Science.gov

Sample records for determine overlapping network

  1. Wavelet neural networks to resolve the overlapping signal in the voltammetric determination of phenolic compounds.

    PubMed

    Gutiérrez, Juan Manuel; Gutés, Albert; Céspedes, Francisco; del Valle, Manuel; Muñoz, Roberto

    2008-07-15

    Three phenolic compounds, i.e. phenol, catechol and 4-acetamidophenol, were simultaneously determined by voltammetric detection of its oxidation reaction at the surface of an epoxy-graphite transducer. Because of strong signal overlapping, Wavelet Neural Networks (WNN) were used in data treatment, in a combination of chemometrics and electrochemical sensors, already known as the electronic tongue concept. To facilitate calibration, a set of samples (concentration of each phenol ranging from 0.25 to 2.5mM) was prepared automatically by employing a Sequential Injection System. Phenolic compounds could be resolved with good prediction ability, showing correlation coefficients greater than 0.929 when the obtained values were compared with those expected for a set of samples not employed for training. PMID:18585293

  2. Detecting overlapping communities in massive networks

    NASA Astrophysics Data System (ADS)

    Sun, Bing-Jie; Shen, Hua-Wei; Cheng, Xue-Qi

    2014-12-01

    Community detection is an essential work for network analysis. However, few methods could be used as off-the-shelf tools to detect communities in real-world networks for two main reasons: Real networks often contain millions of nodes or even hundreds of millions of nodes while most methods cannot handle networks at this scale. One node often belongs to multiple communities, posing another big challenge. In this paper, we circumvent the tricky problem of detecting overlapping communities using a two-stage framework, balancing efficiency and accuracy. Given a network, we first focus on efficiently finding its coarse-grained communities. Starting from them, we next obtain overlapping communities by optimizing a principled objective function. In this divide-and-conquer way, the framework achieves a much better performance than detecting overlapping communities from scratch. Extensive tests on synthetic and real networks demonstrate that it outperforms state-of-the-art methods in terms of both efficiency and accuracy.

  3. Correlated edge overlaps in multiplex networks

    NASA Astrophysics Data System (ADS)

    Baxter, Gareth J.; Bianconi, Ginestra; da Costa, Rui A.; Dorogovtsev, Sergey N.; Mendes, José F. F.

    2016-07-01

    We develop the theory of sparse multiplex networks with partially overlapping links based on their local treelikeness. This theory enables us to find the giant mutually connected component in a two-layer multiplex network with arbitrary correlations between connections of different types. We find that correlations between the overlapping and nonoverlapping links markedly change the phase diagram of the system, leading to multiple hybrid phase transitions. For assortative correlations we observe recurrent hybrid phase transitions.

  4. Correlated edge overlaps in multiplex networks.

    PubMed

    Baxter, Gareth J; Bianconi, Ginestra; da Costa, Rui A; Dorogovtsev, Sergey N; Mendes, José F F

    2016-07-01

    We develop the theory of sparse multiplex networks with partially overlapping links based on their local treelikeness. This theory enables us to find the giant mutually connected component in a two-layer multiplex network with arbitrary correlations between connections of different types. We find that correlations between the overlapping and nonoverlapping links markedly change the phase diagram of the system, leading to multiple hybrid phase transitions. For assortative correlations we observe recurrent hybrid phase transitions. PMID:27575144

  5. Dynamics of overlapping structures in modular networks.

    PubMed

    Almendral, J A; Leyva, I; Li, D; Sendiña-Nadal, I; Havlin, S; Boccaletti, S

    2010-07-01

    Modularity is a fundamental feature of real networks, being intimately bounded to their functionality, i.e., to their capability of performing parallel tasks in a coordinated way. Although the modular structure of real graphs has been intensively studied, very little is known on the interactions between functional modules of a graph. Here, we present a general method based on synchronization of networking oscillators, that is able to detect overlapping structures in multimodular environments. We furthermore report the full analytical and theoretical description on the relationship between the overlapping dynamics and the underlying network topology. The method is illustrated by means of a series of applications. PMID:20866697

  6. Overlapping Community Detection based on Network Decomposition.

    PubMed

    Ding, Zhuanlian; Zhang, Xingyi; Sun, Dengdi; Luo, Bin

    2016-01-01

    Community detection in complex network has become a vital step to understand the structure and dynamics of networks in various fields. However, traditional node clustering and relatively new proposed link clustering methods have inherent drawbacks to discover overlapping communities. Node clustering is inadequate to capture the pervasive overlaps, while link clustering is often criticized due to the high computational cost and ambiguous definition of communities. So, overlapping community detection is still a formidable challenge. In this work, we propose a new overlapping community detection algorithm based on network decomposition, called NDOCD. Specifically, NDOCD iteratively splits the network by removing all links in derived link communities, which are identified by utilizing node clustering technique. The network decomposition contributes to reducing the computation time and noise link elimination conduces to improving the quality of obtained communities. Besides, we employ node clustering technique rather than link similarity measure to discover link communities, thus NDOCD avoids an ambiguous definition of community and becomes less time-consuming. We test our approach on both synthetic and real-world networks. Results demonstrate the superior performance of our approach both in computation time and accuracy compared to state-of-the-art algorithms. PMID:27066904

  7. Overlapping Community Detection based on Network Decomposition

    NASA Astrophysics Data System (ADS)

    Ding, Zhuanlian; Zhang, Xingyi; Sun, Dengdi; Luo, Bin

    2016-04-01

    Community detection in complex network has become a vital step to understand the structure and dynamics of networks in various fields. However, traditional node clustering and relatively new proposed link clustering methods have inherent drawbacks to discover overlapping communities. Node clustering is inadequate to capture the pervasive overlaps, while link clustering is often criticized due to the high computational cost and ambiguous definition of communities. So, overlapping community detection is still a formidable challenge. In this work, we propose a new overlapping community detection algorithm based on network decomposition, called NDOCD. Specifically, NDOCD iteratively splits the network by removing all links in derived link communities, which are identified by utilizing node clustering technique. The network decomposition contributes to reducing the computation time and noise link elimination conduces to improving the quality of obtained communities. Besides, we employ node clustering technique rather than link similarity measure to discover link communities, thus NDOCD avoids an ambiguous definition of community and becomes less time-consuming. We test our approach on both synthetic and real-world networks. Results demonstrate the superior performance of our approach both in computation time and accuracy compared to state-of-the-art algorithms.

  8. Overlapping Community Detection based on Network Decomposition

    PubMed Central

    Ding, Zhuanlian; Zhang, Xingyi; Sun, Dengdi; Luo, Bin

    2016-01-01

    Community detection in complex network has become a vital step to understand the structure and dynamics of networks in various fields. However, traditional node clustering and relatively new proposed link clustering methods have inherent drawbacks to discover overlapping communities. Node clustering is inadequate to capture the pervasive overlaps, while link clustering is often criticized due to the high computational cost and ambiguous definition of communities. So, overlapping community detection is still a formidable challenge. In this work, we propose a new overlapping community detection algorithm based on network decomposition, called NDOCD. Specifically, NDOCD iteratively splits the network by removing all links in derived link communities, which are identified by utilizing node clustering technique. The network decomposition contributes to reducing the computation time and noise link elimination conduces to improving the quality of obtained communities. Besides, we employ node clustering technique rather than link similarity measure to discover link communities, thus NDOCD avoids an ambiguous definition of community and becomes less time-consuming. We test our approach on both synthetic and real-world networks. Results demonstrate the superior performance of our approach both in computation time and accuracy compared to state-of-the-art algorithms. PMID:27066904

  9. Serial FBG sensor network allowing overlapping spectra

    NASA Astrophysics Data System (ADS)

    Abbenseth, S.; Lochmann, S.; Ahrens, A.; Rehm, B.

    2016-05-01

    For structure or material monitoring low impact serial fiber Bragg grating (FBG) networks have attracted increasing research interest. Common sensor networks using wavelength division multiplexing (WDM) for FBG interrogation are limited in their efficiency by the spectral width of their light source, the FBG tuning range and the spectral guard bands. Overlapping spectra are strictly forbidden in this case. Applying time division multiplexing (TDM) or active resonator schemes may overcome these restrictions. However, they introduce other substantial disadvantages like signal roundtrip dependency or sophisticated control of active resonating structures. Code division multiplexing (CDM) as a means of FBG interrogation by simple autocorrelation of appropriate codes has been shown to be superior in this respect. However, it came at the cost of a second spectrometer introducing additional equalization efforts. We demonstrate a new serial FBG sensor network utilizing CDM signal processing for efficient sensor interrogation without the need of a second spectrometer and additional state of polarization (SOP) controlling components. It allows overlapping spectra even when all sensing FBGs are positioned at the same centre wavelength and it shows a high degree of insensitivity to SOP. Sequence inversed keyed (SIK) serial signal processing utilizing quasi-orthogonal balanced codes ensures simple and quick sensor interrogation with high signal-to-interference/noise ratio.

  10. Overlapping community detection using a generative model for networks

    NASA Astrophysics Data System (ADS)

    Wang, Zhenwen; Hu, Yanli; Xiao, Weidong; Ge, Bin

    2013-10-01

    Detecting overlapping communities is a challenging task in analyzing networks, where nodes may belong to more than one community. Many present methods optimize quality functions to extract the communities from a network. In this paper, we present a probabilistic method for detecting overlapping communities using a generative model. The model describes the probability of generating a network with the model parameters, which reflect the communities in the network. The community memberships of each node are determined based on a probabilistic approach using those model parameters, whose values can be obtained by fitting the model to the network. This method has the advantage that the node participation degrees in each community are also computed. The proposed method is compared with some other community detection methods on both synthetic networks and real-world networks. The experiments show that this method is efficient at detecting overlapping communities and can provide better performance on the networks where a majority of nodes belong to more than one community.

  11. Spousal Network Overlap as a Basis for Spousal Support

    ERIC Educational Resources Information Center

    Cornwell, Benjamin

    2012-01-01

    The role social network structure plays in facilitating flows of support between spouses is often overlooked. This study examined whether levels of support between spouses depended on the degree of overlap between spouses' networks. Network overlap may enhance spouses' support capacities by increasing their understanding of each other's support…

  12. Geometrical constraint experimental determination of Raman lidar overlap profile.

    PubMed

    Li, Jian; Li, Chengcai; Zhao, Yiming; Li, Jing; Chu, Yiqi

    2016-06-20

    A simple experimental method to determine the overlap profile of Raman lidar is presented in this paper. Based on Mie and Raman backscattering signals and a geometrically constrained condition, the overlap profile of a Raman lidar system can be determined. Our approach simultaneously retrieves the lidar ratio of aerosols, which is one of the most important sources of uncertainty in the overlap profile determination. The results indicate that the overlap factor is significantly influenced by the lidar ratio in experimental methods. A representative case study indicates that the correction of the overlap profile obtained by this method is practical and feasible. PMID:27409119

  13. Finding overlapping communities in networks by label propagation

    NASA Astrophysics Data System (ADS)

    Gregory, Steve

    2010-10-01

    We propose an algorithm for finding overlapping community structure in very large networks. The algorithm is based on the label propagation technique of Raghavan, Albert and Kumara, but is able to detect communities that overlap. Like the original algorithm, vertices have labels that propagate between neighbouring vertices so that members of a community reach a consensus on their community membership. Our main contribution is to extend the label and propagation step to include information about more than one community: each vertex can now belong to up to v communities, where v is the parameter of the algorithm. Our algorithm can also handle weighted and bipartite networks. Tests on an independently designed set of benchmarks, and on real networks, show the algorithm to be highly effective in recovering overlapping communities. It is also very fast and can process very large and dense networks in a short time.

  14. Efficient discovery of overlapping communities in massive networks.

    PubMed

    Gopalan, Prem K; Blei, David M

    2013-09-01

    Detecting overlapping communities is essential to analyzing and exploring natural networks such as social networks, biological networks, and citation networks. However, most existing approaches do not scale to the size of networks that we regularly observe in the real world. In this paper, we develop a scalable approach to community detection that discovers overlapping communities in massive real-world networks. Our approach is based on a Bayesian model of networks that allows nodes to participate in multiple communities, and a corresponding algorithm that naturally interleaves subsampling from the network and updating an estimate of its communities. We demonstrate how we can discover the hidden community structure of several real-world networks, including 3.7 million US patents, 575,000 physics articles from the arXiv preprint server, and 875,000 connected Web pages from the Internet. Furthermore, we demonstrate on large simulated networks that our algorithm accurately discovers the true community structure. This paper opens the door to using sophisticated statistical models to analyze massive networks. PMID:23950224

  15. Efficient discovery of overlapping communities in massive networks

    PubMed Central

    Gopalan, Prem K.; Blei, David M.

    2013-01-01

    Detecting overlapping communities is essential to analyzing and exploring natural networks such as social networks, biological networks, and citation networks. However, most existing approaches do not scale to the size of networks that we regularly observe in the real world. In this paper, we develop a scalable approach to community detection that discovers overlapping communities in massive real-world networks. Our approach is based on a Bayesian model of networks that allows nodes to participate in multiple communities, and a corresponding algorithm that naturally interleaves subsampling from the network and updating an estimate of its communities. We demonstrate how we can discover the hidden community structure of several real-world networks, including 3.7 million US patents, 575,000 physics articles from the arXiv preprint server, and 875,000 connected Web pages from the Internet. Furthermore, we demonstrate on large simulated networks that our algorithm accurately discovers the true community structure. This paper opens the door to using sophisticated statistical models to analyze massive networks. PMID:23950224

  16. Multisensory integration substantiates distributed and overlapping neural networks.

    PubMed

    Pasqualotto, Achille

    2016-01-01

    The hypothesis that highly overlapping networks underlie brain functions (neural reuse) is decisively supported by three decades of multisensory research. Multisensory areas process information from more than one sensory modality and therefore represent the best examples of neural reuse. Recent evidence of multisensory processing in primary visual cortices further indicates that neural reuse is a basic feature of the brain. PMID:27562234

  17. Peer Network Overlap in Twin, Sibling, and Friend Dyads

    ERIC Educational Resources Information Center

    McGuire, Shirley; Segal, Nancy L.

    2013-01-01

    Research suggests that sibling–peer connections are important for understanding adolescent problem behaviors. Using a novel behavioral genetic design, the current study investigated peer network overlap in 300 child–child pairs (aged 7-13 years) in 5 dyad types: monozygotic (MZ), dizygotic twins, full siblings (FSs), friend pairs, and virtual…

  18. Niche Overlap and Network Specialization of Flower-Visiting Bees in an Agricultural System.

    PubMed

    Carvalho, D M; Presley, S J; Santos, G M M

    2014-12-01

    Different resource use strategies manifest as differences in the realized niches of species. Niche segregation may involve several dimensions of the niche, such as diet, space, and time. We measured the level of redundancy and complementarity of a bee-plant interaction network in an agricultural system. Because flower resource diversity is high and resource abundance associated with flowering phenology varies throughout the year, we hypothesized that trophic overlap in the community would be low (i.e., high niche complementarity). In contrast, we expected a combination of physiological constraints and exploitation competition to create high temporal overlap, leading to high redundancy in the time of use of floral resources. Dietary overlap was low (NOih = 0.18): niches of 88% of species pairs had less than 30% overlap. In contrast, temporal overlap was intermediate (NOih = 0.49): niches of 65% of species pairs had 30% to 60% overlap. Network analysis showed that bees separated their dietary niches and had intermediate complementary specialization (H2' = 0.46). In terms of their temporal niches (H2' = 0.12), bees were generalists, with high temporal redundancy. Temperature was not a key factor in the determination of niche overlap, suggesting that environmental factors do not likely have a primary role in determining high redundancy in the temporal use of floral resources. Rather, temporal overlap is likely associated with the timing of nectar production by flowers. Our results suggest that bees partition a wide variety of available floral resources, resulting in low dietary overlap and intermediate temporal overlap. PMID:27194056

  19. Multifunctional proteins revealed by overlapping clustering in protein interaction network

    PubMed Central

    Chapple, Charles E.; Guénoche, Alain; Brun, Christine

    2012-01-01

    Motivation: Multifunctional proteins perform several functions. They are expected to interact specifically with distinct sets of partners, simultaneously or not, depending on the function performed. Current graph clustering methods usually allow a protein to belong to only one cluster, therefore impeding a realistic assignment of multifunctional proteins to clusters. Results: Here, we present Overlapping Cluster Generator (OCG), a novel clustering method which decomposes a network into overlapping clusters and which is, therefore, capable of correct assignment of multifunctional proteins. The principle of OCG is to cover the graph with initial overlapping classes that are iteratively fused into a hierarchy according to an extension of Newman's modularity function. By applying OCG to a human protein–protein interaction network, we show that multifunctional proteins are revealed at the intersection of clusters and demonstrate that the method outperforms other existing methods on simulated graphs and PPI networks. Availability: This software can be downloaded from http://tagc.univ-mrs.fr/welcome/spip.php?rubrique197 Contact: brun@tagc.univ-mrs.fr Supplementary information: Supplementary data are available at Bioinformatics online. PMID:22080466

  20. An Overlapping Structured P2P for REIK Overlay Network

    NASA Astrophysics Data System (ADS)

    Liu, Wenjun; Song, Jingjing; Yu, Jiguo

    REIK is based on a ring which embedded an inverse Kautz digraph, to enable multi-path P2P routing. It has the constant degree and the logarithmic diameter DHT scheme with constant congestion and Byzantine fault tolerance. However, REIK did not consider the interconnection of many independent smaller networks. In this paper, we propose a new approach to build overlay network, OLS-REIK which is an overlapping structured P2P for REIK overlay network. It is a more flexible interconnecting different REIK network. Peers can belong to several rings, allowing this interconnection. By connecting smaller structured overlay networks in an unstructured way, it provides a cost effective alternative to hierarchical structured P2P systems requiring costly merging. Routing of lookup messages is performed as in REIK within one ring, but a peer belonging to several rings forwards the request to the different rings it belongs to. Furthermore a small number of across point is enough to ensure a high exhaustiveness level.

  1. Overlapping communities reveal rich structure in large-scale brain networks during rest and task conditions.

    PubMed

    Najafi, Mahshid; McMenamin, Brenton W; Simon, Jonathan Z; Pessoa, Luiz

    2016-07-15

    Large-scale analysis of functional MRI data has revealed that brain regions can be grouped into stable "networks" or communities. In many instances, the communities are characterized as relatively disjoint. Although recent work indicates that brain regions may participate in multiple communities (for example, hub regions), the extent of community overlap is poorly understood. To address these issues, here we investigated large-scale brain networks based on "rest" and task human functional MRI data by employing a mixed-membership Bayesian model that allows each brain region to belong to all communities simultaneously with varying membership strengths. The approach allowed us to 1) compare the structure of disjoint and overlapping communities; 2) determine the relationship between functional diversity (how diverse is a region's functional activation repertoire) and membership diversity (how diverse is a region's affiliation to communities); 3) characterize overlapping community structure; 4) characterize the degree of non-modularity in brain networks; 5) study the distribution of "bridges", including bottleneck and hub bridges. Our findings revealed the existence of dense community overlap that was not limited to "special" hubs. Furthermore, the findings revealed important differences between community organization during rest and during specific task states. Overall, we suggest that dense overlapping communities are well suited to capture the flexible and task dependent mapping between brain regions and their functions. PMID:27129758

  2. Detecting Overlapping Protein Complexes by Rough-Fuzzy Clustering in Protein-Protein Interaction Networks

    PubMed Central

    Wu, Hao; Gao, Lin; Dong, Jihua; Yang, Xiaofei

    2014-01-01

    In this paper, we present a novel rough-fuzzy clustering (RFC) method to detect overlapping protein complexes in protein-protein interaction (PPI) networks. RFC focuses on fuzzy relation model rather than graph model by integrating fuzzy sets and rough sets, employs the upper and lower approximations of rough sets to deal with overlapping complexes, and calculates the number of complexes automatically. Fuzzy relation between proteins is established and then transformed into fuzzy equivalence relation. Non-overlapping complexes correspond to equivalence classes satisfying certain equivalence relation. To obtain overlapping complexes, we calculate the similarity between one protein and each complex, and then determine whether the protein belongs to one or multiple complexes by computing the ratio of each similarity to maximum similarity. To validate RFC quantitatively, we test it in Gavin, Collins, Krogan and BioGRID datasets. Experiment results show that there is a good correspondence to reference complexes in MIPS and SGD databases. Then we compare RFC with several previous methods, including ClusterONE, CMC, MCL, GCE, OSLOM and CFinder. Results show the precision, sensitivity and separation are 32.4%, 42.9% and 81.9% higher than mean of the five methods in four weighted networks, and are 0.5%, 11.2% and 66.1% higher than mean of the six methods in five unweighted networks. Our method RFC works well for protein complexes detection and provides a new insight of network division, and it can also be applied to identify overlapping community structure in social networks and LFR benchmark networks. PMID:24642838

  3. Detecting overlapping protein complexes by rough-fuzzy clustering in protein-protein interaction networks.

    PubMed

    Wu, Hao; Gao, Lin; Dong, Jihua; Yang, Xiaofei

    2014-01-01

    In this paper, we present a novel rough-fuzzy clustering (RFC) method to detect overlapping protein complexes in protein-protein interaction (PPI) networks. RFC focuses on fuzzy relation model rather than graph model by integrating fuzzy sets and rough sets, employs the upper and lower approximations of rough sets to deal with overlapping complexes, and calculates the number of complexes automatically. Fuzzy relation between proteins is established and then transformed into fuzzy equivalence relation. Non-overlapping complexes correspond to equivalence classes satisfying certain equivalence relation. To obtain overlapping complexes, we calculate the similarity between one protein and each complex, and then determine whether the protein belongs to one or multiple complexes by computing the ratio of each similarity to maximum similarity. To validate RFC quantitatively, we test it in Gavin, Collins, Krogan and BioGRID datasets. Experiment results show that there is a good correspondence to reference complexes in MIPS and SGD databases. Then we compare RFC with several previous methods, including ClusterONE, CMC, MCL, GCE, OSLOM and CFinder. Results show the precision, sensitivity and separation are 32.4%, 42.9% and 81.9% higher than mean of the five methods in four weighted networks, and are 0.5%, 11.2% and 66.1% higher than mean of the six methods in five unweighted networks. Our method RFC works well for protein complexes detection and provides a new insight of network division, and it can also be applied to identify overlapping community structure in social networks and LFR benchmark networks. PMID:24642838

  4. AREA OVERLAP METHOD FOR DETERMINING ADEQUATE CHROMATOGRAPHIC RESOLUTION

    EPA Science Inventory

    The Area Overlap method for evaluating analytical chromatograms is evaluated and compared with the Depth-of-the-Valley, IUPAC and Purnell criteria. The method is a resolution criterion based on the fraction of area contributed by an adjacent, overlapping peak. It accounts for bot...

  5. Uncovering the overlapping community structure of complex networks by maximal cliques

    NASA Astrophysics Data System (ADS)

    Li, Junqiu; Wang, Xingyuan; Cui, Yaozu

    2014-12-01

    In this paper, a unique algorithm is proposed to detect overlapping communities in the un-weighted and weighted networks with considerable accuracy. The maximal cliques, overlapping vertex, bridge vertex and isolated vertex are introduced. First, all the maximal cliques are extracted by the algorithm based on the deep and bread searching. Then two maximal cliques can be merged into a larger sub-graph by some given rules. In addition, the proposed algorithm successfully finds overlapping vertices and bridge vertices between communities. Experimental results using some real-world networks data show that the performance of the proposed algorithm is satisfactory.

  6. An ant colony based algorithm for overlapping community detection in complex networks

    NASA Astrophysics Data System (ADS)

    Zhou, Xu; Liu, Yanheng; Zhang, Jindong; Liu, Tuming; Zhang, Di

    2015-06-01

    Community detection is of great importance to understand the structures and functions of networks. Overlap is a significant feature of networks and overlapping community detection has attracted an increasing attention. Many algorithms have been presented to detect overlapping communities. In this paper, we present an ant colony based overlapping community detection algorithm which mainly includes ants' location initialization, ants' movement and post processing phases. An ants' location initialization strategy is designed to identify initial location of ants and initialize label list stored in each node. During the ants' movement phase, the entire ants move according to the transition probability matrix, and a new heuristic information computation approach is redefined to measure similarity between two nodes. Every node keeps a label list through the cooperation made by ants until a termination criterion is reached. A post processing phase is executed on the label list to get final overlapping community structure naturally. We illustrate the capability of our algorithm by making experiments on both synthetic networks and real world networks. The results demonstrate that our algorithm will have better performance in finding overlapping communities and overlapping nodes in synthetic datasets and real world datasets comparing with state-of-the-art algorithms.

  7. Hopfield network with constraint parameter adaptation for overlapped shape recognition.

    PubMed

    Suganthan, P N; Teoh, E K; Mital, D P

    1999-01-01

    In this paper, we propose an energy formulation for homomorphic graph matching by the Hopfield network and a Lyapunov indirect method-based learning approach to adaptively learn the constraint parameter in the energy function. The adaptation scheme eliminates the need to specify the constraint parameter empirically and generates valid and better quality mappings than the analog Hopfield network with a fixed constraint parameter. The proposed Hopfield network with constraint parameter adaptation is applied to match silhouette images of keys and results are presented. PMID:18252543

  8. Identifying Overlapping and Hierarchical Thematic Structures in Networks of Scholarly Papers: A Comparison of Three Approaches

    PubMed Central

    Havemann, Frank; Gläser, Jochen; Heinz, Michael; Struck, Alexander

    2012-01-01

    The aim of this paper is to introduce and assess three algorithms for the identification of overlapping thematic structures in networks of papers. We implemented three recently proposed approaches to the identification of overlapping and hierarchical substructures in graphs and applied the corresponding algorithms to a network of 492 information-science papers coupled via their cited sources. The thematic substructures obtained and overlaps produced by the three hierarchical cluster algorithms were compared to a content-based categorisation, which we based on the interpretation of titles, abstracts, and keywords. We defined sets of papers dealing with three topics located on different levels of aggregation: h-index, webometrics, and bibliometrics. We identified these topics with branches in the dendrograms produced by the three cluster algorithms and compared the overlapping topics they detected with one another and with the three predefined paper sets. We discuss the advantages and drawbacks of applying the three approaches to paper networks in research fields. PMID:22479376

  9. Identifying overlapping and hierarchical thematic structures in networks of scholarly papers: a comparison of three approaches.

    PubMed

    Havemann, Frank; Gläser, Jochen; Heinz, Michael; Struck, Alexander

    2012-01-01

    The aim of this paper is to introduce and assess three algorithms for the identification of overlapping thematic structures in networks of papers. We implemented three recently proposed approaches to the identification of overlapping and hierarchical substructures in graphs and applied the corresponding algorithms to a network of 492 information-science papers coupled via their cited sources. The thematic substructures obtained and overlaps produced by the three hierarchical cluster algorithms were compared to a content-based categorisation, which we based on the interpretation of titles, abstracts, and keywords. We defined sets of papers dealing with three topics located on different levels of aggregation: h-index, webometrics, and bibliometrics. We identified these topics with branches in the dendrograms produced by the three cluster algorithms and compared the overlapping topics they detected with one another and with the three predefined paper sets. We discuss the advantages and drawbacks of applying the three approaches to paper networks in research fields. PMID:22479376

  10. Correlations between weights and overlap in ensembles of weighted multiplex networks

    NASA Astrophysics Data System (ADS)

    Menichetti, Giulia; Remondini, Daniel; Bianconi, Ginestra

    2014-12-01

    Multiplex networks describe a large number of systems ranging from social networks to the brain. These multilayer structure encode information in their structure. This information can be extracted by measuring the correlations present in the multiplex networks structure, such as the overlap of the links in different layers. Many multiplex networks are also weighted, and the weights of the links can be strongly correlated with the structural properties of the multiplex network. For example, in multiplex network formed by the citation and collaboration networks between PRE scientists it was found that the statistical properties of citations to coauthors differ from the one of citations to noncoauthors, i.e., the weights depend on the overlap of the links. Here we present a theoretical framework for modeling multiplex weighted networks with different types of correlations between weights and overlap. To this end, we use the framework of canonical network ensembles, and the recently introduced concept of multilinks, showing that null models of a large variety of network structures can be constructed in this way. In order to provide a concrete example of how this framework apply to real data we consider a multiplex constructed from gene expression data of healthy and cancer tissues.

  11. [Artificial neural network applied for spectral overlap interference correction in ICP-AES].

    PubMed

    Zhang, Z; Liu, S; Zeng, X

    1997-10-01

    A back-propagation artificial neural network (BP-ANN) has been applied to correcting spectral overlap interference in inductively coupled plasma atomic emission spectrometry (ICP-AES). Some network parameters including the range of input values and training sequence for training patterns presented to the network were discussed using simulated Ce 413.380nm and Pr 413.380nm line profiles. Results show that the noise in simulated mixture spectra will slow down the network convergence and has more influence on network prediction. PMID:15810366

  12. Crosstalk analysis of pathways in breast cancer using a network model based on overlapping differentially expressed genes

    PubMed Central

    SUN, YONG; YUAN, KAI; ZHANG, PENG; MA, RONG; ZHANG, QI-WEN; TIAN, XING-SONG

    2015-01-01

    Multiple signal transduction pathways can affect each other considerably through crosstalk. However, the presence and extent of this phenomenon have not been rigorously studied. The aim of the present study was to identify strong and normal interactions between pathways in breast cancer and determine the main pathway. Five sets of breast cancer data were downloaded from the high-throughput Gene Expression Omnibus (GEO) and analyzed to identify differentially expressed (DE) genes using the Rank Product (RankProd) method. A list of pathways with differential expression was obtained by gene set enrichment analysis (GSEA) of the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. The DE genes that overlapped between pathways were identified and a crosstalk network diagram based on the overlap of DE genes was constructed. A total of 1,464 DE genes and 26 pathways were identified. In addition, the number of DE genes that overlapped between specific pathways were determined, and the greatest degree of overlap was between the extracellular matrix (ECM)-receptor interaction and Focal adhesion pathways, which had 22 overlapping DE genes. Weighted pathway analysis of the crosstalk between pathways identified that Pathways in cancer was the main pathway in breast cancer. PMID:26622386

  13. Overlapping Networks Engaged during Spoken Language Production and Its Cognitive Control

    PubMed Central

    Wise, Richard J.S.; Mehta, Amrish; Leech, Robert

    2014-01-01

    Spoken language production is a complex brain function that relies on large-scale networks. These include domain-specific networks that mediate language-specific processes, as well as domain-general networks mediating top-down and bottom-up attentional control. Language control is thought to involve a left-lateralized fronto-temporal-parietal (FTP) system. However, these regions do not always activate for language tasks and similar regions have been implicated in nonlinguistic cognitive processes. These inconsistent findings suggest that either the left FTP is involved in multidomain cognitive control or that there are multiple spatially overlapping FTP systems. We present evidence from an fMRI study using multivariate analysis to identify spatiotemporal networks involved in spoken language production in humans. We compared spoken language production (Speech) with multiple baselines, counting (Count), nonverbal decision (Decision), and “rest,” to pull apart the multiple partially overlapping networks that are involved in speech production. A left-lateralized FTP network was activated during Speech and deactivated during Count and nonverbal Decision trials, implicating it in cognitive control specific to sentential spoken language production. A mirror right-lateralized FTP network was activated in the Count and Decision trials, but not Speech. Importantly, a second overlapping left FTP network showed relative deactivation in Speech. These three networks, with distinct time courses, overlapped in the left parietal lobe. Contrary to the standard model of the left FTP as being dominant for speech, we revealed a more complex pattern within the left FTP, including at least two left FTP networks with competing functional roles, only one of which was activated in speech production. PMID:24966373

  14. Non-negative sparse autoencoder neural networks for the detection of overlapping, hierarchical communities in networked datasets

    NASA Astrophysics Data System (ADS)

    Michele Rajtmajer, Sarah; Smith, Brian; Phoha, Shashi

    2012-12-01

    We propose the first use of a non-negative sparse autoencoder (NNSAE) neural network for community structure detection in complex networks. The NNSAE learns a compressed representation of a set of fixed-length, weighted random walks over the network, and communities are detected as subsets of network nodes corresponding to non-negligible elements of the basis vectors of this compression. The NNSAE model is efficient and online. When utilized for community structure detection, it is able to uncover potentially overlapping and hierarchical community structure in large networks.

  15. Non-negative sparse autoencoder neural networks for the detection of overlapping, hierarchical communities in networked datasets.

    PubMed

    Michele Rajtmajer, Sarah; Smith, Brian; Phoha, Shashi

    2012-12-01

    We propose the first use of a non-negative sparse autoencoder (NNSAE) neural network for community structure detection in complex networks. The NNSAE learns a compressed representation of a set of fixed-length, weighted random walks over the network, and communities are detected as subsets of network nodes corresponding to non-negligible elements of the basis vectors of this compression. The NNSAE model is efficient and online. When utilized for community structure detection, it is able to uncover potentially overlapping and hierarchical community structure in large networks. PMID:23278076

  16. Feedforward neural network models for handling class overlap and class imbalance.

    PubMed

    Kretzschmar, Ralf; Karayiannis, Nicolaos B; Eggimann, Fritz

    2005-10-01

    This paper proposes a framework for training feedforward neural network models capable of handling class overlap and imbalance by minimizing an error function that compensates for such imperfections of the training set. A special case of the proposed error function can be used for training variance-controlled neural networks (VCNNs), which are developed to handle class overlap by minimizing an error function involving the class-specific variance (CSV) computed at their outputs. Another special case of the proposed error function can be used for training class-balancing neural networks (CBNNs), which are developed to handle class imbalance by relying on class-specific correction (CSC). VCNNs and CBNNs are compared with conventional feedforward neural networks (FFNNs), quantum neural networks (QNNs), and resampling techniques. The properties of VCNNs and CBNNs are illustrated by experiments on artificial data. Various experiments involving real-world data reveal the advantages offered by VCNNs and CBNNs in the presence of class overlap and class imbalance. PMID:16278937

  17. Scalable Multicast Protocols for Overlapped Groups in Broker-Based Sensor Networks

    NASA Astrophysics Data System (ADS)

    Kim, Chayoung; Ahn, Jinho

    In sensor networks, there are lots of overlapped multicast groups because of many subscribers, associated with their potentially varying specific interests, querying every event to sensors/publishers. And gossip based communication protocols are promising as one of potential solutions providing scalability in P(Publish)/ S(Subscribe) paradigm in sensor networks. Moreover, despite the importance of both guaranteeing message delivery order and supporting overlapped multicast groups in sensor or P2P networks, there exist little research works on development of gossip-based protocols to satisfy all these requirements. In this paper, we present two versions of causally ordered delivery guaranteeing protocols for overlapped multicast groups. The one is based on sensor-broker as delegates and the other is based on local views and delegates representing subscriber subgroups. In the sensor-broker based protocol, sensor-broker might lead to make overlapped multicast networks organized by subscriber's interests. The message delivery order has been guaranteed consistently and all multicast messages are delivered to overlapped subscribers using gossip based protocols by sensor-broker. Therefore, these features of the sensor-broker based protocol might be significantly scalable rather than those of the protocols by hierarchical membership list of dedicated groups like traditional committee protocols. And the subscriber-delegate based protocol is much stronger rather than fully decentralized protocols guaranteeing causally ordered delivery based on only local views because the message delivery order has been guaranteed consistently by all corresponding members of the groups including delegates. Therefore, this feature of the subscriber-delegate protocol is a hybrid approach improving the inherent scalability of multicast nature by gossip-based technique in all communications.

