis for exploring large-scale network reorganization patterns, and provides new insight on stress-induced neural modulations and their relation to subjective experience. PMID:26898227

  20. Carcinogenic alterations in murine liver, lung, and uterine tumors induced by in utero exposure to ionizing radiation.

    PubMed

    Lumniczky, K; Antal, S; Unger, E; Wunderlich, L; Hidvégi, E J; Sáfrány, G

    1998-02-01

    The atomic bombing of Hiroshima and Nagasaki and the nuclear accident at Chernobyl raised the question of prenatal sensitivity to ionizing radiation-induced cancer. In this study, mice were exposed to single doses of gamma-radiation (0.2-2.0 Gy) at different embryonic stages. The tumor incidence increased with dose from 15% in control mice to 35% in mice irradiated with 2.0 Gy on 18 d of prenatal life. Various oncogenic events were investigated in lymphoid, liver, lung, and uterine tumors. We observed threefold to fivefold increases in myc expression in 25% of the lymphomas, and the expression of Ha-ras and p53 genes decreased in 40% and 60% of the lung tumors by twofold to fivefold. Point mutations were tissue specific: Ha-ras codon 61 mutations were found in about 40% of the liver adenocarcinomas, Ki-ras codon 12 mutations in about 17% of lung tumors, and p53 mutations in about 15% of the lymphomas. Amplification and rearrangement of the p53, myc, and Ha-, Ki- and N-ras genes were not detected. Loss of heterozygosity on chromosome 4 at the multiple tumor suppressor 1 and 2 genes was observed in all types of malignancies. Allelic losses on chromosome 11 at the p53 locus were found in lymphoid, liver, and lung tumors, but they were absent from uterine tumors. Multiple oncogenic changes were often detected. The frequency of carcinogenic alterations was similar in spontaneous and radiation-induced lymphoid, liver, and uterine tumors. In radiation-induced lung adenocarcinomas, however, the incidences of many oncogenic changes were different from those found in their spontaneous counterparts. This suggests that different oncogenic pathways are activated during spontaneous and in utero gamma-radiation-induced murine lung carcinogenesis. PMID:9496910

  1. OMP gene deletion results in an alteration in odorant-induced mucosal activity patterns.

    PubMed

    Youngentob, S L; Kent, P F; Margolis, F L

    2003-12-01

    Previous behavioral work, using a complex five-odorant identification task, demonstrated that olfactory marker protein (OMP) is critically involved in odor processing to the extent that its loss results in an alteration in odorant quality perception. Exactly how the lack of OMP exerts its influence on the perception of odorant quality is unknown. However, there is considerable neurophysiological evidence that different odorants produce different spatiotemporal patterns of neural activity at the level of the mucosa and that these patterns predict the psychophysically determined perceptual relationship among odorants. In this respect, OMP gene deletion is known to result in a constellation of physiologic defects (i.e., marked reduction in the electroolfactogram (EOG) and altered response and recovery kinetics) that would be expected to alter the odorant-induced spatiotemporal activity patterns that are characteristic of different odorants. This, in turn, would be expected to alter the spatiotemporal patterning of information that results from the mucosal projection onto the bulb, thereby changing odorant quality perception. To test the hypothesis that odorant-induced mucosal activity patterns are altered in mice lacking the gene for OMP, we optically recorded the fluorescent changes in response to odorant stimulation from both the septum and turbinates of both OMP-null and control mice using a voltage-sensitive dye (di-4-ANEPPS Molecular Probes, Eugene, OR) and a Dalsa 120 x 120, 12-bit CCD camera. To maintain continuity with the previous behavioral work, the odorants 2-propanol, citral, carvone, ethylacetoacetate, and propyl acetate were again used. Each odorant was randomly presented to each mucosal surface in a Latin-Square design. The results of this study demonstrated that, for both mouse strains, there do indeed exist different spatiotemporal activity patterns for different odorants. More importantly, however, these patterns significantly differed between OMP

  2. Antibiotics induce redox-related physiological alterations as part of their lethality.

    PubMed

    Dwyer, Daniel J; Belenky, Peter A; Yang, Jason H; MacDonald, I Cody; Martell, Jeffrey D; Takahashi, Noriko; Chan, Clement T Y; Lobritz, Michael A; Braff, Dana; Schwarz, Eric G; Ye, Jonathan D; Pati, Mekhala; Vercruysse, Maarten; Ralifo, Paul S; Allison, Kyle R; Khalil, Ahmad S; Ting, Alice Y; Walker, Graham C; Collins, James J

    2014-05-20

    Deeper understanding of antibiotic-induced physiological responses is critical to identifying means for enhancing our current antibiotic arsenal. Bactericidal antibiotics with diverse targets have been hypothesized to kill bacteria, in part by inducing production of damaging reactive species. This notion has been supported by many groups but has been challenged recently. Here we robustly test the hypothesis using biochemical, enzymatic, and biophysical assays along with genetic and phenotypic experiments. We first used a novel intracellular H2O2 sensor, together with a chemically diverse panel of fluorescent dyes sensitive to an array of reactive species to demonstrate that antibiotics broadly induce redox stress. Subsequent gene-expression analyses reveal that complex antibiotic-induced oxidative stress responses are distinct from canonical responses generated by supraphysiological levels of H2O2. We next developed a method to quantify cellular respiration dynamically and found that bactericidal antibiotics elevate oxygen consumption, indicating significant alterations to bacterial redox physiology. We further show that overexpression of catalase or DNA mismatch repair enzyme, MutS, and antioxidant pretreatment limit antibiotic lethality, indicating that reactive oxygen species causatively contribute to antibiotic killing. Critically, the killing efficacy of antibiotics was diminished under strict anaerobic conditions but could be enhanced by exposure to molecular oxygen or by the addition of alternative electron acceptors, indicating that environmental factors play a role in killing cells physiologically primed for death. This work provides direct evidence that, downstream of their target-specific interactions, bactericidal antibiotics induce complex redox alterations that contribute to cellular damage and death, thus supporting an evolving, expanded model of antibiotic lethality. PMID:24803433

  3. Carotid Body Ablation Abrogates Hypertension and Autonomic Alterations Induced by Intermittent Hypoxia in Rats.

    PubMed

    Del Rio, Rodrigo; Andrade, David C; Lucero, Claudia; Arias, Paulina; Iturriaga, Rodrigo

    2016-08-01

    Chronic intermittent hypoxia (CIH), the main feature of obstructive sleep apnea, enhances carotid body (CB) chemosensory responses to hypoxia and produces autonomic dysfunction, cardiac arrhythmias, and hypertension. We tested whether autonomic alterations, arrhythmogenesis, and the progression of hypertension induced by CIH depend on the enhanced CB chemosensory drive, by ablation of the CB chemoreceptors. Male Sprague-Dawley rats were exposed to control (Sham) conditions for 7 days and then to CIH (5% O2, 12/h 8 h/d) for a total of 28 days. At 21 days of CIH exposure, rats underwent bilateral CB ablation and then exposed to CIH for 7 additional days. Arterial blood pressure and ventilatory chemoreflex response to hypoxia were measured in conscious rats. In addition, cardiac autonomic imbalance, cardiac baroreflex gain, and arrhythmia score were assessed during the length of the experiments. In separate experimental series, we measured extracellular matrix remodeling content in cardiac atrial tissue and systemic oxidative stress. CIH induced hypertension, enhanced ventilatory response to hypoxia, induced autonomic imbalance toward sympathetic preponderance, reduced baroreflex gain, and increased arrhythmias and atrial fibrosis. CB ablation normalized blood pressure, reduced ventilatory response to hypoxia, and restored cardiac autonomic and baroreflex function. In addition, CB ablation reduced the number of arrhythmias, but not extracellular matrix remodeling or systemic oxidative stress, suggesting that reductions in arrhythmia incidence during CIH were related to normalization of cardiac autonomic balance. Present results show that autonomic alterations induced by CIH are critically dependent on the CB and support a main role for the CB in the CIH-induced hypertension. PMID:27381902

  4. Antibiotics induce redox-related physiological alterations as part of their lethality

    PubMed Central

    Dwyer, Daniel J.; Belenky, Peter A.; Yang, Jason H.; MacDonald, I. Cody; Martell, Jeffrey D.; Takahashi, Noriko; Chan, Clement T. Y.; Lobritz, Michael A.; Braff, Dana; Schwarz, Eric G.; Ye, Jonathan D.; Pati, Mekhala; Vercruysse, Maarten; Ralifo, Paul S.; Allison, Kyle R.; Khalil, Ahmad S.; Ting, Alice Y.; Walker, Graham C.; Collins, James J.

    2014-01-01

    Deeper understanding of antibiotic-induced physiological responses is critical to identifying means for enhancing our current antibiotic arsenal. Bactericidal antibiotics with diverse targets have been hypothesized to kill bacteria, in part by inducing production of damaging reactive species. This notion has been supported by many groups but has been challenged recently. Here we robustly test the hypothesis using biochemical, enzymatic, and biophysical assays along with genetic and phenotypic experiments. We first used a novel intracellular H2O2 sensor, together with a chemically diverse panel of fluorescent dyes sensitive to an array of reactive species to demonstrate that antibiotics broadly induce redox stress. Subsequent gene-expression analyses reveal that complex antibiotic-induced oxidative stress responses are distinct from canonical responses generated by supraphysiological levels of H2O2. We next developed a method to quantify cellular respiration dynamically and found that bactericidal antibiotics elevate oxygen consumption, indicating significant alterations to bacterial redox physiology. We further show that overexpression of catalase or DNA mismatch repair enzyme, MutS, and antioxidant pretreatment limit antibiotic lethality, indicating that reactive oxygen species causatively contribute to antibiotic killing. Critically, the killing efficacy of antibiotics was diminished under strict anaerobic conditions but could be enhanced by exposure to molecular oxygen or by the addition of alternative electron acceptors, indicating that environmental factors play a role in killing cells physiologically primed for death. This work provides direct evidence that, downstream of their target-specific interactions, bactericidal antibiotics induce complex redox alterations that contribute to cellular damage and death, thus supporting an evolving, expanded model of antibiotic lethality. PMID:24803433

  5. Cytarabine induced cerebellar neuronal damage in juvenile rat: correlating neurobehavioral performance with cellular and genetic alterations.

    PubMed

    Patel, Ronak S; Rachamalla, Mahesh; Chary, Namoju R; Shera, Firdos Y; Tikoo, Kulbhushan; Jena, Gopabandhu

    2012-03-11

    Cytosine arabinoside (Ara-C), a pyrimidine analogue induces cerebellar dysfunction and behavioral abnormalities. Although many in vitro experiments have been conducted in the past demonstrating the lethal potential of Ara-C to cerebellar neurons, there is a paucity of literature available regarding the effects of Ara-C on the cellular and genetic material of cerebellum and its subsequent influence on the neurobehavioral performance in vivo. Rats were treated with Ara-C at the dose levels 50, 100 and 200mg/kg/day for 5 and 14 days by intraperitoneal (i.p.) route. Endpoints of the evaluation included food and water intake, body and organ weight, behavioral parameters, histopathology, oxidative stress, DNA damage, apoptosis, expression of p53, caspase-3 and calbindin D-28K (calbindin) as well as histone acetylation and methylation. Ara-C treatment for 14 days significantly decreased the food and water intake, body weight gain and brain weight in rat as compared to the control. Alterations in various behavioral parameters were observed, indicating the impaired cerebellar function. Further, cellular abnormalities in the cerebellum such as Purkinje cell misalignment and granule cell cytotoxicity were observed. Positive correlation was observed between Ara-C induced disturbance in the motor performance and the Purkinje cell loss in rat cerebellum. Moreover, Ara-C treatment significantly increased the oxidative stress, DNA damage, TUNEL positive cells, p53 and caspase-3 positive cells in the rat cerebellum. Unlike short-term treatment, long-term Ara-C treatment significantly reduced calbindin expression in the cerebellum. Apart from this, 14 days Ara-C treatment led to significant alterations in the histone acetylation and methylation in the cerebellum, while in 5 days treatment no such alterations were observed. Present results indicated that Ara-C, by inducing oxidative stress mediated DNA damage, executes neuronal apoptosis which is accompanied by an increase in the p53

  6. Multiscale alterations in bone matrix quality increased fragility in steroid induced osteoporosis.

    PubMed

    Karunaratne, A; Xi, L; Bentley, L; Sykes, D; Boyde, A; Esapa, C T; Terrill, N J; Brown, S D M; Cox, R D; Thakker, R V; Gupta, H S

    2016-03-01

    A serious adverse clinical effect of glucocorticoid steroid treatment is secondary osteoporosis, enhancing fracture risk in bone. This rapid increase in bone fracture risk is largely independent of bone loss (quantity), and must therefore arise from degradation of the quality of the bone matrix at the micro- and nanoscale. However, we lack an understanding of both the specific alterations in bone quality n steroid-induced osteoporosis as well as the mechanistic effects of these changes. Here we demonstrate alterations in the nanostructural parameters of the mineralized fibrillar collagen matrix, which affect bone quality, and develop a model linking these to increased fracture risk in glucocorticoid induced osteoporosis. Using a mouse model with an N-ethyl-N-nitrosourea (ENU)-induced corticotrophin releasing hormone promoter mutation (Crh(-120/+)) that developed hypercorticosteronaemia and osteoporosis, we utilized in situ mechanical testing with small angle X-ray diffraction, synchrotron micro-computed tomography and quantitative backscattered electron imaging to link altered nano- and microscale deformation mechanisms in the bone matrix to abnormal macroscopic mechanics. We measure the deformation of the mineralized collagen fibrils, and the nano-mechanical parameters including effective fibril modulus and fibril to tissue strain ratio. A significant reduction (51%) of fibril modulus was found in Crh(-120/+) mice. We also find a much larger fibril strain/tissue strain ratio in Crh(-120/+) mice (~1.5) compared to the wild-type mice (~0.5), indicative of a lowered mechanical competence at the nanoscale. Synchrotron microCT show a disruption of intracortical architecture, possibly linked to osteocytic osteolysis. These findings provide a clear quantitative demonstration of how bone quality changes increase macroscopic fragility in secondary osteoporosis. PMID:26657825

  7. Multiscale alterations in bone matrix quality increased fragility in steroid induced osteoporosis

    PubMed Central

    Karunaratne, A.; Xi, L.; Bentley, L.; Sykes, D.; Boyde, A.; Esapa, C.T.; Terrill, N.J.; Brown, S.D.M.; Cox, R.D.; Thakker, R.V.; Gupta, H.S.

