Science.gov

Sample records for determine polyelectrolyte solutions

  1. Dynamics in Multicomponent Polyelectrolyte Solutions

    NASA Astrophysics Data System (ADS)

    Nagao, Michihiro

    2010-03-01

    Double-network hydrogels (DN-gel) prepared from the combination of a moderately cross-linked anionic polyelectrolyte (poly(2-acrylamido-2-methyl-1-propanesulfonic acid), PAMPS) and an un-cross-linked linear polymer (polyacrylamide, PAAm) solution show strong mechanical properties far superior to that of their individual constituents [1]. To determine the origin of the superior properties of DN-gels, we investigated the structure and the chain dynamics of model PAMPS/PAAm solution blends using small-angle neutron scattering and neutron spin-echo measurements [2]. Akcasu's dynamic scattering theory for a multicomponent system [3] is modified to include polyelectrolytes, and the resulting equation describes well the neutron spin-echo results over the entire wavevector range covered in our experiments. Parameters such as effective solvent viscosity were deduced from the measured data using the modified Akcasu equation. Both the relaxation time at large length scales (10-100 nm) and the segmental diffusion coefficient at short length scales (0.1-1 nm) or the effective solvent viscosity show good accordance with the macroscopic rheological behavior of the solution blends. [4pt] [1] J.P. Gong et al., Adv. Mater. 15, 1155 (2003). [0pt] [2] S. Lee et al., Macromolecules 42, 1293 (2009). [0pt] [2] A.Z. Akcasu, in Dynamic Liht Scattering, The Method and Some Applications; W. Brown Ed. (Oxford University Press, London 1992).

  2. Solution rheology of polyelectrolytes and polyelectrolyte-surfactant systems

    NASA Astrophysics Data System (ADS)

    Plucktaveesak, Nopparat

    (styrene-alt-sodium maleate) and poly(diisobutylene- alt-sodium maleate) show the polyelectrolyte behavior as predicted. However, the viscosity as a function of concentration of sodium maleate based copolymers with 1-alkenes; 1-octene (C8), 1-decene (C10), 1-dodecene (C12) and 1-hexene (C14) exhibit an abnormal scaling power, which might be caused by aggregation of the alkene tails to form micelles. In the last chapter, we report the rheological properties of aqueous solutions of poly(acrylic acid) and oppositely charged surfactant, dodecyl trimethylammonium bromide (C12TAB). The solution viscosity decreases as surfactant is added, partly because the polyelectrolyte wraps around the surface of the spherical surfactant micelles, shortening the effective chain length. The effects of polymer molecular weight, polymer concentration, and polymer charge have been studied with no added salt. The results are compared with the predictions of a simple model based on the scaling theory for the viscosity of dilute and unentangled semidilute polyelectrolyte solutions in good solvent. This model takes into account two effects of added surfactant. The effective chain length of the polyelectrolyte is shortened when a significant fraction of the chain wraps around micelles. Another effect is the change of solution ionic strength resulting from surfactant addition that further lowers the viscosity. The parameters used in this model are independently determined, allowing the model to make a quantitative prediction of solution viscosity with no adjustable parameters. The model is also applied to predict the decrease in viscosity of various polyelectrolyte/oppositely charged surfactant systems reported in literature. The results are in good agreement with experimental data, proving that our model applies to all polyelectrolytes mixed with oppositely charged surfactants that form spherical micelles.

  3. Bundle Binding in Polyelectrolyte Solutions

    SciTech Connect

    Stevens, M.J.

    1999-01-21

    Stiff polyelectrolytes are found to spontaneously form oriented bundles. Conditions under which bundling occurs are found. Molecular dynamics simulations show that divalent counterions are necessary, and the chains must be sufficiently long and stiff. No aggregation occurs for monovalent counterions. For flexible or short chains aggregation occurs, but bundle formation does not. Due to dynamical constraints the systems tend to order into a network of connected bundles, not a single bundle.

  4. Solution dynamics of synthetic and natural polyelectrolytes

    NASA Astrophysics Data System (ADS)

    Krause, Wendy E.

    Polyelectrolytes are abundant in nature and essential to life, and used extensively in industry. This work discussed two polyelectrolytes: sodium poly(2-acrylamido-2-methylpropanesulfonate) (NaPAMS), synthetic polyelectrolyte, and sodium hyaluronate (NaHA), a glycosaminoglycan. Rheological data of NaPAMS solutions of variable chain length and concentration were reported. A strong dependence of viscosity eta on chain length: eta ˜ M2.4 was found. The comparison of the rheological data with two proposed scaling theories (Dobrynin 1995, Witten 1987) forces the conclusion that neither theory is correct. A possible interpretation of the viscosity data falling between the predictions of the two scaling theories is that some chain rigidity may persist beyond the correlation length. A sample model for the conductivity of semidilute polyelectrolytes with no added salt was presented. The model correctly describes the logarithmic decrease of specific conductance observed for many polyelectrolytes at low concentration (below ca. 10-2M), and is in good agreement with data from NaPAMS solutions. NaHA in phosphate buffered saline behaves as a typical polyelectrolyte in the high-salt limit, as Newtonian viscosities are observed over a wide range of shear rates. There is no evidence of intermolecular hydrogen bonding causing gel formation in NaHA solutions without protein present. The viscosity of 3 mg/mL NaHA was measured in the presence of the selected anti-inflammatory agents. Of the seven additives investigated only (D)-penicillamine significantly altered the rheology of HA. (D)-Penicillamine dramatically reduced the viscosity of HA, probably by disrupting intramolecular hydrogen bonding. The plasma proteins albumin and gamma-globulins bind to HA in solution to form a weak reversible gel. The rheology and osmotic pressure of the simple model for synovial fluid, consisting of 3mg/mL NaHA, 11 mg/mL albumin, and 7 mg/mL gamma-globulins in phosphate buffered saline, were studied

  5. A molecular-thermodynamic model for polyelectrolyte solutions

    SciTech Connect

    Jiang, J.; Liu, H.; Hu, Y.; Prausnitz, J.M.

    1998-01-01

    Polyelectrolyte solutions are modeled as freely tangent-jointed, charged hard-sphere chains and corresponding counterions in a continuum medium with permitivity {var_epsilon}. By adopting the sticky-point model, the Helmholtz function for polyelectrolyte solutions is derived through the r-particle cavity-correlation function (CCF) for chains of sticky, charged hard spheres. The r-CCF is approximated by a product of effective nearest-neighbor two-particle CCFs; these are determined from the hypernetted-chain and mean-spherical closures (HNC/MSA) inside and outside the hard core, respectively, for the integral equation theory for electrolytes. The colligative properties are given as explicit functions of a scaling parameter {Gamma} that can be estimated by a simple iteration procedure. Osmotic pressures, osmotic coefficients, and activity coefficients are calculated for model solutions with various chain lengths. They are in good agreement with molecular simulation and experimental results. {copyright} {ital 1998 American Institute of Physics.}

  6. Nematic ordering in dilute solutions of rodlike polyelectrolytes

    NASA Astrophysics Data System (ADS)

    Potemkin, Igor I.; Khokhlov, Alexei R.

    2004-06-01

    Quantitative theory of orientational behavior of rodlike polyelectrolytes in dilute solution is developed. We find that in salt-free solutions many-body Coulomb interactions between macro- and counterions favor nematic ordering. It is shown that the orientationally isotropic phase of the solution becomes unstable toward nematic ordering at polymer concentration smaller than the overlap concentration. Our predictions are consistent with experimental observations for synthetic polyelectrolytes poly(p-phenylene)sulfonates in aqueous solutions.

  7. The viscosity of short polyelectrolyte solutions.

    PubMed

    Izzo, Dora; Cloitre, Michel; Leibler, Ludwik

    2014-03-21

    We consider the viscosity of solutions of highly charged short polyelectrolytes. Our system is a poly(styrene-maleic acid) copolymer solution (SMA) with various added salt concentrations in dilute and semidilute regimes. The SMA solutions show some particular features: (i) variations of the specific viscosity measured for different values of concentration and ionic strength can be rescaled on two universal curves when plotted as a function of the effective volume fraction; (ii) the reduced viscosity is proportional to the Debye length. In order to describe the viscosity of such a system we model the motion of the charged rods considering a simpler system: we replace each charged rod and its corresponding charge cloud by an effective neutral rod. This modified system is yet below the concentrated regime and, at most, steric interactions are left. In the semidilute regime, we model the rescaled rods moving under a mean field potential and obtain a dynamical equation for the orientational tensor, considered small, and the viscosity is derived from it. Within our mean field approach, the effects due to the rod Brownian motion and due to the potential cancel each other and the behavior of the viscosity is explained in terms of the effective volume fraction only. Our predictions are in good qualitative agreement with the experimental results over a wide range of parameters, and suggest a method for obtaining the rotational diffusion constant in the semidilute regime. PMID:24652236

  8. Advancements to the theory of free solution electrophoresis of polyelectrolytes

    NASA Astrophysics Data System (ADS)

    McCormick, Laurette

    Capillary electrophoresis (CE) is the workhorse of countless analytical laboratories and is used routinely in various industries including pharmaceutical, forensic and clinical applications. Basically, CE is a method for separating charged molecular species in a buffer-filled capillary by the application of an electric field; the analytes move from one end of the capillary to the detector at the other end at speeds determined by their charge, size and shape. Generally, in free solution CE uniformly charged polyelectrolytes (such as DNA) are free-draining, meaning that their speed is independent of their size. Hence, until recently, a gel or other sieving medium has been necessary for the separation of polyelectrolytes; however, modifying uniformly charged polymers on the molecular level, via conjugation to uncharged polymers, allows for separation in free solution CE. In this thesis, advancements to the theory of free solution electrophoresis of polyelectrolytes, in particular, to the theories for two new free solution electrophoresis methods relying on conjugation, are presented. The first method, called End Labelled Free Solution Electrophoresis (ELFSE), can be used to sequence DNA, a negatively charged polymer in solution. Two different means of improving the resolution of ELFSE are predicted, one based on the molecular end effect, the other based on using a controlled electro-osmotic flow. In addition, a theory for the segregation of the DNA and label coils in ELFSE is presented. The second method is called Free Solution Conjugate Electrophoresis (FSCE); it allows for characterization of a sample of neutral polymers differing in length. The relevant theory, developed herein, elucidates how to accurately determine the molar mass distribution of the sample through FSCE measurements. In addition, supporting theories are developed that clarify the correct equation for the diffusion coefficient of molecules undergoing free solution electrophoresis, as well as

  9. The aqueous-polyelectrolyte dye solution as an active laser medium

    SciTech Connect

    Akimov, A I; Saletskii, A M

    2000-11-30

    The spectral, luminescent, and lasing properties of aqueous solutions of a cationic dye rhodamine 6G with additions of anion polyelectrolytes - polyacrylic and polymethacrylic acids - are studied. It is found that the energy and spectral properties of lasing of these solutions depend on the ratio of concentrations of polyelectrolyte and molecules. It is also found that the lasing parameters of aqueous-polyelectrolyte dye solutions can be controlled by changing the structure of the molecular system. The variation in the structure of aqueous-polyelectrolyte dye solutions of rhodamine 6G resulted in an almost five-fold increase in the lasing efficiency compared to that in aqueous dye solutions. (lasers, active media)

  10. Employment of Gibbs-Donnan-based concepts for interpretation of the properties of linear polyelectrolyte solutions

    USGS Publications Warehouse

    Marinsky, J.A.; Reddy, M.M.

    1991-01-01

    Earlier research has shown that the acid dissociation and metal ion complexation equilibria of linear, weak-acid polyelectrolytes and their cross-linked gel analogues are similarly sensitive to the counterion concentration levels of their solutions. Gibbs-Donnan-based concepts, applicable to the gel, are equally applicable to the linear polyelectrolyte for the accommodation of this sensitivity to ionic strength. This result is presumed to indicate that the linear polyelectrolyte in solution develops counterion-concentrating regions that closely resemble the gel phase of their analogues. Advantage has been taken of this description of linear polyelectrolytes to estimate the solvent uptake by these regions. ?? 1991 American Chemical Society.

  11. Counterion adsorption theory of dilute polyelectrolyte solutions: Apparent molecular weight, second virial coefficient, and intermolecular structure factor

    PubMed Central

    Muthukumar, M.

    2012-01-01

    Polyelectrolyte chains are well known to be strongly correlated even in extremely dilute solutions in the absence of additional strong electrolytes. Such correlations result in severe difficulties in interpreting light scattering measurements in the determination of the molecular weight, radius of gyration, and the second virial coefficient of charged macromolecules at lower ionic strengths from added strong electrolytes. By accounting for charge-regularization of the polyelectrolyte by the counterions, we present a theory of the apparent molecular weight, second virial coefficient, and the intermolecular structure factor in dilute polyelectrolyte solutions in terms of concentrations of the polymer and the added strong electrolyte. The counterion adsorption of the polyelectrolyte chains to differing levels at different concentrations of the strong electrolyte can lead to even an order of magnitude discrepancy in the molecular weight inferred from light scattering measurements. Based on counterion-mediated charge regularization, the second virial coefficient of the polyelectrolyte and the interchain structure factor are derived self-consistently. The effect of the interchain correlations, dominating at lower salt concentrations, on the inference of the radius of gyration and on molecular weight is derived. Conditions for the onset of nonmonotonic scattering wave vector dependence of scattered intensity upon lowering the electrolyte concentration and interpretation of the apparent radius of gyration are derived in terms of the counterion adsorption mechanism. PMID:22830728

  12. Effect of Polyelectrolyte Stiffness and Solution pH on the Nanostructure of Complexes Formed by Cationic Amphiphiles and Negatively Charged Polyelectrolytes.

    PubMed

    Ram-On, Maor; Cohen, Yachin; Talmon, Yeshayahu

    2016-07-01

    The interaction between amphiphiles and polyelectrolytes has been widely investigated in recent years due to their potential application in industry and medicine, with special focus on gene therapy. The cationic lipid dioleoyl trimethylammonium propane, DOTAP, and the oppositely charged polyelectrolytes, sodium poly(acrylic acid) and sodium poly(styrenesulfonate), form multilamellar complexes in water. Because of the different molecular stiffness of the two polyelectrolytes, they form different nanostructured complexes. Also, because of the different ionization behavior of the two polyelectrolytes, pH differently affects the complexation of the polyelectrolytes with didodecyldimethylammonium bromide (DDAB), another cationic surfactant. We used cryogenic temperature transmission electron microscopy (cryo-TEM) and small-angle X-ray scattering (SAXS) to compare the nanostructures formed. Our results show that although the basic nanostructures of the complexes are always lamellar (multilamellar or unilamellar) the morphology of the complexes is affected by the polyelectrolyte rigidity and the solution pH. PMID:27049758

  13. Salting-out and Salting-in in Polyelectrolyte Solutions

    NASA Astrophysics Data System (ADS)

    Zhang, Pengfei; Wu, Jianzhong; Wang, Zhen-Gang

    The phase behavior of polyelectrolyte (PE) solutions is governed by complicated interplay involving the mixing entropy, excluded volume, chain connectivity, and electrostatic interactions. Here we study the phase behavior of PE solutions in both salt-free condition and with added salt using a liquid-state (LS) theory based thermodynamic model. The LS model accounts or the hard-core repulsion by the Canahan-Starling equation of state, correlations due to chain connectivity by the first-order thermodynamic perturbation theory, and electrostatic correlations by the mean-spherical approximation. In comparison to the prediction from the well-known Voorn-Overbeek theory, the LS model predicts loop-type binodal curves in the salt-PE concentration diagram at temperatures slightly above the critical temperature of PE solution in salt-free case, consistent with the experimental study. The phase separated region shrinks with increasing temperature. Three scenarios of salting-out and salting-in phenomenon are predicted with addition of salts based, depending on the PE concentration.

  14. Radius of gyration and intrinsic viscosity of polyelectrolyte solutions

    SciTech Connect

    Milas, M.; Borsali, R.; Rinaudo, M.

    1993-12-31

    Relatively low molecular weights polyelectrolytes (10{sup 4}-10{sup 6}) behave as worm-like chain when electrostatic repulsions are assumed to govern the excluded volume parameter. Under such conditions, predictions of chain expansion and effect of polyelectrolyte concentrations are made assuming that unperturbed dimensions could be obtained at infinite salt content. Experimental studies of an ionic polysaccharide, namely the Na-hyaluronate, were done and the values obtained for the radius of gyration as well as the intrinsic viscosity at different charge densities are in good agreement with the predictions.

  15. Monte Carlo simulation and equation of state for flexible charged hard-sphere chain fluids: Polyampholyte and polyelectrolyte solutions

    SciTech Connect

    Jiang, Hao; Adidharma, Hertanto

    2014-11-07

    The thermodynamic modeling of flexible charged hard-sphere chains representing polyampholyte or polyelectrolyte molecules in solution is considered. The excess Helmholtz energy and osmotic coefficients of solutions containing short polyampholyte and the osmotic coefficients of solutions containing short polyelectrolytes are determined by performing canonical and isobaric-isothermal Monte Carlo simulations. A new equation of state based on the thermodynamic perturbation theory is also proposed for flexible charged hard-sphere chains. For the modeling of such chains, the use of solely the structure information of monomer fluid for calculating the chain contribution is found to be insufficient and more detailed structure information must therefore be considered. Two approaches, i.e., the dimer and dimer-monomer approaches, are explored to obtain the contribution of the chain formation to the Helmholtz energy. By comparing with the simulation results, the equation of state with either the dimer or dimer-monomer approach accurately predicts the excess Helmholtz energy and osmotic coefficients of polyampholyte and polyelectrolyte solutions except at very low density. It also well captures the effect of temperature on the thermodynamic properties of these solutions.

  16. Electrical conductivity of aqueous polyelectrolyte solutions in the presence of counterion condensation: The scaling approach revisited

    NASA Astrophysics Data System (ADS)

    Bordi, F.; Cametti, C.; Gili, T.

    2002-08-01

    The conductometric properties of aqueous polyelectrolyte solutions in the absence of added salt are reviewed in the light of the dynamic scaling description of the polymer conformation in different concentration regimes, recently proposed by Dobrynin and Rubinstein [Macromolecules 28, 1859 (1995); 32, 915 (1999)]. The scaling approach to the transport properties of polyelectrolyte solutions allows us to separate contributions due to polymer conformation from those due to the ionic character of the chain, and offers the possibility to extend the validity of the Manning conductivity model to the dilute and semidilute regimes. Moreover, the quality of the solvent, influencing the polyion-counterion interactions, can be properly taken into account. The electrical conductivity predicted by this scaling approach compares reasonably well with the observed values for a model polyelectrolyte (polyacrylate sodium salt in aqueous solutions, good solvent condition) over an extended concentration range from the dilute to the semidilute regime.

  17. Motion of Molecular Probes and Viscosity Scaling in Polyelectrolyte Solutions at Physiological Ionic Strength.

    PubMed

    Sozanski, Krzysztof; Wisniewska, Agnieszka; Kalwarczyk, Tomasz; Sznajder, Anna; Holyst, Robert

    2016-01-01

    We investigate transport properties of model polyelectrolyte systems at physiological ionic strength (0.154 M). Covering a broad range of flow length scales-from diffusion of molecular probes to macroscopic viscous flow-we establish a single, continuous function describing the scale dependent viscosity of high-salt polyelectrolyte solutions. The data are consistent with the model developed previously for electrically neutral polymers in a good solvent. The presented approach merges the power-law scaling concepts of de Gennes with the idea of exponential length scale dependence of effective viscosity in complex liquids. The result is a simple and applicable description of transport properties of high-salt polyelectrolyte solutions at all length scales, valid for motion of single molecules as well as macroscopic flow of the complex liquid. PMID:27536866

  18. Motion of Molecular Probes and Viscosity Scaling in Polyelectrolyte Solutions at Physiological Ionic Strength

    PubMed Central

    Sozanski, Krzysztof; Wisniewska, Agnieszka; Kalwarczyk, Tomasz; Sznajder, Anna; Holyst, Robert

    2016-01-01

    We investigate transport properties of model polyelectrolyte systems at physiological ionic strength (0.154 M). Covering a broad range of flow length scales—from diffusion of molecular probes to macroscopic viscous flow—we establish a single, continuous function describing the scale dependent viscosity of high-salt polyelectrolyte solutions. The data are consistent with the model developed previously for electrically neutral polymers in a good solvent. The presented approach merges the power-law scaling concepts of de Gennes with the idea of exponential length scale dependence of effective viscosity in complex liquids. The result is a simple and applicable description of transport properties of high-salt polyelectrolyte solutions at all length scales, valid for motion of single molecules as well as macroscopic flow of the complex liquid. PMID:27536866

  19. Solvent quality influence on the dielectric properties of polyelectrolyte solutions: A scaling approach

    NASA Astrophysics Data System (ADS)

    Bordi, F.; Cametti, C.; Gili, T.; Sennato, S.; Zuzzi, S.; Dou, S.; Colby, R. H.

    2005-09-01

    The dielectric properties of polyelectrolytes in solvent of different quality have been measured in an extended frequency range and the dielectric parameters associated with the polarization induced by counterion fluctuation over some peculiar polyion lengths have been evaluated. Following the scaling theory of polyelectrolyte solutions and the recent models developed by Dobrynin and Rubinstein that explicitly take into account the quality of the solvent on the polyion chain conformation, we have reviewed and summarized a set of scaling laws that describe the dielectric behavior of these systems in the dilute and semidilute regime. Moreover, for poorer solvents, where theory of hydrophobic polyelectrolytes predicts, and computer simulation confirms, a particular chain structure consisting of partially collapsed monomers (beads) connected by monomer strings, we derived a scaling law. These predictions are compared with the results obtained from the dielectric parameters (the dielectric increment Δγ and the relaxation time τion ) of the “intermediate” frequency relaxation of two partially charged polymers, which possess a carbon-based backbone for which water is a poor solvent and ethylene glycol is a good solvent. By varying the solvent composition (a water-ethylene glycol mixture), we have tuned the quality of the solvent, passing from poor to good condition and have observed the predicted scaling for all the systems investigated. These findings give a further support to the scaling theory of polyelectrolyte solutions and to the necklace model for hydrophobic polyelectrolytes in poor solvents.

  20. Using Optical Tweezers for the Characterization of Polyelectrolyte Solutions with Very Low Viscoelasticity

    PubMed Central

    2013-01-01

    Recently, optical tweezing has been used to provide a method for microrheology addressed to measure the rheological properties of small volumes of samples. In this work, we corroborate this emerging field of microrheology by using these optical methods for the characterization of polyelectrolyte solutions with very low viscoelasticity. The influence of polyelectrolyte (i.e., polyacrylamide, PAM) concentration, specifically its aging, of the salt concentration is shown. The close agreement of the technique with classical bulk rheological measurements is demonstrated, illustrating the advantages of the technique. PMID:23786307

  1. Structure Formation in Salt-Free Solutions of Amphiphilic Sulfonated Polyelectrolytes

    NASA Astrophysics Data System (ADS)

    Bockstaller, Michael; Koehler, Werner

    2000-03-01

    Self-assembled systems have long attracted attention due to their practical importance in many technical and biological fields. Dodecyl-substituted poly(para-phenylen)sulfonates (abbreviated PPPS) are highly charged polyelectrolytes which in the uncharged state have been investigated extensively and an intrinsic persistence length of 15 nm has been reported. Due to their hydrophobic side chains, PPPS are compatible with water only as micellar aggregates and tend to form supramolecular structures even at concentrations as low as 10-5mol_mon.units/l. Because of the rodlike conformation of PPPS, this self-assembly leads to aggregates of anisotropic shape. Therefore, depolarized light scattering was employed to yield complementary information about structure and dynamics of these complex fluids. Aqueous solutions of PPPS at room temperature undergo a structural transition at a critical concentration of c_crit.=0.016 g/l. This transition is characterized by a strong increase of scattered intensity in forward direction and dynamic depolarized scattering. Above c_crit. the cylindrical micelles (L=310 nm, d=3.1 nm, N_radial=12) self assembly into large ellipsoidal clusters of size in the μ m range. Due to the strong increase of depolarized scattered intensity there has to be a preferential orientation of the micelles inside those clusters, which thus represent a lyotropic mesophase. By combining static and dynamic light scattering for the low q-range as well as small angle x-ray scattering for the higher q-range it is possible to determine size and shape of each aggregation step. Decreasing the molecular weight of the PPPS has profound influence on the micellar length and hence on c_crit. which is close to the overlap concentration (c ~ 1/L^3) allowing for the observation of the polyelectrolyte effect.

  2. Preparation of conductive PDDA/(PEDOT:PSS) multilayer thin film: influence of polyelectrolyte solution composition.

    PubMed

    Jurin, F E; Buron, C C; Martin, N; Filiâtre, C

    2014-10-01

    Self-assembled multilayer films made of PEDOT:PSS poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) and PDDA poly(diallyldimethylammonium chloride) were prepared using layer-by-layer method. In order to modify the growth regime of the multilayer, to fabricate an electrical conductive film and to control its thickness, the effects of pH, type of electrolyte, ionic strength and polyelectrolyte concentration were investigated. Optical reflectometry measurements show that the pH of the solutions has no effect on the film growth while the adsorbed amount increases more rapidly when BaCl2 is used instead of NaCl as electrolyte. An increase in the ionic strength (with NaCl) induces a change in the growth regime from a linear to an exponential one at low polyelectrolyte concentration. As UV-vis measurements indicate, no decomplexation of PEDOT was recorded after film preparation. With polyelectrolyte concentration below 1 g L(-1), no conductive films were obtained even if 50 bilayers were deposited. A conductive film was prepared with a polyelectrolyte concentration of 1 g L(-1) and the measured conductivity was 0.3 S m(-1). A slight increase in conductivity was recorded when BaCl2 was used probably due to a modification of the film structure. PMID:24984072

  3. Structural Dynamics of Star-Shaped Weak Polyelectrolytes in Dilute Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Qu, Chen; Zhu, Y. Elaine

    Weak polyelectrolyte (PE) bearing tunable charges along their backbones show great potential as ``smart'' polymer materials for diverse applications from drug delivery to energy storage. With the introduction of branched topology, the local counterion distribution in the vicinity to the polyelectrolyte segments becomes highly inhomogeneous. To experimentally investigate the interplay between structural dynamics and local electric environment of a branched polyelectrolyte, in this work we custom synthesized star-shaped poly(2-vinylpyridine) (P2VP) using reversible addition fragmentation chain transfer (RAFT) polymerization and labeled P2VP stars with pH-sensitive fluorophore precisely either in the center or periphery. By employing fluorescence correlation spectroscopy (FCS) with photon counts histogram (PCH) analysis, we observed gradual stretched-to-collapses conformational transition with increasing solution pH for both P2VP stars of different fluorophore labeling locations. However, the measured local pH, or local proton concentration, shows strong dependence of the fluorophore labeling locations. Higher electric potential yet lower ionization degree was observed in the core of P2VP star than that in the periphery. Ongoing work is carried out to examine the scaling behaviors of P2VP star sizes with varied number of arms, arm lengths and counterion concentrations in dilute aqueous solutions.

  4. Apparent Ionic Charge in Electrolyte and Polyelectrolyte Solutions

    ERIC Educational Resources Information Center

    Magdelenat, H.; And Others

    1978-01-01

    Compares average displacements of charged particles under thermal motion alone with those obtained by the action of an external electric field to develop a concept of "apparent charge" to approximate actual structural charge in an electrolyte solution. (SL)

  5. Length-Scale Dependent Viscosity in Semidilute Polyelectrolyte Solutions

    NASA Astrophysics Data System (ADS)

    Poling-Skutvik, Ryan; Krishnamoorti, Ramanan; Conrad, Jacinta

    2015-03-01

    Using optical microscopy and particle tracking algorithms, we measured the mean-squared displacements (MSDs) of fluorescent polystyrene particles with diameters ranging from 300 nm to 2 μm suspended in semidilute solutions of high molecular weight partially hydrolyzed polyacrylamide. The solutions had polymer concentrations ranging from 0.67 to 67c*, where c* is the overlap concentration, and estimated correlation lengths of ~ 100 to 900 nm. At short times, the particles exhibited subdiffusive behavior characterized by MSD ~tα with α < 1 . On long time scales, the particles transitioned to Fickian diffusion (α = 1) and their diffusivity was calculated from the slope of the MSD. Whereas the large particles agreed with predictions using the Stokes-Einstein equation and bulk zero-shear viscosity, the smaller particles diffused much faster than predicted. The relative diffusivities do not collapse onto a single curve, but rather form a continuum that varies with particle size. This indicates that the particles experience a size-dependent effective viscosity mediated by the ratio of particle diameter to characteristic length scales in the polymer solution.

  6. Elastic properties of swollen polyelectrolyte gels in aqueous salt solutions.

    PubMed

    Sasaki, Shigeo

    2006-03-01

    The elastic relaxation responding to a uniaxially stretched poly(acrylic acid) rodlike gel in the aqueous NaCl solution was investigated. The relaxation elucidated the shear (mu) and bulk (K) moduli and the frictional coefficients (sigma) of the fully ionized gel at pH above 9 as functions of the degree of swelling, which was controlled by the NaCl concentration (C(S)) of the solution. Two gels, cross-linked chains of which consist of 500 (GelA500) and 50 (GelA50) monomeric units, were examined to investigate the effect of the chain length on the elastic behavior. The moduli of GelA500 increased with swelling at C(S) below 100 mM and decreased at C(S) above it. The mu values of both gels can be characterized by the power function of gel diameter, d as mu proportional, variantd(beta). The beta values being -1 at C(S) above 100 mM transitionally changed to 1.2 at C(S) about 100 mM. That is, the dimensionality of space for the chains to distribute, n(dim) [= (beta+5)/(beta+2) according to the conventional theory [Sasaki et al., J. Chem. Phys. 102, 5694 (1995)

  7. From single Debye-Hückel chains to polyelectrolyte solutions: Simulation results

    NASA Astrophysics Data System (ADS)

    Kremer, Kurt

    1996-03-01

    This lecture will present results from simulations of single weakly charged flexible chains, where the electrostatic part of the interaction is modeled by a Debye-Hückel potential,( with U. Micka, IFF, Forschungszentrum Jülich, 52425 Jülich, Germany) as well as simulations of polyelectrolyte solutions, where the counterions are explicitly taken into account( with M. J. Stevens, Sandia Nat. Lab., Albuquerque, NM 87185-1111) ( M. J. Stevens, K. Kremer, JCP 103), 1669 (1995). The first set of the simulations is meant to clear a recent contoversy on the dependency of the persistence length LP on the screening length Γ. While the analytic theories give Lp ~ Γ^x with either x=1 or x=2, the simulations find for all experimentally accessible chain lengths a varying exponent, which is significantly smaller than 1. This causes serious doubts on the applicability of this model for weakly charged polyelectrolytes in general. The second part deals with strongly charged flexible polyelectrolytes in salt free solution. These simulations are performed for multichain systems. The full Coulomb interactions of the monomers and counterions are treated explicitly. Experimental measurements of the osmotic pressure and the structure factor are reproduced and extended. The simulations reveal a new picture of the chain structure based on calculations of the structure factor, persistence length, end-to-end distance, etc. Even at very low density, the chains show significant bending. Furthermore, the chains contract significantly before they start to overlap. We also show that counterion condensation dramatically alters the chain structure, even for a good solvent backbone.

  8. Polyelectrolyte and carbon nanotube multilayers made from ionic liquid solutions

    NASA Astrophysics Data System (ADS)

    Nakashima, Takuya; Zhu, Jian; Qin, Ming; Ho, Szushen; Kotov, Nicholas A.

    2010-10-01

    The inevitable contact of substrates with water during the traditional practice of layer-by-layer assembly (LBL) creates problems for multiple potential applications of LBL films in electronics. To resolve this issue, we demonstrate here the possibility of a LBL process using ionic liquids (ILs), which potentially eliminates corrosion and hydration processes related to aqueous media and opens additional possibilities in structural control of LBL films. ILs are also considered to be one of the best ``green'' processing solvents, and hence, are advantageous in respect to traditional organic solvents. Poly(ethyleneimine) (PEI) and poly(sodium styrenesulfonate) (PSS) were dispersed in a hydrophilic IL and successfully deposited in the LBL fashion. To produce electroactive thin films with significance to electronics, a similar process was realized for PSS-modified single-walled carbon nanotubes (SWNT-PSS) and poly(vinyl alcohol) (PVA). Characterization of the coating using standard spectroscopy and microscopy techniques typical of the multilayer field indicated that there are both similarities and differences in the structure and properties of LBL films build from ILs and aqueous solutions. The films exhibited electrical conductivity of 102 S m-1 with transparency as high as 98% for visible light, which is comparable to similar parameters for many carbon nanotube and graphene films prepared by both aqueous LBL and other methods.The inevitable contact of substrates with water during the traditional practice of layer-by-layer assembly (LBL) creates problems for multiple potential applications of LBL films in electronics. To resolve this issue, we demonstrate here the possibility of a LBL process using ionic liquids (ILs), which potentially eliminates corrosion and hydration processes related to aqueous media and opens additional possibilities in structural control of LBL films. ILs are also considered to be one of the best ``green'' processing solvents, and hence, are

  9. Polyelectrolytes and Their Biological Interactions

    PubMed Central

    Katchalsky, A.

    1964-01-01

    Polyelectrolytes are water-soluble electrically charged polymers. Their properties are determined by the interplay of the electrical forces, the Brownian motion of the macromolecular chain, and intermolecular Van der Waals forces. Charged polyacids or polybases are stretched by the electrostatic forces, as evidenced by increase in solution viscosity, or by the stretching of polyelectrolyte gels. The electrical field of the polyions is neutralized by a dense atmosphere of counter-ions. The counter-ion attraction to the polyions is expressed by a reduction of the osmotic activity of the polyion—the osmotic pressure being only 15 to 20 per cent of the ideal in highly charged polyelectrolytes neutralized by monovalent counter-ions, and as low as 1 to 3 per cent of the ideal for polyvalent counter-ions. Since the ionic atmosphere is only slightly dependent on added low molecular salt, the osmotic pressure of polyelectrolyte salt mixtures is approximately equal to the sum of the osmotic pressure of polyelectrolyte and salt alone. Acidic and basic polyelectrolytes interact electrostatically with precipitation at the point of polymeric electroneutrality. At higher salt concentrations the interaction is inhibited by the screening of polymeric fixed charges. The importance of these interactions in enzymatic processes is discussed. The electrical double layer is polarizable as may be deduced from dielectric and conductometric studies. The polarizability leads to strong dipole formation in an electrical field. These macromolecular dipoles may play a role in the adsorption of polyelectrolytes on charged surfaces. The final part of the paper is devoted to interactions of polyelectrolytes with cell membranes and the gluing of cells to higher aggregates by charged biocolloids. ImagesFigure 17Figure 18Figure 19Figure 20 PMID:14104085

  10. Characterization of Swollen States of Polyelectrolyte Brushes in Salt Solution by Neutron Reflectivity

    NASA Astrophysics Data System (ADS)

    Kobayashi, Motoyasu; Mitamura, Koji; Terada, Masami; Yamada, Norifumi L.; Takahara, Atsushi

    2011-01-01

    Cationic and zwitterionic polyelectrolyte brushes on quartz substrate were synthesized by surface-initiated atom transfer radical polymerization of 2-(methacryloyloxy)-ethyltrimethylammonium chloride (MTAC) and 2-(methacryloyloxy)ethyl phosphorylcholine (MPC). The effects of ionic strength on brush structure are investigated by neutron reflectivity (NR) in NaCl deuterium oxide (D2O) solutions. We observed that poly(MTAC) chains were drastically shrunk at concentrations above 0.1 M NaCl/D2O, which may be the change in charge-screening effect against ions on poly(MTAC). On the other hand, effect of salt concentration on a swollen state of poly(MPC) brush was negligible, even at the high concentration (5.0 M) close to saturation. The behaviour of poly(MPC) in salt aqueous solution is completely different from that of poly(MTAC), which may arise from the unique interaction properties, neutral nature, and hydrated water structure of phosphorylcholine units.

  11. Aggrecan, an Unusual Polyelectrolyte: Review of Solution Behavior and Physiological Implications

    PubMed Central

    Chandran, Preethi L.; Horkay, Ferenc

    2011-01-01

    Aggrecan is a high molecular weight, bottlebrush-shaped, negative-charged biopolymer that forms supermolecular complexes with hyaluronic acid. In the extracellular matrix of cartilage, aggrecan-hyaluronic acid complexes are interspersed in the collagen matrix and provide the osmotic properties required to resist deswelling under compressive load. In this review we compile aggrecan solution behavior from different experimental techniques, and discuss them in the context of concentration regimes that were identified in osmotic pressure experiments. At low concentration, aggrecan exhibits microgel-like behavior. With increasing concentration, the bottlebrushes self assemble into large complexes. In the physiological concentration range (2 < caggrecan < 8 % w/w), the physical properties of the solution are dominated by repulsive electrostatic interactions between aggrecan complexes. We discuss the consequences of the bottlebrush architecture on the polyelectrolyte characteristics of the aggrecan molecule, and its implications for cartilage properties and function. PMID:21884828

  12. Molecular Dyhamics Simulation of the Interfacial Behavior of Aqueous Polyelectrolyte Solutions in Contact with Graphene surfaces in the Presence of Multivalent Cations

    SciTech Connect

    Chialvo, Ariel A; Simonson, J Michael {Mike}

    2008-01-01

    We present a detailed analysis of the behavior of aqueous electrolyte-polyelectrolyte systems in contact with neutral and charged graphene substrates, based on an extensive molecular dynamics simulation effort. Our study involves aqueous systems comprising short-chains of lithium-polystyrene sulfonate with explicit atomistic description of water, the chain backbones, and their interactions with all species in solution as well as with the graphene surface. We place special emphasis on the behavior of the axial profiles of species concentrations, local electrostatic charge density, electric field and corresponding surface-charge screening to provide a full characterization of the inhomogeneous environment at the solid-liquid interface, i.e., the electric double layer and the effect of the added salts (BaCl2 and LaCl3 ) on its structure. To complete the analysis, we assess the tendency toward ion pairing along planes parallel to the graphene surface and estimate, according to the axial distribution profiles, the strength of the adsorption of the polyelectrolyte, counterions, and other species in solution, in order to interpret the degree of surface-charge screening and the occurrence of surface-charge reversal. We present evidence of a recently reported new phenomenon of overcharging, and discuss the central role of the explicit description of the solvent on this occurrence. Moreover, to interpret the conformational behavior of the polyelectrolyte backbones we determine the axial profiles of the perpendicular and parallel components of the corresponding radius of gyration and end-to-end distance.

  13. Ion Pairing and Counterion Condensation in Aqueous Electrolyte and Poly-electrolyte Solutions: Insights from Molecular Simulation

    SciTech Connect

    Chialvo, Ariel A; Simonson, J Michael {Mike}

    2007-01-01

    We discuss the molecular-based study of ion-pair formation in LiCl aqueous solutions and its implications on the interpretation of the raw data from neutron diffraction with isotopic substitution experiments, the counterion condensation in aqueous polyelectrolyte solutions comprising short-chain lithium poly-styrene sulfonate (Li{sup +}-PSS{sup -}), as well as their interplay leading to the occurrence of 'like-charge' attractive interactions in the presence of salts of polyvalent counterions.

  14. Humic substance charge determination by titration with a flexible cationic polyelectrolyte

    NASA Astrophysics Data System (ADS)

    Tan, Wen-Feng; Norde, Willem; Koopal, Luuk K.

    2011-10-01

    The anionic charge of humic substances (HS) plays a major role in the interaction of HS with other components. Therefore, the potential of the polyelectrolyte titration technique to obtain the charge density of HS in simple 1-1 electrolyte solutions has been investigated. Titrations are carried out with an automatic titrator combined with the "Mütek particle charge detector" which allows determination of the Mütek potential and the pH as a function of the added amount of titrant which is a solution of poly-diallyldimethylammonium chloride (polyDADMAC), a cationic strong polyelectrolyte. When the Mütek potential reverses its sign the iso-electric point (IEP) of the polyDADMAC-HS complex is reached. The polyDADMAC/HS mass ratio at the IEP gives information on the HS charge density and from the pH changes in solution an estimate of the charge regulation in the HS-polyDADMAC complex can be obtained. In general, for polyDADMAC-HS complexes an increase in the dissociation of the acid groups of HS is found (charge regulation). The charge regulation decreases with increasing concentration of 1-1 background electrolyte. Cation incorporation can be neglected at 1-1 electrolyte concentrations ⩽ 1 mmol L -1 and a 1-1 stoichiometry exists between the polyDADMAC and HS charge. However, at these low salt concentrations the charge regulation is substantial. A detailed analysis of purified Aldrich humic acid (PAHA) at pH 5 and a range of KCl concentrations reveals that the anionic charge of PAHA in the complex increases at 5 mmol L -1 KCl by 30% and at 150 mmol L -1 KCl by 12%. On the other hand, increasing amounts of K + become incorporated in the complex: at 5 mmol L -1 KCl 5% and at 150 mmol L -1 KCl 24% of the PAHA charge is balanced by K +. By comparing at pH 5 the mass ratios polyDADMAC/PAHA in the complex at the IEP with the theoretical mass ratios of polyDADMAC/PAHA required to neutralize PAHA in the absence of charge regulation and K + incorporation, it is found that

  15. The influence of charged-induced variations in the local permittivity on the static and dynamic properties of polyelectrolyte solutions.

    PubMed

    Fahrenberger, Florian; Hickey, Owen A; Smiatek, Jens; Holm, Christian

    2015-12-28

    There is a large body of literature investigating the static and dynamic properties of polyelectrolytes due both to their widespread application in industrial processes and their ubiquitous presence in biology. Because of their highly charged nature, polyelectrolytes tend to alter the local dielectric permittivity of the solution within a few nanometers of their backbone. This effect has, however, been almost entirely ignored in both simulations and theoretical work. In this article, we apply our recently developed electrostatic solver based on Maxwell's equations to examine the effects of the permittivity reduction in the vicinity of the polyelectrolyte. We first verify our new approach by calculating and comparing ion distributions around a linear fixed polyelectrolyte and find both quantitative and qualitative changes in the ion distribution. Further simulations with an applied electric field show that the reduction in the local dielectric constant increases the mobility of the chains by approximately ten percent. More importantly, variations in the local dielectric constant lead to qualitatively different behavior of the conductivity. PMID:26723625

  16. The influence of charged-induced variations in the local permittivity on the static and dynamic properties of polyelectrolyte solutions

    NASA Astrophysics Data System (ADS)

    Fahrenberger, Florian; Hickey, Owen A.; Smiatek, Jens; Holm, Christian

    2015-12-01

    There is a large body of literature investigating the static and dynamic properties of polyelectrolytes due both to their widespread application in industrial processes and their ubiquitous presence in biology. Because of their highly charged nature, polyelectrolytes tend to alter the local dielectric permittivity of the solution within a few nanometers of their backbone. This effect has, however, been almost entirely ignored in both simulations and theoretical work. In this article, we apply our recently developed electrostatic solver based on Maxwell's equations to examine the effects of the permittivity reduction in the vicinity of the polyelectrolyte. We first verify our new approach by calculating and comparing ion distributions around a linear fixed polyelectrolyte and find both quantitative and qualitative changes in the ion distribution. Further simulations with an applied electric field show that the reduction in the local dielectric constant increases the mobility of the chains by approximately ten percent. More importantly, variations in the local dielectric constant lead to qualitatively different behavior of the conductivity.

  17. High frequency dielectric dispersion of polyelectrolyte solutions and its relation to counterion condensation

    NASA Astrophysics Data System (ADS)

    Penafiel, L. Miguel; Litovitz, Theodore A.

    1992-07-01

    The dielectric properties of polyelectrolyte solutions are studied in terms of counterion condensation by measurements of the dielectric response of pH buffered Na polyacrylate solutions. pH values are selected to allow variation of the charge density parameter ξ in the range between 0.5-2.8, that is, across ξ=1, the theoretical critical level for counterion condensation. The dielectric increment of the high frequency dispersion, Δɛ2, is found to have nonzero values only above the counterion condensation threshold and is therefore linked to the occurrence of counterion condensation. Above the condensation threshold Δɛ2 (≊6) and its corresponding polarizability α∥2 (≊6×10-16 cm3) are found to be approximately constant with increasing ξ. This result is predicted by Manning's polarizability model for condensed counterions which results in a good fit to the experimental data when the average length of the polyion segments parallel to the external field, Ls, is set to 284 Å. This value of Ls is also shown to be in relatively close agreement with the value calculated for the length of a rigid subunit in Mandel's polyion model, obtained using the relaxation time of the high frequency dispersion. The length Ls, which is larger than the persistence length, is estimated to be of the order of magnitude of the correlation length between segments.

  18. Determination of microdomain size of hydrophobic polyelectrolytes by luminescence quenching

    SciTech Connect

    Strauss, U.P.; Zhong, Y.; Zdanowicz, V.S.

    1993-12-31

    The size of the hydrophobic microdomains of a hydrolyzed copolymer of maleic anhydride and hexyl vinyl ether has been measured in aqueous lithium chloride solutions by luminescence quenching using a photon counting technique. Several probe-quencher combinations were employed, including tris(2,2`-bipyridine)ruthenium(II) with 9-methylanthracene, pyrene with benzophenone, and pyrene with nonyl-phenyl ketone. For the last of these, the number of repeat units per microdomain was found to be 46, irrespective of polyacid concentration or extent of micellization due to variations in pH. With the other probe-quencher systems approximately the same number was obtained at pH 4.5 where the polyacid is close to completely micellized. At higher pH values, where micellization is incomplete, special effects were observed which are ascribed to nonmicellar binding of probe or quencher.

  19. Kinetic regimes of polyelectrolyte exchange between the adsorbed state and free solution

    NASA Astrophysics Data System (ADS)

    Sukhishvili, Svetlana A.; Granick, Steve

    1998-10-01

    We studied the exchange between the adsorbed state and free solution when polyelectrolyte chains, adsorbed to a solid surface of opposite charge, were displaced by chains of higher charge density. Metastable states of surface composition were extremely long-lived (>2-3 days). The system was a family of poly(1,4 vinyl)pyridines (PVP) with different fractions of charged segments (14%, 48%, and 98% quaternized and the same degree of polymerization); samples were exposed sequentially from aqueous D2O solution to a single silicon oxide substrate at pH where the surface carried a large negative charge (pH=9.2 or 10.5). Measurements were based on Fourier transform infrared spectroscopy in attenuated total reflection (FTIR-ATR). As a first conclusion, we found charge of adsorbed polymer to be conserved during extended exchange times, suggesting that charge at the surface (not mass adsorbed) regulated the dynamics of adsorption and desorption. Except at the highest ionic strength charge of polymer at the surface during the displacement process considerably exceeded that for the initially-adsorbed layer, suggesting an intermediate state in which newly-adsorbed chains were more extended from the surface and not yet equilibrated in their conformations. Second, we concluded that desorption was the rate-limiting step in adsorption-desorption, since the desorption rate responded more to changes of ionic strength than did the adsorption rate onto previously-adsorbed polymer. Ionic strength appeared to modulate the intensity of sticking to the surface. Third, we found that the initial stages of desorption obeyed a simple functional form, exponential in the square root of elapsed time. This is conclusively slower than a first-order kinetic process and suggests that desorption in this polyelectrolyte system was diffusion-controlled during the initial stages. It is the same functional form observed for flexible polymers in nonpolar solvents. Fourth, we concluded that at relatively low

  20. Rheology and interfacial properties of aqueous solutions of the diblock polyelectrolyte poly(styrene-block-acrylic acid)

    NASA Astrophysics Data System (ADS)

    Kimerling, Abigail

    In aqueous solutions diblock polyelectrolytes with amphiphilic character form aggregate structures, which affect physical properties such as viscosity, elasticity, surface tension, and film hydrophilicity. Potential applications for diblock polyelectrolyte solutions include coatings, inks, oil recovery agents, personal care products, and biomaterials. By varying the diblock polyelectrolyte and solution properties, the solutions can be tuned to meet the needs of particular applications. The research objective was to identify the influences of block length, pH, and ionic strength on the rheological and interfacial properties of poly(styrene- b-acrylic acid) (PS-PAA) solutions. Six polymers with varied PS and PAA block lengths were examined, all at 1.0 wt% in aqueous solutions. The hydrophobicity of the PS block causes the formation of spherical micelles in aqueous solutions. Increasing the solution pH ionizes the PAA block, which leads to an increase in micelle corona thickness due to repulsions between chains. Major trends observed in the rheological and interfacial properties can be understood in terms of expected changes in the micelle size and interfacial self-assembly with pH, ionic strength, and block length. Addition of NaOH was found to increase the solution pH and initially led to increases in solution viscosity, elasticity, surface tension, and film hydrophilicity. This effect was attributed to creation of larger micelles and greater inter-micellar repulsions as the PAA chain became more fully charged. However, when the concentration of NaOH exceeded a critical value, the solution viscosity, elasticity, and film hydrophilicity decreased. It is believed this was due to charge shielding by excess sodium ions, leading to shrinkage of the micelle corona and smaller micelles. Increasing the PS-PAA solution ionic strength by adding NaCl also provided charge shielding, as observed by decreases in solution viscosity and elasticity. Increasing the length of either

  1. Direct AFM force measurements between air bubbles in aqueous polydisperse sodium poly(styrene sulfonate) solutions: effect of collision speed, polyelectrolyte concentration and molar mass.

    PubMed

    Browne, Christine; Tabor, Rico F; Grieser, Franz; Dagastine, Raymond R

    2015-07-01

    Interactions between colliding air bubbles in aqueous solutions of polydisperse sodium poly(styrene sulfonate) (NaPSS) using direct force measurements were studied. The forces measured with deformable interfaces were shown to be more sensitive to the presence of the polyelectrolytes when compared to similar measurements using rigid interfaces. The experimental factors that were examined were NaPSS concentration, bubble collision velocity and polyelectrolyte molar mass. These measurements were then compared with an analytical model based on polyelectrolyte scaling theory in order to explain the effects of concentration and bubble deformation on the interaction between bubbles. Typically structural forces from the presence of monodisperse polyelectrolyte between interacting surfaces may be expected, however, it was found that the polydispersity in molar mass resulted in the structural forces to be smoothed and only a depletion interaction was able to be measured between interacting bubbles. It was found that an increase in number density of NaPSS molecules resulted in an increase in the magnitude of the depletion interaction. Conversely this interaction was overwhelmed by an increase in the fluid flow in the system at higher bubble collision velocities. Polymer molar mass dispersity plays a significant role in the interactions present between the bubbles and has implications that also affect the polyelectrolyte overlap concentration of the solution. Further understanding of these implications can be expected to play a role in the improvement in operations in such fields as water treatment and mineral processing where polyelectrolytes are used extensively. PMID:25596872

  2. Effective electrostatic interactions in solutions of polyelectrolyte stars with rigid rodlike arms.

    PubMed

    Wang, Hao; Denton, Alan R

    2005-12-22

    In solutions of star-branched polyelectrolytes, electrostatic interactions between charged arms on neighboring stars can compete with intrastar interactions and rotational entropy to induce anisotropy in the orientational distribution of arms. We explore the influence of arm orientational anisotropy on effective star-star interactions for model stars comprising rigid rodlike arms with evenly spaced charged monomers interacting via an effective screened-Coulomb (Yukawa) potential. Monte Carlo simulation and density-functional theory are used to compute the arm orientational distributions and effective pair potentials between weakly charged stars. For comparison, a torque balance analysis is performed to obtain the configuration and energy of the ground state, in which the torque vanishes on each arm of the two-star system. The degree of anisotropy is found to increase with the strength of electrostatic interactions and proximity of the stars. As two stars begin to overlap, the forward arms are pushed back by interstar arm-arm repulsion, but partially interdigitate due to rotational entropy. At center-center separations approaching complete overlap, the arms relax to an isotropic distribution. For nonoverlapping stars, anisotropy-induced changes in the intra- and interstar arm-arm interactions largely cancel and the effective pair interactions are then well approximated by a simple Yukawa potential, as predicted by linear-response theory for a continuum model of isotropic stars [A. R. Denton, Phys. Rev. E 67, 11804 (2003)]. For overlapping stars, the effective pair interactions in the simple rigid-arm-Yukawa model agree closely with simulations of a molecular model that includes flexible arms and explicit counterions [A. Jusufi et al., Phys. Rev. Lett. 88, 018301 (2002); J. Chem. Phys. 116, 11011 (2002)]. PMID:16396567

  3. Removal and recovery of furfural, 5-hydroxymethylfurfural, and acetic acid from aqueous solutions using a soluble polyelectrolyte.

    PubMed

    Carter, Brian; Gilcrease, Patrick C; Menkhaus, Todd J

    2011-09-01

    In the cellulosic ethanol process, furfural, 5-hydroxymethylfurfural (HMF), and acetic acid are formed during the high temperature acidic pretreatment step needed to convert biomass into fermentable sugars. These compounds can inhibit cellulase enzymes and fermentation organisms at relatively low concentrations (≥ 1 g/L). Effective removal of these inhibitory compounds would allow the use of more severe pretreatment conditions to improve sugar yields and lead to more efficient fermentations; if recovered and purified, they could also be sold as valuable by-products. This study investigated the separation of aldhehydes (furfural and HMF) and organic acid (acetic acid) inhibitory compounds from simple aqueous solutions by using polyethyleneimene (PEI), a soluble cationic polyelectrolyte. PEI added to simple solutions of each inhibitor at a ratio of 1 mol of functional group to 1 mol inhibitor removed up to 89.1, 58.6, and 81.5 wt% of acetic acid, HMF, and furfural, respectively. Furfural and HMF were recovered after removal by washing the polyelectrolyte/inhibitor complex with dilute sulfuric acid solution. Recoveries up to 81.0 and 97.0 wt% were achieved for furfural and HMF, respectively. The interaction between PEI and acetic acid was easily disrupted by the addition of chloride ions, sulfate ions, or hydroxide ions. The use of soluble polymers for the removal and recovery of inhibitory compounds from biomass slurries is a promising approach to enhance the efficiency and economics of an envisioned biorefinery. PMID:21455937

  4. Hydrogen bond network relaxation in aqueous polyelectrolyte solutions: the effect of temperature.

    PubMed

    Sarti, S; Truzzolillo, D; Bordi, F

    2012-07-18

    Dielectric spectroscopy data over the range 100 MHz–40 GHz allow for a reliable analysis of two of the major relaxation phenomena for polyelectrolytes (PE) in water. Within this range, the dielectric relaxation of pure water is dominated by a near-Debye process at ν = 18.5 GHz corresponding to a relaxation time of τ = 8.4 ps at 25 °C. This mode is commonly attributed to the cooperative relaxation specific to liquids forming a hydrogen bond network (HBN) and arising from long range H-bond-mediated dipole–dipole interactions. The presence of charged polymers in water partially modifies the dielectric characteristics of the orientational water molecule relaxation due to a change of the dielectric constant of water surrounding the charges on the polyion chain. We report experimental results on the effect of the presence of a standard flexible polyelectrolyte (sodium polyacrylate) on the HBN relaxation in water for different temperatures, showing that the HBN relaxation time does not change by increasing the polyelectrolyte density in water, even if relatively high concentrations are reached (0.02 monomol l(−1) ≤ C ≤ 0.4 monomol l(−1)). We also find that the effect of PE addition on the HBN relaxation is not even a broadening of its distribution, rather a decrease of the spectral weight that goes beyond the pure volume fraction effect. This extra decrease is larger at low T and less evident at high T, supporting the idea that the correlation length of the water is less affected by the presence of charged flexible chains at high temperatures. PMID:22740600

  5. Hydrogen bond network relaxation in aqueous polyelectrolyte solutions: the effect of temperature

    NASA Astrophysics Data System (ADS)

    Sarti, S.; Truzzolillo, D.; Bordi, F.

    2012-07-01

    Dielectric spectroscopy data over the range 100 MHz-40 GHz allow for a reliable analysis of two of the major relaxation phenomena for polyelectrolytes (PE) in water. Within this range, the dielectric relaxation of pure water is dominated by a near-Debye process at ν = 18.5 GHz corresponding to a relaxation time of τ = 8.4 ps at 25 °C. This mode is commonly attributed to the cooperative relaxation specific to liquids forming a hydrogen bond network (HBN) and arising from long range H-bond-mediated dipole-dipole interactions. The presence of charged polymers in water partially modifies the dielectric characteristics of the orientational water molecule relaxation due to a change of the dielectric constant of water surrounding the charges on the polyion chain. We report experimental results on the effect of the presence of a standard flexible polyelectrolyte (sodium polyacrylate) on the HBN relaxation in water for different temperatures, showing that the HBN relaxation time does not change by increasing the polyelectrolyte density in water, even if relatively high concentrations are reached (0.02 monomol l-1 ≤ C ≤ 0.4 monomol l-1). We also find that the effect of PE addition on the HBN relaxation is not even a broadening of its distribution, rather a decrease of the spectral weight that goes beyond the pure volume fraction effect. This extra decrease is larger at low T and less evident at high T, supporting the idea that the correlation length of the water is less affected by the presence of charged flexible chains at high temperatures.

  6. Study of polyelectrolytes for Los Alamos National Laboratory. Final report

    SciTech Connect

    Labonne, N.

    1994-11-01

    To assess the safety of a potential radioactive waste repository, analysis of the fluid solution containing low levels of activity need to be performed. In some cases, the radioactivity would be so weak (3--30 pCi/L) that the solution must be concentrated for measurement. For this purpose, Los Alamos National Laboratory scientists are synthesizing some water soluble polyelectrolytes, which, because they are strong complexing agents for inorganic cations, can concentrate the radioelements in solution. To assist in characterization of these polyelectrolytes, the author has performed experiments to determine physico-chemical constants, such as pKa values and stability constants. The complexation constants between both polyelectrolytes and europium were determined by two methods: solvent extraction and ion exchange. Results are presented.

  7. Flexible polyelectrolyte chain in a strong electrolyte solution: Insight into equilibrium properties and force-extension behavior from mesoscale simulation.

    PubMed

    Malekzadeh Moghani, Mahdy; Khomami, Bamin

    2016-01-14

    Macromolecules with ionizable groups are ubiquitous in biological and synthetic systems. Due to the complex interaction between chain and electrostatic decorrelation lengths, both equilibrium properties and micro-mechanical response of dilute solutions of polyelectrolytes (PEs) are more complex than their neutral counterparts. In this work, the bead-rod micromechanical description of a chain is used to perform hi-fidelity Brownian dynamics simulation of dilute PE solutions to ascertain the self-similar equilibrium behavior of PE chains with various linear charge densities, scaling of the Kuhn step length (lE) with salt concentration cs and the force-extension behavior of the PE chain. In accord with earlier theoretical predictions, our results indicate that for a chain with n Kuhn segments, lE ∼ cs (-0.5) as linear charge density approaches 1/n. Moreover, the constant force ensemble simulation results accurately predict the initial non-linear force-extension region of PE chain recently measured via single chain experiments. Finally, inspired by Cohen's extraction of Warner's force law from the inverse Langevin force law, a novel numerical scheme is developed to extract a new elastic force law for real chains from our discrete set of force-extension data similar to Padè expansion, which accurately depicts the initial non-linear region where the total Kuhn length is less than the thermal screening length. PMID:26772586

  8. Flexible polyelectrolyte chain in a strong electrolyte solution: Insight into equilibrium properties and force-extension behavior from mesoscale simulation

    NASA Astrophysics Data System (ADS)

    Malekzadeh Moghani, Mahdy; Khomami, Bamin

    2016-01-01

    Macromolecules with ionizable groups are ubiquitous in biological and synthetic systems. Due to the complex interaction between chain and electrostatic decorrelation lengths, both equilibrium properties and micro-mechanical response of dilute solutions of polyelectrolytes (PEs) are more complex than their neutral counterparts. In this work, the bead-rod micromechanical description of a chain is used to perform hi-fidelity Brownian dynamics simulation of dilute PE solutions to ascertain the self-similar equilibrium behavior of PE chains with various linear charge densities, scaling of the Kuhn step length (lE) with salt concentration cs and the force-extension behavior of the PE chain. In accord with earlier theoretical predictions, our results indicate that for a chain with n Kuhn segments, lE ˜ cs-0.5 as linear charge density approaches 1/n. Moreover, the constant force ensemble simulation results accurately predict the initial non-linear force-extension region of PE chain recently measured via single chain experiments. Finally, inspired by Cohen's extraction of Warner's force law from the inverse Langevin force law, a novel numerical scheme is developed to extract a new elastic force law for real chains from our discrete set of force-extension data similar to Padè expansion, which accurately depicts the initial non-linear region where the total Kuhn length is less than the thermal screening length.

  9. Novel polyelectrolytes

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping Siao (Inventor)

    1978-01-01

    Cationic polyelectrolytes are formed by the polymerization in absence of oxygen of a monomer of the general formula: ##STR1## where x is 3 or more than 6 and Z is I, Br or Cl to form high charge density linear polymers. Segments of the linear polymer may be attached to or formed in the presence of polyfunctional reactive tertiary amines or halogen polymeric substrates or polyfunctional lower molecular reactive polyfunctional substrates to form branched or star polyelectrolytes by a quaternization polymerization reaction.

  10. Interaction between like-charged polyelectrolyte-colloid complexes in electrolyte solutions: A Monte Carlo simulation study in the Debye-Hückel approximation

    NASA Astrophysics Data System (ADS)

    Truzzolillo, D.; Bordi, F.; Sciortino, F.; Sennato, S.

    2010-07-01

    We study the effective interaction between differently charged polyelectrolyte-colloid complexes in electrolyte solutions via Monte Carlo simulations. These complexes are formed when short and flexible polyelectrolyte chains adsorb onto oppositely charged colloidal spheres, dispersed in an electrolyte solution. In our simulations the bending energy between adjacent monomers is small compared to the electrostatic energy, and the chains, once adsorbed, do not exchange with the solution, although they rearrange on the particles surface to accommodate further adsorbing chains or due to the electrostatic interaction with neighbor complexes. Rather unexpectedly, when two interacting particles approach each other, the rearrangement of the surface charge distribution invariably produces antiparallel dipolar doublets that invert their orientation at the isoelectric point. These findings clearly rule out a contribution of dipole-dipole interactions to the observed attractive interaction between the complexes, pointing out that such suspensions cannot be considered dipolar fluids. On varying the ionic strength of the electrolyte, we find that a screening length κ-1, short compared with the size of the colloidal particles, is required in order to observe the attraction between like-charged complexes due to the nonuniform distribution of the electric charge on their surface ("patch attraction"). On the other hand, by changing the polyelectrolyte/particle charge ratio ξs, the interaction between like-charged polyelectrolyte-decorated particles, at short separations, evolves from purely repulsive to strongly attractive. Hence, the effective interaction between the complexes is characterized by a potential barrier, whose height depends on the net charge and on the nonuniformity of their surface charge distribution.

  11. Molecular dynamics study of linear and comb-like polyelectrolytes in aqueous solution: effect of Ca2+ ions

    NASA Astrophysics Data System (ADS)

    Tong, Kefeng; Song, Xingfu; Sun, Shuying; Xu, Yanxia; Yu, Jianguo

    2014-08-01

    All-atom molecular dynamics simulations were employed to provide microscopic mechanism for the salt tolerance of polyelectrolytes dispersants. The conformational variation of polyelectrolytes and interactions between COO- groups and counterions/water molecules were also studied via radius of gyration and pair correlations functions. Sodium polyacrylate (NaPA) and sodium salts of poly(acrylic acid)-poly(ethylene oxide) (NaPA-PEO) were selected as the representative linear and comb-like polyelectrolyte, respectively. The results show that Ca2+ ions interact with COO- groups much stronger than Na+ ions and can bring ion-bridging interaction between intermolecular COO- groups in the NaPA systems. While in the NaPA-PEO systems, the introduced PEO side chains can prevent backbone chains from ion-bridging interactions and weaken the conformational changes. The present results can help in selecting and designing new-type efficient polyelectrolyte dispersants with good salt tolerance.

  12. Atomistic molecular dynamics simulations of the structure of symmetric Polyelectrolyte block copolymer micelle in salt-free aqueous solution

    NASA Astrophysics Data System (ADS)

    Chockalingam, Rajalakshmi; Natarajan, Upendra

    2014-03-01

    The structure of a symmetric polystyrene- b - poly(acrylic acid) (PS- b - PAA) micelle in salt-free aqueous solution as a function of degree-of-neutralization (or ionization, f) of the PAA is studied via explicit-atom-ion MD simulations, for the first time for a polyelectrolyte block copolymer in a polar solvent. Micelle size increases with fin agreement with experimental observations in literature, due to extension of PAA at higher ionization. Pair RDF's with respect to water oxygens show that corona-water interaction becomes stronger with f due to an increase in number density of carboxylate (COO-) groups on the chain. Water-PAA coordination (carboxylate O's) increases with ionization. H-bonding between PAA and water increases with f due to greater extent of corona-water affinity. With increase in f, atom and counter-ion ρ profiles confirm extension of corona blocks and micelle existing in the ``osmotic regime,'' and a decrease in scattering peak intensity, in agreement with neutron scattering experiments and mean-field theory in literature. Inter-chain distance in PS core is found to decrease with ionization. Macromolecular Simulation and Modeling Laboratory, Dept. of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036.

  13. Influence of the polyelectrolyte poly(ethyleneimine) on the adsorption of surfactant mixtures of sodium dodecyl sulfate and monododecyl hexaethylene glycol at the air-solution interface.

    PubMed

    Penfold, J; Tucker, I; Thomas, R K; Taylor, D J F; Zhang, J; Bell, C

    2006-10-10

    The polyelectrolyte poly(ethylenenimine), PEI, is shown to strongly influence the adsorption of the anionic-nonionic surfactant mixture of sodium dodecyl sulfate, SDS, and monododecyl hexaethylene glycol, C(12)E(6), at the air-solution interface. In the presence of PEI, the partitioning of the mixed surfactants to the interface is highly pH-dependent. The adsorption is more strongly biased to the SDS as the pH increases, as the PEI becomes a weaker polyelectrolyte. At surfactant concentrations >10(-4) M, the strong interaction and adsorption result in multilayer formation at the interface, and this covers a more extensive range of surfactant concentrations at higher pH values. The results are consistent with a strong interaction between SDS and PEI at the surface that is not predominantly electrostatic in origin. It provides an attractive route to selectively manipulate the adsorption and composition of surfactant mixtures at interfaces. PMID:17014126

  14. Controlled release of a microencapsulated arduous semi-hydrophobic active from coatings: Superhydrophilic polyelectrolyte shells as globally rate-determining barriers.

    PubMed

    Bergek, Jonatan; Andersson Trojer, Markus; Uhr, Hermann; Nordstierna, Lars

    2016-03-10

    Polymethylmethacrylate-based microcapsules containing the antimicrobial agent 2-n-octyl-4-isothiazolin-3-one (OIT) decorated by an anchored polyelectrolyte brush consisting of an amphiphilic diblock copolymer of polymethylmethacrylate-block-poly(sodium methacrylate) type have been formulated via a coacervation technique. The polyelectrolyte brush surface provided the microcapsule with a high and stable surface charge density. This enabled further surface modification of the colloidal particle with a thin and dense polyelectrolyte multilayer using the layer-by-layer technique. The addition of the highly charged and hydrophilic polyelectrolyte multilayer assembled on the microcapsule surface resulted in a considerable decrease of the release rate of the encapsulated OIT in aqueous suspension, corresponding to a 40 times reduction of the effective OIT diffusion coefficient in the polymethylmethacrylate matrix. Moreover, the release of encapsulated or freely dispersed OIT from coatings as a function of the matrix density was evaluated and analyzed within the framework of applied diffusion models. Encapsulation of OIT in polyelectrolyte multilayer composite microcapsules was found to significantly prolong the release and render the release rate more or less independent of the matrix density. In addition, the long-term antimicrobial properties of the coatings were evaluated in terms of their susceptibility for biofouling using the fungus and common biofouler Aspergillus niger as model organism. The results clearly demonstrated that the use of encapsulated OIT gave a significantly prolonged surface protection and allowed for the determination of the critical surface flux. The polyelectrolyte multilayer has therefore been recognized as the rate-determining barrier for OIT. The matrix density has a minor influence on the release rate of encapsulated OIT from these microcapsules and this concept may very well be expanded to cover a broad range of hydrophobic and semi

  15. Conjugated polyelectrolytes based on poly(arylene ethynylene): Synthesis, solution photophysics and applications to sensors and solar cells

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaoyong

    In this dissertation, we present the research that was focused on the design, synthesis and photophysical properties of conjugated polyelectrolytes (CPEs) based on poly(arylene ethynylene) (PAE). Applications of these materials for anion sensing and dye-sensitized solar cell (DSCs) were also explored. First, a meta-linked poly(phenylene ethynylene) featuring chiral anionic groups was designed and synthesized. Because of the presence of chiral side chains, the conjugated backbone of this polymer folds preferentially into a left-handed helix in water, as proven by absorption, fluorescence and circular dichroism spectroscopy. Similar to the helix formed by double-strand DNA, the helical conformation of the synthetic polymer interacts with a metallointercalator [Ru(bpy)2(dppz)]2+ and turns on the emission from the complex. Cationic cyanine dyes can also bind to the helical conformation of the polymer in a "groove-binding" manner. A chiral and optically active aggregate of cyanine dyes is formed by transferring the chirality of the polymer template. Second, we have systematically investigated the photophysical properties of para-linked poly(phenylene ethynylene)s (PPEs). These CPEs are shown to undergo a solvent-driven aggregation in solution. By chemically tuning the polymer structure, the influence of charge density and polymer chain length to the aggregate formation was carefully examined. Further, the fluorescence quenching by metal ions and organic cations (methyl viologen derivatives) was also studied. It was found that aggregate formation and polymer chain length both have a strong effect on the quenching efficiency of these polymers by the quencher molecules. Based on these results, a highly selective and sensitive sensor for pyrophosphate (PPi) was developed. Third, we have successfully synthesized a series of poly(arylene ethynylene)s with variable absorption and emission properties. The photoluminescence of PAEs with linear ionic groups is strongly quenched

  16. Polyelectrolyte-surfactant complexes formed by poly[3,5-bis(trimethylammoniummethyl)4-hydroxystyrene iodide]-block-poly(ethylene oxide) and sodium dodecyl sulfate in aqueous solutions.

    PubMed

    Štěpánek, Miroslav; Matějíček, Pavel; Procházka, Karel; Filippov, Sergey K; Angelov, Borislav; Šlouf, Miroslav; Mountrichas, Grigoris; Pispas, Stergios

    2011-05-01

    Formation of polyelectrolyte-surfactant (PE-S) complexes of poly[3,5-bis(trimethylammoniummethyl)-4-hydroxystyrene iodide]-block-poly(ethylene oxide) (QNPHOS-PEO) and sodium dodecyl sulfate (SDS) in aqueous solution was studied by dynamic and electrophoretic light scattering, small-angle X-ray scattering (SAXS), atomic force microscopy, and fluorometry, using pyrene as a fluorescent probe. SAXS data from the QNPHOS-PEO/SDS solutions were fitted assuming contributions from free copolymer, PE-S aggregates described by a mass fractal model, and densely packed surfactant micelles inside the aggregates. It was found that, unlike other systems of a double hydrophilic block polyelectrolyte and an oppositely charged surfactant, PE-S aggregates of the QNPHOS-PEO/SDS system do not form core-shell particles and the PE-S complex precipitates before reaching the charge equivalence between dodecyl sulfate anions and QNPHOS polycationic blocks, most likely because of conformational rigidity of the QNPHOS blocks, which prevents the system from the corresponding rearrangement. PMID:21446735

  17. Aggregation dynamics of rigid polyelectrolytes

    NASA Astrophysics Data System (ADS)

    Tom, Anvy Moly; Rajesh, R.; Vemparala, Satyavani

    2016-01-01

    Similarly charged polyelectrolytes are known to attract each other and aggregate into bundles when the charge density of the polymers exceeds a critical value that depends on the valency of the counterions. The dynamics of aggregation of such rigid polyelectrolytes are studied using large scale molecular dynamics simulations. We find that the morphology of the aggregates depends on the value of the charge density of the polymers. For values close to the critical value, the shape of the aggregates is cylindrical with height equal to the length of a single polyelectrolyte chain. However, for larger values of charge, the linear extent of the aggregates increases as more and more polymers aggregate. In both the cases, we show that the number of aggregates decrease with time as power laws with exponents that are not numerically distinguishable from each other and are independent of charge density of the polymers, valency of the counterions, density, and length of the polyelectrolyte chain. We model the aggregation dynamics using the Smoluchowski coagulation equation with kernels determined from the molecular dynamics simulations and justify the numerically obtained value of the exponent. Our results suggest that once counterions condense, effective interactions between polyelectrolyte chains short-ranged and the aggregation of polyelectrolytes are diffusion-limited.

  18. Interplay between Depletion and Double-Layer Forces Acting between Charged Particles in Solutions of Like-Charged Polyelectrolytes

    NASA Astrophysics Data System (ADS)

    Moazzami-Gudarzi, Mohsen; Kremer, Tomislav; Valmacco, Valentina; Maroni, Plinio; Borkovec, Michal; Trefalt, Gregor

    2016-08-01

    Direct force measurements between negatively charged silica particles in the presence of a like-charged strong polyelectrolyte were carried out with an atomic force microscope. The force profiles can be quantitatively interpreted as a superposition of depletion and double-layer forces. The depletion forces are modeled with a damped oscillatory profile, while the double-layer forces with the mean-field Poisson-Boltzmann theory for a strongly asymmetric electrolyte, whereby an effective valence must be assigned to the polyelectrolyte. This effective valence is substantially smaller than the bare valence due to ion condensation effects. The unusual aspect of the electrical double layer in these systems is the exclusion of the like-charged polyelectrolyte from the vicinity of the surface, leading to a strongly nonexponential diffuse ionic layer that is dominated by counterions and has a well-defined thickness. As the oscillatory depletion force sets in right after this layer, this condition can be used to predict the phase of the oscillatory depletion force.

  19. Interplay between Depletion and Double-Layer Forces Acting between Charged Particles in Solutions of Like-Charged Polyelectrolytes.

    PubMed

    Moazzami-Gudarzi, Mohsen; Kremer, Tomislav; Valmacco, Valentina; Maroni, Plinio; Borkovec, Michal; Trefalt, Gregor

    2016-08-19

    Direct force measurements between negatively charged silica particles in the presence of a like-charged strong polyelectrolyte were carried out with an atomic force microscope. The force profiles can be quantitatively interpreted as a superposition of depletion and double-layer forces. The depletion forces are modeled with a damped oscillatory profile, while the double-layer forces with the mean-field Poisson-Boltzmann theory for a strongly asymmetric electrolyte, whereby an effective valence must be assigned to the polyelectrolyte. This effective valence is substantially smaller than the bare valence due to ion condensation effects. The unusual aspect of the electrical double layer in these systems is the exclusion of the like-charged polyelectrolyte from the vicinity of the surface, leading to a strongly nonexponential diffuse ionic layer that is dominated by counterions and has a well-defined thickness. As the oscillatory depletion force sets in right after this layer, this condition can be used to predict the phase of the oscillatory depletion force. PMID:27588884

  20. Electrical conductivity of polyelectrolyte solutions in the presence of added salt: The role of the solvent quality factor in light of a scaling approach

    NASA Astrophysics Data System (ADS)

    Bordi, F.; Cametti, C.; Gili, T.

    2003-07-01

    The effects of added salt on the electrical conductivity behavior of a polyelectrolyte solution are described in light of the scaling approach recently proposed by Dobrynin and Rubinstein [Macromolecules 28, 1859 (1995); 32, 915 (1999)], taking into account the influence of the solvent quality factor. The coupling between the conformation of the chain and the local charge distribution, giving rise to different conductometric behaviors, has been investigated under different conditions, in a wide concentration range of added salt. The polyion equivalent conductances λp have been evaluated in different concentration regimes for a hydrophilic polyion in good solvent condition and compared with the experimental values obtained from electrical conductivity measurements. The agreement is rather good in the wide range of concentration of the added salt investigated. In the case of poor solvent conditions, we find the appropriate expressions for the electrical conductivity when the polyion chain consists into collapsed beads alternating with stretched segments in the framework of the necklace globule model.