  18. Overlap determination for temperature measurements from a pure rotational Raman lidar

    NASA Astrophysics Data System (ADS)

    Chen, Hao; Chen, Siying; Zhang, Yinchao; Guo, Pan; Chen, He; Chen, Binglong

    2016-03-01

    We propose a new method to calibrate the effect of overlap for temperature measurements made with a pure rotational Raman lidar. This method is based on the construction of a factor in the signal intensity ratio, which has an approximately linear relationship with altitude within the troposphere and can be obtained from radiosonde temperature measurements. Using this relationship, the effect of overlap on the signal intensity ratio can be calibrated. The method has been verified by simulations and an experiment. Comparisons with results obtained from using the existing calibration method show that the overlap determined using the new method is more accurate.

  19. Identifying Modular Flows on Multilayer Networks Reveals Highly Overlapping Organization in Interconnected Systems

    NASA Astrophysics Data System (ADS)

    De Domenico, Manlio; Lancichinetti, Andrea; Arenas, Alex; Rosvall, Martin

    2015-01-01

    To comprehend interconnected systems across the social and natural sciences, researchers have developed many powerful methods to identify functional modules. For example, with interaction data aggregated into a single network layer, flow-based methods have proven useful for identifying modular dynamics in weighted and directed networks that capture constraints on flow processes. However, many interconnected systems consist of agents or components that exhibit multiple layers of interactions, possibly from several different processes. Inevitably, representing this intricate network of networks as a single aggregated network leads to information loss and may obscure the actual organization. Here, we propose a method based on a compression of network flows that can identify modular flows both within and across layers in nonaggregated multilayer networks. Our numerical experiments on synthetic multilayer networks, with some layers originating from the same interaction process, show that the analysis fails in aggregated networks or when treating the layers separately, whereas the multilayer method can accurately identify modules across layers that originate from the same interaction process. We capitalize on our findings and reveal the community structure of two multilayer collaboration networks with topics as layers: scientists affiliated with the Pierre Auger Observatory and scientists publishing works on networks on the arXiv. Compared to conventional aggregated methods, the multilayer method uncovers connected topics and reveals smaller modules with more overlap that better capture the actual organization.

  20. Community Structure Detection for Overlapping Modules through Mathematical Programming in Protein Interaction Networks

    PubMed Central

    Bennett, Laura; Kittas, Aristotelis; Liu, Songsong; Papageorgiou, Lazaros G.; Tsoka, Sophia

    2014-01-01

    Community structure detection has proven to be important in revealing the underlying properties of complex networks. The standard problem, where a partition of disjoint communities is sought, has been continually adapted to offer more realistic models of interactions in these systems. Here, a two-step procedure is outlined for exploring the concept of overlapping communities. First, a hard partition is detected by employing existing methodologies. We then propose a novel mixed integer non linear programming (MINLP) model, known as OverMod, which transforms disjoint communities to overlapping. The procedure is evaluated through its application to protein-protein interaction (PPI) networks of the rat, E. coli, yeast and human organisms. Connector nodes of hard partitions exhibit topological and functional properties indicative of their suitability as candidates for multiple module membership. OverMod identifies two types of connector nodes, inter and intra-connector, each with their own particular characteristics pertaining to their topological and functional role in the organisation of the network. Inter-connector proteins are shown to be highly conserved proteins participating in pathways that control essential cellular processes, such as proliferation, differentiation and apoptosis and their differences with intra-connectors is highlighted. Many of these proteins are shown to possess multiple roles of distinct nature through their participation in different network modules, setting them apart from proteins that are simply ‘hubs’, i.e. proteins with many interaction partners but with a more specific biochemical role. PMID:25412367

  1. Community structure detection for overlapping modules through mathematical programming in protein interaction networks.

    PubMed

    Bennett, Laura; Kittas, Aristotelis; Liu, Songsong; Papageorgiou, Lazaros G; Tsoka, Sophia

    2014-01-01

    Community structure detection has proven to be important in revealing the underlying properties of complex networks. The standard problem, where a partition of disjoint communities is sought, has been continually adapted to offer more realistic models of interactions in these systems. Here, a two-step procedure is outlined for exploring the concept of overlapping communities. First, a hard partition is detected by employing existing methodologies. We then propose a novel mixed integer non linear programming (MINLP) model, known as OverMod, which transforms disjoint communities to overlapping. The procedure is evaluated through its application to protein-protein interaction (PPI) networks of the rat, E. coli, yeast and human organisms. Connector nodes of hard partitions exhibit topological and functional properties indicative of their suitability as candidates for multiple module membership. OverMod identifies two types of connector nodes, inter and intra-connector, each with their own particular characteristics pertaining to their topological and functional role in the organisation of the network. Inter-connector proteins are shown to be highly conserved proteins participating in pathways that control essential cellular processes, such as proliferation, differentiation and apoptosis and their differences with intra-connectors is highlighted. Many of these proteins are shown to possess multiple roles of distinct nature through their participation in different network modules, setting them apart from proteins that are simply 'hubs', i.e. proteins with many interaction partners but with a more specific biochemical role. PMID:25412367

  2. A precise determination of the void percolation threshold for two distributions of overlapping spheres

    SciTech Connect

    RINTOUL,MARK DANIEL

    2000-01-25

    The void percolation threshold is calculated for a distribution of overlapping spheres with equal radii, and for a binary sized distribution of overlapping spheres, where half of the spheres have radii twice as large as the other half. Using systems much larger than previous work, the authors determine a much more precise value for the percolation thresholds and correlation length exponent. The values for the percolation thresholds are shown to be significantly different, in contrast with previous, less precise works that speculated that the threshold might be universal with respect to sphere size distribution.

  3. Model Selection and Hypothesis Testing for Large-Scale Network Models with Overlapping Groups

    NASA Astrophysics Data System (ADS)

    Peixoto, Tiago P.

    2015-01-01

    The effort to understand network systems in increasing detail has resulted in a diversity of methods designed to extract their large-scale structure from data. Unfortunately, many of these methods yield diverging descriptions of the same network, making both the comparison and understanding of their results a difficult challenge. A possible solution to this outstanding issue is to shift the focus away from ad hoc methods and move towards more principled approaches based on statistical inference of generative models. As a result, we face instead the more well-defined task of selecting between competing generative processes, which can be done under a unified probabilistic framework. Here, we consider the comparison between a variety of generative models including features such as degree correction, where nodes with arbitrary degrees can belong to the same group, and community overlap, where nodes are allowed to belong to more than one group. Because such model variants possess an increasing number of parameters, they become prone to overfitting. In this work, we present a method of model selection based on the minimum description length criterion and posterior odds ratios that is capable of fully accounting for the increased degrees of freedom of the larger models and selects the best one according to the statistical evidence available in the data. In applying this method to many empirical unweighted networks from different fields, we observe that community overlap is very often not supported by statistical evidence and is selected as a better model only for a minority of them. On the other hand, we find that degree correction tends to be almost universally favored by the available data, implying that intrinsic node proprieties (as opposed to group properties) are often an essential ingredient of network formation.

  4. The (un)supervised NMF methods for discovering overlapping communities as well as hubs and outliers in networks

    NASA Astrophysics Data System (ADS)

    Wang, Xiao; Cao, Xiaochun; Jin, Di; Cao, Yixin; He, Dongxiao

    2016-03-01

    For its crucial importance in the study of large-scale networks, many researchers devote to the detection of communities in various networks. It is now widely agreed that the communities usually overlap with each other. In some communities, there exist members that play a special role as hubs (also known as leaders), whose importance merits special attention. Moreover, it is also observed that some members of the network do not belong to any communities in a convincing way, and hence recognized as outliers. Failure to detect and exclude outliers will distort, sometimes significantly, the outcome of the detected communities. In short, it is preferable for a community detection method to detect all three structures altogether. This becomes even more interesting and also more challenging when we take the unsupervised assumption, that is, we do not assume the prior knowledge of the number K of communities. Our approach here is to define a novel generative model and formalize the detection of overlapping communities as well as hubs and outliers as an optimization problem on it. When K is given, we propose a normalized symmetric nonnegative matrix factorization algorithm based on Kullback-Leibler (KL) divergence to learn the parameters of the model. Otherwise, by combining KL divergence and prior model on parameters, we introduce another parameter learning method based on Bayesian symmetric nonnegative matrix factorization to learn the parameters of the model, while determining K. Therefore, we present a community detection method arguably in the most general sense, which detects all three structures altogether without prior knowledge of the number of communities. Finally, we test the proposed method on various real-world networks. The experimental results, in contrast to several state-of-art algorithms, indicate its superior performance over other ones in terms of both clustering accuracy and community quality.

  5. Precise determination of the void percolation threshold for two distributions of overlapping spheres

    SciTech Connect

    Rintoul, M. D.

    2000-07-01

    The void percolation threshold is calculated for a distribution of overlapping spheres with equal radii, and for a binary-sized distribution of overlapping spheres, where half of the spheres have radii twice as large as the other half. Using systems much larger than previous work, we determine a much more precise value for the percolation thresholds and correlation length exponent. The value of the percolation threshold for the monodisperse case is shown to be 0.0301{+-}0.0003, whereas the value for the bidisperse case is shown to be p{sub c}=0.0287{+-}0.0005. The fact that these are significantly different is in contrast with previous, less precise works that speculated that the threshold might be universal with respect to sphere size distribution. (c) 2000 The American Physical Society.

  6. Dynamic functional network connectivity reveals unique and overlapping profiles of insula subdivisions.

    PubMed

    Nomi, Jason S; Farrant, Kristafor; Damaraju, Eswar; Rachakonda, Srinivas; Calhoun, Vince D; Uddin, Lucina Q

    2016-05-01

    The human insular cortex consists of functionally diverse subdivisions that engage during tasks ranging from interoception to cognitive control. The multiplicity of functions subserved by insular subdivisions calls for a nuanced investigation of their functional connectivity profiles. Four insula subdivisions (dorsal anterior, dAI; ventral, VI; posterior, PI; middle, MI) derived using a data-driven approach were subjected to static- and dynamic functional network connectivity (s-FNC and d-FNC) analyses. Static-FNC analyses replicated previous work demonstrating a cognition-emotion-interoception division of the insula, where the dAI is functionally connected to frontal areas, the VI to limbic areas, and the PI and MI to sensorimotor areas. Dynamic-FNC analyses consisted of k-means clustering of sliding windows to identify variable insula connectivity states. The d-FNC analysis revealed that the most frequently occurring dynamic state mirrored the cognition-emotion-interoception division observed from the s-FNC analysis, with less frequently occurring states showing overlapping and unique subdivision connectivity profiles. In two of the states, all subdivisions exhibited largely overlapping profiles, consisting of subcortical, sensory, motor, and frontal connections. Two other states showed the dAI exhibited a unique connectivity profile compared with other insula subdivisions. Additionally, the dAI exhibited the most variable functional connections across the s-FNC and d-FNC analyses, and was the only subdivision to exhibit dynamic functional connections with regions of the default mode network. These results highlight how a d-FNC approach can capture functional dynamics masked by s-FNC approaches, and reveal dynamic functional connections enabling the functional flexibility of the insula across time. Hum Brain Mapp 37:1770-1787, 2016. © 2016 Wiley Periodicals, Inc. PMID:26880689

  7. Extrinsic calibration of a non-overlapping camera network based on close-range photogrammetry.

    PubMed

    Dong, Shuai; Shao, Xinxing; Kang, Xin; Yang, Fujun; He, Xiaoyuan

    2016-08-10

    In this paper, an extrinsic calibration method for a non-overlapping camera network is presented based on close-range photogrammetry. The method does not require calibration targets or the cameras to be moved. The visual sensors are relatively motionless and do not see the same area at the same time. The proposed method combines the multiple cameras using some arbitrarily distributed encoded targets. The calibration procedure consists of three steps: reconstructing the three-dimensional (3D) coordinates of the encoded targets using a hand-held digital camera, performing the intrinsic calibration of the camera network, and calibrating the extrinsic parameters of each camera with only one image. A series of experiments, including 3D reconstruction, rotation, and translation, are employed to validate the proposed approach. The results show that the relative error for the 3D reconstruction is smaller than 0.003%, the relative errors of both rotation and translation are less than 0.066%, and the re-projection error is only 0.09 pixels. PMID:27534480

  8. Experimental determination of band overlap in type II InAs/GaSb superlattice based on temperature dependent photoluminescence signal

    NASA Astrophysics Data System (ADS)

    Huang, Jianliang; Ma, Wenquan; Zhang, Yanhua; Cao, Yulian; Liu, Ke; Huang, Wenjun; Luo, Shuai; Ji, Haiming; Yang, Tao

    2015-12-01

    We have determined the band overlap in type II InAs/GaSb superlattice (SL) structure based on the temperature dependent photoluminescence (PL) results of a short wavelength SL sample. The band overlap value is treated as a temperature variable and is simulated by fitting the PL peak position using the 8K·P method. It is found that the band overlap monotonically decreases from 0.325 to 0.225 eV when temperature is increased from 12 to 90 K. The calculated e1-hh1 transition using the obtained band overlap data shows an agreement with the PL results of another SL sample.

  9. Fragmentation cross-section of relativistic oxygen ions and determination of overlap parameter

    NASA Technical Reports Server (NTRS)

    Verma, S. D.

    1977-01-01

    Results are presented for measurements of total fragmentation cross sections of relativistic O-16 ions in CsI crystals, which were performed using a monochromatic bevatron ion beam at energies of 0.5 and 2.1 GeV/nucleon. The total fragmentation cross section at each energy is determined on the basis of detected changes in the charge of the incident ions, and the values obtained at both energies are found to be the same to within the experimental errors. Values of the O-16 nucleon radius and overlap parameter are derived simultaneously from the measured cross sections.

  10. A hybrid graph-theoretic method for mining overlapping functional modules in large sparse protein interaction networks.

    PubMed

    Zhang, Shihua; Liu, Hong-Wei; Ning, Xue-Mei; Zhang, Xiang-Sun

    2009-01-01

    Modular architecture, which encompasses groups of genes/proteins involved in elementary biological functional units, is a basic form of the organisation of interacting proteins. Here, we propose a method that combines the Line Graph Transformation (LGT) and clique percolation-clustering algorithm to detect network modules, which may overlap each other in large sparse PPI networks. The resulting modules by the present method show a high coverage among yeast, fly, and worm PPI networks, respectively. Our analysis of the yeast PPI network suggests that most of these modules have well-biological significance in context of protein localisation, function annotation, and protein complexes. PMID:19432377

  11. Transient brain activity disentangles fMRI resting-state dynamics in terms of spatially and temporally overlapping networks

    PubMed Central

    Karahanoğlu, Fikret Işik; Van De Ville, Dimitri

    2015-01-01

    Dynamics of resting-state functional magnetic resonance imaging (fMRI) provide a new window onto the organizational principles of brain function. Using state-of-the-art signal processing techniques, we extract innovation-driven co-activation patterns (iCAPs) from resting-state fMRI. The iCAPs' maps are spatially overlapping and their sustained-activity signals temporally overlapping. Decomposing resting-state fMRI using iCAPs reveals the rich spatiotemporal structure of functional components that dynamically assemble known resting-state networks. The temporal overlap between iCAPs is substantial; typically, three to four iCAPs occur simultaneously in combinations that are consistent with their behaviour profiles. In contrast to conventional connectivity analysis, which suggests a negative correlation between fluctuations in the default-mode network (DMN) and task-positive networks, we instead find evidence for two DMN-related iCAPs consisting the posterior cingulate cortex that differentially interact with the attention network. These findings demonstrate how the fMRI resting state can be functionally decomposed into spatially and temporally overlapping building blocks using iCAPs. PMID:26178017

  12. Using maximum spectrum of continuous wavelet transform for demodulation of an overlapped spectrum in a fiber Bragg grating sensor network.

    PubMed

    Hu, Ying; Mo, Wenqin; Dong, Kaifeng; Jin, Fang; Song, Junlei

    2016-06-10

    The maximum spectrum of the continuous wavelet transform (MSCWT) is proposed to demodulate the central wavelengths for the overlapped spectrum in a serial fiber Bragg grating (FBG) sensing system. We describe the operation principle of the MSCWT method. Moreover, the influence of the interval gap between two FBG wavelengths, 3 dB bandwidths, and optical powers of the reflected spectra are discussed. The simulation and experimental results indicate that the MSCWT can resolve an overlapped spectrum and decode the central wavelength with high accuracy. More importantly, the proposed peak detection method can enhance the sensing capacity of a wavelength division multiplexing FBG sensor network. PMID:27409024

  13. CHIMERA: Top-down model for hierarchical, overlapping and directed cluster structures in directed and weighted complex networks

    NASA Astrophysics Data System (ADS)

    Franke, R.

    2016-11-01

    In many networks discovered in biology, medicine, neuroscience and other disciplines special properties like a certain degree distribution and hierarchical cluster structure (also called communities) can be observed as general organizing principles. Detecting the cluster structure of an unknown network promises to identify functional subdivisions, hierarchy and interactions on a mesoscale. It is not trivial choosing an appropriate detection algorithm because there are multiple network, cluster and algorithmic properties to be considered. Edges can be weighted and/or directed, clusters overlap or build a hierarchy in several ways. Algorithms differ not only in runtime, memory requirements but also in allowed network and cluster properties. They are based on a specific definition of what a cluster is, too. On the one hand, a comprehensive network creation model is needed to build a large variety of benchmark networks with different reasonable structures to compare algorithms. On the other hand, if a cluster structure is already known, it is desirable to separate effects of this structure from other network properties. This can be done with null model networks that mimic an observed cluster structure to improve statistics on other network features. A third important application is the general study of properties in networks with different cluster structures, possibly evolving over time. Currently there are good benchmark and creation models available. But what is left is a precise sandbox model to build hierarchical, overlapping and directed clusters for undirected or directed, binary or weighted complex random networks on basis of a sophisticated blueprint. This gap shall be closed by the model CHIMERA (Cluster Hierarchy Interconnection Model for Evaluation, Research and Analysis) which will be introduced and described here for the first time.

  14. Resolution of overlapped spectra for the determination of ternary mixture using different and modified spectrophotometric methods.

    PubMed

    Moussa, Bahia Abbas; El-Zaher, Asmaa Ahmed; Mahrouse, Marianne Alphonse; Ahmed, Maha Said

    2016-08-01

    Four new spectrophotometric methods were developed, applied to resolve the overlapped spectra of a ternary mixture of [aliskiren hemifumarate (ALS)-amlodipine besylate (AM)-hydrochlorothiazide (HCT)] and to determine the three drugs in pure form and in combined dosage form. Method A depends on simultaneous determination of ALS, AM and HCT using principal component regression and partial least squares chemometric methods. In Method B, a modified isosbestic spectrophotometric method was applied for the determination of the total concentration of ALS and HCT by measuring the absorbance at 274.5nm (isosbestic point, Aiso). On the other hand, the concentration of HCT in ternary mixture with ALS and AM could be calculated without interference using first derivative spectrophotometric method by measuring the amplitude at 279nm (zero crossing of ALS and zero value of AM). Thus, the content of ALS was calculated by subtraction. Method C, double divisor first derivative ratio spectrophotometry (double divisor (1)DD method), was based on that for the determination of one drug, the ratio spectra were obtained by dividing the absorption spectra of its different concentrations by the sum of the absorption spectra of the other two drugs as a double divisor. The first derivative of the obtained ratio spectra were then recorded using the appropriate smoothing factor. The amplitudes at 291nm, 380nm and 274.5nm were selected for the determination of ALS, AM and HCT in their ternary mixture, respectively. Method D was based on mean centering of ratio spectra. The mean centered values at 287, 295.5 and 269nm were recorded and used for the determination of ALS, AM and HCT, respectively. The developed methods were validated according to ICH guidelines and proved to be accurate, precise and selective. Satisfactory results were obtained by applying the proposed methods to the analysis of pharmaceutical dosage form. PMID:27128521

  15. Resolution of overlapped spectra for the determination of ternary mixture using different and modified spectrophotometric methods

    NASA Astrophysics Data System (ADS)

    Moussa, Bahia Abbas; El-Zaher, Asmaa Ahmed; Mahrouse, Marianne Alphonse; Ahmed, Maha Said

    2016-08-01

    Four new spectrophotometric methods were developed, applied to resolve the overlapped spectra of a ternary mixture of [aliskiren hemifumarate (ALS)-amlodipine besylate (AM)-hydrochlorothiazide (HCT)] and to determine the three drugs in pure form and in combined dosage form. Method A depends on simultaneous determination of ALS, AM and HCT using principal component regression and partial least squares chemometric methods. In Method B, a modified isosbestic spectrophotometric method was applied for the determination of the total concentration of ALS and HCT by measuring the absorbance at 274.5 nm (isosbestic point, Aiso). On the other hand, the concentration of HCT in ternary mixture with ALS and AM could be calculated without interference using first derivative spectrophotometric method by measuring the amplitude at 279 nm (zero crossing of ALS and zero value of AM). Thus, the content of ALS was calculated by subtraction. Method C, double divisor first derivative ratio spectrophotometry (double divisor 1DD method), was based on that for the determination of one drug, the ratio spectra were obtained by dividing the absorption spectra of its different concentrations by the sum of the absorption spectra of the other two drugs as a double divisor. The first derivative of the obtained ratio spectra were then recorded using the appropriate smoothing factor. The amplitudes at 291 nm, 380 nm and 274.5 nm were selected for the determination of ALS, AM and HCT in their ternary mixture, respectively. Method D was based on mean centering of ratio spectra. The mean centered values at 287, 295.5 and 269 nm were recorded and used for the determination of ALS, AM and HCT, respectively. The developed methods were validated according to ICH guidelines and proved to be accurate, precise and selective. Satisfactory results were obtained by applying the proposed methods to the analysis of pharmaceutical dosage form.

  16. Overlap in Bibliographic Databases.

    ERIC Educational Resources Information Center

    Hood, William W.; Wilson, Concepcion S.

    2003-01-01

    Examines the topic of Fuzzy Set Theory to determine the overlap of coverage in bibliographic databases. Highlights include examples of comparisons of database coverage; frequency distribution of the degree of overlap; records with maximum overlap; records unique to one database; intra-database duplicates; and overlap in the top ten databases.…

  17. Novel two wavelength spectrophotometric methods for simultaneous determination of binary mixtures with severely overlapping spectra.

    PubMed

    Lotfy, Hayam M; Saleh, Sarah S; Hassan, Nagiba Y; Salem, Hesham

    2015-02-01

    This work presents the application of different spectrophotometric techniques based on two wavelengths for the determination of severely overlapped spectral components in a binary mixture without prior separation. Four novel spectrophotometric methods were developed namely: induced dual wavelength method (IDW), dual wavelength resolution technique (DWRT), advanced amplitude modulation method (AAM) and induced amplitude modulation method (IAM). The results of the novel methods were compared to that of three well-established methods which were: dual wavelength method (DW), Vierordt's method (VD) and bivariate method (BV). The developed methods were applied for the analysis of the binary mixture of hydrocortisone acetate (HCA) and fusidic acid (FSA) formulated as topical cream accompanied by the determination of methyl paraben and propyl paraben present as preservatives. The specificity of the novel methods was investigated by analyzing laboratory prepared mixtures and the combined dosage form. The methods were validated as per ICH guidelines where accuracy, repeatability, inter-day precision and robustness were found to be within the acceptable limits. The results obtained from the proposed methods were statistically compared with official ones where no significant difference was observed. No difference was observed between the obtained results when compared to the reported HPLC method, which proved that the developed methods could be alternative to HPLC techniques in quality control laboratories. PMID:25467671

  18. Overlapping activator sequences determined for two oppositely oriented promoters in halophilic Archaea

    PubMed Central

    Bauer, Martina; Marschaus, Larissa; Reuff, Muriel; Besche, Verena; Sartorius-Neef, Simone; Pfeifer, Felicitas

    2008-01-01

    Transcription of the genomic region involved in gas vesicle formation in Halobacterium salinarum (p-vac) and Haloferax mediterranei (mc-vac) is driven by two divergent promoters, PA and PD, separated by only 35 nt. Both promoters are activated by the transcription activator GvpE which in the case of PmcA requires a 20-nt sequence (UAS) consisting of two conserved 8-nt sequence portions located upstream of BRE. Here, we determined the two UAS elements in the promoter region of p-vac by scanning mutageneses using constructs containing PpD (without PpA) fused to the bgaH reporter gene encoding an enzyme with β-galactosidase activity, or the dual reporter construct pApD with PpD fused to bgaH and PpA to an altered version of gvpA. The two UAS elements found exhibited a similar extension and distance to BRE as previously determined for the UAS in PmcA. Their distal 8-nt portions almost completely overlapped in the centre of PpD–PpA, and mutations in this region negatively affected the GvpE-mediated activation of both promoters. Any alteration of the distance between BRE and UAS resulted in the loss of the GvpE activation, as did a complete substitution of the proximal 8-nt portion, underlining that a close location of UAS and BRE was very important. PMID:18056077

  19. Novel two wavelength spectrophotometric methods for simultaneous determination of binary mixtures with severely overlapping spectra

    NASA Astrophysics Data System (ADS)

    Lotfy, Hayam M.; Saleh, Sarah S.; Hassan, Nagiba Y.; Salem, Hesham

    2015-02-01

    This work presents the application of different spectrophotometric techniques based on two wavelengths for the determination of severely overlapped spectral components in a binary mixture without prior separation. Four novel spectrophotometric methods were developed namely: induced dual wavelength method (IDW), dual wavelength resolution technique (DWRT), advanced amplitude modulation method (AAM) and induced amplitude modulation method (IAM). The results of the novel methods were compared to that of three well-established methods which were: dual wavelength method (DW), Vierordt's method (VD) and bivariate method (BV). The developed methods were applied for the analysis of the binary mixture of hydrocortisone acetate (HCA) and fusidic acid (FSA) formulated as topical cream accompanied by the determination of methyl paraben and propyl paraben present as preservatives. The specificity of the novel methods was investigated by analyzing laboratory prepared mixtures and the combined dosage form. The methods were validated as per ICH guidelines where accuracy, repeatability, inter-day precision and robustness were found to be within the acceptable limits. The results obtained from the proposed methods were statistically compared with official ones where no significant difference was observed. No difference was observed between the obtained results when compared to the reported HPLC method, which proved that the developed methods could be alternative to HPLC techniques in quality control laboratories.

  20. Configuring compute nodes of a parallel computer in an operational group into a plurality of independent non-overlapping collective networks

    DOEpatents

    Archer, Charles J.; Inglett, Todd A.; Ratterman, Joseph D.; Smith, Brian E.

    2010-03-02

    Methods, apparatus, and products are disclosed for configuring compute nodes of a parallel computer in an operational group into a plurality of independent non-overlapping collective networks, the compute nodes in the operational group connected together for data communications through a global combining network, that include: partitioning the compute nodes in the operational group into a plurality of non-overlapping subgroups; designating one compute node from each of the non-overlapping subgroups as a master node; and assigning, to the compute nodes in each of the non-overlapping subgroups, class routing instructions that organize the compute nodes in that non-overlapping subgroup as a collective network such that the master node is a physical root.

  1. Sequence Determination from Overlapping Fragments: A Simple Model of Whole-Genome Shotgun Sequencing

    NASA Astrophysics Data System (ADS)

    Derrida, Bernard; Fink, Thomas M.

    2002-02-01

    Assembling fragments randomly sampled from along a sequence is the basis of whole-genome shotgun sequencing, a technique used to map the DNA of the human and other genomes. We calculate the probability that a random sequence can be recovered from a collection of overlapping fragments. We provide an exact solution for an infinite alphabet and in the case of constant overlaps. For the general problem we apply two assembly strategies and give the probability that the assembly puzzle can be solved in the limit of infinitely many fragments.

  2. Friending, IMing, and hanging out face-to-face: overlap in adolescents' online and offline social networks.

    PubMed

    Reich, Stephanie M; Subrahmanyam, Kaveri; Espinoza, Guadalupe

    2012-03-01

    Many new and important developmental issues are encountered during adolescence, which is also a time when Internet use becomes increasingly popular. Studies have shown that adolescents are using these online spaces to address developmental issues, especially needs for intimacy and connection to others. Online communication with its potential for interacting with unknown others, may put teens at increased risk. Two hundred and fifty-one high school students completed an in-person survey, and 126 of these completed an additional online questionnaire about how and why they use the Internet, their activities on social networking sites (e.g., Facebook, MySpace) and their reasons for participation, and how they perceive these online spaces to impact their friendships. To examine the extent of overlap between online and offline friends, participants were asked to list the names of their top interaction partners offline and online (Facebook and instant messaging). Results reveal that adolescents mainly use social networking sites to connect with others, in particular with people known from offline contexts. While adolescents report little monitoring by their parents, there was no evidence that teens are putting themselves at risk by interacting with unknown others. Instead, adolescents seem to use the Internet, especially social networking sites, to connect with known others. While the study found moderate overlap between teens' closest online and offline friends, the patterns suggest that adolescents use online contexts to strengthen offline relationships. PMID:22369341

  3. SPARK: Sparsity-based analysis of reliable k-hubness and overlapping network structure in brain functional connectivity.

    PubMed

    Lee, Kangjoo; Lina, Jean-Marc; Gotman, Jean; Grova, Christophe

    2016-07-01

    Functional hubs are defined as the specific brain regions with dense connections to other regions in a functional brain network. Among them, connector hubs are of great interests, as they are assumed to promote global and hierarchical communications between functionally specialized networks. Damage to connector hubs may have a more crucial effect on the system than does damage to other hubs. Hubs in graph theory are often identified from a correlation matrix, and classified as connector hubs when the hubs are more connected to regions in other networks than within the networks to which they belong. However, the identification of hubs from functional data is more complex than that from structural data, notably because of the inherent problem of multicollinearity between temporal dynamics within a functional network. In this context, we developed and validated a method to reliably identify connectors and corresponding overlapping network structure from resting-state fMRI. This new method is actually handling the multicollinearity issue, since it does not rely on counting the number of connections from a thresholded correlation matrix. The novelty of the proposed method is that besides counting the number of networks involved in each voxel, it allows us to identify which networks are actually involved in each voxel, using a data-driven sparse general linear model in order to identify brain regions involved in more than one network. Moreover, we added a bootstrap resampling strategy to assess statistically the reproducibility of our results at the single subject level. The unified framework is called SPARK, i.e. SParsity-based Analysis of Reliable k-hubness, where k-hubness denotes the number of networks overlapping in each voxel. The accuracy and robustness of SPARK were evaluated using two dimensional box simulations and realistic simulations that examined detection of artificial hubs generated on real data. Then, test/retest reliability of the method was assessed

  4. Clusters in weighted macroeconomic networks: the EU case. Introducing the overlapping index of GDP/capita fluctuation correlations

    NASA Astrophysics Data System (ADS)

    Gligor, M.; Ausloos, M.

    2008-06-01

    GDP/capita correlations are investigated in various time windows (TW), for the time interval 1990 2005. The target group of countries is the set of 25 EU members, 15 till 2004 plus the 10 countries which joined EU later on. The TW-means of the statistical correlation coefficients are taken as the weights (links) of a fully connected network having the countries as nodes. Thereafter we define and introduce the overlapping index of weighted network nodes. A cluster structure of EU countries is derived from the statistically relevant eigenvalues and eigenvectors of the adjacency matrix. This may be considered to yield some information about the structure, stability and evolution of the EU country clusters in a macroeconomic sense.

  5. Potato leafroll virus structural proteins manipulate overlapping, yet distinct protein interaction networks during infection.

    PubMed

    DeBlasio, Stacy L; Johnson, Richard; Sweeney, Michelle M; Karasev, Alexander; Gray, Stewart M; MacCoss, Michael J; Cilia, Michelle

    2015-06-01

    Potato leafroll virus (PLRV) produces a readthrough protein (RTP) via translational readthrough of the coat protein amber stop codon. The RTP functions as a structural component of the virion and as a nonincorporated protein in concert with numerous insect and plant proteins to regulate virus movement/transmission and tissue tropism. Affinity purification coupled to quantitative MS was used to generate protein interaction networks for a PLRV mutant that is unable to produce the read through domain (RTD) and compared to the known wild-type PLRV protein interaction network. By quantifying differences in the protein interaction networks, we identified four distinct classes of PLRV-plant interactions: those plant and nonstructural viral proteins interacting with assembled coat protein (category I); plant proteins in complex with both coat protein and RTD (category II); plant proteins in complex with the RTD (category III); and plant proteins that had higher affinity for virions lacking the RTD (category IV). Proteins identified as interacting with the RTD are potential candidates for regulating viral processes that are mediated by the RTP such as phloem retention and systemic movement and can potentially be useful targets for the development of strategies to prevent infection and/or viral transmission of Luteoviridae species that infect important crop species. PMID:25787689

  6. Scope of partial least-squares regression applied to the enantiomeric composition determination of ketoprofen from strongly overlapped chromatographic profiles.

    PubMed

    Padró, Juan M; Osorio-Grisales, Jaiver; Arancibia, Juan A; Olivieri, Alejandro C; Castells, Cecilia B

    2015-07-01

    Valuable quantitative information could be obtained from strongly overlapped chromatographic profiles of two enantiomers by using proper chemometric methods. Complete separation profiles where the peaks are fully resolved are difficult to achieve in chiral separation methods, and this becomes a particularly severe problem in case that the analyst needs to measure the chiral purity, i.e., when one of the enantiomers is present in the sample in very low concentrations. In this report, we explore the scope of a multivariate chemometric technique based on unfolded partial least-squares regression, as a mathematical tool to solve this quite frequent difficulty. This technique was applied to obtain quantitative results from partially overlapped chromatographic profiles of R- and S-ketoprofen, with different values of enantioresolution factors (from 0.81 down to less than 0.2 resolution units), and also at several different S:R enantiomeric ratios. Enantiomeric purity below 1% was determined with excellent precision even from almost completely overlapped signals. All these assays were tested on the most demanding condition, i.e., when the minor peak elutes immediately after the main peak. The results were validated using univariate calibration of completely resolved profiles and the method applied to the determination of enantiomeric purity of commercial pharmaceuticals. PMID:25929676

  7. Oscillation-Driven Spike-Timing Dependent Plasticity Allows Multiple Overlapping Pattern Recognition in Inhibitory Interneuron Networks.