    2016-01-01

    A serious adverse clinical effect of glucocorticoid steroid treatment is secondary osteoporosis, enhancing fracture risk in bone. This rapid increase in bone fracture risk is largely independent of bone loss (quantity), and must therefore arise from degradation of the quality of the bone matrix at the micro- and nanoscale. However, we lack an understanding of both the specific alterations in bone quality n steroid-induced osteoporosis as well as the mechanistic effects of these changes. Here we demonstrate alterations in the nanostructural parameters of the mineralized fibrillar collagen matrix, which affect bone quality, and develop a model linking these to increased fracture risk in glucocorticoid induced osteoporosis. Using a mouse model with an N-ethyl-N-nitrosourea (ENU)-induced corticotrophin releasing hormone promoter mutation (Crh− 120/+) that developed hypercorticosteronaemia and osteoporosis, we utilized in situ mechanical testing with small angle X-ray diffraction, synchrotron micro-computed tomography and quantitative backscattered electron imaging to link altered nano- and microscale deformation mechanisms in the bone matrix to abnormal macroscopic mechanics. We measure the deformation of the mineralized collagen fibrils, and the nano-mechanical parameters including effective fibril modulus and fibril to tissue strain ratio. A significant reduction (51%) of fibril modulus was found in Crh− 120/+ mice. We also find a much larger fibril strain/tissue strain ratio in Crh− 120/+ mice (~ 1.5) compared to the wild-type mice (~ 0.5), indicative of a lowered mechanical competence at the nanoscale. Synchrotron microCT show a disruption of intracortical architecture, possibly linked to osteocytic osteolysis. These findings provide a clear quantitative demonstration of how bone quality changes increase macroscopic fragility in secondary osteoporosis. PMID:26657825

  8. Subtoxic Alterations in Hepatocyte-Derived Exosomes: An Early Step in Drug-Induced Liver Injury?

    PubMed

    Holman, Natalie S; Mosedale, Merrie; Wolf, Kristina K; LeCluyse, Edward L; Watkins, Paul B

    2016-06-01

    Drug-induced liver injury (DILI) is a significant clinical and economic problem in the United States, yet the mechanisms that underlie DILI remain poorly understood. Recent evidence suggests that signaling molecules released by stressed hepatocytes can trigger immune responses that may be common across DILI mechanisms. Extracellular vesicles released by hepatocytes, principally hepatocyte-derived exosomes (HDEs), may constitute one such signal. To examine HDE alterations as a function of drug-induced stress, this work utilized prototypical hepatotoxicant acetaminophen (APAP) in male Sprague-Dawley (SD) rats, SD rat hepatocytes, and primary human hepatocytes. HDE were isolated using ExoQuick precipitation reagent and analyzed by quantification of the liver-specific RNAs albumin and microRNA-122 (miR-122). In vivo, significant elevations in circulating exosomal albumin mRNA were observed at subtoxic APAP exposures. Significant increases in exosomal albumin mRNA were also observed in primary rat hepatocytes at subtoxic APAP concentrations. In primary human hepatocytes, APAP elicited increases in both exosomal albumin mRNA and exosomal miR-122 without overt cytotoxicity. However, the number of HDE produced in vitro in response to APAP did not increase with exosomal RNA quantity. We conclude that significant drug-induced alterations in the liver-specific RNA content of HDE occur at subtoxic APAP exposures in vivo and in vitro, and that these changes appear to reflect selective packaging rather than changes in exosome number. The current findings demonstrate that translationally relevant HDE alterations occur in the absence of overt hepatocellular toxicity, and support the hypothesis that HDE released by stressed hepatocytes may mediate early immune responses in DILI. PMID:26962055

  9. Light-Induced Indeterminacy Alters Shade-Avoiding Tomato Leaf Morphology1[OPEN

    PubMed Central

    Chitwood, Daniel H.; Kumar, Ravi; Ranjan, Aashish; Pelletier, Julie M.; Townsley, Brad T.; Ichihashi, Yasunori; Martinez, Ciera C.; Zumstein, Kristina; Harada, John J.; Maloof, Julin N.; Sinha, Neelima R.

    2015-01-01

    Plants sense the foliar shade of competitors and alter their developmental programs through the shade-avoidance response. Internode and petiole elongation, and changes in overall leaf area and leaf mass per area, are the stereotypical architectural responses to foliar shade in the shoot. However, changes in leaf shape and complexity in response to shade remain incompletely, and qualitatively, described. Using a meta-analysis of more than 18,000 previously published leaflet outlines, we demonstrate that shade avoidance alters leaf shape in domesticated tomato (Solanum lycopersicum) and wild relatives. The effects of shade avoidance on leaf shape are subtle with respect to individual traits but are combinatorially strong. We then seek to describe the developmental origins of shade-induced changes in leaf shape by swapping plants between light treatments. Leaf size is light responsive late into development, but patterning events, such as stomatal index, are irrevocably specified earlier. Observing that shade induces increases in shoot apical meristem size, we then describe gene expression changes in early leaf primordia and the meristem using laser microdissection. We find that in leaf primordia, shade avoidance is not mediated through canonical pathways described in mature organs but rather through the expression of KNOTTED1-LIKE HOMEOBOX and other indeterminacy genes, altering known developmental pathways responsible for patterning leaf shape. We also demonstrate that shade-induced changes in leaf primordium gene expression largely do not overlap with those found in successively initiated leaf primordia, providing evidence against classic hypotheses that shaded leaf morphology results from the prolonged production of juvenile leaf types. PMID:26381315

  10. Light-Induced Indeterminacy Alters Shade-Avoiding Tomato Leaf Morphology.

    PubMed

    Chitwood, Daniel H; Kumar, Ravi; Ranjan, Aashish; Pelletier, Julie M; Townsley, Brad T; Ichihashi, Yasunori; Martinez, Ciera C; Zumstein, Kristina; Harada, John J; Maloof, Julin N; Sinha, Neelima R

    2015-11-01

    Plants sense the foliar shade of competitors and alter their developmental programs through the shade-avoidance response. Internode and petiole elongation, and changes in overall leaf area and leaf mass per area, are the stereotypical architectural responses to foliar shade in the shoot. However, changes in leaf shape and complexity in response to shade remain incompletely, and qualitatively, described. Using a meta-analysis of more than 18,000 previously published leaflet outlines, we demonstrate that shade avoidance alters leaf shape in domesticated tomato (Solanum lycopersicum) and wild relatives. The effects of shade avoidance on leaf shape are subtle with respect to individual traits but are combinatorially strong. We then seek to describe the developmental origins of shade-induced changes in leaf shape by swapping plants between light treatments. Leaf size is light responsive late into development, but patterning events, such as stomatal index, are irrevocably specified earlier. Observing that shade induces increases in shoot apical meristem size, we then describe gene expression changes in early leaf primordia and the meristem using laser microdissection. We find that in leaf primordia, shade avoidance is not mediated through canonical pathways described in mature organs but rather through the expression of KNOTTED1-LIKE HOMEOBOX and other indeterminacy genes, altering known developmental pathways responsible for patterning leaf shape. We also demonstrate that shade-induced changes in leaf primordium gene expression largely do not overlap with those found in successively initiated leaf primordia, providing evidence against classic hypotheses that shaded leaf morphology results from the prolonged production of juvenile leaf types. PMID:26381315

  11. Surfactant-induced Marangoni eddies alter the coffee-rings of evaporating colloidal drops.

    PubMed

    Still, Tim; Yunker, Peter J; Yodh, Arjun G

    2012-03-20

    The influence of the small ionic surfactant sodium dodecyl sulfate (SDS) on the evaporation of drying colloidal droplets is quantitatively investigated. The addition of SDS leads to a significantly more uniform deposition of colloidal particles after evaporation (i.e., the so-called "coffee-ring effect" is dramatically altered). We understand this phenomenon in the context of circulating radial Marangoni flows induced by the variation of SDS concentration along the air-water interface. Video microscopy permits the direct visualization of the colloidal particles involved in these flows, revealing a surprisingly stable "Marangoni eddy" that prevents particle deposition at the drop perimeter. PMID:22369657

  12. Detection of Phenotypic Alterations Using High-Content Analysis of Whole-Slide Images.

    PubMed

    Shirinifard, Abbas; Thiagarajan, Suresh; Vogel, Peter; Sablauer, András

    2016-05-01

    Tumors exhibit spatial heterogeneity, as manifested in immunohistochemistry (IHC) staining patterns. Current IHC quantification methods lose information by reducing this heterogeneity in each whole-slide image (WSI) or in selective fields of view to a single staining index. The aim of this study was to investigate the sensitivity of an IHC quantification method that uses this heterogeneity to reliably compare IHC staining patterns. We virtually partitioned WSIs by a grid of square tiles, and computed the staining index distributions to quantify heterogeneities. We used samples from these distributions as inputs to non-parametric statistical comparisons. We applied our grid method to fixed tumor samples from 26 tumors obtained from a double-blind preclinical study of a patient-derived orthotopic xenograft model of pediatric neuroblastoma in CD1 nude mice. We compared the results of our grid method to the results based on whole-slide indices, the current practice. We show that our grid method reliably detects phenotypic alterations that other tests based on whole-slide indices fail to detect. Based on robustness and increased sensitivity of statistical inference, we conclude that our method of whole-slide grid quantification is superior to existing whole-slide quantification techniques. PMID:27026297

  13. "Deafness" effects in detecting alterations to auditory feedback during sequence production.

    PubMed

    Pfordresher, Peter Q

    2014-01-01

    Past research has shown that when discrete responses are associated with a perceptual goal, performers may have difficulty detecting stimuli that are commensurate with that goal. Three experiments are reported here that test whether such effects extend to sequence production. In Experiment 1, participants performed 8-note melodies repeatedly, and on each trial a single tone could be altered with respect to its pitch and/or synchrony with actions. Results suggested a selective deficit of detection when feedback pitch was unchanged and the event was slightly delayed. Experiment 2 showed that this "deafness" to feedback is limited to rhythmic motor tasks that require sequencing, in that similar effects did not emerge when participants produced pitch sequences by tapping a single key repeatedly. A third experiment demonstrated similar results to Experiment 1 when the mapping of keys to pitches on the keyboard was reversed. Taken together, results suggest a selective deafness to response-congruent delayed feedback, consistent with the idea that performers suppress previously planned events during production. PMID:23344903

  14. Metabolomic alterations in human cancer cells by vitamin C-induced oxidative stress

    PubMed Central

    Uetaki, Megumi; Tabata, Sho; Nakasuka, Fumie; Soga, Tomoyoshi; Tomita, Masaru

    2015-01-01

    Intravenous administration of high-dose vitamin C has recently attracted attention as a cancer therapy. High-dose vitamin C induces pro-oxidant effects and selectively kills cancer cells. However, the anticancer mechanisms of vitamin C are not fully understood. Here, we analyzed metabolic changes induced by vitamin C in MCF7 human breast adenocarcinoma and HT29 human colon cancer cells using capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS). The metabolomic profiles of both cell lines were dramatically altered after exposure to cytotoxic concentrations of vitamin C. Levels of upstream metabolites in the glycolysis pathway and tricarboxylic acid (TCA) cycle were increased in both cell lines following treatment with vitamin C, while adenosine triphosphate (ATP) levels and adenylate energy charges were decreased concentration-dependently. Treatment with N-acetyl cysteine (NAC) and reduced glutathione (GSH) significantly inhibited vitamin C-induced cytotoxicity in MCF7 cells. NAC also suppressed vitamin C-dependent metabolic changes, and NAD treatment prevented vitamin C-induced cell death. Collectively, our data suggests that vitamin C inhibited energy metabolism through NAD depletion, thereby inducing cancer cell death. PMID:26350063

  15. Ethanol-Induced Alterations in Purkinje Neuron Dendrites in Adult and Aging Rats: a Review.

    PubMed

    Dlugos, Cynthia A

    2015-08-01

    Uncomplicated alcoholics suffer from discrete motor dysfunctions that become more pronounced with age. These deficits involve the structure and function of Purkinje neurons (PN), the sole output neurons from the cerebellar cortex. This review focuses on alterations to the PN dendritic arbor in the adult and aging Fischer 344 rat following lengthy alcohol consumption. It describes seminal studies using the Golgi-Cox method which proposed a model for ethanol-induced dendritic regression. Subsequent ultrastructural studies of PN dendrites showed dilation of the extensive smooth endoplasmic reticulum (SER) which preceded and accompanied dendritic regression. The component of the SER that was most affected by ethanol was the sarco/endoplasmic reticulum Ca(2+) ATPase pump (SERCA) responsible for resequestration of calcium into the SER. Ethanol-induced decreases in SERCA pump levels, similar to the finding of SER dilation, preceded and occurred concomitantly with dendritic regression. Discrete ethanol-induced deficits in balance also accompanied these decreases. Ethanol-induced ER stress within the SER of PN dendrites was proposed as an underlying cause of dendritic regression. It was recently shown that increased activation of caspase 12, inherent to the ER, occurred in PN of acute slices in ethanol-fed rats and was most pronounced following 40 weeks of ethanol treatment. These findings shed new light into alcohol-induced disruption in PN dendrites providing a new model for the discrete but critical changes in motor function in aging, adult alcoholics. PMID:25648753

  16. Metabolomic alterations in human cancer cells by vitamin C-induced oxidative stress.

    PubMed

    Uetaki, Megumi; Tabata, Sho; Nakasuka, Fumie; Soga, Tomoyoshi; Tomita, Masaru

    2015-01-01

    Intravenous administration of high-dose vitamin C has recently attracted attention as a cancer therapy. High-dose vitamin C induces pro-oxidant effects and selectively kills cancer cells. However, the anticancer mechanisms of vitamin C are not fully understood. Here, we analyzed metabolic changes induced by vitamin C in MCF7 human breast adenocarcinoma and HT29 human colon cancer cells using capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS). The metabolomic profiles of both cell lines were dramatically altered after exposure to cytotoxic concentrations of vitamin C. Levels of upstream metabolites in the glycolysis pathway and tricarboxylic acid (TCA) cycle were increased in both cell lines following treatment with vitamin C, while adenosine triphosphate (ATP) levels and adenylate energy charges were decreased concentration-dependently. Treatment with N-acetyl cysteine (NAC) and reduced glutathione (GSH) significantly inhibited vitamin C-induced cytotoxicity in MCF7 cells. NAC also suppressed vitamin C-dependent metabolic changes, and NAD treatment prevented vitamin C-induced cell death. Collectively, our data suggests that vitamin C inhibited energy metabolism through NAD depletion, thereby inducing cancer cell death. PMID:26350063

  17. Cigarette smoke induces alterations in the drug-binding properties of human serum albumin.

    PubMed

    Clerici, Marco; Colombo, Graziano; Secundo, Francesco; Gagliano, Nicoletta; Colombo, Roberto; Portinaro, Nicola; Giustarini, Daniela; Milzani, Aldo; Rossi, Ranieri; Dalle-Donne, Isabella

    2014-04-01

    Albumin is the most abundant plasma protein and serves as a transport and depot protein for numerous endogenous and exogenous compounds. Earlier we had shown that cigarette smoke induces carbonylation of human serum albumin (HSA) and alters its redox state. Here, the effect of whole-phase cigarette smoke on HSA ligand-binding properties was evaluated by equilibrium dialysis and size-exclusion HPLC or tryptophan fluorescence. The binding of salicylic acid and naproxen to cigarette smoke-oxidized HSA resulted to be impaired, unlike that of curcumin and genistein, chosen as representative ligands. Binding of the hydrophobic fluorescent probe 4,4'-bis(1-anilino-8-naphtalenesulfonic acid) (bis-ANS), intrinsic tryptophan fluorescence, and susceptibility to enzymatic proteolysis revealed slight changes in albumin conformation. These findings suggest that cigarette smoke-induced modifications of HSA may affect the binding, transport and bioavailability of specific ligands in smokers. PMID:24388826

  18. [Effects of trimetazidine on altered functions of rat kidney induced by cyclosporine].

