Sample records for determining micromechanical strain

  1. Implementation of Fiber Substructuring Into Strain Rate Dependent Micromechanics Analysis of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.

    2001-01-01

    A research program is in progress to develop strain rate dependent deformation and failure models for the analysis of polymer matrix composites subject to impact loads. Previously, strain rate dependent inelastic constitutive equations developed to model the polymer matrix were incorporated into a mechanics of materials based micromechanics method. In the current work, the micromechanics method is revised such that the composite unit cell is divided into a number of slices. Micromechanics equations are then developed for each slice, with laminate theory applied to determine the elastic properties, effective stresses and effective inelastic strains for the unit cell. Verification studies are conducted using two representative polymer matrix composites with a nonlinear, strain rate dependent deformation response. The computed results compare well to experimentally obtained values.

  2. Implementation of Laminate Theory Into Strain Rate Dependent Micromechanics Analysis of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.

    2000-01-01

    A research program is in progress to develop strain rate dependent deformation and failure models for the analysis of polymer matrix composites subject to impact loads. Previously, strain rate dependent inelastic constitutive equations developed to model the polymer matrix were implemented into a mechanics of materials based micromechanics method. In the current work, the computation of the effective inelastic strain in the micromechanics model was modified to fully incorporate the Poisson effect. The micromechanics equations were also combined with classical laminate theory to enable the analysis of symmetric multilayered laminates subject to in-plane loading. A quasi-incremental trapezoidal integration method was implemented to integrate the constitutive equations within the laminate theory. Verification studies were conducted using an AS4/PEEK composite using a variety of laminate configurations and strain rates. The predicted results compared well with experimentally obtained values.

  3. High Strain Rate Deformation Modeling of a Polymer Matrix Composite. Part 2; Composite Micromechanical Model

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Stouffer, Donald C.

    1998-01-01

    Recently applications have exposed polymer matrix composite materials to very high strain rate loading conditions, requiring an ability to understand and predict the material behavior under these extreme conditions. In this second paper of a two part report, a three-dimensional composite micromechanical model is described which allows for the analysis of the rate dependent, nonlinear deformation response of a polymer matrix composite. Strain rate dependent inelastic constitutive equations utilized to model the deformation response of a polymer are implemented within the micromechanics method. The deformation response of two representative laminated carbon fiber reinforced composite materials with varying fiber orientation has been predicted using the described technique. The predicted results compare favorably to both experimental values and the response predicted by the Generalized Method of Cells, a well-established micromechanics analysis method.

  4. Incorporation of Mean Stress Effects into the Micromechanical Analysis of the High Strain Rate Response of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Roberts, Gary D.; Gilat, Amos

    2002-01-01

    The results presented here are part of an ongoing research program, to develop strain rate dependent deformation and failure models for the analysis of polymer matrix composites subject to high strain rate impact loads. A micromechanics approach is employed in this work, in which state variable constitutive equations originally developed for metals have been modified to model the deformation of the polymer matrix, and a strength of materials based micromechanics method is used to predict the effective response of the composite. In the analysis of the inelastic deformation of the polymer matrix, the definitions of the effective stress and effective inelastic strain have been modified in order to account for the effect of hydrostatic stresses, which are significant in polymers. Two representative polymers, a toughened epoxy and a brittle epoxy, are characterized through the use of data from tensile and shear tests across a variety of strain rates. Results computed by using the developed constitutive equations correlate well with data generated via experiments. The procedure used to incorporate the constitutive equations within a micromechanics method is presented, and sample calculations of the deformation response of a composite for various fiber orientations and strain rates are discussed.

  5. Micromechanics and poroelasticity of hydrated cellulose networks.

    PubMed

    Lopez-Sanchez, P; Rincon, Mauricio; Wang, D; Brulhart, S; Stokes, J R; Gidley, M J

    2014-06-09

    The micromechanics of cellulose hydrogels have been investigated using a new rheological experimental approach, combined with simulation using a poroelastic constitutive model. A series of mechanical compression steps at different strain rates were performed as a function of cellulose hydrogel thickness, combined with small amplitude oscillatory shear after each step to monitor the viscoelasticity of the sample. During compression, bacterial cellulose hydrogels behaved as anisotropic materials with near zero Poisson's ratio. The micromechanics of the hydrogels altered with each compression as water was squeezed out of the structure, and microstructural changes were strain rate-dependent, with increased densification of the cellulose network and increased cellulose fiber aggregation observed for slower compressive strain rates. A transversely isotropic poroelastic model was used to explain the observed micromechanical behavior, showing that the mechanical properties of cellulose networks in aqueous environments are mainly controlled by the rate of water movement within the structure.

  6. A Simplified Micromechanical Modeling Approach to Predict the Tensile Flow Curve Behavior of Dual-Phase Steels

    NASA Astrophysics Data System (ADS)

    Nanda, Tarun; Kumar, B. Ravi; Singh, Vishal

    2017-11-01

    Micromechanical modeling is used to predict material's tensile flow curve behavior based on microstructural characteristics. This research develops a simplified micromechanical modeling approach for predicting flow curve behavior of dual-phase steels. The existing literature reports on two broad approaches for determining tensile flow curve of these steels. The modeling approach developed in this work attempts to overcome specific limitations of the existing two approaches. This approach combines dislocation-based strain-hardening method with rule of mixtures. In the first step of modeling, `dislocation-based strain-hardening method' was employed to predict tensile behavior of individual phases of ferrite and martensite. In the second step, the individual flow curves were combined using `rule of mixtures,' to obtain the composite dual-phase flow behavior. To check accuracy of proposed model, four distinct dual-phase microstructures comprising of different ferrite grain size, martensite fraction, and carbon content in martensite were processed by annealing experiments. The true stress-strain curves for various microstructures were predicted with the newly developed micromechanical model. The results of micromechanical model matched closely with those of actual tensile tests. Thus, this micromechanical modeling approach can be used to predict and optimize the tensile flow behavior of dual-phase steels.

  7. Versatile Micromechanics Model for Multiscale Analysis of Composite Structures

    NASA Astrophysics Data System (ADS)

    Kwon, Y. W.; Park, M. S.

    2013-08-01

    A general-purpose micromechanics model was developed so that the model could be applied to various composite materials such as reinforced by particles, long fibers and short fibers as well as those containing micro voids. Additionally, the model can be used with hierarchical composite materials. The micromechanics model can be used to compute effective material properties like elastic moduli, shear moduli, Poisson's ratios, and coefficients of thermal expansion for the various composite materials. The model can also calculate the strains and stresses at the constituent material level such as fibers, particles, and whiskers from the composite level stresses and strains. The model was implemented into ABAQUS using the UMAT option for multiscale analysis. An extensive set of examples are presented to demonstrate the reliability and accuracy of the developed micromechanics model for different kinds of composite materials. Another set of examples is provided to study the multiscale analysis of composite structures.

  8. Micromechanics of soil responses in cyclic simple shear tests

    NASA Astrophysics Data System (ADS)

    Cui, Liang; Bhattacharya, Subhamoy; Nikitas, George

    2017-06-01

    Offshore wind turbine (OWT) foundations are subjected to a combination of cyclic and dynamic loading arising from wind, wave, rotor and blade shadowing. Under cyclic loading, most soils change their characteristics including stiffness, which may cause the system natural frequency to approach the loading frequency and lead to unplanned resonance and system damage or even collapse. To investigate such changes and the underlying micromechanics, a series of cyclic simple shear tests were performed on the RedHill 110 sand with different shear strain amplitudes, vertical stresses and initial relative densities of soil. The test results showed that: (a) Vertical accumulated strain is proportional to the shear strain amplitude but inversely proportional to relative density of soil; (b) Shear modulus increases rapidly in the initial loading cycles and then the rate of increase diminishes and the shear modulus remains below an asymptote; (c) Shear modulus increases with increasing vertical stress and relative density, but decreasing with increasing strain amplitude. Coupled DEM simulations were performed using PFC2D to analyse the micromechanics underlying the cyclic behaviour of soils. Micromechanical parameters (e.g. fabric tensor, coordination number) were examined to explore the reasons for the various cyclic responses to different shear strain amplitudes or vertical stresses. Both coordination number and magnitude of fabric anisotropy contribute to the increasing shear modulus.

  9. Strain Rate Dependent Deformation and Strength Modeling of a Polymer Matrix Composite Utilizing a Micromechanics Approach. Degree awarded by Cincinnati Univ.

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.

    1999-01-01

    Potential gas turbine applications will expose polymer matrix composites to very high strain rate loading conditions, requiring an ability to understand and predict the material behavior under extreme conditions. Specifically, analytical methods designed for these applications must have the capability of properly capturing the strain rate sensitivities and nonlinearities that are present in the material response. The Ramaswamy-Stouffer constitutive equations, originally developed to analyze the viscoplastic deformation of metals, have been modified to simulate the nonlinear deformation response of ductile, crystalline polymers. The constitutive model is characterized and correlated for two representative ductile polymers. Fiberite 977-2 and PEEK, and the computed results correlate well with experimental values. The polymer constitutive equations are implemented in a mechanics of materials based composite micromechanics model to predict the nonlinear, rate dependent deformation response of a composite ply. Uniform stress and uniform strain assumptions are applied to compute the effective stresses of a composite unit cell from the applied strains. The micromechanics equations are successfully verified for two polymer matrix composites. IM7/977-2 and AS4/PEEK. The ultimate strength of a composite ply is predicted with the Hashin failure criteria that were implemented in the composite micromechanics model. The failure stresses of the two composite material systems are accurately predicted for a variety of fiber orientations and strain rates. The composite deformation model is implemented in LS-DYNA, a commercially available transient dynamic explicit finite element code. The matrix constitutive equations are converted into an incremental form, and the model is implemented into LS-DYNA through the use of a user defined material subroutine. The deformation response of a bulk polymer and a polymer matrix composite are predicted by finite element analyses. The results

  10. In-Situ Neutron Diffraction Studies of Micromechanical Behavior in a Friction Stir Welded AA7475-T761

    NASA Astrophysics Data System (ADS)

    Liu, X. P.; Lin Peng, R.; Hofmann, M.; Johansson, S.; Wang, Y. D.

    2011-01-01

    An in-situ neutron diffraction technique was used to investigate the lattice strain distributions and micromechanical behavior in a friction stir welded (FSW) sheet of AA7475-T761. The neutron diffraction experiments were performed on the spectrometer for material research, STRESS-SPEC, at FRM II (Garching, Germany). The lattice strain profiles around the weld center were measured as a function of the applied strain during the tensile loading and unloading. The anisotropic elastic and plastic properties of the FSW aluminum alloy were simulated by elasto-plastic self-consistent (EPSC) model to predict the anisotropic deformation behaviors involving the grain-to-grain interactions. Material parameters used for describing the constitutive laws of each test position were determined from the measured lattice strain distributions for different diffraction hkl planes as well as the macroscopic stress-strain curve of the FSW aluminum alloy. A good agreement between experimental results and numerical simulations was obtained. The present investigations provided a reliable prediction of the anisotropic micromechanical behavior of the FSW aluminum alloy during tensile deformation.

  11. Micromechanical constitutive model for low-temperature constant strain rate deformation of limestones in the brittle and semi-brittle regime

    NASA Astrophysics Data System (ADS)

    Nicolas, A.; Fortin, J.; Guéguen, Y.

    2017-10-01

    Deformation and failure of rocks are important for a better understanding of many crustal geological phenomena such as faulting and compaction. In carbonate rocks among others, low-temperature deformation can either occur with dilatancy or compaction, having implications for porosity changes, failure and petrophysical properties. Hence, a thorough understanding of all the micromechanisms responsible for deformation is of great interest. In this study, a constitutive model for the low-temperature deformation of low-porosity (<20 per cent) carbonate rocks is derived from the micromechanisms identified in previous studies. The micromechanical model is based on (1) brittle crack propagation, (2) a plasticity law (interpreted in terms of dislocation glide without possibility to climb) for porous media with hardening and (3) crack nucleation due to dislocation pile-ups. The model predicts stress-strain relations and the evolution of damage during deformation. The model adequately predicts brittle behaviour at low confining pressures, which switches to a semi-brittle behaviour characterized by inelastic compaction followed by dilatancy at higher confining pressures. Model predictions are compared to experimental results from previous studies and are found to be in close agreement with experimental results. This suggests that microphysical phenomena responsible for the deformation are sufficiently well captured by the model although twinning, recovery and cataclasis are not considered. The porosity range of applicability and limits of the model are discussed.

  12. Micromechanics Modeling of Composites Subjected to Multiaxial Progressive Damage in the Constituents

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Aboudi, Jacob; Amold, Steven M.

    2010-01-01

    The high-fidelity generalized method of cells composite micromechanics model is extended to include constituent-scale progressive damage via a proposed damage model. The damage model assumes that all material nonlinearity is due to damage in the form of reduced stiffness, and it uses six scalar damage variables (three for tension and three for compression) to track the damage. Damage strains are introduced that account for interaction among the strain components and that also allow the development of the damage evolution equations based on the constituent material uniaxial stress strain response. Local final-failure criteria are also proposed based on mode-specific strain energy release rates and total dissipated strain energy. The coupled micromechanics-damage model described herein is applied to a unidirectional E-glass/epoxy composite and a proprietary polymer matrix composite. Results illustrate the capability of the coupled model to capture the vastly different character of the monolithic (neat) resin matrix and the composite in response to far-field tension, compression, and shear loading.

  13. Micromechanics based phenomenological damage modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muju, S.; Anderson, P.M.; Popelar, C.H.

    A model is developed for the study of process zone effects on dominant cracks. The model proposed here is intended to bridge the gap between the micromechanics based and the phenomenological models for the class of problems involving microcracking, transforming inclusions etc. It is based on representation of localized eigenstrains using dislocation dipoles. The eigenstrain (fitting strain) is represented as the strength (Burgers vector) of the dipole which obeys a certain phenomenological constitutive relation.

  14. The microstructure and micromechanics of the tendon-bone insertion

    NASA Astrophysics Data System (ADS)

    Rossetti, L.; Kuntz, L. A.; Kunold, E.; Schock, J.; Müller, K. W.; Grabmayr, H.; Stolberg-Stolberg, J.; Pfeiffer, F.; Sieber, S. A.; Burgkart, R.; Bausch, A. R.

    2017-06-01

    The exceptional mechanical properties of the load-bearing connection of tendon to bone rely on an intricate interplay of its biomolecular composition, microstructure and micromechanics. Here we identify that the Achilles tendon-bone insertion is characterized by an interface region of ~500 μm with a distinct fibre organization and biomolecular composition. Within this region, we identify a heterogeneous mechanical response by micromechanical testing coupled with multiscale confocal microscopy. This leads to localized strains that can be larger than the remotely applied strain. The subset of fibres that sustain the majority of loading in the interface area changes with the angle of force application. Proteomic analysis detects enrichment of 22 proteins in the interfacial region that are predominantly involved in cartilage and skeletal development as well as proteoglycan metabolism. The presented mechanisms mark a guideline for further biomimetic strategies to rationally design hard-soft interfaces.

  15. Validation of micro-mechanical FFT-based simulations using High Energy Diffraction Microscopy on Ti-7Al

    DOE PAGES

    Tari, Vahid; Lebensohn, Ricardo A.; Pokharel, Reeju; ...

    2018-08-01

    Here, a validation is reported for micromechanical simulation using a reimplementation of an elasto-viscoplastic FFT-based (EVPFFT) formulation, i.e., the Micromechanical Analysis of Stress-strain Inhomogeneities with fast Fourier transform (MASSIF) code, against experimental data obtained from synchrotron x-ray diffraction. The experimental data was collected during in-situ deformation of a titanium alloy specimen by High Energy Diffraction Microscopy (HEDM), which provided the average elastic strain tensor and orientation of each grain in a polycrystalline sample. MASSIF was used to calculate the local micromechanical fields in a Ti-7Al polycrystalline sample at different load levels. The initially attempted simulation showed that, although the effectivemore » response was calibrated to reproduce the experiment, MASSIF was not able to reproduce the micromechanical fields at the scale of individual grains. The differences between calculated and measured averages at the grain scale were related to initial residual strains resulting from the prior processing of the material, which had not been incorporated in the original calculation. Accordingly, a new simulation was instantiated using information on the measured residual strains to define a set of eigenstrains, calculated via an Eshelby approximation. This initialization significantly improved the correlation between calculated and simulated fields for all strain and stress components, for measurements performed within the elastic regime. For the measurements at the highest load, which was past plastic yield, the correlations deteriorated because of plastic deformation at the grain level and the lack of an accurate enough constitutive description in this deformation regime.« less

  16. Validation of micro-mechanical FFT-based simulations using High Energy Diffraction Microscopy on Ti-7Al

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tari, Vahid; Lebensohn, Ricardo A.; Pokharel, Reeju

    Here, a validation is reported for micromechanical simulation using a reimplementation of an elasto-viscoplastic FFT-based (EVPFFT) formulation, i.e., the Micromechanical Analysis of Stress-strain Inhomogeneities with fast Fourier transform (MASSIF) code, against experimental data obtained from synchrotron x-ray diffraction. The experimental data was collected during in-situ deformation of a titanium alloy specimen by High Energy Diffraction Microscopy (HEDM), which provided the average elastic strain tensor and orientation of each grain in a polycrystalline sample. MASSIF was used to calculate the local micromechanical fields in a Ti-7Al polycrystalline sample at different load levels. The initially attempted simulation showed that, although the effectivemore » response was calibrated to reproduce the experiment, MASSIF was not able to reproduce the micromechanical fields at the scale of individual grains. The differences between calculated and measured averages at the grain scale were related to initial residual strains resulting from the prior processing of the material, which had not been incorporated in the original calculation. Accordingly, a new simulation was instantiated using information on the measured residual strains to define a set of eigenstrains, calculated via an Eshelby approximation. This initialization significantly improved the correlation between calculated and simulated fields for all strain and stress components, for measurements performed within the elastic regime. For the measurements at the highest load, which was past plastic yield, the correlations deteriorated because of plastic deformation at the grain level and the lack of an accurate enough constitutive description in this deformation regime.« less

  17. A Micromechanical INS/GPS System for Small Satellites

    NASA Technical Reports Server (NTRS)

    Barbour, N.; Brand, T.; Haley, R.; Socha, M.; Stoll, J.; Ward, P.; Weinberg, M.

    1995-01-01

    The cost and complexity of large satellite space missions continue to escalate. To reduce costs, more attention is being directed toward small lightweight satellites where future demand is expected to grow dramatically. Specifically, micromechanical inertial systems and microstrip global positioning system (GPS) antennas incorporating flip-chip bonding, application specific integrated circuits (ASIC) and MCM technologies will be required. Traditional microsatellite pointing systems do not employ active control. Many systems allow the satellite to point coarsely using gravity gradient, then attempt to maintain the image on the focal plane with fast-steering mirrors. Draper's approach is to actively control the line of sight pointing by utilizing on-board attitude determination with micromechanical inertial sensors and reaction wheel control actuators. Draper has developed commercial and tactical-grade micromechanical inertial sensors, The small size, low weight, and low cost of these gyroscopes and accelerometers enable systems previously impractical because of size and cost. Evolving micromechanical inertial sensors can be applied to closed-loop, active control of small satellites for micro-radian precision-pointing missions. An inertial reference feedback control loop can be used to determine attitude and line of sight jitter to provide error information to the controller for correction. At low frequencies, the error signal is provided by GPS. At higher frequencies, feedback is provided by the micromechanical gyros. This blending of sensors provides wide-band sensing from dc to operational frequencies. First order simulation has shown that the performance of existing micromechanical gyros, with integrated GPS, is feasible for a pointing mission of 10 micro-radians of jitter stability and approximately 1 milli-radian absolute error, for a satellite with 1 meter antenna separation. Improved performance micromechanical sensors currently under development will be

  18. Critique of Macro Flow/Damage Surface Representations for Metal Matrix Composites Using Micromechanics

    NASA Technical Reports Server (NTRS)

    Lissenden, Cliff J.; Arnold, Steven M.

    1996-01-01

    Guidance for the formulation of robust, multiaxial, constitutive models for advanced materials is provided by addressing theoretical and experimental issues using micromechanics. The multiaxial response of metal matrix composites, depicted in terms of macro flow/damage surfaces, is predicted at room and elevated temperatures using an analytical micromechanical model that includes viscoplastic matrix response as well as fiber-matrix debonding. Macro flow/damage surfaces (i.e., debonding envelopes, matrix threshold surfaces, macro 'yield' surfaces, surfaces of constant inelastic strain rate, and surfaces of constant dissipation rate) are determined for silicon carbide/titanium in three stress spaces. Residual stresses are shown to offset the centers of the flow/damage surfaces from the origin and their shape is significantly altered by debonding. The results indicate which type of flow/damage surfaces should be characterized and what loadings applied to provide the most meaningful experimental data for guiding theoretical model development and verification.

  19. Micromechanics Analysis Code (MAC) User Guide: Version 1.0

    NASA Technical Reports Server (NTRS)

    Wilt, T. E.; Arnold, S. M.

    1994-01-01

    The ability to accurately predict the thermomechanical deformation response of advanced composite materials continues to play an important role in the development of these strategic materials. Analytical models that predict the effective behavior of composites are used not only by engineers performing structural analysis of large-scale composite components but also by material scientists in developing new material systems. For an analytical model to fulfill these two distinct functions it must be based on a micromechanics approach which utilizes physically based deformation and life constitutive models and allows one to generate the average (macro) response of a composite material given the properties of the individual constituents and their geometric arrangement. Here the user guide for the recently developed, computationally efficient and comprehensive micromechanics analysis code, MAC, who's predictive capability rests entirely upon the fully analytical generalized method of cells, GMC, micromechanics model is described. MAC is a versatile form of research software that 'drives' the double or triple ply periodic micromechanics constitutive models based upon GMC. MAC enhances the basic capabilities of GMC by providing a modular framework wherein (1) various thermal, mechanical (stress or strain control), and thermomechanical load histories can be imposed; (2) different integration algorithms may be selected; (3) a variety of constituent constitutive models may be utilized and/or implemented; and (4) a variety of fiber architectures may be easily accessed through their corresponding representative volume elements.

  20. Micro-mechanical properties of the tendon-to-bone attachment.

    PubMed

    Deymier, Alix C; An, Yiran; Boyle, John J; Schwartz, Andrea G; Birman, Victor; Genin, Guy M; Thomopoulos, Stavros; Barber, Asa H

    2017-07-01

    The tendon-to-bone attachment (enthesis) is a complex hierarchical tissue that connects stiff bone to compliant tendon. The attachment site at the micrometer scale exhibits gradients in mineral content and collagen orientation, which likely act to minimize stress concentrations. The physiological micromechanics of the attachment thus define resultant performance, but difficulties in sample preparation and mechanical testing at this scale have restricted understanding of structure-mechanical function. Here, microscale beams from entheses of wild type mice and mice with mineral defects were prepared using cryo-focused ion beam milling and pulled to failure using a modified atomic force microscopy system. Micromechanical behavior of tendon-to-bone structures, including elastic modulus, strength, resilience, and toughness, were obtained. Results demonstrated considerably higher mechanical performance at the micrometer length scale compared to the millimeter tissue length scale, describing enthesis material properties without the influence of higher order structural effects such as defects. Micromechanical investigation revealed a decrease in strength in entheses with mineral defects. To further examine structure-mechanical function relationships, local deformation behavior along the tendon-to-bone attachment was determined using local image correlation. A high compliance zone near the mineralized gradient of the attachment was clearly identified and highlighted the lack of correlation between mineral distribution and strain on the low-mineral end of the attachment. This compliant region is proposed to act as an energy absorbing component, limiting catastrophic failure within the tendon-to-bone attachment through higher local deformation. This understanding of tendon-to-bone micromechanics demonstrates the critical role of micrometer scale features in the mechanics of the tissue. The tendon-to-bone attachment (enthesis) is a complex hierarchical tissue with features at

  1. Micromechanics Analysis Code (MAC). User Guide: Version 2.0

    NASA Technical Reports Server (NTRS)

    Wilt, T. E.; Arnold, S. M.

    1996-01-01

    The ability to accurately predict the thermomechanical deformation response of advanced composite materials continues to play an important role in the development of these strategic materials. Analytical models that predict the effective behavior of composites are used not only by engineers performing structural analysis of large-scale composite components but also by material scientists in developing new material systems. For an analytical model to fulfill these two distinct functions it must be based on a micromechanics approach which utilizes physically based deformation and life constitutive models and allows one to generate the average (macro) response of a composite material given the properties of the individual constituents and their geometric arrangement. Here the user guide for the recently developed, computationally efficient and comprehensive micromechanics analysis code's (MAC) who's predictive capability rests entirely upon the fully analytical generalized method of cells (GMC), micromechanics model is described. MAC is a versatile form of research software that 'drives' the double or triply periodic micromechanics constitutive models based upon GMC. MAC enhances the basic capabilities of GMC by providing a modular framework wherein (1) various thermal, mechanical (stress or strain control) and thermomechanical load histories can be imposed, (2) different integration algorithms may be selected, (3) a variety of constituent constitutive models may be utilized and/or implemented, and (4) a variety of fiber and laminate architectures may be easily accessed through their corresponding representative volume elements.

  2. Implementation of Improved Transverse Shear Calculations and Higher Order Laminate Theory Into Strain Rate Dependent Analyses of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Lin-Fa; Kim, Soo; Chattopadhyay, Aditi; Goldberg, Robert K.

    2004-01-01

    A numerical procedure has been developed to investigate the nonlinear and strain rate dependent deformation response of polymer matrix composite laminated plates under high strain rate impact loadings. A recently developed strength of materials based micromechanics model, incorporating a set of nonlinear, strain rate dependent constitutive equations for the polymer matrix, is extended to account for the transverse shear effects during impact. Four different assumptions of transverse shear deformation are investigated in order to improve the developed strain rate dependent micromechanics model. The validities of these assumptions are investigated using numerical and theoretical approaches. A method to determine through the thickness strain and transverse Poisson's ratio of the composite is developed. The revised micromechanics model is then implemented into a higher order laminated plate theory which is modified to include the effects of inelastic strains. Parametric studies are conducted to investigate the mechanical response of composite plates under high strain rate loadings. Results show the transverse shear stresses cannot be neglected in the impact problem. A significant level of strain rate dependency and material nonlinearity is found in the deformation response of representative composite specimens.

  3. Delamination micromechanics analysis

    NASA Technical Reports Server (NTRS)

    Adams, D. F.; Mahishi, J. M.

    1985-01-01

    A three-dimensional finite element analysis was developed which includes elastoplastic, orthotropic material response, and fracture initiation and propagation. Energy absorption due to physical failure processes characteristic of the heterogeneous and anisotropic nature of composite materials is modeled. A local energy release rate in the presence of plasticity was defined and used as a criterion to predict the onset and growth of cracks in both micromechanics and macromechanics analyses. This crack growth simulation technique is based upon a virtual crack extension method. A three-dimensional finite element micromechanics model is used to study the effects of broken fibers, cracked matrix and fiber-matrix debond on the fracture toughness of the unidirectional composite. The energy release rates at the onset of unstable crack growth in the micromechanics analyses are used as critical energy release rates in the macromechanics analysis. This integrated micromechanical and macromechanical fracture criterion is shown to be very effective in predicting the onset and growth of cracks in general multilayered composite laminates by applying the criterion to a single-edge notched graphite/epoxy laminate subjected to implane tension normal to the notch.

  4. Compound floating pivot micromechanisms

    DOEpatents

    Garcia, Ernest J.

    2001-04-24

    A new class of tilting micromechanical mechanisms have been developed. These new mechanisms use compound floating pivot structures to attain far greater tilt angles than are practical using other micromechanical techniques. The new mechanisms are also capable of bi-directional tilt about multiple axes.

  5. Micromechanical Signal Processors

    NASA Astrophysics Data System (ADS)

    Nguyen, Clark Tu-Cuong

    Completely monolithic high-Q micromechanical signal processors constructed of polycrystalline silicon and integrated with CMOS electronics are described. The signal processors implemented include an oscillator, a bandpass filter, and a mixer + filter--all of which are components commonly required for up- and down-conversion in communication transmitters and receivers, and all of which take full advantage of the high Q of micromechanical resonators. Each signal processor is designed, fabricated, then studied with particular attention to the performance consequences associated with miniaturization of the high-Q element. The fabrication technology which realizes these components merges planar integrated circuit CMOS technologies with those of polysilicon surface micromachining. The technologies are merged in a modular fashion, where the CMOS is processed in the first module, the microstructures in a following separate module, and at no point in the process sequence are steps from each module intermixed. Although the advantages of such modularity include flexibility in accommodating new module technologies, the developed process constrained the CMOS metallization to a high temperature refractory metal (tungsten metallization with TiSi _2 contact barriers) and constrained the micromachining process to long-term temperatures below 835^circC. Rapid-thermal annealing (RTA) was used to relieve residual stress in the mechanical structures. To reduce the complexity involved with developing this merged process, capacitively transduced resonators are utilized. High-Q single resonator and spring-coupled micromechanical resonator filters are also investigated, with particular attention to noise performance, bandwidth control, and termination design. The noise in micromechanical filters is found to be fairly high due to poor electromechanical coupling on the micro-scale with present-day technologies. Solutions to this high series resistance problem are suggested, including smaller

  6. Elongated Tetrakaidecahedron Micromechanics Model for Space Shuttle External Tank Foams

    NASA Technical Reports Server (NTRS)

    Sullivan, Roy M.; Ghosn, Louis J.; Lerch, Bradley A.; Baker, Eric H.

    2009-01-01

    The results of microstructural characterization studies and physical and mechanical testing of BX-265 and NCFI24-124 foams are reported. A micromechanics model developed previously by the authors is reviewed, and the resulting equations for the elastic constants, the relative density, and the strength of the foam in the principal material directions are presented. The micromechanics model is also used to derive equations to predict the effect of vacuum on the tensile strength and the strains induced by exposure to vacuum. Using a combination of microstructural dimensions and physical and mechanical measurements as input, the equations for the elastic constants and the relative density are applied and the remaining microstructural dimensions are predicted. The predicted microstructural dimensions are in close agreement with the average measured values for both BX-265 and NCFI24-124. With the microstructural dimensions, the model predicts the ratio of the strengths in the principal material directions for both foams. The model is also used to predict the Poisson s ratios, the vacuum-induced strains, and the effect of vacuum on the tensile strengths. However, the comparison of these predicted values with the measured values is not as favorable.

  7. Micromechanics-Based Inelastic Finite Element Analysis Accomplished Via Seamless Integration of MAC/GMC

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M.; Trowbridge, D.

    2001-01-01

    A critical issue in the micromechanics-based analysis of composite structures becomes the availability of a computationally efficient homogenization technique: one that is 1) Capable of handling the sophisticated, physically based, viscoelastoplastic constitutive and life models for each constituent; 2) Able to generate accurate displacement and stress fields at both the macro and the micro levels; 3) Compatible with the finite element method. The Generalized Method of Cells (GMC) developed by Paley and Aboudi is one such micromechanical model that has been shown to predict accurately the overall macro behavior of various types of composites given the required constituent properties. Specifically, the method provides "closed-form" expressions for the macroscopic composite response in terms of the properties, size, shape, distribution, and response of the individual constituents or phases that make up the material. Furthermore, expressions relating the internal stress and strain fields in the individual constituents in terms of the macroscopically applied stresses and strains are available through strain or stress concentration matrices. These expressions make possible the investigation of failure processes at the microscopic level at each step of an applied load history.

  8. Micromechanical Study of Metals

    NASA Technical Reports Server (NTRS)

    Velikov, P. A.; Stchapov, N. P.; Lorenz, W. F.

    1945-01-01

    The Institut Scientifique Experimental des Transports at Moscow established toward the end of 1925 had since its inception included in its program the study of the mechanism of plastic deformation and the problems associated with it with reference to the materials of the means of transport. Before the program thus determined upon could be carried out, it was necessary to adopt a method of research, or, more exactly, a system of such methods. Because of the modest equipment of the laboratory of the recently established institute, the choice of any particular method was determined not only by the advantages it offered but also by the resources available. As a result of a series of studies and investigations, a method was determined upon which in this paper will be denoted as the micromechanical method. The underlying basis of this method is already known. As will be seen from the description that follows, the micromechanical method is merely a combination of the micrographic study of plastic deformations with mechanical tests on small specimens. It is a well-known fact that a number of investigators have largely employed and still are employing these two procedures and have thereby obtained good results. The authors of the present paper have found it useful to combine the two methods, by making the two studies simultaneously on the sane specimen.

  9. A micromechanics-based strength prediction methodology for notched metal matrix composites

    NASA Technical Reports Server (NTRS)

    Bigelow, C. A.

    1992-01-01

    An analytical micromechanics based strength prediction methodology was developed to predict failure of notched metal matrix composites. The stress-strain behavior and notched strength of two metal matrix composites, boron/aluminum (B/Al) and silicon-carbide/titanium (SCS-6/Ti-15-3), were predicted. The prediction methodology combines analytical techniques ranging from a three dimensional finite element analysis of a notched specimen to a micromechanical model of a single fiber. In the B/Al laminates, a fiber failure criteria based on the axial and shear stress in the fiber accurately predicted laminate failure for a variety of layups and notch-length to specimen-width ratios with both circular holes and sharp notches when matrix plasticity was included in the analysis. For the SCS-6/Ti-15-3 laminates, a fiber failure based on the axial stress in the fiber correlated well with experimental results for static and post fatigue residual strengths when fiber matrix debonding and matrix cracking were included in the analysis. The micromechanics based strength prediction methodology offers a direct approach to strength prediction by modeling behavior and damage on a constituent level, thus, explicitly including matrix nonlinearity, fiber matrix debonding, and matrix cracking.

  10. A micromechanics-based strength prediction methodology for notched metal-matrix composites

    NASA Technical Reports Server (NTRS)

    Bigelow, C. A.

    1993-01-01

    An analytical micromechanics-based strength prediction methodology was developed to predict failure of notched metal matrix composites. The stress-strain behavior and notched strength of two metal matrix composites, boron/aluminum (B/Al) and silicon-carbide/titanium (SCS-6/Ti-15-3), were predicted. The prediction methodology combines analytical techniques ranging from a three-dimensional finite element analysis of a notched specimen to a micromechanical model of a single fiber. In the B/Al laminates, a fiber failure criteria based on the axial and shear stress in the fiber accurately predicted laminate failure for a variety of layups and notch-length to specimen-width ratios with both circular holes and sharp notches when matrix plasticity was included in the analysis. For the SCS-6/Ti-15-3 laminates, a fiber failure based on the axial stress in the fiber correlated well with experimental results for static and postfatigue residual strengths when fiber matrix debonding and matrix cracking were included in the analysis. The micromechanics-based strength prediction methodology offers a direct approach to strength prediction by modeling behavior and damage on a constituent level, thus, explicitly including matrix nonlinearity, fiber matrix debonding, and matrix cracking.

  11. Micromechanics Based Failure Analysis of Heterogeneous Materials

    NASA Astrophysics Data System (ADS)

    Sertse, Hamsasew M.

    In recent decades, heterogeneous materials are extensively used in various industries such as aerospace, defense, automotive and others due to their desirable specific properties and excellent capability of accumulating damage. Despite their wide use, there are numerous challenges associated with the application of these materials. One of the main challenges is lack of accurate tools to predict the initiation, progression and final failure of these materials under various thermomechanical loading conditions. Although failure is usually treated at the macro and meso-scale level, the initiation and growth of failure is a complex phenomena across multiple scales. The objective of this work is to enable the mechanics of structure genome (MSG) and its companion code SwiftComp to analyze the initial failure (also called static failure), progressive failure, and fatigue failure of heterogeneous materials using micromechanics approach. The initial failure is evaluated at each numerical integration point using pointwise and nonlocal approach for each constituent of the heterogeneous materials. The effects of imperfect interfaces among constituents of heterogeneous materials are also investigated using a linear traction-displacement model. Moreover, the progressive and fatigue damage analyses are conducted using continuum damage mechanics (CDM) approach. The various failure criteria are also applied at a material point to analyze progressive damage in each constituent. The constitutive equation of a damaged material is formulated based on a consistent irreversible thermodynamics approach. The overall tangent modulus of uncoupled elastoplastic damage for negligible back stress effect is derived. The initiation of plasticity and damage in each constituent is evaluated at each numerical integration point using a nonlocal approach. The accumulated plastic strain and anisotropic damage evolution variables are iteratively solved using an incremental algorithm. The damage analyses

  12. Analysis of metal-matrix composite structures. I - Micromechanics constitutive theory. II - Laminate analyses

    NASA Technical Reports Server (NTRS)

    Arenburg, R. T.; Reddy, J. N.

    1991-01-01

    The micromechanical constitutive theory is used to examine the nonlinear behavior of continuous-fiber-reinforced metal-matrix composite structures. Effective lamina constitutive relations based on the Abouli micromechanics theory are presented. The inelastic matrix behavior is modeled by the unified viscoplasticity theory of Bodner and Partom. The laminate constitutive relations are incorporated into a first-order deformation plate theory. The resulting boundary value problem is solved by utilizing the finite element method. Attention is also given to computational aspects of the numerical solution, including the temporal integration of the inelastic strains and the spatial integration of bending moments. Numerical results the nonlinear response of metal matrix composites subjected to extensional and bending loads are presented.

  13. Wireless Actuation of Micromechanical Resonators

    NASA Astrophysics Data System (ADS)

    Mateen, Farrukh; Maedler, Carsten; Erramilli, Shyamsunder; Mohanty, Pritiraj

    Wireless transfer of power is of fundamental and technical interest with applications ranging from remote operation of electronics, biomedical implants, and device actuation where hard-wired power sources are neither desirable nor practical. In particular, biomedical implants in the body or the brain need small footprint power receiving elements for wireless charging, which can be accomplished by micromechanical resonators. In contrast for fundamental experiments, ultra low-power wireless operation of micromechanical resonators in the microwave range makes low-temperature studies of mechanical systems in the quantum regime possible, where heat carried by the electrical wires in standard actuation techniques is detrimental to maintaining the resonator in a quantum state. We demonstrate successful actuation of micron-sized silicon-based piezoelectric resonators with resonance frequencies from 36 MHz to 120 MHz, at power levels of nanowatts and distances of about 3 feet, including polarization, distance and power dependence measurements. Our demonstration of wireless actuation of micromechanical resonators via electric-field coupling down to nanowatt levels enables a multitude of applications based on micromechanical resonators, inaccessible until now.

  14. Microdamage healing in asphalt and asphalt concrete, volume 3 : a micromechanics fracture and healing model for asphalt concrete.

    DOT National Transportation Integrated Search

    2001-06-01

    Volume 3 documents the development of a micromechanics fracture and healing model for asphalt : concrete. This model can be used to calculate the density and growth of microcracks during repeated direct : tensile controlled-strain loading. The model ...

  15. Micromechanical Oscillating Mass Balance

    NASA Technical Reports Server (NTRS)

    Altemir, David A. (Inventor)

    1997-01-01

    A micromechanical oscillating mass balance and method adapted for measuring minute quantities of material deposited at a selected location, such as during a vapor deposition process. The invention comprises a vibratory composite beam which includes a dielectric layer sandwiched between two conductive layers. The beam is positioned in a magnetic field. An alternating current passes through one conductive layers, the beam oscillates, inducing an output current in the second conductive layer, which is analyzed to determine the resonant frequency of the beam. As material is deposited on the beam, the mass of the beam increases and the resonant frequency of the beam shifts, and the mass added is determined.

  16. Microdamage healing in asphalt and asphalt concrete, Volume 3 : a micromechanics fracture and healing model for asphalt concrete

    DOT National Transportation Integrated Search

    2001-06-01

    Volume 3 documents the development of a micromechanics fracture and healing model for asphalt concrete. This model can be used to calculate the density and growth of microcracks during repeated direct tensile controlled-strain loading. The model is b...

  17. Method for preventing micromechanical structures from adhering to another object

    DOEpatents

    Smith, James H.; Ricco, Antonio J.

    1998-01-01

    A method for preventing micromechanical structures from adhering to another object includes the step of immersing a micromechanical structure and its associated substrate in a chemical species that does not stick to itself. The method can be employed during the manufacture of micromechanical structures to prevent micromechanical parts from sticking or adhering to one another and their associated substrate surface.

  18. Method for preventing micromechanical structures from adhering to another object

    DOEpatents

    Smith, J.H.; Ricco, A.J.

    1998-06-16

    A method for preventing micromechanical structures from adhering to another object includes the step of immersing a micromechanical structure and its associated substrate in a chemical species that does not stick to itself. The method can be employed during the manufacture of micromechanical structures to prevent micromechanical parts from sticking or adhering to one another and their associated substrate surface. 3 figs.

  19. Metal matrix composite micromechanics: In-situ behavior influence on composite properties

    NASA Technical Reports Server (NTRS)

    Murthy, P. L. N.; Hopkins, D. A.; Chamis, C. C.

    1989-01-01

    Recent efforts in computational mechanics methods for simulating the nonlinear behavior of metal matrix composites have culminated in the implementation of the Metal Matrix Composite Analyzer (METCAN) computer code. In METCAN material nonlinearity is treated at the constituent (fiber, matrix, and interphase) level where the current material model describes a time-temperature-stress dependency of the constituent properties in a material behavior space. The composite properties are synthesized from the constituent instantaneous properties by virtue of composite micromechanics and macromechanics models. The behavior of metal matrix composites depends on fabrication process variables, in situ fiber and matrix properties, bonding between the fiber and matrix, and/or the properties of an interphase between the fiber and matrix. Specifically, the influence of in situ matrix strength and the interphase degradation on the unidirectional composite stress-strain behavior is examined. These types of studies provide insight into micromechanical behavior that may be helpful in resolving discrepancies between experimentally observed composite behavior and predicted response.

  20. The Relationship Between Constraint and Ductile Fracture Initiation as Defined by Micromechanical Analyses

    NASA Technical Reports Server (NTRS)

    Panontin, Tina L.; Sheppard, Sheri D.

    1994-01-01

    initiation loads and to calculate the associated (critical) global fracture parameters. The loads are verified experimentally, and microscopy is used to measure pre-crack length, crack tip opening displacement (CTOD), and the amount of stable crack growth. Results for A516-70 steel indicate that the constraint-modified, critical strain criterion with a critical length approximately equal to the grain size (0.0025 inch) provides accurate predictions of crack initiation. The critical void growth criterion is shown to considerably underpredict crack initiation loads with the same critical length. The relationship between the critical value of the J-integral for ductile crack initiation and crack depth for SECT and SECB specimens has been determined using the constraint-modified, critical strain criterion, demonstrating that this micromechanical model can be used to correct in-plane constraint effects due to crack depth and bending vs. tension loading. Finally, the relationship developed for the SECT specimens is used to predict the behavior of circumferentially cracked pipe specimens.

  1. Apparatus for raising or tilting a micromechanical structure

    DOEpatents

    Allen, James J [Albuquerque, NM

    2008-09-09

    An active hinge apparatus is disclosed which can be used to raise a micromechanical structure (e.g. a plate or micromirror) on a substrate. The active hinge apparatus utilizes one or more of teeth protruding outward from an axle which also supports the micromechanical structure on one end thereof. A rack is used to engage the teeth and rotate the axle to raise the micromechanical structure and tilt the structure at an angle to the substrate. Motion of the rack is provided by an actuator which can be a mechanically-powered actuator, or alternately an electrostatic comb actuator or a thermal actuator. A latch can be optionally provided in the active hinge apparatus to lock the micromechanical structure in an "erected" position.

  2. Micromechanics-Based Progressive Failure Analysis of Composite Laminates Using Different Constituent Failure Theories

    NASA Technical Reports Server (NTRS)

    Moncada, Albert M.; Chattopadhyay, Aditi; Bednarcyk, Brett A.; Arnold, Steven M.

    2008-01-01

    Predicting failure in a composite can be done with ply level mechanisms and/or micro level mechanisms. This paper uses the Generalized Method of Cells and High-Fidelity Generalized Method of Cells micromechanics theories, coupled with classical lamination theory, as implemented within NASA's Micromechanics Analysis Code with Generalized Method of Cells. The code is able to implement different failure theories on the level of both the fiber and the matrix constituents within a laminate. A comparison is made among maximum stress, maximum strain, Tsai-Hill, and Tsai-Wu failure theories. To verify the failure theories the Worldwide Failure Exercise (WWFE) experiments have been used. The WWFE is a comprehensive study that covers a wide range of polymer matrix composite laminates. The numerical results indicate good correlation with the experimental results for most of the composite layups, but also point to the need for more accurate resin damage progression models.

  3. Micromechanisms of thermomechanical fatigue: A comparison with isothermal fatigue

    NASA Technical Reports Server (NTRS)

    Bill, R. C.

    1986-01-01

    Thermomechanical Fatigue (TMF) experiments were conducted on Mar-M 200, B-1900, and PWA-1480 (single crystals) over temperature ranges representative of gas turbine airfoil environments. The results were examined from both a phenomenological basis and a micromechanical basis. Depending on constituents present in the superalloy system, certain micromechanisms dominated the crack initiation process and significantly influenced the TMF lives as well as sensitivity of the material to the type TMF cycle imposed. For instance, high temperature cracking around grain boundary carbides in Mar-M 200 resulted in short in-phase TMF lives compared to either out-of-phase or isothermal lives. In single crystal PWA-1480, the type of coating applied was seen to be the controlling factor in determining sensitivity to the type of TMF cycle imposed. Micromechanisms of deformation were observed over the temperature range of interest to the TMF cycles, and provided some insight as to the differences between TMF damage mechanisms and isothermal damage mechanisms. Finally, the applicability of various life prediction models to TMF results was reviewed. Current life prediction models based on isothermal data must be modified before being generally applied to TMF.