  1. Polyelectrolyte gels

    SciTech Connect

    Segalman, D.J.; Witkowski, W.R.

    1995-06-01

    Polyelectrolyte (PE) gels are swollen polymer/solvent networks that undergo a reversible volume collapse/expansion through various types of stimulation. Applications that could exploit this large deformation and solvent expulsion/absorption characteristics include robotic {open_quotes}fingers{close_quotes} and drug delivery systems. The goals of the research were to first explore the feasibility of using the PE gels as {open_quotes}smart materials{close_quotes} - materials whose response can be controlled by an external stimulus through a feedback mechanism. Then develop a predictive capability to simulate the dynamic behavior of these gels. This involved experimentally characterizing the response of well-characterized gels to an applied electric field and other stimuli to develop an understanding of the underlying mechanisms which cause the volume collapse. Lastly, the numerical analysis tool was used to simulate various potential engineering devices based on PE gels. This report discusses the pursuit of those goals through experimental and computational means.

  2. Colloidal stability of magnetic iron oxide nanoparticles: influence of natural organic matter and synthetic polyelectrolytes.

    PubMed

    Ghosh, Saikat; Jiang, Wei; McClements, Julian D; Xing, Baoshan

    2011-07-01

    The colloidal behavior of natural organic matter (NOM) and synthetic poly(acrylic acid) (PAA)-coated ferrimagnetic (γFe(2)O(3)) nanoparticles (NPs) was investigated. Humic acid (HA), an important component of NOM, was extracted from a peat soil. Two different molecular weight PAAs were also used for coating. The colloidal stability of the coated magnetic NPs was evaluated as a resultant of the attractive magnetic dipolar and van der Waals forces and the repulsive electrostatic and steric-electrosteric interactions. The conformational alterations of the polyelectrolytes adsorbed on magnetic γFe(2)O(3) NPs and their role in colloidal stability were determined. Pure γFe(2)O(3) NPs were extremely unstable because of aggregation in aqueous solution, but a significant stability enhancement was observed after coating with polyelectrolytes. The steric stabilization factor induced by the polyelectrolyte coating strongly dictated the colloidal stability. The pH-induced conformational change of the adsorbed, weakly charged polyelectrolytes had a significant effect on the colloidal stability. Atomic force microscopy (AFM) revealed the stretched conformation of the HA molecular chains adsorbed on the γFe(2)O(3) NP surface at pH 9, which enhanced the colloidal stability through long-range electrosteric stabilization. The depletion of the polyelectrolyte during the dilution of the NP suspension decreased the colloidal stability under acidic solution conditions. The conformation of the polyelectrolytes adsorbed on the NP surface was altered as a function of the substrate surface charge as viewed from AFM imaging. The polyelectrolyte coating also led to a reduction in magnetic moments and decreased the coercivity of the coated γFe(2)O(3) NPs. Thus, the enhanced stabilization of the coated maghematite NPs may facilitate their delivery in the groundwater for the effective removal of contaminants. PMID:21650201

  3. Prediction of solvent-induced morphological changes of polyelectrolyte diblock copolymer micelles.

    PubMed

    Li, Nan K; Fuss, William H; Tang, Lei; Gu, Renpeng; Chilkoti, Ashutosh; Zauscher, Stefan; Yingling, Yaroslava G

    2015-11-14

    Self-assembly processes of polyelectrolyte block copolymers are ubiquitous in industrial and biological processes; understanding their physical properties can also provide insights into the design of polyelectrolyte materials with novel and tailored properties. Here, we report systematic analysis on how the ionic strength of the solvent and the length of the polyelectrolyte block affect the self-assembly and morphology of the polyelectrolyte block copolymer materials by constructing a salt-dependent morphological phase diagram using an implicit solvent ionic strength (ISIS) method for dissipative particle dynamics (DPD) simulations. This diagram permits the determination of the conditions for the morphological transition into a specific shape, namely vesicles or lamellar aggregates, wormlike/cylindrical micelles, and spherical micelles. The scaling behavior for the size of spherical micelles is predicted, in terms of radius of gyration (R(g,m)) and thickness of corona (Hcorona), as a function of solvent ionic strength (c(s)) and polyelectrolyte length (NA), which are R(g,m) ∼ c(s)(-0.06)N(A)(0.54) and Hcorona ∼ c(s)(-0.11)N(A)(0.75). The simulation results were corroborated through AFM and static light scattering measurements on the example of the self-assembly of monodisperse, single-stranded DNA block-copolynucleotides (polyT50-b-F-dUTP). Overall, we were able to predict the salt-responsive morphology of polyelectrolyte materials in aqueous solution and show that a spherical-cylindrical-lamellar change in morphology can be obtained through an increase in solvent ionic strength or a decrease of polyelectrolyte length. PMID:26315065

  4. Conformation of polyelectrolytes in poor solvents: Variational approach and quantitative comparison with scaling predictions

    NASA Astrophysics Data System (ADS)

    Tang, Haozhe; Liao, Qi; Zhang, Pingwen

    2014-05-01

    We present the results of variational calculations of a polyelectrolyte solution with low salt in poor solvent conditions for a polymer backbone. By employing the variation method, we quantitatively determined the diagram of the state of the polyelectrolyte in poor solvents as a function of the charge density and the molecular weight. The exact structure and diagram of the polyelectrolyte were compared to the scaling predictions of the necklace model developed by Dobrynin and Rubinstein [Prog. Polym. Sci. 30, 1049-1118 (2005); Dobrynin and Rubinstein, Macromolecules 32, 915-922 (1999); Dobrynin and Rubinstein, Macromolecules 34, 1964-1972 (2001)]. We find that the scaling necklace model may be used as a rather good estimation and analytical approximation of the exact variational model. It is also pointed out that the molecular connection of polymer is crucial for ellipsoid and necklace conformation.

  5. Thermodynamic characterization of the interaction behavior of a hydrophobically modified polyelectrolyte and oppositely charged surfactants in aqueous solution: effect of surfactant alkyl chain length.

    PubMed

    Bai, Guangyue; Nichifor, Marieta; Lopes, António; Bastos, Margarida

    2005-01-13

    We have used a precision isothermal titration microcalorimeter (ITC) to measure the enthalpy curves for the interaction of a hydrophobically modified polyelectrolyte (D40OCT30) with oppositely charged surfactants (SC(n)S) in aqueous solution. D40OCT30 is a newly synthesized polymer based on dextran having pendant N-(2-hydroxypropyl)-N,N-dimethyl-N-octylammonium chloride groups randomly distributed along the polymer backbone with degree of substitution of 28.1%. The employed anionic surfactants are sodium octyl sulfate (SC(8)S) and sodium tetradecyl sulfate (SC(14)S). Microcalorimetric results along with turbidity and kinematic viscosity measurements demonstrate systematically the thermodynamic characterization of the interaction of D40OCT30/SC(n)S. A three-dimensional diagram with the derived phase boundaries is drawn to describe the effect of the alkyl chain length of surfactant and of the ratio between surfactant and pendant groups on the interaction. A more complete picture of the interaction mechanism for D40OCT30/SC(n)S systems is proposed here. PMID:16851043

  6. A new equation of state of a flexible-chain polyelectrolyte solution: Phase equilibria and osmotic pressure in the salt-free case

    NASA Astrophysics Data System (ADS)

    Budkov, Yu. A.; Kolesnikov, A. L.; Georgi, N.; Nogovitsyn, E. A.; Kiselev, M. G.

    2015-05-01

    We develop a first-principle equation of state of salt-free polyelectrolyte solution in the limit of infinitely long flexible polymer chains in the framework of a field-theoretical formalism beyond the linear Debye-Hueckel theory and predict a liquid-liquid phase separation induced by a strong correlation attraction. As a reference system, we choose a set of two subsystems—charged macromolecules immersed in a structureless oppositely charged background created by counterions (polymer one component plasma) and counterions immersed in oppositely charged background created by polymer chains (hard-core one component plasma). We calculate the excess free energy of polymer one component plasma in the framework of modified random phase approximation, whereas a contribution of charge densities' fluctuations of neutralizing backgrounds we evaluate at the level of Gaussian approximation. We show that our theory is in a very good agreement with the results of Monte Carlo and MD simulations for critical parameters of liquid-liquid phase separation and osmotic pressure in a wide range of monomer concentration above the critical point, respectively.

  7. Determination of pressure solution shortening in sandstones

    NASA Astrophysics Data System (ADS)

    Onasch, Charles M.

    1993-11-01

    A new method for the determination of pressure solution shortening in sandstones uses the geometry of grain-to-grain interpenetrations and grains truncated against solution surfaces. These features are used to construct plots from which the magnitude and direction of the pressure solution shortening can be determined. Using simulated pressure solution deformation of artificial and natural grain populations, the new method is shown to correctly assess a variety of coaxial and non-coaxial shortenings. Although primarily intended to determine shortening, the method can also quantify extension related to growth of beards or overgrowths during pressure solution. Application of the method to naturally deformed quartz arenite samples shows that pressure solution shortening of up to 26% occurred during compaction and 22% during layer-parallel shortening.

  8. Characterization of polyelectrolyte behavior of the polysaccharides chitosan, heparin, and hyaluronan, by light scattering and viscometry.

    NASA Astrophysics Data System (ADS)

    Boddohi, Soheil; Yonemura, Susan; Kipper, Matt

    2008-03-01

    This study on the polyelectrolyte behavior of polysaccharides in solution is motivated by our recent work in development of nanostructured polysaccharide-based surface coatings. Chitosan behaves as a weak polycation, and hyaluronan behaves as a weak polyanion, while heparin behaves as a strong polyanion. The ability to control the conformation of these polysaccharides in solution, by changing the solution ionic strength and pH may offer the opportunity to further tune the nanoscale features of polysaccharide-based surface coatings assembled from solution. In the work reported here, the solution conformation of these polymers is determined from gel permeation chromatography coupled to differential refractive index, light scattering, and viscometry detection. These results are related to the nanostructure of chitosan-heparin and chitosan-hyaluronan surface coatings based on polyelectrolyte multilayers.

  9. Saloplastics: processing compact polyelectrolyte complexes.

    PubMed

    Schaaf, Pierre; Schlenoff, Joseph B

    2015-04-17

    Polyelectrolyte complexes (PECs) are prepared by mixing solutions of oppositely charged polyelectrolytes. These diffuse, amorphous precipitates may be compacted into dense materials, CoPECs, by ultracentrifugation (ucPECs) or extrusion (exPECs). The presence of salt water is essential in plasticizing PECs to allow them to be reformed and fused. When hydrated, CoPECs are versatile, rugged, biocompatible, elastic materials with applications including bioinspired materials, supports for enzymes and (nano)composites. In this review, various methods for making CoPECs are described, as well as fundamental responses of CoPEC mechanical properties to salt concentration. Possible applications as synthetic cartilage, enzymatically active biocomposites, self-healing materials, and magnetic nanocomposites are presented. PMID:25771881

  10. Investigation on the interaction of Safranin T with anionic polyelectrolytes by spectrophotometric method

    NASA Astrophysics Data System (ADS)

    Fradj, Anouar Ben; Lafi, Ridha; Hamouda, Sofiane Ben; Gzara, Lassaad; Hamzaoui, Ahmed Hichem; Hafiane, Amor

    2014-10-01

    Understanding the role played by chemical additives such as NaCl salt, acid and Cetylpyridinium Chloride (CPC) surfactant on the interaction between dye and polyelectrolyte contributes to optimization of processes using polyelectrolytes in the removal of dye from aqueous solution. Herein we focus in the interaction between Safranin T, a cationic dye, with two anionic polyelectrolytes, poly(ammonium acrylate) and poly(acrylic acid) using spectrophotometric method and conductivity measurement. In aqueous solution, each of anionic polyelectrolytes forms a complex with the dye and induces a metachromasy indicated by the blue shift of the absorbance of the dye. The stoichiometry of complexes evaluated by the molar ratio method are 1:1 for Safranin T poly(ammonium acrylate) and 2:1 in the case of Safranin T poly(acrylic acid). The effect of additives on the stability of complexes has been studied by varying concentrations of the salt and the surfactant and pH of the solution. The thermodynamic parameters of interaction ΔG, ΔH and ΔS at different temperatures were evaluated to determine the stability constant of the complexes.

  11. Electrostatics of Rigid Polyelectrolytes

    SciTech Connect

    Wong, G.C.L.

    2009-06-04

    The organization of rigid biological polyelectrolytes by multivalent ions and macroions are important for many fundamental problems in biology and biomedicine, such as cytoskeletal regulation and antimicrobial sequestration in cystic fibrosis. These polyelectrolytes have been used as model systems for understanding electrostatics in complex fluids. Here, we review some recent results in theory, simulations, and experiments.

  12. Forming lipid bilayer membrane arrays on micropatterned polyelectrolyte film surfaces.

    PubMed

    Zhang, Ying; Wang, Lei; Wang, Xuejing; Qi, Guodong; Han, Xiaojun

    2013-07-01

    A novel method of forming lipid bilayer membrane arrays on micropatterned polyelectrolyte film surfaces is introduced. Polyelectrolyte films were fabricated by the layer-by-layer technique on a silicon oxide surface modified with a 3-aminopropyltriethoxysilane (APTES) monolayer. The surface pK(a) value of the APTES monolayer was determined by cyclic voltammetry to be approximately 5.61, on the basis of which a pH value of 2.0 was chosen for layer-by-layer assembly. Micropatterned polyelectrolyte films were obtained by deep-UV (254 nm) photolysis though a mask. Absorbed fluorescent latex beads were used to visualize the patterned surfaces. Lipid bilayer arrays were fabricated on the micropatterned surfaces by immersing the patterned substrates into a solution containing egg phosphatidylcholine vesicles. Fluorescence recovery after photobleaching studies yielded a lateral diffusion coefficient for probe molecules of 1.31±0.17 μm(2) s(-1) in the bilayer region, and migration of the lipid NBD PE in bilayer lipid membrane arrays was observed in an electric field. PMID:23695862

  13. Fluorescence array-based sensing of nitroaromatics using conjugated polyelectrolytes.

    PubMed

    Wu, Jiatao; Tan, Chunyan; Chen, Zhifang; Chen, Yu Zong; Tan, Ying; Jiang, Yuyang

    2016-05-23

    A sensor array consisting of six cationic fluorescent conjugated polyelectrolytes (CPEs) is reported, which could readily differentiate between nine closely related hydrophilic nitroaromatics (NACs) in separate aqueous solutions by fluorescence pattern recognition and linear discrimination analysis (LDA). PMID:27169808

  14. Optimal solutions of unobservable orbit determination problems

    NASA Astrophysics Data System (ADS)

    Cicci, David A.; Tapley, Byron D.

    1988-12-01

    The method of data augmentation, in the form ofa priori covariance information on the reference solution, as a means to overcome the effects of ill-conditioning in orbit determination problems has been investigated. Specifically, for the case when ill-conditioning results from parameter non-observability and an appropriatea priori covariance is unknown, methods by which thea priori covariance is optimally chosen are presented. In problems where an inaccuratea priori covariance is provided, the optimal weighting of this data set is obtained. The feasibility of these ‘ridge-type’ solution methods is demonstrated by their application to a non-observable gravity field recovery simulation. In the simulation, both ‘ridge-type’ and conventional solutions are compared. Substantial improvement in the accuracy of the conventional solution is realized by the use of these ridge-type solution methods. The solution techniques presented in this study are applicable to observable, but ill-conditioned problems as well as the unobservable problems directly addressed. For the case of observable problems, the ridge-type solutions provide an improvement in the accuracy of the ordinary least squares solutions.

  15. Electrochromism and electrocatalysis in viologen polyelectrolyte multilayers

    SciTech Connect

    Stepp, J.; Schlenoff, J.B.

    1997-06-01

    Polyelectrolyte multilayers were constructed from a polyviologen and poly(styrene sulfonate) using an alternating polyion solution deposition technique. In situ absorption spectroscopy showed multilayers to be strongly electrochromic. Oxygen reduction at multilayer-coated conducting glass electrodes was also shown to be facilitated.

  16. Various corona treated biopolymer substrates for the deposition of polyelectrolyte multilayers

    NASA Astrophysics Data System (ADS)

    Yovcheva, T. A.; Marudova, M. G.; Viraneva, A. P.; Sotirov, S. I.; Rusev, S. H.; Bodurov, I. P.; Pilicheva, B. A.; Uzunova, Y. I.; Exner, G. K.; Grancharova, Ts. Ts.; Vlaeva, I. Y.

    2016-03-01

    In the present paper the effect of the substrate type and the corona polarity were investigated. Various biopolymer substrates (poly lactic acid (PLA), PLA with chitosan and lyophilized PLA) were prepared. These substrates were charged in a positive and in a negative corona and time dependences of the normalized surface potential were studied. After that multilayer films were formed by alternative dipping the substrates into chitosan and xanthan polyelectrolyte solutions. For this purpose 0.1% chitosan solution and 0.05% xanthan solution in acetate buffers with pH 4.5 and ionic strength 0.1 mol/l were used. The films' morphology was investigated by FTIR and SEM methods. A comparative analysis of the experimental results was presented and the most appropriate substrate type for the irreversible binding of the chitosan/ xanthan polyelectrolytes was determined.

  17. Polyelectrolyte multilayers: An odyssey through interdisciplinary science

    NASA Astrophysics Data System (ADS)

    Jaber, Jad A.

    This dissertation provides an overview of a self assembled multilayer technique based on the alternating deposition of oppositely charged polyelectrolytes onto charged solid supports. The basic principles and methodologies governing this technique are laid down, and new strategies are built upon the latter, in an effort to develop innovative technologies that would be beneficial for making new products or improving the quality of existing ones. Fundamental studies to characterize the water content, efficiency of ion-pairing, differential strength of electrostatic interactions, topology, and viscoelastic properties of polyelectrolyte multilayers, PEMUs, are illustrated and conducted. In addition, polyelectrolyte multilayers that are stimulus responsive, or support active and controlled bio-motor protein interactions are described. Attenuated total reflectance Fourier transform infrared, (ATR), spectroscopy was used to compare the extent of swelling and doping within PAH/PSS and PDADMA/PSS polyelectrolyte multilayers. Unlike PDADMA/PSS, whose water content depended on the solution ionic strength, PAH/PSS was resistant to swelling by salt. It was stable up to 4.0 M sodium chloride, with 6 water molecules per ion-pair. Using the infrared active perchlorate sodium salt, the amount of residual persistent extrinsic sites in both PDADMA/PSS and PAH/PSS was determined to be 3% and 6%, respectively. The free energy of association between the polymer segments, in the presence of sodium perchlorate, was in the order of 4.5 kJ mol-1 and -9.5 kJ mol-1 for PDADMA/PSS and PAH/PSS correspondingly. Thus, indicating the relatively strong electrostatic association between the polymer segments in a PAH/PSS relative to PDADMA/PSS multilayer. Adjusting the pH of the solution in contact with the PAH/PSS multilayer to 11.5 resulted in a first order discontinuous dissociation of the Pol+Pol- bonds. Techniques used to study the mechanical properties of single muscle fiber were adapted to

  18. Flexible polyelectrolyte conformation in the presence of oppositely charged surfactants.

    PubMed

    Kuhn, P S; Diehl, A

    2007-10-01

    Conformational behavior of flexible polyelectrolytes in the presence of monovalent cationic surfactants is examined. A simple model is presented for the formation of polyelectrolyte-surfactant complexes in salt-free solutions in the framework of the Debye-Hückel-Bjerrum-Manning and Flory theories, including explicitly the hydrophobic interactions between the associated surfactant molecules on the polyelectrolyte. The distribution of complexes is calculated as a function of the surfactant concentration and a discrete conformational transition between an elongated coil and a compact globule was found, in agreement with experimental observations. PMID:17995019

  19. Diffusion of polyelectrolytes in polyelectrolyte gels

    NASA Astrophysics Data System (ADS)

    Rahalkar, Anand; Muthukumar, Murugappan

    2015-03-01

    Using dynamic light scattering, we have investigated the diffusion coefficient of sodium poly(styrene sulfonate) in a matrix of poly(acrylamide-co-acrylate) gels. The diffusion coefficient of the probe polyelectrolyte exhibits a crossover behavior from a particle-diffusion to entropic-barrier dominated diffusion, as the molecular weight is increased. The effect of electrostatics, by varying the charge density of the matrix, on probe diffusion constant will be presented.

  20. Polyelectrolytes to produce nanosized polydopamine.

    PubMed

    Mateescu, Mihaela; Metz-Boutigue, Marie-Hélène; Bertani, Philippe; Ball, Vincent

    2016-05-01

    "Polydopamine" (PDA) is the oxidation product of dopamine and can be obtained as thin films covering the surface of all kinds of known materials and simultaneously as insoluble and useless precipitates from dopamine solutions in the presence of appropriate oxidants. The valorization of such precipitates to obtain stable suspensions of functional nanomaterials is highly desirable owing to the chemical and optical properties of PDA. We show that a vast repertoire of polyelectrolytes polycations as well as polyanions, allow to control the size of PDA particles in the 10-100 nm size range. Simultaneously to the production of smaller nanoparticles, a progressive inhibition of PDA deposition on the surface of quartz plates (as well as on the surface of the reaction vessel) is found as the concentration of the polyelectrolytes is increased in the dopamine solution. The mechanism of size control-inhibition of film deposition is investigated in the particular case of poly(allylamine) but remains not understood in the case of polyanions. PMID:26890383

  1. Polyelectrolyte effects in polymers for lithography

    NASA Astrophysics Data System (ADS)

    Prabhu, Vivek

    2006-03-01

    The transformation of a solid-like film into a solution upon exposure to a miscible solvent is a complex process involving sluggish kinetic pathways associated with the slow transport of the liquid into the film and the evolution of the thermodynamic driving forces during the course of the dissolution process. In complex materials such as polymers, this process occurs in stages from the transformation of the glassy or crystalline film into a swollen state, followed at longer times by the final dissolution of the film. Dissolving polyelectrolyte films exhibit additional complexities in their dissolution dynamics over uncharged polymer films. Interfacial charge density, the dielectric constant of the medium, ionic strength and valence influence the phase behavior of charged polymers thus affecting their dissolution behavior. The dissolution mechanism can be tailored for different applications, for instance the microelectronics industry utilizes the selective dissolution of one component enabling lithographic pattern formation. We present neutron reflectivity and quartz crystal microbalance results to address polyelectrolyte effects in thin films such as the counterion distribution, quasi-equilibrium swelling and kinetics. V.M. Prabhu, R.L. Jones, E.K. Lin, W-L Wu. ``Polyelectrolyte effects in model photoresist developer solutions.'' J. Vac. Sci. and Tech.B, 21, 1403 (2003). V.M. Prabhu, B.D. Vogt, W-L. Wu, J. Douglas, E. Lin, S. Satija, D. Goldfarb, and H. Ito. ``Direct measurement of the counterion distribution within swollen polyelectrolyte films'' Langmuir Letter, 21, 6647 (2005).

  2. Ionic content and permeability of polyelectrolyte multilayers and complexes

    NASA Astrophysics Data System (ADS)

    Ghostine, Ramy A.

    Ultrathin films of polyelectrolyte multilayers (PEMUs) are built by the alternating deposition of oppositely charged polymers from aqueous solutions onto a clean substrate. The most used protocol to fabricate this type of films is called the Layer-by-Layer assembly technique. The type of polyelectrolytes, the buildup conditions, and the post-assembly treatments can be modified in order to control both the chemical and physical properties of multilayers. In recent years, multilayers have been used in commercially available products, corrosion protection, biocompatible surfaces, hydrophobic and hydrophilic coatings and chromatographic applications. Their robustness and stability make polyelectrolyte multilayer thin films good candidates for a series of other applications such as cell growth control, ion exchange membranes, drug delivery, sensors and electronics. In this dissertation, the permeability of polyelectrolyte multilayers made from poly(diallyldimethylammonium chloride) (PDADMAC) and sodium poly(4-styrene sulfonate) (NaPSS) is discussed in details. The permeability was studied by measuring the flux of redox active ions across a PEMU coated electrode. The effect of temperature, salt type and concentration was studied and it was determined that the flux of ions increases with temperature and salt concentration, and the permeability of ions strongly depends on the type of salt ions present in solution. The membrane concentration of the redox active ion was also calculated using attenuated total reflectance Fourier transform infra red spectroscopy. In another part of this dissertation, the ionic content of PEMUs was investigated by using radioactive counterions to track the ratio of positive to negative polymer repeat units. It was found that the accepted model of charge overcompensation for each layer is incorrect. In fact, overcompensation at the surface occurs only on the addition of the polycation, whereas the polyanion merely compensates the polycation

  3. Effect of Supporting Polyelectrolyte Multilayers and Deposition Conditions on the Formation of 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine/1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine Lipid Bilayers.

    PubMed

    Wlodek, Magdalena; Szuwarzynski, Michal; Kolasinska-Sojka, Marta

    2015-09-29

    The formation of complete supported lipid bilayers by vesicle adsorption and rupture was studied in relation to deposition conditions of vesicles and underlying cushion formed from various polyelectrolytes. Lipid vesicles were formed from zwitterionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and negatively charged 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) in phosphate buffer of various pH with or without NaCl addition. Polyelectrolyte multilayer films (PEM) were constructed by sequential adsorption of alternately charged polyelectrolytes from their solutions-layer-by-layer deposition (LBL). The mechanism of the formation of supported lipid bilayer on polyelectrolyte films was studied by quartz crystal microbalance with dissipation monitoring (QCM-D) and atomic force microscopy (AFM). QCM-D allowed following the adsorption kinetics while AFM measurements verified the morphology of lipid vesicles and isolated bilayer patches on the PEM cushions providing local topological images in terms of lateral organization. Additionally, polyelectrolyte cushions were characterized with ellipsometry to find thickness and swelling properties, and their roughness was determined using AFM. It has been demonstrated that the pH value and an addition of NaCl in the buffer solution as well as the type of the polyelectrolyte cushion influence the kinetics of bilayer formation and the quality of formed bilayer patches. PMID:26334376

  4. The interaction of humic substances with cationic polyelectrolytes.

    PubMed

    Kam, S K; Gregory, J

    2001-10-01

    The anionic charge carried by aquatic humic substances plays a major part in their interaction with metal ions and other cationic species. Removal of such substances by coagulation and flocculation can be, at least partly, determined by charge neutralisation. In this work, the charge densities of a commercial humic acid and an aquatic humic extract have been investigated by studying their interactions with a series of synthetic cationic polyelectrolytes. These covered a range of charge densities and molecular weights. The techniques used were colloid titration by spectrophotometry and streaming current detection, and flocculation determined by colour removal and by an optical monitoring method. For a given cationic polyelectrolyte, all four methods gave charge densities for humic substances which were in good agreement. However, systematic differences in the apparent humic charge density were found, depending on the charge density of the cationic polyelectrolyte used. With low charge density polyelectrolytes, the apparent anionic charge of the humic substances was found to be low. With higher polyelectrolyte charge densities, the apparent humic substance charge density increases and reaches a limiting value when the polyelectrolyte charge is greater than about 3 meq/g. This indicates a non-stoichiometric interaction between the anionic sites of the humic substances and the cationic charges of the low-charge polyelectrolytes. Optimum flocculation of humics occurred with less cationic charge in the case of low-charge polyelectrolytes than those with higher charge density. However, the degree of removal was considerably better in the latter case. In all cases, the molecular weight of the cationic polyelectrolytes (over a range from about 50,000 to 15 million) appeared to have no effect on the results. PMID:11561615

  5. Direct Determination of Nonmetals in Solution with Atomic Spectrometry.

    ERIC Educational Resources Information Center

    McGregor, David A.; And Others

    1988-01-01

    Addresses solution nonmetal determinations on a fundamental level. Characterizes research in this area of chemical instrumentation. Discusses the fundamental limitations of nonmetal atomic spectrometry, the status of nonmetals and atomic spectroscopic techniques, and current directions in solution nonmetal determinations. (CW)

  6. Encapsidation of Linear Polyelectrolyte in a Viral Nanocontainer

    NASA Astrophysics Data System (ADS)

    Hu, Yufang

    2005-03-01

    We present the results from a combined experimental and theoretical study on the self-assembly of a model icosahedral virus, Cowpea Chlorotic Mottle Virus (CCMV). The formation of native CCMV capsids is believed to be driven primarily by the electrostatic interactions between the viral RNA and the positively charged capsid interior, as well as by the hydrophobic interactions between capsid protein subunits. To probe these molecular interactions, in vitro self-assembly reactions are carried out using the CCMV capsid protein and a synthetic linear polyelectrolyte, sodium polystyrene sulfonate (NaPSS), which functions as the analog of viral RNA. Under appropriate solutions conditions, NaPSS is encapsidated by the viral capsid. The molecular weight of NaPSS is systematically varied and the resulting average capsid size, size distribution, and particle morphology are measured by transmission electron microscopy. The correlation between capsid size and packaged cargo size, as well as the upper limit of capsid packaging capacity, are characterized. To elucidate the physical role played by the encapsidated polyelectrolyte in determining the preferred size of spherical viruses, we have used a mean-field approach to calculate the free energy of the virus-like particle as a function of chain length (and of the strength of chain/capsid attractive interaction). We find good agreement with our analytical calculations and experimental results.

  7. Hybrid particle-field molecular dynamics simulation for polyelectrolyte systems.

    PubMed

    Zhu, You-Liang; Lu, Zhong-Yuan; Milano, Giuseppe; Shi, An-Chang; Sun, Zhao-Yan

    2016-04-14

    To achieve simulations on large spatial and temporal scales with high molecular chemical specificity, a hybrid particle-field method was proposed recently. This method is developed by combining molecular dynamics and self-consistent field theory (MD-SCF). The MD-SCF method has been validated by successfully predicting the experimentally observable properties of several systems. Here we propose an efficient scheme for the inclusion of electrostatic interactions in the MD-SCF framework. In this scheme, charged molecules are interacting with the external fields that are self-consistently determined from the charge densities. This method is validated by comparing the structural properties of polyelectrolytes in solution obtained from the MD-SCF and particle-based simulations. Moreover, taking PMMA-b-PEO and LiCF3SO3 as examples, the enhancement of immiscibility between the ion-dissolving block and the inert block by doping lithium salts into the copolymer is examined by using the MD-SCF method. By employing GPU-acceleration, the high performance of the MD-SCF method with explicit treatment of electrostatics facilitates the simulation study of many problems involving polyelectrolytes. PMID:27001709

  8. Force balances in systems of cylindrical polyelectrolytes.

    PubMed

    Brenner, S L; McQuarrie, D A

    1973-04-01

    A detailed analysis is made of the model system of two parallel cylindrical polyelectrolytes which contain ionizable groups on their surfaces and are immersed in an ionic bathing medium. The interaction between the cylinders is examined by considering the interplay between repulsive electrostatic forces and attractive forces of electrodynamic origin. The repulsive force arises from the screened coulomb interaction between the surface charge distributions on the cylinders and has been treated by developing a solution to the linearized Poisson-Boltzmann equation. The boundary condition at the cylinder surfaces is determined as a self-consistent functional of the potential, with the input consisting of the density of ionizable groups and their dissociation constants. It is suggested that a reasonably accurate representation for the form of the attractive force can be obtained by performing a pairwise summation of the individual interatomic forces. A quantitative estimate is obtained using a Hamaker constant chosen on the basis of rigorous calculations on simpler systems. It is found that a balance exists between these repulsive and attractive forces at separations in good agreement with those observed in arrays of tobacco mosaic virus and in the A band myosin lattice in striated muscle. The behavior of the balance point as a function of the pH and ionic strength of the bathing medium closely parallels that seen experimentally. PMID:4696760

  9. Colorimetric determination of tobramycin in parenteral solutions.

    PubMed

    Das Gupta, V

    1988-06-01

    A colorimetric method based on a reaction between tobramycin and alkaline copper sulphate solution has been proposed to quantify tobramycin in injections. The excipients present and normal saline did not interfere with the assay procedure. A tobramycin sample which was decomposed using either sulphuric acid or sodium hydroxide solution indicated fairly good stability on both sides of the pH scale. PMID:3209627

  10. Fabrication of polyelectrolyte multilayered nano-capsules using a continuous layer-by-layer approach.

    PubMed

    Elizarova, Iuliia S; Luckham, Paul F

    2016-05-15

    The layer-by-layer approach is a highly versatile method for the fabrication of multilayered polymeric films and capsules. It has been widely investigated in research for various polyelectrolyte pairs and core template particles. However, the fabrication of nano-sized capsules at the larger scale is difficult and time consuming, due to the necessity of washing and centrifugation steps before the deposition of each polyelectrolyte layer. This results not only in a very long fabrication time, but also in the partial loss of particles during those intermediate steps. In this study, we introduced a continuous approach for the fabrication of multilayer polyelectrolyte based nano-capsules using calcium phosphate core nanoparticles and a tubular flow type reactor with the potential for synthesizing tens of milligrams of capsules per hour. Adsorption of the polyelectrolyte layer occurred in the tubing where particles and polyelectrolyte solution of choice were mixed, creating a layer of polyelectrolyte on the particles. After this, these newly surfaced-modified particles passed into the next segment of tubing, where they were mixed with a second polyelectrolyte of opposite charge. This process can be continuously repeated until the desired number of layers is achieved. One potential problem with this method concerned the presence of any excess polyelectrolyte in the tubing, so careful control of the amount of polymer added was crucial. It was found that slightly under dosing the amount of added polyelectrolyte ensured that negligible unadsorbed polyelectrolyte remained in solution. The particles created at each deposition step were stable, as they all had a zeta potential of greater than ±25mV. Furthermore the zeta potential measurements showed that charge reversal occurred at each stage. Having achieved the necessary number of polyelectrolyte layers, the calcium phosphate cores were easily removed via dissolution in either hydrochloric or acetic acid. PMID:26939072

  11. Sequestration of Methylene Blue into Polyelectrolyte Complex Coacervates.

    PubMed

    Zhao, Mengmeng; Zacharia, Nicole S

    2016-08-01

    Polyelectrolyte complex coacervation is a process that has been proposed as a model for protocell formation due to its ability to compartmentalize chemicals in solution without a membrane. During the liquid-liquid phase separation that results in water rich and polyelectrolyte rich phases, small molecules present in solution selectively partition to one phase over the other. This sequestration is based on relative affinities. Here, a study of the sequestration of methylene blue (MB) into the complex coacervate phase of three pairs of synthetic polyelectrolytes is presented; branched polyethylene imine with polyacrylic acid, polyvinyl sulfonate, or poly(4-styrenesulfonic acid). These materials are characterized with UV-vis, zeta potential measurements, and dynamic light scattering. The branched polyethylene imine/poly(4-styrenesulfonic acid) system is shown to have a significantly higher sequestration capacity for the MB as compared to either of the other two systems, based on π-π interactions which are not possible in the other systems. PMID:27336461

  12. Phase Transitions in Nanostructured Polyelectrolyte-Surfactant Complexes

    NASA Astrophysics Data System (ADS)

    Leonard, Michael; Strey, Helmut

    2001-03-01

    When a water-soluble polyelectrolyte is combined with an oppositely-charged surfactant solution at a stoichiometric charge ratio, self-assembly into highly-ordered, water-insoluble structures occurs. We have prepared such complexes with poly(sodium acrylate)-co-acrylamide, alginic acid, and chitosan, combined with cationic and anionic surfactants. The phases exhibited by these complexes in aqueous solution are highly sensitive to such factors as osmotic pressure, salt type, ionic strength, and polyelectrolyte charge density. In this study, we have used small angle X-ray scattering to examine osmotic stress-induced structural phase transitions in these complexes under these various environmental conditions. The morphological consequences of combining polyelectrolytes with swollen, emulsion-bound surfactant micelles were also investigated. Results of this work, as well as the potential to use these complexes as nanoporous, biocompatible materials, will be discussed.

  13. Aligned Carbon Nanotube Thin Films from Liquid Crystal Polyelectrolyte Inks.

    PubMed

    Tune, Daniel D; Blanch, Adam J; Shearer, Cameron J; Moore, Katherine E; Pfohl, Moritz; Shapter, Joseph G; Flavel, Benjamin S

    2015-11-25

    Single walled carbon nanotube thin films are fabricated by solution shearing from high concentration sodium nanotubide polyelectrolyte inks. The solutions are produced by simple stirring of the nanotubes with elemental sodium in dimethylacetamide, and the nanotubes are thus not subject to any sonication-induced damage. At such elevated concentrations (∼4 mg mL(-1)), the solutions exist in the liquid crystal phase and during deposition this order is transferred to the films, which are well aligned in the direction of shear with a 2D nematic order parameter of ∼0.7 determined by polarized absorption measurements. Compared to similarly formed films made from superacids, the polyelectrolyte films contain smaller bundles and a much narrower distribution of bundle diameters. After p-doping with an organic oxidizer, the films exhibit a very high DC electrical to optical conductivity ratio of σ(DC)/σ(OP) ∼ 35, corresponding to a calculated DC conductivity of over 7000 S cm(-1). When very thin (T550 ∼ 96%), smooth (RMS roughness, R(q) ∼ 2.2 nm), and highly aligned films made via this new route are used as the front electrodes of carbon nanotube-silicon solar cells, the power conversion efficiency is almost an order of magnitude greater than that obtained when using the much rougher (R(q) ∼ 20-30 nm) and less conductive (peak σ(DC)/σ(OP) ∼ 2.5) films formed by common vacuum filtration of the same starting material, and having the same transmittance. PMID:26511159

  14. Investigation of metal-polyelectrolyte complex toxicity.

    PubMed

    Karahan, Mesut; Mustafaeva, Zeynep; Koç, Rabia Çakır; Bağırova, Melahat; Allahverdiyev, Adil M

    2014-05-01

    Water-soluble binary and ternary copper complexes of polyelectrolytes were synthesized, and the toxicity of these complexes was tested in mouse fibroblast cell line (L929) in vitro. Both the binary and ternary complexes were prepared at the ratio of 0.4 mole copper(II) ions per monomer of acrylic acid and 0.5 mole copper(II) ions per monomer of methyl vinyl ether maleic anhydride, furthermore at the ratio of 1 and 2 mole bovine serum albumin per mole of polyacrylic acid and poly(methyl vinyl ether-co-maleic anhydride), respectively. Compared to binary copper(II)-polyelectrolyte complexes, these ternary complexes have been determined to be of least toxicity. PMID:22914259

  15. Kinetics of thorium-polyelectrolyte interaction

    SciTech Connect

    Cacheris, W.P.

    1985-01-01

    The rate constants for thorium dissociation from humic acid, PMA (polymaleic acid) and PMVEMA (poly(-methylvinylether/maleic acid)) were measured in the pH range of 4.20 to 5.94. The rate of thorium dissociation from these polyelectrolytes was determined by measuring the rate at which thorium was complexed with an exchange ligand. Arsenazo III was employed as the exchange ligand and its complexation of thorium was monitored by visible spectroscopy. The dissociation of thorium from these polyelectrolytes occurred by several first order pathways. These pathways fit into two categories based on their dependence on pH, temperature and the amount of time thorium was in contact with the polyelectrolyte prior to dissociation. Less than 6 +/- 1 KJ/mole activation entropy was found for the first category of thorium dissociation. Between 20 +/- 2 and 30 +/- 2 KJ/mole activation energy and from -200 +/- 20 to -250 +/- 20 joule/mole-K/sup 0/ activation entropy was found for the second category of thorium dissociation.

  16. Ion transport through electrolyte/polyelectrolyte multi-layers.

    PubMed

    Femmer, Robert; Mani, Ali; Wessling, Matthias

    2015-01-01

    Ion transport of multi-ionic solutions through layered electrolyte and polyelectrolyte structures are relevant in a large variety of technical systems such as micro and nanofluidic devices, sensors, batteries and large desalination process systems. We report a new direct numerical simulation model coined EnPEn: it allows to solve a set of first principle equations to predict for multiple ions their concentration and electrical potential profiles in electro-chemically complex architectures of n layered electrolytes E and n polyelectrolytes PE. EnPEn can robustly capture ion transport in sub-millimeter architectures with submicron polyelectrolyte layers. We proof the strength of EnPEn for three yet unsolved architectures: (a) selective Na over Ca transport in surface modified ion selective membranes, (b) ion transport and water splitting in bipolar membranes and (c) transport of weak electrolytes. PMID:26111456

  17. Ion transport through electrolyte/polyelectrolyte multi-layers

    PubMed Central

    Femmer, Robert; Mani, Ali; Wessling, Matthias

    2015-01-01

    Ion transport of multi-ionic solutions through layered electrolyte and polyelectrolyte structures are relevant in a large variety of technical systems such as micro and nanofluidic devices, sensors, batteries and large desalination process systems. We report a new direct numerical simulation model coined EnPEn: it allows to solve a set of first principle equations to predict for multiple ions their concentration and electrical potential profiles in electro-chemically complex architectures of n layered electrolytes E and n polyelectrolytes PE. EnPEn can robustly capture ion transport in sub-millimeter architectures with submicron polyelectrolyte layers. We proof the strength of EnPEn for three yet unsolved architectures: (a) selective Na over Ca transport in surface modified ion selective membranes, (b) ion transport and water splitting in bipolar membranes and (c) transport of weak electrolytes. PMID:26111456

  18. Ion transport through electrolyte/polyelectrolyte multi-layers

    NASA Astrophysics Data System (ADS)

    Femmer, Robert; Mani, Ali; Wessling, Matthias

    2015-06-01

    Ion transport of multi-ionic solutions through layered electrolyte and polyelectrolyte structures are relevant in a large variety of technical systems such as micro and nanofluidic devices, sensors, batteries and large desalination process systems. We report a new direct numerical simulation model coined EnPEn: it allows to solve a set of first principle equations to predict for multiple ions their concentration and electrical potential profiles in electro-chemically complex architectures of n layered electrolytes E and n polyelectrolytes PE. EnPEn can robustly capture ion transport in sub-millimeter architectures with submicron polyelectrolyte layers. We proof the strength of EnPEn for three yet unsolved architectures: (a) selective Na over Ca transport in surface modified ion selective membranes, (b) ion transport and water splitting in bipolar membranes and (c) transport of weak electrolytes.

  19. Erratum: "A new equation of state of a flexible-chain polyelectrolyte solution: Phase equilibria and osmotic pressure in the salt-free case" [J. Chem. Phys. 142, 174901 (2015)

    NASA Astrophysics Data System (ADS)

    Budkov, Yu. A.; Kolesnikov, A. L.; Georgi, N.; Nogovitsyn, E. A.; Kiselev, M. G.

    2015-11-01

    We develop a first-principle equation of state of salt-free polyelectrolyte solution in the limit of infinitely long flexible polymer chains in the framework of a field-theoretical formalism beyond the linear Debye-Hueckel theory and predict a liquid-liquid phase separation induced by a strong correlation attraction. As a reference system we choose a set of two subsystems - charged macromolecules immersed in a structureless oppositely charged background created by counterions (polymer one component plasma) and counterions immersed in oppositely charged background created by polymer chains (hard-core one component plasma). We calculate the excess free energy of polymer one component plasma in the framework of Modified Random Phase Approximation, whereas a contribution of charge densities fluctuations of neutralizing backgrounds we evaluate at the level of Gaussian approximation. We show that our theory is in a very good agreement with the results of Monte-Carlo and MD simulations for critical parameters of liquid-liquid phase separation and osmotic pressure in a wide range of monomer concentration above the critical point, respectively.

  20. Rheological correlations of relaxation time for finite concentrated semiflexible polyelectrolytes in solvents

    NASA Astrophysics Data System (ADS)

    Chun, Myung-Suk; Ko, Min Jae

    2012-10-01

    The Rouse-Zimm model based on the polymer dynamics theory allows us to predict the relaxation time of polyelectrolyte dilute solution as a function of the intrinsic viscosity. In finite concentrated solutions, the empirical analysis adopted in this study is quite useful to examine the relaxation behavior, noting that proper theories are not well-clarified and experimental measurements are rather complicated. For the xanthan biopolymer selected as the polyelectrolyte model of a semiflexible chain, we measured rheological properties of shear viscosity η and first normal stress difference σ Δ1 in dilute and semidilute solutions over a wide range of shear rates dot γ. Power-law scaling relations are commonly observed in the region of dot γ ≥slant 1 s-1. Accurate regressions on η and σ Δ1 present empirical plots as functions of the shear rate and the xanthan concentration, from which each of relevant fitting parameters are determined. Empirically determined curves agree well with the experimental data, ensuring that the empirical formula for the characteristic relaxation time λ is applicable at dilute and finite concentrations, which has not been reported in the literature. We further interpreted the non-Newtonian fluid behavior over a full range of shear rates by applying the Carreau A constitutive model.

  1. Wrap-and-Strip Technology of Protein-Polyelectrolyte Complex for Biomedical Application.

    PubMed

    Shiraki, Kentaro; Kurinomaru, Takaaki; Tomita, Shunsuke

    2016-01-01

    A polyelectrolyte is a polymer composed of repeating units of an electrolyte group that enables reversible complex formation with proteins in aqueous solutions. This review introduces "wrap-and-strip" technology of protein-polyelectrolyte complex (PPC) by noncovalent interaction. Storage: protein is stabilized against physical and chemical stresses. Enrichment: precipitation through PPC can be used as an enrichment method without irreversible unfolding. Catalytic activity switch: a complementary charged pair of polyelectrolytes functions as a reversible enzyme activity switch. Hyperactivation: a specific combination of a polyelectrolyte and substrate enhances enzyme activity by one order of magnitude compared with an enzyme alone. Stabilization: PPC increases protein stability against chemical and physical stresses, such as covalently modified polyethylene glycosylated protein. Simple PPC-based technology can expand the applicable fields of soluble proteins in aqueous solutions. PMID:26630921

  2. Entropy production determination of the ambipolar solution nearest equilibrium

    SciTech Connect

    Catto, P.J.; Myra, J.R.

    1984-10-01

    A general derivation of the steady state entropy production equation is presented for a confined plasma which loses particles and energy via radial transport and, perhaps, end loss. The resulting equation is employed to determine which root or solution is closest to thermodynamic equilibrium when more than one self-consistent or ambipolar solution is possible.

  3. Born energy, acid-base equilibrium, structure and interactions of end-grafted weak polyelectrolyte layers.

    PubMed

    Nap, R J; Tagliazucchi, M; Szleifer, I

    2014-01-14

    This work addresses the effect of the Born self-energy contribution in the modeling of the structural and thermodynamical properties of weak polyelectrolytes confined to planar and curved surfaces. The theoretical framework is based on a theory that explicitly includes the conformations, size, shape, and charge distribution of all molecular species and considers the acid-base equilibrium of the weak polyelectrolyte. Namely, the degree of charge in the polymers is not imposed but it is a local varying property that results from the minimization of the total free energy. Inclusion of the dielectric properties of the polyelectrolyte is important as the environment of a polymer layer is very different from that in the adjacent aqueous solution. The main effect of the Born energy contribution on the molecular organization of an end-grafted weak polyacid layer is uncharging the weak acid (or basic) groups and consequently decreasing the concentration of mobile ions within the layer. The magnitude of the effect increases with polymer density and, in the case of the average degree of charge, it is qualitatively equivalent to a small shift in the equilibrium constant for the acid-base equilibrium of the weak polyelectrolyte monomers. The degree of charge is established by the competition between electrostatic interactions, the polymer conformational entropy, the excluded volume interactions, the translational entropy of the counterions and the acid-base chemical equilibrium. Consideration of the Born energy introduces an additional energetic penalty to the presence of charged groups in the polyelectrolyte layer, whose effect is mitigated by down-regulating the amount of charge, i.e., by shifting the local-acid base equilibrium towards its uncharged state. Shifting of the local acid-base equilibrium and its effect on the properties of the polyelectrolyte layer, without considering the Born energy, have been theoretically predicted previously. Account of the Born energy leads

  4. Born energy, acid-base equilibrium, structure and interactions of end-grafted weak polyelectrolyte layers

    SciTech Connect

    Nap, R. J.; Tagliazucchi, M.; Szleifer, I.

    2014-01-14

    This work addresses the effect of the Born self-energy contribution in the modeling of the structural and thermodynamical properties of weak polyelectrolytes confined to planar and curved surfaces. The theoretical framework is based on a theory that explicitly includes the conformations, size, shape, and charge distribution of all molecular species and considers the acid-base equilibrium of the weak polyelectrolyte. Namely, the degree of charge in the polymers is not imposed but it is a local varying property that results from the minimization of the total free energy. Inclusion of the dielectric properties of the polyelectrolyte is important as the environment of a polymer layer is very different from that in the adjacent aqueous solution. The main effect of the Born energy contribution on the molecular organization of an end-grafted weak polyacid layer is uncharging the weak acid (or basic) groups and consequently decreasing the concentration of mobile ions within the layer. The magnitude of the effect increases with polymer density and, in the case of the average degree of charge, it is qualitatively equivalent to a small shift in the equilibrium constant for the acid-base equilibrium of the weak polyelectrolyte monomers. The degree of charge is established by the competition between electrostatic interactions, the polymer conformational entropy, the excluded volume interactions, the translational entropy of the counterions and the acid-base chemical equilibrium. Consideration of the Born energy introduces an additional energetic penalty to the presence of charged groups in the polyelectrolyte layer, whose effect is mitigated by down-regulating the amount of charge, i.e., by shifting the local-acid base equilibrium towards its uncharged state. Shifting of the local acid-base equilibrium and its effect on the properties of the polyelectrolyte layer, without considering the Born energy, have been theoretically predicted previously. Account of the Born energy leads

  5. Born energy, acid-base equilibrium, structure and interactions of end-grafted weak polyelectrolyte layers

    NASA Astrophysics Data System (ADS)

    Nap, R. J.; Tagliazucchi, M.; Szleifer, I.

    2014-01-01

    This work addresses the effect of the Born self-energy contribution in the modeling of the structural and thermodynamical properties of weak polyelectrolytes confined to planar and curved surfaces. The theoretical framework is based on a theory that explicitly includes the conformations, size, shape, and charge distribution of all molecular species and considers the acid-base equilibrium of the weak polyelectrolyte. Namely, the degree of charge in the polymers is not imposed but it is a local varying property that results from the minimization of the total free energy. Inclusion of the dielectric properties of the polyelectrolyte is important as the environment of a polymer layer is very different from that in the adjacent aqueous solution. The main effect of the Born energy contribution on the molecular organization of an end-grafted weak polyacid layer is uncharging the weak acid (or basic) groups and consequently decreasing the concentration of mobile ions within the layer. The magnitude of the effect increases with polymer density and, in the case of the average degree of charge, it is qualitatively equivalent to a small shift in the equilibrium constant for the acid-base equilibrium of the weak polyelectrolyte monomers. The degree of charge is established by the competition between electrostatic interactions, the polymer conformational entropy, the excluded volume interactions, the translational entropy of the counterions and the acid-base chemical equilibrium. Consideration of the Born energy introduces an additional energetic penalty to the presence of charged groups in the polyelectrolyte layer, whose effect is mitigated by down-regulating the amount of charge, i.e., by shifting the local-acid base equilibrium towards its uncharged state. Shifting of the local acid-base equilibrium and its effect on the properties of the polyelectrolyte layer, without considering the Born energy, have been theoretically predicted previously. Account of the Born energy leads

  6. Counter-ion distribution around flexible polyelectrolytes having different molecular architecture.

    PubMed

    Chremos, Alexandros; Douglas, Jack F

    2016-03-21

    We explore the monovalent counter-ion distribution around flexible highly-charged polyelectrolytes with different molecular architectures (linear chains, stars, and unknotted and trefoil rings) using molecular dynamics simulations that include an explicit solvent that interacts with the polyelectrolyte. In particular, we find that the molecular topology influences the fraction of counter-ions transiently associating with the polyelectrolyte on a scale of the order of the chain segments, forming a "condensed" counter-ion interfacial layer. As with the hydrogen bonding of water to proteins and other polymers, the persistence time of these interfacial "bound" counter-ions is relatively short, O(1 ps), and we characterize the fluctuations in the number of the counter-ions populating the interfacial layer. We also find that the counter-ions are distributed in a non-uniform fashion on the polyelectrolyte backbone, forming dynamical clusters whose form and average size is sensitive to molecular architecture. In addition, we find that the residual bound counter-ions, not located in either the interfacial layer or the bulk solution, form a diffuse ionic cloud around the polyelectrolyte due to the uncompensated polyelectrolyte charge along the backbone. Generally charge valence strongly influences the extent of the diffuse counter-ion cloud, but in the case of monovalent counter-ions, we find that the size of the diffuse counter-ion cloud nearly coincides with the polyelectrolyte radius of gyration, independent of molecular topology. PMID:26864861

  7. On the mesoscopic origins of high viscosities in some polyelectrolyte-surfactant mixtures

    SciTech Connect

    Hoffmann, Ingo; Farago, Bela; Schweins, Ralf; Falus, Peter; Sharp, Melissa; Prévost, Sylvain; Gradzielski, Michael

    2015-08-21

    Oppositely charged polyelectrolyte (PE) surfactant mixtures allow the control of rheological parameters of a solution even at fairly low concentrations. For example, addition of 0.3 wt. % of anionic surfactant to a 1 wt. % solution of the polycation JR 400 increases the viscosity by 4 orders of magnitude. Recently, we could show that this increase is related to the formation of mixed, rod-like PE/surfactant aggregates which interconnect several polyelectrolyte chains [Hoffmann et al., Europhys. Lett. 104, 28001 (2013)]. In this paper, we refine our structural model of the aggregates to obtain a more consistent picture of their internal structure for different anionic surfactants. Combining small angle neutron scattering (SANS) and neutron spin-echo (NSE) allows us to determine the size of the aggregates. By comparing different contrasts, the internal structure of the aggregates can be elucidated and it is seen that the PE in the aggregates retains a relatively high freedom of movement. We proceeded to investigate the influence of the surfactant concentration and the surfactant type on structure and dynamics of the mixed aggregates. It is seen that the structural parameters of the aggregates depend very little on the surfactant concentration and headgroup. However, it is crucial to incorporate a sufficient amount of PE in the aggregates to increase the viscosity of the aggregates. By comparing viscous samples at 1 wt. % PE concentration with samples at a PE concentration of 0.3 wt. %, where no significant increase in viscosity is observed, we find that similar aggregates are formed already at this lower PE concentrations. However, the amount of PE incorporated in them is insufficient to interconnect several PE chains and therefore, they do not increase viscosity. So, our detailed investigation combining contrast variation SANS and NSE does not only allow to explain the viscosity behavior but also to deduced detailed information regarding the structures and

  8. Entropy production determination of the ambipolar solution nearest equilibrium. Revision

    SciTech Connect

    Catto, P.J.; Myra, J.R.

    1985-05-01

    A general derivation of the steady state entropy production equation is presented for a confined plasma which loses particles and energy via radial transport and, perhaps, end loss. The resulting equation is employed to determine which root or solution at each pressure surface is closest to local thermodynamic equilibrium when more than one self-consistent or ambipolar solution is possible. The solution closest to local thermodynamic equilibrium is presumed to be the one with the smallest total collisional entropy production rate. This solution makes the distribution functions as close to local Maxwellians as possible.

  9. Formation, Structure and Electrochemical Impedance Analysis of Microporous Polyelectrolyte Multilayers

    NASA Astrophysics Data System (ADS)

    Lutkenhaus, Jodie; McEnnis, Kathleen; Hammond, Paula

    2007-03-01

    Microporous networks are of interest as electrolyte materials, gas separation membranes and catalytic nanoparticle templates. Here, we create microporous polyelectrolyte networks of tunable pore size and connectivity using the layer-by-layer (LBL) technique. In this method, a film is formed from the alternate adsorption of oppositely charged polyelectrolytes from aqueous solution to create a cohesive thin film. Using poly(ethylene imine) (PEI) and poly(acrylic acid) (PAA), LBL thin films of variable composition and charge density were assembled; then, the films were treated in an acidic bath, which ionizes PEI and de-ionizes PAA. This shift in charge density induces morphological rearrangement realized by a microporous network. Depending on the assembly pH and acidic bath pH, we are able to precisely tune the morphology, which is characterized by atomic force microscopy and scanning electron microscopy. To demonstrate the porous nature of the polyelectrolyte multilayer, the pores were filled with non-aqueous electrolyte (i.e. ethylene carbonate, dimethyl carbonate and lithium hexafluorophosphate) and probed with electrochemical impedance spectroscopy. These microporous networks exhibited two time constants, indicative of ions traveling through the liquid-filled pores and ions traveling through the polyelectrolyte matrix.

  10. Electrophoresis of DNA and other polyelectrolytes: Physical mechanisms

    NASA Astrophysics Data System (ADS)

    Viovy, Jean-Louis

    2000-07-01

    The dramatic recent advances in molecular biology, which have opened a new era in medicine and biotechnology, rely on improved techniques to study large molecules. Electrophoresis is one of the most important of these. Separation of DNA by size, in particular, is at the heart of genome mapping and sequencing and is likely to play an increasing role in diagnosis. This article reviews, from the point of view of a physicist, the mechanisms responsible for electrophoretic separation of polyelectrolytes. This separation is mainly performed in gels, and a wide variety of migration mechanisms can come into play, depending on the polyelectrolyte's architecture, on the electric fields applied, and on the properties of the gel. After a brief review of the thermodynamic and electrohydrodynamic principles relating to polyelectrolyte solutions, the author treats the phenomenology of electrophoresis and describes the conceptual and theoretical tools in the field. The reptation mechanisms, by which large flexible polyelectrolytes thread their way through the pores of the gel matrix, play a prominent role. Biased reptation, the extension of this model to electrophoresis, provides a very intuitive framework within which numerous physical ideas can be introduced and discussed. It has been the most popular theory in this domain, and it remains an inspiring concept for current development. There have also been important advances in experimental techniques such as single-molecule viodeomicroscopy and the development of nongel separation media and mechanisms. These, in turn, form the basis for fast-developing and innovative technologies like capillary electrophoresis, electrophoresis on microchips, and molecular ratchets.

  11. Self-Assembly of Polyoxometalate and Polyelectrolyte Macroions into Mechanically Strong Supramolecular Hydrogels

    NASA Astrophysics Data System (ADS)

    Jing, Benxin; Zhu, Y. Elaine

    Polyoxometalate (POM) macroions are the nanoclusters of transition metal oxide with size 1-10 nm and well-defined structure at the atom level. Because of their stoichiometric surface groups and high solubility in polar solvents to form thermodynamically stable solution, POMs are studied as excellent model macroions at nanoscale. In this work, we explore the electrostatic controlled self-assembly of anionic POMs and cationic or zwitterionic polyelectrolytes (PEs) in aqueous solution. Specifically we examine the complex formation of zwitterionic poly (3-(methacryloylamino)propyl]dimethyl(3-sulfopropyl)ammonium hydroxide) (PSBMA) and cationic poly(diallyldimethylammonium chloride) (PDADMAC) with tungstate based POMs of varied valence. The phase diagram of POM/polyelectrolyte complexes is determined with varied POM/PE charge ratios. It is interesting to observe the coacervation of POMs with PSBMA. With cationic PDADMAC, hybrid POM-PDADMAC hydrogels can be formed. Nevertheless, POM-PDADMAC complexes exhibit much enhanced mechanical properties in comparison to polymer hydrogel. The viscoelastic properties of hybrid macroion complexes strongly depend on PDADMAC concentration, POM-to-PDADMAC molar ratio, the size and valence of POMs. At the intermediate range of POM-to-PDADMAC concentration ratio, shear thickening and strain hardening are observed with soft supramolecular hydrogels, which is resulted from the non-Gaussian stretching of polymer chains.

  12. Alcohol--Induced Polyelectrolyte-Surfactant Complex Coacervate Systems: Characterization and Applications in Enzyme and Protein Extraction

    NASA Astrophysics Data System (ADS)

    Nejati Moshtaghin, Mahboubeh

    The focus of this thesis is to achieve a better understanding of the newly discovered surfactant-polyelectrolyte complex coacervate (SPCC) systems induced by fluoroalcohol/acid as well as short chain aliphatic alcohol; and to elucidate their applications in extraction and enrichment of proteins and enzyme. We have discovered that fluoroalcohols and --acids induce complex coacervation and phase separation in the aqueous mixtures of oppositely charged anionic polyelectrolytes; specifically, sodium salts of polyacrylic acid and polymethacrylic acid and cationic surfactant (cetyltrimethylammonium bromide, CTAB) over a broad range of concentrations of mole fractions of the oppositely charged amphiphiles. Accordingly, these new classes of coacervators will significantly broaden the scope and facilitate engineering of new coacervate phases. Toward these goals, we have inspected the formation of surfactant-polyelectrolyte complex coacervates in the presence of fluoroalcohols namely hexafluoroisopropanol (HFIP) and Trifluoroethanol (TFE). Furthermore, the extent of coacervation as a function of concentrations the system components, and charge ratios of the oppositely charged amphiphiles has been investigated. Polyelectrolytes are considered to be milder reagents, as compared to surfactants, regarding proteins denaturation. This highlights the importance of a detailed investigation of the efficiency of our coacervate systems for extraction and preconcentration of proteins and enzymes, especially, when the biological activity of the extracted proteins needs to be maintained based on the objectives mentioned above, the results of the investigations have been organized in four chapters. In Chapter II, the phase behavior of the FA-SPCC will be investigated. The objective is to examine the phase behavior and phase properties with respect to the extent of coacervation in different solution conditions. In particular, the effects of different solution variables such as concentration

  13. Charge on a weak polyelectrolyte

    NASA Astrophysics Data System (ADS)

    Wang, Shengqin; Granick, Steve; Zhao, Jiang

    2008-12-01

    Fluorescence measurements with single-molecule sensitivity are used to measure the hydrodynamic size and local pH of a weak polyelectrolyte, poly-2-vinyl pyridine end labeled with pH-sensitive dye, the polyelectrolyte having concentration so low (nanomolars) that molecular properties are resolvable only from fluorescence experiments and cannot be accessed by light scattering. We find that the local pH near the dye, inferred from its brightness, is consistently three orders of magnitude higher than the bulk pH. Upon varying the bulk pH, we measure the collapse point at which hydrophobic attraction overwhelms electrostatic repulsion between charged elements along the chain, and conclude that adding monovalent salt shifts this coil-to-globule collapse to higher pH than in the absence of salt. The influence of salt appears to shift the ionization equilibrium of this weak polyelectrolyte in the direction of the chain possessing enhanced electric charge at a given pH. Phenomenologically, this is opposite to the case for strong polyelectrolytes, although the mechanism differs.

  14. Macrojunctions ordering in polyelectrolyte hydrogels

    NASA Astrophysics Data System (ADS)

    Török, Gy; Lebedev, V. T.; Cser, L.; Buyanov, A. L.; Revelskaya, L. G.

    2000-03-01

    We studied the structure of polyelectrolyte hydrogels of sodium polyacrylate cross-linked by macromolecular allyldextran (supergels). Using high-resolution SANS we have found the specific ordering of macrojunctions (structure's period ∼130 nm) that may be reliable for the network's anomaly swelling.

  15. Colloid Titration--A Rapid Method for the Determination of Charged Colloid.

    ERIC Educational Resources Information Center

    Ueno, Keihei; Kina, Ken'yu

    1985-01-01

    "Colloid titration" is a volumetric method for determining charged polyelectrolytes in aqueous solutions. The principle of colloid titration, reagents used in the procedure, methods of endpoint detection, preparation of reagent solutions, general procedure used, results obtained, and pH profile of colloid titration are considered. (JN)

  16. Probing aggregation and fibril formation of insulin in polyelectrolyte multilayers.

    PubMed

    Koo, Juny; Czeslik, Claus

    2012-06-01

    Ultrathin films are useful for coating materials and controlling drug delivery processes. Here, we explore the use of polyelectrolyte multilayers as templates for the formation of two-dimensional protein networks, which represent biocompatible and biodegradable ultrathin films. In a first step, we have studied the lateral aggregation and amyloid fibril formation of bovine insulin that is adsorbed at and confined within planar polyelectrolyte multilayers, assembled with poly(diallyldimethylammonium chloride) (PDDA), poly(styrenesulfonic acid) (PSS), and hyaluronic acid (HA). Si-PDDA-PSS-(insulin-PSS)(x) and Si-PDDA-PSS-(insulin-HA)(x) multilayers (x=1-4) have been prepared and characterized in the fully hydrated state by using X-ray reflectometry, attenuated total reflection-Fourier transform infrared spectroscopy and confocal fluorescence microscopy. The obtained data demonstrate a successful build-up of the insulin-polyelectrolyte multilayers on silicon wafers that grow strongly in thickness upon insulin adsorption on PSS and HA layers. The secondary structure analysis of insulin, based on the vibrational amide I'-band, indicates an enhanced intermolecular β-sheet formation within the multilayers at 70°C and pD=2, i.e. at conditions that promote insulin amyloid fibrils rich in β-sheet contents. However, insulin that is confined between two polyelectrolyte layers rather forms amorphous aggregates as can be inferred from confocal fluorescence images. Remarkably, when insulin is deposited as the top-layer, a partial conversion into a two-dimensional fibrillar network can be induced by adding amyloid seeds to the solution. Thus, the results of this study illustrate the capability of polyelectrolyte multilayers as templates for the growth of protein networks. PMID:22369752

  17. Complexes of xylan and synthetic polyelectrolytes. Characterization and adsorption onto high quality unbleached fibres.

    PubMed

    Mocchiutti, Paulina; Galván, María V; Peresin, María S; Schnell, Carla N; Zanuttini, Miguel A

    2015-02-13

    In this work, polyelectrolyte complexes (PECs) were formed by adding polyacrylic acid (PAA) or 4-O-methylglucuronoxylan (Xyl) on poly(allylamine hydrochloride) (PAH) solutions, at different ionic strength and neutral pH. Turbidity curves, charge densities of the cationic complexes determined by polyelectrolyte titration method, and z-potential values showed clear differences between both complexes. Stirring favourably reverses the effects of sedimentation of Xyl/PAH complexes, as demonstrated by colloidal stability tests. Adsorption studies on silica surfaces, performed by Quartz Crystal Microbalance with Dissipation (QCM-D) showed that PAA/PAH adsorbed complexes layers were rigid, while the corresponding Xyl/PAH layers were viscoelastic. Despite the different conformations, both complexes were adsorbed as spherical particles, as observed by Atomic Force Microscopy (AFM). Adsorption isotherms performed on fibre suspensions showed that the ionic strength of the liquid medium determines the amount of PEC retained. Finally, it was found that the papermaking properties were significantly increased due to the addition of these PECs. PMID:25458282

  18. Versatile electron-collecting interfacial layer by in situ growth of silver nanoparticles in nonconjugated polyelectrolyte aqueous solution for polymer solar cells.

    PubMed

    Yuan, Kai; Chen, Lie; Chen, Yiwang

    2014-10-01

    Novel PEIE-Ag composites by in situ growth of silver nanoparticles in poly(ethylenimine)-ethoxylated (PEIE) aqueous solution are explored as an efficient interfacial layer for improving inverted polymer solar cells (PSCs) performance. The hybrid PEIE-Ag interfacial material is simple to fabricate only via ultraviolet irradiation with good water-solubility and unique film formation. The generated Ag nanoparticles can anchor in the PEIE polymer chains to form a conductive continuous interpenetrating network structure. Combining of the advantages of PEIE and Ag nanoparticles, the PEIE-Ag shows enhanced charge transport, electron selective and collection, and improved light-harvesting, mainly due to the surface plasmon resonance effect, better energy alignment induced by the formation of ideal dipole layer, as well as the improved conductivity. These distinguished interfacial properties result in the power conversion efficiency of inverted PSCs based on poly[4,8-bis(2-ethyl-hexyl-thiophene-5-yl)-benzo[1,2-b:4,5-b]dithiophene-2,6-diyl]-alt-[2-(2-ethyl-hexanoyl)-thieno[3,4-b]thiophen-4,6-diyl] (PBDTTT-C-T) and [6,6]-phenyl C71-butyric acid methyl ester (PC71BM) photoactive layer substantially improved up to 7.66% from 6.11%. Moreover, the device performance is insensitively dependent on the thickness of the PEIE-Ag interfacial layer, broadening the thicknesses selection window for interfacial materials. These results demonstrate that PEIE-Ag is a potential interfacial material compatible with roll-to-roll techniques and suitable for printed electronic devices. PMID:25207753

  19. Diffusiophoresis of a charged toroidal polyelectrolyte.

    PubMed

    Tseng, Shiojenn; Hsu, Yen-Rei; Hsu, Jyh-Ping

    2016-06-01

    Considering recent application of concentration driven motion of charged nanoparticles in sensing technology, we model the diffusiophoresis of an isolated toroidal polyelectrolyte (PE) for the first time. Choosing an aqueous KCl solution for illustration, its behavior under various conditions is simulated by varying the double layer thickness, the size of toroid, and its softness and fixed charge density. We show that the behavior of the present PE can be different both quantitatively and qualitatively from that of the corresponding spherical PE. This arises from the competition of the hydrodynamic force and the electric force acting on a PE. The geometry and the nature of a PE can also influence appreciably its behavior, yielding complicated and interesting results. PMID:26970033

  20. Macroion Interaction at Polyelectrolyte Brush Interfaces

    NASA Astrophysics Data System (ADS)

    Qu, Chen

    2015-03-01

    The effect of macroions, including synthetic polyelectrolytes, DNA and proteins, on the structure and surface properties of charged polymer thin films remains inadequately understood partially due to the complexity involving the hydrophobic effect and the conformational change of polymeric macroions. In this work, we explore a group of inorganic nanocluster based macroions, hydrophilic polyoxometalates (POMs) of robust nanocluster structure and carrying high surface charges (~ 2-42 negative charges) to investigate their interaction with surface tethered poly-2-vinylpyridine (P2VP) brush-like thin films immersed in aqueous solution. We observe the collapse of swollen P2VP chains by adding POM macroions of increased concentration by AFM, QCM and contact goniometer measurements, in sharp contrast to the increased chain stretching by adding monovalent salts. A careful comparison is made between distinct POMs based on their charge, size and chemical nature. These findings serve as a good reference for theoretical model modification and design of new mesoporous composite membranes.

  1. Saloplastic Macroporous Polyelectrolyte Complexes: Cartilage Mimics

    PubMed Central

    2011-01-01

    Complexes of sodium poly(4-styrenesulfonate) (NaPSS) and poly(diallyldimethylammonium chloride) (PDADMAC) were formed on mixing equimolar solutions in high salt concentration. Under ultracentrifugal fields, the complex precipitates were transformed into compact polyelectrolyte complexes (CoPECs), which showed extensive porosity. The mechanical properties of CoPECS make them attractive for bioimplants and tissue engineering applications. Free NaPSS chains in the closed pores of CoPECs create excess osmotic pressure, which controls the pore size and contributes to the mechanical resistance of the material. The mechanical properties of CoPECs, modulated by the ionic strength of the doping medium, were studied by uniaxial tensile testing and the stress−strain data were fit to a three-element Maxwell model which revealed at least two regimes of stress relaxation. PMID:21132107

  2. Adsorption of flexible polyelectrolytes on charged surfaces.

    PubMed

    Subbotin, A V; Semenov, A N

    2016-08-10

    Adsorption of weakly charged polyelectrolyte (PE) chains from dilute solution on an oppositely charged surface is studied using the self-consistent mean-field approach. The structure of the adsorbed polymer layer and its excess charge are analyzed in the most important asymptotic and intermediate regimes both analytically and numerically. Different regimes of surface charge compensation by PE chains including partial and full charge inversion are identified and discussed in terms of physical parameters like the magnitude of specific short-range interactions of PE segments with the surface, solvent quality and ionic strength. The effect of excluded-volume monomer interactions is considered quantitatively both in the marginally good and poor solvent regimes. PMID:27452184

  3. Polyelectrolyte coatings for microchip capillary electrophoresis.

    PubMed

    Liu, Yan; Henry, Charles S

    2006-01-01

    In chip-based electrophoretic analysis of biomolecules, chemical modification of the microchannel is widely employed to reduce or eliminate the analyte-wall interactions and alter electroosmotic flow (EOF) in the microchannel. A stable polyelectrolyte multilayer coating is one common way to regulate or eliminate EOF and prevent analyte adsorption for the rapid, efficient separation of biomolecules within microchannels. A wide variety of polyelectrolytes have been used as coatings. This chapter deals with how to coat microchips with polyelectrolytes and the expected results using polybrene and dextran sulfate as models. The technique presented here is generally applicable to any polyelectrolyte. PMID:16790867

  4. Equilibrium distribution of permeants in polyelectrolyte microcapsules filled with negatively charged polyelectrolyte: the influence of ionic strength and solvent polarity.

    PubMed

    Tong, Weijun; Song, Haiqing; Gao, Changyou; Möhwald, Helmuth

    2006-07-01

    The effects of ionic strength and solvent polarity on the equilibrium distribution of fluorescein (FL) and FITC-dextran between the interior of polyelectrolyte multilayer microcapsules filled with negatively charged strong polyelectrolyte and the bulk solution were systematically investigated. A negatively charged strong polyelectrolyte, poly(styrene sulfonate) (PSS), used for CaCO3 core fabrication, was entrapped inside the capsules. Due to the semipermeability of the capsule wall, a Donnan equilibrium between the inner solution within the capsules and the bulk solution was created. The equilibrium distribution of the negatively charged permeants was investigated by means of confocal laser scanning microscopy as a function of ionic strength and solvent polarity. The equilibrium distribution of the negatively charged permeants could be tuned by increasing the bulk ionic strength to decrease the Donnan potential. Decreasing the solvent polarity also could enhance the permeation of FL, which induces a sudden increase of permeation when the ethanol volume fraction was higher than 0.7. This is mainly attributed to the precipitation of PSS. A theoretical model combining the Donnan equilibrium and Manning counterion condensation was employed to discuss the results. PMID:16805590

  5. Complexation and coacervation of like-charged polyelectrolytes inspired by mussels

    PubMed Central

    Kim, Sangsik; Huang, Jun; Lee, Yongjin; Dutta, Sandipan; Yoo, Hee Young; Jung, Young Mee; Jho, YongSeok; Zeng, Hongbo

    2016-01-01

    It is well known that polyelectrolyte complexes and coacervates can form on mixing oppositely charged polyelectrolytes in aqueous solutions, due to mainly electrostatic attraction between the oppositely charged polymers. Here, we report the first (to the best of our knowledge) complexation and coacervation of two positively charged polyelectrolytes, which provides a new paradigm for engineering strong, self-healing interactions between polyelectrolytes underwater and a new marine mussel-inspired underwater adhesion mechanism. Unlike the conventional complex coacervate, the like-charged coacervate is aggregated by strong short-range cation–π interactions by overcoming repulsive electrostatic interactions. The resultant phase of the like-charged coacervate comprises a thin and fragile polyelectrolyte framework and round and regular pores, implying a strong electrostatic correlation among the polyelectrolyte frameworks. The like-charged coacervate possesses a very low interfacial tension, which enables this highly positively charged coacervate to be applied to capture, carry, or encapsulate anionic biomolecules and particles with a broad range of applications. PMID:26831090

  6. Rapid determination of global moment-tensor solutions

    USGS Publications Warehouse

    Sipkin, S.A.