    PubMed

    Garrido, Jesús A; Luque, Niceto R; Tolu, Silvia; D'Angelo, Egidio

    2016-08-01

    The majority of operations carried out by the brain require learning complex signal patterns for future recognition, retrieval and reuse. Although learning is thought to depend on multiple forms of long-term synaptic plasticity, the way this latter contributes to pattern recognition is still poorly understood. Here, we have used a simple model of afferent excitatory neurons and interneurons with lateral inhibition, reproducing a network topology found in many brain areas from the cerebellum to cortical columns. When endowed with spike-timing dependent plasticity (STDP) at the excitatory input synapses and at the inhibitory interneuron-interneuron synapses, the interneurons rapidly learned complex input patterns. Interestingly, induction of plasticity required that the network be entrained into theta-frequency band oscillations, setting the internal phase-reference required to drive STDP. Inhibitory plasticity effectively distributed multiple patterns among available interneurons, thus allowing the simultaneous detection of multiple overlapping patterns. The addition of plasticity in intrinsic excitability made the system more robust allowing self-adjustment and rescaling in response to a broad range of input patterns. The combination of plasticity in lateral inhibitory connections and homeostatic mechanisms in the inhibitory interneurons optimized mutual information (MI) transfer. The storage of multiple complex patterns in plastic interneuron networks could be critical for the generation of sparse representations of information in excitatory neuron populations falling under their control. PMID:27079422

  8. Truthful Channel Sharing for Self Coexistence of Overlapping Medical Body Area Networks.

    PubMed

    Fang, Gengfa; Orgun, Mehmet A; Shankaran, Rajan; Dutkiewicz, Eryk; Zheng, Guanglou

    2016-01-01

    As defined by IEEE 802.15.6 standard, channel sharing is a potential method to coordinate inter-network interference among Medical Body Area Networks (MBANs) that are close to one another. However, channel sharing opens up new vulnerabilities as selfish MBANs may manipulate their online channel requests to gain unfair advantage over others. In this paper, we address this issue by proposing a truthful online channel sharing algorithm and a companion protocol that allocates channel efficiently and truthfully by punishing MBANs for misreporting their channel request parameters such as time, duration and bid for the channel. We first present an online channel sharing scheme for unit-length channel requests and prove that it is truthful. We then generalize our model to settings with variable-length channel requests, where we propose a critical value based channel pricing and preemption scheme. A bid adjustment procedure prevents unbeneficial preemption by artificially raising the ongoing winner's bid controlled by a penalty factor λ. Our scheme can efficiently detect selfish behaviors by monitoring a trust parameter α of each MBAN and punish MBANs from cheating by suspending their requests. Our extensive simulation results show our scheme can achieve a total profit that is more than 85% of the offline optimum method in the typical MBAN settings. PMID:26844888

  9. Truthful Channel Sharing for Self Coexistence of Overlapping Medical Body Area Networks

    PubMed Central

    Dutkiewicz, Eryk; Zheng, Guanglou

    2016-01-01

    As defined by IEEE 802.15.6 standard, channel sharing is a potential method to coordinate inter-network interference among Medical Body Area Networks (MBANs) that are close to one another. However, channel sharing opens up new vulnerabilities as selfish MBANs may manipulate their online channel requests to gain unfair advantage over others. In this paper, we address this issue by proposing a truthful online channel sharing algorithm and a companion protocol that allocates channel efficiently and truthfully by punishing MBANs for misreporting their channel request parameters such as time, duration and bid for the channel. We first present an online channel sharing scheme for unit-length channel requests and prove that it is truthful. We then generalize our model to settings with variable-length channel requests, where we propose a critical value based channel pricing and preemption scheme. A bid adjustment procedure prevents unbeneficial preemption by artificially raising the ongoing winner’s bid controlled by a penalty factor λ. Our scheme can efficiently detect selfish behaviors by monitoring a trust parameter α of each MBAN and punish MBANs from cheating by suspending their requests. Our extensive simulation results show our scheme can achieve a total profit that is more than 85% of the offline optimum method in the typical MBAN settings. PMID:26844888

  10. [Determination of relative error of pressure-broadening linewidth for the experimentally indistinguishable overlapped spectral lines with Voigt profile].

    PubMed

    Lin, Jie-Li; Huang, Yi-Qing; Lu, Hong

    2005-01-01

    The simulation and fitting of the overlapped spectral lines with Voigt profile were presented in this paper. The relative errors epsilon of the fitted pressure-broadening linewidth when taking the overlapped spectral line as one spectrum were discussed in detail. The relationship between such error and the two spectral lines center distance deltav0, and theoretical pressure-broadening linewidth deltav(L)0 were analyzed. Epsilon is found to be very large and the relationship between epsilon and deltav0, deltav(L)0 is very complicated when the value of pressure-broadening linewidth is considerably less than that of Dopplerian one deltavD. When deltav(L)0 is comparative to deltaVD the relationship between epsilon and deltav0 is close to the smooth two-order polynomial curve. However, the slop of this curve is negative while deltav(L)0 is smaller than deltavD and is positive when larger. Generally, epsilon decreases with the increase of proportion of deltav(l)0 to the whole spectral linewidth. All the above conclusion and corresponding data are the significant reference to determine the precise pressure-broadening coefficient from the experimentally indistinguishable overlapped spectrum, as well as to correct the fitted pressure-broadening linewidth. PMID:15852837

  11. A Digital Ultrasonic Pulse-Echo Overlap System and Algorithm for Unambiguous Determination of Pulse Transit Time

    SciTech Connect

    Cristian,P.; Rickel, D.; Migliori, A.; Zhang, J.; Zhao, Y.; Leisure, R.; Li, B.

    2005-01-01

    We report an evolution of an all-digital ultrasonic pulse technique for measurements of elastic constants of solids. An unambiguous analytical procedure is described for determining the correct time delay of echoes without any need for actual echo overlap. We also provide a simple procedure for making corrections for transducer-bond-induced phase shifts. The precision of a measurement made with this system at ambient temperature exceeds one part in 107 without the use of mixers, gates, time delays, and other complications normally associated with such measurements.

  12. Motor cortical plasticity in extrinsic hand muscles is determined by the resting thresholds of overlapping representations.

    PubMed

    Mirdamadi, J L; Suzuki, L Y; Meehan, S K

    2016-10-01

    Knowledge of the properties that govern the effectiveness of transcranial magnetic stimulation (TMS) interventions is critical to clinical application. Extrapolation to clinical populations has been limited by high inter-subject variability and a focus on intrinsic muscles of the hand in healthy populations. Therefore, the current study assessed variability of continuous theta burst stimulation (cTBS), a patterned TMS protocol, across an agonist-antagonist pair of extrinsic muscles of the hand. Secondarily, we assessed whether concurrent agonist contraction could enhance the efficacy of cTBS. Motor evoked potentials (MEP) were simultaneously recorded from the agonist flexor (FCR) and antagonist extensor (ECR) carpi radialis before and after cTBS over the FCR hotspot. cTBS was delivered with the FCR relaxed (cTBS-Relax) or during isometric wrist flexion (cTBS-Contract). cTBS-Relax suppressed FCR MEPs evoked from the FCR hotspot. However, the extent of FCR MEP suppression was strongly correlated with the relative difference between FCR and ECR resting motor thresholds. cTBS-Contract decreased FCR suppression but increased suppression of ECR MEPs elicited from the FCR hotspot. The magnitude of ECR MEP suppression following cTBS-Contract was independent of the threshold-amplitude relationships observed with cTBS-Relax. Contraction alone had no effect confirming the effect of cTBS-Contract was driven by the interaction between neuromuscular activity and cTBS. Interactions across muscle representations should be taken into account when predicting cTBS outcomes in healthy and clinical populations. Contraction during cTBS may be a useful means of focusing aftereffects when differences in baseline excitability across overlapping agonist-antagonist cortical representations may mitigate the inhibitory effect of cTBS. PMID:27425211

  13. Alleviation of overlap interferences for determination of potassium isotope ratios by inductively coupled plasma mass spectrometry

    SciTech Connect

    Jiang, S.J.; Houk, R.S.; Stevens, M.A.

    1988-06-01

    Positioning the sampling orifice relatively far from the load coil combined with use of low forward power and high aerosol gas flow rate causes the background mass spectrum to become dominated by NO/sup +/. Nearly all the Ar/sup +/ and ArH/sup +/ ions are suppressed under these conditions, which frees m/z 39 and 41 for potassium isotope ratio measurements. The precision is 0.3-0.9% relative standard deviation for potassium concentrations in the range 1-50 mg L/sup -1/. The determined ratios are approx. 9% higher than the accepted value and also vary with the concentration of sodium concomitant, so calibrations and chemical separations are desirable. These observations should permit use of inductively coupled plasma mass spectrometry for rapid isotope ratio determinations of potassium from biological organisms or water sources.

  14. A Network-Based Target Overlap Score for Characterizing Drug Combinations: High Correlation with Cancer Clinical Trial Results

    PubMed Central

    Ligeti, Balázs; Pénzváltó, Zsófia; Vera, Roberto; Győrffy, Balázs; Pongor, Sándor

    2015-01-01

    Drug combinations are highly efficient in systemic treatment of complex multigene diseases such as cancer, diabetes, arthritis and hypertension. Most currently used combinations were found in empirical ways, which limits the speed of discovery for new and more effective combinations. Therefore, there is a substantial need for efficient and fast computational methods. Here, we present a principle that is based on the assumption that perturbations generated by multiple pharmaceutical agents propagate through an interaction network and can cause unexpected amplification at targets not immediately affected by the original drugs. In order to capture this phenomenon, we introduce a novel Target Overlap Score (TOS) that is defined for two pharmaceutical agents as the number of jointly perturbed targets divided by the number of all targets potentially affected by the two agents. We show that this measure is correlated with the known effects of beneficial and deleterious drug combinations taken from the DCDB, TTD and Drugs.com databases. We demonstrate the utility of TOS by correlating the score to the outcome of recent clinical trials evaluating trastuzumab, an effective anticancer agent utilized in combination with anthracycline- and taxane- based systemic chemotherapy in HER2-receptor (erb-b2 receptor tyrosine kinase 2) positive breast cancer. PMID:26047322

  15. Self-determined mechanisms in complex networks

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Yuan, Jian; Shan, Xiuming; Ren, Yong; Ma, Zhengxin

    2008-03-01

    Self-organized networks are pervasive in communication systems such as the Internet, overlay networks, peer-to-peer networks, and cluster-based services. These networks evolve into complex topologies, under specific driving forces, i.e. user demands, technological innovations, design objectives and so on. Our study focuses on the driving forces behind individual evolutions of network components, and their stimulation and domination to the self-organized networks which are defined as self-determined mechanisms in this paper. Understanding forces underlying the evolution of networks should enable informed design decisions and help to avoid unwanted surprises, such as congestion collapse. A case study on the macroscopic evolution of the Internet topology of autonomous systems under a specific driving force is then presented. Using computer simulations, it is found that the power-law degree distribution can originate from a connection preference to larger numbers of users, and that the small-world property can be caused by rapid growth in the number of users. Our results provide a new feasible perspective to understand intrinsic fundamentals in the topological evolution of complex networks.

  16. Effect of an ultrafast laser induced plasma on a relativistic electron beam to determine temporal overlap in pump-probe experiments.

    PubMed

    Scoby, Cheyne M; Li, R K; Musumeci, P

    2013-04-01

    In this paper we report on a simple and robust method to measure the absolute temporal overlap of the laser and the electron beam at the sample based on the effect of a laser induced plasma on the electron beam transverse distribution, successfully extending a similar method from keV to MeV electron beams. By pumping a standard copper TEM grid to form the plasma, we gain timing information independent of the sample under study. In experiments discussed here the optical delay to achieve temporal overlap between the pump electron beam and probe laser can be determined with ~1 ps precision. PMID:22951263

  17. Partially overlapping sensorimotor networks underlie speech praxis and verbal short-term memory: evidence from apraxia of speech following acute stroke

    PubMed Central

    Hickok, Gregory; Rogalsky, Corianne; Chen, Rong; Herskovits, Edward H.; Townsley, Sarah; Hillis, Argye E.

    2014-01-01

    We tested the hypothesis that motor planning and programming of speech articulation and verbal short-term memory (vSTM) depend on partially overlapping networks of neural regions. We evaluated this proposal by testing 76 individuals with acute ischemic stroke for impairment in motor planning of speech articulation (apraxia of speech, AOS) and vSTM in the first day of stroke, before the opportunity for recovery or reorganization of structure-function relationships. We also evaluated areas of both infarct and low blood flow that might have contributed to AOS or impaired vSTM in each person. We found that AOS was associated with tissue dysfunction in motor-related areas (posterior primary motor cortex, pars opercularis; premotor cortex, insula) and sensory-related areas (primary somatosensory cortex, secondary somatosensory cortex, parietal operculum/auditory cortex); while impaired vSTM was associated with primarily motor-related areas (pars opercularis and pars triangularis, premotor cortex, and primary motor cortex). These results are consistent with the hypothesis, also supported by functional imaging data, that both speech praxis and vSTM rely on partially overlapping networks of brain regions. PMID:25202255

  18. Assessment of Overlap of Phylogenetic Transmission Clusters and Communities in Simple Sexual Contact Networks: Applications to HIV-1

    PubMed Central

    Villandre, Luc; Günthard, Huldrych F.; Kouyos, Roger; Stadler, Tanja

    2016-01-01

    Background Transmission patterns of sexually-transmitted infections (STIs) could relate to the structure of the underlying sexual contact network, whose features are therefore of interest to clinicians. Conventionally, we represent sexual contacts in a population with a graph, that can reveal the existence of communities. Phylogenetic methods help infer the history of an epidemic and incidentally, may help detecting communities. In particular, phylogenetic analyses of HIV-1 epidemics among men who have sex with men (MSM) have revealed the existence of large transmission clusters, possibly resulting from within-community transmissions. Past studies have explored the association between contact networks and phylogenies, including transmission clusters, producing conflicting conclusions about whether network features significantly affect observed transmission history. As far as we know however, none of them thoroughly investigated the role of communities, defined with respect to the network graph, in the observation of clusters. Methods The present study investigates, through simulations, community detection from phylogenies. We simulate a large number of epidemics over both unweighted and weighted, undirected random interconnected-islands networks, with islands corresponding to communities. We use weighting to modulate distance between islands. We translate each epidemic into a phylogeny, that lets us partition our samples of infected subjects into transmission clusters, based on several common definitions from the literature. We measure similarity between subjects’ island membership indices and transmission cluster membership indices with the adjusted Rand index. Results and Conclusion Analyses reveal modest mean correspondence between communities in graphs and phylogenetic transmission clusters. We conclude that common methods often have limited success in detecting contact network communities from phylogenies. The rarely-fulfilled requirement that network

  19. Determining Application Runtimes Using Queueing Network Modeling

    SciTech Connect

    Elliott, M

    2007-03-15

    Determination of application times-to-solution for large-scale clustered computers continues to be a difficult problem in high-end computing, which will only become more challenging as multi-core consumer machines become more prevalent in the market. Both researchers and consumers of these multi-core systems desire reasonable estimates of how long their programs will take to run (time-to-solution, or TTS), and how many resources will be consumed in the execution. Currently there are few methods of determining these values, and those that do exist are either overly simplistic in their assumptions or require great amounts of effort to parameterize and understand. One previously untried method is queuing network modeling (QNM), which is easy to parameterize and solve, and produces results that typically fall within 10 to 30% of the actual TTS for our test cases. Using characteristics of the computer network (bandwidth, latency) and communication patterns (number of messages, message length, time spent in communication), the QNM model of the NAS-PB CG application was applied to MCR and ALC, supercomputers at LLNL, and the Keck Cluster at USF, with average errors of 2.41%, 3.61%, and -10.73%, respectively, compared to the actual TTS observed. While additional work is necessary to improve the predictive capabilities of QNM, current results show that QNM has a great deal of promise for determining application TTS for multi-processor computer systems.

  20. Overlapping clusters for distributed computation.

    SciTech Connect

    Mirrokni, Vahab; Andersen, Reid; Gleich, David F.

    2010-11-01

    Scalable, distributed algorithms must address communication problems. We investigate overlapping clusters, or vertex partitions that intersect, for graph computations. This setup stores more of the graph than required but then affords the ease of implementation of vertex partitioned algorithms. Our hope is that this technique allows us to reduce communication in a computation on a distributed graph. The motivation above draws on recent work in communication avoiding algorithms. Mohiyuddin et al. (SC09) design a matrix-powers kernel that gives rise to an overlapping partition. Fritzsche et al. (CSC2009) develop an overlapping clustering for a Schwarz method. Both techniques extend an initial partitioning with overlap. Our procedure generates overlap directly. Indeed, Schwarz methods are commonly used to capitalize on overlap. Elsewhere, overlapping communities (Ahn et al, Nature 2009; Mishra et al. WAW2007) are now a popular model of structure in social networks. These have long been studied in statistics (Cole and Wishart, CompJ 1970). We present two types of results: (i) an estimated swapping probability {rho}{infinity}; and (ii) the communication volume of a parallel PageRank solution (link-following {alpha} = 0.85) using an additive Schwarz method. The volume ratio is the amount of extra storage for the overlap (2 means we store the graph twice). Below, as the ratio increases, the swapping probability and PageRank communication volume decreases.

  1. Pathway Network Analyses for Autism Reveal Multisystem Involvement, Major Overlaps with Other Diseases and Convergence upon MAPK and Calcium Signaling

    PubMed Central

    Wen, Ya; Alshikho, Mohamad J.; Herbert, Martha R.

    2016-01-01

    We used established databases in standard ways to systematically characterize gene ontologies, pathways and functional linkages in the large set of genes now associated with autism spectrum disorders (ASDs). These conditions are particularly challenging—they lack clear pathognomonic biological markers, they involve great heterogeneity across multiple levels (genes, systemic biological and brain characteristics, and nuances of behavioral manifestations)—and yet everyone with this diagnosis meets the same defining behavioral criteria. Using the human gene list from Simons Foundation Autism Research Initiative (SFARI) we performed gene set enrichment analysis with the Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway Database, and then derived a pathway network from pathway-pathway functional interactions again in reference to KEGG. Through identifying the GO (Gene Ontology) groups in which SFARI genes were enriched, mapping the coherence between pathways and GO groups, and ranking the relative strengths of representation of pathway network components, we 1) identified 10 disease-associated and 30 function-associated pathways 2) revealed calcium signaling pathway and neuroactive ligand-receptor interaction as the most enriched, statistically significant pathways from the enrichment analysis, 3) showed calcium signaling pathways and MAPK signaling pathway to be interactive hubs with other pathways and also to be involved with pervasively present biological processes, 4) found convergent indications that the process “calcium-PRC (protein kinase C)-Ras-Raf-MAPK/ERK” is likely a major contributor to ASD pathophysiology, and 5) noted that perturbations associated with KEGG’s category of environmental information processing were common. These findings support the idea that ASD-associated genes may contribute not only to core features of ASD themselves but also to vulnerability to other chronic and systemic problems potentially including cancer, metabolic

  2. Pathway Network Analyses for Autism Reveal Multisystem Involvement, Major Overlaps with Other Diseases and Convergence upon MAPK and Calcium Signaling.

    PubMed

    Wen, Ya; Alshikho, Mohamad J; Herbert, Martha R

    2016-01-01

    We used established databases in standard ways to systematically characterize gene ontologies, pathways and functional linkages in the large set of genes now associated with autism spectrum disorders (ASDs). These conditions are particularly challenging--they lack clear pathognomonic biological markers, they involve great heterogeneity across multiple levels (genes, systemic biological and brain characteristics, and nuances of behavioral manifestations)-and yet everyone with this diagnosis meets the same defining behavioral criteria. Using the human gene list from Simons Foundation Autism Research Initiative (SFARI) we performed gene set enrichment analysis with the Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway Database, and then derived a pathway network from pathway-pathway functional interactions again in reference to KEGG. Through identifying the GO (Gene Ontology) groups in which SFARI genes were enriched, mapping the coherence between pathways and GO groups, and ranking the relative strengths of representation of pathway network components, we 1) identified 10 disease-associated and 30 function-associated pathways 2) revealed calcium signaling pathway and neuroactive ligand-receptor interaction as the most enriched, statistically significant pathways from the enrichment analysis, 3) showed calcium signaling pathways and MAPK signaling pathway to be interactive hubs with other pathways and also to be involved with pervasively present biological processes, 4) found convergent indications that the process "calcium-PRC (protein kinase C)-Ras-Raf-MAPK/ERK" is likely a major contributor to ASD pathophysiology, and 5) noted that perturbations associated with KEGG's category of environmental information processing were common. These findings support the idea that ASD-associated genes may contribute not only to core features of ASD themselves but also to vulnerability to other chronic and systemic problems potentially including cancer, metabolic conditions

  3. Heat Shock Partially Dissociates the Overlapping Modules of the Yeast Protein-Protein Interaction Network: A Systems Level Model of Adaptation

    PubMed Central

    Mihalik, Ágoston; Csermely, Peter

    2011-01-01

    Network analysis became a powerful tool giving new insights to the understanding of cellular behavior. Heat shock, the archetype of stress responses, is a well-characterized and simple model of cellular dynamics. S. cerevisiae is an appropriate model organism, since both its protein-protein interaction network (interactome) and stress response at the gene expression level have been well characterized. However, the analysis of the reorganization of the yeast interactome during stress has not been investigated yet. We calculated the changes of the interaction-weights of the yeast interactome from the changes of mRNA expression levels upon heat shock. The major finding of our study is that heat shock induced a significant decrease in both the overlaps and connections of yeast interactome modules. In agreement with this the weighted diameter of the yeast interactome had a 4.9-fold increase in heat shock. Several key proteins of the heat shock response became centers of heat shock-induced local communities, as well as bridges providing a residual connection of modules after heat shock. The observed changes resemble to a ‘stratus-cumulus’ type transition of the interactome structure, since the unstressed yeast interactome had a globally connected organization, similar to that of stratus clouds, whereas the heat shocked interactome had a multifocal organization, similar to that of cumulus clouds. Our results showed that heat shock induces a partial disintegration of the global organization of the yeast interactome. This change may be rather general occurring in many types of stresses. Moreover, other complex systems, such as single proteins, social networks and ecosystems may also decrease their inter-modular links, thus develop more compact modules, and display a partial disintegration of their global structure in the initial phase of crisis. Thus, our work may provide a model of a general, system-level adaptation mechanism to environmental changes. PMID:22022244

  4. Seeding for pervasively overlapping communities

    NASA Astrophysics Data System (ADS)

    Lee, Conrad; Reid, Fergal; McDaid, Aaron; Hurley, Neil

    2011-06-01

    In some social and biological networks, the majority of nodes belong to multiple communities. It has recently been shown that a number of the algorithms specifically designed to detect overlapping communities do not perform well in such highly overlapping settings. Here, we consider one class of these algorithms, those which optimize a local fitness measure, typically by using a greedy heuristic to expand a seed into a community. We perform synthetic benchmarks which indicate that an appropriate seeding strategy becomes more important as the extent of community overlap increases. We find that distinct cliques provide the best seeds. We find further support for this seeding strategy with benchmarks on a Facebook network and the yeast interactome.

  5. Smart Methods for Linezolid Determination in the Presence of Alkaline and Oxidative Degradation Products Utilizing Their Overlapped Spectral Bands

    NASA Astrophysics Data System (ADS)

    Abd El-Monem Hegazy, M.; Shaaban Eissa, M.; Abd El-Sattar, O. I.; Abd El-Kawy, M. M.

    2014-09-01

    Linezolid (LIN) is considered the first available oxazolidinone antibacterial agent. It is susceptible to hydrolysis and oxidation. Five simple, accurate, sensitive and validated UV spectrophotometric methods were developed for LIN determination in the presence of its alkaline (ALK) and oxidative (OXD) degradation products in bulk powder and pharmaceutical formulation. Method A is a second derivative one (D2) in which LIN is determined at 240.9 nm. Method B is a pH-induced differential derivative one where LIN is determined using the fourth derivative (D4) of the difference spectra (ΔA) at 285.3 nm. Methods C, D, and E are manipulating ratio spectra, where C is the double divisor-ratio difference spectrophotometric one (DD-RD) in which LIN was determined by calculating the amplitude difference at 243.7 and 267.6 nm of the ratio spectra. Method D is the double divisor-first derivative of ratio spectra (DD-DD1) in which LIN was determined at 270.2 nm. Method E is a mean centering of ratio spectra one (MCR) in which LIN was determined at 318.0 nm. The developed methods have been validated according to ICH guidelines. The results were statistically compared to that of a reported HPLC method and there was no significant difference regarding both accuracy and precision.

  6. HUNTing the Overlap

    SciTech Connect

    Iancu, Costin; Parry, Husbands; Hargrove, Paul

    2005-07-08

    Hiding communication latency is an important optimization for parallel programs. Programmers or compilers achieve this by using non-blocking communication primitives and overlapping communication with computation or other communication operations. Using non-blocking communication raises two issues: performance and programmability. In terms of performance, optimizers need to find a good communication schedule and are sometimes constrained by lack of full application knowledge. In terms of programmability, efficiently managing non-blocking communication can prove cumbersome for complex applications. In this paper we present the design principles of HUNT, a runtime system designed to search and exploit some of the available overlap present at execution time in UPC programs. Using virtual memory support, our runtime implements demand-driven synchronization for data involved in communication operations. It also employs message decomposition and scheduling heuristics to transparently improve the non-blocking behavior of applications. We provide a user level implementation of HUNT on a variety of modern high performance computing systems. Results indicate that our approach is successful in finding some of the overlap available at execution time. While system and application characteristics influence performance, perhaps the determining factor is the time taken by the CPU to execute a signal handler. Demand driven synchronization at execution time eliminates the need for the explicit management of non-blocking communication. Besides increasing programmer productivity, this feature also simplifies compiler analysis for communication optimizations.

  7. Function approximation using adaptive and overlapping intervals

    SciTech Connect

    Patil, R.B.

    1995-05-01

    A problem common to many disciplines is to approximate a function given only the values of the function at various points in input variable space. A method is proposed for approximating a function of several to one variable. The model takes the form of weighted averaging of overlapping basis functions defined over intervals. The number of such basis functions and their parameters (widths and centers) are automatically determined using given training data and a learning algorithm. The proposed algorithm can be seen as placing a nonuniform multidimensional grid in the input domain with overlapping cells. The non-uniformity and overlap of the cells is achieved by a learning algorithm to optimize a given objective function. This approach is motivated by the fuzzy modeling approach and a learning algorithms used for clustering and classification in pattern recognition. The basics of why and how the approach works are given. Few examples of nonlinear regression and classification are modeled. The relationship between the proposed technique, radial basis neural networks, kernel regression, probabilistic neural networks, and fuzzy modeling is explained. Finally advantages and disadvantages are discussed.

  8. DETERMINANTS OF NETWORK OUTCOMES: THE IMPACT OF MANAGEMENT STRATEGIES

    PubMed Central

    YSA, TAMYKO; SIERRA, VICENTA; ESTEVE, MARC

    2014-01-01

    The literature on network management is extensive. However, it generally explores network structures, neglecting the impact of management strategies. In this article we assess the effect of management strategies on network outcomes, providing empirical evidence from 119 urban revitalization networks. We go beyond current work by testing a path model for the determinants of network outcomes and considering the interactions between the constructs: management strategies, trust, complexity, and facilitative leadership. Our results suggest that management strategies have a strong effect on network outcomes and that they enhance the level of trust. We also found that facilitative leadership has a positive impact on network management as well as on trust in the network. Our findings also show that complexity has a negative impact on trust. A key finding of our research is that managers may wield more influence on network dynamics than previously theorized. PMID:25520529

  9. Factors Determining Nestedness in Complex Networks

    PubMed Central

    Jonhson, Samuel; Domínguez-García, Virginia; Muñoz, Miguel A.

    2013-01-01

    Understanding the causes and effects of network structural features is a key task in deciphering complex systems. In this context, the property of network nestedness has aroused a fair amount of interest as regards ecological networks. Indeed, Bastolla et al. introduced a simple measure of network nestedness which opened the door to analytical understanding, allowing them to conclude that biodiversity is strongly enhanced in highly nested mutualistic networks. Here, we suggest a slightly refined version of such a measure of nestedness and study how it is influenced by the most basic structural properties of networks, such as degree distribution and degree-degree correlations (i.e. assortativity). We find that most of the empirically found nestedness stems from heterogeneity in the degree distribution. Once such an influence has been discounted – as a second factor – we find that nestedness is strongly correlated with disassortativity and hence – as random networks have been recently found to be naturally disassortative – they also tend to be naturally nested just as the result of chance. PMID:24069264

  10. Approach of Complex Networks for the Determination of Brain Death

    NASA Astrophysics Data System (ADS)

    Sun, Wei-Gang; Cao, Jian-Ting; Wang, Ru-Bin

    2011-06-01

    In clinical practice, brain death is the irreversible end of all brain activity. Compared to current statistical methods for the determination of brain death, we focus on the approach of complex networks for real-world electroencephalography in its determination. Brain functional networks constructed by correlation analysis are derived, and statistical network quantities used for distinguishing the patients in coma or brain death state, such as average strength, clustering coefficient and average path length, are calculated. Numerical results show that the values of network quantities of patients in coma state are larger than those of patients in brain death state. Our findings might provide valuable insights on the determination of brain death.

  11. Spectrophotometric methods manipulating ratio spectra for simultaneous determination of binary mixtures with sever overlapping spectra: A comparative study

    NASA Astrophysics Data System (ADS)

    Moustafa, H.; Fayez, Y.

    2014-12-01

    Three simple, specific and accurate spectrophotometric methods manipulating ratio spectra were developed and validated for simultaneous determination of Rabeprazole sodium (RB) and Domperidone (DP) in their binary mixture without prior separation. Method A, is constant center spectrophotometric method (CC). Method B is a ratio difference spectrophotometric one (RD), while method C is a combined ratio isoabsorptive point-ratio difference method (RIRD). Linear correlations were obtained in range of 4-44 μg/mL for both Rabeprazole sodium and Domperidone. The mean percentage recoveries of RB were 99.69 ± 0.504 for method A, 99.83 ± 0.483 for (B) and 100.31 ± 0.499 for (C), respectively, and that of DP were 99.52 ± 0.474 for method A, 100.12 ± 0.505 for (B) and 100.16 ± 0.498 for (C), respectively. Specificity was investigated by analysis of laboratory prepared mixtures containing the cited drugs and their combined tablet dosage form. The obtained results were statistically compared with those obtained by the reported methods, showing no significant difference with respect to accuracy and precision. The three methods were validated as per ICH guidelines and can be applied for routine analysis in quality control laboratories.

  12. Determining phylogenetic networks from inter-taxa distances.

    PubMed

    Bordewich, Magnus; Semple, Charles

    2016-08-01

    We consider the problem of determining the topological structure of a phylogenetic network given only information about the path-length distances between taxa. In particular, one of the main results of the paper shows that binary tree-child networks are essentially determined by such information. PMID:26666756

  13. Incorporation of flow injection analysis with dual-wavelength overlapping resonance Rayleigh scattering for rapid determination of malachite green and its metabolite in fish

    NASA Astrophysics Data System (ADS)

    Zhu, Jinghui; Qin, Mingyou; Liu, Shaopu; Liu, Zhongfang; Yang, Jidong; Hu, Xiaoli

    2014-09-01

    A flow injection analysis (FIA) system combined with dual-wavelength overlapping resonance Rayleigh scattering (DWO-RRS) has been established and validated for rapid determination of malachite green (MG) and its metabolite in fish samples. Under experimental condition, MG would react with Erythrosin (Ery) to form ion-association complexes, resulting in the occurrence of two RRS peaks and a dramatic enhancement of RRS intensity. The maximum RRS peaks were located at 286 nm and 337 nm. It is noted that the increments of both of these two peaks were proportional to the concentration of MG. The detection limit of DWO-RRS was 1.5 ng/mL, which was comparable to several reported methods. Moreover, the results of real sample analysis exhibited an acceptable recovery between 97.5% and 103.6%, indicating that the method had good reproducibility.

  14. Structural determinants of criticality in biological networks

    PubMed Central

    Valverde, Sergi; Ohse, Sebastian; Turalska, Malgorzata; West, Bruce J.; Garcia-Ojalvo, Jordi

    2015-01-01

    Many adaptive evolutionary systems display spatial and temporal features, such as long-range correlations, typically associated with the critical point of a phase transition in statistical physics. Empirical and theoretical studies suggest that operating near criticality enhances the functionality of biological networks, such as brain and gene networks, in terms for instance of information processing, robustness, and evolvability. While previous studies have explained criticality with specific system features, we still lack a general theory of critical behavior in biological systems. Here we look at this problem from the complex systems perspective, since in principle all critical biological circuits have in common the fact that their internal organization can be described as a complex network. An important question is how self-similar structure influences self-similar dynamics. Modularity and heterogeneity, for instance, affect the location of critical points and can be used to tune the system toward criticality. We review and discuss recent studies on the criticality of neuronal and genetic networks, and discuss the implications of network theory when assessing the evolutionary features of criticality. PMID:26005422

  15. A stochastic model for detecting overlapping and hierarchical community structure.

    PubMed

    Cao, Xiaochun; Wang, Xiao; Jin, Di; Guo, Xiaojie; Tang, Xianchao

    2015-01-01

    Community detection is a fundamental problem in the analysis of complex networks. Recently, many researchers have concentrated on the detection of overlapping communities, where a vertex may belong to more than one community. However, most current methods require the number (or the size) of the communities as a priori information, which is usually unavailable in real-world networks. Thus, a practical algorithm should not only find the overlapping community structure, but also automatically determine the number of communities. Furthermore, it is preferable if this method is able to reveal the hierarchical structure of networks as well. In this work, we firstly propose a generative model that employs a nonnegative matrix factorization (NMF) formulization with a l(2,1) norm regularization term, balanced by a resolution parameter. The NMF has the nature that provides overlapping community structure by assigning soft membership variables to each vertex; the l(2,1) regularization term is a technique of group sparsity which can automatically determine the number of communities by penalizing too many nonempty communities; and hence the resolution parameter enables us to explore the hierarchical structure of networks. Thereafter, we derive the multiplicative update rule to learn the model parameters, and offer the proof of its correctness. Finally, we test our approach on a variety of synthetic and real-world networks, and compare it with some state-of-the-art algorithms. The results validate the superior performance of our new method. PMID:25822148

  16. A Stochastic Model for Detecting Overlapping and Hierarchical Community Structure

    PubMed Central

    Cao, Xiaochun; Wang, Xiao; Jin, Di; Guo, Xiaojie; Tang, Xianchao

    2015-01-01

    Community detection is a fundamental problem in the analysis of complex networks. Recently, many researchers have concentrated on the detection of overlapping communities, where a vertex may belong to more than one community. However, most current methods require the number (or the size) of the communities as a priori information, which is usually unavailable in real-world networks. Thus, a practical algorithm should not only find the overlapping community structure, but also automatically determine the number of communities. Furthermore, it is preferable if this method is able to reveal the hierarchical structure of networks as well. In this work, we firstly propose a generative model that employs a nonnegative matrix factorization (NMF) formulization with a l2,1 norm regularization term, balanced by a resolution parameter. The NMF has the nature that provides overlapping community structure by assigning soft membership variables to each vertex; the l2,1 regularization term is a technique of group sparsity which can automatically determine the number of communities by penalizing too many nonempty communities; and hence the resolution parameter enables us to explore the hierarchical structure of networks. Thereafter, we derive the multiplicative update rule to learn the model parameters, and offer the proof of its correctness. Finally, we test our approach on a variety of synthetic and real-world networks, and compare it with some state-of-the-art algorithms. The results validate the superior performance of our new method. PMID:25822148

  17. Clique graphs and overlapping communities

    NASA Astrophysics Data System (ADS)

    Evans, T. S.