  4. Micromechanical Modeling Study of Mechanical Inhibition of Enzymatic Degradation of Collagen Tissues

    PubMed Central

    Tonge, Theresa K.; Ruberti, Jeffrey W.; Nguyen, Thao D.

    2015-01-01

    This study investigates how the collagen fiber structure influences the enzymatic degradation of collagen tissues. We developed a micromechanical model of a fibrous collagen tissue undergoing enzymatic degradation based on two central hypotheses. The collagen fibers are crimped in the undeformed configuration. Enzymatic degradation is an energy activated process and the activation energy is increased by the axial strain energy density of the fiber. We determined the intrinsic degradation rate and characteristic energy for mechanical inhibition from fibril-level degradation experiments and applied the parameters to predict the effect of the crimped fiber structure and fiber properties on the degradation of bovine cornea and pericardium tissues under controlled tension. We then applied the model to examine the effect of the tissue stress state on the rate of tissue degradation and the anisotropic fiber structures that developed from enzymatic degradation. PMID:26682825

  5. Large strain cruciform biaxial testing for FLC detection

    NASA Astrophysics Data System (ADS)

    Güler, Baran; Efe, Mert

    2017-10-01

    Selection of proper test method, specimen design and analysis method are key issues for studying formability of sheet metals and detection of their forming limit curves (FLC). Materials with complex microstructures may need an additional micro-mechanical investigation and accurate modelling. Cruciform biaxial test stands as an alternative to standard tests as it achieves frictionless, in-plane, multi-axial stress states with a single sample geometry. In this study, we introduce a small-scale (less than 10 cm) cruciform sample allowing micro-mechanical investigation at stress states ranging from plane strain to equibiaxial. With successful specimen design and surface finish, large forming limit strains are obtained at the test region of the sample. The large forming limit strains obtained by experiments are compared to the values obtained from Marciniak-Kuczynski (M-K) local necking model and Cockroft-Latham damage model. This comparison shows that the experimental limiting strains are beyond the theoretical values, approaching to the fracture strain of the two test materials: Al-6061-T6 aluminum alloy and DC-04 high formability steel.

  6. Development of a micro-mechanical valve in a novel glaucoma implant.

    PubMed

    Siewert, Stefan; Schultze, Christine; Schmidt, Wolfram; Hinze, Ulf; Chichkov, Boris; Wree, Andreas; Sternberg, Katrin; Allemann, Reto; Guthoff, Rudolf; Schmitz, Klaus-Peter

    2012-10-01

    This paper describes methods for design, manufacturing and characterization of a micro-mechanical valve for a novel glaucoma implant. The implant is designed to drain aqueous humour from the anterior chamber of the eye into the suprachoroidal space in case of an elevated intraocular pressure (IOP). In contrast to any existing glaucoma drainage device (GDD), the valve mechanism is located in the anterior chamber and there, surrounded by aqueous humour, immune to fibrosis induced failure. For the prevention of hypotony the micro-mechanical valve is designed to open if the physiological pressure difference between the anterior chamber and the suprachoroidal space in the range of 0.8 mmHg to 3.7 mmHg is exceeded. In particular the work includes: (i) manufacturing and morphological characterization of polymer tubing, (ii) mechanical material testing as basis for (iii) the design of micro-mechanical valves using finite element analysis (FEA), (iv) manufacturing of microstent prototypes including micro-mechanical valves by femtosecond laser micromachining and (v) the experimental fluid-mechanical characterization of the manufactured microstent prototypes with regard to valve opening pressure. The considered materials polyurethane (PUR) and silicone (SIL) exhibit low elastic modulus and high extensibility. The unique valve design enables a low opening pressure of micro-mechanical valves. An ideal valve design for PUR and SIL with an experimentally determined opening pressure of 2 mmHg and 3.7 mmHg is identified. The presented valve approach is suitable for the inhibition of hypotony as a major limitation of today's GDD and will potentially improve the minimally invasive treatment of glaucoma.

  7. Micromechanisms with floating pivot

    DOEpatents

    Garcia, Ernest J.

    2001-03-06

    A new class of tilting micromechanical mechanisms have been developed. These new mechanisms use floating pivot structures to relieve some of the problems encountered in the use of solid flexible pivots.

  8. Micromechanics Analysis Code With Generalized Method of Cells (MAC/GMC): User Guide. Version 3

    NASA Technical Reports Server (NTRS)

    Arnold, S. M.; Bednarcyk, B. A.; Wilt, T. E.; Trowbridge, D.

    1999-01-01

    The ability to accurately predict the thermomechanical deformation response of advanced composite materials continues to play an important role in the development of these strategic materials. Analytical models that predict the effective behavior of composites are used not only by engineers performing structural analysis of large-scale composite components but also by material scientists in developing new material systems. For an analytical model to fulfill these two distinct functions it must be based on a micromechanics approach which utilizes physically based deformation and life constitutive models and allows one to generate the average (macro) response of a composite material given the properties of the individual constituents and their geometric arrangement. Here the user guide for the recently developed, computationally efficient and comprehensive micromechanics analysis code, MAC, who's predictive capability rests entirely upon the fully analytical generalized method of cells, GMC, micromechanics model is described. MAC/ GMC is a versatile form of research software that "drives" the double or triply periodic micromechanics constitutive models based upon GMC. MAC/GMC enhances the basic capabilities of GMC by providing a modular framework wherein 1) various thermal, mechanical (stress or strain control) and thermomechanical load histories can be imposed, 2) different integration algorithms may be selected, 3) a variety of material constitutive models (both deformation and life) may be utilized and/or implemented, and 4) a variety of fiber architectures (both unidirectional, laminate and woven) may be easily accessed through their corresponding representative volume elements contained within the supplied library of RVEs or input directly by the user, and 5) graphical post processing of the macro and/or micro field quantities is made available.

  9. Micromechanics in the Gerbil Hemicochlea

    NASA Astrophysics Data System (ADS)

    Richter, C.-P.; Dallos, P.

    2003-02-01

    Micromechanical events in the cochlea represent the combined motions of all elements that convey vibrations from the basilar membrane (BM) to the stereocilia bundles of the inner hair cells, the sensory receptors of the mammalian cochlea. Because of the difficulty of visualizing the organ of Corti (OC), experimental data on micromechanics are extremely limited. Available results represent motions viewed either from one focal plane or from the surface of a cochlear preparation. The present experiments examine cochlear micromechanics at audio frequencies by using the hemicochlea that permits the viewing of all structures in a cochlear cross-section. Stroboscopic illumination and video-flow techniques have been used to quantify the motion of selected elements. The movements at different locations revealed a tuned response across frequencies with the best frequency increasing from more basal to more apical locations. Furthermore, the vibrations showed rotational components, such as rotations around a pivot point: the inner pillar foot. Inner and outer pillar cells, inner and outer hair cells, Deiters' cells and parts of the BM move together and form a so-called "rotating wedge". The movements of Hensen's cells represent a mode of vibration different from that of the rest of the OC.

  10. Micromechanics for particulate reinforced composites

    NASA Technical Reports Server (NTRS)

    Murthy, Pappu L. N.; Goldberg, Robert K.; Mital, Subodh K.

    1996-01-01

    A set of micromechanics equations for the analysis of particulate reinforced composites is developed using the mechanics of materials approach. Simplified equations are used to compute homogenized or equivalent thermal and mechanical properties of particulate reinforced composites in terms of the properties of the constituent materials. The microstress equations are also presented here to decompose the applied stresses on the overall composite to the microstresses in the constituent materials. The properties of a 'generic' particulate composite as well as those of a particle reinforced metal matrix composite are predicted and compared with other theories as well as some experimental data. The micromechanics predictions are in excellent agreement with the measured values.

  11. The Role of Viscoelasticity on the Fatigue of Angle-ply Polymer Matrix Composites at High and Room Temperatures- A Micromechanical Approach

    NASA Astrophysics Data System (ADS)

    Sayyidmousavi, Alireza; Bougherara, Habiba; Fawaz, Zouheir

    2015-06-01

    A micromechanical approach is adopted to study the role of viscoelasticity on the fatigue behavior of polymer matrix composites. In particular, the study examines the interaction of fatigue and creep in angle ply carbon/epoxy at 25 and 114 °C. The matrix phase is modeled as a vicoelastic material using Schapery's single integral constitutive equation. Taking viscoelsticity into account allows the study of creep strain evolution during the fatigue loading. The fatigue failure criterion is expressed in terms of the fatigue failure functions of the constituent materials. The micromechanical model is also used to calculate these fatigue failure functions from the knowledge of the S-N diagrams of the composite material in longitudinal, transverse and shear loadings thus eliminating the need for any further experimentation. Unlike the previous works, the present study can distinguish between the strain evolution due to fatigue and creep. The results can clearly show the contribution made by the effect of viscoelasticity to the total strain evolution during the fatigue life of the specimen. Although the effect of viscoelsticity is found to increase with temperature, its contribution to strain development during fatigue is compromised by the shorter life of the specimen when compared to lower temperatures.

  12. Micromechanics and constitutive modeling of connective soft tissues.

    PubMed

    Fallah, A; Ahmadian, M T; Firozbakhsh, K; Aghdam, M M

    2016-07-01

    In this paper, a micromechanical model for connective soft tissues based on the available histological evidences is developed. The proposed model constituents i.e. collagen fibers and ground matrix are considered as hyperelastic materials. The matrix material is assumed to be isotropic Neo-Hookean while the collagen fibers are considered to be transversely isotropic hyperelastic. In order to take into account the effects of tissue structure in lower scales on the macroscopic behavior of tissue, a strain energy density function (SEDF) is developed for collagen fibers based on tissue hierarchical structure. Macroscopic response and properties of tissue are obtained using the numerical homogenization method with the help of ABAQUS software. The periodic boundary conditions and the proposed constitutive models are implemented into ABAQUS using the DISP and the UMAT subroutines, respectively. The existence of the solution and stable material behavior of proposed constitutive model for collagen fibers are investigated based on the poly-convexity condition. Results of the presented micromechanics model for connective tissues are compared and validated with available experimental data. Effects of geometrical and material parameters variation at microscale on macroscopic mechanical behavior of tissues are investigated. The results show that decrease in collagen content of the connective tissues like the tendon due to diseases leads 20% more stretch than healthy tissue under the same load which can results in connective tissue malfunction and hypermobility in joints. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Using Micromechanical Resonators to Measure Rheological Properties and Alcohol Content of Model Solutions and Commercial Beverages

    PubMed Central

    Paxman, Rosemary; Stinson, Jake; Dejardin, Anna; McKendry, Rachel A.; Hoogenboom, Bart W.

    2012-01-01

    Micromechanic resonators provide a small-volume and potentially high-throughput method to determine rheological properties of fluids. Here we explore the accuracy in measuring mass density and viscosity of ethanol-water and glycerol-water model solutions, using a simple and easily implemented model to deduce the hydrodynamic effects on resonating cantilevers of various length-to-width aspect ratios. We next show that these measurements can be extended to determine the alcohol percentage of both model solutions and commercial beverages such as beer, wine and liquor. This demonstrates how micromechanical resonators can be used for quality control of every-day drinks. PMID:22778654

  14. Micromechanical thermogravimetry

    NASA Astrophysics Data System (ADS)

    Berger, R.; Lang, H. P.; Gerber, Ch.; Gimzewski, J. K.; Fabian, J. H.; Scandella, L.; Meyer, E.; Güntherodt, H.-J.

    1998-09-01

    We demonstrate a new method for thermal analysis of nanogram quantities of material using a micromechanical thermogravimetric technique. The cantilever-type device uses an integrated piezoresistor to sense bending and simultaneously to ramp the temperature and control temperature cycles. It has a mass resolution in the picogram range. A quantitative analysis of the dehydration of copper-sulfate-pentahydrate (CuSO 4·5H 2O) is presented. The technique outperforms current thermogravimetric approaches by five orders of magnitude.

  15. Probabilistic composite micromechanics

    NASA Technical Reports Server (NTRS)

    Stock, T. A.; Bellini, P. X.; Murthy, P. L. N.; Chamis, C. C.

    1988-01-01

    Probabilistic composite micromechanics methods are developed that simulate expected uncertainties in unidirectional fiber composite properties. These methods are in the form of computational procedures using Monte Carlo simulation. A graphite/epoxy unidirectional composite (ply) is studied to demonstrate fiber composite material properties at the micro level. Regression results are presented to show the relative correlation between predicted and response variables in the study.

  16. Micromechanics and constitutive models for soft active materials with phase evolution

    NASA Astrophysics Data System (ADS)

    Wang, Binglian

    Soft active materials, such as shape memory polymers, liquid crystal elastomers, soft tissues, gels etc., are materials that can deform largely in response to external stimuli. Micromechanics analysis of heterogeneous materials based on finite element method is a typically numerical way to study the thermal-mechanical behaviors of soft active materials with phase evolution. While the constitutive models that can precisely describe the stress and strain fields of materials in the process of phase evolution can not be found in the databases of some commercial finite element analysis (FEA) tools such as ANSYS or Abaqus, even the specific constitutive behavior for each individual phase either the new formed one or the original one has already been well-known. So developing a computationally efficient and general three dimensional (3D) thermal-mechanical constitutive model for soft active materials with phase evolution which can be implemented into FEA is eagerly demanded. This paper first solved this problem theoretically by recording the deformation history of each individual phase in the phase evolution process, and adopted the idea of effectiveness by regarding all the new formed phase as an effective phase with an effective deformation to make this theory computationally efficient. A user material subroutine (UMAT) code based on this theoretical constitutive model has been finished in this work which can be added into the material database in Abaqus or ANSYS and can be easily used for most soft active materials with phase evolution. Model validation also has been done through comparison between micromechanical FEA and experiments on a particular composite material, shape memory elastomeric composite (SMEC) which consisted of an elastomeric matrix and the crystallizable fibre. Results show that the micromechanics and the constitutive models developed in this paper for soft active materials with phase evolution are completely relied on.

  17. The nano-epsilon dot method for strain rate viscoelastic characterisation of soft biomaterials by spherical nano-indentation.

    PubMed

    Mattei, G; Gruca, G; Rijnveld, N; Ahluwalia, A

    2015-10-01

    Nano-indentation is widely used for probing the micromechanical properties of materials. Based on the indentation of surfaces using probes with a well-defined geometry, the elastic and viscoelastic constants of materials can be determined by relating indenter geometry and measured load and displacement to parameters which represent stress and deformation. Here we describe a method to derive the viscoelastic properties of soft hydrated materials at the micro-scale using constant strain rates and stress-free initial conditions. Using a new self-consistent definition of indentation stress and strain and corresponding unique depth-independent expression for indentation strain rate, the epsilon dot method, which is suitable for bulk compression testing, is transformed to nano-indentation. We demonstrate how two materials can be tested with a displacement controlled commercial nano-indentor using the nano-espilon dot method (nano-ε̇M) to give values of instantaneous and equilibrium elastic moduli and time constants with high precision. As samples are tested in stress-free initial conditions, the nano-ε̇M could be useful for characterising the micro-mechanical behaviour of soft materials such as hydrogels and biological tissues at cell length scales. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. A micro-mechanical model to determine changes of collagen fibrils under cyclic loading

    NASA Astrophysics Data System (ADS)

    Chen, Michelle L.; Susilo, Monica E.; Ruberti, Jeffrey A.; Nguyen, Thao D.

    Dynamic mechanical loading induces growth and remodeling in biological tissues. It can alter the degradation rate and intrinsic mechanical properties of collagen through cellular activity. Experiments showed that repeated cyclic loading of a dense collagen fibril substrate increased collagen stiffness and strength, lengthened the substrate, but did not significantly change the fibril areal fraction or fibril anisotropy (Susilo, et al. ``Collagen Network Hardening Following Cyclic Tensile Loading'', Interface Focus, submitted). We developed a model for the collagen fibril substrate (Tonge, et al. ``A micromechanical modeling study of the mechanical stabilization of enzymatic degradation of collagen tissues'', Biophys J, in press.) to probe whether changes in the fibril morphology and mechanical properties can explain the tissue-level properties observed during cyclic loading. The fibrils were modeled as a continuous distribution of wavy elastica, based on experimental measurements of fibril density and collagen anisotropy, and can experience damage after a critical stress threshold. Other mechanical properties in the model were fit to the stress response measured before and after the extended cyclic loading to determine changes in the strength and stiffness of collagen fibrils.

  19. Nonlinear Visco-Elastic Response of Composites via Micro-Mechanical Models

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.; Sridharan, Srinivasan

    2005-01-01

    Micro-mechanical models for a study of nonlinear visco-elastic response of composite laminae are developed and their performance compared. A single integral constitutive law proposed by Schapery and subsequently generalized to multi-axial states of stress is utilized in the study for the matrix material. This is used in conjunction with a computationally facile scheme in which hereditary strains are computed using a recursive relation suggested by Henriksen. Composite response is studied using two competing micro-models, viz. a simplified Square Cell Model (SSCM) and a Finite Element based self-consistent Cylindrical Model (FECM). The algorithm is developed assuming that the material response computations are carried out in a module attached to a general purpose finite element program used for composite structural analysis. It is shown that the SSCM as used in investigations of material nonlinearity can involve significant errors in the prediction of transverse Young's modulus and shear modulus. The errors in the elastic strains thus predicted are of the same order of magnitude as the creep strains accruing due to visco-elasticity. The FECM on the other hand does appear to perform better both in the prediction of elastic constants and the study of creep response.

  20. Micromechanical Modeling of Woven Metal Matrix Composites

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Pindera, Marek-Jerzy

    1997-01-01

    This report presents the results of an extensive micromechanical modeling effort for woven metal matrix composites. The model is employed to predict the mechanical response of 8-harness (8H) satin weave carbon/copper (C/Cu) composites. Experimental mechanical results for this novel high thermal conductivity material were recently reported by Bednarcyk et al. along with preliminary model results. The micromechanics model developed herein is based on an embedded approach. A micromechanics model for the local (micro-scale) behavior of the woven composite, the original method of cells (Aboudi), is embedded in a global (macro-scale) micromechanics model (the three-dimensional generalized method of cells (GMC-3D) (Aboudi). This approach allows representation of true repeating unit cells for woven metal matrix composites via GMC-3D, and representation of local effects, such as matrix plasticity, yarn porosity, and imperfect fiber-matrix bonding. In addition, the equations of GMC-3D were reformulated to significantly reduce the number of unknown quantities that characterize the deformation fields at the microlevel in order to make possible the analysis of actual microstructures of woven composites. The resulting micromechanical model (WCGMC) provides an intermediate level of geometric representation, versatility, and computational efficiency with respect to previous analytical and numerical models for woven composites, but surpasses all previous modeling work by allowing the mechanical response of a woven metal matrix composite, with an elastoplastic matrix, to be examined for the first time. WCGMC is employed to examine the effects of composite microstructure, porosity, residual stresses, and imperfect fiber-matrix bonding on the predicted mechanical response of 8H satin C/Cu. The previously reported experimental results are summarized, and the model predictions are compared to monotonic and cyclic tensile and shear test data. By considering appropriate levels of porosity

  1. Micromechanics of plastic deformation and phase transformation in a three-phase TRIP-assisted advanced high strength steel: Experiments and modeling

    NASA Astrophysics Data System (ADS)

    Srivastava, Ankit; Ghassemi-Armaki, Hassan; Sung, Hyokyung; Chen, Peng; Kumar, Sharvan; Bower, Allan F.

    2015-05-01

    The micromechanics of plastic deformation and phase transformation in a three-phase advanced high strength steel are analyzed both experimentally and by microstructure-based simulations. The steel examined is a three-phase (ferrite, martensite and retained austenite) quenched and partitioned sheet steel with a tensile strength of 980 MPa. The macroscopic flow behavior and the volume fraction of martensite resulting from the austenite-martensite transformation during deformation were measured. In addition, micropillar compression specimens were extracted from the individual ferrite grains and the martensite particles, and using a flat-punch nanoindenter, stress-strain curves were obtained. Finite element simulations idealize the microstructure as a composite that contains ferrite, martensite and retained austenite. All three phases are discretely modeled using appropriate crystal plasticity based constitutive relations. Material parameters for ferrite and martensite are determined by fitting numerical predictions to the micropillar data. The constitutive relation for retained austenite takes into account contributions to the strain rate from the austenite-martensite transformation, as well as slip in both the untransformed austenite and product martensite. Parameters for the retained austenite are then determined by fitting the predicted flow stress and transformed austenite volume fraction in a 3D microstructure to experimental measurements. Simulations are used to probe the role of the retained austenite in controlling the strain hardening behavior as well as internal stress and strain distributions in the microstructure.

  2. An affine microsphere approach to modeling strain-induced crystallization in rubbery polymers

    NASA Astrophysics Data System (ADS)

    Nateghi, A.; Dal, H.; Keip, M.-A.; Miehe, C.

    2018-01-01

    Upon stretching a natural rubber sample, polymer chains orient themselves in the direction of the applied load and form crystalline regions. When the sample is retracted, the original amorphous state of the network is restored. Due to crystallization, properties of rubber change considerably. The reinforcing effect of the crystallites stiffens the rubber and increases the crack growth resistance. It is of great importance to understand the mechanism leading to strain-induced crystallization. However, limited theoretical work has been done on the investigation of the associated kinetics. A key characteristic observed in the stress-strain diagram of crystallizing rubber is the hysteresis, which is entirely attributed to strain-induced crystallization. In this work, we propose a micromechanically motivated material model for strain-induced crystallization in rubbers. Our point of departure is constructing a micromechanical model for a single crystallizing polymer chain. Subsequently, a thermodynamically consistent evolution law describing the kinetics of crystallization on the chain level is proposed. This chain model is then incorporated into the affine microsphere model. Finally, the model is numerically implemented and its performance is compared to experimental data.

  3. Method of Manufacturing a Micromechanical Oscillating Mass Balance

    NASA Technical Reports Server (NTRS)

    Altemir, David A. (Inventor)

    1999-01-01

    A micromechanical oscillating mass balance and method adapted for measuring minute quantities of material deposited at a selected location, such as during a vapor deposition process. The invention comprises a vibratory composite beam which includes a dielectric layer sandwiched between two conductive layers.The beam is positioned in a magnetic field. An alternating current passes through one conductive layers, the beam oscillates, inducing an output current in the second conductive layer, which is analyzed to determine the resonant frequency of the beam. As material is deposited on the beam, the mass of the beam increases and the resonant frequency of the beam shifts, and the mass added is determined.

  4. Micromechanics and Piezo Enhancements of HyperSizer

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M.; Bednarcyk, Brett A.; Yarrington, Phillip; Collier, Craig S.

    2006-01-01

    The commercial HyperSizer aerospace-composite-material-structure-sizing software has been enhanced by incorporating capabilities for representing coupled thermal, piezoelectric, and piezomagnetic effects on the levels of plies, laminates, and stiffened panels. This enhancement is based on a formulation similar to that of the pre-existing HyperSizer capability for representing thermal effects. As a result of this enhancement, the electric and/or magnetic response of a material or structure to a mechanical or thermal load, or its mechanical response to an applied electric or magnetic field can be predicted. In another major enhancement, a capability for representing micromechanical effects has been added by establishment of a linkage between HyperSizer and Glenn Research Center s Micromechanics Analysis Code With Generalized Method of Cells (MAC/GMC) computer program, which was described in several prior NASA Tech Briefs articles. The linkage enables Hyper- Sizer to localize to the fiber and matrix level rather than only to the ply level, making it possible to predict local failures and to predict properties of plies from those of the component fiber and matrix materials. Advanced graphical user interfaces and database structures have been developed to support the new HyperSizer micromechanics capabilities.

  5. An Extension of Holographic Moiré to Micromechanics

    NASA Astrophysics Data System (ADS)

    Sciammarella, C. A.; Sciammarella, F. M.

    The electronic Holographic Moiré is an ideal tool for micromechanics studies. It does not require a modification of the surface by the introduction of a reference grating. This is of particular advantage when dealing with materials such as solid propellant grains whose chemical nature and surface finish makes the application of a reference grating very difficult. Traditional electronic Holographic Moiré presents some difficult problems when large magnifications are needed and large rigid body motion takes place. This paper presents developments that solves these problems and extends the application of the technique to micromechanics.

  6. Micromechanical Prediction of the Effective Coefficients of Thermo-Piezoelectric Multiphase Composites

    NASA Technical Reports Server (NTRS)

    Aboudi, Jacob

    1998-01-01

    The micromechanical generalized method of cells model is employed for the prediction of the effective elastic, piezoelectric, dielectric, pyroelectric and thermal-expansion constants of multiphase composites with embedded piezoelectric materials. The predicted effective constants are compared with other micromechanical methods available in the literature and good agreements are obtained.

  7. Fracture Micromechanics of Intermetallic and Ceramic Matrix Continuous Fiber Composites

    DTIC Science & Technology

    1991-05-01

    mechanical properties of titanium matrix composites, but much less information has been published. Only data in the published literature is referenced in...1984, pp. 1931-1940. 18. C.J. Yang, S.M. Jeng and J.-M. Yang " Interfacial properties measurements for SiC fiber-reinforced titanium alloy composites...Analyses of these parameters allowed a determination of interfacial shear strength. Fracture mechanics was used to correlate the micromechanical

  8. On the Finite Element Implementation of the Generalized Method of Cells Micromechanics Constitutive Model

    NASA Technical Reports Server (NTRS)

    Wilt, T. E.

    1995-01-01

    The Generalized Method of Cells (GMC), a micromechanics based constitutive model, is implemented into the finite element code MARC using the user subroutine HYPELA. Comparisons in terms of transverse deformation response, micro stress and strain distributions, and required CPU time are presented for GMC and finite element models of fiber/matrix unit cell. GMC is shown to provide comparable predictions of the composite behavior and requires significantly less CPU time as compared to a finite element analysis of the unit cell. Details as to the organization of the HYPELA code are provided with the actual HYPELA code included in the appendix.

  9. Design and Implementation of a Micromechanical Silicon Resonant Accelerometer

    PubMed Central

    Huang, Libin; Yang, Hui; Gao, Yang; Zhao, Liye; Liang, Jinxing

    2013-01-01

    The micromechanical silicon resonant accelerometer has attracted considerable attention in the research and development of high-precision MEMS accelerometers because of its output of quasi-digital signals, high sensitivity, high resolution, wide dynamic range, anti-interference capacity and good stability. Because of the mismatching thermal expansion coefficients of silicon and glass, the micromechanical silicon resonant accelerometer based on the Silicon on Glass (SOG) technique is deeply affected by the temperature during the fabrication, packaging and use processes. The thermal stress caused by temperature changes directly affects the frequency output of the accelerometer. Based on the working principle of the micromechanical resonant accelerometer, a special accelerometer structure that reduces the temperature influence on the accelerometer is designed. The accelerometer can greatly reduce the thermal stress caused by high temperatures in the process of fabrication and packaging. Currently, the closed-loop drive circuit is devised based on a phase-locked loop. The unloaded resonant frequencies of the prototype of the micromechanical silicon resonant accelerometer are approximately 31.4 kHz and 31.5 kHz. The scale factor is 66.24003 Hz/g. The scale factor stability is 14.886 ppm, the scale factor repeatability is 23 ppm, the bias stability is 23 μg, the bias repeatability is 170 μg, and the bias temperature coefficient is 0.0734 Hz/°C. PMID:24256978

  10. Design and implementation of a micromechanical silicon resonant accelerometer.

    PubMed

    Huang, Libin; Yang, Hui; Gao, Yang; Zhao, Liye; Liang, Jinxing

    2013-11-19

    The micromechanical silicon resonant accelerometer has attracted considerable attention in the research and development of high-precision MEMS accelerometers because of its output of quasi-digital signals, high sensitivity, high resolution, wide dynamic range, anti-interference capacity and good stability. Because of the mismatching thermal expansion coefficients of silicon and glass, the micromechanical silicon resonant accelerometer based on the Silicon on Glass (SOG) technique is deeply affected by the temperature during the fabrication, packaging and use processes. The thermal stress caused by temperature changes directly affects the frequency output of the accelerometer. Based on the working principle of the micromechanical resonant accelerometer, a special accelerometer structure that reduces the temperature influence on the accelerometer is designed. The accelerometer can greatly reduce the thermal stress caused by high temperatures in the process of fabrication and packaging. Currently, the closed-loop drive circuit is devised based on a phase-locked loop. The unloaded resonant frequencies of the prototype of the micromechanical silicon resonant accelerometer are approximately 31.4 kHz and 31.5 kHz. The scale factor is 66.24003 Hz/g. The scale factor stability is 14.886 ppm, the scale factor repeatability is 23 ppm, the bias stability is 23 μg, the bias repeatability is 170 μg, and the bias temperature coefficient is 0.0734 Hz/°C.

  11. Micromechanics of ice friction

    NASA Astrophysics Data System (ADS)

    Sammonds, P. R.; Bailey, E.; Lishman, B.; Scourfield, S.

    2015-12-01

    Frictional mechanics are controlled by the ice micro-structure - surface asperities and flaws - but also the ice fabric and permeability network structure of the contacting blocks. Ice properties are dependent upon the temperature of the bulk ice, on the normal stress and on the sliding velocity and acceleration. This means the shear stress required for sliding is likewise dependent on sliding velocity, acceleration, and temperature. We aim to describe the micro-physics of the contacting surface. We review micro-mechanical models of friction: the elastic and ductile deformation of asperities under normal loads and their shear failure by ductile flow, brittle fracture, or melting and hydrodynamic lubrication. Combinations of these give a total of six rheological models of friction. We present experimental results in ice mechanics and physics from laboratory experiments to understand the mechanical models. We then examine the scaling relations of the slip of ice, to examine how the micro-mechanics of ice friction can be captured simple reduced-parameter models, describing the mechanical state and slip rate of the floes. We aim to capture key elements that they may be incorporated into mid and ocean-basin scale modelling.

  12. Strain Gradient Solution for the Eshelby-Type Polyhedral Inclusion Problem

    DTIC Science & Technology

    2012-01-01

    2011 Available online 6 November 2011 Keywords: Eshelby tensor Polyhedral inclusion Size effect Eigenstrain Strain gradient a b s t r a c t The Eshelby...material containing an ellipsoidal inclusion prescribed with a uniform eigenstrain is a milestone in micromechanics. The solution for the dynamic Eshelby...strain to the prescribed uniform eigenstrain , is constant inside the inclusion. However, this property is true only for ellipsoidal inclusions (and when

  13. Comprehensive Micromechanics-Analysis Code - Version 4.0

    NASA Technical Reports Server (NTRS)

    Arnold, S. M.; Bednarcyk, B. A.

    2005-01-01

    Version 4.0 of the Micromechanics Analysis Code With Generalized Method of Cells (MAC/GMC) has been developed as an improved means of computational simulation of advanced composite materials. The previous version of MAC/GMC was described in "Comprehensive Micromechanics-Analysis Code" (LEW-16870), NASA Tech Briefs, Vol. 24, No. 6 (June 2000), page 38. To recapitulate: MAC/GMC is a computer program that predicts the elastic and inelastic thermomechanical responses of continuous and discontinuous composite materials with arbitrary internal microstructures and reinforcement shapes. The predictive capability of MAC/GMC rests on a model known as the generalized method of cells (GMC) - a continuum-based model of micromechanics that provides closed-form expressions for the macroscopic response of a composite material in terms of the properties, sizes, shapes, and responses of the individual constituents or phases that make up the material. Enhancements in version 4.0 include a capability for modeling thermomechanically and electromagnetically coupled ("smart") materials; a more-accurate (high-fidelity) version of the GMC; a capability to simulate discontinuous plies within a laminate; additional constitutive models of materials; expanded yield-surface-analysis capabilities; and expanded failure-analysis and life-prediction capabilities on both the microscopic and macroscopic scales.

  14. A Micromechanics-Based Elastoplastic Damage Model for Rocks with a Brittle-Ductile Transition in Mechanical Response

    NASA Astrophysics Data System (ADS)

    Hu, Kun; Zhu, Qi-zhi; Chen, Liang; Shao, Jian-fu; Liu, Jian

    2018-06-01

    As confining pressure increases, crystalline rocks of moderate porosity usually undergo a transition in failure mode from localized brittle fracture to diffused damage and ductile failure. This transition has been widely reported experimentally for several decades; however, satisfactory modeling is still lacking. The present paper aims at modeling the brittle-ductile transition process of rocks under conventional triaxial compression. Based on quantitative analyses of experimental results, it is found that there is a quite satisfactory linearity between the axial inelastic strain at failure and the confining pressure prescribed. A micromechanics-based frictional damage model is then formulated using an associated plastic flow rule and a strain energy release rate-based damage criterion. The analytical solution to the strong plasticity-damage coupling problem is provided and applied to simulate the nonlinear mechanical behaviors of Tennessee marble, Indiana limestone and Jinping marble, each presenting a brittle-ductile transition in stress-strain curves.

  15. A Micromechanical RF Channelizer

    NASA Astrophysics Data System (ADS)

    Akgul, Mehmet

    The power consumption of a radio generally goes as the number and strength of the RF signals it must process. In particular, a radio receiver would consume much less power if the signal presented to its electronics contained only the desired signal in a tiny percent bandwidth frequency channel, rather than the typical mix of signals containing unwanted energy outside the desired channel. Unfortunately, a lack of filters capable of selecting single channel bandwidths at RF forces the front-ends of contemporary receivers to accept unwanted signals, and thus, to operate with sub-optimal efficiency. This dissertation focuses on the degree to which capacitive-gap transduced micromechanical resonators can achieve the aforementioned RF channel-selecting filters. It aims to first show theoretically that with appropriate scaling capacitive-gap transducers are strong enough to meet the needed coupling requirements; and second, to fully detail an architecture and design procedure needed to realize said filters. Finally, this dissertation provides an actual experimentally demonstrated RF channel-select filter designed using the developed procedures and confirming theoretical predictions. Specifically, this dissertation introduces four methods that make possible the design and fabrication of RF channel-select filters. The first of these introduces a small-signal equivalent circuit for parallel-plate capacitive-gap transduced micromechanical resonators that employs negative capacitance to model the dependence of resonance frequency on electrical stiffness in a way that facilitates the analysis of micromechanical circuits loaded with arbitrary electrical impedances. The new circuit model not only correctly predicts the dependence of electrical stiffness on the impedances loading the input and output electrodes of parallel-plate capacitive-gap transduced micromechanical device, but does so in a visually intuitive way that identifies current drive as most appropriate for

  16. Micro-mechanics of ionic electroactive polymer actuators

    NASA Astrophysics Data System (ADS)

    Punning, Andres; Põldsalu, Inga; Kaasik, Friedrich; Vunder, Veiko; Aabloo, Alvo

    2015-04-01

    Commonly, modeling of the bending behavior of the ionic electroactive polymer (IEAP) actuators is based on the classical mechanics of cantilever beam. It is acknowledged, that the actuation of the ionic electroactive polymer (IEAP) actuators is symmetric about the centroid - the convex side of the actuator is expanding and the concave side is contracting for exactly the same amount, while the thickness of the actuator remains invariant. Actuating the IEAP actuators and sensors under scanning electron microscope (SEM), in situ, reveals that for some types of them this approach is incorrect. Comparison of the SEM micrographs using the Digital Image Correction (DIC) method results with the precise strain distribution of the IEAP actuators in two directions: in the axial direction, and in the direction of thickness. This information, in turn, points to the physical processes taking place within the electrodes as well as membrane of the trilayer laminate of sub-millimeter thickness. Comparison of the EAP materials, engaged as an actuator as well as a sensor, reveals considerable differences between the micro-mechanics of the two modes.

  17. Micromechanical modeling of rate-dependent behavior of Connective tissues.

    PubMed

    Fallah, A; Ahmadian, M T; Firozbakhsh, K; Aghdam, M M

    2017-03-07

    In this paper, a constitutive and micromechanical model for prediction of rate-dependent behavior of connective tissues (CTs) is presented. Connective tissues are considered as nonlinear viscoelastic material. The rate-dependent behavior of CTs is incorporated into model using the well-known quasi-linear viscoelasticity (QLV) theory. A planar wavy representative volume element (RVE) is considered based on the tissue microstructure histological evidences. The presented model parameters are identified based on the available experiments in the literature. The presented constitutive model introduced to ABAQUS by means of UMAT subroutine. Results show that, monotonic uniaxial test predictions of the presented model at different strain rates for rat tail tendon (RTT) and human patellar tendon (HPT) are in good agreement with experimental data. Results of incremental stress-relaxation test are also presented to investigate both instantaneous and viscoelastic behavior of connective tissues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Insights from the Lattice-Strain Evolution on Deformation Mechanisms in Metallic-Glass-Matrix Composites

    DOE PAGES

    Jia, Haoling; Zheng, Lili; Li, Weidong; ...

    2015-02-18

    In this paper, in situ high-energy synchrotron X-ray diffraction experiments and micromechanics-based finite element simulations have been conducted to examine the lattice-strain evolution in metallic-glass-matrix composites (MGMCs) with dendritic crystalline phases dispersed in the metallic-glass matrix. Significant plastic deformation can be observed prior to failure from the macroscopic stress–strain curves in these MGMCs. The entire lattice-strain evolution curves can be divided into elastic–elastic (denoting deformation behavior of matrix and inclusion, respectively), elastic–plastic, and plastic–plastic stages. Characteristics of these three stages are governed by the constitutive laws of the two phases (modeled by free-volume theory and crystal plasticity) and geometric informationmore » (crystalline phase morphology and distribution). The load-partitioning mechanisms have been revealed among various crystalline orientations and between the two phases, as determined by slip strain fields in crystalline phase and by strain localizations in matrix. Finally, implications on ductility enhancement of MGMCs are also discussed.« less

  19. Phenomenological Studies in Micromechanics

    DTIC Science & Technology

    1988-09-30

    DTIO OELECTE NOV 0 9 1 i FINAL REPORT OFFICEF NAVAL RSEARCH Contract No. N00014-86-K-0255 PHENOMENOLOGICAL STUDIES IN MICROMECHANICS 0. Post, and R...9 Improvement of Experimental Techniques.................. 10 *Summary of Research Progress ........................... 11 LIST OF...15 Q 9%. INI C RA&I P ’-zC TAB3 -:o * A,1 EXECUTIVE SIJOARY State of the art experimental techniques have been applied to

  20. Thin tube experiments and numerical simulations of micromechanical multivariant constitutive modeling in superelastic Nitinol

    NASA Astrophysics Data System (ADS)

    Jung, Youngjean

    This dissertation concerns the constitutive description of superelasticity in NiTi alloys and the finite element analysis of a corresponding material model at large strains. Constitutive laws for shape-memory alloys subject to biaxial loading, which are based on direct experimental observations, are generally not available. A reliable constitutive model for shape-memory alloys is important for various applications because Nitinol is now widely used in biotechnology devices such as endovascular stents, vena cava filters, dental files, archwires and guidewires, etc. As part of a broader project, tension-torsion tests are conducted on thin-walled tubes (thickness/radius ratio of 1:10) of the polycrystalline superelastic Nitinol using various loading/unloading paths under isothermal conditions. This biaxial loading/unloading test was carefully designed to avoid torsional buckling and strain non-uniformities. A micromechanical constitutive model, algorithmic implementation and numerical simulation of polycrystalline superelastic alloys under biaxial loading are developed. The constitutive model is based on the micromechanical structure of Ni-Ti crystals and accounts for the physical observation of solid-solid phase transformations through the minimization of the Helmholtz energy with dissipation. The model is formulated in finite deformations and incorporates the effect of texture which is of profound significance in the mechanical response of polycrystalline Nitinol tubes. The numerical implementation is based on the constrained minimization of a functional corresponding to the Helmholtz energy with dissipation. Special treatment of loading/unloading conditions is also developed to distinguish between forward/reverse transformation state. Simulations are conducted for thin tubes of Nitinol under tension-torsion, as well as for a simplified model of a biomedical stent.

  1. Micro-mechanics of micro-composites

    NASA Technical Reports Server (NTRS)

    Donovan, Richard P.

    1995-01-01

    The Structural Dynamics branch at NASA LaRC is working on developing an active passive mount system for vibration control. Toward this end a system utilizing piezoelectric actuators is currently being utilized. There are limitations to the current system related to space applications under which it is desired to eliminate deformations in the actuators associated with thermal effects. In addition, a material that is readily formable into complex shapes and whose mechanical properties can be optimized with regards to vibration control would be highly desirable. Microcomposite material are currently under study to service these needs. Microcomposite materials are essentially materials in which particles on the scale of microns are bound together with a polyimide (LaRC Si) that has been developed at LaRC. In particular a micro-composite consisting of LaRC Si binder and piezoelectric ceramic particles shows promise in satisfying the needs of the active passive mount project. The LaRC/ Si microcomposite has a unique combination of piezoelectric properties combined with a near zero coefficient of thermal expansion and easy machinability. The goal of this ASEE project is to develop techniques to analytically determine important material properties necessary to characterize the dynamic properties of actuators and mounts made from the LaRC Si / ceramic microcomposite. In particular, a generalized method of cells micromechanics originally developed at NASA Lewis is employed to analyze the microstructural geometry of the microcomposites and predict the overall mechanical properties of the material. A testing program has been established to evaluate and refine the GMC approach to these materials. In addition, a theory of mixtures analysis is being developed that utilizes the GMC micromechanics information to analyze complex behavior of the microcomposite material which has a near zero CTE.

  2. Characterization of Bitumen Micro-Mechanical Behaviors Using AFM, Phase Dynamics Theory and MD Simulation.

    PubMed

    Hou, Yue; Wang, Linbing; Wang, Dawei; Guo, Meng; Liu, Pengfei; Yu, Jianxin

    2017-02-21

    Fundamental understanding of micro-mechanical behaviors in bitumen, including phase separation, micro-friction, micro-abrasion, etc., can help the pavement engineers better understand the bitumen mechanical performances at macroscale. Recent researches show that the microstructure evolution in bitumen will directly affect its surface structure and micro-mechanical performance. In this study, the bitumen microstructure and micro-mechanical behaviors are studied using Atomic Force Microscopy (AFM) experiments, Phase Dynamics Theory and Molecular Dynamics (MD) Simulation. The AFM experiment results show that different phase-structure will occur at the surface of the bitumen samples under certain thermodynamic conditions at microscale. The phenomenon can be explained using the phase dynamics theory, where the effects of stability parameter and temperature on bitumen microstructure and micro-mechanical behavior are studied combined with MD Simulation. Simulation results show that the saturates phase, in contrast to the naphthene aromatics phase, plays a major role in bitumen micro-mechanical behavior. A high stress zone occurs at the interface between the saturates phase and the naphthene aromatics phase, which may form discontinuities that further affect the bitumen frictional performance.

  3. Characterization of Bitumen Micro-Mechanical Behaviors Using AFM, Phase Dynamics Theory and MD Simulation

    PubMed Central

    Hou, Yue; Wang, Linbing; Wang, Dawei; Guo, Meng; Liu, Pengfei; Yu, Jianxin

    2017-01-01

    Fundamental understanding of micro-mechanical behaviors in bitumen, including phase separation, micro-friction, micro-abrasion, etc., can help the pavement engineers better understand the bitumen mechanical performances at macroscale. Recent researches show that the microstructure evolution in bitumen will directly affect its surface structure and micro-mechanical performance. In this study, the bitumen microstructure and micro-mechanical behaviors are studied using Atomic Force Microscopy (AFM) experiments, Phase Dynamics Theory and Molecular Dynamics (MD) Simulation. The AFM experiment results show that different phase-structure will occur at the surface of the bitumen samples under certain thermodynamic conditions at microscale. The phenomenon can be explained using the phase dynamics theory, where the effects of stability parameter and temperature on bitumen microstructure and micro-mechanical behavior are studied combined with MD Simulation. Simulation results show that the saturates phase, in contrast to the naphthene aromatics phase, plays a major role in bitumen micro-mechanical behavior. A high stress zone occurs at the interface between the saturates phase and the naphthene aromatics phase, which may form discontinuities that further affect the bitumen frictional performance. PMID:28772570

  4. Realistic micromechanical modeling and simulation of two-phase heterogeneous materials

    NASA Astrophysics Data System (ADS)

    Sreeranganathan, Arun

    This dissertation research focuses on micromechanical modeling and simulations of two-phase heterogeneous materials exhibiting anisotropic and non-uniform microstructures with long-range spatial correlations. Completed work involves development of methodologies for realistic micromechanical analyses of materials using a combination of stereological techniques, two- and three-dimensional digital image processing, and finite element based modeling tools. The methodologies are developed via its applications to two technologically important material systems, namely, discontinuously reinforced aluminum composites containing silicon carbide particles as reinforcement, and boron modified titanium alloys containing in situ formed titanium boride whiskers. Microstructural attributes such as the shape, size, volume fraction, and spatial distribution of the reinforcement phase in these materials were incorporated in the models without any simplifying assumptions. Instrumented indentation was used to determine the constitutive properties of individual microstructural phases. Micromechanical analyses were performed using realistic 2D and 3D models and the results were compared with experimental data. Results indicated that 2D models fail to capture the deformation behavior of these materials and 3D analyses are required for realistic simulations. The effect of clustering of silicon carbide particles and associated porosity on the mechanical response of discontinuously reinforced aluminum composites was investigated using 3D models. Parametric studies were carried out using computer simulated microstructures incorporating realistic microstructural attributes. The intrinsic merit of this research is the development and integration of the required enabling techniques and methodologies for representation, modeling, and simulations of complex geometry of microstructures in two- and three-dimensional space facilitating better understanding of the effects of microstructural geometry

  5. Micromechanics of hearing

    NASA Astrophysics Data System (ADS)

    Hudspeth, A. J.

    2015-12-01

    The following summarizes the key points addressed during a tutorial session on the Micromechanics of Hearing that took place at the 12th International Workshop on the Mechanics of Hearing held at Cape Sounio, Greece, in June 2014. The tutorial was intended to present an overview of basic ideas and to address topics of current interest relevant to the Workshop. The session was recorded, and the audio file and accompanying visual content of the presentation can be found in the Mechanics of Hearing Digital Library (www.mechanicsofhearing.org).