    1994-01-01

    In an effort to improve data services, the National Earthquake Information Center has begun a program, in cooperation with the Incorporated Research Institutions for Seismology Data Management Center (IRIS DMC), to produce rapid estimates of the seismic moment tensor for most earthquakes with a bodywave magnitude of 5.8 or greater. An estimate of the moment tensor can usually be produced within 20 minutes of the arrival of the broadband P-waveform data from the IRIS DMC. The solutions do not vary significantly from the final solutions determined using the entire network. -from Author

  7. Effect of polyelectrolyte-surfactant complexation on Marangoni transport at a liquid-liquid interface.

    PubMed

    Dunér, Gunnar; Kim, Michelle; Tilton, Robert D; Garoff, Stephen; Przybycien, Todd M

    2016-04-01

    Complexation of surfactants and oppositely charged polyelectrolytes is expected to alter Marangoni transport at a fluid interface compared to either single component system due to altered interfacial tension isotherms and mass transfer rates as well as adsorption irreversibility effects. We investigate Marangoni transport at the oil/water interface by passing mixtures of the anionic surfactant sodium dodecyl sulfate (SDS) and cationic polyelectrolyte poly(3-(2-methylpropionamide)propyl) trimethylammonium chloride-acrylamide (poly[AM-MAPTAC]), or rinsing solutions, over an oil/water interface in a radial, stagnation point flow. The displacements of adsorbed tracer particles are recorded through optical microscopy. The net displacement, defined as the sum of the displacements occurring during the adsorption and desorption stages of one application and rinsing cycle, is up to 10 times greater for complexing surfactant/polymer mixtures compared to either single component system. The enhanced net displacement is largely determined by the enhanced transport upon adsorption, while the reverse displacement that would normally occur upon rinsing is partially suppressed by partially irreversible polymer adsorption at the oil/water interface. In addition to effects of complexation on interfacial tension gradient induced flow, complexation effects on the bulk, and possibly interfacial, viscosity also influence the interfacial transport. PMID:26775240

  8. Dynamics and stability of dispersions of polyelectrolyte-filled multilayer microcapsules.

    PubMed

    Kim, Byoung-Suhk; Lobaskin, Vladimir; Tsekov, Roumen; Vinogradova, Olga I

    2007-06-28

    The authors report dynamic and coagulation properties of a dispersion of polyelectrolyte multilayer microcapsules filled with solutions of a strong polyelectrolyte. Microcapsules are shown to take a charge of the sign of encapsulated polyions and are characterized by a nonuniform distribution of inner polyions, which indicates a semipermeability of the shell and a leakage of counterions. The capsule self-diffusion coefficient in the vicinity of the similarly charged wall is measured using a particle tracking procedure from confocal images of the dispersion. The diffusion of capsules in the force field suggests that the effective interaction potential contains an electrostatic barrier, so that we deal with the same types of interaction forces as for solid particles. The theoretical estimates of the authors show that when microcapsules are in close proximity, their interaction should even be quantitatively the same as that of colloids with the same surface potential. However, due to the mobility of inner polyions they might repel stronger at large distances. The authors thus conclude that the encapsulation of charged polymers is an important factor in determining the adhesion and interaction properties of multilayer microcapsules. PMID:17614584

  9. Evolution of composition, molar mass, and conductivity during the free radical copolymerization of polyelectrolytes.

    PubMed

    Alb, Alina M; Paril, Ahmet; Catalgil-Giz, Huceste; Giz, Ahmet; Reed, Wayne F

    2007-07-26

    Despite their importance in biological and technological contexts, copolymeric polyelectrolytes (or "copolyelectrolytes") continue to present challenges to theorists and experimentalists. The first results of a unified approach to the kinetics and mechanisms of copolyelectrolyte synthesis and the physical characteristics of the resulting polymers are presented. The free radical copolymerization of 4-vinylbenzenesulfonic acid sodium salt and acrylamide was monitored using automatic continuous online monitoring of polymerization reactions (ACOMP), from which the average bivariate composition and mass distributions were determined. Composition drift was related to the evolution of conductivity. In some cases bimodal populations of copolyelectrolyte and homopolymeric poly(acrylamide) resulted, i.e., blends of copolyelectrolyte and neutral homopolymer. The end-product scattering behavior depended on whether the end-product was bimodal or not, as demonstrated using automatic continuous mixing (ACM) in conjunction with light scattering and viscosity. Negative light-scattering third virial coefficients were found for bimodal end-products. This combined approach may allow connecting the synthesis kinetics to the resulting "trivariate" distribution of composition, molar mass, and linear charge density, which in turn controls the properties of end-product solutions, such as chain conformations, interparticle interactions, viscosity, interactions with colloids and other polymers, phase separation, etc. Unified results may allow testing and improvement of existing polyelectrolyte theories, development of new quantitative physicochemical models, provide advanced characterization methods, set the stage for studying more complex copolyelectrolytes, such as hydrophobically modified ones, and provide tools for ultimately controlling and tailoring the synthesis and properties of copolyelectrolytes. PMID:17441756

  10. Ion transport in polyelectrolyte multilayer membranes: Electrochemical, spectroscopic, and computational analysis

    NASA Astrophysics Data System (ADS)

    Farhat, Tarek Rafic

    Diffusion of ions across thin membranes, whether polymeric or biological, is diverse and important field in science. In separation science, thin polymer films have potential application in the chemical and pharmaceutical industries. In this dissertation, ion transport on a recently discovered polymer thin films known as polyelectrolyte multilayer films is investigated. Unexpectedly, a polyelectrolyte multilayer membrane behaved unlike classical membranes and a new mechanism termed the "reluctant exchange" was proposed to explain their behavior. Ion transport in these membranes was studied electrochemically, using the rotating disc electrode voltammetry technique, to obtain flux characteristic of at least ten electroactive species The flux through membranes was found to be either a linear or nonlinear function of electrolyte concentration depending on the charge, the resonance form, and the membrane diffusion coefficient of the electroactive ion. The "reluctant exchange" lead to significant transport selectivity between ions, favoring species with lower charge. A triangular relation was established between the electroactive probe ions, the polyelectrolyte ion pair exchangers, and a variety of supporting electrolytes. In certain cases a blocking effect was detected, which was harnessed to study the effectiveness of these films at inhibiting pitting corrosion of stainless steel. Experimental analysis was extended to include in situ Attenuated Total Internal Reflectance-Fourier Transform Infra Red spectroscopy that verified the linear dependence of the population of extrinsic sites and the independence of the concentration of the probe ions on the concentration of the external salt solution. Finally, owing to the difficulty of detecting the hops of active probe ions across the ion pair exchangers, a theoretical approach was proposed to understand the molecular dynamics of the "reluctant exchange" mechanism. A visualization of ion transport across the polyelectrolyte

  11. Determination of monomer concentrations in crystallizing lysozyme solutions

    NASA Technical Reports Server (NTRS)

    Wilson, L. J.; Pusey, Marc L.

    1992-01-01

    We have developed a non-optical technique for the study of aggregation in lysozyme and other protein solutions. By monitoring the rate at which lysozyme traverses a semipermeable membrane it was possible to quantitate the degree of aggregation in supersaturated solutions. Using this technique, we have measured the concentration of monomers and larger aggregates in under- and oversaturated lysozyme solutions, and in the presence of crystals, at pH 4.0 and 3 percent NaCl (0.1M NaAc). Comparison of these concentration profiles with (110) face growth rate data supports the theory that tetragonal lysozyme crystals grow by addition of preformed aggregates and not by monomer addition. The data suggest that a considerable population of aggregates larger than dimers are present at lysozyme concentrations above 22 mg/ml. Determination of dimer concentrations, and equilibrium constants for subsequent aggregation levels, are currently underway.

  12. Polyelectrolyte-Surfactant Complexes: A New Class of Organogelators

    NASA Astrophysics Data System (ADS)

    Cavicchi, Kevin; Liu, Yuqing; Guzman, Gustavo

    2011-03-01

    Polyelectrolyte-surfactant complexes (PE-SURFs) are a class of polymers generated by neutralizing a polyelectrolyte with an oppositely charged surfactant. It has been found that PE-SURFs composed of polystyrene sulfonate and long chain alkyl dimethyl amines act as good organogelators for a range of hydrophobic, organic solvents. Thermo-reversible organogels are formed by heating and cooling PE-SURF/solvent solutions. The gel transition temperature is influenced by the degree of polymerization, the length of the alkyl side-chain, the solubility parameter of the solvent, and the concentration of the gelator. Freeze-drying and scanning electron microscopy characterization of the resultant xerogels shows the formation of rod- and plate-like network morphologies depending on the system parameters. This behavior is consistent with gelation driven by the self-assembly of the amphiphilic PE-SURFs into micellar networks.

  13. A molecular simulation study on salt response of polyelectrolyte complexes

    NASA Astrophysics Data System (ADS)

    Antila, Hanne; van Tassel, Paul; Sammalkorpi, Maria

    2015-03-01

    In aqueous solutions, oppositely charged polymers, polyelectrolytes (PEs) form complexes which are known to be sensitive to added salt with responses ranging from shrinking to full destabilization of the complex. As a specific application of PE complexes, the complex formation of DNA with polycations has been demonstrated to be an effective means of transfecting genetic material in gene therapy. We use all-atom molecular dynamics and coarse-grained Monte Carlo simulations to investigate the effect of excess salt on DNA-polycation complex stability. The detailed all-atom simulations demonstrate the mechanism of polycation and ion species specific salt-driven dissociation involving charge reversal. More generally, other possible mechanisms of salt driven dissociation exist as well. The coarse grained approach, which describes the PE complex as oppositely charged, rigid rods and ions as hard spheres, provides a more complete understanding of PE interactions in salt, and suggests possible mechanisms leading to repulsion between the oppositely charged polyelectrolytes.

  14. The Hofmeister anion effect and the growth of polyelectrolyte multilayers.

    PubMed

    Salomäki, Mikko; Tervasmäki, Piia; Areva, Sami; Kankare, Jouko

    2004-04-27

    The influence of a variety of counteranions on the properties of polyelectrolyte multilayers deposited by layer-by-layer technique is studied by using ellipsometry and AFM. We found out that in thin dry multilayers (20-90 nm) ofpoly(4-styrenesulfonate) (PSS) and poly(diallyldimethylammonium) (PDADMA), the thickness follows reasonably well the position of the counteranion in the Hofmeister series. The polyelectrolyte-counteranion interaction is studied by means of viscosity measurements of semidilute solutions of PDADMA in the presence of different anions. The dynamic viscosities follow the Hofmeister series of anions and correlate with the thickness of multilayers. Two parameters describing the interaction of ions with water, the Jones-Dole viscosity B coefficient and the hydration entropy, are used to explain the anion effect on the developing multilayer thickness. Reasonably smooth and monotonic functional dependence is observed between the layer thickness and these two parameters. PMID:15875399

  15. Study of polyelectrolyte complexes of chitosan and sulfoethyl cellulose

    NASA Astrophysics Data System (ADS)

    Baklagina, Yu. G.; Kononova, S. V.; Petrova, V. A.; Kruchinina, E. V.; Nud'ga, L. A.; Romanov, D. P.; Klechkovskaya, V. V.; Orekhov, A. S.; Bogomazov, A. V.; Arkhipov, S. N.

    2013-03-01

    The complexing of polycation chitosan and polyanion sulphoethyl cellulose during the formation of polyelectrolyte simplex membranes using the layer-by-layer deposition of a solution of one polyion on a gel-like film of another one has been studied. The structural characteristics of the multilayer composites and their components have been analyzed by X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray microanalysis. A technique is proposed for studying the structure of surface layers of thin polymer films (15-20 μm) using a portable DIFREI-401 diffractometer. It is shown that the sequence of layer deposition during the formation of membrane films does not affect their structural characteristics. The interaction between positively charged chitosan groups (-NH{3/+}) and negatively charged sulfoethyl cellulose groups (-SO{3/-}) during the growth of polyelectrolyte complexes results in a packing of chitosan chains in the multilayer film.

  16. Study of polyelectrolyte complexes of chitosan and sulfoethyl cellulose

    SciTech Connect

    Baklagina, Yu. G. Kononova, S. V.; Petrova, V. A.; Kruchinina, E. V.; Nud'ga, L. A.; Romanov, D. P.; Klechkovskaya, V. V.; Orekhov, A. S.; Bogomazov, A. V.; Arkhipov, S. N.

    2013-03-15

    The complexing of polycation chitosan and polyanion sulphoethyl cellulose during the formation of polyelectrolyte simplex membranes using the layer-by-layer deposition of a solution of one polyion on a gel-like film of another one has been studied. The structural characteristics of the multilayer composites and their components have been analyzed by X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray microanalysis. A technique is proposed for studying the structure of surface layers of thin polymer films (15-20 {mu}m) using a portable DIFREI-401 diffractometer. It is shown that the sequence of layer deposition during the formation of membrane films does not affect their structural characteristics. The interaction between positively charged chitosan groups (-NH{sub 3}{sup +}) and negatively charged sulfoethyl cellulose groups (-SO{sub 3}{sup -}) during the growth of polyelectrolyte complexes results in a packing of chitosan chains in the multilayer film.

  17. Solutes determine the temperature windows for microbial survival and growth

    PubMed Central

    Chin, Jason P.; Megaw, Julianne; Magill, Caroline L.; Nowotarski, Krzysztof; Williams, Jim P.; Bhaganna, Prashanth; Linton, Mark; Patterson, Margaret F.; Underwood, Graham J. C.; Mswaka, Allen Y.; Hallsworth, John E.

    2010-01-01

    Microbial cells, and ultimately the Earth's biosphere, function within a narrow range of physicochemical conditions. For the majority of ecosystems, productivity is cold-limited, and it is microbes that represent the failure point. This study was carried out to determine if naturally occurring solutes can extend the temperature windows for activity of microorganisms. We found that substances known to disorder cellular macromolecules (chaotropes) did expand microbial growth windows, fungi preferentially accumulated chaotropic metabolites at low temperature, and chemical activities of solutes determined microbial survival at extremes of temperature as well as pressure. This information can enhance the precision of models used to predict if extraterrestrial and other hostile environments are able to support life; furthermore, chaotropes may be used to extend the growth windows for key microbes, such as saprotrophs, in cold ecosystems and manmade biomes. PMID:20404182

  18. Polyelectrolyte multilayer films: A sponge for insulin?

    PubMed

    Ladhari, Nadia; Hemmerlé, Joseph; Haikel, Youssef; Voegel, Jean-Claude; Ball, Vincent

    2010-01-01

    Considering restrictive diabetes treatments, new insulin administration strategies constitute a huge medical challenge. This study aimed at developing a new support for insulin reservoirs, using polyelectrolyte multilayer films (PEM films), and thus studying this hormone release in a progressive manner. At first, insulin was loaded in (PDADMAC-PAA)n films, by immerging them for various periods of time (2, 14 and 24 h) in a solution containing this protein. Confocal laser scanning microscopy (CLSM) revealed that insulin-FITC could diffuse inside the film with a bigger concentration in the upper part of the film (after 2 and 14 h in contact with the polypeptide solution), and then in the whole film (after 24 h) from a solution at pH=4.3 (below insulin's isolelectric point). Environmental scanning electron microscopy (ESEM) and CLSM showed that the film swells upon insulin loading. We finally investigated the insulin release by ATR-FTIR spectroscopy. It revealed that a loaded (PDADMAC-PAA)15 film, immerged in distilled water, showed no measurable insulin release. In contrast, a slow unloading was observed in the presence of a NaCl 0.15 M solution (salinity close to physiological serum). This study could open the route for a new way of insulin delivery. PMID:20930331

  19. Polyelectrolyte gels as bending actuators: modeling and numerical simulation

    NASA Astrophysics Data System (ADS)

    Wallmersperger, Thomas; Keller, Karsten; Attaran, Abdolhamid

    2013-04-01

    Polyelectrolyte gels are ionic electroactivematerials. They have the ability to react as both, sensors and actuators. As actuators they can be used e.g. as artificial muscles or drug delivery control; as sensors they may be used for measuring e.g. pressure, pH or other ion concentrations in the solution. In this research both, anionic and cationic polyelectrolyte gels placed in aqueous solution with mobile anions and cations are investigated. Due to external stimuli the polyelectrolyte gels can swell or shrink enormously by the uptake or delivery of solvent. In the present research a coupled multi-field problem within a continuum mechanics framework is proposed. The modeling approach introduces a set of equations governing multiple fields of the problem, including the chemical field of the ionic species, the electrical field and the mechanical field. The numerical simulation is performed by using the Finite Element Method. Within the study some test cases will be carried out to validate our model. In the works by Gülch et al., the application of combined anionic-cationic gels as grippers was shown. In the present research for an applied electric field, the change of the concentrations and the electric potential in the complete polymer is simulated by the given formulation. These changes lead to variations in the osmotic pressure resulting in a bending of different polyelectrolyte gels. In the present research it is shown that our model is capable of describing the bending behavior of anionic or cationic gels towards the different electrodes (cathode or anode).

  20. The determination of captopril in Solution by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Gao, Junxiang; Gu, Huaimin; Dong, Xiao; liu, fangfang

    2011-01-01

    Captopril, 1-[(2S)-3-mercapto-2-methyl propionyl]-Lproline, is an angiotensin converting enzyme (ACE) inhibitor, which reduces peripheral resistance and lowers blood pressure. It is widely used in the hypertensive ailments and incongestive heart failure treatment. Due to such crucial pharmacological importance, development of simple and accurate methods for the determination of captopril is desired. In this work, the normal Raman spectra of the captopril in different concentrations were studied, and the relationship between the Raman intensity and the concentrations of the captopril was quantificationally analysed. By selecting appropriate characteristic Raman bands of the cptopril, the solution of some captopril purchased in a local pharmacy was quantificationally determined. A quantificational linear relationship between the Raman intensity and the concentrations of captopril was obtained, and it is little affected by other compounds in the solution of captopril. This study provides an effective technique for the quantificational determination of captopril in solutions, and it has a potential application in the analysis of medicament.

  1. Novel determination of differential-equation solutions: universal approximation method

    NASA Astrophysics Data System (ADS)

    Leephakpreeda, Thananchai

    2002-09-01

    In a conventional approach to numerical computation, finite difference and finite element methods are usually implemented to determine the solution of a set of differential equations (DEs). This paper presents a novel approach to solve DEs by applying the universal approximation method through an artificial intelligence utility in a simple way. In this proposed method, neural network model (NNM) and fuzzy linguistic model (FLM) are applied as universal approximators for any nonlinear continuous functions. With this outstanding capability, the solutions of DEs can be approximated by the appropriate NNM or FLM within an arbitrary accuracy. The adjustable parameters of such NNM and FLM are determined by implementing the optimization algorithm. This systematic search yields sub-optimal adjustable parameters of NNM and FLM with the satisfactory conditions and with the minimum residual errors of the governing equations subject to the constraints of boundary conditions of DEs. The simulation results are investigated for the viability of efficiently determining the solutions of the ordinary and partial nonlinear DEs.

  2. Persistence Length Control of the Polyelectrolyte Layer-by-Layer Self-Assembly on Carbon Nanotubes

    SciTech Connect

    Huang, S J; Artyukhin, A B; Wang, Y; Ju, J; Stroeve, P; Noy, A

    2005-04-30

    One-dimensional inorganic materials such as carbon nanotubes1 and semiconductor nanowires have been central to important advances in materials science in the last decade. Unique mechanical and electronic properties of these molecular-scale wires enabled a variety of applications ranging from novel composite materials, to electronic circuits, to new sensors. Often, these applications require non-covalent modification of carbon nanotubes with organic compounds, DNA and biomolecules, and polymers to change nanotube properties or to add new functionality. We recently demonstrated a versatile and flexible strategy for non-covalent modification of carbon nanotubes using layer-by-layer self-assembly of polyelectrolytes. Researchers used this technique extensively for modification of flat surfaces, micro-, and nano-particles; however, little is known about the mechanism and the factors influencing layer-by-layer self-assembly in one-dimensional nanostructures. The exact conformation of polyelectrolyte chains deposited on single-walled carbon nanotubes (SWNT) is still unknown. There are two possible configurations: flexible polymers wrapping around the nanotube and stretched, rigid chains stacked parallel to the nanotube axis. Several factors, such as polymer rigidity, surface curvature, and strength of polymer-surface interactions, can determine the nature of assembly. Persistence length of the polymer chain should be one of the critical parameters, since it determines the chain's ability to wrap around the nanotube. Indeed, computer simulations for spherical substrates show that polymer rigidity and substrate surface curvature can influence the deposition process. Computational models also show that the persistence length of the polymer must fall below the threshold values determined by target surface curvature in order to initiate polyelectrolyte deposition process. Although these models described the effects of salt concentration and target surface curvature, they

  3. Highly sensitive and fast responsive fiber-optic modal interferometric pH sensor based on polyelectrolyte complex and polyelectrolyte self-assembled nanocoating.

    PubMed

    Yin, Mingjie; Gu, Bobo; Zhao, Qiang; Qian, Jinwen; Zhang, Aping; An, Quanfu; He, Sailing

    2011-04-01

    A new fiber-optic pH sensor is demonstrated by coating negatively charged polyelectrolyte complex (PEC(-)) nanoparticles, made of sodium carboxymethyl cellulose and poly(diallyldimethylammonium chloride) (PDDA), and positively charged PDDA on the surface of a thin-core fiber modal interferometer (TCFMI) with a layer-by-layer (LbL) electrostatic self-assembly method. The fabricated TCFMI pH sensor has different transmission dip wavelengths under different pH values and shows high sensitivities of 0.6 nm/pH unit and -0.85 nm/pH unit for acidic and alkaline solutions, respectively, and short response time of 30-50 s. The LbL electrostatic self-assembly process of a PEC(-)/PDDA multilayer is traced by quartz crystal microbalance and shows a fast thickness growth. Atomic force microscopy shows the root mean square (RMS) surface roughness of electrostatic self-assembly nanocoating of polyelectrolyte complex/polyelectrolyte is much higher than that of polyelectrolyte/polyelectrolyte due to the larger size of PEC(-) colloidal nanoparticles. The enhanced RMS surface roughness and thickness of the nanocoating can shorten the response time and raise the sensitivity of the TCFMI pH sensor, respectively. In addition, the TCFMI pH sensor has highly reversible performance and good durability. PMID:21318252

  4. Changes in the Activity and Structure of Urease in the Interaction with Polyelectrolytes

    NASA Astrophysics Data System (ADS)

    Saburova, E. A.; Tikhonenko, S. A.; Dybovskaya, Yu. N.; Sukhorukov, B. I.

    2008-03-01

    The influence of polyelectrolytes on the structural and catalytic characteristics of urease ( Canavalia ensiformis) was studied by the methods of steady-state kinetics, fluorescence spectroscopy, and circular dichroism. It was shown that, of the four polyelectrolytes studied, two of which were negatively charged (polystyrene sulfonate and dextran sulfate) and two were positively charged (polyallylamine (PAA) and polydiallyl dimethylammonium chloride), only PAA was a potent urease inhibitor: 0.5 μg/ml of PAA provided a 50% degree of inhibition for enzyme at neutral pH. It was found that polyelectrolyte did not inhibit urease in the presence of micromolar concentrations of ammonium chloride. Based on the experimental data and the calculated structure of urease from Canavalia ensiformis and on the identity with the amino acid sequence of urease from Bacillus pasteurii, the mechanism of urease inactivation by the PAA polyelectrolyte is discussed. This mechanism does not resemble the inhibiting action of polyelectrolytes on the previously studied oligomeric proteins—lactate dehydrogenase, glutamate dehydrogenase, and hemoglobin. It is proposed that the specific cation-binding sites determining the structural dynamics of the enzyme-polyelectrolyte complex play the regulating role in the urease molecule.

  5. Compositions comprising coal, water and polyelectrolyte

    SciTech Connect

    Hansen, B.V.; Kalfue, S.S.; Mollberg, H.R.

    1985-08-20

    This invention relates to compositions substantially containing pulverized coal, water, polyelectrolyte and, optionally, a stabilizing agent. The polyelectrolyte is a water soluble polyethylene, optionally containing double bonds and/or branching points in the polymer chain, being directly substituted with (a) hydroxysulfonyloxy groups or (b) sulfo groups, (c) hydroxysulfonyloxy-lower alkyl groups which are partly or completely in salt form and optionally (d) substituents selected from hydroxy, lower alkyl, lower alkanoyloxy, carbamoyl, cyano, hydroxymethyl, chloro and phenyl, whereby the polyelectrolyte contains at most four different kinds of said optional substituents, and wherein the amount of sulfur of the polyelectrolyte is 2 to 25 percent by weight being calculated when the acid forming groups are present as free acids. Small amounts of these polyelectrolytes in water with a high percentage of pulverized coal form compositions, characterized by low viscosity, good flowability, pumpability and stability.

  6. Influence of Higher Valence Ions on Flexible Polyelectrolytes Stiffness and Counter-ion Distribution

    NASA Astrophysics Data System (ADS)

    Chremos, Alexandros; Douglas, Jack F.

    We investigate the influence of counter-ion valency on the flexibility of highly charged flexible polymer chains by molecular dynamics simulations that include both salt and an explicit solvent. A theoretical understanding of solutions of these molecules (e.g., DNA, RNA, and sulfonate polyestyrene) has been slow to develop due to the complex coupling between the polyelectrolyte conformation and the ionic species in solution due to their long range Coulomb interactions. As observed experimentally, we find that divalent counter-ions greatly reduce the chain persistence length, in comparison to monovalent counter-ions, an effect correlated with the tendency of the polyelectrolyte chain to become distorted by divalent counter-ions. We rationalize these results by with the substantial increase of counter-ion population at the interface with the polyelectrolyte, which not only leads to a more effective screening of the bare charge, but also leads to charge inversion in the trivalent counter-ion case. These conformational changes with counter-ion valency are also associated with a drastic increase of the number of contacts the counter-ions have at the interface with polyelectrolyte, an effect associated with polyelectrolyte chain ``coiling'' around the counter-ions. NIST Postdoctoral Fellowship.

  7. Antibacterial polyelectrolyte-coated Mg alloys for biomedical applications

    NASA Astrophysics Data System (ADS)

    Seraz, Md. S.; Asmatulu, R.; Chen, Z.; Ceylan, M.; Mahapatro, A.; Yang, S. Y.

    2014-04-01

    This study deals with two biomedical subjects: corrosion rates of polyelectrolyte-coated magnesium (Mg) alloys, mainly used for biomedical purposes, and antibacterial properties of these alloys. Thin sheets of Mg alloys were coated with cationic polyelectrolyte chitosan (CHI) and anionic polyelectrolyte carboxymethyl cellulose (CMC) using a layer-by-layer coating method and then embedded with antibacterial agents under vacuum. Electrochemical impedance spectroscopy was employed to analyze these samples in order to detect their corrosion properties at different conditions. In the electrochemical analysis section, a corrosion rate of 72 mille inches per year was found in a salt solution for the sample coated with a 12 phosphonic acid self-assembled monolayer and 9 CHI/CMC multilayers. In the antibacterial tests, gentamicin was used to investigate the effects of the drug embedded with the coated surfaces against the Escherichia coli (E. coli) bacteria. Antibacterial studies were tested using the disk diffusion method. Based on the standard diameter of the zone of inhibition chart, the antibacterial diffusion from the surface strongly inhibited bacterial growth in the regions. The largest recorded diameter of the zone of inhibition was 50 mm for the pre-UV treated and gentamicin-loaded sample, which is more than three times the standard diameter.

  8. Highly active antibody-modified magnetic polyelectrolyte capsules.

    PubMed

    Valdepérez, Daniel; Del Pino, Pablo; Sánchez, Lourdes; Parak, Wolfgang J; Pelaz, Beatriz

    2016-07-15

    Polyelectrolyte hollow capsules are versatile platforms typically used for encapsulation of a wide variety of macromolecules in their cavity. The polymer shell of these capsules as composed by alternating layers of oppositely charged polyelectrolytes also allows for adding additional functionalities. The properties of the shell can be for example engineered by trapping different nanoparticles in-between the shell layers and/or by attaching bioactive molecules such as antibodies to the outermost layer. Herein, iron oxide NPs were inmobilized into the shell of polyelectrolyte capsules and the outermost layer of the shell was covalently modified with anti peroxidase antibodies. These capsules act as prototype model system, aiming to obtain a microstructure with the potential capability to specifically recognize and separate macromolecules. Due to the magnetic nanoparticles in the capsule shell, the capsules together with the attached target might be extracted by magnetic field gradients. Here we verified this approach by extracting horseradish peroxidase from a solution through magnetic separation with capsules bearing antibodies against horseradish peroxidase. The bioactivity of the capsules and the high degree of specific antibody functionalization were confirmed and quantified through an enzymatic reaction mediated by the extracted horseradish peroxidase. PMID:27089014

  9. Microstructure of polyelectrolyte nanoaggregates studied by fluorescence probe method.

    PubMed

    Vasilescu, Marilena; Angelescu, Daniel G; Bandula, Rodica; Staikos, Georgios

    2011-11-01

    The microstructure of water soluble nanoaggregates based on polyelectrolyte complex formed by the cationic comb-type copolymer poly(acrylamide -co-[3- (methacryloyl-amino)propyl] trimethylammonium chloride)-graft- polyacrylamide [P(AM-co-MAPTAC)-g-PAM] and the anionic linear polyelectrolyte sodium polyacrylate (NaPA) was investigated using the fluorescence probe technique. The fluorescence probe were 1-anilinonaphthalene-8-sulfonic acid (ANS), pyrene (Py) and 1,10-bis(1-pyrene) decane (PD). The fluorescence properties in polyelectrolyte complex solutions, which are sensitive to either micropolarity (ANS, Py) or microviscosity (PD), were related to the quantities obtained in different pure or mixed solvents. Micropolarities were quantified utilizing the polarity common index (Reichardt) E(T)(30). ANS and Py showed a variation of the micropolarity with the charge ratio of the two polymers, with the lowest polarity reached at the complex neutralization. The PD probe, by its excimer-to-monomer fluorescence intensities ratio, enabled us to evidence the effect of the composition and the comb-type copolymer grafting density on the microviscosity of the interpolyelectrolytes aggregates. It has been found that the microviscosity increased with the density of the grafting PAM chains. PMID:21688051

  10. Polyelectrolyte complex formation mediated immobilization of chitosan-invertase neoglycoconjugate on pectin-coated chitin.

    PubMed

    Gómez, Leissy; Ramírez, Hector L; Neira-Carrillo, Andrónico; Villalonga, Reynaldo

    2006-05-01

    Saccharomyces cerevisiae invertase, chemically modified with chitosan, was immobilized on pectin-coated chitin support via polyelectrolyte complex formation. The yield of immobilized enzyme protein was determined as 85% and the immobilized biocatalyst retained 97% of the initial chitosan-invertase activity. The optimum temperature for invertase was increased by 10 degrees C and its thermostability was enhanced by about 10 degrees C after immobilization. The immobilized enzyme was stable against incubation in high ionic strength solutions and was 4-fold more resistant to thermal treatment at 65 degrees C than the native counterpart. The biocatalyst prepared retained 96 and 95% of the original catalytic activity after ten cycles of reuse and 74 h of continuous operational regime in a packed bed reactor, respectively. PMID:16775742

  11. Novel cationic polyelectrolyte coatings for capillary electrophoresis.

    PubMed

    Duša, Filip; Witos, Joanna; Karjalainen, Erno; Viitala, Tapani; Tenhu, Heikki; Wiedmer, Susanne K

    2016-01-01

    The use of bare fused silica capillary in CE can sometimes be inconvenient due to undesirable effects including adsorption of sample or instability of the EOF. This can often be avoided by coating the inner surface of the capillary. In this work, we present and characterize two novel polyelectrolyte coatings (PECs) poly(2-(methacryloyloxy)ethyl trimethylammonium iodide) (PMOTAI) and poly(3-methyl-1-(4-vinylbenzyl)-imidazolium chloride) (PIL-1) for CE. The coated capillaries were studied using a series of aqueous buffers of varying pH, ionic strength, and composition. Our results show that the investigated polyelectrolytes are usable as semi-permanent (physically adsorbed) coatings with at least five runs stability before a short coating regeneration is necessary. Both PECs showed a considerably decreased stability at pH 11.0. The EOF was higher using Good's buffers than with sodium phosphate buffer at the same pH and ionic strength. The thickness of the PEC layers studied by quartz crystal microbalance was 0.83 and 0.52 nm for PMOTAI and PIL-1, respectively. The hydrophobicity of the PEC layers was determined by analysis of a homologous series of alkyl benzoates and expressed as the distribution constants. Our result demonstrates that both PECs had comparable hydrophobicity, which enabled separation of compounds with log Po/w > 2. The ability to separate cationic drugs was shown with β-blockers, compounds often misused in doping. Both coatings were also able to separate hydrolysis products of the ionic liquid 1,5-diazabicyclo[4.3.0]non-5-ene acetate at highly acidic conditions, where bare fused silica capillaries failed to accomplish the separation. PMID:26464098

  12. Electrosteric Stabilization of Al(2)O(3), ZrO(2), and 3Y-ZrO(2) Suspensions: Effect of Dissociation and Type of Polyelectrolyte.

    PubMed

    Pettersson; Marino; Pursiheimo; Rosenholm

    2000-08-01

    The mechanisms of eight anionic polyelectrolytes stabilizing colloidal sized alpha-Al(2)O(3), pure ZrO(2), and Y(2)O(3)-doped ZrO(2) particles in aqueous solution are discussed. The polyelectrolytes studied were the Na(+) and NH(4)(+) salts of polyacrylic acid and polymethacrylic acid having different molecular weights. The particle-dispersant interactions were studied by measuring adsorption isotherms, particle size, thickness of adsorbed layer, and zeta potentials by elektrokinetic sonic analysis at different powder volume fractions (straight phi=0.01-0.3), pH, and electrolyte (KCl) content. The dissociation of the polyelectrolytes was studied by potentiometric titrations. The dissociation constant of the polymethacrylates was found to be 0.6 pH unit higher than that for the polyacrylates. High-affinity adsorption isotherms were observed over the pH range when the polyelectrolytes were fully ionized. The results show good correlation between adsorption isotherms and zeta potential data in systems of dispersed, dilute alumina particles. When particles and polymers were of equal charge (the same sign of charge) the polymer shell was thicker. At higher volume fractions (straight phi=0.3), and when alumina particles/added ammonium polyelectrolyte were of equal charge, a maximum in the absolute value of zeta potential resulted. Due to adsorption all the anionic polyelectrolytes studied provided electrosteric stabilization of the alpha-Al(2)O(3), and Y(2)O(3)-doped ZrO(2) suspensions by enhancing the zeta potential to 40 mV or over and by shifting the isoelectric point to lower pH, the low-molecular-weight polyelectrolytes decreasing the isoelectric point more than the polyelectrolytes having higher molecular weight. The polyelectrolytes studied failed to stabilize pure monoclinic ZrO(2) particles. Due to the shortness of the chain of polyelectrolytes studied, no bridging was observed between oppositely charged polyelectrolyte/alumina particles. Copyright 2000 Academic

  13. In Situ ATR FTIR Spectroscopic Study of the Formation and Hydration of a Fucoidan/Chitosan Polyelectrolyte Multilayer.

    PubMed

    Ho, Tracey T M; Bremmell, Kristen E; Krasowska, Marta; MacWilliams, Stephanie V; Richard, Céline J E; Stringer, Damien N; Beattie, David A

    2015-10-20

    The formation of fucoidan/chitosan-based polyelectrolyte multilayers (PEMs) has been studied with in situ Fourier transform infrared (FTIR) spectroscopy. Attenuated total reflectance (ATR) FTIR spectroscopy has been used to follow the sequential build-up of the multilayer, with peaks characteristic of each polymer being seen to increase in intensity with each respective adsorption stage. In addition, spectral processing has allowed for the extraction of spectra from individual adsorbed layers, which have been used to provide unambiguous determination of the adsorbed mass of the PEM at each stage of formation. The PEM was seen to undergo a transition in growth regimes during build-up: from supra-linear to linear. In addition, the wettability of the PEM has been probed at each stage of the build-up, using the captive bubble contact angle technique. The contact angles were uniformly low, but showed variation in value depending on the nature of the outer polymer layer, and this variation correlated with the overall percentage hydration of the PEM (determined from FTIR and quartz crystal microbalance data). The nature of the hydration water within the polyelectrolyte multilayer has also been studied with FTIR spectroscopy, specifically in situ synchrotron ATR FTIR microscopy of the multilayer confined between two solid surfaces. The acquired spectra have enabled the hydrogen bonding environment of the PEM hydration water to be determined. The PEM hydration water is seen to have an environment in which it is subject to fewer hydrogen bonding interactions than in bulk electrolyte solution. PMID:26421938

  14. Salt Effects on Surface Structures of Polyelectrolyte Multilayers (PEMs) Investigated by Vibrational Sum Frequency Generation (SFG) Spectroscopy.

    PubMed

    Ge, Aimin; Matsusaki, Michiya; Qiao, Lin; Akashi, Mitsuru; Ye, Shen

    2016-04-26

    Sum frequency generation (SFG) vibrational spectroscopy was employed to investigate the surface structures of polyelectrolyte multilayers (PEMs) constructed by sequentially alternating adsorption of poly(diallyldimethylammonium chloride) (PDDA) and poly(styrenesulfonate) (PSS). It was found that the surface structures and surface charge density of the as-deposited PEMs of PDDA/PSS significantly depend on the concentration of sodium chloride (NaCl) present in the polyelectrolyte solutions. Furthermore, it was found that the surface structure of the as-deposited PEMs is in a metastable state and will reach the equilibrium state by diffusion of the polyelectrolyte chain after an aging process, resulting in a polyelectrolyte mixture on the PEM surfaces. PMID:27045932

  15. Cyto-mechanoresponsive polyelectrolyte multilayer films.

    PubMed

    Davila, Johanna; Chassepot, Armelle; Longo, Johan; Boulmedais, Fouzia; Reisch, Andreas; Frisch, Benoît; Meyer, Florent; Voegel, Jean-Claude; Mésini, Philippe J; Senger, Bernard; Metz-Boutigue, Marie-Hélène; Hemmerlé, Joseph; Lavalle, Philippe; Schaaf, Pierre; Jierry, Loïc

    2012-01-11

    Cell adhesion processes take place through mechanotransduction mechanisms where stretching of proteins results in biological responses. In this work, we present the first cyto-mechanoresponsive surface that mimics such behavior by becoming cell-adhesive through exhibition of arginine-glycine-aspartic acid (RGD) adhesion peptides under stretching. This mechanoresponsive surface is based on polyelectrolyte multilayer films built on a silicone sheet and where RGD-grafted polyelectrolytes are embedded under antifouling phosphorylcholine-grafted polyelectrolytes. The stretching of this film induces an increase in fibroblast cell viability and adhesion. PMID:22188330

  16. Building a road map for tailoring multilayer polyelectrolyte films

    SciTech Connect

    Ankner, John Francis; Bardoel, Agatha A; Sukishvili, Svetlana

    2012-01-01

    Researchers are moving a step closer to a definite road map for building layer-by-layer (LbL) assembled polyelectrolyte films, with the assistance of the Liquids Reflectometer at Oak Ridge National Laboratory's Spallation Neutron Source, in Oak Ridge, Tennessee. Scientists using the liquids reflectometer have successfully taken snapshots in close to real time of these multilayered structures for different applications when they modify the structure and function parameters. Polyelecrolytes are polymers that carry charge in aqueous solutions. They contain chemical groups that dissociate in water, making such polymers charged. Most polyelectrolytes are water soluble. They are important components in foods, soaps, shampoos, and cosmetics products. They show promise for such environmental work as oil recovery and water treatment. Polyelectrolytes are compelling because researchers can chemically modify how they interact with water for multiple applications. When two types of polyelectrolytes of opposite charge are assembled at a surface in a sequential way using the LbL assembly technique, 'the result is the forming of surface films, useful for coatings, biomedical implants and devices, controlling adhesion of biological molecules, and controlling delivery of therapeutic molecules from surfaces,' said Svetlana Sukhishvili of the Stevens Institute of Technology in New Jersey, the lead chemist on the collaboration. 'Medical doctors often prefer to deliver multiple therapeutic compounds from the coatings in a time-resolved manner,' Sukhishvili said. 'To assist them, material scientists need to learn how to build coatings in which polymer layering will not be compromised when exposed to normal physiological conditions.' 'Being able to control these properties, understanding how what you do to the materials affects their properties, this allows you to apply them to situations where interacting with an environment is very helpful, whether in a biological context or any other

  17. Polyelectrolyte adsorption layers studied by streaming potential and particle deposition.

    PubMed

    Adamczyk, Z; Zembala, M; Michna, A

    2006-11-15

    Adsorption of a cationic polyelectrolyte, polyallylamine hydrochloride (PAH), having a molecular weight of 70,000 on mica was characterized by the streaming potential method and by deposition of negative polystyrene latex particles. Formation of PAH layers was followed by determining the apparent zeta potential of surface zeta as function of bulk PAH concentration. The zeta potential was calculated from the streaming potential measured in the parallel-plate channel formed by two mica plates precovered by the polyelectrolyte. The experimental data were expressed as the dependence of the reduced zeta potential zeta/zeta0 on the PAH coverage Theta(PAH), calculated using the convective diffusion theory. It was found that for the ionic strength of 10(-2) M, the dependence of zeta/zeta0 on Theta(PAH) can be reflected by the theoretical model formulated previously for surfaces covered by colloid particles. The electrokinetic measurements were complemented by particle deposition experiments on PAH-covered mica surfaces. A direct correlation between the polymer coverage and the initial deposition rate of particles, as well as the jamming coverage, was found. For ThetaPAH > 0.3 the initial deposition rate attained the value predicted from the convective diffusion theory for homogeneous surfaces. The initial deposition rates for surfaces modified by PAH were compared with previous experimental and theoretical results obtained for heterogeneous surfaces formed by preadsorption of colloid particles. It was revealed that negative latex deposition occurred at surfaces exhibiting negative apparent zeta potential, which explained the anomalous deposition of particles observed in previous works. It was suggested that the combined electrokinetic and particle deposition methods can be used for detecting adsorbed polyelectrolytes at surfaces for coverage range of a percent. This enables one to measure bulk polyelectrolyte concentrations at the level of 0.05 ppm. PMID:16949085

  18. Renormalization group treatment of excluded volume effects in a polyelectrolyte chain in the weak electrostatic coupling limit

    NASA Astrophysics Data System (ADS)

    Kholodenko, A. L.; Freed, Karl F.

    1983-06-01

    We provide the first rigorous treatment of the electrostatic excluded volume for a polyelectrolyte chain which incorporates the effects of salt concentration. Our treatment involves an extension of the t'Hooft-Veltman method of dimensional regularization for polymer excluded volume, developed in the accompanying paper, to the case complicated by the presence of electrostatic interactions. The critical dimensionality for the polyelectrolyte chains with realistic interactions is shown to be four in sharp contrast to previous simplified analyses, which do not consider salt concentration effects explicitly and which lead to a critical dimensionality of six. Our results imply that expansions in ɛ=4-d (with d the dimensionality of space) can be applied, so the theory reduces to the limit of uncharged polymers with excluded volume when the electrostatic interactions become totally screened. Our renormalization group (RG) treatment indicates the absence of stable fixed points, so there is no simple scaling limit. The range of validity of the perturbation expansion is established on the basis of a RG analysis, and a physical meaning of the weak coupling limit is also determined. The predicted lack of universality for the polyelectrolyte chain is in accord with experimental information. Explicit renormalized expressions are derived for the mean squared end-to-end distance to lowest order in both excluded volume and electrostatic coupling constants. These expressions are combined with the solution of the RG equations to provide a generalized scaling representation for in terms of three scaling variables. A brief discussion of possible future biological and nonbiological applications is provided.

  19. A quaternion pose determination solution based on monocular vision model

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Zhang, Qiuzhi; Zhang, Baoshang

    2011-08-01

    Determination of relative three-dimensional position and orientation between two reference frames can be solved by the pose measuring methods based on monocular vision model. Owing to the special T-shaped configuration, the definition of object rotational matrix in the terms of quaternion elements helped in representing the problem by six nonlinear equations from which a closed-form solution can be obtained for all the unknown parameters. The calculating formulas of elements in the rotational matrix were deduced from the coordinates of feature points in camera frame as well as the converting vector which was also introduced into the process acting as corrected term. An approximate pose could be found by the assumption of zero difference in depth of all points in camera frame, then the converting vector should be initialized by the third row of current rotational matrix. The principle of computing priority of the max value in quaternion expression was proposed to ensure the convergence of the iteration loop through which the final pose was achieved in a few iterations. Simulation experiments show the validity of the solution and analysis of the calculating precision was made in detail. The measuring orientation error would constringe with the reduction of distance from camera focus to target object and performance of the algorithm went well in short distance, while the deformation went larger with the increasing of errors caused by imprecise correspondence.

  20. Ions in solutions: Determining their polarizabilities from first-principles

    NASA Astrophysics Data System (ADS)

    Molina, John J.; Lectez, Sébastien; Tazi, Sami; Salanne, Mathieu; Dufrêche, Jean-François; Roques, Jérôme; Simoni, Eric; Madden, Paul A.; Turq, Pierre

    2011-01-01

    Dipole polarizabilities of a series of ions in aqueous solutions are computed from first-principles. The procedure is based on the study of the linear response of the maximally localized Wannier functions to an applied external field, within density functional theory. For most monoatomic cations (Li ^+, Na ^+, K ^+, Rb ^+, Mg ^{2+}, Ca ^{2+} and Sr ^{2+}) the computed polarizabilities are the same as in the gas phase. For Cs ^+ and a series of anions (F ^-, Cl ^-, Br ^- and I ^-), environmental effects are observed, which reduce the polarizabilities in aqueous solutions with respect to their gas phase values. The polarizabilities of H ^+_(aq), OH ^-_(aq) have also been determined along an ab initio molecular dynamics simulation. We observe that the polarizability of a molecule instantaneously switches upon proton transfer events. Finally, we also computed the polarizability tensor in the case of a strongly anisotropic molecular ion, UO _2^{2+}. The results of these calculations will be useful in building interaction potentials that include polarization effects.

  1. Determination of trace elements in triglycine sulfate solutions

    NASA Technical Reports Server (NTRS)

    Tadros, Shawky H.

    1993-01-01

    Ten elements were divided into 2 groups. The elements in the first group included iron, nickel, chromium, manganese, copper, and gold. The elements in the second group included zinc, cobalt, lead, cadmium, and gold. Five ppm of each element in each group was spiked in a 1 percent triglycine sulfate (TGS) solution. Glycine was removed with 1-naphthyl isocyanate in ether medium. The glycine derivative 1-naphthyl isocyanate glycine was removed by filtration, and the filtrates were analyzed for the different elements. Analysis of these elements was performed by using the 5100 Perkin-Elmer Atomic Absorption Spectrophotometer. The result of these experiments was the observation that there was a decrease in the concentration of chromium and gold, which was interpreted to be due to the chelation of these elements by the derivative 1-naphthyl isocyanate glycine. Further research is needed to determine the concentration of other elements in triglycine sulfate (TGS) solutions. These elements will include lithium, sodium, rubidium, magnesium, calcium, strontium, barium, aluminum, and silicon. These are the most likely elements to be found in the sulfuric acid used in manufacturing the TGS crystal. Moreover, we will extend our research to investigate the structural formula of the violet colored chelated compounds, which had been formed by interaction of the derivative 1-naphthyl isocyanate glycine with the different elements, such as gold, chromium.

  2. Underwater contact adhesion and microarchitecture in polyelectrolyte complexes actuated by solvent exchange

    NASA Astrophysics Data System (ADS)

    Zhao, Qiang; Lee, Dong Woog; Ahn, B. Kollbe; Seo, Sungbaek; Kaufman, Yair; Israelachvili, Jacob N.; Waite, J. Herbert

    2016-04-01

    Polyelectrolyte complexation is critical to the formation and properties of many biological and polymeric materials, and is typically initiated by aqueous mixing followed by fluid-fluid phase separation, such as coacervation. Yet little to nothing is known about how coacervates evolve into intricate solid microarchitectures. Inspired by the chemical features of the cement proteins of the sandcastle worm, here we report a versatile and strong wet-contact microporous adhesive resulting from polyelectrolyte complexation triggered by solvent exchange. After premixing a catechol-functionalized weak polyanion with a polycation in dimethyl sulphoxide (DMSO), the solution was applied underwater to various substrates whereupon electrostatic complexation, phase inversion, and rapid setting were simultaneously actuated by water-DMSO solvent exchange. Spatial and temporal coordination of complexation, inversion and setting fostered rapid (~25 s) and robust underwater contact adhesion (Wad >= 2 J m-2) of complexed catecholic polyelectrolytes to all tested surfaces including plastics, glasses, metals and biological materials.

  3. One-Step Generation of Multifunctional Polyelectrolyte Microcapsules via Nanoscale Interfacial Complexation in Emulsion (NICE).

    PubMed

    Kim, Miju; Yeo, Seon Ju; Highley, Christopher B; Burdick, Jason A; Yoo, Pil J; Doh, Junsang; Lee, Daeyeon

    2015-08-25

    Polyelectrolyte microcapsules represent versatile stimuli-responsive structures that enable the encapsulation, protection, and release of active agents. Their conventional preparation methods, however, tend to be time-consuming, yield low encapsulation efficiency, and seldom allow for the dual incorporation of hydrophilic and hydrophobic materials, limiting their widespread utilization. In this work, we present a method to fabricate stimuli-responsive polyelectrolyte microcapsules in one step based on nanoscale interfacial complexation in emulsions (NICE) followed by spontaneous droplet hatching. NICE microcapsules can incorporate both hydrophilic and hydrophobic materials and also can be induced to trigger the release of encapsulated materials by changes in the solution pH or ionic strength. We also show that NICE microcapsules can be functionalized with nanomaterials to exhibit useful functionality, such as response to a magnetic field and disassembly in response to light. NICE represents a potentially transformative method to prepare multifunctional nanoengineered polyelectrolyte microcapsules for various applications such as drug delivery and cell mimicry. PMID:26172934

  4. Conformational transition of polyelectrolyte chains extending over the de Gennes regime in slitlike nanochannels

    NASA Astrophysics Data System (ADS)

    Chun, Myung-Suk

    2012-09-01

    The confinement-induced conformational transitions of the polyelectrolyte chain are characterized with the coarse-grained Brownian dynamics simulations and the blob theory. Submicron-sized biopolymer xanthan is chosen as a model polyelectrolyte taking into account both flexible and semiflexible chains for comparison. Confined flexible and semiflexible chains exhibit a nonmonotonic variation in size in weak confinements, where the relative radius of gyration shows a dip and then increases when decreasing the channel width. The rigid chain, realized at low screening, exhibits a sigmoidal transition without minima in size. Major attention should be on the dependence of scaling law exponents on the screening effect of the solution in the moderate confinement of the de Gennes regime. Our findings are expected to provide useful information and new insight into the confined polyelectrolytes when relevant micro/nanochannels are designed and fabricated.

  5. Complexes between high charge density cationic polyelectrolytes and anionic single- and double-tail surfactants.

    PubMed

    Mantzaridis, C; Mountrichas, G; Pispas, S

    2009-05-21

    Polyelectrolyte/surfactant complexes formed between well-defined linear flexible polyelectrolytes, namely, quaternized poly[3,5-bis(dimethylaminomethylene)hydroxystyrene] (Q-N-PHOS), bearing two cationic sites on each repeating unit, and two different anionic surfactants, namely, sodium dodecyl sulfate (SDS) with one hydrocarbon tail and sodium bis(2-ethylhexyl) sulfosuccinate (AOT) with two hydrocarbon chains, are studied by means of fluorescence spectroscopy, electrophoretic, dynamic and static light scattering, and atomic force microscopy. Depending on the surfactant state in initial solutions (i.e., below or above nominal critical micelle concentration, cmc) and final (-/+) charge ratio, self-assembly in nanoparticles of variable size, stability, and effective charge is possible. Spherical, rather polydispserse complexes are formed in all cases. Critical aggregation concentrations (cac) depend on the surfactant type, while hydrophobicity of the main polyelectrolyte chain plays a role in colloidal stability of the complex nanoparticles. PMID:19388679

  6. Diffusion properties of inkjet printed ionic self-assembling polyelectrolyte hydrogels

    PubMed Central

    Limem, Skander; Calvert, Paul

    2015-01-01

    In the present work, Crank’s model was used to characterize solute transport in inkjet printed polyelectrolyte gels. The diffusion of a small charged molecule (fluorescein), various size linear uncharged molecules (dextrans), and a globular protein (albumin) in printed PSS-PDDA with near stoichiometric composition happened respectively at about 10−8, 10−9, and 10−10 cm2/sec. Polyelectrolyte complexes printed with non-stoichiometric ratios were found to be non-equilibrium structures consisting of three populations of polymer chains: fully complexed chains, chains in partial electrostatic interaction with the complex, and chains in excess having minimal interaction with the complex. This structure may be multiple phases. The applicability of hydrodynamic and free volume models to describe transport in printed polyelectrolyte gels was discussed. PMID:26417449

  7. Molecular simulation of the swelling of polyelectrolyte gels by monovalent and divalent counterions.

    PubMed

    Yin, De-Wei; Horkay, Ferenc; Douglas, Jack F; de Pablo, Juan J

    2008-10-21

    Permanently crosslinked polyelectrolyte gels are known to undergo discontinuous first-order volume phase transitions, the onset of which may be caused by a number of factors. In this study we examine the volumetric properties of such polyelectrolyte gels in relation to the progressive substitution of monovalent counterions by divalent counterions as the gels are equilibrated in solvents of different dielectric qualities. We compare the results of coarse-grained molecular dynamics simulations of polyelectrolyte gels with previous experimental measurements by others on polyacrylate gels. The simulations show that under equilibrium conditions there is an approximate cancellation between the electrostatic contribution and the counterion excluded-volume contribution to the osmotic pressure in the gel-solvent system; these two contributions to the osmotic pressure have, respectively, energetic and entropic origins. The finding of such a cancellation between the two contributions to the osmotic pressure of the gel-solvent system is consistent with experimental observations that the swelling behavior of polyelectrolyte gels can be described by equations of state for neutral gels. Based on these results, we show and explain that a modified form of the Flory-Huggins model for nonionic polymer solutions, which accounts for neither electrostatic effects nor counterion excluded-volume effects, fits both experimental and simulated data for polyelectrolyte gels. The Flory-Huggins interaction parameters obtained from regression to the simulation data are characteristic of ideal polymer solutions, whereas the experimentally obtained interaction parameters, particularly that associated with the third virial coefficient, exhibit a significant departure from ideality, leading us to conclude that further enhancements to the simulation model, such as the inclusion of excess salt, the allowance for size asymmetric electrolytes, or the use of a distance-dependent solvent dielectricity

  8. Preparation of polyelectrolytes for wastewater treatment.

    PubMed

    Radoiu, Marilena T; Martin, Diana I; Calinescu, Ioan; Iovu, Horia

    2004-01-01

    Liquid-phase polymerisation of acrylamide-acrylic acid to form polyelectrolytes used in wastewater cleaning was examined using accelerated electron beam and microwave irradiation methods. Polymerisation was carried out in aqueous solutions at temperatures approximately 60 degrees C. Monomers total concentration was established at 40% (36% acrylamide and 4% acrylic acid). Only using the features of simultaneous radiation-induction and microwave heating can result in the formation of linear polymer chains with good water solubility and low residual monomer concentration. The flocculation capacity of the obtained polymers was tested using two wastewaters, one sampled from a slaughterhouse and the other from a vegetable oil plant. Quality indicators such as total suspended matters (TSM), chemical oxygen demand (COD), biological oxygen demand (BOD) and fat, oils and grease (FOG) were measured before and after the treatment with polymeric flocculants and compared with the results obtained in classical treatment with Al(2)(SO(4))(3). It was found that the combined treatment with polymers and Al(2)(SO(4))(3) increases the degree of purification of both wastewaters up to 99%. PMID:14693435

  9. Antibacterial polyelectrolyte micelles for coating stainless steel.

    PubMed

    Falentin-Daudré, Céline; Faure, Emilie; Svaldo-Lanero, Tiziana; Farina, Fabrice; Jérôme, Christine; Van De Weerdt, Cécile; Martial, Joseph; Duwez, Anne-Sophie; Detrembleur, Christophe

    2012-05-01

    In this study, we report on the original synthesis and characterization of novel antimicrobial coatings for stainless steel by alternating the deposition of aqueous solutions of positively charged polyelectrolyte micelles doped with silver-based nanoparticles with a polyanion. The micelles are formed by electrostatic interaction between two oppositely charged polymers: a polycation bearing 3,4-dihydroxyphenylalanine units (DOPA, a major component of natural adhesives) and a polyanion (poly(styrene sulfonate), PSS) without using any block copolymer. DOPA units are exploited for their well-known ability to anchor to stainless steel and to form and stabilize biocidal silver nanoparticles (Ag(0)). The chlorine counteranion of the polycation forms and stabilizes biocidal silver chloride nanoparticles (AgCl). We demonstrate that two layers of micelles (alternated by PSS) doped with silver particles are enough to impart to the surface strong antibacterial activity against gram-negative E. coli. Moreover, micelles that are reservoirs of biocidal Ag(+) can be easily reactivated after depletion. This novel water-based approach is convenient, simple, and attractive for industrial applications. PMID:22506542

  10. Polyelectrolyte complexes and salt: a computational study

    NASA Astrophysics Data System (ADS)

    Antila, Hanne; van Tassel, Paul; Sammalkorpi, Maria

    2014-03-01

    Charged polymers, polyelectrolytes (PEs), are versatile materials with applications ranging from tissue engineering to sensing elements. In aqueous solutions, oppositely charged PEs form complexes which are known to be sensitive to added salt with responses including shrinking, flocculation or swelling, and at higher concentrations loosening and destabilization of the complex. However, the role of electrostatics, charge correlations, hydration, and ion specific interactions remain unclear. In this work, we use all-atom molecular dynamics with explicit water and ions to probe the effect of excess salt to DNA-polylysine complex formation and stability, and demonstrate the mechanism of PE and ion species specific salt-driven dissociation. The dissociation occurs accompanied by charge reversal in which charge correlations and ion binding chemistry play a role. Our results agree with experimental work on complex dissociation but in addition show the underlying microstructural correlations driving the behavior. We expand the full atomic level detail and dynamics results with theoretical and computational work describing the PE complex as oppositely charged rods to provide a more complete understanding of PE interactions in salt.

  11. Ion-specific effect on dynamics of polyelectrolyte chains.

    PubMed

    Luo, Zhenli; Wang, Xiaoyan; Zhang, Guangzhao

    2012-05-21

    The sedimentation of quaternized poly(4-vinyl pyridine) (QP4VP) or poly(N-methyl 4-vinyl pyridine iodide) in aqueous solution has been investigated by using an analytical ultracentrifuge (AUC) via sedimentation velocity (SV). When NaI is introduced, either the sedimentation coefficient (s) or apparent molar mass (Mw) of QP4VP increases with NaI concentration because the polyelectrolyte chains aggregate or even form precipitates due to hydrophobic interaction. Upon addition of NaCl, either s or Mw exhibits a maximum as NaCl concentration increases. The sedimentation in NaBr solution falls in between. Besides, the diffusion coefficient (D) shows a minimum as the added salt concentration increases when either of the salts is added. Isothermal titration calorimetry (ITC) measurements show that the enthalpy change increases from NaI over NaBr to NaCl when each of them is mixed with QP4VP, revealing that the order of the strength of the anion-pyridinium interaction is I(-) > Br(-) > Cl(-). When I(-) ions are added, they only screen the electrostatic interaction and no counterion competition happens. Upon addition of Cl(-) or Br(-) ions, the original counterions (I(-)) win the competition at low Cl(-) or Br(-) concentration, so that the added anions only screen the electrostatic interaction. When the concentration of Cl(-) or Br(-) ions is high enough, they replace I(-) ions to interact with the polyelectrolyte chains due to osmotic pressure. The present study demonstrates that the complex dynamics of the polyelectrolyte is greatly influenced by the ion-specific effect. PMID:22495384

  12. Complexation behavior of oppositely charged polyelectrolytes: Effect of charge distribution

    SciTech Connect

    Zhao, Mingtian; Li, Baohui E-mail: baohui@nankai.edu.cn; Zhou, Jihan; Su, Cuicui; Niu, Lin; Liang, Dehai E-mail: baohui@nankai.edu.cn

    2015-05-28

    Complexation behavior of oppositely charged polyelectrolytes in a solution is investigated using a combination of computer simulations and experiments, focusing on the influence of polyelectrolyte charge distributions along the chains on the structure of the polyelectrolyte complexes. The simulations are performed using Monte Carlo with the replica-exchange algorithm for three model systems where each system is composed of a mixture of two types of oppositely charged model polyelectrolyte chains (EGEG){sub 5}/(KGKG){sub 5}, (EEGG){sub 5}/(KKGG){sub 5}, and (EEGG){sub 5}/(KGKG){sub 5}, in a solution including explicit solvent molecules. Among the three model systems, only the charge distributions along the chains are not identical. Thermodynamic quantities are calculated as a function of temperature (or ionic strength), and the microscopic structures of complexes are examined. It is found that the three systems have different transition temperatures, and form complexes with different sizes, structures, and densities at a given temperature. Complex microscopic structures with an alternating arrangement of one monolayer of E/K monomers and one monolayer of G monomers, with one bilayer of E and K monomers and one bilayer of G monomers, and with a mixture of monolayer and bilayer of E/K monomers in a box shape and a trilayer of G monomers inside the box are obtained for the three mixture systems, respectively. The experiments are carried out for three systems where each is composed of a mixture of two types of oppositely charged peptide chains. Each peptide chain is composed of Lysine (K) and glycine (G) or glutamate (E) and G, in solution, and the chain length and amino acid sequences, and hence the charge distribution, are precisely controlled, and all of them are identical with those for the corresponding model chain. The complexation behavior and complex structures are characterized through laser light scattering and atomic force microscopy measurements. The order

  13. Complexation behavior of oppositely charged polyelectrolytes: Effect of charge distribution

    NASA Astrophysics Data System (ADS)

    Zhao, Mingtian; Zhou, Jihan; Su, Cuicui; Niu, Lin; Liang, Dehai; Li, Baohui

    2015-05-01

    Complexation behavior of oppositely charged polyelectrolytes in a solution is investigated using a combination of computer simulations and experiments, focusing on the influence of polyelectrolyte charge distributions along the chains on the structure of the polyelectrolyte complexes. The simulations are performed using Monte Carlo with the replica-exchange algorithm for three model systems where each system is composed of a mixture of two types of oppositely charged model polyelectrolyte chains (EGEG)5/(KGKG)5, (EEGG)5/(KKGG)5, and (EEGG)5/(KGKG)5, in a solution including explicit solvent molecules. Among the three model systems, only the charge distributions along the chains are not identical. Thermodynamic quantities are calculated as a function of temperature (or ionic strength), and the microscopic structures of complexes are examined. It is found that the three systems have different transition temperatures, and form complexes with different sizes, structures, and densities at a given temperature. Complex microscopic structures with an alternating arrangement of one monolayer of E/K monomers and one monolayer of G monomers, with one bilayer of E and K monomers and one bilayer of G monomers, and with a mixture of monolayer and bilayer of E/K monomers in a box shape and a trilayer of G monomers inside the box are obtained for the three mixture systems, respectively. The experiments are carried out for three systems where each is composed of a mixture of two types of oppositely charged peptide chains. Each peptide chain is composed of Lysine (K) and glycine (G) or glutamate (E) and G, in solution, and the chain length and amino acid sequences, and hence the charge distribution, are precisely controlled, and all of them are identical with those for the corresponding model chain. The complexation behavior and complex structures are characterized through laser light scattering and atomic force microscopy measurements. The order of the apparent weight-averaged molar

  14. EFFECTS OF SYNTHETIC POLYELECTROLYTES ON SELECTED AQUATIC ORGANISMS

    EPA Science Inventory

    The acute toxicity of several polyelectrolytes to daphnids (Daphnia magna), fathead minnows (Pimephales promelas), gammarids (Gammarus pseudolimnaeus) and midges (Paratanytarsus parthenogeneticus) was tested. Most nonionic and anionic polyelectrolytes were not toxic at 100 mg/l w...

  15. The preparation of polyelectrolyte complexes carboxymethyl chitosan(CMC)-pectin by reflux method as a Pb (II) metal ion adsorbent

    NASA Astrophysics Data System (ADS)

    Hastuti, Budi; Mudasir, Siswanta, Dwi; Triyono

    2016-02-01

    Aim of this research is to synthesized a chemically stable polyelectrolyte complexs carboxymetyl chitosan CMC-pectin as Pb(II) ion adsorbent by reflux method. During synthesis process, the optimum mass ratio of CMC and pectin was pre-determined and the active groups of the CMC-pectin complex was characterized by using IR spectrofotometer. Finally, adsorption capacity of the adsorbent material for Pb (II) ions was studied under optimum condition, i.e. adsorbent mass, contact time, and pH. Result shows that CMC could be succesfully combined with pectin to produce CMC-pectin complex. The optimum mass ratio CMC: pectin to form the polyelectrolyte complexs CMC-pectin was 70% : 30%. The active groups identified in the CMC-pectin complex was a hydroxyl (OH) and carboxylate (-COOH) groups. The optimum conditions for Pb (II) ion absoprtion was 10 mg of the adsorbent mass, 75 min of contact time, and pH 5. This material can be effectively used as adsorbents for Pb (II) ions, where up to 91% Pb (II) metal ions was adsorbed from aqueous solution and the adsorption capacity of the adsorbent was 41.63 mg/g.

  16. Using NMR to Determine Protein Structure in Solution

    NASA Astrophysics Data System (ADS)

    Cavagnero, Silvia

    2003-02-01

    Nuclear magnetic resonance (NMR) is a marvelous spectroscopic technique that chemists, physicists, and biochemists routinely employ for their research around the world. This year half of the Nobel Prize for chemistry went to Kurt Wüthrich, who was recognized for the development of NMR-based techniques that lead to the structure determination of biomolecules in solution. In addition to implementing novel pulse sequences and software packages, Wüthrich also applied his methods to several biological systems of key importance to human health. These include the prion protein, which is heavily involved in the spongiform encephalopathy (best known as 'mad cow disease'), which recently caused numerous human deaths, particularly in the UK, due to ingestion of contaminated meat. Transverse relaxation optimized spectroscopy (TROSY) is the most intriguing new NMR method recently developed by Wüthrich and coworkers. This and other closely related pulse sequences promise to play a pivotal role in the extension of NMR to the conformational analysis of very large (up to the megadalton range) macromolecules and macromolecular complexes. More exciting new developments are expected in the near future.

  17. Elasticity and Extensibility Determine Printability and Spinnability of Polymer Solutions

    NASA Astrophysics Data System (ADS)

    Dinic, Jelena; Nallely Jimenez, Leidy; Mei, Vicky; Zhang, Yiran; Sharma, Vivek

    2015-03-01

    Many advanced manufacturing technologies like inkjet printing, 3D printing, nano-fiber spinning, gravure printing and nanoimprint lithography involve complex free-surface flows, where both shear and extensional rheology affect processability. In applications that involve progressive thinning and break-up of a fluid column or sheet into drops, the dominant flow within the filament is extensional in nature. Polymeric fluids exhibit a much larger resistance to flow in an elongational flow field than Newtonian fluids with same shear viscosity. Characterizing the filament thinning and break-up kinetics in jetting, dripping and stretching liquid bridge provides invaluable insight into the interplay of elastic, viscous, capillary and inertial stresses relevant for these applications. In this talk, we elucidate how polymer composition, flexibility and molecular weight determine the kinetics of capillary-driven thinning and pinch-off in our experiments. Both effective relaxation time and transient extensional viscosity are found to be strongly concentration dependent even for dilute solutions. Further, we show how finite extensibility of polymers dramatically changes the kinematics from elastocapillary to viscocapillary under strong extensional flow fields that can lead to coil-stretch transition.

  18. Elasticity and Extensibility Determine Printability and Spinnability of Polymer Solutions

    NASA Astrophysics Data System (ADS)

    Dinic, Jelena; Jimenez, Leidy; Sharma, Vivek

    Many advanced manufacturing technologies like inkjet and 3D printing, nano-fiber spinning involve complex free-surface flows, and the formation of columnar necks that undergo spontaneous capillary-driven thinning and pinch-off. The progressive self-thinning of neck is often characterized by self-similar profiles and scaling laws that depend on the relative magnitude of capillary, inertial and viscous stresses for simple (Newtonian and inelastic) fluids. Stream-wise velocity gradients that arise within the thinning columnar neck create an extensional flow field that can orient and stretch macromolecules, contributing extra elastic stresses and extensional viscosity that change thinning and pinch-off dynamics for polymeric complex fluids. Characterizing the filament thinning and break-up kinetics in jetting, dripping and stretching liquid bridge provides invaluable insight into the interplay of elastic, viscous, capillary and inertial stresses relevant for these applications. We elucidate how polymer composition, flexibility and molecular weight determine the thinning and pinch-off kinetics in our experiments. Both effective relaxation time and transient extensional viscosity are found to be strongly concentration dependent even for dilute solutions.

  19. Effect of pH on Swelling Behavior of Polyelectrolyte Brushes Produced via Surface Confined Atom Transfer Radical Polymerization.

    NASA Astrophysics Data System (ADS)

    Sankhe, Amit

    2005-03-01

    Surface-tethered polyelectrolyte brushes comprised of poly (itaconic acid) (PIA) and poly(methacrylic acid) (PMAA) were grown using surface-confined atom transfer radical polymerization (ATRP). The surface- tethered initiator monolayer was formed by self-assembling 2-bromoisobutyryl bromide terminated thiol molecules on gold coated silicon substrates. This polymerization initiator molecule and a copper-based organometallic catalyst allowed tethered polyelectrolyte chains to be grown via radical polymerization at room temperature in aqueous solutions. The behavior of these polyelectrolyte brushes as a function of pH was studied using a phase modulated ellipsometery. The presentation explains how the brushes are affected by external conditions such as the pH of the contacting solution. As the polymer brushes already exist in the charged state, addition of neutral water or salt solution did not affect the polymer brush height, however a decrease of thickness with pH is found.

  20. Ion Environments in Mn(2+)-Doped Polyelectrolyte Complexes: Dilute Magnetic Saloplastics.

    PubMed

    Abhyankar, Nandita; Ghoussoub, Yara E; Wang, Qifeng; Dalal, Naresh S; Schlenoff, Joseph B

    2016-07-14

    Amorphous hydrated complexes of the polyelectrolytes poly(styrene sulfonate) (PSS) and poly(diallyldimethylammonium) were doped with the spin-5/2 ion Mn(2+). X-band electron paramagnetic resonance (EPR) measurements of the Mn(2+) spins within these stoichiometric polyelectrolyte complexes (PECs) revealed an octahedral coordination environment, similar to that observed in aqueous solutions of Mn(2+). This octahedral symmetry of the [Mn(H2O)6](2+) complexes, observed in fully hydrated PECs, is somewhat distorted because of the wide range of ion pairs possible with the sulfonate group on PSS. As the Mn(2+) concentration was increased, the linewidths broadened, indicating the dominance of dipolar broadening over exchange narrowing in determining the linewidths; that is, any exchange narrowing was masked by the large dipolar broadening. The calculated linewidths were used to estimate the strengths of the dipolar interactions, and hence the distances between the Mn(2+) spins, on the basis of a simple model of regularly spaced spins. The distances calculated by this method were roughly comparable to the geometric average distances calculated on the basis of the Mn(2+) concentrations and densities of the doped PEC samples. From a comparison of their EPR spectra, the ion environments in the doped, fully hydrated PECs were found to be similar to those in hydrated classical ion exchange resins. EPR spectra before and after drying of the PECs indicate the replacement of octahedrally coordinated water by oxide anions from the polyanion chain and the corresponding loss of the symmetric environment of Mn(2+) ions. PMID:27367277

  1. Electrospinning polyelectrolyte complexes: pH-responsive fibers.

    PubMed

    Boas, Mor; Gradys, Arkadiusz; Vasilyev, Gleb; Burman, Michael; Zussman, Eyal

    2015-03-01

    Fibers were electrospun from a solution comprised of oppositely charged polyelectrolytes, in efforts to achieve highly confined macromolecular packaging. A stoichiometric ratio of poly(allylamine hydrochloride) and poly(acrylic acid) solution was mixed in an ethanol-water co-solvent. Differential scanning calorimetry (DSC) analysis of electrospun fibers demonstrated no indication of glass transition, Tg. Infrared spectroscopy (FTIR) analysis of the fibers as a function of temperature, demonstrated an amidation process at lower temperature compared to cast film. Polarized FTIR indicated a preference of the functional groups to be perpendicular to the fiber axis. These results imply formation of mixed phase fibers with enhanced conditions for intermolecular interactions, due to the highly aligned and confined assembly of the macromolecules. The tunable intermolecular interactions between the functional groups of the polyelectrolytes, impact pH-driven, reversible swelling-deswelling of the fibers. The degree of ionization of PAA at pH 5.5 and pH 1.8 varied from 85% to 18%, correspondingly, causing transformation of ionic interactions to hydrogen bonding between the functional groups. The chemical change led to a massive water diffusion of 500% by weight and to a marked increase of 400% in fiber diameter, at a rate of 0.50 μm s(-1). These results allow for manipulation and tailoring of key fiber properties for tissue engineering, membranes, and artificial muscle applications. PMID:25601204

  2. Electrostatic complexation of polyelectrolyte and magnetic nanoparticles: from wild clustering to controllable magnetic wires

    NASA Astrophysics Data System (ADS)

    Yan, Minhao; Qu, Li; Fan, Jiangxia; Ren, Yong

    2014-05-01

    We present the electrostatic complexation between polyelectrolytes and charged nanoparticles. The nanoparticles in solution are γ-Fe2O3 (maghemite) spheres with 8.3 nm diameter and anionic surface charges. The complexation was monitored using three different formulation pathways such as direct mixing, dilution, and dialysis. In the first process, the hybrids were obtained by mixing stock solutions of polymers and nanoparticles. A `destabilization state' with sharp and intense maximum aggregation was found at charges stoichiometry (isoelectric point). While on the two sides of the isoelectric point, `long-lived stable clusters state' (arrested states) were observed. Dilution and dialysis processes were based on controlled desalting kinetics according to methods developed in molecular biology. Under an external magnetic field ( B = 0.3 T), from dialysis at isoelectric point and at arrested states, cationic polyelectrolytes can `paste' these magnetic nanoparticles (NPs) together to yield irregular aggregates (size of 100 μm) and regular rod-like aggregates, respectively. These straight magnetic wires were fabricated with diameters around 200 nm and lengths comprised between 1 μm and 0.5 mm. The wires can have either positive or negative charges on their surface. After analyzing their orientational behavior under an external rotating field, we also showed that the wires made from different polyelectrolytes have the same magnetic property. The recipe used a wide range of polyelectrolytes thereby enhancing the versatility and applied potentialities of the method. This simple and general approach presents significant perspective for the fabrication of hybrid functional materials.