    PubMed

    Simon, N; Morin, C; Bruguerolle, B; Tillement, J P

    2001-01-01

    A mitochondrial dysfunction has been suggested to explain chronic renal toxicity observed in ciclosporine A therapy. Our study has investigated whether trimetazidine allows inhibition of mitochondrial alteration induced by ciclosporine A. Oxidative phosphorylation was measured by polarography, calcium fluxes by a specific calcium electrode and the mitochondrial swelling by determination of the optical density at 520 nm, using a spectrophotometer. The ciclosporine A effect on the respiratory control was fully inhibited by trimetazidine (EC50 5.10 x 10(-7) M; Emax 11 per cent). Trimetazidine also inhibited the ciclosporine effects on calcium fluxes, i.e. calcium accumulation into the matrix and delay of efflux. Trimetazidine allows a decrease of mitochondrial dysfunction induced by ciclosporine A. PMID:11806297

  19. Root Exudate-Induced Alterations in Bacillus cereus Cell Wall Contribute to Root Colonization and Plant Growth Promotion

    PubMed Central

    Dutta, Swarnalee; Rani, T. Swaroopa; Podile, Appa Rao

    2013-01-01

    The outcome of an interaction between plant growth promoting rhizobacteria and plants may depend on the chemical composition of root exudates (REs). We report the colonization of tobacco, and not groundnut, roots by a non-rhizospheric Bacillus cereus (MTCC 430). There was a differential alteration in the cell wall components of B. cereus in response to the REs from tobacco and groundnut. Attenuated total reflectance infrared spectroscopy revealed a split in amide I region of B. cereus cells exposed to tobacco-root exudates (TRE), compared to those exposed to groundnut-root exudates (GRE). In addition, changes in exopolysaccharides and lipid-packing were observed in B. cereus grown in TRE-amended minimal media that were not detectable in GRE-amended media. Cell-wall proteome analyses revealed upregulation of oxidative stress-related alkyl hydroperoxide reductase, and DNA-protecting protein chain (Dlp-2), in response to GRE and TRE, respectively. Metabolism-related enzymes like 2-amino-3-ketobutyrate coenzyme A ligase and 2-methylcitrate dehydratase and a 60 kDa chaperonin were up-regulated in response to TRE and GRE. In response to B. cereus, the plant roots altered their exudate-chemodiversity with respect to carbohydrates, organic acids, alkanes, and polyols. TRE-induced changes in surface components of B. cereus may contribute to successful root colonization and subsequent plant growth promotion. PMID:24205213

  20. Altering a gene involved in nuclear distribution increases the repeat-induced point mutation process in the fungus Podospora anserina.

    PubMed Central

    Bouhouche, Khaled; Zickler, Denise; Debuchy, Robert; Arnaise, Sylvie

    2004-01-01

    Repeat-induced point mutation (RIP) is a homology-dependent gene-silencing mechanism that introduces C:G-to-T:A transitions in duplicated DNA segments. Cis-duplicated sequences can also be affected by another mechanism called premeiotic recombination (PR). Both are active over the sexual cycle of some filamentous fungi, e.g., Neurospora crassa and Podospora anserina. During the sexual cycle, several developmental steps require precise nuclear movement and positioning, but connections between RIP, PR, and nuclear distributions have not yet been established. Previous work has led to the isolation of ami1, the P. anserina ortholog of the Aspergillus nidulans apsA gene, which is required for nuclear positioning. We show here that ami1 is involved in nuclear distribution during the sexual cycle and that alteration of ami1 delays the fruiting-body development. We also demonstrate that ami1 alteration affects loss of transgene functions during the sexual cycle. Genetically linked multiple copies of transgenes are affected by RIP and PR much more frequently in an ami1 mutant cross than in a wild-type cross. Our results suggest that the developmental slowdown of the ami1 mutant during the period of RIP and PR increases time exposure to the duplication detection system and thus increases the frequency of RIP and PR. PMID:15166143

  1. Alterations in lenticular proteins during ageing and selenite-induced cataractogenesis in Wistar rats

    PubMed Central

    Sakthivel, Muniyan; Elanchezhian, Rajan; Thomas, Philip A.

    2010-01-01

    Purpose To determine putative alterations in the major lenticular proteins in Wistar rats of different ages and to compare these alterations with those occurring in rats with selenite-induced cataract. Methods Lenticular transparency was determined by morphological examination using slit-lamp biomicroscopy. Alterations in lenticular protein were determined by sodium dodecyl sulfate-PAGE (SDS–PAGE) and confirmed immunologically by western blot. Results Morphological examination did not reveal observable opacities in the lenses of the rats of different age groups; however, dense nuclear opacities were noted in lenses of rats in the selenite-cataract group. Western blot assays revealed age-related changes in soluble and urea-soluble lenticular proteins. Decreased αA- and βB1-crystallins in the soluble fraction and aggregation of αA-crystallin, in addition to the degraded fragment of βB1-crystallin, in the urea-soluble fraction appeared to occur in relation to increasing age of the rats from which the lenses were taken; similarly, cytoskeletal proteins appeared to decline with increasing age. The lenses from rats in the selenite-cataract group exhibited similar changes, except that there was also high molecular weight aggregation of αA-crystallin. Conclusions The results of this study suggest that there is loss, as well as aggregation, of αA-crystallin in the aging rat lens, although there is no accompanying loss of lenticular transparency. PMID:20300567

  2. Glomerular alterations in uranyl acetate-induced acute renal failure in rabbits

    SciTech Connect

    Kobayashi, S.; Nagase, M.; Honda, N.; Hishida, A.

    1984-12-01

    The study was performed to elucidate the progression and regression of superficial and inner glomerular alterations in uranyl acetate-induced renal failure in rabbits. Fifteen hours after the drug injection, creatinine clearance (CCr) decreased to 55% of controls with slightly elevated plasma creatinine concentration (initiation stage). After 5 days, urine flow and CCr decreased to approximately zero, with severe azotemia (maintenance stage). Scanning electron microscopic observations in these stages revealed a flattening and spreading of podocyte cell bodies associated with loss of epithelial foot processes, and reduction in the density of endothelial fenestrae. These changes were more advanced in the maintenance stage. Glomerular and fenestral diameters did not significantly change in the initiation stage but increased in the maintenance stage. There was no significant difference in these morphologic alterations, however, between the superficial and inner glomeruli. Glomerular alterations reverted to normal within 14 days, with good recovery of glomerular function. The findings show no significant difference in the progression or regression of the glomerular changes between the superficial and deep cortex. These morphologic changes may play a role in the reduction of CCr observed in this model.

  3. CO2-induced ocean acidification increases anxiety in Rockfish via alteration of GABAA receptor functioning

    PubMed Central

    Hamilton, Trevor James; Holcombe, Adam; Tresguerres, Martin

    2014-01-01

    The average surface pH of the ocean is dropping at a rapid rate due to the dissolution of anthropogenic CO2, raising concerns for marine life. Additionally, some coastal areas periodically experience upwelling of CO2-enriched water with reduced pH. Previous research has demonstrated ocean acidification (OA)-induced changes in behavioural and sensory systems including olfaction, which is due to altered function of neural gamma-aminobutyric acid type A (GABAA) receptors. Here, we used a camera-based tracking software system to examine whether OA-dependent changes in GABAA receptors affect anxiety in juvenile Californian rockfish (Sebastes diploproa). Anxiety was estimated using behavioural tests that measure light/dark preference (scototaxis) and proximity to an object. After one week in OA conditions projected for the next century in the California shore (1125 ± 100 µatm, pH 7.75), anxiety was significantly increased relative to controls (483 ± 40 µatm CO2, pH 8.1). The GABAA-receptor agonist muscimol, but not the antagonist gabazine, caused a significant increase in anxiety consistent with altered Cl− flux in OA-exposed fish. OA-exposed fish remained more anxious even after 7 days back in control seawater; however, they resumed their normal behaviour by day 12. These results show that OA could severely alter rockfish behaviour; however, this effect is reversible. PMID:24285203

  4. Air pollution induced alterations in assimilate partitioning in Anagallis arvensis L

    SciTech Connect

    Khan, F.A.; Iqbal, M.; Ahmad, Z.; Saquib, M.; Ghouse, A.K.M. )

    1989-04-01

    The Thermal Power Plant Complex of Kasimpur (Aligarh, UP, India) emits enormous amounts of oxides of sulfur, nitrogen, and carbon as well as particulate matters on consuming 3192 MT of coal/day. These effluents induce significant alterations in carbon allocation in Anagallis arvensis populations. Monthly samples of 10 plants each were collected on random basis at seedling to mature stage from 0.5, 2, 6, 12 and 20 km leeward from the power plant. In oven dried samples, assimilate partitioning was noted to be more severely altered by the air pollutants in the seedling stage. In 2 and 3 months old populations, photosynthate allocation to root and shoot was not altered noticeably. Considerable changes in carbon allocation were noted in 4 mo old mature stage. The carbon allocation to fruit was 3 fold and to seed was about 4 fold greater in the population thriving 20 km away from the source than in those growing in the vicinity of the source. Assimilate partitioning was linearly related to the distance from power plant and the productivity of the populations.

  5. Alterations in the hippocampal endocannabinoid system in diet-induced obese mice

    PubMed Central

    Massa, Federico; Mancini, Giacomo; Schmidt, Helmut; Steindel, Frauke; Mackie, Ken; Angioni, Carlo; Oliet, Stéphane H.R.; Geisslinger, Gerd; Lutz, Beat

    2010-01-01

    The endocannabinoid (eCB) system plays central roles in the regulation of food intake and energy expenditure. Its alteration in activity contributes to the development and maintenance of obesity. Stimulation of the cannabinoid receptor type 1 (CB1 receptor) increases feeding, enhances reward aspects of eating and promotes lipogenesis, while its blockade decreases appetite, sustains weight loss, increases insulin sensitivity, and alleviates dysregulation of lipid metabolism. The hypothesis has been put forward that the eCB system is over-active in obesity. Hippocampal circuits are not directly involved in the neuronal control of food intake and appetite, but they play important roles in hedonic aspects of eating. We investigated the possibility whether or not diet-induced obesity (DIO) alters the functioning of the hippocampal eCB system. We found that levels of the two eCBs, 2-arachidonoyl glycerol (2-AG) and anandamide, were increased in the hippocampus from DIO mice, with a concomitant increase of the 2-AG synthesizing enzyme diacylglycerol lipase-α and increased CB1 receptor immunoreactivity in CA1 and CA3 regions, while CB1 receptor agonist-induced GTPγS binding was unchanged. eCB-mediated synaptic plasticity was changed in the CA1 region, as depolarization-induced suppression of inhibition (DSI) and long-term depression of inhibitory synapses (I-LTD) were enhanced. Functionality of CB1 receptors in GABAergic neurons was furthermore revealed, as mice specifically lacking CB1 receptors on this neuronal population were partly resistant to DIO. Our results showed that DIO-induced changes in the eCB system does not affect only tissues directly involved in the metabolic regulation, but also brain regions mediating hedonic aspects of eating and influencing cognitive processes. PMID:20445053

  6. Ethanol induced impairment of glucose metabolism involves alterations of GABAergic signaling in pancreatic β-cells.

    PubMed

    Wang, Shuanglian; Luo, Yan; Feng, Allen; Li, Tao; Yang, Xupeng; Nofech-Mozes, Roy; Yu, Meng; Wang, Changhui; Li, Ziwei; Yi, Fan; Liu, Chuanyong; Lu, Wei-Yang

    2014-12-01

    Alcohol overindulgence is a risk factor of type 2 diabetes mellitus. However, the mechanisms by which alcohol overindulgence damages glucose metabolism remain unclear. Pancreatic islet β-cells are endowed with type-A γ-aminobutyric acid receptor (GABAAR) mediated autocrine signaling mechanism, which regulates insulin secretion and fine-tunes glucose metabolism. In neurons GABAAR is one of the major targets for alcohol. This study investigated whether ethanol alters glucose metabolism by affecting GABAAR signaling in pancreatic β-cells. Blood glucose level of test mice was measured using a blood glucose meter. Insulin secretion by the pancreatic β-cell line INS-1 cells was examined using a specific insulin ELISA kit. Whole-cell patch-clamp recording was used to evaluate GABA-elicited current in INS-1 cells. Western blot and immunostaining were used to measure the expression of GABAAR subunits in mouse pancreatic tissues or in INS-1 cells. Intraperitoneal (i.p.) administration of ethanol (3.0g/kg body weight) to mice altered glucose metabolism, which was associated with decreased expression of GABAAR α1- and δ- subunits on the surface of pancreatic β-cells. Acute treatment of cultured INS-1cells with ethanol (60mM) decreased the GABA-induced current and reduced insulin secretion. In contrast, treating INS-1 cells with GABA (100μM) largely prevented the ethanol-induced reduction of insulin release. Importantly, pre-treating mice with GABA (i.p., 1.5mg/kg body weight) partially reversed ethanol-induced impairment of glucose homeostasis in mice. Our data suggest a novel role of pancreatic GABA signaling in protecting pancreatic islet β-cells from ethanol-induced dysfunction. PMID:25456265

  7. Plasma-induced sputtering and chemical alteration of solar system surfaces

    NASA Astrophysics Data System (ADS)

    Johnson, R. E.; Cassidy, T. A.; Leblanc, F.