  6. Micromechanical Analysis of Crack Closure Mechanism for Intelligent Material Containing TiNi Fibers

    NASA Astrophysics Data System (ADS)

    Araki, Shigetoshi; Ono, Hiroyuki; Saito, Kenji

    In our previous study, the micromechanical modeling of an intelligent material containing TiNi fibers was performed and the stress intensity factor KI at the tip of the crack in the material was expressed in terms of the magnitude of the shape memory shrinkage of the fibers and the thermal expansion strain in the material. In this study, the value of KI at the tip of the crack in the TiNi/epoxy material is calculated numerically by using analytical expressions obtained in our first report. As a result, we find that the KI value decreases with increasing shrink strain of the fibers, and this tendency agrees with that of the experimental result obtained by Shimamoto etal.(Trans. Jpn. Soc. Mech. Eng., Vol. 65, No. 634 (1999), pp. 1282-1286). Moreover, there exists an optimal value of the shrink strain of the fibers to make the KI value zero. The change in KI with temperature during the heating process from the reference temperature to the inverse austenitic finishing temperature of TiNi fiber is also consistent with the experimental result. These results can be explained by the changes in the shrink strain, the thermal expansion strain, and the elastic moduli of TiNi fiber with temperature. These results may be useful in designing intelligent materials containing TiNi fibers from the viewpoint of crack closure.

  7. EDITORIAL: Selected papers from the 22nd MicroMechanics and Microsystems Europe Workshop (MME 2011) Selected papers from the 22nd MicroMechanics and Microsystems Europe Workshop (MME 2011)

    NASA Astrophysics Data System (ADS)

    Ohlckers, Per

    2012-07-01

    This special section of Journal of Micromechanics and Microengineering is a selection of 13 of the best papers presented at the 22nd Micromechanics and Microsystems Europe Workshop, which was arranged in Toensberg, Norway, 19-22 June, 2011. 110 participants attended the 3 day workshop that had 5 invited keynote speakers and 80 submitted poster presentations. The MME Workshop is organized every year to gather mostly European scientists and people from industry to discuss topics related to research in micromechanics and microsystems in an informal manner. A distinct feature of this specialized workshop is to be an excellent venue for young scientists in the field, such as PhD students, to present their latest work. This workshop series was inaugurated in Enschede, the Netherlands in 1989, followed by: Berlin, Germany (1990), Leuven, Belgium (1992), Neuchatel, Switzerland (1993), Pisa, Italy (1994), Copenhagen, Denmark (1995), Barcelona, Spain (1996) [1], Southampton, UK (1997) [2], Ulvik, Norway (1998) [3], Gif-sur-Yvette, France (1999) [4], Uppsala, Sweden (2000), Cork, Ireland (2001) [5], Sinaia, Romania (2002) [6], Delft, The Netherlands (2003) [7], Leuven, Belgium (2004) [8], Goteborg, Sweden (2005) [9], Southampton, UK (2006) [10], Guimaraes, Portugal (2007) [11], Aachen, Germany (2008) [12], Toulouse, France (2009) [13] and Enschede, the Netherlands (2010) [14]. The workshop series has remained remarkably true to its original concept such as still having micromechanics as a priority topic while, at the same time, adapting to recent research topics such as microsystems integration. It is nice to observe that an earlier fragmented and mostly academic research field now has matured into a very strong industrial field being one of the fastest growing industries in the world, with successful applications on all levels from high end to low end, from space to consumer applications, with the inclusion of microsystems in smartphones such as three-axis accelerometers and

  8. EDITORIAL: The 19th MicroMechanics Europe Workshop (MME 2008) The 19th MicroMechanics Europe Workshop (MME 2008)

    NASA Astrophysics Data System (ADS)

    Schnakenberg, Uwe

    2009-07-01

    This special issue of Journal of Micromechanics and Microengineering is devoted to the 19th MicroMechanics Europe Workshop (MME 08), which took place at the RWTH Aachen University, Aachen, Germany, from 28-30 September, 2008. The workshop is a well recognized and established European event in the field of micro system technology using thin-film technologies for creating micro components, micro sensors, micro actuators, and micro systems. The first MME Workshop was held 1989 in Enschede (The Netherlands) and continued 1990 in Berlin (Germany), 1992 in Leuven (Belgium), and then was held annually in Neuchâtel (Switzerland), Pisa (Italy), Copenhagen (Denmark), Barcelona (Spain), Southampton (UK), Ulvik in Hardanger (Norway), Gif-sur-Yvette (France), Uppsala (Sweden), Cork (Ireland), Sinaia (Romania), Delft (The Netherlands), Leuven (Belgium), Göteborg (Sweden), Southampton (UK), and in Guimarães (Portugal). The two day workshop was attended by 180 delegates from 26 countries all over Europe and from Armenia, Austria, Bulgaria, Canada, China, Cuba, Iran, Japan, Korea, Malaysia, Taiwan, Turkey, and the United States of America. A total of 97 papers were accepted for presentation and there were a further five keynote presentations. I am proud to present 22 high-quality papers from MME 2008 selected for their novelty and relevance to Journal of Micromechanics and Microengineering. All the papers went through the regular reviewing procedure of IOP Publishing. I am eternally grateful to all the referees for their excellent work. I would also like to extend my thanks to the members of the Programme Committee of MME 2008, Dr Reinoud Wolffenbuttel, Professor José Higino Correia, and Dr Patrick Pons for pre-selection of the papers as well as to Professor Robert Puers for advice on the final selection of papers. My thanks also go to Dr Ian Forbes of IOP Publishing for managing the entire process and to the editorial staff of Journal of Micromechanics and Microengineering. I

  9. Towards the development of micromechanics equations for ceramic matrix composites via fiber substructuring

    NASA Technical Reports Server (NTRS)

    Murthy, P. L. N.; Chamis, C. C.

    1992-01-01

    A generic unit cell model which includes a unique fiber substructuring concept is proposed for the development of micromechanics equations for continuous fiber reinforcement ceramic composites. The unit cell consists of three constituents: fiber, matrix, and an interphase. In the present approach, the unit cell is further subdivided into several slices and the equations of micromechanics are derived for each slice. These are subsequently integrated to obtain ply level properties. A stand alone computer code containing the micromechanics model as a module is currently being developed specifically for the analysis of ceramic matrix composites. Towards this development, equivalent ply property results for a SiC/Ti-15-3 composite with 0.5 fiber volume ratio are presented and compared with those obtained from customary micromechanics models to illustrate the concept. Also, comparisons with limited experimental data for the ceramic matrix composite, SiC/RBSN (Reaction Bonded Silicon Nitride) with a 0.3 fiber volume ratio are given to validate the concepts.

  10. Microstructural and micromechanical characterization of IN718 theta shaped specimens built with electron beam melting

    DOE PAGES

    Cakmak, Ercan; Kirka, Michael M.; Watkins, Thomas R.; ...

    2016-02-23

    Theta-shaped specimens were additively manufactured out of Inconel 718 powders using an electron beam melting technique, as a model complex load bearing structure. We employed two different build strategies; producing two sets of specimens. Microstructural and micro-mechanical characterizations were performed using electron back-scatter, synchrotron x-ray and in-situ neutron diffraction techniques. In particular, the cross-members of the specimens were the focus of the synchrotron x-ray and in-situ neutron diffraction measurements. The build strategies employed resulted in the formation of distinct microstructures and crystallographic textures, signifying the importance of build-parameter manipulation for microstructural optimization. Large strain anisotropy of the different lattice planesmore » was observed during in-situ loading. Texture was concluded to have a distinct effect upon both the axial and transverse strain responses of the cross-members. In particular, the (200), (220) and (420) transverse lattice strains all showed unexpected overlapping trends in both builds. This was related to the strong {200} textures along the build/loading direction, providing agreement between the experimental and calculated results.« less

  11. Doping and structural properties for the phosphorous-doped polysilicon layers used for micromechanical applications

    NASA Astrophysics Data System (ADS)

    Gaiseanu, Florin; Esteve, Jaume; Cane, Carles; Perez-Rodriguez, Alejandro; Morante, Juan R.; Serre, Christoph

    1999-08-01

    Our researches were devoted to the micromechanical elements fabricated by the surface micromachining technology, in order to reduce or to eliminate the internal stress or the stress gradients. We used an analysis based on secondary ion mass spectroscopy and the spreading resistance profiling determinations, correlated with cross-section electron transmission spectroscopy. The stress induced in the polysilicon layers by the technological processes depends on: (i) the conditions of the low pressure chemical vapor deposition process; (ii) the phosphorus doping technique; (iii) the subsequent multi-step annealing processes. In our experiments the LP-CVD conditions were maintained the same, but the condition specified previously as items (ii) was varied by using two different doping techniques: thermal- chemical doping consisting in prediffusion from a POCl3 source in an open furnace tube; ionic implantation with an energy E equals 65KeV and a dose N equals 4.5 X 1015 cm-2. The implantation process was followed by an annealing at 900 degrees C in an oxygen ambient for 30 minutes. The thermal budget was varied after the doping in order to reduce the stress gradient in the polysilicon layers. The results of our analysis allow us to show that: (1) the doping gradients are correlated with the slower phosphorus grains forme by an excess of the oxygen atoms; a concurrent process induced by the silicon self-interstitial injection during the diffusion and oxidation, determines the enhancement of the grain growth and therefore the enhancement of the electrical activation especially near the internal polysilicon interface; (2) the post-doping annealing conditions could be varied in a convenient manner, so that the doping induced stress gradients into the polysilicon layers to be reduced or completely eliminated for suitable micromechanical induced stress gradients into the polysilicon layers to be reduced or completely eliminated for suitable micromechanical applications. The

  12. A unique set of micromechanics equations for high temperature metal matrix composites

    NASA Technical Reports Server (NTRS)

    Hopkins, D. A.; Chamis, C. C.

    1985-01-01

    A unique set of micromechanic equations is presented for high temperature metal matrix composites. The set includes expressions to predict mechanical properties, thermal properties and constituent microstresses for the unidirectional fiber reinforced ply. The equations are derived based on a mechanics of materials formulation assuming a square array unit cell model of a single fiber, surrounding matrix and an interphase to account for the chemical reaction which commonly occurs between fiber and matrix. A three-dimensional finite element analysis was used to perform a preliminary validation of the equations. Excellent agreement between properties predicted using the micromechanics equations and properties simulated by the finite element analyses are demonstrated. Implementation of the micromechanics equations as part of an integrated computational capability for nonlinear structural analysis of high temperature multilayered fiber composites is illustrated.

  13. Micromechanics Modeling of Fracture in Nanocrystalline Metals

    NASA Technical Reports Server (NTRS)

    Glaessgen, E. H.; Piascik, R. S.; Raju, I. S.; Harris, C. E.

    2002-01-01

    Nanocrystalline metals have very high theoretical strength, but suffer from a lack of ductility and toughness. Therefore, it is critical to understand the mechanisms of deformation and fracture of these materials before their full potential can be achieved. Because classical fracture mechanics is based on the comparison of computed fracture parameters, such as stress intlmsity factors, to their empirically determined critical values, it does not adequately describe the fundamental physics of fracture required to predict the behavior of nanocrystalline metals. Thus, micromechanics-based techniques must be considered to quanti@ the physical processes of deformation and fracture within nanocrystalline metals. This paper discusses hndamental physicsbased modeling strategies that may be useful for the prediction Iof deformation, crack formation and crack growth within nanocrystalline metals.

  14. Optical anisotropy in micromechanically rolled carbon nanotube forest

    NASA Astrophysics Data System (ADS)

    Razib, Mohd Asyraf bin Mohd; Rana, Masud; Saleh, Tanveer; Fan, Harrison; Koch, Andrew; Nojeh, Alireza; Takahata, Kenichi; Muthalif, Asan Gani Bin Abdul

    2017-09-01

    The bulk appearance of arrays of vertically aligned carbon nanotubes (VACNT arrays or CNT forests) is dark as they absorb most of the incident light. In this paper, two postprocessing techniques have been described where the CNT forest can be patterned by selective bending of the tips of the nanotubes using a rigid cylindrical tool. A tungsten tool was used to bend the vertical structure of CNTs with predefined parameters in two different ways as stated above: bending using the bottom surface of the tool (micromechanical bending (M2B)) and rolling using the side of the tool (micromechanical rolling (M2R)). The processed zone was investigated using a Field Emission Scanning Electron Microscope (FESEM) and optical setup to reveal the surface morphology and optical characteristics of the patterned CNTs on the substrate. Interestingly, the polarized optical reflection from the micromechanical rolled (M2R) sample was found to be significantly influenced by the rotation of the sample. It was observed that, if the polarization of the light is parallel to the alignment of the CNTs, the reflectance is at least 2 x higher than for the perpendicular direction. Furthermore, the reflectance varied almost linearly with good repeatability ( 10%) as the processed CNT forest sample was rotated from 0° to 90°. [Figure not available: see fulltext.

  15. Micromechanical Resonator Driven by Radiation Pressure Force.

    PubMed

    Boales, Joseph A; Mateen, Farrukh; Mohanty, Pritiraj

    2017-11-22

    Radiation pressure exerted by light on any surface is the pressure generated by the momentum of impinging photons. The associated force - fundamentally, a quantum mechanical aspect of light - is usually too small to be useful, except in large-scale problems in astronomy and astrodynamics. In atomic and molecular optics, radiation pressure can be used to trap or cool atoms and ions. Use of radiation pressure on larger objects such as micromechanical resonators has been so far limited to its coupling to an acoustic mode, sideband cooling, or levitation of microscopic objects. In this Letter, we demonstrate direct actuation of a radio-frequency micromechanical plate-type resonator by the radiation pressure force generated by a standard laser diode at room temperature. Using two independent methods, the magnitude of the resonator's response to forcing by radiation pressure is found to be proportional to the intensity of the incident light.

  16. Analytical Modeling of the High Strain Rate Deformation of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Roberts, Gary D.; Gilat, Amos

    2003-01-01

    The results presented here are part of an ongoing research program to develop strain rate dependent deformation and failure models for the analysis of polymer matrix composites subject to high strain rate impact loads. State variable constitutive equations originally developed for metals have been modified in order to model the nonlinear, strain rate dependent deformation of polymeric matrix materials. To account for the effects of hydrostatic stresses, which are significant in polymers, the classical 5 plasticity theory definitions of effective stress and effective plastic strain are modified by applying variations of the Drucker-Prager yield criterion. To verify the revised formulation, the shear and tensile deformation of a representative toughened epoxy is analyzed across a wide range of strain rates (from quasi-static to high strain rates) and the results are compared to experimentally obtained values. For the analyzed polymers, both the tensile and shear stress-strain curves computed using the analytical model correlate well with values obtained through experimental tests. The polymer constitutive equations are implemented within a strength of materials based micromechanics method to predict the nonlinear, strain rate dependent deformation of polymer matrix composites. In the micromechanics, the unit cell is divided up into a number of independently analyzed slices, and laminate theory is then applied to obtain the effective deformation of the unit cell. The composite mechanics are verified by analyzing the deformation of a representative polymer matrix composite (composed using the representative polymer analyzed for the correlation of the polymer constitutive equations) for several fiber orientation angles across a variety of strain rates. The computed values compare favorably to experimentally obtained results.

  17. A micromechanical device that monitors arterial pressure during general anesthesia and in intensive care units

    NASA Astrophysics Data System (ADS)

    Andreeva, A. V.; Luchinin, V. V.; Kuzmina, K. A.; Klyavinek, A. S.; Karelov, A. E.

    2015-12-01

    A vibroacoustic fiber optic system that consists of micromechanical components designated for use in medicine and biology is reviewed. A theoretical analysis of a fiber optic microphone is done and its optimal construction parameters are determined. The possibility of using the developed system with magnetic resonance tomography to noninvasively measure man's arterial pressure is specified.

  18. Micromechanics of Composite Materials Governed by Vector Constitutive Laws

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Aboudi, Jacob; Arnold, Steven M.

    2017-01-01

    The high-fidelity generalized method of cells micromechanics theory has been extended for the prediction of the effective property tensor and the corresponding local field distributions for composites whose constituents are governed by vector constitutive laws. As shown, the shear analogy, which can predict effective transverse properties, is not valid in the general three-dimensional case. Consequently, a general derivation is presented that is applicable to both continuously and discontinuously reinforced composites with arbitrary vector constitutive laws and periodic microstructures. Results are given for thermal and electric problems, effective properties and local field distributions, ordered and random microstructures, as well as complex geometries including woven composites. Comparisons of the theory's predictions are made to test data, numerical analysis, and classical expressions from the literature. Further, classical methods cannot provide the local field distributions in the composite, and it is demonstrated that, as the percolation threshold is approached, their predictions are increasingly unreliable. XXXX It has been observed that the bonding between the fibers and matrix in composite materials can be imperfect. In the context of thermal conductivity, such imperfect interfaces have been investigated in micromechanical models by Dunn and Taya (1993), Duan and Karihaloo (2007), Nan et al. (1997) and Hashin (2001). The present HFGMC micromechanical method, derived for perfectly bonded composite materials governed by vector constitutive laws, can be easily generalized to include the effects of weak bonding between the constituents. Such generalizations, in the context of the mechanical micromechanics problem, involve introduction of a traction-separation law at the fiber/matrix interface and have been presented by Aboudi (1987), Bednarcyk and Arnold (2002), Bednarcyk et al. (2004) and Aboudi et al. (2013) and will be addressed in the future.

  19. Micromechanics of brain white matter tissue: A fiber-reinforced hyperelastic model using embedded element technique.

    PubMed

    Yousefsani, Seyed Abdolmajid; Shamloo, Amir; Farahmand, Farzam

    2018-04-01

    A transverse-plane hyperelastic micromechanical model of brain white matter tissue was developed using the embedded element technique (EET). The model consisted of a histology-informed probabilistic distribution of axonal fibers embedded within an extracellular matrix, both described using the generalized Ogden hyperelastic material model. A correcting method, based on the strain energy density function, was formulated to resolve the stiffness redundancy problem of the EET in large deformation regime. The model was then used to predict the homogenized tissue behavior and the associated localized responses of the axonal fibers under quasi-static, transverse, large deformations. Results indicated that with a sufficiently large representative volume element (RVE) and fine mesh, the statistically randomized microstructure implemented in the RVE exhibits directional independency in transverse plane, and the model predictions for the overall and local tissue responses, characterized by the normalized strain energy density and Cauchy and von Mises stresses, are independent from the modeling parameters. Comparison of the responses of the probabilistic model with that of a simple uniform RVE revealed that only the first one is capable of representing the localized behavior of the tissue constituents. The validity test of the model predictions for the corona radiata against experimental data from the literature indicated a very close agreement. In comparison with the conventional direct meshing method, the model provided almost the same results after correcting the stiffness redundancy, however, with much less computational cost and facilitated geometrical modeling, meshing, and boundary conditions imposing. It was concluded that the EET can be used effectively for detailed probabilistic micromechanical modeling of the white matter in order to provide more accurate predictions for the axonal responses, which are of great importance when simulating the brain trauma or tumor

  20. Micromechanical Machining Processes and their Application to Aerospace Structures, Devices and Systems

    NASA Technical Reports Server (NTRS)

    Friedrich, Craig R.; Warrington, Robert O.

    1995-01-01

    Micromechanical machining processes are those micro fabrication techniques which directly remove work piece material by either a physical cutting tool or an energy process. These processes are direct and therefore they can help reduce the cost and time for prototype development of micro mechanical components and systems. This is especially true for aerospace applications where size and weight are critical, and reliability and the operating environment are an integral part of the design and development process. The micromechanical machining processes are rapidly being recognized as a complementary set of tools to traditional lithographic processes (such as LIGA) for the fabrication of micromechanical components. Worldwide efforts in the U.S., Germany, and Japan are leading to results which sometimes rival lithography at a fraction of the time and cost. Efforts to develop processes and systems specific to aerospace applications are well underway.

  1. Influence of ceramic thickness and type on micromechanical properties of light-cured adhesive bonding agents.

    PubMed

    Öztürk, Elif; Bolay, Sükran; Hickel, Reinhard; Ilie, Nicoleta

    2014-10-01

    The aim of this study was to evaluate the micromechanical properties of different adhesive bonding agents when polymerized through ceramics. Sixty sound extracted human third molars were selected and the crowns were sectioned perpendicular to the long axis in order to obtain dentin slices to be bonded with one of the following adhesives: Syntac/Heliobond (Ivoclar-Vivadent) or Adper-Scotchbond-1XT (3M-ESPE). The adhesives were cured by using a LED-unit (Bluephase®, Ivoclar Vivadent) with three different curing times (10 s, 20 s and 30 s) under two ceramics (IPS-e.max-Press, Ivoclar-Vivadent; IPS-Empress®CAD, Ivoclar-Vivadent) of different thicknesses (0 mm, 0.75 mm, 2 mm). Thirty groups were included, each containing 60 measurements. Micromechanical properties (Hardness, HV; indentation modulus, E; and creep, Cr) of the adhesives were measured with an automatic microhardness indenter (Fisherscope H100C, Germany). Data were statistically analyzed by using one-way ANOVA and Tukey's post-hoc test, as well as a multivariate analysis to test the influence of the study parameters (SPSS 18.0). Significant differences were observed between the micromechanical properties of the adhesives (p < 0.05). The ceramic type showed the highest effect on HV (Partial-eta squared (η(2)) = 0.109) of the tested adhesives, while E (η(2) = 0.275) and Cr (η(2) = 0.194) were stronger influenced by the adhesive type. Ceramic thickness showed no effect on the E and Cr of the adhesives. The adhesive bonding agents used in this study performed well by curing through different thicknesses of ceramics. The micromechanical properties of the adhesives were determined by the adhesive type and were less influenced by ceramic type and curing time.

  2. Micro-mechanical model for the tension-stabilized enzymatic degradation of collagen tissues

    NASA Astrophysics Data System (ADS)

    Nguyen, Thao; Ruberti, Jeffery

    We present a study of how the collagen fiber structure influences the enzymatic degradation of collagen tissues. Experiments of collagen fibrils and tissues show that mechanical tension can slow and halt enzymatic degradation. Tissue-level experiments also show that degradation rate is minimum at a stretch level coincident with the onset of strain-stiffening in the stress response. To understand these phenomena, we developed a micro-mechanical model of a fibrous collagen tissue undergoing enzymatic degradation. Collagen fibers are described as sinusoidal elastica beams, and the tissue is described as a distribution of fibers. We assumed that the degradation reaction is inhibited by the axial strain energy of the crimped collagen fibers. The degradation rate law was calibrated to experiments on isolated single fibrils from bovine sclera. The fiber crimp and properties were fit to uniaxial tension tests of tissue strips. The fibril-level kinetic and tissue-level structural parameters were used to predict tissue-level degradation-induced creep rate under a constant applied force. We showed that we could accurately predict the degradation-induce creep rate of the pericardium and cornea once we accounted for differences in the fiber crimp structure and properties.

  3. High-performance coatings for micromechanical mirrors.

    PubMed

    Gatto, Alexandre; Yang, Minghong; Kaiser, Norbert; Heber, Jörg; Schmidt, Jan Uwe; Sandner, Thilo; Schenk, Harald; Lakner, Hubert

    2006-03-01

    High-performance coatings for micromechanical mirrors were developed. The high-reflective metal systems can be integrated into the technology of MOEMS, such as spatial light modulators and microscanning mirrors from the near-infrared down to the vacuum-ultraviolet spectral regions. The reported metal designs permit high optical performances to be merged with suitable mechanical properties and fitting complementary metal-oxide semiconductor compatibility.

  4. A probabilistic approach to composite micromechanics

    NASA Technical Reports Server (NTRS)

    Stock, T. A.; Bellini, P. X.; Murthy, P. L. N.; Chamis, C. C.

    1988-01-01

    Probabilistic composite micromechanics methods are developed that simulate expected uncertainties in unidirectional fiber composite properties. These methods are in the form of computational procedures using Monte Carlo simulation. A graphite/epoxy unidirectional composite (ply) is studied to demonstrate fiber composite material properties at the micro level. Regression results are presented to show the relative correlation between predicted and response variables in the study.

  5. Viscous anisotropy of textured olivine aggregates: 2. Micromechanical model

    NASA Astrophysics Data System (ADS)

    Hansen, Lars N.; Conrad, Clinton P.; Boneh, Yuval; Skemer, Philip; Warren, Jessica M.; Kohlstedt, David L.

    2016-10-01

    The significant viscous anisotropy that results from crystallographic alignment (texture) of olivine grains in deformed upper mantle rocks strongly influences a large variety of geodynamic processes. Our ability to explore the effects of anisotropic viscosity in simulations of these processes requires a mechanical model that can predict the magnitude of anisotropy and its evolution. Unfortunately, existing models of olivine textural evolution and viscous anisotropy are calibrated for relatively small deformations and simple strain paths, making them less general than desired for many large-scale geodynamic scenarios. Here we develop a new set of micromechanical models to describe the mechanical behavior and textural evolution of olivine through a large range of strains and complex strain histories. For the mechanical behavior, we explore two extreme scenarios, one in which each grain experiences the same stress tensor (Sachs model) and one in which each grain undergoes a strain rate as close as possible to the macroscopic strain rate (pseudo-Taylor model). For the textural evolution, we develop a new model in which the director method is used to control the rate of grain rotation and the available slip systems in olivine are used to control the axis of rotation. Only recently has enough laboratory data on the deformation of olivine become available to calibrate these models. We use these new data to conduct inversions for the best parameters to characterize both the mechanical and textural evolution models. These inversions demonstrate that the calibrated pseudo-Taylor model best reproduces the mechanical observations. Additionally, the pseudo-Taylor textural evolution model can reasonably reproduce the observed texture strength, shape, and orientation after large and complex deformations. A quantitative comparison between our calibrated models and previously published models reveals that our new models excel in predicting the magnitude of viscous anisotropy and

  6. A micromechanical analogue mixer with dynamic displacement amplification

    NASA Astrophysics Data System (ADS)

    Erismis, M. A.

    2018-06-01

    A new micromechanical device is proposed which is capable of modulation, demodulation and filtering operations. The device uses a patented 3-mass coupled micromechanical resonator which dynamically amplifies the displacement within a frequency range of interest. Modulation can be obtained by exciting different masses of the resonator with the data and the carrier signals. Demodulation can be obtained similarly by exciting the actuator with the input and carrier signals at the same time. With the help of dynamic motion amplification, filtering and signal amplification can be achieved simultaneously. A generic design approach is introduced which can be applied from kHz to MHz regime frequencies of interest. A sample mixer design for an silicon on insulator-based process is provided. A SPICE (Simulation Program with Integrated Circuit Emphasis)-based electro-mechanical co-simulation platform is also developed and the proposed mixer is simulated.

  7. Method for identifying biochemical and chemical reactions and micromechanical processes using nanomechanical and electronic signal identification

    DOEpatents

    Holzrichter, J.F.; Siekhaus, W.J.

    1997-04-15

    A scanning probe microscope, such as an atomic force microscope (AFM) or a scanning tunneling microscope (STM), is operated in a stationary mode on a site where an activity of interest occurs to measure and identify characteristic time-varying micromotions caused by biological, chemical, mechanical, electrical, optical, or physical processes. The tip and cantilever assembly of an AFM is used as a micromechanical detector of characteristic micromotions transmitted either directly by a site of interest or indirectly through the surrounding medium. Alternatively, the exponential dependence of the tunneling current on the size of the gap in the STM is used to detect micromechanical movement. The stationary mode of operation can be used to observe dynamic biological processes in real time and in a natural environment, such as polymerase processing of DNA for determining the sequence of a DNA molecule. 6 figs.

  8. Method for identifying biochemical and chemical reactions and micromechanical processes using nanomechanical and electronic signal identification

    DOEpatents

    Holzrichter, John F.; Siekhaus, Wigbert J.

    1997-01-01

    A scanning probe microscope, such as an atomic force microscope (AFM) or a scanning tunneling microscope (STM), is operated in a stationary mode on a site where an activity of interest occurs to measure and identify characteristic time-varying micromotions caused by biological, chemical, mechanical, electrical, optical, or physical processes. The tip and cantilever assembly of an AFM is used as a micromechanical detector of characteristic micromotions transmitted either directly by a site of interest or indirectly through the surrounding medium. Alternatively, the exponential dependence of the tunneling current on the size of the gap in the STM is used to detect micromechanical movement. The stationary mode of operation can be used to observe dynamic biological processes in real time and in a natural environment, such as polymerase processing of DNA for determining the sequence of a DNA molecule.

  9. A dislocation density based micromechanical constitutive model for Sn-Ag-Cu solder alloys

    NASA Astrophysics Data System (ADS)

    Liu, Lu; Yao, Yao; Zeng, Tao; Keer, Leon M.

    2017-10-01

    Based on the dislocation density hardening law, a micromechanical model considering the effects of precipitates is developed for Sn-Ag-Cu solder alloys. According to the microstructure of the Sn-3.0Ag-0.5Cu thin films, intermetallic compounds (IMCs) are assumed as sphere particles embedded in the polycrystalline β-Sn matrix. The mechanical behavior of polycrystalline β-Sn matrix is determined by the elastic-plastic self-consistent method. The existence of IMCs not only impedes the motion of dislocations but also increases the overall stiffness. Thus, a dislocation density based hardening law considering non-shearable precipitates is adopted locally for single β-Sn crystal, and the Mori-Tanaka scheme is applied to describe the overall viscoplastic behavior of solder alloys. The proposed model is incorporated into finite element analysis and the corresponding numerical implementation method is presented. The model can describe the mechanical behavior of Sn-3.0Ag-0.5Cu and Sn-1.0Ag-0.5Cu alloys under high strain rates at a wide range of temperatures. Furthermore, the overall Young’s modulus changes due to different contents of IMCs is predicted and compared with experimental data. Results show that the proposed model can describe both elastic and inelastic behavior of solder alloys with reasonable accuracy.

  10. Bio-Inspired Micromechanical Directional Acoustic Sensor

    NASA Astrophysics Data System (ADS)

    Swan, William; Alves, Fabio; Karunasiri, Gamani

    Conventional directional sound sensors employ an array of spatially separated microphones and the direction is determined using arrival times and amplitudes. In nature, insects such as the Ormia ochracea fly can determine the direction of sound using a hearing organ much smaller than the wavelength of sound it detects. The fly's eardrums are mechanically coupled, only separated by about 1 mm, and have remarkable directional sensitivity. A micromechanical sensor based on the fly's hearing system was designed and fabricated on a silicon on insulator (SOI) substrate using MEMS technology. The sensor consists of two 1 mm2 wings connected using a bridge and to the substrate using two torsional legs. The dimensions of the sensor and material stiffness determine the frequency response of the sensor. The vibration of the wings in response to incident sound at the bending resonance was measured using a laser vibrometer and found to be about 1 μm/Pa. The electronic response of the sensor to sound was measured using integrated comb finger capacitors and found to be about 25 V/Pa. The fabricated sensors showed good directional sensitivity. In this talk, the design, fabrication and characteristics of the directional sound sensor will be described. Supported by ONR and TDSI.

  11. Electromagnetic and nuclear radiation detector using micromechanical sensors

    DOEpatents

    Thundat, Thomas G.; Warmack, Robert J.; Wachter, Eric A.

    2000-01-01

    Electromagnetic and nuclear radiation is detected by micromechanical sensors that can be coated with various interactive materials. As the micromechanical sensors absorb radiation, the sensors bend and/or undergo a shift in resonance characteristics. The bending and resonance changes are detected with high sensitivity by any of several detection methods including optical, capacitive, and piezoresistive methods. Wide bands of the electromagnetic spectrum can be imaged with picoJoule sensitivity, and specific absorptive coatings can be used for selective sensitivity in specific wavelength bands. Microcantilevers coated with optical cross-linking polymers are useful as integrating optical radiation dosimeters. Nuclear radiation dosimetry is possible by fabricating cantilevers from materials that are sensitive to various nuclear particles or radiation. Upon exposure to radiation, the cantilever bends due to stress and its resonance frequency shifts due to changes in elastic properties, based on cantilever shape and properties of the coating.

  12. Synchronization of electrically coupled micromechanical oscillators with a frequency ratio of 3:1

    NASA Astrophysics Data System (ADS)

    Pu, Dong; Wei, Xueyong; Xu, Liu; Jiang, Zhuangde; Huan, Ronghua

    2018-01-01

    In this Letter, synchronization of micromechanical oscillators with a frequency ratio of 3:1 is reported. Two electrically coupled piezoresistive micromechanical oscillators are built for the study, and their oscillation frequencies are tuned via the Joule heating effect to find out the synchronization region. Experimental results show that the larger coupling strength or bias driving voltage is applied and a wider synchronization region is obtained. Interestingly, however, the oscillator's frequency tunability is dramatically reduced from -809.1 Hz/V to -23.1 Hz/V when synchronization is reached. A nearly 10-fold improvement of frequency stability at 1 s is observed from one of the synchronized oscillators, showing a comparable performance of the other. The stable high order synchronization of micromechanical oscillators is helpful to design high performance resonant sensors with a better frequency resolution and a larger scale factor.

  13. Frequency stability improvement for piezoresistive micromechanical oscillators via synchronization

    NASA Astrophysics Data System (ADS)

    Pu, Dong; Huan, Ronghua; Wei, Xueyong

    2017-03-01

    Synchronization phenomenon first discovered in Huygens' clock shows that the rhythms of oscillating objects can be adjusted via an interaction. Here we show that the frequency stability of a piezoresistive micromechanical oscillator can be enhanced via synchronization. The micromechanical clamped-clamped beam oscillator is built up using the electrostatic driving and piezoresistive sensing technique and the synchronization phenomenon is observed after coupling it to an external oscillator. An enhancement of frequency stability is obtained in the synchronization state. The influences of the synchronizing perturbation intensity and frequency detuning applied on the oscillator are studied experimentally. A theoretical analysis of phase noise leads to an analytical formula for predicting Allan deviation of the frequency output of the piezoresistive oscillator, which successfully explains the experimental observations and the mechanism of frequency stability enhancement via synchronization.

  14. Fabrication of micromechanical and microoptical systems by two-photon polymerization

    NASA Astrophysics Data System (ADS)

    Reinhardt, Carsten; Ovsianikov, A.; Passinger, Sven; Chichkov, Boris N.

    2007-01-01

    The recently developed two-photon polymerisation technique is used for the fabrication of two- and three-dimensional structures in photosensitive inorganic-organic hybrid material (ORMOCER), in SU8 , and in positive tone resist with resolutions down to 100nm. In this contribution we present applications of this powerful technology for the realization of micromechanical systems and microoptical components. We will demonstrate results on the fabrication of complex movable three-dimensional micromechanical systems and microfluidic components which cannot be realized by other technologies. This approach of structuring photosensitive materials also provides unique possibilities for the fabrication of different microoptical components such as arbitrary shaped microlenses, microprisms, and 3D-photonic crystals with high optical quality.

  15. Determination of Dynamic Recrystallization Process by Equivalent Strain

    NASA Astrophysics Data System (ADS)

    Qin, Xiaomei; Deng, Wei

    Based on Tpнoвckiй's displacement field, equivalent strain expression was derived. And according to the dynamic recrystallization (DRX) critical strain, DRX process was determined by equivalent strain. It was found that equivalent strain distribution in deformed specimen is inhomogeneous, and it increases with increasing true strain. Under a certain true strain, equivalent strains at the center, demisemi radius or on tangential plane just below the surface of the specimen are higher than the true strain. Thus, micrographs at those positions can not exactly reflect the true microstructures under the certain true strain. With increasing strain rate, the initial and finish time of DRX decrease. The frozen microstructures of 20Mn23AlV steel with the experimental condition validate the feasibility of predicting DRX process by equivalent strain.

  16. Adhesion, friction and micromechanical properties of ceramics

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1988-01-01

    The adhesion, friction, and micromechanical properties of ceramics, both in monolithic and coating form, are reviewed. Ceramics are examined in contact with themselves, other harder materials, and metals. For the simplicity of discussion, the tribological properties of concern in the processes are separated into two parts. The first part discusses the pull-off force (adhesion) and the shear force required to break the interfacial junctions between contacting surfaces. The role of chemical bonding in adhesion and friction, and the effects of surface contaminant films and temperature on tribological response with respect to adhesion and friction are discussed. The second part deals with abrasion of ceramics. Elastic, plastic, and fracture behavior of ceramics in solid state contact is discussed. The scratch technique of determining the critical load needed to fracture interfacial adhesive bonds of ceramic deposited on substrates is also addressed.

  17. Micro-mechanical modeling of the cement-bone interface: the effect of friction, morphology and material properties on the micromechanical response.

    PubMed

    Janssen, Dennis; Mann, Kenneth A; Verdonschot, Nico

    2008-11-14

    In order to gain insight into the micro-mechanical behavior of the cement-bone interface, the effect of parametric variations of frictional, morphological and material properties on the mechanical response of the cement-bone interface were analyzed using a finite element approach. Finite element models of a cement-bone interface specimen were created from micro-computed tomography data of a physical specimen that was sectioned from an in vitro cemented total hip arthroplasty. In five models the friction coefficient was varied (mu=0.0; 0.3; 0.7; 1.0 and 3.0), while in one model an ideally bonded interface was assumed. In two models cement interface gaps and an optimal cement penetration were simulated. Finally, the effect of bone cement stiffness variations was simulated (2.0 and 2.5 GPa, relative to the default 3.0 GPa). All models were loaded for a cycle of fully reversible tension-compression. From the simulated stress-displacement curves the interface deformation, stiffness and hysteresis were calculated. The results indicate that in the current model the mechanical properties of the cement-bone interface were caused by frictional phenomena at the shape-closed interlock rather than by adhesive properties of the cement. Our findings furthermore show that in our model maximizing cement penetration improved the micromechanical response of the cement-bone interface stiffness, while interface gaps had a detrimental effect. Relative to the frictional and morphological variations, variations in the cement stiffness had only a modest effect on the micro-mechanical behavior of the cement-bone interface. The current study provides information that may help to better understand the load-transfer mechanisms taking place at the cement-bone interface.

  18. Micromechanical apparatus for measurement of forces

    DOEpatents

    Tanner, Danelle Mary; Allen, James Joe

    2004-05-25

    A new class of micromechanical dynamometers has been disclosed which are particularly suited to fabrication in parallel with other microelectromechanical apparatus. Forces in the microNewton regime and below can be measured with such dynamometers which are based on a high-compliance deflection element (e.g. a ring or annulus) suspended above a substrate for deflection by an applied force, and one or more distance scales for optically measuring the deflection.

  19. Apparatus and method for detecting electromagnetic radiation using electron photoemission in a micromechanical sensor

    DOEpatents

    Datskos, Panagiotis G.; Rajic, Slobodan; Datskou, Irene C.; Egert, Charles M.

    2002-01-01

    A micromechanical sensor and method for detecting electromagnetic radiation involve producing photoelectrons from a metal surface in contact with a semiconductor. The photoelectrons are extracted into the semiconductor, which causes photo-induced bending. The resulting bending is measured, and a signal corresponding to the measured bending is generated and processed. A plurality of individual micromechanical sensors can be arranged in a two-dimensional matrix for imaging applications.

  20. Micromechanics and effective elastoplastic behavior of two-phase metal matrix composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ju, J.W.; Chen, T.M.

    A micromechanical framework is presented to predict effective (overall) elasto-(visco-)plastic behavior of two-phase particle-reinforced metal matrix composites (PRMMC). In particular, the inclusion phase (particle) is assumed to be elastic and the matrix material is elasto-(visco-)plastic. Emanating from Ju and Chen's (1994a,b) work on effective elastic properties of composites containing many randomly dispersed inhomogeneities, effective elastoplastic deformations and responses of PRMMC are estimated by means of the effective yield criterion'' derived micromechanically by considering effects due to elastic particles embedded in the elastoplastic matrix. The matrix material is elastic or plastic, depending on local stress and deformation, and obeys general plasticmore » flow rule and hardening law. Arbitrary (general) loadings and unloadings are permitted in the framework through the elastic predictor-plastic corrector two-step operator splitting methodology. The proposed combined micromechanical and computational approach allows one to estimate overall elastoplastic responses of PRMMCs by accounting for the microstructural information (such as the spatial distribution and micro-geometry of particles), elastic properties of constituent phases, and the plastic behavior of the matrix-only materials.« less

  1. Improved resonance characteristics of GaAs beam resonators by epitaxially induced strain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamaguchi, H.; Onomitsu, K.; Kato, K.

    2008-06-23

    Micromechanical-beam resonators were fabricated using a strained GaAs film grown on relaxed In{sub 0.1}Ga{sub 0.9}As/In{sub 0.1}Al{sub 0.9}As buffer layers. The natural frequency of the fundamental mode was increased 2.5-4 times by applying tensile strain, showing good agreement with the model calculation assuming strain of 0.35% along the beam. In addition, the Q factor of 19 000 was obtained for the best sample, which is one order of magnitude higher than that for the unstrained resonator. This technique can be widely applied for improving the performance of resonator-based micro-/nanoelectromechanical devices.

  2. Strain gage based determination of mixed mode SIFs

    NASA Astrophysics Data System (ADS)

    Murthy, K. S. R. K.; Sarangi, H.; Chakraborty, D.

    2018-05-01

    Accurate determination of mixed mode stress intensity factors (SIFs) is essential in understanding and analysis of mixed mode fracture of engineering components. Only a few strain gage determination of mixed mode SIFs are reported in literatures and those also do not provide any prescription for radial locations of strain gages to ensure accuracy of measurement. The present investigation experimentally demonstrates the efficacy of a proposed methodology for the accurate determination of mixed mode I/II SIFs using strain gages. The proposed approach is based on the modified Dally and Berger's mixed mode technique. Using the proposed methodology appropriate gage locations (optimal locations) for a given configuration have also been suggested ensuring accurate determination of mixed mode SIFs. Experiments have been conducted by locating the gages at optimal and non-optimal locations to study the efficacy of the proposed approach. The experimental results from the present investigation show that highly accurate SIFs (0.064%) can be determined using the proposed approach if the gages are located at the suggested optimal locations. On the other hand, results also show the very high errors (212.22%) in measured SIFs possible if the gages are located at non-optimal locations. The present work thus clearly substantiates the importance of knowing the optimal locations of the strain gages apriori in accurate determination of SIFs.

  3. Design of a fully compliant bistable micromechanism for switching devices

    NASA Astrophysics Data System (ADS)

    Chang, Hsin-An; Tsay, Jinni; Sung, Cheng-Kuo

    2001-11-01

    This paper proposes a design of a bistable micromechanism for the application of switching devices. The topology of a fully compliant four-bar mechanism is adopted herein. The central mass of the mechanism is employed as a carriage to carry switching components, such as mirror, electrical contact, etc. The equations that predict the existence of bistable states, the extreme positions of the motion range and the maximum stress states of members were derived. MUMPs provided by Cronos Integrated Microsystems fabricated the proposed micromechanisms for the purpose of verifying the theoretical predictions. Finally, an experimental rig was established. The bistable mechanisms were switched either by the probe or actuators to push the central mass. The experimental results demonstrated that the motions observed approximately met the predicted values.

  4. Micromechanics-Based Structural Analysis (FEAMAC) and Multiscale Visualization within Abaqus/CAE Environment

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M.; Bednarcyk, Brett A.; Hussain, Aquila; Katiyar, Vivek

    2010-01-01

    A unified framework is presented that enables coupled multiscale analysis of composite structures and associated graphical pre- and postprocessing within the Abaqus/CAE environment. The recently developed, free, Finite Element Analysis--Micromechanics Analysis Code (FEAMAC) software couples NASA's Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC) with Abaqus/Standard and Abaqus/Explicit to perform micromechanics based FEA such that the nonlinear composite material response at each integration point is modeled at each increment by MAC/GMC. The Graphical User Interfaces (FEAMAC-Pre and FEAMAC-Post), developed through collaboration between SIMULIA Erie and the NASA Glenn Research Center, enable users to employ a new FEAMAC module within Abaqus/CAE that provides access to the composite microscale. FEA IAC-Pre is used to define and store constituent material properties, set-up and store composite repeating unit cells, and assign composite materials as sections with all data being stored within the CAE database. Likewise FEAMAC-Post enables multiscale field quantity visualization (contour plots, X-Y plots), with point and click access to the microscale i.e., fiber and matrix fields).

  5. LS-DYNA Implementation of Polymer Matrix Composite Model Under High Strain Rate Impact

    NASA Technical Reports Server (NTRS)

    Zheng, Xia-Hua; Goldberg, Robert K.; Binienda, Wieslaw K.; Roberts, Gary D.

    2003-01-01

    A recently developed constitutive model is implemented into LS-DYNA as a user defined material model (UMAT) to characterize the nonlinear strain rate dependent behavior of polymers. By utilizing this model within a micromechanics technique based on a laminate analogy, an algorithm to analyze the strain rate dependent, nonlinear deformation of a fiber reinforced polymer matrix composite is then developed as a UMAT to simulate the response of these composites under high strain rate impact. The models are designed for shell elements in order to ensure computational efficiency. Experimental and numerical stress-strain curves are compared for two representative polymers and a representative polymer matrix composite, with the analytical model predicting the experimental response reasonably well.

  6. PREFACE: 14th Micromechanics Europe Workshop (MME'03)

    NASA Astrophysics Data System (ADS)

    Wolffenbuttel, R. F.