  3. Cationic β-cyclodextrin polymer applied to a dual cyclodextrin polyelectrolyte multilayer system.

    PubMed

    Junthip, Jatupol; Tabary, Nicolas; Leclercq, Laurent; Martel, Bernard

    2015-08-01

    A polyelectrolyte multilayer film (PEM) based on cationic and anionic β-cyclodextrin polyelectrolytes was coated onto a textile substrate for future drug delivery purposes. We firstly synthesized a novel cationic β-cyclodextrin polymer (polyEPG-CD) by crosslinking β-cyclodextrin (βCD) with epichlorohydrin (EP) under basic conditions, in the presence of glycidyltrimetrylammonium chloride (GTMAC) as cationizing group. The influence of preparation conditions has been investigated in order to preferably obtain a water soluble fraction whose charge density and molecular weights were optimal for the layer-by-layer (LbL) deposition process. The different cationic cyclodextrin polymers obtained were characterized by FTIR, NMR, colloidal titration, conductimetry, thermogravimetric analysis and size exclusion chromatography. Besides, the counterpart polyelectrolyte was a β-cyclodextrin polymer crosslinked with citric acid, polyCTR-CD, whose synthesis and characterization have been previously reported. Finally we realized the Layer by Layer (LbL) build-up of the PEM coating onto the textile support, using the dip coating method, by alternatively soaking it in cationic polyEPG-CD and anionic polyCTR-CD solutions. This multilayer self-assembly was monitored by SEM, gravimetry and OWLS in function of both polyelectrolytes concentrations and ratios. Solutions parameters such as pH, ionic strenght were also discussed. PMID:25933534

  4. Freestanding polyelectrolyte films as sensors for osmotic pressure.

    PubMed

    Nolte, Marc; Dönch, Ingo; Fery, Andreas

    2006-09-11

    Freestanding ultrathin polyelectrolyte-multilayer membranes, transferred to topographically structured polydimethylsiloxane (PDMS), are used as mechanical sensors. Due to the membranes' semipermeability, high-molecular-weight molecules can be either entrapped inside them or excluded, thus generating an osmotic pressure. This leads to a deformation. We investigate the deformation as a function of the osmotic pressure and present an analytical theory that fully describes the data. Thus, osmotic pressures can be determined quantitatively. The individual osmotic-sensitive elements have only microscopic dimensions, and arrays can be easily produced. PMID:16929555

  5. Counterions and water in polyelectrolyte multilayers: a tale of two polycations.

    PubMed

    Jaber, Jad A; Schlenoff, Joseph B

    2007-01-16

    Attenuated total internal reflectance Fourier transform infrared, ATR-FTIR, spectroscopy was used to compare the water uptake and doping within polyelectrolyte multilayers made from poly(styrene sulfonate), PSS, and a polycation, either poly(allylamine hydrochloride), PAH, or poly(diallyldimethylammonium chloride), PDADMAC. Unlike PDADMA/PSS multilayers, whose water content depended on the solution ionic strength, PAH/PSS multilayers were resistant to doping by NaCl to a concentration of 1.2 M. Using (infrared active) perchlorate salt, the fraction of residual counterions in PDADMA/PSS and PAH/PSS was determined to be 3% and 6%, respectively. The free energy of association between the polymer segments, in the presence of NaClO4, was about 5 kJ mol-1 and -10 kJ mol-1, respectively, for PDADMA/PSS and PAH/PSS, indicating the relatively strong association between the polymer segments in the latter relative to the former. Varying the pH of the solution in contact with the PAH/PSS multilayer revealed a transition to a highly swollen state, interpreted to signal protonation of PAH under much more basic conditions than the pKa of the solution polymer. The increase in the multilayer pKa suggested an interaction energy for PAH/PSS in NaCl of ca. 16 kJ mol-1. PMID:17209649

  6. Operational mechanism of conjugated polyelectrolytes.

    PubMed

    Tordera, Daniel; Kuik, Martijn; Rengert, Zachary D; Bandiello, Enrico; Bolink, Henk J; Bazan, Guillermo C; Nguyen, Thuc-Quyen

    2014-06-18

    Conjugated polyelectrolytes (CPEs) are versatile materials used in a range of organic optoelectronic applications. Because of their ionic/electronic nature, characterizing these materials is nontrivial, and their operational mechanism is not fully understood. In this work we use a methodology that combines constant-voltage-driven current-density transient measurements with fast current vs voltage scans to allow decoupling of ionic and electronic phenomena. This technique is applied to diodes prepared with cationic CPEs having different charge-compensating anions. Our results indicate that the operational mechanism of these devices is governed by electrochemical doping of the CPE. On the basis of the notion that the saturated depletion layer for the anions consists of the same π-conjugated backbone material, we discern how the extent and speed of formation of the doped region depend on the anion structure. Apart from addressing fundamental transport questions, this work provides a tool for future characterization of different CPEs and other similar systems. PMID:24855971

  7. Energy conversion in polyelectrolyte hydrogels

    NASA Astrophysics Data System (ADS)

    Olvera de La Cruz, Monica; Erbas, Aykut; Olvera de la Cruz Team

    Energy conversion and storage have been an active field of research in nanotechnology parallel to recent interests towards renewable energy. Polyelectrolyte (PE) hydrogels have attracted considerable attention in this field due to their mechanical flexibility and stimuli-responsive properties. Ideally, when a hydrogel is deformed, applied mechanical work can be converted into electrostatic, elastic and steric-interaction energies. In this talk, we discuss the results of our extensive molecular dynamics simulations of PE hydrogels. We demonstrate that, on deformation, hydrogels adjust their deformed state predominantly by altering electrostatic interactions between their charged groups rather than excluded-volume and bond energies. This is due to the hydrogel's inherent tendency to preserve electro-neutrality in its interior, in combination with correlations imposed by backbone charges. Our findings are valid for a wide range of compression ratios and ionic strengths. The electrostatic-energy alterations that we observe in our MD simulations may induce pH or redox-potential changes inside the hydrogels. The resulting energetic difference can be harvested, for instance, analogously to a Carnot engine, or facilitated for sensor applications. Center for Bio-inspired Energy Science (CBES).

  8. Charge Density Quantification of Polyelectrolyte Polysaccharides by Conductometric Titration: An Analytical Chemistry Experiment

    ERIC Educational Resources Information Center

    Farris, Stefano; Mora, Luigi; Capretti, Giorgio; Piergiovanni, Luciano

    2012-01-01

    An easy analytical method for determination of the charge density of polyelectrolytes, including polysaccharides and other biopolymers, is presented. The basic principles of conductometric titration, which is used in the pulp and paper industry as well as in colloid and interface science, were adapted to quantify the charge densities of a…

  9. 21 CFR 864.9320 - Copper sulfate solution for specific gravity determinations.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Copper sulfate solution for specific gravity... Establishments That Manufacture Blood and Blood Products § 864.9320 Copper sulfate solution for specific gravity determinations. (a) Identification. A copper sulfate solution for specific gravity determinations is a...

  10. 21 CFR 864.9320 - Copper sulfate solution for specific gravity determinations.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Copper sulfate solution for specific gravity... Establishments That Manufacture Blood and Blood Products § 864.9320 Copper sulfate solution for specific gravity determinations. (a) Identification. A copper sulfate solution for specific gravity determinations is a...

  11. 21 CFR 864.9320 - Copper sulfate solution for specific gravity determinations.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Copper sulfate solution for specific gravity... Establishments That Manufacture Blood and Blood Products § 864.9320 Copper sulfate solution for specific gravity determinations. (a) Identification. A copper sulfate solution for specific gravity determinations is a...

  12. 21 CFR 864.9320 - Copper sulfate solution for specific gravity determinations.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Copper sulfate solution for specific gravity... Establishments That Manufacture Blood and Blood Products § 864.9320 Copper sulfate solution for specific gravity determinations. (a) Identification. A copper sulfate solution for specific gravity determinations is a...

  13. 21 CFR 864.9320 - Copper sulfate solution for specific gravity determinations.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Copper sulfate solution for specific gravity... Establishments That Manufacture Blood and Blood Products § 864.9320 Copper sulfate solution for specific gravity determinations. (a) Identification. A copper sulfate solution for specific gravity determinations is a...

  14. Weighing Polyelectrolytes Packaged in Viruslike Particles

    NASA Astrophysics Data System (ADS)

    Tresset, Guillaume; Tatou, Mouna; Le CÅ`ur, Clémence; Zeghal, Mehdi; Bailleux, Virginie; Lecchi, Amélie; Brach, Katarzyna; Klekotko, Magdalena; Porcar, Lionel

    2014-09-01

    This Letter reports on the remarkable selectivity of capsid proteins for packaging synthetic polyelectrolytes in viruslike particles. By applying the contrast variation method in small-angle neutron scattering, we accurately estimated the mean mass of packaged polyelectrolytes ⟨Mp⟩ and that of the surrounding capsid ⟨Mcap⟩. Remarkably, the mass ratio ⟨Mp⟩/⟨Mcap⟩ was invariant for polyelectrolyte molecular weights spanning more than 2 orders of magnitude. To do so, capsids either packaged several chains simultaneously or selectively retained the shortest chains that could fit the capsid interior. Our data are in qualitative agreement with theoretical predictions based on free energy minimization and emphasize the importance of protein self-energy. These findings may give new insights into the nonspecific origin of genome selectivity for a number of viral systems.

  15. Cornea, and the swelling of polyelectrolyte gels of biological interest

    NASA Astrophysics Data System (ADS)

    Elliott, Gerald F.; Hodson, Stuart A.

    1998-10-01

    Biological polyelectrolyte gels consist of insoluble aggregates of molecules which collectively form structural fibrils and these fibrils, or their chemically bound side chains, have a net electrical charge. These gels may be visualized as negatively charged fibrils immersed in aqueous solutions which include free diffusible ions (mainly sodium, potassium and chloride). All living cells and most of the extracellular spaces of the body are polyelectrolyte gels and they strive to swell by the absorption of additional fluid because of the Donnan potentials generated by their fixed charge. We review Donnan swelling using the cornea of the eye as prime material. Donnan swelling requires knowledge of only one parameter such as: (a) the electrical potential within the gel or (b) the distribution of any mobile ion inside and outside the gel or (c) measurement of the gel pressure or (d) the fixed charge density on the fibrils, in order to calculate all the other relevant factors. We describe the conditions (which usually exist in biological tissue) when the microscopic distribution of the fixed charge density within the gel is not important to the Donnan phenomena. Fixed charge density is generated by two sources: permanent negative charges in the structural fibrils and transient mobile ion binding to the fibrils. Ion binding to large molecules is reviewed. In the case of the cornea, transient mobile ion binding is the predominant factor in generating fixed charge density under physiological conditions. An irreversible thermodynamic treatment of gel swelling shows the intrinsic instability of polyelectrolyte gels and suggests new ways of approaching a microscopic model for osmosis. In order to stabilize the two forces (osmotic potential and chemical potential) which generate the polyelectrolyte gel instability we review the types of third forces which must be present in order to stabilize biological gels. These third forces include van der Waal's force, metabolically driven

  16. Interactions of solutes and streambed sediment. 2. A dynamic analysis of coupled hydrologic and chemical processes that determine solute transport.

    USGS Publications Warehouse

    Bencala, K.E.

    1984-01-01

    Solute transport in streams is determined by the interaction of physical and chemical processes. Data from an injection experiment for chloride and several cations indicate significant influence of solute-streambed processes on transport in a mountain stream. These data are interpreted in terms of transient storage processes for all tracers and sorption processes for the cations. Process parameter values are estimated with simulations based on coupled quasi-two-dimensional transport and first-order mass transfer sorption. Comparative simulations demonstrate the relative roles of the physical and chemical processes in determining solute transport. -from Author

  17. Water distribution in multilayers of weak polyelectrolytes.

    PubMed

    Tanchak, Oleh M; Yager, Kevin G; Fritzsche, Helmut; Harroun, Thad; Katsaras, John; Barrett, Christopher J

    2006-05-23

    The water localization in thin polyelectrolyte multilayers assembled from poly(acrylic acid) and poly(allylamine hydrochloride) was investigated with neutron reflectivity in an atmosphere of controlled humidity and with bulk water. Water was found to be distributed asymmetrically within the multilayer and to localize preferentially at the polymer surface. The diffusion of water into the multilayer did not completely penetrate to the substrate, but instead there appeared to be an exclusion zone near the Si substrate. These results help to explain previous observations of anomalous water transport kinetics in weak polyelectrolyte systems. PMID:16700605

  18. Evaluation of the counterion condensation theory of polyelectrolytes.

    PubMed Central

    Stigter, D

    1995-01-01

    We compare free energies of counterion distributions in polyelectrolyte solutions predicted from the cylindrical Poisson-Boltzmann (PB) model and from the counterion condensation theories of Manning: CC1 (Manning, 1969a, b), which assumes an infinitely thin region of condensed counterions, and CC2 (Manning, 1977), which assumes a region of finite thickness. We consider rods of finite radius with the linear charge density of B-DNA in 1-1 valent and 2-2 valent salt solutions. We find that under all conditions considered here the free energy of the CC1 and the CC2 models is higher than that of the PB model. We argue that counterion condensation theory imposes nonphysical constraints and is, therefore, a poorer approximation to the underlying physics based on continuum dielectrics, point-charge small ions, Poisson electrostatics, and Boltzmann distributions. The errors in counterion condensation theory diminish with increasing distance from, or radius of, the polyion. PMID:8527651

  19. Responsive block copolymer photonics triggered by protein-polyelectrolyte coacervation.

    PubMed

    Fan, Yin; Tang, Shengchang; Thomas, Edwin L; Olsen, Bradley D

    2014-11-25

    Ionic interactions between proteins and polyelectrolytes are demonstrated as a method to trigger responsive transitions in block copolymer (BCP) photonic gels containing one neutral hydrophobic block and one cationic hydrophilic block. Poly(2-vinylpyridine) (P2VP) blocks in lamellar poly(styrene-b-2-vinylpyridine) block copolymer thin films are quaternized with primary bromides to yield swollen gels that show strong reflectivity peaks in the visible range; exposure to aqueous solutions of various proteins alters the swelling ratios of the quaternized P2VP (QP2VP) gel layers in the PS-QP2VP materials due to the ionic interactions between proteins and the polyelectrolyte. Parameters such as charge density, hydrophobicity, and cross-link density of the QP2VP gel layers as well as the charge and size of the proteins play significant roles on the photonic responses of the BCP gels. Differences in the size and pH-dependent charge of proteins provide a basis for fingerprinting proteins based on their temporal and equilibrium photonic response. The results demonstrate that the BCP gels and their photonic effect provide a robust and visually interpretable method to differentiate different proteins. PMID:25393374

  20. Dynamics of a polyelectrolyte under a constant electric field

    NASA Astrophysics Data System (ADS)

    Park, Pyeong Jun

    2015-11-01

    We perform a molecular dynamics simulation of a polyelectrolyte in a viscous fluid under an external electric field to study the dynamics of gel-free electrophoresis. To incorporate the hydrodynamic effects, we employ a coarse-grained description of water by using multiparticle collision dynamics. We use a screened Coulomb interaction among the monomers and explicit monovalent counterions to model the electrostatic interactions in an ionic solution. The mobility of the polyelectrolyte µ is obtained as a function of the molecular weight N, the electric field strength E,and the Debye screening length of the solvent λ. The mobility is found to be independent of N for large N and to exhibit a maximum at a certain N for a large λ, which are in agreement with experimental results. The dependence of µ on E is also examined and discussed by considering the effects of an electric field on counterion condensation. The dependence of µ on λ shows a discrepancy between our simulation and experiments, which implies that the added salts not only screen out the Coulomb interaction but also participate in the counterion condensation significantly.

  1. Contraction of weak polyelectrolyte multilayers in response to organic solvents.

    PubMed

    Gu, Yuanqing; Ma, Yubing; Vogt, Bryan D; Zacharia, Nicole S

    2016-02-14

    Weak polyelectrolyte multilayers (PEMs) prepared by the layer-by-layer assembly technique have recently been found to demonstrate a unique contraction upon exposure to organic solvents. This response is dependent upon which organic solvent is employed, and fundamental questions have not been clarified regarding the correlation of the magnitude of the film contraction with solvent type. In this work, we used solubility parameters to analyze the response of branched poly(ethylene imine)/poly(acrylic acid) (BPEI/PAA) multilayers when exposed to a variety of solvents. BPEI/PAA multilayers were immersed in a series of 16 different organic solvents and solvent mixtures. Immersion in organic solvent caused film dehydration and therefore contraction and also induced changes in the mechanical properties of PEMs. The film thickness was the best predictor of how a film swelled in water or contracted in organic solvent when using different batches of commercially available polyelectrolytes, rather than polyelectrolyte assembly pH conditions. The degree of film contraction was correlated with Hansen and Kamlet-Taft solubility parameters as well as solvent dielectric constant. In most cases, the hydrogen bonding ability of solvents is the primary factor to determine the magnitude of film contraction. For these solvents, increasing the temperature which corresponds to decreasing the strength of hydrogen bonding, also decreases the ability to dehydrate the films. For solvents that do not follow these trends with the strength of hydrogen bonding, a stronger correlation was found between contraction and dielectric constant, indicating that both traditional solvent quality arguments and electrostatics are important to understanding the contraction of PEMs in organic solvents. PMID:26699080

  2. Transformation of the structural organization of clay sediments and soils under the impact of polyelectrolytes

    NASA Astrophysics Data System (ADS)

    Kurochkina, G. N.; Pinskiy, D. L.; Fedotov, G. N.; Hajnos, M.; Sokolowska, Z.; Ciesla, I.

    2013-08-01

    The effects of polyacrylic acid (PAAc) and polyacrylamide (PAA) adsorption by quartz sand, montmorillonite, kaolinite, gray forest soil, and chernozem on the texture of the sorbents were studied. It was shown that the polymolecular adsorption was typical of the applied polyelectrolytes. The addition of PAA in a concentration of 0.05% to the solution resulted in consolidation of the sediments with a decrease in their volume. In the case of montmorillonite, a loose gel precipitate formed; its volume decreased by about 6% during the experiment. The adsorption of polyelectrolytes slightly affected the average radii, total surface area, and volume of the pore space (within 4-20%). The transformation of the surface of minerals and soils under the action of polyelectrolytes resulted in a significant change in the differential pore volume. The number of pores of about 0.0014 μm in size hardly changed at all. However, wider pores (0.011-0.45 μm) appeared. The adsorption of PAAc resulted in the appearance of wide pores (1.6-22.0 μm), and the adsorption of PAA resulted in the appearance of two narrow classes of micropores. A much more even distribution of differential porosity in the range of 3.6-4.5 μm was revealed. Thus, the transformation of the surface of adsorbents by polyelectrolytes led to changes in the pore-size distribution.

  3. Lipophilic polyelectrolyte gels as super-absorbent polymers for nonpolar organic solvents

    NASA Astrophysics Data System (ADS)

    Ono, Toshikazu; Sugimoto, Takahiro; Shinkai, Seiji; Sada, Kazuki

    2007-06-01

    Polyelectrolyte gels that are known as super-absorbent polymers swell and absorb water up to several hundred times their dried weights and have become ubiquitous and indispensable materials in many applications. Their superior swelling abilities originate from the electrostatic repulsion between the charges on the polymer chains and the osmotic imbalance between the interior and exterior of the gels. However, no super-absorbent polymers for volatile organic compounds (VOCs), and especially for nonpolar organic solvents (ɛ<10) have been reported, because common polyelectrolyte gels collapse in such solvents owing to the formation of a higher number of aggregates of ions and ion pairs. Here, we report that a novel class of polyelectrolyte gels bearing tetra-alkylammonium tetraphenylborate as a lipophilic and bulky ionic group swell in some nonpolar organic solvents up to 500 times their dry size. Dissociation of the ionic groups even in low-dielectric media (3<ɛ<10) enhances the swelling ability by expansion of the polymer networks. This expands the potential of polyelectrolytes that have been used only in aqueous solutions or highly polar solvents, and provides soft materials that swell in a variety of media. These materials could find applications as protective barriers for VOCs spilled in the environment and as absorbents for waste oil.

  4. Regulation of anionic lipids in binary membrane upon the adsorption of polyelectrolyte: A Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Duan, Xiaozheng; Li, Yunqi; Zhang, Ran; Shi, Tongfei; An, Lijia; Huang, Qingrong

    2013-06-01

    We employ Monte Carlo simulations to investigate the interaction between an adsorbing linear flexible cationic polyelectrolyte and a binary fluid membrane. The membrane contains neutral phosphatidyl-choline, PC) and multivalent anionic (phosphatidylinositol, PIP2) lipids. We systematically study the influences of the solution ionic strength, the chain length and the bead charge density of the polyelectrolyte on the lateral rearrangement and the restricted mobility of the multivalent anionic lipids in the membrane. Our findings show that, the cooperativity effect and the electrostatic interaction of the polyelectrolyte beads can significantly affect the segregation extent and the concentration gradients of the PIP2 molecules, and further cooperate to induce the complicated hierarchical mobility behaviors of PIP2 molecules. In addition, when the polyelectrolyte brings a large amount of charges, it can form a robust electrostatic well to trap all PIP2 and results in local overcharge of the membrane. This work presents a mechanism to explain the membrane heterogeneity formation induced by the adsorption of charged macromolecule.

  5. A 'microfluidic pinball' for on-chip generation of Layer-by-Layer polyelectrolyte microcapsules.

    PubMed

    Kantak, Chaitanya; Beyer, Sebastian; Yobas, Levent; Bansal, Tushar; Trau, Dieter

    2011-03-21

    Inspired by the game of "pinball" where rolling metal balls are guided by obstacles, here we describe a novel microfluidic technique which utilizes micropillars in a flow channel to continuously generate, encapsulate and guide Layer-by-Layer (LbL) polyelectrolyte microcapsules. Droplet-based microfluidic techniques were exploited to generate oil droplets which were smoothly guided along a row of micropillars to repeatedly travel through three parallel laminar streams consisting of two polymers and a washing solution. Devices were prototyped in PDMS and generated highly monodisperse and stable 45±2 µm sized polyelectrolyte microcapsules. A total of six layers of hydrogen bonded polyelectrolytes (3 bi-layers) were adsorbed on each droplet within <3 minutes and a fluorescent intensity measurement confirmed polymer film deposition. AFM analysis revealed the thickness of each polymer layer to be approx. 2.8 nm. Our design approach not only provides a faster and more efficient alternative to conventional LbL deposition techniques, but also achieves the highest number of polyelectrolyte multilayers (PEMs) reported thus far using microfluidics. Additionally, with our design, a larger number of PEMs can be deposited without adding any extra operational or interfacial complexities (e.g. syringe pumps) which are a necessity in most other designs. Based on the aforementioned advantages of our device, it may be developed into a great tool for drug encapsulation, or to create capsules for biosensing where deposition of thin nanofilms with controlled interfacial properties is highly required. PMID:21218225

  6. Method for Non-Invasive Determination of Chemical Properties of Aqueous Solutions

    NASA Technical Reports Server (NTRS)

    Todd, Paul W. (Inventor); Jones, Alan (Inventor); Thomas, Nathan A. (Inventor)

    2016-01-01

    A method for non-invasively determining a chemical property of an aqueous solution is provided. The method provides the steps of providing a colored solute having a light absorbance spectrum and transmitting light through the colored solute at two different wavelengths. The method further provides the steps of measuring light absorbance of the colored solute at the two different transmitted light wavelengths, and comparing the light absorbance of the colored solute at the two different wavelengths to determine a chemical property of an aqueous solution.

  7. Light reflection visualization to determine solute diffusion into clays

    NASA Astrophysics Data System (ADS)

    Yang, Minjune; Annable, Michael D.; Jawitz, James W.

    2014-06-01

    Light reflection visualization (LRV) experiments were performed to investigate solute diffusion in low-permeability porous media using a well-controlled two-dimensional flow chamber with a domain composed of two layers (one sand and one clay). Two different dye tracers (Brilliant Blue FCF and Ponceau 4R) and clay domains (kaolinite and montmorillonite) were used. The images obtained through the LRV technique were processed to monitor two-dimensional concentration distributions in the low-permeability zone by applying calibration curves that related light intensity to equilibrium concentrations for each dye tracer in the clay. One dimensional experimentally-measured LRV concentration profiles in the clay were found to be in very good agreement with those predicted from a one-dimensional analytical solution, with coefficient of efficiency values that exceeded 0.97. The retardation factors (R) for both dyes were relatively large, leading to slow diffusive penetration into the clays. At a relative concentration C/C0 = 0.1, Brilliant Blue FCF in kaolinite (R = 11) diffused approximately 10 mm after 21 days of source loading, and Ponceau 4R in montmorillonite (R = 7) diffused approximately 12 mm after 23 days of source loading. The LRV experimentally-measured two-dimensional concentration profiles in the clay were also well described by a simple analytical solution. The results from this study demonstrate that the LRV approach is an attractive non-invasive tool to investigate the concentration distribution of dye tracers in clays in laboratory experiments.

  8. Light reflection visualization to determine solute diffusion into clays.

    PubMed

    Yang, Minjune; Annable, Michael D; Jawitz, James W

    2014-06-01

    Light reflection visualization (LRV) experiments were performed to investigate solute diffusion in low-permeability porous media using a well-controlled two-dimensional flow chamber with a domain composed of two layers (one sand and one clay). Two different dye tracers (Brilliant Blue FCF and Ponceau 4R) and clay domains (kaolinite and montmorillonite) were used. The images obtained through the LRV technique were processed to monitor two-dimensional concentration distributions in the low-permeability zone by applying calibration curves that related light intensity to equilibrium concentrations for each dye tracer in the clay. One dimensional experimentally-measured LRV concentration profiles in the clay were found to be in very good agreement with those predicted from a one-dimensional analytical solution, with coefficient of efficiency values that exceeded 0.97. The retardation factors (R) for both dyes were relatively large, leading to slow diffusive penetration into the clays. At a relative concentration C/C0=0.1, Brilliant Blue FCF in kaolinite (R=11) diffused approximately 10 mm after 21 days of source loading, and Ponceau 4R in montmorillonite (R=7) diffused approximately 12 mm after 23 days of source loading. The LRV experimentally-measured two-dimensional concentration profiles in the clay were also well described by a simple analytical solution. The results from this study demonstrate that the LRV approach is an attractive non-invasive tool to investigate the concentration distribution of dye tracers in clays in laboratory experiments. PMID:24657742

  9. Effect of Assembly pH on Polyelectrolyte Multilayer Surface Properties and BMP-2 Release.

    PubMed

    Salvi, Claire; Lyu, Xuejian; Peterson, Amy M

    2016-06-13

    The effect of solution pH during layer-by-layer assembly of polyelectrolyte multilayer (PEM) coatings on properties relevant to orthopedic implant success was investigated. Bone morphogenetic protein 2 (BMP-2), a potent osteoconductive growth factor, was adsorbed onto the surface of anodized titanium, and PEM coatings prepared from solutions of poly-l-histidine and poly(methacrylic acid) were built on top of the BMP-2. High levels of BMP-2 released over several months were achieved. Approximately 2 μg/cm(2) of BMP-2 were initially adsorbed on the anodized titanium and a pH-dependent release behavior was observed, with more stable coatings assembled at pH = 6-7. Three different diffusion regimes could be determined from the release profiles: an initial burst release, a sustained release regime, and a depletion regime. BMP-2 was shown to maintain bioactivity after release from a PEM and the presence of a PEM was shown to preserve BMP-2 structure. No visible change was observed in surface roughness as the assembly pH was varied, whereas the surface energy decreased for samples prepared at more basic pH. These results indicate that the initial BMP-2 layer affects PEM surface structure, but not the functional groups exposed on the surface. PMID:27186660

  10. Zinc lozenges: cold cure or candy? Solution chemistry determinations.

    PubMed

    Eby, George A

    2004-02-01

    Common colds were shortened by 7 days in a 1984 clinical trial using zinc gluconate throat lozenges each 2 h. Between then and 2004, 10 other double-blind, placebo-controlled clinical trials showed widely varying results. This re-analysis of these trials presents solution chemistry methods to elucidate differences in efficacy. Statistically significant correlation was shown between total daily dosages of positively charged zinc species and reductions in median (p = 0.005) and mean duration (p < 0.02) of common colds in these trials. PMID:15499830

  11. Tuning Smart Microgel Swelling and Responsive Behavior through Strong and Weak Polyelectrolyte Pair Assembly

    PubMed Central

    Costa, Eunice; Lloyd, Margaret M.; Chopko, Caroline; Aguiar-Ricardo, Ana; Hammond, Paula T.

    2012-01-01

    The layer-by-layer (LbL) assembly of polyelectrolyte pairs on temperature and pH-sensitive cross-linked poly(N-isopropylacrylamide)-co-(methacrylic acid), poly(NIPAAm-co-MAA), microgels enabled a fine tuning of the gel swelling and responsive behavior according to the mobility of the assembled polyelectrolyte (PE) pair and the composition of the outermost layer. Microbeads with well-defined morphology were initially prepared by synthesis in supercritical carbon dioxide. Upon LbL assembly of polyelectrolytes, interactions between the multilayers and the soft porous microgel led to differences in swelling and thermoresponsive behavior. For the weak PE pairs, namely poly(L-lysine) / poly(L-glutamic acid) and poly(allylamine hydrochloride) / poly(acrylic acid), polycation-terminated microgels were less swollen and more thermoresponsive than native microgel; while polyanion-terminated microgels were more swollen and not significantly responsive to temperature, in a quasi-reversible process with consecutive PE assembly. For the strong PE pair, poly(diallyldimethylammonium chloride) / poly(sodium styrene sulfonate), the differences among polycation and polyanion-terminated microgels are not sustained after the first PE bilayer due to extensive ionic cross-linking between the polyelectrolytes. The tendencies across the explored systems became less noteworthy in solutions with larger ionic strength due to overall charge shielding of the polyelectrolytes and microgel. ATR FT-IR studies correlated the swelling and responsive behavior after LbL assembly on the microgels with the extent of H-bonding and alternating charge distribution within the gel. Thus, the proposed LbL strategy may be a simple and flexible way to engineer smart microgels in terms of size, surface chemistry, overall charge and permeability. PMID:22676290

  12. Electrostatically driven complexation of liposomes with a star-shaped polyelectrolyte to low-toxicity multi-liposomal assemblies.

    PubMed

    Yaroslavov, Alexander A; Sybachin, Andrey V; Zaborova, Olga V; Pergushov, Dmitry V; Zezin, Alexander B; Melik-Nubarov, Nikolay S; Plamper, Felix A; Müller, Axel H E; Menger, Frederic M

    2014-04-01

    Anionic liposomes are electrostatically complexed to a star-shaped cationic polyelectrolyte. Upon complexation, the liposomes retain their integrity and the resulting liposome-star complexes do not dissociate in a physiological solution with 0.15 M NaCl. This provides a multi-liposomal container for possible use as a high-capacity carrier. PMID:24243764

  13. The decisive role of free water in determining homogenous ice nucleation behavior of aqueous solutions

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Zhao, Lishan; Li, Chenxi; Cao, Zexian

    2016-05-01

    It is a challenging issue to quantitatively characterize how the solute and pressure affect the homogeneous ice nucleation in a supercooled solution. By measuring the glass transition behavior of solutions, a universal feature of water-content dependence of glass transition temperature is recognized, which can be used to quantify hydration water in solutions. The amount of free water can then be determined for water-rich solutions, whose mass fraction, Xf, is found to serve as a universal relevant parameter for characterizing the homogeneous ice nucleation temperature, the meting temperature of primary ice, and even the water activity of solutions of electrolytes and smaller organic molecules. Moreover, the effects of hydrated solute and pressure on ice nucleation is comparable, and the pressure, when properly scaled, can be incorporated into the universal parameter Xf. These results help establish the decisive role of free water in determining ice nucleation and other relevant properties of aqueous solutions.

  14. The decisive role of free water in determining homogenous ice nucleation behavior of aqueous solutions.

    PubMed

    Wang, Qiang; Zhao, Lishan; Li, Chenxi; Cao, Zexian

    2016-01-01

    It is a challenging issue to quantitatively characterize how the solute and pressure affect the homogeneous ice nucleation in a supercooled solution. By measuring the glass transition behavior of solutions, a universal feature of water-content dependence of glass transition temperature is recognized, which can be used to quantify hydration water in solutions. The amount of free water can then be determined for water-rich solutions, whose mass fraction, Xf, is found to serve as a universal relevant parameter for characterizing the homogeneous ice nucleation temperature, the meting temperature of primary ice, and even the water activity of solutions of electrolytes and smaller organic molecules. Moreover, the effects of hydrated solute and pressure on ice nucleation is comparable, and the pressure, when properly scaled, can be incorporated into the universal parameter Xf. These results help establish the decisive role of free water in determining ice nucleation and other relevant properties of aqueous solutions. PMID:27225427

  15. The decisive role of free water in determining homogenous ice nucleation behavior of aqueous solutions

    PubMed Central

    Wang, Qiang; Zhao, Lishan; Li, Chenxi; Cao, Zexian

    2016-01-01

    It is a challenging issue to quantitatively characterize how the solute and pressure affect the homogeneous ice nucleation in a supercooled solution. By measuring the glass transition behavior of solutions, a universal feature of water-content dependence of glass transition temperature is recognized, which can be used to quantify hydration water in solutions. The amount of free water can then be determined for water-rich solutions, whose mass fraction, Xf, is found to serve as a universal relevant parameter for characterizing the homogeneous ice nucleation temperature, the meting temperature of primary ice, and even the water activity of solutions of electrolytes and smaller organic molecules. Moreover, the effects of hydrated solute and pressure on ice nucleation is comparable, and the pressure, when properly scaled, can be incorporated into the universal parameter Xf. These results help establish the decisive role of free water in determining ice nucleation and other relevant properties of aqueous solutions. PMID:27225427

  16. Preparation and adsorption of refined polyelectrolyte complex nanoparticles.

    PubMed

    Reihs, T; Müller, M; Lunkwitz, K

    2004-03-01

    We report on bulk and surface properties of centrifuged nonstoichiometric polyelectrolyte complex (PEC) dispersions. PECs were prepared by mixing poly(diallyldimethylammonium chloride) (PDADMAC) and sodium poly(maleic acid-co-alpha-methylstyrene) (PMA-MS) at the monomolar mixing ratio of 0.6 and polymer concentration >/=1 mmol/l. Centrifugation of initial PEC dispersions revealed three phases: supernatant (SUP), coacervate (COAC), and an insoluble precipitate. Mass, turbidity, particle hydrodynamic radii (R(h)), and the titratable charge amount were determined for those phases. The turbid COAC phase consisted of 200-nm nanoparticles and carried 60% of the polymer mass and 20% of the titratable charge amount of the initial PEC dispersion. The SUP phase showed no turbidity and no such nanoparticles, but carried 80% of the initial titratable charge amount, presumably caused by excess polycations. Furthermore, linear dependences of turbidity and R(h) on COAC concentration was observed. COAC adsorption was studied at polyelectrolyte multilayer (PEM) modified silicon surfaces in dependence on both adsorption time and concentration using attenuated total-reflection-Fourier transform infrared (ATR-FTIR) spectroscopy. The adsorption data were fitted by the simple Langmuir model. Comparison of COAC particles and polystyrene latices revealed similar adsorption features. SEM and AFM measurements resulted in hemispherically shaped adsorbed COAC particles with coverages >/=25%, whose calculated volumes correlated well with those in dispersion obtained by PCS. PMID:14757079

  17. Integration of silver nanoparticle-impregnated polyelectrolyte multilayers into murine-splinted cutaneous wound beds.

    PubMed

    Guthrie, Kathleen M; Agarwal, Ankit; Teixeira, Leandro B C; Dubielzig, Richard R; Abbott, Nicholas L; Murphy, Christopher J; Singh, Harpreet; McAnulty, Jonathan F; Schurr, Michael J

    2013-01-01

    Silver is a commonly used topical antimicrobial. However, technologies to immobilize silver at the wound surface are lacking, while currently available silver-containing wound dressings release excess silver that can be cytotoxic and impair wound healing. We have shown that precise concentrations of silver at lower levels can be immobilized into a wound bed using a polyelectrolyte multilayer attachment technology. These silver nanoparticle-impregnated polyelectrolyte multilayers are noncytotoxic yet bactericidal in vitro, but their effect on wound healing in vivo was previously unknown. The purpose of this study was to determine the effect on wound healing of integrating silver nanoparticle/polyelectrolyte multilayers into the wound bed. A full-thickness, splinted, excisional murine wound healing model was employed in both phenotypically normal mice and spontaneously diabetic mice (healing impaired model). Gross image measurements showed an initial small lag in healing in the silver-treated wounds in diabetic mice, but no difference in time to complete wound closure in either normal or diabetic mice. Histological analysis showed modest differences between silver-treated and control groups on day 9, but no difference between groups at the time of wound closure. We conclude that silver nanoparticle/polyelectrolyte multilayers can be safely integrated into the wound beds of both normal and diabetic mice without delaying wound closure, and with transient histological effects. The results of this study suggest the feasibility of this technology for use as a platform to affect nanoscale wound engineering approaches to microbial prophylaxis or to augment wound healing. PMID:23511285

  18. Biocidal activity of a light-absorbing fluorescent conjugated polyelectrolyte.

    PubMed

    Lu, Liangde; Rininsland, Frauke H; Wittenburg, Shannon K; Achyuthan, Komandoor E; McBranch, Duncan W; Whitten, David G

    2005-10-25

    Herein we describe studies that indicate a cationic conjugated polyelectrolyte shows biocidal activity against gram-negative bacteria (Escherichia coli, E. coli, BL21, with plasmids for Azurin and ampicillin resistance) and gram-positive bacterial spores (Bacillus anthracis, Sterne, B. anthracis, Sterne). These studies were carried out with aqueous suspensions of the conjugated polyelectrolyte, with the polyelectrolyte in supported formats and with samples in which the conjugated polyelectrolyte was coated on the bacteria. The results are interesting in that the biocidal activity is light-induced and appears effective due to the ability of the conjugated polyelectrolyte to form a surface coating on both types of bacteria. The effects observed here should be general and suggest that a range of conjugated polyelectrolytes in different formulations may provide a useful new class of biocides for both dark and light-activated applications. PMID:16229539

  19. Dispersion of single-walled carbon nanotubes using polyelectrolytes

    NASA Astrophysics Data System (ADS)

    Aldea, G.; Nunzi, J. M.

    2009-02-01

    In order to produce high performance SWNT-based products, it is necessary to make them soluble, reaching a certain degree of dispersion and stability in solution. Since SWNTs are mostly inert, being neither hydrophilic nor lipophilic, their use suffers from poor dispersion capability and weak interaction with other partners. Therefore, activating and modifying their surface is an essential prerequisite to processing. We report on a versatile nondestructive strategy for the non-covalent functionalization of SWNT by polyelectrolytes based on maleic anhydride copolymers. To evaluate competing stabilization characteristics, we explored the dispersing power of a range of maleic anhydride copolymers functionalized with several chromophore units: pyrene, cholesterol and Disperse Red 1. The surface modification of SWNT is straightforward and efficient for making them dispersible in water and in other organic solvents and for producing nanometer-scale materials suitable for nanotechnology, medicinal chemistry and environment friendly solar cell applications.

  20. Polyelectrolyte/Graphene Oxide Barrier Film for Flexible OLED.

    PubMed

    Yang, Seung-Yeol; Park, Jongwhan; Kim, Yong-Seog

    2015-10-01

    Ultra-thin flexible nano-composite barrier layer consists of graphene oxide and polyelectrolyte was prepared using the layer-by-layer processing method. Microstructures of the barrier layer was optimized via modifying coating conditions and inducing chemical reactions. Although the barrier layer consists of hydrophilic polyelectrolyte was not effective in blocking the water vapor permeation, the chemical reduction of graphene oxide as well as conversion of polyelectrolyte to hydrophobic nature were very effective in reducing the permeation. PMID:26726415

  1. Improved solution accuracy for TDRSS-based TOPEX/Poseidon orbit determination

    NASA Technical Reports Server (NTRS)

    Doll, C. E.; Mistretta, G. D.; Hart, R. C.; Oza, D. H.; Bolvin, D. T.; Cox, C. M.; Nemesure, M.; Niklewski, D. J.; Samii, M. V.

    1994-01-01

    Orbit determination results are obtained by the Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) using a batch-least-squares estimator available in the Goddard Trajectory Determination System (GTDS) and an extended Kalman filter estimation system to process Tracking and Data Relay Satellite (TDRS) System (TDRSS) measurements. GTDS is the operational orbit determination system used by the FDD in support of the Ocean Topography Experiment (TOPEX)/Poseidon spacecraft navigation and health and safety operations. The extended Kalman filter was implemented in an orbit determination analysis prototype system, closely related to the Real-Time Orbit Determination System/Enhanced (RTOD/E) system. In addition, the Precision Orbit Determination (POD) team within the GSFC Space Geodesy Branch generated an independent set of high-accuracy trajectories to support the TOPEX/Poseidon scientific data. These latter solutions use the geodynamics (GEODYN) orbit determination system with laser ranging and Doppler Orbitography and Radiopositioning integrated by satellite (DORIS) tracking measurements. The TOPEX/Poseidon trajectories were estimated for November 7 through November 11, 1992, the timeframe under study. Independent assessments were made of the consistencies of solutions produced by the batch and sequential methods. The batch-least-squares solutions were assessed based on the solution residuals, while the sequential solutions were assessed based on primarily the estimated covariances. The batch-least-squares and sequential orbit solutions were compared with the definitive POD orbit solutions. The solution differences were generally less than 2 meters for the batch-least-squares and less than 13 meters for the sequential estimation solutions. After the sequential estimation solutions were processed with a smoother algorithm, position differences with POD orbit solutions of less than 7 meters were obtained. The differences among the POD, GTDS, and filter

  2. Hydration properties determining the reactivity of nitrite in aqueous solution.

    PubMed

    Vchirawongkwin, Saowapak; Kritayakornupong, Chinapong; Tongraar, Anan; Vchirawongkwin, Viwat

    2014-08-28

    The knowledge of the hydration properties of the nitrite ion is key to understanding its reaction mechanism controlled by solvent effects. Here, ab initio quantum mechanical charge field molecular dynamics was performed to obtain the structural and dynamical properties of the hydration shell in an aqueous solution of nitrite ions, elucidated by data analysis using a molecular approach and an extended quantitative analysis of all superimposed trajectories with three-dimensional alignment (density map). The pattern of the power spectra corresponded to the experimental data, indicating the suitability of the Hartree-Fock method coupled with double-ζ plus polarization and diffuse functional basis sets to study this system. The density maps revealed the structure of the hydration shell, that presented a higher density in the N-O bond direction than in the axis vertical to the molecular plane, whereas the atomic and molecular radial distribution functions provided vague information. The number of actual contacts indicated 4.6 water molecules interacting with a nitrite ion, and 1.5 extra water molecules located in the molecular hydration shell, forming a H-bonding network with the bulk water. The mean residence times for the water ligands designated the strength of the hydration spheres for the oxygen sites, whilst the results for the nitrogen sites over-estimated the number of water molecules from other sites and indicated a weak structure. These results show the influence of the water molecules surrounding the nitrite ion creating an anisotropic hydration shell, suggesting that the reactive sites are situated above and below the molecular plane with a lower water density. PMID:24840033

  3. Mesoscale modeling of polyelectrolyte brushes with salt.

    PubMed

    Ibergay, Cyrille; Malfreyt, Patrice; Tildesley, Dominic J

    2010-06-01

    We report dissipative particle dynamics (DPD) simulations of a polyelectrolyte brush under athermal solvent conditions. The electrostatic interactions are calculated using the particle-particle particle-mesh (PPPM) method with charges distributed over the particles. The polymer beads, counterions, co-ions, and solvent particles are modeled explicitly. The DPD simulations show a dependence of the brush height on the grafting density and the charge fraction that is typical of the nonlinear osmotic brush regime. We report the effect of the addition of salt on the structural properties of the brush. In the case of a polyelectrolyte brush with a high surface coverage, the simulations reproduce the transition between the nonlinear osmotic brush regime where the thickness of the brush is independent of the salt concentration and the salted regime where the brush height decreases weakly with the salt concentration. PMID:20455593

  4. Origin of translocation barriers for polyelectrolyte chains.

    PubMed

    Kumar, Rajeev; Muthukumar, M

    2009-11-21

    For single-file translocations of a charged macromolecule through a narrow pore, the crucial step of arrival of an end at the pore suffers from free energy barriers, arising from changes in intrachain electrostatic interaction, distribution of ionic clouds and solvent molecules, and conformational entropy of the chain. All contributing factors to the barrier in the initial stage of translocation are evaluated by using the self-consistent field theory for the polyelectrolyte and the coupled Poisson-Boltzmann description for ions without radial symmetry. The barrier is found to be essentially entropic due to conformational changes. For moderate and high salt concentrations, the barriers for the polyelectrolyte chain are quantitatively equivalent to that of uncharged self-avoiding walks. Electrostatic effects are shown to increase the free energy barriers, but only slightly. The degree of ionization, electrostatic interaction strength, decreasing salt concentration, and the solvent quality all result in increases in the barrier. PMID:19929072

  5. Folding Behaviors of Protein (Lysozyme) Confined in Polyelectrolyte Complex Micelle.

    PubMed

    Wu, Fu-Gen; Jiang, Yao-Wen; Chen, Zhan; Yu, Zhi-Wu

    2016-04-19

    The folding/unfolding behavior of proteins (enzymes) in confined space is important for their properties and functions, but such a behavior remains largely unexplored. In this article, we reported our finding that lysozyme and a double hydrophilic block copolymer, methoxypoly(ethylene glycol)5K-block-poly(l-aspartic acid sodium salt)10 (mPEG(5K)-b-PLD10), can form a polyelectrolyte complex micelle with a particle size of ∼30 nm, as verified by dynamic light scattering and transmission electron microscopy. The unfolding and refolding behaviors of lysozyme molecules in the presence of the copolymer were studied by microcalorimetry and circular dichroism spectroscopy. Upon complex formation with mPEG(5K)-b-PLD10, lysozyme changed from its initial native state to a new partially unfolded state. Compared with its native state, this copolymer-complexed new folding state of lysozyme has different secondary and tertiary structures, a decreased thermostability, and significantly altered unfolding/refolding behaviors. It was found that the native lysozyme exhibited reversible unfolding and refolding upon heating and subsequent cooling, while lysozyme in the new folding state (complexed with the oppositely charged PLD segments of the polymer) could unfold upon heating but could not refold upon subsequent cooling. By employing the heating-cooling-reheating procedure, the prevention of complex formation between lysozyme and polymer due to the salt screening effect was observed, and the resulting uncomplexed lysozyme regained its proper unfolding and refolding abilities upon heating and subsequent cooling. Besides, we also pointed out the important role the length of the PLD segment played during the formation of micelles and the monodispersity of the formed micelles. Furthermore, the lysozyme-mPEG(5K)-b-PLD10 mixtures prepared in this work were all transparent, without the formation of large aggregates or precipitates in solution as frequently observed in other protein-polyelectrolyte

  6. Bioresorbable polyelectrolytes for smuggling drugs into cells.

    PubMed

    Jaganathan, Sripriya

    2016-06-01

    There is ample evidence that biodegradable polyelectrolyte nanocapsules are multifunctional vehicles which can smuggle drugs into cells, and release them upon endogenous activation. A large number of endogenous stimuli have already been tested in vitro, and in vivo research is escalating. Thus, the interest in the design of intelligent polyelectrolyte multilayer (PEM) drug delivery systems is clear. The need of the hour is a systematic translation of PEM-based drug delivery systems from the lab to clinical studies. Reviews on multifarious stimuli that can trigger the release of drugs from such systems already exist. This review summarizes the available literature, with emphasis on the recent progress in PEM-based drug delivery systems that are receptive in the presence of endogenous stimuli, including enzymes, glucose, glutathione, pH, and temperature, and addresses different active and passive drug targeting strategies. Insights into the current knowledge on the diversified endogenous approaches and methodological challenges may bring inspiration to resolve issues that currently bottleneck the successful implementation of polyelectrolytes into the catalog of third-generation drug delivery systems. PMID:25961363

  7. Algal Flocculation with Synthetic Organic Polyelectrolytes

    PubMed Central

    Tenney, Mark W.; Echelberger, Wayne F.; Schuessler, Ronald G.; Pavoni, Joseph L.

    1969-01-01

    The feasibility of removing algae from water and wastewater by chemical flocculation techniques was investigated. Mixed cultures of algae were obtained from both continuous- and batch-fed laboratory reactors. Representative cationic, anionic, and nonionic synthetic organic polyelectrolytes were used as flocculants. Under the experimental conditions, chemically induced algal flocculation occurred with the addition of cationic polyelectrolyte, but not with anionic or nonionic polymers, although attachment of all polyelectrolyte species to the algal surface is shown. The mechanism of chemically induced algal flocculation is interpreted in terms of bridging phenomena between the discrete algal cells and the linearly extended polymer chains, forming a three-dimensional matrix that is capable of subsiding under quiescent conditions. The degree of flocculation is shown to be a direct function of the extent of polymer coverage of the active sites on the algal surface, although to induce flocculation by this method requires that the algal surface charge must concurrently be reduced to a level at which the extended polymers can bridge the minimal distance of separation imposed by electrostatic repulsion. The influence of pH, algal concentration, and algal growth phase on the requisite cationic flocculant dose is also reported. PMID:5370666

  8. Self-healing multilayer polyelectrolyte composite film with chitosan and poly(acrylic acid).

    PubMed

    Zhu, Yanxi; Xuan, Hongyun; Ren, Jiaoyu; Ge, Liqin

    2015-11-21

    If self-healing materials can be prepared via simple technology and methods using nontoxic materials, this would be a great step forward in the creation of environmentally friendly self-healing materials. In this paper, the specific structural parameters of the various hydrogen bonds between chitosan (CS) and polyacrylic acid (PAA) were calculated. Then, multilayer polyelectrolyte films were fabricated with CS and PAA based on layer-by-layer (LbL) self-assembly technology at different pH values. The possible influence of pH on the (CS/PAA) × 30 multilayer polyelectrolyte film was investigated. The results show that the interactions between CS and PAA, swelling capacity, microstructure, wettability, and self-healing ability are all governed by the pH of the CS solution. When the pH value of the CS solution is 3.0, the prepared multilayer polyelectrolyte film (CS3.0/PAA2.8) × 30 has fine-tuned interactions, a network-like structure, good swelling ability, good hydrophilicity, and excellent self-healing ability. This promises to greatly widen the future applications of environmentally friendly materials and bio-materials. PMID:26364567

  9. Improving Photocatalytic Activity through Electrostatic Self-Assembly: Polyelectrolytes as Tool for Solar Energy Conversion?

    NASA Astrophysics Data System (ADS)

    Groehn, Franziska

    2015-03-01

    With regard to the world's decreasing energy resources, developing strategies to exploit solar energy become more and more important. One approach is to take advantage of photocatalysis. Inspired by natural systems such as assemblies performing photosynthesis, it is highly promising to self-assemble synthetic functional species to form more effective or tailored supramolecular units. In this contribution, a new type of photocatalytically active self-assembled nanostructures in aqueous solution will be presented: supramolecular nano-objects obtained through self-assembly of macroions and multivalent organic or inorganic counterions. Polyelectrolyte-porphyrin nanoscale assemblies exhibit up to 10-fold higher photocatalytic activity than the corresponding porphyrins without polymeric template. Other self-assembled catalysts based on polyelectrolytes can exhibit expressed selectivity in a photocatalytic model reaction or even allow catalytic reactions in solution that are not possible with the building blocks only. Further, current results on combining different functional units at the polyelectrolyte template represent a next step towards more complex supramolecular structures for solar energy conversion.

  10. Conformation and translational diffusion of a xanthan polyelectrolyte chain: Brownian dynamics simulation and single molecule tracking

    NASA Astrophysics Data System (ADS)

    Chun, Myung-Suk; Kim, Chongyoup; Lee, Duck E.

    2009-05-01

    In our recent Brownian dynamics (BD) simulation study, the structure and dynamics of anionic polyelectrolyte xanthan in bulk solution as well as confined spaces of slitlike channel were examined by applying a coarse-grained model with nonlinear bead-spring discretization of a whole chain [J. Jeon and M.-S. Chun, J. Chem. Phys. 126, 154904 (2007)]. This model goes beyond other simulations as they did not consider both long-range electrostatic and hydrodynamic interactions between pairs of beads. Simulation parameters are obtained from the viscometric method of rheology data on the native and sonicated xanthan polysaccharides, which have a contour length less than 1μm . The size of the semiflexible polyelectrolyte can be well described by the wormlike chain model once the electrostatic effects are taken into account by the persistence length measured at a long length scale. For experimental verifications, single molecule visualization was performed on fluorescein-labeled xanthan using an inverted fluorescence microscope, and the motion of an individual molecule was quantified. Experimental results on the conformational changes in xanthan chain in the electrolyte solution have a reasonable trend to agree with the prediction by BD simulations. In the translational diffusion induced by the Debye screening effect, the simulation prediction reveals slightly higher values compared to those of our measurements, although it agrees with the literature data. Considering the experimental restrictions, our BD simulations are verified to model the single polyelectrolyte well.

  11. Complexation of cationic-neutral block polyelectrolyte with insulin and in vitro release studies.

    PubMed

    Pippa, Natassa; Karayianni, Maria; Pispas, Stergios; Demetzos, Costas

    2015-08-01

    Insulin (INS) was incorporated into complexes with the block polyelectrolyte quaternized poly[3,5-bis(dimethylaminomethylene)hydroxystyrene]-b-poly(ethylene oxide) (QNPHOSEO), which is a cationic-neutral block polyelectrolyte. Light scattering techniques are used in order to examine the size, the size distribution and the ζ-potential of the nanocarriers in aqueous and biological media, which are found to depend on the ratio of the components and the physicochemical parameters during and after complex preparation. Circular dichroism and infrared spectroscopy, employed to investigate the structure of the complexed INS, show no alteration of protein structure after complexation. In vitro release profiles of the entrapped protein are found to depend on the ratio of the components and the solution conditions used during preparation of the complexes. PMID:26101970

  12. Electrostatic Swelling and Conformational Variation Observed in High-Generation Polyelectrolyte Dendrimers

    SciTech Connect

    Butler, Paul D; Chen, Wei-Ren; Herwig, Kenneth W; Hong, Kunlun; Liu, Yun; Porcar, L.; Shew, Chwen-Yang; Smith, Gregory Scott; Chen, Hsin-Lung; Chen, Chun-Yu; Li, Xin; Liu, Emily

    2010-01-01

    A coordinated study combining small angle neutron scattering (SANS) and small angle x-ray scattering (SAXS) measurements was conducted to investigate the structural characteristics of aqueous (D2O) generation 7 and 8 (G7 & G8) PAMAM dendrimer solutions as a function of molecular protonation at room temperature. The change in intra-molecular conformation was clearly exhibited in the data analysis by separating the variation in the inter-molecular correlation. Our results unambiguously demonstrate an increased molecular size and evolved intra-molecular density profile upon increasing the molecular protonation. This is contrary to the existing understanding that in higher generation polyelectrolyte dendrimers, steric crowding stiffens the local motion of dendrimer segments exploring additional available intra-dendrimer volume and therefore inhibits the electrostatic swelling. Our observation is relevant to elucidation of the general microscopic picture of polyelectrolyte dendrimer structure, as well as the development of dendrimer-based packages with based on the stimuli-responsive principle.

  13. Formation of polyelectrolyte complexes with diethylaminoethyl dextran: charge ratio and molar mass effect.

    PubMed

    Le Cerf, Didier; Pepin, Anne Sophie; Niang, Pape Momar; Cristea, Mariana; Karakasyan-Dia, Carole; Picton, Luc

    2014-11-26

    The formation of polyelectrolyte complexes (PECs) between carboxymethyl pullulan and DEAE Dextran, was investigated, in dilute solution, with emphasis on the effect of charge density (molar ratio or pH) and molar masses. Electrophoretic mobility measurements have evidenced that insoluble PECs (neutral electrophoretic mobility) occurs for charge ratio between 0.6 (excess of polycation) and 1 (stoichiometry usual value) according to the pH. This atypical result is explained by the inaccessibility of some permanent cationic charge when screened by pH dependant cationic ones (due to the Hoffman alkylation). Isothermal titration calorimetry (ITC) indicates an endothermic formation of PEC with a binding constant around 10(5) L mol(-1). Finally asymmetrical flow field flow fractionation coupled on line with static multi angle light scattering (AF4/MALS) evidences soluble PECs with very large average molar masses and size around 100 nm, in agreement with scrambled eggs multi-association between various polyelectrolyte chains. PMID:25256478

  14. Theory of polyelectrolyte adsorption on heterogeneously charged surfaces applied to soluble protein-polyelectrolyte complexes

    NASA Astrophysics Data System (ADS)

    de Vries, R.; Weinbreck, F.; de Kruif, C. G.

    2003-03-01

    Existing theoretical approaches to polymer adsorption on heterogeneous surfaces are applied to the problems of polyelectrolyte and polyampholyte adsorption on randomly charged surfaces. Also, analytical estimates are developed for the critical pH at which weakly charged polyelectrolytes and globular proteins start forming soluble complexes. Below a critical salt concentration, soluble complexes form "on the wrong side" of the protein isoelectric point due to the heterogeneity of the protein surface charge distribution. The analytical estimates are consistent with experimental data on soluble complexes in mixtures of gum arabic and whey protein isolate.

  15. Novel pore-filled polyelectrolyte composite membranes for cathodic microbial fuel cell application

    NASA Astrophysics Data System (ADS)

    Gohil, J. M.; Karamanev, D. G.

    2013-12-01

    Novel pore-filled polyelectrolyte membrane (PEM) was produced using track etched polycarbonate (PC) as porous substrate and poly(vinyl alcohol) (PVA) as pore filling material. PVA in PC pores was stabilized through cross-linking of PVA matrix with glutaraldehyde (GA). Cross-link time was varied from 24 h to 96 h while keeping the membranes in GA solution. Pore sizes of substrate PC membrane tested were 0.01, 0.1 and 0.2 μm. The membranes were characterized by Fourier-transform infrared spectroscopy and scanning electron microscopy. Ionic conductivity, water uptake, contact angle and gel content have been measured to determine membranes performance. The ionic crossover (iron ions and protons) through membranes was studied in a complete fuel cell. The single-cell performance of membrane was tested in a cathodic microbial fuel cell (MFC, Biogenerator). The physiochemical properties and membranes fuel cell performance were highly depended on the cross-link density of PVA matrices. Membranes cross-liked with GA for 72 h showed maximum gel content and their peak power density has reached 110 mW cm-2 at current density of 378 mA cm-2. Among all, membrane cross-linked for 72 h was studied for continuous long-term stability, which showed consistency for application in MFC.

  16. Determining the Amount of Copper(II) Ions in a Solution Using a Smartphone

    ERIC Educational Resources Information Center

    Montangero, Marc

    2015-01-01

    When dissolving copper in nitric acid, copper(II) ions produce a blue-colored solution. It is possible to determine the concentration of copper(II) ions, focusing on the hue of the color, using a smartphone camera. A free app can be used to measure the hue of the solution, and with the help of standard copper(II) solutions, one can graph a…

  17. Length Scale Dependence of the Dynamic Properties of Hyaluronic Acid Solutions in the Presence of Salt

    SciTech Connect

    Horkay, Ferenc; Falus, Peter; Hecht, Anne-Marie; Geissler, Erik

    2010-12-07

    In solutions of the charged semirigid biopolymer hyaluronic acid in salt-free conditions, the diffusion coefficient D{sub NSE} measured at high transfer momentum q by neutron spin echo is more than an order of magnitude smaller than that determined by dynamic light scattering, D{sub DLS}. This behavior contrasts with neutral polymer solutions. With increasing salt content, D{sub DLS} approaches D{sub NSE}, which is independent of ionic strength. Contrary to theoretical expectation, the ion-polymer coupling, which dominates the low q dynamics of polyelectrolyte solutions, already breaks down at distance scales greater than the Debye-Hueckel length.

  18. [Determination of tolerance ability of platelet to the change of solution osmotic pressure and its significance].

    PubMed

    Ouyang, Xi-Lin; Liu, Jing-Han; Gao, Dayong

    2003-02-01

    In order to determine the tolerance ability of platelet to change of osmotic pressure in solution, the isotonic fresh platelets were exposed to a series of crystal salt solutions with osmotic pressure range from 47 to 611 mOsm for 15 minutes. Then the platelets were returned to isotonic condition and kept for 15 minutes. The expressions of phosphatidylserine and CD62p were assayed in platelets. The results showed that the phosphatidylserine and CD62p expressions were increased when the osmotic pressure of solution was below 238 mOsm, but no significant rise was detected when the platelets were exposed to 611 mOsm solution. No increases of positive rate of CD62p and phosphatidylserine were detected in platelets returned to isotonic condition. It is concluded that platelets are sensitive to hypoosmotic solution and tolerated to hyperosmotic solution. Exceeding the platelet safe volume limitation may lead to injure of platelet osmosis in crystal salt solution. PMID:12667298

  19. Investigation of multilayered polyelectrolyte thin films by means of refractive index measurements, FT-IR spectroscopy and SEM

    NASA Astrophysics Data System (ADS)

    Bodurov, I.; Vlaeva, I.; Exner, G.; Uzunova, Y.; Russev, S.; Pilicheva, B.; Viraneva, A.; Yovcheva, T.; Grancharova, Ts; Sotirov, S.; Marudova, M.

    2016-02-01

    Multilayered polyelectrolyte films are promising structures in the biomedical field. In order to meet the demands for biomedical applications, the structures have to be built from biocompatible and/or biodegradable, nontoxic starting materials, possessing some specific functional properties, depending on the particular application. In the present study, the multilayered polyelectrolyte films with potential use as buccal bioadhesive drug delivery systems were investigated. They were prepared via layer-by-layer deposition of successive nanolayers onto substrate. Three different biopolymers were used. The substrate, from poly(lactic acid), was solvent casted. After that, it was subjected to corona treatment, which ensures surface charge excess for the multilayer deposition. The nanolayers were prepared either from 0.01 g/L solutions of chitosan or 0.05 g/L xanthan. Acetate buffer (pH 4.5 and ionic strength 1 M) was used as a solvent. The substrate was dipped successively into one of the solutions, allowing formation of polyelectrolyte complexes of chitosan (polycation) and xanthan (polyanion). The substrates was treated in negative corona. The multilayered structures consisted of 8, 9, 14, 15 or 20 nanolayers. Number of techniques, such refractive index measurements, FT- IR spectroscopy and SEM morphology were employed in order to monitor the properties of the so prepared multilayered polyelectrolyte films.

  20. Microfluidics Meets Dilute Solution Viscometry: An Undergraduate Laboratory to Determine Polymer Molecular Weight Using a Microviscometer

    ERIC Educational Resources Information Center

    Pety, Stephen J.; Lu, Hang; Thio, Yonathan S.

    2011-01-01

    This paper describes a student laboratory experiment to determine the molecular weight of a polymer sample by measuring the viscosity of dilute polymer solutions in a PDMS microfluidic viscometer. Sample data are given for aqueous solutions of poly(ethylene oxide) (PEO). A demonstration of shear thinning behavior using the microviscometer is…

  1. Determination of refractive index and concentration of iodine solutions using opals

    NASA Astrophysics Data System (ADS)

    Kępińska, Mirosława; Starczewska, Anna; Szala, Janusz

    2014-03-01

    The determination of refractive index of iodine-ethanol solutions using SiO2 opals has been presented. For the first time concentration of solution iodine in ethanol has been determined by applying a simple method of using opal and de Feijter's relation. Basing on wavelength of diffraction peaks the appropriate formula describing concentration of iodine ethanol solution has been evolved. The uncertainty of the determined concentration has been established, too. The coefficient dnc/dC = 0.0201(4) (% w/w-1) of the linear dependence between refractive index and the concentration of iodine solution has been determined. The procedure of calibration of the used opal sensor is described. The opal sensor is not distracted by the measurement and can be used repeatedly.

  2. Polyelectrolyte multilayers impart healability to highly electrically conductive films.

    PubMed

    Li, Yang; Chen, Shanshan; Wu, Mengchun; Sun, Junqi

    2012-08-28

    Healable, electrically conductive films are fabricated by depositing Ag nanowires on water-enabled healable polyelectrolyte multilayers. The easily achieved healability of the polyelectrolyte multilayers is successfully imparted to the Ag nanowire layer. These films conveniently restore electrical conductivity lost as a result of damage by cuts several tens of micrometers wide when water is dropped on the cuts. PMID:22807199

  3. Multifunctional polyelectrolyte multilayers as nanofiltration membranes and as sacrificial layers for easy membrane cleaning.

    PubMed

    Ilyas, Shazia; de Grooth, Joris; Nijmeijer, Kitty; de Vos, Wiebe M

    2015-05-15

    This manuscript investigates the modification of an ultra-filtration (UF) membrane support with polyelectrolyte multilayers (PEMs) consisting of the weak polyelectrolytes poly(allyl amine) hydrochloride (PAH) and poly(acrylic acid) (PAA). These prepared polyelectrolyte multilayer membranes have a dual function: They act as nanofiltration (NF) membranes and as sacrificial layers to allow easy cleaning of the membranes. In order to optimize the conditions for PEM coating and removal, adsorption and desorption of these layers on a model surface (silica) was first studied via optical reflectometry. Subsequently, a charged UF membrane support was coated with a PEM and after each deposited layer, a clear increase in membrane resistance against pure water permeation and a switch of the zeta potential were observed. Moreover these polyelectrolyte multilayer membranes, exhibited rejection of solutes in a range typical for NF membranes. Monovalent ions (NaCl) were hardly rejected (<24%), while rejections of >60% were observed for a neutral organic molecule sulfamethoxazole (SMX) and for the divalent ion SO3(2-). The rejection mechanism of these membranes seems to be dominated by size-exclusion. To investigate the role of these PEMs as sacrificial layers for the cleaning of fouled membranes, the prepared polyelectrolyte multilayers were fouled with silica nano particles. Subsequent removal of the coating using a rinse and a low pressure backwash with pH 3, 3M NaNO3 allowed for a drop in membrane resistance from 1.7⋅10(14)m(-1) (fouled membrane) to 9.9⋅10(12)m(-1) (clean membrane), which is nearly equal to that of the pristine membrane (9.7⋅10(12)m(-1)). Recoating of the support membrane with the same PEMs resulted in a resistance equal to the resistance of the original polyelectrolyte multilayer membrane. Interestingly, less layers were needed to obtain complete foulant removal from the membrane surface, than was the case for the model surface. The possibility for

  4. Packaging of Polyelectrolytes in Viral Capsids: The Interplay Between Polymer Length and Capsid Size

    NASA Astrophysics Data System (ADS)

    Knobler, Charles

    2008-03-01

    Each particle of the Cowpea Chlorotic Mottle Virus (CCMV) has a very small ``parts list,'' consisting of two components: a molecule of single-stranded RNA and a 190-residue protein that makes up the 28-nm diameter icosahedral capsid. When purified viral RNA and capsid protein are mixed in solution at an appropriate pH and ionic strength, infectious wild-type viruses form spontaneously. Virus-like particles (VLPs) are formed when the protein self assembles around other anionic polymers such as poly(styrene sulfonate) (PSS). Under different pH and ionic strength conditions the capsid protein can assemble by itself into empty capsids, multishell structures, tubes and sheets. To explore the effect on virion size of the competition between the preferred curvature of the protein and the size of the packaged cargo we have examined the formation of VLPs around PSS polymers with molecular weights ranging from 400 kDa to 3.4 MDa. Two distinct sizes are observed -- 22 nm for the lower molecular weights, jumping to 27 nm at 2 MDa. While under given conditions the size of PSS in solution is directly determined by its molecular weight, the self-complementarity of RNA makes its solution structure dependent on the nucleotide sequence as well. We have therefore employed Small-Angle X-ray Scattering and Fluorescence Correlation Spectroscopy to examine the sizes of viral and non-viral RNAs of identical lengths. A model for the assembly that includes both the self-interactions of the polyelectrolyte and the capsid proteins and the interactions between them provides insight into the experimental results.

  5. Electrolyte effect on gelation behavior of oppositely charged nanocrystalline cellulose and polyelectrolyte.

    PubMed

    Lu, Ang; Song, Yongbo; Boluk, Yaman

    2014-12-19

    The electrolyte (NaCl) influences on the sol-gel transition of the complex solution composed of oppositely charged nanocrystalline cellulose (NCC) and polyelectrolyte (quaternized hydroxyethylcellulose ethoxylate, QHEC) were investigated by the rheological means in the present paper. Winter and Chambon theory was applicable to describe the sol-gel transition, and the critical gel points have been successfully determined. When increasing the NaCl concentration, more NCC were needed to form a critical gel due to the screening of the electrostatic interaction, and the larger loss tangent and relaxation exponent (n) values at the gel point demonstrated a less elastic nature of the complex solution with more NaCl. The results indicated the gel network was composed of entanglements and association of QHEC (as polymer network), as well as the electrostatic adsorption interaction between QHEC chains and NCC rods (as cross-linking). With the addition of NaCl, the screening effect led to the enhancement of the entanglements and weakening of the electrostatic adsorption, however, the gel strength decreased with increasing the NaCl amount, suggesting the electrostatic adsorption interaction played a more dominant role than the entanglements when the gel was formed. Moreover, the exponents of the scaling law η0∝ɛ(-γ) and Ge∝ɛ(z) of the QHEC/NCC/NaCl solution revealed that the scaling law n=z/(z+γ) between n, γ, and z was only feasible at the highest NaCl concentration, as a result of that the intermolecular electrostatic interaction was completely screened, indicating the scaling law was only feasible when intermolecular interaction was small enough to be neglected. PMID:25263864

  6. Nitric acid uptake by sulfuric acid solutions under stratospheric conditions - Determination of Henry's Law solubility

    NASA Technical Reports Server (NTRS)

    Reihs, Christa M.; Golden, David M.; Tolbert, Margaret A.

    1990-01-01

    The uptake of nitric acid by sulfuric acid solutions representative of stratospheric particulate at low temperatures was measured to determine the solubility of nitric acid in sulfuric acid solutions as a function of H2SO4 concentration and solution temperature. Solubilities are reported for sulfuric acid solutions ranging from 58 to 87 wt pct H2SO4 over a temperature range from 188 to 240 K, showing that, in general, the solubility of nitric acid increases with decreasing sulfuric acid concentration and with decreasing temperature. The measured solubilities indicate that nitric acid in the global stratosphere will be found predominantly in the gas phase.

  7. Integral Equation Theory for the Conformation of Polyelectrolytes

    NASA Astrophysics Data System (ADS)

    Shew, C.-Y.; Yethiraj, A.

    1996-03-01

    The equilibrium conformation properties of polyelectrolyes are explored using the integral equation theory. The polymer molecules are modeled as freely-jointed beads that interact via a hard sphere plus screened Coulomb potential. To obtain the intramolecuar correlation function ( and hence the chain conformations) the many chain system is replaced by a single chain whose beads interact via the bare interaction plus a solvent-induced potential, which approximately accounts for the presence of the other molecules. Since this solvent induced potential is a functional of the intramolecular correlations it is obtained iteratively in a self-consistent fashion. The intramolecular correlation functions for a given solvation potential are obtained via Monte Carlo simulation of a single chain. A thread model of the polymer molecules is also investigated, in which case the single chain conformations are obtained using a variational method. The predictions of the theory for these two models are similar. For single chains ~ N^2 ( is the mean square end-to-end distance and N is the degree of polymerization) in salt free solutions, and ~ N^1.2 in high salt solutions. At high polymer concentration ~ N. The theory provides a means of interpolating between these limiting cases. An interesting feature is that there is a very sharp drop in polymer size at very low concentrations which happens because the overlap threshold concentration in polyelectrolytes solutions is very small.

  8. Determination of solute-polymer interaction properties and their application to parenteral product container compatibility evaluations.

    PubMed

    Kenley, R A; Jenke, D R

    1990-09-01

    Kinetic and thermodynamic interaction properties between dialkyl phthalate test compounds and a polyolefin polymer were examined via a permeation-cell experimental design. Disappearance and appearance rates of solute in the receptor and donor solutions, as well as the equilibrium composition of the test system, are used to determine sorption and diffusion coefficients and the solute/polymer equilibrium binding constant. Sorption rate constants and diffusion coefficients exhibit Arrenhius-type behavior. The binding constants obtained correlate well with the solute's octanol-water partition coefficient. The kinetic and thermodynamic data generated combine with proposed interaction models to identify solute/polymer interactions (binding and leaching) pertinent to evaluating container/solution compatibility for parenteral products. PMID:2235889

  9. Investigating forces between charged particles in the presence of oppositely charged polyelectrolytes with the multi-particle colloidal probe technique.

    PubMed

    Borkovec, Michal; Szilagyi, Istvan; Popa, Ionel; Finessi, Marco; Sinha, Prashant; Maroni, Plinio; Papastavrou, Georg

    2012-11-01

    Direct force measurements are used to obtain a comprehensive picture of interaction forces acting between charged colloidal particles in the presence of oppositely charged polyelectrolytes. These measurements are achieved by the multi-particle colloidal probe technique based on the atomic force microscope (AFM). This novel extension of the classical colloidal probe technique offers three main advantages. First, the technique works in a colloidal suspension with a huge internal surface area of several square meters, which simplifies the precise dosing of the small amounts of the polyelectrolytes needed and makes this approach less sensitive to impurities. Second, the particles are attached in-situ within the fluid cell, which avoids the formation of nanobubbles on the latex particles used. Third, forces between two similar particles from the same batch are being measured, which allows an unambiguous determination of the surface potential due to the symmetry of the system. Based on such direct force measurements involving positively and negatively charged latex particles and different polyelectrolytes, we find the following forces to be relevant. Repulsive electrostatic double-layer forces and attractive van der Waals forces as described by the theory of Derjaguin, Landau, Verwey, and Overbeek (DLVO) are both important in these systems, whereby the electrostatic forces dominate away from the isoelectric point (IEP), while at this point they vanish. Additional non-DLVO attractive forces are operational, and they have been identified to originate from the electrostatic interactions between the patch-charge heterogeneities of the adsorbed polyelectrolyte films. Highly charged polyelectrolytes induce strong patch-charge attractions, which become especially important at low ionic strengths and high molecular mass. More weakly charged polyelectrolytes seem to form more homogeneous films, whereby patch-charge attractions may become negligible. Individual bridging events

  10. Improved solution accuracy for Landsat-4 (TDRSS-user) orbit determination

    NASA Technical Reports Server (NTRS)

    Oza, D. H.; Niklewski, D. J.; Doll, C. E.; Mistretta, G. D.; Hart, R. C.

    1994-01-01

    This paper presents the results of a study to compare the orbit determination accuracy for a Tracking and Data Relay Satellite System (TDRSS) user spacecraft, Landsat-4, obtained using a Prototype Filter Smoother (PFS), with the accuracy of an established batch-least-squares system, the Goddard Trajectory Determination System (GTDS). The results of Landsat-4 orbit determination will provide useful experience for the Earth Observing System (EOS) series of satellites. The Landsat-4 ephemerides were estimated for the January 17-23, 1991, timeframe, during which intensive TDRSS tracking data for Landsat-4 were available. Independent assessments were made of the consistencies (overlap comparisons for the batch case and convariances for the sequential case) of solutions produced by the batch and sequential methods. The filtered and smoothed PFS orbit solutions were compared with the definitive GTDS orbit solutions for Landsat-4; the solution differences were generally less than 15 meters.

  11. Chitosan Based Polyelectrolyte Complexes as Potential Carrier Materials in Drug Delivery Systems

    PubMed Central

    Hamman, Josias H.