    2010-12-01

    It is shown how to construct a clique graph in which properties of cliques of a fixed order in a given graph are represented by vertices in a weighted graph. Various definitions and motivations for these weights are given. The detection of communities or clusters is used to illustrate how a clique graph may be exploited. In particular a benchmark network is shown where clique graphs find the overlapping communities accurately while vertex partition methods fail.

  18. Overlapping Structures in Sensory-Motor Mappings

    PubMed Central

    Earland, Kevin; Lee, Mark; Shaw, Patricia; Law, James

    2014-01-01

    This paper examines a biologically-inspired representation technique designed for the support of sensory-motor learning in developmental robotics. An interesting feature of the many topographic neural sheets in the brain is that closely packed receptive fields must overlap in order to fully cover a spatial region. This raises interesting scientific questions with engineering implications: e.g. is overlap detrimental? does it have any benefits? This paper examines the effects and properties of overlap between elements arranged in arrays or maps. In particular we investigate how overlap affects the representation and transmission of spatial location information on and between topographic maps. Through a series of experiments we determine the conditions under which overlap offers advantages and identify useful ranges of overlap for building mappings in cognitive robotic systems. Our motivation is to understand the phenomena of overlap in order to provide guidance for application in sensory-motor learning robots. PMID:24392118

  19. Functional Network Overlap as Revealed by fMRI Using sICA and Its Potential Relationships with Functional Heterogeneity, Balanced Excitation and Inhibition, and Sparseness of Neuron Activity

    PubMed Central

    Xu, Jiansong; Calhoun, Vince D.; Worhunsky, Patrick D.; Xiang, Hui; Li, Jian; Wall, John T.; Pearlson, Godfrey D.; Potenza, Marc N.

    2015-01-01

    Functional magnetic resonance imaging (fMRI) studies traditionally use general linear model-based analysis (GLM-BA) and regularly report task-related activation, deactivation, or no change in activation in separate brain regions. However, several recent fMRI studies using spatial independent component analysis (sICA) find extensive overlap of functional networks (FNs), each exhibiting different task-related modulation (e.g., activation vs. deactivation), different from the dominant findings of GLM-BA. This study used sICA to assess overlap of FNs extracted from four datasets, each related to a different cognitive task. FNs extracted from each dataset overlapped with each other extensively across most or all brain regions and showed task-related concurrent increases, decreases, or no changes in activity. These findings indicate that neural substrates showing task-related concurrent but different modulations in activity intermix with each other and distribute across most of the brain. Furthermore, spatial correlation analyses found that most FNs were highly consistent in spatial patterns across different datasets. This finding indicates that these FNs probably reflect large-scale patterns of task-related brain activity. We hypothesize that FN overlaps as revealed by sICA might relate to functional heterogeneity, balanced excitation and inhibition, and population sparseness of neuron activity, three fundamental properties of the brain. These possibilities deserve further investigation. PMID:25714362

  20. Precise orbit determination of BeiDou constellation based on BETS and MGEX network

    PubMed Central

    Lou, Yidong; Liu, Yang; Shi, Chuang; Yao, Xiuguang; Zheng, Fu

    2014-01-01

    Chinese BeiDou Navigation Satellite System is officially operational as a regional constellation with five Geostationary Earth Orbit (GEO) satellites, five Inclined Geosynchronous Satellite Orbit (IGSO) satellites and four Medium Earth Orbit (MEO) satellites. Observations from the BeiDou Experimental Tracking Stations (BETS) and the IGS Multi-GNSS Experiment (MGEX) network from 1 January to 31 March 2013 are processed for orbit determination of the BeiDou constellation. Various arc lengths and solar radiation pressure parameters are investigated. The reduced set of ECOM five-parameter model produces better performance than the full set of ECOM nine-parameter model for BeiDou IGSO and MEO. The orbit overlap for the middle days of 3-day arc solutions is better than 20 cm and 14 cm for IGSO and MEO in RMS, respectively. Satellite laser ranging residuals are better than 10 cm for both IGSO and MEO. For BeiDou GEO, the orbit overlap of several meters and satellite laser ranging residuals of several decimetres can be achieved. PMID:24733025

  1. Precise orbit determination of BeiDou constellation based on BETS and MGEX network.

    PubMed

    Lou, Yidong; Liu, Yang; Shi, Chuang; Yao, Xiuguang; Zheng, Fu

    2014-01-01

    Chinese BeiDou Navigation Satellite System is officially operational as a regional constellation with five Geostationary Earth Orbit (GEO) satellites, five Inclined Geosynchronous Satellite Orbit (IGSO) satellites and four Medium Earth Orbit (MEO) satellites. Observations from the BeiDou Experimental Tracking Stations (BETS) and the IGS Multi-GNSS Experiment (MGEX) network from 1 January to 31 March 2013 are processed for orbit determination of the BeiDou constellation. Various arc lengths and solar radiation pressure parameters are investigated. The reduced set of ECOM five-parameter model produces better performance than the full set of ECOM nine-parameter model for BeiDou IGSO and MEO. The orbit overlap for the middle days of 3-day arc solutions is better than 20 cm and 14 cm for IGSO and MEO in RMS, respectively. Satellite laser ranging residuals are better than 10 cm for both IGSO and MEO. For BeiDou GEO, the orbit overlap of several meters and satellite laser ranging residuals of several decimetres can be achieved. PMID:24733025

  2. Precise orbit determination of BeiDou constellation based on BETS and MGEX network

    NASA Astrophysics Data System (ADS)

    Lou, Yidong; Liu, Yang; Shi, Chuang; Yao, Xiuguang; Zheng, Fu

    2014-04-01

    Chinese BeiDou Navigation Satellite System is officially operational as a regional constellation with five Geostationary Earth Orbit (GEO) satellites, five Inclined Geosynchronous Satellite Orbit (IGSO) satellites and four Medium Earth Orbit (MEO) satellites. Observations from the BeiDou Experimental Tracking Stations (BETS) and the IGS Multi-GNSS Experiment (MGEX) network from 1 January to 31 March 2013 are processed for orbit determination of the BeiDou constellation. Various arc lengths and solar radiation pressure parameters are investigated. The reduced set of ECOM five-parameter model produces better performance than the full set of ECOM nine-parameter model for BeiDou IGSO and MEO. The orbit overlap for the middle days of 3-day arc solutions is better than 20 cm and 14 cm for IGSO and MEO in RMS, respectively. Satellite laser ranging residuals are better than 10 cm for both IGSO and MEO. For BeiDou GEO, the orbit overlap of several meters and satellite laser ranging residuals of several decimetres can be achieved.

  3. Moiré fringe center determination using artificial neural network

    NASA Astrophysics Data System (ADS)

    Woo, W. H.; Yen, K. S.

    2015-07-01

    Moiré methods are commonly used in various engineering metrological practices such as deformation measurements and surface topography. In the past, most of the applications required human intervention in fringe pattern analysis and image processing development to analyze the moiré patterns. In a recent application of using circular gratings moiré pattern, researchers developed graphical analysis method to determine the in-plane (2-D) displacement change between the two circular gratings by analyzing the moiré pattern change. In this work, an artificial neural network approach was proposed to detect and locate moiré fringe centers of circular gratings without image preprocessing and curve fitting. The intensity values in columns of the transformed circular moiré pattern were extracted as the input to the neural network. Moiré fringe centers extracted using graphical analysis method were used as the target for the neural network training. The neural network produced reasonably accurate output with an average mean error of an average mean error of less than 1 unit pixel with standard deviation of less than 4 unit pixels in determining the location of the moiré fringe centers. The result showed that the neural network approach is applicable in moiré fringe centers determination and its feasibility in automating moiré pattern analysis with further improvement.

  4. Logical Reduction of Biological Networks to Their Most Determinative Components.

    PubMed

    Matache, Mihaela T; Matache, Valentin

    2016-07-01

    Boolean networks have been widely used as models for gene regulatory networks, signal transduction networks, or neural networks, among many others. One of the main difficulties in analyzing the dynamics of a Boolean network and its sensitivity to perturbations or mutations is the fact that it grows exponentially with the number of nodes. Therefore, various approaches for simplifying the computations and reducing the network to a subset of relevant nodes have been proposed in the past few years. We consider a recently introduced method for reducing a Boolean network to its most determinative nodes that yield the highest information gain. The determinative power of a node is obtained by a summation of all mutual information quantities over all nodes having the chosen node as a common input, thus representing a measure of information gain obtained by the knowledge of the node under consideration. The determinative power of nodes has been considered in the literature under the assumption that the inputs are independent in which case one can use the Bahadur orthonormal basis. In this article, we relax that assumption and use a standard orthonormal basis instead. We use techniques of Hilbert space operators and harmonic analysis to generate formulas for the sensitivity to perturbations of nodes, quantified by the notions of influence, average sensitivity, and strength. Since we work on finite-dimensional spaces, our formulas and estimates can be and are formulated in plain matrix algebra terminology. We analyze the determinative power of nodes for a Boolean model of a signal transduction network of a generic fibroblast cell. We also show the similarities and differences induced by the alternative complete orthonormal basis used. Among the similarities, we mention the fact that the knowledge of the states of the most determinative nodes reduces the entropy or uncertainty of the overall network significantly. In a special case, we obtain a stronger result than in previous

  5. Team Assembly Mechanisms Determine Collaboration Network Structure and Team Performance

    PubMed Central

    Guimerà, Roger; Uzzi, Brian; Spiro, Jarrett; Nunes Amaral, Luís A.

    2007-01-01

    Agents in creative enterprises are embedded in networks that inspire, support, and evaluate their work. Here, we investigate how the mechanisms by which creative teams self-assemble determine the structure of these collaboration networks. We propose a model for the self-assembly of creative teams that has its basis in three parameters: team size, the fraction of newcomers in new productions, and the tendency of incumbents to repeat previous collaborations. The model suggests that the emergence of a large connected community of practitioners can be described as a phase transition. We find that team assembly mechanisms determine both the structure of the collaboration network and team performance for teams derived from both artistic and scientific fields. PMID:15860629

  6. Determinants of Microvascular Network Topologies in Implanted Neovasculatures

    PubMed Central

    Chang, Carlos C.; Krishnan, Laxminarayanan; Nunes, Sara S.; Church, Kenneth H.; Edgar, Lowell T.; Boland, Eugene D.; Weiss, Jeffery A.; Williams, Stuart K.; Hoying, James B.

    2011-01-01

    Objectives During neovascularization, the end result is a new functional microcirculation comprised of a network of mature microvessels with specific topologies. While much is known concerning the mechanisms underlying the initiation of angiogenesis, it remains unclear how the final architecture of microcirculatory beds is regulated. To begin to address this, we determined the impact of angiogenic neovessel pre-patterning on the final microvascular network topology using an implant model of implant neovascularization. Methods and Results To test this, we used 3-D direct-write bioprinting or physical constraints in a manner permitting post-angiogenesis vascular remodeling and adaptation to pattern angiogenic microvascular precursors (neovessels formed from isolated microvessel segments) in 3-dimensional collagen gels prior to implantation and subsequent network formation. Neovasculatures pre-patterned into parallel arrays formed functional networks following 4 weeks post-implantation, but lost the pre-patterned architecture. However, maintenance of uniaxial physical constraints during post-angiogenesis remodeling of the implanted neovasculatures produced networks with aligned microvessels as well as an altered proportional distribution of arterioles, capillaries and venules. Conclusions Here we show that network topology resulting from implanted microvessel precursors is independent from pre-patterning of precursors but can be influenced by a patterning stimulus involving tissue deformation during post-angiogenesis remodeling and maturation. PMID:22053070

  7. Illusion induced overlapped optics.

    PubMed

    Zang, XiaoFei; Shi, Cheng; Li, Zhou; Chen, Lin; Cai, Bin; Zhu, YiMing; Zhu, HaiBin

    2014-01-13

    The traditional transformation-based cloak seems like it can only hide objects by bending the incident electromagnetic waves around the hidden region. In this paper, we prove that invisible cloaks can be applied to realize the overlapped optics. No matter how many in-phase point sources are located in the hidden region, all of them can overlap each other (this can be considered as illusion effect), leading to the perfect optical interference effect. In addition, a singular parameter-independent cloak is also designed to obtain quasi-overlapped optics. Even more amazing of overlapped optics is that if N identical separated in-phase point sources covered with the illusion media, the total power outside the transformation region is N2I0 (not NI0) (I0 is the power of just one point source, and N is the number point sources), which seems violating the law of conservation of energy. A theoretical model based on interference effect is proposed to interpret the total power of these two kinds of overlapped optics effects. Our investigation may have wide applications in high power coherent laser beams, and multiple laser diodes, and so on. PMID:24515019

  8. Determination of trajectories of fireballs using seismic network data

    NASA Astrophysics Data System (ADS)

    Ishihara, Y.

    2006-12-01

    Fireballs, Bolides, which are caused by high velocity passages of meteoroids through the atmosphere, generate shockwaves. Meteor shockwave provide us very important information (arrival time and amplitude) to study meteor physics. The shockwave arrival time data enable us to determine trajectories of the fireballs. On the other hand, the shockwave amplitude tells us size and ablation history of the meteoroid. Infrasound observation is one of the ways of detecting bolide shockwaves. However, we have no infrasound observational networks extends for large area with enough spatial distribution for determination of trajectories and estimate ablation histories. We have only a few infrasound arrays that have three or four elements, in the Japanese islands. Last decade, digital seismic networks are greatly improved for the purpose of monitoring micro earthquakes. Those seismic networks are quite sensitive for detecting micro ground vibration, and then those networks could detect not only seismic wave generated by earthquakes, but also ground oscillations generated by coupling of meteor shockwave with the ground near station. Last years, I analyses this kind of ground motion data recorded by seismic network, as meteor shockwave signals. For example, we estimate some great fireball's aerial path from arrival times of shockwaves (e.g., Ishihara et. al., 2003 Earth Planets, and Space, 2004 Geophysical Research. Letters.; Pujol et al., 2006 Planetary and Space Science), and we estimate sizes and ablation history of some great fireball and a meteorite fall (Ishihara et al., 2004 Meteoroids2004). In Japan, some great fireball falls occurred during 2004 to 2005. In this presentation, I show the trajectories of these fireballs determined from shockwave analysis. Some fireballs trajectories are also determined from photographic records. The trajectories determined from shockwave and that from photos show good agreement.

  9. Developmental roles of 21 Drosophila transcription factors are determined by quantitative differences in binding to an overlapping set of thousands of genomic regions

    SciTech Connect

    MacArthur, Stewart; Li, Xiao-Yong; Li, Jingyi; Brown, James B.; Chu, Hou Cheng; Zeng, Lucy; Grondona, Brandi P.; Hechmer, Aaron; Simirenko, Lisa; Keranen, Soile V.E.; Knowles, David W.; Stapleton, Mark; Bickel, Peter; Biggin, Mark D.; Eisen, Michael B.

    2009-05-15

    BACKGROUND: We previously established that six sequence-specific transcription factors that initiate anterior/posterior patterning in Drosophila bind to overlapping sets of thousands of genomic regions in blastoderm embryos. While regions bound at high levels include known and probable functional targets, more poorly bound regions are preferentially associated with housekeeping genes and/or genes not transcribed in the blastoderm, and are frequently found in protein coding sequences or in less conserved non-coding DNA, suggesting that many are likely non-functional. RESULTS: Here we show that an additional 15 transcription factors that regulate other aspects of embryo patterning show a similar quantitative continuum of function and binding to thousands of genomic regions in vivo. Collectively, the 21 regulators show a surprisingly high overlap in the regions they bind given that they belong to 11 DNA binding domain families, specify distinct developmental fates, and can act via different cis-regulatory modules. We demonstrate, however, that quantitative differences in relative levels of binding to shared targets correlate with the known biological and transcriptional regulatory specificities of these factors. CONCLUSIONS: It is likely that the overlap in binding of biochemically and functionally unrelated transcription factors arises from the high concentrations of these proteins in nuclei, which, coupled with their broad DNA binding specificities, directs them to regions of open chromatin. We suggest that most animal transcription factors will be found to show a similar broad overlapping pattern of binding in vivo, with specificity achieved by modulating the amount, rather than the identity, of bound factor.

  10. Laser tracker error determination using a network measurement

    NASA Astrophysics Data System (ADS)

    Hughes, Ben; Forbes, Alistair; Lewis, Andrew; Sun, Wenjuan; Veal, Dan; Nasr, Karim

    2011-04-01

    We report on a fast, easily implemented method to determine all the geometrical alignment errors of a laser tracker, to high precision. The technique requires no specialist equipment and can be performed in less than an hour. The technique is based on the determination of parameters of a geometric model of the laser tracker, using measurements of a set of fixed target locations, from multiple locations of the tracker. After fitting of the model parameters to the observed data, the model can be used to perform error correction of the raw laser tracker data or to derive correction parameters in the format of the tracker manufacturer's internal error map. In addition to determination of the model parameters, the method also determines the uncertainties and correlations associated with the parameters. We have tested the technique on a commercial laser tracker in the following way. We disabled the tracker's internal error compensation, and used a five-position, fifteen-target network to estimate all the geometric errors of the instrument. Using the error map generated from this network test, the tracker was able to pass a full performance validation test, conducted according to a recognized specification standard (ASME B89.4.19-2006). We conclude that the error correction determined from the network test is as effective as the manufacturer's own error correction methodologies.

  11. The brain as a system of nested but partially overlapping networks. Heuristic relevance of the model for brain physiology and pathology.

    PubMed

    Agnati, L F; Guidolin, D; Fuxe, K

    2007-01-01

    A new model of the brain organization is proposed. The model is based on the assumption that a global molecular network enmeshes the entire central nervous system. Thus, brain extra-cellular and intra-cellular molecular networks are proposed to communicate at the level of special plasma membrane regions (e.g., the lipid rafts) where horizontal molecular networks can represent input/output regions allowing the cell to have informational exchanges with the extracellular environment. Furthermore, some "pervasive signals" such as field potentials, pressure waves and thermal gradients that affect large parts of the brain cellular and molecular networks are discussed. Finally, at least two learning paradigms are analyzed taking into account the possible role of Volume Transmission: the so-called model of "temporal difference learning" and the "Turing B-unorganised machine". The relevance of this new view of brain organization for a deeper understanding of some neurophysiological and neuropathological aspects of its function is briefly discussed. PMID:16906353

  12. Overlap among Environmental Databases.

    ERIC Educational Resources Information Center

    Miller, Betty

    1981-01-01

    Describes the methodology and results of a study comparing the overlap of Enviroline, Pollution, and the Environmental Periodicals Bibliography files through searches on acid rain, asbestos and water, diesel, glass recycling, Lake Erie, Concorde, reverse osmosis wastewater treatment cost, and Calspan. Nine tables are provided. (RBF)

  13. An Integrated Centroid Finding and Particle Overlap Decomposition Algorithm for Stereo Imaging Velocimetry

    NASA Technical Reports Server (NTRS)

    McDowell, Mark

    2004-01-01

    An integrated algorithm for decomposing overlapping particle images (multi-particle objects) along with determining each object s constituent particle centroid(s) has been developed using image analysis techniques. The centroid finding algorithm uses a modified eight-direction search method for finding the perimeter of any enclosed object. The centroid is calculated using the intensity-weighted center of mass of the object. The overlap decomposition algorithm further analyzes the object data and breaks it down into its constituent particle centroid(s). This is accomplished with an artificial neural network, feature based technique and provides an efficient way of decomposing overlapping particles. Combining the centroid finding and overlap decomposition routines into a single algorithm allows us to accurately predict the error associated with finding the centroid(s) of particles in our experiments. This algorithm has been tested using real, simulated, and synthetic data and the results are presented and discussed.

  14. Experimental determination of group flux control coefficients in metabolic networks

    SciTech Connect

    Simpson, T.W.; Shimizu, Hiroshi; Stephanopoulos, G.

    1998-04-20

    Grouping of reactions around key metabolite branch points can facilitate the study of metabolic control of complex metabolic networks. This top-down Metabolic Control Analysis is exemplified through the introduction of group control coefficients whose magnitudes provide a measure of the relative impact of each reaction group on the overall network flux, as well as on the overall network stability, following enzymatic amplification. In this article, the authors demonstrate the application of previously developed theory to the determination of group flux control coefficients. Experimental data for the changes in metabolic fluxes obtained in response to the introduction of six different environmental perturbations are used to determine the group flux control coefficients for three reaction groups formed around the phosphoenolpyruvate/pyruvate branch point. The consistency of the obtained group flux control coefficient estimates is systematically analyzed to ensure that all necessary conditions are satisfied. The magnitudes of the determined control coefficients suggest that the control of lysine production flux in Corynebacterium glutamicum cells at a growth base state resides within the lysine biosynthetic pathway that begins with the PEP/PYR carboxylation anaplorotic pathway.

  15. Overlap and Differences in Brain Networks Underlying the Processing of Complex Sentence Structures in Second Language Users Compared with Native Speakers.

    PubMed

    Weber, Kirsten; Luther, Lisa; Indefrey, Peter; Hagoort, Peter

    2016-05-01

    When we learn a second language later in life, do we integrate it with the established neural networks in place for the first language or is at least a partially new network recruited? While there is evidence that simple grammatical structures in a second language share a system with the native language, the story becomes more multifaceted for complex sentence structures. In this study, we investigated the underlying brain networks in native speakers compared with proficient second language users while processing complex sentences. As hypothesized, complex structures were processed by the same large-scale inferior frontal and middle temporal language networks of the brain in the second language, as seen in native speakers. These effects were seen both in activations and task-related connectivity patterns. Furthermore, the second language users showed increased task-related connectivity from inferior frontal to inferior parietal regions of the brain, regions related to attention and cognitive control, suggesting less automatic processing for these structures in a second language. PMID:26746708

  16. Motor Protein Accumulation on Antiparallel Microtubule Overlaps.

    PubMed

    Kuan, Hui-Shun; Betterton, Meredith D

    2016-05-10

    Biopolymers serve as one-dimensional tracks on which motor proteins move to perform their biological roles. Motor protein phenomena have inspired theoretical models of one-dimensional transport, crowding, and jamming. Experiments studying the motion of Xklp1 motors on reconstituted antiparallel microtubule overlaps demonstrated that motors recruited to the overlap walk toward the plus end of individual microtubules and frequently switch between filaments. We study a model of this system that couples the totally asymmetric simple exclusion process for motor motion with switches between antiparallel filaments and binding kinetics. We determine steady-state motor density profiles for fixed-length overlaps using exact and approximate solutions of the continuum differential equations and compare to kinetic Monte Carlo simulations. Overlap motor density profiles and motor trajectories resemble experimental measurements. The phase diagram of the model is similar to the single-filament case for low switching rate, while for high switching rate we find a new (to our knowledge) low density-high density-low density-high density phase. The overlap center region, far from the overlap ends, has a constant motor density as one would naïvely expect. However, rather than following a simple binding equilibrium, the center motor density depends on total overlap length, motor speed, and motor switching rate. The size of the crowded boundary layer near the overlap ends is also dependent on the overlap length and switching rate in addition to the motor speed and bulk concentration. The antiparallel microtubule overlap geometry may offer a previously unrecognized mechanism for biological regulation of protein concentration and consequent activity. PMID:27166811

  17. Motor Protein Accumulation on Antiparallel Microtubule Overlaps

    NASA Astrophysics Data System (ADS)

    Kuan, Hui-Shun; Betterton, Meredith D.

    2016-05-01

    Biopolymers serve as one-dimensional tracks on which motor proteins move to perform their biological roles. Motor protein phenomena have inspired theoretical models of one-dimensional transport, crowding, and jamming. Experiments studying the motion of Xklp1 motors on reconstituted antiparallel microtubule overlaps demonstrated that motors recruited to the overlap walk toward the plus end of individual microtubules and frequently switch between filaments. We study a model of this system that couples the totally asymmetric simple exclusion process (TASEP) for motor motion with switches between antiparallel filaments and binding kinetics. We determine steady-state motor density profiles for fixed-length overlaps using exact and approximate solutions of the continuum differential equations and compare to kinetic Monte Carlo simulations. Overlap motor density profiles and motor trajectories resemble experimental measurements. The phase diagram of the model is similar to the single-filament case for low switching rate, while for high switching rate we find a new low density-high density-low density-high density phase. The overlap center region, far from the overlap ends, has a constant motor density as one would naively expect. However, rather than following a simple binding equilibrium, the center motor density depends on total overlap length, motor speed, and motor switching rate. The size of the crowded boundary layer near the overlap ends is also dependent on the overlap length and switching rate in addition to the motor speed and bulk concentration. The antiparallel microtubule overlap geometry may offer a previously unrecognized mechanism for biological regulation of protein concentration and consequent activity.

  18. Using Neural Networks to Determine Sugeno Measures by Statistics.

    PubMed

    Zhenyuan, Wang; Jia, Wang

    1997-01-01

    To replace the traditional weighted average method, Choquet integrals or Sugeno integrals with respect to fuzzy measures are used to obtain a synthetic evaluation of a given object (or its quality, function, etc. respectively) with multi-attribute. Generally, it is not easy to determine fuzzy measures in real problems due to the subjectivity of human thinking. It is even much more difficult than determining weights in the weighted average method, because of the nonadditivity of fuzzy measures. This paper uses a neural network algorithm to optimize the inverse problem of synthetic evaluation, and thus to determine Sugeno measures by the Choquet integral and statistics of given data. Since the Choquet integral is a generalization of the weighted average method, this technology has a broad applicability in areas of multivariate analysis, decision making, pattern recognition, image and speech processing and expert systems. Copyright 1996 Elsevier Science Ltd. PMID:12662896

  19. Optical neural network system for pose determination of spinning satellites

    NASA Technical Reports Server (NTRS)

    Lee, Andrew; Casasent, David

    1990-01-01

    An optical neural network architecture and algorithm based on a Hopfield optimization network are presented for multitarget tracking. This tracker utilizes a neuron for every possible target track, and a quadratic energy function of neural activities which is minimized using gradient descent neural evolution. The neural net tracker is demonstrated as part of a system for determining position and orientation (pose) of spinning satellites with respect to a robotic spacecraft. The input to the system is time sequence video from a single camera. Novelty detection and filtering are utilized to locate and segment novel regions from the input images. The neural net multitarget tracker determines the correspondences (or tracks) of the novel regions as a function of time, and hence the paths of object (satellite) parts. The path traced out by a given part or region is approximately elliptical in image space, and the position, shape and orientation of the ellipse are functions of the satellite geometry and its pose. Having a geometric model of the satellite, and the elliptical path of a part in image space, the three-dimensional pose of the satellite is determined. Digital simulation results using this algorithm are presented for various satellite poses and lighting conditions.

  20. Quantitation of the area of overlap between second-derivative amide I infrared spectra to determine the structural similarity of a protein in different states.

    PubMed

    Kendrick, B S; Dong, A; Allison, S D; Manning, M C; Carpenter, J F

    1996-02-01

    Maintaining a native-like structure of protein pharmaceuticals during lyophilization is an important aspect of formulation. Infrared spectroscopy can be used to evaluate the effectiveness of formulations in protecting the secondary structural integrity of proteins in the dried solid. This necessitates making quantitative comparisons of the overall similarity of infrared spectra in the conformationally sensitive amide I region. We initially used the correlation coefficient r, as defined by Prestrelski et al. (Biophys. J. 1993, 65, 661-671), for this quantitation. Occasionally, we noticed that the r value did not agree with a visual assessment of the spectral similarity. In some cases this was due to an offset in baselines, which led artifactually to an unreasonably low r value. Conversely, if the spectra were baseline corrected and there existed a large similarity between peak positions, but differences in relative peak heights, the r value would be unreasonably high. Our approach to avoiding these problems is to use area-normalized second-derivative spectra. We have found that quantitating the area of overlap between area-normalized spectra provides a reliable, objective method to compare overall spectral similarity. In the current report, we demonstrate this method with selected protein spectra, which were taken from experiments where unfolding was induced by lyophilization or guanidine hydrochloride, and artificial data sets. With this analysis, we document how problems associated with calculation of the correlation coefficient, r, are avoided. PMID:8683440

  1. Determining Locations by Use of Networks of Passive Beacons

    NASA Technical Reports Server (NTRS)

    Okino, Clayton; Gray, Andrew; Jennings, Esther

    2009-01-01

    Networks of passive radio beacons spanning moderate-sized terrain areas have been proposed to aid navigation of small robotic aircraft that would be used to explore Saturn s moon Titan. Such networks could also be used on Earth to aid navigation of robotic aircraft, land vehicles, or vessels engaged in exploration or reconnaissance in situations or locations (e.g., underwater locations) in which Global Positioning System (GPS) signals are unreliable or unavailable. Prior to use, it would be necessary to pre-position the beacons at known locations that would be determined by use of one or more precise independent global navigation system(s). Thereafter, while navigating over the area spanned by a given network of passive beacons, an exploratory robot would use the beacons to determine its position precisely relative to the known beacon positions (see figure). If it were necessary for the robot to explore multiple, separated terrain areas spanned by different networks of beacons, the robot could use a long-haul, relatively coarse global navigation system for the lower-precision position determination needed during transit between such areas. The proposed method of precise determination of position of an exploratory robot relative to the positions of passive radio beacons is based partly on the principles of radar and partly on the principles of radio-frequency identification (RFID) tags. The robot would transmit radar-like signals that would be modified and reflected by the passive beacons. The distance to each beacon would be determined from the roundtrip propagation time and/or round-trip phase shift of the signal returning from that beacon. Signals returned from different beacons could be distinguished by means of their RFID characteristics. Alternatively or in addition, the antenna of each beacon could be designed to radiate in a unique pattern that could be identified by the navigation system. Also, alternatively or in addition, sets of identical beacons could

  2. High-Throughput Chiral LC-MS/MS Method Using Overlapping Injection Mode for the Determination of Pantoprazole Enantiomers in Human Plasma with Application to Pharmacokinetic Study.

    PubMed

    Li, Shengni; Jiang, Huafang; Wang, Yiya; Liu, Yinli; Shen, Xiaohang; Liang, Wenzhong; Hong, Zhanying

    2016-07-01

    A sensitive and high-throughput chiral liquid chromatography-tandem mass spectrometry method was developed and validated for the quantification of R-pantoprazole and S-pantoprazole in human plasma. Sample extraction was carried out by using ethyl acetate liquid-liquid extraction in 96-well plate format. The separation of pantoprazole enantiomers was performed on a CHIRALCEL OJ-RH column and an overlapping injection mode was used to achieve a run time of 5.0 min/sample. The mobile phase consisted of 1) 10 mM ammonium acetate in methanol: acetonitrile (1:1, v/v) and 2) 20 mM ammonium acetate in water. Isocratic elution was used with flow rate at 500 μL/min. The enantiomers were quantified on a triple-quadrupole mass spectrometer under multiple reaction monitoring (MRM) mode with m/z 382.1/230.0 for pantoprazole and m/z 388.4/230.1 for pantoprazole-d7. Linearity from 20.0 to 5000 ng/mL was established for each enantiomer (r(2)  > 0.99). Extraction recovery ranged from 91.7% to 96.4% for R-pantoprazole and from 92.5% to 96.5% for S-pantoprazole and the IS-normalized matrix factor was 0.98 to 1.07 for R-pantoprazole and S-pantoprazole, respectively. The method was demonstrated with acceptable accuracy, precision, selectivity, and stability and the method was applied to support a pharmacokinetic study of a phase I clinical trial of racemic pantoprazole in healthy Chinese subjects. Chirality 28:569-575, 2016. © 2016 Wiley Periodicals, Inc. PMID:27349958

  3. Overlap extension PCR cloning.

    PubMed

    Bryksin, Anton; Matsumura, Ichiro

    2013-01-01

    Rising demand for recombinant proteins has motivated the development of efficient and reliable cloning methods. Here we show how a beginner can clone virtually any DNA insert into a plasmid of choice without the use of restriction endonucleases or T4 DNA ligase. Chimeric primers encoding plasmid sequence at the 5' ends and insert sequence at the 3' ends are designed and synthesized. Phusion(®) DNA polymerase is utilized to amplify the desired insert by PCR. The double-stranded product is subsequently employed as a pair of mega-primers in a PCR-like reaction with circular plasmids. The original plasmids are then destroyed in restriction digests with Dpn I. The product of the overlap extension PCR is used to transform competent Escherichia coli cells. Phusion(®) DNA polymerase is used for both the amplification and fusion reactions, so both steps can be monitored and optimized in the same way. PMID:23996437

  4. Securely measuring the overlap between private datasets with cryptosets.

    PubMed

    Swamidass, S Joshua; Matlock, Matthew; Rozenblit, Leon

    2015-01-01

    Many scientific questions are best approached by sharing data--collected by different groups or across large collaborative networks--into a combined analysis. Unfortunately, some of the most interesting and powerful datasets--like health records, genetic data, and drug discovery data--cannot be freely shared because they contain sensitive information. In many situations, knowing if private datasets overlap determines if it is worthwhile to navigate the institutional, ethical, and legal barriers that govern access to sensitive, private data. We report the first method of publicly measuring the overlap between private datasets that is secure under a malicious model without relying on private protocols or message passing. This method uses a publicly shareable summary of a dataset's contents, its cryptoset, to estimate its overlap with other datasets. Cryptosets approach "information-theoretic" security, the strongest type of security possible in cryptography, which is not even crackable with infinite computing power. We empirically and theoretically assess both the accuracy of these estimates and the security of the approach, demonstrating that cryptosets are informative, with a stable accuracy, and secure. PMID:25714898

  5. Generating Composite Overlapping Grids on CAD Geometries

    SciTech Connect

    Henshaw, W.D.