    2004-09-01

    This special issue of the Journal of Micromechanics and Microengineering is devoted to the 14th Micromechanics Europe Workshop (MME'03), which was held at Delft University of Technology, The Netherlands on 2-4 November 2003. Papers have been selected from this workshop for presentation in this special issue. After a careful review by the MME'03 programme committee, 53 submissions were selected for poster presentation at the workshop in addition to 6 invited presentations. These covered the many aspects of our exciting field: technology, simulation, system design, fabrication and characterization in a wide range of applications. These contributions confirm a trend from technology-driven towards application-driven technological research. This trend has become possible because of the availability of mature fabrication technologies for micromechanical structures and is reflected by the presentations of some of the invited speakers. There were invited lectures about applications in the medical field, automotive and copiers, which provide evidence of the relevance of our work in society. Nevertheless, development of technologies rightfully remains a core activity of this workshop. This applies to both the introduction of new technologies, as was reflected by invited presentations on new trends in RIE and nanotechnology, and the addressing of manufacturing issues using available techniques, which will be demonstrated to be crucial in automotive applications. Out of these 59 papers 21 have been selected for presentation in this special issue. Since the scope of the workshop is somewhat wider than that of the journal, selection was based not only on the quality of the work, but also on suitability for presentation in the journal. Moreover, at the workshop, student presentation of research at an early stage was strongly encouraged, whereas publication of work in this journal requires a more advanced level. I would like to express my appreciation for the outstanding efforts

  7. A combined molecular dynamics/micromechanics/finite element approach for multiscale constitutive modeling of nanocomposites with interface effects

    NASA Astrophysics Data System (ADS)

    Yang, B. J.; Shin, H.; Lee, H. K.; Kim, H.

    2013-12-01

    We introduce a multiscale framework based on molecular dynamic (MD) simulation, micromechanics, and finite element method (FEM). A micromechanical model, which considers influences of the interface properties, nanoparticle (NP) size, and microcracks, is developed. Then, we perform MD simulations to characterize the mechanical properties of the nanocomposite system (silica/nylon 6) with varying volume fraction and size of NPs. By comparing the MD with micromechanics results, intrinsic physical properties at interfacial region are derived. Finally, we implement the developed model in the FEM code with the derived interfacial parameters, and predict the mechanical behavior of the nanocomposite at the macroscopic scale.

  8. Effect of curing mode on the micro-mechanical properties of dual-cured self-adhesive resin cements.

    PubMed

    Ilie, Nicoleta; Simon, Alexander

    2012-04-01

    Light supplying to luting resin cements is impeded in several clinical situations, causing us to question whether materials can properly be cured to achieve adequately (or adequate) mechanical properties. The aim of this study was therefore to analyse the effect of light on the micro-mechanical properties of eight popular dual-cured self-adhesive resin cements by comparing them with two conventional, also dual-cured, resin cements. Four different curing procedures were applied: auto-polymerisation (dark curing) and light curing (LED unit, Freelight 2, 20 s) by applying the unit directly on the samples' surface, at a distance of 5 and 10 mm. Twenty minutes after curing, the samples were stored for 1 week at 37°C in a water-saturated atmosphere. The micro-mechanical properties-Vickers hardness, modulus of elasticity, creep and elastic/plastic deformation-were measured. Data were analysed with multivariate ANOVA followed by Tukey's test and partial eta-squared statistics (p < 0.05). A very strong influence of the material as well as filler volume and weight on the micro-mechanical properties was measured, whereas the influence of the curing procedure and type of cement-conventional or self-adhesive-was generally low. The influence of light on the polymerisation process was material dependent, with four different behaviour patterns to be distinguished. As a material category, significantly higher micro-mechanical properties were measured for the conventional compared to the self-adhesive resin cements, although this difference was low. Within the self-adhesive resin cements group, the variation in micro-mechanical properties was high. The selection of suitable resin cements should be done by considering, besides its adhesive properties, its micro-mechanical properties and curing behaviour also.

  9. Micromechanical Fatigue Visco-Damage Model for Short Glass Fiber Reinforced Polyamide-66

    NASA Astrophysics Data System (ADS)

    Despringre, N.; Chemisky, Y.; Robert, G.; Meraghni, F.

    This work presents a micromechanical fatigue damage model developed for short glass fiber reinforced PA66. It has been developed to predict the high cycle fatigue behavior of PA66/GF30. The model is based on an extended Mori-Tanaka method which includes coated inclusions, matrix viscoelasticity and the evolution of micro-scale damage. The developed model accounts for the nonlinear matrix viscoelasticity and the reinforcement orientation. The description of the damage processes is based on the experimental investigation of damage mechanisms previously performed through in-situ SEM tests and X-ray micro-computed tomography observations. Damage chronologies have been proposed involving three different processes: interface debonding/coating, matrix micro-cracking and fiber breakages. Their occurrence strongly depends on the microstructure and the relative humidity. Each damage mechanism is introduced through an evolution law coupled to local stress fields. The developed model is implemented using a UMAT subroutine. Its experimental validation is achieved under stress or strain controlled fatigue tests.

  10. EDITORIAL: The 18th European Workshop on Micromechanics (MME 07)

    NASA Astrophysics Data System (ADS)

    Correia, J. H.

    2008-06-01

    This special issue of Journal of Micromechanics and Microengineering is devoted to the 18th European Workshop on Micromechanics (MME 07), which took place at the University of Minho, Guimarães, Portugal from 16-18 September 2007. Since the first workshop at the University of Twente in 1989 the field of micromechanics has grown substantially and new fields have been added: optics, RF, biomedical, chemistry, and in recent years the emergence of nanotechnology. This year an extensive programme was scheduled with contributions from new materials research to new manufacturing techniques. In addition, the invited speakers presented a review of the state-of-the-art in several main trends in current research, with the focus on micro/nanosystems in the ICT Work Programme in EC FP7. As ever, the two day workshop was attended by delegates from all over Europe, the USA, Brazil, Egypt, Japan and Canada. A total of 96 papers were accepted for presentation and there were a further five keynote presentations. The workshop provides a forum for young researchers to learn about new experimental methods and to enhance their knowledge of the field. This special issue presents a selection of 17 of the best papers from the workshop. The papers highlight fluidic and optical devices, energy scavenging microsystems, neural probe arrays and microtechnology fabrication techniques. All the papers went through the regular reviewing procedure of IOP Publishing, and I am grateful to all the referees for their excellent work. I would also like to extend my thanks to Professor Robert Puers for advice on the final selection of papers and to Ian Forbes of IOP Publishing for managing the entire process. My thanks also go to the editorial staff of Journal of Micromechanics and Microengineering. I believe that this special issue will provide a good overview of the topics presented at the workshop and I hope you enjoy reading it.

  11. Micromechanical Waveguide Mounts for Hot Electron Bolometer Terahertz Mixers

    NASA Astrophysics Data System (ADS)

    Brandt, Michael; Jacobs, Karl; Honingh, C. E.; Stodolka, Jörg

    The superior beam matching of waveguide horn antennas to a telescope suggests using waveguide mounts even at THz-frequencies. In contrast to the more common quasi-optical (substrate lens) designs, the exceedingly small dimensions of the waveguide require novel micro-mechanical fabrication technologies. We will present a novel fabrication scheme for 1.9 THz waveguide mixers for SOFIA. Hot Electron Bolometer devices (HEB) are fabricated on 2 μm thick Si3N4 membrane strips. The strips are robust enough to be mounted on a separately fabricated Si support frame using an adapted flip-chip technology. Mounted onto the frame, the devices can be easily positioned and glued into a copper waveguide mount. Further developments regarding micro-mechanical processes to fabricate this copper waveguide mount and the receiving horn antenna will be presented, as well as the KOSMA Micro Assembly Station and its capabilities to handle mixer substrates.

  12. Time And Temperature Dependent Micromechanical Properties Of Solder Joints For 3D-Package Integration

    NASA Astrophysics Data System (ADS)

    Roellig, Mike; Meier, Karsten; Metasch, Rene

    2010-11-01

    The recent development of 3D-integrated electronic packages is characterized by the need to increase the diversity of functions and to miniaturize. Currently many 3D-integration concepts are being developed and all of them demand new materials, new designs and new processing technologies. The combination of simulation and experimental investigation becomes increasingly accepted since simulations help to shorten the R&D cycle time and reduce costs. Numerical calculations like the Finite-Element-Method are strong tools to calculate stress conditions in electronic packages resulting from thermal strains due to the manufacturing process and environmental loads. It is essential for the application of numerical calculations that the material data is accurate and describes sufficiently the physical behaviour. The developed machine allows the measurement of time and temperature dependent micromechanical properties of solder joints. Solder joints, which are used to mechanically and electrically connect different packages, are physically measured as they leave the process. This allows accounting for process influences, which may change material properties. Additionally, joint sizes and metallurgical interactions between solder and under bump metallization can be respected by this particular measurement. The measurement allows the determination of material properties within a temperature range of 20° C-200° C. Further, the time dependent creep deformation can be measured within a strain-rate range of 10-31/s-10-81/s. Solder alloys based on Sn-Ag/Sn-Ag-Cu with additionally impurities and joint sizes down to O/ 200 μm were investigated. To finish the material characterization process the material model coefficient were extracted by FEM-Simulation to increase the accuracy of data.

  13. Probabilistic Fiber Composite Micromechanics

    NASA Technical Reports Server (NTRS)

    Stock, Thomas A.

    1996-01-01

    Probabilistic composite micromechanics methods are developed that simulate expected uncertainties in unidirectional fiber composite properties. These methods are in the form of computational procedures using Monte Carlo simulation. The variables in which uncertainties are accounted for include constituent and void volume ratios, constituent elastic properties and strengths, and fiber misalignment. A graphite/epoxy unidirectional composite (ply) is studied to demonstrate fiber composite material property variations induced by random changes expected at the material micro level. Regression results are presented to show the relative correlation between predictor and response variables in the study. These computational procedures make possible a formal description of anticipated random processes at the intra-ply level, and the related effects of these on composite properties.

  14. Method for forming suspended micromechanical structures

    DOEpatents

    Fleming, James G.

    2000-01-01

    A micromachining method is disclosed for forming a suspended micromechanical structure from {111} crystalline silicon. The micromachining method is based on the use of anisotropic dry etching to define lateral features of the structure which are etched down into a {111}-silicon substrate to a first etch depth, thereby forming sidewalls of the structure. The sidewalls are then coated with a protection layer, and the substrate is dry etched to a second etch depth to define a spacing of the structure from the substrate. A selective anisotropic wet etchant (e.g. KOH, EDP, TMAH, NaOH or CsOH) is used to laterally undercut the structure between the first and second etch depths, thereby forming a substantially planar lower surface of the structure along a {111} crystal plane that is parallel to an upper surface of the structure. The lateral extent of undercutting by the wet etchant is controlled and effectively terminated by either timing the etching, by the location of angled {111}-silicon planes or by the locations of preformed etch-stops. This present method allows the formation of suspended micromechanical structures having large vertical dimensions and large masses while allowing for detailed lateral features which can be provided by dry etch definition. Additionally, the method of the present invention is compatible with the formation of electronic circuitry on the substrate.

  15. An Efficient Implementation of the GMC Micromechanics Model for Multi-Phased Materials with Complex Microstructures

    NASA Technical Reports Server (NTRS)

    Pindera, Marek-Jerzy; Bednarcyk, Brett A.

    1997-01-01

    An efficient implementation of the generalized method of cells micromechanics model is presented that allows analysis of periodic unidirectional composites characterized by repeating unit cells containing thousands of subcells. The original formulation, given in terms of Hill's strain concentration matrices that relate average subcell strains to the macroscopic strains, is reformulated in terms of the interfacial subcell tractions as the basic unknowns. This is accomplished by expressing the displacement continuity equations in terms of the stresses and then imposing the traction continuity conditions directly. The result is a mixed formulation wherein the unknown interfacial subcell traction components are related to the macroscopic strain components. Because the stress field throughout the repeating unit cell is piece-wise uniform, the imposition of traction continuity conditions directly in the displacement continuity equations, expressed in terms of stresses, substantially reduces the number of unknown subcell traction (and stress) components, and thus the size of the system of equations that must be solved. Further reduction in the size of the system of continuity equations is obtained by separating the normal and shear traction equations in those instances where the individual subcells are, at most, orthotropic. The reformulated version facilitates detailed analysis of the impact of the fiber cross-section geometry and arrangement on the response of multi-phased unidirectional composites with and without evolving damage. Comparison of execution times obtained with the original and reformulated versions of the generalized method of cells demonstrates the new version's efficiency.

  16. Mitigating Thermoelastic Dissipation of Flexural Micromechanical Resonators by Decoupling Resonant Frequency from Thermal Relaxation Rate

    NASA Astrophysics Data System (ADS)

    Zhou, Xin; Xiao, Dingbang; Wu, Xuezhong; Li, Qingsong; Hou, Zhanqiang; He, Kaixuan; Wu, Yulie

    2017-12-01

    This paper reports an alternative design strategy to reduce thermoelastic dissipation (TED) for isothermal-mode micromechanical resonators. This involves hanging lumped masses on a frame structure to decouple the resonant frequency and the effective beamwidth of the resonators, which enables the separation of the thermal relaxation rate and frequency of vibration. This approach is validated using silicon-based micromechanical disklike resonators engineered to isolate TED. A threefold improvement in the quality factor and a tenfold improvement in the decay-time constant is demonstrated. This work proposes a solution for isothermal-mode (flexural) micromechanical resonators to effectively mitigate TED. Specifically, this approach is ideal for designing high-performance gyroscope resonators based on microelectromechanical systems (MEMS) technology. It may pave the way for the next generation inertial-grade MEMS gyroscope, which remains a great challenge and is very appealing.

  17. Mechanical Characterization and Micromechanical Modeling of Woven Carbon/Copper Composites

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Pindera, Marek-Jerzy; Ellis, David L.; Miner, Robert V.

    1997-01-01

    The present investigation examines the in-plane mechanical behavior of a particular woven metal matrix composite (MMC); 8-harness (8H) satin carbon/copper (C/Cu). This is accomplished via mechanical testing as well as micromechanical modeling. While the literature is replete with experimental and modeling efforts for woven and braided polymer matrix composites, little work has been done on woven and braided MMC's. Thus, the development and understanding of woven MMC's is at an early stage. 8H satin C/Cu owes its existence to the high thermal conductivity of copper and low density and thermal expansion of carbon fibers. It is a candidate material for high heat flux applications, such as space power radiator panels. The experimental portion of this investigation consists of monotonic and cyclic tension, compression, and Iosipescu shear tests, as well as combined tension-compression tests. Tests were performed on composite specimens with three copper matrix alloy types: pure Cu, Cu-0.5 weight percent Ti (Cu-Ti), and Cu-0.7 weight percent Cr (Cu-Cr). The small alloying additions are present to promote fiber/matrix interfacial bonding. The analytical modeling effort utilizes an approach in which a local micromechanical model is embedded in a global micromechanical model. This approach differs from previously developed analytical models for woven composites in that a true repeating unit cell is analyzed. However, unlike finite element modeling of woven composites, the geometry is sufficiently idealized to allow efficient geometric discretization and efficient execution.

  18. Micromechanical and Electrical Properties of Monolithic Aluminum Nitride at High Temperatures

    NASA Technical Reports Server (NTRS)

    Goldsby, Jon C.

    2000-01-01

    Micromechanical spectroscopy of aluminum nitride reveals it to possess extremely low background internal friction at less than 1x10(exp-4) logarithmic decrement (log dec) from 20 to 1200 T. Two mechanical loss peaks were observed, the first at 350 C approximating a single Debye peak with a peak height of 60x10(exp-4) log dec. The second peak was seen at 950 'C with a peak height of 20x 10' log dec and extended from 200 to over 1200 C. These micromechanical observations manifested themselves in the electrical behavior of these materials. Electrical conduction processes were predominately intrinsic. Both mechanical and electrical relaxations appear to be thermally activated processes, with activation energies of 0.78 and 1.32 eV respectively.

  19. Application of micromechanics to the characterization of mortar by ultrasound.

    PubMed

    Hernández, M G; Anaya, J J; Izquierdo, M A G; Ullate, L G

    2002-05-01

    Mechanical properties of concrete and mortar structures can be estimated by ultrasonic non-destructive testing. When the ultrasonic velocity is known, there are standardized methods based on considering the concrete a homogeneous material. Cement composites, however, are heterogeneous and porous, and have a negative effect on the mechanical properties of structures. This work studies the impact of porosity on mechanical properties by considering concrete a multiphase material. A micromechanical model is applied in which the material is considered to consist of two phases: a solid matrix and pores. From this method, a set of expressions is obtained that relates the acoustic velocity and Young's modulus of mortar. Experimental work is based on non-destructive and destructive procedures over mortar samples whose porosity is varied. A comparison is drawn between micromechanical and standard methods, showing positive results for the method here proposed.

  20. Micromechanical cohesion force between gas hydrate particles measured under high pressure and low temperature conditions.

    PubMed

    Lee, Bo Ram; Sum, Amadeu K

    2015-04-07

    To prevent hydrate plugging conditions in the transportation of oil/gas in multiphase flowlines, one of the key processes to control is the agglomeration/deposition of hydrate particles, which are determined by the cohesive/adhesive forces. Previous studies reporting measurements of the cohesive/adhesive force between hydrate particles used cyclopentane hydrate particles in a low-pressure micromechanical force apparatus. In this study, we report the cohesive forces of particles measured in a new high-pressure micromechanical force (MMF) apparatus for ice particles, mixed (methane/ethane, 74.7:25.3) hydrate particles (Structure II), and carbon dioxide hydrate particles (Structure I). The cohesive forces are measured as a function of the contact time, contact force, temperature, and pressure, and determined from pull-off measurements. For the measurements performed of the gas hydrate particles in the gas phase, the determined cohesive force is about 30-35 mN/m, about 8 times higher than the cohesive force of CyC5 hydrates in the liquid CyC5, which is about 4.3 mN/m. We show from our results that the hydrate structure (sI with CO2 hydrates and sII with CH4/C2H6 hydrates) has no influence on the cohesive force. These results are important in the deposition of a gas-dominated system, where the hydrate particles formed in the liquid phase can then stick to the hydrate deposited in the wall exposed to the gas phase.

  1. An extended micromechanics method for probing interphase properties in polymer nanocomposites [An extended micromechanics method for overlapping geometries with application to polymer nanocomposites

    DOE PAGES

    Liu, Zeliang; Moore, John A.; Liu, Wing Kam

    2016-05-03

    Inclusions comprised on filler particles and interphase regions commonly form complex morphologies in polymer nanocomposites. Addressing these morphologies as systems of overlapping simple shapes allows for the study of dilute particles, clustered particles, and interacting interphases all in one general modeling framework. To account for the material properties in these overlapping geometries, weighted-mean and additive overlapping conditions are introduced and the corresponding inclusion-wise integral equations are formulated. An extended micromechanics method based on these overlapping conditions for linear elastic and viscoelastic heterogeneous material is then developed. An important feature of the proposed approach is that the effect of both themore » geometric overlapping (clustered particles) and physical overlapping (interacting interphases) on the effective properties can be distinguished. Lastly, we apply the extended micromechanics method to a viscoelastic polymer nanocomposite with interphase regions, and estimate the properties and thickness of the interphase region based on experimental data for carbon-black filled styrene butadiene rubbers.« less

  2. An extended micromechanics method for probing interphase properties in polymer nanocomposites [An extended micromechanics method for overlapping geometries with application to polymer nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zeliang; Moore, John A.; Liu, Wing Kam

    Inclusions comprised on filler particles and interphase regions commonly form complex morphologies in polymer nanocomposites. Addressing these morphologies as systems of overlapping simple shapes allows for the study of dilute particles, clustered particles, and interacting interphases all in one general modeling framework. To account for the material properties in these overlapping geometries, weighted-mean and additive overlapping conditions are introduced and the corresponding inclusion-wise integral equations are formulated. An extended micromechanics method based on these overlapping conditions for linear elastic and viscoelastic heterogeneous material is then developed. An important feature of the proposed approach is that the effect of both themore » geometric overlapping (clustered particles) and physical overlapping (interacting interphases) on the effective properties can be distinguished. Lastly, we apply the extended micromechanics method to a viscoelastic polymer nanocomposite with interphase regions, and estimate the properties and thickness of the interphase region based on experimental data for carbon-black filled styrene butadiene rubbers.« less

  3. Time dependent micromechanics in continuous graphite fiber/epoxy composites with fiber breaks

    NASA Astrophysics Data System (ADS)

    Zhou, Chao Hui

    Time dependent micromechanics in graphite fiber/epoxy composites around fiber breaks was investigated with micro Raman spectroscopy (MRS) and two shear-lag based composite models, a multi-fiber model (VBI) and a single fiber model (SFM), which aim at predicting the strain/stress evolutions in the composite from the matrix creep behavior and fiber strength statistics. This work is motivated by the need to understand the micromechanics and predict the creep-rupture of the composites. Creep of the unfilled epoxy was characterized under different stress levels and at temperatures up to 80°C, with two power law functions, which provided the modeling parameters used as input for the composite models. Both the VBI and the SFM models showed good agreement with the experimental data obtained with MRS, when inelasticity (interfacial debonding and/or matrix yielding) was not significant. The maximum shear stress near a fiber break relaxed at t-alpha/2 (or as (1+ talpha)-1/2) and the load recovery length increased at talpha/2(or (1+ talpha)1/2) following the model predictions. When the inelastic zone became non-negligible, the viscoelastic VBI model lost its competence, while the SFM with inelasticity showed good agreement with the MRS measurements. Instead of using the real fiber spacing, an effective fiber spacing was used in model predictions, taking into account of the radial decay of the interfacial shear stress from the fiber surface. The comparisons between MRS data and the SFM showed that inelastic zone would initiate when the shear strain at the fiber end exceeds a critical value gammac which was determined to be 5% for this composite system at room temperature and possibly a smaller value at elevated temperatures. The stress concentrations in neighboring intact fibers played important roles in the subsequent fiber failure and damage growth. The VBI model predicts a constant stress concentration factor, 1.33, for the 1st nearest intact fiber, which is in good

  4. A micromechanical study of the damage mechanics of acrylic particulate composites under thermomechanical loading

    NASA Astrophysics Data System (ADS)

    Nie, Shihua

    The main aim of this dissertation was to characterize the damage mechanism and fatigue behavior of the acrylic particulate composite. This dissertation also investigated how the failure mechanism is influenced by changes in certain parameters including the volume fraction of particle, the interfacial bonding strength, the stiffness and thickness of the interphase, and the CTE mismatch between the particle and the matrix. Monotonic uniaxial tensile and compressive testing under various temperatures and strain rates, isothermal low-cycle mechanical testing and thermal cycling of a plate with a cutout were performed. The influence of the interfacial bonding strength between the particle and the matrix on the failure mechanism of the ATH filled PMMA was investigated using in situ observations under uniaxial loading conditions. For composites with weak interfacial bonding, the debonding is the major damage mode. For composites with strong interfacial bonding, the breakage of the agglomerate of particles is the major damage mode. Experimental studies also demonstrated the significant influence of interfacial bonding strength on the fatigue life of the ATH filled PMMA. The damage was characterized in terms of the elastic modulus degradation, the load-drop parameter, the plastic strain range and the hysteresis dissipation. Identifying the internal state variables that quantify material degradation under thermomechanical loading is an active research field. In this dissertation, the entropy production, which is a measure of the irreversibility of the thermodynamic system, is used as the metric for damage. The close correlation between the damage measured in terms of elastic modulus degradation and that obtained from the finite element simulation results validates the entropy based damage evolution function. A micromechanical model for acrylic particulate composites with imperfect interfacial bonds was proposed. Acrylic particulate composites are treated as three

  5. Single crystal micromechanical resonator and fabrication methods thereof

    DOEpatents

    Olsson, Roy H.; Friedmann, Thomas A.; Homeijer, Sara Jensen; Wiwi, Michael; Hattar, Khalid Mikhiel; Clark, Blythe; Bauer, Todd; Van Deusen, Stuart B.

    2016-12-20

    The present invention relates to a single crystal micromechanical resonator. In particular, the resonator includes a lithium niobate or lithium tantalate suspended plate. Also provided are improved microfabrication methods of making resonators, which does not rely on complicated wafer bonding, layer fracturing, and mechanical polishing steps. Rather, the methods allow the resonator and its components to be formed from a single crystal.

  6. Experimental Characterization and Micromechanical Modeling of Woven Carbon/Copper Composites

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Pauly, Christopher C.; Pindera, Marek-Jerzy

    1997-01-01

    The results of an extensive experimental characterization and a preliminary analytical modeling effort for the elastoplastic mechanical behavior of 8-harness satin weave carbon/copper (C/Cu) composites are presented. Previous experimental and modeling investigations of woven composites are discussed, as is the evolution of, and motivation for, the continuing research on C/Cu composites. Experimental results of monotonic and cyclic tension, compression, and Iosipescu shear tests, and combined tension-compression tests, are presented. With regard to the test results, emphasis is placed on the effect of strain gauge size and placement, the effect of alloying the copper matrix to improve fiber-matrix bonding, yield surface characterization, and failure mechanisms. The analytical methodology used in this investigation consists of an extension of the three-dimensional generalized method of cells (GMC-3D) micromechanics model, developed by Aboudi (1994), to include inhomogeneity and plasticity effects on the subcell level. The extension of the model allows prediction of the elastoplastic mechanical response of woven composites, as represented by a true repeating unit cell for the woven composite. The model is used to examine the effects of refining the representative geometry of the composite, altering the composite overall fiber volume fraction, changing the size and placement of the strain gauge with respect to the composite's reinforcement weave, and including porosity within the infiltrated fiber yarns on the in-plane elastoplastic tensile, compressive, and shear response of 8-harness satin C/Cu. The model predictions are also compared with the appropriate monotonic experimental results.

  7. Micromechanical model of lung parenchyma hyperelasticity

    NASA Astrophysics Data System (ADS)

    Concha, Felipe; Sarabia-Vallejos, Mauricio; Hurtado, Daniel E.

    2018-03-01

    Mechanics plays a key role in respiratory physiology, as lung tissue cyclically deforms to bring air in and out the lung, a life-long process necessary for respiration. The study of regional mechanisms of deformation in lung parenchyma has received great attention to date due to its clinical relevance, as local overstretching and stress concentration in lung tissue is currently associated to pathological conditions such as lung injury during mechanical ventilation therapy. This mechanical approach to lung physiology has motivated the development of constitutive models to better understand the relation between stress and deformation in the lung. While material models proposed to date have been key in the development of whole-lung simulations, either they do not directly relate microstructural properties of alveolar tissue with coarse-scale behavior, or they require a high computational effort when based on real alveolar geometries. Furthermore, most models proposed to date have not been thoroughly validated for anisotropic deformation states, which are commonly found in normal lungs in-vivo. In this work, we develop a novel micromechanical model of lung parenchyma hyperelasticity using the framework of finite-deformation homogenization. To this end, we consider a tetrakaidecahedron unit cell with incompressible Neo-Hookean structural elements that account for the alveolar wall tissue responsible for the elastic response, and derive expressions for its effective coarse-scale behavior that directly depend on the alveolar wall elasticity, reference porosity, and two other geometrical coefficients. To validate the proposed model, we simulate the non-linear elastic response of twelve representative volume elements (RVEs) of lung parenchyma with micrometric dimensions, whose geometry is obtained from micrometric computed-tomography reconstructions of murine lungs. We show that the proposed micromechanical model accurately captures the RVEs response not only for isotropic

  8. A calibration method for the higher modes of a micro-mechanical cantilever

    NASA Astrophysics Data System (ADS)

    Shatil, N. R.; Homer, M. E.; Picco, L.; Martin, P. G.; Payton, O. D.

    2017-05-01

    Micro-mechanical cantilevers are increasingly being used as a characterisation tool in both material and biological sciences. New non-destructive applications are being developed that rely on the information encoded within the cantilever's higher oscillatory modes, such as atomic force microscopy techniques that measure the non-topographic properties of a sample. However, these methods require the spring constants of the cantilever at higher modes to be known in order to quantify their results. Here, we show how to calibrate the micro-mechanical cantilever and find the effective spring constant of any mode. The method is uncomplicated to implement, using only the properties of the cantilever and the fundamental mode that are straightforward to measure.

  9. A Micromechanics Finite Element Model for Studying the Mechanical Behavior of Spray-On Foam Insulation (SOFI)

    NASA Technical Reports Server (NTRS)

    Ghosn, Louis J.; Sullivan, Roy M.; Lerch, Bradley A.

    2006-01-01

    A micromechanics model has been constructed to study the mechanical behavior of spray-on foam insulation (SOFI) for the external tank. The model was constructed using finite elements representing the fundamental repeating unit of the SOFI microstructure. The details of the micromechanics model were based on cell observations and measured average cell dimensions discerned from photomicrographs. The unit cell model is an elongated Kelvin model (fourteen-sided polyhedron with 8 hexagonal and six quadrilateral faces), which will pack to a 100% density. The cell faces and cell edges are modeled using three-dimensional 20-node brick elements. Only one-eighth of the cell is modeled due to symmetry. By exercising the model and correlating the results with the macro-mechanical foam behavior obtained through material characterization testing, the intrinsic stiffness and Poisson s Ratio of the polymeric cell walls and edges are determined as a function of temperature. The model is then exercised to study the unique and complex temperature-dependent mechanical behavior as well as the fracture initiation and propagation at the microscopic unit cell level.

  10. Approximate Micromechanics Treatise of Composite Impact

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Handler, Louis M.

    2005-01-01

    A formalism is described for micromechanic impact of composites. The formalism consists of numerous equations which describe all aspects of impact from impactor and composite conditions to impact contact, damage progression, and penetration or containment. The formalism is based on through-the-thickness displacement increments simulation which makes it convenient to track local damage in terms of microfailure modes and their respective characteristics. A flow chart is provided to cast the formalism (numerous equations) into a computer code for embedment in composite mechanic codes and/or finite element composite structural analysis.

  11. Micromechanical and Electrical Properties of Monolithic Aluminum Nitride at High Temperatures

    NASA Technical Reports Server (NTRS)

    Goldsby, Jon C.

    2001-01-01

    Micromechanical spectroscopy of aluminum nitride reveals it to possess extremely low background internal friction at less than 1 x 10 (exp -4) logarithmic decrement (log dec.) from 20 to 1200 C. Two mechanical loss peaks were observed, the first at 350 C approximating a single Debye peak with a peak height of 60 x 10 (exp -4) log dec. The second peak was seen at 950 C with a peak height of 20 x 10 (exp -4) log dec. and extended from 200 to over 1200 C. These micromechanical observations manifested themselves in the electrical behavior of these materials. Electrical conduction processes were predominately intrinsic. Both mechanical and electrical relaxations appear to be thermally activated processes, with activation energies of 0.78 and 1.32 eV respectively.

  12. Effect of low doses beta irradiation on micromechanical properties of surface layer of injection molded polypropylene composite

    NASA Astrophysics Data System (ADS)

    Manas, David; Manas, Miroslav; Gajzlerova, Lenka; Ovsik, Martin; Kratky, Petr; Senkerik, Vojtěch; Skrobak, Adam; Danek, Michal; Manas, Martin

    2015-09-01

    The influence of beta radiation on the changes in the structure and selected properties (mechanical and thermal) was proved. Using low doses of beta radiation for 25% glass fiber filled polypropylene and its influence on the changes of micromechanical properties of surface layer has not been studied in detail so far. The specimens of 25% glass fiber filled PP were made by injection molding technology and irradiated by low doses of beta radiation (0, 15 and 33 kGy). The changes in the microstructure and micromechanical properties of surface layer were evaluated using FTIR, SEM, WAXS and instrumented microhardness test. The results of the measurements showed considerable increase in micromechanical properties (indentation hardness, indentation elastic modulus) when low doses of beta radiation are used.

  13. OSM-Classic : An optical imaging technique for accurately determining strain

    NASA Astrophysics Data System (ADS)

    Aldrich, Daniel R.; Ayranci, Cagri; Nobes, David S.

    OSM-Classic is a program designed in MATLAB® to provide a method of accurately determining strain in a test sample using an optical imaging technique. Measuring strain for the mechanical characterization of materials is most commonly performed with extensometers, LVDT (linear variable differential transistors), and strain gauges; however, these strain measurement methods suffer from their fragile nature and it is not particularly easy to attach these devices to the material for testing. To alleviate these potential problems, an optical approach that does not require contact with the specimen can be implemented to measure the strain. OSM-Classic is a software that interrogates a series of images to determine elongation in a test sample and hence, strain of the specimen. It was designed to provide a graphical user interface that includes image processing with a dynamic region of interest. Additionally, the stain is calculated directly while providing active feedback during the processing.

  14. Micromechanics of cataclastic pore collapse in limestone

    NASA Astrophysics Data System (ADS)

    Zhu, Wei; Baud, Patrick; Wong, Teng-Fong

    2010-04-01

    The analysis of compactant failure in carbonate formations hinges upon a fundamental understanding of the mechanics of inelastic compaction. Microstructural observations indicate that pore collapse in a limestone initiates at the larger pores, and microcracking dominates the deformation in the periphery of a collapsed pore. To capture these micromechanical processes, we developed a model treating the limestone as a dual porosity medium, with the total porosity partitioned between macroporosity and microporosity. The representative volume element is made up of a large pore which is surrounded by an effective medium containing the microporosity. Cataclastic yielding of this effective medium obeys the Mohr-Coulomb or Drucker-Prager criterion, with failure parameters dependent on porosity and pore size. An analytic approximation was derived for the unconfined compressive strength associated with failure due to the propagation and coalescence of pore-emanated cracks. For hydrostatic loading, identical theoretical results for the pore collapse pressure were obtained using the Mohr-Coulomb or Drucker-Prager criterion. For nonhydrostatic loading, the stress state at the onset of shear-enhanced compaction was predicted to fall on a linear cap according to the Mohr-Coulomb criterion. In contrast, nonlinear caps in qualitative agreement with laboratory data were predicted using the Drucker-Prager criterion. Our micromechanical model implies that the effective medium is significantly stronger and relatively pressure-insensitive in comparison to the bulk sample.

  15. Micromechanics of Ultrafine Particle Adhesion—Contact Models

    NASA Astrophysics Data System (ADS)

    Tomas, Jürgen

    2009-06-01

    Ultrafine, dry, cohesive and compressible powders (particle diameter d<10 μm) show a wide variety of flow problems that cause insufficient apparatus and system reliability of processing plants. Thus, the understanding of the micromechanics of particle adhesion is essential to assess the product quality and to improve the process performance in particle technology. Comprehensive models are shown that describe the elastic-plastic force-displacement and frictional moment-angle behavior of adhesive contacts of isotropic smooth spheres. By the model stiff particles with soft contacts, a sphere-sphere interaction of van der Waals forces without any contact deformation describes the stiff attractive term. But, the soft micro-contact response generates a flattened contact, i.e. plate-plate interaction, and increasing adhesion. These increasing adhesion forces between particles directly depend on this frozen irreversible deformation. Thus, the adhesion force is found to be load dependent. It contributes to the tangential forces in an elastic-plastic frictional contact with partially sticking and micro-slip within the contact plane. The load dependent rolling resistance and torque of mobilized frictional contact rotation (spin around its principal axis) are also shown. This reasonable combination of particle contact micromechanics and powder continuum mechanics is used to model analytically the macroscopic friction limits of incipient powder consolidation, yield and cohesive steady-state shear flow on physical basis.

  16. Effect of material inhomogeneity on the cyclic plastic deformation behavior at the microstructural level: micromechanics-based modeling of dual-phase steel

    NASA Astrophysics Data System (ADS)

    Paul, Surajit Kumar

    2013-07-01

    The microstructure of dual-phase (DP) steels typically consists of a soft ferrite matrix with dispersed islands of hard martensite phase. Due to the composite effect of ferrite and martensite, DP steels exhibit a unique combination of strain hardening, strength and ductility. A microstructure-based micromechanical modeling approach is adopted in this work to capture the tensile and cyclic plastic deformation behavior of DP steel. During tensile straining, strain incompatibility between the softer ferrite matrix and the harder martensite phase arises due to a difference in the flow characteristics of these two phases. Microstructural-level inhomogeneity serves as the initial imperfection, triggering strain incompatibility, strain partitioning and finally shear band localization during tensile straining. The local deformation in the ferrite phase is constrained by adjacent martensite islands, which locally results in stress triaxiality development in the ferrite phase. As the martensite distribution varies within the microstructure, the stress triaxiality also varies in a band within the microstructure. Inhomogeneous stress and strain distribution within the softer ferrite phase arises even during small tensile straining because of material inhomogeneity. The magnitude of cyclic plastic deformation within the softer ferrite phase also varies according to the stress distribution in the first-quarter cycle tensile loading. Accumulation of tensile/compressive plastic strain with number of cycles is noted in different locations within the ferrite phase during both symmetric stress and strain controlled cycling. The basic mode of cyclic plastic deformation in an inhomogeneous material is cyclic strain accumulation, i.e. ratcheting. Microstructural inhomogeneity results in cyclic strain accumulation in the aggregate DP material even in symmetric stress cycling.

  17. Computational methods for coupling microstructural and micromechanical materials response simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HOLM,ELIZABETH A.; BATTAILE,CORBETT C.; BUCHHEIT,THOMAS E.

    2000-04-01

    Computational materials simulations have traditionally focused on individual phenomena: grain growth, crack propagation, plastic flow, etc. However, real materials behavior results from a complex interplay between phenomena. In this project, the authors explored methods for coupling mesoscale simulations of microstructural evolution and micromechanical response. In one case, massively parallel (MP) simulations for grain evolution and microcracking in alumina stronglink materials were dynamically coupled. In the other, codes for domain coarsening and plastic deformation in CuSi braze alloys were iteratively linked. this program provided the first comparison of two promising ways to integrate mesoscale computer codes. Coupled microstructural/micromechanical codes were appliedmore » to experimentally observed microstructures for the first time. In addition to the coupled codes, this project developed a suite of new computational capabilities (PARGRAIN, GLAD, OOF, MPM, polycrystal plasticity, front tracking). The problem of plasticity length scale in continuum calculations was recognized and a solution strategy was developed. The simulations were experimentally validated on stockpile materials.« less

  18. Effects of fiber/matrix interactions on the interfacial deformation micromechanics of cellulose-fiber/polymer composites

    NASA Astrophysics Data System (ADS)

    Tze, William Tai-Yin

    The overall objective of this dissertation was to gain an understanding of the relationship between interfacial chemistry and the micromechanics of the cellulose-fiber/polymer composites. Regenerated cellulose (lyocell) fibers were treated with amine-, phenylamine-, phenyl-, and octadecyl-silanes, and also styrene-maleic anhydride copolymer. Inverse gas chromatography was conducted to evaluate the modified surfaces and to examine the adsorption behavior of ethylbenzene, a model compound for polystyrene, onto the fibers. Micro-composites were formed by depositing micro-droplets of polystyrene onto single fibers. The fiber was subjected to a tensile strain, and Raman spectroscopy was employed to determine the point-to-point variation of the strain- and stress-sensitive 895 cm-1 band of cellulose along the embedded region. Inverse gas chromatography studies reveal that the Ia-b values, calculated by matching the Lewis acid parameter ( KA) and basic parameter (KB) between polystyrene and different fibers, were closely correlated to the acid-base adsorption enthalpies of ethylbenzene onto the corresponding fibers. Hence, Ia-b was subsequently used as a convenient indicator for fiber/matrix acid-base interaction. The Raman micro-spectroscopic studies demonstrate that the interfacial tensile strain and stress are highest at the edge of the droplet, and these values decline from the edge region to the middle region of the embedment. The maximum of these local strains corresponds to a strain-control fracture of the matrix polymer. The minimum of the local tensile stress corresponds to the extent of fiber-to-matrix load transfer. The slope of the tensile stress profile allows for an estimation of the maximum interfacial shear stress, which is indicative of fiber/polymer (practical) adhesion. As such, a novel micro-Raman tensile technique was established for evaluating the ductile-fiber/brittle-polymer system in this study. The micro-Raman tensile technique provided maximum

  19. Micromechanics of composite laminate compression failures

    NASA Technical Reports Server (NTRS)

    Guynn, E. Gail; Bradley, Walter L.

    1988-01-01

    The purpose of this annual progress report is to summarize the work effort and results accomplished from July 1987 through July 1988 on NASA Research Grant NAG1-659 entitled Micromechanics of Composite Laminate Compressive Failure. The report contains: (1) the objective of the proposed research, (2) the summary of accomplishments, (3) a more extensive review of compression literature, (4) the planned material (and corresponding properties) received to date, (5) the results for three possible specimen geometries, experimental procedures planned, and current status of the experiments, and (6) the work planned for the next contract year.

  20. Recycling polyethylene terephthalate wastes as short fibers in Strain-Hardening Cementitious Composites (SHCC).

    PubMed

    Lin, Xiuyi; Yu, Jing; Li, Hedong; Lam, Jeffery Y K; Shih, Kaimin; Sham, Ivan M L; Leung, Christopher K Y

    2018-05-26

    As an important portion of the total plastic waste bulk but lack of reuse and recycling, the enormous amounts of polyethylene terephthalate (PET) solid wastes have led to serious environmental issues. This study explores the feasibility of recycling PET solid wastes as short fibers in Strain-Hardening Cementitious Composites (SHCCs), which exhibit strain-hardening and multiple cracking under tension, and therefore have clear advantages over conventional concrete for many construction applications. Based on micromechanical modeling, fiber dispersion and alkali resistance, the size of recycled PET fibers was first determined. Then the hydrophobic PET surface was treated with NaOH solution followed by a silane coupling agent to achieve the dual purpose of improving the fiber/matrix interfacial frictional bond (from 0.64 MPa to 0.80 MPa) and enhancing the alkali resistance for applications in alkaline cementitious environment. With surface treatment, recycling PET wastes as fibers in SHCCs is a promising approach to significantly reduce the material cost of SHCCs while disposing hazardous PET wastes in construction industry. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Observation of strain effect on the suspended graphene by polarized Raman spectroscopy

    PubMed Central

    2012-01-01

    We report the strain effect of suspended graphene prepared by micromechanical method. Under a fixed measurement orientation of scattered light, the position of the 2D peaks changes with incident polarization directions. This phenomenon is explained by a proposed mode in which the peak is effectively contributed by an unstrained and two uniaxial-strained sub-areas. The two axes are tensile strain. Compared to the unstrained sub-mode frequency of 2,672 cm−1, the tension causes a red shift. The 2D peak variation originates in that the three effective sub-modes correlate with the light polarization through different relations. We develop a method to quantitatively analyze the positions, intensities, and polarization dependences of the three sub-peaks. The analysis reflects the local strain, which changes with detected area of the graphene film. The measurement can be extended to detect the strain distribution of the film and, thus, is a promising technology on graphene characterization. PMID:23013616

  2. Predicting the Effective Elastic Properties of Polymer Bonded Explosives based on Micromechanical Methods

    NASA Astrophysics Data System (ADS)

    Wang, Jingcheng; Luo, Jingrun

    2018-04-01

    Due to the extremely high particle volume fraction (greater than 85%) and damage feature of polymer bonded explosives (PBXs), conventional micromechanical methods lead to inaccurate estimates on their effective elastic properties. According to their manufacture characteristics, a multistep approach based on micromechanical methods is proposed. PBXs are treated as pseudo poly-crystal materials consisting of equivalent composite particles (explosive crystals with binder coating), rather than two-phase composites composed of explosive particles and binder matrix. Moduli of composite spheres are obtained by generalized self-consistent method first, and the self-consistent method is modified to calculate the effective moduli of PBX. Defects and particle size distribution are considered by Mori-Tanaka method. Results show that when the multistep approach is applied to PBX 9501, estimates are far more accurate than the conventional micromechanical results. The bulk modulus is 5.75% higher, and shear modulus is 5.78% lower than the experimental values. Further analyses discover that while particle volume fraction and the binder's property have significant influences on the effective moduli of PBX, the moduli of particles present minor influences. Investigation of another particle size distribution indicates that the use of more fine particles will enhance the effective moduli of PBX.

  3. PUBLISHER'S ANNOUNCEMENT: A revised scope for Journal of Micromechanics and Microengineering A revised scope for Journal of Micromechanics and Microengineering

    NASA Astrophysics Data System (ADS)

    Forbes, Ian

    2010-05-01

    Journal of Micromechanics and Microengineering is well known for publishing excellent work in highly competitive timescales. The journal's coverage has consistently evolved to reflect the current state of the field, and from May 2010 it will revisit its scope once again. The aims of the journal remain unchanged, however: to be the first choice of authors and readers in MEMS and micro-scale research. The new scope continues to focus on highlighting the link between fabrication technologies and their capacity to create novel devices. This link will be considered paramount in the journal, and both prospective authors and readers should let it serve as an inspiration to them. The burgeoning fields of NEMS and nano-scale engineering are more explicitly supported in the new scope. Research which ten years ago would have been considered science fiction has, through the tireless efforts of the community, become reality. The Editorial Board feel it is important to reflect the growing significance of this work in the scope. The new scope, drafted by Editor-in-Chief Professor Mark Allen, and approved by the Editorial Board, is as follows: Journal of Micromechanics and Microengineering covers all aspects of microelectromechanical structures, devices, and systems, as well as micromechanics and micromechatronics. The journal focuses on original work in fabrication and integration technologies, on the micro- and nano-scale. The journal aims to highlight the link between new fabrication technologies and their capacity to create novel devices. Original work in microengineering and nanoengineering is also reported. Such work is defined as applications of these fabrication and integration technologies to structures in which key attributes of the devices or systems depend on specific micro- or nano-scale features. Such applications span the physical, chemical, electrical and biological realms. New fabrication and integration techniques for both silicon and non-silicon materials are

  4. Study on the Strain Hardening Behaviors of TWIP/TRIP Steels

    NASA Astrophysics Data System (ADS)

    Huang, T. T.; Dan, W. J.; Zhang, W. G.