    The surfaces of a number of solar system bodies are directly exposed to relative intense plasmas as well as UV photon bombardment. This irradiation can produce a very tenuous atmosphere and can chemically alter the surface (Johnson 1990; 2002; Madey et al. 2002). Such processes have been shown to be critical in understanding the ambient gas and plasma as well as the reflectance properties of the icy Galilean satellites (e.g., Johnson et al. 2004), and similarly affect other icy bodies in the outer solar system. Plasma and UV sputtering have produced, for instance, detectable molecular oxygen atmospheres at Europa (e.g., Shematovich et al. 2005) and Ganymede and the molecular oxygen above Saturn's main rings (Johnson et al. 2006). This bombardment also sputters (Jurac et al. 2001) and charges (Jurac et al. 1995) the icy grains in Saturn's tenuous rings. Plasma and UV irradiation have been shown to produce the alkali atmospheres observed at the Moon and Mercury (e.g., Leblanc and Johnson 2002; Leblanc et al. 2003) as well as at Europa (e.g., Leblanc et al. 2005; Cassidy and Johnson 2005). In this paper I will review the data on the effect of plasmas on laboratory surfaces and then will describe its application to regoliths (Cassidy and Johnson 2005) on a number of solar system bodies. References: Cassidy, T.A. and R.E. Johnson, Monte Carlo madel of sputtering and other ejection processes within a regolith", Icarus 176, 499-507 (2005). Johnson, R.E., Energetic Charged-Particle Interactions with Atmospheres and Surfaces, Springer (1990). Johnson, R.E., Surface Boundary Layer Atmospheres, in Atmospheres in the Solar System: Comparative Aeronomy. Geophys. Mono. 130, 203-219 (2002). Johnson, R.E., R.W. Carlson, J.F. Cooper, C. Paranicas, M.H. Moore, and M.C. Wong, "Radiation Effects on the Surface of the Galilean Satellites", In Jupiter-The Planet, Satellites and Magnetosphere, Ed. F. Bagenal, T. Dowling, and W.B. McKinnon, Cambridge University, Cambridge. Chapter 20, pp

  8. Molecular alterations in tumorigenic human bronchial and breast epithelial cells induced by high let radiation

    NASA Astrophysics Data System (ADS)

    Hei, T. K.; Zhao, Y. L.; Roy, D.; Piao, C. Q.; Calaf, G.; Hall, E. J.

    Carcinogenesis is a multi-stage process with sequence of genetic events governing the phenotypic expression of a series of transformation steps leading to the development of metastatic cancer. In the present study, immortalized human bronchial (BEP2D) and breast (MCF-10F) cells were irradiated with graded doses of either 150 keV/μm alpha particles or 1 GeV/nucleon 56Fe ions. Transformed cells developed through a series of successive steps before becoming tumorigenic in nude mice. Cell fusion studies indicated that radiation-induced tumorigenic phenotype in BEP2D cells could be completely suppressed by fusion with non-tumorigenic BEP2D cells. The differential expressions of known genes between tumorigenic bronchial and breast cells induced by alpha particles and their respective control cultures were compared using cDNA expression array. Among the 11 genes identified to be differentially expressed in BEP2D cells, three ( DCC, DNA-PK and p21 CIPI) were shown to be consistently down-regulated by 2 to 4 fold in all the 5 tumor cell lines examined. In contrast, their expressions in the fusion cell lines were comparable to control BEP2D cells. Similarly, expression levels of a series of genes were found to be altered in a step-wise manner among tumorigenic MCF-10F cells. The results are highly suggestive that functional alterations of these genes may be causally related to the carcinogenic process.

  9. Ultraviolet B-induced alterations of the skin barrier and epidermal calcium gradient.

    PubMed

    Jiang, Shao Jun; Chu, Ai Wu; Lu, Zhen Feng; Pan, Min Hong; Che, Dun Fa; Zhou, Xiao Jun

    2007-12-01

    Ultraviolet irradiation induces a variety of cutaneous changes, including epidermal permeability barrier disruption. In the present study, we assessed the effects of ultraviolet B (UVB) irradiation in epidermal barrier function and calcium distribution in murine epidermis. Adult hairless mice were exposed to a single dose of UVB (0.15 J/cm(2)). Barrier function was evaluated by transepidermal water loss (TEWL), lanthanum perfusion. The morphological alterations were examined by histology, immunohistochemistry and electron microscopy using ruthenium tetroxide (RuO(4)) postfixation. For evaluation of the effect on epidermal calcium distribution, the ion-capture cytochemistry was employed. UVB irradiation caused a significant increase in TEWL, which peaked at day 4. In parallel, the increased number of sunburn cells and the changes in epidermal hyperplasia and proliferation were observed. Electron microscopic observation demonstrated that the water-soluble lanthanum tracer was present in the extracellular stratum corneum domains, and the increased intercellular permeability was correlated with defective organization of the extracellular lipid lamellar bilayers of the stratum corneum. Moreover, UVB irradiation also caused an appearance of calcium precipitates in the stratum corneum and transitional cell layers as well as the increased cytosolic calcium in the lower epidermis, reflecting the alterations of the epidermal calcium gradient. These results suggest that the changes of the epidermal calcium distribution pattern may correlate with the perturbation of the epidermal barrier induced by UVB irradiation. PMID:18031457

  10. Altered Sporulation and Respiratory Patterns in Mutants of Bacillus subtilis Induced by Acridine Orange

    PubMed Central

    Bott, K. F.; Davidoff-Abelson, R.

    1966-01-01

    Bott, K. F. (The University of Chicago, Chicago, Ill.), and R. Davidoff-Abelson. Altered sporulation and respiratory patterns in mutants of Bacillus subtilis induced by acridine orange. J. Bacteriol. 92:229–240. 1966.—The addition of acridine orange to vegetative cultures of Bacillus subtilis induces the formation of sporulation mutants at a frequency of 20% or greater. These mutants are grouped into seven categories which reflect their different morphological properties. They are altered in their vegetative metabolism, as indicated by abnormal growth on synthetic media. Sporulation of these mutants is impaired at several levels, all of which are stable upon repeated subculturing. The initial stages of sporulation which require no increased metabolic activity (proteolytic enzyme activity and antibiotic production) are functional in all strains, but glucose dehydrogenase activity, an enzyme associated with early synthetic functions in spore synthesis, is significantly reduced. Reduced nicotinamide adenine dinucleotide oxidase is slightly depressed. It is suggested that acridine orange interacts with a cellular constituent controlling respiration and consequently prevents an increased metabolic activity that may be associated with normal spore synthesis. Images PMID:4957434

  11. Alterations induced by chronic lead exposure on the cells of circadian pacemaker of developing rats

    PubMed Central

    Rojas-Castañeda, Julio César; Vigueras-Villaseñor, Rosa María; Rojas, Patricia; Chávez-Saldaña, Margarita; Pérez, Oscar Gutiérrez; Montes, Sergio; Ríos, Camilo

    2011-01-01

    Lead (Pb) exposure alters the temporal organization of several physiological and behavioural processes in which the suprachiasmatic nucleus (SCN) of the hypothalamus plays a fundamental role. In this study, we evaluated the effects of chronic early Pb exposure (CePbe) on the morphology, cellular density and relative optical density (OD) in the cells of the SCN of male rats. Female Wistar rats were exposed during gestation and lactation to a Pb solution containing 320 ppm of Pb acetate through drinking water. After weaning, the pups were maintained with the same drinking water until sacrificed at 90 days of age. Pb levels in the blood, hypothalamus, hippocampus and prefrontal cortex were significantly increased in the experimental group. Chronic early Pb exposure induced a significant increase in the minor and major axes and somatic area of vasoactive intestinal polypeptide (VIP)- and vasopressin (VP)-immunoreactive neurons. The density of VIP-, VP- and glial fibrillary acidic protein (GFAP)-immunoreactive cells showed a significant decrease in the experimental group. OD analysis showed a significant increase in VIP neurons of the experimental group. The results showed that CePbe induced alterations in the cells of the SCN, as evidenced by modifications in soma morphology, cellular density and OD in circadian pacemaker cells. These findings provide a morphological and cellular basis for deficits in circadian rhythms documented in Pb-exposed animals. PMID:21324006

  12. Altered Hypoxia-inducible factor-1 alpha expression levels correlate with coronary vessel anomalies

    PubMed Central

    Wikenheiser, Jamie; Wolfram, Julie A.; Gargesha, Madhusudhana; Yang, Ke; Karunamuni, Ganga; Wilson, David L.; Semenza, Gregg L.; Agani, Faton; Fisher, Steven A.; Ward, Nicole; Watanabe, Michiko

    2009-01-01

    The outflow tract myocardium and other regions corresponding to the location of the major coronary vessels of the developing chicken heart, display a high level of hypoxia as assessed by the hypoxia indicator EF5. The EF5 positive tissues were also specifically positive for nuclear-localized hypoxia inducible factor-1 alpha (HIF-1α), the oxygen-sensitive component of the hypoxia inducible factor-1 (HIF-1) heterodimer. This led to our hypothesis that there is a “template” of hypoxic tissue that determines the stereotyped pattern of the major coronary vessels. In this study we disturbed this template by altering ambient oxygen levels (hypoxia 15%; hyperoxia 75-40%) during the early phases of avian coronary vessel development, in order to alter tissue hypoxia, HIF-1α protein expression and its downstream target genes without high mortality. We also altered HIF-1α gene expression in the embryonic outflow tract cardiomyocytes by injecting an adenovirus containing a constitutively active form of HIF-1α (AdCA5). We assayed for coronary anomalies using anti-alpha-smooth muscle actin immunohistology. When incubated under abnormal oxygen levels or injected with a low titer of the AdCA5, coronary arteries displayed deviations from their normal proximal connections to the aorta. These deviations were similar to known clinical anomalies of coronary arteries. These findings indicated that developing coronary vessels may be subject to a level of regulation that is dependent on differential oxygen levels within cardiac tissues and subsequent HIF-1 regulation of gene expression. PMID:19777592

  13. Silver nanoparticle-induced hemoglobin decrease involves alteration of histone 3 methylation status.

    PubMed

    Qian, Yi; Zhang, Jie; Hu, Qinglin; Xu, Ming; Chen, Yue; Hu, Guoqing; Zhao, Meirong; Liu, Sijin

    2015-11-01

    Silver nanoparticles (nanosilver, AgNPs) have been shown to induce toxicity in vitro and in vivo; however, the molecular bases underlying the detrimental effects have not been thoroughly understood. Although there are numerous studies on its genotoxicity, only a few studies have investigated the epigenetic changes, even less on the changes of histone modifications by AgNPs. In the current study, we probed the AgNP-induced alterations to histone methylation that could be responsible for globin reduction in erythroid cells. AgNP treatment caused a significant reduction of global methylation level for histone 3 (H3) in erythroid MEL cells at sublethal concentrations, devoid of oxidative stress. The ChIP-PCR analyses demonstrated that methylation of H3 at lysine (Lys) 4 (H3K4) and Lys 79 (H3K79) on the β-globin locus was greatly reduced. The reduction in methylation could be attributed to decreased histone methyltransferase DOT-1L and MLL levels as well as the direct binding between AgNPs to H3/H4 that provide steric hindrance to prevent methylation as predicted by the all-atom molecular dynamics simulations. This direct interaction was further proved by AgNP-mediated pull-down assay and immunoprecipitation assay. These changes, together with decreased RNA polymerase II activity and chromatin binding at this locus, resulted in decreased hemoglobin production. By contrast, Ag ion-treated cells showed no alterations in histone methylation level. Taken together, these results showed a novel finding in which AgNPs could alter the methylation status of histone. Our study therefore opens a new avenue to study the biological effects of AgNPs at sublethal concentrations from the perspective of epigenetic mechanisms. PMID:26295435

  14. Alterations in the Porcine Colon Microbiota Induced by the Gastrointestinal Nematode Trichuris suis

    PubMed Central

    Wu, Sitao; Li, Weizhong; Navarro, Karl; Couch, Robin D.; Hill, Dolores; Urban, Joseph F.

    2012-01-01

    Helminth parasites ensure their survival by regulating host immunity through mechanisms that dampen inflammation. These properties have recently been exploited therapeutically to treat human diseases. The biocomplexity of the intestinal lumen suggests that interactions between the parasite and the intestinal microbiota would also influence inflammation. In this study, we characterized the microbiota in the porcine proximal colon in response to Trichuris suis (whipworm) infection using 16S rRNA gene-based and whole-genome shotgun (WGS) sequencing. A 21-day T. suis infection in four pigs induced a significant change in the composition of the proximal colon microbiota compared to that of three parasite-naive pigs. Among the 15 phyla identified, the abundances of Proteobacteria and Deferribacteres were changed in infected pigs. The abundances of approximately 13% of genera were significantly altered by infection. Changes in relative abundances of Succinivibrio and Mucispirillum, for example, may relate to alterations in carbohydrate metabolism and niche disruptions in mucosal interfaces induced by parasitic infection, respectively. Of note, infection by T. suis led to a significant shift in the metabolic potential of the proximal colon microbiota, where 26% of all metabolic pathways identified were affected. Besides carbohydrate metabolism, lysine biosynthesis was repressed as well. A metabolomic analysis of volatile organic compounds (VOCs) in the luminal contents showed a relative absence in infected pigs of cofactors for carbohydrate and lysine biosynthesis, as well as an accumulation of oleic acid, suggesting altered fatty acid absorption contributing to local inflammation. Our findings should facilitate development of strategies for parasitic control in pigs and humans. PMID:22493085

  15. Glomerular lesions induced in the rabbit by physicochemically altered homologous IgG.

    PubMed Central

    Cavalot, F.; Miyata, M.; Vladutiu, A.; Terranova, V.; Dubiski, S.; Burlingame, R.; Tan, E.; Brentjens, J.; Milgrom, F.; Andres, G.