    2002-02-07

    We describe some algorithms and tools that have been developed to generate composite overlapping grids on geometries that have been defined with computer aided design (CAD) programs. This process consists of five main steps. Starting from a description of the surfaces defining the computational domain we (1) correct errors in the CAD representation, (2) determine topology of the patched-surface, (3) build a global triangulation of the surface, (4) construct structured surface and volume grids using hyperbolic grid generation, and (5) generate the overlapping grid by determining the holes and the interpolation points. The overlapping grid generator which is used for the final step also supports the rapid generation of grids for block-structured adaptive mesh refinement and for moving grids. These algorithms have been implemented as part of the Overture object-oriented framework.

  6. Arsia Mons Overlapping Flows

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    This VIS image shows overlapping flows with different suface textures. In the middle of the image there is a round, darker feature -- a small volcano. To the left of the volcano a graben cuts across the lava flows.

    Image information: VIS instrument. Latitude -18.5, Longitude 244.5 East (115.5 West). 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  7. Competitive STDP Learning of Overlapping Spatial Patterns.

    PubMed

    Krunglevicius, Dalius

    2015-08-01

    Spike-timing-dependent plasticity (STDP) is a set of Hebbian learning rules firmly based on biological evidence. It has been demonstrated that one of the STDP learning rules is suited for learning spatiotemporal patterns. When multiple neurons are organized in a simple competitive spiking neural network, this network is capable of learning multiple distinct patterns. If patterns overlap significantly (i.e., patterns are mutually inclusive), however, competition would not preclude trained neuron's responding to a new pattern and adjusting synaptic weights accordingly. This letter presents a simple neural network that combines vertical inhibition and Euclidean distance-dependent synaptic strength factor. This approach helps to solve the problem of pattern size-dependent parameter optimality and significantly reduces the probability of a neuron's forgetting an already learned pattern. For demonstration purposes, the network was trained for the first ten letters of the Braille alphabet. PMID:26079753

  8. Dynamical state of the network determines the efficacy of single neuron properties in shaping the network activity

    PubMed Central

    Sahasranamam, Ajith; Vlachos, Ioannis; Aertsen, Ad; Kumar, Arvind

    2016-01-01

    Spike patterns are among the most common electrophysiological descriptors of neuron types. Surprisingly, it is not clear how the diversity in firing patterns of the neurons in a network affects its activity dynamics. Here, we introduce the state-dependent stochastic bursting neuron model allowing for a change in its firing patterns independent of changes in its input-output firing rate relationship. Using this model, we show that the effect of single neuron spiking on the network dynamics is contingent on the network activity state. While spike bursting can both generate and disrupt oscillations, these patterns are ineffective in large regions of the network state space in changing the network activity qualitatively. Finally, we show that when single-neuron properties are made dependent on the population activity, a hysteresis like dynamics emerges. This novel phenomenon has important implications for determining the network response to time-varying inputs and for the network sensitivity at different operating points. PMID:27212008

  9. Dynamical state of the network determines the efficacy of single neuron properties in shaping the network activity.

    PubMed

    Sahasranamam, Ajith; Vlachos, Ioannis; Aertsen, Ad; Kumar, Arvind

    2016-01-01

    Spike patterns are among the most common electrophysiological descriptors of neuron types. Surprisingly, it is not clear how the diversity in firing patterns of the neurons in a network affects its activity dynamics. Here, we introduce the state-dependent stochastic bursting neuron model allowing for a change in its firing patterns independent of changes in its input-output firing rate relationship. Using this model, we show that the effect of single neuron spiking on the network dynamics is contingent on the network activity state. While spike bursting can both generate and disrupt oscillations, these patterns are ineffective in large regions of the network state space in changing the network activity qualitatively. Finally, we show that when single-neuron properties are made dependent on the population activity, a hysteresis like dynamics emerges. This novel phenomenon has important implications for determining the network response to time-varying inputs and for the network sensitivity at different operating points. PMID:27212008

  10. Autism and ADHD: Overlapping and Discriminating Symptoms

    ERIC Educational Resources Information Center

    Mayes, Susan Dickerson; Calhoun, Susan L.; Mayes, Rebecca D.; Molitoris, Sarah

    2012-01-01

    Children with ADHD and autism have some similar features, complicating a differential diagnosis. The purpose of our study was to determine the degree to which core ADHD and autistic symptoms overlap in and discriminate between children 2-16 years of age with autism and ADHD. Our study demonstrated that 847 children with autism were easily…

  11. A study of selective spectrophotometric methods for simultaneous determination of Itopride hydrochloride and Rabeprazole sodium binary mixture: Resolving sever overlapping spectra

    NASA Astrophysics Data System (ADS)

    Mohamed, Heba M.

    2015-02-01

    Itopride hydrochloride (IT) and Rabeprazole sodium (RB) are co-formulated together for the treatment of gastro-esophageal reflux disease. Three simple, specific and accurate spectrophotometric methods were applied and validated for simultaneous determination of Itopride hydrochloride (IT) and Rabeprazole sodium (RB) namely; constant center (CC), ratio difference (RD) and mean centering of ratio spectra (MCR) spectrophotometric methods. Linear correlations were obtained in range of 10-110 μg/μL for Itopride hydrochloride and 4-44 μg/mL for Rabeprazole sodium. No preliminary separation steps were required prior the analysis of the two drugs using the proposed methods. Specificity was investigated by analyzing the synthetic mixtures containing the two cited drugs and their capsules dosage form. The obtained results were statistically compared with those obtained by the reported method, no significant difference was obtained with respect to accuracy and precision. The three methods were validated in accordance with ICH guidelines and can be used for quality control laboratories for IT and RB.

  12. Development and validation of different methods manipulating zero order and first order spectra for determination of the partially overlapped mixture benazepril and amlodipine: A comparative study.

    PubMed

    Hemdan, A

    2016-07-01

    Three simple, selective, and accurate spectrophotometric methods have been developed and then validated for the analysis of Benazepril (BENZ) and Amlodipine (AML) in bulk powder and pharmaceutical dosage form. The first method is the absorption factor (AF) for zero order and amplitude factor (P-F) for first order spectrum, where both BENZ and AML can be measured from their resolved zero order spectra at 238nm or from their first order spectra at 253nm. The second method is the constant multiplication coupled with constant subtraction (CM-CS) for zero order and successive derivative subtraction-constant multiplication (SDS-CM) for first order spectrum, where both BENZ and AML can be measured from their resolved zero order spectra at 240nm and 238nm, respectively, or from their first order spectra at 214nm and 253nm for Benazepril and Amlodipine respectively. The third method is the novel constant multiplication coupled with derivative zero crossing (CM-DZC) which is a stability indicating assay method for determination of Benazepril and Amlodipine in presence of the main degradation product of Benazepril which is Benazeprilate (BENZT). The three methods were validated as per the ICH guidelines and the standard curves were found to be linear in the range of 5-60μg/mL for Benazepril and 5-30 for Amlodipine, with well accepted mean correlation coefficient for each analyte. The intra-day and inter-day precision and accuracy results were well within the acceptable limits. PMID:27078209

  13. Development and validation of different methods manipulating zero order and first order spectra for determination of the partially overlapped mixture benazepril and amlodipine: A comparative study

    NASA Astrophysics Data System (ADS)

    Hemdan, A.

    2016-07-01

    Three simple, selective, and accurate spectrophotometric methods have been developed and then validated for the analysis of Benazepril (BENZ) and Amlodipine (AML) in bulk powder and pharmaceutical dosage form. The first method is the absorption factor (AF) for zero order and amplitude factor (P-F) for first order spectrum, where both BENZ and AML can be measured from their resolved zero order spectra at 238 nm or from their first order spectra at 253 nm. The second method is the constant multiplication coupled with constant subtraction (CM-CS) for zero order and successive derivative subtraction-constant multiplication (SDS-CM) for first order spectrum, where both BENZ and AML can be measured from their resolved zero order spectra at 240 nm and 238 nm, respectively, or from their first order spectra at 214 nm and 253 nm for Benazepril and Amlodipine respectively. The third method is the novel constant multiplication coupled with derivative zero crossing (CM-DZC) which is a stability indicating assay method for determination of Benazepril and Amlodipine in presence of the main degradation product of Benazepril which is Benazeprilate (BENZT). The three methods were validated as per the ICH guidelines and the standard curves were found to be linear in the range of 5-60 μg/mL for Benazepril and 5-30 for Amlodipine, with well accepted mean correlation coefficient for each analyte. The intra-day and inter-day precision and accuracy results were well within the acceptable limits.

  14. On Determining if Tree-based Networks Contain Fixed Trees.

    PubMed

    Anaya, Maria; Anipchenko-Ulaj, Olga; Ashfaq, Aisha; Chiu, Joyce; Kaiser, Mahedi; Ohsawa, Max Shoji; Owen, Megan; Pavlechko, Ella; St John, Katherine; Suleria, Shivam; Thompson, Keith; Yap, Corrine

    2016-05-01

    We address an open question of Francis and Steel about phylogenetic networks and trees. They give a polynomial time algorithm to decide if a phylogenetic network, N, is tree-based and pose the problem: given a fixed tree T and network N, is N based on T? We show that it is [Formula: see text]-hard to decide, by reduction from 3-Dimensional Matching (3DM) and further that the problem is fixed-parameter tractable. PMID:27125655

  15. Temporal niche overlap among insectivorous small mammals.

    PubMed

    Vieira, Emerson M; Paise, Gabriela

    2011-12-01

    Being active in the same environment at different times exposes animals to the effects of very different environmental factors, both biotic and abiotic. In the present study, we used live traps equipped with timing devices to evaluate the potential role of biotic factors (competition and food abundance) on overall overlap in the temporal niche axis of 4 insectivorous small mammals in high-elevation grassland fields ('campos de altitude') of southern Brazil. Based on resources availability (invertebrates), data on animal captures were pooled in 2 seasons: 'scarcity' (June 2001-September 2001) and 'abundance' (November 2001-May 2002) seasons. We tested for non-random structure in temporal niche overlap among the species in each season. These species were the rodents Oxymycterus nasutus (Waterhouse, 1837), Deltamys sp., Akodon azarae (Fischer, 1829), and the marsupial Monodelphis brevicaudis Olfers, 1818. The studied community was mainly diurnal with crepuscular peaks. Simulations using the Pianka index of niche overlap indicated that the empirical assemblage-wide overlap was not significantly different from randomly generated patterns in the abundance season but significantly greater than expected by chance alone in the scarcity season. All the species showed an increase in temporal niche breadth during the abundance season, which appears to be related to longer daylength and high nocturnal temperatures. Patterns on both temporal niche overlap and temporal niche breadth were the opposite to those that we were expecting in the case of diel activity patterns determined by competition for dietary resources. Therefore, we conclude that competition did not seem to be preponderant for determining patterns of temporal niche overlap by the studied community. PMID:22182329

  16. 77 FR 37730 - Culturally Significant Objects Imported for Exhibition Determinations: “Nomads and Networks: The...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-22

    ... and Culture of Kazakhstan'' SUMMARY: Notice is hereby given of the following determinations: Pursuant... Networks: The Ancient Art and Culture of Kazakhstan,'' imported from abroad for temporary exhibition...

  17. Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health

    PubMed Central

    Wei, Zhong; Yang, Tianjie; Friman, Ville-Petri; Xu, Yangchun; Shen, Qirong; Jousset, Alexandre

    2015-01-01

    Host-associated bacterial communities can function as an important line of defence against pathogens in animals and plants. Empirical evidence and theoretical predictions suggest that species-rich communities are more resistant to pathogen invasions. Yet, the underlying mechanisms are unclear. Here, we experimentally test how the underlying resource competition networks of resident bacterial communities affect invasion resistance to the plant pathogen Ralstonia solanacearum in microcosms and in tomato plant rhizosphere. We find that bipartite resource competition networks are better predictors of invasion resistance compared with resident community diversity. Specifically, communities with a combination of stabilizing configurations (low nestedness and high connectance), and a clear niche overlap with the pathogen, reduce pathogen invasion success, constrain pathogen growth within invaded communities and have lower levels of diseased plants in greenhouse experiments. Bacterial resource competition network characteristics can thus be important in explaining positive diversity–invasion resistance relationships in bacterial rhizosphere communities. PMID:26400552

  18. Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health.

    PubMed

    Wei, Zhong; Yang, Tianjie; Friman, Ville-Petri; Xu, Yangchun; Shen, Qirong; Jousset, Alexandre

    2015-01-01

    Host-associated bacterial communities can function as an important line of defence against pathogens in animals and plants. Empirical evidence and theoretical predictions suggest that species-rich communities are more resistant to pathogen invasions. Yet, the underlying mechanisms are unclear. Here, we experimentally test how the underlying resource competition networks of resident bacterial communities affect invasion resistance to the plant pathogen Ralstonia solanacearum in microcosms and in tomato plant rhizosphere. We find that bipartite resource competition networks are better predictors of invasion resistance compared with resident community diversity. Specifically, communities with a combination of stabilizing configurations (low nestedness and high connectance), and a clear niche overlap with the pathogen, reduce pathogen invasion success, constrain pathogen growth within invaded communities and have lower levels of diseased plants in greenhouse experiments. Bacterial resource competition network characteristics can thus be important in explaining positive diversity-invasion resistance relationships in bacterial rhizosphere communities. PMID:26400552

  19. Hub-Centered Gene Network Reconstruction Using Automatic Relevance Determination

    PubMed Central

    Böck, Matthias; Ogishima, Soichi; Tanaka, Hiroshi; Kramer, Stefan; Kaderali, Lars

    2012-01-01

    Network inference deals with the reconstruction of biological networks from experimental data. A variety of different reverse engineering techniques are available; they differ in the underlying assumptions and mathematical models used. One common problem for all approaches stems from the complexity of the task, due to the combinatorial explosion of different network topologies for increasing network size. To handle this problem, constraints are frequently used, for example on the node degree, number of edges, or constraints on regulation functions between network components. We propose to exploit topological considerations in the inference of gene regulatory networks. Such systems are often controlled by a small number of hub genes, while most other genes have only limited influence on the network's dynamic. We model gene regulation using a Bayesian network with discrete, Boolean nodes. A hierarchical prior is employed to identify hub genes. The first layer of the prior is used to regularize weights on edges emanating from one specific node. A second prior on hyperparameters controls the magnitude of the former regularization for different nodes. The net effect is that central nodes tend to form in reconstructed networks. Network reconstruction is then performed by maximization of or sampling from the posterior distribution. We evaluate our approach on simulated and real experimental data, indicating that we can reconstruct main regulatory interactions from the data. We furthermore compare our approach to other state-of-the art methods, showing superior performance in identifying hubs. Using a large publicly available dataset of over 800 cell cycle regulated genes, we are able to identify several main hub genes. Our method may thus provide a valuable tool to identify interesting candidate genes for further study. Furthermore, the approach presented may stimulate further developments in regularization methods for network reconstruction from data. PMID:22570688

  20. Automatic segmentation of overlapping and touching chromosomes

    NASA Astrophysics Data System (ADS)

    Yuan, Zhiqiang; Chen, Xiaohua; Zhang, Renli; Yu, Chang

    2001-09-01

    reaches to another boundary or tracing route. For overlapping chromosomes, the searching algorithm fails. We proposed a topology information based method for analyzing overlapping and touching chromosomes. Mihail Popescu adopts Cross Section Sequence Graph (CSSG) method for shape analyzing. Gady Agam proposed Discrete Curvature Function for splitting touching and overlapping chromosomes. But due to the non-rigid property of chromosomes, it is hard to determine the actual topology structure of chromosomes. In this paper we proposed a new method to produce topology information of chromosomes and had got good results in chromosome segmentation.

  1. 78 FR 1264 - CalAmp Wireless Networks Corporation, Waseca, MN; Notice of Negative Determination Regarding...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-08

    ... Employment and Training Administration CalAmp Wireless Networks Corporation, Waseca, MN; Notice of Negative... workers of the subject firm (TA-W-80,399A; CalAmp Wireless Networks Corporation, Waseca, Minnesota... Wireless Networks Corporation, Waseca, Minnesota to apply for TAA, the Department determines that...

  2. Cellular and network mechanisms of genetically-determined absence seizures.

    PubMed

    Pinault, Didier; O'Brien, Terence J

    2005-01-01

    The absence epilepsies are characterized by recurrent episodes of loss of consciousness associated with generalized spike-and-wave discharges, with an abrupt onset and offset, in the thalamocortical system. In the absence of detailed neurophysiological studies in humans, many of the concepts regarding the pathophysiological basis of absence seizures are based on studies in animal models. Each of these models has its particular strengths and limitations, and the validity of findings from these models for the human condition cannot be assumed. Consequently, studies in different models have produced some conflicting findings and conclusions. A long-standing concept, based primarily from studies in vivo in cats and in vitro brain slices, is that these paroxysmal electrical events develop suddenly from sleep-related spindle oscillations. More specifically, it is proposed that the initial mechanisms that underlie absence-related spike-and-wave discharges are located in the thalamus, involving especially the thalamic reticular nucleus. By contrast, more recent studies in well-established, genetic models of absence epilepsy in rats demonstrate that spike-and-wave discharges originate in a cortical focus and develop from a wake-related natural corticothalamic sensorimotor rhythm. In this review we integrate recent findings showing that, in both the thalamus and the neocortex, genetically-determined, absence-related spike-and-wave discharges are the manifestation of hypersynchronized, cellular, rhythmic excitations and inhibitions that result from a combination of complex, intrinsic, synaptic mechanisms. Arguments are put forward supporting the hypothesis that layer VI corticothalamic neurons act as 'drivers' in the generation of spike-and-wave discharges in the somatosensory thalamocortical system that result in corticothalamic resonances particularly initially involving the thalamic reticular nucleus. However an important unresolved question is: what are the cellular and

  3. EVOG: a database for evolutionary analysis of overlapping genes.

    PubMed

    Kim, Dae-Soo; Cho, Chi-Young; Huh, Jae-Won; Kim, Heui-Soo; Cho, Hwan-Gue

    2009-01-01

    Overlapping genes are defined as a pair of genes whose transcripts are overlapped. Recently, many cases of overlapped genes have been investigated in various eukaryotic organisms; however, their origin and transcriptional control mechanism has not yet been clearly determined. In this study, we implemented evolutionary visualizer for overlapping genes (EVOG), a Web-based DB with a novel visualization interface, to investigate the evolutionary relationship between overlapping genes. Using this technique, we collected and analyzed all overlapping genes in human, chimpanzee, orangutan, marmoset, rhesus, cow, dog, mouse, rat, chicken, Xenopus, zebrafish and Drosophila. This integrated database provides a manually curated database that displays the evolutionary features of overlapping genes. The EVOG DB components included a number of overlapping genes (10074 in human, 10,009 in chimpanzee, 67,039 in orangutan, 51,001 in marmoset, 219 in rhesus, 3627 in cow, 209 in dog, 10,700 in mouse, 7987 in rat, 1439 in chicken, 597 in Xenopus, 2457 in zebrafish and 4115 in Drosophila). The EVOG database is very effective and easy to use for the analysis of the evolutionary process of overlapping genes when comparing different species. Therefore, EVOG could potentially be used as the main tool to investigate the evolution of the human genome in relation to disease by comparing the expression profiles of overlapping genes. EVOG is available at http://neobio.cs.pusan.ac.kr/evog/. PMID:18986995

  4. Form and function in gene regulatory networks: the structure of network motifs determines fundamental properties of their dynamical state space

    PubMed Central

    Ahnert, S. E.; Fink, T. M. A.

    2016-01-01

    Network motifs have been studied extensively over the past decade, and certain motifs, such as the feed-forward loop, play an important role in regulatory networks. Recent studies have used Boolean network motifs to explore the link between form and function in gene regulatory networks and have found that the structure of a motif does not strongly determine its function, if this is defined in terms of the gene expression patterns the motif can produce. Here, we offer a different, higher-level definition of the ‘function’ of a motif, in terms of two fundamental properties of its dynamical state space as a Boolean network. One is the basin entropy, which is a complexity measure of the dynamics of Boolean networks. The other is the diversity of cyclic attractor lengths that a given motif can produce. Using these two measures, we examine all 104 topologically distinct three-node motifs and show that the structural properties of a motif, such as the presence of feedback loops and feed-forward loops, predict fundamental characteristics of its dynamical state space, which in turn determine aspects of its functional versatility. We also show that these higher-level properties have a direct bearing on real regulatory networks, as both basin entropy and cycle length diversity show a close correspondence with the prevalence, in neural and genetic regulatory networks, of the 13 connected motifs without self-interactions that have been studied extensively in the literature. PMID:27440255

  5. Optimal Space Station solar array gimbal angle determination via radial basis function neural networks

    NASA Technical Reports Server (NTRS)

    Clancy, Daniel J.; Oezguener, Uemit; Graham, Ronald E.

    1994-01-01

    The potential for excessive plume impingement loads on Space Station Freedom solar arrays, caused by jet firings from an approaching Space Shuttle, is addressed. An artificial neural network is designed to determine commanded solar array beta gimbal angle for minimum plume loads. The commanded angle would be determined dynamically. The network design proposed involves radial basis functions as activation functions. Design, development, and simulation of this network design are discussed.

  6. On the Neuberger overlap operator

    NASA Astrophysics Data System (ADS)

    Boriçi, Artan

    1999-04-01

    We compute Neuberger's overlap operator by the Lanczos algorithm applied to the Wilson-Dirac operator. Locality of the operator for quenched QCD data and its eigenvalue spectrum in an instanton background are studied.

  7. An Exposition of Fischer's Model of Overlapping Contracts.

    ERIC Educational Resources Information Center

    Fields, T. Windsor; Hart, William R.

    1992-01-01

    Suggests how the classic model of overlapping contracts can be incorporated into the contract wage model of aggregate supply. Illustrates dynamics of macroeconomic adjustment following a shock to aggregate demand. Concludes that overlapping contracts do not prolong the adjustment process; rather, the longest remaining contract determines the time…

  8. Attractive interactions among intermediate filaments determine network mechanics in vitro.

    PubMed

    Pawelzyk, Paul; Mücke, Norbert; Herrmann, Harald; Willenbacher, Norbert

    2014-01-01

    Mechanical and structural properties of K8/K18 and vimentin intermediate filament (IF) networks have been investigated using bulk mechanical rheometry and optical microrheology including diffusing wave spectroscopy and multiple particle tracking. A high elastic modulus G0 at low protein concentration c, a weak concentration dependency of G0 (G0 ∼ c(0.5 ± 0.1)) and pronounced strain stiffening are found for these systems even without external crossbridgers. Strong attractive interactions among filaments are required to maintain these characteristic mechanical features, which have also been reported for various other IF networks. Filament assembly, the persistence length of the filaments and the network mesh size remain essentially unaffected when a nonionic surfactant is added, but strain stiffening is completely suppressed, G0 drops by orders of magnitude and exhibits a scaling G0 ∼ c(1.9 ± 0.2) in agreement with microrheological measurements and as expected for entangled networks of semi-flexible polymers. Tailless K8Δ/K18ΔT and various other tailless filament networks do not exhibit strain stiffening, but still show high G0 values. Therefore, two binding sites are proposed to exist in IF networks. A weaker one mediated by hydrophobic amino acid clusters in the central rod prevents stretched filaments between adjacent cross-links from thermal equilibration and thus provides the high G0 values. Another strong one facilitating strain stiffening is located in the tail domain with its high fraction of hydrophobic amino acid sequences. Strain stiffening is less pronounced for vimentin than for K8/K18 due to electrostatic repulsion forces partly compensating the strong attraction at filament contact points. PMID:24690778

  9. Determining a bisection bandwidth for a multi-node data communications network

    DOEpatents

    Faraj, Ahmad A.

    2010-01-26

    Methods, systems, and products are disclosed for determining a bisection bandwidth for a multi-node data communications network that include: partitioning nodes in the network into a first sub-network and a second sub-network in dependence upon a topology of the network; sending, by each node in the first sub-network to a destination node in the second sub-network, a first message having a predetermined message size; receiving, by each node in the first sub-network from a source node in the second sub-network, a second message; measuring, by each node in the first sub-network, the elapsed communications time between the sending of the first message and the receiving of the second message; selecting the longest elapsed communications time; and calculating the bisection bandwidth for the network in dependence upon the number of the nodes in the first sub-network, the predetermined message size of the first test message, and the longest elapsed communications time.

  10. Security management based on trust determination in cognitive radio networks

    NASA Astrophysics Data System (ADS)

    Li, Jianwu; Feng, Zebing; Wei, Zhiqing; Feng, Zhiyong; Zhang, Ping

    2014-12-01

    Security has played a major role in cognitive radio networks. Numerous researches have mainly focused on attacking detection based on source localization and detection probability. However, few of them took the penalty of attackers into consideration and neglected how to implement effective punitive measures against attackers. To address this issue, this article proposes a novel penalty mechanism based on cognitive trust value. The main feature of this mechanism has been realized by six functions: authentication, interactive, configuration, trust value collection, storage and update, and punishment. Data fusion center (FC) and cluster heads (CHs) have been put forward as a hierarchical architecture to manage trust value of cognitive users. Misbehaving users would be punished by FC by declining their trust value; thus, guaranteeing network security via distinguishing attack users is of great necessity. Simulation results verify the rationality and effectiveness of our proposed mechanism.

  11. Determination of a Limited Scope Network's Lightning Detection Efficiency

    NASA Technical Reports Server (NTRS)

    Rompala, John T.; Blakeslee, R.

    2008-01-01

    This paper outlines a modeling technique to map lightning detection efficiency variations over a region surveyed by a sparse array of ground based detectors. A reliable flash peak current distribution (PCD) for the region serves as the technique's base. This distribution is recast as an event probability distribution function. The technique then uses the PCD together with information regarding: site signal detection thresholds, type of solution algorithm used, and range attenuation; to formulate the probability that a flash at a specified location will yield a solution. Applying this technique to the full region produces detection efficiency contour maps specific to the parameters employed. These contours facilitate a comparative analysis of each parameter's effect on the network's detection efficiency. In an alternate application, this modeling technique gives an estimate of the number, strength, and distribution of events going undetected. This approach leads to a variety of event density contour maps. This application is also illustrated. The technique's base PCD can be empirical or analytical. A process for formulating an empirical PCD specific to the region and network being studied is presented. A new method for producing an analytical representation of the empirical PCD is also introduced.

  12. Hybrid algorithm for NARX network parameters' determination using differential evolution and genetic algorithm

    NASA Astrophysics Data System (ADS)

    Salami, M. J. E.; Tijani, I. B.; Abdullateef, A. I.; Aibinu, M. A.

    2013-12-01

    A hybrid optimization algorithm using Differential Evolution (DE) and Genetic Algorithm (GA) is proposed in this study to address the problem of network parameters determination associated with the Nonlinear Autoregressive with eXogenous inputs Network (NARX-network). The proposed algorithm involves a two level optimization scheme to search for both optimal network architecture and weights. The DE at the upper level is formulated as combinatorial optimization to search for the network architecture while the associated network weights that minimize the prediction error is provided by the GA at the lower level. The performance of the algorithm is evaluated on identification of a laboratory rotary motion system. The system identification results show the effectiveness of the proposed algorithm for nonparametric model development.

  13. Method and apparatus for determining and utilizing a time-expanded decision network

    NASA Technical Reports Server (NTRS)

    Silver, Matthew (Inventor); de Weck, Olivier (Inventor)

    2012-01-01

    A method, apparatus and computer program for determining and utilizing a time-expanded decision network is presented. A set of potential system configurations is defined. Next, switching costs are quantified to create a "static network" that captures the difficulty of switching among these configurations. A time-expanded decision network is provided by expanding the static network in time, including chance and decision nodes. Minimum cost paths through the network are evaluated under plausible operating scenarios. The set of initial design configurations are iteratively modified to exploit high-leverage switches and the process is repeated to convergence. Time-expanded decision networks are applicable, but not limited to, the design of systems, products, services and contracts.

  14. Magnesium degradation as determined by artificial neural networks.

    PubMed

    Willumeit, Regine; Feyerabend, Frank; Huber, Norbert

    2013-11-01

    Magnesium degradation under physiological conditions is a highly complex process in which temperature, the use of cell culture growth medium and the presence of CO2, O2 and proteins can influence the corrosion rate and the composition of the resulting corrosion layer. Due to the complexity of this process it is almost impossible to predict the parameters that are most important and whether some parameters have a synergistic effect on the corrosion rate. Artificial neural networks are a mathematical tool that can be used to approximate and analyse non-linear problems with multiple inputs. In this work we present the first analysis of corrosion data obtained using this method, which reveals that CO2 and the composition of the buffer system play a crucial role in the corrosion of magnesium, whereas O2, proteins and temperature play a less prominent role. PMID:23470548

  15. Spatial reasoning to determine stream network from LANDSAT imagery

    NASA Technical Reports Server (NTRS)

    Haralick, R. M.; Wang, S.; Elliott, D. B.

    1983-01-01

    In LANDSAT imagery, spectral and spatial information can be used to detect the drainage network as well as the relative elevation model in mountainous terrain. To do this, mixed information of material reflectance in the original LANDSAT imagery must be separated. From the material reflectance information, big visible rivers can be detected. From the topographic modulation information, ridges and valleys can be detected and assigned relative elevations. A complete elevation model can be generated by interpolating values for nonridge and non-valley pixels. The small streams not detectable from material reflectance information can be located in the valleys with flow direction known from the elevation model. Finally, the flow directions of big visible rivers can be inferred by solving a consistent labeling problem based on a set of spatial reasoning constraints.

  16. Measurement network design including traveltime determinations to minimize model prediction uncertainty

    NASA Astrophysics Data System (ADS)

    Janssen, Gijs M. C. M.; Valstar, Johan R.; van der Zee, Sjoerd E. A. T. M.

    2008-02-01

    Traveltime determinations have found increasing application in the characterization of groundwater systems. No algorithms are available, however, to optimally design sampling strategies including this information type. We propose a first-order methodology to include groundwater age or tracer arrival time determinations in measurement network design and apply the methodology in an illustrative example in which the network design is directed at contaminant breakthrough uncertainty minimization. We calculate linearized covariances between potential measurements and the goal variables of which we want to reduce the uncertainty: the groundwater age at the control plane and the breakthrough locations of the contaminant. We assume the traveltime to be lognormally distributed and therefore logtransform the age determinations in compliance with the adopted Bayesian framework. Accordingly, we derive expressions for the linearized covariances between the transformed age determinations and the parameters and states. In our synthetic numerical example, the derived expressions are shown to provide good first-order predictions of the variance of the natural logarithm of groundwater age if the variance of the natural logarithm of the conductivity is less than 3.0. The calculated covariances can be used to predict the posterior breakthrough variance belonging to a candidate network before samples are taken. A Genetic Algorithm is used to efficiently search, among all candidate networks, for a near-optimal one. We show that, in our numerical example, an age estimation network outperforms (in terms of breakthrough uncertainty reduction) equally sized head measurement networks and conductivity measurement networks even if the age estimations are highly uncertain.

  17. Fuzzy overlapping community detection based on local random walk and multidimensional scaling

    NASA Astrophysics Data System (ADS)

    Wang, Wenjun; Liu, Dong; Liu, Xiao; Pan, Lin

    2013-12-01

    A fuzzy overlapping community is an important kind of overlapping community in which each node belongs to each community to different extents. It exists in many real networks but how to identify a fuzzy overlapping community is still a challenging task. In this work, the concept of local random walk and a new distance metric are introduced. Based on the new distance measurement, the dissimilarity index between each node of a network is calculated firstly. Then in order to keep the original node distance as much as possible, the network structure is mapped into low-dimensional space by the multidimensional scaling (MDS). Finally, the fuzzy c-means clustering is employed to find fuzzy communities in a network. The experimental results show that the proposed algorithm is effective and efficient to identify the fuzzy overlapping communities in both artificial networks and real-world networks.

  18. Overlap distributions for quantum quenches in the anisotropic Heisenberg chain

    NASA Astrophysics Data System (ADS)

    Mazza, Paolo P.; Stéphan, Jean-Marie; Canovi, Elena; Alba, Vincenzo; Brockmann, Michael; Haque, Masudul

    2016-01-01

    The dynamics after a quantum quench is determined by the weights of the initial state in the eigenspectrum of the final Hamiltonian, i.e. by the distribution of overlaps in the energy spectrum. We present an analysis of such overlap distributions for quenches of the anisotropy parameter in the one-dimensional anisotropic spin-1/2 Heisenberg model (XXZ chain). We provide an overview of the form of the overlap distribution for quenches from various initial anisotropies to various final ones, using numerical exact diagonalization. We show that if the system is prepared in the antiferromagnetic Néel state (infinite anisotropy) and released into a non-interacting setup (zero anisotropy, XX point) only a small fraction of the final eigenstates gives contributions to the post-quench dynamics, and that these eigenstates have identical overlap magnitudes. We derive expressions for the overlaps, and present the selection rules that determine the final eigenstates having nonzero overlap. We use these results to derive concise expressions for time-dependent quantities (Loschmidt echo, longitudinal and transverse correlators) after the quench. We use perturbative analyses to understand the overlap distribution for quenches from infinite to small nonzero anisotropies, and for quenches from large to zero anisotropy.