    2017-10-01

    Due to the complex coupling of twinning-induced plasticity (TWIP), transformation-induced plasticity (TRIP), and dislocation glide in TWIP/TRIP steels, it is difficult as well as essential to build a comprehensive strain hardening model to describe the interactions between different deformation mechanisms ( i.e., deformation twinning, martensitic transformation, and dislocation glide) and the resulted strain hardening behaviors. To address this issue, a micromechanical model is established in this paper to predict the deformation process of TWIP/TRIP steels considering both TWIP and TRIP effects. In the proposed model, the generation of deformation twinning and martensitic transformation is controlled by the stacking fault energy (SFE) of the material. In the thermodynamic calculation of SFE, deformation temperature, chemical compositions, microstrain, and temperature rise during deformation are taken into account. Varied by experimental results, the developed model can predict the stress-strain response and strain hardening behaviors of TWIP/TRIP steels precisely. In addition, the improved strength and enhanced strain hardening in Fe-Mn-C TWIP/TRIP steels due to the increased carbon content is also analyzed, which consists with literature.

  5. Light-Actuated Micromechanical Relays for Zero-Power Infrared Detection

    DTIC Science & Technology

    2017-03-01

    Light-Actuated Micromechanical Relays for Zero-Power Infrared Detection Zhenyun Qian, Sungho Kang, Vageeswar Rajaram, Cristian Cassella, Nicol E...near-zero power infrared (IR) detection . Differently from any existing switching element, the proposed LMR relies on a plasmonically-enhanced...chip enabling the monolithic fabrication of multiple LMRs connected together to form a logic topology suitable for the detection of specific

  6. Microneedle-based analysis of the micromechanics of the metaphase spindle assembled in Xenopus laevis egg extracts

    PubMed Central

    Shimamoto, Yuta; Kapoor, Tarun M.

    2014-01-01

    SUMMARY To explain how micron-sized cellular structures generate and respond to forces we need to characterize their micromechanical properties. Here we provide a protocol to build and use a dual force-calibrated microneedle-based set-up to quantitatively analyze the micromechanics of a metaphase spindle assembled in Xenopus laevis egg extracts. This cell-free extract system allows for controlled biochemical perturbations of spindle components. We describe how the microneedles are prepared and how they can be used to apply and measure forces. A multi-mode imaging system allows tracking of microtubules, chromosomes and needle tips. This set-up can be used to analyze the viscoelastic properties of the spindle on time-scales ranging from minutes to sub-seconds. A typical experiment, along with data analysis, is also detailed. We anticipate that our protocol can be readily extended to analyze the micromechanics of other cellular structures assembled in cell-free extracts. The entire procedure can take 3-4 days. PMID:22538847

  7. Application of finite element substructuring to composite micromechanics. M.S. Thesis - Akron Univ., May 1984

    NASA Technical Reports Server (NTRS)

    Caruso, J. J.

    1984-01-01

    Finite element substructuring is used to predict unidirectional fiber composite hygral (moisture), thermal, and mechanical properties. COSMIC NASTRAN and MSC/NASTRAN are used to perform the finite element analysis. The results obtained from the finite element model are compared with those obtained from the simplified composite micromechanics equations. A unidirectional composite structure made of boron/HM-epoxy, S-glass/IMHS-epoxy and AS/IMHS-epoxy are studied. The finite element analysis is performed using three dimensional isoparametric brick elements and two distinct models. The first model consists of a single cell (one fiber surrounded by matrix) to form a square. The second model uses the single cell and substructuring to form a nine cell square array. To compare computer time and results with the nine cell superelement model, another nine cell model is constructed using conventional mesh generation techniques. An independent computer program consisting of the simplified micromechanics equation is developed to predict the hygral, thermal, and mechanical properties for this comparison. The results indicate that advanced techniques can be used advantageously for fiber composite micromechanics.

  8. Fibrous tissues growth and remodeling: Evolutionary micro-mechanical theory

    NASA Astrophysics Data System (ADS)

    Lanir, Yoram

    2017-10-01

    Living fibrous tissues are composite materials having the unique ability to adapt their size, shape, structure and mechanical properties in response to external loading. This adaptation, termed growth and remodeling (G&R), occurs throughout life and is achieved via cell-induced turnover of tissue constituents where some are degraded and new ones are produced. Realistic mathematical modeling of G&R provides insight into the basic processes, allows for hypotheses testing, and constitutes an essential tool for establishing clinical thresholds of pathological remodeling and for the production of tissue substitutes aimed to achieve target structure and properties. In this study, a general 3D micro-mechanical multi-scale theory of G&R in fibrous tissue was developed which connects between the evolution of the tissue structure and properties, and the underlying mechano-biological turnover events of its constituents. This structural approach circumvents a fundamental obstacle in modeling growth mechanics since the growth motion is not bijective. The model was realized for a flat tissue under two biaxial external loadings using data-based parameter values. The predictions show close similarity to characteristics of remodeled adult tissue including its structure, anisotropic and non-linear mechanical properties, and the onset of in situ pre-strain and pre-stress. The results suggest that these important features of living fibrous tissues evolve as they grow.

  9. Determination of atomic vacancies in InAs/GaSb strained-layer superlattices by atomic strain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Honggyu; Meng, Yifei; Kwon, Ji-Hwan

    Determining vacancy in complex crystals or nanostructures represents an outstanding crystallographic problem that has a large impact on technology, especially for semiconductors, where vacancies introduce defect levels and modify the electronic structure. However, vacancy is hard to locate and its structure is difficult to probe experimentally. Reported here are atomic vacancies in the InAs/GaSb strained-layer superlattice (SLS) determined by atomic-resolution strain mapping at picometre precision. It is shown that cation and anion vacancies in the InAs/GaSb SLS give rise to local lattice relaxations, especially the nearest atoms, which can be detected using a statistical method and confirmed by simulation. Themore » ability to map vacancy defect-induced strain and identify its location represents significant progress in the study of vacancy defects in compound semiconductors.« less

  10. Determination of atomic vacancies in InAs/GaSb strained-layer superlattices by atomic strain

    DOE PAGES

    Kim, Honggyu; Meng, Yifei; Kwon, Ji-Hwan; ...

    2018-01-01

    Determining vacancy in complex crystals or nanostructures represents an outstanding crystallographic problem that has a large impact on technology, especially for semiconductors, where vacancies introduce defect levels and modify the electronic structure. However, vacancy is hard to locate and its structure is difficult to probe experimentally. Reported here are atomic vacancies in the InAs/GaSb strained-layer superlattice (SLS) determined by atomic-resolution strain mapping at picometre precision. It is shown that cation and anion vacancies in the InAs/GaSb SLS give rise to local lattice relaxations, especially the nearest atoms, which can be detected using a statistical method and confirmed by simulation. Themore » ability to map vacancy defect-induced strain and identify its location represents significant progress in the study of vacancy defects in compound semiconductors.« less

  11. EDITORIAL: 15th European Workshop on Micromechanics (MME)

    NASA Astrophysics Data System (ADS)

    Puers, Bob

    2005-07-01

    This special issue of Journal of Micromechanics and Microengineering is entirely devoted to the fifteenth European Workshop on Micromechanics (MME), which was held in Leuven, at the Faculty Club, 5-7 September 2004. In this issue you will find a selection of papers presented at this workshop. The MME Workshop is organized every year to gather mostly European scientists and people from industry to discuss topics related to micromachining and microengineering in an informal manner. The first workshop was held at Twente University, the Netherlands, in 1989. The success of that event inaugurated a series of workshops traveling all over Europe. Looking back on the fifteen years of micromachining it is evident that the field has become more mature. More application driven research is now replacing the basic pure technology driven research we once got so excited about. Yet, half of the contributions still cover problems related to fabrication, production and reliability. Traditionally, the workshop aims to bring together young scientists in the field, with emphasis on discussions and communications in a friendly and informal atmosphere. The goal is to stimulate and to improve knowledge in the field, as well as to promote friendships between researchers. This edition of the workshop was no different. More than 70 papers were contributed, and it was decided to widen the scope with contributions also covering non-silicon technologies. This trend had already been informally introduced some years ago. After the third edition, it was decided to open up a selection of the contributed papers to a broader public by publishing them in a special issue of Journal of Micromechanics and Microengineering, and this has continued to the present day. Since the purpose of the workshop clearly is to stimulate younger scientists to enter the field, even immature research is presented there. The selection in this issue, however, aims to bring to you the more advanced level research work. Even

  12. Solitary waves in morphogenesis: Determination fronts as strain-cued strain transformations among automatous cells

    NASA Astrophysics Data System (ADS)

    Cox, Brian N.; Landis, Chad M.

    2018-02-01

    We present a simple theory of a strain pulse propagating as a solitary wave through a continuous two-dimensional population of cells. A critical strain is assumed to trigger a strain transformation, while, simultaneously, cells move as automata to tend to restore a preferred cell density. We consider systems in which the strain transformation is a shape change, a burst of proliferation, or the commencement of growth (which changes the shape of the population sheet), and demonstrate isomorphism among these cases. Numerical and analytical solutions describe a strain pulse whose height does not depend on how the strain disturbance was first launched, or the rate at which the strain transformation is achieved, or the rate constant in the rule for the restorative cell motion. The strain pulse is therefore very stable, surviving the imposition of strong perturbations: it would serve well as a timing signal in development. The automatous wave formulation is simple, with few model parameters. A strong case exists for the presence of a strain pulse during amelogenesis. Quantitative analysis reveals a simple relationship between the velocity of the leading edge of the pulse in amelogenesis and the known speed of migration of ameloblast cells. This result and energy arguments support the depiction of wave motion as an automatous cell response to strain, rather than as a response to an elastic energy gradient. The theory may also contribute to understanding the determination front in somitogenesis, moving fronts of convergent-extension transformation, and mitotic wavefronts in the syncytial drosophila embryo.

  13. A 3/D finite element approach for metal matrix composites based on micromechanical models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Svobodnik, A.J.; Boehm, H.J.; Rammerstorfer, F.G.

    Based on analytical considerations by Dvorak and Bahel-El-Din, a 3/D finite element material law has been developed for the elastic-plastic analysis of unidirectional fiber-reinforced metal matrix composites. The material law described in this paper has been implemented in the finite element code ABAQUS via the user subroutine UMAT. A constitutive law is described under the assumption that the fibers are linear-elastic and the matrix is of a von Mises-type with a Prager-Ziegler kinematic hardening rule. The uniaxial effective stress-strain relationship of the matrix in the plastic range is approximated by a Ramberg-Osgood law, a linear hardening rule or a nonhardeningmore » rule. Initial yield surface of the matrix material and for the fiber reinforced composite are compared to show the effect of reinforcement. Implementation of this material law in a finite element program is shown. Furthermore, the efficiency of substepping schemes and stress corrections for the numerical integration of the elastic-plastic stress-strain relations for anisotropic materials are investigated. The results of uniaxial monotonic tests of a boron/aluminum composite are compared to some finite element analyses based on micromechanical considerations. Furthermore a complete 3/D analysis of a tensile test specimen made of a silicon-carbide/aluminum MMC and the analysis of an MMC inlet inserted in a homogenous material are shown. 12 refs.« less

  14. Cryogenic transimpedance amplifier for micromechanical capacitive sensors.

    PubMed

    Antonio, D; Pastoriza, H; Julián, P; Mandolesi, P

    2008-08-01

    We developed a cryogenic transimpedance amplifier that works at a broad range of temperatures, from room temperature down to 4 K. The device was realized with a standard complementary metal oxide semiconductor 1.5 mum process. Measurements of current-voltage characteristics, open-loop gain, input referred noise current, and power consumption are presented as a function of temperature. The transimpedance amplifier has been successfully applied to sense the motion of a polysilicon micromechanical oscillator at low temperatures. The whole device is intended to serve as a magnetometer for microscopic superconducting samples.

  15. EDITORIAL: 16th European Workshop on Micromechanics (MME 2005)

    NASA Astrophysics Data System (ADS)

    Enoksson, Professor Peter

    2006-06-01

    This special issue of Journal of Micromechanics and Microengineering is devoted to the 16th European Workshop on Micromechanics (MME 2005), which was held in Göteborg, Sweden, at the Chalmers Conference Centre on the premises of Chalmers University of Technology, 4-6 September 2005. Göteborg is the second largest city in Sweden and is situated on the beautiful south-west coast. With its relaxed and friendly atmosphere Göteborg proudly lives up to its reputation of having the charm of a small town with all the opportunities of a big city. The MME workshop is a well recognized and established European event for creating microsensors and microactuators in the field of micromachining, microengineering and technology. The very first workshop was held at Twente University, The Netherlands, in 1989. Scientists and people from industry who are interested in the field gather annually for this event. The goals are stimulation and improvement of know-how in the field, as well as establishing cooperation and friendship between delegates. Thus MME is arranged so that people can meet in a friendly and informal atmosphere. That is why the accent is on mutual discussions around poster presentations rather than on formal oral presentations. The contributions, which came from 21 countries, were presented in four sessions and five keynote presentations. I am proud to present 24 high-quality papers from MME 2005 selected for their novelty and relevance to Journal of Micromechanics and Microengineering. Each paper passed a rigorous peer review process. May I take this opportunity to thank those authors who contributed their research to this special issue, which I hope gives an excellent overview of topics discussed at the workshop. I would also like to express my gratitude to Professor Robert Puers for advising on the selection of papers and to Dr Anke Sanz-Velasco for helping to coordinate the special issue with the Institute of Physics Publishing office at the start. I hope you

  16. Computational Simulation of the High Strain Rate Tensile Response of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.

    2002-01-01

    A research program is underway to develop strain rate dependent deformation and failure models for the analysis of polymer matrix composites subject to high strain rate impact loads. Under these types of loading conditions, the material response can be highly strain rate dependent and nonlinear. State variable constitutive equations based on a viscoplasticity approach have been developed to model the deformation of the polymer matrix. The constitutive equations are then combined with a mechanics of materials based micromechanics model which utilizes fiber substructuring to predict the effective mechanical and thermal response of the composite. To verify the analytical model, tensile stress-strain curves are predicted for a representative composite over strain rates ranging from around 1 x 10(exp -5)/sec to approximately 400/sec. The analytical predictions compare favorably to experimentally obtained values both qualitatively and quantitatively. Effective elastic and thermal constants are predicted for another composite, and compared to finite element results.

  17. Micromechanics Fatigue Damage Analysis Modeling for Fabric Reinforced Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Min, J. B.; Xue, D.; Shi, Y.

    2013-01-01

    A micromechanics analysis modeling method was developed to analyze the damage progression and fatigue failure of fabric reinforced composite structures, especially for the brittle ceramic matrix material composites. A repeating unit cell concept of fabric reinforced composites was used to represent the global composite structure. The thermal and mechanical properties of the repeating unit cell were considered as the same as those of the global composite structure. The three-phase micromechanics, the shear-lag, and the continuum fracture mechanics models were integrated with a statistical model in the repeating unit cell to predict the progressive damages and fatigue life of the composite structures. The global structure failure was defined as the loss of loading capability of the repeating unit cell, which depends on the stiffness reduction due to material slice failures and nonlinear material properties in the repeating unit cell. The present methodology is demonstrated with the analysis results evaluated through the experimental test performed with carbon fiber reinforced silicon carbide matrix plain weave composite specimens.

  18. Use of Ti plasmid DNA probes for determining tumorigenicity of agrobacterium strains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burr, T.J.; Norelli, J.L.; Katz, B.H.

    1990-06-01

    Probes consisting of T-DNA genes from the Ti plasmid of Agrobacterium tumefaciens were used for determining tumorigenicity of strains. Two {sup 32}P-labeled probes hybridized with 28 of 28 tumorigenic strains of the pathogen but not with 20 of 22 nontumorigenic strains. One probe, pTHE17, consists of all but the far left portion of the T-DNA of strain C58. Probe SmaI7 consists of SmaI fragment 7 of pTiC58, including onc genes 1, 4, and 6a and most of 2. Another probe, pAL4044, consisting of the vir region of strain Ach-5, hybridized with several nontumorigenic as well as tumorigenic strains. Colony hybridizationsmore » were done with 28 tumorigenic and 22 nontumorigenic Agrobacterium strains. About 10{sup 6} CFU of the different tumorigenic strains were detectable with this method. Southern analyses confirmed the presence or absence of Ti plasmids in strains for which tumorigenicity was questioned. Colony hybridization with the T-DNA probes provides a rapid and sensitive means for determining the tumorigenic nature of Agrobacterium strains.« less

  19. Probabilistic micromechanics for metal matrix composites

    NASA Astrophysics Data System (ADS)

    Engelstad, S. P.; Reddy, J. N.; Hopkins, Dale A.

    A probabilistic micromechanics-based nonlinear analysis procedure is developed to predict and quantify the variability in the properties of high temperature metal matrix composites. Monte Carlo simulation is used to model the probabilistic distributions of the constituent level properties including fiber, matrix, and interphase properties, volume and void ratios, strengths, fiber misalignment, and nonlinear empirical parameters. The procedure predicts the resultant ply properties and quantifies their statistical scatter. Graphite copper and Silicon Carbide Titanlum Aluminide (SCS-6 TI15) unidirectional plies are considered to demonstrate the predictive capabilities. The procedure is believed to have a high potential for use in material characterization and selection to precede and assist in experimental studies of new high temperature metal matrix composites.

  20. Micromechanics of Spray-On Foam Insulation

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Aboudi, Jacob; Arnold, Steven M.; Sullivan, Roy M.

    2007-01-01

    Understanding the thermo-mechanical response of the Space Shuttle External Tank spray-on foam insulation (SOFI) material is critical, to NASA's Return to Flight effort. This closed-cell rigid polymeric foam is used to insulate the metallic Space Shuttle External Tank, which is at cryogenic temperatures immediately prior to and during lift off. The shedding of the SOFI during ascent led to the loss of the Columbia, and eliminating/minimizing foam lass from the tank has become a priority for NASA as it seeks to resume scheduled space shuttle missions. Determining the nature of the SOFI material behavior in response to both thermal and mechanical loading plays an important role as any structural modeling of the shedding phenomenon k predicated on knowledge of the constitutive behavior of the foam. In this paper, the SOFI material has been analyzed using the High-Fidelity Generalized Method of Cells (HFGMC) micromechanics model, which has recently been extended to admit a triply-periodic 3-D repeating unit cell (RUC). Additional theoretical extensions that mere made in order to enable modeling of the closed-cell-foam material include the ability to represent internal boundaries within the RUC (to simulated internal pores) and the ability to impose an internal pressure within the simulated pores. This latter extension is crucial as two sources contribute to significant internal pressure changes within the SOFI pores. First, gas trapped in the pores during the spray process will expand or contract due to temperature changes. Second, the pore pressure will increase due to outgassing of water and other species present in the foam skeleton polymer material. With HFGMC's new pore pressure modeling capabilities, a nonlinear pressure change within the simulated pore can be imposed that accounts for both of these sources, in addition to stmdar&-thermal and mechanical loading; The triply-periodic HFGMC micromechanics model described above was implemented within NASA GRC's MAC

  1. Probabilistic Micromechanics and Macromechanics for Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Murthy, Pappu L. N.; Mital, Subodh K.; Shah, Ashwin R.

    1997-01-01

    The properties of ceramic matrix composites (CMC's) are known to display a considerable amount of scatter due to variations in fiber/matrix properties, interphase properties, interphase bonding, amount of matrix voids, and many geometry- or fabrication-related parameters, such as ply thickness and ply orientation. This paper summarizes preliminary studies in which formal probabilistic descriptions of the material-behavior- and fabrication-related parameters were incorporated into micromechanics and macromechanics for CMC'S. In this process two existing methodologies, namely CMC micromechanics and macromechanics analysis and a fast probability integration (FPI) technique are synergistically coupled to obtain the probabilistic composite behavior or response. Preliminary results in the form of cumulative probability distributions and information on the probability sensitivities of the response to primitive variables for a unidirectional silicon carbide/reaction-bonded silicon nitride (SiC/RBSN) CMC are presented. The cumulative distribution functions are computed for composite moduli, thermal expansion coefficients, thermal conductivities, and longitudinal tensile strength at room temperature. The variations in the constituent properties that directly affect these composite properties are accounted for via assumed probabilistic distributions. Collectively, the results show that the present technique provides valuable information about the composite properties and sensitivity factors, which is useful to design or test engineers. Furthermore, the present methodology is computationally more efficient than a standard Monte-Carlo simulation technique; and the agreement between the two solutions is excellent, as shown via select examples.

  2. Numerical, micro-mechanical prediction of crack growth resistance in a fibre-reinforced/brittle matrix composite

    NASA Technical Reports Server (NTRS)

    Jenkins, Michael G.; Ghosh, Asish; Salem, Jonathan A.

    1990-01-01

    Micromechanics fracture models are incorporated into three distinct fracture process zones which contribute to the crack growth resistance of fibrous composites. The frontal process zone includes microcracking, fiber debonding, and some fiber failure. The elastic process zone is related only to the linear elastic creation of new matrix and fiber fracture surfaces. The wake process zone includes fiber bridging, fiber pullout, and fiber breakage. The R-curve predictions of the model compare well with empirical results for a unidirectional, continuous fiber C/C composite. Separating the contributions of each process zone reveals the wake region to contain the dominant crack growth resistance mechanisms. Fractography showed the effects of the micromechanisms on the macroscopic fracture behavior.

  3. Reducing support loss in micromechanical ring resonators using phononic band-gap structures

    NASA Astrophysics Data System (ADS)

    Hsu, Feng-Chia; Hsu, Jin-Chen; Huang, Tsun-Che; Wang, Chin-Hung; Chang, Pin

    2011-09-01

    In micromechanical resonators, energy loss via supports into the substrates may lead to a low quality factor. To eliminate the support loss, in this paper a phononic band-gap structure is employed. We demonstrate a design of phononic-crystal (PC) strips used to support extensional wine-glass mode ring resonators to increase the quality factor. The PC strips are introduced to stop elastic-wave propagation by the band-gap and deaf-band effects. Analyses of resonant characteristics of the ring resonators and the dispersion relations, eigenmodes, and transmission properties of the PC strips are presented. With the proposed resonator architecture, the finite-element simulations show that the leaky power is effectively reduced and the stored energy inside the resonators is enhanced simultaneously as the operating frequencies of the resonators are within the band gap or deaf bands. Realization of a high quality factor micromechanical ring resonator with minimized support loss is expected.

  4. Micromechanics based simulation of ductile fracture in structural steels

    NASA Astrophysics Data System (ADS)

    Yellavajjala, Ravi Kiran

    The broader aim of this research is to develop fundamental understanding of ductile fracture process in structural steels, propose robust computational models to quantify the associated damage, and provide numerical tools to simplify the implementation of these computational models into general finite element framework. Mechanical testing on different geometries of test specimens made of ASTM A992 steels is conducted to experimentally characterize the ductile fracture at different stress states under monotonic and ultra-low cycle fatigue (ULCF) loading. Scanning electron microscopy studies of the fractured surfaces is conducted to decipher the underlying microscopic damage mechanisms that cause fracture in ASTM A992 steels. Detailed micromechanical analyses for monotonic and cyclic loading are conducted to understand the influence of stress triaxiality and Lode parameter on the void growth phase of ductile fracture. Based on monotonic analyses, an uncoupled micromechanical void growth model is proposed to predict ductile fracture. This model is then incorporated in to finite element program as a weakly coupled model to simulate the loss of load carrying capacity in the post microvoid coalescence regime for high triaxialities. Based on the cyclic analyses, an uncoupled micromechanics based cyclic void growth model is developed to predict the ULCF life of ASTM A992 steels subjected to high stress triaxialities. Furthermore, a computational fracture locus for ASTM A992 steels is developed and incorporated in to finite element program as an uncoupled ductile fracture model. This model can be used to predict the ductile fracture initiation under monotonic loading in a wide range of triaxiality and Lode parameters. Finally, a coupled microvoid elongation and dilation based continuum damage model is proposed, implemented, calibrated and validated. This model is capable of simulating the local softening caused by the various phases of ductile fracture process under

  5. A micromechanical constitutive model for the dynamic response of brittle materials "Dynamic response of marble"

    NASA Astrophysics Data System (ADS)

    Haberman, Keith

    2001-07-01

    A micromechanically based constitutive model for the dynamic inelastic behavior of brittle materials, specifically "Dionysus-Pentelicon marble" with distributed microcracking is presented. Dionysus-Pentelicon marble was used in the construction of the Parthenon, in Athens, Greece. The constitutive model is a key component in the ability to simulate this historic explosion and the preceding bombardment form cannon fire that occurred at the Parthenon in 1678. Experiments were performed by Rosakis (1999) that characterized the static and dynamic response of this unique material. A micromechanical constitutive model that was previously successfully used to model the dynamic response of granular brittle materials is presented. The constitutive model was fitted to the experimental data for marble and reproduced the experimentally observed basic uniaxial dynamic behavior quite well. This micromechanical constitutive model was then implemented into the three dimensional nonlinear lagrangain finite element code Dyna3d(1998). Implementing this methodology into the three dimensional nonlinear dynamic finite element code allowed the model to be exercised on several preliminary impact experiments. During future simulations, the model is to be used in conjunction with other numerical techniques to simulate projectile impact and blast loading on the Dionysus-Pentelicon marble and on the structure of the Parthenon.

  6. Micromechanics Models for Unsaturated, Saturated, and Dry Sands.

    DTIC Science & Technology

    1988-01-25

    AUTHOR(S) J. K. Jeyapalan , M. Thiyagar, and W. E. Saleira 13a. TYPE OF REPORT 113b TIME COVF ED 14. DATE OF REPORT (Year, Month, Day) 1S. PAGE CQUNT...8 -015 4 I MICROMECHANICS MODELS FOR UNSATURATED, SATURATED, AND DRY SANDS By Jey K. Jeyapalan M. Thiyagaram W., E. Saleira 2304 Engi neering Building...UNSAYURATED SATURATED AND DRY 2 SANDS(U) WISCONSIN UNIV-MADISON J K JEYAPALAN ET AL UN IED25 JAN 88 AFOSR-TR-88-@i54 AFOSR-84-8898 UNCLASSIFIEDI F/G 8/1

  7. Micro-mechanics of hydro-mechanical coupled processes during hydraulic fracturing in sandstone

    NASA Astrophysics Data System (ADS)

    Caulk, R.; Tomac, I.

    2017-12-01

    This contribution presents micro-mechanical study of hydraulic fracture initiation and propagation in sandstone. The Discrete Element Method (DEM) Yade software is used as a tool to model fully coupled hydro-mechanical behavior of the saturated sandstone under pressures typical for deep geo-reservoirs. Heterogeneity of sandstone strength tensile and shear parameters are introduced using statistical representation of cathodoluminiscence (CL) sandstone rock images. Weibull distribution of statistical parameter values was determined as a best match of the CL scans of sandstone grains and cement between grains. Results of hydraulic fracturing stimulation from the well bore indicate significant difference between models with the bond strengths informed from CL scans and uniform homogeneous representation of sandstone parameters. Micro-mechanical insight reveals formed hydraulic fracture typical for mode I or tensile cracking in both cases. However, the shear micro-cracks are abundant in the CL informed model while they are absent in the standard model with uniform strength distribution. Most of the mode II cracks, or shear micro-cracks, are not part of the main hydraulic fracture and occur in the near-tip and near-fracture areas. The position and occurrence of the shear micro-cracks is characterized as secondary effect which dissipates the hydraulic fracturing energy. Additionally, the shear micro-crack locations qualitatively resemble acoustic emission cloud of shear cracks frequently observed in hydraulic fracturing, and sometimes interpreted as re-activation of existing fractures. Clearly, our model does not contain pre-existing cracks and has continuous nature prior to fracturing. This observation is novel and interesting and is quantified in the paper. The shear particle contact forces field reveals significant relaxation compared to the model with uniform strength distribution.

  8. Wild Sex in Zebrafish: Loss of the Natural Sex Determinant in Domesticated Strains

    PubMed Central

    Wilson, Catherine A.; High, Samantha K.; McCluskey, Braedan M.; Amores, Angel; Yan, Yi-lin; Titus, Tom A.; Anderson, Jennifer L.; Batzel, Peter; Carvan, Michael J.; Schartl, Manfred; Postlethwait, John H.

    2014-01-01

    Sex determination can be robustly genetic, strongly environmental, or genetic subject to environmental perturbation. The genetic basis of sex determination is unknown for zebrafish (Danio rerio), a model for development and human health. We used RAD-tag population genomics to identify sex-linked polymorphisms. After verifying this “RAD-sex” method on medaka (Oryzias latipes), we studied two domesticated zebrafish strains (AB and TU), two natural laboratory strains (WIK and EKW), and two recent isolates from nature (NA and CB). All four natural strains had a single sex-linked region at the right tip of chromosome 4, enabling sex genotyping by PCR. Genotypes for the single nucleotide polymorphism (SNP) with the strongest statistical association to sex suggested that wild zebrafish have WZ/ZZ sex chromosomes. In natural strains, “male genotypes” became males and some “female genotypes” also became males, suggesting that the environment or genetic background can cause female-to-male sex reversal. Surprisingly, TU and AB lacked detectable sex-linked loci. Phylogenomics rooted on D. nigrofasciatus verified that all strains are monophyletic. Because AB and TU branched as a monophyletic clade, we could not rule out shared loss of the wild sex locus in a common ancestor despite their independent domestication. Mitochondrial DNA sequences showed that investigated strains represent only one of the three identified zebrafish haplogroups. Results suggest that zebrafish in nature possess a WZ/ZZ sex-determination mechanism with a major determinant lying near the right telomere of chromosome 4 that was modified during domestication. Strains providing the zebrafish reference genome lack key components of the natural sex-determination system but may have evolved variant sex-determining mechanisms during two decades in laboratory culture. PMID:25233988

  9. Micromechanics Analysis Code Post-Processing (MACPOST) User Guide. 1.0

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Comiskey, Michele D.; Bednarcyk, Brett A.

    1999-01-01

    As advanced composite materials have gained wider usage. the need for analytical models and computer codes to predict the thermomechanical deformation response of these materials has increased significantly. Recently, a micromechanics technique called the generalized method of cells (GMC) has been developed, which has the capability to fulfill this -oal. Tc provide a framework for GMC, the Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC) has been developed. As MAC/GMC has been updated, significant improvements have been made to the post-processing capabilities of the code. Through the MACPOST program, which operates directly within the MSC/PATRAN graphical pre- and post-processing package, a direct link between the analysis capabilities of MAC/GMC and the post-processing capabilities of MSC/PATRAN has been established. MACPOST has simplified the production, printing. and exportation of results for unit cells analyzed by MAC/GMC. MACPOST allows different micro-level quantities to be plotted quickly and easily in contour plots. In addition, meaningful data for X-Y plots can be examined. MACPOST thus serves as an important analysis and visualization tool for the macro- and micro-level data generated by MAC/GMC. This report serves as the user's manual for the MACPOST program.

  10. Micromechanical model of biphasic biomaterials with internal adhesion: Application to nanocellulose hydrogel composites.

    PubMed

    Bonilla, Mauricio R; Lopez-Sanchez, P; Gidley, M J; Stokes, J R

    2016-01-01

    The mechanical properties of hydrated biomaterials are non-recoverable upon unconfined compression if adhesion occurs between the structural components in the material upon fluid loss and apparent plastic behaviour. We explore these micromechanical phenomena by introducing an aggregation force and a critical yield pressure into the constitutive biphasic formulation for transversely isotropic tissues. The underlying hypothesis is that continual fluid pressure build-up during compression temporarily supresses aggregation. Once compression stops and the pressure falls below some critical value, internal aggregation occurs over a time scale comparable to the poroelastic time. We demonstrate this model by predicting the mechanical response of bacterial nanocellulose hydrogel composites, which are promising biomaterials and a structural mimetic for the plant cell wall. Cross-linking of cellulose by xyloglucan creates an extensional resistance and substantially increases the compressive modulus under large compression and densification. In comparison, incorporating non-crosslinking arabinoxylan into the hydrogel has little effect on its mechanics at the strain rates investigated. These results assist in elucidating the mechanical role of these polysaccharides in the complex plant cell wall structure. They also suggest xyloglucan is a suitable candidate to tailor the stiffness of nanocellulose hydrogels in biomaterial design, which includes modulating cell-adhesion in tissue engineering applications. The model and overall approach may be utilised to characterise and design a myriad of biomaterials and mammalian tissues, particularly those with a fibrillar structure. The mechanical properties of hydrated biomaterials can be non-recoverable upon compression due to increased adhesion occurring between the structural components in the material. Cellulose-hemicellulose composite hydrogels constitute a classical example of this phenomenon, since fibres can freely re-orient and

  11. Micromechanical models for textile structural composites

    NASA Technical Reports Server (NTRS)

    Marrey, Ramesh V.; Sankar, Bhavani V.

    1995-01-01

    The objective is to develop micromechanical models for predicting the stiffness and strength properties of textile composite materials. Two models are presented to predict the homogeneous elastic constants and coefficients of thermal expansion of a textile composite. The first model is based on rigorous finite element analysis of the textile composite unit-cell. Periodic boundary conditions are enforced between opposite faces of the unit-cell to simulate deformations accurately. The second model implements the selective averaging method (SAM), which is based on a judicious combination of stiffness and compliance averaging. For thin textile composites, both models can predict the plate stiffness coefficients and plate thermal coefficients. The finite element procedure is extended to compute the thermal residual microstresses, and to estimate the initial failure envelope for textile composites.

  12. Micromechanical Switches on GaAs for Microwave Applications

    NASA Technical Reports Server (NTRS)

    Randall, John N.; Goldsmith, Chuck; Denniston, David; Lin, Tsen-Hwang

    1995-01-01

    In this presentation, we describe the fabrication of micro-electro-mechanical system (MEMS) devices, in particular, of low-frequency multi-element electrical switches using SiO2 cantilevers. The switches discussed are related to micromechanical membrane structures used to perform switching of optical signals on silicon substrates. These switches use a thin metal membrane which is actuated by an electrostatic potential, causing the switch to make or break contact. The advantages include: superior isolation, high power handling capabilities, high radiation hardening, very low power operations, and the ability to integrate onto GaAs monolithic microwave integrated circuit (MMIC) chips.

  13. Micromechanical analysis of thermo-inelastic multiphase short-fiber composites

    NASA Technical Reports Server (NTRS)

    Aboudi, Jacob

    1994-01-01

    A micromechanical formulation is presented for the prediction of the overall thermo-inelastic behavior of multiphase composites which consist of short fibers. The analysis is an extension of the generalized method of cells that was previously derived for inelastic composites with continuous fibers, and the reliability of which was critically examined in several situations. The resulting three dimensional formulation is extremely general, wherein the analysis of thermo-inelastic composites with continuous fibers as well as particulate and porous inelastic materials are merely special cases.

  14. Analysis of Fiber Clustering in Composite Materials Using High-Fidelity Multiscale Micromechanics

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Aboudi, Jacob; Arnold, Steven M.

    2015-01-01

    A new multiscale micromechanical approach is developed for the prediction of the behavior of fiber reinforced composites in presence of fiber clustering. The developed method is based on a coupled two-scale implementation of the High-Fidelity Generalized Method of Cells theory, wherein both the local and global scales are represented using this micromechanical method. Concentration tensors and effective constitutive equations are established on both scales and linked to establish the required coupling, thus providing the local fields throughout the composite as well as the global properties and effective nonlinear response. Two nondimensional parameters, in conjunction with actual composite micrographs, are used to characterize the clustering of fibers in the composite. Based on the predicted local fields, initial yield and damage envelopes are generated for various clustering parameters for a polymer matrix composite with both carbon and glass fibers. Nonlinear epoxy matrix behavior is also considered, with results in the form of effective nonlinear response curves, with varying fiber clustering and for two sets of nonlinear matrix parameters.

  15. Mineral and water content of A. gigas scales determine local micromechanical properties and energy dissipation mechanisms

    NASA Astrophysics Data System (ADS)

    Troncoso, Omar P.; Gigos, Florian; Torres, Fernando G.

    2017-11-01

    Arapaima gigas scales are natural laminated composite materials made of individual layers with different degrees of mineralization, accompanied of varying mechanical properties. This natural design provides scales with hardness and flexibility, and can serve as a source of inspiration for the development of new layered composites with a hard surface and flexible base. In this paper, we have carried out cyclic micro-indentation tests on both; the internal and the highly mineralized external surface of air dried and wet scales, in order to assess the variation of their local micromechanical properties with regard to the mineral and water content. The load-penetration (P-h) curves showed that creep takes place throughout the application of a constant force during the micro-indentation tests, confirming the time dependent response of A. gigas scales. A model that accounted for the elastic, plastic and viscous responses of the samples was used to fit the experimental results. The penetration depth during loading and creep, as well as the energy dissipated are dependent on the water content. The used model suggests that the viscous response of the internal layer increases with the water content.

  16. Dynamic Evolution Of Off-Fault Medium During An Earthquake: A Micromechanics Based Model

    NASA Astrophysics Data System (ADS)

    Thomas, Marion Y.; Bhat, Harsha S.

    2018-05-01

    Geophysical observations show a dramatic drop of seismic wave speeds in the shallow off-fault medium following earthquake ruptures. Seismic ruptures generate, or reactivate, damage around faults that alter the constitutive response of the surrounding medium, which in turn modifies the earthquake itself, the seismic radiation, and the near-fault ground motion. We present a micromechanics based constitutive model that accounts for dynamic evolution of elastic moduli at high-strain rates. We consider 2D in-plane models, with a 1D right lateral fault featuring slip-weakening friction law. The two scenarios studied here assume uniform initial off-fault damage and an observationally motivated exponential decay of initial damage with fault normal distance. Both scenarios produce dynamic damage that is consistent with geological observations. A small difference in initial damage actively impacts the final damage pattern. The second numerical experiment, in particular, highlights the complex feedback that exists between the evolving medium and the seismic event. We show that there is a unique off-fault damage pattern associated with supershear transition of an earthquake rupture that could be potentially seen as a geological signature of this transition. These scenarios presented here underline the importance of incorporating the complex structure of fault zone systems in dynamic models of earthquakes.

  17. Dynamic Evolution Of Off-Fault Medium During An Earthquake: A Micromechanics Based Model

    NASA Astrophysics Data System (ADS)

    Thomas, M. Y.; Bhat, H. S.

    2017-12-01

    Geophysical observations show a dramatic drop of seismic wave speeds in the shallow off-fault medium following earthquake ruptures. Seismic ruptures generate, or reactivate, damage around faults that alter the constitutive response of the surrounding medium, which in turn modifies the earthquake itself, the seismic radiation, and the near-fault ground motion. We present a micromechanics based constitutive model that accounts for dynamic evolution of elastic moduli at high-strain rates. We consider 2D in-plane models, with a 1D right lateral fault featuring slip-weakening friction law. The two scenarios studied here assume uniform initial off-fault damage and an observationally motivated exponential decay of initial damage with fault normal distance. Both scenarios produce dynamic damage that is consistent with geological observations. A small difference in initial damage actively impacts the final damage pattern. The second numerical experiment, in particular, highlights the complex feedback that exists between the evolving medium and the seismic event. We show that there is a unique off-fault damage pattern associated with supershear transition of an earthquake rupture that could be potentially seen as a geological signature of this transition. These scenarios presented here underline the importance of incorporating the complex structure of fault zone systems in dynamic models of earthquakes.

  18. Micro-mechanical modelling of cellulose aerogels from molten salt hydrates.

    PubMed

    Rege, Ameya; Schestakow, Maria; Karadagli, Ilknur; Ratke, Lorenz; Itskov, Mikhail

    2016-09-14

    In this paper, a generalised micro-mechanical model capable of capturing the mechanical behaviour of polysaccharidic aerogels, in particular cellulose aerogels, is proposed. To this end, first the mechanical structure and properties of these highly nanoporous cellulose aerogels prepared from aqueous salt hydrate melts (calcium thiocyanate, Ca(SCN)2·6H2O and zinc chloride, ZnCl2·4H2O) are studied. The cellulose content within these aerogels is found to have a direct relation to the microstructural quantities such as the fibril length and diameter. This, along with porosity, appears to influence the resulting mechanical properties. Furthermore, experimental characterisation of cellulose aerogels was done using scanning electron microscopy (SEM), pore-size data analysis, and compression tests. Cellulose aerogels are of a characteristic cellular microstructures and accordingly a network formed by square shaped cells is considered in the micro-mechanical model proposed in this paper. This model is based on the non-linear bending and collapse of such cells of varying pore sizes. The extended Euler-Bernoulli beam theory for large deflections is used to describe the bending in the cell walls. The proposed model is physically motivated and demonstrates a good agreement with our experimental data of both ZnCl2 and Ca(SCN)2 based cellulose aerogels with different cellulose contents.

  19. Linear micromechanical stepping drive for pinhole array positioning

    NASA Astrophysics Data System (ADS)

    Endrödy, Csaba; Mehner, Hannes; Grewe, Adrian; Hoffmann, Martin

    2015-05-01

    A compact linear micromechanical stepping drive for positioning a 7 × 5.5 mm2 optical pinhole array is presented. The system features a step size of 13.2 µm and a full displacement range of 200 µm. The electrostatic inch-worm stepping mechanism shows a compact design capable of positioning a payload 50% of its own weight. The stepping drive movement, step sizes and position accuracy are characterized. The actuated pinhole array is integrated in a confocal chromatic hyperspectral imaging system, where coverage of the object plane, and therefore the useful picture data, can be multiplied by 14 in contrast to a non-actuated array.

  20. Determining Individual Phase Flow Properties in a Quench and Partitioning Steel with In Situ High-Energy X-Ray Diffraction and Multiphase Elasto-Plastic Self-Consistent Method

    NASA Astrophysics Data System (ADS)

    Hu, Xiaohua; Choi, Kyoo Sil; Sun, Xin; Ren, Yang; Wang, Yangdong

    2016-12-01

    The micromechanical properties of the constituent phases were characterized for advanced high-strength steels (AHSS) produced by a quenching and partitioning (Q&P) process with in situ tensile loading under synchrotron-based, high-energy X-ray diffraction. The constituent phases present are retained austenite and three martensites (tempered, untampered, and freshly formed martensites). For the material investigated, the 200 and 220 lattice strains of the retained austenite phase were calculated by examining the changes of the X-ray diffraction peak positions during deformation. The 200 and 211 lattice strains of the various martensitic phases with similar crystal structures were determined by separating their overlapped diffraction peaks. Apart from tempered and untempered martensite, the diffraction peaks of freshly formed martensite as a result of austenite-to-martensite transformation can also be separated due to a high initial austenite volume fraction. The phase stresses are first estimated with an empirical relationship through the X-ray diffraction elastic constants. A multiphase elasto-plastic self-consistent model is next used for more accurate determination of the constitutive behaviors of the various phases by comparing the predicted lattice strain distributions and global stress-strain curves with the measured ones. The determined constitutive laws will be used for microstructure-based modeling for sheet formability of the Q&P AHSS steel.

  1. Micromechanics analysis of space simulated thermal deformations and stresses in continuous fiber reinforced composites

    NASA Technical Reports Server (NTRS)

    Bowles, David E.

    1990-01-01

    Space simulated thermally induced deformations and stresses in continuous fiber reinforced composites were investigated with a micromechanics analysis. The investigation focused on two primary areas. First, available explicit expressions for predicting the effective coefficients of thermal expansion (CTEs) for a composite were compared with each other, and with a finite element (FE) analysis, developed specifically for this study. Analytical comparisons were made for a wide range of fiber/matrix systems, and predicted values were compared with experimental data. The second area of investigation focused on the determination of thermally induced stress fields in the individual constituents. Stresses predicted from the FE analysis were compared to those predicted from a closed-form solution to the composite cylinder (CC) model, for two carbon fiber/epoxy composites. A global-local formulation, combining laminated plate theory and FE analysis, was used to determine the stresses in multidirectional laminates. Thermally induced damage initiation predictions were also made.

  2. Exemplar for simulation challenges: Large-deformation micromechanics of Sylgard 184/glass microballoon syntactic foams.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Judith Alice; Long, Kevin Nicholas

    2018-05-01

    Sylgard® 184/Glass Microballoon (GMB) potting material is currently used in many NW systems. Analysts need a macroscale constitutive model that can predict material behavior under complex loading and damage evolution. To address this need, ongoing modeling and experimental efforts have focused on study of damage evolution in these materials. Micromechanical finite element simulations that resolve individual GMB and matrix components promote discovery and better understanding of the material behavior. With these simulations, we can study the role of the GMB volume fraction, time-dependent damage, behavior under confined vs. unconfined compression, and the effects of partial damage. These simulations are challengingmore » and push the boundaries of capability even with the high performance computing tools available at Sandia. We summarize the major challenges and the current state of this modeling effort, as an exemplar of micromechanical modeling needs that can motivate advances in future computing efforts.« less

  3. Development, Implementation and Application of Micromechanical Analysis Tools for Advanced High Temperature Composites

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This document contains the final report to the NASA Glenn Research Center (GRC) for the research project entitled Development, Implementation, and Application of Micromechanical Analysis Tools for Advanced High-Temperature Composites. The research supporting this initiative has been conducted by Dr. Brett A. Bednarcyk, a Senior Scientist at OM in Brookpark, Ohio from the period of August 1998 to March 2005. Most of the work summarized herein involved development, implementation, and application of enhancements and new capabilities for NASA GRC's Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC) software package. When the project began, this software was at a low TRL (3-4) and at release version 2.0. Due to this project, the TRL of MAC/GMC has been raised to 7 and two new versions (3.0 and 4.0) have been released. The most important accomplishments with respect to MAC/GMC are: (1) A multi-scale framework has been built around the software, enabling coupled design and analysis from the global structure scale down to the micro fiber-matrix scale; (2) The software has been expanded to analyze smart materials; (3) State-of-the-art micromechanics theories have been implemented and validated within the code; (4) The damage, failure, and lifing capabilities of the code have been expanded from a very limited state to a vast degree of functionality and utility; and (5) The user flexibility of the code has been significantly enhanced. MAC/GMC is now the premier code for design and analysis of advanced composite and smart materials. It is a candidate for the 2005 NASA Software of the Year Award. The work completed over the course of the project is summarized below on a year by year basis. All publications resulting from the project are listed at the end of this report.