    1992-01-01

    Immunization of rabbits with physicochemically altered homologous or even autologous IgG induces formation of antibodies combining with IgG of rabbit and of foreign species. Cardiac but not renal lesions were reported in such animals. This study examined the nephritogenic potential of the immune response to cationized or heat-aggregated homologous IgG of b9 or b4 allotype in rabbits of the b4 allotype. Rabbits injected with either b9 or b4 cationized IgG produced antibodies reactive with rabbit and human IgG and with histones; they also developed abnormal glomerular deposits of IgG b4 and C3 corresponding to alterations of the glomerular basement membranes (GBM). Rabbits injected with either b9 or b4 aggregated IgG developed antibodies reactive with rabbit and human IgG and abnormal glomerular deposits of IgG b4 and C3 in the GBM and in the mesangium with subendothelial and mesangial electron-dense deposits. Some rabbits in both groups had proliferative and exudative glomerulonephritis and proteinuria. The results showed that immunization of rabbits with physicochemically altered homologous IgG induces an immune response to rabbit and human IgG and to histones as well as glomerular deposits of autologous IgG and C3 and other glomerular lesions. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Figure 16 Figure 17 Figure 18 Figure 19 Figure 20 Figure 21 Figure 22 Figure 23 Figure 24 Figure 25 Figure 26 Figure 27 Figure 28 Figure 29 Figure 30 PMID:1546743

  16. Environmental Particulate Matter Induces Murine Intestinal Inflammatory Responses and Alters the Gut Microbiome

    PubMed Central

    Kish, Lisa; Hotte, Naomi; Kaplan, Gilaad G.; Vincent, Renaud; Tso, Robert; Gänzle, Michael; Rioux, Kevin P.; Thiesen, Aducio; Barkema, Herman W.; Wine, Eytan; Madsen, Karen L.

    2013-01-01

    Background Particulate matter (PM) is a key pollutant in ambient air that has been associated with negative health conditions in urban environments. The aim of this study was to examine the effects of orally administered PM on the gut microbiome and immune function under normal and inflammatory conditions. Methods Wild-type 129/SvEv mice were gavaged with Ottawa urban PM10 (EHC-93) for 7–14 days and mucosal gene expression analyzed using Ingenuity Pathways software. Intestinal permeability was measured by lactulose/mannitol excretion in urine. At sacrifice, segments of small and large intestine were cultured and cytokine secretion measured. Splenocytes were isolated and incubated with PM10 for measurement of proliferation. Long-term effects of exposure (35 days) on intestinal cytokine expression were measured in wild-type and IL-10 deficient (IL-10−/−) mice. Microbial composition of stool samples was assessed using terminal restriction fragment length polymorphism. Short chain fatty acids were measured in caecum. Results Short-term treatment of wild-type mice with PM10 altered immune gene expression, enhanced pro-inflammatory cytokine secretion in the small intestine, increased gut permeability, and induced hyporesponsiveness in splenocytes. Long-term treatment of wild-type and IL-10−/− mice increased pro-inflammatory cytokine expression in the colon and altered short chain fatty acid concentrations and microbial composition. IL-10−/− mice had increased disease as evidenced by enhanced histological damage. Conclusions Ingestion of airborne particulate matter alters the gut microbiome and induces acute and chronic inflammatory responses in the intestine. PMID:23638009

  17. Parasite-induced alteration of odour responses in an amphipod-acanthocephalan system.

    PubMed

    Stone, Charles F; Moore, Janice

    2014-11-01

    Odour-related behaviours in aquatic invertebrates are important and effective anti-predator behaviours. Parasites often alter invertebrate host behaviours to increase transmission to hosts. This study investigated the responses of the amphipod Hyalella azteca when presented with two predator chemical cues: (i) alarm pheromones produced by conspecifics and (ii) kairomones produced by a predatory Green Sunfish (Lepomis cyanellus). We compared the responses of amphipods uninfected and infected with the acanthocepalan parasite Leptorhynchiodes thecatus. Uninfected amphipods reduced activity and increased refuge use after detecting both the alarm pheromones and predator kairomones. Infected amphipods spent significantly more time being active and less time on the refuge than uninfected amphipods, and behaved as if they had not detected the chemical stimulus. Therefore, L. thecatus infections disrupt the amphipods' anti-predator behaviours and likely make their hosts more susceptible to predation. PMID:25200352

  18. Epigenetic alterations induced by genotoxic occupational and environmental human chemical carcinogens: A systematic literature review.

    PubMed

    Chappell, Grace; Pogribny, Igor P; Guyton, Kathryn Z; Rusyn, Ivan

    2016-01-01

    Accumulating evidence suggests that epigenetic alterations play an important role in chemically-induced carcinogenesis. Although the epigenome and genome may be equally important in carcinogenicity, the genotoxicity of chemical agents and exposure-related transcriptomic responses have been more thoroughly studied and characterized. To better understand the evidence for epigenetic alterations of human carcinogens, and the potential association with genotoxic endpoints, we conducted a systematic review of published studies of genotoxic carcinogens that reported epigenetic endpoints. Specifically, we searched for publications reporting epigenetic effects for the 28 agents and occupations included in Monograph Volume 100F of the International Agency for the Research on Cancer (IARC) that were classified as "carcinogenic to humans" (Group 1) with strong evidence of genotoxic mechanisms of carcinogenesis. We identified a total of 158 studies that evaluated epigenetic alterations for 12 of these 28 carcinogenic agents and occupations (1,3-butadiene, 4-aminobiphenyl, aflatoxins, benzene, benzidine, benzo[a]pyrene, coke production, formaldehyde, occupational exposure as a painter, sulfur mustard, and vinyl chloride). Aberrant DNA methylation was most commonly studied, followed by altered expression of non-coding RNAs and histone changes (totaling 85, 59 and 25 studies, respectively). For 3 carcinogens (aflatoxins, benzene and benzo[a]pyrene), 10 or more studies reported epigenetic effects. However, epigenetic studies were sparse for the remaining 9 carcinogens; for 4 agents, only 1 or 2 published reports were identified. While further research is needed to better identify carcinogenesis-associated epigenetic perturbations for many potential carcinogens, published reports on specific epigenetic endpoints can be systematically identified and increasingly incorporated in cancer hazard assessments. PMID:27234561

  19. Caloric Restriction Normalizes Obesity-Induced Alterations on Regulators of Skeletal Muscle Growth Signaling.

    PubMed

    Dungan, Cory M; Li, Ji; Williamson, David L

    2016-08-01

    The objective of this study was to establish the impact of caloric restriction on high fat diet-induced alterations on regulators of skeletal muscle growth. We hypothesized that caloric restriction would reverse the negative effects of high fat diet-induced obesity on REDD1 and mTOR-related signaling. Following an initial 8 week period of HF diet-induced obesity, caloric restriction (CR ~30 %) was employed while mice continued to consume either a low (LF) or high fat (HF) diet for 8 weeks. Western analysis of skeletal muscle showed that CR reduced (p < 0.05) the obesity-related effects on the lipogenic protein, SREBP1. Likewise, CR reduced (p < 0.05) the obesity-related effects on the hyperactivation of mTORC1 and ERK1/2 signaling to levels comparable to the LF mice. CR also reduced (p < 0.05) obesity-induced expression of negative regulators of growth, REDD1 and cleaved caspase 3. These findings have implications for on the reversibility of dysregulated growth signaling in obese skeletal muscle, using short-term caloric restriction. PMID:27289530

  20. Beryllium chloride-induced oxidative DNA damage and alteration in the expression patterns of DNA repair-related genes.

    PubMed

    Attia, Sabry M; Harisa, Gamaleldin I; Hassan, Memy H; Bakheet, Saleh A

    2013-09-01

    Beryllium metal has physical properties that make its use essential for very specific applications, such as medical diagnostics, nuclear/fusion reactors and aerospace applications. Because of the widespread human exposure to beryllium metals and the discrepancy of the genotoxic results in the reported literature, detail assessments of the genetic damage of beryllium are warranted. Mice exposed to beryllium chloride at an oral dose of 23mg/kg for seven consecutive days exhibited a significant increase in the level of DNA-strand breaking and micronuclei formation as detected by a bone marrow standard comet assay and micronucleus test. Whereas slight beryllium chloride-induced oxidative DNA damage was detected following formamidopyrimidine DNA glycosylase digestion, digestion with endonuclease III resulted in considerable increases in oxidative DNA damage after the 11.5 and 23mg/kg/day treatment as detected by enzyme-modified comet assays. Increased 8-hydroxydeoxyguanosine was also directly correlated with increased bone marrow micronuclei formation and DNA strand breaks, which further confirm the involvement of oxidative stress in the induction of bone marrow genetic damage after exposure to beryllium chloride. Gene expression analysis on the bone marrow cells from beryllium chloride-exposed mice showed significant alterations in genes associated with DNA damage repair. Therefore, beryllium chloride may cause genetic damage to bone marrow cells due to the oxidative stress and the induced unrepaired DNA damage is probably due to the down-regulation in the expression of DNA repair genes, which may lead to genotoxicity and eventually cause carcinogenicity. PMID:23793613

  1. Morpho-anatomical and growth alterations induced by arsenic in Cajanus cajan (L.) DC (Fabaceae).

    PubMed

    Pita-Barbosa, Alice; Gonçalves, Elton Carvalho; Azevedo, Aristéa Alves

    2015-08-01

    Arsenic (As) is a toxic element to most organisms. Studies investigating anatomic alterations due to As exposure in plants are scarce but of utmost importance to the establishment of environmental biomonitoring techniques. So, this study aimed to investigate the effects of As on the development and initial root growth in Cajanus cajan (Fabaceae), characterize and quantify the possible damages, evaluate genotoxic effects, and identify structural markers to be used in environmental bioindication. Plants were exposed hydroponically to 0.5, 1.0, 1.5, and 2.0 mg As L(-1), as sodium arsenate. Growth parameters were measured, and in the end of the exposure, root samples were analyzed for qualitative and quantitative anatomical alterations. Arsenic genotoxicity was evaluated through analysis of the mitotic index in the root apex. Compared to the control, As-treated seedlings showed an altered architecture, with significantly decreased root length (due to the lower mitotic index in the apical meristem and reduced elongation of parenchyma cells) with darkened color, and abnormal development of the root cap. A significant increase in vascular cylinder/root diameter ratio was also detected, due to the reduction of the cellular spaces in the cortex. The secondary xylem vessel elements were reduced in diameter and had sinuous walls. The severest damage was visible in the ramification zone, where uncommon division planes of phellogen and cambium cells and disintegration of the parenchyma cells adjacent to lateral roots were observed. The high sensibility of C. cajan to As was confirmed, since it caused severe damages in root growth and anatomy. The main structural markers for As toxicity were the altered root architecture, with the reduction of the elongation zone and increase of ramification zone length, and the root primordia retained within the cortex. Our results show a new approach about As toxicity and indicate that C. cajan is a promising species to be used for

  2. Circulating plasma factors induce tubular and glomerular alterations in septic burns patients

    PubMed Central

    Mariano, Filippo; Cantaluppi, Vincenzo; Stella, Maurizio; Romanazzi, Giuseppe Mauriello; Assenzio, Barbara; Cairo, Monica; Biancone, Luigi; Triolo, Giorgio; Ranieri, V Marco; Camussi, Giovanni

    2008-01-01

    Background Severe burn is a systemic illness often complicated by sepsis. Kidney is one of the organs invariably affected, and proteinuria is a constant clinical finding. We studied the relationships between proteinuria and patient outcome, severity of renal dysfunction and systemic inflammatory state in burns patients who developed sepsis-associated acute renal failure (ARF). We then tested the hypothesis that plasma in these patients induces apoptosis and functional alterations that could account for proteinuria and severity of renal dysfunction in tubular cells and podocytes. Methods We studied the correlation between proteinuria and indexes of systemic inflammation or renal function prospectively in 19 severe burns patients with septic shock and ARF, and we evaluated the effect of plasma on apoptosis, polarity and functional alterations in cultured human tubular cells and podocytes. As controls, we collected plasma from 10 burns patients with septic shock but without ARF, 10 burns patients with septic shock and ARF, 10 non-burns patients with septic shock without ARF, 10 chronic uremic patients and 10 healthy volunteers. Results Septic burns patients with ARF presented a severe proteinuria that correlated to outcome, glomerular (creatinine/urea clearance) and tubular (fractional excretion of sodium and potassium) functional impairment and systemic inflammation (white blood cell (WBC) and platelet counts). Plasma from these patients induced a pro-apoptotic effect in tubular cells and podocytes that correlated with the extent of proteinuria. Plasma-induced apoptosis was significantly higher in septic severe burns patients with ARF with respect to those without ARF or with septic shock without burns. Moreover, plasma from septic burns patients induced an alteration of polarity in tubular cells, as well as reduced expression of the tight junction protein ZO-1 and of the endocytic receptor megalin. In podocytes, plasma from septic burns patients increased

  3. Altered surfactant homeostasis and alveolar epithelial cell stress in amiodarone-induced lung fibrosis.

    PubMed

    Mahavadi, Poornima; Henneke, Ingrid; Ruppert, Clemens; Knudsen, Lars; Venkatesan, Shalini; Liebisch, Gerhard; Chambers, Rachel C; Ochs, Matthias; Schmitz, Gerd; Vancheri, Carlo; Seeger, Werner; Korfei, Martina; Guenther, Andreas

    2014-11-01

    Amiodarone (AD) is a highly efficient antiarrhythmic drug with potentially serious side effects. Severe pulmonary toxicity is reported in patients receiving AD even at low doses and may cause interstitial pneumonia as well as lung fibrosis. Apoptosis of alveolar epithelial type II cells (AECII) has been suggested to play an important role in this disease. In the current study, we aimed to establish a murine model of AD-induced lung fibrosis and analyze surfactant homeostasis, lysosomal, and endoplasmic reticulum (ER) stress in this model. AD/vehicle was instilled intratracheally into C57BL/6 mice, which were sacrificed on days 7, 14, 21, and 28. Extent of lung fibrosis development was assessed by trichrome staining and hydroxyproline measurement. Cytotoxicity was assessed by lactate dehydrogenase assay. Phospholipids (PLs) were analyzed by mass spectrometry. Surfactant proteins (SP) and markers for apoptosis, lysosomal, and ER stress were studied by Western blotting and immunohistochemistry. AECII morphology was evaluated by electron microscopy. Extensive lung fibrosis and AECII hyperplasia were observed in AD-treated mice already at day 7. Surfactant PL and SP accumulated in AECII over time. In parallel, induction of apoptosis, lysosomal, and ER stress was encountered in AECII of mice lungs and in MLE12 cells treated with AD. In vitro, siRNA-mediated knockdown of cathepsin D did not alter the AD-induced apoptotic response. Our data suggest that mice exposed to intratracheal AD develop severe pulmonary fibrosis, exhibit extensive surfactant alterations and cellular stress, but AD-induced AECII apoptosis is not mediated primarily via cathepsin D. PMID:25163675

  4. Radiation-Induced Epigenetic Alterations after Low and High LET Irradiations

    SciTech Connect

    Aypar, Umut; Morgan, William F.; Baulch, Janet E.