    2010-01-01

    Chitosan has been the subject of interest for its use as a polymeric drug carrier material in dosage form design due to its appealing properties such as biocompatibility, biodegradability, low toxicity and relatively low production cost from abundant natural sources. However, one drawback of using this natural polysaccharide in modified release dosage forms for oral administration is its fast dissolution rate in the stomach. Since chitosan is positively charged at low pH values (below its pKa value), it spontaneously associates with negatively charged polyions in solution to form polyelectrolyte complexes. These chitosan based polyelectrolyte complexes exhibit favourable physicochemical properties with preservation of chitosan’s biocompatible characteristics. These complexes are therefore good candidate excipient materials for the design of different types of dosage forms. It is the aim of this review to describe complexation of chitosan with selected natural and synthetic polyanions and to indicate some of the factors that influence the formation and stability of these polyelectrolyte complexes. Furthermore, recent investigations into the use of these complexes as excipients in drug delivery systems such as nano- and microparticles, beads, fibers, sponges and matrix type tablets are briefly described. PMID:20479980

  12. Photonic crystal fiber for layer-by-layer assembly and measurements of polyelectrolyte thin films.

    PubMed

    Tian, Fei; Kanka, Jiri; Sukhishvili, Svetlana A; Du, Henry

    2012-10-15

    The cladding air channels of an endlessly single-mode photonic crystal fiber (PCF) and the high-index sensitivity of its long-period gratings (LPG) inscribed by CO(2) laser have been exploited to deposit poly(vinyl pyrrolidone) (PVPON)/poly(methacrylic acid) (PMAA) polyelectrolyte thin films via layer-by-layer assembly (LbL) and to measure the deposition process. We show that LbL can be controllably carried out within the axially aligned air channels. PCF-LPG is highly sensitive to the LbL process as reflected by ~1.625 nm shift in the resonance wavelength per polyelectrolyte layer incorporated. PCF-LPG is also very robust for in situ monitoring of the release of PVPON from cross-linked polyelectrolytes, which results in the formation of pH-responsive PMAA hydrogel. PCF-LPG containing the hydrogel exhibits well-behaved response to changes in solution pH over 2 to 7.5. We demonstrate that PCF-LPG is 2 orders of magnitude more sensitive than its traditional all-solid counterpart through parallel investigation. PMID:23073443

  13. Underwater contact adhesion and microarchitecture in polyelectrolyte complexes actuated by solvent exchange.

    PubMed

    Zhao, Qiang; Lee, Dong Woog; Ahn, B Kollbe; Seo, Sungbaek; Kaufman, Yair; Israelachvili, Jacob N; Waite, J Herbert

    2016-04-01

    Polyelectrolyte complexation is critical to the formation and properties of many biological and polymeric materials, and is typically initiated by aqueous mixing followed by fluid-fluid phase separation, such as coacervation. Yet little to nothing is known about how coacervates evolve into intricate solid microarchitectures. Inspired by the chemical features of the cement proteins of the sandcastle worm, here we report a versatile and strong wet-contact microporous adhesive resulting from polyelectrolyte complexation triggered by solvent exchange. After premixing a catechol-functionalized weak polyanion with a polycation in dimethyl sulphoxide (DMSO), the solution was applied underwater to various substrates whereupon electrostatic complexation, phase inversion, and rapid setting were simultaneously actuated by water-DMSO solvent exchange. Spatial and temporal coordination of complexation, inversion and setting fostered rapid (∼25 s) and robust underwater contact adhesion (Wad ≥ 2 J m(-2)) of complexed catecholic polyelectrolytes to all tested surfaces including plastics, glasses, metals and biological materials. PMID:26779881

  14. Underwater contact adhesion and microarchitecture in polyelectrolyte complexes actuated by solvent exchange

    PubMed Central

    Seo, Sungbaek; Kaufman, Yair; Israelachvili, Jacob N.; Waite, J. Herbert

    2016-01-01

    Polyelectrolyte complexation is critical to the formation and properties of many biological and polymeric materials, and is typically initiated by aqueous mixing1 followed by fluid–fluid phase separation, such as coacervation2–5. Yet little to nothing is known about how coacervates evolve into intricate solid microarchitectures. Inspired by the chemical features of the cement proteins of the sandcastle worm, here we report a versatile and strong wet-contact microporous adhesive resulting from polyelectrolyte complexation triggered by solvent exchange. After premixing a catechol-functionalized weak polyanion with a polycation in dimethyl sulphoxide (DMSO), the solution was applied underwater to various substrates whereupon electrostatic complexation, phase inversion, and rapid setting were simultaneously actuated by water–DMSO solvent exchange. Spatial and temporal coordination of complexation, inversion and setting fostered rapid (~25 s) and robust underwater contact adhesion (Wad ≥ 2 J m−2) of complexed catecholic polyelectrolytes to all tested surfaces including plastics, glasses, metals and biological materials. PMID:26779881

  15. Protonation process of conjugated polyelectrolytes on enhanced power conversion efficiency in the inverted polymer solar cells

    NASA Astrophysics Data System (ADS)

    Yi, Chao; Hu, Rong; Ren, He; Hu, Xiaowen; Wang, Shu; Gong, Xiong; Cao, Yong

    2014-01-01

    In this study, two conjugated polyelectrolytes, polythiophene derivative (PTP) and poly[(9,9-bis [6‧-N, N, N-trimethylammonium] hexyl)-fluorenylene-phenylene] dibromide (PFP), are utilized to modify the surface properties of ZnO electron extraction layer (EEL) in the inverted polymer solar cells (PSCs). Both higher short-circuit current densities and larger open-circuit voltages were observed from the inverted PSCs with ZnO/PFP or ZnO/PTP as compared with those only with ZnO EEL. The protonation process for PTP and PFP in solution is distinguished. Overall, more than 40% enhanced power conversion efficiency (PCE) from the inverted PSCs with ZnO/PFP, in which the PFP could be fully ionized in deionized water, and more than 30% enhanced PCE from the inverted PSCs with ZnO/PTP, as the case that the PTP could not be fully ionized in deionized water, as compared with the inverted PSCs with ZnO EEL were observed, respectively. These results demonstrate that the conjugated polyelectrolytes play an important role in enhancement of device performance of inverted PSCs and that the protonation process of the conjugated polyelectrolytes is critical to the modification for EEL in PSCs.

  16. High-flux nanofiltration membranes prepared by adsorption of multilayer polyelectrolyte membranes on polymeric supports.

    PubMed

    Malaisamy, Ramamoorthy; Bruening, Merlin L

    2005-11-01

    Layer-by-layer deposition of anionic and cationic polyelectrolytes readily converts polymeric ultrafiltration membranes into materials capable of nanofiltration. ATR-FTIR spectra confirm that layer-by-layer deposition occurs on the ultrafiltration substrates, and adsorption of as few as 2.5 bilayers of poly(styrenesulfonate) (PSS)/protonated poly(allylamine) (PAH) or 3.5 bilayers of PSS/poly(diallyldimethylammonium chloride) (PDADMAC) reduces the molecular weight cutoff of polyethersulfone ultrafiltration supports from 50 kDa to <500 Da. Deposition of multilayer polyelectrolyte films on 300 and 500 kDa membranes also decreases molecular weight cutoffs, but solute rejections are significantly lower when using these supports, suggesting that the polyelectrolyte films do not completely cover large (0.2-0.4 microm in diameter) pores. On the 50 kDa substrates, PSS/PDADMAC films containing 3.5 bilayers exhibit a 95% rejection of SO(4)(2-) and a chloride/sulfate selectivity of 27, whereas 4.5-bilayer PSS/PAH coatings show a glucose/raffinose selectivity of 100. Pure water flux for [PSS/PAH](3)PSS-coated membranes at 4.8 bar is 1.6 m(3)/(m(2)day), which is more than 2-fold higher than that through a commercial 500 Da membrane. PMID:16262324

  17. Interaction of Polyelectrolytes with Salivary Pellicles on Hydroxyapatite Surfaces under Erosive Acidic Conditions.

    PubMed

    Delvar, Alice; Lindh, Liselott; Arnebrant, Thomas; Sotres, Javier

    2015-09-30

    The modification of acidic beverage formulations with food-approved, nonhazardous substances with antierosive properties has been identified as a key strategy for counteracting the prevalence of dental erosion, i.e., the acid-induced dissolution of hydroxyapatite (HA, the main mineral component of tooth surfaces). While many of such substances have been reported, very little is known on how they interact with teeth and inhibit their acid-induced dissolution. With the aim of filling this gap in knowledge, we have studied under acidic conditions the interaction between two polyelectrolytes of differing ionic character, carboxymethyl cellulose (CMC) and chitosan, and saliva-coated hydroxyapatite, i.e., a model for the outer surface of teeth. These studies were performed by means of ellipsometry, quartz crystal microbalance with dissipation monitoring, and atomic force microscopy. We also studied, by means of pH variations, how dissolution of saliva-coated HA is affected by including these polyelectrolytes in the erosive solutions. Our results confirm that salivary films protect HA from acid-induced dissolution, but only for a limited time. If the acid is modified with CMC, this polyelectrolyte incorporates into the salivary films prolonging in time their protective function. Eventually, the CMC-modified salivary films are removed from the HA surfaces. From this moment, HA is continuously coated with CMC, but this offers only a weak protection against erosion. When the acid is modified with the cationic chitosan, the polyelectrolyte adsorbs on top of the salivary films. Chitosan-modified salivary films are also eventually replaced by bare chitosan films. In this case both coatings offer a similar protection against HA dissolution, which is nevertheless notably higher than that offered by CMC. PMID:26368580

  18. Layer-by-layer electrostatic self-assembly of single-wall carbon nanotube polyelectrolytes.

    PubMed

    Paloniemi, Hanna; Lukkarinen, Marjo; Aäritalo, Timo; Areva, Sami; Leiro, Jarkko; Heinonen, Markku; Haapakka, Keijo; Lukkari, Jukka

    2006-01-01

    We have used anionic and cationic single-wall carbon nanotube polyelectrolytes (SWNT-PEs), prepared by the noncovalent adsorption of ionic naphthalene or pyrene derivatives on nanotube sidewalls, for the layer-by-layer self-assembly to prepare multilayers from carbon nanotubes with polycations, such as poly(diallyldimethylammonium) or poly(allylamine hydrochloride) (PDADMA or PAH, respectively), and polyanions (poly(styrenesulfonate), PSS). This is a general and powerful technique for the fabrication of thin carbon nanotube films of arbitrary composition and architecture and allows also an easy preparation of all-SWNT (SWNT/SWNT) multilayers. The multilayers were characterized with vis-near-IR spectroscopy, X-ray photoelectron spectroscopy (XPS), surface plasmon resonance (SPR) measurements, atomic force microscopy (AFM), and imaging ellipsometry. The charge compensation in multilayers is mainly intrinsic, which shows the electrostatic nature of the self-assembly process. The multilayer growth is linear after the initial layers, and in SWNT/polyelectrolyte films it can be greatly accelerated by increasing the ionic strength in the SWNT solution. However, SWNT/SWNT multilayers are much more inert to the effect of added electrolyte. In SWNT/SWNT multilayers, the adsorption results in the deposition of 1-3 theoretical nanotube monolayers per adsorbed layer, whereas the nominal SWNT layer thickness is 2-3 times higher in SWNT/polyelectrolyte films prepared with added electrolyte. AFM images show that the multilayers contain a random network of nanotube bundles lying on the surface. Flexible polyelectrolytes (e.g., PDADMA, PSS) probably surround the nanotubes and bind them together. On macroscopic scale, the surface roughness of the multilayers depends on the components and increases with the film thickness. PMID:16378403

  19. Encapsulation of curcumin in polyelectrolyte nanocapsules and their neuroprotective activity

    NASA Astrophysics Data System (ADS)

    Szczepanowicz, Krzysztof; Jantas, Danuta; Piotrowski, Marek; Staroń, Jakub; Leśkiewicz, Monika; Regulska, Magdalena; Lasoń, Władysław; Warszyński, Piotr

    2016-09-01

    Poor water solubility and low bioavailability of lipophilic drugs can be potentially improved with the use of delivery systems. In this study, encapsulation of nanoemulsion droplets was utilized to prepare curcumin nanocarriers. Nanosize droplets containing the drug were encapsulated in polyelectrolyte shells formed by the layer-by-layer (LbL) adsorption of biocompatible polyelectrolytes: poly-L-lysine (PLL) and poly-L-glutamic acid (PGA). The size of synthesized nanocapsules was around 100 nm. Their biocompatibility and neuroprotective effects were evaluated on the SH-SY5Y human neuroblastoma cell line using cell viability/toxicity assays (MTT reduction, LDH release). Statistically significant toxic effect was clearly observed for PLL coated nanocapsules (reduction in cell viability about 20%–60%), while nanocapsules with PLL/PGA coating did not evoke any detrimental effects on SH-SY5Y cells. Curcumin encapsulated in PLL/PGA showed similar neuroprotective activity against hydrogen peroxide (H2O2)-induced cell damage, as did 5 μM curcumin pre-dissolved in DMSO (about 16% of protection). Determination of concentration of curcumin in cell lysate confirmed that curcumin in nanocapsules has cell protective effect in lower concentrations (at least 20 times) than when given alone. Intracellular mechanisms of encapsulated curcumin-mediated protection engaged the prevention of the H2O2-induced decrease in mitochondrial membrane potential (MMP) but did not attenuate Reactive Oxygen Species (ROS) formation. The obtained results indicate the utility of PLL/PGA shell nanocapsules as a promising, alternative way of curcumin delivery for neuroprotective purposes with improved efficiency and reduced toxicity.

  20. Encapsulation of curcumin in polyelectrolyte nanocapsules and their neuroprotective activity.

    PubMed

    Szczepanowicz, Krzysztof; Jantas, Danuta; Piotrowski, Marek; Staroń, Jakub; Leśkiewicz, Monika; Regulska, Magdalena; Lasoń, Władysław; Warszyński, Piotr

    2016-09-01

    Poor water solubility and low bioavailability of lipophilic drugs can be potentially improved with the use of delivery systems. In this study, encapsulation of nanoemulsion droplets was utilized to prepare curcumin nanocarriers. Nanosize droplets containing the drug were encapsulated in polyelectrolyte shells formed by the layer-by-layer (LbL) adsorption of biocompatible polyelectrolytes: poly-L-lysine (PLL) and poly-L-glutamic acid (PGA). The size of synthesized nanocapsules was around 100 nm. Their biocompatibility and neuroprotective effects were evaluated on the SH-SY5Y human neuroblastoma cell line using cell viability/toxicity assays (MTT reduction, LDH release). Statistically significant toxic effect was clearly observed for PLL coated nanocapsules (reduction in cell viability about 20%-60%), while nanocapsules with PLL/PGA coating did not evoke any detrimental effects on SH-SY5Y cells. Curcumin encapsulated in PLL/PGA showed similar neuroprotective activity against hydrogen peroxide (H2O2)-induced cell damage, as did 5 μM curcumin pre-dissolved in DMSO (about 16% of protection). Determination of concentration of curcumin in cell lysate confirmed that curcumin in nanocapsules has cell protective effect in lower concentrations (at least 20 times) than when given alone. Intracellular mechanisms of encapsulated curcumin-mediated protection engaged the prevention of the H2O2-induced decrease in mitochondrial membrane potential (MMP) but did not attenuate Reactive Oxygen Species (ROS) formation. The obtained results indicate the utility of PLL/PGA shell nanocapsules as a promising, alternative way of curcumin delivery for neuroprotective purposes with improved efficiency and reduced toxicity. PMID:27454207

  1. Utilization of water/alcohol-soluble polyelectrolyte as an electron injection layer for fabrication of high-efficiency multilayer saturated red-phosphorescence polymer light-emitting diodes by solution processing

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Liang, Bo; Huang, Fei; Peng, Junbiao; Cao, Yong

    2006-10-01

    Highly efficient multilayer red polymer light-emitting diodes were fabricated by solution process-ing from iridium complex, bis(1-(3-(9,9-dimethyl-fluorene-2-yl)phenyl)isoquinoline-C2,N ') iridium(III)acetylacetonate, doped into polyfluorene as a host and with a water/alcohol-soluble polymer, poly[(9,9-bis(3'-((N ,N-dimethyl)-N-ethylammonium)propyl)-2,7-fluorene)-2,7-(9,9-dioctylfluorene)-4,7-(2,1,3-benzoselenadiazole)]dibromide (PFN) as electron injection layer. The device with the structure ITO /PEDOT-PSS(50nm)/PVK(40nm)/PFO:PBD:Ir(DMFPQ)2acac(2%,75nm)/PFN(20nm)/Ba(4.5nm)/Al(150nm) showed an external quantum efficiency of 18.0% and luminance efficiency of 9.8Cd/A at a current density of 1.1mA/cm2, a peak emission at λmax=636nm, and Commission International de I'Eclairage coordinates of (0.665, 0.319). The efficiency remained as high as QE =11.1%, and LE =6.0cd/A, at a current density of 100mA/cm2, and a luminance of 6140cd/m2.

  2. Standard addition method for free acid determination in solutions with hydrolyzable ions

    SciTech Connect

    Baumann, E.W.

    1981-01-01

    The free acid content of solutions containing hydrolyzable ions has been determined potentiometrically by a standard addition method. Two increments of acid are added to the sample in a 1M potassium thiocyanate solution. The sample concentration is calculated by solution of three simultaneous Nernst equations. The method has been demonstrated for solutions containing Al/sup 3 +/, Cr/sup 3 +/, Fe/sup 3 +/, Ni/sup 2 +/, Th/sup 4 +/, or UO/sub 2//sup 2 +/ with a metal-to-acid ratio of < 2.5. The method is suitable for determination of 10 ..mu..moles acid in 10 mL total volume. The accuracy is verifiable by reasonable agreement of the Nerst slopes found in the presence and absence of hydrolyzable ions. The relative standard deviation is < 2.5 percent.

  3. Design of polyelectrolyte multilayer membranes for ion rejection and wastewater effluent treatment

    NASA Astrophysics Data System (ADS)

    Sanyal, Oishi

    wastewater samples, the EC treated solution also contained a fair amount of organic foulants. These PEM membranes, however, indicated better anti-fouling properties than commercial NF/RO membranes under normal flow conditions. The last part of our work was focused on improving the anti-fouling properties of these membranes by the incorporation of clay nanoplatelets within polyelectrolyte multilayers. In this project, a commercial polyethersulfone (PES) membrane was modified by clay-polyelectrolyte composite thin films and tested against the EC effluent under tangential flow conditions. In comparison to the PEM membranes, these clay-PEM (c-PEM) hybrid membranes offered superior anti-fouling properties with higher fluxes and also required lesser number of layers. On crosslinking the polyelectrolytes, the c-PEM membranes yielded improved anti-fouling properties and high COD removal. Introduction of these inorganic nanoplatelets, however, led to a significant decline in the initial flux of the modified membranes as compared to bare PES membranes, which therefore necessitates further optimization. Some strategies which can potentially help in optimizing the performance of these c-PEM membranes have been discussed in this thesis.

  4. Development of Highly-Conductive Polyelectrolytes for Lithium Batteries

    NASA Technical Reports Server (NTRS)

    Shriver, D. F.; Ratner, M. A.; Vaynman, S.; Annan, K. O.; Snyder, J. F.

    2003-01-01

    Future NASA and Air Force missions require reliable and safe sources of energy with high specific energy and energy density that can provide thousands of charge-discharge cycles at more than 40% depth- of-discharge and that can operate at low temperatures. All solid-state batteries have substantial advantages with respect to stability, energy density, storage fife and cyclability. Among all solid-state batteries, those with flexible polymer electrolytes offer substantial advantages in cell dimensionality and commensurability, low temperature operation and thin film design. The above considerations suggest that lithium-polymer electrolyte systems are promising for high energy density batteries and should be the systems of choice for NASA and US Air Force applications. Polyelectrolytes (single ion conductors) are among most promising avenues for achieving a major breakthrough 'in the applicability of polymer- based electrolyte systems. Their major advantages include unit transference number for the cation, reduced cell polarization, minimal salt precipitation, and favorable electrolyte stability at interfaces. Our research is focused on synthesis, modeling and cell testing of single ion carriers, polyelectrolytes. During the first year of this project we attempted the synthesis of two polyelectrolytes. The synthesis of the first one, the poly(ethyleneoxide methoxy acrylateco-lithium 1,1,2-trifluorobutanesulfonate acrylate, was attempted few times and it was unsuccessful. We followed the synthetic route described by Cowie and Spence. The yield was extremely low and the final product could not be separated from the impurities. The synthesis of this polyelectrolyte is not described in this report. The second polyelectrolyte, comb polysiloxane polyelectrolyte containing oligoether and perfluoroether sidechains, was synthesized in sufficient quantity to study the range of properties such as thermal stability, Li- ion- conductivity and stability toward lithium metal. Also

  5. Functional polyelectrolyte multilayer membranes for water purification applications.

    PubMed

    Tripathi, Bijay P; Dubey, Nidhi C; Stamm, M

    2013-05-15

    A diverse set of supported multilayer assemblies with controllable surface charge, hydrophilicity, and permeability to water and solute was fabricated by pressure driven permeation of poly(sodium 4-styrenesulfonate) (PSS) and poly(diallyldimethylammonium chloride) (PDDA) solution through poly(ethylene terephthalate) (PET) track-etched membranes. The polyelectrolyte multilayer fabrication was confirmed by means of FTIR, SEM, AFM, ellipsometry, zetapotential, and contact angle characterization. The prepared membranes were characterized in terms of their pure water permeability, flux recovery, and resistance to organic and biofouling properties. The antifouling behavior of the membranes was assessed in terms of protein adsorption and antibacterial behavior. Finally, the membranes were tested for rejection of selected water soluble dyes to establish their usefulness for organic contaminant removal from water. The membranes were highly selective and capable of nearly complete rejection of congo red with sufficiently high fluxes. The feasibility of regenerating the prepared membranes fouled by protein was also demonstrated and good flux recovery was obtained. In summary, the multilayer approach to surface and pore modification was shown to enable the design of membranes with the unique combination of desirable separation characteristics, regenerability of the separation layer, and antifouling behavior. PMID:23557682

  6. Modeling competitive substitution in a polyelectrolyte complex

    SciTech Connect

    Peng, B.; Muthukumar, M.

    2015-12-28

    We have simulated the invasion of a polyelectrolyte complex made of a polycation chain and a polyanion chain, by another longer polyanion chain, using the coarse-grained united atom model for the chains and the Langevin dynamics methodology. Our simulations reveal many intricate details of the substitution reaction in terms of conformational changes of the chains and competition between the invading chain and the chain being displaced for the common complementary chain. We show that the invading chain is required to be sufficiently longer than the chain being displaced for effecting the substitution. Yet, having the invading chain to be longer than a certain threshold value does not reduce the substitution time much further. While most of the simulations were carried out in salt-free conditions, we show that presence of salt facilitates the substitution reaction and reduces the substitution time. Analysis of our data shows that the dominant driving force for the substitution process involving polyelectrolytes lies in the release of counterions during the substitution.

  7. Determination of refraction nonlinear index, for effect thermal, of solutions with nanoparticles of gold

    NASA Astrophysics Data System (ADS)

    Olivares-Vargas, A.; Trejo-Durán, M.; Alvarado-Méndez, E.; Cornejo-Monroy, D.; Mata-Chávez, R. I.; Estudillo-Ayala, J. M.; Castaño-Meneses, V.

    2013-09-01

    Research of nonlinear optical properties of materials for manufacturing opto-electronic devices, had a great growth in the last years. The solutions with nanoparticle metals present nonlinear optical properties. In this work we present the results of characterizing, analyzing and determining the magnitude and sign of the nonlinear refractive index, using the z-scan technique in solutions with nanoparticles of gold, lipoic acid and sodium chloride. We used a continuous Argon laser at 514 nm with variable power, an 18 cms lens, and a chopper. We determined the nonlinear refractive index in the order of 10-9. These materials have potential applications mainly as optical limiters.

  8. Chitosan-hyaluronic acid polyelectrolyte complex scaffold crosslinked with genipin for immobilization and controlled release of BMP-2.

    PubMed

    Nath, Subrata Deb; Abueva, Celine; Kim, Boram; Lee, Byong Taek

    2015-01-22

    Polyelectrolyte complex (PEC) is formed when polymers with opposite charges are combined in solution. PECs are recently gaining attention as carriers for controlled release of drugs and proteins. Herein, bone morphogenetic protein-2 (BMP-2) was immobilized in a PEC of natural polymers, chitosan and hyaluronic acid. Charge-to-charge stoichiometry of the formed PEC was estimated based on turbidity of combined chitosan and hyaluronic acid solutions. Free amino groups in chitosan were crosslinked with different amounts of genipin. The degree of crosslinking, consequently its effects in vitro in terms of swelling, degradation and cytocompatibility were analyzed. Immobilization of three different amount of BMP-2 in chitosan-hyaluronic acid PEC scaffold resulted sustained release of the growth factor for more than 30 days. Immobilization efficacies varied from 61% to 76% depending on the amount of BMP-2. Finally effects in osteogenic differentiation of the PEC with BMP-2 to MC3T3-E1 cells were determined by reverse transcriptase PCR. PMID:25439881

  9. Dynamics of ion exchange between self-assembled redox polyelectrolyte multilayer modified electrode and liquid electrolyte.

    PubMed

    Grumelli, Doris E; Garay, Fernando; Barbero, Cesar A; Calvo, Ernesto J

    2006-08-10

    A probe beam deflection (PBD) study of ion exchange between an electroactive polymer poly(allylamine)-bipyridyl-pyridine osmium complex film and liquid electrolyte is reported. The PBD measurements were made simultaneously to chronoamperometric oxidation-reduction cycles, to be able to detect kinetic effects in the ion exchange. Layer-by-layer (LbL) self-assembled redox polyelectrolyte films with osmium bipyridyl complex covalently attached to poly(allylamine) (PAH-Os) and poly(styrene sulfonate) (PSS) have been built by alternate electrostatic adsorption from soluble polyelectrolytes. The ionic exchange during initial conditioning of the film ("break-in") undergoing oxidation-reduction cycles and recovery after equilibration in the reduced state have shown an exchange of anions and cations with time lag between them. The effect of the nature of cation on the ionic exchange has been investigated with dilute HCl, LiCl, NaCl, and CsCl electrolytes. The ratio of anion to cation exchanged at the film-electrolyte interface has a strong dependence on the nature of charge in the topmost layer, that is, when negatively charged PSS is the capping layer, a larger proportion of cation exchange is observed. This demonstrates that the electrical potential distribution at the redox polyelectrolyte multilayer (PEM)/electrolyte interface determines the ionic flux in response to charge injection in the film. PMID:16884254

  10. Multiscale modeling of polyelectrolyte gels

    NASA Astrophysics Data System (ADS)

    Wallmersperger, Thomas; Wittel, Falk K.; Kröplin, Bernd H.

    2006-03-01

    Electrolyte polymer gels are a very attractive class of actuation materials with remarkable electronic and mechanical properties having a great similarity to biological contractile tissues. They consist of a polymer network with ionizable groups and a liquid phase with mobile ions. Absorption and delivery of solvent lead to a considerably large change of volume. Due to this capability, they can be used as actuators for technical applications, where large swelling and shrinkage is desired. In the present work chemically and electrically stimulated polymer gels in a solution bath are investigated. To describe the different complicated phenomena occurring in these gels adequately, the modeling can be conducted on different scales. Therefore, models based on the statistical theory and porous media theory, as well as a multi-field model and a discrete element formulation are derived. A refinement of the different theories from global macroscopic to microscopic are presented in this paper: The statistical theory is a macroscopic theory capable to describe the global swelling or bending e.g. of a gel film, while the general theory of porous media (TPM) is a macroscopic continuum theory which is based on the theory of mixtures extended by the concept of volume fractions. The TPM is a homogenized model, i.e. all geometrical and physical quantities can be seen as statistical averages of the real quantities. The presented chemo-electro-mechanical multi-field formulation is a mesoscopic theory. It is capable of giving the concentrations and the electric potential in the whole domain. Finally the (micromechanical) discrete element (DE) theory is employed. In this case, the continuum is represented by distributed particles with local interaction relations combined with balance equations for the chemical field. This method is predestined for problems involving large displacements, strains and discontinuities. The presented formulations are compared and conclusions on their

  11. Ductile polyelectrolyte macromolecule-complexed zinc phosphate conversion crystal pre-coatings and topcoatings embodying a laminate

    DOEpatents

    Sugama, T.; Kukacka, L.E.; Carciello, N.R.

    1987-04-21

    This invention relates to a precoat, laminate, and method for ductile coatings on steel and non-ferrous metals which comprises applying a zinc phosphating coating solution modified by a solid polyelectrolyte selected from polyacrylic acid (PAA), polymethacrylic acid (PMA), polyitaconic acid (PIA), and poly-L-glutamic acid. The contacting of the resin with the phosphating solution is made for a period of up to 20 hours at about 80 C. The polyelectrolyte or the precoat is present in about 0.5--5.0% by weight of the total precoat composition and after application, the precoat base is dried for up to 5 hours at about 150 C to desiccate. Also, a laminate may be formed where polyurethane (PU) is applied as an elastomeric topcoating or polyfuran resin is applied as a glassy topcoating. It has been found that the use of PAA at a molecular weight of about 2 [times] 10[sup 5] gave improved ductility modulus effect. 5 figs.

  12. Ductile polyelectrolyte macromolecule-complexed zinc phosphate conversion crystal pre-coatings and topcoatings embodying a laminate

    DOEpatents

    Sugama, Toshifumi; Kukacka, Lawrence E.; Carciello, Neal R.

    1987-01-01

    This invention relates to a precoat, laminate, and method for ductile coatings on steel and non-ferrous metals which comprises applying a zinc phosphating coating solution modified by a solid polyelectrolyte selected from polyacrylic acid (PAA), polymethacrylic acid (PMA), polyitaconic acid (PIA), and poly-L-glutamic acid. The contacting of the resin with the phosphating solution is made for a period of up to 20 hours at about 80.degree. C. The polyelectrolyte or the precoat is present in about 0.5-5.0% by weight of the total precoat composition and after application, the precoat base is dried for up to 5 hours at about 150.degree. C. to desiccate. Also, a laminate may be formed where polyurethane (PU) is applied as an elastomeric topcoating or polyfuran resin is applied as a glassy topcoating. It has been found that the use of PAA at a molecular weight of about 2.times.10.sup.5 gave improved ductility modulus effect.

  13. Lipid Layers on Polyelectrolyte Multilayers: Understanding Lipid-Polyelectrolyte Interactions and Applications on the Surface Engineering of Nanomaterials.

    PubMed

    Diamanti, Eleftheria; Gregurec, Danijela; Gabriela, Romero; Cuellar, J L; Donath, E; Moya, S E

    2016-06-01

    In this manuscript we review work of our group on the assembly of lipid layers on top of polyelectrolyte multilayers (PEMs). The assembly of lipid layers with zwitterionic and charged lipids on PEMs is studied as a function of lipid and polyelectrolyte composition by the Quartz Crystal Microbalance. Polyelectrolyte lipid interactions are studied by means of Atomic Force Spectroscopy. We also show the coating of lipid layers for engineering different nanomaterials, i.e., carbon nanotubes and poly(lactic-co-glycolic) nanoparticles and how these can be used to decrease in vitro toxicity and to direct the intracellular localization of nanomaterials. PMID:27427617

  14. The self-assembly of copolymers with one hydrophobic and one polyelectrolyte block in aqueous media: a dissipative particle dynamics study.

    PubMed

    Lísal, Martin; Limpouchová, Zuzana; Procházka, Karel

    2016-06-28

    The reversible self-assembly of symmetrical block copolymers consisting of one hydrophobic block and one ionizable polyelectrolyte block of the same length has been studied in aqueous solutions by dissipative particle dynamics simulations. In addition to three standard dissipative particle dynamics forces (conservative soft repulsion, dissipative and stochastic forces), explicit interaction between smeared charges on ions and on ionized polymer beads described by the electrostatic potential with appropriately localized charges was taken into account. The self-assembly and properties of formed core-shell micelles were investigated as functions of the degree of ionization for systems differing in the hydrophobicity of the non-ionized polyelectrolyte block and in the compatibility of the polymer blocks. This study shows that micelles undergo massive dissociation with increasing degree of ionization. The simulation data compare well with the predictions of scaling theories for systems with soluble polyelectrolytes on a semi-quantitative level and broaden the knowledge of systems in poor solvents. PMID:27254381

  15. Deposition of polyelectrolyte multilayer films made from chitosan and xanthan on biodegradable substrate: Effect of pH and ionic strength

    NASA Astrophysics Data System (ADS)

    Viraneva, A.; Marudova, M.; Sotirov, S.; Bodurov, I.; Pilicheva, B.; Uzunova, Y.; Exner, G.; Grancharova, Ts.; Vlaeva, I.; Yovcheva, T.

    2016-03-01

    The aim of the present work is to investigate the effect of pH and ionic strength on the deposition of chitosan/xanthan multilayers on preliminary corona charged substrates from polylactic acid. The multilayer films were formed by alternative dipping the substrate into chitosan and xanthan polyelectrolyte solutions. For this purpose 0.1% chitosan solution and 0.05% xanthan solution in acetate buffers with pH 4; 4.5 and 5 and ionic strengths 0; 0.01; 0.1 and 1 mol/l were used. The film properties were investigated by FTIR, laser refractometry, XPS and AFM methods. It was found that the binding of the polyelectrolytes to the substrate was irreversible over the time of deposition. The investigated parameters were found to depend on both pH and ionic strength of the polyelectrolyte solutions. This behaviour was attributed to the changes in charge density of the polyelectrolytes and screening effect of the counterions.

  16. Adsorption and viscoelastic analysis of polyelectrolyte-surfactant complexes on charged hydrophilic surfaces.

    PubMed

    Dhopatkar, Nishad; Park, Jung Hyun; Chari, Krishnan; Dhinojwala, Ali

    2015-01-27

    The aggregation of surfactants around oppositely charged polyelectrolytes brings about a peculiar bulk phase behavior of the complex, known as coacervation, and can control the extent of adsorption of the polyelectrolyte at an aqueous-solid interface. Adsorption kinetics from turbid premixed polyelectrolyte-surfactant mixtures have been difficult to measure using optical techniques such as ellipsometry and reflectometry, thus limiting the correlation between bulk phases and interfacial adsorption. Here, we investigated the adsorption from premixed solutions of a cationic polysaccharide (PQ10) and the anionic surfactant sodium dodecyl sulfate (SDS) on an amphoteric alumina surface using quartz crystal microbalance with dissipation (QCMD). The surface charge on the alumina was tuned by changing the pH of the premixed solutions, allowing us to assess the role of electrostatic interactions by studying the adsorption on both negatively and positively charged surfaces. We observed a maximum extent of adsorption on both negatively and positively charged surfaces from a solution corresponding to the maximum turbidity. Enhanced adsorption upon diluting the redissolved complexes at a high SDS concentration was seen only on the negatively charged surface, and not on the positively charged one, confirming the importance of electrostatic interactions in controlling the adsorption on a hydrophilic charged surface. Using the Voight based viscoelastic model, QCMD also provided information on the effective viscosity, effective shear modulus, and thickness of the adsorbed polymeric complex. The findings of viscoelastic analysis, corroborated by atomic force microscopy measurements, suggest that PQ10 by itself forms a flat, uniform layer, rigidly attached to the surface. The PQ10-SDS complex shows a heterogeneous surface structure, where the underlayer is relatively compact and tightly attached and the top is a loosely bound diffused overlayer, accounting for most of the adsorbate

  17. Tests of daily time variable Earth gravity field solutions for precise orbit determination of altimetry satellites

    NASA Astrophysics Data System (ADS)

    Rudenko, Sergei; Gruber, Christian

    2016-04-01

    This study makes use of current GFZ monthly and daily gravity field products from 2002 to 2014 based on radial basis functions (RBF) instead of time variable gravity field modeling for precise orbit determination of altimetry satellites. Since some monthly solutions are missing in the GFZ GRACE RL05a solution and in order to reach a better quality for the precise orbit determination, daily generated RBF solutions obtained from Kalman filtered GRACE data processing and interpolated in case of gaps have been used. Moreover, since the geopotential coefficients of low degrees are better determined using SLR observations to geodetic satellites like Lageos, Stella, Starlette and Ajisai than from GRACE observations, these terms are co-estimated in the RBF solutions by using apriori SLR-derived values up to degree and order 4. Precise orbits for altimetry satellites Envisat (2002-2012), Jason-1 (2002-2013) and Jason-2 (2008-2014) are then computed over the given time intervals using this approach and compared with the orbits obtained when using other models such as EIGEN-6S4. An analysis of the root-mean-square values of the observation fits of SLR and DORIS observations and the orbit arcs overlaps will allow us to draw a conclusion on the quality of the RBF solution and to use these new trajectories for sea level trend estimates and geophysical application.

  18. Adsorption behavior of anionic polyelectrolyte for chemical mechanical polishing (CMP).

    PubMed

    Kim, Sarah; So, Jae-Hyun; Lee, Dong-Jun; Yang, Seung-Man

    2008-03-01

    In this work, we investigated the adsorption characteristics of anionic polyelectrolytes, which are used in shallow trench isolation chemical mechanical polishing with ceria abrasives. Specifically, the adsorption isotherms and chain conformation of anionic polyelectrolytes were studied in order to elucidate the difference in removal rates of silicon dioxide (SiO2) and silicon nitride (Si3N4) layers and the high selectivity characteristics of ceria slurry. Adsorption isotherms, FT-IR spectroscopy and contact angle measurements revealed that the anionic polyelectrolyte additives had much better adsorption affinities for the Si3N4 surface than for the SiO2 surface. Moreover, blanket wafer polishing results were successfully correlated with the adsorption isotherms of polyelectrolytes on the oxide particle suspensions. PMID:18078949

  19. Twin solution calorimeter determines heats of formation of alloys at high temperatures

    NASA Technical Reports Server (NTRS)

    Darby, J. B., Jr.; Kleb, R.; Kleppa, O. J.

    1968-01-01

    Calvert-type, twin liquid metal solution calorimeter determines the heats of formation of transition metal alloys at high temperatures. The twin differential calorimeter measures the small heat effects generated over extended periods of time, has maximum operating temperature of 1073 degrees K and an automatic data recording system.

  20. Monte Carlo simulations of polyelectrolytes inside viral capsids

    NASA Astrophysics Data System (ADS)

    Angelescu, Daniel George; Bruinsma, Robijn; Linse, Per

    2006-04-01

    Structural features of polyelectrolytes as single-stranded RNA or double-stranded DNA confined inside viral capsids and the thermodynamics of the encapsidation of the polyelectrolyte into the viral capsid have been examined for various polyelectrolyte lengths by using a coarse-grained model solved by Monte Carlo simulations. The capsid was modeled as a spherical shell with embedded charges and the genome as a linear jointed chain of oppositely charged beads, and their sizes corresponded to those of a scaled-down T=3 virus. Counterions were explicitly included, but no salt was added. The encapisdated chain was found to be predominantly located at the inner capsid surface, in a disordered manner for flexible chains and in a spool-like structure for stiff chains. The distribution of the small ions was strongly dependent on the polyelectrolyte-capsid charge ratio. The encapsidation enthalpy was negative and its magnitude decreased with increasing polyelectrolyte length, whereas the encapsidation entropy displayed a maximum when the capsid and polyelectrolyte had equal absolute charge. The encapsidation process remained thermodynamically favorable for genome charges ca. 3.5 times the capsid charge. The chain stiffness had only a relatively weak effect on the thermodynamics of the encapsidation.

  1. Complex formation between polyelectrolytes and oppositely charged oligoelectrolytes.

    PubMed

    Zhou, Jiajia; Barz, Matthias; Schmid, Friederike

    2016-04-28

    We study the complex formation between one long polyanion chain and many short oligocation chains by computer simulations. We employ a coarse-grained bead-spring model for the polyelectrolyte chains and model explicitly the small salt ions. We systematically vary the concentration and the length of the oligocation and examine how the oligocations affects the chain conformation, the static structure factor, the radial and axial distribution of various charged species, and the number of bound ions in the complex. At low oligocation concentration, the polyanion has an extended structure. Upon increasing the oligocation concentration, the polyanion chain collapses and forms a compact globule, but the complex still carries a net negative charge. Once the total charge of the oligocations is equal to that of the polyanion, the collapse stops and is replaced by a slow expansion. In this regime, the net charge on the complexes is positive or neutral, depending on the microion concentration in solution. The expansion can be explained by the reduction of the oligocation bridging. We find that the behavior and the structure of the complex are largely independent of the length of oligocations, and very similar to that observed when replacing the oligocations by multivalent salt cations, and conclude that the main driving force keeping the complex together is the release of monovalent counterions and coions. We speculate on the implications of this finding for the problem of controlled oligolyte release and oligolyte substitution. PMID:27131564

  2. Electric field induced morphological transitions in polyelectrolyte multilayers.

    PubMed

    Cho, Chungyeon; Jeon, Ju-Won; Lutkenhaus, Jodie; Zacharia, Nicole S

    2013-06-12

    In this work, the morphological transitions in weak polyelectrolyte (PE) multilayers (PEMs) assembled from linear poly(ethylene imine) (LPEI) and poly(acrylic acid) (PAA) upon application of an electric field were studied. Exposure to an electric field results in the creation of a porous structure, which can be ascribed to local changes in pH from the hydrolysis of water and subsequent structural rearrangements of the weak PE constituents. Depending on the duration of application of the field, the porous transition gradually develops into a range of structures and pore sizes. It was discovered that the morphological transition of the LbL films starts at the multilayer-electrode interface and propagates through the film. First an asymmetrical structure forms, consisting of microscaled pores near the electrode and nanoscaled pores near the surface in contact with the electrolyte solution. At longer application of the field the porous structures become microscaled throughout. The results revealed in this study not only demonstrate experimental feasibility for controlling variation in pore size and porosity of multilayer films but also deepens the understanding of the mechanism of the porous transition. In addition, electrical potential is used to release small molecules from the PEMs. PMID:23683121

  3. Electrolyte-induced collapse of a polyelectrolyte brush

    NASA Astrophysics Data System (ADS)

    Biesalski, M.; Johannsmann, D.; Rühe, J.

    2004-05-01

    We have investigated the electrolyte-induced collapse of a polyelectrolyte brush covalently attached to a planar solid surface. Positively charged poly-4-vinyl [N-methyl-pyridinium] (MePVP) brushes were prepared in situ at the surface by free radical chain polymerization using a surface-immobilized initiator monolayer ("grafting from" technique) and 4-vinylpyridine as the monomer, followed by a polymer-analogous quaternization reaction. The height of the brushes was measured as a function of the external salt concentration via multiple-angle null ellipsometry. As predicted by mean-field theory, the height of the MePVP brushes remains unaffected by the addition of low amounts of external salt. At higher salt concentrations the brush height decreases. The extent to which the brush shrinks strongly depends on the nature of the salt present in the environment. MePVP brushes collapse to almost the dry layer thickness upon the addition of potassium iodide to a contacting aqueous medium. In contrast, the collapse of MePVP brushes having bromide or chloride counterions is much less pronounced. These brushes remain in a highly swollen state even after large amounts of salt have been added to the solution.

  4. Complex formation between polyelectrolytes and oppositely charged oligoelectrolytes

    NASA Astrophysics Data System (ADS)

    Zhou, Jiajia; Barz, Matthias; Schmid, Friederike

    2016-04-01

    We study the complex formation between one long polyanion chain and many short oligocation chains by computer simulations. We employ a coarse-grained bead-spring model for the polyelectrolyte chains and model explicitly the small salt ions. We systematically vary the concentration and the length of the oligocation and examine how the oligocations affects the chain conformation, the static structure factor, the radial and axial distribution of various charged species, and the number of bound ions in the complex. At low oligocation concentration, the polyanion has an extended structure. Upon increasing the oligocation concentration, the polyanion chain collapses and forms a compact globule, but the complex still carries a net negative charge. Once the total charge of the oligocations is equal to that of the polyanion, the collapse stops and is replaced by a slow expansion. In this regime, the net charge on the complexes is positive or neutral, depending on the microion concentration in solution. The expansion can be explained by the reduction of the oligocation bridging. We find that the behavior and the structure of the complex are largely independent of the length of oligocations, and very similar to that observed when replacing the oligocations by multivalent salt cations, and conclude that the main driving force keeping the complex together is the release of monovalent counterions and coions. We speculate on the implications of this finding for the problem of controlled oligolyte release and oligolyte substitution.

  5. Molecular Origins of Thermal Transitions in Polyelectrolyte Assemblies

    NASA Astrophysics Data System (ADS)

    Yildirim, Erol; Zhang, Yanpu; Antila, Hanne S.; Lutkenhaus, Jodie L.; Sammalkorpi, Maria; Aalto Team; Texas A&M Team

    2015-03-01

    Polyelectrolyte (PE) multilayers and complexes formed from oppositely charged polymers can exhibit extraordinary superhydrophobicity, mechanical strength and responsiveness resulting in applications ranging functional membranes, optics, sensors and drug delivery. Depending on the assembly conditions, PE assemblies may undergo a thermal transition from glassy to soft behavior under heating. Our earlier work using thermal analysis measurements shows a distinct thermal transition for PE layer-by-layer (LbL) systems assembled with added salt but no analogous transition in films assembled without added salt or dry systems. These findings raise interesting questions on the nature of the thermal transition; here, we explore its molecular origins through characterization of the PE aggregates by temperature-controlled all-atom molecular dynamics simulations. We show via molecular simulations the thermal transition results from the existence of an LCST (lower critical solution temperature) in the PE systems: the diffusion behavior, hydrogen bond formation, and bridging capacity of water molecules plasticizing the complex changes at the transition temperature. We quantify the behavior, map its chemistry specificity through comparison of strongly and weakly charged PE complexes, and connect the findings to our interrelated QCM-D experiments.

  6. Conjugated Polyelectrolyte Nanoparticles for Apoptotic Cell Imaging.

    PubMed

    Liu, Yu; Wu, Pan; Jiang, Jianhua; Wu, Jiatao; Chen, Yan; Tan, Ying; Tan, Chunyan; Jiang, Yuyang

    2016-08-31

    Three anionic conjugated polyelectrolytes (CPEs) with poly(p-phenylene ethynylene thiophene) backbones were designed and synthesized, among which PPET3-CO2Na showed greater molar extinction coefficient with red-shifted bands in both absorption and emission spectra compared to the well-studied PPE-CO2Na polymer. PPET3-CO2Na was thus chosen to construct CPE-based nanoparticles (CPNs) with cationic octaarginine (R8) peptide through electrostatic-interaction-induced self-assembly. Due to plasma membrane permeabilization and mitochondrial outer membrane permeabilization (MOMP) in early apoptotic cells, PPET3/R8 CPNs demonstrated excellent colocalization with MitoTracker Red in apoptotic cells instead of normal cells, which had potential application in cell imaging for early apoptosis recognition. PMID:27525500

  7. Conjugated polyelectrolytes: synthesis, photophysics, and applications.

    PubMed

    Jiang, Hui; Taranekar, Prasad; Reynolds, John R; Schanze, Kirk S

    2009-01-01

    Organic optoelectronic polymers have evolved to the point where fine structural control of the conjugated main chain, coupled with solubilizing and property-modifying pendant substituents, provides an entirely new class of materials. Conjugated polyelectrolytes (CPEs) provide a unique set of properties, including water solubility and processability, main-chain-controlled exciton and charge transport, variable band gap light absorption and fluorescence, ionic interactions, and aggregation phenomena. These characteristics allow these materials to be considered for use in applications ranging from light-emitting diodes and electrochromic color-changing displays, to photovoltaic devices and photodetectors, along with chemical and biological sensors. This Review describes the evolution of CPE structures from simple polymers to complex materials, describes numerous photophysical aspects, including amplified quenching in macromolecules and aggregates, and illustrates how the physical and electronic properties lead to useful applications in devices. PMID:19444838

  8. The Adsorption of Polyelectrolytes on Hydroxyapatite Crystals.

    PubMed

    Tsortos; Nancollas

    1999-01-01

    The adsorption of two polyelectrolytes, poly-L-Glutamate and poly-L-Aspartate, on hydroxyapatite (HAP) crystals was studied both experimentally and theoretically. Langmuir adsorption isotherms were obtained for both these molecules, with binding constants K = 6 x 10(6) and 3 x 10(6) M-1, respectively, at 37.0 degreesC, pH 7.4, and 0.15 M ionic strength. A theoretical analysis of the data, based on a model proposed by Hesselink, suggested a "train-loop" type of adsorption with non-electrostatic energy terms 3.51 and 4.76 (kT) for poly-L-Glu and poly-L-Asp, respectively. Copyright 1999 Academic Press. PMID:9878142

  9. Macromolecular NMR spectroscopy for the non-spectroscopist: beyond macromolecular solution structure determination.

    PubMed

    Bieri, Michael; Kwan, Ann H; Mobli, Mehdi; King, Glenn F; Mackay, Joel P; Gooley, Paul R

    2011-03-01

    A strength of NMR spectroscopy is its ability to monitor, on an atomic level, molecular changes and interactions. In this review, which is intended for non-spectroscopist, we describe major uses of NMR in protein science beyond solution structure determination. After first touching on how NMR can be used to quickly determine whether a mutation induces structural perturbations in a protein, we describe the unparalleled ability of NMR to monitor binding interactions over a wide range of affinities, molecular masses and solution conditions. We discuss the use of NMR to measure the dynamics of proteins at the atomic level and over a wide range of timescales. Finally, we outline new and expanding areas such as macromolecular structure determination in multicomponent systems, as well as in the solid state and in vivo. PMID:21214861

  10. Adsorbing colloid flotation of Zn(II) with Fe(OH) sub 3 and polyelectrolytes

    SciTech Connect

    Wang, Wankung; Huang, Shangda )

    1989-11-01

    It was found that zinc ion could be removed from aqueous solutions by adsorbing colloid flotation with Fe(OH){sub 3} and sodium lauryl sulfate (SLS) provided that the ionic strength of the solution is low (containing no greater than 0.02 M NaNO{sub 3}). An excess dose of iron resulted in poor separation. Three types of polyelectrolytes were used as the activators to compensate for the effect of increasing ionic strength of the solutions. Betz 1150 (a weakly cationic acrylamide copolymer) was found to be the most effective activator. The separation was effective from a solution containing NaNO{sub 3} as high as 0.7 M when Betz 1150 was used as the activator.

  11. Nanomechanics of layer-by-layer polyelectrolyte complexes: a manifestation of ionic cross-links and fixed charges.

    PubMed

    Han, Biao; Chery, Daphney R; Yin, Jie; Lu, X Lucas; Lee, Daeyeon; Han, Lin

    2016-01-28

    This study investigates the roles of two distinct features of ionically cross-linked polyelectrolyte networks - ionic cross-links and fixed charges - in determining their nanomechanical properties. The layer-by-layer assembled poly(allylamine hydrochloride)/poly(acrylic acid) (PAH/PAA) network is used as the model material. The densities of ionic cross-links and fixed charges are modulated through solution pH and ionic strength (IS), and the swelling ratio, elastic and viscoelastic properties are quantified via an array of atomic force microscopy (AFM)-based nanomechanical tools. The roles of ionic cross-links are underscored by the distinctive elastic and viscoelastic nanomechanical characters observed here. First, as ionic cross-links are highly sensitive to solution conditions, the instantaneous modulus, E0, exhibits orders-of-magnitude changes upon pH- and IS-governed swelling, distinctive from the rubber elasticity prediction based on permanent covalent cross-links. Second, ionic cross-links can break and self-re-form, and this mechanism dominates force relaxation of PAH/PAA under a constant indentation depth. In most states, the degree of relaxation is >90%, independent of ionic cross-link density. The importance of fixed charges is highlighted by the unexpectedly more elastic nature of the network despite low ionic cross-link density at pH 2.0, IS 0.01 M. Here, the complex is a net charged, loosely cross-linked, where the degree of relaxation is attenuated to ≈50% due to increased elastic contribution arising from fixed charge-induced Donnan osmotic pressure. In addition, this study develops a new method for quantifying the thickness of highly swollen polymer hydrogel films. It also underscores important technical considerations when performing nanomechanical tests on highly rate-dependent polymer hydrogel networks. These results provide new insights into the nanomechanical characters of ionic polyelectrolyte complexes, and lay the ground for further

  12. Determination of electronic states of individually dissolved ( n, m) single-walled carbon nanotubes in solution

    NASA Astrophysics Data System (ADS)

    Tanaka, Yasuhiko; Hirayama, Kohei; Niidome, Yasuro; Nakashima, Naotoshi

    2009-11-01

    Solution redox chemistry is useful to understand the chirality-dependent electronic properties of single-walled carbon nanotubes (SWNTs). We have found that the electron transfer reactions of sodium dithionite with SWNTs cause photoluminescence (PL) quenching processes of 14 individually dissolved SWNTs in an aqueous micellar solution. Based on the analysis using the Nernst equation for the PL change, we have determined the conduction band ( c1) levels of the 14 isolated SWNTs. We have also estimated the valence band ( ν1) levels as well as the Fermi levels of the SWNTs using the reported bandgap values of the corresponding isolated SWNTs.

  13. Electrodeposition of layered manganese oxide nanocomposites intercalated with strong and weak polyelectrolytes.

    PubMed

    Nakayama, Masaharu; Tagashira, Hiroki

    2006-04-11

    Multilayered manganese oxide nanocomposites intercalated with strong (poly(diallyldimethylammonium) chloride, PDDA) and weak (poly(allylamine hydrochloride), PAH) polyelectrolytes can be produced on polycrystalline platinum electrode in a thin film form by a simple, one-step electrochemical route. The process involves a potentiostatic oxidation of aqueous Mn2+ ions at around +1.0 V (vs Ag/AgCl) in the presence of polyelectrolytes. Fully charged PDDA polycations are accommodated tightly in the interlayer space by electrostatic interaction with negative charges on the manganese oxide layers, leading to an interlayer distance of 0.97 nm. The layered film prepared with PAH has a larger polymer content (PAH/Mn molar ratio of 0.98) than that (PDDA/Mn molar ratio of 0.43) made with PDDA because of the smaller charging degree of PAH, exhibiting a larger interlayer distance (1.19 nm). The interlayer PAH contains neutral (-NH2) and positively charged (-NH3(+)) amine groups, and the -NH3(+) groups are associated with Cl- (to generate -NH3(+) Cl- ion pairs) as well as the negatively charged manganese oxide layers. Both polyelectrolytes once incorporated were not ion exchanged with small cations in solution. The layered structure of PDDA/MnO(x) was collapsed during the reduction process in a KCl electrolyte solution, accompanying an expansion of the interlayer as a result of incorporation of K+ ions for charge neutrality. On the contrary, the layered PAH/MnO(x) film showed a good electrochemical response due to the redox reaction of Mn3+/Mn4+ couple with no change in the structure. X-ray photoelectron spectroscopy revealed that, in this case, excess negative charges generated on the manganese oxide layers upon reduction can be balanced by the protons being released from the -NH3(+) Cl- sites in the interlayer PAH; the Cl- anions becoming unnecessary are inevitably excluded from the interlayer, and vice versa upon oxidation. PMID:16584268

  14. Interactions between colloidal particles in the presence of an ultrahighly charged amphiphilic polyelectrolyte.

    PubMed

    Yu, Danfeng; Yang, Hui; Wang, Hui; Cui, Yingxian; Yang, Guang; Zhang, Jian; Wang, Jinben

    2014-12-01

    A novel amphiphilic polyelectrolyte denoted as PAGC8 and a traditional amphiphilic polyelectrolyte denoted as PASC8 were prepared. PAGC8 consisted of gemini-type surfactant segment based on 1,3-bis (N,N-dimethyl-N-octylammonium)-2-propyl acrylate dibromide, while PASC8 incorporated acryloyloxyethyl-N,N-dimethyl-N-dodecylammonium bromide as single chain surfactant units within its repeat unit structure. Turbidity, stability, and zeta potential measurements were performed in the presence of PAGC8 and PASC8, respectively, to evaluate their effectiveness in inducing solid/liquid separations. It was found that the maximum transmittance was observed before the zeta potential values reached the isoelectric point, implying that not only charge neutralization but also charge-patch mechanism contributed to the separation process. Colloid probe atomic force microscopy technique was introduced to directly determine the interactions between surfaces in the presence of ultrahighly charged amphiphilic polyelectrolyte. On the basis of the AFM results, we have successfully interpreted the influence of the charge density of the polyelectrolytes on the phase stability. Electrostatic interaction played the dominant role in the flocculation processes, although both electrostatic interaction and hydrophobic effect provided contributions to the colloidal dispersions. The attractions upon surfaces approach in the case of PAGC8 were significantly larger than that of PASC8 due to the higher charge density. The strong peeling events upon retraction in the presence of PAGC8 implied that the hydrophobic effect was stronger than that of PASC8, which displayed the loose pulling events. A strong attraction was identified at shorter separation distances for both systems. However, these interactions cannot be successfully described by the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory of colloid stability due to the participation of charge-patch and strong hydrophobic effect. To account for the

  15. Polyelectrolyte Complexes of Low Molecular Weight PEI and Citric Acid as Efficient and Nontoxic Vectors for in Vitro and in Vivo Gene Delivery.

    PubMed

    Giron-Gonzalez, M Dolores; Salto-Gonzalez, Rafael; Lopez-Jaramillo, F Javier; Salinas-Castillo, Alfonso; Jodar-Reyes, Ana Belen; Ortega-Muñoz, Mariano; Hernandez-Mateo, Fernando; Santoyo-Gonzalez, Francisco

    2016-03-16

    Gene transfection mediated by the cationic polymer polyethylenimine (PEI) is considered a standard methodology. However, while highly branched PEIs form smaller polyplexes with DNA that exhibit high transfection efficiencies, they have significant cell toxicity. Conversely, low molecular weight PEIs (LMW-PEIs) with favorable cytotoxicity profiles display minimum transfection activities as a result of inadequate DNA complexation and protection. To solve this paradox, a novel polyelectrolyte complex was prepared by the ionic cross-linking of branched 1.8 kDa PEI with citric acid (CA). This system synergistically exploits the good cytotoxicity profile exhibited by LMW-PEI with the high transfection efficiencies shown by highly branched and high molecular weight PEIs. The polyectrolyte complex (1.8 kDa-PEI@CA) was obtained by a simple synthetic protocol based on the microwave irradiation of a solution of 1.8 kDa PEI and CA. Upon complexation with DNA, intrinsic properties of the resulting particles (size and surface charge) were measured and their ability to form stable polyplexes was determined. Compared with unmodified PEIs the new complexes behave as efficient gene vectors and showed enhanced DNA binding capability associated with facilitated intracellular DNA release and enhanced DNA protection from endonuclease degradation. In addition, while transfection values for LMW-PEIs are almost null, transfection efficiencies of the new reagent range from 2.5- to 3.8-fold to those of Lipofectamine 2000 and 25 kDa PEI in several cell lines in culture such as CHO-k1, FTO2B hepatomas, L6 myoblasts, or NRK cells, simultaneously showing a negligible toxicity. Furthermore, the 1.8 kDa-PEI@CA polyelectrolyte complexes retained the capability to transfect eukaryotic cells in the presence of serum and exhibited the capability to promote in vivo transfection in mouse (as an animal model) with an enhanced efficiency compared to 25 kDa PEI. Results support the polyelectrolyte complex

  16. Curves to determine the relative importance of advection and dispersion for solute and vapor transport

    USGS Publications Warehouse

    Garges, J.A.; Baehr, A.L.

    1998-01-01

    The relative importance of advection and dispersion for both solute and vapor transport can be determined from type curves or concentration, flux, or cumulative flux. The dimensionless form of the type curves provides a means to directly evaluate the importance of mass transport by advection relative to that of mass transport by diffusion and dispersion. Type curves based on an analytical solution to the advection-dispersion equation are plotted in terms of dimensionless time and Peclet number. Flux and cumulative flux type curves provide additional rationale for transport regime determination in addition to the traditional concentration type curves. The extension of type curves to include vapor transport with phase partitioning in the unsaturated zone is a new development. Type curves for negative Peclet numbers also are presented. A negative Peclet number characterizes a problem in which one direction of flow is toward the contamination source, and thereby diffusion and advection can act in opposite directions. Examples are the diffusion of solutes away from the downgradient edge of a pump-and-treat capture zone, the upward diffusion of vapors through the unsaturated zone with recharge, and the diffusion of solutes through a low hydraulic conductivity cutoff wall with an inward advective gradient.

  17. Determination of fluoroquinolone antibiotics through the fluorescent response of Eu(III) based nanoparticles fabricated by layer-by-layer technique.

    PubMed

    Davydov, Nikolay; Zairov, Rustem; Mustafina, Asiya; Syakayev, Viktor; Tatarinov, Dmitry; Mironov, Vladimir; Eremin, Sergei; Konovalov, Alexander; Mustafin, Marat

    2013-06-19

    The present work introduces the determination of fluoroquinolone antibiotics (FQs) in aqueous solutions through the fluorescent response of Eu(TTA)3 and [Eu(TTA)(3)1] (TTA(-) and 1 are thenoyltrifluoroacetonate and phosphine oxide derivative) complexes encapsulated into the polyelectrolyte capsules fabricated through layer-by-layer deposition of poly(sodium 4-styrenesulfonate) (PSS) and polyethyleneimine (PEI). The variation of luminescent core, polyelectrolyte deposition and concentration conditions reveals two modes of fluorescent response on FQs of diverse structure namely the sensitization and quenching of Eu(III) centered luminescence. The obtained regularities reveal the ternary complex formation and the ligand exchange occurring at the interface of polyelectrolyte coated [Eu(TTA)(3)1] based colloids as the reasons of the diverse fluorescent response of Eu(III) centered luminescence on FQs. The factors affecting the fluorescent response have been revealed, which are: the content of luminescent core, the mode of polyelectrolyte deposition, concentration and structure of FQs. The discrimination of moxifloxacin and lomefloxacin from levofloxacin, ofloxacin, difloxacin, perfloxacin through the quenching of Eu(III) luminescence in PSS-[Eu(TTA)(3)1] colloids has been revealed. PMID:23746410

  18. Sustained, Controlled and Stimuli-Responsive Drug Release Systems Based on Nanoporous Anodic Alumina with Layer-by-Layer Polyelectrolyte.

    PubMed

    Porta-I-Batalla, Maria; Eckstein, Chris; Xifré-Pérez, Elisabet; Formentín, Pilar; Ferré-Borrull, J; Marsal, Lluis F

    2016-12-01

    Controlled drug delivery systems are an encouraging solution to some drug disadvantages such as reduced solubility, deprived biodistribution, tissue damage, fast breakdown of the drug, cytotoxicity, or side effects. Self-ordered nanoporous anodic alumina is an auspicious material for drug delivery due to its biocompatibility, stability, and controllable pore geometry. Its use in drug delivery applications has been explored in several fields, including therapeutic devices for bone and dental tissue engineering, coronary stent implants, and carriers for transplanted cells. In this work, we have created and analyzed a stimuli-responsive drug delivery system based on layer-by-layer pH-responsive polyelectrolyte and nanoporous anodic alumina. The results demonstrate that it is possible to control the drug release using a polyelectrolyte multilayer coating that will act as a gate. PMID:27550052

  19. The Determination of the pH of Standard Buffer Solution: A Laboratory Experiment.

    ERIC Educational Resources Information Center

    Harris, K. R.

    1985-01-01

    Describes an experiment which shows: (1) how measurements of the reaction electromotive force for the cell (Pt/glass/NaCl(aq,m),buffer/AgCl/Ag/Pt) can be utilized in determining the absolute pH of the buffer; and (2) the demonstration of the use of the Debye-Huckel model of an electrolyte solution in solving an important electrochemical problem.…

  20. Rheological and kinetic study of the ultrasonic degradation of locust bean gum in aqueous saline and salt-free solutions.

    PubMed

    Li, Ruoshi; Feke, Donald L

    2015-11-01

    The ultrasonic degradation of locust bean gum (LBG) in aqueous solutions has been studied at 25°C for ultrasonication times up to 120 min. Although LBG is not a polyelectrolyte, the degradation extent and kinetics were found to be somewhat sensitive to the ionic conditions in solution, and this is attributed to changes in molecular conformation that can occur in different salt environments. Ultrasonic degradation was tracked by rheological measurements that lead to the determination of intrinsic viscosity for the LBG molecules. A kinetic model was also developed and successfully applied to characterize and predict the degradation results. PMID:26186852

  1. Experimentally determined swelling pressures and geochemical interactions of compacted Wyoming bentonite with highly alkaline solutions

    NASA Astrophysics Data System (ADS)

    Karnland, Ola; Olsson, Siv; Nilsson, Ulf; Sellin, Patrik

    The estimated quantity of cement for construction and sealing purposes is around 9E5 kg in the planned Swedish KBS3 repository for nuclear waste. The highly alkaline cement pore fluid (pH > 12) may affect other components in the repository, and especially the bentonite buffer is of concern. In this study, we simulated possible interactions between cement and bentonite by contacting highly compacted bentonite with high molar hydroxide solutions in a series of laboratory experiments. Wyoming bentonite (MX-80) and purified homo-ionic Na- and Ca-montmorillonite were used for tests with 0.1, 0.3 and 1.0 M NaOH, and saturated Ca(OH) 2 solutions. Pressure cells with permeable filters were loaded with compacted discs of bentonite at the proposed buffer density (2000 kg/m 3 at full water saturation). A hydroxide solution was circulated on one side of the cell and an isotonic chloride solution on the other during a minimum of 45 days. Swelling pressure and solution pH were monitored during the tests and the change in the solution composition and bentonite mineralogy were determined after completed tests. No effect on swelling pressure was observed in tests with 0.1 M NaOH (pH 12.9) or saturated Ca(OH) 2 solutions (pH 12.4) and the mineralogical/chemical changes of the clay were minimal. The bentonite swelling pressure was significantly reduced in the tests with 0.3 (pH 13.3) and 1.0 M (pH 13.8) NaOH solutions. The reduction seems to be due to an instant osmotic effect, and to a continuous dissolution of silica minerals, resulting in mass loss and, consequently, a decrease in density. At these high pH, the release of silica was dominating and the CEC of the clay increased by 20-25%. The structural formula of the smectite and X-ray diffraction tests for non-expandability (Greene-Kelly test) provided strong evidence that the dissolution of montmorillonite proceeds incongruently through an initial step of beidellitization. The calculated rate of silica release from

  2. Cyclic chronopotentiometric determination of sugars at Au and Pt microelectrodes in flowing solutions.

    PubMed

    Basa, Anna; Magnuszewska, Jolanta; Krogulec, Tadeusz; Baranski, Andrzej S

    2007-05-25

    The main advantage of the application of cyclic chronopotentiometry (CCP) in end-column CE detection arises from the fact that the detection parameters and the magnitude of the analytical signal are (in contrast with other electrochemical detection methods) independent of the ohmic polarization of the solution caused by the separation current at the detection end of the capillary. CCP was used to determine sugars on platinum and gold microelectrodes after separation by CE. The results obtained with a gold microelectrode were better. Subsequently this detection method was used for quantitative determination of sugars in honeys and for their authentication. PMID:16997311

  3. Analytical solutions for determining residual stresses in two-dimensional domains using the contour method

    PubMed Central

    Kartal, Mehmet E.

    2013-01-01

    The contour method is one of the most prevalent destructive techniques for residual stress measurement. Up to now, the method has involved the use of the finite-element (FE) method to determine the residual stresses from the experimental measurements. This paper presents analytical solutions, obtained for a semi-infinite strip and a finite rectangle, which can be used to calculate the residual stresses directly from the measured data; thereby, eliminating the need for an FE approach. The technique is then used to determine the residual stresses in a variable-polarity plasma-arc welded plate and the results show good agreement with independent neutron diffraction measurements. PMID:24204187

  4. Complexation of oppositely charged polyelectrolytes in gene delivery and biology

    NASA Astrophysics Data System (ADS)

    Shklovskii, Boris

    2009-03-01

    Charge inversion of a DNA double helix by a positively charged flexible polymer (polyelectrolyte) is widely used to facilitate DNA contact with negative cell membranes for gene delivery. Motivated by this application in the first part of the talk I study the phase diagram a solution of long polyanions (PA) with a shorter polycations (PC) as a function the ratio of total charges of PC and PA in the solution, x, and the concentration of monovalent salt. Each PA attracts many PCs to form a complex. When x= 1, the complexes are neutral and condense in a macroscopic drop. When x is far away from 1, complexes are strongly charged and stable. PA are overcharged by PC at x > 1 and undercharged by PC at x < 1. As x approaches 1, PCs attached to PA disproportionate between complexes. Some complexes become neutral and condensed in a macroscopic drop while others become even stronger charged and stay free. The second part of the talk deals with biological example of PA -PC complexes namely self-assembly of vegetable viruses from long ss-RNA molecule paying role of scaffold and identical capsid proteins with long positive tails. I show that optimization Coulomb energy of the virus leads to the charge of RNA twice larger than the total charge of the capsid, in agreement with the experimental data. Then I discuss kinetics of the Coulomb complexation driven virus self-assembly. Capsid proteins stick to unassembled chain of ss RNA (which we call ``antenna'') and slide on it towards the assembly site. I show that at excess of capsid proteins such one-dimensional diffusion accelerates self-assembly more than ten times. On the other hand at excess of ss-RNA, antenna slows self-assembly down. Several experiments are proposed to verify the role of ss-RNA antenna in self-assembly.

  5. Formation of microcapsules from polyelectrolyte and covalent interactions.

    PubMed

    Breguet, Véronique; Gugerli, Raphaël; Pernetti, Mimma; von Stockar, Urs; Marison, Ian W

    2005-10-11

    A new approach combining electrostatic and covalent bonds was established for the formation of resistant capsules with long-term stability under physiological conditions. Three kinds of interactions were generated in the same membrane: (1) electrostatic bonds between alginate and poly-L-lysine (PLL), (2) covalent bonds (amides) between propylene-glycol-alginate (PGA) and PLL, and (3) covalent bonds (amides) between BSA and PGA. Down-scaling of the capsules size (< or =1 mm diameter) with a jet break-up technology was achieved by modifying the rheological properties of the polymer solution. Viscosity of the PGA solution was reduced by 95% with four successive pH stabilizations (pH 7), while filtration (0.2 microm) and sterilization was possible. Covalent bond formation was initiated by addition of NaOH (pH 11) using a transacylation reaction. Kinetics of the chemical reaction (pH 11) were simulated by two mathematical models and adapted in order to preserve immobilization of animal cells. It was demonstrated that diffusion of NaOH in the absence of BSA resulted in gelation of 94% of the bead and death of 94% of the cells after 10 s reaction. By addition of BSA only 46% of the cells were killed within the same reaction time (10 s). Mechanical resistance of this new type of capsule could be increased 5-fold over the standard polyelectrolytic system (PLL-alginate). Encapsulated CHO cells were successfully cultivated for 1 month in a repetitive batch mode, with the mechanical resistance of the capsules decreasing by only 10% during this period. The combination of a synthetic and natural protein resulted in enhanced stability toward culture medium and proteolytic enzymes (250%). PMID:16207064

  6. Practical Considerations for Determination of Glass Transition Temperature of a Maximally Freeze Concentrated Solution.

    PubMed

    Pansare, Swapnil K; Patel, Sajal Manubhai

    2016-08-01

    Glass transition temperature is a unique thermal characteristic of amorphous systems and is associated with changes in physical properties such as heat capacity, viscosity, electrical resistance, and molecular mobility. Glass transition temperature for amorphous solids is referred as (T g), whereas for maximally freeze concentrated solution, the notation is (T g'). This article is focused on the factors affecting determination of T g' for application to lyophilization process design and frozen storage stability. Also, this review provides a perspective on use of various types of solutes in protein formulation and their effect on T g'. Although various analytical techniques are used for determination of T g' based on the changes in physical properties associated with glass transition, the differential scanning calorimetry (DSC) is the most commonly used technique. In this article, an overview of DSC technique is provided along with brief discussion on the alternate analytical techniques for T g' determination. Additionally, challenges associated with T g' determination, using DSC for protein formulations, are discussed. The purpose of this review is to provide a practical industry perspective on determination of T g' for protein formulations as it relates to design and development of lyophilization process and/or for frozen storage; however, a comprehensive review of glass transition temperature (T g, T g'), in general, is outside the scope of this work. PMID:27193003

  7. Novel routes for direct preparation of surface-modifying polyelectrolyte layers and patterned polymer surfaces

    NASA Astrophysics Data System (ADS)

    Sankhe, Amit Y.

    The focus of this research was on the use of surface-confined atom transfer radical polymerization (SC-ATRP) for growing surface-tethered brushes of electrolytic or charged monomers on solid substrates. The use of SC-ATRP to produce well-defined polymer brushes from monomers with non-ionic functionalities in aprotic solvents has been well documented. Although it is possible to produce PE brushes by postpolymerization chemical conversion of some neutral brushes, this approach limits the types of PE brushes that can be produced and uses organic solvents. Thus, to more widely open the design envelope in terms of types of PE brushes that can be made and to reduce the use of organic solvents, it would be beneficial to directly synthesize PE brushes using more environmentally friendly, "green" solvents, such as water, for the reaction media. But the direct ATRP of hydrophilic monomers with ionic groups presents new challenges due to the complex interactions of the charged monomers and water with the ATRP catalyst. In this dissertation, I report findings on SC-ATRP of charged monomers such as itaconic acid (IA), methacrylic acid (MAA) and sodium 4-styrenesulfonate (SS) in aqueous solutions. Surface-tethered polyelectrolyte brushes comprised of poly(itaconic acid) (PIA), poly(methacrylic acid) (PMAA) and poly(4-styrenesulfonate) (PSS) were grown using surface-confined atom transfer radical polymerization (ATRP). The surface-tethered initiator monolayer was formed by self-assembling 2-bromoisobutyryl bromide terminated thiol molecules on gold coated silicon substrates. This polymerization initiator molecule and a copper-based organometallic catalyst allowed tethered polyelectrolyte chains to be grown via radical polymerization at room temperature in aqueous solutions. To suppress consumption of the ATRP deactivator, a halide salt was added to the reaction mixture, which enabled controlled growth of the polyelectrolyte layers. Phase-modulated ellipsometry was used to follow

  8. Polyelectrolyte multilayer-assisted fabrication of non-periodic silicon nanocolumn substrates for cellular interface applications

    NASA Astrophysics Data System (ADS)

    Lee, Seyeong; Kim, Dongyoon; Kim, Seong-Min; Kim, Jeong-Ah; Kim, Taesoo; Kim, Dong-Yu; Yoon, Myung-Han

    2015-08-01

    Recent advances in nanostructure-based biotechnology have resulted in a growing demand for vertical nanostructure substrates with elaborate control over the nanoscale geometry and a high-throughput preparation. In this work, we report the fabrication of non-periodic vertical silicon nanocolumn substrates via polyelectrolyte multilayer-enabled randomized nanosphere lithography. Owing to layer-by-layer deposited polyelectrolyte adhesives, uniformly-separated polystyrene nanospheres were securely attached on large silicon substrates and utilized as masks for the subsequent metal-assisted silicon etching in solution. Consequently, non-periodic vertical silicon nanocolumn arrays were successfully fabricated on a wafer scale, while each nanocolumn geometric factor, such as the diameter, height, density, and spatial patterning, could be fully controlled in an independent manner. Finally, we demonstrate that our vertical silicon nanocolumn substrates support viable cell culture with minimal cell penetration and unhindered cell motility due to the blunt nanocolumn morphology. These results suggest that vertical silicon nanocolumn substrates may serve as a useful cellular interface platform for performing a statistically meaningful number of cellular experiments in the fields of biomolecular delivery, stem cell research, etc.Recent advances in nanostructure-based biotechnology have resulted in a growing demand for vertical nanostructure substrates with elaborate control over the nanoscale geometry and a high-throughput preparation. In this work, we report the fabrication of non-periodic vertical silicon nanocolumn substrates via polyelectrolyte multilayer-enabled randomized nanosphere lithography. Owing to layer-by-layer deposited polyelectrolyte adhesives, uniformly-separated polystyrene nanospheres were securely attached on large silicon substrates and utilized as masks for the subsequent metal-assisted silicon etching in solution. Consequently, non-periodic vertical

  9. Polyelectrolytes: Wastewater and sewage treatment. (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect

    Not Available

    1993-02-01

    The bibliography contains citations concerning polyelectrolytes in wastewater and water treatment. Topics include flocculation, coagulation, separation techniques, pollutant identification, water pollution sources, and sludge dehydration. Hospital wastewater processing, methods of synthesizing polyelectrolyte complexes, and performance evaluations of polyelectrolytes are also discussed. (Contains 250 citations and includes a subject term index and title list.)

  10. Polyelectrolytes: Wastewater and sewage treatment. (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect

    Not Available

    1994-04-01

    The bibliography contains citations concerning polyelectrolytes in wastewater and water treatment. Topics include flocculation, coagulation, separation techniques, pollutant identification, water pollution sources, and sludge dehydration. Hospital wastewater processing, methods of synthesizing polyelectrolyte complexes, and performance evaluations of polyelectrolytes are also discussed. (Contains 250 citations and includes a subject term index and title list.)

  11. Removal of textile dyes and metallic ions using polyelectrolytes and macroelectrolytes containing sulfonic acid groups.