  4. Multiscale Fiber Kinking: Computational Micromechanics and a Mesoscale Continuum Damage Mechanics Models

    NASA Technical Reports Server (NTRS)

    Herraez, Miguel; Bergan, Andrew C.; Gonzalez, Carlos; Lopes, Claudio S.

    2017-01-01

    In this work, the fiber kinking phenomenon, which is known as the failure mechanism that takes place when a fiber reinforced polymer is loaded under longitudinal compression, is studied. A computational micromechanics model is employed to interrogate the assumptions of a recently developed mesoscale continuum damage mechanics (CDM) model for fiber kinking based on the deformation gradient decomposition (DGD) and the LaRC04 failure criteria.

  5. Strain-assisted optomechanical coupling of polariton condensate spin to a micromechanical resonator

    NASA Astrophysics Data System (ADS)

    Be'er, O.; Ohadi, H.; del Valle-Inclan Redondo, Y.; Ramsay, A. J.; Tsintzos, S. I.; Hatzopoulos, Z.; Savvidis, P. G.; Baumberg, J. J.

    2017-12-01

    We report spin and intensity coupling of an exciton-polariton condensate to the mechanical vibrations of a circular membrane microcavity. We optically drive the microcavity resonator at the lowest mechanical resonance frequency while creating an optically trapped spin-polarized polariton condensate in different locations on the microcavity and observe spin and intensity oscillations of the condensate at the vibration frequency of the resonator. Spin oscillations are induced by vibrational strain driving, whilst the modulation of the optical trap due to the displacement of the membrane causes intensity oscillations in the condensate emission. Our results demonstrate spin-phonon coupling in a macroscopically coherent condensate.

  6. Detection of electromagnetic radiation using micromechanical multiple quantum wells structures

    DOEpatents

    Datskos, Panagiotis G [Knoxville, TN; Rajic, Slobodan [Knoxville, TN; Datskou, Irene [Knoxville, TN

    2007-07-17

    An apparatus and method for detecting electromagnetic radiation employs a deflectable micromechanical apparatus incorporating multiple quantum wells structures. When photons strike the quantum-well structure, physical stresses are created within the sensor, similar to a "bimetallic effect." The stresses cause the sensor to bend. The extent of deflection of the sensor can be measured through any of a variety of conventional means to provide a measurement of the photons striking the sensor. A large number of such sensors can be arranged in a two-dimensional array to provide imaging capability.

  7. Progress on micromechanical inertial guidance system

    NASA Astrophysics Data System (ADS)

    Poth, Tim; Elwell, John

    1992-02-01

    The development of a lightweight inertial measurement units (IMUs) is described which uses micromechanical gyroscopes and accelerometers. The IMU concept is described in terms of the silicon components of the instrument and the projected size, cost, and accuracies. The gyroscopes and accelerometers are chemically etched from wafers of single-crystal silicon that can yield up to 4000 single instruments from one 4-inch wafer. Particular emphasis is placed on the control-loop analysis, designing the electronics, and increasing the instrument signal. Attention is given to the development of a buffer amplifier that is fabricated on the same substrate as the instrument to minimize readout noise. These advances are important for improving the signal-to-noise ratio, and 12 hrs of testing data show that the control and readout electronics are responsible for most of the residual walk. The IMUs have potential applications in automobile skid detectors and airbags, GPS navigation systems, and in aerospace guidance systems where weight is a primary concern.

  8. Automatically produced FRP beams with embedded FOS in complex geometry: process, material compatibility, micromechanical analysis, and performance tests

    NASA Astrophysics Data System (ADS)

    Gabler, Markus; Tkachenko, Viktoriya; Küppers, Simon; Kuka, Georg G.; Habel, Wolfgang R.; Milwich, Markus; Knippers, Jan

    2012-04-01

    The main goal of the presented work was to evolve a multifunctional beam composed out of fiber reinforced plastics (FRP) and an embedded optical fiber with various fiber Bragg grating sensors (FBG). These beams are developed for the use as structural member for bridges or industrial applications. It is now possible to realize large scale cross sections, the embedding is part of a fully automated process and jumpers can be omitted in order to not negatively influence the laminate. The development includes the smart placement and layout of the optical fibers in the cross section, reliable strain transfer, and finally the coupling of the embedded fibers after production. Micromechanical tests and analysis were carried out to evaluate the performance of the sensor. The work was funded by the German ministry of economics and technology (funding scheme ZIM). Next to the authors of this contribution, Melanie Book with Röchling Engineering Plastics KG (Haren/Germany; Katharina Frey with SAERTEX GmbH & Co. KG (Saerbeck/Germany) were part of the research group.

  9. Strain rate sensitivity of the tensile strength of two silicon carbides: experimental evidence and micromechanical modelling

    NASA Astrophysics Data System (ADS)

    Zinszner, Jean-Luc; Erzar, Benjamin; Forquin, Pascal

    2017-01-01

    Ceramic materials are commonly used to design multi-layer armour systems thanks to their favourable physical and mechanical properties. However, during an impact event, fragmentation of the ceramic plate inevitably occurs due to its inherent brittleness under tensile loading. Consequently, an accurate model of the fragmentation process is necessary in order to achieve an optimum design for a desired armour configuration. In this work, shockless spalling tests have been performed on two silicon carbide grades at strain rates ranging from 103 to 104 s-1 using a high-pulsed power generator. These spalling tests characterize the tensile strength strain rate sensitivity of each ceramic grade. The microstructural properties of the ceramics appear to play an important role on the strain rate sensitivity and on the dynamic tensile strength. Moreover, this experimental configuration allows for recovering damaged, but unbroken specimens, giving unique insight on the fragmentation process initiated in the ceramics. All the collected data have been compared with corresponding results of numerical simulations performed using the Denoual-Forquin-Hild anisotropic damage model. Good agreement is observed between numerical simulations and experimental data in terms of free surface velocity, size and location of the damaged zones along with crack density in these damaged zones. This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.

  10. Strain rate sensitivity of the tensile strength of two silicon carbides: experimental evidence and micromechanical modelling.

    PubMed

    Zinszner, Jean-Luc; Erzar, Benjamin; Forquin, Pascal

    2017-01-28

    Ceramic materials are commonly used to design multi-layer armour systems thanks to their favourable physical and mechanical properties. However, during an impact event, fragmentation of the ceramic plate inevitably occurs due to its inherent brittleness under tensile loading. Consequently, an accurate model of the fragmentation process is necessary in order to achieve an optimum design for a desired armour configuration. In this work, shockless spalling tests have been performed on two silicon carbide grades at strain rates ranging from 10 3 to 10 4  s -1 using a high-pulsed power generator. These spalling tests characterize the tensile strength strain rate sensitivity of each ceramic grade. The microstructural properties of the ceramics appear to play an important role on the strain rate sensitivity and on the dynamic tensile strength. Moreover, this experimental configuration allows for recovering damaged, but unbroken specimens, giving unique insight on the fragmentation process initiated in the ceramics. All the collected data have been compared with corresponding results of numerical simulations performed using the Denoual-Forquin-Hild anisotropic damage model. Good agreement is observed between numerical simulations and experimental data in terms of free surface velocity, size and location of the damaged zones along with crack density in these damaged zones.This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'. © 2016 The Author(s).

  11. Strain rate sensitivity of the tensile strength of two silicon carbides: experimental evidence and micromechanical modelling

    PubMed Central

    Erzar, Benjamin

    2017-01-01

    Ceramic materials are commonly used to design multi-layer armour systems thanks to their favourable physical and mechanical properties. However, during an impact event, fragmentation of the ceramic plate inevitably occurs due to its inherent brittleness under tensile loading. Consequently, an accurate model of the fragmentation process is necessary in order to achieve an optimum design for a desired armour configuration. In this work, shockless spalling tests have been performed on two silicon carbide grades at strain rates ranging from 103 to 104 s−1 using a high-pulsed power generator. These spalling tests characterize the tensile strength strain rate sensitivity of each ceramic grade. The microstructural properties of the ceramics appear to play an important role on the strain rate sensitivity and on the dynamic tensile strength. Moreover, this experimental configuration allows for recovering damaged, but unbroken specimens, giving unique insight on the fragmentation process initiated in the ceramics. All the collected data have been compared with corresponding results of numerical simulations performed using the Denoual–Forquin–Hild anisotropic damage model. Good agreement is observed between numerical simulations and experimental data in terms of free surface velocity, size and location of the damaged zones along with crack density in these damaged zones. This article is part of the themed issue ‘Experimental testing and modelling of brittle materials at high strain rates’. PMID:27956504

  12. Interfacial Micromechanics in Fibrous Composites: Design, Evaluation, and Models

    PubMed Central

    Lei, Zhenkun; Li, Xuan; Qin, Fuyong; Qiu, Wei

    2014-01-01

    Recent advances of interfacial micromechanics in fiber reinforced composites using micro-Raman spectroscopy are given. The faced mechanical problems for interface design in fibrous composites are elaborated from three optimization ways: material, interface, and computation. Some reasons are depicted that the interfacial evaluation methods are difficult to guarantee the integrity, repeatability, and consistency. Micro-Raman study on the fiber interface failure behavior and the main interface mechanical problems in fibrous composites are summarized, including interfacial stress transfer, strength criterion of interface debonding and failure, fiber bridging, frictional slip, slip transition, and friction reloading. The theoretical models of above interface mechanical problems are given. PMID:24977189

  13. Antibiotic Resistance Determinants in a Pseudomonas putida Strain Isolated from a Hospital

    PubMed Central

    Duque, Estrella; Fernández, Matilde; Molina-Santiago, Carlos; Roca, Amalia; Porcel, Mario; de la Torre, Jesús; Segura, Ana; Plesiat, Patrick; Jeannot, Katy; Ramos, Juan-Luis

    2014-01-01

    Environmental microbes harbor an enormous pool of antibiotic and biocide resistance genes that can impact the resistance profiles of animal and human pathogens via horizontal gene transfer. Pseudomonas putida strains are ubiquitous in soil and water but have been seldom isolated from humans. We have established a collection of P. putida strains isolated from in-patients in different hospitals in France. One of the isolated strains (HB3267) kills insects and is resistant to the majority of the antibiotics used in laboratories and hospitals, including aminoglycosides, ß-lactams, cationic peptides, chromoprotein enediyne antibiotics, dihydrofolate reductase inhibitors, fluoroquinolones and quinolones, glycopeptide antibiotics, macrolides, polyketides and sulfonamides. Similar to other P. putida clinical isolates the strain was sensitive to amikacin. To shed light on the broad pattern of antibiotic resistance, which is rarely found in clinical isolates of this species, the genome of this strain was sequenced and analysed. The study revealed that the determinants of multiple resistance are both chromosomally-borne as well as located on the pPC9 plasmid. Further analysis indicated that pPC9 has recruited antibiotic and biocide resistance genes from environmental microorganisms as well as from opportunistic and true human pathogens. The pPC9 plasmid is not self-transmissible, but can be mobilized by other bacterial plasmids making it capable of spreading antibiotic resistant determinants to new hosts. PMID:24465371

  14. Nanoindentation analysis of the micromechanical anisotropy in mouse cortical bone

    PubMed Central

    Balmelli, Anna; Carnelli, Davide; Courty, Diana; Müller, Ralph

    2017-01-01

    Studies investigating micromechanical properties in mouse cortical bone often solely focus on the mechanical behaviour along the long axis of the bone. Therefore, data on the anisotropy of mouse cortical bone is scarce. The aim of this study is the first-time evaluation of the anisotropy ratio between the longitudinal and transverse directions of reduced modulus and hardness in mouse femurs by using the nanoindentation technique. For this purpose, nine 22-week-old mice (C57BL/6) were sacrificed and all femurs extracted. A total of 648 indentations were performed with a Berkovich tip in the proximal (P), central (C) and distal (D) regions of the femoral shaft in the longitudinal and transverse directions. Higher values for reduced modulus are obtained for indentations in the longitudinal direction, with anisotropy ratios of 1.72 ± 0.40 (P), 1.75 ± 0.69 (C) and 1.34 ± 0.30 (D). Hardness is also higher in the longitudinal direction, with anisotropic ratios of 1.35 ± 0.27 (P), 1.35 ± 0.47 (C) and 1.17 ± 0.19 (D). We observed a significant anisotropy in the micromechanical properties of the mouse femur, but the correlation for reduced modulus and hardness between the two directions is low (r2 < 0.3) and not significant. Therefore, we highly recommend performing independent indentation testing in both the longitudinal and transverse directions when knowledge of the tissue mechanical behaviour along multiple directions is required. PMID:28386450

  15. Advances in Micromechanics Modeling of Composites Structures for Structural Health Monitoring

    NASA Astrophysics Data System (ADS)

    Moncada, Albert

    Although high performance, light-weight composites are increasingly being used in applications ranging from aircraft, rotorcraft, weapon systems and ground vehicles, the assurance of structural reliability remains a critical issue. In composites, damage is absorbed through various fracture processes, including fiber failure, matrix cracking and delamination. An important element in achieving reliable composite systems is a strong capability of assessing and inspecting physical damage of critical structural components. Installation of a robust Structural Health Monitoring (SHM) system would be very valuable in detecting the onset of composite failure. A number of major issues still require serious attention in connection with the research and development aspects of sensor-integrated reliable SHM systems for composite structures. In particular, the sensitivity of currently available sensor systems does not allow detection of micro level damage; this limits the capability of data driven SHM systems. As a fundamental layer in SHM, modeling can provide in-depth information on material and structural behavior for sensing and detection, as well as data for learning algorithms. This dissertation focuses on the development of a multiscale analysis framework, which is used to detect various forms of damage in complex composite structures. A generalized method of cells based micromechanics analysis, as implemented in NASA's MAC/GMC code, is used for the micro-level analysis. First, a baseline study of MAC/GMC is performed to determine the governing failure theories that best capture the damage progression. The deficiencies associated with various layups and loading conditions are addressed. In most micromechanics analysis, a representative unit cell (RUC) with a common fiber packing arrangement is used. The effect of variation in this arrangement within the RUC has been studied and results indicate this variation influences the macro-scale effective material properties and

  16. Simulation of enamel wear for reconstruction of diet and feeding behavior in fossil animals: A micromechanics approach.

    PubMed

    Constantino, Paul J; Borrero-Lopez, Oscar; Pajares, Antonia; Lawn, Brian R

    2016-01-01

    The deformation and wear events that underlie microwear and macrowear signals commonly used for dietary reconstruction in fossil animals can be replicated and quantified by controlled laboratory tests on extracted tooth specimens in conjunction with fundamental micromechanics analysis. Key variables governing wear relations include angularity, stiffness (modulus), and size of the contacting particle, along with material properties of enamel. Both axial and sliding contacts can result in the removal of tooth enamel. The degree of removal, characterized by a "wear coefficient," varies strongly with particle content at the occlusal interface. Conditions leading to a transition from mild to severe wear are discussed. Measurements of wear traces can provide information about contact force and particle shape. The potential utility of the micromechanics methodology as an adjunct for investigating tooth durability and reconstructing diet is explored. © 2015 WILEY Periodicals, Inc.

  17. Use of biochemical kinetic data to determine strain relatedness among Salmonella enterica subsp. enterica isolates.

    PubMed

    de la Torre, E; Tello, M; Mateu, E M; Torre, E

    2005-11-01

    Classical biotyping characterizes strains by creating biotype profiles that consider only positive and negative results for a predefined set of biochemical tests. This method allows Salmonella subspecies to be distinguished but does not allow serotypes and phage types to be distinguished. The objective of this study was to determine the relatedness of isolates belonging to distinct Salmonella enterica subsp. enterica serotypes by using a refined biotyping process that considers the kinetics at which biochemical reactions take place. Using a Vitek GNI+ card for the identification of gram-negative organisms, we determined the biochemical kinetic reactions (28 biochemical tests) of 135 Salmonella enterica subsp. enterica strains of pig origin collected in Spain from 1997 to 2002 (59 Salmonella serotype Typhimurium strains, 25 Salmonella serotype Typhimurium monophasic variant strains, 25 Salmonella serotype Anatum strains, 12 Salmonella serotype Tilburg strains, 7 Salmonella serotype Virchow strains, 6 Salmonella serotype Choleraesuis strains, and 1 Salmonella enterica serotype 4,5,12:-:- strain). The results were expressed as the colorimetric and turbidimetric changes (in percent) and were used to enhance the classical biotype profile by adding kinetic categories. A hierarchical cluster analysis was performed by using the enhanced profiles and resulted in 14 clusters. Six major clusters grouped 94% of all isolates with a similarity of > or =95% within any given cluster, and eight clusters contained a single isolate. The six major clusters grouped not only serotypes of the same type but also phenotypic serotype variations into individual clusters. This suggests that metabolic kinetic reaction data from the biochemical tests commonly used for classic Salmonella enterica subsp. enterica biotyping can possibly be used to determine the relatedness between isolates in an easy and timely manner.

  18. Micromechanical simulation of damage progression in carbon phenolic composites

    NASA Technical Reports Server (NTRS)

    Slattery, Kerry T.

    1993-01-01

    Carbon/phenolic composites are used extensively as ablative insulating materials in the nozzle region of solid rocket motors. The current solid rocket motor (RSRM) on the space shuttle is fabricated from woven rayon cloth which is carbonized and then impregnated with the phenolic resin. These plies are layed up in the desired configuration and cured to form the finished part. During firing, the surface of the carbon/phenolic insulation is exposed to 5000 F gases from the rocket exhaust. The resin pyrolizes and the material chars to a depth which progresses with time. The rate of charring and erosion are generally predictable, and the insulation depth is designed to allow adequate safety margins over the firing time of the motor. However, anomalies in the properties and response of the carbon/phenolic materials can lead to severe material damage which may decrease safety margins to unacceptable levels. Three macro damage modes which were observed in fired nozzles are: ply lift, 'wedge out', and pocketing erosion. Ply lift occurs in materials with plies oriented nearly parallel to the surface. The damage occurs in a region below the charred material where material temperatures are relatively low - about 500 F. Wedge out occurs at the intersection of nozzle components whose plies are oriented at about 45 deg. The corner of the block of material breaks off along a ply interface. Pocketing erosion occurs in material with plies oriented normal to the surface. Thermal expansion is restrained in two directions resulting in large tensile strains and material failure normal to the surface. When a large section of material is removed as a result of damage, the insulation thickness is reduced which may lead to failure of the nozzle due to excessive heating of critical components. If these damage events cannot be prevented with certainty, the designer must increase the thickness of the insulator thus adding to both weight and cost. One of the difficulties in developing a full

  19. Estimation of brittleness indices for pay zone determination in a shale-gas reservoir by using elastic properties obtained from micromechanics

    NASA Astrophysics Data System (ADS)

    Lizcano-Hernández, Edgar G.; Nicolás-López, Rubén; Valdiviezo-Mijangos, Oscar C.; Meléndez-Martínez, Jaime

    2018-04-01

    The brittleness indices (BI) of gas-shales are computed by using their effective mechanical properties obtained from micromechanical self-consistent modeling with the purpose of assisting in the identification of the more-brittle regions in shale-gas reservoirs, i.e., the so-called ‘pay zone’. The obtained BI are plotted in lambda-rho versus mu-rho λ ρ -μ ρ and Young’s modulus versus Poisson’s ratio E-ν ternary diagrams along with the estimated elastic properties from log data of three productive shale-gas wells where the pay zone is already known. A quantitative comparison between the obtained BI and the well log data allows for the delimitation of regions where BI values could indicate the best reservoir target in regions with the highest shale-gas exploitation potential. Therefore, a range of values for elastic properties and brittleness indexes that can be used as a data source to support the well placement procedure is obtained.

  20. The physical basis of how prion conformations determine strain phenotypes

    NASA Astrophysics Data System (ADS)

    Tanaka, Motomasa; Collins, Sean R.; Toyama, Brandon H.; Weissman, Jonathan S.

    2006-08-01

    A principle that has emerged from studies of protein aggregation is that proteins typically can misfold into a range of different aggregated forms. Moreover, the phenotypic and pathological consequences of protein aggregation depend critically on the specific misfolded form. A striking example of this is the prion strain phenomenon, in which prion particles composed of the same protein cause distinct heritable states. Accumulating evidence from yeast prions such as [PSI+] and mammalian prions argues that differences in the prion conformation underlie prion strain variants. Nonetheless, it remains poorly understood why changes in the conformation of misfolded proteins alter their physiological effects. Here we present and experimentally validate an analytical model describing how [PSI+] strain phenotypes arise from the dynamic interaction among the effects of prion dilution, competition for a limited pool of soluble protein, and conformation-dependent differences in prion growth and division rates. Analysis of three distinct prion conformations of yeast Sup35 (the [PSI+] protein determinant) and their in vivo phenotypes reveals that the Sup35 amyloid causing the strongest phenotype surprisingly shows the slowest growth. This slow growth, however, is more than compensated for by an increased brittleness that promotes prion division. The propensity of aggregates to undergo breakage, thereby generating new seeds, probably represents a key determinant of their physiological impact for both infectious (prion) and non-infectious amyloids.

  1. Micro-mechanisms of Surface Defects Induced on Aluminum Alloys during Plastic Deformation at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Gali, Olufisayo A.

    Near-surface deformed layers developed on aluminum alloys significantly influence the corrosion and tribological behavior as well as reduce the surface quality of the rolled aluminum. The evolution of the near-surface microstructures induced on magnesium containing aluminum alloys during thermomechanical processing has been investigated with the aim generating an understanding of the influence of individual forming parameters on its evolution and examine the microstructure of the roll coating induced on the mating steel roll through material transfer during rolling. The micro-mechanisms related to the various features of near-surface microstructure developed during tribological conditions of the simulated hot rolling process were identified. Thermomechanical processing experiments were performed with the aid of hot rolling (operating temperature: 550 to 460 °C, 4, 10 and 20 rolling pass schedules) and hot forming (operating temperature: 350 to 545 °C, strain rate: 4 x 10-2 s-1) tribo-simulators. The surface, near-surface features and material transfer induced during the elevated temperature plastic deformation were examined and characterized employing optical interferometry, SEM/EDS, FIB and TEM. Near-surface features characterized on the rolled aluminum alloys included; cracks, fractured intermetallic particles, aluminum nano-particles, oxide decorated grain boundaries, rolled-in oxides, shingles and blisters. These features were related to various individual rolling parameters which included, the work roll roughness, which induced the formation of shingles, rolling marks and were responsible for the redistribution of surface oxide and the enhancements of the depth of the near-surface damage. The enhanced stresses and strains experienced during rolling were related to the formation and propagation of cracks, the nanocrystalline structure of the near-surface layers and aluminum nano-particles. The mechanism of the evolution of the near-surface microstructure were

  2. A Label-Free Detection of Biomolecules Using Micromechanical Biosensors

    NASA Astrophysics Data System (ADS)

    Meisam, Omidi; A. Malakoutian, M.; Mohammadmehdi, Choolaei; Oroojalian, F.; Haghiralsadat, F.; Yazdian, F.

    2013-06-01

    A Microcantilevers resonator is used to detect a protein biomarker called prostate specific antigen (PSA), which is associated with prostate cancer. Different concentrations of PSA in a buffer solution are detected as a function of deflection of the beams. For this purpose, we use a surface micromachined, antibody-coated polycrystalline silicon micromechanical cantilever beam. Cantilevers have mass sensitivities of the order of 10-17 g/Hz, which result from their small mass. This matter allows them to detect an immobilized antibody monolayer corresponding to a mass of about 70 fg. With these devices, concentrations as low as 150 fg/mL, or 4.5 fM, could be detected from the realistic samples.

  3. Single coil bistable, bidirectional micromechanical actuator

    DOEpatents

    Tabat, Ned; Guckel, Henry

    1998-09-15

    Micromechanical actuators capable of bidirectional and bistable operation can be formed on substrates using lithographic processing techniques. Bistable operation of the microactuator is obtained using a single coil and a magnetic core with a gap. A plunger having two magnetic heads is supported for back and forth linear movement with respect to the gap in the magnetic core, and is spring biased to a neutral position in which the two heads are on each side of the gap in the core. The single electrical coil is coupled to the core and is provided with electrical current to attract one of the heads toward the core by reluctance action to drive the plunger to a limit of travel in one direction. The current is then cut off and the plunger returns by spring action toward the gap, whereafter the current is reapplied to the coil to attract the other head of the plunger by reluctance action to drive the plunger to its other limit of travel. This process can be repeated at a time when switching of the actuator is required.

  4. Method for determining the hardness of strain hardening articles of tungsten-nickel-iron alloy

    DOEpatents

    Wallace, Steven A.

    1984-01-01

    The present invention is directed to a rapid nondestructive method for determining the extent of strain hardening in an article of tungsten-nickel-iron alloy. The method comprises saturating the article with a magnetic field from a permanent magnet, measuring the magnetic flux emanating from the article, comparing the measurements of the magnetic flux emanating from the article with measured magnetic fluxes from similarly shaped standards of the alloy with known amounts of strain hardening to determine the hardness.

  5. Micromechanical Prediction of the Effective Behavior of Fully Coupled Electro-Magneto-Thermo-Elastic Multiphase Composites

    NASA Technical Reports Server (NTRS)

    Aboudi, Jacob

    2000-01-01

    The micromechanical generalized method of cells model is employed for the prediction of the effective moduli of electro-magneto-thermo-elastic composites. These include the effective elastic, piezoelectric, piezomagnetic, dielectric, magnetic permeability, electromagnetic coupling moduli, as well as the effective thermal expansion coefficients and the associated pyroelectric and pyromagnetic constants. Results are given for fibrous and periodically bilaminated composites.

  6. Sideband cooling of micromechanical motion to the quantum ground state.

    PubMed

    Teufel, J D; Donner, T; Li, Dale; Harlow, J W; Allman, M S; Cicak, K; Sirois, A J; Whittaker, J D; Lehnert, K W; Simmonds, R W

    2011-07-06

    The advent of laser cooling techniques revolutionized the study of many atomic-scale systems, fuelling progress towards quantum computing with trapped ions and generating new states of matter with Bose-Einstein condensates. Analogous cooling techniques can provide a general and flexible method of preparing macroscopic objects in their motional ground state. Cavity optomechanical or electromechanical systems achieve sideband cooling through the strong interaction between light and motion. However, entering the quantum regime--in which a system has less than a single quantum of motion--has been difficult because sideband cooling has not sufficiently overwhelmed the coupling of low-frequency mechanical systems to their hot environments. Here we demonstrate sideband cooling of an approximately 10-MHz micromechanical oscillator to the quantum ground state. This achievement required a large electromechanical interaction, which was obtained by embedding a micromechanical membrane into a superconducting microwave resonant circuit. To verify the cooling of the membrane motion to a phonon occupation of 0.34 ± 0.05 phonons, we perform a near-Heisenberg-limited position measurement within (5.1 ± 0.4)h/2π, where h is Planck's constant. Furthermore, our device exhibits strong coupling, allowing coherent exchange of microwave photons and mechanical phonons. Simultaneously achieving strong coupling, ground state preparation and efficient measurement sets the stage for rapid advances in the control and detection of non-classical states of motion, possibly even testing quantum theory itself in the unexplored region of larger size and mass. Because mechanical oscillators can couple to light of any frequency, they could also serve as a unique intermediary for transferring quantum information between microwave and optical domains.

  7. Strain transfer across grain boundaries in MoS2 monolayers grown by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Niehues, Iris; Blob, Anna; Stiehm, Torsten; Schmidt, Robert; Jadriško, Valentino; Radatović, Borna; Čapeta, Davor; Kralj, Marko; Michaelis de Vasconcellos, Steffen; Bratschitsch, Rudolf

    2018-07-01

    Monolayers of transition metal dichalcogenides (TMDC) mechanically exfoliated from bulk crystals have exceptional mechanical and optical properties. They are extremely flexible, sustaining mechanical strain of about 10% without breaking. Their optical properties dramatically change with applied strain. However, the fabrication of a large number of mechanical devices is tedious due to the micromechanical exfoliation process. Alternatively, monolayers can be grown by chemical vapor deposition (CVD) on the wafer scale, with the drawback of cracks and grain boundaries in the material. Therefore, it is important to investigate the mechanical properties of CVD-grown material and its potential as a material for mass production of nanomechanical devices. Here, we measure the optical absorption of CVD-grown MoS2 monolayers with applied uniaxial tensile strain. We derive a strain-dependent shift for the A exciton of  ‑42 meV/%. This value is identical to MoS2 monolayers, which are mechanically exfoliated from natural molybdenite crystals. Using angle-resolved second-harmonic generation spectroscopy, we find that the applied uniaxial tensile strain is fully transferred across grain boundaries of the CVD-grown monolayer. Our work demonstrates that large-area artificially grown MoS2 monolayers are promising for mass-produced nanomechanical devices.

  8. Nonlinear Micromorphic Continuum Mechanics and Finite Strain Elastoplasticity

    DTIC Science & Technology

    2010-11-01

    phenomenology at the micro and macroscales. More micromechanical analysis and experimental data are necessary to determine the microplasticity ...129) ᾱ∇χ L̄ = H̄∇χZ̄χ ,L̄ (130) where ˙̄γ∇χ is the microplastic gradient multiplier. 40 Remark 3. The main advantage to defining constitutively the...for macro and microplasticity (F̄ χ and Ḡχ with similar functional form as F̄ and Ḡ), but this is only for the example model presented here. It is

  9. High Strain Rate Deformation Modeling of a Polymer Matrix Composite. Part 1; Matrix Constitutive Equations

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Stouffer, Donald C.

    1998-01-01

    Recently applications have exposed polymer matrix composite materials to very high strain rate loading conditions, requiring an ability to understand and predict the material behavior under these extreme conditions. In this first paper of a two part report, background information is presented, along with the constitutive equations which will be used to model the rate dependent nonlinear deformation response of the polymer matrix. Strain rate dependent inelastic constitutive models which were originally developed to model the viscoplastic deformation of metals have been adapted to model the nonlinear viscoelastic deformation of polymers. The modified equations were correlated by analyzing the tensile/ compressive response of both 977-2 toughened epoxy matrix and PEEK thermoplastic matrix over a variety of strain rates. For the cases examined, the modified constitutive equations appear to do an adequate job of modeling the polymer deformation response. A second follow-up paper will describe the implementation of the polymer deformation model into a composite micromechanical model, to allow for the modeling of the nonlinear, rate dependent deformation response of polymer matrix composites.

  10. Implementation of an Associative Flow Rule Including Hydrostatic Stress Effects Into the High Strain Rate Deformation Analysis of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Roberts, Gary D.; Gilat, Amos

    2003-01-01

    A previously developed analytical formulation has been modified in order to more accurately account for the effects of hydrostatic stresses on the nonlinear, strain rate dependent deformation of polymer matrix composites. State variable constitutive equations originally developed for metals have been modified in order to model the nonlinear, strain rate dependent deformation of polymeric materials. To account for the effects of hydrostatic stresses, which are significant in polymers, the classical J2 plasticity theory definitions of effective stress and effective inelastic strain, along with the equations used to compute the components of the inelastic strain rate tensor, are appropriately modified. To verify the revised formulation, the shear and tensile deformation of two representative polymers are computed across a wide range of strain rates. Results computed using the developed constitutive equations correlate well with experimental data. The polymer constitutive equations are implemented within a strength of materials based micromechanics method to predict the nonlinear, strain rate dependent deformation of polymer matrix composites. The composite mechanics are verified by analyzing the deformation of a representative polymer matrix composite for several fiber orientation angles across a variety of strain rates. The computed values compare well to experimentally obtained results.

  11. Characterizing the lung tissue mechanical properties using a micromechanical model of alveolar sac

    NASA Astrophysics Data System (ADS)

    Karami, Elham; Seify, Behzad; Moghadas, Hadi; Sabsalinejad, Masoomeh; Lee, Ting-Yim; Samani, Abbas

    2017-03-01

    According to statistics, lung disease is among the leading causes of death worldwide. As such, many research groups are developing powerful tools for understanding, diagnosis and treatment of various lung diseases. Recently, biomechanical modeling has emerged as an effective tool for better understanding of human physiology, disease diagnosis and computer assisted medical intervention. Mechanical properties of lung tissue are important requirements for methods developed for lung disease diagnosis and medical intervention. As such, the main objective of this study is to develop an effective tool for estimating the mechanical properties of normal and pathological lung parenchyma tissue based on its microstructure. For this purpose, a micromechanical model of the lung tissue was developed using finite element (FE) method, and the model was demonstrated to have application in estimating the mechanical properties of lung alveolar wall. The proposed model was developed by assembling truncated octahedron tissue units resembling the alveoli. A compression test was simulated using finite element method on the created geometry and the hyper-elastic parameters of the alveoli wall were calculated using reported alveolar wall stress-strain data and an inverse optimization framework. Preliminary results indicate that the proposed model can be potentially used to reconstruct microstructural images of lung tissue using macro-scale tissue response for normal and different pathological conditions. Such images can be used for effective diagnosis of lung diseases such as Chronic Obstructive Pulmonary Disease (COPD).

  12. Haploid deletion strains of Saccharomyces cerevisiae that determine survival during space flight

    NASA Astrophysics Data System (ADS)

    Johanson, Kelly; Allen, Patricia L.; Gonzalez-Villalobos, Romer A.; Nesbit, Jacqueline; Nickerson, Cheryl A.; Höner zu Bentrup, Kerstin; Wilson, James W.; Ramamurthy, Rajee; D'Elia, Riccardo; Muse, Kenneth E.; Hammond, Jeffrey; Freeman, Jake; Stodieck, Louis S.; Hammond, Timothy G.

    2007-02-01

    This study identifies genes that determine survival during a space flight, using the model eukaryotic organism, Saccharomyces cerevisiae. Select strains of a haploid yeast deletion series grew during storage in distilled water in space, but not in ground based static or clinorotation controls. The survival advantages in space in distilled water include a 133-fold advantage for the deletion of PEX19, a chaperone and import receptor for newly- synthesized class I peroxisomal membrane proteins, to 77-40 fold for deletion strains lacking elements of aerobic respiration, isocitrate metabolism, and mitochondrial electron transport. Following automated addition of rich growth media, the space flight was associated with a marked survival advantage of strains with deletions in catalytically active genes including hydrolases, oxidoreductases and transferases. When compared to static controls, space flight was associated with a marked survival disadvantage of deletion strains lacking transporter, antioxidant and catalytic activity. This study identifies yeast deletion strains with a survival advantage during storage in distilled water and space flight, and amplifies our understanding of the genes critical for survival in space.

  13. EDITORIAL: Selected papers from the 20th Micromechanics Europe Workshop (MME 09) (Toulouse, France, 20-22 September 2009) Selected papers from the 20th Micromechanics Europe Workshop (MME 09) (Toulouse, France, 20-22 September 2009)

    NASA Astrophysics Data System (ADS)

    Pons, Patrick

    2010-06-01

    This special section of the Journal of Micromechanics and Microengineering is devoted to the 20th European Workshop on Micromechanics (MME 2009), which was held in Toulouse, France, 20-22 September 2009. The MME workshop series started in 1989 in Twente and was the first European event created in the field of micro machining technology for developing micro components, micro sensors, micro actuators, and micro systems. Over the last two decades the MEMS community has grown considerably, and the MME workshops have sustained this progress through annual meetings all around Europe: Twente (The Netherlands, 1989), Berlin (Germany, 1990), Leuven (Belgium, 1992), Neuchatel (Switzerland, 1993), Pisa (Italy, 1994), Copenhagen (Denmark, 1995), Barcelona (Spain, 1996), Southampton (United Kingdom, 1997), Ulvik (Norway, 1998), Gif-sur-Yvette (France, 1999), Uppsala (Sweden, 2000), Cork (Ireland, 2001), Sinaia (Romania, 2002), Delft (The Netherlands, 2003), Leuven (Belgium, 2004), Goteborg (Sweden, 2005), Southampton (United Kingdom, 2006), Guimaraes (Portugal, 2007) and Aachen (Germany, 2008). For twenty years, MME conferences have provided an excellent opportunity to bring together many, predominantly European, scientists and engineers to present and discuss the latest developments in this field. For the 20th anniversary of the MicroMechanics Europe Workshop, 115 papers from 23 countries were submitted. Selected contributions were presented during four poster sessions, including short oral presentations. A very interesting feature of the MME workshops is their ability to promote young researchers. Six invited speakers from research centres and industry also gave an overview on advanced technological, characterization and simulation tools. The two day workshop was attended by 185 delegates from 22 countries all over Europe, and from Japan, Taiwan, USA and Mexico. On behalf of the MME 2009 Program Committee, I would like to express my sincere gratitude to all authors of

  14. Plasticity Tool for Predicting Shear Nonlinearity of Unidirectional Laminates Under Multiaxial Loading

    NASA Technical Reports Server (NTRS)

    Wang, John T.; Bomarito, Geoffrey F.

    2016-01-01

    This study implements a plasticity tool to predict the nonlinear shear behavior of unidirectional composite laminates under multiaxial loadings, with an intent to further develop the tool for use in composite progressive damage analysis. The steps for developing the plasticity tool include establishing a general quadratic yield function, deriving the incremental elasto-plastic stress-strain relations using the yield function with associated flow rule, and integrating the elasto-plastic stress-strain relations with a modified Euler method and a substepping scheme. Micromechanics analyses are performed to obtain normal and shear stress-strain curves that are used in determining the plasticity parameters of the yield function. By analyzing a micromechanics model, a virtual testing approach is used to replace costly experimental tests for obtaining stress-strain responses of composites under various loadings. The predicted elastic moduli and Poisson's ratios are in good agreement with experimental data. The substepping scheme for integrating the elasto-plastic stress-strain relations is suitable for working with displacement-based finite element codes. An illustration problem is solved to show that the plasticity tool can predict the nonlinear shear behavior for a unidirectional laminate subjected to multiaxial loadings.

  15. Strain-Based Damage Determination Using Finite Element Analysis for Structural Health Management

    NASA Technical Reports Server (NTRS)

    Hochhalter, Jacob D.; Krishnamurthy, Thiagaraja; Aguilo, Miguel A.

    2016-01-01

    A damage determination method is presented that relies on in-service strain sensor measurements. The method employs a gradient-based optimization procedure combined with the finite element method for solution to the forward problem. It is demonstrated that strains, measured at a limited number of sensors, can be used to accurately determine the location, size, and orientation of damage. Numerical examples are presented to demonstrate the general procedure. This work is motivated by the need to provide structural health management systems with a real-time damage characterization. The damage cases investigated herein are characteristic of point-source damage, which can attain critical size during flight. The procedure described can be used to provide prognosis tools with the current damage configuration.

  16. A Micromechanics-Based Damage Model for [+/- Theta/90n]s Composite Laminates

    NASA Technical Reports Server (NTRS)

    Mayugo, Joan-Andreu; Camanho, Pedro P.; Maimi, Pere; Davila, Carlos G.

    2006-01-01

    A new damage model based on a micromechanical analysis of cracked [+/- Theta/90n]s laminates subjected to multiaxial loads is proposed. The model predicts the onset and accumulation of transverse matrix cracks in uniformly stressed laminates, the effect of matrix cracks on the stiffness of the laminate, as well as the ultimate failure of the laminate. The model also accounts for the effect of the ply thickness on the ply strength. Predictions relating the elastic properties of several laminates and multiaxial loads are presented.

  17. Position control system for use with micromechanical actuators

    DOEpatents

    Guckel, Henry; Stiers, Eric W.

    2000-01-01

    A positioning system adapted for use with micromechanical actuators provides feedback control of the position of the movable element of the actuator utilizing a low Q sensing coil. The effective inductance of the sensing coil changes with position of the movable element to change the frequency of oscillation of a variable oscillator. The output of the variable oscillator is compared in a phase detector to a reference oscillator signal. The phase detector provides a pulsed output having a pulse duty cycle related to the phase or frequency difference between the oscillator signals. The output of the phase detector is provided to a drive coil which applies a magnetic force to the movable element which balances the force of a spring. The movable element can be displaced to a new position by changing the frequency of the reference oscillator.

  18. Evolution of plastic anisotropy for high-strain-rate computations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schiferl, S.K.; Maudlin, P.J.

    1994-12-01

    A model for anisotropic material strength, and for changes in the anisotropy due to plastic strain, is described. This model has been developed for use in high-rate, explicit, Lagrangian multidimensional continuum-mechanics codes. The model handles anisotropies in single-phase materials, in particular the anisotropies due to crystallographic texture--preferred orientations of the single-crystal grains. Textural anisotropies, and the changes in these anisotropies, depend overwhelmingly no the crystal structure of the material and on the deformation history. The changes, particularly for a complex deformations, are not amenable to simple analytical forms. To handle this problem, the material model described here includes a texturemore » code, or micromechanical calculation, coupled to a continuum code. The texture code updates grain orientations as a function of tensor plastic strain, and calculates the yield strength in different directions. A yield function is fitted to these yield points. For each computational cell in the continuum simulation, the texture code tracks a particular set of grain orientations. The orientations will change due to the tensor strain history, and the yield function will change accordingly. Hence, the continuum code supplies a tensor strain to the texture code, and the texture code supplies an updated yield function to the continuum code. Since significant texture changes require relatively large strains--typically, a few percent or more--the texture code is not called very often, and the increase in computer time is not excessive. The model was implemented, using a finite-element continuum code and a texture code specialized for hexagonal-close-packed crystal structures. The results for several uniaxial stress problems and an explosive-forming problem are shown.« less

  19. Micromechanical models for the stiffness and strength of UHMWPE macrofibrils

    NASA Astrophysics Data System (ADS)

    Dong, Hai; Wang, Zheliang; O'Connor, Thomas C.; Azoug, Aurelie; Robbins, Mark O.; Nguyen, Thao D.

    2018-07-01

    Ultrahigh molecular weight polyethylene (UHMWPE) fibers have a complex hierarchical structure that at the micron-scale is composed of oriented chain crystals, lamellar crystals, and amorphous domains organized into macrofibrils. We developed a computational micromechanical modeling study of the effects of the morphological structure and constituent material properties on the deformation mechanisms, stiffness and strength of the UHMWPE macrofibrils. Specifically, we developed four representative volume elements, which differed in the arrangement and orientation of the lamellar crystals, to describe the various macrofibrillar microstructures observed in recent experiments. The stiffness and strength of the crystals were determined from molecular dynamic simulations of a pure PE crystal. A finite deformation crystal plasticity model was used to describe the crystals and an isotropic viscoplastic model was used for the amorphous phase. The results show that yielding in UHMWPE macrofibrils under axial tension is dominated by the slip in the oriented crystals, while yielding under transverse compression and shear is dominated by slips in both the oriented and lamellar crystals. The results also show that the axial modulus and strength are mainly determined by the volume fraction of the oriented crystals and are insensitive to the arrangements of the lamellar crystals when the modulus of the amorphous phase is significantly smaller than that of the crystals. In contrast, the arrangement and size of the lamellar crystals have a significant effect on the stiffness and strength under transverse compression and shear. These findings can provide a guide for new materials and processing design to improve the properties of UHMWPE fibers by controlling the macrofibrillar morphologies.

  20. Characterization and modeling of electrostatically actuated polysilicon micromechanical devices

    NASA Astrophysics Data System (ADS)

    Chan, Edward Keat Leem

    Sensors, actuators, transducers, microsystems and MEMS (MicroElertroMechanical Systems) are some of the terms describing technologies that interface information processing systems with the physical world. Electrostatically actuated micromechanical devices are important building blocks in many of these technologies. Arrays of these devices are used in video projection displays, fluid pumping systems, optical communications systems, tunable lasers and microwave circuits. Well-calibrated simulation tools are essential for propelling ideas from the drawing board into production. This work characterizes a fabrication process---the widely-used polysilicon MUMPs process---to facilitate the design of electrostatically actuated micromechanical devices. The operating principles of a representative device---a capacitive microwave switch---are characterized using a wide range of electrical and optical measurements of test structures along with detailed electromechanical simulations. Consistency in the extraction of material properties from measurements of both pull-in voltage and buckling amplitude is demonstrated. Gold is identified as an area-dependent source of nonuniformity in polysilicon thicknesses and stress. Effects of stress gradients, substrate curvature, and film coverage are examined quantitatively. Using well-characterized beams as in-situ surface probes, capacitance-voltage and surface profile measurements reveal that compressible surface residue modifies the effective electrical gap when the movable electrode contacts an underlying silicon nitride layer. A compressible contact surface model used in simulations improves the fit to measurements. In addition, the electric field across the nitride causes charge to build up in the nitride, increasing the measured capacitance over time. The rate of charging corresponds to charge injection through direct tunneling. A novel actuator that can travel stably beyond one-third of the initial gap (a trademark limitation of

  1. An integrated micromechanical large particle in flow sorter (MILPIS)

    NASA Astrophysics Data System (ADS)

    Fuad, Nurul M.; Skommer, Joanna; Friedrich, Timo; Kaslin, Jan; Wlodkowic, Donald

    2015-06-01

    At present, the major hurdle to widespread deployment of zebrafish embryo and larvae in large-scale drug development projects is lack of enabling high-throughput analytical platforms. In order to spearhead drug discovery with the use of zebrafish as a model, platforms need to integrate automated pre-test sorting of organisms (to ensure quality control and standardization) and their in-test positioning (suitable for high-content imaging) with modules for flexible drug delivery. The major obstacle hampering sorting of millimetre sized particles such as zebrafish embryos on chip-based devices is their substantial diameter (above one millimetre), mass (above one milligram), which both lead to rapid gravitational-induced sedimentation and high inertial forces. Manual procedures associated with sorting hundreds of embryos are very monotonous and as such prone to significant analytical errors due to operator's fatigue. In this work, we present an innovative design of a micromechanical large particle in-flow sorter (MILPIS) capable of analysing, sorting and dispensing living zebrafish embryos for drug discovery applications. The system consisted of a microfluidic network, revolving micromechanical receptacle actuated by robotic servomotor and opto-electronic sensing module. The prototypes were fabricated in poly(methyl methacrylate) (PMMA) transparent thermoplastic using infrared laser micromachining. Elements of MILPIS were also fabricated in an optically transparent VisiJet resin using 3D stereolithography (SLA) processes (ProJet 7000HD, 3D Systems). The device operation was based on a rapidly revolving miniaturized mechanical receptacle. The latter function was to hold and position individual fish embryos for (i) interrogation, (ii) sorting decision-making and (iii) physical sorting..The system was designed to separate between fertilized (LIVE) and non-fertilized (DEAD) eggs, based on optical transparency using infrared (IR) emitters and receivers embedded in the system

  2. Activation barrier scaling and crossover for noise-induced switching in micromechanical parametric oscillators.

    PubMed

    Chan, H B; Stambaugh, C

    2007-08-10

    We explore fluctuation-induced switching in parametrically driven micromechanical torsional oscillators. The oscillators possess one, two, or three stable attractors depending on the modulation frequency. Noise induces transitions between the coexisting attractors. Near the bifurcation points, the activation barriers are found to have a power law dependence on frequency detuning with critical exponents that are in agreement with predicted universal scaling relationships. At large detuning, we observe a crossover to a different power law dependence with an exponent that is device specific.