    2011-02-01

    Epigenetics, including DNA methylation and microRNA (miRNA) expression, could be the missing link in understanding the delayed, non-targeted effects of radiation including radiationinduced genomic instability (RIGI). This study tests the hypothesis that irradiation induces epigenetic aberrations, which could eventually lead to RIGI, and that the epigenetic aberrations induced by low linear energy transfer (LET) irradiation are different than those induced by high LET irradiations. GM10115 cells were irradiated with low LET x-rays and high LET iron (Fe) ions and evaluated for DNA damage, cell survival and chromosomal instability. The cells were also evaluated for specific locus methylation of nuclear factor-kappa B (NFκB), tumor suppressor in lung cancer 1 (TSLC1) and cadherin 1 (CDH1) gene promoter regions, long interspersed nuclear element 1 (LINE-1) and Alu repeat element methylation, CpG and non-CpG global methylation and miRNA expression levels. Irradiated cells showed increased micronucleus induction and cell killing immediately following exposure, but were chromosomally stable at delayed times post-irradiation. At this same delayed time, alterations in repeat element and global DNA methylation and miRNA expression were observed. Analyses of DNA methylation predominantly showed hypomethylation, however hypermethylation was also observed. MiRNA shown to be altered in expression level after x-ray irradiation are involved in chromatin remodeling and DNA methylation. Different and higher incidence of epigenetic changes were observed after exposure to low LET x-rays than high LET Fe ions even though Fe ions elicited more chromosomal damage and cell killing. This study also shows that the irradiated cells acquire epigenetic changes even though they are chromosomally stable suggesting that epigenetic aberrations may arise in the cell without initiating RIGI.

  5. Aβ-Induced Synaptic Alterations Require the E3 Ubiquitin Ligase Nedd4-1

    PubMed Central

    Rodrigues, Elizabeth M.; Scudder, Samantha L.; Goo, Marisa S.

    2016-01-01

    Alzheimer's disease (AD) is a neurodegenerative disease in which patients experience progressive cognitive decline. A wealth of evidence suggests that this cognitive impairment results from synaptic dysfunction in affected brain regions caused by cleavage of amyloid precursor protein into the pathogenic peptide amyloid-β (Aβ). Specifically, it has been shown that Aβ decreases surface AMPARs, dendritic spine density, and synaptic strength, and also alters synaptic plasticity. The precise molecular mechanisms by which this occurs remain unclear. Here we demonstrate a role for ubiquitination in Aβ-induced synaptic dysfunction in cultured rat neurons. We find that Aβ promotes the ubiquitination of AMPARs, as well as the redistribution and recruitment of Nedd4-1, a HECT E3 ubiquitin ligase we previously demonstrated to target AMPARs for ubiquitination and degradation. Strikingly, we show that Nedd4-1 is required for Aβ-induced reductions in surface AMPARs, synaptic strength, and dendritic spine density. Our findings, therefore, indicate an important role for Nedd4-1 and ubiquitin in the synaptic alterations induced by Aβ. SIGNIFICANCE STATEMENT Synaptic changes in Alzheimer's disease (AD) include surface AMPAR loss, which can weaken synapses. In a cell culture model of AD, we found that AMPAR loss correlates with increased AMPAR ubiquitination. In addition, the ubiquitin ligase Nedd4-1, known to ubiquitinate AMPARs, is recruited to synapses in response to Aβ. Strikingly, reducing Nedd4-1 levels in this model prevented surface AMPAR loss and synaptic weakening. These findings suggest that, in AD, Nedd4-1 may ubiquitinate AMPARs to promote their internalization and weaken synaptic strength, similar to what occurs in Nedd4-1's established role in homeostatic synaptic scaling. This is the first demonstration of Aβ-mediated control of a ubiquitin ligase to regulate surface AMPAR expression. PMID:26843640

  6. Water deprivation-partial rehydration induces sensitization of sodium appetite and alteration of hypothalamic transcripts.

    PubMed

    Pereira-Derderian, Daniela T B; Vendramini, Regina C; Menani, José V; Chiavegatto, Silvana; De Luca, Laurival A

    2016-01-01

    iSodium intake occurs either as a spontaneous or induced behavior, which is enhanced, i.e., sensitized, by repeated episodes of water deprivation followed by subsequent partial rehydration (WD-PR). In the present work, we examined whether repeated WD-PR alters hypothalamic transcripts related to the brain renin-angiotensin system (RAS) and apelin system in male normotensive Holtzman rats (HTZ). We also examined whether the sodium intake of a strain with genetically inherited high expression of the brain RAS, the spontaneously hypertensive rat (SHR), responds differently than HTZ to repeated WD-PR. We found that repeated WD-PR, besides enhancing spontaneous and induced 0.3 M NaCl intake, increased the hypothalamic expression of angiotensinogen, aminopeptidase N, and apelin receptor transcripts (43%, 60%, and 159%, respectively) in HTZ at the end of the third WD-PR. Repeated WD-PR did not change the daily spontaneous 0.3 M NaCl intake and barely changed the need-induced 0.3 M NaCl intake of SHR. The same treatment consistently enhanced spontaneous daily 0.3 M NaCl intake in the normotensive Wistar-Kyoto rats. The results show that repeated WD-PR produces alterations in hypothalamic transcripts and also sensitizes sodium appetite in HTZ. They suggest an association between the components of hypothalamic RAS and the apelin system, with neural and behavioral plasticity produced by repeated episodes of WD-PR in a normotensive strain. The results also indicate that the inherited hyperactive brain RAS is not a guarantee for sensitization of sodium intake in the male adult SHR exposed to repeated WD-PR. PMID:26538239

  7. Minimal changes in hypothalamic temperature accompany microwave-induced alteration of thermoregulatory behavior

    SciTech Connect

    Adair, E.R.; Adams, B.W.; Akel, G.M.

    1984-01-01

    This study probed the mechanisms underlying microwave-induced alterations of thermoregulatory behavior. Adult male squirrel monkeys (Saimiri sciureus), trained to regulate the temperature of their immediate environment (Ta) behaviorally, were chronically implanted with Teflon reentrant tubes in the medical preoptic/anterior hypothalamic area (PO/AH), the brainstem region considered to control normal thermoregulatory processes. A Vitek temperature probe inserted into the tube measured PO/AH temperature continuously while changes in thermoregulatory behavior were induced by either brief (10-min) or prolonged (2.5-h) unilateral exposures to planewave 2,450-MHz continuous wave (CW) microwaves (E polarization). Power densities explored ranged from 4 to 20 mW/cm2 (rate of energy absorption (SAR) . 0.05 (W/kg)/cm2)). Rectal temperature and four representative skin temperatures were also monitored, as was the Ta selected by the animal. When the power density was high enough to induce a monkey to select a cooler Ta (8 mW/cm2 and above), PO/AH temperature rose approximately 0.3 degrees C but seldom more. Lower power densities usually produced smaller increases in PO/AH temperature and no reliable change in thermoregulatory behavior. Rectal temperature remained constant while PO/AH temperature rose only 0.2-0.3 degrees C during 2.5-h exposures at 20 mW/cm2 because the Ta selected was 2-3 degrees C cooler than normally preferred. Sometimes PO/AH temperature increments greater than 0.3 degrees C were recorded, but they always accompanied inadequate thermoregulatory behavior. Thus, a PO/AH temperature rise of 0.2-0.3 degrees C, accompanying microwave exposure, appears to be necessary and sufficient to alter thermoregulatory behavior, which ensures in turn that no greater temperature excursions occur in this hypothalamic thermoregulatory center.

  8. HeLa cell response proteome alterations induced by mammalian reovirus T3D infection

    PubMed Central

    2013-01-01

    Background Cells are exposed to multiple stressors that induce significant alterations in signaling pathways and in the cellular state. As obligate parasites, all viruses require host cell material and machinery for replication. Virus infection is a major stressor leading to numerous induced modifications. Previous gene array studies have measured infected cellular transcriptomes. More recently, mass spectrometry-based quantitative and comparative assays have been used to complement such studies by examining virus-induced alterations in the cellular proteome. Methods We used SILAC (stable isotope labeling with amino acids in cell culture), a non-biased quantitative proteomic labeling technique, combined with 2-D HPLC/mass spectrometry and reciprocal labeling to identify and measure relative quantitative differences in HeLa cell proteins in purified cytosolic and nuclear fractions after reovirus serotype 3 Dearing infection. Protein regulation was determined by z-score analysis of each protein’s label distribution. Results A total of 2856 cellular proteins were identified in cytosolic fractions by 2 or more peptides at >99% confidence and 884 proteins were identified in nuclear fractions. Gene ontology analyses indicated up-regulated host proteins were associated with defense responses, immune responses, macromolecular binding, regulation of immune effector processes, and responses to virus, whereas down-regulated proteins were involved in cell death, macromolecular catabolic processes, and tissue development. Conclusions These analyses identified numerous host proteins significantly affected by reovirus T3D infection. These proteins map to numerous inflammatory and innate immune pathways, and provide the starting point for more detailed kinetic studies and delineation of virus-modulated host signaling pathways. PMID:23799967

  9. Hypercapnia-induced cerebral and ocular vasodilation is not altered by glibenclamide in humans.

    PubMed

    Bayerle-Eder, M; Wolzt, M; Polska, E; Langenberger, H; Pleiner, J; Teherani, D; Rainer, G; Polak, K; Eichler, H G; Schmetterer, L

    2000-06-01

    Carbon dioxide is an important regulator of vascular tone. Glibenclamide, an inhibitor of ATP-sensitive potassium channel (K(ATP)) activation, significantly blunts vasodilation in response to hypercapnic acidosis in animals. We investigated whether glibenclamide also alters the cerebral and ocular vasodilator response to hypercapnia in humans. Ten healthy male subjects were studied in a controlled, randomized, double-blind two-way crossover study under normoxic and hypercapnic conditions. Glibenclamide (5 mg po) or insulin (0.3 mU. kg(-1). min(-1) iv) were administered with glucose to achieve comparable plasma insulin levels. In control experiments, five healthy volunteers received glibenclamide (5 mg) or nicorandil (40 mg) or glibenclamide and nicorandil in a randomized, three-way crossover study. Mean blood flow velocity and resistive index in the middle cerebral artery (MCA) and in the ophthalmic artery (OA) were measured with Doppler sonography. Pulsatile choroidal blood flow was assessed with laser interferometric measurement of fundus pulsation. Forearm blood flow was measured with venous occlusion plethysmography. Hypercapnia increased ocular fundus pulsation amplitude by +18.2-22.3% (P < 0. 001) and mean flow velocity in the MCA by +27.4-33.3% (P < 0.001), but not in the OA (2.1-6.5%, P = 0.2). Forearm blood flow increased by 78.2% vs. baseline (P = 0.041) after nicorandil administration. Glibenclamide did not alter hypercapnia-induced changes in cerebral or ocular hemodynamics and did not affect systemic hemodynamics or forearm blood flow but significantly increased glucose utilization and blunted the nicorandil-induced vasodilation in the forearm. This suggests that hypercapnia-induced changes in the vascular beds under study are not mediated by activation of K(ATP) channels in humans. PMID:10848537

  10. Detection of alterations in testicular and epididymal function in laboratory animals

    SciTech Connect

    Amann, R.P.

    1986-12-01

    The potential impact of an agent altering male reproductive function is greater for humans than for animals. Consequently, it is essential that sensitive criteria be used to look for effects on a multiplicity of target sites when an agent is evaluated using an animal model. No animal model has reproductive characteristics similar to those of humans, but this does not negate the validity of using animal models. Classic methodologies for reproductive toxicology are limited by the approaches used for subjective evaluation of testicular histology and use of natural mating for fertility tests. After dosing for an interval at least equal to six times the duration of one cycle of the seminiferous epithelium, sperm from ejaculated semen or the cauda epididymidis can be evaluated for normalacy of morphology or function and should be used for artificial insemination of females to critically evaluate fertility. Normal males of animals models ejaculate a great excess of sperm. Artificial insemination of a critical number of sperm, selected to result in slightly less than maximal fertility for control animals, will maximize the probability of detecting a decrease in fertility if the same critical number of sperm is inseminated for treated animals as for control animals. Testicular function should be evaluated by objective, rather than subjective, criteria. Among the more sensitive criteria of testicular function are the minor diameter of essentially round seminiferous tubules, the ratio of leptotene spermatocytes to Sertoli cells, the corrected numbers of germ cells per seminiferous tubule cross section, and the number of homogenization-resistant spermatids per testis.

  11. Cold-Induced Browning Dynamically Alters the Expression Profiles of Inflammatory Adipokines with Tissue Specificity in Mice.