    PubMed

    Caldera Villalobos, M; Peláez Cid, A A; Herrera González, Ana M

    2016-07-15

    This work reports the removal of textile dyes and metallic ions by means of adsorption and coagulation-flocculation using two polyelectrolytes and two macroelectrolytes containing sulfonic acid groups. The adsorption of textile dyes was studied in aqueous solutions containing cationic dyes and in wastewater containing a vat dye. Also, removal of vat and naphthol dyes was studied using the process of coagulation-flocculation. The results show these materials possess elevated adsorption capacity, and they accomplished removal rates above 97% in aqueous solutions. The removal of the vat dye improved the quality of the wastewater notably, and an uncolored effluent was obtained at the end of the treatment. The treatment using adsorption decreased the values for coloration, conductivity, suspended solids, and pH. The removal of vat and naphthol dyes by means of coagulation-flocculation was studied as well, and removal rates of 90% were obtained. The polyelectrolytes and macroelectrolytes also proved effective in the adsorption of metallic ions in wastewater. The treatment using adsorption accomplished high removal rates of metallic ions, and it showed greater selectivity towards Cu(2+), Fe(3+) and Pb(2+). A decrease in the content of solids as well as the values for COD and conductivity was observed in the wastewater as well. The analyses of FT-IR indicated that cationic dyes and metallic ions were chemisorbed by means of ionic exchange. PMID:27082258

  12. Polyelectrolyte complexes via desalting mixtures of hyaluronic acid and chitosan-Physicochemical study and structural analysis.

    PubMed

    Lalevée, G; Sudre, G; Montembault, A; Meadows, J; Malaise, S; Crépet, A; David, L; Delair, T

    2016-12-10

    Polyelectrolyte complexes (PECs) were prepared from Chitosan (CS) and Hyaluronic Acid (HYA) homogeneous mixtures of aqueous solutions. The method consisted of preparing a homogeneous mixture of the two polysaccharides via charge screening at high salt concentrations. Then, the mixture was dialyzed, leading to the controlled self-assembly of the two polyelectrolytes. Critical parameters like the chitosan degree of acetylation (DA) and molar mass (Mw), the residual salt concentration and the molar charge ratio r=nNH3(+) (CS)/nCOO(-) (HYA) accounted for the transition from homogeneous aqueous solutions to colloidal suspensions (r=0.1) or gel coacervates (r=0.5). The influence of the DA and Mw of CS was evaluated by visual observations, light scattering and rheological measurements. For low values of r, Small Angle X-ray Scattering (SAXS) experiments revealed that the HYA nanostructure was weakly affected by the presence of PECs. On the contrary, the structure was impacted when increasing r, revealing a heterogeneous aggregate morphology with ladder-like chain interactions. PMID:27577900

  13. Polyelectrolytes Ability in Reducing Atrazine Concentration in Water: Surface Effects

    PubMed Central

    Heijman, S. G. J.; Lopes, S. I. C.; Rietveld, L. C.

    2014-01-01

    This paper reports on the direct ability of two positively charged organic polyelectrolytes (natural-based and synthetic) to reduce the atrazine concentration in water. The adsorption study was set up using multiple glass vessels with different polymer dosing levels followed by ultrafiltration with a 1 kDa membrane. The addition of polymers exhibited a capability in reducing the atrazine concentration up to a maximum of 60% in surface-to-volume ratio experiments. In the beginning, the theoretical L-type of the isotherm of Giles' classification was expected with an increase in the dosage of the polymer. However, in this study, the conventional type of isotherm was not observed. It was found that the adsorption of the cationic polymer on the negatively charged glass surface was necessary and influential for the removal of atrazine. Surface-to-volume ratio adsorption experiments were performed to elucidate the mechanisms and the polymer configuration. The glass surface area was determined to be a limiting parameter in the adsorption mechanism. PMID:25197693

  14. Polyelectrolytes ability in reducing atrazine concentration in water: surface effects.

    PubMed

    Mohd Amin, Mohamad Faiz; Heijman, S G J; Lopes, S I C; Rietveld, L C

    2014-01-01

    This paper reports on the direct ability of two positively charged organic polyelectrolytes (natural-based and synthetic) to reduce the atrazine concentration in water. The adsorption study was set up using multiple glass vessels with different polymer dosing levels followed by ultrafiltration with a 1 kDa membrane. The addition of polymers exhibited a capability in reducing the atrazine concentration up to a maximum of 60% in surface-to-volume ratio experiments. In the beginning, the theoretical L-type of the isotherm of Giles' classification was expected with an increase in the dosage of the polymer. However, in this study, the conventional type of isotherm was not observed. It was found that the adsorption of the cationic polymer on the negatively charged glass surface was necessary and influential for the removal of atrazine. Surface-to-volume ratio adsorption experiments were performed to elucidate the mechanisms and the polymer configuration. The glass surface area was determined to be a limiting parameter in the adsorption mechanism. PMID:25197693

  15. Electrokinetic properties of soil minerals and soils modified with polyelectrolytes

    NASA Astrophysics Data System (ADS)

    Kurochkina, G. N.; Pinskii, D. L.; Haynos, M.; Sokolowska, Z.; Tsesla, I.

    2014-07-01

    The formation features of nanoadsorption polyelectrolyte (PE) layers with the formation of a mineral-organic matrix on the surface of clay minerals and soils (kaolinite, montmorillonite, quartz sand, gray forest soil, and chernozemic soil) have been elucidated by direct adsorption measurements. It has been found that the experimental values for the limit adsorption of polyacrylamide (PAM) and polyacrylic acid (PAA) on all the minerals are significantly higher than the calculated values for the formation of a monolayer. This indicates adsorption on the surface of not only separate macromolecules but also secondary PE structures as packets or fibrils determining the cluster-matrix structure of the modified surface. The study of the electro-surface properties (electrophoretic mobility, electrokinetic potential, pH, and electroconductivity) of mineral and soil particles adsorption-modified with PEs has confirmed the differences in the adsorption mechanisms (from physical sorption to chemisorption) with the formation of surface compounds depending on the different polar groups of PEs and the mineral type.

  16. Polyelectrolyte/surfactant films spread from neutral aggregates.

    PubMed

    Campbell, Richard A; Tummino, Andrea; Noskov, Boris A; Varga, Imre

    2016-06-28

    We describe a new methodology to prepare loaded polyelectrolyte/surfactant films at the air/water interface by exploiting Marangoni spreading resulting from the dynamic dissociation of hydrophobic neutral aggregates dispensed from an aqueous dispersion. The system studied is mixtures of poly(sodium styrene sulfonate) with dodecyl trimethylammonium bromide. Our approach results in the interfacial confinement of more than one third of the macromolecules in the system even though they are not even surface-active without the surfactant. The interfacial stoichiometry of the films was resolved during measurements of surface pressure isotherms in situ for the first time using a new implementation of neutron reflectometry. The interfacial coverage is determined by the minimum surface area reached when the films are compressed beyond a single complete surface layer. The films exhibit linear ripples on a length scale of hundreds of micrometers during the squeezing out of material, after which they behave as perfectly insoluble membranes with consistent stoichiometric charge binding. We discuss our findings in terms of scope for the preparation of loaded membranes for encapsulation applications and in deposition-based technologies. PMID:27221521

  17. Needlelike and spherical polyelectrolyte complex nanoparticles of poly(l-lysine) and copolymers of maleic acid.

    PubMed

    Müller, M; Reihs, T; Ouyang, W

    2005-01-01

    We report on the bulk and surface properties of dispersions consisting of nonstoichiometric polyelectrolyte complex (PEC) nanoparticles. PEC nanoparticles were prepared by mixing poly(l-lysine) (PLL) or poly(diallyldimethylammonium chloride) (PDADMAC) with poly(maleic acid-co-alpha-methylstyrene) (PMA-MS) or poly(maleic acid-co-propylene) (PMA-P). The monomolar mixing ratio was n-/n+ = 0.6, and the concentration ranged from 1 to 6 mmol/L. Subsequent centrifugation enabled the separation of the excess polycation, resulting in a stable coacervate phase further used in the experiments. The bulk phase parameters turbidity and hydrodynamic radius (R(h)) of the PEC nanoparticles showed a linear dependence on the total polymer content independently of the mixed polyelectrolytes. This can be interpreted by the increased collision probability of the polyelectrolyte chains when the overlap concentration is approached or exceeded. Different morphologies of the cationic PEC nanoparticles, which were solution-cast onto Si supports, were obtained by atomic force microscopy (AFM). The combinations of PLL/PMA-MS and PDADMAC/PMA-MS revealed more or less hemispherical particle shapes, whereas that of PLL/PMA-P revealed an elongated needlelike particle shape. Circular dichroism and attenuated total reflection Fourier transform infrared (ATR-FTIR) measurements proved the alpha-helical conformation for the PEC PLL/PMA-P and the random coil conformation for the PEC PLL/PMA-MS. We conclude that stiff alpha-helical PLL induces anisotropic elongated PEC nanoparticles, whereas randomly coiled PLL forms isotropic spherical PEC nanoparticles. PMID:15620340

  18. In vitro interaction of polyelectrolyte nanocapsules with model cells.

    PubMed

    Łukasiewicz, Sylwia; Szczepanowicz, Krzysztof

    2014-02-01

    The nanocapsules based on a liquid core with polyelectrolyte shells prepared by the technique of sequential adsorption of polyelectrolytes (LbL) were investigated to verify capsules bioacceptance. Using AOT (docusate sodium salt) as emulsifier, we obtained liquid cores, stabilized by the interfacial complex AOT/PLL (poly-l-lysine hydrobromide). These liquid cores were encapsulated by sequential adsorption of polyelectrolytes using biocompatible polyanion PGA (poly-l-glutamic acid sodium salt) and biocompatible polycation PLL. The average size of the formed capsules was 60-80 nm. The influence of a number of polyelectrolytes layer in the shell (thickness of polyelectrolytes shell), surface charge, and capsule doses on cell viability was studied in a cellular coculture assay. In order to improve nanocapsules biocompatibility, the PEG-ylated external layers were prepared using PGA-g-PEG (PGA grafted by PEG poly(ethylene glycol)). For the most toxic nanocapsules (with only one polycation layer) about 90% of cells could survive when the concentration of nanocapsules was below 0.2 × 10(6) per one cell. That suggests that they use as a delivery vehicles is quite safe for living cells. Analysis of internalization of AOT(PLL/PGA)4-g-PEG in HEK 293 cells indicates that tested nanocapsules can easily penetrate cells membrane. PMID:24410319

  19. Ion transferring in polyelectrolyte networks in electric fields

    NASA Astrophysics Data System (ADS)

    Li, Honghao; Erbas, Aykut; Zwanikken, Jos; Olvera de La Cruz, Monica

    Ion-conducting polyelectrolyte gels have drawn the attention of many researchers in the last few decades as they have wide applications not only in lithium batteries but also as stretchable, transparent ionic conductor or ionic cables devices. However, ion dynamics in polyelectrolyte gels has been much less studied analytically or computationally due to the complicated interplay of long-range electrostatic and short-range interactions. Here we propose a coarse-grained non-equilibrium molecular dynamics simulation to study the ion dynamics in polyelectrolyte gels under external electric fields. We found a nonlinear response region where the molar conductivity of polyelectrolyte gels increases with external fields. We propose counterion redistribution under electric fields as the driving mechanism. We also found the ionic conductivity to be modulated by changing polylelectrolyte network topology such as the chain length. Our discovery reveals the essential difference of ion dynamics between electrolytes and polyelectrolyte gels. These results will expand our understanding in charged polymeric systems and help in designing ion-conducting devices with higher conductivity.

  20. Immediate Truth--Temporal Contiguity between a Cognitive Problem and Its Solution Determines Experienced Veracity of the Solution

    ERIC Educational Resources Information Center

    Topolinski, Sascha; Reber, Rolf

    2010-01-01

    A temporal contiguity hypothesis for the experience of veracity is tested which states that a solution candidate to a cognitive problem is more likely to be experienced as correct the faster it succeeds the problem. Experiment 1 varied the onset time of the appearance of proposed solutions to anagrams (50 ms vs. 150 ms) and found for both correct…

  1. Diblock Polyelectrolytic Copolymers Containing Cationic Iron and Cobalt Sandwich Complexes: Living ROMP Synthesis and Redox Properties.

    PubMed

    Gu, Haibin; Ciganda, Roberto; Hernandez, Ricardo; Castel, Patricia; Zhao, Pengxiang; Ruiz, Jaime; Astruc, Didier

    2016-04-01

    Diblock metallopolymer polyelectrolytes containing the two redox-robust cationic sandwich units [CoCp'Cp](+) and [FeCp'(η(6)-C6 Me6)](+) (Cp = η(5)-C5 H5; Cp' = η(5)-C5H4-) as hexafluorophosphate ([PF6](-)) salts are synthesized by ring-opening metathesis polymerization using Grubbs' third generation catalyst. Their electrochemical properties show full chemical and electrochemical reversibilities allowing fine determination of the copolymer molecular weight using Bard-Anson's electrochemical method by cyclic voltammetry. PMID:26841204

  2. Determination of nitric acid in highly radioactive solutions by the method of coulometric titration

    SciTech Connect

    Gromov, V.S.; Kuperman, A.Ya.; Smirnov, Yu.A.

    1988-11-01

    A procedure, a cell, and an electronic block have been developed for a long-distance determination of nitric acid in highly radioactive industrial solutions by coulometric titration under hot chamber conditions. A solution of a mixture of ammonium and potassium oxalates was used for the background and anoide electrolytes. This solution prevents the hydrolysis of the metal ions and appreciably decreases the rate of accumulation of the acid in the anode chamber of the cell. Titration with 0.1-0.5 A currents is carried out with internal generation of hydroxyl ions. The cell was prepared from a radiation-resistant and transparent material, poly(methyl methacrylate). The anode and cathode chambers were separated by a cellophane membrane, reinforced by a porous glass filter. By using the electronic coulometric block working together with a pH-meter (EV-74 or I-130) and with an automatic titration block (BAT-15), the titration can be carried out automatically, and the determination results can be obtained in a digital form.

  3. Analysis of hydration parameter for sugars determined from viscosity and its relationship with solution parameters.

    PubMed

    Sato, Yukinori; Miyawaki, Osato

    2016-01-01

    The hydration parameter h was obtained from the viscosity B-coefficients and the partial molar volume of solute, V2, for various sugars and urea in aqueous solutions. The parameter h showed a good correlation with the parameter α, determined from the activity coefficient of water, representing the solute-solvent interaction. The parameter h also showed a good correlation with the number of equatorial-OH groups (e-OH) for sugars, suggesting that the sugar molecules with the higher e-OH fit more to the water-structure. From the temperature dependence of the parameter h (dh/dT), the negative dh/dT for sugars suggested their water-structure making activity while the positive dh/dT for urea corresponded to its structure breaking effect. From the Arrhenius plot, the activation energy for h, Ea, was determined to be as low as 10 kJ/mol for disaccharides suggesting the stable hydration structure. The Ea increased with a decrease in molecular weight for sugars. PMID:26213015

  4. A rapid perturbation procedure for determining nonlinear flow solutions: Application to transonic turbomachinery flows

    NASA Technical Reports Server (NTRS)

    Stahara, S. S.; Elliott, J. P.; Spreiter, J. R.

    1981-01-01

    Perturbation procedures and associated computational codes for determining nonlinear flow solutions were developed to establish a method for minimizing computational requirements associated with parametric studies of transonic flows in turbomachines. The procedure that was developed and evaluated was found to be capable of determining highly accurate approximations to families of strongly nonlinear solutions which are either continuous or discontinuous, and which represent variations in some arbitrary parameter. Coordinate straining is employed to account for the movement of discontinuities and maxima of high gradient regions due to the perturbation. The development and results reported are for the single parameter perturbation problem. Flows past both isolated airfoils and compressor cascades involving a wide variety of flow and geometry parameter changes are reported. Attention is focused in particular on transonic flows which are strongly supercritical and exhibit large surface shock movement over the parametric range studied; and on subsonic flows which display large pressure variations in the stagnation and peak suction pressure regions. Comparisons with the corresponding 'exact' nonlinear solutions indicate a remarkable accuracy and range of validity of such a procedure.

  5. Determination of Gibbs energies of formation in aqueous solution using chemical engineering tools.

    PubMed

    Toure, Oumar; Dussap, Claude-Gilles

    2016-08-01

    Standard Gibbs energies of formation are of primary importance in the field of biothermodynamics. In the absence of any directly measured values, thermodynamic calculations are required to determine the missing data. For several biochemical species, this study shows that the knowledge of the standard Gibbs energy of formation of the pure compounds (in the gaseous, solid or liquid states) enables to determine the corresponding standard Gibbs energies of formation in aqueous solutions. To do so, using chemical engineering tools (thermodynamic tables and a model enabling to predict activity coefficients, solvation Gibbs energies and pKa data), it becomes possible to determine the partial chemical potential of neutral and charged components in real metabolic conditions, even in concentrated mixtures. PMID:26965669

  6. Determining the Transfer Function for Unsteady Pressure Measurements Using a Method of Characteristics Solution

    SciTech Connect

    Clark, Edward L.; Henfling, John F.; McBride, Donald D.

    1999-05-12

    An inverse Fourier transform method for removing lag from pressure measurements has been used by various researchers, given an experimentally derived transfer function to characterize the pressure plumbing. This paper presents a Method of Characteristics (MOC) solution technique for predicting the transfer function and thus easily determining its sensitivity to various plumbing pammeters. The MOC solution has been used in the pipeline industry for some time for application to transient flow in pipelines, but it also lends itself well to this application. For highly nonsteady pressures frequency-dependent friction can cause significant distortion of the traveling waves. This is accounted for in the formulation. A simple bench experiment and proof-of-principle test provide evidence to establish the range of validity of the method.

  7. A new approach to determine 147Pm in irradiated fuel solutions.

    PubMed

    Brennetot, René; Stadelmann, Guillaume; Caussignac, Céline; Gombert, Clémentine; Fouque, Michèle; Lamouroux, Christine

    2009-05-15

    Developments carried out in the Laboratory of Isotopic, Nuclear and Elementary Analyses in order to quantify (147)Pm in spent nuclear fuels analyzed at the CEA within the framework of the Burn Up Credit research program for neutronic code validation are presented here. This determination is essential for safety-criticality studies. The quantity and the nature of the radionuclides in irradiated fuel solutions force us to separate the elements of interest before measuring their isotopic content by mass spectrometry. The main objective of this study is to modify the separation protocol used in our laboratory in order to recover and to measure the (147)Pm at the same time as the other lanthanides and actinides determined by mass spectrometry. A very complete study on synthetic solution (containing or not (147)Pm) was undertaken in order to determine the yield of the various stages of separation carried out before obtaining the isolated Pm fraction from the whole of the elements present in the spent fuel solutions. With the lack of natural tracer to carry out the measurement with the isotope dilution technique, the great number of isotopes in fuel, the originality of this work rests on the use of another present lanthanide in fuel to define the output of separation. The yields were measured at the conclusion of each stage of separation with two others lanthanides in order to show that one of them could be used as a tracer to correct the measurement of the (147)Pm with the separation yield. The total yield (at the conclusion of the two stages of separation) was measured at the same time by ICP-MS and liquid scintillation. This last determination made it possible to validate the use of the (147)Sm (natural) to measure the (147)Pm in ICP-MS since the outputs determined in liquid scintillation and ICP-MS (starting from the radioactive decrease of the source having been used to make the synthetic solution) were equivalent. It is the first time that such measurement is

  8. KEY COMPARISON: Final report on CCQM-K38: Determination of PAHs in solution

    NASA Astrophysics Data System (ADS)

    Duewer, D. L.; May, W. E.; Parris, R. M.; Schantz, M. M.; Wise, S. A.; Piechotta, C.; Philipp, R.; Win, T.; Avila, M.; Pérez Urquiza, M.; Ulberth, F.; Kim, B.; Ishikawa, K.; Chen, D.; Krylov, A. I.; Kustidov, Y. A.; Lopushanskaya, E. M.

    2009-01-01

    Solutions of known mass fraction of organic analytes of interest are typically used to calibrate the measurement processes used in the determination of these analytes. Appropriate value assignments and uncertainty calculations for these calibration solutions are critical. For the Mutual Recognition Arrangement (MRA) developed by the CIPM, there are numerous Calibration and Measurement Capability Claims (CMCs) published in Category 3 Organic Solutions in the CIPM MRA Appendix C. Additional CMCs in this category are being proposed and reviewed. Evidence of successful participation in formal, relevant international comparisons is needed to support these claims. A CCQM pilot study conducted in 2004 was comprised of three parts: CCQM-P31a Organic Solution—Polycyclic Aromatic Hydrocarbons (PAHs), CCQM-P31b Organic Solution—Polychlorinated Biphenyl (PCB) Congeners, and CCQM-P31c Organic Solution—Chlorinated Pesticides. The results from the CCQM-P31a study are summarized below for the PAHs. After review of the P31a results at the April 2004 Organic Analytical Working Group (OAWG) meeting (Sèvres 2004) and the October 2004 OAWG meeting (Beijing 2004), it was decided to proceed with a key comparison study for PAHs in solution (CCQM-K38) with a concurrent second pilot study for the PAHs in solution (CCQM-P31a.1). CCQM-K38 was conducted during the same time period as a PAHs in soil pilot study (CCQM-P69) coordinated by CENAM and BAM. This Key Comparison study demonstrated a high level of equivalence in capabilities of the participating NMIs to successfully identify and measure five PAHs (phenanthrene, fluoranthene, benz[a]anthracene, benzo[a]pyrene, and benzo[ghi]perylene) in a solution using GC/MS-based methods. The PAHs measured in CCQM-K38 were selected to be representative of PAHs typically used as calibrants in the determination of the PAHs found in environmental samples and to provide the typical analytical measurement challenges encountered in the value

  9. Surfactant mediated polyelectrolyte self-assembly

    SciTech Connect

    Goswami, Monojoy; Borreguero Calvo, Jose M.; Pincus, Phillip A.; Sumpter, Bobby G.

    2015-11-25

    Self-assembly and dynamics of polyelectrolyte (PE) surfactant complex (PES) is investigated using molecular dynamics simulations. The complexation is systematically studied for five different PE backbone charge densities. At a fixed surfactant concentration the PES complexation exhibits pearl-necklace to agglomerated double spherical structures with a PE chain decorating the surfactant micelles. The counterions do not condense on the complex, but are released in the medium with a random distribution. The relaxation dynamics for three different length scales, polymer chain, segmental and monomer, show distinct features of the charge and neutral species; the counterions are fastest followed by the PE chain and surfactants. The surfactant heads and tails have the slowest relaxation due to their restricted movement inside the agglomerated structure. At the shortest length scale, all the charge and neutral species show similar relaxation dynamics confirming Rouse behavior at monomer length scales. Overall, the present study highlights the structure-property relationship for polymer-surfactant complexation. These results will help improve the understanding of PES complex and should aid in the design of better materials for future applications.

  10. Surfactant mediated polyelectrolyte self-assembly

    DOE PAGESBeta

    Goswami, Monojoy; Borreguero Calvo, Jose M.; Pincus, Phillip A.; Sumpter, Bobby G.

    2015-11-25

    Self-assembly and dynamics of polyelectrolyte (PE) surfactant complex (PES) is investigated using molecular dynamics simulations. The complexation is systematically studied for five different PE backbone charge densities. At a fixed surfactant concentration the PES complexation exhibits pearl-necklace to agglomerated double spherical structures with a PE chain decorating the surfactant micelles. The counterions do not condense on the complex, but are released in the medium with a random distribution. The relaxation dynamics for three different length scales, polymer chain, segmental and monomer, show distinct features of the charge and neutral species; the counterions are fastest followed by the PE chain andmore » surfactants. The surfactant heads and tails have the slowest relaxation due to their restricted movement inside the agglomerated structure. At the shortest length scale, all the charge and neutral species show similar relaxation dynamics confirming Rouse behavior at monomer length scales. Overall, the present study highlights the structure-property relationship for polymer-surfactant complexation. These results will help improve the understanding of PES complex and should aid in the design of better materials for future applications.« less

  11. Polyelectrolyte multilayered assemblies in biomedical technologies.

    PubMed

    Costa, Rui R; Mano, João F

    2014-05-21

    Layer-by-layer (LbL) was first introduced as a surface modification technique based on the sequential spontaneous adsorption of at least two distinct materials onto planar substrates. In the last two decades, this technique has been expanded to the coating of more convoluted geometries with high levels of tailored functionalization or with structural purposes. In this review, the potential uses of LbL films in biomedical engineering based mainly on the assembly of polyelectrolytes are reviewed. Examples of recent developments are provided, from the modification of substrates to improve their biointegration or to add specialized properties, to the three-dimensional extrapolation of this technique to more complex structures for cell seeding, drug delivery devices, biosensors and customizable microreactors. Future strategies and opportunities are compared with current medical and laboratorial methodologies. Through them, it is expected that LbL will contribute greatly to the development of new functional devices with high perspectives of return for the administration of active agents, supports for cells in regenerative medicine and tissue engineering, biosensing and construction of microtissues and disease models in the laboratory. PMID:24549278

  12. Experimental determination of the temperature dependence of water activities for a selection of aqueous organic solutions

    NASA Astrophysics Data System (ADS)

    Ganbavale, G.; Marcolli, C.; Krieger, U. K.; Zuend, A.; Stratmann, G.; Peter, T.

    2014-09-01

    This work presents experimental data of the temperature dependence of water activity in aqueous organic solutions relevant for tropospheric conditions (200-273 K). Water activity (aw) at low temperatures (T) is a crucial parameter for predicting homogeneous ice nucleation. We investigated temperature-dependent water activities, ice freezing and melting temperatures of solutions, and vapour pressures of a selection of atmospherically relevant aqueous organic systems. To measure aw over a wide composition range and with a focus on low temperatures, we use various aw measurement techniques and instruments: a dew point water activity meter, an electrodynamic balance (EDB), differential scanning calorimetry (DSC), and a setup to measure the total gas phase pressure at equilibrium over aqueous solutions. Water activity measurements were performed for aqueous multicomponent and multifunctional organic mixtures containing the functional groups typically found in atmospheric organic aerosols, such as hydroxyl, carboxyl, ketone, ether, ester, and aromatic groups. The aqueous organic systems studied at several fixed compositions over a considerable temperature range differ significantly in their temperature dependence. Aqueous organic systems of 1,4-butanediol and methoxyacetic acid show a moderate decrease in aw with decreasing temperature. The aqueous M5 system (a multicomponent system containing five different dicarboxylic acids) and aqueous 2-(2-ethoxyethoxy)ethanol solutions both show a strong increase of water activity with decreasing temperature at high solute concentrations for T < 270 K and T < 260 K, respectively. These measurements show that the temperature trend of aw can be reversed at low temperatures and that linear extrapolations of high-temperature data may lead to erroneous predictions. To avoid this, experimentally determined aw at low temperature are needed to improve thermodynamic models towards lower temperatures and for improved predictions of the ice

  13. Experimental determination of the temperature dependence of water activities for a selection of aqueous organic solutions

    NASA Astrophysics Data System (ADS)

    Ganbavale, G.; Marcolli, C.; Krieger, U. K.; Zuend, A.; Stratmann, G.; Peter, T.

    2014-05-01

    This work presents experimental data of the temperature dependence of water activity in aqueous organic solutions relevant for tropospheric conditions (200-273 K). Water activity (aw) at low temperatures (T) is a crucial parameter for predicting homogeneous ice nucleation. We investigated temperature dependent water activities, ice freezing and melting temperatures of solutions, and vapour pressures of a selection of atmospherically relevant aqueous organic systems. To measure aw over a wide composition range and with a focus on low temperatures, we use various aw measurement techniques and instruments: a dew point water activity meter, an electrodynamic balance (EDB), differential scanning calorimetry (DSC), and a setup to measure the total gas phase pressure at equilibrium over aqueous solutions. Water activity measurements were performed for aqueous multicomponent and multifunctional organic mixtures containing the functional groups typically found in atmospheric organic aerosols, such as hydroxyl, carboxyl, ketone, ether, ester, and aromatic groups. The aqueous organic systems studied at several fixed compositions over a considerable temperature range differ significantly in their temperature dependence. Aqueous organic systems of 1,4-butanediol and methoxyacetic acid show a moderate decrease in aw with decreasing temperature. The aqueous M5 system (a multicomponent system containing five different dicarboxylic acids) and aqueous 2-(2-ethoxyethoxy)ethanol solutions both show a strong increase of water activity with decreasing temperature at high solute concentrations for T<270 K and T<260 K, respectively. These measurements show that the temperature trend of aw can be reversed at low temperatures and that linear extrapolations of high temperature data may lead to erroneous predictions. To avoid this, experimentally determined aw at low temperature are needed to improve thermodynamic models towards lower temperatures and for improved predictions of the ice

  14. The evolution of cyclopropenium ions into functional polyelectrolytes

    SciTech Connect

    Jiang, Yivan; Freyer, Jessica L.; Cotanda, Pepa; Brucks, Spencer D.; Killops, Kato L.; Bandar, Jeffrey S.; Torsitano, Christopher; Balsara, Nitash P.; Lambert, Tristan H.; Campos, Luis M.

    2015-01-09

    We report that versatile polyelectrolytes with tunable physical properties have the potential to be transformative in applications such as energy storage, fuel cells and various electronic devices. Among the types of materials available for these applications, nanostructured cationic block copolyelectrolytes offer mechanical integrity and well-defined conducting paths for ionic transport. To date, most cationic polyelectrolytes bear charge formally localized on heteroatoms and lack broad modularity to tune their physical properties. To overcome these challenges, we describe herein the development of a new class of functional polyelectrolytes based on the aromatic cyclopropenium ion.We demonstrate the facile synthesis of a series of polymers and nanoparticles based on monomeric cyclopropenium building blocks incorporating various functional groups that affect physical properties. In conclusion, the materials exhibit high ionic conductivity and thermal stability due to the nature of the cationic moieties, thus rendering this class of new materials as an attractive alternative to develop ion-conducting membranes.

  15. The evolution of cyclopropenium ions into functional polyelectrolytes

    PubMed Central

    Jiang, Yivan; Freyer, Jessica L.; Cotanda, Pepa; Brucks, Spencer D.; Killops, Kato L.; Bandar, Jeffrey S.; Torsitano, Christopher; Balsara, Nitash P.; Lambert, Tristan H.; Campos, Luis M.

    2015-01-01

    Versatile polyelectrolytes with tunable physical properties have the potential to be transformative in applications such as energy storage, fuel cells and various electronic devices. Among the types of materials available for these applications, nanostructured cationic block copolyelectrolytes offer mechanical integrity and well-defined conducting paths for ionic transport. To date, most cationic polyelectrolytes bear charge formally localized on heteroatoms and lack broad modularity to tune their physical properties. To overcome these challenges, we describe herein the development of a new class of functional polyelectrolytes based on the aromatic cyclopropenium ion. We demonstrate the facile synthesis of a series of polymers and nanoparticles based on monomeric cyclopropenium building blocks incorporating various functional groups that affect physical properties. The materials exhibit high ionic conductivity and thermal stability due to the nature of the cationic moieties, thus rendering this class of new materials as an attractive alternative to develop ion-conducting membranes. PMID:25575214

  16. The evolution of cyclopropenium ions into functional polyelectrolytes

    NASA Astrophysics Data System (ADS)

    Jiang, Yivan; Freyer, Jessica L.; Cotanda, Pepa; Brucks, Spencer D.; Killops, Kato L.; Bandar, Jeffrey S.; Torsitano, Christopher; Balsara, Nitash P.; Lambert, Tristan H.; Campos, Luis M.

    2015-01-01

    Versatile polyelectrolytes with tunable physical properties have the potential to be transformative in applications such as energy storage, fuel cells and various electronic devices. Among the types of materials available for these applications, nanostructured cationic block copolyelectrolytes offer mechanical integrity and well-defined conducting paths for ionic transport. To date, most cationic polyelectrolytes bear charge formally localized on heteroatoms and lack broad modularity to tune their physical properties. To overcome these challenges, we describe herein the development of a new class of functional polyelectrolytes based on the aromatic cyclopropenium ion. We demonstrate the facile synthesis of a series of polymers and nanoparticles based on monomeric cyclopropenium building blocks incorporating various functional groups that affect physical properties. The materials exhibit high ionic conductivity and thermal stability due to the nature of the cationic moieties, thus rendering this class of new materials as an attractive alternative to develop ion-conducting membranes.

  17. Counterion-mediated protein adsorption into polyelectrolyte brushes.

    PubMed

    He, Su-Zhen; Merlitz, Holger; Sommer, Jens-Uwe; Wu, Chen-Xu

    2015-09-01

    We present molecular dynamics simulations of the interaction of fullerene-like, inhomogeneously charged proteins with polyelectrolyte brushes. A motivation of this work is the experimental observation that proteins, carrying an integral charge, may enter like-charged polymer brushes. Simulations of varying charge distributions on the protein surfaces are performed to unravel the physical mechanism of the adsorption. Our results prove that an overall neutral protein can be strongly driven into polyelectrolyte brush whenever the protein features patches of positive and negative charge. The findings reported here give further evidence that the strong adsorption of proteins is also driven by entropic forces due to counterion release, since charged patches on the surface of the proteins can act as multivalent counterions of the oppositely charged polyelectrolyte chains. A corresponding number of mobile co- and counterions is released from the brush and the vicinity of the proteins so that the entropy of the total system increases. PMID:26385737

  18. Influence of salt and rinsing protocol on the structure of PAH/PSS polyelectrolyte multilayers.

    PubMed

    Feldötö, Zsombor; Varga, Imre; Blomberg, Eva

    2010-11-16

    A quartz crystal microbalance (QCM) and dual polarization interferometry (DPI) have been utilized to study how the structure of poly(allylamine hydrochloride) (PAH)/poly(styrene sulfonate) (PSS) multilayers is affected by the rinsing method (i.e., the termination of polyelectrolyte adsorption). The effect of the type of counterions used in the deposition solution was also investigated, and the polyelectrolyte multilayers were formed in a 0.5 M electrolyte solution (NaCl and KBr). From the measurements, it was observed that thicker layers were obtained when using KBr in the deposition solution than when using NaCl. Three different rinsing protocols have been studied: (i) the same electrolyte solution as used during multilayer formation, (ii) pure water, and (iii) first a salt solution (0.5 M) and then pure water. When the multilayer with PAH as the outermost layer was exposed to pure water, an interesting phenomenon was discovered: a large change in the energy dissipation was measured with the QCM. This could be attributed to the swelling of the layer, and from both QCM and DPI it is obvious that only the outermost PAH layer swells (to a thickness of 25-30 nm) because of a decrease in ionic strength and hence an increase in intra- and interchain repulsion, whereas the underlying layers retain a very rigid and compact structure with a low water content. Interestingly, the outermost PAH layer seems to obtain very similar thicknesses in water independent of the electrolyte used for the multilayer buildup. Another interesting aspect was that the measured thickness with the DPI evaluated by a single-layer model did not correlate with the estimated thickness from the model calculations performed on the QCM-D data. Thus, we applied a two-layer model to evaluate the DPI data and the results were in excellent agreement with the QCM-D results. To our knowledge, this evaluation of DPI data has not been done previously. PMID:20886835

  19. Highly selective ensembles for D-fructose based on fluorescent method in aqueous solution

    NASA Astrophysics Data System (ADS)

    Wang, Zhijun; Lei, Haiying; Zhou, Chengyong; Wang, Guofeng; Feng, Liheng

    2012-06-01

    Three highly sensitive and selective switches for monosaccharides were composed by anionic polyelectrolyte PPPSO3Na and cationic viologen quencheres BBVs. The sensing processes of three ensembles (PPPSO3Na/o-BBV, PPPSO3Na/m-BBV and PPPSO3Na/p-BBV) to common seven monosaccharides have been determined by fluorescence spectra at pH 7.4 buffer solution. The results show that the three sensing ensembles all embody higher selectivity and sensitivity for D-fructose with reversible "on-off-on" fluorescence response. The research results can provide a new mode for developing highly selective probes.

  20. Larger red-shift in optical emissions obtained from the thin films of globular proteins (BSA, lysozyme) - polyelectrolyte (PAA) complexes

    NASA Astrophysics Data System (ADS)

    Talukdar, Hrishikesh; Kundu, Sarathi; Basu, Saibal

    2016-09-01

    Globular proteins (lysozyme and BSA) and polyelectrolyte (sodium polyacrylic acid) are used to form protein-polyelectrolyte complexes (PPC). Out-of-plane structures of ≈30-60 nm thick PPC films and their surface morphologies have been studied by using X-ray reflectivity and atomic force microscopy, whereas optical behaviors of PPC and protein conformations have been studied by using UV-vis, photoluminescence and FTIR spectroscopy respectively. Our study reveals that thin films of PPC show a larger red-shift of 23 and 16 nm in the optical emissions in comparison to that of pure protein whereas bulk PPC show a small blue-shift of ≈3 nm. A small amount of peak-shift is found to occur due to the heat treatment or concentration variation of the polyelectrolyte/protein in bulk solution but cannot produce such film thickness independent larger red-shift. Position of the emission peak remains nearly unchanged with the film thickness. Mechanism for such larger red-shift has been proposed.

  1. Limits of accuracy obtainable in the direct determination by fluorimetry of fluorescent whitening agents in solution.

    PubMed

    Anders, G

    1975-01-01

    In direct determination by fluorimetry the limits of detection are governed by the restricted light stability of fluorescent whitening agents (FWAs) in solution. The initial value of a fluorimetric reading can be registered by a rapid recorder, and in this way very light sensitive traces of FWAs as low as 10 parts per thousand million can be measured be measured with a statistical standard deviation of +/-15% for a single measurement and a reproducibility of +/-50% with a statistical certainty of 99%. PMID:1064529

  2. Determination of intramolecular hydrogen bonds in amikacin in water solution by NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Gaggelli, Elena; Gaggelli, Nicola; Maccotta, Antonella; Valensin, Gianni; Marini, Domenico; Di Cocco, Maria Enrica; Delfini, Maurizio

    1995-10-01

    An NMR investigation has been carried out on amikacin in water solution in the physiological pH range. Two-dimenstional heterocorrelated maps provide 1H NMR chemical shifts from the unambiguous assignment of the 13C NMR spectrum. Reorientational dynamics at the molecular level are interpreted in terms of a pseudoisotropic motion with a correlation time of 0.17 ns at 300 K. The pH and temperature dependences of 13C NMR chemical shifts are interpreted to delineate protonation equilibria (all p Ks are determined) and to assess the occurrence of two intermolecular hydrogen bonds, which are confirmed by molecular modelling.

  3. Critical Comparison between Modified Monier-Williams and Electrochemical Methods to Determine Sulfite in Aqueous Solutions

    PubMed Central

    Montes, C.; Vélez, J. H.; Ramírez, G.; Isaacs, M.; Arce, R.; Aguirre, M. J.

    2012-01-01

    In the present work, known concentration of sulfite aqueous solutions in the presence and absence of gallic acid was measured to corroborate the validity of modified Monier-Williams method. Free and bound-sulfite was estimated by differential pulse voltammetry. To our surprise, the modified Monier-Williams method (also known as aspiration method) showed to be very inaccurate for free-sulfite, although suitable for bound-sulfite determination. The differential pulse approach, using the standard addition method and a correction coefficient, proved to be swift, cheap, and very precise and accurate. PMID:22619610

  4. Fluorimetric determination of the active form of tetracycline, chloretetracycline and oxytetracycline in partially decomposed solutions.

    PubMed

    Regosz, A

    1977-11-01

    The content of tetracycline (1), chlortetracycline (2) and oxytetracycline (3) has been determined by use of the fluorimetric method in partially decomposed acqueous solutions of different pH values. The procedure consisted in the extraction of fluorescent calcium and 5.5-diethyl-barbituric acid complexes of 1 and 3 (with 2 calcium complex only) into an organic solvent. In the method, only complexes with undecomposed 1--3 show a strong fluorescence. Products of decomposition of the antibiotics did not affect significantly analytical results. Comparative investigations have been carried out with 1--3 using t.l.c. and turbidimetry. PMID:24855

  5. Determination of Absorption Coefficient of a Solution by a Simple Experimental Setup

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, Deepak; Akhildev, C.; Sreenivasan, P. V.; Leelamma, K. K.; Joseph, Lyjo K.; Anila, E. I.

    2011-10-01

    The absorption coefficients of aqueous potassium permanganate (KMnO4) solution at 638.8 nm for various concentrations are determined using a simple experimental set up. The setup consists of He-Ne laser source (Red, 638.8 nm, 10 mW), a glass jar in which the KMnO4 sample is taken, a mirror strip inclined at 45° to direct the laser beam towards the bottom of the glass jar, a traveling microscope to adjust the position of light dependent resistor (LDR) and a digital multimeter to measure the resistance.

  6. CONJUGATED POLYMERS AND POLYELECTROLYTES IN SOLAR PHOTOCONVERSION, Final Technical Report

    SciTech Connect

    Schanze, Kirk S

    2014-08-05

    This DOE-supported program investigated the fundamental properties of conjugated polyelectrolytes, with emphasis placed on studies of excited state energy transport, self-assembly into conjugated polyelectroyte (CPE) based films and colloids, and exciton transport and charge injection in CPE films constructed atop wide bandgap semiconductors. In the most recent grant period we have also extended efforts to examine the properties of low-bandgap donor-acceptor conjugated polyelectrolytes that feature strong visible light absorption and the ability to adsorb to metal-oxide interfaces.

  7. Soft X-ray microscopy to characterize polyelectrolyte assemblies.

    PubMed

    Köhler, Karen; Déjugnat, Christophe; Dubois, Monique; Zemb, Thomas; Sukhorukov, Gleb B; Guttmann, Peter; Möhwald, Helmuth

    2007-07-26

    Transmission microscopy with soft X-rays (TXM) is applied to image in-situ polyelectrolyte assemblies in aqueous environment. The method is element specific and at this stage exhibits a lateral resolution of 20 nm. With the specific examples of hollow capsules and full spheres made of PAH/PSS polyelectrolyte multilayers, it is shown quantitatively that heat treatment irreversibly reduces the water content in the membrane. These experiments complement those reported recently on the polyion system PDADMAC/PSS, which shows a different glass-transition behavior. Finally, the potential and present limitations of TXM are discussed. PMID:17428089

  8. Adsorption of highly charged Gaussian polyelectrolytes onto oppositely charged surfaces

    NASA Astrophysics Data System (ADS)

    Dutta, Sandipan; Jho, Y. S.

    2016-03-01

    In many biological processes highly charged biopolymers are adsorbed onto oppositely charged surfaces of macroions and membranes. They form strongly correlated structures close to the surface which cannot be explained by the conventional Poisson-Boltzmann theory. In this work strong coupling theory is used to study the adsorption of highly charged Gaussian polyelectrolytes. Two cases of adsorptions are considered, when the Gaussian polyelectrolytes are confined (a) by one charged wall, and (b) between two charged walls. The effects of salt and the geometry of the polymers on their adsorption-depletion transitions in the strong coupling regime are discussed.

  9. Influence of network topology on the swelling of polyelectrolyte nanogels.

    PubMed

    Rizzi, L G; Levin, Y

    2016-03-21

    It is well-known that the swelling behavior of ionic nanogels depends on their cross-link density; however, it is unclear how different topologies should affect the response of the polyelectrolyte network. Here we perform Monte Carlo simulations to obtain the equilibrium properties of ionic nanogels as a function of salt concentration Cs and the fraction f of ionizable groups in a polyelectrolyte network formed by cross-links of functionality z. Our results indicate that the network with cross-links of low connectivity result in nanogel particles with higher swelling ratios. We also confirm a de-swelling effect of salt on nanogel particles. PMID:27004897

  10. Simulation of complexes between linear polyelectrolyte and charged dendrimer

    NASA Astrophysics Data System (ADS)

    Pandav, Gunja; Ganesan, Venkat

    2014-03-01

    Complexes formed by electrostatic interactions between dendrimer having cationic terminal groups and anionic linear polyelectrolyte are studied using hybrid Monte Carlo simulations. The excluded volume interactions are modeled using a self-consistent field and the electrostatic interactions are computed by solving Poisson equation. Such framework facilitates simulating large scale three-dimensional systems. We primarily focus on the effect of dendrimer generation number, stiffness of polyelectrolyte chain and systematically study its effect on change in shape and size of complexes. Our results suggest that the dendrimer structure and charge distribution has a significant impact on the complex formation.

  11. Interaction of cellulose-based cationic polyelectrolytes with mucin.

    PubMed

    Mazoniene, Edita; Joceviciute, Simona; Kazlauske, Jurgita; Niemeyer, Bernd; Liesiene, Jolanta

    2011-03-01

    Mucoadhesivity of water-soluble polymers is an important factor, when testing their suitability for controlled drug delivery systems. For this purpose, the interaction of new cationic cellulose polyelectrolytes with lyophilized mucin was investigated by means of turbidimetric titration, microscopy and measurement of zeta potential and particle size changes in the system. Results show that the cellulose derivatives interact with mucin. This interaction became stronger if cellulose macromolecules contained positively charged groups and an electrostatic interaction with the negatively charged mucin particles occurred. Under certain conditions flocculation of mucin particles by the cellulose polyelectrolyte was observed. PMID:21134731

  12. Multilayered Polyelectrolyte Microcapsules: Interaction with the Enzyme Cytochrome C Oxidase

    PubMed Central

    Pastorino, Laura; Dellacasa, Elena; Noor, Mohamed R.; Soulimane, Tewfik; Bianchini, Paolo; D'Autilia, Francesca; Antipov, Alexei; Diaspro, Alberto; Tofail, Syed A. M.; Ruggiero, Carmelina

    2014-01-01

    Cell-sized polyelectrolyte capsules functionalized with a redox-driven proton pump protein were assembled for the first time. The interaction of polyelectrolyte microcapsules, fabricated by electrostatic layer-by-layer assembly, with cytochrome c oxidase molecules was investigated. We found that the cytochrome c oxidase retained its functionality, that the functionalized microcapsules interacting with cytochrome c oxidase were permeable and that the permeability characteristics of the microcapsule shell depend on the shell components. This work provides a significant input towards the fabrication of an integrated device made of biological components and based on specific biomolecular functions and properties. PMID:25372607

  13. Concomitant osmotic and chaotropicity-induced stresses in Aspergillus wentii: compatible solutes determine the biotic window.

    PubMed

    de Lima Alves, Flávia; Stevenson, Andrew; Baxter, Esther; Gillion, Jenny L M; Hejazi, Fakhrossadat; Hayes, Sandra; Morrison, Ian E G; Prior, Bernard A; McGenity, Terry J; Rangel, Drauzio E N; Magan, Naresh; Timmis, Kenneth N; Hallsworth, John E

    2015-08-01

    Whereas osmotic stress response induced by solutes has been well-characterized in fungi, less is known about the other activities of environmentally ubiquitous substances. The latest methodologies to define, identify and quantify chaotropicity, i.e. substance-induced destabilization of macromolecular systems, now enable new insights into microbial stress biology (Cray et al. in Curr Opin Biotechnol 33:228-259, 2015a, doi: 10.1016/j.copbio.2015.02.010 ; Ball and Hallsworth in Phys Chem Chem Phys 17:8297-8305, 2015, doi: 10.1039/C4CP04564E ; Cray et al. in Environ Microbiol 15:287-296, 2013a, doi: 10.1111/1462-2920.12018 ). We used Aspergillus wentii, a paradigm for extreme solute-tolerant fungal xerophiles, alongside yeast cell and enzyme models (Saccharomyces cerevisiae and glucose-6-phosphate dehydrogenase) and an agar-gelation assay, to determine growth-rate inhibition, intracellular compatible solutes, cell turgor, inhibition of enzyme activity, substrate water activity, and stressor chaotropicity for 12 chemically diverse solutes. These stressors were found to be: (i) osmotically active (and typically macromolecule-stabilizing kosmotropes), including NaCl and sorbitol; (ii) weakly to moderately chaotropic and non-osmotic, these were ethanol, urea, ethylene glycol; (iii) highly chaotropic and osmotically active, i.e. NH4NO3, MgCl2, guanidine hydrochloride, and CaCl2; or (iv) inhibitory due primarily to low water activity, i.e. glycerol. At ≤0.974 water activity, Aspergillus cultured on osmotically active stressors accumulated low-M r polyols to ≥100 mg g dry weight(-1). Lower-M r polyols (i.e. glycerol, erythritol and arabitol) were shown to be more effective for osmotic adjustment; for higher-M r polyols such as mannitol, and the disaccharide trehalose, water-activity values for saturated solutions are too high to be effective; i.e. 0.978 and 0.970 (25 ºC). The highly chaotropic, osmotically active substances exhibited a stressful level of

  14. Determination of Solution Accuracy of Numerical Schemes as Part of Code and Calculation Verification

    SciTech Connect

    Blottner, F.G.; Lopez, A.R.

    1998-10-01

    This investigation is concerned with the accuracy of numerical schemes for solving partial differential equations used in science and engineering simulation codes. Richardson extrapolation methods for steady and unsteady problems with structured meshes are presented as part of the verification procedure to determine code and calculation accuracy. The local truncation error de- termination of a numerical difference scheme is shown to be a significant component of the veri- fication procedure as it determines the consistency of the numerical scheme, the order of the numerical scheme, and the restrictions on the mesh variation with a non-uniform mesh. Genera- tion of a series of co-located, refined meshes with the appropriate variation of mesh cell size is in- vestigated and is another important component of the verification procedure. The importance of mesh refinement studies is shown to be more significant than just a procedure to determine solu- tion accuracy. It is suggested that mesh refinement techniques can be developed to determine con- sistency of numerical schemes and to determine if governing equations are well posed. The present investigation provides further insight into the conditions and procedures required to effec- tively use Richardson extrapolation with mesh refinement studies to achieve confidence that sim- ulation codes are producing accurate numerical solutions.

  15. Validation of a new restraint docking method for solution structure determinations of protein-ligand complexes.

    PubMed

    Polshakov, V I; Morgan, W D; Birdsall, B; Feeney, J

    1999-06-01

    A new method is proposed for docking ligands into proteins in cases where an NMR-determined solution structure of a related complex is available. The method uses a set of experimentally determined values for protein-ligand, ligand-ligand, and protein-protein restraints for residues in or near to the binding site, combined with a set of protein-protein restraints involving all the other residues which is taken from the list of restraints previously used to generate the reference structure of a related complex. This approach differs from ordinary docking methods where the calculation uses fixed atomic coordinates from the reference structure rather than the restraints used to determine the reference structure. The binding site residues influenced by replacing the reference ligand by the new ligand were determined by monitoring differences in 1H chemical shifts. The method has been validated by showing the excellent agreement between structures of L. casei dihydrofolate reductase trimetrexate calculated by conventional methods using a full experimentally determined set of restraints and those using this new restraint docking method based on an L. casei dihydrofolate reductase methotrexate reference structure. PMID:10610140

  16. Diffusion behavior of lysozyme in aqueous ammonium sulfate solutions under varying solution conditions as determined by dynamic light scattering

    SciTech Connect

    Fornefeld, U.M.; Kuehner, D.E.; Blanch, H.W.; Prausnitz, J.M. . Dept. of Chemical Engineering Lawrence Berkeley Lab., CA . Chemical Sciences Div.)

    1994-12-01

    As proteins gain significance in commercial applications such as pharmaceuticals, detergents, organic waste management and cosmetics, efficient and economical recovery of these valuable biomolecules is of increasing importance. the salting-out process has found widespread application in the area of protein separations. To date, salt-induced precipitation of proteins from complex aqueous solutions remains largely an empirical process; no comprehensive model exists to predict salting-out phase equilibria in protein solutions. Rational predictive models for salt-induced precipitation will therefore be of great value in protein purification, both on the preparative and the analytical scale. Any attempt to model theoretically salt-induced protein precipitation must include the known physics of protein interactions in aqueous solution. With this in mind, it is crucial to acknowledge that protein precipitation is fundamentally an aggregation process. In order to incorporate aggregation effects into ongoing efforts to model salting out of proteins, it is necessary to quantify the degree of aggregation as a function of solution conditions. Therefore, dynamic light scattering measurements were performed with a well-studied protein, hen-egg-white lysozyme, under several solution conditions.

  17. The potentiometric determination of stability constants for zinc acetate complexes in aqueous solutions to 295C

    SciTech Connect

    Giordano, T.H. ); Drummond, S.E. )

    1991-09-01

    A potentiometric method was used to determine the formation quotients of zinc acetate complexes in aqueous solutions from 50 to 295C at ionic strengths of 0.03, 0.3, and 1.0 m. The potentiometric titrations were carried out in an externally heated, Teflon-lined concentration cell fitted with hydrogen electrodes. Formal sodium acetate concentrations of the experimental solutions ranged from 0.001 to 0.1 m with acetic acid to sodium acetate ratios ranging from 30 to 300. Sodium trifluoromethanesulfonate (F{sub 3}CSO{sub 3}Na) was used as a supporting electrolyte. Stoichiometries and formation quotients for the complexes ZnCH{sub 3}COO{sup +}, Zn(CH{sub 3}COO){sub 2}, and Zn(CH{sub 3}COO){sub 3}{sup {minus}} were derived from the titration data by regression analysis. Stability constants at infinite dilution (K{sub n}) and other relevant thermodynamic quantities were calculated for these three complexes. Calculations of zinc speciation in acetate-chloride solutions show that zinc acetate complexes should have an importance similar to zinc chloride complexes in high acetate waters where chloride to acetate molal ratios are less than about 10.

  18. Determination of effective growth time for zinc oxide nanorods using chemical solution deposition

    NASA Astrophysics Data System (ADS)

    Kim, Kyung Ho; Umakoshi, Tomoyuki; Abe, Yoshio; Kawamura, Midori; Kiba, Takayuki

    2015-12-01

    Zinc oxide (ZnO) nanorods were grown on a ZnO seed layer using chemical solution deposition, and their growth behavior over various timescales was investigated. The structural properties of the nanorods were investigated using x-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM), and the pH of the solution was measured both before and after the reaction process. It was observed that the nanorods grew in two stages, with the first stage from 0 to 6 h time and the second stage at 12-24 h of time. When they were given 24 h of reaction time, the length and aspect ratio of the nanorods reached ∼2.6 μm and ∼54, respectively. The pH value of the solution changed during the whole process, and on reaching a pH value ∼8.1 after 36 h, the nanorods exhibited very stable size dimensions. The most effective growth time to yield nanorods with high aspect ratios was determined to be 24 h.

  19. Determination of Iron in Water Solution by Time-Resolved Femtosecond Laser-Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sergey, S. Golik; Alexey, A. Ilyin; Michael, Yu. Babiy; Yulia, S. Biryukova; Vladimir, V. Lisitsa; Oleg, A. Bukin

    2015-11-01

    The influence of the energy of femtosecond laser pulses on the intensity of Fe I (371.99 nm) emission line and the continuous spectrum of the plasma generated on the surface of Fe3+ water solution by a Ti: sapphire laser radiation with pulse duration < 45 fs and energies up to 7 mJ is determined. A calibration curve was obtained for Fe3+ concentration range from 0.5 g/L to the limit of detection in water solution, and its saturation was detected for concentrations above 0.25 g/L, which is ascribed to self-absorption. The 3σ- limit of detection obtained for Fe in water solution is 2.6 mg/L in the case of 7 mJ laser pulse energy. It is found that an increase of laser pulse energy insignificantly affects on LOD in the time-resolved LIBS and leads to a slight improvement of the limit of detection. supported by the Russian Science Foundation (agreement #14-50-00034) (measurements of limit of detection), Russian Foundation for Basic Research (NK 15-32-20878/15) obtained in the frame of “Organization of Scientific Research” in the Far Eastern Federal University supported by Ministry of Education and Science of Russian Federation

  20. A method for determining thermophysical properties of organic material in aqueous solutions: Succinic acid

    NASA Astrophysics Data System (ADS)

    Riipinen, I.; Svenningsson, B.; Bilde, M.; Gaman, A.; Lehtinen, K. E. J.; Kulmala, M.

    2006-12-01

    A method for determining evaporation rates and thermodynamic properties of aqueous solution droplets is introduced. The method combines evaporation rate measurements using modified TDMA technique with data evaluation using an accurate evaporation model. The first set of data has been collected and evaluated for succinic acid aqueous solution droplets. Evaporation rates of succinic acid solution droplets have been measured using a TDMA system at controlled relative humidity (65%) and temperature (298 K). A temperature-dependent expression for the saturation vapour pressure of pure liquid phase succinic acid at atmospheric temperatures has been derived by analysing the evaporation rate data with a numerical model. The obtained saturation vapour pressure of liquid phase succinic acid is ln( p) = 118.41 - 16204.8/ T - 12.452ln( T). The vapour pressure is in unit of Pascal and the temperature in Kelvin. A linear expression for the enthalpy of vaporization for liquid state succinic acid is also presented. According to the results presented in the following, a literature expression for the vapour pressure of liquid phase succinic acid defined for temperatures higher than 461 K [Yaws, C.L., 2003. Yaws' Handbook of Thermodynamic and Physical Properties of Chemical Compounds, Knovel] can be extrapolated to atmospheric temperatures with very good accuracy. The results also suggest that at 298 K the mass accommodation coefficient of succinic acid is unity or very close to unity.

  1. Porous Polyelectrolyte Hydrogels With Enhanced Swelling Properties Prepared Via Thermal Reverse Casting Technique

    NASA Astrophysics Data System (ADS)

    Salerno, Aurelio; Netti, Paolo A.

    2010-06-01

    In this work we investigated the preparation and characterization of porous polyelectrolyte hydrogels via thermal reverse casting technique. Polyacrylamide hydrogels were synthesized by free-radical crosslinking polymerization into the space of an agarose gel which, after the setting of the chemical gel, was removed to allow the formation of an interconnected porosity pathway. Two different monomer/agarose solution ratios were selected for the reverse casting process and, the resulting hydrogels characterized in terms of morphological, micro-structural and thermal properties, as well as swelling capability in solutions at different ionic strength. The results of this study demonstrated that proposed technique allowed the design of porous polyacrylamide hydrogels with well controlled pore structures. Furthermore, if compared to non porous polyacrylamide hydrogel, the as obtained hydrogels were characterized by enhanced swelling properties and that, these properties were fine tuned by the appropriate selection of the templating agent concentration.

  2. Influence of Corona Structure on Binding of an Ionic Surfactant in Oppositely Charged Amphiphilic Polyelectrolyte Micelles.

    PubMed

    Delisavva, Foteini; Uchman, Mariusz; Škvarla, Juraj; Woźniak, Edyta; Pavlova, Ewa; Šlouf, Miroslav; Garamus, Vasil M; Procházka, Karel; Štěpánek, Miroslav

    2016-04-26

    Interaction of polystyrene-block-poly(methacrylic acid) micelles (PS-PMAA) with cationic surfactant N-dodecylpyridinium chloride (DPCl) in alkaline aqueous solutions was studied by static and dynamic light scattering, SAXS, cryogenic transmission electron microscopy (cryo-TEM), isothermal titration calorimetry (ITC), and time-resolved fluorescence spectroscopy. ITC and fluorescence measurements show that there are two distinct regimes of surfactant binding in the micellar corona (depending on the DPCl content) caused by different interactions of DPCl with PMAA in the inner and outer parts of the corona. The compensation of the negative charge of the micellar corona by DPCl leads to the aggregation of PS-PMAA micelles, and the micelles form colloidal aggregates at a certain critical surfactant concentration. SAXS shows that the aggregates are formed by individual PS-PMAA micelles with intact cores and collapsed coronas interconnected with surfactant micelles by electrostatic interactions. Unlike polyelectrolyte-surfactant complexes formed by free polyelectrolyte chains, the PMAA/DPCl complex with collapsed corona does not contain surfactant micelles. PMID:27054848

  3. Shaping calcite crystals by means of comb polyelectrolytes having neutral hydrophilic teeth.

    PubMed

    Malferrari, Danilo; Fermani, Simona; Galletti, Paola; Goisis, Marco; Tagliavini, Emilio; Falini, Giuseppe

    2013-02-12

    Comb polyelectrolytes (CPs) having neutral hydrophilic teeth, similar to double hydrophilic block copolymers, are a powerful tool to modify the chemical-physical properties of inorganic crystalline materials. One of their main applications is in concrete technology, where they work as superplasticizers, particle-dispersing agents. Here, CPs, having the same poly(acrylic acid) (PAA) backbone chain and differing in the grafting with methoxy poly(ethylene glycol) chains (MPEG) of two molecular weights, were used to investigate the influence of tooth chains in polymer aggregation and in control on morphology and aggregation of calcite particles. These polymers aggregate, forming interpolymer hydrogen bonds between carboxylic groups and ether oxygen functionalities. The presence of calcium ions in solution further enhances aggregation. Crystallization experiments of calcite in the presence of CPs show that the specificity of interactions between polymers and crystal planes and control on aggregation and size of particles is a function of the content and chain length of the MPEG in the PAA backbone. These parameters limit and can make specific the electrostatic interactions with ionic crystalline planes. Moreover, the mechanism of crystallization, classical or nonclassical, is addressed by the CP structure and concentration. These findings have implications in the understanding of the complex chemical processes associated to concrete superplasticizers action and in the study of the biomineralization processes, where biological comb polyelectrolytes, the acidic glycoproteins, govern formation of calcitic structures. PMID:23320460

  4. Self-assembly of polyelectrolyte surfactant complexes using large scale MD simulation

    NASA Astrophysics Data System (ADS)

    Goswami, Monojoy; Sumpter, Bobby

    2014-03-01

    Polyelectrolytes (PE) and surfactants are known to form interesting structures with varied properties in aqueous solutions. The morphological details of the PE-surfactant complexes depend on a combination of polymer backbone, electrostatic interactions and hydrophobic interactions. We study the self-assembly of cationic PE and anionic surfactants complexes in dilute condition. The importance of such complexes of PE with oppositely charged surfactants can be found in biological systems, such as immobilization of enzymes in polyelectrolyte complexes or nonspecific association of DNA with protein. Many useful properties of PE surfactant complexes come from the highly ordered structures of surfactant self-assembly inside the PE aggregate which has applications in industry. We do large scale molecular dynamics simulation using LAMMPS to understand the structure and dynamics of PE-surfactant systems. Our investigation shows highly ordered pearl-necklace structures that have been observed experimentally in biological systems. We investigate many different properties of PE-surfactant complexation for different parameter ranges that are useful for pharmaceutical, engineering and biological applications.

  5. Effect of temperature on the reentrant condensation in polyelectrolyte-liposome complexation.

    PubMed

    Sennato, S; Truzzolillo, D; Bordi, F; Cametti, C

    2008-11-01

    Interactions of oppositely charged macroions in aqueous solution give rise to intriguing aggregation phenomena, resulting in finite-size, long-lived clusters, characterized by a quite narrow size distribution. Particularly, the adsorption of highly charged linear polyelectrolytes on oppositely charged colloidal particles is strongly correlated and some short-range order arises from competing electrostatic interactions between like-charged polymer chains (repulsion) and between polymer chains and particle surface (attraction). In these systems, in an interval of concentrations around the isoelectric point, relatively large clusters of polyelectrolyte-decorated particles form. However, the mechanisms that drive the aggregation and stabilize, at the different polymer/particle ratios, a well-defined size of the aggregates are not completely understood. Nor is clear the role that the correlated polyion adsorption plays in the aggregation, although the importance of "patchy interactions" has been stressed as the possible source of attractive interaction term between colloidal particles. Different models have been proposed to explain the formation of the observed cluster phase. However, a central question still remains unanswered, i.e., whether the clusters are true equilibrium or metastable aggregates. To elucidate this point, in this work, we have investigated the effect of the temperature on the cluster formation. We employed liposomes built up by DOTAP lipids interacting with a simple anionic polyion, polyacrylate sodium salt, over an extended concentration range below and above the isoelectric condition. Our results show that the aggregation process can be described by a thermally activated mechanism. PMID:18831566

  6. Kinetics of degradation of diclofenac sodium in aqueous solution determined by a calorimetric method.

    PubMed

    Chadha, R; Kashid, N; Jain, D V S

    2003-09-01

    An isothermal heat conduction microcalorimeter has been used to study the stability of diclofenac sodium both alone and its inclusion complex with beta-cyclodextrin in aqueous solution. The rates of heat evolved during degradation of diclofenac sodium have been measured by a highly sensitive microcalorimetric technique as function of concentration, pH and temperature. The calorimetric accessible data have been incorporated in the equations for determination of rate constants, change in enthalpy and order of reaction. The decomposition of diclofenac sodium both alone and its inclusion complex with beta-cyclodextrin in solution corresponds to a pseudo-first order reaction. The values of rate constants, k's at 338.15 K, (calculated from the variation of heat evolution with the time) for the degradation of diclofenac sodium at pH 5, 6, 7, 8 and its inclusion complex with beta-cyclodextrin at pH 7 are found to be 4.71 x 10(-4), 5.69 x 10(-4), 6.12 x 10(-)4, 6.57 x 10(-4) and 4.26 x 10(-4) h(-1) respectively. There is good agreement between calorimetric determined t(0.5) and literature values. It has been found that beta-cyclodextrin retards the degradation of diclofenac sodium. The kinetic parameters have been calculated for the reaction. The negative entropy of activation suggests the formation of an ordered transition state. PMID:14531458

  7. Determination of aerosol extinction coefficient profiles from LIDAR data using the optical depth solution method

    NASA Astrophysics Data System (ADS)

    Aparna, John; Satheesh, S. K.; Mahadevan Pillai, V. P.

    2006-12-01

    The LIDAR equation contains four unknown variables in a two-component atmosphere where the effects caused by both molecules and aerosols have to be considered. The inversion of LIDAR returns to retrieve aerosol extinction profiles, thus, calls for some functional relationship to be assumed between these two. The Klett's method, assumes a functional relationship between the extinction and backscatter. In this paper, we apply a different technique, called the optical depth solution, where we made use of the total optical depth or transmittance of the atmosphere along the LIDAR-measurement range. This method provides a stable solution to the LIDAR equation. In this study, we apply this technique to the data obtained using a micro pulse LIDAR (MPL, model 1000, Science and Engineering Services Inc) to retrieve the vertical distribution of aerosol extinction coefficient. The LIDAR is equipped with Nd-YLF laser at an operating wavelength of 523.5 nm and the data were collected over Bangalore. The LIDAR data are analyzed to get to weighted extinction coefficient profiles or the weighted sum of aerosol and molecular extinction coefficient profiles. Simultaneous measurements of aerosol column optical depth (at 500 nm) using a Microtops sun photometer were used in the retrievals. The molecular extinction coefficient is determined assuming standard atmospheric conditions. The aerosol extinction coefficient profiles are determined by subtracting the molecular part from the weighted extinction coefficient profiles. The details of the method and the results obtained are presented.

  8. Micropatterning neuronal cells on polyelectrolyte multilayers.

    PubMed

    Reyes, Darwin R; Perruccio, Elizabeth M; Becerra, S Patricia; Locascio, Laurie E; Gaitan, Michael

    2004-09-28

    This paper describes an approach to adhere retinal cells on micropatterned polyelectrolyte multilayer (PEM) lines adsorbed on poly(dimethylsiloxane) (PDMS) surfaces using microfluidic networks. PEMs were patterned on flat, oxidized PDMS surfaces by sequentially flowing polyions through a microchannel network that was placed in contact with the PDMS surface. Polyethyleneimine (PEI) and poly(allylamine hydrochloride) (PAH) were the polyions used as the top layer cellular adhesion material. The microfluidic network was lifted off after the patterning was completed and retinal cells were seeded on the PEM/PDMS surfaces. The traditional practice of using blocking agents to prevent the adhesion of cells on unpatterned areas was avoided by allowing the PDMS surface to return to its uncharged state after the patterning was completed. The adhesion of rat retinal cells on the patterned PEMs was observed 5 h after seeding. Cell viability and morphology on the patterned PEMs were assayed. These materials proved to be nontoxic to the cells used in this study regardless of the number of stacked PEM layers. Phalloidin staining of the cytoskeleton revealed no apparent morphological differences in retinal cells compared with those plated on polystyrene or the larger regions of PEI and PAH; however, cells were relatively more elongated when cultured on the PEM lines. Cell-to-cell communication between cells on adjacent PEM lines was observed as interconnecting tubes containing actin that were a few hundred nanometers in diameter and up to 55 microm in length. This approach provides a simple, fast, and inexpensive method of patterning cells onto micrometer-scale features. PMID:15379510

  9. Polyelectrolyte brushes: theory, modelling, synthesis and applications.

    PubMed

    Das, Siddhartha; Banik, Meneka; Chen, Guang; Sinha, Shayandev; Mukherjee, Rabibrata

    2015-11-28

    Polyelectrolyte (PE) brushes are a special class of polymer brushes (PBs) containing charges. Polymer chains attain "brush"-like configuration when they are grafted or get localized at an interface (solid-fluid or liquid-fluid) with sufficiently close proximity between two-adjacent grafted polymer chains - such a proximity triggers a particular nature of interaction between the adjacent polymer molecules forcing them to stretch orthogonally to the grafting interface, instead of random-coil arrangement. In this review, we discuss the theory, synthesis, and applications of PE brushes. The theoretical discussion starts with the standard scaling concepts for polymer and PE brushes; following that, we shed light on the state of the art in continuum modelling approaches for polymer and PE brushes directed towards analysis beyond the scaling calculations. A special emphasis is laid in pinpointing the cases for which the PE electrostatic effects can be de-coupled from the PE entropic and excluded volume effects; such de-coupling is necessary to appropriately probe the complicated electrostatic effects arising from pH-dependent charging of the PE brushes and the use of these effects for driving liquid and ion transport at the interfaces covered with PE brushes. We also discuss the atomistic simulation approaches for polymer and PE brushes. Next we provide a detailed review of the existing approaches for the synthesis of polymer and PE brushes on interfaces, nanoparticles, and nanochannels, including mixed brushes and patterned brushes. Finally, we discuss some of the possible applications and future developments of polymer and PE brushes grafted on a variety of interfaces. PMID:26399305

  10. On the possibility of determining the thermodynamic temperature of colloid solutions by the nuclear magnetic resonance method

    NASA Astrophysics Data System (ADS)

    Davydov, V. V.; Dudkin, V. I.

    2016-07-01

    A new method of determining the thermodynamic temperature of colloid solutions placed onto a sealed glass vessel is considered; the method is based on measurements of the magnetic susceptibility in flowing liquid by the magnetic nuclear resonance method. Experimental results show that the Curie law holds for colloid solutions in the temperature range of 278-333 K, in which ferrofluid cells prepared based on these solutions are used.

  11. Chlorine resistant glutaraldehyde crosslinked polyelectrolyte multilayer membranes for desalination.

    PubMed

    Cho, Kwun Lun; Hill, Anita J; Caruso, Frank; Kentish, Sandra E

    2015-05-01

    Crosslinked polyelectrolyte multilayer membranes are synthesized with salt rejection values approaching those of commercial desalination membranes, but with increased chlorine resistance. The membranes are fabricated directly onto porous commercial substrates. Subsequent crosslinking of the polycation layers with glutaraldehyde leads to NaCl rejections of up to 97%, while the incorporation of a highly sulfonated polysulfone polyanion leads to high chlorine resistance. PMID:25776340

  12. Water's Role in the Relaxation of Polyelectrolyte Complexes and Multilayers

    NASA Astrophysics Data System (ADS)

    Lutkenhaus, Jodie; Zhang, Yanpu; Reid, Dariya; Antila, Hanne; Yildirim, Erol; Zhang, Ran; Sammalkorpi, Maria

    In the last decade, evidence for an intriguing glass-transition-like phase transition has emerged in hydrated polyelectrolyte complex precipitates and polyelectrolyte multilayers. Although the transition is weak, it stimulates large-scale macroscopic phenomena such as multilayer shrinking, swelling, and rearrangement. To date, there is not a clear consensus on what causes this transition, although a growing body of evidence indicates that salt and water are key parameters. Recent simulations of hydrated polyelectrolyte complexes show that water molecules form a stabilizing hydrogen-bonded network and that this network is disrupted by dehydration of the polyanion at the thermal transition, leading to segmental relaxation of polymer chains. If true, this would explain the transition's dependence on water and extrinsic compensation as well as its glass transition-like character. This talk will focus upon water's role in the transition, in which a strong dependence on hydration is observed. Quartz crystal microbalance with dissipation (QCM-D) and modulated differential scanning calorimetry (MDSC) are used to track the transition in polyelectrolytes complexes as a function of hydration.

  13. Polyelectrolyte brushes in mixed ionic medium studied via intermolecular forces

    NASA Astrophysics Data System (ADS)

    Farina, Robert; Laugel, Nicolas; Pincus, Philip; Tirrell, Matthew

    2011-03-01

    The vast uses and applications of polyelectrolyte brushes make them an attractive field of research especially with the growing interest in responsive materials. Polymers which respond via changes in temperature, pH, and ionic strength are increasingly being used for applications in drug delivery, chemical gating, etc. When polyelectrolyte brushes are found in either nature (e.g., surfaces of cartilage and mammalian lung interiors) or commercially (e.g., skin care products, shampoo, and surfaces of medical devices) they are always surrounded by mixed ionic medium. This makes the study of these brushes in varying ionic environments extremely relevant for both current and future potential applications. The polyelectrolyte brushes in this work are diblock co-polymers of poly-styrene sulfonate (N=420) and poly-t-butyl styrene (N=20) which tethers to a hydrophobic surface allowing for a purely thermodynamic study of the polyelectrolyte chains. Intermolecular forces between two brushes are measured using the SFA. As multi-valent concentrations are increased, the brushes collapse internally and form strong adhesion between one another after contact (properties not seen in a purely mono-valent environment).

  14. Observation of Molecular Diffusion in Polyelectrolyte-Wrapped SERS Nanoprobes

    PubMed Central

    2015-01-01

    The popularity of nanotechnology-based sensing technologies has rapidly expanded within the past decade. Surface-enhanced Raman spectroscopy (SERS) is one such technique capable of chemically specific and highly sensitive measurements. The careful preparation of SERS-active nanoprobes is immensely vital for biological applications where nanoprobes are exposed to harsh ionic and protein rich microenvironments. Encapsulation of optical reporter molecules via layer-by-layer (LbL) polyelectrolyte wrapping is an emerging technique that also permits facile modification of surface chemistry and charge. LbL wrapping can be performed within a few hours and does not require the use of organic solvents or hazardous silanes. Nonetheless, the stability of its products requires further characterization and analysis. In this study, Raman-active methylene blue molecules were electrostatically encapsulated within alternating layers of cationic and anionic polyelectrolytes surrounding gold nanospheres. We observed molecular diffusion of methylene blue through polyelectrolyte layers by monitoring the change in SERS intensity over a period of more than 5 weeks. To minimize diffusion and improve the long-term storage stability of our nanoprobes, two additional nanoprobe preparation techniques were performed: thiol coating and cross-linking of the outer polyelectrolyte layer. In both cases, molecular diffusion is significantly diminished. PMID:24998291

  15. Semi-permanent split end mending with a polyelectrolyte complex.

    PubMed

    Rigoletto, R; Zhou, Y; Foltis, L

    2007-01-01

    Split ends form through mechanical stresses during grooming procedures and are more likely to appear in hair damaged as a result of excessive combing forces. Although there are no conventional systems that will permanently mend split ends, a semi-permanent mending composition has been achieved through a polyelectrolyte complex. The complex is formed as a result of the ionic association of a cationic polymer, Polyquaternium-28, and an anionic polymer, PVM/MA Copolymer. Hair tresses containing tagged split ends are used in measuring mending efficacy. The tagging allows the fate of the split ends to be determined after different types of treatment regimens which test the durability of the mend. Monitoring of the repair and mending durability is carried out with the aid of a stereomicroscope. Results obtained with this method indicate that the complex both by itself and when formulated into a simple lotion provided a high level of split end mending not only after initial treatment but more importantly after combing showing the durability of the mend. Cumulative effects and durability to washing indicate that the polymer complex does not build up on the hair and rinses off with shampoo making possible its usage as a post shampoo treatment. The formulated lotion has higher durability performance as compared to a commercial product with a split end mending claim. The proposed mechanism of action entails a crosslinking microgel structure that infiltrates the damaged hair sites binding them together. This model is supported by the analysis of phase behavior, viscometry, Scanning Electron Microscopy, and absorption of ionic dyes. PMID:17728946

  16. A new Am-Be PGNAA setup for element determination in aqueous solution.

    PubMed

    Yongsheng, Ling; Wenbao, Jia; Daqian, Hei; Qing, Shan; Can, Cheng; Haojia, Zhang; Wenyu, Hou; Yanquan, He; Da, Chen

    2014-11-12

    A new prompt-gamma neutron activation analysis (PGNAA) setup has been designed for element determination in aqueous solution with a 300 mCi (241)Am-Be neutron source and a 4in.×3in. (diameter×height) BGO detector, uncooled. A polyethylene cylindrical sample container approximately 40cm in outer radius and 80cm in height was used. To reduce the neutron dose in the detector, a block of 5cm thickness Li2CO3 was placed between the source and the detector for separation, but no gamma-blocker was used. By adjusting the position of the detector and optimizing the geometrical conditions of the setup, the element detection limit with a low activity neutron source was further improved. This methodology was checked by simulations with chlorine, mercury and cadmium determination and by experiments with chlorine determination in aqueous samples. The results show a good linear relationship between chlorine concentration and the count of its characteristic peak, and the detection limit of chlorine can reach 41.7mg/L with a collection time of 3600s for each spectrum. Additionally, a linear relationship was identified between mercury concentration and the count of its characteristic peak, but for cadmium, a non-linear relationship was observed in the simulations. PMID:25464204

  17. Quantitative Computer Tomography for Determining Composition of Microgravity and Ground Based Solid Solutions

    NASA Technical Reports Server (NTRS)

    Gillies, D. C.; Engel, H. P.