  3. Determination of cellular strains by combined atomic force microscopy and finite element modeling.

    PubMed Central

    Charras, Guillaume T; Horton, Mike A

    2002-01-01

    Many organs adapt to their mechanical environment as a result of physiological change or disease. Cells are both the detectors and effectors of this process. Though many studies have been performed in vitro to investigate the mechanisms of detection and adaptation to mechanical strains, the cellular strains remain unknown and results from different stimulation techniques cannot be compared. By combining experimental determination of cell profiles and elasticities by atomic force microscopy with finite element modeling and computational fluid dynamics, we report the cellular strain distributions exerted by common whole-cell straining techniques and from micromanipulation techniques, hence enabling their comparison. Using data from our own analyses and experiments performed by others, we examine the threshold of activation for different signal transduction processes and the strain components that they may detect. We show that modulating cell elasticity, by increasing the F-actin content of the cytoskeleton, or cellular Poisson ratio are good strategies to resist fluid shear or hydrostatic pressure. We report that stray fluid flow in some substrate-stretch systems elicits significant cellular strains. In conclusion, this technique shows promise in furthering our understanding of the interplay among mechanical forces, strain detection, gene expression, and cellular adaptation in physiology and disease. PMID:12124270

  4. [Coupled Analysis of Fluid-Structure Interaction of a Micro-Mechanical Valve for Glaucoma Drainage Devices].

    PubMed

    Siewert, S; Sämann, M; Schmidt, W; Stiehm, M; Falke, K; Grabow, N; Guthoff, R; Schmitz, K-P

    2015-12-01

    Glaucoma is the leading cause of irreversible blindness worldwide. In therapeutically refractory cases, alloplastic glaucoma drainage devices (GDD) are being increasingly used to decrease intraocular pressure. Current devices are mainly limited by fibrotic encapsulation and postoperative hypotension. Preliminary studies have described the development of a glaucoma microstent to control aqueous humour drainage from the anterior chamber into the suprachoroidal space. One focus of these studies was on the design of a micro-mechanical valve placed in the anterior chamber to inhibit postoperative hypotension. The present report describes the coupled analysis of fluid-structure interaction (FSI) as basis for future improvements in the design micro-mechanical valves. FSI analysis was carried out with ANSYS 14.5 software. Solid and fluid geometry were combined in a model, and the corresponding material properties of silicone (Silastic Rx-50) and water at room temperature were assigned. The meshing of the solid and fluid domains was carried out in accordance with the results of a convergence study with tetrahedron elements. Structural and fluid mechanical boundary conditions completed the model. The FSI analysis takes into account geometric non-linearity and adaptive remeshing to consider changing geometry. A valve opening pressure of 3.26 mmHg was derived from the FSI analysis and correlates well with the results of preliminary experimental fluid mechanical studies. Flow resistance was calculated from non-linear pressure-flow characteristics as 8.5 × 10(-3) mmHg/µl  · min(-1) and 2.7 × 10(-3) mmHg/µl  · min(-1), respectively before and after valve opening pressure is exceeded. FSI analysis indicated leakage flow before valve opening, which is due to the simplified model geometry. The presented bidirectional coupled FSI analysis is a powerful tool for the development of new designs of micro-mechanical valves for GDD and may help to minimise the time and cost

  5. Noise suppression for micromechanical resonator via intrinsic dynamic feedback

    NASA Astrophysics Data System (ADS)

    Ian, Hou; Gong, Zhi-Rui; Sun, Chang-Pu

    2008-09-01

    We study a dynamic mechanism to passively suppress the thermal noise of a micromechanical resonator through an intrinsic self-feedback that is genuinely non-Markovian. We use two coupled resonators, one as the target resonator and the other as an ancillary resonator, to illustrate the mechanism and its noise reduction effect. The intrinsic feedback is realized through the dynamics of coupling between the two resonators: the motions of the target resonator and the ancillary resonator mutually inthence each other in a cyclic fashion. Specifically, the states that the target resonator has attained earlier will affect the state it attains later due to the presence of the ancillary resonator. We show that the feedback mechanism will bring forth the effect of noise suppression in the spectrum of displacement, but not in the spectrum of momentum.

  6. Microstructural and micromechanical tests of titanium biomaterials intended for prosthetic reconstructions.

    PubMed

    Ryniewicz, Anna M; Bojko, Łukasz; Ryniewicz, Wojciech I

    2016-01-01

    The aim of the present paper was a question of structural identification and evaluation of strength parameters of Titanium (Ticp - grade 2) and its alloy (Ti6Al4V) which are used to serve as a base for those permanent prosthetic supplements which are later manufactured employing CAD/CAM systems. Microstructural tests of Ticp and Ti6Al4V were conducted using an optical microscope as well as a scanning microscope. Hardness was measured with the Vickers method. Micromechanical properties of samples: microhardness and Young's modulus value, were measured with the Oliver and Pharr method. Based on studies using optical microscopy it was observed that the Ticp from the milling technology had a single phase, granular microstructure. The Ti64 alloy had a two-phase, fine-grained microstructure with an acicular-lamellar character. The results of scanning tests show that titanium Ticp had a single phase structure. On its grain there was visible acicular martensite. The structure of the two phase Ti64 alloy consists of a β matrix as well as released α phase deposits in the shape of extended needles. Micromechanical tests demonstrated that the alloy of Ti64 in both methods showed twice as high the microhardness as Ticp. In studies of Young's modulus of Ti64 alloy DMLS technology have lower value than titanium milling technology. According to the results obtained, the following conclusion has been drawn: when strength aspect is discussed, the DMLS method is a preferred one in manufacturing load structures in dentistry and may be an alternate way for the CAD/CAM system used in decrement processing.

  7. High-Fidelity Micromechanics Model Developed for the Response of Multiphase Materials

    NASA Technical Reports Server (NTRS)

    Aboudi, Jacob; Pindera, Marek-Jerzy; Arnold, Steven M.

    2002-01-01

    A new high-fidelity micromechanics model has been developed under funding from the NASA Glenn Research Center for predicting the response of multiphase materials with arbitrary periodic microstructures. The model's analytical framework is based on the homogenization technique, but the method of solution for the local displacement and stress fields borrows concepts previously employed in constructing the higher order theory for functionally graded materials. The resulting closed-form macroscopic and microscopic constitutive equations, valid for both uniaxial and multiaxial loading of periodic materials with elastic and inelastic constitutive phases, can be incorporated into a structural analysis computer code. Consequently, this model now provides an alternative, accurate method.

  8. Micromechanisms of brittle fracture: STM, TEM and electron channeling analysis. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerberich, W.W.

    1997-01-01

    The original thrust of this grant was to apply newly developed techniques in scanning tunneling and transmission electron microscopy to elucidate the mechanism of brittle fracture. This grant spun-off several new directions in that some of the findings on bulk structural materials could be utilized on thin films or intermetallic single crystals. Modeling and material evaluation efforts in this grant are represented in a figure. Out of this grant evolved the field the author has designated as Contact Fracture Mechanics. By appropriate modeling of stress and strain distribution fields around normal indentations or scratch tracks, various measures of thin filmmore » fracture or decohesion and brittle fracture of low ductility intermetallics is possible. These measures of fracture resistance in small volumes are still evolving and as such no standard technique or analysis has been uniformly accepted. For brittle ceramics and ceramic films, there are a number of acceptable analyses such as those published by Lawn, Evans and Hutchinson. For more dissipative systems involving metallic or polymeric films and/or substrates, there is still much to be accomplished as can be surmised from some of the findings in the present grant. In Section 2 the author reviews the funding history and accomplishments associated mostly with bulk brittle fracture. This is followed by Section 3 which covers more recent work on using novel techniques to evaluate fracture in low ductility single crystals or thin films using micromechanical probes. Basically Section 3 outlines how the recent work fits in with the goals of defining contact fracture mechanics and gives an overview of how the several examples in Section 4 (the Appendices) fit into this framework.« less

  9. Micromechanics of metal matrix composites using the Generalized Method of Cells model (GMC) user's guide

    NASA Technical Reports Server (NTRS)

    Aboudi, Jacob; Pindera, Marek-Jerzy

    1992-01-01

    A user's guide for the program gmc.f is presented. The program is based on the generalized method of cells model (GMC) which is capable via a micromechanical analysis, of predicting the overall, inelastic behavior of unidirectional, multi-phase composites from the knowledge of the properties of the viscoplastic constituents. In particular, the program is sufficiently general to predict the response of unidirectional composites having variable fiber shapes and arrays.

  10. Axial postbuckling analysis of multilayer functionally graded composite nanoplates reinforced with GPLs based on nonlocal strain gradient theory

    NASA Astrophysics Data System (ADS)

    Sahmani, S.; Aghdam, M. M.

    2017-11-01

    In this paper, a new size-dependent inhomogeneous plate model is constructed to analyze the nonlinear buckling and postbuckling characteristics of multilayer functionally graded composite nanoplates reinforced with graphene platelet (GPL) nanofillers under axial compressive load. To this purpose, the nonlocal strain gradient theory of elasticity is implemented into a refined hyperbolic shear deformation plate theory. The mechanical properties of multilayer graphene platelet-reinforced composite (GPLRC) nanoplates are evaluated based upon the Halpin-Tsai micromechanical scheme. The weight fraction of randomly dispersed GPLs remain constant in each individual layer, which results in U-GPLRC nanoplate, or changes layerwise in accordance with three different functionally graded patterns, which make X-GPLRC, O-GPLRC and A-GPLRC nanoplates. Via a two-stepped perturbation technique, explicit analytical expressions for nonlocal strain gradient stability paths are established for layerwise functionally graded GPLRC nanoplates. It is demonstrated that both the nonlocal and strain gradient size dependencies are more significant for multilayer GPLRC nanoplates filling by GPL nanofillers with higher length-to-thickness and width-to-thickness ratios.

  11. Effects of Adiabatic Heating on the High Strain Rate Deformation of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Sorini, Chris; Chattopadhyay, Aditi; Goldberg, Robert K.

    2017-01-01

    Polymer matrix composites (PMCs) are increasingly being used in aerospace structures that are expected to experience complex dynamic loading conditions throughout their lifetime. As such, a detailed understanding of the high strain rate behavior of the constituents, particularly the strain rate, temperature, and pressure dependent polymer matrix, is paramount. In this paper, preliminary efforts in modeling experimentally observed temperature rises due to plastic deformation in PMCs subjected to dynamic loading are presented. To this end, an existing isothermal viscoplastic polymer constitutive formulation is extended to model adiabatic conditions by incorporating temperature dependent elastic properties and modifying the components of the inelastic strain rate tensor to explicitly depend on temperature. It is demonstrated that the modified polymer constitutive model is capable of capturing strain rate and temperature dependent yield as well as thermal softening associated with the conversion of plastic work to heat at high rates of strain. The modified constitutive model is then embedded within a strength of materials based micromechanics framework to investigate the manifestation of matrix thermal softening, due to the conversion of plastic work to heat, on the high strain rate response of a T700Epon 862 (T700E862) unidirectional composite. Adiabatic model predictions for high strain rate composite longitudinal tensile, transverse tensile, and in-plane shear loading are presented. Results show a substantial deviation from isothermal conditions; significant thermal softening is observed for matrix dominated deformation modes (transverse tension and in-plane shear), highlighting the importance of accounting for the conversion of plastic work to heat in the polymer matrix in the high strain rate analysis of PMC structures.

  12. Multi-Scale Impact and Compression-After-Impact Modeling of Reinforced Benzoxazine/Epoxy Composites using Micromechanics Approach

    NASA Astrophysics Data System (ADS)

    Montero, Marc Villa; Barjasteh, Ehsan; Baid, Harsh K.; Godines, Cody; Abdi, Frank; Nikbin, Kamran

    A multi-scale micromechanics approach along with finite element (FE) model predictive tool is developed to analyze low-energy-impact damage footprint and compression-after-impact (CAI) of composite laminates which is also tested and verified with experimental data. Effective fiber and matrix properties were reverse-engineered from lamina properties using an optimization algorithm and used to assess damage at the micro-level during impact and post-impact FE simulations. Progressive failure dynamic analysis (PFDA) was performed for a two step-process simulation. Damage mechanisms at the micro-level were continuously evaluated during the analyses. Contribution of each failure mode was tracked during the simulations and damage and delamination footprint size and shape were predicted to understand when, where and why failure occurred during both impact and CAI events. The composite laminate was manufactured by the vacuum infusion of the aero-grade toughened Benzoxazine system into the fabric preform. Delamination footprint was measured using C-scan data from the impacted panels and compared with the predicated values obtained from proposed multi-scale micromechanics coupled with FE analysis. Furthermore, the residual strength was predicted from the load-displacement curve and compared with the experimental values as well.

  13. Porosity estimation of aged mortar using a micromechanical model.

    PubMed

    Hernández, M G; Anaya, J J; Sanchez, T; Segura, I

    2006-12-22

    Degradation of concrete structures located in high humidity atmospheres or under flowing water is a very important problem. In this study, a method for ultrasonic non-destructive characterization in aged mortar is presented. The proposed method makes a prediction of the behaviour of aged mortar accomplished with a three phase micromechanical model using ultrasonic measurements. Aging mortar was accelerated by immersing the probes in ammonium nitrate solution. Both destructive and non-destructive characterization of mortar was performed. Destructive tests of porosity were performed using a vacuum saturation method and non-destructive characterization was carried out using ultrasonic velocities. Aging experiments show that mortar degradation not only involves a porosity increase, but also microstructural changes in the cement matrix. Experimental results show that the estimated porosity using the proposed non-destructive methodology had a comparable performance to classical destructive techniques.

  14. Stress-strain analysis of a (0/90)sub 2 symmetric titanium matrix laminate subjected to a generic hypersonic flight profile

    NASA Technical Reports Server (NTRS)

    Mirdamadi, Massoud; Johnson, W. Steven

    1992-01-01

    Cross ply laminate behavior of Ti-15V-3Cr-3Al-3Sn (Ti-15-3) matrix reinforced with continuous silicon carbide fibers (SCS-6) subjected to a generic hypersonic flight profile was evaluated experimentally and analytically. Thermomechanical fatigue test techniques were developed to conduct a simulation of a generic hypersonic flight profile. A micromechanical analysis was used. The analysis predicts the stress-strain response of the laminate and of the constituents in each ply during thermal and mechanical cycling by using only constituent properties as input. The fiber was modeled using a thermo-viscoplastic constitutive relation. The fiber transverse modulus was reduced in the analysis to simulate the fiber matrix interface failure. Excellent correlation was found between measured and predicted laminate stress-strain response due to generic hypersonic flight profile when fiber debonding was modeled.

  15. Effect of artificial toothbrushing and water storage on the surface roughness and micromechanical properties of tooth-colored CAD-CAM materials.

    PubMed

    Flury, Simon; Diebold, Elisabeth; Peutzfeldt, Anne; Lussi, Adrian

    2017-06-01

    Because of the different composition of resin-ceramic computer-aided design and computer-aided manufacturing (CAD-CAM) materials, their polishability and their micromechanical properties vary. Moreover, depending on the composition of the materials, their surface roughness and micromechanical properties are likely to change with time. The purpose of this in vitro study was to investigate the effect of artificial toothbrushing and water storage on the surface roughness (Ra and Rz) and the micromechanical properties, surface hardness (Vickers [VHN]) and indentation modulus (E IT ), of 5 different tooth-colored CAD-CAM materials when polished with 2 different polishing systems. Specimens (n=40 per material) were cut from a composite resin (Paradigm MZ100; 3M ESPE), a feldspathic ceramic (Vitablocs Mark II; Vita Zahnfabrik), a resin nanoceramic (Lava Ultimate; 3M ESPE), a hybrid dental ceramic (Vita Enamic; Vita Zahnfabrik), and a nanocomposite resin (Ambarino High-Class; Creamed). All specimens were roughened in a standardized manner and polished either with Sof-Lex XT discs or the Vita Polishing Set Clinical. Surface roughness, VHN, and E IT were measured after polishing and after storage for 6 months (tap water, 37°C) with periodic, artificial toothbrushing. The surface roughness, VHN, and E IT results were analyzed with a nonparametric ANOVA followed by Kruskal-Wallis and exact Wilcoxon rank sum tests (α=.05). Irrespective of polishing system and of artificial toothbrushing and storage, Lava Ultimate generally showed the lowest surface roughness and Vitablocs Mark II the highest. As regards micromechanical properties, the following ranking of the CAD-CAM materials was found (from highest VHN/E IT to lowest VHN/E IT ): Vitablocs Mark II > Vita Enamic > Paradigm MZ100 > Lava Ultimate > Ambarino High-Class. Irrespective of material and of artificial toothbrushing and storage, polishing with Sof-Lex XT discs resulted in lower surface roughness than the Vita Polishing

  16. Effects of strain rate and temperature on the mechanical behavior of carbon black reinforced elastomers based on butyl rubber and high molecular weight polyethylene

    NASA Astrophysics Data System (ADS)

    Hussein, M.

    2018-06-01

    The influence of the mechanical property and morphology of different blend ratio of Butyl rubber (IIR)/high molecular weight polyethylene (PE) by temperature and strain rate are performed. Special attention has been considered to a ductile-brittle transition that is known to occur at around 60 °C. The idea is to explain the unexpected phenomenon of brittleness which directly related to all tensile mechanical properties such as the strength of blends, modulus of elasticity of filled and unfilled IIR-polyethylene blends. In particular, the initial Young's modulus, tensile strength and strain at failure exhibit similar dependency on strain rate and temperature. These quantities lowered and increased with an increment of temperature, whereas the increased with increasing of strain rate. Furthermore, the tensile strength and strain at failure decreases for all temperatures range with the increase of PE content in the blend, except Young's modulus in reverse. The strain rate sensitivity index parameter of the examined polymeric materials is consistent with the micro-mechanisms of deformation and the behavior was well described by an Eyring relationship leading to an activation volume of ∼1 nm3, except for the highest value of unfilled IIR ∼8.45 nm3.

  17. Site-specific characterization of beetle horn shell with micromechanical bending test in focused ion beam system.

    PubMed

    Lee, Hyun-Taek; Kim, Ho-Jin; Kim, Chung-Soo; Gomi, Kenji; Taya, Minoru; Nomura, Shûhei; Ahn, Sung-Hoon

    2017-07-15

    Biological materials are the result of years of evolution and possess a number of efficient features and structures. Researchers have investigated the possibility of designing biomedical structures that take advantage of these structural features. Insect shells, such as beetle shells, are among the most promising types of biological material for biomimetic development. However, due to their intricate geometries and small sizes, it is challenging to measure the mechanical properties of these microscale structures. In this study, we developed an in-situ testing platform for site-specific experiments in a focused ion beam (FIB) system. Multi-axis nano-manipulators and a micro-force sensor were utilized in the testing platform to allow better results in the sample preparation and data acquisition. The entire test protocol, consisting of locating sample, ion beam milling and micro-mechanical bending tests, can be carried out without sample transfer or reattachment. We used our newly devised test platform to evaluate the micromechanical properties and structural features of each separated layer of the beetle horn shell. The Young's modulus of both the exocuticle and endocuticle layers was measured. We carried out a bending test to characterize the layers mechanically. The exocuticle layer bent in a brick-like manner, while the endocuticle layer exhibited a crack blunting effect. This paper proposed an in-situ manipulation/test method in focused ion beam for characterizing micromechanical properties of beetle horn shell. The challenge in precise and accurate fabrication for the samples with complex geometry was overcome by using nano-manipulators having multi-degree of freedom and a micro-gripper. With the aid of this specially designed test platform, bending tests were carried out on cantilever-shaped samples prepared by focused ion beam milling. Structural differences between exocuticle and endocuticle layers of beetle horn shell were explored and the results provided

  18. A study of stress-induced phase transformation and micromechanical behavior of CuZr-based alloy by in-situ neutron diffraction

    DOE PAGES

    Wang, Dongmei; Mu, Juan; Chen, Yan; ...

    2017-03-01

    The stress-induced phase transformation and micromechanical behavior of CuZr-based alloy were investigated by in-situ neutron diffraction. The pseudoelastic behavior with a pronounced strain-hardening effect is observed. The retained martensite nuclei and the residual stress obtained from the 1st cycle reduce the stress threshold for the martensitic transformation. A critical stress level is required for the reverse martensitic transformation from martensite to B2 phase. An increase of intensity for the B2 (110) plane in the 1st cycle is caused by the twinning along the {112}<111> twinning system. The convoluted stress partitioning influenced by the elastic and transformation anisotropy along with themore » newly formed martensite determines the microstress partitioning of the studied CuZr-based alloy. The reversible martensitic transformation is responsible for the pseudoelasticity. The macro mechanical behavior of the pure B2 phase can be divided into 3 stages, which are mediated by the evolvement of the martensitic transformation. This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).« less

  19. A study of stress-induced phase transformation and micromechanical behavior of CuZr-based alloy by in-situ neutron diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Dongmei; Mu, Juan; Chen, Yan

    The stress-induced phase transformation and micromechanical behavior of CuZr-based alloy were investigated by in-situ neutron diffraction. The pseudoelastic behavior with a pronounced strain-hardening effect is observed. The retained martensite nuclei and the residual stress obtained from the 1st cycle reduce the stress threshold for the martensitic transformation. A critical stress level is required for the reverse martensitic transformation from martensite to B2 phase. An increase of intensity for the B2 (110) plane in the 1st cycle is caused by the twinning along the {112}<111> twinning system. The convoluted stress partitioning influenced by the elastic and transformation anisotropy along with themore » newly formed martensite determines the microstress partitioning of the studied CuZr-based alloy. The reversible martensitic transformation is responsible for the pseudoelasticity. The macro mechanical behavior of the pure B2 phase can be divided into 3 stages, which are mediated by the evolvement of the martensitic transformation. This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).« less

  20. The cohesive law of particle/binder interfaces in solid propellants

    NASA Astrophysics Data System (ADS)

    Tan, H.

    2011-10-01

    Solid propellants are treated as composites with high volume fraction of particles embedded in the polymeric binder. A micromechanics model is developed to establish the link between the microscopic behavior of particle/binder interfaces and the macroscopic constitutive information. This model is then used to determine the tension/shearing coupled interface cohesive law of a redesigned solid rocket motor propellant, based on the experimental data of the stress-strain and dilatation-strain curves for the material under slow rate uniaxial tension.

  1. Long-term strength determination for cooled blades made of monocrystalline superalloys

    NASA Astrophysics Data System (ADS)

    Getsov, L. B.; Semenov, A. S.; Besschetnov, V. A.; Grishchenko, A. I.; Semenov, S. G.

    2017-04-01

    For the manufacture of blades for modern gas-turbine installations, monocrystalline alloys are used. Traditional methods for the calculation of stressed-deformed state and safety factors for these alloys developed and verified for polycrystalline materials need to be adjusted. This paper deals with methodological principles for an approach to the solving of the problem concerning a finite-element determination of the long-term static strength for cooled monocrystalline blades employed in gas-turbine installations based on the use of two different models (phenomenological and micromechanical) considering the inelastic deformation of monocrystalline superalloys. An analysis has been performed for the distribution of Schmid factors in the spherical triangle for primary and secondary octahedral and cubic slip systems. Calculations are performed using Larson-Miller's parametric dependences taking into account the crystallographic orientation of the material. A determination procedure for the anisotropy coefficients of long-term strength is described based on data for different orientations. A comparative analysis of the results of finite-element calculations made using phenomenological and micromechanical (crystallographic) creep models for the long-term static strength of cooled monocrystalline blades used in a gas-turbine engine has been performed. It is shown that the location of the most loaded sections of such a blade coincide with the results of calculations according to these models. It has been found that the micromechanical deformation model results in the obtaining of the most conservative estimate for the long-term strength of turbine blades made of monocrystalline alloys. It is shown that the calculations using models for materials with isotropic properties can produce considerable errors in determining the durability of the blades. The possibility is considered for using 1D-, 2D-, and 3D-models for turbine monocrystalline blades in the determination of

  2. Compositional Determinants of Mechanical Properties of Enamel

    PubMed Central

    Baldassarri, M.; Margolis, H.C.; Beniash, E.

    2008-01-01

    Dental enamel is comprised primarily of carbonated apatite, with less than 1% w/w organic matter and 4-5% w/w water. To determine the influence of each component on the microhardness and fracture toughness of rat incisor enamel, we mechanically tested specimens in which water and organic matrix were selectively removed. Tests were performed in mid-sagittal and transverse orientations to assess the effect of the structural organization on enamel micromechanical properties. While removal of organic matrix resulted in up to a 23% increase in microhardness, and as much as a 46% decrease in fracture toughness, water had a significantly lesser effect on these properties. Moreover, removal of organic matrix dramatically weakened the dentino-enamel junction (DEJ). Analysis of our data also showed that the structural organization of enamel affects its micromechanical properties. We anticipate that these findings will help guide the development of bio-inspired nanostructured materials for mineralized tissue repair and regeneration. PMID:18573984

  3. Determining a Prony Series for a Viscoelastic Material From Time Varying Strain Data

    NASA Technical Reports Server (NTRS)

    Tzikang, Chen

    2000-01-01

    In this study a method of determining the coefficients in a Prony series representation of a viscoelastic modulus from rate dependent data is presented. Load versus time test data for a sequence of different rate loading segments is least-squares fitted to a Prony series hereditary integral model of the material tested. A nonlinear least squares regression algorithm is employed. The measured data includes ramp loading, relaxation, and unloading stress-strain data. The resulting Prony series which captures strain rate loading and unloading effects, produces an excellent fit to the complex loading sequence.

  4. Micro-Mechanical Voltage Tunable Fabry-Perot Filters Formed in (111) Silicon. Degree awarded by Colorado Univ., Boulder, CO

    NASA Technical Reports Server (NTRS)

    Patterson, James D.

    1997-01-01

    The MEMS (Micro-Electro-Mechanical-Systems) technology is quickly evolving as a viable means to combine micro-mechanical and micro-optical elements on the same chip. One MEMS technology that has recently gained attention by the research community is the micro-mechanical Fabry-Perot optical filter. A MEMS based Fabry-Perot consists of a vertically integrated structure composed of two mirrors separated by an air gap. Wavelength tuning is achieved by applying a bias between the two mirrors resulting in an attractive electrostatic force which pulls the mirrors closer. In this work, we present a new micro-mechanical Fabry-Perot structure which is simple to fabricate and is integratable with low cost silicon photodetectors and transistors. The structure consists of a movable gold coated oxide cantilever for the top mirror and a stationary Au/Ni plated silicon bottom mirror. The fabrication process is single mask level, self aligned, and requires only one grown or deposited layer. Undercutting of the oxide cantilever is carried out by a combination of RIE and anisotropic KOH etching of the (111) silicon substrate. Metallization of the mirrors is provided by thermal evaporation and electroplating. The optical and electrical characteristics of the fabricated devices were studied and show promissing results. A wavelength shift of 120nm with 53V applied bias was demonstrated by one device geometry using 6.27 micrometer air gap. The finesse of the structure was 2.4. Modulation bandwidths ranging from 91KHz to greater than 920KHz were also observed. Theoretical calculations show that if mirror reflectivity, smoothness, and parallelism are improved, a finesse of 30 is attainable. The predictions also suggest that a reduction of the air gap to 1 micrometer results in an increased wavelength tuning range of 175 nm with a CMOS compatible 4.75V.

  5. Strain Amount Dependent Grain Size and Orientation Developments during Hot Compression of a Polycrystalline Nickel Based Superalloy

    PubMed Central

    He, Guoai; Tan, Liming; Liu, Feng; Huang, Lan; Huang, Zaiwang; Jiang, Liang

    2017-01-01

    Controlling grain size in polycrystalline nickel base superalloy is vital for obtaining required mechanical properties. Typically, a uniform and fine grain size is required throughout forging process to realize the superplastic deformation. Strain amount occupied a dominant position in manipulating the dynamic recrystallization (DRX) process and regulating the grain size of the alloy during hot forging. In this article, the high-throughput double cone specimen was introduced to yield wide-range strain in a single sample. Continuous variations of effective strain ranging from 0.23 to 1.65 across the whole sample were achieved after reaching a height reduction of 70%. Grain size is measured to be decreased from the edge to the center of specimen with increase of effective strain. Small misorientation tended to generate near the grain boundaries, which was manifested as piled-up dislocation in micromechanics. After the dislocation density reached a critical value, DRX progress would be initiated at higher deformation region, leading to the refinement of grain size. During this process, the transformations from low angle grain boundaries (LAGBs) to high angle grain boundaries (HAGBs) and from subgrains to DRX grains are found to occur. After the accomplishment of DRX progress, the neonatal grains are presented as having similar orientation inside the grain boundary. PMID:28772514

  6. Neutron diffraction measurements and micromechanical modelling of temperature-dependent variations in TATB lattice parameters

    DOE PAGES

    Yeager, John D.; Luscher, Darby J.; Vogel, Sven C.; ...

    2016-02-02

    Triaminotrinitrobenzene (TATB) is a highly anisotropic molecular crystal used in several plastic-bonded explosive (PBX) formulations. TATB-based explosives exhibit irreversible volume expansion (“ratchet growth”) when thermally cycled. A theoretical understanding of the relationship between anisotropy of the crystal, crystal orientation distribution (texture) of polycrystalline aggregates, and the intergranular interactions leading to this irreversible growth is necessary to accurately develop physics-based predictive models for TATB-based PBXs under various thermal environments. In this work, TATB lattice parameters were measured using neutron diffraction during thermal cycling of loose powder and a pressed pellet. The measured lattice parameters help clarify conflicting reports in the literaturemore » as these new results are more consistent with one set of previous results than another. The lattice parameters of pressed TATB were also measured as a function of temperature, showing some differences from the powder. This data is used along with anisotropic single-crystal stiffness moduli reported in the literature to model the nominal stresses associated with intergranular constraints during thermal expansion. The texture of both specimens were characterized and the pressed pellet exhibits preferential orientation of (001) poles along the pressing direction, whereas no preferred orientation was found for the loose powder. Lastly, thermal strains for single-crystal TATB computed from lattice parameter data for the powder is input to a self-consistent micromechanical model, which predicts the lattice parameters of the constrained TATB crystals within the pellet. The agreement of these model results with the diffraction data obtained from the pellet is discussed along with future directions of research.« less

  7. Micromechanics thermal stress analysis of composites for space structure applications

    NASA Technical Reports Server (NTRS)

    Bowles, David E.

    1991-01-01

    This paper presents results from a finite element micromechanics analysis of thermally induced stresses in composites at cryogenic temperatures typical of spacecraft operating environments. The influence of microstructural geometry, constituent and interphase properties, and laminate orientation were investigated. Stress field results indicated that significant matrix stresses occur in composites exposed to typical spacecraft thermal excursions; these stresses varied with laminate orientation and circumferential position around the fiber. The major difference in the predicted response of unidirectional and multidirectional laminates was the presence of tensile radial stresses, at the fiber/matrix interface, in multidirectional laminates with off-axis ply angles greater than 15 deg. The predicted damage initiation temperatures and modes were in good agreement with experimental data for both low (207 GPa) and high (517 GPa) modulus carbon fiber/epoxy composites.

  8. Comparative Laboratory and Numerical Simulations of Shearing Granular Fault Gouge: Micromechanical Processes

    NASA Astrophysics Data System (ADS)

    Morgan, J. K.; Marone, C. J.; Guo, Y.; Anthony, J. L.; Knuth, M. W.

    2004-12-01

    Laboratory studies of granular shear zones have provided significant insight into fault zone processes and the mechanics of earthquakes. The micromechanisms of granular deformation are more difficult to ascertain, but have been hypothesized based on known variations in boundary conditions, particle properties and geometries, and mechanical behavior. Numerical simulations using particle dynamics methods (PDM) can offer unique views into deforming granular shear zones, revealing the precise details of granular microstructures, particle interactions, and packings, which can be correlated with macroscopic mechanical behavior. Here, we describe a collaborative program of comparative laboratory and numerical experiments of granular shear using idealized materials, i.e., glass beads, glass rods or pasta, and angular sand. Both sets of experiments are carried out under similar initial and boundary conditions in a non-fracturing stress regime. Phenomenologically, the results of the two sets of experiments are very similar. Peak friction values vary as a function of particle dimensionality (1-D vs. 2-D vs. 3-D), particle angularity, particle size and size distributions, boundary roughness, and shear zone thickness. Fluctuations in shear strength during an experiment, i.e., stick-slip events, can be correlated with distinct changes in the nature, geometries, and durability of grain bridges that support the shear zone walls. Inclined grain bridges are observed to form, and to support increasing loads, during gradual increases in assemblage strength. Collapse of an individual grain bridge leads to distinct localization of strain, generating a rapidly propagating shear surface that cuts across multiple grain bridges, accounting for the sudden drop in strength. The distribution of particle sizes within an assemblage, along with boundary roughness and its periodicity, influence the rate of formation and dissipation of grain bridges, thereby controlling friction variations during

  9. A FSI-based structural approach for micromechanical characterization of adipose tissue

    NASA Astrophysics Data System (ADS)

    Seyfi, Behzad; Sabzalinejad, Masoumeh; Haddad, Seyed M. H.; Fatouraee, Nasser; Samani, Abbas

    2017-03-01

    This paper presents a novel computational method for micromechanical modeling of adipose tissue. The model can be regarded as the first step for developing an inversion based framework that uses adipose stiffness data obtained from elastography to determine its microstructural alterations. Such information can be used as biomarkers for diseases associated with adipose tissue microstructure alteration (e.g. adipose tissue fibrosis and inflammation in obesity). In contrast to previous studies, the presented model follows a multiphase structure which accounts for both solid and fluid components as well as their mechanical interaction. In the model, the lipid droplets and extracellular matrix were considered as the fluid and solid phase, respectively. As such, the fluid-structure interaction (FSI) problem was solved using finite element method. In order to gain insight into how microstructural characteristics influence the macro scale mechanical properties of the adipose tissue, a compression mechanical test was simulated using the FSI model and its results were fitted to corresponding experimental data. The simulation procedure was performed for adipocytes in healthy conditions while the stiffness of extracellular matrix in normal adipose tissue was found by varying it systematically within an optimization process until the simulation response agreed with experimental data. Results obtained in this study are encouraging and show the capability of the proposed model to capture adipose tissue macroscale mechanical behavior based on its microstructure under health and different pathological conditions.

  10. Viscoelastic shear lag model to predict the micromechanical behavior of tendon under dynamic tensile loading.

    PubMed

    Wu, Jiayu; Yuan, Hong; Li, Longyuan; Fan, Kunjie; Qian, Shanguang; Li, Bing

    2018-01-21

    Owing to its viscoelastic nature, tendon exhibits stress rate-dependent breaking and stiffness function. A Kelvin-Voigt viscoelastic shear lag model is proposed to illustrate the micromechanical behavior of the tendon under dynamic tensile conditions. Theoretical closed-form expressions are derived to predict the deformation and stress transfer between fibrils and interfibrillar matrix while tendon is dynamically stretched. The results from the analytical solutions demonstrate that how the fibril overlap length and fibril volume fraction affect the stress transfer and mechanical properties of tendon. We find that the viscoelastic property of interfibrillar matrix mainly results in collagen fibril failure under fast loading rate or creep rupture of tendon. However, discontinuous fibril model and hierarchical structure of tendon ensure relative sliding under slow loading rate, helping dissipate energy and protecting fibril from damage, which may be a key reason why regularly staggering alignment microstructure is widely selected in nature. According to the growth, injury, healing and healed process of tendon observed by many researchers, the conclusions presented in this paper agrees well with the experimental findings. Additionally, the emphasis of this paper is on micromechanical behavior of tendon, whereas this analytical viscoelastic shear lag model can be equally applicable to other soft or hard tissues, owning the similar microstructure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Forming limit curves of DP600 determined in high-speed Nakajima tests and predicted by two different strain-rate-sensitive models

    NASA Astrophysics Data System (ADS)

    Weiß-Borkowski, Nathalie; Lian, Junhe; Camberg, Alan; Tröster, Thomas; Münstermann, Sebastian; Bleck, Wolfgang; Gese, Helmut; Richter, Helmut

    2018-05-01

    Determination of forming limit curves (FLC) to describe the multi-axial forming behaviour is possible via either experimental measurements or theoretical calculations. In case of theoretical determination, different models are available and some of them consider the influence of strain rate in the quasi-static and dynamic strain rate regime. Consideration of the strain rate effect is necessary as many material characteristics such as yield strength and failure strain are affected by loading speed. In addition, the start of instability and necking depends not only on the strain hardening coefficient but also on the strain rate sensitivity parameter. Therefore, the strain rate dependency of materials for both plasticity and the failure behaviour is taken into account in crash simulations for strain rates up to 1000 s-1 and FLC can be used for the description of the material's instability behaviour at multi-axial loading. In this context, due to the strain rate dependency of the material behaviour, an extrapolation of the quasi-static FLC to dynamic loading condition is not reliable. Therefore, experimental high-speed Nakajima tests or theoretical models shall be used to determine the FLC at high strain rates. In this study, two theoretical models for determination of FLC at high strain rates and results of experimental high-speed Nakajima tests for a DP600 are presented. One of the theoretical models is the numerical algorithm CRACH as part of the modular material and failure model MF GenYld+CrachFEM 4.2, which is based on an initial imperfection. Furthermore, the extended modified maximum force criterion considering the strain rate effect is also used to predict the FLC. These two models are calibrated by the quasi-static and dynamic uniaxial tensile tests and bulge tests. The predictions for the quasi-static and dynamic FLC by both models are presented and compared with the experimental results.

  12. Eshelby's problem of non-elliptical inclusions

    NASA Astrophysics Data System (ADS)

    Zou, Wennan; He, Qichang; Huang, Mojia; Zheng, Quanshui

    2010-03-01

    The Eshelby problem consists in determining the strain field of an infinite linearly elastic homogeneous medium due to a uniform eigenstrain prescribed over a subdomain, called inclusion, of the medium. The salient feature of Eshelby's solution for an ellipsoidal inclusion is that the strain tensor field inside the latter is uniform. This uniformity has the important consequence that the solution to the fundamental problem of determination of the strain field in an infinite linearly elastic homogeneous medium containing an embedded ellipsoidal inhomogeneity and subjected to remote uniform loading can be readily deduced from Eshelby's solution for an ellipsoidal inclusion upon imposing appropriate uniform eigenstrains. Based on this result, most of the existing micromechanics schemes dedicated to estimating the effective properties of inhomogeneous materials have been nevertheless applied to a number of materials of practical interest where inhomogeneities are in reality non-ellipsoidal. Aiming to examine the validity of the ellipsoidal approximation of inhomogeneities underlying various micromechanics schemes, we first derive a new boundary integral expression for calculating Eshelby's tensor field (ETF) in the context of two-dimensional isotropic elasticity. The simple and compact structure of the new boundary integral expression leads us to obtain the explicit expressions of ETF and its average for a wide variety of non-elliptical inclusions including arbitrary polygonal ones and those characterized by the finite Laurent series. In light of these new analytical results, we show that: (i) the elliptical approximation to the average of ETF is valid for a convex non-elliptical inclusion but becomes inacceptable for a non-convex non-elliptical inclusion; (ii) in general, the Eshelby tensor field inside a non-elliptical inclusion is quite non-uniform and cannot be replaced by its average; (iii) the substitution of the generalized Eshelby tensor involved in various

  13. A Large-scale Finite Element Model on Micromechanical Damage and Failure of Carbon Fiber/Epoxy Composites Including Thermal Residual Stress

    NASA Astrophysics Data System (ADS)

    Liu, P. F.; Li, X. K.

    2018-06-01

    The purpose of this paper is to study micromechanical progressive failure properties of carbon fiber/epoxy composites with thermal residual stress by finite element analysis (FEA). Composite microstructures with hexagonal fiber distribution are used for the representative volume element (RVE), where an initial fiber breakage is assumed. Fiber breakage with random fiber strength is predicted using Monte Carlo simulation, progressive matrix damage is predicted by proposing a continuum damage mechanics model and interface failure is simulated using Xu and Needleman's cohesive model. Temperature dependent thermal expansion coefficients for epoxy matrix are used. FEA by developing numerical codes using ANSYS finite element software is divided into two steps: 1. Thermal residual stresses due to mismatch between fiber and matrix are calculated; 2. Longitudinal tensile load is further exerted on the RVE to perform progressive failure analysis of carbon fiber/epoxy composites. Numerical convergence is solved by introducing the viscous damping effect properly. The extended Mori-Tanaka method that considers interface debonding is used to get homogenized mechanical responses of composites. Three main results by FEA are obtained: 1. the real-time matrix cracking, fiber breakage and interface debonding with increasing tensile strain is simulated. 2. the stress concentration coefficients on neighbouring fibers near the initial broken fiber and the axial fiber stress distribution along the broken fiber are predicted, compared with the results using the global and local load-sharing models based on the shear-lag theory. 3. the tensile strength of composite by FEA is compared with those by the shear-lag theory and experiments. Finally, the tensile stress-strain curve of composites by FEA is applied to the progressive failure analysis of composite pressure vessel.

  14. A Large-scale Finite Element Model on Micromechanical Damage and Failure of Carbon Fiber/Epoxy Composites Including Thermal Residual Stress

    NASA Astrophysics Data System (ADS)

    Liu, P. F.; Li, X. K.

    2017-09-01

    The purpose of this paper is to study micromechanical progressive failure properties of carbon fiber/epoxy composites with thermal residual stress by finite element analysis (FEA). Composite microstructures with hexagonal fiber distribution are used for the representative volume element (RVE), where an initial fiber breakage is assumed. Fiber breakage with random fiber strength is predicted using Monte Carlo simulation, progressive matrix damage is predicted by proposing a continuum damage mechanics model and interface failure is simulated using Xu and Needleman's cohesive model. Temperature dependent thermal expansion coefficients for epoxy matrix are used. FEA by developing numerical codes using ANSYS finite element software is divided into two steps: 1. Thermal residual stresses due to mismatch between fiber and matrix are calculated; 2. Longitudinal tensile load is further exerted on the RVE to perform progressive failure analysis of carbon fiber/epoxy composites. Numerical convergence is solved by introducing the viscous damping effect properly. The extended Mori-Tanaka method that considers interface debonding is used to get homogenized mechanical responses of composites. Three main results by FEA are obtained: 1. the real-time matrix cracking, fiber breakage and interface debonding with increasing tensile strain is simulated. 2. the stress concentration coefficients on neighbouring fibers near the initial broken fiber and the axial fiber stress distribution along the broken fiber are predicted, compared with the results using the global and local load-sharing models based on the shear-lag theory. 3. the tensile strength of composite by FEA is compared with those by the shear-lag theory and experiments. Finally, the tensile stress-strain curve of composites by FEA is applied to the progressive failure analysis of composite pressure vessel.

  15. Determination of fiber-matrix interface failure parameters from off-axis tests

    NASA Technical Reports Server (NTRS)

    Naik, Rajiv A.; Crews, John H., Jr.

    1993-01-01

    Critical fiber-matrix (FM) interface strength parameters were determined using a micromechanics-based approach together with failure data from off-axis tension (OAT) tests. The ply stresses at failure for a range of off-axis angles were used as input to a micromechanics analysis that was performed using the personal computer-based MICSTRAN code. FM interface stresses at the failure loads were calculated for both the square and the diamond array models. A simple procedure was developed to determine which array had the more severe FM interface stresses and the location of these critical stresses on the interface. For the cases analyzed, critical FM interface stresses were found to occur with the square array model and were located at a point where adjacent fibers were closest together. The critical FM interface stresses were used together with the Tsai-Wu failure theory to determine a failure criterion for the FM interface. This criterion was then used to predict the onset of ply cracking in angle-ply laminates for a range of laminate angles. Predictions for the onset of ply cracking in angle-ply laminates agreed with the test data trends.

  16. Suspensions of Noncolloidal Particles in Yield Stress Fluids: Experimental and Micromechanical Approaches

    NASA Astrophysics Data System (ADS)

    Mahaut, Fabien; Bertrand, François; Coussot, Philippe; Chateau, Xavier; Ovarlez, Guillaume

    2008-07-01

    We study experimentally and theoretically the behavior of suspensions of noncolloidal particles in yield stress fluids. We develop procedures and materials that allow focusing on the purely mechanical contribution of the particles to the yield stress fiuid behavior, allowing relating the macroscopic properties of these suspensions to the mechanical properties of the yield stress fluid and the particle volume fraction. We find that the elastic modulus/concentration relationship follows a Krieger-Dougherty law, and show that the yield stress/concentration relationship is related to the elastic modulus/concentration relationship through a very simple law, in agreement with a micromechanical analysis. We finally present evidence for shear-induced migration in the flows of these suspensions.