  19. distal antenna and distal antenna-related function in the retinal determination network during eye development in Drosophila

    PubMed Central

    Curtiss, Jennifer; Burnett, Micheal; Mlodzik, Marek

    2007-01-01

    Drosophila eye specification occurs through the activity of the retinal determination (RD) network, which includes the Eyeless (Ey), Eyes absent (Eya), Sine oculis (So) and Dachshund (Dac) transcription factors. Based on their abilities to transform antennal precursors towards an eye fate, the distal antenna (dan) and distal antenna-related (danr) genes encode two new RD factors. Dan and Danr are probable transcription factors localized in nuclei of eye precursors and differentiating eye tissue. Loss-of-function single and double dan/danr mutants have small, rough eyes, indicating a requirement for wild-type eye development. In addition, dan and danr participate in the transcriptional hierarchy that controls expression of RD genes, and Dan and Danr interact physically and genetically with Ey and Dac. Eye specification culminates in differentiation of ommatidia through the activities of the proneural gene atonal (ato) in the founding R8 photoreceptor and Egfr signaling in additional photoreceptors. Danr expression overlaps with Ato during R8 specification, and Dan and Danr regulate Ato expression and are required for normal R8 induction and differentiation. These data demonstrate a role for Dan and Danr in eye development and provide a link between eye specification and differentiation. PMID:17493605

  20. A dynamic and intricate regulatory network determines Pseudomonas aeruginosa virulence

    PubMed Central

    Balasubramanian, Deepak; Schneper, Lisa; Kumari, Hansi; Mathee, Kalai

    2013-01-01

    Pseudomonas aeruginosa is a metabolically versatile bacterium that is found in a wide range of biotic and abiotic habitats. It is a major human opportunistic pathogen causing numerous acute and chronic infections. The critical traits contributing to the pathogenic potential of P. aeruginosa are the production of a myriad of virulence factors, formation of biofilms and antibiotic resistance. Expression of these traits is under stringent regulation, and it responds to largely unidentified environmental signals. This review is focused on providing a global picture of virulence gene regulation in P. aeruginosa. In addition to key regulatory pathways that control the transition from acute to chronic infection phenotypes, some regulators have been identified that modulate multiple virulence mechanisms. Despite of a propensity for chaotic behaviour, no chaotic motifs were readily observed in the P. aeruginosa virulence regulatory network. Having a ‘birds-eye’ view of the regulatory cascades provides the forum opportunities to pose questions, formulate hypotheses and evaluate theories in elucidating P. aeruginosa pathogenesis. Understanding the mechanisms involved in making P. aeruginosa a successful pathogen is essential in helping devise control strategies. PMID:23143271

  1. A simple neural network model for the determination of aquifer parameters

    NASA Astrophysics Data System (ADS)

    Samani, N.; Gohari-Moghadam, M.; Safavi, A. A.

    2007-06-01

    SummaryA simple artificial neural network (ANN) model is developed for the determination of non-leaky confined aquifer parameters by normalizing and applying the principal component analysis (PCA) on adopted training data pattern from Lin and Chen [Lin, G.F., Chen, G.R., 2006. An improved neural network approach to the determination of aquifer parameters. Journal of Hydrology 316 (1-4), 281-289]. The proposed network uses faster Levenberg-Marquardt training algorithm instead of gradient descent. The application of PCA highly reduced the network topology so that it has only one neuron in the input layer and eight neurons in the hidden layer regardless of the number of drawdown records in the pumping test data. The network trained with 10,205 training sets and tested with 2000 sets of synthetic data. The network generates the coordinates of the match point for any individual pumping test case study and then the aquifer parameters are calculated using Theis' equation. The simple ANN trains faster and determines the coordinate of the match point more accurately because of the simplified topology and LM training algorithm. The accuracy, generalization ability and reliability of the proposed network is verified by two sets of real-time field data and the results are compared with that of Lin and Chen as well as graphical methods of aquifer parameters estimation. The proposed ANN appears to be a simpler and more accurate alternative to the type curve-matching techniques and previous ANN methods.

  2. A Novel Clustering Algorithm for Mobile Ad Hoc Networks Based on Determination of Virtual Links' Weight to Increase Network Stability

    PubMed Central

    Karimi, Abbas; Afsharfarnia, Abbas; Zarafshan, Faraneh; Al-Haddad, S. A. R.

    2014-01-01

    The stability of clusters is a serious issue in mobile ad hoc networks. Low stability of clusters may lead to rapid failure of clusters, high energy consumption for reclustering, and decrease in the overall network stability in mobile ad hoc network. In order to improve the stability of clusters, weight-based clustering algorithms are utilized. However, these algorithms only use limited features of the nodes. Thus, they decrease the weight accuracy in determining node's competency and lead to incorrect selection of cluster heads. A new weight-based algorithm presented in this paper not only determines node's weight using its own features, but also considers the direct effect of feature of adjacent nodes. It determines the weight of virtual links between nodes and the effect of the weights on determining node's final weight. By using this strategy, the highest weight is assigned to the best choices for being the cluster heads and the accuracy of nodes selection increases. The performance of new algorithm is analyzed by using computer simulation. The results show that produced clusters have longer lifetime and higher stability. Mathematical simulation shows that this algorithm has high availability in case of failure. PMID:25114965

  3. A Fast Overlapping Community Detection Algorithm with Self-Correcting Ability

    PubMed Central

    Lu, Nan

    2014-01-01

    Due to the defects of all kinds of modularity, this paper defines a weighted modularity based on the density and cohesion as the new evaluation measurement. Since the proportion of the overlapping nodes in network is very low, the number of the nodes' repeat visits can be reduced by signing the vertices with the overlapping attributes. In this paper, we propose three test conditions for overlapping nodes and present a fast overlapping community detection algorithm with self-correcting ability, which is decomposed into two processes. Under the control of overlapping properties, the complexity of the algorithm tends to be approximate linear. And we also give a new understanding on membership vector. Moreover, we improve the bridgeness function which evaluates the extent of overlapping nodes. Finally, we conduct the experiments on three networks with well known community structures and the results verify the feasibility and effectiveness of our algorithm. PMID:24757434

  4. Laser ranging network performance and routine orbit determination at D-PAF

    NASA Technical Reports Server (NTRS)

    Massmann, Franz-Heinrich; Reigber, C.; Li, H.; Koenig, Rolf; Raimondo, J. C.; Rajasenan, C.; Vei, M.

    1993-01-01

    ERS-1 is now about 8 months in orbit and has been tracked by the global laser network from the very beginning of the mission. The German processing and archiving facility for ERS-1 (D-PAF) is coordinating and supporting the network and performing the different routine orbit determination tasks. This paper presents details about the global network status, the communication to D-PAF and the tracking data and orbit processing system at D-PAF. The quality of the preliminary and precise orbits are shown and some problem areas are identified.

  5. A neural network approach to fault detection in spacecraft attitude determination and control systems

    NASA Astrophysics Data System (ADS)

    Schreiner, John N.

    This thesis proposes a method of performing fault detection and isolation in spacecraft attitude determination and control systems. The proposed method works by deploying a trained neural network to analyze a set of residuals that are defined such that they encompass the attitude control, guidance, and attitude determination subsystems. Eight neural networks were trained using either the resilient backpropagation, Levenberg-Marquardt, or Levenberg-Marquardt with Bayesian regularization training algorithms. The results of each of the neural networks were analyzed to determine the accuracy of the networks with respect to isolating the faulty component or faulty subsystem within the ADCS. The performance of the proposed neural network-based fault detection and isolation method was compared and contrasted with other ADCS FDI methods. The results obtained via simulation showed that the best neural networks employing this method successfully detected the presence of a fault 79% of the time. The faulty subsystem was successfully isolated 75% of the time and the faulty components within the faulty subsystem were isolated 37% of the time.

  6. Differential Selection within the Drosophila Retinal Determination Network and Evidence for Functional Divergence between Paralog Pairs

    PubMed Central

    Datta, Rhea R.; Cruickshank, Tami; Kumar, Justin P.

    2011-01-01

    The retinal determination (RD) network in Drosophila comprises fourteen known nuclear proteins that include DNA binding proteins, transcriptional co-activators, kinases and phosphatases. The composition of the network varies considerably throughout the animal kingdom, with the network in several basal insects having fewer members and with vertebrates having potentially significantly higher numbers of retinal determination genes. One important contributing factor for the variation in gene number within the network is gene duplication. For example, ten members of the RD network in Drosophila are derived from duplication events. Here we present an analysis of the coding regions of the five pairs of duplicate genes from within the retinal determination network of several different Drosophila species. We demonstrate that there is differential selection across the coding regions of all RD genes. Additionally, some of the most significant differences in ratios of non-silent to silent site substitutions (dN/dS) between paralog pairs are found within regions that have no ascribed function. Previous structure/function analyses of several duplicate genes have identified areas within one gene that contain novel activities when compared to its paralog. The evolutionary analysis presented here identifies these same areas in the paralogs as being under high levels of relaxed selection. We suggest that sequence divergence between paralogs and selection signatures can be used as a reasonable predictor of functional changes in rapidly evolving motifs. PMID:21210943

  7. Hospital mergers and market overlap.

    PubMed Central

    Brooks, G R; Jones, V G

    1997-01-01

    OBJECTIVE: To address two questions: What are the characteristics of hospitals that affect the likelihood of their being involved in a merger? What characteristics of particular pairs of hospitals affect the likelihood of the pair engaging in a merger? DATA SOURCES/STUDY SETTING: Hospitals in the 12 county region surrounding the San Francisco Bay during the period 1983 to 1992 were the focus of the study. Data were drawn from secondary sources, including the Lexis/Nexis database, the American Hospital Association, and the Office of Statewide Health Planning and Development of the State of California. STUDY DESIGN: Seventeen hospital mergers during the study period were identified. A random sample of pairs of hospitals that did not merge was drawn to establish a statistically efficient control set. Models constructed from hypotheses regarding hospital and market characteristics believed to be related to merger likelihood were tested using logistic regression analysis. DATA COLLECTION: See Data Sources/Study Setting. PRINCIPAL FINDINGS: The analysis shows that the likelihood of a merger between a particular pair of hospitals is positively related to the degree of market overlap that exists between them. Furthermore, market overlap and performance difference interact in their effect on merger likelihood. In an analysis of individual hospitals, conditions of rivalry, hospital market share, and hospital size were not found to influence the likelihood that a hospital will engage in a merger. CONCLUSIONS: Mergers between hospitals are not driven directly by considerations of market power or efficiency as much as by the existence of specific merger opportunities in the hospitals' local markets. Market overlap is a condition that enables a merger to occur, but other factors, such as the relative performance levels of the hospitals in question and their ownership and teaching status, also play a role in influencing the likelihood that a merger will in fact take place. PMID

  8. [Asthma-COPD overlap syndrome].

    PubMed

    Odler, Balázs; Müller, Veronika

    2016-08-01

    Obstructive lung diseases represent a major health problem worldwide due to their high prevalence associated with elevated socioeconomic costs. Bronchial asthma and chronic obstructive pulmonary disease are chronic obstructive ventilatory disorders with airway inflammation, however they are separate nosological entities based on thedifferent development, diagnostic and therapeutic approaches, and prognostic features. However, these diseases may coexist and can be defined as the coexistence of increased variability of airflow in a patient with incompletely reversible airway obstruction. This phenotype is called asthma - chronic obstructive pulmonary disease overlap syndrome. The syndrome is a clinical and scientific challenge as the majority of these patients have been excluded from the clinical and pharmacological trials, thus well-defined clinical characteristics and therapeutic approaches are lacking. The aim of this review is to summarize the currently available literature focusing on pathophysiological and clinical features, and discuss possible therapeutic approaches of patients with asthma - chronic obstructive pulmonary disease overlap syndrome. Orv. Hetil., 2016, 157(33), 1304-1313. PMID:27523313

  9. Item Overlap Correlations: Definitions, Interpretations, and Implications.

    ERIC Educational Resources Information Center

    Hsu, Louis M.

    1994-01-01

    Item overlap coefficient (IOC) formulas are discussed, providing six warnings about their calculation and interpretation and some explanations of why item overlap influences the Minnesota Multiphasic Personality Inventory and the Millon Clinical Multiaxial Inventory factor structures. (SLD)

  10. Topological Small-World Organization of the Fibroblastic Reticular Cell Network Determines Lymph Node Functionality

    PubMed Central

    Abe, Jun; Bomze, David; Cremasco, Viviana; Scandella, Elke; Stein, Jens V.; Turley, Shannon J.; Ludewig, Burkhard

    2016-01-01

    Fibroblastic reticular cells (FRCs) form the cellular scaffold of lymph nodes (LNs) and establish distinct microenvironmental niches to provide key molecules that drive innate and adaptive immune responses and control immune regulatory processes. Here, we have used a graph theory-based systems biology approach to determine topological properties and robustness of the LN FRC network in mice. We found that the FRC network exhibits an imprinted small-world topology that is fully regenerated within 4 wk after complete FRC ablation. Moreover, in silico perturbation analysis and in vivo validation revealed that LNs can tolerate a loss of approximately 50% of their FRCs without substantial impairment of immune cell recruitment, intranodal T cell migration, and dendritic cell-mediated activation of antiviral CD8+ T cells. Overall, our study reveals the high topological robustness of the FRC network and the critical role of the network integrity for the activation of adaptive immune responses. PMID:27415420

  11. Topological Small-World Organization of the Fibroblastic Reticular Cell Network Determines Lymph Node Functionality.

    PubMed

    Novkovic, Mario; Onder, Lucas; Cupovic, Jovana; Abe, Jun; Bomze, David; Cremasco, Viviana; Scandella, Elke; Stein, Jens V; Bocharov, Gennady; Turley, Shannon J; Ludewig, Burkhard

    2016-07-01

    Fibroblastic reticular cells (FRCs) form the cellular scaffold of lymph nodes (LNs) and establish distinct microenvironmental niches to provide key molecules that drive innate and adaptive immune responses and control immune regulatory processes. Here, we have used a graph theory-based systems biology approach to determine topological properties and robustness of the LN FRC network in mice. We found that the FRC network exhibits an imprinted small-world topology that is fully regenerated within 4 wk after complete FRC ablation. Moreover, in silico perturbation analysis and in vivo validation revealed that LNs can tolerate a loss of approximately 50% of their FRCs without substantial impairment of immune cell recruitment, intranodal T cell migration, and dendritic cell-mediated activation of antiviral CD8+ T cells. Overall, our study reveals the high topological robustness of the FRC network and the critical role of the network integrity for the activation of adaptive immune responses. PMID:27415420

  12. 47 CFR 73.509 - Prohibited overlap.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... overlap does not already exists, if: (1) The total area of overlap with that station would not be... modified NCE-FM station other than a Class D (secondary) station will not be accepted if the proposed operation would involve overlap of signal strength contours with any other station licensed by...

  13. 47 CFR 73.509 - Prohibited overlap.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... overlap does not already exists, if: (1) The total area of overlap with that station would not be... modified NCE-FM station other than a Class D (secondary) station will not be accepted if the proposed operation would involve overlap of signal strength contours with any other station licensed by...

  14. 47 CFR 73.509 - Prohibited overlap.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... overlap does not already exists, if: (1) The total area of overlap with that station would not be... modified NCE-FM station other than a Class D (secondary) station will not be accepted if the proposed operation would involve overlap of signal strength contours with any other station licensed by...

  15. 47 CFR 73.509 - Prohibited overlap.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... overlap does not already exists, if: (1) The total area of overlap with that station would not be... modified NCE-FM station other than a Class D (secondary) station will not be accepted if the proposed operation would involve overlap of signal strength contours with any other station licensed by...

  16. Network and atomistic simulations unveil the structural determinants of mutations linked to retinal diseases.

    PubMed

    Mariani, Simona; Dell'Orco, Daniele; Felline, Angelo; Raimondi, Francesco; Fanelli, Francesca

    2013-01-01

    A number of incurable retinal diseases causing vision impairments derive from alterations in visual phototransduction. Unraveling the structural determinants of even monogenic retinal diseases would require network-centered approaches combined with atomistic simulations. The transducin G38D mutant associated with the Nougaret Congenital Night Blindness (NCNB) was thoroughly investigated by both mathematical modeling of visual phototransduction and atomistic simulations on the major targets of the mutational effect. Mathematical modeling, in line with electrophysiological recordings, indicates reduction of phosphodiesterase 6 (PDE) recognition and activation as the main determinants of the pathological phenotype. Sub-microsecond molecular dynamics (MD) simulations coupled with Functional Mode Analysis improve the resolution of information, showing that such impairment is likely due to disruption of the PDEγ binding cavity in transducin. Protein Structure Network analyses additionally suggest that the observed slight reduction of theRGS9-catalyzed GTPase activity of transducin depends on perturbed communication between RGS9 and GTP binding site. These findings provide insights into the structural fundamentals of abnormal functioning of visual phototransduction caused by a missense mutation in one component of the signaling network. This combination of network-centered modeling with atomistic simulations represents a paradigm for future studies aimed at thoroughly deciphering the structural determinants of genetic retinal diseases. Analogous approaches are suitable to unveil the mechanism of information transfer in any signaling network either in physiological or pathological conditions. PMID:24009494

  17. Determination Method for Optimal Installation of Active Filters in Distribution Network with Distributed Generation

    NASA Astrophysics Data System (ADS)

    Kawasaki, Shoji; Hayashi, Yasuhiro; Matsuki, Junya; Kikuya, Hirotaka; Hojo, Masahide

    Recently, the harmonic troubles in a distribution network are worried in the background of the increase of the connection of distributed generation (DG) and the spread of the power electronics equipments. As one of the strategies, control the harmonic voltage by installing an active filter (AF) has been researched. In this paper, the authors propose a computation method to determine the optimal allocations, gains and installation number of AFs so as to minimize the maximum value of voltage total harmonic distortion (THD) for a distribution network with DGs. The developed method is based on particle swarm optimization (PSO) which is one of the nonlinear optimization methods. Especially, in this paper, the case where the harmonic voltage or the harmonic current in a distribution network is assumed by connecting many DGs through the inverters, and the authors propose a determination method of the optimal allocation and gain of AF that has the harmonic restrictive effect in the whole distribution network. Moreover, the authors propose also about a determination method of the necessary minimum installation number of AFs, by taking into consideration also about the case where the target value of harmonic suppression cannot be reached, by one set only of AF. In order to verify the validity and effectiveness of the proposed method, the numerical simulations are carried out by using an analytical model of distribution network with DGs.

  18. Simultaneous determination of aniline and cyclohexylamine by principal component artificial neural networks.

    PubMed

    Absalan, Ghodratollah; Soleimani, Mohammad

    2004-05-01

    A specterophotometric method for simultaneous determination of aniline and cyclohexylamine using principal component artificial neural networks is proposed. This method is based on the reactions involving aniline and/or cyclohexylamine, with bis(acetylacetoneethylendiamine)tributylphosphine cobalt(III) perchlorate as a complexing reagent. A nonionic surfactant, Triton X-100, was used for dissolving the complexes and intensifying the signals. The absorption data were based on the spectra registered in the range of 350 - 550 nm. An artificial neural network consisting of three layers of nodes was trained by applying a back-propagation learning rule. Sigmoid transfer functions were used in the hidden and output layers to facilitate nonlinear calibration. The predictive ability of artificial neural networks was examined for the determination of aniline and cyclohexylamine in synthetic mixtures. PMID:15171298

  19. Combining core drop policy and edge determinant threshold in TCP over OBS networks with retransmission

    NASA Astrophysics Data System (ADS)

    Peng, Shuping; Li, Zhengbin; He, Yongqi; Xu, Anshi

    2007-11-01

    We proposed a novel drop policy in the core nodes which is combined with the determinant strategy in the ingress edge nodes. The proposed drop policy is based on the field of Hop Number (HN) taken by the burst control packets, which is introduced to determine which burst should be dropped when the contention happened in the core nodes. In the drop policy, the long-hop traffic is given the high priority, and most of the retransmitted traffic is left to be short-hop traffic. Therefore, there is a trade-off between the short-hop traffic and the long-hop traffic. The determinant strategy in the edge nodes is an initialized threshold, Retransmission Number Threshold (RNT), which is introduced to determine whether to start a retransmission operation when NAK is received. The unnecessary retransmissions in the network are limited, and the burst loss rate is reduced. The mechanism also takes the upper layer, TCP layer, into account. When the network has already been in the state of real congestion, the retransmission will only deteriorate the network performance. In the case, the combined mechanism leaves the retransmission process to the TCP layer. It can improve the network performance cost-effectively.

  20. Orbit determination and analysis of meteors recently observed by Finnish Fireball Network

    NASA Astrophysics Data System (ADS)

    Dmitriev, V.; Lupovla, V.; Gritsevich, M.; Lyytinen, E.; Mineeva, S.

    2015-10-01

    We perform orbit determination and analysis of three fireballs recently observed by Finnish Fireball Network (FFN). Precise orbit determination was performed by using integration of differential equations of motion. This technique was implemented into free distributable software "Meteor Toolkit". Accounting of several perturbing forces are discussed. Also estimation of accuracy of orbital elements was obtained by propagation of observational error with using covariance transformation. Long-term backward integration was provided as well.

  1. Social externalities, overlap and the poverty trap

    PubMed Central

    Kim, Young-Chul; Loury, Glenn C.

    2014-01-01

    Previous studies find that some social groups are stuck in poverty traps because of network effects. However, these studies do not carefully analyze how these groups overcome low human capital investment activities. Unlike previous studies, the model in this paper includes network externalities in both the human capital investment stage and the subsequent career stages. This implies that not only the current network quality, but also the expectations about future network quality affect the current investment decision. Consequently, the coordinated expectation among the group members can play a crucial role in the determination of the final state. We define “overlap” for some initial skill ranges, whereby the economic performance of a group can be improved simply by increasing expectations of a brighter future. We also define “poverty trap” for some ranges, wherein a disadvantaged group is constrained by its history, and we explore the egalitarian policies to mobilize the group out of the trap. PMID:25484637

  2. Hemodynamics in coronary arteries with overlapping stents.

    PubMed

    Rikhtegar, Farhad; Wyss, Christophe; Stok, Kathryn S; Poulikakos, Dimos; Müller, Ralph; Kurtcuoglu, Vartan

    2014-01-22

    Coronary artery stenosis is commonly treated by stent placement via percutaneous intervention, at times requiring multiple stents that may overlap. Stent overlap is associated with increased risk of adverse clinical outcome. While changes in local blood flow are suspected to play a role therein, hemodynamics in arteries with overlapping stents remain poorly understood. In this study we analyzed six cases of partially overlapping stents, placed ex vivo in porcine left coronary arteries and compared them to five cases with two non-overlapping stents. The stented vessel geometries were obtained by micro-computed tomography of corrosion casts. Flow and shear stress distribution were calculated using computational fluid dynamics. We observed a significant increase in the relative area exposed to low wall shear stress (WSS<0.5 Pa) in the overlapping stent segments compared both to areas without overlap in the same samples, as well as to non-overlapping stents. We further observed that the configuration of the overlapping stent struts relative to each other influenced the size of the low WSS area: positioning of the struts in the same axial location led to larger areas of low WSS compared to alternating struts. Our results indicate that the overlap geometry is by itself sufficient to cause unfavorable flow conditions that may worsen clinical outcome. While stent overlap cannot always be avoided, improved deployment strategies or stent designs could reduce the low WSS burden. PMID:24275438

  3. Comparison of methods to determine point-to-point resistance in nearly rectangular networks with application to a ‘hammock’ network

    PubMed Central

    Essam, John W.; Izmailyan, Nikolay Sh.; Kenna, Ralph; Tan, Zhi-Zhong

    2015-01-01

    Considerable progress has recently been made in the development of techniques to exactly determine two-point resistances in networks of various topologies. In particular, two types of method have emerged. One is based on potentials and the evaluation of eigenvalues and eigenvectors of the Laplacian matrix associated with the network or its minors. The second method is based on a recurrence relation associated with the distribution of currents in the network. Here, these methods are compared and used to determine the resistance distances between any two nodes of a network with topology of a hammock. PMID:26064635

  4. Errors in paleomagnetism: Structural control on overlapped vectors - mathematical models

    NASA Astrophysics Data System (ADS)

    Rodríguez-Pintó, A.; Ramón, M. J.; Oliva-Urcia, B.; Pueyo, E. L.; Pocoví, A.

    2011-05-01

    The reliability of paleomagnetic data is a keystone to obtain trustable kinematics interpretations. The determination of the real paleomagnetic component recorded at certain time in the geological evolution of a rock can be affected by several sources of errors: inclination shallowing, declination biases caused by incorrect restoration to the ancient field, internal deformation of rock volumes and lack of isolation of the paleomagnetic primary vector during the laboratory procedures (overlapping of components). These errors will limit or impede the validity of paleomagnetism as the only three-dimension reference. This paper presents the first systematic modeling of the effect of overlapped vectors referred to declination, inclination and stability tests taking into account the key variables: orientation of a primary and secondary (overlapped to the primary) vectors, degree of overlapping (intensity ratio of primary and secondary paleomagnetic vectors) and the fold axis orientation and dip of bedding plane. In this way, several scenarios of overlapping have been modeled in different fold geometries considering both polarities and all the variables aforementioned, allowing to calculate the deviations of the vector obtained in the laboratory (overlapped) with respect to the paleomagnetic reference (not overlapped). Observations from the models confirm that declination errors are larger than the inclination ones. In addition to the geometry factor, errors are mainly controlled by the relative magnitude of the primary respect to the secondary component (P/S ratio). We observe larger asymmetries and bigger magnitudes of errors along the fold location if the primary and secondary records have different polarities. If the primary record (declination) and the fold axis orientation are perpendicular ( Ω = 90°), errors reach maximum magnitudes and larger asymmetries along the fold surface (different dips). The effect of overlapping in the fold and reversal tests is also

  5. An evolutionary game approach for determination of the structural conflicts in signed networks

    PubMed Central

    Tan, Shaolin; Lü, Jinhu

    2016-01-01

    Social or biochemical networks can often divide into two opposite alliances in response to structural conflicts between positive (friendly, activating) and negative (hostile, inhibiting) interactions. Yet, the underlying dynamics on how the opposite alliances are spontaneously formed to minimize the structural conflicts is still unclear. Here, we demonstrate that evolutionary game dynamics provides a felicitous possible tool to characterize the evolution and formation of alliances in signed networks. Indeed, an evolutionary game dynamics on signed networks is proposed such that each node can adaptively adjust its choice of alliances to maximize its own fitness, which yet leads to a minimization of the structural conflicts in the entire network. Numerical experiments show that the evolutionary game approach is universally efficient in quality and speed to find optimal solutions for all undirected or directed, unweighted or weighted signed networks. Moreover, the evolutionary game approach is inherently distributed. These characteristics thus suggest the evolutionary game dynamic approach as a feasible and effective tool for determining the structural conflicts in large-scale on-line signed networks. PMID:26915581

  6. An evolutionary game approach for determination of the structural conflicts in signed networks

    NASA Astrophysics Data System (ADS)

    Tan, Shaolin; Lü, Jinhu

    2016-02-01

    Social or biochemical networks can often divide into two opposite alliances in response to structural conflicts between positive (friendly, activating) and negative (hostile, inhibiting) interactions. Yet, the underlying dynamics on how the opposite alliances are spontaneously formed to minimize the structural conflicts is still unclear. Here, we demonstrate that evolutionary game dynamics provides a felicitous possible tool to characterize the evolution and formation of alliances in signed networks. Indeed, an evolutionary game dynamics on signed networks is proposed such that each node can adaptively adjust its choice of alliances to maximize its own fitness, which yet leads to a minimization of the structural conflicts in the entire network. Numerical experiments show that the evolutionary game approach is universally efficient in quality and speed to find optimal solutions for all undirected or directed, unweighted or weighted signed networks. Moreover, the evolutionary game approach is inherently distributed. These characteristics thus suggest the evolutionary game dynamic approach as a feasible and effective tool for determining the structural conflicts in large-scale on-line signed networks.

  7. A compact optical instrument with artificial neural network for pH determination.

    PubMed

    Capel-Cuevas, Sonia; López-Ruiz, Nuria; Martinez-Olmos, Antonio; Cuéllar, Manuel P; Pegalajar, Maria del Carmen; Palma, Alberto José; de Orbe-Payá, Ignacio; Capitán-Vallvey, Luis Fermin

    2012-01-01

    The aim of this work was the determination of pH with a sensor array-based optical portable instrument. This sensor array consists of eleven membranes with selective colour changes at different pH intervals. The method for the pH calculation is based on the implementation of artificial neural networks that use the responses of the membranes to generate a final pH value. A multi-objective algorithm was used to select the minimum number of sensing elements required to achieve an accurate pH determination from the neural network, and also to minimise the network size. This helps to minimise instrument and array development costs and save on microprocessor energy consumption. A set of artificial neural networks that fulfils these requirements is proposed using different combinations of the membranes in the sensor array, and is evaluated in terms of accuracy and reliability. In the end, the network including the response of the eleven membranes in the sensor was selected for validation in the instrument prototype because of its high accuracy. The performance of the instrument was evaluated by measuring the pH of a large set of real samples, showing that high precision can be obtained in the full range. PMID:22778668

  8. Application of the lamp mapping technique for overlap function for Raman lidar systems.

    PubMed

    Walker, Monique; Venable, Demetrius; Whiteman, David N; Sakai, Tetsu

    2016-04-01

    Traditionally, the lidar water vapor mixing ratio (WVMR) is corrected for overlap using data from another instrument, such as a radiosonde. Here we introduce a new experimental method to determine the overlap function using the lamp mapping technique (LMT), which relies on the lidar optics and detection system. The LMT discussed here involves a standard halogen lamp being scanned over the aperture of a Raman lidar telescope in synchronization with the lidar detection system [Appl. Opt.50, 4622 (2011)APOPAI0003-693510.1364/AO.50.004622, Appl. Opt.53, 8538 (2014)APOPAI0003-693510.1364/AO.53.008535]. In this paper, we show results for a LMT-determined overlap function for individual channels, as well as a WVMR overlap function. We found that the LMT-determined WVMR overlap functions deviate within 5% of the traditional radiosonde-determined overlap. PMID:27139656

  9. Disease progression in systemic sclerosis-overlap syndrome is significantly different from limited and diffuse cutaneous systemic sclerosis

    PubMed Central

    Moinzadeh, Pia; Aberer, Elisabeth; Ahmadi-Simab, Keihan; Blank, Norbert; Distler, Joerg H W; Fierlbeck, Gerhard; Genth, Ekkehard; Guenther, Claudia; Hein, Ruediger; Henes, Joerg; Herich, Lena; Herrgott, Ilka; Koetter, Ina; Kreuter, Alexander; Krieg, Thomas; Kuhr, Kathrin; Lorenz, Hanns-Martin; Meier, Florian; Melchers, Inga; Mensing, Hartwig; Mueller-Ladner, Ulf; Pfeiffer, Christiane; Riemekasten, Gabriela; Sárdy, Miklós; Schmalzing, Marc; Sunderkoetter, Cord; Susok, Laura; Tarner, Ingo H; Vaith, Peter; Worm, Margitta; Wozel, Gottfried; Zeidler, Gabriele; Hunzelmann, Nicolas; Ahrazoglu, Nil Mona

    2015-01-01

    Background Systemic sclerosis (SSc)-overlap syndromes are a very heterogeneous and remarkable subgroup of SSc-patients, who present at least two connective tissue diseases (CTD) at the same time, usually with a specific autoantibody status. Objectives To determine whether patients, classified as overlap syndromes, show a disease course different from patients with limited SSc (lcSSc) or diffuse cutaneous SSc (dcSSc). Methods The data of 3240 prospectively included patients, registered in the database of the German Network for Systemic Scleroderma and followed between 2003 and 2013, were analysed. Results Among 3240 registered patients, 10% were diagnosed as SSc-overlap syndrome. Of these, 82.5% were female. SSc-overlap patients had a mean age of 48±1.2 years and carried significantly more often ‘other antibodies’ (68.0%; p<0.0001), including anti-U1RNP, -PmScl, -Ro, -La, as well as anti-Jo-1 and -Ku antibodies. These patients developed musculoskeletal involvement earlier and more frequently (62.5%) than patients diagnosed as lcSSc (32.2%) or dcSSc (43.3%) (p<0.0001). The onset of lung fibrosis and heart involvement in SSc-overlap patients was significantly earlier than in patients with lcSSc and occurred later than in patients with dcSSc. Oesophagus, kidney and PH progression was similar to lcSSc patients, whereas dcSSc patients had a significantly earlier onset. Conclusions These data support the concept that SSc-overlap syndromes should be regarded as a separate SSc subset, distinct from lcSSc and dcSSc, due to a different progression of the disease, different proportional distribution of specific autoantibodies, and of different organ involvement. PMID:24389298

  10. What determines social capital in a social-ecological system? Insights from a network perspective.

    PubMed

    Barnes-Mauthe, Michele; Gray, Steven Allen; Arita, Shawn; Lynham, John; Leung, PingSun

    2015-02-01

    Social capital is an important resource that can be mobilized for purposive action or competitive gain. The distribution of social capital in social-ecological systems can determine who is more productive at extracting ecological resources and who emerges as influential in guiding their management, thereby empowering some while disempowering others. Despite its importance, the factors that contribute to variation in social capital among individuals have not been widely studied. We adopt a network perspective to examine what determines social capital among individuals in social-ecological systems. We begin by identifying network measures of social capital relevant for individuals in this context, and review existing evidence concerning their determinants. Using a complete social network dataset from Hawaii's longline fishery, we employ social network analysis and other statistical methods to empirically estimate these measures and determine the extent to which individual stakeholder attributes explain variation within them. We find that ethnicity is the strongest predictor of social capital. Measures of human capital (i.e., education, experience), years living in the community, and information-sharing attitudes are also important. Surprisingly, we find that when controlling for other factors, industry leaders and formal fishery representatives are generally not well connected. Our results offer new quantitative insights on the relationship between stakeholder diversity, social networks, and social capital in a coupled social-ecological system, which can aid in identifying barriers and opportunities for action to overcome resource management problems. Our results also have implications for achieving resource governance that is not only ecologically and economically sustainable, but also equitable. PMID:25376745

  11. What Determines Social Capital in a Social-Ecological System? Insights from a Network Perspective

    NASA Astrophysics Data System (ADS)

    Barnes-Mauthe, Michele; Gray, Steven Allen; Arita, Shawn; Lynham, John; Leung, PingSun

    2015-02-01

    Social capital is an important resource that can be mobilized for purposive action or competitive gain. The distribution of social capital in social-ecological systems can determine who is more productive at extracting ecological resources and who emerges as influential in guiding their management, thereby empowering some while disempowering others. Despite its importance, the factors that contribute to variation in social capital among individuals have not been widely studied. We adopt a network perspective to examine what determines social capital among individuals in social-ecological systems. We begin by identifying network measures of social capital relevant for individuals in this context, and review existing evidence concerning their determinants. Using a complete social network dataset from Hawaii's longline fishery, we employ social network analysis and other statistical methods to empirically estimate these measures and determine the extent to which individual stakeholder attributes explain variation within them. We find that ethnicity is the strongest predictor of social capital. Measures of human capital (i.e., education, experience), years living in the community, and information-sharing attitudes are also important. Surprisingly, we find that when controlling for other factors, industry leaders and formal fishery representatives are generally not well connected. Our results offer new quantitative insights on the relationship between stakeholder diversity, social networks, and social capital in a coupled social-ecological system, which can aid in identifying barriers and opportunities for action to overcome resource management problems. Our results also have implications for achieving resource governance that is not only ecologically and economically sustainable, but also equitable.