    1999-01-01

    Advances in x-ray Computer Tomography (CT) have been led by the medical profession, and by evaluation of industrial products, particularly castings. Porosity can readily be determined as a function of the density of a material, and CT is thus an industrially important NDE tool. Providing high purity, 100% dense standards of pure elements and compounds can be fabricated, the composition of solid solution alloys can be determined by measuring the CT number, which is a function of the absorption of the sample. Average densities across slices 1 mm thick can generally be determined to better than 1 percent. With present technology this spatial sensitivity is less than ideal, but important benefits can nevertheless be obtained by using CT, particularly single crystals, prior to making any destructive assault upon the sample. The sample can in fact be examined prior to removal from the mold within which it has been grown and, in the cases of microgravity flight samples, before removal from the cartridge assembly. This greatly assists the researcher in the characterization of the products, particularly as a guide to cutting and sampling. Examples of work with germanium-silicon alloys and mercury cadmium telluride taken with a radioactive cobalt source will be demonstrated.

  18. A new method to determine the yield stress of diluted polymeric solutions

    NASA Astrophysics Data System (ADS)

    Soto, Enrique; Ruiz, Servando; Cordova Aguilar, Maria Soledad

    2012-11-01

    A new method to measure the yield stress for diluted polymeric solutions is presented. The tested solutions exhibit shear thinning behavior a once the critical yield stress is overcame. In rheology, these fluids are known as Herschel-Buckley. The yield stress phenomenon and its relation with bubble motion is an important issue for different industries, for example, personal care, paints and some others. As a result of the yield stress, small bubbles remain trapped in the fluid bulk, but above a critical volume, which is related with the characteristic yield stress, the bubbles flow in the liquid. In order to change the bubble volume, the liquid is placed in a cylindrical container whose pressure is decreased by a vacuum pump. The bubble growths as the pressure decreases and keeps its position until it reaches the critical volume. The bubble shape changes with volume and velocity, and a competition among surface, gravitational, inertial and viscous forces is discussed. The yield stress determined value is higher than the obtained from simple shear measurements due to the complex flow around the bubble.

  19. Fluorescent silver nanoclusters for ultrasensitive determination of chromium(VI) in aqueous solution.

    PubMed

    Zhang, Jian Rong; Zeng, Ai Lian; Luo, Hong Qun; Li, Nian Bing

    2016-03-01

    In this work, a simple and sensitive Cr(VI) sensor is proposed based on fluorescent polyethyleneimine-stabilized Ag nanoclusters, which allows the determination over a wide concentration range of 0.1 nM-3.0 μM and with a detection limit as low as 0.04 nΜ and a good selectivity. The quenching mechanism was discussed in terms of the absorption and fluorescence spectra, suggesting that Cr(VI) is connected to Ag nanoclusters by hydrogen bond between the oxygen atom at the vertex of tetrahedron structure of Cr(VI) and the amino nitrogen of polyethyleneimine that surrounded Ag nanoclusters and electron transfer from Ag nanoclusters to highly electron-deficient Cr(VI) results in fluorescence quenching. Despite the failure to quench the fluorescence efficiently, Cr(III) can also be measured using the proposed Ag nanoclusters by being oxidized to Cr(VI) in alkaline solution (pH ∼ 9) containing H2O2. Therefore, our approach could be used to detect Cr(VI), Cr(III) and the total chromium level in aqueous solution. In addition, Cr(VI) analysis in real water samples were satisfactory, indicating this method could be practically promising for chromium measurements. PMID:26546705

  20. Determination of polar organic solutes in oil-shale retort water

    USGS Publications Warehouse

    Leenheer, J.A.; Noyes, T.I.; Stuber, H.A.

    1982-01-01

    A variety of analytical methods were used to quantitatively determine polar organic solutes in process retort water and a gas-condensate retort water produced in a modified in situ oil-shale retort. Specific compounds accounting for 50% of the dissolved organic carbon were identified in both retort waters. In the process water, 42% of the dissolved organic carbon consisted of a homologous series of fatty acids from C2 to C10. Dissolved organic carbon percentages for other identified compound classes were as follows: aliphatic dicarboxylic acids, 1.4%; phenols, 2.2%; hydroxypyridines, 1.1%; aliphatic amides, 1.2%. In the gas-condensate retort water, aromatic amines were most abundant at 19.3% of the dissolved organic carbon, followed by phenols (17.8%), nitriles (4.3%), aliphatic alcohols (3.5%), aliphatic ketones (2.4%), and lactones (1.3%). Steam-volatile organic solutes were enriched in the gas-condensate retort water, whereas nonvolatile acids and polyfunctional neutral compounds were predominant organic constituents of the process retort water.

  1. Polyelectrolyte multilayer coatings for the separation of proteins by capillary electrophoresis: Influence of polyelectrolyte nature and multilayer crosslinking.

    PubMed

    Bekri, Samya; Leclercq, Laurent; Cottet, Hervé

    2015-06-19

    The present work aims at studying the influence of the nature of the polyelectrolytes used in successive multiple ionic polymers on the performances of protein separation in acetic acid volatile background electrolyte. A broad library of polyelectrolyte multilayers was compared on the basis of 9 different weak/strong polyanions and 8 different weak/strong polycations. More than 20 couples of different polyelectrolytes were investigated. The separation efficiencies (expressed as the N/l ratio, where N is the plate number and l is the capillary effective length) were systematically compared for the separation of a protein test mixture. The coating stability was evaluated by the relative standard deviation of the migration times. For weak polyelectrolyte multilayers, the influence of the polymer crosslinking on the coating stability and separation efficiency has been studied. Intra-day repeatability of 100 successive runs, and capillary-to-capillary reproducibility were tested on coatings of each category (crosslinked and non crosslinked). The main (not obvious) result rising from this study is that the nature of the polyanion constituting the multilayers is of primary importance for the performance in terms of separation efficiency and stability, even when the mulilayers finish with a polycation. PMID:25976124

  2. Polyelectrolyte Microcapsules Dispersed in Silicone Rubber for in Vivo Sampling in Fish Brains.

    PubMed

    Xu, Jianqiao; Wu, Rongben; Huang, Shuyao; Yang, Muzi; Liu, Yan; Liu, Yuan; Jiang, Ruifen; Zhu, Fang; Ouyang, Gangfeng

    2015-10-20

    Direct detection of fluoxetine and its metabolite norfluoxetine in living fish brains was realized for the first time by using a novel solid-phase microextraction fiber, which was prepared by mixing the polyelectrolyte in the oligomer of silicone rubber and followed by in-mold heat-curing. The polyelectrolyte was finally encased in microcapsules dispersed in the cured silicone rubber. The fiber exhibited excellent interfiber reproducibility (5.4-7.1%, n = 6), intrafiber reproducibility (3.7-4.6%, n = 6), and matrix effect-resistant capacity. Due to the capacity of simultaneously extracting the neutral and the protonated species of the analytes at physiological pH, the fiber exhibited high extraction efficiencies to fluoxetine and norfluoxetine. Besides, the effect of the salinity on the extraction performance and the competitive sorption between the analytes were also evaluated. Based on the small-sized custom-made fiber, the concentrations of fluoxetine and norfluoxetine in the brains of living fish, which were exposed to waterborne fluoxetine at an environmentally relevant concentration, were determined and found 4.4 to 9.2 and 5.0 to 9.2 times those in the dorsal-epaxial muscle. The fiber can be used to detect various protonated bioactive compounds in living animal tissues. PMID:26403643

  3. Detoxification of a lignocellulosic biomass slurry by soluble polyelectrolyte adsorption for improved fermentation efficiency.

    PubMed

    Carter, Brian; Squillace, Phillip; Gilcrease, Patrick C; Menkhaus, Todd J

    2011-09-01

    This study investigated the detoxification of a dilute acid pretreated Ponderosa pine slurry using the polyelectrolyte polyethyleneimine (PEI). The addition of polyelectrolyte to remove enzymatic and/or fermentation inhibitory compounds, that is, acetic acid, furfural, and 5-hydroxymethylfurfural (HMF), was performed either before or after enzymatic hydrolysis to determine the optimal process sequence. Negligible acetic acid, glucose, and xylose were removed regardless of where in the process the polymer addition was made. Maximum furfural and HMF separation was achieved with the addition of PEI to a clarified pre-enzymatic hydrolysis liquor, which showed that 88.3% of furfural and 66.4% of HMF could be removed. On the other hand, only 23.1% and 13.4% of furfural and HMF, respectively, were removed from a post-enzymatic hydrolysis sample; thus, the effects of enzymes, glucose, and wood solids on inhibitor removal were also investigated. The presence of solid particles >0.2 µm and unknown soluble components <10 kDa reduced inhibitory compound removal, but the presence of elevated glucose levels and enzymes (cellulases) did not affect the separation. The fermentability of detoxified versus undetoxified hydrolysate was also investigated. An ethanol yield of 92.6% of theoretical was achieved with Saccharomyces cerevisiae fermenting the detoxified hydrolyzate, while no significant ethanol was produced in the undetoxified hydrolyzate. These results indicate that PEI may provide a practical alternative for furan removal and detoxification of lignocellolosic hydrolysates, and that application before enzymatic hydrolysis minimizes separation interferences. PMID:21455936

  4. Determination of uranium in uranium metal, uranium oxides, and uranyl nitrate solutions by potentiometric titration

    SciTech Connect

    Tucker, H.L.; McElhaney, R.J.

    1983-01-01

    A simple, fast method for the determination of uranium in uranium metal, uranium oxides, and uranyl nitrate solutions has been adapted from the Davies-Gray volumetric method to meet the needs of Y-12. One-gram duplicate aliquots of uranium metal or uranium oxide are dissolved in 1:1 HNO/sub 3/ and concentrated H/sub 2/SO/sub 4/ to sulfur trioxide fumes, and then diluted to 100-mL volume. Duplicate aliquots are then weighed for analysis. For uranyl nitrate samples, duplicate aliquots containing between 50 and 150 mg of U are weighed and analyzed directly. The weighed aliquot is transferred to a Berzelius beaker; 1.5 M sulfamic acid is added, followed in order by concentrated phosphoric acid, 1 M ferrous sulfate, and (after a 30-second interval) the oxidizing reagent. After a timed 3-minute waiting period, 100 mL of the 0.1% vanadyl sulfate-sulfuric acid mixture is added. The sample is then titrated past its endpoint with standard potassium dichromate, and the endpoint is determined by second derivative techniques on a mV/weight basis.

  5. Electrically driven ion separations and nanofiltration through membranes coated with polyelectrolyte multilayers

    NASA Astrophysics Data System (ADS)

    White, Nicholas

    Polyelectrolyte multilayer (PEM) films deposited using the layer-by-layer (LBL) method are attractive for their simple deposition, tailorable nature, scalability, and charge or size-based selectivity for solutes. This dissertation explores ion separations in electrodialysis (ED) and solute removal through nanofiltration with PEMs deposited on polymer membranes. ED membranes typically exhibit modest selectivities between monovalent and divalent ions. In contrast, this work shows that K+/Mg 2+ ED selectivities reach values >1000 when using Nafion 115 cation-exchange membranes coated with multilayer poly(4-styrenesulfonate) (PSS)/protonated poly(allylamine) (PAH) films. For comparison, the corresponding K+ /Mg2+ selectivity of bare Nafion 115 is <2. However, water-splitting at strongly overlimiting current densities may lead to a local pH increase close to the membrane surface and alter film permeability or allow passage of Mg(OH)x species to decrease selectivity. When the source phase contains high salt concentrations, the K+ transference number approaches unity and the K+/Mg2+ selectivity is >20,000, presumably because the applied current is below the limiting value for K+ and H+ transport is negligible at this high K+ concentration. The high selectivities of these membranes may enable electrodialysis applications such as purification of salts that contain divalent or trivalent ions. The high ED selectivities of (PAH/PSS)5PAH-coated Nafion membranes translate to separations with Li+/Co2+ and K +/La3+. Even with adsorption of only 3 polyelectrolyte layers, Nafion membranes exhibit a Li+/Co2+ selectivity >23. However, the resistance to monovalent-ion passage does not decrease significantly with fewer polyelectrolyte layers. At overlimiting currents, hydroxides from water splitting form insoluble metal hydroxides to foul the membrane. With 0.1 M source-phase salt concentrations, transference numbers for monovalent cations approach unity and selectivities are >5000

  6. Simultaneous determination of nitric acid and uranium concentrations in aqueous solution from measurements of electrical conductivity, density, and temperature

    SciTech Connect

    Spencer, B.B.

    1991-01-01

    Nuclear fuel reprocessing plants handle aqueous solutions of nitric acid and uranium in large quantities. Automatic control of process operations requires reliable measurements of these solutes concentration, but this is difficult to directly measure. Physical properties such as solution density and electrical conductivity vary with solute concentration and temperature. Conductivity, density and temperature can be measured accurately with relatively simple and inexpensive devices. These properties can be used to determine solute concentrations will good correlations. This paper provides the appropriate correlations for solutions containing 2 to 6 Molar (M) nitric acid and 0 to 300 g/L uranium metal at temperatures from 25--90{degrees}C. The equations are most accurate below 5 M nitric acid, due to a broad maximum in the conductivity curve at 6 M. 12 refs., 9 figs., 6 tabs.

  7. Comparison of TOPEX/Poseidon orbit determination solutions obtained by the Goddard Space Flight Center Flight Dynamics Division and Precision Orbit Determination Teams

    NASA Technical Reports Server (NTRS)

    Doll, C.; Mistretta, G.; Hart, R.; Oza, D.; Cox, C.; Nemesure, M.; Bolvin, D.; Samii, Mina V.

    1993-01-01

    Orbit determination results are obtained by the Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) using the Goddard Trajectory Determination System (GTDS) and a real-time extended Kalman filter estimation system to process Tracking Data and Relay Satellite (TDRS) System (TDRSS) measurements in support of the Ocean Topography Experiment (TOPEX)/Poseidon spacecraft navigation and health and safety operations. GTDS is the operational orbit determination system used by the FDD, and the extended Kalman fliter was implemented in an analysis prototype system, the Real-Time Orbit Determination System/Enhanced (RTOD/E). The Precision Orbit Determination (POD) team within the GSFC Space Geodesy Branch generates an independent set of high-accuracy trajectories to support the TOPEX/Poseidon scientific data. These latter solutions use the Geodynamics (GEODYN) orbit determination system with laser ranging tracking data. The TOPEX/Poseidon trajectories were estimated for the October 22 - November 1, 1992, timeframe, for which the latest preliminary POD results were available. Independent assessments were made of the consistencies of solutions produced by the batch and sequential methods. The batch cases were assessed using overlap comparisons, while the sequential cases were assessed with covariances and the first measurement residuals. The batch least-squares and forward-filtered RTOD/E orbit solutions were compared with the definitive POD orbit solutions. The solution differences were generally less than 10 meters (m) for the batch least squares and less than 18 m for the sequential estimation solutions. The differences among the POD, GTDS, and RTOD/E solutions can be traced to differences in modeling and tracking data types, which are being analyzed in detail.

  8. Multifunctional polyelectrolyte microcapsules as a contrast agent for photoacoustic imaging in blood.

    PubMed

    Yashchenok, Alexey M; Jose, Jithin; Trochet, Philippe; Sukhorukov, Gleb B; Gorin, Dmitry A

    2016-08-01

    The polyelectrolyte microcapsules that can be accurate either visualized in biological media or in tissue would enhance their further in vivo application both as a carrier of active payloads and as a specific sensor. The immobilization of active species, for instance fluorescent dyes, quantum dots, metal nanoparticles, in polymeric shell enables visualization of capsules by optical imaging techniques in aqueous solution. However, for visualization of capsules in complex media an instrument with high contrast modality requires. Herein, we show for the first time photoacoustic imaging (PAI) of multifunctional microcapsules in water and in blood. The microcapsules exhibit greater photoacoustic intensity compare to microparticles with the same composition of polymeric shell presumably their higher thermal expansion. Photoacoustic intensity form microcapsules dispersed in blood displays an enhancement (2-fold) of signal compare to blood. Photoacoustic imaging of microcapsules might contribute to non-invasive carrier visualization and further their in vivo distribution. PMID:26913984

  9. N,N-Dimethyl chitosan/heparin polyelectrolyte complex vehicle for efficient heparin delivery.

    PubMed

    Bueno, Pedro V A; Souza, Paulo R; Follmann, Heveline D M; Pereira, Antonio G B; Martins, Alessandro F; Rubira, Adley F; Muniz, Edvani C

    2015-04-01

    Polysaccharide-based device for oral delivery of heparin (HP) was successfully prepared. Previously synthesized N,N-dimethyl chitosan (DMC) (86% dimethylated by (1)H NMR spectroscopy) was complexed with HP by mixing HP and DMC aqueous solutions (both at pH 3.0). The polyelectrolyte complex (PEC) obtention was confirmed by infrared spectroscopy (FTIR), thermogravimetric analysis (TGA/DTG) and wide-angle X-ray scattering (WAXS). In vitro controlled release assays of HP from PEC were investigated in the simulated intestinal fluid (SIF) and simulated gastric fluid (SGF). The PEC efficiently protected the HP in SGF condition in which HP is degraded. On the other hand, in SIF PEC promoted the releasing of 80 ± 1.5% of loaded HP. The promissory results indicated that the PEC based on DMC/HP presented potential as drug-carrier matrix, since biological activity of HP was improved at pH close to physiological condition. PMID:25625782

  10. Polyelectrolyte-linked film assemblies of nanoparticles and nanoshells: growth, stability, and optical properties.

    PubMed

    Galyean, Anne A; Day, Robert W; Malinowski, Justin; Kittredge, Kevin W; Leopold, Michael C

    2009-03-15

    Multi-layer films of nanoparticles and nanoshells featuring various polymeric linkage molecules have been assembled and their optical properties characterized. The growth dynamics, including molecular weight effects, and stability of the various nanoparticle film constructions, using both single polymer as well as combinations of alternating charge polyelectrolytes as linking mechanisms, are presented. The polymeric linkers studied include poly-L-lysine, poly-L-arginine, poly(allylamine hydrochloride), and polyamidoamine dendrimers. Significantly air stable films were achieved with the use of multi-layered polymeric bridges between the nanoparticles and nanoshells. Optical sensitivity normally observed with these nanomaterials in solution was observed for their corresponding film geometries, with the nanoshell films exhibiting a markedly higher ability to report their local dielectric environment. PMID:19108848

  11. Chemo-enzymatic synthesis of raffinose-branched polyelectrolytes and self-assembly application in microcapsules.

    PubMed

    Wu, Qi; Chen, Zhi-Chun; Lu, De-Shui; Lin, Xian-Fu

    2006-01-01

    A novel biocompatible polyelectrolyte poly(vinyl raffinose-co-acrylic acid) (PRCA) containing a raffinose branch was prepared via redox polymerization using Fe(2+)/K(2)S(2)O(8)/H(2)O(2) starting from enzymatically-synthesized monomer: 1-O-vinyldecanedioyl raffinose. Copolymers with different monomer feed ratios were prepared and characterized with IR, NMR, and GPC. PRCA can be alternated with polycation to form microcapsules on a crystals template by electrostatic layer-by-layer technique. The multilayers of PRCA/poly(methacryloyloxyethyl dimethylbenzyl ammonium chloride) (PMBA) on quartz slides and PRCA/poly(dimethyldiallyl ammonium chloride) (PDDA) on acyclovir crystals template were fabricated and characterized with UV-Vis spectra, the microelectrophoretic measurement, and TEM. Hollow capsules can be formed after the removal of acyclovir crystals template in a buffer solution. The nano-capsule-carrying galactose residue is a potential targeting drug-controlled delivery systems. PMID:16374773

  12. Effect of polyelectrolytes on (de)stability of liquid foam films.

    PubMed

    Fauser, Heiko; von Klitzing, Regine

    2014-09-28

    The review addresses the influence of polyelectrolytes on the stabilisation of free-standing liquid foam films, which affects the stability of a whole macroscopic foam. Both the composition of the film surface and the stratification of the film bulk drives the drainage and the interfacial forces within a foam film. Beside synthetic polyelectrolytes also natural polyelectrolytes like cellulose, proteins and DNA are considered. PMID:25080085

  13. An investigation on the biotribocorrosion behaviour of CoCrMo alloy grafted with polyelectrolyte brush.

    PubMed

    Zhang, Hong-Yu; Zhu, Yu-Jiao; Hu, Xiang-Yu; Sun, Yan-Fang; Sun, Yu-Long; Han, Jian-Min; Yan, Yu; Zhou, Ming

    2014-01-01

    Surface grafting of polyelectrolyte brush, such as 3-sulfopropyl methacrylate potassium salt (SPMK), on hip implant materials has been reported to reduce the wear of the orthopaedic bearing surface. However, the biotribocorrosion behaviour of the SPMK brush has not been taken into consideration in previous research. In the present study, SPMK was grafted on Co28Cr6Mo alloy through photo-induced polymerization, and the biotribocorrosion behaviour was investigated by a series of frictional-electrochemical tests using a universal materials tester combined with an electrochemical measurement (three-electrode) system. Co28Cr6Mo disk and polyethylene (PE) pin were used as the contact pair, and the lubricants were 0.9% saline solution (NaCl) and 0.9% saline solution coupled with 25% bovine serum albumin (BSA). The results showed that SPMK was successfully grafted on Co28Cr6Mo alloy, which was confirmed by the comparison of Raman spectroscopy and static contact angle of the samples before and after surface modification. The greatly reduced electrochemical parameters such as corrosion current and pitting potential indicated that the corrosion rate of Co28Cr6Mo alloy was significantly reduced following SPMK grafting. Additionally, the frictional-electrochemical coupled measurement performed under reciprocating sliding demonstrated that the lowest corrosion current was obtained for the SPMK-grafted Co28Cr6Mo disk, with 0.9% NaCl coupled with 25% BSA as the electrolyte. It is indicated from the present study that SPMK polyelectrolyte brush can greatly improve the anti-biotribocorrosion properties of Co28Cr6Mo alloy, and thus has potential application on surface modification of hip implant materials. PMID:25226913

  14. Nanohybrid conjugated polyelectrolytes: highly photostable and ultrabright nanoparticles

    NASA Astrophysics Data System (ADS)

    Darwish, Ghinwa H.; Karam, Pierre

    2015-09-01

    We present a general and straightforward one-step approach to enhance the photophysical properties of conjugated polyelectrolytes. Upon complexation with an amphiphilic polymer (polyvinylpyrrolidone), an anionic conjugated polyelectrolyte (poly[5-methoxy-2-(3-sulfopropoxy)-1,4-phenylenevinylene]) was prepared into small nanoparticles with exceptional photostability and brightness. The polymer fluorescence intensity was enhanced by 23 -fold and could be easily tuned by changing the order of addition. Single molecule experiments revealed a complete suppression of blinking. In addition, after only losing 18% of the original intensity, a remarkable amount of photons were emitted per particle (~109, on average). This number is many folds greater than popular organic fluorescent dyes. We believe that an intimate contact between the two polymers is shielding the conjugated polyelectrolyte from the destructive photooxidation. The prepared nanohybrid particles will prove instrumental in single particle based fluorescent assays and can serve as a probe for the current state-of-the-art bioimaging fluorescence techniques.We present a general and straightforward one-step approach to enhance the photophysical properties of conjugated polyelectrolytes. Upon complexation with an amphiphilic polymer (polyvinylpyrrolidone), an anionic conjugated polyelectrolyte (poly[5-methoxy-2-(3-sulfopropoxy)-1,4-phenylenevinylene]) was prepared into small nanoparticles with exceptional photostability and brightness. The polymer fluorescence intensity was enhanced by 23 -fold and could be easily tuned by changing the order of addition. Single molecule experiments revealed a complete suppression of blinking. In addition, after only losing 18% of the original intensity, a remarkable amount of photons were emitted per particle (~109, on average). This number is many folds greater than popular organic fluorescent dyes. We believe that an intimate contact between the two polymers is shielding the

  15. 78 FR 6823 - Determination That DIFFERIN (Adapalene) Solution, 0.1%, Was Not Withdrawn From Sale for Reasons...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-31

    ... now section 505(j)(7) of the Federal Food, Drug, and Cosmetic Act (21 U.S.C. 355(j)(7)), which... the drug's NDA or ANDA for reasons of safety or effectiveness or if FDA determines that the listed... HUMAN SERVICES Food and Drug Administration Determination That DIFFERIN (Adapalene) Solution, 0.1%,...

  16. Cationic conjugated polyelectrolyte/molecular beacon complex for sensitive, sequence-specific, real-time DNA detection.

    PubMed

    Feng, Xuli; Duan, Xinrui; Liu, Libin; An, Lingling; Feng, Fude; Wang, Shu

    2008-11-01

    A new fluorescence method has been developed for DNA detection at room temperature in a sensitive, selective, economical, and real-time manner that interfaces the superiority of a molecular beacon in mismatch discrimination with the light-harvesting property of water-soluble conjugated polyelectrolytes. The probe solution contains a cationic conjugated polyelectrolyte (PFP-NMe3+), a molecular beacon with a five base pairs double-stranded stem labeled at the 5'-terminus with fluorescein (DNA P-Fl), and ethidium bromide (EB, a specific intercalator of dsDNA). The electrostatic interactions between DNA P-Fl and PFP-NMe3+ keep them in close proximity, facilitating the fluorescence resonance energy transfer (FRET) from PFP-NMe3+ to fluorescein. Upon adding a complementary strand to the probe solution, the conformation of DNA P-Fl transits into dsDNA followed by the intercalation of EB into the grooves. Two-step FRET, from PFP-NMe3+ to DNA P-Fl (FRET-1), followed by FRET from DNA P-Fl to EB (FRET-2) takes place. In view of the observed fluorescein or EB emission changes, DNA can be detected in aqueous solution. Because the base mismatch in target DNA inhibits the transition of DNA P-Fl from the stem-loop to duplex structure, single nucleotide mismatch can be clearly detected. PMID:18834161

  17. Layer-by-layer modification of high surface curvature nanoparticles with weak polyelectrolytes using a multiphase solvent precipitation process.

    PubMed

    Nagaraja, Ashvin T; You, Yil-Hwan; Choi, Jeong-Wan; Hwang, Jin-Ha; Meissner, Kenith E; McShane, Michael J

    2016-03-15

    The layer-by-layer modification of ≈5 nm mercaptocarboxylic acid stabilized gold nanoparticles was studied in an effort to illustrate effective means to overcome practical issues in handling and performing surface modification of such extremely small materials. To accomplish this, each layer deposition cycle was separated into a multi-step process wherein solution pH was controlled in two distinct phases of polyelectrolyte adsorption and centrifugation. Additionally, a solvent precipitation step was introduced to make processing more amenable by concentrating the sample and exchanging solution pH before ultracentrifugation. The pH-dependent assembly on gold nanoparticles was assessed after each layer deposition cycle by monitoring the plasmon peak absorbance location, surface charge, and the percentage of nanoparticles recovered. The selection of solution pH during the adsorption phase was found to be a critical parameter to enhance particle recovery and maximize surface charge when coating with weak polyelectrolytes. One bilayer was deposited with a high yield and the modified particles exhibited enhanced colloidal stability across a broad pH range and increased ionic strength. These findings support the adoption of this multi-step processing approach as an effective and generalizable approach to improve stability of high surface curvature particles. PMID:26771506

  18. [Application of nuclear magnetic resonance for the determination of the structure of proteins in solution].

    PubMed

    Charretier, E; Guéron, M

    1991-01-01

    Knowledge of three-dimensional structure is a key factor in protein engineering. It is useful, for example, in predicting and understanding the functional consequences of specific substitution of one or more amino acids of the polypeptide chain. It is also necessary for the design of new effectors or analogs of the substrates of enzymes and receptors. X-ray diffraction by crystals of the biomolecule was for a long time the only method of determining three-dimensional structures. In the last 5 years, it has been joined by a new technique, two-dimensional nuclear magnetic resonance (2D NMR), which can resolve the structure of middle-sized proteins (less than 10 kilodaltons). The technique is applied on solutions whose pH, ionic strength, and temperature can be chosen and changed. The two basic measurements, COSY and NOESY, detect respectively the systems of hydrogen nuclei, or protons, coupled through covalent bonds, and those in which the interproton distances are less than 0.5 nm. A systematic strategy leads from resonance assignments of the two-dimensional spectrum to molecular modeling with constraints and finally to the determination of the molecular structure in the solution. Much sophistication is needed even today for the first task, the assignment of the resonances. Each of the COSY and NOESY spectra is a two-dimensional map, where the diagonal line is the one-dimensional spectrum, and the off-diagonal peaks indicate connectives between protons. Peak assignment to a specific type of amino acid is based on the pattern of scalar couplings observed in the COSY spectrum. Next, the amino acids are positioned in the primary sequence, using the spatial proximities of polypeptide chain protons, as observed in the NOESY spectrum. The principal secondary structures (alpha helix, beta sheets, etc.) are then identified by their specific connectivities. The tertiary structure is detected by NOESY connectivities between protons of different amino acids which are far apart

  19. Poly-electrolyte complex: a novel system for biomedical applications and recent patents.

    PubMed

    Deeksha; Malviya, Rishabha; Sharma, Pramod Kr

    2014-01-01

    Polyelectrolyte complexes are getting more attention owing to their formation by the interaction of opposite charges with the help of electrostatic force. Polyelectrolyte complexation reduces the toxic effects of the cross-linking agents. Polyelectrolyte complexescan be classified on various bases. The current report highlights properties, factors affecting it and various technologies. In the present report we intend to discuss the applications of polyelectrolyte complexes such as biomedical, controlled delivery, medicine, and area which can cause controlled release in different aspects. Patents related to these inventions are added along with their pivotal roles. PMID:24962379

  20. Inkjet ink spreading on polyelectrolyte multilayers deposited on pigment coated paper.

    PubMed

    Mielonen, Katriina; Geydt, Pavel; Österberg, Monika; Johansson, Leena-Sisko; Backfolk, Kaj

    2015-01-15

    Mechanisms of inkjet ink spreading and absorption on a coated paper have been studied using a polyelectrolyte multilayering technique. By applying alternating sequences of cationic and anionic polyelectrolyte layers on a mineral coated paper, the role of the interfacial chemistry was evaluated. The polyelectrolyte multilayer was created to imitate a thin resin-like liquid-absorptive layer and to clarify the role of the charge of the protruding polyelectrolyte layer on ink spreading and colorant fixation. The formation of a thin polyelectrolyte layer and coating coverage was confirmed by X-ray photoelectron spectroscopy (XPS). A submolecular mechanical imaging of the polyelectrolyte complexes with an atomic force microscope (AFM) revealed differences in modulus and different nanosize agglomerates were identified which were ascribed to polyion complexes. The polyelectrolyte coatings significantly affect the solid-liquid interaction and particularly the ink spreading revealed as intercolor bleeding and wicking. The interfacial interaction between the ink and the applied polyelectrolyte layers showed differences between dye- and pigment-based colorants, which could be emphasized by the polyelectrolyte chemistry. PMID:25454440

  1. D-value determinations are an inappropriate measure of disinfecting activity of common contact lens disinfecting solutions.

    PubMed Central

    Sutton, S V; Franco, R J; Porter, D A; Mowrey-McKee, M F; Busschaert, S C; Hamberger, J F; Proud, D W

    1991-01-01

    Determination of a D value for specific test organisms is a component of the efficacy evaluation of new contact lens disinfecting solutions. This parameter is commonly defined as the time required for the number of surviving microorganisms to decrease 1 logarithmic unit. The assumption made in establishing a D value is that the rate of kill exhibits first-order kinetics under the specified conditions. Such exponential kill rates are seen with thermal contact lens disinfection system. A comparison of the death rate kinetics for a variety of chemical contact lens disinfecting solutions was undertaken to ascertain the suitability of D-value determination for these chemical disinfectants. The active agents of these different solutions included hydrogen peroxide, thimerosal, chlorhexidine, tris(2-hydroxyethyl)tallow ammonium chloride, thimerosal, polyaminopropyl biguanide, and polyquaternium-1. The solutions were challenged with 10(6) CFU of either Pseudomonas aeruginosa, Serratia marcescens, or Staphylococcus hominis per ml, and survival rate was determined. This study clearly demonstrates the nonlinear nature of the inactivation curves for most contact lens chemical disinfecting solutions for the challenge organisms. D-value determination is, therefore, an inappropriate method of reporting the biocidal activity of these solutions. PMID:1892391

  2. Surface modification of silk fibroin fabric using layer-by-layer polyelectrolyte deposition and heparin immobilization for small-diameter vascular prostheses.

    PubMed

    Elahi, M Fazley; Guan, Guoping; Wang, Lu; Zhao, Xinzhe; Wang, Fujun; King, Martin W

    2015-03-01

    There is an urgent need to develop a biologically active implantable small-diameter vascular prosthesis with long-term patency. Silk-fibroin-based small-diameter vascular prosthesis is a promising candidate having higher patency rate; however, the surface modification is indeed required to improve its further hemocompatibility. In this study, silk fibroin fabric was modified by a two-stage process. First, the surface of silk fibroin fabric was coated using a layer-by-layer polyelectrolyte deposition technique by stepwise dipping the silk fibroin fabric into a solution of cationic poly(allylamine hydrochloride) (PAH) and anionic poly(acrylic acid) (PAA) solution. The dipping procedure was repeated to obtain the PAH/PAA multilayers deposited on the silk fibroin fabrics. Second, the polyelectrolyte-deposited silk fibroin fabrics were treated in EDC/NHS-activated low-molecular-weight heparin (LMWH) solution at 4 °C for 24 h, resulting in immobilization of LMWH on the silk fibroin fabrics surface. Scanning electron microscopy, atomic force microscopy, and energy-dispersive X-ray data revealed the accomplishment of LMWH immobilization on the polyelectrolyte-deposited silk fibroin fabric surface. The higher the number of PAH/PAA coating layers on the silk fibroin fabric, the more surface hydrophilicity could be obtained, resulting in a higher fetal bovine serum protein and platelets adhesion resistance properties when tested in vitro. In addition, compared with untreated sample, the surface-modified silk fibroin fabrics showed negligible loss of bursting strength and thus reveal the acceptability of polyelectrolytes deposition and heparin immobilization approach for silk-fibroin-based small-diameter vascular prostheses modification. PMID:25671295

  3. On the scattering properties of polyelectrolyte gels

    NASA Astrophysics Data System (ADS)

    Barrat, Jean-Louis; Joanny, Jean-François; Pincus, Phil

    1992-08-01

    We present a simple model for scattering properties of polyelectrolyte gels at swelling equilibrium. In the weak screening limit where the Debye-Hückel screening length is larger than the mesh size of the gel, the direct electrostatic interactions are negligible and the swelling is driven by the osmotic pressure of the counterions. The tension created by this pressure is transmitted through the crosslinks to the elastic chains which behave as isolated chains with an applied force at their end points. The structure factor of the gel can be split into a frozen component due to the average concentration heterogeneities and a thermodynamic component due to concentration fluctuations. The frozen component has a peak at a wavevector of the order of the mesh size of the gel, the thermodynamic component has a peak at a higher wavevector of the order of the inverse transverse radius of the chains. At infinite times the dynamic structure factor relaxes towards the frozen component of the static structure factor. In the limit of small wavevectors the relaxation is diffusive with a diffusion constant equal to the Stokes diffusion constant of the Pincus blobs of the stretched chains. The diffusion constant shows a minimum at a wavevector of the order of the inverse transverse radius of the chains. Nous présentons un modèle simple pour étudier la diffusion de rayonnement par des gels polylectrolytes à l'équilibre de gonflement. Dans la limite d'écrantage faible où la longueur d'écran de Debye-Hückel est plus grande que la maille du gel, les interactions électrostatiques directes sont négligeables et le gonflement est dû à la pression osmotique des contreions. La tension créée par cette pression est transmise par les noeuds du gel aux chaines élastiques qui se comportent comme des chaines isolées avec une force extérieure appliquée aux extrémités. Le facteur de structure du gel est la somme d'une composante gelée due aux hétérogénéités de concentration

  4. Fracturing fluid cleanup by controlled release of enzymes from polyelectrolyte complex nanoparticles

    NASA Astrophysics Data System (ADS)

    Barati Ghahfarokhi, Reza

    Guar-based polymer gels are used in the oil and gas industry to viscosify fluids used in hydraulic fracturing of production wells, in order to reduce leak-off of fluids and pressure, and improve the transport of proppants. After fracturing, the gel and associated filter cake must be degraded to very low viscosities using breakers to recover the hydraulic conductivity of the well. Enzymes are widely used to achieve this but injecting high concentrations of enzyme may result in premature degradation, or failure to gel; denaturation of enzymes at alkaline pH and high temperature conditions can also limit their applicability. In this study, application of polyelectrolyte nanoparticles for entrapping, carrying, releasing and protecting enzymes for fracturing fluids was examined. The objective of this research is to develop nano-sized carriers capable of carrying the enzymes to the filter cake, delaying the release of enzyme and protecting the enzyme against pH and temperature conditions inhospitable to native enzyme. Polyethylenimine-dextran sulfate (PEI-DS) polyelectrolyte complexes (PECs) were used to entrap two enzymes commonly used in the oil industry in order to obtain delayed release and to protect the enzyme from conditions inhospitable to native enzyme. Stability and reproducibility of PEC nanoparticles was assured over time. An activity measurement method was used to measure the entrapment efficiency of enzyme using PEC nanoparticles. This method was confirmed using a concentration measurement method (SDS-PAGE). Entrapment efficiencies of pectinase and a commercial high-temperature enzyme mixture in polyelectrolyte complex nanoparticles were maximized. Degradation, as revealed by reduction in viscoelastic moduli of borate-crosslinked hydroxypropyl guar (HPG) gel by commercial enzyme loaded in polyelectrolyte nanoparticles, was delayed, compared to equivalent systems where the enzyme mixture was not entrapped. This indicates that PEC nanoparticles delay the

  5. Automated and Rapid Determinations of Earthquake Source Parameters in Indonesia: Comparisons with Global CMT Solutions

    NASA Astrophysics Data System (ADS)

    Nakano, M.; Yamashina, T.; Kumagai, H.; Inoue, H.; S.; F.

    2008-12-01

    Rapid determinations of the earthquake source parameters are important for early disaster response and tsunami warning issue. After the devastation of the 2004 great Sumatra-Andaman earthquake, a nationwide broadband seismograph network in Indonesia has been developed by international cooperations among Meteorological and Geophysical Agency of Indonesia (BMG), GeoForschungsZentrum Potsdam, Germany (GFZ), the China Earthquake Administration (CEA), and the National Research Institute for Earth Science and Disaster Prevention, Japan (NIED). This seismic network is intended to improve the capabilities for monitoring seismic activity and tsunami generation in Indonesia, and is a part of the Indonesia Tsunami Early Warning System (InaTEWS). We developed an automated system for rapid determinations of the earthquake source parameters called SWIFT (Source parameter determinations based on Waveform Inversion of Fourier Transformed seismograms) using data from the seismic network in Indonesia. This paper describes the SWIFT system and its performance. We also compare the obtained source parameters with those obtained by the Global Centroid Moment Tensor (GCMT) project (http://www.globalcmt.org/). The SWIFT system is based on the waveform inversion method of Nakano et al. (2008, GJI, 173, 1000-1011). In this method, waveform inversion is carried out in the frequency domain to rapidly and routinely estimate both the focal mechanism and moment function. A pure double-couple focal mechanism from a point source is assumed in order to stabilize the inversion using data from a small number of seismic stations. The fault and slip orientation angles are estimated by a grid search with respect to the dip, strike, and rake angles. The source centroid location is determined by a spatial grid search, in which we adopt adaptive grid spacings for an efficient search. The moment function is reconstructed from its bandpassed form obtained from the inversion. This system is triggered by

  6. Single-Channel Flow Injection Spectrophotometric Determination of Nickel Using Furildioxime in Micellar Solution

    PubMed Central

    Memon, Najma; Memon, Saima; Solangi, Amber R.; Soomro, Rubina; Soomro, Rabel

    2012-01-01

    A very simple, selective, and fast flow injection spectrophotometeric method is developed for determination of nickel using furildioxime as complexing agent. Micellar solution of brij-35 is employed to solubilize the sparingly soluble complex of Ni-furildioxime in buffered aqueous system (pH-9.00). Under optimized conditions, absorbance is linear from 0.02 to 10 μg mL−1 using 500 μL sample volume and from 10 to 30 μg mL−1 using 50 μL sample volume of nickel at 480 nm, with R2 = 0.9971 and 0.9916, respectively. The molar absorption coefficient and Sandell's sensitivity were 6.0 × 103 L mol−1 cm−1 and 0.01 ng cm−2, respectively. The sample throughput of the method is 120 samples per hour with RSD of 0.01–0.2% for 0.02 to 10 μg mL−1 nickel (n = 5), indicating that the method is highly precise and reproducible. Interference from cobalt is removed by Nitroso R-salt-modified XAD-16. The developed method is validated by analysing certified reference materials and is applied to assess nickel content of commercially available cigarettes. PMID:22654605

  7. Absorption spectra and spectral-kinetic characteristics of the fluorescence of Sanguinarine in complexes with polyelectrolytes and DNA

    NASA Astrophysics Data System (ADS)

    Motevich, I. G.; Strekal, N. D.; Nowicky, J. W.; Maskevich, S. A.

    2010-07-01

    The absorption spectra and stationary and time resolved fluorescence spectra of the isoquinoline alkaloid sanguinarine are studied in aqueous media and during interactions with synthetic polyelectrolytes (polystyrene sulfonate and polyallylamine) and a natural polyelectrolyte (DNA).

  8. Field-Theoretic Studies of Nanostructured Triblock Polyelectrolyte Gels

    NASA Astrophysics Data System (ADS)

    Audus, Debra; Fredrickson, Glenn

    2012-02-01

    Recently, experimentalists have developed nanostructured, reversible gels formed from triblock polyelectrolytes (Hunt et al. 2011, Lemmers et al. 2010, 2011). These gels have fascinating and tunable properties that reflect a heterogeneous morphology with domains on the order of tens of nanometers. The complex coacervate domains, aggregated oppositely charged end-blocks, are embedded in a continuous aqueous matrix and are bridged by uncharged, hydrophilic polymer mid-blocks. We report on simulation studies that employ statistical field theory models of triblock polyelectrolytes, and we explore the equilibrium self-assembly of these remarkable systems. As the charge complexation responsible for the formation of coacervate domains is driven by electrostatic correlations, we have found it necessary to pursue full ``field-theoretic simulations'' of the models, as opposed to the familiar self-consistent field theory approach. Our investigations have focused on morphological trends with mid- and end-block lengths, polymer concentration, salt concentration and charge density.

  9. Weak Polyelectrolyte-Clay Assemblies: Physical Mechanisms of Biological Response

    NASA Astrophysics Data System (ADS)

    Sukhishvili, Svetlana; Pavlukhina, Svetlana; Zhuk, Iryna

    2014-03-01

    We report on a highly efficient, non-leachable antibacterial coating, consisting of an ultrathin nanocomposite hydrogel capable of hosting, protecting and delivering antibiofilm agents in response to bacterial infection. Constructed using layer-by-layer (LbL) deposition of clay nanoplatelets and a weak polyelectrolyte and loaded with an antimicrobial agent (AmA), the coatings was highly resistant to colonization by Staphylococcus aureus. The high antibiofilm activity of the coating results from a combination of highly localized, bacteria-triggered AmA release and hydrogel swelling, as well as retention of AmA by clay nanoplatelets. We discuss the dependence of rheological and swelling properties of weak polyelectrolyte-clay assemblies on film thickness, clay platelet orientation and environmental pH.

  10. Osmotic and Salted Brush Phase of Polyelectrolyte Brushes

    NASA Astrophysics Data System (ADS)

    Helm, Christane A.; Ahrens, Heiko; Förster, Stephan

    2004-03-01

    Amphiphilic block copolymers consisting of a fluid hydrophobic Poly(ethyletylene) (PEE), and a Poly(styrenesulfonate) (PSS) part form monolayers at the air/water interface. With x-ray reflectivity it is shown that the hydrophobic blocks of PEE_114PSS_83 and PEE_144PSS_136 constitute a nm-thick melt, while the polyelectrolyte forms an osmotically swollen brush with counterion incorporation. A slight thickness increase on monolayer compression is found which can be explained by the strong stretching of the brushes. Only at high salt conditions (above 0.1 M), the brush shrinks and the thickness scales with the molecular area (exponent -1/3), and with the salt concentration (exponent ca. -1/5). With Grazing Incidence Diffraction, the lateral order of the polyelectrolyte chains can be detected.

  11. Polyelectrolyte Structure and Interactions in Model Cystic Fibrosis Sputum

    NASA Astrophysics Data System (ADS)

    Slimmer, Scott; Angelini, Thomas; Liang, Hongjun; Butler, John; Wong, Gerard C. L.

    2002-03-01

    Cystic fibrosis sputum is a complex fluid consisting of a number of components, including mucin (a glycoprotein), lysozyme (a cationic polypeptide), water, salt, as well as a high concentration of a number of anionic biological polyelectrolytes such as DNA and F-actin. The interactions governing these components are poorly understood, but may have important clinical consequences. For example, the formation of these biological polyelectrolytes into ordered gel phases may contribute significantly to the observed high viscosity of CF sputum. In this work, a number of model systems were created to simulate CF sputum in vitro, in order to elucidate the contributions of the different components. Preliminary results will be presented. This work was supported by NSF DMR-0071761, DOE DEFG02-91ER45439, the Beckman Young Investigator Program, and the Cystic Fibrosis Foundation.

  12. Kinetics of swelling of polyelectrolyte gels: Fixed degree of ionization

    NASA Astrophysics Data System (ADS)

    Sen, Swati; Kundagrami, Arindam

    2015-12-01

    The swelling kinetics of uncharged and charged polymer (polyelectrolyte) gels in salt-free conditions is studied in one dimension by solving the constitutive equation of motion (Newton's law for the elementary gel volume) of the displacement variable by two theoretical methods: one in which the classical definition of stress is used with the bulk modulus taken as a parameter, and the other in which a phenomenological expression of the osmotic stress as a function of polymer density and degree of ionization is taken as an input to the dynamics. The time-evolution profiles for spatially varying polymer density and stress, along with the location of the gel-solvent interface, are obtained from the two methods. We show that both the polymer density (volume fraction) and stress inside the gel follow expected behaviours of being maximum for the uniformly shrunken gel, and relaxing slowly to the lowest values as the gel approaches equilibrium. We further show that, by comparing the temporal profiles of the gel-solvent interface and other variables between the two methods, one may attempt to assign an effective bulk modulus to the polyelectrolyte gel as a function of the degree of ionization and other parameters of the gel such as hydrophobicity, cross-link density, and the temperature. The major result we get is that the effective bulk modulus of a polyelectrolyte gel increases monotonically with its degree of ionization. In the process of identifying the parameters for a monotonic swelling, we calculated using a well-known expression of the free energy the equilibrium results of two-phase co-existence and the critical point of a polyelectrolyte gel with a fixed degree of ionization.

  13. Kinetics of swelling of polyelectrolyte gels: Fixed degree of ionization

    SciTech Connect

    Sen, Swati; Kundagrami, Arindam

    2015-12-14

    The swelling kinetics of uncharged and charged polymer (polyelectrolyte) gels in salt-free conditions is studied in one dimension by solving the constitutive equation of motion (Newton’s law for the elementary gel volume) of the displacement variable by two theoretical methods: one in which the classical definition of stress is used with the bulk modulus taken as a parameter, and the other in which a phenomenological expression of the osmotic stress as a function of polymer density and degree of ionization is taken as an input to the dynamics. The time-evolution profiles for spatially varying polymer density and stress, along with the location of the gel-solvent interface, are obtained from the two methods. We show that both the polymer density (volume fraction) and stress inside the gel follow expected behaviours of being maximum for the uniformly shrunken gel, and relaxing slowly to the lowest values as the gel approaches equilibrium. We further show that, by comparing the temporal profiles of the gel-solvent interface and other variables between the two methods, one may attempt to assign an effective bulk modulus to the polyelectrolyte gel as a function of the degree of ionization and other parameters of the gel such as hydrophobicity, cross-link density, and the temperature. The major result we get is that the effective bulk modulus of a polyelectrolyte gel increases monotonically with its degree of ionization. In the process of identifying the parameters for a monotonic swelling, we calculated using a well-known expression of the free energy the equilibrium results of two-phase co-existence and the critical point of a polyelectrolyte gel with a fixed degree of ionization.

  14. Electric field-induced deformation of polyelectrolyte gels

    SciTech Connect

    Adolf, D.; Hance, B.G.

    1995-08-01

    Water-swollen polyelectrolyte gels deform in an electric field. We observed that the sign and magnitude of the deformation is dependent on the nature of the salt bath in which the gel is immersed and electrocuted. These results are compatible with a deformation mechanism based upon creation of ion density gradients by the field which, in turn, creates osmotic pressure gradients within the gel. A consistent interpretation results only if gel mobility is allowed as well as free ion diffusion and migration.

  15. Azobenzene - functionalized polyelectrolyte nanolayers as ultrafast optoacoustic transducers.

    PubMed

    Pavlenko, E S; Sander, M; Mitzscherling, S; Pudell, J; Zamponi, F; Rössle, M; Bojahr, A; Bargheer, M

    2016-07-21

    We introduce azobenzene-functionalized polyelectrolyte multilayers as efficient, inexpensive optoacoustic transducers for hyper-sound strain waves in the GHz range. By picosecond transient reflectivity measurements we study the creation of nanoscale strain waves, their reflection from interfaces, damping by scattering from nanoparticles and propagation in soft and hard adjacent materials like polymer layers, quartz and mica. The amplitude of the generated strain ε∼ 5 × 10(-4) is calibrated by ultrafast X-ray diffraction. PMID:27341685

  16. Azobenzene - functionalized polyelectrolyte nanolayers as ultrafast optoacoustic transducers

    NASA Astrophysics Data System (ADS)

    Pavlenko, E. S.; Sander, M.; Mitzscherling, S.; Pudell, J.; Zamponi, F.; Rössle, M.; Bojahr, A.; Bargheer, M.

    2016-07-01

    We introduce azobenzene-functionalized polyelectrolyte multilayers as efficient, inexpensive optoacoustic transducers for hyper-sound strain waves in the GHz range. By picosecond transient reflectivity measurements we study the creation of nanoscale strain waves, their reflection from interfaces, damping by scattering from nanoparticles and propagation in soft and hard adjacent materials like polymer layers, quartz and mica. The amplitude of the generated strain ε ~ 5 × 10-4 is calibrated by ultrafast X-ray diffraction.

  17. Kinetics of swelling of polyelectrolyte gels: Fixed degree of ionization.

    PubMed

    Sen, Swati; Kundagrami, Arindam

    2015-12-14

    The swelling kinetics of uncharged and charged polymer (polyelectrolyte) gels in salt-free conditions is studied in one dimension by solving the constitutive equation of motion (Newton's law for the elementary gel volume) of the displacement variable by two theoretical methods: one in which the classical definition of stress is used with the bulk modulus taken as a parameter, and the other in which a phenomenological expression of the osmotic stress as a function of polymer density and degree of ionization is taken as an input to the dynamics. The time-evolution profiles for spatially varying polymer density and stress, along with the location of the gel-solvent interface, are obtained from the two methods. We show that both the polymer density (volume fraction) and stress inside the gel follow expected behaviours of being maximum for the uniformly shrunken gel, and relaxing slowly to the lowest values as the gel approaches equilibrium. We further show that, by comparing the temporal profiles of the gel-solvent interface and other variables between the two methods, one may attempt to assign an effective bulk modulus to the polyelectrolyte gel as a function of the degree of ionization and other parameters of the gel such as hydrophobicity, cross-link density, and the temperature. The major result we get is that the effective bulk modulus of a polyelectrolyte gel increases monotonically with its degree of ionization. In the process of identifying the parameters for a monotonic swelling, we calculated using a well-known expression of the free energy the equilibrium results of two-phase co-existence and the critical point of a polyelectrolyte gel with a fixed degree of ionization. PMID:26671401

  18. Effect of Sr and Ca solid-solution behaviour on superconductive properties as determined by microstructure analysis

    NASA Astrophysics Data System (ADS)

    Hong, Zhanglian; Wang, Minquan; Xiong, Guohong; Fan, Xianping

    1997-02-01

    The effects of the Sr and Ca composition and site-selection in a solid solution of a Bi-system superconductor on the superconductive properties were studied. Results showed that the Sr and Ca solid-solution behaviour had a remarkable effect on the superconductive properties. Further analysis indicated that this effect originated from varied hole concentration which was determined by the content of Sr atoms substituting for Bi atoms within the BiO layers. This substitution was influenced by the Sr and Ca solid-solution behaviour. This result offers a new mechanism for clarifying why the bivalent Sr and Ca cations affect the superconductive properties.

  19. Use of radionuclide imaging to determine gastric emptying of carbohydrate solutions during exercise.

    PubMed Central

    MacLaren, D; Miles, A; O'Neill, I; Critchley, M; Grime, S; Stockdale, H

    1996-01-01

    OBJECTIVE--To investigate the repeatability of continual assessment of the gastric emptying rates of carbohydrate solutions in exercising subjects using 99mtechnetium labelling. METHODS--Gastric emptying of a 5% glucose solution and an iso-osmotic maltodextrin solution was measured using 3 MBq of 99mtechnetium labelled diethylene triamine penta-acetic acid (DTPA) and continuous gamma camera imaging in five male subjects. The subjects performed four 1 h trials at 70% VO2 peak on a cycle ergometer. After 15 min, 200 ml of a radiolabelled solution of glucose or maltodextrin were ingested in a blind crossover protocol. The two solutions were each ingested on separate occasions (trial 1 and trial 2) to establish repeatability. RESULTS--Statistical analysis showed no differences between trial 1 and trial 2 for both solutions. There were no significant differences for the emptying rates between the two test solutions. CONCLUSIONS--Posterior imaging using a computer linked gamma camera following the ingestion of 99mtechnetium labelled DTPA mixed with carbohydrate solutions provides a repeatable method of assessing gastric emptying characteristics in exercising subjects. This technique showed no significant differences between the emptying rates of a single dose of iso-osmotic glucose or maltodextrin solution. Images Fig 1 PMID:8665111

  20. Determination of the stability of dopamine in aqueous solutions by high performance liquid chromatography

    SciTech Connect

    Shen, Y. . Dept. of Veterinary Physiology and Pharmacology); Ye, M.Y. . Dept. of Biology and Chemistry ManTech Environmental Technology, Inc., Ada, OK )

    1994-01-01

    Methods for the analysis of dopamine and its degradation products in aqueous solutions are described. The technique of reverse phase chromatography with electrochemical detection is used to investigate the stability of dopamine in various aqueous solutions. In neutral and basic solutions, dopamine is rapidly oxidized by dissolved oxygen to form degradation products. The results demonstrate that dopamine is stable in 0.1 N HCl solution, pH < 1. The study indicates that EDTA can slow down the oxidation process. The detection limit for the analysis of dopamine is 0.1 [mu]M with 100 [mu]l injection.

  1. The evolution of cyclopropenium ions into functional polyelectrolytes

    DOE PAGESBeta

    Jiang, Yivan; Freyer, Jessica L.; Cotanda, Pepa; Brucks, Spencer D.; Killops, Kato L.; Bandar, Jeffrey S.; Torsitano, Christopher; Balsara, Nitash P.; Lambert, Tristan H.; Campos, Luis M.

    2015-01-09

    We report that versatile polyelectrolytes with tunable physical properties have the potential to be transformative in applications such as energy storage, fuel cells and various electronic devices. Among the types of materials available for these applications, nanostructured cationic block copolyelectrolytes offer mechanical integrity and well-defined conducting paths for ionic transport. To date, most cationic polyelectrolytes bear charge formally localized on heteroatoms and lack broad modularity to tune their physical properties. To overcome these challenges, we describe herein the development of a new class of functional polyelectrolytes based on the aromatic cyclopropenium ion.We demonstrate the facile synthesis of a series ofmore » polymers and nanoparticles based on monomeric cyclopropenium building blocks incorporating various functional groups that affect physical properties. In conclusion, the materials exhibit high ionic conductivity and thermal stability due to the nature of the cationic moieties, thus rendering this class of new materials as an attractive alternative to develop ion-conducting membranes.« less

  2. Nanostructured multilayer polyelectrolyte films with silver nanoparticles as antibacterial coatings.

    PubMed

    Kruk, Tomasz; Szczepanowicz, Krzysztof; Kręgiel, Dorota; Szyk-Warszyńska, L; Warszyński, Piotr

    2016-01-01

    Ultrathin polyelectrolyte films containing silver nanoparticles appear to be a promising material for antimicrobial coatings used in the medical area. The present work is focused on the formation of multilayer polyelectrolyte films using: polyethyleneimine (PEI) as polycation, Poly(sodium 4-styrenesulfonate) (PSS) as polyanions and negatively charged silver nanoparticles (AgNPs), which led to the polyelectrolyte-silver nanocomposite coatings. The film thickness and mass were measured by ellipsometry and quartz crystal microbalance with dissipation monitoring (QCM-D) and the structure and morphology of films were visualized using scanning electron microscopy (SEM). Systematic increase of the UV-Vis absorption confirmed formation of the consecutive layers of the film. The analysis of bacteria cell adhesion to films surface was done by the luminometry measurement. Three gram-negative bacterial strains with strong adhesive properties were used in this study: Escherichia coli, Aeromonas hydrophila, and Asaia lannenesis. It was found that nanocomposite films have antimicrobial properties, which makes them very interesting for a number of practical applications, e.g. for the prevention of microbial colonization on treated surfaces. PMID:26193773

  3. Self-organization of multivalent counterions in polyelectrolyte brushes

    NASA Astrophysics Data System (ADS)

    Wu, Jianzhong

    2013-03-01

    The structure and interfacial properties of a polyelectrolyte brush (PEB) depend on a broad range of parameters such as the polymer charge and grafting density, counterion valence, salt concentration, and solvent conditions. These properties are of fundamental importance in technological applications of PEBs including colloid stabilization, surface modification and lubrication, and in functioning of biological systems such as genome packaging in single-strand DNA/RNA viruses. Despite intensive studies by experiments, molecular simulations, and myriad analytical methods including scaling analyses, self-consistent-field theory, and most recently density functional theory, the behavior of PEBs in the presence of multivalent counterions remains poorly understood. In this talk, I will present a density functional method for polyelectrolyte brushes and discuss self-organization of multivalent counterions within highly charged polyelectrolyte brushes. The counterion-mediated attraction between polyions leads to a first-order phase transition similar to that for a neutral brush in a poor solvent. The self-organization of multivalent counterions results in a wavelike electrostatic potential and charge density that oscillate between positive and negative values.

  4. Charged colloids and polyelectrolytes: from statics to electrokinetics

    NASA Astrophysics Data System (ADS)

    Löwen, H.; Esztermann, A.; Wysocki, A.; Allahyarov, E.; Messina, R.; Jusufi, A.; Hoffmann, N.; Gottwald, D.; Kahl, G.; Konieczny, M.; Likos, C. N.

    2005-01-01

    A review is given on recent studies of charged colloidal suspensions and polyelectrolytes both in static and non-equilibrium situations. As far as static equilibrium situations are concerned, we discuss three different problems: 1) Sedimentation density profiles in charged suspensions are shown to exhibit a stretched non-bariometric wing at large heights and binary suspensions under gravity can exhibit an analog of the brazil-nut effect known from granular matter, i.e. the heavier particles settle on top of the lighter ones. 2) Soft polyelectrolyte systems like polyelectrolyte stars and microgels show an ultra-soft effective interaction and this results into an unusual equilibrium phase diagram including reentrant melting transitions and stable open crystalline lattices. 3) The freezing transition in bilayers of confined charged suspensions is discussed and a reentrant behaviour is obtained. As far as nonequilibrium problems are concerned, we discuss an interface instability in oppositely driven colloidal mixtures and discuss possible approaches to simulate electrokinetic effects in charged suspensions.

  5. Determination of interfacial parameters of a soluble particle in a nonideal solution from measured deliquescence and efflorescence humidities

    NASA Astrophysics Data System (ADS)

    Hellmuth, O.; Shchekin, A. K.

    2015-04-01

    In order to study the growth/shrinking of a hygroscopic nanoparticle during hydration/dehydration in an atmosphere of water vapour, we have employed a thermodynamic approach proposed by Shchekin et al. (2008). This approach uses the mechanic and thermodynamic concept of disjoining pressure of thin films and allows, among others, the prediction of the humidity growth factor of both (i) a homogeneous solution droplet with completely dissolved residual core and (ii) a heterogeneous solution droplet with partially dissolved residual core as a function of the ambient relative humidity. For application to a nanometric sodium chloride particle we have extended the original approach by (i) considering the nonideality of the solution through the dependence of molecular volumes of the solvent and solute molecules and the solute and solvent activities on the solution concentration, (ii) deriving an equation for the estimation of the efflorescence properties of a homogeneous solution droplet, and (iii) combining the empirical power law fittings for the size dependence of the deliquescence and efflorescence relative humidity values by Biskos et al. (2006a). It was demonstrated how the solution/solute interface energy and the correlation length of a thin solution film can be determined from a combination of experimentally determinable efflorescence and deliquescence humidities with the present calculus. The solution/solute interface energy was found to be in close agreement with some previous values reported in the literature, while it strongly differs from data of some other sources. The calculated deliquescence humidity shows a low sensitivity to the choice of the numerical value for the film correlation length. The estimated film correlation length of 1 nm for a nanometric sodium chloride particle with dry particle radius of 5 nm was found to be reconcilable with available a priori estimates of the correlation length from the literature when the measurement uncertainty of the

  6. Determination of interfacial parameters of a soluble particle in a nonideal solution from measured deliquescence and efflorescence humidities

    NASA Astrophysics Data System (ADS)

    Hellmuth, O.; Shchekin, A. K.

    2014-09-01

    In order to study the growth/shrinking of a hygroscopic nanoparticle during hydration/dehydration in an atmosphere of water vapour we have employed a thermodynamic approach proposed by Shchekin et al. (2008). This approach uses the mechanic and thermodynamic concept of disjoining pressure of thin films and allows, among others, the prediction of the humidity growth factor of both (i) a homogeneous solution droplet with completely dissolved residual core, and (ii) a heterogeneous solution droplet with partially dissolved residual core as a function of the ambient relative humidity. For application to a nanometric sodium chloride particle we have extended the original approach by (i) consideration of the nonideality of the solution through the dependence of molecular volumes of the solvent and solute molecules and the solute and solvent activities on the solution concentration, by (ii) derivation of an equation for the estimation of the efflorescence properties of a homogeneous solution droplet, and by (iii) combination with the empirical power law fittings for the size dependence of the deliquescence and efflorescence relative humidity values by Biskos et al. (2006a). It was demonstrated how the solution/solute interface energy and the correlation length of a thin solution film can be determined from a combination of experimentally determinable efflorescence and deliquescence humidities with the present calculus. The solution/solute interface energy was found to be in close agreement with some previous values reported in the literature, while it strongly differs from data of some other sources. The calculated deliquescence humidity shows a low sensitivity against the choice of the numerical value for the film correlation length. The estimated film correlation length of 1 nm for a nanometric sodium chloride particle with dry particle radius of 5 nm was found to be reconcilable with available a priori estimates of the correlation length from the literature when the

  7. Scaling Equations for a Biopolymer in Salt Solution

    NASA Astrophysics Data System (ADS)

    Geissler, Erik; Hecht, Anne-Marie; Horkay, Ferenc

    2007-12-01

    The effect of the simultaneous presence of monovalent and divalent cations on the thermodynamics of polyelectrolyte solutions is an incompletely solved problem. In physiological conditions, combinations of these ions affect structure formation in biopolymer systems. Dynamic light scattering measurements of the collective diffusion coefficient D and the osmotic compressibility of semidilute hyaluronan solutions containing different ratios of sodium and calcium ions are compared with simple polyelectrolyte models. Scaling relationships are proposed in terms of polymer concentration and ionic strength J of the added salt. Differences in the effects of sodium and calcium ions are found to be expressed only through J.

  8. Polyelectrolyte adsorption onto an initially-bare solid surface of opposite electrical charge

    NASA Astrophysics Data System (ADS)

    Sukhishvili, Svetlana A.; Granick, Steve

    1998-10-01

    We contrast the adsorption, over a wide range of pH and ionic strength, of polyelectrolyte chains with different fractions of charged segments but similar degree of polymerization. The system was a cationic polymer, poly(1,4 vinyl)pyridine (PVP), with 14%, 48%, and 98% quaternized repeat units, adsorbed from aqueous solution (D2O or H2O) onto a single silicon oxide substrate at 25 °C. Measurements were based on Fourier transform infrared spectroscopy in attenuated total reflection (FTIR-ATR). In the first phase of this study, we varied the surface charge density by changing pH and showed that attraction of PVP to the surface was electrostatic. The amount adsorbed of charged (quaternized) PVP segments was nearly the same regardless of the overall fraction of charged segments in the chain. In addition, polymer adsorption appeared to enhance the dissociation of silanol groups on the solid surface. In a second phase of this study, the ionic strength was varied systematically under conditions of high negative surface charge density (high pH), focusing on 98% quaternized PVP. Strong chemical specificity was found; the polyelectrolyte was insoluble in KI above a low salt concentration, but soluble in NaCl, signifying that the anions, Cl- and I-, competed with the negatively-charged surface for association with the polyelectrolyte. At the same time, the cations, Na+ and K+, competed with the polyelectrolyte for access to the limited surface area. The mass adsorbed increased strongly with increasing salt concentration and, for polymer in aqueous NaCl, passed through a maximum with subsequent decrease, reflecting a greater abundance of loops and tails at intermediate ionic strength and ultimately complete desorption of the chains when the salt concentration was very high. The maximum in mass adsorbed occurred at very high ionic strength (1 molar NaCl), indicating competitive adsorption of Na+ with charged segments of the polymer. Direct measurements of the infrared

  9. Determination of till hydraulic properties for modelling flow and solute transport in a forested hillslope

    NASA Astrophysics Data System (ADS)

    Laine-Kaulio, H.; Karvonen, T.; Koivusalo, H.; Lauren, A.; Saastamoinen, S.

    2009-04-01

    Shallow till layers typically overlay bedrock in forested areas in the boreal region. In forested tills, preferential flowpaths related to the soil structure have a decisive influence on hydrogeological properties such as the soil hydraulic conductivity. Hydraulic conductivity is also proven to depend on the observation scale. Traditional soil core samples cannot capture the impact of soil structure on hillslope scale conductivities. Measurements and observations made at different scales, combined with simulation models, are essential for investigating conductivity properties and flow and transport processes in forest soils. This study combined a set of soil analyses and field experiments with physics-based modelling to investigate the hydraulic properties of a forested till slope in Finland. The main objective was to i) determine the saturated hydraulic conductivity in the study slope with methods related to different scales, and to ii) study the utilisation of the conductivity results in modelling flow and solute transport in the slope. Soil sampling, dye, and ion tracer experiments were conducted in a forested hillslope in Eastern Finland. In the 20 m long study section of the slope the mean slope was about 15 %. The haplic podsol profile above bedrock had a thickness of 0.8 m and was formed of sandy till. The soil was very stony and heterogeneous in terms of granularity and pore size distribution. Granularity, porosity and proportion of macropores reduced clearly with depth. Dye tracer experiments revealed three types of preferential flow routes in the slope: i) stone surfaces, ii) areas of coarse-grained soil material, and iii) decayed root channels. Both living roots and preferential flowpaths reached the transitional zone of the podsol at about 0.5 m depth, but living roots were not found to function unequivocally as preferential flowpaths. The saturated hydraulic conductivity was determined using three methods: i) from soil core samples in laboratory, ii

  10. 75 FR 73132 - Sypris Technologies, Sypris Solutions Division, Kenton, OH; Notice of Revised Determination on...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-29

    ... workers of Sypris Technologies, Sypris Solutions Division, Kenton, Ohio (subject firm). The Department's Notice was published in the Federal Register on October 25, 2010 (75 FR 65514). The initial investigation... Employment and Training Administration Sypris Technologies, Sypris Solutions Division, Kenton, OH; Notice...

  11. Experimental techniques for determination of the role of diffusion and convection in crystal growth from solution

    NASA Technical Reports Server (NTRS)

    Zefiro, L.

    1980-01-01

    Various studies of the concentration of the solution around a growing crystal using interferometric techniques are reviewed. A holographic interferometric technique used in laboratory experiments shows that a simple description of the solution based on the assumption of a purely diffusive mechanism appears inadequate since the convection, effective even in reduced columns, always affects the growth.

  12. Determination of trace amounts of chemical warfare agent degradation products in decontamination solutions with NMR spectroscopy.

    PubMed

    Koskela, Harri; Rapinoja, Marja-Leena; Kuitunen, Marja-Leena; Vanninen, Paula

    2007-12-01

    Decontamination solutions are used for an efficient detoxification of chemical warfare agents (CWAs). As these solutions can be composed of strong alkaline chemicals with hydrolyzing and oxidizing properties, the analysis of CWA degradation products in trace levels from these solutions imposes a challenge for any analytical technique. Here, we present results of application of nuclear magnetic resonance spectroscopy for analysis of trace amounts of CWA degradation products in several untreated decontamination solutions. Degradation products of the nerve agents sarin, soman, and VX were selectively monitored with substantially reduced interference of background signals by 1D 1H-31P heteronuclear single quantum coherence (HSQC) spectrometry. The detection limit of the chemicals was at the low part-per-million level (2-10 microg/mL) in all studied solutions. In addition, the concentration of the degradation products was obtained with sufficient confidence with external standards. PMID:17973498

  13. Ductile polyelectrolyte macromolecule-complexed zinc phosphate conversion crystal pre-coatings and topcoatings embodying a laminate

    DOEpatents

    Sugama, Toshifumi; Kukacka, L.E.; Carciello, N.R.

    1985-11-05

    This invention relates to a precoat, laminate, and method for ductile coatings on steel and non-ferrous metals which comprises applying a zinc phosphating coating solution modified by a solid polyelectrolyte selected from polyacrylic acid (PAA), polymethacrylic acid (PMA), polyitaconic acid (PIA), and poly-L-glutamic acid. The contacting of the resin with the phosphating solution is made for a period of up to 20 hours at about 80/sup 0/C. The polyelectrolyte or the precoat is present in about 0.5 to 5.0% by weight of the total precoat composition and after application, the precoat base is dried for up to 5 hours at about 150/sup 0/C to desiccate. Also, a laminate may be formed where polyurethane (PU) is applied as an elastomeric topcoating or polyfuran resin is applied as a glassy topcoating. It has been found that the use of PAA at a molecular weight of about 2 x 10/sup 5/ gave improved ductility modulus effect.

  14. Self-assembled systems of water soluble metal 8-hydroxyquinolates with surfactants and conjugated polyelectrolytes.

    PubMed

    Burrows, Hugh D; Costa, Telma; Ramos, M Luisa; Valente, Artur J M; Stewart, Beverly; Justino, Licinia L G; Almeida, Aline I A; Catarina, Nathanny Lessa; Mallavia, Ricardo; Knaapila, Matti

    2016-06-22

    We have studied the interaction of 8-hydroxyquinoline-5-sulfonate (8-HQS) with the metal ions Al(iii) and Zn(ii) in aqueous solution in the presence of tetraalkylammonium surfactants using UV/vis absorption, fluorescence, NMR spectroscopy and electrical conductivity measurements, complemented by DFT calculations and molecular dynamics (MD) simulations. Under appropriate conditions, complexes between 8-HQS and metal ions form rapidly, and have similar electronic, spectroscopic and photophysical properties to the corresponding metal quinolates, such as Alq3. These interact with the cationic surfactants, leading to marked increases in fluorescence intensity. However, significant differences are seen in the behavior of the two metal ions. With aluminium, a stable [Al(8-QS)3](3-) anion is formed, and interacts, predominantly through electrostatic interactions, with the surfactant, without disrupting the metal ion coordination sphere. In contrast, with Zn(ii), there is a competition between the metal ion and surfactants in the interaction with 8-HQS, although the [Zn(8-QS)2(H2O)2](2-) species is stable at appropriate pH and surfactant concentration. The studies are extended to systems with the conjugated polyelectrolyte (CPE) poly-(9,9-bis(6-N,N,N-trimethylammonium)hexyl)-fluorene-phenylene bromide (HTMA-PFP), which has a similar alkylammonium chain to the surfactants. Mixing metal salt, 8-HQS and HTMA-PFP in the presence of a nonionic surfactant leads to the formation of a metal complex/CPE supramolecular assembly between the conjugated polyelectrolyte and the metal/8-HQS complex, as demonstrated by electronic energy transfer. The potential of these systems in sensing, light harvesting, and electron injection/transport layers in organic semiconductor devices is discussed. PMID:26817700

  15. Development of functionalised polyelectrolyte capsules using filamentous Escherichia coli cells

    PubMed Central

    2012-01-01

    Background Escherichia coli is one of the best studied microorganisms and finds multiple applications especially as tool in the heterologous production of interesting proteins of other organisms. The heterologous expression of special surface (S-) layer proteins caused the formation of extremely long E. coli cells which leave transparent tubes when they divide into single E. coli cells. Such natural structures are of high value as bio-templates for the development of bio-inorganic composites for many applications. In this study we used genetically modified filamentous Escherichia coli cells as template for the design of polyelectrolyte tubes that can be used as carrier for functional molecules or particles. Diversity of structures of biogenic materials has the potential to be used to construct inorganic or polymeric superior hybrid materials that reflect the form of the bio-template. Such bio-inspired materials are of great interest in diverse scientific fields like Biology, Chemistry and Material Science and can find application for the construction of functional materials or the bio-inspired synthesis of inorganic nanoparticles. Results Genetically modified filamentous E. coli cells were fixed in 2% glutaraldehyde and coated with alternating six layers of the polyanion polyelectrolyte poly(sodium-4styrenesulfonate) (PSS) and polycation polyelectrolyte poly(allylamine-hydrochloride) (PAH). Afterwards we dissolved the E. coli cells with 1.2% sodium hypochlorite, thus obtaining hollow polyelectrolyte tubes of 0.7 μm in diameter and 5–50 μm in length. For functionalisation the polyelectrolyte tubes were coated with S-layer protein polymers followed by metallisation with Pd(0) particles. These assemblies were analysed with light microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy and transmission electron microscopy. Conclusion The thus constructed new material offers possibilities for diverse applications like novel catalysts or metal

  16. In situ formation of silver nanoparticles in linear and branched polyelectrolyte matrices using various reducing agents

    NASA Astrophysics Data System (ADS)

    Chumachenko, Vasyl; Kutsevol, Nataliya; Rawiso, Michel; Schmutz, Marc; Blanck, Christian

    2014-04-01

    Silver nanoparticles were synthesized in linear and branched polyelectrolyte matrices using different reductants and distinct synthesis conditions. The effect of the host hydrolyzed linear polyacrylamide and star-like copolymers dextran-graft-polyacrylamide of various compactness, the nature of the reductant, and temperature were studied on in situ synthesis of silver sols. The related nanosystems were analyzed by high-resolution transmission electron microscopy and UV-vis absorption spectrophotometry. It was established that the internal structure of the polymer matrix as well as the nature of the reductant determines the process of the silver nanoparticle formation. Specifically, the branched polymer matrices were much more efficient than the linear ones for stable nanosystem preparation.