    PubMed

    Luo, Xiao; Jia, Ru; Zhang, Qiangling; Sun, Bo; Yan, Jianqun

    2016-01-01

    Cold exposure or β₃-adrenoceptor agonist treatment induces the adipose tissues remodeling, relevant for beige adipogenesis within white adipose tissue (WAT). It remains unclear whether this process influences inflammatory adipokines expression in adipose tissues. We determine the temporal profile of cold or β₃-adrenoceptor agonist (CL316,243)-induced changes in the expression of inflammatory adipokines in adipose tissues in mice or primary mice adipocytes. Male C57BL/6J mice at eight weeks old were exposed to 4 °C for 1-5 days. Interscapular brown adipose tissue (iBAT), inguinal subcutaneous WAT (sWAT) and epididymal WAT (eWAT) were harvested for gene and protein expression analysis. In addition, cultured primary mice brown adipocyte (BA) and white adipocyte (WA) treated with or without CL316,243 were harvested for gene expression analysis. The inflammatory adipokines expressed significantly higher in WAT than BAT at baseline. They were rapidly changed in iBAT, while down-regulated in sWAT and up-regulated in eWAT during the cold acclimation. Upon CL316,243 treatment, detected inflammatory adipokines except Leptin were transiently increased in both BA and WA. Our in vivo and in vitro data demonstrate that the browning process alters the inflammatory adipokines expression in adipose tissues, which is acutely responded to in iBAT, dynamically decreased in sWAT whilst increased in eWAT for compensation. PMID:27223282

  12. Cold-Induced Browning Dynamically Alters the Expression Profiles of Inflammatory Adipokines with Tissue Specificity in Mice

    PubMed Central

    Luo, Xiao; Jia, Ru; Zhang, Qiangling; Sun, Bo; Yan, Jianqun

    2016-01-01

    Cold exposure or β3-adrenoceptor agonist treatment induces the adipose tissues remodeling, relevant for beige adipogenesis within white adipose tissue (WAT). It remains unclear whether this process influences inflammatory adipokines expression in adipose tissues. We determine the temporal profile of cold or β3-adrenoceptor agonist (CL316,243)-induced changes in the expression of inflammatory adipokines in adipose tissues in mice or primary mice adipocytes. Male C57BL/6J mice at eight weeks old were exposed to 4 °C for 1–5 days. Interscapular brown adipose tissue (iBAT), inguinal subcutaneous WAT (sWAT) and epididymal WAT (eWAT) were harvested for gene and protein expression analysis. In addition, cultured primary mice brown adipocyte (BA) and white adipocyte (WA) treated with or without CL316,243 were harvested for gene expression analysis. The inflammatory adipokines expressed significantly higher in WAT than BAT at baseline. They were rapidly changed in iBAT, while down-regulated in sWAT and up-regulated in eWAT during the cold acclimation. Upon CL316,243 treatment, detected inflammatory adipokines except Leptin were transiently increased in both BA and WA. Our in vivo and in vitro data demonstrate that the browning process alters the inflammatory adipokines expression in adipose tissues, which is acutely responded to in iBAT, dynamically decreased in sWAT whilst increased in eWAT for compensation. PMID:27223282

  13. Truncated DNMT3B isoform DNMT3B7 suppresses growth, induces differentiation, and alters DNA methylation in human neuroblastoma

    PubMed Central

    Ostler, Kelly R.; Yang, Qiwei; Looney, Timothy J.; Zhang, Li; Vasanthakumar, Aparna; Tian, Yufeng; Kocherginsky, Masha; Raimondi, Stacey L.; DeMaio, Jessica G.; Salwen, Helen R.; Gu, Song; Chlenski, Alexandre; Naranjo, Arlene; Gill, Amy; Peddinti, Radhika; Lahn, Bruce T.; Cohn, Susan L.; Godley, Lucy A.

    2012-01-01

    Epigenetic changes in pediatric neuroblastoma may contribute to the aggressive pathophysiology of this disease, but little is known about the basis for such changes. In this study, we examined a role for the DNA methyltransferase DNMT3B, in particular, the truncated isoform DNMT3B7 which is generated frequently in cancer. To investigate if aberrant DNMT3B transcripts alter DNA methylation, gene expression, and phenotypic character in neuroblastoma, we measured DNMT3B expression in primary tumors. Higher levels of DNMT3B7 were detected in differentiated ganglioneuroblastomas compared to undifferentiated neuroblastomas, suggesting that expression of DNMT3B7 may induce a less aggressive clinical phenotype. To test this hypothesis, we investigated the effects of enforced DNMT3B7 expression in neuroblastoma cells, finding a significant inhibition of cell proliferation in vitro and angiogenesis and tumor growth in vivo. DNMT3B7-positive cells had higher levels of total genomic methylation and a dramatic decrease in expression of the FOS and JUN family members that comprise AP1 transcription factors. Consistent with an established antagonistic relationship between AP1 expression and retinoic acid receptor activity, increased differentiation was seen in the DNMT3B7-expressing neuroblastoma cells following treatment with all-trans retinoic acid (ATRA) compared to controls. Our results indicate that DNMT3B7 modifies the epigenome in neuroblastoma cells to induce changes in gene expression, inhibit tumor growth, and increase sensitivity to ATRA. PMID:22815530

  14. Carbon tetrachloride-mediated lipid peroxidation induces early mitochondrial alterations in mouse liver.

    PubMed

    Knockaert, Laetitia; Berson, Alain; Ribault, Catherine; Prost, Pierre-Emmanuel; Fautrel, Alain; Pajaud, Julie; Lepage, Sylvie; Lucas-Clerc, Catherine; Bégué, Jean-Marc; Fromenty, Bernard; Robin, Marie-Anne

    2012-03-01

    Although carbon tetrachloride (CCl(4))-induced acute and chronic hepatotoxicity have been extensively studied, little is known about the very early in vivo effects of this organic solvent on oxidative stress and mitochondrial function. In this study, mice were treated with CCl(4) (1.5 ml/kg ie 2.38 g/kg) and parameters related to liver damage, lipid peroxidation, stress/defense and mitochondria were studied 3 h later. Some CCl(4)-intoxicated mice were also pretreated with the cytochrome P450 2E1 inhibitor diethyldithiocarbamate or the antioxidants Trolox C and dehydroepiandrosterone. CCl(4) induced a moderate elevation of aminotransferases, swelling of centrilobular hepatocytes, lipid peroxidation, reduction of cytochrome P4502E1 mRNA levels and a massive increase in mRNA expression of heme oxygenase-1 and heat shock protein 70. Moreover, CCl(4) intoxication induced a severe decrease of mitochondrial respiratory chain complex IV activity, mitochondrial DNA depletion and damage as well as ultrastructural alterations. Whereas DDTC totally or partially prevented all these hepatic toxic events, both antioxidants protected only against liver lipid peroxidation and mitochondrial damage. Taken together, our results suggest that lipid peroxidation is primarily implicated in CCl(4)-induced early mitochondrial injury. However, lipid peroxidation-independent mechanisms seem to be involved in CCl(4)-induced early hepatocyte swelling and changes in expression of stress/defense-related genes. Antioxidant therapy may not be an efficient strategy to block early liver damage after CCl(4) intoxication. PMID:22157718

  15. Alterations in Perivascular Sympathetic and Nitrergic Innervation Function Induced by Late Pregnancy in Rat Mesenteric Arteries

    PubMed Central

    Caracuel, Laura; Callejo, María; Balfagón, Gloria

    2015-01-01

    Background and Purpose We investigated whether pregnancy was associated with changed function in components of perivascular mesenteric innervation and the mechanism/s involved. Experimental Approach We used superior mesenteric arteries from female Sprague-Dawley rats divided into two groups: control rats (in oestrous phase) and pregnant rats (20 days of pregnancy). Modifications in the vasoconstrictor response to electrical field stimulation (EFS) were analysed in the presence/absence of phentolamine (alpha-adrenoceptor antagonist) or L-NAME (nitric oxide synthase-NOS- non-specific inhibitor). Vasomotor responses to noradrenaline (NA), and to NO donor DEA-NO were studied, NA and NO release measured and neuronal NOS (nNOS) expression/activation analysed. Key Results EFS induced a lower frequency-dependent contraction in pregnant than in control rats. Phentolamine decreased EFS-induced vasoconstriction in segments from both experimental groups, but to a greater extent in control rats. EFS-induced vasoconstriction was increased by L-NAME in arteries from both experimental groups. This increase was greater in segments from pregnant rats. Pregnancy decreased NA release while increasing NO release. nNOS expression was not modified but nNOS activation was increased by pregnancy. Pregnancy decreased NA-induced vasoconstriction response and did not modify DEA-NO-induced vasodilation response. Conclusions and Implications Neural control of mesenteric vasomotor tone was altered by pregnancy. Diminished sympathetic and enhanced nitrergic components both contributed to the decreased vasoconstriction response to EFS during pregnancy. All these changes indicate the selective participation of sympathetic and nitrergic innervations in vascular adaptations produced during pregnancy. PMID:25951331

  16. Detection of hydrothermal alteration at Virginia City, Nevada using Airborne Imaging Spectrometry (AIS)

    NASA Technical Reports Server (NTRS)

    Hutsinpiller, A.; Taranik, J. V.

    1986-01-01

    Airborne Imaging Spectrometer (AIS) data were collected over Virginia City, Nevada; an area of gold and silver mineralization with extensive surface exposures of altered volcanic rocks. The data were corrected for atmospheric effects by a flat-field method, and compared to library spectra of various alteration minerals using a spectral analysis program SPAM. Areas of strong clay alteration were identified on the AIS images that were mapped as kaolinitic, illitic, and sericitic alterations zones. Kaolinitic alteration is distinguishable in the 2.1 to 2.4 and 1.2 to 1.5 micrometer wavelength regions. Montmorillonite, illite, and sericite have absorption features similar to each other at 2.2 micrometer wavelength. Montnorillonite and illite also may be present in varying proportions within one Ground Instantaneous Field of View (GIFOV). In general AIS data is useful in identifying alteration zones that are associated with or lie above precious metal mineralization at Virginia City.

  17. Stress-induced alterations of left-right electrodermal activity coupling indexed by pointwise transinformation.

    PubMed

    Světlák, M; Bob, P; Roman, R; Ježek, S; Damborská, A; Chládek, J; Shaw, D J; Kukleta, M

    2013-01-01

    In this study, we tested the hypothesis that experimental stress induces a specific change of left-right electrodermal activity (EDA) coupling pattern, as indexed by pointwise transinformation (PTI). Further, we hypothesized that this change is associated with scores on psychometric measures of the chronic stress-related psychopathology. Ninety-nine university students underwent bilateral measurement of EDA during rest and stress-inducing Stroop test and completed a battery of self-report measures of chronic stress-related psychopathology. A significant decrease in the mean PTI value was the prevalent response to the stress conditions. No association between chronic stress and PTI was found. Raw scores of psychometric measures of stress-related psychopathology had no effect on either the resting levels of PTI or the amount of stress-induced PTI change. In summary, acute stress alters the level of coupling pattern of cortico-autonomic influences on the left and right sympathetic pathways to the palmar sweat glands. Different results obtained using the PTI, EDA laterality coefficient, and skin conductance level also show that the PTI algorithm represents a new analytical approach to EDA asymmetry description. PMID:24359433

  18. Altered gastric emptying and prevention of radiation-induced vomiting in dogs. [Cobalt 60 irradiation

    SciTech Connect

    Dubois, A.; Jacobus, J.P.; Grissom, M.P.; Eng, R.R.; Conklin, J.J.

    1984-03-01

    The relation between radiation-induced vomiting and gastric emptying is unclear and the treatment of this condition is not established. We explored, therefore, (a) the effect of cobalt 60 irradiation on gastric emptying of solids and liquids and (b) the possibility of preventing radiation-induced vomiting with the dopamine antagonist, domperidone. Twenty dogs were studied on two separate days, blindly and in random order, after i.v. injection of either a placebo or 0.06 mg/kg domperidone. On a third day, they received 8 Gy (800 rads) whole body irradiation with cobalt 60 gamma-rays after either placebo (n . 10) or domperidone (n . 10). Before each study, each dog was fed chicken liver tagged in vivo with 99mTc-sulfur colloid (solid marker), and water containing 111In-diethylenetriamine pentaacetic acid (liquid marker). Dogs were placed in a Pavlov stand for the subsequent 3 h and radionuclide imaging was performed at 10-min intervals. Irradiation produced vomiting in 9 of 10 dogs given placebo but only in 1 of 10 dogs pretreated with domperidone (p less than 0.01). Gastric emptying of liquids and solids was significantly suppressed by irradiation (p less than 0.01) after both placebo and domperidone. These results demonstrate that radiation-induced vomiting is accompanied by suppression of gastric emptying. Furthermore, domperidone prevents vomiting produced by ionizing radiation but does not alter the accompanying delay of gastric emptying.

  19. Aluminum Toxicity-Induced Alterations of Leaf Proteome in Two Citrus Species Differing in Aluminum Tolerance.

    PubMed

    Li, Huan; Yang, Lin-Tong; Qi, Yi-Ping; Guo, Peng; Lu, Yi-Bin; Chen, Li-Song

    2016-01-01

    Seedlings of aluminum-tolerant 'Xuegan' (Citrus sinensis) and Al-intolerant 'sour pummelo' (Citrus grandis) were fertigated for 18 weeks with nutrient solution containing 0 and 1.2 mM AlCl₃·6H₂O. Al toxicity-induced inhibition of photosynthesis and the decrease of total soluble protein only occurred in C. grandis leaves, demonstrating that C. sinensis had higher Al tolerance than C. grandis. Using isobaric tags for relative and absolute quantification (iTRAQ), we obtained more Al toxicity-responsive proteins from C. sinensis than from C. grandis leaves, which might be responsible for the higher Al tolerance of C. sinensis. The following aspects might contribute to the Al tolerance of C. sinensis: (a) better maintenance of photosynthesis and energy balance via inducing photosynthesis and energy-related proteins; (b) less increased requirement for the detoxification of reactive oxygen species and other toxic compounds, such as aldehydes, and great improvement of the total ability of detoxification; and (c) upregulation of low-phosphorus-responsive proteins. Al toxicity-responsive proteins related to RNA regulation, protein metabolism, cellular transport and signal transduction might also play key roles in the higher Al tolerance of C. sinensis. We present the global picture of Al toxicity-induced alterations of protein profiles in citrus leaves, and identify some new Al toxicity-responsive proteins related to various biological processes. Our results provide some novel clues about plant Al tolerance. PMID:27455238

  20. Resveratrol induces mitochondrial alterations, autophagy and a cryptobiosis-like state in scuticociliates.

    PubMed

    Morais, Pedro; Lamas, Jesús; Sanmartín, Manuel L; Orallo, Francisco; Leiro, José

    2009-11-01

    The phytoalexin resveratrol (RESV), a defensive substance produced by plants in response to infection by pathogenic microorganisms, displays a wide range of biological effects in mammalian cells. In the present study, we analysed the in vitro effect of RESV on the amphizoic ciliate Philasterides dicentrarchi and demonstrated for the first time that this polyphenol causes cellular and metabolic abnormalities that generate an autophagic process and a state similar to cryptobiosis in the ciliate. At concentrations between 50 and 100 microM, RESV had a cytocidal effect when the ciliate was grown in medium with low levels of nutrients, and a cytostatic effect when the parasite was grown in culture media rich in nutrients. At these concentrations, RESV induced alterations in mitochondria, generated autophagy, provoked a reduction in the cell volume, and also drastically reduced the ciliate endocytic activity in small ciliates, generating a state compatible with cryptobiosis. The results demonstrate that RESV is a potent inducer of autophagy in the scuticociliate P. dicentrarchi. The ciliate may therefore be a good experimental organism for identifying autophagy-inducing drugs with therapeutic potential in diseases in which autophagy plays a protective role. PMID:19640787