  12. Abnormal Policy Detection and Correction Using Overlapping Transition

    NASA Astrophysics Data System (ADS)

    Kim, Sunghyun; Lee, Heejo

    Policy in security devices such as firewalls and Network Intrusion Prevention Systems (NIPS) is usually implemented as a sequence of rules. This allows network packets to proceed or to be discarded based on rule's decision. Since attack methods are increasing rapidly, a huge number of security rules are generated and maintained in security devices. Under attack or during heavy traffic, the policy configured wrong creates security holes and prevents the system from deciding quickly whether to allow or deny a packet. Anomalies between the rules occur when there is overlap among the rules. In this paper, we propose a new method to detect anomalies among rules and generate new rules without configuration error in multiple security devices as well as in a single security device. The proposed method cuts the overlap regions among rules into minimum overlap regions and finds the abnormal domain regions of rules' predicates. Classifying rules by the network traffic flow, the proposed method not only reduces computation overhead but blocks unnecessary traffic among distributed devices.

  13. E(BV) Determinations of O and B Stars Using Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Gulati, R.; Gupta, R.; Singh, H.

    1997-07-01

    We propose a new method to determine E(B-V) from low dispersion ultraviolet spectra by using artificial neural networks. This method has been applied to O and B stars in the IUE low dispersion catalog. A comparison of the ANN based determinations with the classical method of comparing observed (B-V) with intrinsic color (B-V)o is performed to assess the reliability and limitation of the new method. We have been able to determine E(B-V) to an accuracy of 0.08 magnitudes and also been able to single out a star which follows an anomalous interstellar extinction law. (SECTION: Computing and Data Analysis)

  14. Solving Partial Differential Equations on Overlapping Grids

    SciTech Connect

    Henshaw, W D

    2008-09-22

    We discuss the solution of partial differential equations (PDEs) on overlapping grids. This is a powerful technique for efficiently solving problems in complex, possibly moving, geometry. An overlapping grid consists of a set of structured grids that overlap and cover the computational domain. By allowing the grids to overlap, grids for complex geometries can be more easily constructed. The overlapping grid approach can also be used to remove coordinate singularities by, for example, covering a sphere with two or more patches. We describe the application of the overlapping grid approach to a variety of different problems. These include the solution of incompressible fluid flows with moving and deforming geometry, the solution of high-speed compressible reactive flow with rigid bodies using adaptive mesh refinement (AMR), and the solution of the time-domain Maxwell's equations of electromagnetism.

  15. Epidemic threshold determined by the first moments of network with alternating degree distributions

    NASA Astrophysics Data System (ADS)

    Li, Kezan; Zhang, Haifeng; Fu, Xinchu; Ding, Yong; Small, Michael

    2015-02-01

    During the alternating day-night cycle, people have differing behavior and hence different connection patterns-such as going to work or home, shopping and so on. Hence, the true topological structure of human contact networks are not only time-varying but also exhibit certain distribution regularity. In this paper, we will investigate epidemic spreading on time-varying human contact networks, which follow one degree distribution during daytime, but another at night. Based on SIS (susceptible/infected/susceptible) propagation mechanism, we study the epidemic threshold of this network with alternating distributions. A surprising result is that for the discrete-time case the epidemic threshold is determined only by the first moments of the two alternating degree distributions, if the degree of each node is constant for all nights. A similar result is valid for the continuous-time case if the duration is sufficiently small. This work shows that the spreading dynamics of time-varying networks with alternating distributions is completely different from the widely studied case of static spreading networks.

  16. Overlap in Facebook Profiles Reflects Relationship Closeness.

    PubMed

    Castañeda, Araceli M; Wendel, Markie L; Crockett, Erin E

    2015-01-01

    We assessed the association between self-reported Inclusion of Other in the Self (IOS) and Facebook overlap. Ninety-two participants completed online measures of IOS and investment model constructs. Researchers then recorded Facebook data from participants' profile pages. Results from multilevel models revealed that IOS predicted Facebook overlap. Furthermore, Facebook overlap was associated with commitment and investment in ways comparable to self-reported IOS. These findings suggest that overlap in Facebook profiles can be used to measure relationship closeness. PMID:25635533

  17. Determination of type and concentration of DNA nitrogenous bases by Raman spectroscopy using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Laptinskiy, Kirill A.; Burikov, Sergey A.; Sarmanova, Olga E.; Dolenko, Sergey A.; Dolenko, Tatiana A.

    2016-04-01

    In this article the results of solution of two-parametrical inverse problems of laser Raman spectroscopy of identification and determination of concentration of DNA nitrogenous bases in two-component solutions are presented. Elaboration of methods of control of reactions with DNA strands in remote real-time mode is necessary for solution of one of the basic problems of creation of biocomputers - increase of reliability of molecular DNA-computations. The comparative analysis of two used methods of solution of stated problems has demonstrated convincing advantages of technique of artificial neural networks. Use of artificial neural networks allowed to reach the accuracy of determination of concentration of each base in two-component solutions 0.2-0.3 g/l.

  18. Sarcomeric thick and thin filament overlap influences postmortem proteolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The interaction between sarcomere length (SL) and proteolysis on meat tenderness is not clear. Indeed, the extent of thick and thin filament overlap alters actomyosin binding and may alter substrate availability during aging. The objective of this study was to determine the influence of sarcomere le...

  19. Network Controllability Is Determined by the Density of Low In-Degree and Out-Degree Nodes

    NASA Astrophysics Data System (ADS)

    Menichetti, Giulia; Dall'Asta, Luca; Bianconi, Ginestra

    2014-08-01

    The problem of controllability of the dynamical state of a network is central in network theory and has wide applications ranging from network medicine to financial markets. The driver nodes of the network are the nodes that can bring the network to the desired dynamical state if an external signal is applied to them. Using the framework of structural controllability, here, we show that the density of nodes with in degree and out degree equal to one and two determines the number of driver nodes in the network. Moreover, we show that random networks with minimum in degree and out degree greater than two, are always fully controllable by an infinitesimal fraction of driver nodes, regardless of the other properties of the degree distribution. Finally, based on these results, we propose an algorithm to improve the controllability of networks.

  20. The complexity of the overlap method for sequencing biopolymers.

    PubMed

    Gallant, J K

    1983-03-01

    The problem of trying to reconstruct the sequence of a biopolymer by using overlapping fragments obtained from cleaving agents is shown to be computationally intractable. This strongly suggests that any computer program for overlap sequencing, even though it may work well for a limited number of inputs, will not work sufficiently for all inputs. However, if the problem is restricted so that certain crucial fragments are known, called prime strings, a sequence can be found efficiently in all cases. Graph theory techniques for doing so can also be used to count the number of sequences consistent with the fragment data to determine whether a unique sequence has been obtained. PMID:6876820

  1. Dynamics of neuromodulatory feedback determines frequency modulation in a reduced respiratory network: a computational study.

    PubMed

    Toporikova, Natalia; Butera, Robert J

    2013-02-01

    Neuromodulators, such as amines and neuropeptides, alter the activity of neurons and neuronal networks. In this work, we investigate how neuromodulators, which activate G(q)-protein second messenger systems, can modulate the bursting frequency of neurons in a critical portion of the respiratory neural network, the pre-Bötzinger complex (preBötC). These neurons are a vital part of the ponto-medullary neuronal network, which generates a stable respiratory rhythm whose frequency is regulated by neuromodulator release from the nearby Raphe nucleus. Using a simulated 50-cell network of excitatory preBötC neurons with a heterogeneous distribution of persistent sodium conductance and Ca(2+), we determined conditions for frequency modulation in such a network by simulating interaction between Raphe and preBötC nuclei. We found that the positive feedback between the Raphe excitability and preBötC activity induces frequency modulation in the preBötC neurons. In addition, the frequency of the respiratory rhythm can be regulated via phasic release of excitatory neuromodulators from the Raphe nucleus. We predict that the application of a G(q) antagonist will eliminate this frequency modulation by the Raphe and keep the network frequency constant and low. In contrast, application of a G(q) agonist will result in a high frequency for all levels of Raphe stimulation. Our modeling results also suggest that high [K(+)] requirement in respiratory brain slice experiments may serve as a compensatory mechanism for low neuromodulatory tone. PMID:23202052

  2. 47 CFR 73.509 - Prohibited overlap.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Prohibited overlap. 73.509 Section 73.509 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES Noncommercial Educational FM Broadcast Stations § 73.509 Prohibited overlap. (a) An application for a new or modified NCE-FM station...

  3. A Co-Association Network Analysis of the Genetic Determination of Pig Conformation, Growth and Fatness

    PubMed Central

    Puig-Oliveras, Anna; Ballester, Maria; Corominas, Jordi; Revilla, Manuel; Estellé, Jordi; Fernández, Ana I.; Ramayo-Caldas, Yuliaxis; Folch, Josep M.

    2014-01-01

    Background Several QTLs have been identified for major economically relevant traits in livestock, such as growth and meat quality, revealing the complex genetic architecture of these traits. The use of network approaches considering the interactions of multiple molecules and traits provides useful insights into the molecular underpinnings of complex traits. Here, a network based methodology, named Association Weight Matrix, was applied to study gene interactions and pathways affecting pig conformation, growth and fatness traits. Results The co-association network analysis underpinned three transcription factors, PPARγ, ELF1, and PRDM16 involved in mesoderm tissue differentiation. Fifty-four genes in the network belonged to growth-related ontologies and 46 of them were common with a similar study for growth in cattle supporting our results. The functional analysis uncovered the lipid metabolism and the corticotrophin and gonadotrophin release hormone pathways among the most important pathways influencing these traits. Our results suggest that the genes and pathways here identified are important determining either the total body weight of the animal and the fat content. For instance, a switch in the mesoderm tissue differentiation may determinate the age-related preferred pathways being in the puberty stage those related with the miogenic and osteogenic lineages; on the contrary, in the maturity stage cells may be more prone to the adipocyte fate. Hence, our results demonstrate that an integrative genomic co-association analysis is a powerful approach for identifying new connections and interactions among genes. Conclusions This work provides insights about pathways and key regulators which may be important determining the animal growth, conformation and body proportions and fatness traits. Molecular information concerning genes and pathways here described may be crucial for the improvement of genetic breeding programs applied to pork meat production. PMID:25503799

  4. Content Patterns in Topic-Based Overlapping Communities

    PubMed Central

    Ríos, Sebastián A.; Muñoz, Ricardo

    2014-01-01

    Understanding the underlying community structure is an important challenge in social network analysis. Most state-of-the-art algorithms only consider structural properties to detect disjoint subcommunities and do not include the fact that people can belong to more than one community and also ignore the information contained in posts that users have made. To tackle this problem, we developed a novel methodology to detect overlapping subcommunities in online social networks and a method to analyze the content patterns for each subcommunities using topic models. This paper presents our main contribution, a hybrid algorithm which combines two different overlapping sub-community detection approaches: the first one considers the graph structure of the network (topology-based subcommunities detection approach) and the second one takes the textual information of the network nodes into consideration (topic-based subcommunities detection approach). Additionally we provide a method to analyze and compare the content generated. Tests on real-world virtual communities show that our algorithm outperforms other methods. PMID:25161390

  5. How events determine spreading patterns: information transmission via internal and external influences on social networks

    NASA Astrophysics Data System (ADS)

    Liu, Chuang; Zhan, Xiu-Xiu; Zhang, Zi-Ke; Sun, Gui-Quan; Hui, Pak Ming

    2015-11-01

    Recently, information transmission models motivated by the classical epidemic propagation, have been applied to a wide-range of social systems, generally assume that information mainly transmits among individuals via peer-to-peer interactions on social networks. In this paper, we consider one more approach for users to get information: the out-of-social-network influence. Empirical analyzes of eight typical events’ diffusion on a very large micro-blogging system, Sina Weibo, show that the external influence has significant impact on information spreading along with social activities. In addition, we propose a theoretical model to interpret the spreading process via both internal and external channels, considering three essential properties: (i) memory effect; (ii) role of spreaders; and (iii) non-redundancy of contacts. Experimental and mathematical results indicate that the information indeed spreads much quicker and broader with mutual effects of the internal and external influences. More importantly, the present model reveals that the event characteristic would highly determine the essential spreading patterns once the network structure is established. The results may shed some light on the in-depth understanding of the underlying dynamics of information transmission on real social networks.

  6. Lithology determination from well logs with fuzzy associative memory neural network

    SciTech Connect

    Chang, H.C.; Chen, H.C.; Fang, J.H.

    1997-05-01

    An artificial intelligence technique of fuzzy associative memory is used to determine rock types from well-log signatures. Fuzzy associative memory (FAM) is a hybrid of neutral network and fuzzy expert system. This new approach combines the learning ability of neural network and the strengths of fuzzy linguistic modeling to adaptively infer lithologies from well-log signatures based on (1) the relationships between the lithology and log signature that the neural network have learned during the training and/or (2) geologist`s knowledge about the rocks. The method is applied to a sequence of the Ordovician rock units in northern Kansas. This paper also compares the performances of two different methods, using the same data set for meaningful comparison. The advantages of FAM are (1) expert knowledge acquired by geologists is fully utilized; (2) this knowledge is augmented by the neural network learning from the data, when available; and (3) FAM is transparent in that the knowledge is explicitly stated in the fuzzy rules.

  7. Pathway structure determination in complex stochastic networks with non-exponential dwell times

    SciTech Connect

    Li, Xin; Kolomeisky, Anatoly B.; Valleriani, Angelo

    2014-05-14

    Analysis of complex networks has been widely used as a powerful tool for investigating various physical, chemical, and biological processes. To understand the emergent properties of these complex systems, one of the most basic issues is to determine the structure and topology of the underlying networks. Recently, a new theoretical approach based on first-passage analysis has been developed for investigating the relationship between structure and dynamic properties for network systems with exponential dwell time distributions. However, many real phenomena involve transitions with non-exponential waiting times. We extend the first-passage method to uncover the structure of distinct pathways in complex networks with non-exponential dwell time distributions. It is found that the analysis of early time dynamics provides explicit information on the length of the pathways associated to their dynamic properties. It reveals a universal relationship that we have condensed in one general equation, which relates the number of intermediate states on the shortest path to the early time behavior of the first-passage distributions. Our theoretical predictions are confirmed by extensive Monte Carlo simulations.

  8. Potential spatial overlap of heritage sites and protected areas in a boreal region of northern Canada.

    PubMed

    Leroux, Shawn J; Schmiegelow, Fiona K A; Nagy, John A

    2007-04-01

    Under article 8-J of the Convention on Biological Diversity, governments must engage indigenous and local communities in the designation and management of protected areas. A better understanding of the relationship between community heritage sites and sites identified to protect conventional conservation features could inform conservation-planning exercises on indigenous lands. We examined the potential overlap between Gwich'in First Nations' (Northwest Territories, Canada) heritage sites and areas independently identified for the protection of conventional conservation targets. We designed nine hypothetical protected-area networks with different targets for woodland caribou (Rangifer tarandus caribou) habitat, high-quality wetland areas, representative vegetation types, water bodies, environmentally significant area, territorial parks, and network aggregation. We compared the spatial overlap of heritage sites to these nine protected-area networks. The degree of spatial overlap (Jaccard similarity) between heritage sites and the protected-area networks with moderate or high aggregation was significantly higher (p < 0.001) than random spatial overlap, whereas the overlap between heritage sites and the protected-area networks with no aggregation was not significant or significantly lower (p < 0.001) than random spatial overlap. Our results suggest that protected-area networks designed to capture conventional conservation features may protect key heritage sites but only if the underlying characteristics of these sites are considered. The Gwich'in heritage sites are highly aggregated and only protected-area networks that had moderate and high aggregation had significant overlap with the heritage sites. We suggest that conventional conservation plans incorporate heritage sites into their design criteria to complement conventional conservation targets and effectively protect indigenous heritage sites. PMID:17391188

  9. Restoration and reconstruction from overlapping images

    NASA Technical Reports Server (NTRS)

    Reichenbach, Stephen E.; Kaiser, Daniel J.; Hanson, Andrew L.; Li, Jing

    1997-01-01

    This paper describes a technique for restoring and reconstructing a scene from overlapping images. In situations where there are multiple, overlapping images of the same scene, it may be desirable to create a single image that most closely approximates the scene, based on all of the data in the available images. For example, successive swaths acquired by NASA's planned Moderate Imaging Spectrometer (MODIS) will overlap, particularly at wide scan angles, creating a severe visual artifact in the output image. Resampling the overlapping swaths to produce a more accurate image on a uniform grid requires restoration and reconstruction. The one-pass restoration and reconstruction technique developed in this paper yields mean-square-optimal resampling, based on a comprehensive end-to-end system model that accounts for image overlap, and subject to user-defined and data-availability constraints on the spatial support of the filter.

  10. Neural overlap in processing music and speech.

    PubMed

    Peretz, Isabelle; Vuvan, Dominique; Lagrois, Marie-Élaine; Armony, Jorge L

    2015-03-19

    Neural overlap in processing music and speech, as measured by the co-activation of brain regions in neuroimaging studies, may suggest that parts of the neural circuitries established for language may have been recycled during evolution for musicality, or vice versa that musicality served as a springboard for language emergence. Such a perspective has important implications for several topics of general interest besides evolutionary origins. For instance, neural overlap is an important premise for the possibility of music training to influence language acquisition and literacy. However, neural overlap in processing music and speech does not entail sharing neural circuitries. Neural separability between music and speech may occur in overlapping brain regions. In this paper, we review the evidence and outline the issues faced in interpreting such neural data, and argue that converging evidence from several methodologies is needed before neural overlap is taken as evidence of sharing. PMID:25646513

  11. Neural overlap in processing music and speech

    PubMed Central

    Peretz, Isabelle; Vuvan, Dominique; Lagrois, Marie-Élaine; Armony, Jorge L.

    2015-01-01

    Neural overlap in processing music and speech, as measured by the co-activation of brain regions in neuroimaging studies, may suggest that parts of the neural circuitries established for language may have been recycled during evolution for musicality, or vice versa that musicality served as a springboard for language emergence. Such a perspective has important implications for several topics of general interest besides evolutionary origins. For instance, neural overlap is an important premise for the possibility of music training to influence language acquisition and literacy. However, neural overlap in processing music and speech does not entail sharing neural circuitries. Neural separability between music and speech may occur in overlapping brain regions. In this paper, we review the evidence and outline the issues faced in interpreting such neural data, and argue that converging evidence from several methodologies is needed before neural overlap is taken as evidence of sharing. PMID:25646513

  12. Neural Network Classification of Receiver Functions as a Step Towards Automatic Crustal Parameter Determination

    NASA Astrophysics Data System (ADS)

    Jemberie, A.; Dugda, M. T.; Reusch, D.; Nyblade, A.

    2006-12-01

    Neural networks are decision making mathematical/engineering tools, which if trained properly, can do jobs automatically (and objectively) that normally require particular expertise and/or tedious repetition. Here we explore two techniques from the field of artificial neural networks (ANNs) that seek to reduce the time requirements and increase the objectivity of quality control (QC) and Event Identification (EI) on seismic datasets. We explore to apply the multiplayer Feed Forward (FF) Artificial Neural Networks (ANN) and Self- Organizing Maps (SOM) in combination with Hk stacking of receiver functions in an attempt to test the extent of the usefulness of automatic classification of receiver functions for crustal parameter determination. Feed- forward ANNs (FFNNs) are a supervised classification tool while self-organizing maps (SOMs) are able to provide unsupervised classification of large, complex geophysical data sets into a fixed number of distinct generalized patterns or modes. Hk stacking is a methodology that is used to stack receiver functions based on the relative arrival times of P-to-S converted phase and next two reverberations to determine crustal thickness H and Vp-to-Vs ratio (k). We use receiver functions from teleseismic events recorded by the 2000- 2002 Ethiopia Broadband Seismic Experiment. Preliminary results of applying FFNN neural network and Hk stacking of receiver functions for automatic receiver functions classification as a step towards an effort of automatic crustal parameter determination look encouraging. After training a FFNN neural network, the network could classify the best receiver functions from bad ones with a success rate of about 75 to 95%. Applying H? stacking on the receiver functions classified by this FFNN as the best receiver functions, we could obtain crustal thickness and Vp/Vs ratio of 31±4 km and 1.75±0.05, respectively, for the crust beneath station ARBA in the Main Ethiopian Rift. To make comparison, we applied Hk

  13. The GPS Topex/Poseidon precise orbit determination experiment - Implications for design of GPS global networks

    NASA Technical Reports Server (NTRS)

    Lindqwister, Ulf J.; Lichten, Stephen M.; Davis, Edgar S.; Theiss, Harold L.

    1993-01-01

    Topex/Poseidon, a cooperative satellite mission between United States and France, aims to determine global ocean circulation patterns and to study their influence on world climate through precise measurements of sea surface height above the geoid with an on-board altimeter. To achieve the mission science aims, a goal of 13-cm orbit altitude accuracy was set. Topex/Poseidon includes a Global Positioning System (GPS) precise orbit determination (POD) system that has now demonstrated altitude accuracy better than 5 cm. The GPS POD system includes an on-board GPS receiver and a 6-station GPS global tracking network. This paper reviews early GPS results and discusses multi-mission capabilities available from a future enhanced global GPS network, which would provide ground-based geodetic and atmospheric calibrations needed for NASA deep space missions while also supplying tracking data for future low Earth orbiters. Benefits of the enhanced global GPS network include lower operations costs for deep space tracking and many scientific and societal benefits from the low Earth orbiter missions, including improved understanding of ocean circulation, ocean-weather interactions, the El Nino effect, the Earth thermal balance, and weather forecasting.

  14. k-Cone analysis: determining all candidate values for kinetic parameters on a network scale.

    PubMed

    Famili, Iman; Mahadevan, Radhakrishnan; Palsson, Bernhard O

    2005-03-01

    The absence of comprehensive measured kinetic values and the observed inconsistency in the available in vitro kinetic data has hindered the formulation of network-scale kinetic models of biochemical reaction networks. To meet this challenge we present an approach to construct a convex space, termed the k-cone, which contains all the allowable numerical values of the kinetic constants in large-scale biochemical networks. The definition of the k-cone relies on the incorporation of in vivo concentration data and a simplified approach to represent enzyme kinetics within an established constraint-based modeling approach. The k-cone approach was implemented to define the allowable combination of numerical values for a full kinetic model of human red blood cell metabolism and to study its correlated kinetic parameters. The k-cone approach can be used to determine consistency between in vitro measured kinetic values and in vivo concentration and flux measurements when used in a network-scale kinetic model. k-Cone analysis was successful in determining whether in vitro measured kinetic values used in the reconstruction of a kinetic-based model of Saccharomyces cerevisiae central metabolism could reproduce in vivo measurements. Further, the k-cone can be used to determine which numerical values of in vitro measured parameters are required to be changed in a kinetic model if in vivo measured values are not reproduced. k-Cone analysis could identify what minimum number of in vitro determined kinetic parameters needed to be adjusted in the S. cerevisiae model to be consistent with the in vivo data. Applying the k-cone analysis a priori to kinetic model development may reduce the time and effort involved in model building and parameter adjustment. With the recent developments in high-throughput profiling of metabolite concentrations at a whole-cell scale and advances in metabolomics technologies, the k-cone approach presented here may hold the promise for kinetic

  15. k-Cone Analysis: Determining All Candidate Values for Kinetic Parameters on a Network Scale

    PubMed Central

    Famili, Iman; Mahadevan, Radhakrishnan; Palsson, Bernhard O.

    2005-01-01

    The absence of comprehensive measured kinetic values and the observed inconsistency in the available in vitro kinetic data has hindered the formulation of network-scale kinetic models of biochemical reaction networks. To meet this challenge we present an approach to construct a convex space, termed the k-cone, which contains all the allowable numerical values of the kinetic constants in large-scale biochemical networks. The definition of the k-cone relies on the incorporation of in vivo concentration data and a simplified approach to represent enzyme kinetics within an established constraint-based modeling approach. The k-cone approach was implemented to define the allowable combination of numerical values for a full kinetic model of human red blood cell metabolism and to study its correlated kinetic parameters. The k-cone approach can be used to determine consistency between in vitro measured kinetic values and in vivo concentration and flux measurements when used in a network-scale kinetic model. k-Cone analysis was successful in determining whether in vitro measured kinetic values used in the reconstruction of a kinetic-based model of Saccharomyces cerevisiae central metabolism could reproduce in vivo measurements. Further, the k-cone can be used to determine which numerical values of in vitro measured parameters are required to be changed in a kinetic model if in vivo measured values are not reproduced. k-Cone analysis could identify what minimum number of in vitro determined kinetic parameters needed to be adjusted in the S. cerevisiae model to be consistent with the in vivo data. Applying the k-cone analysis a priori to kinetic model development may reduce the time and effort involved in model building and parameter adjustment. With the recent developments in high-throughput profiling of metabolite concentrations at a whole-cell scale and advances in metabolomics technologies, the k-cone approach presented here may hold the promise for kinetic

  16. Auditing Complex Concepts in Overlapping Subsets of SNOMED

    PubMed Central

    Wang, Yue; Wei, Duo; Xu, Junchuan; Elhanan, Gai; Perl, Yehoshua; Halper, Michael; Chen, Yan; Spackman, Kent A.; Hripcsak, George

    2008-01-01

    Limited resources and the sheer volume of concepts make auditing a large terminology, such as SNOMED CT, a daunting task. It is essential to devise techniques that can aid an auditor by automatically identifying concepts that deserve attention. A methodology for this purpose based on a previously introduced abstraction network (called the p-area taxonomy) for a SNOMED CT hierarchy is presented. The methodology algorithmically gathers concepts appearing in certain overlapping subsets, defined exclusively with respect to the p-area taxonomy, for review. The results of applying the methodology to SNOMED’s Specimen hierarchy are presented. These results are compared against a control sample composed of concepts residing in subsets without the overlaps. With the use of the double bootstrap, the concept group produced by our methodology is shown to yield a statistically significant higher proportion of error discoveries. PMID:18998838

  17. Earth-Mars Telecommunications and Information Management System (TIMS): Antenna Visibility Determination, Network Simulation, and Management Models

    NASA Technical Reports Server (NTRS)

    Odubiyi, Jide; Kocur, David; Pino, Nino; Chu, Don

    1996-01-01

    This report presents the results of our research on Earth-Mars Telecommunications and Information Management System (TIMS) network modeling and unattended network operations. The primary focus of our research is to investigate the feasibility of the TIMS architecture, which links the Earth-based Mars Operations Control Center, Science Data Processing Facility, Mars Network Management Center, and the Deep Space Network of antennae to the relay satellites and other communication network elements based in the Mars region. The investigation was enhanced by developing Build 3 of the TIMS network modeling and simulation model. The results of several 'what-if' scenarios are reported along with reports on upgraded antenna visibility determination software and unattended network management prototype.

  18. Analysis of a distributed algorithm to determine multiple routes with path diversity in ad hoc networks.

    SciTech Connect

    Ghosal, Dipak; Mueller, Stephen Ng

    2005-04-01

    With multipath routing in mobile ad hoc networks (MANETs), a source can establish multiple routes to a destination for routing data. In MANETs, mulitpath routing can be used to provide route resilience, smaller end-to-end delay, and better load balancing. However, when the multiple paths are close together, transmissions of different paths may interfere with each other, causing degradation in performance. Besides interference, the physical diversity of paths also improves fault tolerance. We present a purely distributed multipath protocol based on the AODV-Multipath (AODVM) protocol called AODVM with Path Diversity (AODVM/PD) that finds multiple paths with a desired degree of correlation between paths specified as an input parameter to the algorithm. We demonstrate through detailed simulation analysis that multiple paths with low degree of correlation determined by AODVM/PD provides both smaller end-to-end delay than AODVM in networks with low mobility and better route resilience in the presence of correlated node failures.

  19. Genotype 1 hepatitis C virus envelope features that determine antiviral response assessed through optimal covariance networks.

    PubMed

    Murray, John M; Moenne-Loccoz, Rémy; Velay, Aurélie; Habersetzer, François; Doffoël, Michel; Gut, Jean-Pierre; Fofana, Isabel; Zeisel, Mirjam B; Stoll-Keller, Françoise; Baumert, Thomas F; Schvoerer, Evelyne

    2013-01-01

    The poor response to the combined antiviral therapy of pegylated alfa-interferon and ribavarin for hepatitis C virus (HCV) infection may be linked to mutations in the viral envelope gene E1E2 (env), which can result in escape from the immune response and higher efficacy of viral entry. Mutations that result in failure of therapy most likely require compensatory mutations to achieve sufficient change in envelope structure and function. Compensatory mutations were investigated by determining positions in the E1E2 gene where amino acids (aa) covaried across groups of individuals. We assessed networks of covarying positions in E1E2 sequences that differentiated sustained virological response (SVR) from non-response (NR) in 43 genotype 1a (17 SVR), and 49 genotype 1b (25 SVR) chronically HCV-infected individuals. Binary integer programming over covariance networks was used to extract aa combinations that differed between response groups. Genotype 1a E1E2 sequences exhibited higher degrees of covariance and clustered into 3 main groups while 1b sequences exhibited no clustering. Between 5 and 9 aa pairs were required to separate SVR from NR in each genotype. aa in hypervariable region 1 were 6 times more likely than chance to occur in the optimal networks. The pair 531-626 (EI) appeared frequently in the optimal networks and was present in 6 of 9 NR in one of the 1a clusters. The most frequent pairs representing SVR were 431-481 (EE), 500-522 (QA) in 1a, and 407-434 (AQ) in 1b. Optimal networks based on covarying aa pairs in HCV envelope can indicate features that are associated with failure or success to antiviral therapy. PMID:23840641

  20. Use of the selected overlap LIDAR experiment (SOLEX) system with the 248 nm krypton fluoride and the 355 nm neodymium:yttrium aluminum garnet lasers for the calibration of LIDAR systems for water vapor determination

    NASA Astrophysics Data System (ADS)

    Mensah, Francis Emmanuel Tofodji

    Water vapor is one of the most important atmospheric variables that play a key role in air quality, global warming, climate change and hurricane formation. In this dissertation, use was made of two laser systems, the 248-nm KrF laser and the 355 nm Nd-YAG laser, with the use of Raman scattering to measure water vapor in the atmosphere. These two systems have been calibrated more accurately, using the LIDAR approach named SOLEX (Selected Overlap LIDAR Experiment). All the experiments were carried out at the Howard University Beltsville campus located on a 107 acre research site, at Beltsville, MD, 15 miles from downtown Washington DC, near the National Agricultural Research Center (NARC), and the NASA Goddard Space Flight Center (GSFC). The geographical coordinates are: 39°04.01'N latitude, and 76°52.31'W longitude. The receiver system used during these experiments is a 30" (76.2 cm), f/ 9 Cassegranian telescope, while the detector system uses a prism spectrometer (Beckman), with a 2-meter, double-fold optical path and a variable slit width is placed at the image plane of the telescope. With the use of the SOLEX system, this dissertation provides an accurate calibration of the two LIDAR Systems for water vapor measurement in the troposphere at the following ranges: 83.7 ft, 600 ft, 800 ft, 1000 ft and 1080 ft. Data analysis shows a pretty high sensitivity of the LIDAR system for water vapor measurement and the efficiency of the SOLEX method.

  1. Orbit and clock determination of BDS regional navigation satellite system based on IGS M-GEX and WHU BETS tracking network

    NASA Astrophysics Data System (ADS)

    GENG, T.; Zhao, Q.; Shi, C.; Shum, C.; Guo, J.; Su, X.

    2013-12-01

    BeiDou Navigation Satellite System (BDS) began to provide the regional open service on December 27th 2012 and will provide the global open service by the end of 2020. Compared to GPS, the space segment of BDS Regional System consists of 5 Geostationary Earth Orbit satellites (GEO), 5 Inclined Geosynchronous Orbit satellites (IGSO) and 4 Medium Earth orbit (MEO) satellites. Since 2011, IGS Multiple-GNSS Experiment (M-GEX) focuses on tracking the newly available GNSS signals. This includes all signals from the modernized satellites of the GPS and GLONASS systems, as well as signals of the BDS, Galileo and QZSS systems. Up to now, BDS satellites are tracked by around 25 stations with a variety of different antennas and receivers from different GNSS manufacture communities in M-GEX network. Meanwhile, there are 17 stations with Unicore Communications Incorporation's GPS/BDS receivers in BeiDou Experimental Tracking Stations (BETS) network by Wuhan University. In addition, 5 BDS satellites have been tracking by the International Laser Ranging Service (ILRS). BDS performance is expected to be further studied by the GNSS communities. Following an introduction of the BDS system and above different tracking network, this paper discusses the achieved BDS characterization and performance assessment. Firstly, the BDS signal and measurement quality are analyzed with different antennas and receivers in detail compared to GPS. This includes depth of coverage for satellite observation, carrier-to-noise-density ratios, code noise and multipath, carrier phase errors. Secondly, BDS Precise Orbit Determination (POD) is processed. Different arc lengths and sets of orbit parameters are tested using Position And Navigation Data Analysis software (PANDA) which is developed at the Wuhan University. GEO, IGSO and MEO satellites orbit quality will be assessed using overlap comparison, 2-day orbit fit and external validations with Satellite Laser Range (SLR). Then BDS satellites are equipped

  2. Overlaps among phenological phases in flood plain forest ecosystem

    NASA Astrophysics Data System (ADS)

    Bartošová, Lenka; Bauer, Zdeněk; Trnka, Miroslav; Možný, Martin; Štěpánek, Petr; Žalud, Zdeněk

    2015-04-01

    There is a growing concern that climate change has significant impacts on species phenology, seasonal population dynamics, and thus interaction (a)synchrony between species. Species that have historically undergone life history events on the same seasonal calendar may lose synchrony and therefore lose the ability to interact as they have in the past. In view of the match/mismatch hypothesis, the different extents or directions of the phenological shifts among interacting species may have significant implications for community structure and dynamics. That's why our principal goal of the study is to determine the phenological responses within the ecosystem of flood plain forest and analyzed the phenological overlapping among each phenological periods of given species. The phenological observations were done at flood-plain forest experimental site during the period 1961-2012. The whole ecosystem in this study create 17 species (15 plants and 2 bird species) and each species is composed of 2 phenological phases. Phenological periods of all species of ecosystem overlap each other and 43 of these overlapping were chosen and the length, trend and correlation with temperature were elaborated. The analysis of phenophases overlapping of chosen species showed that the length of overlay is getting significantly shorter in 1 case. On the other hand the situation when the length of overlaps is getting significantly longer arose in 4 cases. Remaining overlaps (38) of all phenological periods among various species is getting shorter or longer but with no significance or have not changed anyhow. This study was funded by project "Building up a multidisciplinary scientific team focused on drought" No. CZ.1.07/2.3.00/20.0248. and of projects no. LD13030 supporting participation of the Czech Republic in the COST action ES1106.