  17. Summary of Tests to Determine Effectiveness of Gelatin Strike on SS{ampersand}C Dissolver Solutions

    SciTech Connect

    Murray, A.M.; Karraker, D.G.

    1998-05-01

    The solutions from the dissolution of sand, slag, and crucible (SS&C) material are sufficiently different from previous solutions processed via the F-Canyon Purex process that the effectiveness of individual process steps needed to be ascertained. In this study, the effectiveness of gelatin strike was tested under a variety of conditions. Specifically, several concentrations of silica, fluoride, nitric acid (HNO{sub 3}), boric acid (H{sub 3}BO{sub 3}), and aluminium nitrate nonahydrate (ANN) were studied. The disengagement times of surrogate and plant SS&C dissolver solutions from plant solvent also were measured. The results of the tests indicate that gelatin strike does not coagulate the silica at the low concentration of silica ({tilde 30} ppm) expected in the SS&C dissolver solutions because the silicon is complexed with fluoride ions (e.g., SiF{sub 6}{sup -2}). The silicon fluoride complex is expected to remain with the aqueous phase during solvent extraction. The disengagement times of the dissolver solutions from the plant solvent were not affected by the presence of low concentrations of silica and no third phase formation was observed in the disengagement phase with the low silica concentrations. Tests of surrogate SS&C dissolver solutions with higher concentration of silica (less than 150 ppm) did show that gelatin strike followed by centrifugation resulted in good phase disengagement of the surrogate SS{ampersand}C dissolver solution from the plant dissolver solution. At the higher silica concentrations, there is not sufficient fluoride to complex with the silica, and the silica must be entrained by the gelatin and removed from the dissolver solution prior to solvent extraction.

  18. Molecular Dynamics Simulations of Polyelectrolyte-Polyampholyte Complexes. Effect of Solvent Quality and Salt Concentration.

    NASA Astrophysics Data System (ADS)

    Jeon, Junhwan; Dobrynin, Andrey

    2006-03-01

    Using molecular dynamics simulations we have studied complexation in polyelectrolyte-polyampholyte mixtures in poor solvent conditions for the polyelectrolyte backbone. In a poor solvent a polyelectrolyte form a necklace-like structure. Upon forming a complex with both random and diblock polyampholytes a polyelectrolyte chain changes its necklace conformation by forming one huge bead. The collapse of the polyelectrolyte chain occurs due to neutralization of the polyelectrolyte charge by polyampholytes. In the case of the random polyampholyte the more positively charged sections of the chain adsorb on the surface of the globular bead while more negatively charged chain sections form loops surrounding the collapsed core of the aggregate. In the case of diblock polyampholyte the positively charged block and a part of the negatively charged block wraps around the collapsed polyelectrolyte with a substantial section of the negatively charged block sticking out from the collapsed center of the aggregate. These structures appear as a result of optimization of the net electrostatic energy of the complex and short-range attractive interactions between monomers of the polyelectrolyte chain.

  19. A self-healing hydrogel formation strategy via exploiting endothermic interactions between polyelectrolytes.

    PubMed

    Ren, Ying; Lou, Ruyun; Liu, Xiaocen; Gao, Meng; Zheng, Huizhen; Yang, Ting; Xie, Hongguo; Yu, Weiting; Ma, Xiaojun

    2016-05-01

    We report a strategy to synthesize self-healing hydrogels via exploiting endothermic interactions between polyelectrolytes. Natural polysaccharides and their derivatives were used to form reversible polyelectrolyte complexes by selecting appropriately charged chemical groups and counterions. This simple and effective method to fabricate self-healing hydrogels will find applications in diverse fields such as surface coating and 3D printing. PMID:27078585

  20. Effects of Surfactants and Polyelectrolytes on the Interaction between a Negatively Charged Surface and a Hydrophobic Polymer Surface.

    PubMed

    Rapp, Michael V; Donaldson, Stephen H; Gebbie, Matthew A; Gizaw, Yonas; Koenig, Peter; Roiter, Yuri; Israelachvili, Jacob N

    2015-07-28

    We have measured and characterized how three classes of surface-active molecules self-assemble at, and modulate the interfacial forces between, a negatively charged mica surface and a hydrophobic end-grafted polydimethylsiloxane (PDMS) polymer surface in solution. We provide a broad overview of how chemical and structural properties of surfactant molecules result in different self-assembled structures at polymer and mineral surfaces, by studying three characteristic surfactants: (1) an anionic aliphatic surfactant, sodium dodecyl sulfate (SDS), (2) a cationic aliphatic surfactant, myristyltrimethylammonium bromide (MTAB), and (3) a silicone polyelectrolyte with a long-chain PDMS midblock and multiple cationic end groups. Through surface forces apparatus measurements, we show that the separate addition of three surfactants can result in interaction energies ranging from fully attractive to fully repulsive. Specifically, SDS adsorbs at the PDMS surface as a monolayer and modifies the monotonic electrostatic repulsion to a mica surface. MTAB adsorbs at both the PDMS (as a monolayer) and the mica surface (as a monolayer or bilayer), resulting in concentration-dependent interactions, including a long-range electrostatic repulsion, a short-range steric hydration repulsion, and a short-range hydrophobic attraction. The cationic polyelectrolyte adsorbs as a monolayer on the PDMS and causes a long-range electrostatic attraction to mica, which can be modulated to a monotonic repulsion upon further addition of SDS. Therefore, through judicious selection of surfactants, we show how to modify the magnitude and sign of the interaction energy at different separation distances between hydrophobic and hydrophilic surfaces, which govern the static and kinetic stability of colloidal dispersions. Additionally, we demonstrate how the charge density of silicone polyelectrolytes modifies both their self-assembly at polymer interfaces and the robust adhesion of thin PDMS films to target

  1. Distribution and determination of Pb, Cd, Bi and Cu in the sea brine system: solution--colloidal particles--biota.

    PubMed

    Bozhkov, Ognyan; Tzvetkova, Christina; Russeva, Elena

    2006-01-01

    The distribution of Pb, Cd, Bi, and Cu in Black Sea brine system (solution--colloidal particles--biota) produced in Burgas and Pomorie salterns is studied. The established distribution of the title elements among the brine components is as follows: Pb--25% in the salt solution, 30%--in colloidal particles, 45%--in biota (Halobacterium salinarium and microalgae Dunaliela salina); Cu--30% in the salt solution, 22%--in colloidal particles, 48%--in biota. Cd and Bi are not detected in biota. They are uniformly distributed (50%: 50%) between the salt solution and colloidal particles. Two procedures for analysis are developed. The first one is designed for determination of the total content of the studied metals in brine. It involves elimination of the biota interference by addition of ethanol, extraction and pre-concentration of the metals with NaDDC into CCl4 followed by FAAS determination. The second procedure intends determination of the elements in the separate components of the brine. It involves separation of the colloidal particles through centrifugation, separation of the studied elements from the resulting solution as dithiocarbamate complexes on a Millipore filter, dissolution of the retained metal species and subsequent FAAS analysis. PMID:16948432

  2. Multiparametric Flow System for the Automated Determination of Sodium, Potassium, Calcium, and Magnesium in Large-Volume Parenteral Solutions and Concentrated Hemodialysis Solutions

    PubMed Central

    Pistón, Mariela; Dol, Isabel

    2006-01-01

    A multiparametric flow system based on multicommutation and binary sampling has been designed for the automated determination of sodium, potassium, calcium, and magnesium in large-volume parenteral solutions and hemodialysis concentrated solutions. The goal was to obtain a computer-controlled system capable of determining the four metals without extensive modifications. The system involved the use of five solenoid valves under software control, allowing the establishment of the appropriate flow conditions for each analyte, that is, sample size, dilution, reagent addition, and so forth. Detection was carried out by either flame atomic emission spectrometry (sodium, potassium) or flame atomic absorption spectrometry (calcium, magnesium). The influence of several operating parameters was studied. Validation was carried out by analyzing artificial samples. Figures of merit obtained include linearity, accuracy, precision, and sampling frequency. Linearity was satisfactory: sodium, r 2 >0.999 ( 0.5 – 3.5 g/L), potassium, r 2 >0.996 (50–150 mg/L), calcium, r 2 >0.999 (30–120 mg/L), and magnesium, r 2 >0.999 (20–40 mg/L). Precision ( s r , %, n=5 ) was better than 2.1 %, and accuracy (evaluated through recovery assays) was in the range of 99.8 %– 101.0 % (sodium), 100.8 – 102.5 % (potassium), 97.3 %– 101.3 % (calcium), and 97.1 %– 99.8 % (magnesium). Sampling frequencies ( h −1 ) were 70 (sodium), 75 (potassium), 70 (calcium), and 58 (magnesium). According to the results obtained, the use of an automated multiparametric system based on multicommutation offers several advantages for the quality control of large-volume parenteral solutions and hemodialysis concentrated solutions. PMID:17671619

  3. Design of reflective optical fiber sensor for determining refractive index and sugar concentration of aqueous solutions

    NASA Astrophysics Data System (ADS)

    Marzuki, Ahmad; Wulan Sari, Nila; Riatun

    2016-02-01

    A reflective optical fiber sensor designed for measuring refractive index and sugar concentration of aqueous solutions is described. Two strains of parallel polymer optical fibers (POF) were wrapped in a bundle such that one of their fiber's end cross-sections had the same distance to the mirror surface. The light coming out from one strain of the fiber was reflected by the mirror to the second fiber. Sugar concentration of the aqueous solution filling the space between the fiber ends and the mirror was varied (1.0 M, 1.5 M, 2.0 M, 2.5 M, 3.0 M, 4.0 M, and 5.0 M). It was shown from the experiment that light intensity detected by photo-detector is linearly related to the percentage of the dissolved sugar in the solution as well as the variation of the sugar solution refractive index (R2 = 0.987).

  4. 76 FR 32366 - Determination That ORLAAM (Levomethadyl Acetate Hydrochloride) Oral Solution, 10 Milligrams...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-06

    ... Book. In the Federal Register of November 7, 2007 (72 FR 62858), FDA ] announced that it was... solution, 10 mg/mL, if all other legal and regulatory requirements are met. FOR FURTHER INFORMATION...

  5. On line vapor generation of osmium based on solution cathode glow discharge for the determination by ICP-OES.

    PubMed

    Zhu, Zhenli; Huang, Chunying; He, Qian; Xiao, Qing; Liu, Zhifu; Zhang, Suicheng; Hu, Shenghong

    2013-03-15

    A novel plasma induced vapor generation method is proposed to determine osmium in solutions. Without any chemical oxidizing agents, osmium ion can be readily converted to volatile osmium tetraoxide vapor in the solution cathode glow discharge (SCGD) system. The generated osmium vapor is then transported to inductively coupled plasma for determination by optical emission spectrometry. The influences of background electrolyte, carrier gas flow rate, sample flow rate, ICP power and discharge current were investigated. The analytical performances of this proposed technique were evaluated under optimized conditions. The detection limit of Os was calculated to be 0.51 ng mL(-1). The reproducibility, expressed as the relative standard deviation (n=11) of a 2.0 μg mL(-1) standard solution, was 1.9%. This SCGD induced vapor generation is sensitive and simple, oxidation reagents free, providing an alternative analytical method for measuring Os in geological or environmental water samples. PMID:23598105

  6. Aggregation in five-coordinate high-spin natural hemins: Determination of solution structure by sup 1 H NMR

    SciTech Connect

    Mazumdar, S.; Mitra, S. )

    1990-01-25

    {sup 1}H NMR measurements (at 500 MHz) of nuclear spin-spin relaxation time T{sub 2} (from NMR line width) at different temperatures are reported for aggregates of several five-coordinate high-spin iron(III) complexes of proto-, deutero-, and coproporphyrins in solution and are utilized to determine their solution structure. Extensive aggregation of these complexes in solution is observed, and the dominant form of the aggregates is shown to be dimers. The degree of aggregation for these iron(III) porphyrins follows the order proto- >> deutero- > copro-. The line width of the heme methyl resonances was analyzed by using a nonlinear least-squares fit program working in finite difference algorithm. The values of T{sub 2} were used to determine the structural details of the dimer.

  7. Kinetic Studies on Photodeposition of Polydiacetylene Thin Film from Solution: Preliminary Determination of the Rate Law

    NASA Technical Reports Server (NTRS)

    Paley, M. S.; Armstrong, S.; Witherow, W. K.; Frazier, D. O.

    1996-01-01

    Preliminary kinetic studies were undertaken on the photodeposition of thin films of a polydiacetylene derivative of 2-methyl-4-nitroaniline from monomer solutions onto quartz substrates. Solutions of the monomer, DAMNA, in 1,2-dichloroethane at various concentrations were irradiated at 364 nm using an argon-ion laser at several intensities. It was found that the rate of polydiacetylene (PDAMNA) film photodeposition varies linearly with UV light intensity and as the square root of monomer concentration.

  8. Tuning the properties of conjugated polyelectrolytes and application in a biosensor platform

    DOEpatents

    Chen, Liaohai

    2004-05-18

    The present invention provides a method of detecting a biological agent including contacting a sample with a sensor including a polymer system capable of having an alterable measurable property from the group of luminescence, anisotropy, redox potential and uv/vis absorption, the polymer system including an ionic conjugated polymer and an electronically inert polyelectrolyte having a biological agent recognition element bound thereto, the electronically inert polyelectrolyte adapted for undergoing a conformational structural change upon exposure to a biological agent having affinity for binding to the recognition element bound to the electronically inert polyelectrolyte, and, detecting the detectable change in the alterable measurable property. A chemical moiety being the reaction product of (i) a polyelectrolyte monomer and (ii) a biological agent recognition element-substituted polyelectrolyte monomer is also provided.

  9. Density and visco-elasticity of Natrosol 250 HH solutions: Determining their suitability for experimental tectonics

    NASA Astrophysics Data System (ADS)

    Boutelier, D.; Cruden, A.; Saumur, B.

    2016-05-01

    Analogue models often require that materials with specific physical properties be engineered to satisfy scaling conditions. To achieve this goal we investigate the rheology of aqueous solutions of Natrosol 250 HH, a rheology modifier employed in various industries to thicken viscous solutions. We report the rheological properties as functions of the concentration and temperature and discuss the advantages and limitations of these materials in view of their use in analogue modelling experiments. The solutions are linear visco-elastic for low stresses (or strain-rates), becoming shear-thinning for larger stresses. For the typically slow analogue experiments of tectonics, the solutions can be considered linear visco-elastic with a Maxwell relaxation time much smaller than the characteristic observation time. This simplification is even more appropriate when the solutions are employed at temperatures higher than 20 °C, since the solutions then display a behaviour that is more viscous, less elastic at the same shear-rate, while the Newtonian viscosity reduces and the shear-rate limit between Newtonian and shear-thinning behaviours increases. The Newtonian viscosity is shown to increase non-linearly with concentration and decrease non-linearly with temperature. With concentrations between 0 and 3% and temperature between 20 and 40 °C, the viscosity varied between 10-1 and 4000 Pa s, while the density remained close to the density of water. Natrosol 250 HH thus offers the possibility to control the viscosity of a solution without significantly affecting the density, thereby facilitating the design and setup of analogue experiments.

  10. A New Approach for Quantitative Determination of γ-Cyclodextrin in Aqueous Solutions: Application in Aggregate Determinations and Solubility in Hydrocortisone/γ-Cyclodextrin Inclusion Complex.

    PubMed

    Saokham, Phennapha; Loftsson, Thorsteinn

    2015-11-01

    Fast and simple high-pressure liquid chromatographic (HPLC) method with charged aerosol detector (CAD) was developed for quantitation of γ-cyclodextrin (γCD) in aqueous solutions. The chromatographic system consisted of a C18 column (i.e., the stationary phase) and an aqueous mobile phase containing 7% (v/v) methanol. Calibration curve was obtained over the γCD concentration range of 0.005%-1% (w/v). The limit of detection and quantitation of γCD were 0.0001% and 0.0002% (w/v), respectively. Formation of γCD aggregates in aqueous solution and their critical aggregation concentration (cac) were determined by both conventional dynamic light scattering method and permeation method using HPLC-CAD for quantitative determination of γCD. The cac of γCD was determined to be 0.95% (w/v) and the amount of γCD self-aggregates increased with increasing γCD concentrations. Also, the developed HPLC-CAD method was used to determine the γCD phase-solubility profile in an aqueous hydrocortisone (HC)/γCD complexation medium. The maximum concentration of dissolved γCD and HC was determined to be 1.47% and 0.31% (w/v), respectively. The membrane permeation method was shown to be a reliable method for determination of metastable γCD aggregates. The HPLC-CAD method was successfully applied for quantitative determination of γCD in aqueous solutions during permeation and phase-solubility studies. PMID:26249751

  11. [Optimal operating condition of ICP-aES for determination of soil nutrients extracted by Mehlich 3 through solution simulation].

    PubMed

    Wang, Xiao-li; Cui, Jian-yu; Tang, Ao-han; Han, Wen-xuan; Jiang, Rong-feng

    2010-09-01

    As a key process of fertilization with soil test, the determination of soil effective nutrients has received great attention in recent years. Based on a series of standard solution mixtures, which simulate the soil nutrients extracted by Mehlich 3 (M3) reagent, the optimal operating condition of ICP-AES was explored in a systematic way. The results show that the 20 key nutrient elements (P, K, Ca, Mg, Na, Fe, Mn, Cu, Zn, Cd, Cr, Pb, Ni, Al, B, Mo, S, Si, Se, and As) in the solutions can be determined correctly and proficiently when ICP-AES is set at 0.80 L x min(-1) of carrier gas flux, with observation height 15 mm and power 1200 W. This study supplies a primary experimental foundation for establishing the determination technique of essential nutrient elements, extracted from soils in China with the general soil-nutrient extractant M3 reagent. PMID:21105440

  12. Analytical determination of the Cooper pair condensation using linearized solutions of the BCS Hamiltonian

    NASA Astrophysics Data System (ADS)

    Ramírez, Carlos; Sánchez, Vicenta; Wang, Chumin

    2015-11-01

    In this paper, we find analytically the first order solutions of the Bardeen, Cooper and Schrieffer (BCS) Hamiltonian with degenerated single-electron energy levels. The results are compared to the Richardson exact solutions calculated numerically, showing good agreement in the weak interaction limit. Using this first-order solution, we further calculate the number of pairs at the ground state as a function of temperature. In particular, the Bose-Einstein condensation (BEC) temperature is found when the population of ground-state pairs starts growing. This study provides a BEC analysis of the superconductivity for weak coupling regime, which traditionally belongs to the BCS side of the BCS-BEC crossover picture.

  13. Preparation and Evaluation of Diclofenac Sodium Tablet Coated with Polyelectrolyte Multilayer Film Using Hypromellose Acetate Succinate and Polymethacrylates for pH-Dependent, Modified Release Drug Delivery.

    PubMed

    Jeganathan, Balamurugan; Prakya, Vijayalakshmi; Deshmukh, Abhijit

    2016-06-01

    Polyelectrolyte multilayer (PEM) film formed due to the electrostatic interaction between oppositely charged polyelectrolytes is of considerable interest because of their potential applications as both drug carriers and surface-modifying agents. In this study, in vitro studies were carried out on polyelectrolyte complexes formulated with Eudragit E (EE) and hypromellose acetate succinate (HPMCAS). The complexes of EE and HPMCAS were formulated by non-stoichiometric method. The prepared IPCs were investigated using Fourier transform infrared spectroscopy. Diclofenac sodium (DS) tablets were prepared and were coated with polymer solution of HPMCAS and EE to achieve pH-dependent and sustained-release tablets. Tablets were evaluated for their physical characteristics and in vitro drug release. The results of pharmacokinetic studies in rabbits showed that the selected formulation (F6) exhibited a delayed peak plasma concentration and marked sustained-release effect of drug in the in vivo drug release in comparison with marketed tablet. The suitable combination of PEM film based on EE and HPMCAS demonstrated potential candidate for targeted release of DS in the lower part of the gastrointestinal (GI) tract. PMID:26283195

  14. Determining the solution space for a coordinated whole body movement in a noisy environment: application to the upstart in gymnastics.

    PubMed

    Hiley, Michael J; Yeadon, Maurice R

    2014-08-01

    The upstart is a fundamental skill in gymnastics, requiring whole body coordination to transfer the gymnast from a swing beneath the bar to a support position above the bar. The aim of this study was to determine the solution space within which a gymnast could successfully perform an upstart. A previous study had shown that the underlying control strategy for the upstart could be accounted for by maximizing the likelihood of success while operating in a noisy environment. In the current study, data were collected on a senior gymnast and a computer simulation model of a gymnast and bar was used to determine the solution space for maximizing success while operating in a noisy environment. The effects of timing important actions, gymnast strength, and movement execution noise on the success of the upstart were then systematically determined. The solution space for the senior gymnast was relatively large. Decreasing strength and increasing movement execution noise reduced the size of the solution space. A weaker gymnast would have to use a different technique than that used by the senior gymnast to produce an acceptable success rate. PMID:24603774

  15. Organically-doped sol-gel based tube detectors: Determination of iron(II) in aqueous solutions.

    PubMed

    Kuselman, I; Lev, O

    1993-05-01

    A novel type of disposable sensor for the determination of iron(II) in aqueous solution is described. The iron sensor serves to exemplify a new class of disposable field tests for field analysis of water pollutants. The sensors are comprised of capillary glass tubes filled with porous sol-gel silica powder doped with o-phenanthroline. When a sample solution is passed through a tube detector the iron ions are complexed by the immobilized o-phenanthroline and a stained section of the capillary develops. Metrological characteristics of these detectors including precision and accuracy and chemical interferences by heavy metals and humic acids are discussed. PMID:18965698

  16. Nanocapsules templated on liquid cores stabilized by graft amphiphilic polyelectrolytes

    NASA Astrophysics Data System (ADS)

    Szafraniec, Joanna; Janik, Małgorzata; Odrobińska, Joanna; Zapotoczny, Szczepan

    2015-03-01

    A surfactant-free method of preparation of nanocapsules templated on liquid cores using amphiphilic graft polyelectrolytes was developed. A model photoactive copolymer, poly(sodium 2-acrylamido-2-methyl-1-propanesulfonate) with grafted poly(vinylnaphthalene) chains (PAMPS-graft-PVN) was used to stabilize toluene droplets in an aqueous emulsion. The macromolecules, due to their amphiphilic character and the presence of strong ionic groups, tend to undergo intramolecular aggregation in water but at the water-oil interface less compact conformation is preferred with PVN grafts anchoring in the oil phase and the charged PAMPS main chains residing in the aqueous phase, thus stabilizing the nanoemulsion droplets. Formation of such nanocapsules was confirmed by dynamic light scattering measurements as well as SEM and cryo-TEM imaging. Grafting density and content of the chromophores in the graft copolymers were varied in order to achieve high stability of the coated nanodroplets. It was shown that the capsules are better stabilized by the copolymers with many short hydrophobic grafts than with fewer but longer ones. Use of photoactive polyelectrolytes enabled spectroscopic investigation of the relationship between conformation of the macromolecules and stabilization of the oil-core nanocapsules. Long-term stability of the nanocapsules was achieved and further increased by multilayer shell formation using polyelectrolytes deposited via the layer-by-layer approach. The obtained capsules served as efficient nanocontainers for a hydrophobic fluorescent probe. The proposed strategy of nanocapsule preparation may be easily extended to biologically relevant polymers and applied to fabricate liquid core nanodelivery systems without the need of using low molecular weight additives which may have adverse effects in numerous biomedical applications.A surfactant-free method of preparation of nanocapsules templated on liquid cores using amphiphilic graft polyelectrolytes was developed

  17. Proton and metal ion binding to natural organic polyelectrolytes-I. Studies with synthetic model compounds

    USGS Publications Warehouse

    Marinsky, J.A.; Reddy, M.M.

    1984-01-01

    A unified physico-chemical model, based on a modified Henderson-Hasselbalch equation, for the analysis of ion complexation reactions involving charged polymeric systems is presented and verified. In this model pH = pKa+p(??Ka) + log(??/1 - ??) where Ka is the intrinsic acid dissociation constant of the ionizable functional groups on the polymer, ??Ka is the deviation of the intrinsic constant due to electrostatic interaction between the hydrogen ion and the polyanion, and alpha (??) is the polyacid degree of ionization. Using this approach pKa values for repeating acidic units of polyacrylic (PAA) and polymethacrylic (PMA) acids were found to be 4.25 ?? 0.03 and 4.8 ?? 0.1, respectively. The polyion electrostatic deviation term derived from the potentiometric titration data (i.e. p(??Ka)) is used to calculate metal ion concentration at the complexation site on the surface of the polyanion. Intrinsic cobalt-polycarboxylate binding constants (7.5 for PAA and 5.6 for PMA), obtained using this procedure, are consistent with the range of published binding constants for cobalt-monomer carboxylate complexes. In two phase systems incorporation of a Donnan membrane potential term allows determination of the intrinsic pKa of a cross-linked PMA gel, pKa = 4.83, in excellent agreement with the value obtained for the linear polyelectrolyte and the monomer. Similarly, the intrinsic stability constant for cobalt ion binding to a PMA-gel (??CoPMA+ = 11) was found to be in agreement with the linear polyelectrolyte analogue and the published data for cobalt-carboxylate monodentate complexes. ?? 1984.

  18. Gradients of physical and biochemical cues on polyelectrolyte multilayer films generated via microfluidics.

    PubMed

    Almodóvar, Jorge; Crouzier, Thomas; Selimović, Šeila; Boudou, Thomas; Khademhosseini, Ali; Picart, Catherine

    2013-04-21

    The cell microenvironment is a complex and anisotropic matrix composed of a number of physical and biochemical cues that control cellular processes. A current challenge in biomaterials is the engineering of biomimetic materials which present spatially controlled physical and biochemical cues. The layer-by-layer assembly of polyelectrolyte multilayers (PEM) has been demonstrated to be a promising candidate for a biomaterial mimicking the native extracellular matrix. In this work, gradients of biochemical and physical cues were generated on PEM films composed of hyaluronan (HA) and poly(l-lysine) (PLL) using a microfluidic device. As a proof of concept, four different types of surface concentration gradients adsorbed onto the films were generated. These included surface concentration gradients of fluorescent PLL, fluorescent microbeads, a cross-linker, and one consisting of a polyelectrolyte grafted with a cell adhesive peptide. In all cases, reproducible centimeter-long linear gradients were obtained. Fluorescence microscopy, Fourier transform infrared spectroscopy and atomic force microscopy were used to characterize these gradients. Cell responses to the stiffness gradient and to the peptide gradient were studied. Pre-osteoblastic cells were found to adhere and spread more along the stiffness gradient, which varied linearly from 200 kPa-600 kPa. Myoblast cell spreading also increased throughout the length of the increasing RGD-peptide gradient. This work demonstrates a simple method to modify PEM films with concentration gradients of non-covalently bound biomolecules and with gradients in stiffness. These results highlight the potential of this technique to efficiently and quickly determine the optimal biochemical and mechanical cues necessary for specific cellular processes. PMID:23440074

  19. Temperature responsive behavior of polymer brush/polyelectrolyte multilayer composites.

    PubMed

    Micciulla, Samantha; Soltwedel, Olaf; Löhmann, Oliver; von Klitzing, Regine

    2016-01-28

    The complex interaction of polyelectrolyte multilayers (PEMs) physisorbed onto end-grafted polymer brushes with focus on the temperature-responsive behavior of the system is addressed in this work. The investigated brush/multilayer composite consists of a poly(styrene sulfonate)/poly(diallyldimethylammonium chloride) (PSS/PDADMAC) multilayer deposited onto the poly(N-isopropylacrylamide-b-dimethylaminoethyl methacrylate) P(NIPAM-b-DMAEMA) brush. Ellipsometry and neutron reflectometry were used to monitor the brush collapse with the thickness decrease as a function of temperature and the change in the monomer distribution perpendicular to the substrate at temperatures below, across and above the phase transition, respectively. It was found that the adsorption of PEMs onto polymer brushes had a hydrophobization effect on PDMAEMA, inducing the shift of its phase transition to lower temperatures, but without suppressing its temperature-responsiveness. Moreover, the diffusion of the free polyelectrolyte chains inside the charged brush was proved by comparing the neutron scattering length density profile of pure and the corresponding PEM-capped brushes, eased by the enhanced contrast between hydrogenated brushes and deuterated PSS chains. The results presented herein demonstrate the possibility of combining a temperature-responsive brush with polyelectrolyte multilayers without quenching the responsive behavior, even though significant interpolyelectrolyte interactions are present. This is of importance for the design of multicompartment coatings, where the brush can be used as a reservoir for the controlled release of substances and the multilayer on the top as a membrane to control the diffusion in/out by applying different stimuli. PMID:26612742

  20. Granulating titania powder by colloidal route using polyelectrolytes.

    PubMed

    Pringuet, Antoine; Pagnoux, Cécile; Videcoq, Arnaud; Baumard, Jean-François

    2008-10-01

    A new, convenient, and inexpensive approach to process and granulate titania powders by a chemical route is proposed. It is based on the use of a formulation that includes a polyanion such as poly(sodium 4-styrenesulfonate) (PSS). Such a polyelectrolyte is most often considered to achieve dispersion of oxide powders in water. Basically, it adsorbs onto the surface of particles and induces electrical and/or steric interactions between particles in the suspension, which prevents agglomeration and rapid sedimentation. The advantages of polyelectrolytes in ceramic processing is well documented in the literature to produce low viscosity suspensions that are further used to form ceramic parts. In the case of TiO2 powders, such aqueous dispersions were obtained by adding small quantities of PSS. However, when exploring the behavior of mixtures containing lower contents of dispersant, we have discovered that, well below the optimum concentration required to get stable dispersions, the polyelectrolyte can act as a binder for titania particles. This can confer cohesion to the agglomerates, which can be processed to form large size (e.g., millimeter size) spheres. This phenomenon takes place when the oxide surface carries both positive and negative electrical charges and can be explained on a simple basis involving surface chemistry. For the optimum concentration of PSS that disperses titania, a polycation such as chitosan should be added to get spheres. This simple technique is expected to receive increasing attention due its potentialities and strong advantages with respect to other granulation techniques, such as spray-drying, which are energy consuming. PMID:18774832

  1. Polyionic vaccine adjuvants: another look at aluminum salts and polyelectrolytes

    PubMed Central

    2015-01-01

    Adjuvants improve the adaptive immune response to a vaccine antigen by modulating innate immunity or facilitating transport and presentation. The selection of an appropriate adjuvant has become vital as new vaccines trend toward narrower composition, expanded application, and improved safety. Functionally, adjuvants act directly or indirectly on antigen presenting cells (APCs) including dendritic cells (DCs) and are perceived as having molecular patterns associated either with pathogen invasion or endogenous cell damage (known as pathogen associated molecular patterns [PAMPs] and damage associated molecular patterns [DAMPs]), thereby initiating sensing and response pathways. PAMP-type adjuvants are ligands for toll-like receptors (TLRs) and can directly affect DCs to alter the strength, potency, speed, duration, bias, breadth, and scope of adaptive immunity. DAMP-type adjuvants signal via proinflammatory pathways and promote immune cell infiltration, antigen presentation, and effector cell maturation. This class of adjuvants includes mineral salts, oil emulsions, nanoparticles, and polyelectrolytes and comprises colloids and molecular assemblies exhibiting complex, heterogeneous structures. Today innovation in adjuvant technology is driven by rapidly expanding knowledge in immunology, cross-fertilization from other areas including systems biology and materials sciences, and regulatory requirements for quality, safety, efficacy and understanding as part of the vaccine product. Standardizations will aid efforts to better define and compare the structure, function and safety of adjuvants. This article briefly surveys the genesis of adjuvant technology and then re-examines polyionic macromolecules and polyelectrolyte materials, adjuvants currently not known to employ TLR. Specific updates are provided for aluminum-based formulations and polyelectrolytes as examples of improvements to the oldest and emerging classes of vaccine adjuvants in use. PMID:25648619

  2. Spectrophotometric technique quantitatively determines NaMBT inhibitor in ethylene glycol-water solutions

    NASA Technical Reports Server (NTRS)

    Garrard, G. G.

    1967-01-01

    Spectrophotometric method, using a ratio-recording ultraviolet-absorption spectrophotometer, permits analysis of NaMBT in ethylene glycol-water solutions with high accuracy. It reduces analysis time, requires smaller samples, and is able to detect extremely small concentrations of mercaptobenzothiazole.

  3. Cognitive and Neural Determinants of Response Strategy in the Dual-Solution Plus-Maze Task

    ERIC Educational Resources Information Center

    De Leonibus, Elvira; Costantini, Vivian J. A.; Massaro, Antonio; Mandolesi, Georgia; Vanni, Valentina; Luvisetto, Siro; Pavone, Flaminia; Oliverio, Alberto; Mele, Andrea

    2011-01-01

    Response strategy in the dual-solution plus maze is regarded as a form of stimulus-response learning. In this study, by using an outcome devaluation procedure, we show that it can be based on both action-outcome and stimulus-response habit learning, depending on the amount of training that the animals receive. Furthermore, we show that…

  4. The mechanism of polyelectrolyte-assisted retention of TiO2 filler particles during paper formation.

    PubMed

    Gesenhues, Ulrich

    2011-02-17

    The mechanism of the retention of TiO(2) filler particles on cellulose fibers has been under discussion for several decades; the diverse models, and the properties of the components relevant to retention, are critically reviewed in the first part of this study. In addition, two new quantitative models of detachment of polyelectrolyte-bonded colloidal particles from the fiber are also examined; one of these is based on DLVO theory for description of the influence of particle charge and polyelectrolyte amount, and should hold true at low shear rates and high bond strengths. The other model applies Kolmogorov's theory of isotropic turbulence in order to relate the work necessary for particle detachment to the turbulent energy of pulp in paper machines, i.e., under high shear rate and low bond-strength conditions. The second model is based on analysis of fluid dynamics in paper machines, and is formulated here for laboratory tests using the Dynamic Drainage Jar (DDJ). A series of laboratory-prepared TiO(2) fillers covering a range of isoelectric points (ieps) from pH 4.4 to pH 7.5, additionally with poly-(aminoamide)-epichlorohydrin (PAE) and polyethyleneimine (PEI) as retention aids, and commercially milled cellulose, were used in the experimental part of the study. The retention-aid demand of fillers and cellulose for surface neutralization was determined using electrokinetic methods. Filler retention on cellulose was measured in the DDJ for various stirrer speeds and amounts of retention aid, with the amount of filler not exceeding that for a monolayer on the fiber. Without retention aids, neutral filler particles are accordingly completely retained on the negative fiber, whereas negatively charged particles are not. The retention of the latter can, however, be steadily improved by increasing polyelectrolyte concentration. Retention of colloidal particles in paper manufacturing is therefore determined by a delicate balance between H-bridging and van der Waals forces

  5. Complexation Between Weakly Basic Dendrimers and Linear Polyelectrolytes: Effects of Chain Stiffness, Grafts, and pOH

    NASA Astrophysics Data System (ADS)

    Lewis, Thomas; Pandav, Gunja; Omar, Ahmad; Ganesan, Venkat

    2013-03-01

    The unique architecture and high charge density of dendrimer molecules have attracted interest for their utilization in gene delivery applications. The strong binding affinity of cationic dendrimers to genetic materials make them effective gene delivery vectors not only by shielding the nucleic acid (NA) material from degradative enzymes in the blood stream, but also by reducing the overall negative charge of the dendrimer-NA material complex, which in turn creates more favorable interaction with the anionic cell membrane. However, the high cytotoxicities of cationic dendrimers have motivated the development of polyethylene glycol (PEG) conjugated dendrimer molecules, which have been shown to reduce dendrimer cytotoxicity while still retaining transfection ability. In order to gain insight into how the addition of neutral grafts affects the binding affinity and conformations of dendrimer-NA material complexes, we have developed and numerically solved a Self-Consistent Field Theory approach for both grafted and non-grafted annealed charged dendrimer molecules in the presence of linear polyelectrolyte molecules. Specifically, this work examines the effect of linear polyelectrolyte stiffness, grafting chain length, and solution pOH.

  6. Dynamics of polyelectrolyte adsorption and colloidal flocculation upon mixing studied using mono-dispersed polystyrene latex particles.

    PubMed

    Feng, Lili; Stuart, Martien Cohen; Adachi, Yasuhisa

    2015-12-01

    The dynamic behavior of polyelectrolytes just after their encounter with the surface of bare colloidal particles is analyzed, using the flocculation properties of mono-dispersed polystyrene latex (PSL) particles. Applying a Standardized Colloid Mixing (SCM) approach, effects of ionic strength and charge density of polymer chain on the rate of flocculation, the electrophoretic mobility of particle coated with polyelectrolyte, and the thickness of adsorbed polymer layer were analyzed, focusing on distinguishing features of two modes of flocculation, namely bridging formation and charge neutralization. In the case of excess polymer dosage, the bridging flocculation clearly highlights the transient behavior of polymer conformation from random-coil-like in bulk solution to increasingly flatten on the surface. The adsorption of polymer chains leads to a stagnant layer of solvent near the solid wall, which is confirmed by electrokinetic data. In the regime near optimum dosage two cases emerge. For high charge density polymer, charge neutralization is dominant and advantageous for the continuous progress of flocculation by heterogeneous double layer interaction. As a function of elapsed time after the onset of mixing, crossover from bridging to charge neutralization is found. In the case of low charge density polymer, bridging flocculation is the mechanism. Fluid mixing is concluded to have an essential role in the formation of bridges. PMID:26456137

  7. New nanocomposites based on layered aluminosilicate and guanidine containing polyelectrolytes

    SciTech Connect

    Khashirov, Azamat A.; Zhansitov, Azamat A.; Khashirova, Svetlana Yu.; Zaikov, Genadiy E.

    2014-05-15

    The new functional nanomaterials based on layered aluminosilicate and guanidine containing polyelectrolytes combining high bactericidal activity with an increased ability to bind to heavy metals and organic pollutants were received. To prove the chemical structure of the model compounds (zwitterionic delocalized resonance structures AG/MAG and PAG/PMAG), as well as the presence of such structures in nanocomposites received on their basis and the MMT, IR, {sup 1}H NMR spectroscopy, X-ray diffraction studies and nanoindentation/sclerometry followed by scanning the surface in the area of the indentation were used.

  8. Grafted polyelectrolyte membranes for lithium batteries and fuel cells

    SciTech Connect

    Kerr, John B.

    2003-06-24

    Polyelectrolyte materials have been developed for lithium battery systems in response to the severe problems due to salt concentration gradients that occur in composite electrodes (aka membrane-electrode assemblies). Comb branch polymer architectures are described which allow for grafting of appropriate anions on to the polymer and also for cross-linking to provide for appropriate mechanical properties. The interactions of the polymers with the electrode surfaces are critical for the performance of the system and some of the structural features that influence this will be described. Parallels with the fuel cell MEA structures exist and will also be discussed.

  9. Enhanced radiation therapy with internalized polyelectrolyte modified nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhang, Peipei; Qiao, Yong; Wang, Chaoming; Ma, Liyuan; Su, Ming

    2014-08-01

    A challenge of X-ray radiation therapy is that high dose X-ray under therapeutic conditions damages normal cells. This paper describes a nanoparticle-based method to enhance X-ray radiation therapy by delivering radio-sensitizing gold nanoparticles into cancer cells. The nanoparticles have been modified with cationic polyelectrolytes to allow internalization. Upon X-ray irradiation of nanoparticles, more photoelectrons and Auger electrons are generated to cause water ionization, leading to formation of free radicals that damage DNA of cancer cells. The X-ray dose required for DNA damage and cell killing is reduced by delivering gold nanoparticles inside cancer cells.

  10. Introduction of thiol moieties, including their thiol-ene reactions and air oxidation, onto polyelectrolyte multilayer substrates.

    PubMed

    Madaan, Nitesh; Romriell, Naomi; Tuscano, Joshua; Schlaad, Helmut; Linford, Matthew R

    2015-12-01

    We describe the derivatization of uncross-linked and cross-linked layer-by-layer (LbL) assemblies of polyelectrolytes (polyallylamine hydrochloride and polyacrylic acid) with sulfydryl groups via Traut's reagent (2-iminothiolane). This thiolation was optimized with regards to temperature, concentration, and pH. The stability of the resulting -SH groups in the air was determined by X-ray photoelectron spectroscopy (XPS). This air oxidation has obvious implications for the use of thiol-ene reactions in materials chemistry, and there appears to be little on this topic in the literature. Three main S 2s signals were observed by XPS: at 231.5 eV (oxidized sulfur), 227.6 eV (thiol groups), and 225.4 eV (thiolate groups). Due to their rapid oxidation, we recommend that thiolated surfaces be used immediately after they are prepared. As driven by 254 nm UV light, thiol groups on polyelectrolyte multilayers react with 1,2-polybutadiene (PBd), and residual carbon-carbon double bonds on adsorbed PBd similarly react with another thiol. In the case of a fluorinated thiol, surfaces with high water contact angles (ca. 120°) are obtained. Modest exposures to light result in derivatization, while longer exposures damage the assemblies. Polyelectrolyte-thiol-PBd-thiol assemblies delaminate from their substrates when immersed for long periods of time in water. Surface silanization with an amino silane prevents this delamination and leads to stable assemblies. These assemblies withstand various stability tests. Techniques used to analyze the materials in this study include X-ray photoelectron spectroscopy (XPS), spectroscopic ellipsometry (SE), atomic force microscopy (AFM), and contact angle goniometry. PMID:26295196

  11. Second-order p-iterative solution of the Lambert/Gauss problem. [algorithm for efficient orbit determination

    NASA Technical Reports Server (NTRS)

    Boltz, F. W.

    1984-01-01

    An algorithm is presented for efficient p-iterative solution of the Lambert/Gauss orbit-determination problem using second-order Newton iteration. The algorithm is based on a universal transformation of Kepler's time-of-flight equation and approximate inverse solutions of this equation for short-way and long-way flight paths. The approximate solutions provide both good starting values for iteration and simplified computation of the second-order term in the iteration formula. Numerical results are presented which indicate that in many cases of practical significance (except those having collinear position vectors) the algorithm produces at least eight significant digits of accuracy with just two or three steps of iteration.

  12. Influence of higher valent ions on flexible polyelectrolyte stiffness and counter-ion distribution

    NASA Astrophysics Data System (ADS)

    Chremos, Alexandros; Douglas, Jack F.

    2016-04-01

    We investigate the influence of counter-ion valency on the flexibility of highly charged flexible polymer chains using molecular dynamics simulations that include both salt and an explicit solvent. As observed experimentally, we find that divalent counter-ions greatly reduce the chain persistence length, lp, in comparison with monovalent counter-ions. On the other hand, polyelectrolyte chains having trivalent counter-ions adopt a much more compact conformation than polyelectrolytes having monovalent and divalent counter-ions. We demonstrate that the tendency of polyelectrolyte chains to become deformed by proximal high valence counter-ions is due to chain "coiling" around the counter-ions. In particular, we find that the number of contacts that the proximal counter-ions have with the polyelectrolyte dictates the extent of chain coiling. This ion-binding induced coiling mechanism influences not only the conformational properties of the polyelectrolyte, but also the counter-ion distribution around the chain. Specifically, we find that higher valent counter-ions lead both to a counter-ion enrichment in close proximity to the polyelectrolyte and to a significant reduction in the spatial extent of the diffuse counter-ion cloud around the polyelectrolyte.

  13. Influence of higher valent ions on flexible polyelectrolyte stiffness and counter-ion distribution.

    PubMed

    Chremos, Alexandros; Douglas, Jack F

    2016-04-28

    We investigate the influence of counter-ion valency on the flexibility of highly charged flexible polymer chains using molecular dynamics simulations that include both salt and an explicit solvent. As observed experimentally, we find that divalent counter-ions greatly reduce the chain persistence length, lp, in comparison with monovalent counter-ions. On the other hand, polyelectrolyte chains having trivalent counter-ions adopt a much more compact conformation than polyelectrolytes having monovalent and divalent counter-ions. We demonstrate that the tendency of polyelectrolyte chains to become deformed by proximal high valence counter-ions is due to chain "coiling" around the counter-ions. In particular, we find that the number of contacts that the proximal counter-ions have with the polyelectrolyte dictates the extent of chain coiling. This ion-binding induced coiling mechanism influences not only the conformational properties of the polyelectrolyte, but also the counter-ion distribution around the chain. Specifically, we find that higher valent counter-ions lead both to a counter-ion enrichment in close proximity to the polyelectrolyte and to a significant reduction in the spatial extent of the diffuse counter-ion cloud around the polyelectrolyte. PMID:27131566

  14. A new sensitive method of dissociation constants determination based on the isohydric solutions principle.

    PubMed

    Michałowski, Tadeusz; Pilarski, Bogusław; Asuero, Agustin G; Dobkowska, Agnieszka

    2010-10-15

    The paper provides a new formulation and analytical proposals based on the isohydric solutions concept. It is particularly stated that a mixture formed, according to titrimetric mode, from a weak acid (HX, C(0)mol/L) and a strong acid (HB, Cmol/L) solutions, assumes constant pH, independently on the volumes of the solutions mixed, provided that the relation C(0)=C+C(2)·10(pK(1)) is valid, where pK(1)=-log K(1), K(1) the dissociation constant for HX. The generalized formulation, referred to the isohydric solutions thus obtained, was extended also to more complex acid-base systems. Particularly in the (HX, HB) system, the titration occurs at constant ionic strength (I) value, not resulting from presence of a basal electrolyte. This very advantageous conjunction of the properties provides, among others, a new, very sensitive method for verification of pK(1) value. The new method is particularly useful for weak acids HX characterized by low pK(1) values. The method was tested experimentally on four acid-base systems (HX, HB), in aqueous and mixed-solvent media and compared with the literature data. Some useful (linear and hyperbolic) correlations were stated and applied for validation of pK(1) values. Finally, some practical applications of analytical interest of the isohydricity (pH constancy) principle as one formulated in this paper were enumerated, proving the usefulness of such a property which has its remote roots in the Arrhenius concept. PMID:20875603

  15. Kinetics of decomposition of rabeprazole sodium in aqueous solutions determined by high performance liquid chromatography.

    PubMed

    Mbah, C J

    2007-02-01

    The kinetics of decomposition of rabeprazole sodium in aqueous solutions at elevated temperatures has been investigated by high performance liquid chromatography. The reaction is found to follow first-order kinetics and the rate constant for the degradation at 25 degrees C is estimated by extrapolation. The breakdown of rabeprazole sodium is shown to be water and hydrogen ion catalysed and the effects of ionic strength and buffer concentrations to such rate studies are discussed. PMID:17341029

  16. EXPERIMENTAL DETERMINATION OF CONTAMINANT METAL MOBILITY AS A FUNCTION OF TEMPERATURE, TIME, AND SOLUTION CHEMISTRY

    EPA Science Inventory

    We propose to determine the geochemical processes that control the mobility of Sr in the presence of clays (kaolinite, montmorillonite) and iron hydroxides (goethite) as a function of temperature, pH, and time. The objective of this work is to determine the fundamental data neede...

  17. The iterative solution of the problem of orbit determination using Chebyshev series

    NASA Technical Reports Server (NTRS)

    Feagin, T.

    1975-01-01

    A method of orbit determination is investigated which employs Picard iteration and Chebyshev series. The method is applied to the problem of determining the orbit of an earth satellite from range and range-rate observations contaminated by noise. It is shown to be readily applicable and to possess linear convergence.

  18. The determination of cyclohexylamine in aqueous solutions of sodium cyclamate by electron-capture gas chromatography.

    NASA Technical Reports Server (NTRS)

    Solomon, M. D.; Pereira, W. E.; Duffield, A. M.

    1971-01-01

    A sensitive primary amine assay, capable of detecting 10 to the minus 11th g and utilizing the determination of the amine N-2,4-dinitrophenyl derivative by electron-capture gas chromatography is described. The method is exemplified by the determination of cyclohexylamine in sodium cyclamate.

  19. Effect of calcium/sodium ion exchange on the osmotic properties and structure of polyelectrolyte gels.

    PubMed

    Horkay, Ferenc; Basser, Peter J; Hecht, Anne-Marie; Geissler, Erik

    2015-12-01

    We discuss the main findings of a long-term research program exploring the consequences of sodium/calcium ion exchange on the macroscopic osmotic and elastic properties, and the microscopic structure of representative synthetic polyelectrolyte (sodium polyacrylate, (polyacrylic acid)) and biopolymer gels (DNA). A common feature of these gels is that above a threshold calcium ion concentration, they exhibit a reversible volume phase transition. At the macroscopic level, the concentration dependence of the osmotic pressure shows that calcium ions influence primarily the third-order interaction term in the Flory-Huggins model of polymer solutions. Mechanical tests reveal that the elastic modulus is practically unaffected by the presence of calcium ions, indicating that ion bridging does not create permanent cross-links. At the microscopic level, small-angle neutron scattering shows that polyacrylic acid and DNA gels exhibit qualitatively similar structural features in spite of important differences (e.g. chain flexibility and chemical composition) between the two polymers. The main effect of calcium ions is that the neutron scattering intensity increases due to the decrease in the osmotic modulus. At the level of the counterion cloud around dissolved macroions, anomalous small-angle X-ray scattering measurements made on DNA indicate that divalent ions form a cylindrical sheath enveloping the chain, but they are not localized. Small-angle neutron scattering and small-angle X-ray scattering provide complementary information on the structure and interactions in polymer solutions and gels. PMID:26614803

  20. Conjugated polyelectrolyte hole transport layer for inverted-type perovskite solar cells

    PubMed Central

    Choi, Hyosung; Mai, Cheng-Kang; Kim, Hak-Beom; Jeong, Jaeki; Song, Seyeong; Bazan, Guillermo C.; Kim, Jin Young; Heeger, Alan J.

    2015-01-01

    Organic–inorganic hybrid perovskite materials offer the potential for realization of low-cost and flexible next-generation solar cells fabricated by low-temperature solution processing. Although efficiencies of perovskite solar cells have dramatically improved up to 19% within the past 5 years, there is still considerable room for further improvement in device efficiency and stability through development of novel materials and device architectures. Here we demonstrate that inverted-type perovskite solar cells with pH-neutral and low-temperature solution-processable conjugated polyelectrolyte as the hole transport layer (instead of acidic PEDOT:PSS) exhibit a device efficiency of over 12% and improved device stability in air. As an alternative to PEDOT:PSS, this work is the first report on the use of an organic hole transport material that enables the formation of uniform perovskite films with complete surface coverage and the demonstration of efficient, stable perovskite/fullerene planar heterojunction solar cells. PMID:26081865

  1. Water-soluble polyelectrolyte complexes of Astramol poly(propyleneimine) dendrimers with poly(methacrylate) anion.

    PubMed

    Zhiryakova, Marina V; Izumrudov, Vladimir A

    2014-11-26

    Water-soluble complexes formed by pyrenyl-tagged poly(methacrylate) anion with cationic DAB-dendr-(NH2)x of five generations, x = 4, 8, 16, 32, and 64 were prepared and studied. The ability of the dendrimers to quench the pyrenyl fluorescence was used to monitor formation/dissociation of the complexes by fluorescence quenching technique. In salt-free solutions, dissociation of the complexes occurred in highly acidic and highly alkaline media independently on the dendrimer generation, whereas stability of the complexes against destruction by added salt (NaCl) enhanced markedly with x increase. Phase separations were dependent on pH and charged ratio of the components, but independent of a dendrimer generation. By contrast, in water-salt solutions the generation had a profound impact on phase diagram manifested by a considerable extension of a heterogeneity region as x increased. These findings strongly suggest that the complexes obey the main regularities ascertained for polyelectrolyte complexes of oppositely charged polyions. The revealed possibility of preparing negatively charged and positively charged complexes with controllable stability and solubility demonstrates potentialities of Astramol dendrimers for design self-assembled and self-adjusted systems attractive for biotechnological and biomedical applications. PMID:25369241

  2. Density functional theory for encapsidated polyelectrolytes: A comparison with Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Jin, Zhehui; Wu, Jianzhong

    2012-07-01

    Genome packaging inside viral capsids is strongly influenced by the molecular size and the backbone structure of RNA/DNA chains and their electrostatic affinity with the capsid proteins. Coarse-grained models are able to capture the generic features of non-specific interactions and provide a useful testing ground for theoretical developments. In this work, we use the classical density functional theory (DFT) within the framework of an extended primitive model for electrolyte solutions to investigate the self-organization of flexible and semi-flexible linear polyelectrolytes in spherical capsids that are permeable to small ions but not polymer segments. We compare the DFT predictions with Monte Carlo (MC) simulation for the density distributions of polymer segments and small ions at different backbone flexibilities and several solution conditions. In general, the agreement between DFT and MC is near quantitative except when the simulation results are noticeably influenced by the boundary effects. The numerical efficiency of the DFT calculations makes it promising as a useful tool for quantification of the structural and thermodynamic properties of viral nucleocapsids in vivo and at conditions pertinent to experiments.

  3. Insights into hydrophobic molecule release from polyelectrolyte multilayer films using in situ and ex situ techniques.

    PubMed

    Shin, Yongjin; Cheung, Weng Hou; Ho, Tracey T M; Bremmell, Kristen E; Beattie, David A

    2014-10-28

    We report on the loading and release of curcumin (a hydrophobic polyphenol with anti-inflammatory and anti-bacterial properties) from polyelectrolyte multilayers composed of poly(diallyldimethylammonium chloride) (PDADMAC) and poly(sodium 4-styrenesulfonate) (PSS). We have used the in situ techniques of attenuated total reflectance (ATR) FTIR spectroscopy and quartz crystal microbalance with dissipation monitoring (QCM-D) to study the formation of the PEM and the incorporation of curcumin, providing direct evidence of the incorporation, in terms of molecular vibrations and gravimetric detection. The release of curcumin was followed using ex situ measurements of UV-visible spectroscopy of PEM films on quartz plates, in addition to in situ ATR FTIR measurements. Release was studied as a function of salt concentration of the release solution (0.001 M NaCl; 1 M NaCl). UV-visible spectroscopy indicated that salt concentration of the release solution had a major impact on release rates, with higher salt giving faster/more extensive release. However, prolonged timescale immersion and monitoring with UV-visible spectroscopy indicated that sample dehydration/rehydration cycling (required to measure UV absorbance) was responsible for the release of curcumin, rather than immersion time. In situ measurements of release kinetics with ATR FTIR confirmed that release does not occur spontaneously while the multilayer remains hydrated. PMID:25226281

  4. Modeling the effects of pH and ionic strength on swelling of anionic polyelectrolyte gels

    NASA Astrophysics Data System (ADS)

    Drozdov, A. D.; deClaville Christiansen, J.

    2015-07-01

    A constitutive model is developed for the elastic response of an anionic polyelectrolyte gel under swelling in water with an arbitrary pH and an arbitrary molar fraction of dissolved monovalent salt. A gel is treated as a three-phase medium consisting of a solid phase (polymer network), solvent (water), and solute (mobile ions). Transport of solvent and solute is thought of as their diffusion through the polymer network accelerated by an electric field formed by mobile and fixed ions and accompanied by chemical reactions (dissociation of functional groups attached to polymer chains and formation of ion pairs between bound charges and mobile counter-ions). Constitutive equations are derived by means of the free energy imbalance inequality for an arbitrary three-dimensional deformation with finite strains. These relations are applied to analyze equilibrium swelling diagrams on poly(acrylic acid) gel, poly(methacrylic acid) gel, and three composite hydrogels under water uptake in a bath (i) with a fixed molar fraction of salt and varied pH, and (ii) with a fixed pH and varied molar fraction of salt. To validate the ability of the model to predict observations quantitatively, material constants are found by matching swelling curves under one type of experimental conditions and results of simulation are compared with experimental data in the other type of tests.

  5. Determination of Slope Safety Factor with Analytical Solution and Searching Critical Slip Surface with Genetic-Traversal Random Method

    PubMed Central

    2014-01-01

    In the current practice, to determine the safety factor of a slope with two-dimensional circular potential failure surface, one of the searching methods for the critical slip surface is Genetic Algorithm (GA), while the method to calculate the slope safety factor is Fellenius' slices method. However GA needs to be validated with more numeric tests, while Fellenius' slices method is just an approximate method like finite element method. This paper proposed a new method to determine the minimum slope safety factor which is the determination of slope safety factor with analytical solution and searching critical slip surface with Genetic-Traversal Random Method. The analytical solution is more accurate than Fellenius' slices method. The Genetic-Traversal Random Method uses random pick to utilize mutation. A computer automatic search program is developed for the Genetic-Traversal Random Method. After comparison with other methods like slope/w software, results indicate that the Genetic-Traversal Random Search Method can give very low safety factor which is about half of the other methods. However the obtained minimum safety factor with Genetic-Traversal Random Search Method is very close to the lower bound solutions of slope safety factor given by the Ansys software. PMID:24782679

  6. Determination of the Shear Stress Distribution in a Laminate from the Applied Shear Resultant--A Simplified Shear Solution

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Aboudi, Jacob; Yarrington, Phillip W.

    2007-01-01

    The simplified shear solution method is presented for approximating the through-thickness shear stress distribution within a composite laminate based on laminated beam theory. The method does not consider the solution of a particular boundary value problem, rather it requires only knowledge of the global shear loading, geometry, and material properties of the laminate or panel. It is thus analogous to lamination theory in that ply level stresses can be efficiently determined from global load resultants (as determined, for instance, by finite element analysis) at a given location in a structure and used to evaluate the margin of safety on a ply by ply basis. The simplified shear solution stress distribution is zero at free surfaces, continuous at ply boundaries, and integrates to the applied shear load. Comparisons to existing theories are made for a variety of laminates, and design examples are provided illustrating the use of the method for determining through-thickness shear stress margins in several types of composite panels and in the context of a finite element structural analysis.

  7. Simplified Shear Solution for Determination of the Shear Stress Distribution in a Composite Panel from the Applied Shear Resultant

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Aboudi, Jacob; Yarrington, Phillip W.; Collier, Craig S.

    2008-01-01

    The simplified shear solution method is presented for approximating the through-thickness shear stress distribution within a composite laminate or panel based on laminated beam theory. The method does not consider the solution of a particular boundary value problem; rather it requires only knowledge of the global shear loading, geometry, and material properties of the laminate or panel. It is thus analogous to lamination theory in that ply level stresses can be efficiently determined from global load resultants (as determined, for instance, by finite element analysis) at a given location in a structure and used to evaluate the margin of safety on a ply by ply basis. The simplified shear solution stress distribution is zero at free surfaces, continuous at ply boundaries, and integrates to the applied shear load. Comparisons to existing theories are made for a variety of laminates, and design examples are provided illustrating the use of the method for determining through-thickness shear stress margins in several types of composite panels and in the context of a finite element structural analysis.

  8. Submicron Patterning of Polymer Brushes: An Unexpected Discovery from Inkjet Printing of Polyelectrolyte Macroinitiators.

    PubMed

    Parry, Adam V S; Straub, Alexander J; Villar-Alvarez, Eva M; Phuengphol, Takdanai; Nicoll, Jonathan E R; W K, Xavier Lim; Jordan, Lianne M; Moore, Katie L; Taboada, Pablo; Yeates, Stephen G; Edmondson, Steve

    2016-07-27

    Using an electrostatic-based super inkjet printer we report the high-resolution deposition of polyelectrolyte macroinitiators and subsequent polymer brush growth using SI-ARGET-ATRP. We go on to demonstrate for the first time a submicron patterning phenomenon through the addition of either a like charged polyelectrolyte homopolymer or through careful control of ionic strength. As a result patterning of polymer brushes down to ca. 300 nm is reported. We present a possible mechanistic model and consider how this may be applied to other polyelectrolyte-based systems as a general method for submicron patterning. PMID:27400396

  9. Polyelectrolyte Conformation, Interactions and Hydrodynamics as Studied by Light Scattering.

    NASA Astrophysics Data System (ADS)

    Ghosh, Snehasish

    Polyelectrolyte conformation, interactions and hydrodynamics show a marked dependence on the ionic strength (C_{rm s}) of the medium, the concentration (C_{rm p}) of the polymer itself and their charge density (xi). The apparent electrostatic persistence length obtained from static light scattering varied approximately as the inverse square root of C _{rm s} for highly pure, high molecular weight hyaluronate (HA) as well as for variably ionized acrylamide/sodium acrylate copolymers (NaPAA), and linearly with xi. The experimental values of persistence length and second virial coefficient (A_2) are compared to predictions from theories based on the Debye-Huckel approximation for the Poisson-Boltzmann equation and on excluded-volume. Although the mean square radius of gyration (< S^2>) depended strongly on C _{rm s}. < S^2> decreasing with increasing C_{rm s} for both HA and NaPAA indicating clear evidence of polyion expansion, dynamic light scattering values of the translational diffusion coefficient (D) remains constant when extrapolated to infinite polymer concentration for both the polymers. The behavior of D is compared to predictions from coupled mode theory in the linear limit. The effects of NaOH on the conformations, interactions, diffusion and hydrolysis rates of HA are characterized in detail using static, dynamic and time-dependent light scattering supplemented by size exclusion chromatography (SEC). For the HA < S^2>, A_2 and the hydrolysis rates all resemble superposing titration curves, while the D remains independent of both the concentration of NaOH, and the contraction of < S^2>. The indication is that the interactions, conformations and the hydrolysis rates are all controlled by the titration of the HA hydroxyl groups by the NaOH to yield -O ^-, which (i) destroys single strand hydrogen bonds, leading to de-stiffening and contraction of the HA coil and a large decrease in intermolecular interaction, and (ii) slowly depolymerizes HA. The experimental

  10. Theory of volume transition in polyelectrolyte gels with charge regularization.

    PubMed

    Hua, Jing; Mitra, Mithun K; Muthukumar, M

    2012-04-01

    We present a theory for polyelectrolyte gels that allow the effective charge of the polymer backbone to self-regulate. Using a variational approach, we obtain an expression for the free energy of gels that accounts for the gel elasticity, free energy of mixing, counterion adsorption, local dielectric constant, electrostatic interaction among polymer segments, electrolyte ion correlations, and self-consistent charge regularization on the polymer strands. This free energy is then minimized to predict the behavior of the system as characterized by the gel volume fraction as a function of external variables such as temperature and salt concentration. We present results for the volume transition of polyelectrolyte gels in salt-free solvents, solvents with monovalent salts, and solvents with divalent salts. The results of our theoretical analysis capture the essential features of existing experimental results and also provide predictions for further experimentation. Our analysis highlights the importance of the self-regularization of the effective charge for the volume transition of gels in particular, and for charged polymer systems in general. Our analysis also enables us to identify the dominant free energy contributions for charged polymer networks and provides a framework for further investigation of specific experimental systems. PMID:22482584

  11. Understanding and Controlling Transitions in Polyelectrolyte Complex Materials

    NASA Astrophysics Data System (ADS)

    Perry, Sarah; Chang, Li-Wei; Liu, Yalin; Momani, Brian; Velez, Jon; Winter, H. Henning

    Polyelectrolyte complexation can be used in the self-assembly of a wide range of responsive soft materials ranging from dehydrated thin film and bulk solids to dense, polymer-rich liquid complex coacervates, and more complex hierarchical structures such as micelles and hydrogels. This responsivity can include swelling and dissolution, or liquid-to-solid transitions, typically as a function of ionic strength and/or pH. The patterning or presentation of charges and other chemical functionalities represents a powerful strategy for the design and manipulation of this type of responsiveness and the corresponding material properties. We utilize polypeptides and polypeptide derivatives as a model platform for the study of sequence and patterning effects on materials self-assembly. We also utilize rheology to understand the nature of the solid-to-liquid transition that has been observed in some systems. The goal of this systematic investigation of the effects of charge patterning is to elucidate design rules that facilitate the tailored creation of materials based on polyelectrolyte complexation with defined properties for a wide range of applications.

  12. Effect of Protein Supercharging on Interaction with Polyelectrolytes

    NASA Astrophysics Data System (ADS)

    Olsen, Bradley; Obermeyer, Allie; Mills, Carolyn; Dong, Xuehui

    Complexation of proteins with polyelectrolytes can lead to a liquid-liquid phase separation to generate a viscous complex coacervate phase rich in protein and polyelectrolyte. However, many proteins do not readily coacervate at conditions near neutral pH and physiological ionic strength. Here, protein supercharging is used to systematically explore the effect of protein charge on the complex coacervation with polycations. Four model proteins were chemically modified to generate a panel of proteins with varying surface charge, with both the average charge and charge distribution quantified by mass spectrometry. Proteins phase separated with the qP4VP and qPDMAEMA polycations when the ratio of negatively charged residues to positively charged residues was greater than 1.1-1.2. Efficient partitioning of the protein into the coacervate phase required larger charge ratio (1.5-2.0). The model proteins were also encapsulated in complex coacervate core micelles. Dynamic light scattering was used to assess the formation of micelles with POEGMA- b-qP4VP and revealed micellar hydrodynamic radii of approximately 25-30 nm. Small angle neutron scattering and transmission electron microscopy were used to confirm the formation of spherical micelles.

  13. Unifying Self-Consistent Field Theory for Weak Polyelectrolytes

    NASA Astrophysics Data System (ADS)

    Witte, Kevin; Won, You-Yeon

    2008-03-01

    A self-consistent field (SCF) theory for weak polyelectrolytes has been derived from a grand canonical partition function. The formalism accounts for the location and mixing of the charged and uncharged polymer species, treating the local (spatially dependent) charge fraction as a field variable with which to minimize the total free energy. This method of the derivation gives the resulting equations, especially those governing the local charge fraction, that are identical to the results obtained by Szleifer and coworkers (J. Polym. Sci. B Polym. Phys., 2006) who built upon the mean-field ``annealed'' free energy expression proposed by Raphael and Joanny (Europhys. Lett., 1990). However, we show that these results are further identical to the ``two-state'' model of Borukhov, Andelman and Orland (Eur. Phys. J. B, 1998), namely, the potential field due to the polymer charges with which the chains interact and the local charge fraction are shown to be exactly equal. This annealed model is derived by averaging the partition function with regard to the monomer charges. The charged and uncharged states are weighted by their probabilities which is, in our notation, the bulk charge fraction and one minus the bulk charge fraction, respectively. The utility of this theory is demonstrated by comparing its predictions against various experimental results from bulk potentiometric measurements and also from polyelectrolyte brush compression studies.

  14. Mechanical enhancement of nanofibrous scaffolds through polyelectrolyte complexation

    NASA Astrophysics Data System (ADS)

    Xu, Jia; Cai, Ning; Xu, Weixiu; Xue, Yanan; Wang, Zelong; Dai, Qin; Yu, Faquan

    2013-01-01

    Optimization of mechanical properties is required in applications of tissue-engineered scaffolds. In this study, a polyelectrolyte complexation approach is proposed to improve the mechanical properties of the nanofibrous scaffolds. Through an electrospun chitosan/gelatin (CG) model system, it is demonstrated that the storage modulus of CG nanofiber-based complex membranes is over 103-fold higher than that of neat chitosan or gelatin membranes. Further, an annealing process was found to promote the conjugation of the oppositely charged polymers and thus the tensile modulus of CG membranes is 1.9-fold elevated. When the molar ratio of aminoglucoside units in chitosan to carboxyl units in gelatin is 1:1, the complex nanofiber-based membranes (CG2) display the highest mechanical strength. In addition, the complex membranes reveal an excellent swelling capacity. By comparing the CG membranes electrospun with cast, it is deduced that the complexation is one of the main contributing factors to the improvement in mechanical properties. FTIR and DSC analyses confirm that more molecular interactions took place in the complexation. SEM observation clearly displays the electrospinnability of the complex. Therefore, polyelectrolyte complexation is an effective strategy for enhancing mechanical properties of nanofibrous scaffolds. These mechanically enhanced chitosan/gelatin nanofibrous membranes have wider applications than wound dressing.

  15. A facile route to synthesize silver nanoparticles in polyelectrolyte capsules.

    PubMed

    Anandhakumar, S; Raichur, Ashok M

    2011-06-01

    We are reporting a novel green approach to incorporate silver nanoparticles (NPs) selectively in the polyelectrolyte capsule shell for remote opening of polyelectrolyte capsules. This approach involves in situ reduction of silver nitrate to silver NPs using PEG as a reducing agent (polyol reduction method). These nanostructured capsules were prepared via layer by layer (LbL) assembly of poly(allylamine hydrochloride) (PAH) and dextran sulfate (DS) on silica template followed by the synthesis of silver NPs and subsequently the dissolution of the silica core. The size of silver nanoparticles synthesized was 60±20 nm which increased to 100±20 nm when the concentration of AgNO(3) increased from 25 mM to 50 mM. The incorporated silver NPs induced rupture and deformation of the capsules under laser irradiation. This method has advantages over other conventional methods involving chemical agents that are associated with cytotoxicity in biological applications such as drug delivery and catalysis. PMID:21333503

  16. Swelling of polyelectrolyte and polyzwitterion brushes by humid vapors

    NASA Astrophysics Data System (ADS)

    Genzer, Jan; Galvin, Casey; Dimitriou, Michael; Satija, Sushil

    2015-03-01

    Swelling behavior of polyelectrolyte and polyzwitterion brushes derived from poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) in water vapor is investigated using a combination of neutron and X-ray reflectivity and spectroscopic ellipsometry over a wide range of relative humidity (RH) levels. The extent of swelling depends strongly on the nature of the side-chain chemistry. For parent PDMAEMA, there is an apparent enrichment of vapor at the polymer/air interface. Despite extensive swelling at high humidity level, no evidence of charge repulsion is found in weak or strong polyelectrolyte brushes. Polyzwitterionic brushes swell to a greater extent than the quaternized brushes studied. However, for RH levels beyond 70%, the polyzwitterionic brushes start to exclude water molecules, leading to a decline in water volume fraction from the maximum of 0.30 down to 0.10. Using a gradient in polymer chain grafting density, we provide evidence that this behavior stems from the formation of inter- and intramolecular zwitterionic complexes.

  17. Surface friction of hydrogels with well-defined polyelectrolyte brushes.

    PubMed

    Ohsedo, Yutaka; Takashina, Rikiya; Gong, Jian Ping; Osada, Yoshihito

    2004-08-01

    Hydrogels of poly(2-hydroxyethyl methacrylate) (PHEMA) with well-defined polyelectrolyte brushes of poly(sodium 4-styrenesulfonate) (PNaSS) of various molecular weights were synthesized, keeping the distance between the polymer brushes constant at ca. 20 nm. The effect of polyelectrolyte brush length on the sliding friction against a glass plate, an electrorepulsive solid substrate, was investigated in water in a velocity range of 7.5 x 10(-5) to 7.5 x 10(-2) m/s. It is found that the presence of polymer brush can dramatically reduce the friction when the polymer brushes are short. With an increase in the length of the polymer brush, this drag reduction effect only works at a low sliding velocity, and the gel with long polymer brushes even shows a higher friction than that of a normal network gel at a high sliding velocity. The strong polymer length and sliding velocity dependence indicate a dynamic mechanism of the polymer brush effect. PMID:15274553

  18. Confined polyelectrolytes: The complexity of a simple system.

    PubMed

    Nunes, Sandra C C; Skepö, Marie; Pais, Alberto A C C

    2015-08-01

    The interaction between polyelectrolytes and counterions in confined situations and the mutual relationship between chain conformation and ion condensation is an important issue in several areas. In the biological field, it assumes particular relevance in the understanding of the packaging of nucleic acids, which is crucial in the design of gene delivery systems. In this work, a simple coarse-grained model is used to assess the cooperativity between conformational change and ion condensation in spherically confined backbones, with capsides permeable to the counterions. It is seen that the variation on the degree of condensation depends on counterion valence. For monovalent counterions, the degree of condensation passes through a minimum before increasing as the confining space diminishes. In contrast, for trivalent ions, the overall tendency is to decrease the degree of condensation as the confinement space also decreases. Most of the particles reside close to the spherical wall, even for systems in which the density is higher closer to the cavity center. This effect is more pronounced, when monovalent counterions are present. Additionally, there are clear variations in the charge along the concentric layers that cannot be totally ascribed to polyelectrolyte behavior, as shown by decoupling the chain into monomers. If both chain and counterions are confined, the formation of a counterion rich region immediately before the wall is observed. Spool and doughnut-like structures are formed for stiff chains, within a nontrivial evolution with increasing confinement. PMID:26096545

  19. Compact Polyelectrolyte Complexes: “Saloplastic” Candidates for Biomaterials

    PubMed Central

    2009-01-01

    Precipitates of polyelectrolyte complexes were transformed into rugged shapes suitable for bioimplants by ultracentrifugation in the presence of high salt concentration. Salt ions dope the complex, creating a softer material with viscous fluid-like properties. Complexes that were compacted under the centrifugal field (CoPECs) were made from poly(diallyldimethyl ammonium), PDADMA, as polycation, and poly(styrene sulfonate), PSS, or poly(methacrylic acid), PMAA, as polyanion. Dynamic mechanical testing revealed a rubbery plateau at lower frequencies for PSS/PDADMA with moduli that decreased with increasing salt concentration, as internal ion pair cross-links were broken. CoPECs had significantly lower modulii compared to similar polyelectrolyte complexes prepared by the “multilayering” method. The difference in mechanical properties was ascribed to higher water content (located in micropores) for the former and, more importantly, to their nonstoichiometric polymer composition. The modulus of PMAA/PDADMA CoPECs, under physiological conditions, demonstrated dynamic mechanical properties that were close to those of the nucleus pulposus in an intervertebral disk. PMID:19835412

  20. Theory of volume transition in polyelectrolyte gels with charge regularization

    NASA Astrophysics Data System (ADS)

    Hua, Jing; Mitra, Mithun K.; Muthukumar, M.

    2012-04-01

    We present a theory for polyelectrolyte gels that allow the effective charge of the polymer backbone to self-regulate. Using a variational approach, we obtain an expression for the free energy of gels that accounts for the gel elasticity, free energy of mixing, counterion adsorption, local dielectric constant, electrostatic interaction among polymer segments, electrolyte ion correlations, and self-consistent charge regularization on the polymer strands. This free energy is then minimized to predict the behavior of the system as characterized by the gel volume fraction as a function of external variables such as temperature and salt concentration. We present results for the volume transition of polyelectrolyte gels in salt-free solvents, solvents with monovalent salts, and solvents with divalent salts. The results of our theoretical analysis capture the essential features of existing experimental results and also provide predictions for further experimentation. Our analysis highlights the importance of the self-regularization of the effective charge for the volume transition of gels in particular, and for charged polymer systems in general. Our analysis also enables us to identify the dominant free energy contributions for charged polymer networks and provides a framework for further investigation of specific experimental systems.