  1. Cocaine-induced alterations in dopamine receptor signaling: implications for reinforcement and reinstatement.

    PubMed

    Anderson, S M; Pierce, R C

    2005-06-01

    The transition from casual drug use to addiction, and the intense drug craving that accompanies it, has been postulated to result from neuroadaptations within the limbic system caused by repeated drug exposure. This review will examine the implications of cocaine-induced alterations in mesolimbic dopamine receptor signaling within the context of several widely used animal models of addiction. Extensive evidence indicates that dopaminergic mechanisms critically mediate behavioral sensitization to cocaine, cocaine-induced conditioned place preference, cocaine self-administration, and the drug prime-induced reinstatement of cocaine-seeking behavior. The propagation of the long-term neuronal changes associated with recurring cocaine use appears to occur at the level of postreceptor signal transduction. Repeated cocaine treatment causes an up-regulation of the 3',5'-cyclic adenosine monophosphate (cAMP)-signaling pathway within the nucleus accumbens, resulting in a dys-regulation of balanced D1/D2 dopamine-like receptor signaling. The intracellular events arising from enhanced D1-like postsynaptic signaling mediate both facilitatory and compensatory responses to the further reinforcing effects of cocaine. PMID:15922019

  2. Aluminum Toxicity-Induced Alterations of Leaf Proteome in Two Citrus Species Differing in Aluminum Tolerance

    PubMed Central

    Li, Huan; Yang, Lin-Tong; Qi, Yi-Ping; Guo, Peng; Lu, Yi-Bin; Chen, Li-Song

    2016-01-01

    Seedlings of aluminum-tolerant ‘Xuegan’ (Citrus sinensis) and Al-intolerant ‘sour pummelo’ (Citrus grandis) were fertigated for 18 weeks with nutrient solution containing 0 and 1.2 mM AlCl3·6H2O. Al toxicity-induced inhibition of photosynthesis and the decrease of total soluble protein only occurred in C. grandis leaves, demonstrating that C. sinensis had higher Al tolerance than C. grandis. Using isobaric tags for relative and absolute quantification (iTRAQ), we obtained more Al toxicity-responsive proteins from C. sinensis than from C. grandis leaves, which might be responsible for the higher Al tolerance of C. sinensis. The following aspects might contribute to the Al tolerance of C. sinensis: (a) better maintenance of photosynthesis and energy balance via inducing photosynthesis and energy-related proteins; (b) less increased requirement for the detoxification of reactive oxygen species and other toxic compounds, such as aldehydes, and great improvement of the total ability of detoxification; and (c) upregulation of low-phosphorus-responsive proteins. Al toxicity-responsive proteins related to RNA regulation, protein metabolism, cellular transport and signal transduction might also play key roles in the higher Al tolerance of C. sinensis. We present the global picture of Al toxicity-induced alterations of protein profiles in citrus leaves, and identify some new Al toxicity-responsive proteins related to various biological processes. Our results provide some novel clues about plant Al tolerance. PMID:27455238

  3. JC virus induces altered patterns of cellular gene expression: Interferon-inducible genes as major transcriptional targets

    SciTech Connect

    Verma, Saguna; Ziegler, Katja; Ananthula, Praveen; Co, Juliene K.G.; Frisque, Richard J.; Yanagihara, Richard; Nerurkar, Vivek R. . E-mail: nerurkar@pbrc.hawaii.edu

    2006-02-20

    Human polyomavirus JC (JCV) infects 80% of the population worldwide. Primary infection, typically occurring during childhood, is asymptomatic in immunocompetent individuals and results in lifelong latency and persistent infection. However, among the severely immunocompromised, JCV may cause a fatal demyelinating disease, progressive multifocal leukoencephalopathy (PML). Virus-host interactions influencing persistence and pathogenicity are not well understood, although significant regulation of JCV activity is thought to occur at the level of transcription. Regulation of the JCV early and late promoters during the lytic cycle is a complex event that requires participation of both viral and cellular factors. We have used cDNA microarray technology to analyze global alterations in gene expression in JCV-permissive primary human fetal glial cells (PHFG). Expression of more than 400 cellular genes was altered, including many that influence cell proliferation, cell communication and interferon (IFN)-mediated host defense responses. Genes in the latter category included signal transducer and activator of transcription 1 (STAT1), interferon stimulating gene 56 (ISG56), myxovirus resistance 1 (MxA), 2'5'-oligoadenylate synthetase (OAS), and cig5. The expression of these genes was further confirmed in JCV-infected PHFG cells and the human glioblastoma cell line U87MG to ensure the specificity of JCV in inducing this strong antiviral response. Results obtained by real-time RT-PCR and Western blot analyses supported the microarray data and provide temporal information related to virus-induced changes in the IFN response pathway. Our data indicate that the induction of an antiviral response may be one of the cellular factors regulating/controlling JCV replication in immunocompetent hosts and therefore constraining the development of PML.

  4. Early detection of chemotherapy-refractory patients by monitoring textural alterations in diffuse optical spectroscopic images

    SciTech Connect

    Sadeghi-Naini, Ali; Falou, Omar; Czarnota, Gregory J.; Vorauer, Eric; Chin, Lee; Tran, William T.; Wright, Frances C.; Gandhi, Sonal; Yaffe, Martin J.

    2015-11-15

    Purpose: Changes in textural characteristics of diffuse optical spectroscopic (DOS) functional images, accompanied by alterations in their mean values, are demonstrated here for the first time as early surrogates of ultimate treatment response in locally advanced breast cancer (LABC) patients receiving neoadjuvant chemotherapy (NAC). NAC, as a standard component of treatment for LABC patient, induces measurable heterogeneous changes in tumor metabolism which were evaluated using DOS-based metabolic maps. This study characterizes such inhomogeneous nature of response development, by determining alterations in textural properties of DOS images apparent at early stages of therapy, followed later by gross changes in mean values of these functional metabolic maps. Methods: Twelve LABC patients undergoing NAC were scanned before and at four times after treatment initiation, and tomographic DOS images were reconstructed at each time. Ultimate responses of patients were determined clinically and pathologically, based on a reduction in tumor size and assessment of residual tumor cellularity. The mean-value parameters and textural features were extracted from volumetric DOS images for several functional and metabolic parameters prior to the treatment initiation. Changes in these DOS-based biomarkers were also monitored over the course of treatment. The measured biomarkers were applied to differentiate patient responses noninvasively and compared to clinical and pathologic responses. Results: Responding and nonresponding patients demonstrated different changes in DOS-based textural and mean-value parameters during chemotherapy. Whereas none of the biomarkers measured prior the start of therapy demonstrated a significant difference between the two patient populations, statistically significant differences were observed at week one after treatment initiation using the relative change in contrast/homogeneity of seven functional maps (0.001 < p < 0.049), and mean value of water

  5. Chronic liquid nutrition intake induces obesity and considerable but reversible metabolic alterations in Wistar rats.

    PubMed

    Mikuska, Livia; Vrabcova, Michaela; Tillinger, Andrej; Balaz, Miroslav; Ukropec, Jozef; Mravec, Boris

    2016-06-01

    We have previously described the development of substantial, but reversible obesity in Wistar rats fed with palatable liquid nutrition (Fresubin). In this study, we investigated changes in serum hormone levels, glycemia, fat mass, adipocyte size, and gene expression of adipokines and inflammatory markers in adipose tissue of Wistar rats fed by Fresubin (i) for 5 months, (ii) up to 90 days of age, or (iii) after 90 days of age to characterize metabolic alterations and their reversibility in rats fed with Fresubin. An intra-peritoneal glucose tolerance test was also performed to determine levels of serum leptin, adiponectin, insulin, and C-peptide in 2- and 4-month-old animals. In addition, mesenteric and epididymal adipose tissue weight, adipocyte diameter, and gene expression of pro- and anti-inflammatory adipokines and other markers were determined at the end of the study. Chronic Fresubin intake significantly increased adipocyte diameter, reduced glucose tolerance, and increased serum leptin, adiponectin, insulin, and C-peptide levels. Moreover, gene expression of leptin, adiponectin, CD68, and nuclear factor kappa B was significantly increased in mesenteric adipose tissue of Fresubin fed rats. Monocyte chemotactic protein 1 messenger RNA (mRNA) levels increased in mesenteric adipose tissue only in the group fed Fresubin during the entire experiment. In epididymal adipose tissue, fatty acid binding protein 4 mRNA levels were significantly increased in rats fed by Fresubin during adulthood. In conclusion, chronic Fresubin intake induced complex metabolic alterations in Wistar rats characteristic of metabolic syndrome. However, transition of rats from Fresubin to standard diet reversed these alterations. PMID:26939586

  6. Detection of cystic structures using pulsed ultrasonically induced resonant cavitation

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph (Inventor); Kovach, John S. (Inventor)

    2002-01-01

    Apparatus and method for early detection of cystic structures indicative of ovarian and breast cancers uses ultrasonic wave energy at a unique resonance frequency for inducing cavitation in cystic fluid characteristic of cystic structures in the ovaries associated with ovarian cancer, and in cystic structures in the breast associated with breast cancer. Induced cavitation bubbles in the cystic fluid implode, creating implosion waves which are detected by ultrasonic receiving transducers attached to the abdomen of the patient. Triangulation of the ultrasonic receiving transducers enables the received signals to be processed and analyzed to identify the location and structure of the cyst.

  7. Trifluralin-induced disorganization of microtubular cytoskeleton alters the development of roots in Hordeum vulgare L.

    PubMed

    Sheval, E V; Kazhura, Yu I; Poleshuk, Nina A; Lazareva, Elena M; Smirnova, Elena A; Maximova, Natalia P; Polyakov, V Y

    2008-12-01

    The extensive use of herbicides in agriculture becomes an important factor in environmental pollution, especially in case of slowly degradable compounds. Some agents act on plants during a long period of time, even if a very low concentration of the herbicide remains in the soil. Here, we investigated the toxicological effect of a low concentration of dinitroaniline herbicide, trifluralin, on growing seedlings of Hordeum vulgare L. Trifluralin in concentration of 1 microg/ml inhibited root growth. The mitotic activity of meristematic cells was suppressed due to the retardation of metaphase progression--alteration that can be caused by cytoskeleton disorder. Using antibodies to alpha-tubulin, we investigated the distribution of microtubules in root meristem cells. During all stages of mitosis, the highly regular system of microtubular cytoskeleton observed in control cells was slightly disorganized. An examination of root structure using light and electron microscopy demonstrated that the cell walls did not form normally during cell division that led to the appearance of large multinucleated cells. Also, the premature (pathological) cell differentiation was induced by trifluralin. A part of differentiating cells showed intracellular structural changes that are consistent with programmed cell death. It seems that the development of alterations in trifluralin-treated roots was due to the microtubular cytoskeleton disorganization. PMID:19133502

  8. The role of psychoneuroendocrine factors on spaceflight-induced immunological alterations

    NASA Technical Reports Server (NTRS)

    Meehan, R.; Whitson, P.; Sams, C.

    1993-01-01

    This paper summarizes previous in-flight infections and novel conditions of spaceflight that may suppress immune function. Granulocytosis, monocytosis, and lymphopenia are routinely observed following short duration orbital flights. Subtle changes within the monocyte and T cell populations can also be noted by flow cytometric analysis. The similarity between the immunological changes observed after spaceflight and other diverse environmental stressors suggest that most of these alterations may be neuroendocrine-mediated. Available data support the hypothesis that spaceflight and other environmental stressors modulate normal immune regulation via stress hormones, other than exclusively glucocorticoids. It will be essential to simultaneously collect in-flight endocrine, immunologic, and infectious illness data to determine the clinical significance of these results. Additional research that delineates the neuroendocrine mechanisms of stress-induced changes in normal immune regulation will allow clinicians in the future to initiate prophylactic immunomodulator therapy to restore immune competence altered by the stress of long-duration spaceflight and therefore reduce morbidity from infectious illness, autoimmune disease, or malignancy.

  9. Sodium tungstate induced neurological alterations in rat brain regions and their response to antioxidants.

    PubMed

    Sachdeva, Sherry; Pant, Satish C; Kushwaha, Pramod; Bhargava, Rakesh; Flora, Swaran J S

    2015-08-01

    Tungsten, recognized recently as an environmental contaminant, is being used in arms and ammunitions as substitute to depleted uranium. We studied the effects of sodium tungstate on oxidative stress, few selected neurological variables like acetylcholinesterase, biogenic amines in rat brain regions (cerebral cortex, hippocampus and cerebellum) and their prevention following co-administration of N-acetylcysteine (NAC), naringenin and quercetin. Animals were sub-chronically exposed to sodium tungstate (100 ppm in drinking water) and orally co-supplemented with different antioxidants (0.30 mM) for three months. Sodium tungstate significantly decreased the activity of acetylcholinesterase, dopamine, nor-epinephrine and 5-hydroxytryptamine levels while it increased monoamine oxidase activity in different brain regions. Tungstate exposure produced a significant increase in biochemical variables indicative of oxidative stress while, neurological alterations were more pronounced in the cerebral cortex compared to other regions. Co-administration of NAC and flavonoids with sodium tungstate significantly restored glutathione, prevented changes in the brain biogenic amines, reactive oxygen species (ROS) and TBARS levels in the different brain regions. The protection was more prominent in the animals co-administered with NAC. We can thus conclude that sodium tungstate induced brain oxidative stress and the alterations in some neurological variables can effectively be reduced by co-supplementation of NAC. PMID:25983264

  10. Long-term alterations in neural and endocrine processes induced by motherhood in mammals.

    PubMed

    Bridges, Robert S

    2016-01-01

    This article is part of a Special Issue "Parental Care". The reproductive experience of pregnancy, lactation and motherhood can significantly remodel the female's biological state, affecting endocrine, neuroendocrine, neural, and immunological processes. The brain, pituitary gland, liver, thymus, and mammary tissue are among the structures that are modified by reproductive experience. The present review that focuses on rodent research, but also includes pertinent studies in sheep and other species, identifies specific changes in these processes brought about by the biological states of pregnancy, parturition, and lactation and how the components of reproductive experience contribute to the remodeling of the maternal brain and organ systems. Findings indicate that prior parity alters key circulating hormone levels and neural receptor gene expression. Moreover, reproductive experience results in modifications in neural processes and glial support. The possible role of pregnancy-induced neurogenesis is considered in the context of neuroplasticity and behavior, and the effects of reproductive experience on maternal memory, i.e. the retention of maternal behavior, together with anxiety and learning are presented. Together, these sets of findings support the concept that the neural and biological state of the adult female is significantly and dramatically altered on a long-term basis by the experiences of parity and motherhood. Remodeling of the maternal brain and other biological systems is posited to help facilitate adaptations to environmental/ecological challenges as the female raises young and ages. PMID:26388065