  3. Overlap Functions for Measures in Conformal Iterated Function Systems

    NASA Astrophysics Data System (ADS)

    Mihailescu, Eugen; Urbański, Mariusz

    2016-01-01

    We employ thermodynamic formalism for the study of conformal iterated function systems (IFS) S = {φ _i}_{i in I} with arbitrary overlaps, and of measures μ on limit sets Λ , which are projections of equilibrium measures hat{μ } with respect to a certain lift map Φ on Σ _I^+ × Λ . No type of Open Set Condition is assumed. We introduce a notion of overlap function and overlap number for such a measure hat{μ } with respect to S; and, in particular a notion of (topological) overlap number o(S). These notions take in consideration the n-chains between points in the limit set. We prove that o(S, hat{μ }) is related to a conditional entropy of hat{μ } with respect to the lift Φ . Various types of projections to Λ of invariant measures are studied. We obtain upper estimates for the Hausdorff dimension HD(μ ) of μ on Λ , by using pressure functions and o(S, hat{μ }). In particular, this applies to projections of Bernoulli measures on Σ _I^+. Next, we apply the results to Bernoulli convolutions ν _λ for λ in (1/2, 1), which correspond to self-similar measures determined by composing, with equal probabilities, the contractions of an IFS with overlaps S_λ . We prove that for all λ in (1/2, 1), there exists a relation between HD(ν _λ ) and the overlap number o(S_λ ). We also estimate o(S_λ ) for certain values of λ.

  4. State-Dependent Network Connectivity Determines Gating in a K+ Channel

    PubMed Central

    Bollepalli, Murali K.; Fowler, Philip W.; Rapedius, Markus; Shang, Lijun; Sansom, Mark S.P.; Tucker, Stephen J.; Baukrowitz, Thomas

    2014-01-01

    Summary X-ray crystallography has provided tremendous insight into the different structural states of membrane proteins and, in particular, of ion channels. However, the molecular forces that determine the thermodynamic stability of a particular state are poorly understood. Here we analyze the different X-ray structures of an inwardly rectifying potassium channel (Kir1.1) in relation to functional data we obtained for over 190 mutants in Kir1.1. This mutagenic perturbation analysis uncovered an extensive, state-dependent network of physically interacting residues that stabilizes the pre-open and open states of the channel, but fragments upon channel closure. We demonstrate that this gating network is an important structural determinant of the thermodynamic stability of these different gating states and determines the impact of individual mutations on channel function. These results have important implications for our understanding of not only K+ channel gating but also the more general nature of conformational transitions that occur in other allosteric proteins. PMID:24980796

  5. State-dependent network connectivity determines gating in a K+ channel.

    PubMed

    Bollepalli, Murali K; Fowler, Philip W; Rapedius, Markus; Shang, Lijun; Sansom, Mark S P; Tucker, Stephen J; Baukrowitz, Thomas

    2014-07-01

    X-ray crystallography has provided tremendous insight into the different structural states of membrane proteins and, in particular, of ion channels. However, the molecular forces that determine the thermodynamic stability of a particular state are poorly understood. Here we analyze the different X-ray structures of an inwardly rectifying potassium channel (Kir1.1) in relation to functional data we obtained for over 190 mutants in Kir1.1. This mutagenic perturbation analysis uncovered an extensive, state-dependent network of physically interacting residues that stabilizes the pre-open and open states of the channel, but fragments upon channel closure. We demonstrate that this gating network is an important structural determinant of the thermodynamic stability of these different gating states and determines the impact of individual mutations on channel function. These results have important implications for our understanding of not only K+ channel gating but also the more general nature of conformational transitions that occur in other allosteric proteins. PMID:24980796

  6. Event Coverage Detection and Event Source Determination in Underwater Wireless Sensor Networks

    PubMed Central

    Zhou, Zhangbing; Xing, Riliang; Duan, Yucong; Zhu, Yueqin; Xiang, Jianming

    2015-01-01

    With the advent of the Internet of Underwater Things, smart things are deployed in the ocean space and establish underwater wireless sensor networks for the monitoring of vast and dynamic underwater environments. When events are found to have possibly occurred, accurate event coverage should be detected, and potential event sources should be determined for the enactment of prompt and proper responses. To address this challenge, a technique that detects event coverage and determines event sources is developed in this article. Specifically, the occurrence of possible events corresponds to a set of neighboring sensor nodes whose sensory data may deviate from a normal sensing range in a collective fashion. An appropriate sensor node is selected as the relay node for gathering and routing sensory data to sink node(s). When sensory data are collected at sink node(s), the event coverage is detected and represented as a weighted graph, where the vertices in this graph correspond to sensor nodes and the weight specified upon the edges reflects the extent of sensory data deviating from a normal sensing range. Event sources are determined, which correspond to the barycenters in this graph. The results of the experiments show that our technique is more energy efficient, especially when the network topology is relatively steady. PMID:26694394

  7. Event Coverage Detection and Event Source Determination in Underwater Wireless Sensor Networks.

    PubMed

    Zhou, Zhangbing; Xing, Riliang; Duan, Yucong; Zhu, Yueqin; Xiang, Jianming

    2015-01-01

    With the advent of the Internet of Underwater Things, smart things are deployed in the ocean space and establish underwater wireless sensor networks for the monitoring of vast and dynamic underwater environments. When events are found to have possibly occurred, accurate event coverage should be detected, and potential event sources should be determined for the enactment of prompt and proper responses. To address this challenge, a technique that detects event coverage and determines event sources is developed in this article. Specifically, the occurrence of possible events corresponds to a set of neighboring sensor nodes whose sensory data may deviate from a normal sensing range in a collective fashion. An appropriate sensor node is selected as the relay node for gathering and routing sensory data to sink node(s). When sensory data are collected at sink node(s), the event coverage is detected and represented as a weighted graph, where the vertices in this graph correspond to sensor nodes and the weight specified upon the edges reflects the extent of sensory data deviating from a normal sensing range. Event sources are determined, which correspond to the barycenters in this graph. The results of the experiments show that our technique is more energy efficient, especially when the network topology is relatively steady. PMID:26694394

  8. A topology-constrained distance network algorithm for protein structure determination from NOESY data.

    PubMed

    Huang, Yuanpeng Janet; Tejero, Roberto; Powers, Robert; Montelione, Gaetano T

    2006-03-15

    This article formulates the multidimensional nuclear Overhauser effect spectroscopy (NOESY) interpretation problem using graph theory and presents a novel, bottom-up, topology-constrained distance network analysis algorithm for NOESY cross peak interpretation using assigned resonances. AutoStructure is a software suite that implements this topology-constrained distance network analysis algorithm and iteratively generates structures using the three-dimensional (3D) protein structure calculation programs XPLOR/CNS or DYANA. The minimum input for AutoStructure includes the amino acid sequence, a list of resonance assignments, and lists of 2D, 3D, and/or 4D-NOESY cross peaks. AutoStructure can also analyze homodimeric proteins when X-filtered NOESY experiments are available. The quality of input data and final 3D structures is evaluated using recall, precision, and F-measure (RPF) scores, a statistical measure of goodness of fit with the input data. AutoStructure has been tested on three protein NMR data sets for which high-quality structures have previously been solved by an expert, and yields comparable high-quality distance constraint lists and 3D protein structures in hours. We also compare several protein structures determined using AutoStructure with corresponding homologous proteins determined with other independent methods. The program has been used in more than two dozen protein structure determinations, several of which have already been published. PMID:16374783

  9. Selected Problems of Determining the Course of Railway Routes by Use of GPS Network Solution

    NASA Astrophysics Data System (ADS)

    Koc, Władysław; Specht, Cezary

    2011-09-01

    The main problem related to railroad surveying design and its maintenance is the necessity to operate in local geodetic reference systems caused by the long rail sections with straight lines and curvatures of the running edge. Due to that reason the geodetic railroad classical surveying methods requires to divide all track for a short measurement section and that caused additional errors. Development of the Global Navigational Satellite Systems (GNSS) positioning methods operating in the standardized World Geodetic System (WGS-84) allowed verification of capability of utilization GPS measurements for railroad surveying. It can be stated that implemented satellite measurement techniques opens a whole new perspective on applied research and enables very precise determination of data for railway line determining, modernization and design. The research works focused on implementation GNSS multi-receivers measurement positioning platform for projecting and stock-taking working based on polish active geodesic network ASG-EUPOS, as a reference frame. In order to eliminate the influence of random measurement errors and to obtain the coordinates representing the actual shape of the track few campaigns were realized in 2009 and 2010. Leica GPS Total station system 1200 SmartRover (with ATX1230 GG antennas) receivers were located in the diameter of the measurement platform. Polish Active Geodetic Network ASG-EUPOS was used as a reference network transmitted Real Time Kinematic Positioning Service according to RTCM 3.1 standard. Optimum time period were selected for GNSS campaign and testing area was chosen without large obstructions. The article presents some surveying results of the measurement campaigns and also discusses the accuracy of the course determination. Analyzes and implementation of results in railroad design process are also discussed.

  10. [Autoimmune hepatitis and overlap syndrome: therapy].

    PubMed

    Löhr, H F

    2002-08-21

    Autoimmune Hepatitis (AIH), primary biliary cirrhosis (PBC) and primary sclerosing cholangitis (PSC) represent acute and chronic inflammatory liver diseases in which immune reactions against host antigens are found to be the major pathological mechanism. Only for AIH there is evidence of an autoimmune etiology and humoral and cellular immune reactions are found directed against various liver cell antigens. By diverse autoantibodies several subgroups of autoimmune hepatitis can be distinguished. A very important disease promoting factor seems to be the genetically determined background for autoimmunity characterized by the HLA haplotype A1, B8 and DR3, respectively DR4. Although the histopathology of AIH shows no pathognomonic features distinguishing this type of hepatitis from virus induced chronic hepatitis there are some distinct characteristic morphological lesions. If untreated the prognosis of AIH is unfavourable but the benefit from immunosuppressive therapy with prednisolone and azathioprin is well established. In the last years there was increasing evidence for an overlap syndrome between AIH and PBC and rarely AIH and PSC. These patients are characterized by PBC characteristic bileduct lesions and oftenly antimitochondrial antibodies (AMA). They also show AIH typical inflammatory hepatic lesions in the periportal areas and portal tracts and oftenly the typical genetical background, the HLA haplotype A1, B8, DR3 or DR4. Most of these patients respond probably to a combination therapy containing prednisolon, azathioprine and ursodesoxycholic acid that leads to the reduction of the inflammatory activity. PMID:12233265

  11. Base drive and overlap protection circuit

    DOEpatents

    Gritter, David J.

    1983-01-01

    An inverter (34) which provides power to an A. C. machine (28) is controlled by a circuit (36) employing PWM control strategy whereby A. C. power is supplied to the machine at a preselectable frequency and preselectable voltage. This is accomplished by the technique of waveform notching in which the shapes of the notches are varied to determine the average energy content of the overall waveform. Through this arrangement, the operational efficiency of the A. C. machine is optimized. The control circuit includes a microcomputer and memory element which receive various parametric inputs and calculate optimized machine control data signals therefrom. The control data is asynchronously loaded into the inverter through an intermediate buffer (38). A base drive and overlap protection circuit is included to insure that both transistors of a complimentary pair are not conducting at the same time. In its preferred embodiment, the present invention is incorporated within an electric vehicle (10) employing a 144 VDC battery pack (32) and a three-phase induction motor (18).

  12. Partial logistic artificial neural network for competing risks regularized with automatic relevance determination.

    PubMed

    Lisboa, Paulo J G; Etchells, Terence A; Jarman, Ian H; Arsene, Corneliu T C; Aung, M S Hane; Eleuteri, Antonio; Taktak, Azzam F G; Ambrogi, Federico; Boracchi, Patrizia; Biganzoli, Elia

    2009-09-01

    Time-to-event analysis is important in a wide range of applications from clinical prognosis to risk modeling for credit scoring and insurance. In risk modeling, it is sometimes required to make a simultaneous assessment of the hazard arising from two or more mutually exclusive factors. This paper applies to an existing neural network model for competing risks (PLANNCR), a Bayesian regularization with the standard approximation of the evidence to implement automatic relevance determination (PLANNCR-ARD). The theoretical framework for the model is described and its application is illustrated with reference to local and distal recurrence of breast cancer, using the data set of Veronesi (1995). PMID:19628458

  13. A MULTIPLEXED ASSAY FOR DETERMINATION OF NEUROTOXICANT EFFECTS ON SPONTANEOUS NETWORK ACTIVITY AND CELL VIABILITY FROM MICROELECTRODE ARRAYS

    EPA Science Inventory

    AbstractTITLE: A MULTIPLEXED ASSAY FOR DETERMINATION OF NEUROTOXICANT EFFECTS ON SPONTANEOUS NETWORK ACTIVITY AND CELL VIABILITY FROM MICROELECTRODE ARRAYSABSTRACT BODY: Microelectrode array (MEA) recordings are increasingly being used as an in vitro method to detect and characte...

  14. Determining quality of caviar from Caspian Sea based on Raman spectroscopy and using artificial neural networks.

    PubMed

    Mohamadi Monavar, H; Afseth, N K; Lozano, J; Alimardani, R; Omid, M; Wold, J P

    2013-07-15

    The purpose of this study was to evaluate the feasibility of Raman spectroscopy for predicting purity of caviars. The 93 wild caviar samples of three different types, namely; Beluga, Asetra and Sevruga were analysed by Raman spectroscopy in the range 1995 cm(-1) to 545 cm(-1). Also, 60 samples from combinations of every two types were examined. The chemical origin of the samples was identified by reference measurements on pure samples. Linear chemometric methods like Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) were used for data visualisation and classification which permitted clear distinction between different caviars. Non-linear methods like Artificial Neural Networks (ANN) were used to classify caviar samples. Two different networks were tested in the classification: Probabilistic Neural Network with Radial-Basis Function (PNN) and Multilayer Feed Forward Networks with Back Propagation (BP-NN). In both cases, scores of principal components (PCs) were chosen as input nodes for the input layer in PC-ANN models in order to reduce the redundancy of data and time of training. Leave One Out (LOO) cross validation was applied in order to check the performance of the networks. Results of PCA indicated that, features like type and purity can be used to discriminate different caviar samples. These findings were also supported by LDA with efficiency between 83.77% and 100%. These results were confirmed with the results obtained by developed PC-ANN models, able to classify pure caviar samples with 93.55% and 71.00% accuracy in BP network and PNN, respectively. In comparison, LDA, PNN and BP-NN models for predicting caviar types have 90.3%, 73.1% and 91.4% accuracy. Partial least squares regression (PLSR) models were built under cross validation and tested with different independent data sets, yielding determination coefficients (R(2)) of 0.86, 0.83, 0.92 and 0.91 with root mean square error (RMSE) of validation of 0.32, 0.11, 0.03 and 0.09 for

  15. Rigidity and soft percolation in the glass transition of an atomistic model of ionic liquid, 1-ethyl-3-methyl imidazolium nitrate, from molecular dynamics simulations--Existence of infinite overlapping networks in a fragile ionic liquid.

    PubMed

    Habasaki, Junko; Ngai, K L

    2015-04-28

    The typical ionic liquid, 1-ethyl-3-methyl imidazolium nitrate (EMIM-NO3), was examined by molecular dynamics simulations of an all-atomistic model to show the characteristics of networks of cages and/or bonds in the course of vitrification of this fragile glass-former. The system shows changes of dynamics at two characteristic temperatures, TB (or Tc) and the glass transition temperature Tg, found in other fragile glass forming liquids [K. L. Ngai and J. Habasaki, J. Chem. Phys. 141, 114502 (2014)]. On decreasing temperature, the number of neighboring cation-anion pairs, NB, within the first minimum of the pair correlation function, g(r)min, increases. On crossing TB (>Tg), the system volume and diffusion coefficient both show changes in temperature dependence, and as usual at Tg. The glass transition temperature, Tg, is characterized by the saturation of the total number of "bonds," NB and the corresponding decrease in degree of freedom, F = [(3N - 6) - NB], of the system consisting of N particles. Similar behavior holds for the other ion-ion pairs. Therefore, as an alternative, the dynamics of glass transition can be interpreted conceptually by rigidity percolation. Before saturation occurring at Tg, the number of bonds shows a remarkable change at around TB. This temperature is associated with the disappearance of the loosely packed coordination polyhedra of anions around cation (or vice versa), related to the loss of geometrical freedom of the polyhedra, fg, of each coordination polyhedron, which can be defined by fg = [(3NV - 6) - Nb]. Here, 3Nv is the degree of freedom of NV vertices of the polyhedron, and Nb is number of fictive bonds. The packing of polyhedra is characterized by the soft percolation of cages, which allows further changes with decreasing temperature. The power spectrum of displacement of the central ion in the cage is found to be correlated with the fluctuation of Nb of cation-cation (or anion-anion) pairs in the polyhedron, although the

  16. Rigidity and soft percolation in the glass transition of an atomistic model of ionic liquid, 1-ethyl-3-methyl imidazolium nitrate, from molecular dynamics simulations—Existence of infinite overlapping networks in a fragile ionic liquid

    NASA Astrophysics Data System (ADS)

    Habasaki, Junko; Ngai, K. L.

    2015-04-01

    The typical ionic liquid, 1-ethyl-3-methyl imidazolium nitrate (EMIM-NO3), was examined by molecular dynamics simulations of an all-atomistic model to show the characteristics of networks of cages and/or bonds in the course of vitrification of this fragile glass-former. The system shows changes of dynamics at two characteristic temperatures, TB (or Tc) and the glass transition temperature Tg, found in other fragile glass forming liquids [K. L. Ngai and J. Habasaki, J. Chem. Phys. 141, 114502 (2014)]. On decreasing temperature, the number of neighboring cation-anion pairs, NB, within the first minimum of the pair correlation function, g(r)min, increases. On crossing TB (>Tg), the system volume and diffusion coefficient both show changes in temperature dependence, and as usual at Tg. The glass transition temperature, Tg, is characterized by the saturation of the total number of "bonds," NB and the corresponding decrease in degree of freedom, F = [(3N - 6) - NB], of the system consisting of N particles. Similar behavior holds for the other ion-ion pairs. Therefore, as an alternative, the dynamics of glass transition can be interpreted conceptually by rigidity percolation. Before saturation occurring at Tg, the number of bonds shows a remarkable change at around TB. This temperature is associated with the disappearance of the loosely packed coordination polyhedra of anions around cation (or vice versa), related to the loss of geometrical freedom of the polyhedra, fg, of each coordination polyhedron, which can be defined by fg = [(3NV - 6) - Nb]. Here, 3Nv is the degree of freedom of NV vertices of the polyhedron, and Nb is number of fictive bonds. The packing of polyhedra is characterized by the soft percolation of cages, which allows further changes with decreasing temperature. The power spectrum of displacement of the central ion in the cage is found to be correlated with the fluctuation of Nb of cation-cation (or anion-anion) pairs in the polyhedron, although the

  17. Rigidity and soft percolation in the glass transition of an atomistic model of ionic liquid, 1-ethyl-3-methyl imidazolium nitrate, from molecular dynamics simulations—Existence of infinite overlapping networks in a fragile ionic liquid

    SciTech Connect

    Habasaki, Junko; Ngai, K. L.

    2015-04-28

    The typical ionic liquid, 1-ethyl-3-methyl imidazolium nitrate (EMIM-NO{sub 3}), was examined by molecular dynamics simulations of an all-atomistic model to show the characteristics of networks of cages and/or bonds in the course of vitrification of this fragile glass-former. The system shows changes of dynamics at two characteristic temperatures, T{sub B} (or T{sub c}) and the glass transition temperature T{sub g}, found in other fragile glass forming liquids [K. L. Ngai and J. Habasaki, J. Chem. Phys. 141, 114502 (2014)]. On decreasing temperature, the number of neighboring cation-anion pairs, N{sub B}, within the first minimum of the pair correlation function, g(r){sub min}, increases. On crossing T{sub B} (>T{sub g}), the system volume and diffusion coefficient both show changes in temperature dependence, and as usual at T{sub g}. The glass transition temperature, T{sub g}, is characterized by the saturation of the total number of “bonds,” N{sub B} and the corresponding decrease in degree of freedom, F = [(3N − 6) − N{sub B}], of the system consisting of N particles. Similar behavior holds for the other ion-ion pairs. Therefore, as an alternative, the dynamics of glass transition can be interpreted conceptually by rigidity percolation. Before saturation occurring at T{sub g}, the number of bonds shows a remarkable change at around T{sub B}. This temperature is associated with the disappearance of the loosely packed coordination polyhedra of anions around cation (or vice versa), related to the loss of geometrical freedom of the polyhedra, f{sub g}, of each coordination polyhedron, which can be defined by f{sub g} = [(3N{sub V} − 6) − N{sub b}]. Here, 3N{sub v} is the degree of freedom of N{sub V} vertices of the polyhedron, and N{sub b} is number of fictive bonds. The packing of polyhedra is characterized by the soft percolation of cages, which allows further changes with decreasing temperature. The power spectrum of displacement of the central ion

  18. Determination of elastic properties of a film-substrate system by using the neural networks

    NASA Astrophysics Data System (ADS)

    Xu, Baiqiang; Shen, Zhonghua; Ni, Xiaowu; Wang, Jijun; Guan, Jianfei; Lu, Jian

    2004-12-01

    An inverse method based on artificial neural network (ANN) is presented to determine the elastic properties of films from laser-genrated surface waves. The surface displacement responses are used as the inputs for the ANN model; the outputs of the ANN are the Young's modulus, density, Poisson's ratio, and thickness of the film. The finite element method is used to calculate the surface displacement responses in a film-substrate system. Levenberg Marquardt algorithm is used as numerical optimization to speed up the training process for the ANN model. In this method, the materials parameters are not recovered from the dispersion curves but rather directly from the transient surface displacement. We have also found that this procedure is very efficient for determining the materials parameters of layered systems.

  19. Integration of wireless sensor network and remote sensing for monitoring and determining irrigation demand in Cyprus

    NASA Astrophysics Data System (ADS)

    Agapiou, Athos; Papadavid, George; Hadjimitsis, Diofantos G.

    2009-09-01

    This paper aims to highlight the benefits from the integration of wireless sensor network / meteorological data and remote sensing for monitoring and determine irrigation demand in Cyprus. Estimating evapotranspiration in Cyprus will help, in taking measures for an effective irrigation water management in the future in the island. For this purpose both multi-spectral satellite images (Landsat 7 ETM+ and ASTER) and hydro-meteorological data from wireless sensors and automatic meteorological stations have been used. The wireless sensor network, which consist approximately twenty wireless nodes, was placed in our case study. The wireless sensor network acts as a wide area distributed data collection system deployed to collect and reliably transmit soil and air environmental data to a remote base-station hosted at Cyprus University of Technology. Furthermore auxiliary meteorological field data, from an automatic meteorological station, nearby our case study, where used such as solar radiation, air temperature, air humidity and wind speed. These data were used in conjunction with remote sensing results. Satellite images where used in ERDAS Imagine Software after the necessary processing: geometric rectification, radiometric calibration and atmospheric corrections. The satellite images were atmospheric corrected and calibrated using spectro-radiometers and sun-photometers measurements taken in situ, in an agricultural area, south-west of the island of Cyprus. Evapotranspiration is difficult to determine since it combines various meteorological and field parameters while in literature quite many different models for estimating ET are indicated. For estimating evapotranspiration from satellite images and the hydro-meteorological data different methods have been evaluated such as FAO Penman-Monteith, Carlson-Buffum and Granger methods. These results have been compared with E-pan methods. Finally a water management irrigation schedule has been applied. The final results are

  20. Determination of DPPH free radical scavenging activity: application of artificial neural networks.

    PubMed

    Musa, Khalid Hamid; Abdullah, Aminah; Al-Haiqi, Ahmed

    2016-03-01

    A new computational approach for the determination of 2,2-diphenyl-1-picrylhydrazyl free radical scavenging activity (DPPH-RSA) in food is reported, based on the concept of machine learning. Trolox standard was mix with DPPH at different concentrations to produce different colors from purple to yellow. Artificial neural network (ANN) was trained on a typical set of images of the DPPH radical reacting with different levels of Trolox. This allowed the neural network to classify future images of any sample into the correct class of RSA level. The ANN was then able to determine the DPPH-RSA of cinnamon, clove, mung bean, red bean, red rice, brown rice, black rice and tea extract and the results were compared with data obtained using a spectrophotometer. The application of ANN correlated well to the spectrophotometric classical procedure and thus do not require the use of spectrophotometer, and it could be used to obtain semi-quantitative results of DPPH-RSA. PMID:26471610

  1. Direct and indirect effects in the regulation of overlapping promoters.

    PubMed

    Bendtsen, Kristian Moss; Erdossy, János; Csiszovszki, Zsolt; Svenningsen, Sine Lo; Sneppen, Kim; Krishna, Sandeep; Semsey, Szabolcs

    2011-09-01

    Optimal response to environmental stimuli often requires activation of certain genes and repression of others. Dual function regulatory proteins play a key role in the differential regulation of gene expression. While repression can be achieved by any DNA binding protein through steric occlusion of RNA polymerase in the promoter region, activation often requires a surface on the regulatory protein to contact RNAP and thus facilitate transcription initiation. RNAP itself is also a DNA binding protein, therefore it can function as a transcriptional repressor. Searching the Escherichia coli promoter database we found that ∼14% of the identified 'forward' promoters overlap with a promoter oriented in the opposite direction. In this article we combine a mathematical model with experimental analysis of synthetic regulatory regions to investigate interference of overlapping promoters. We find that promoter interference depends on the characteristics of overlapping promoters. The model predicts that promoter strength and interference can be regulated separately, which provides unique opportunities for regulation. Our experimental data suggest that in principle any DNA binding protein can be used for both activation and repression of promoter transcription, depending on the context. These findings can be exploited in the construction of synthetic networks. PMID:21609952

  2. Hierarchical link clustering algorithm in networks

    NASA Astrophysics Data System (ADS)

    Bodlaj, Jernej; Batagelj, Vladimir

    2015-06-01

    Hierarchical network clustering is an approach to find tightly and internally connected clusters (groups or communities) of nodes in a network based on its structure. Instead of nodes, it is possible to cluster links of the network. The sets of nodes belonging to clusters of links can overlap. While overlapping clusters of nodes are not always expected, they are natural in many applications. Using appropriate dissimilarity measures, we can complement the clustering strategy to consider, for example, the semantic meaning of links or nodes based on their properties. We propose a new hierarchical link clustering algorithm which in comparison to existing algorithms considers node and/or link properties (descriptions, attributes) of the input network alongside its structure using monotonic dissimilarity measures. The algorithm determines communities that form connected subnetworks (relational constraint) containing locally similar nodes with respect to their description. It is only implicitly based on the corresponding line graph of the input network, thus reducing its space and time complexities. We investigate both complexities analytically and statistically. Using provided dissimilarity measures, our algorithm can, in addition to the general overlapping community structure of input networks, uncover also related subregions inside these communities in a form of hierarchy. We demonstrate this ability on real-world and artificial network examples.

  3. Hierarchical link clustering algorithm in networks.

    PubMed

    Bodlaj, Jernej; Batagelj, Vladimir

    2015-06-01

    Hierarchical network clustering is an approach to find tightly and internally connected clusters (groups or communities) of nodes in a network based on its structure. Instead of nodes, it is possible to cluster links of the network. The sets of nodes belonging to clusters of links can overlap. While overlapping clusters of nodes are not always expected, they are natural in many applications. Using appropriate dissimilarity measures, we can complement the clustering strategy to consider, for example, the semantic meaning of links or nodes based on their properties. We propose a new hierarchical link clustering algorithm which in comparison to existing algorithms considers node and/or link properties (descriptions, attributes) of the input network alongside its structure using monotonic dissimilarity measures. The algorithm determines communities that form connected subnetworks (relational constraint) containing locally similar nodes with respect to their description. It is only implicitly based on the corresponding line graph of the input network, thus reducing its space and time complexities. We investigate both complexities analytically and statistically. Using provided dissimilarity measures, our algorithm can, in addition to the general overlapping community structure of input networks, uncover also related subregions inside these communities in a form of hierarchy. We demonstrate this ability on real-world and artificial network examples. PMID:26172761

  4. Networks.

    ERIC Educational Resources Information Center

    Maughan, George R.; Petitto, Karen R.; McLaughlin, Don

    2001-01-01

    Describes the connectivity features and options of modern campus communication and information system networks, including signal transmission (wire-based and wireless), signal switching, convergence of networks, and network assessment variables, to enable campus leaders to make sound future-oriented decisions. (EV)

  5. Vibrational relaxation and internal conversion in the overlapped optically-allowed 1Bu+ and optically-forbidden 1Bu- or 3Ag- vibronic levels of carotenoids: Effects of diabatic mixing as determined by Kerr-gate fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Kakitani, Yoshinori; Miki, Takeshi; Koyama, Yasushi; Nagae, Hiroyoshi; Nakamura, Ryosuke; Kanematsu, Yasuo

    2009-07-01

    The time constants of the vibrational relaxation, υ = 2 → υ = 1 and υ = 1 → υ = 0, in the 1Bu+ manifold and those of internal conversion from the 1Bu+(0) level, which is isoenergetic (so-called 'diabatic') with the 1Bu- vibronic levels in neurosporene and spheroidene and with the 3Ag- vibronic levels in lycopene and anhydrorhodovibrin, were determined by Kerr-gate fluorescence spectroscopy. The time constants of the vibrational relaxation were in the ˜1:2 ratio, and those of internal conversion agreed with the lifetimes of the diabatic counterparts, i.e., the 1Bu- and 3Ag- electronic states, respectively.

  6. Determination of Important Topographic Factors for Landslide Mapping Analysis Using MLP Network

    PubMed Central

    Alkhasawneh, Mutasem Sh.; Ngah, Umi Kalthum; Mat Isa, Nor Ashidi; Al-batah, Mohammad Subhi

    2013-01-01

    Landslide is one of the natural disasters that occur in Malaysia. Topographic factors such as elevation, slope angle, slope aspect, general curvature, plan curvature, and profile curvature are considered as the main causes of landslides. In order to determine the dominant topographic factors in landslide mapping analysis, a study was conducted and presented in this paper. There are three main stages involved in this study. The first stage is the extraction of extra topographic factors. Previous landslide studies had identified mainly six topographic factors. Seven new additional factors have been proposed in this study. They are longitude curvature, tangential curvature, cross section curvature, surface area, diagonal line length, surface roughness, and rugosity. The second stage is the specification of the weight of each factor using two methods. The methods are multilayer perceptron (MLP) network classification accuracy and Zhou's algorithm. At the third stage, the factors with higher weights were used to improve the MLP performance. Out of the thirteen factors, eight factors were considered as important factors, which are surface area, longitude curvature, diagonal length, slope angle, elevation, slope aspect, rugosity, and profile curvature. The classification accuracy of multilayer perceptron neural network has increased by 3% after the elimination of five less important factors. PMID:24453846

  7. Determining location and size of medical departments in a hospital network: a multiobjective decision support approach.

    PubMed

    Stummer, Christian; Doerner, Karl; Focke, Axel; Heidenberger, Kurt

    2004-02-01

    Decisions on the location and size of medical departments in a given hospital network are prime examples of priority setting in health care, which is an issue of growing political importance. As such decisions are regularly characterized by multiple and often conflicting objectives in real-life, this paper integrates the fields of hospital planning and multiobjective decision support. The proposed two-phase solution procedure for our corresponding mathematical programming model does not require a priori preference information. Instead, it seeks efficient solutions by means of multiobjective tabu search in the first phase, while applying clustering in the second phase to allow the decision makers to interactively explore the solution space until the "best" configuration is determined. The real-world applicability of our approach is illustrated through a numerical example based on hospital data from Germany. PMID:14977095

  8. Neural networks applied to determine the thermophysical properties of amino acid based ionic liquids.

    PubMed

    Cancilla, John C; Perez, Ana; Wierzchoś, Kacper; Torrecilla, José S

    2016-03-01

    A series of models based on artificial neural networks (ANNs) have been designed to estimate the thermophysical properties of different amino acid-based ionic liquids (AAILs). Three different databases of AAILs were modeled using these algorithms with the goal set to estimate the density, viscosity, refractive index, ionic conductivity, and thermal expansion coefficient, and requiring only data regarding temperature and electronic polarizability of the chemicals. Additionally, a global model was designed combining all of the databases to determine the robustness of the method. In general, the results were successful, reaching mean prediction errors below 1% in many cases, as well as a statistically reliable and accurate global model. Attaining these successful models is a relevant fact as AAILs are novel biodegradable and biocompatible compounds which may soon make their way into the health sector forming a part of useful biomedical applications. Therefore, understanding the behavior and being able to estimate their thermophysical properties becomes crucial. PMID:26899458

  9. Determination of Electron Optical Properties for Aperture Zoom Lenses Using an Artificial Neural Network Method.

    PubMed

    Isik, Nimet

    2016-04-01

    Multi-element electrostatic aperture lens systems are widely used to control electron or charged particle beams in many scientific instruments. By means of applied voltages, these lens systems can be operated for different purposes. In this context, numerous methods have been performed to calculate focal properties of these lenses. In this study, an artificial neural network (ANN) classification method is utilized to determine the focused/unfocused charged particle beam in the image point as a function of lens voltages for multi-element electrostatic aperture lenses. A data set for training and testing of ANN is taken from the SIMION 8.1 simulation program, which is a well known and proven accuracy program in charged particle optics. Mean squared error results of this study indicate that the ANN classification method provides notable performance characteristics for electrostatic aperture zoom lenses. PMID:26879447

  10. Efficient construction of robust artificial neural networks for accurate determination of superficial sample optical properties.

    PubMed

    Chen, Yu-Wen; Tseng, Sheng-Hao

    2015-03-01

    In general, diffuse reflectance spectroscopy (DRS) systems work with photon diffusion models to determine the absorption coefficient μa and reduced scattering coefficient μs' of turbid samples. However, in some DRS measurement scenarios, such as using short source-detector separations to investigate superficial tissues with comparable μa and μs', photon diffusion models might be invalid or might not have analytical solutions. In this study, a systematic workflow of constructing a rapid, accurate photon transport model that is valid at short source-detector separations (SDSs) and at a wide range of sample albedo is revealed. To create such a model, we first employed a GPU (Graphic Processing Unit) based Monte Carlo model to calculate the reflectance at various sample optical property combinations and established a database at high speed. The database was then utilized to train an artificial neural network (ANN) for determining the sample absorption and reduced scattering coefficients from the reflectance measured at several SDSs without applying spectral constraints. The robustness of the produced ANN model was rigorously validated. We evaluated the performance of a successfully trained ANN using tissue simulating phantoms. We also determined the 500-1000 nm absorption and reduced scattering spectra of in-vivo skin using our ANN model and found that the values agree well with those reported in several independent studies. PMID:25798300