  17. Digital model for X-ray diffraction with application to composition and strain determination in strained InAs/GaSb superlattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Yifei; Kim, Honggyu; Zuo, Jian-Min

    2014-07-07

    We propose a digital model for high quality superlattices by including fluctuations in the superlattice periods. The composition and strain profiles are assumed to be coherent and persist throughout the superlattice. Using this model, we have significantly improved the fit with experimental X-ray diffraction data recorded from the nominal InAs/GaSb superlattice. The lattice spacing of individual layers inside the superlattice and the extent of interfacial intermixing are refined by including both (002) and (004) and their satellite peaks in the fitting. For the InAs/GaSb strained layer superlattice, results show: (i) the GaSb-on-InAs interface is chemically sharper than the InAs-on-GaSb interface,more » (ii) the GaSb layers experience compressive strain with In incorporation, (iii) there are interfacial strain associated with InSb-like bonds in GaSb and GaAs-like bonds in InAs, (iv) Sb substitutes a significant amount of In inside InAs layer near the InAs-on-GaSb interface. For support, we show that the composition profiles determined by X-ray diffraction are in good agreement with those obtained from atom probe tomography measurement. Comparison with the kinetic growth model shows a good agreement in terms of the composition profiles of anions, while the kinetic model underestimates the intermixing of cations.« less

  18. A comparison of analysis tools for predicting the inelastic cyclic response of cross-ply titanium matrix composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroupa, J.L.; Coker, D.; Neu, R.W.

    1996-12-31

    Several micromechanical models that are currently being used for predicting the thermal and mechanical behavior of a cross-ply, [0/90], titanium matrix composite are evaluated. Six computer programs or methods are compared: (1) VISCOPLY; (2) METCAN; (3) FIDEP, an enhanced concentric cylinder model; (4) LISOL, a modified method of cells approach; (5) an elementary approach where the [90] ply is assumed to have the same properties as the matrix; and (6) a finite element method. Comparisons are made for the thermal residual stresses at room temperature resulting from processing, as well as for stresses and strains in two isothermal and twomore » thermomechanical fatigue test cases. For each case, the laminate response of the models is compared to experimental behavior, while the responses of the constituents are compared among the models. The capability of each model to predict frequency effects, inelastic cyclic strain (hysteresis) behavior, and strain ratchetting with cycling is shown. The basis of formulation for the micromechanical models, the constitutive relationships used for the matrix and fiber, and the modeling technique of the [90] ply are all found to be important factors for determining the accurate behavior of the [0/90] composite.« less

  19. Determination of antibiotic resistance pattern and bacteriocin sensitivity of Listeria monocytogenes strains isolated from different foods in turkey

    USDA-ARS?s Scientific Manuscript database

    This study aimed to determine the antibiotic resistance pattern and bacteriocin sensitivity of Listeria monocytogenes strains isolated from animal derived foods. With disc diffusion assay, all fourteen L. monocytogenes strains were susceptible to the antibiotics, including penicillin G, vancomycin, ...

  20. Autodisplay: Development of an Efficacious System for Surface Display of Antigenic Determinants in Salmonella Vaccine Strains

    PubMed Central

    Kramer, Uwe; Rizos, Konstantin; Apfel, Heiko; Autenrieth, Ingo B.; Lattemann, Claus T.

    2003-01-01

    To optimize antigen delivery by Salmonella vaccine strains, a system for surface display of antigenic determinants was established by using the autotransporter secretion pathway of gram-negative bacteria. A modular system for surface display allowed effective targeting of heterologous antigens or fragments thereof to the bacterial surface by the autotransporter domain of AIDA-I, the Escherichia coli adhesin involved in diffuse adherence. A major histocompatibility complex class II-restricted epitope, comprising amino acids 74 to 86 of the Yersinia enterocolitica heat shock protein Hsp60 (Hsp6074-86), was fused to the AIDA-I autotransporter domain, and the resulting fusion protein was expressed at high levels on the cell surface of E. coli and Salmonella enterica serovar Typhimurium. Colonization studies in mice vaccinated with Salmonella strains expressing AIDA-I fusion proteins demonstrated high genetic stability of the generated vaccine strain in vivo. Furthermore, a pronounced T-cell response against Yersinia Hsp6074-86 was induced in mice vaccinated with a Salmonella vaccine strain expressing the Hsp6074-86-AIDA-I fusion protein. This was shown by monitoring Yersinia Hsp60-stimulated IFN-γ secretion and proliferation of splenic T cells isolated from vaccinated mice. These results demonstrate that the surface display of antigenic determinants by the autotransporter pathway deserves special attention regarding the application in live attenuated Salmonella vaccine strains. PMID:12654812

  1. Autodisplay: development of an efficacious system for surface display of antigenic determinants in Salmonella vaccine strains.

    PubMed

    Kramer, Uwe; Rizos, Konstantin; Apfel, Heiko; Autenrieth, Ingo B; Lattemann, Claus T

    2003-04-01

    To optimize antigen delivery by Salmonella vaccine strains, a system for surface display of antigenic determinants was established by using the autotransporter secretion pathway of gram-negative bacteria. A modular system for surface display allowed effective targeting of heterologous antigens or fragments thereof to the bacterial surface by the autotransporter domain of AIDA-I, the Escherichia coli adhesin involved in diffuse adherence. A major histocompatibility complex class II-restricted epitope, comprising amino acids 74 to 86 of the Yersinia enterocolitica heat shock protein Hsp60 (Hsp60(74-86)), was fused to the AIDA-I autotransporter domain, and the resulting fusion protein was expressed at high levels on the cell surface of E. coli and Salmonella enterica serovar Typhimurium. Colonization studies in mice vaccinated with Salmonella strains expressing AIDA-I fusion proteins demonstrated high genetic stability of the generated vaccine strain in vivo. Furthermore, a pronounced T-cell response against Yersinia Hsp60(74-86) was induced in mice vaccinated with a Salmonella vaccine strain expressing the Hsp60(74-86)-AIDA-I fusion protein. This was shown by monitoring Yersinia Hsp60-stimulated IFN-gamma secretion and proliferation of splenic T cells isolated from vaccinated mice. These results demonstrate that the surface display of antigenic determinants by the autotransporter pathway deserves special attention regarding the application in live attenuated Salmonella vaccine strains.

  2. Micromechanics of sea ice frictional slip from test basin scale experiments

    PubMed Central

    Hatton, Daniel C.; Feltham, Daniel L.

    2017-01-01

    We have conducted a series of high-resolution friction experiments on large floating saline ice floes in an environmental test basin. In these experiments, a central ice floe was pushed between two other floes, sliding along two interfacial faults. The frictional motion was predominantly stick–slip. Shear stresses, normal stresses, local strains and slip displacement were measured along the sliding faults, and acoustic emissions were monitored. High-resolution measurements during a single stick–slip cycle at several positions along the fault allowed us to identify two phases of frictional slip: a nucleation phase, where a nucleation zone begins to slip before the rest of the fault, and a propagation phase when the entire fault is slipping. This is slip-weakening behaviour. We have therefore characterized what we consider to be a key deformation mechanism in Arctic Ocean dynamics. In order to understand the micromechanics of sea ice friction, we have employed a theoretical constitutive relation (i.e. an equation for shear stress in terms of temperature, normal load, acceleration, velocity and slip displacement) derived from the physics of asperity–asperity contact and sliding (Hatton et al. 2009 Phil. Mag. 89, 2771–2799 (doi:10.1080/14786430903113769)). We find that our experimental data conform reasonably with this frictional law once slip weakening is introduced. We find that the constitutive relation follows Archard's law rather than Amontons' law, with (where τ is the shear stress and σn is the normal stress) and n = 26/27, with a fractal asperity distribution, where the frictional shear stress, τ = ffractal Tmlws, where ffractal is the fractal asperity height distribution, Tml is the shear strength for frictional melting and lubrication and ws is the slip weakening. We can therefore deduce that the interfacial faults failed in shear for these experimental conditions through processes of brittle failure of asperities in shear, and, at higher

  3. Micromechanics of sea ice frictional slip from test basin scale experiments

    NASA Astrophysics Data System (ADS)

    Sammonds, Peter R.; Hatton, Daniel C.; Feltham, Daniel L.

    2017-02-01

    We have conducted a series of high-resolution friction experiments on large floating saline ice floes in an environmental test basin. In these experiments, a central ice floe was pushed between two other floes, sliding along two interfacial faults. The frictional motion was predominantly stick-slip. Shear stresses, normal stresses, local strains and slip displacement were measured along the sliding faults, and acoustic emissions were monitored. High-resolution measurements during a single stick-slip cycle at several positions along the fault allowed us to identify two phases of frictional slip: a nucleation phase, where a nucleation zone begins to slip before the rest of the fault, and a propagation phase when the entire fault is slipping. This is slip-weakening behaviour. We have therefore characterized what we consider to be a key deformation mechanism in Arctic Ocean dynamics. In order to understand the micromechanics of sea ice friction, we have employed a theoretical constitutive relation (i.e. an equation for shear stress in terms of temperature, normal load, acceleration, velocity and slip displacement) derived from the physics of asperity-asperity contact and sliding (Hatton et al. 2009 Phil. Mag. 89, 2771-2799 (doi:10.1080/14786430903113769)). We find that our experimental data conform reasonably with this frictional law once slip weakening is introduced. We find that the constitutive relation follows Archard's law rather than Amontons' law, with ? (where τ is the shear stress and σn is the normal stress) and n = 26/27, with a fractal asperity distribution, where the frictional shear stress, τ = ffractal Tmlws, where ffractal is the fractal asperity height distribution, Tml is the shear strength for frictional melting and lubrication and ws is the slip weakening. We can therefore deduce that the interfacial faults failed in shear for these experimental conditions through processes of brittle failure of asperities in shear, and, at higher velocities

  4. Development of self-powered strain sensor using mechano-luminescent ZnS:Cu and mechano-optoelectronic P3HT

    NASA Astrophysics Data System (ADS)

    Pulliam, Elias; Hoover, George; Tiparti, Dhruv; Ryu, Donghyeon

    2017-04-01

    Aerospace structural systems are prone to structural damage during their use by vibration, impact, material degradation, and other factors. Due to the harsh environments in which aerospace structures operate, aerospace structures are susceptible to various types of damage and often their structural integrity is jeopardized unless damage onset is detected in timely manner. Yet, current state-of-the-art sensor technologies are still limited for structural health monitoring (SHM) of aerospace structures due to their high power consumption, need for large form factor design, and manageable integration into aerospace structures. This study proposes a design of multilayered self-powered strain sensor by coupling mechano-luminescent (ML) property of copper-doped zinc sulfide (ZnS:Cu) and mechano-optoelectronic (MO) property of poly(3-hexylthiophene) (P3HT). One functional layer of the self-powered strain sensor is ZnS:Cu-based elastomeric composites that emit light in response to mechanical deformation. Another functional layer is P3HT-based thin films that generate direct current (DC) under light illumination and DC magnitude changes with applied strain. First, ML light emission characteristics of ZnS:Cu-based composites are studied under cyclic tensile strain with two various maximum strain up to 10% and 15% at various loading frequencies from 5 Hz to 20 Hz. Second, piezo-optical properties of P3HT-based thin films are investigated by acquiring light absorption of the thin films at various strains from 0% to 2% tensile strain. Last, micro-mechanical properties of the P3HT-based thin films are characterized using nanoindentation.

  5. Remote quantum entanglement between two micromechanical oscillators.

    PubMed

    Riedinger, Ralf; Wallucks, Andreas; Marinković, Igor; Löschnauer, Clemens; Aspelmeyer, Markus; Hong, Sungkun; Gröblacher, Simon

    2018-04-01

    Entanglement, an essential feature of quantum theory that allows for inseparable quantum correlations to be shared between distant parties, is a crucial resource for quantum networks 1 . Of particular importance is the ability to distribute entanglement between remote objects that can also serve as quantum memories. This has been previously realized using systems such as warm 2,3 and cold atomic vapours 4,5 , individual atoms 6 and ions 7,8 , and defects in solid-state systems 9-11 . Practical communication applications require a combination of several advantageous features, such as a particular operating wavelength, high bandwidth and long memory lifetimes. Here we introduce a purely micromachined solid-state platform in the form of chip-based optomechanical resonators made of nanostructured silicon beams. We create and demonstrate entanglement between two micromechanical oscillators across two chips that are separated by 20 centimetres . The entangled quantum state is distributed by an optical field at a designed wavelength near 1,550 nanometres. Therefore, our system can be directly incorporated in a realistic fibre-optic quantum network operating in the conventional optical telecommunication band. Our results are an important step towards the development of large-area quantum networks based on silicon photonics.

  6. Finite deformation of incompressible fiber-reinforced elastomers: A computational micromechanics approach

    NASA Astrophysics Data System (ADS)

    Moraleda, Joaquín; Segurado, Javier; LLorca, Javier

    2009-09-01

    The in-plane finite deformation of incompressible fiber-reinforced elastomers was studied using computational micromechanics. Composite microstructure was made up of a random and homogeneous dispersion of aligned rigid fibers within a hyperelastic matrix. Different matrices (Neo-Hookean and Gent), fibers (monodisperse or polydisperse, circular or elliptical section) and reinforcement volume fractions (10-40%) were analyzed through the finite element simulation of a representative volume element of the microstructure. A successive remeshing strategy was employed when necessary to reach the large deformation regime in which the evolution of the microstructure influences the effective properties. The simulations provided for the first time "quasi-exact" results of the in-plane finite deformation for this class of composites, which were used to assess the accuracy of the available homogenization estimates for incompressible hyperelastic composites.

  7. A micromechanical interpretation of the temperature dependence of Beremin model parameters for french RPV steel

    NASA Astrophysics Data System (ADS)

    Mathieu, Jean-Philippe; Inal, Karim; Berveiller, Sophie; Diard, Olivier

    2010-11-01

    Local approach to brittle fracture for low-alloyed steels is discussed in this paper. A bibliographical introduction intends to highlight general trends and consensual points of the topic and evokes debatable aspects. French RPV steel 16MND5 (equ. ASTM A508 Cl.3), is then used as a model material to study the influence of temperature on brittle fracture. A micromechanical modelling of brittle fracture at the elementary volume scale already used in previous work is then recalled. It involves a multiscale modelling of microstructural plasticity which has been tuned on experimental inter-phase and inter-granular stresses heterogeneities measurements. Fracture probability of the elementary volume can then be computed using a randomly attributed defect size distribution based on realistic carbides repartition. This defect distribution is then deterministically correlated to stress heterogeneities simulated within the microstructure using a weakest-link hypothesis on the elementary volume, which results in a deterministic stress to fracture. Repeating the process allows to compute Weibull parameters on the elementary volume. This tool is then used to investigate the physical mechanisms that could explain the already experimentally observed temperature dependence of Beremin's parameter for 16MND5 steel. It is showed that, assuming that the hypothesis made in this work about cleavage micro-mechanisms are correct, effective equivalent surface energy (i.e. surface energy plus plastically dissipated energy when blunting the crack tip) for propagating a crack has to be temperature dependent to explain Beremin's parameters temperature evolution.

  8. Erythrocyte phosphofructokinase in rat strains with genetically determined differences in 2,3-diphosphoglycerate levels.

    PubMed

    Noble, N A; Tanaka, K R

    1981-02-01

    We have studied the erythrocyte enzyme phosphofructokinase (PFK) from two strains of Long-Evans rats with genetically determined differences in erythrocyte 2,3-diphosphoglycerate (DPG) levels. The DPG difference is due to two alleles at one locus. With one probable exception, the genotype at this locus is always associated with the hemoglobin (Hb) electrophoretic phenotype, due to a polymorphism at the III beta-globin locus. The enzyme PFK has been implicated in the DPG difference because glycolytic intermediate levels suggest that this enzyme has a higher in vivo activity in High-DPG strain rats, although the total PFK activity does not differ. We report here that partially purified erythrocyte PFK from Low-DPG strain cells is inhibited significantly more at physiological levels of DPG (P less than 0.01) than PFK from High-DPG strain erythrocytes. Citrate and adenosine triphosphate also inhibit the Low-DPG enzyme more than the High-DPG enzyme. Therefore, a structurally different PFK, with a greater sensitivity to inhibitors, may explain the lower DPG and ATP levels observed in Low-DPG strain animals. These data support a two-locus (Hb and PFK) hypothesis and provide a gene marker to study the underlying genetic and physiologic relationships of these loci.

  9. Microscale frictional strains determine chondrocyte fate in loaded cartilage.

    PubMed

    Bonnevie, Edward D; Delco, Michelle L; Bartell, Lena R; Jasty, Naveen; Cohen, Itai; Fortier, Lisa A; Bonassar, Lawrence J

    2018-06-06

    Mounting evidence suggests that altered lubricant levels within synovial fluid have acute biological consequences on chondrocyte homeostasis. While these responses have been connected to increased friction, the mechanisms behind this response remain unknown. Here, we combine a frictional bioreactor with confocal elastography and image-based cellular assays to establish the link between cartilage friction, microscale shear strain, and acute, adverse cellular responses. Our incorporation of cell-scale strain measurements reveals that elevated friction generates high shear strains localized near the tissue surface, and that these elevated strains are closely associated with mitochondrial dysfunction, apoptosis, and cell death. Collectively, our data establish two pathways by which chondrocytes negatively respond to friction: an immediate necrotic response and a longer term pathway involving mitochondrial dysfunction and apoptosis. Specifically, in the surface region, where shear strains can exceed 0.07, cells are predisposed to acute death; however, below this surface region, cells exhibit a pathway consistent with apoptosis in a manner predicted by local shear strains. These data reveal a mechanism through which cellular damage in cartilage arises from compromised lubrication and show that in addition to boundary lubricants, there are opportunities upstream of apoptosis to preserve chondrocyte health in arthritis therapy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Computational Modeling System for Deformation and Failure in Polycrystalline Metals

    DTIC Science & Technology

    2009-03-29

    FIB/EHSD 3.3 The Voronoi Cell FEM for Micromechanical Modeling 3.4 VCFEM for Microstructural Damage Modeling 3.5 Adaptive Multiscale Simulations...accurate and efficient image-based micromechanical finite element model, for crystal plasticity and damage , incorporating real morphological and...topology with evolving strain localization and damage . (v) Development of multi-scaling algorithms in the time domain for compression and localization in

  11. Micromechanics investigation of expansive reactions in chemoelastic concrete.

    PubMed

    Lemarchand, Eric; Dormieux, Luc; Ulm, Franz-Josef

    2005-11-15

    Expansive reactions damage porous materials through the formation of reaction products of a volume in excess of the available space left by the reactants and the natural porosity of the material. This leads to pressurizing the pore space accessible to the reaction products, which differs when the chemical reaction is through-solution or topochemical or both in nature. This paper investigates expansive reactions from a micromechanical point of view, which allows bridging the scale from the local chemo-mechanical mechanisms to the macroscopically observable stress-free expansion. In particular, the study of the effect of morphology of the pore space, in which the chemical expansion occurs locally, on the macroscopically observable expansion is the main focus of this paper. The first part revisits the through-solution and the topochemical reaction mechanism within the framework of micro-macro-homogenization theories, and the effect of the microscopic geometry of pores and microcracks in the solid matrix on the macroscopic chemical expansion is examined. The second part deals with the transition from a topochemical to a through-solution-like mechanism that occurs in a solid matrix with inclusions (cracks, pores) of different morphology.

  12. Microstructure and micromechanical elastic properties of weak layers

    NASA Astrophysics Data System (ADS)

    Köchle, Berna; Matzl, Margret; Proksch, Martin; Schneebeli, Martin

    2014-05-01

    Weak layers are the mechanically most important stratigraphic layer for avalanches. Yet, there is little known about their exact geometry and their micromechanical properties. To distinguish weak layers or interfaces is essential to assess stability. However, except by destructive mechanical tests, they cannot be easily identified and characterized in the field. We casted natural weak layers and their adjacent layers in the field during two winter seasons and scanned them non-destructively with X-ray computer tomography with a resolution between 10 - 20 µm. Reconstructed three-dimensional models of centimeter-sized layered samples allow for calculating the change of structural properties. We found that structural transitions cannot always by expressed by geometry like density or grain size. In addition, we calculated the Young's modulus and Poisson's ratio of the individual layers with voxel-based finite element simulations. As any material has its characteristic elastic parameters, they may potentially differentiate individual layers, and therefore different microstructures. Our results show that Young's modulus correlates well with density but do not indicate snow's microstructure, in contrast to Poisson's ratio which tends to be lower for strongly anisotropic forms like cup crystals and facets.

  13. A micromechanical model to explain the mechanical properties of bovine cortical bone in tension: In vitro fluoride ion effects

    NASA Astrophysics Data System (ADS)

    Kotha, Shiva Prasad

    Bone mineral and bone organic are assumed to be a linearly elastic, brittle material. A simple micromechanical model based on the shear lag theory is developed to model the stress transfer between the mineral platelets of bone. The bone mineral platelets carry most of the applied load while the organic primarily serves to transfer load between the overlapped mineral platelets by shear. Experiments were done to elucidate the mechanism of failure in bovine cortical bone and to decrease the mineral content of control bone with in-vitro fluoride ion treatments. It was suggested that the failure at the ultrastructural level is due to the transverse failure of bonds between the collagen microfibrils in the organic matrix. However, the shear stress transfer and the axial load bearing capacity of the organic is not impaired. Hence, it is assumed that the shear strain in the matrix increases while the shear stress remains constant at the shear yield stress once the matrix starts yielding at the ends of the bone mineral. When the shear stress over the length of the mineral platelet reaches the shear yield stress, no more applied stress is carried by the bone mineral platelets while the organic matrix carries the increased axial load. The bone fails when the axial stress in the organic reaches its ultimate stress. The bone mineral is assumed to dissolve due to in-vitro fluoride ion treatments and precipitate calcium fluoride or fluoroapatite like material. The amount of dissolution is estimated based on 19F Nuclear Magnetic Resonance or a decrease in the carbonate content of bone. The dissolution of bone mineral is assumed to increase the porosity in the organic. We assume that the elastic modulus and the ultimate strength of the organic decrease due to the increased porosity. A simple empirical model is used to model the decrease in the elastic modulus. The strength is modeled to decrease based on an increase in the cross-sectional area occupied by the porosity. The

  14. Determination of the ductile-brittle transition temperature from the microplastic-strain rate

    NASA Astrophysics Data System (ADS)

    Andreev, A. K.; Solntsev, Yu. P.

    2008-04-01

    The possibility of the determination of the tendency of cast and deformed steels to brittle fracture using the temperature dependence of the small-plastic-strain rate is studied. The temperature corresponding to the maximum in this curve is found to indicate an abrupt decrease in the steel plasticity, which makes it possible to interpret it as the ductile-brittle transition temperature depending only on the structure of a material.

  15. Multiscale Modeling of PEEK Using Reactive Molecular Dynamics Modeling and Micromechanics

    NASA Technical Reports Server (NTRS)

    Pisani, William A.; Radue, Matthew; Chinkanjanarot, Sorayot; Bednarcyk, Brett A.; Pineda, Evan J.; King, Julia A.; Odegard, Gregory M.

    2018-01-01

    Polyether ether ketone (PEEK) is a high-performance, semi-crystalline thermoplastic that is used in a wide range of engineering applications, including some structural components of aircraft. The design of new PEEK-based materials requires a precise understanding of the multiscale structure and behavior of semi-crystalline PEEK. Molecular Dynamics (MD) modeling can efficiently predict bulk-level properties of single phase polymers, and micromechanics can be used to homogenize those phases based on the overall polymer microstructure. In this study, MD modeling was used to predict the mechanical properties of the amorphous and crystalline phases of PEEK. The hierarchical microstructure of PEEK, which combines the aforementioned phases, was modeled using a multiscale modeling approach facilitated by NASA's MSGMC. The bulk mechanical properties of semi-crystalline PEEK predicted using MD modeling and MSGMC agree well with vendor data, thus validating the multiscale modeling approach.

  16. Coupled attenuation and multiscale damage model for composite structures

    NASA Astrophysics Data System (ADS)

    Moncada, Albert M.; Chattopadhyay, Aditi; Bednarcyk, Brett; Arnold, Steven M.

    2011-04-01

    Composite materials are widely used in many applications for their high strength, low weight, and tailorability for specific applications. However, the development of robust and reliable methodologies to detect micro level damage in composite structures has been challenging. For composite materials, attenuation of ultrasonic waves propagating through the media can be used to determine damage within the material. Currently available numerical solutions for attenuation induce arbitrary damage, such as fiber-matrix debonding or inclusions, to show variations between healthy and damaged states. This paper addresses this issue by integrating a micromechanics analysis to simulate damage in the form of a fiber-matrix crack and an analytical model for calculating the attenuation of the waves when they pass through the damaged region. The hybrid analysis is validated by comparison with experimental stress-strain curves and piezoelectric sensing results for attenuation measurement. The results showed good agreement between the experimental stress-strain curves and the results from the micromechanics analysis. Wave propagation analysis also showed good correlation between simulation and experiment for the tested frequency range.

  17. Consequences of Location-Dependent Organ of Corti Micro-Mechanics

    PubMed Central

    Liu, Yanju; Gracewski, Sheryl M.; Nam, Jong-Hoon

    2015-01-01

    The cochlea performs frequency analysis and amplification of sounds. The graded stiffness of the basilar membrane along the cochlear length underlies the frequency-location relationship of the mammalian cochlea. The somatic motility of outer hair cell is central for cochlear amplification. Despite two to three orders of magnitude change in the basilar membrane stiffness, the force capacity of the outer hair cell’s somatic motility, is nearly invariant over the cochlear length. It is puzzling how actuators with a constant force capacity can operate under such a wide stiffness range. We hypothesize that the organ of Corti sets the mechanical conditions so that the outer hair cell’s somatic motility effectively interacts with the media of traveling waves—the basilar membrane and the tectorial membrane. To test this hypothesis, a computational model of the gerbil cochlea was developed that incorporates organ of Corti structural mechanics, cochlear fluid dynamics, and hair cell electro-physiology. The model simulations showed that the micro-mechanical responses of the organ of Corti are different along the cochlear length. For example, the top surface of the organ of Corti vibrated more than the bottom surface at the basal (high frequency) location, but the amplitude ratio was reversed at the apical (low frequency) location. Unlike the basilar membrane stiffness varying by a factor of 1700 along the cochlear length, the stiffness of the organ of Corti complex felt by the outer hair cell remained between 1.5 and 0.4 times the outer hair cell stiffness. The Y-shaped structure in the organ of Corti formed by outer hair cell, Deiters cell and its phalange was the primary determinant of the elastic reactance imposed on the outer hair cells. The stiffness and geometry of the Deiters cell and its phalange affected cochlear amplification differently depending on the location. PMID:26317521

  18. Ductile sliding between mineral crystals followed by rupture of collagen crosslinks: experimentally supported micromechanical explanation of bone strength.

    PubMed

    Fritsch, Andreas; Hellmich, Christian; Dormieux, Luc

    2009-09-21

    There is an ongoing discussion on how bone strength could be explained from its internal structure and composition. Reviewing recent experimental and molecular dynamics studies, we here propose a new vision on bone material failure: mutual ductile sliding of hydroxyapatite mineral crystals along layered water films is followed by rupture of collagen crosslinks. In order to cast this vision into a mathematical form, a multiscale continuum micromechanics theory for upscaling of elastoplastic properties is developed, based on the concept of concentration and influence tensors for eigenstressed microheterogeneous materials. The model reflects bone's hierarchical organization, in terms of representative volume elements for cortical bone, for extravascular and extracellular bone material, for mineralized fibrils and the extrafibrillar space, and for wet collagen. In order to get access to the stress states at the interfaces between crystals, the extrafibrillar mineral is resolved into an infinite amount of cylindrical material phases oriented in all directions in space. The multiscale micromechanics model is shown to be able to satisfactorily predict the strength characteristics of different bones from different species, on the basis of their mineral/collagen content, their intercrystalline, intermolecular, lacunar, and vascular porosities, and the elastic and strength properties of hydroxyapatite and (molecular) collagen.

  19. Strain field determination in III-V heteroepitaxy coupling finite elements with experimental and theoretical techniques at the nanoscale

    NASA Astrophysics Data System (ADS)

    Florini, Nikoletta; Dimitrakopulos, George P.; Kioseoglou, Joseph; Pelekanos, Nikos T.; Kehagias, Thomas

    2017-04-01

    We are briefly reviewing the current status of elastic strain field determination in III-V heteroepitaxial nanostructures, linking finite elements (FE) calculations with quantitative nanoscale imaging and atomistic calculation techniques. III-V semiconductor nanostructure systems of various dimensions are evaluated in terms of their importance in photonic and microelectronic devices. As elastic strain distribution inside nano-heterostructures has a significant impact on the alloy composition, and thus their electronic properties, it is important to accurately map its components both at the interface plane and along the growth direction. Therefore, we focus on the determination of the stress-strain fields in III-V heteroepitaxial nanostructures by experimental and theoretical methods with emphasis on the numerical FE method by means of anisotropic continuum elasticity (CE) approximation. Subsequently, we present our contribution to the field by coupling FE simulations on InAs quantum dots (QDs) grown on (211)B GaAs substrate, either uncapped or buried, and GaAs/AlGaAs core-shell nanowires (NWs) grown on (111) Si, with quantitative high-resolution transmission electron microscopy (HRTEM) methods and atomistic molecular dynamics (MD) calculations. Full determination of the elastic strain distribution can be exploited for band gap tailoring of the heterostructures by controlling the content of the active elements, and thus influence the emitted radiation.

  20. Surface strain-field determination of tympanic membrane using 3D-digital holographic interferometry

    NASA Astrophysics Data System (ADS)

    Hernandez-Montes, María del S.; Mendoza Santoyo, Fernando; Muñoz, Silvino; Perez, Carlos; de la Torre, Manuel; Flores, Mauricio; Alvarez, Luis

    2015-08-01

    In order to increase the understanding of soft tissues mechanical properties, 3D Digital Holographic Interferometry (3D-DHI) was used to quantify the strain-field on a cat tympanic membrane (TM) surface. The experiments were carried out applying a constant sound-stimuli pressure of 90 dB SPL (0.632 Pa) on the TM at 1.2 kHz. The technique allows the accurate acquisition of the micro-displacement data along the x, y and z directions, which is a must for a full characterization of the tissue mechanical behavior under load, and for the calculation of the strain-field in situ. The displacements repeatability in z direction shows a standard deviation of 0.062 μm at 95% confidence level. In order to realize the full 3D characterization correctly the contour of the TM surface was measured employing the optically non-contact two-illumination positions contouring method. The x, y and z displacements combined with the TM contour data allow the evaluation its strain-field by spatially differentiating the u(m,n), v(m,n), and w(m,n) deformation components. The accurate and correct determination of the TM strain-field leads to describing its elasticity, which is an important parameter needed to improve ear biomechanics studies, audition processes and TM mobility in both experimental measurements and theoretical analysis of ear functionality and its modeling.

  1. Micromechanical processes of frictional aging and the affect of shear stress on fault healing: insights from material characterization and ultrasonic velocity measurements

    NASA Astrophysics Data System (ADS)

    Ryan, K. L.; Marone, C.

    2015-12-01

    During the seismic cycle, faults repeatedly fail and regain strength. The gradual strength recovery is often referred to as frictional healing, and existing works suggest that healing can play an important role in determining the mode of fault slip ranging from dynamic rupture to slow earthquakes. Laboratory studies can play an important role in identifying the processes of frictional healing and their evolution with shear strain during the seismic cycle. These studies also provide data for laboratory-derived friction constitutive laws, which can improve dynamic earthquake models. Previous work shows that frictional healing varies with shear stress on a fault during the interseismic period. Unfortunately, the micromechanical processes that cause shear stress dependent frictional healing are not well understood and cannot be incorporated into current earthquake models. In fault gouge, frictional healing involves compaction and particle rearrangement within sheared granular layers. Therefore, to address these issues, we investigate the role grain size reduction plays in frictional re-strengthening processes at different levels of shear stress. Sample material was preserved from biaxial deformation experiments on granular Westerly granite. The normal stress was held constant at 25 MPa and we performed several 100 second slide-hold-slide tests in each experiment. We conducted a series of 5 experiments each with a different value of normalized shear stress (ranging from 0 to 1), defined as the ratio of the pre-hold shear stress to the shear stress during the hold. The particle size distribution for each sample was analyzed. In addition, acoustic measurements were recorded throughout our experiments to investigate variations in ultrasonic velocity and signal amplitude that reflect changes in the elastic moduli of the layer. Acoustic monitoring provides information about healing mechanisms and can provide a link between laboratory studies and tectonic fault zones.

  2. Unique Zigzag-Shaped Buckling Zn2C Monolayer with Strain-Tunable Band Gap and Negative Poisson Ratio.

    PubMed

    Meng, Lingbiao; Zhang, Yingjuan; Zhou, Minjie; Zhang, Jicheng; Zhou, Xiuwen; Ni, Shuang; Wu, Weidong

    2018-02-19

    Designing new materials with reduced dimensionality and distinguished properties has continuously attracted intense interest for materials innovation. Here we report a novel two-dimensional (2D) Zn 2 C monolayer nanomaterial with exceptional structure and properties by means of first-principles calculations. This new Zn 2 C monolayer is composed of quasi-tetrahedral tetracoordinate carbon and quasi-linear bicoordinate zinc, featuring a peculiar zigzag-shaped buckling configuration. The unique coordinate topology endows this natural 2D semiconducting monolayer with strongly strain tunable band gap and unusual negative Poisson ratios. The monolayer has good dynamic and thermal stabilities and is also the lowest-energy structure of 2D space indicated by the particle-swarm optimization (PSO) method, implying its synthetic feasibility. With these intriguing properties the material may find applications in nanoelectronics and micromechanics.

  3. Micromechanical contact stiffness devices and application for calibrating contact resonance atomic force microscopy.

    PubMed

    Rosenberger, Matthew R; Chen, Sihan; Prater, Craig B; King, William P

    2017-01-27

    This paper reports the design, fabrication, and characterization of micromechanical devices that can present an engineered contact stiffness to an atomic force microscope (AFM) cantilever tip. These devices allow the contact stiffness between the AFM tip and a substrate to be easily and accurately measured, and can be used to calibrate the cantilever for subsequent mechanical property measurements. The contact stiffness devices are rigid copper disks of diameters 2-18 μm integrated onto a soft silicone substrate. Analytical modeling and finite element simulations predict the elastic response of the devices. Measurements of tip-sample interactions during quasi-static force measurements compare well with modeling simulation, confirming the expected elastic response of the devices, which are shown to have contact stiffness 32-156 N m -1 . To demonstrate one application, we use the disk sample to calibrate three resonant modes of a U-shaped AFM cantilever actuated via Lorentz force, at approximately 220, 450, and 1200 kHz. We then use the calibrated cantilever to determine the contact stiffness and elastic modulus of three polymer samples at these modes. The overall approach allows cantilever calibration without prior knowledge of the cantilever geometry or its resonance modes, and could be broadly applied to both static and dynamic measurements that require AFM calibration against a known contact stiffness.

  4. Micromechanical contact stiffness devices and application for calibrating contact resonance atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Rosenberger, Matthew R.; Chen, Sihan; Prater, Craig B.; King, William P.

    2017-01-01

    This paper reports the design, fabrication, and characterization of micromechanical devices that can present an engineered contact stiffness to an atomic force microscope (AFM) cantilever tip. These devices allow the contact stiffness between the AFM tip and a substrate to be easily and accurately measured, and can be used to calibrate the cantilever for subsequent mechanical property measurements. The contact stiffness devices are rigid copper disks of diameters 2-18 μm integrated onto a soft silicone substrate. Analytical modeling and finite element simulations predict the elastic response of the devices. Measurements of tip-sample interactions during quasi-static force measurements compare well with modeling simulation, confirming the expected elastic response of the devices, which are shown to have contact stiffness 32-156 N m-1. To demonstrate one application, we use the disk sample to calibrate three resonant modes of a U-shaped AFM cantilever actuated via Lorentz force, at approximately 220, 450, and 1200 kHz. We then use the calibrated cantilever to determine the contact stiffness and elastic modulus of three polymer samples at these modes. The overall approach allows cantilever calibration without prior knowledge of the cantilever geometry or its resonance modes, and could be broadly applied to both static and dynamic measurements that require AFM calibration against a known contact stiffness.

  5. Microstructural heterogeneity directs micromechanics and mechanobiology in native and engineered fibrocartilage

    NASA Astrophysics Data System (ADS)

    Han, Woojin M.; Heo, Su-Jin; Driscoll, Tristan P.; Delucca, John F.; McLeod, Claire M.; Smith, Lachlan J.; Duncan, Randall L.; Mauck, Robert L.; Elliott, Dawn M.

    2016-04-01

    Treatment strategies to address pathologies of fibrocartilaginous tissue are in part limited by an incomplete understanding of structure-function relationships in these load-bearing tissues. There is therefore a pressing need to develop micro-engineered tissue platforms that can recreate the highly inhomogeneous tissue microstructures that are known to influence mechanotransductive processes in normal and diseased tissue. Here, we report the quantification of proteoglycan-rich microdomains in developing, ageing and diseased fibrocartilaginous tissues, and the impact of these microdomains on endogenous cell responses to physiologic deformation within a native-tissue context. We also developed a method to generate heterogeneous tissue-engineered constructs (hetTECs) with non-fibrous proteoglycan-rich microdomains engineered into the fibrous structure, and show that these hetTECs match the microstructural, micromechanical and mechanobiological benchmarks of native tissue. Our tissue-engineered platform should facilitate the study of the mechanobiology of developing, homeostatic, degenerating and regenerating fibrous tissues.

  6. Microstructural heterogeneity directs micromechanics and mechanobiology in native and engineered fibrocartilage.

    PubMed

    Han, Woojin M; Heo, Su-Jin; Driscoll, Tristan P; Delucca, John F; McLeod, Claire M; Smith, Lachlan J; Duncan, Randall L; Mauck, Robert L; Elliott, Dawn M

    2016-04-01

    Treatment strategies to address pathologies of fibrocartilaginous tissue are in part limited by an incomplete understanding of structure-function relationships in these load-bearing tissues. There is therefore a pressing need to develop micro-engineered tissue platforms that can recreate the highly inhomogeneous tissue microstructures that are known to influence mechanotransductive processes in normal and diseased tissue. Here, we report the quantification of proteoglycan-rich microdomains in developing, ageing and diseased fibrocartilaginous tissues, and the impact of these microdomains on endogenous cell responses to physiologic deformation within a native-tissue context. We also developed a method to generate heterogeneous tissue-engineered constructs (hetTECs) with non-fibrous proteoglycan-rich microdomains engineered into the fibrous structure, and show that these hetTECs match the microstructural, micromechanical and mechanobiological benchmarks of native tissue. Our tissue-engineered platform should facilitate the study of the mechanobiology of developing, homeostatic, degenerating and regenerating fibrous tissues.

  7. Micromechanical performance of interfacial transition zone in fiber-reinforced cement matrix

    NASA Astrophysics Data System (ADS)

    Zacharda, V.; Němeček, J.; Štemberk, P.

    2017-09-01

    The paper investigates microstructure, chemical composition and micromechanical behavior of an interfacial transition zone (ITZ) in steel fiber reinforced cement matrix. For this goal, a combination of scanning electron microscopy (SEM), nanoindentation and elastic homogenization theory are used. The investigated sample of cement paste with dispersed reinforcement consists of cement CEM I 42,5R and a steel fiber TriTreg 50 mm. The microscopy revealed smaller portion of clinkers and larger porosity in the ITZ. Nanoindentation delivered decreased elastic modulus in comparison with cement bulk (67%) and the width of ITZ (∼ 40 μm). The measured properties served as input parameters for a simple two-scale model for elastic properties of the composite. Although, no major influence of ITZ properties on the composite elastic behavior was found, the findings about the ITZ reduced properties and its size can serve as input to other microstructural fracture based models.

  8. Superlattice strain gage

    DOEpatents

    Noel, B.W.; Smith, D.L.; Sinha, D.N.

    1988-06-28

    A strain gage comprising a strained-layer superlattice crystal exhibiting piezoelectric properties is described. A substrate upon which such a strained-layer superlattice crystal has been deposited is attached to an element to be monitored for strain. A light source is focused on the superlattice crystal and the light reflected from, passed through, or emitted from the crystal is gathered and compared with previously obtained optical property data to determine the strain in the element. 8 figs.

  9. Micromechanical study of protein-DNA interactions and chromosomes

    NASA Astrophysics Data System (ADS)

    Marko, John

    I will discuss micromechanics experiments that our group has used to analyze protein-DNA interactions and chromosome organization. In single-DNA experiments we have found that a feature of protein-DNA complexes is that their dissociation rates can depend strikingly on bulk solution concentrations of other proteins and DNA segments; I will describe experiments which demonstrate this effect, which can involve tens-fold changes in off-rates with submicromolar changes in solution concentrations. Second, I will discuss experiments aimed at analyzing large-scale human chromosome structure; we isolate metaphase chromosomes, which in their native form behave as remarkably elastic networks of chromatin. Exposure to DNA-cutting restriction enzymes completely eliminates this elasticity, indicating that there is not a mechanically contiguous protein ''scaffold'' from which the chromosome gains its stability. I will show results of siRNA experiments indicating that depletion of condensin proteins leads to destabilization of chromosome mechanics, indicating condensin's role as the major chromatin ''cross-linker'' in metaphase chromosomes. Finally I will discuss similar experiments on human G1 nuclei, where we use genetic and chemical modifications to separate the contributions of the nuclear lamina and chromatin to the mechanical stiffness of the nucleus as a whole. Supported by the NSF (DMR-1206868, MCB-1022117) and the NIH (GM105847, CA193419).

  10. Application of the boundary element method to the micromechanical analysis of composite materials

    NASA Technical Reports Server (NTRS)

    Goldberg, R. K.; Hopkins, D. A.

    1995-01-01

    A new boundary element formulation for the micromechanical analysis of composite materials is presented in this study. A unique feature of the formulation is the use of circular shape functions to convert the two-dimensional integrations of the composite fibers to one-dimensional integrations. To demonstrate the applicability of the formulations, several example problems including elastic and thermal analysis of laminated composites and elastic analyses of woven composites are presented and the boundary element results compared to experimental observations and/or results obtained through alternate analytical procedures. While several issues remain to be addressed in order to make the methodology more robust, the formulations presented here show the potential in providing an alternative to traditional finite element methods, particularly for complex composite architectures.

  11. Selected papers from the 23rd MicroMechanics and Microsystems Europe Workshop (MME 2012) (Ilmenau, Germany, September 9-12, 2012)

    NASA Astrophysics Data System (ADS)

    Hoffmann, Martin

    2013-07-01

    In September 2012, the 23rd MicroMechanics Europe Workshop (MME) took place in Ilmenau, Germany. With about 120 participants from 20 countries and 76 accepted presentations, the workshop series turned out to be a successful platform for young scientists to present their work to our scientific community. Traditionally, the interaction is an important aspect of this workshop: while short presentations introduce the posters, an extended poster session allows intensive discussion which is quite useful to the participants. The discussion very often extends into the breaks and the evening events. It is also encouraging for them that the best presentations are selected and invited to submit a full paper to this journal. Thanks to the support of IOP Publishing, this next logical step to present work to the scientific world is made possible. In this issue, you can find the best papers that have been selected by a committee during the workshop taking the written workshop contribution, the poster and the presentation into account. Again, all areas of micromechanics from new technology developments up to systems integration were presented at the workshop at different levels of completion. The selected papers present those results which are almost complete. Nevertheless, it is nice to see that in some cases topics grow over the years from 'nice ideas' to realized system concepts. And although this is the 23rd workshop, it is clear that micromechanics is a topic that is not running short of new ideas. First, I would like to thank the authors of the selected papers for each of their individual excellent contributions. My gratitude also goes to my fellow members in the programme committee (Per Ohlckers, Martin Hill and Sami Franssila) for their cooperation in the selection of invited speakers and submitted papers, as well as the anonymous Journal of Micromechanics and Microengineering (JMM) reviewers for their careful selection of the final papers presented here. Last, but not

  12. Micromechanics of sea ice frictional slip from test basin scale experiments.

    PubMed

    Sammonds, Peter R; Hatton, Daniel C; Feltham, Daniel L

    2017-02-13

    We have conducted a series of high-resolution friction experiments on large floating saline ice floes in an environmental test basin. In these experiments, a central ice floe was pushed between two other floes, sliding along two interfacial faults. The frictional motion was predominantly stick-slip. Shear stresses, normal stresses, local strains and slip displacement were measured along the sliding faults, and acoustic emissions were monitored. High-resolution measurements during a single stick-slip cycle at several positions along the fault allowed us to identify two phases of frictional slip: a nucleation phase, where a nucleation zone begins to slip before the rest of the fault, and a propagation phase when the entire fault is slipping. This is slip-weakening behaviour. We have therefore characterized what we consider to be a key deformation mechanism in Arctic Ocean dynamics. In order to understand the micromechanics of sea ice friction, we have employed a theoretical constitutive relation (i.e. an equation for shear stress in terms of temperature, normal load, acceleration, velocity and slip displacement) derived from the physics of asperity-asperity contact and sliding (Hatton et al. 2009 Phil. Mag. 89, 2771-2799 (doi:10.1080/14786430903113769)). We find that our experimental data conform reasonably with this frictional law once slip weakening is introduced. We find that the constitutive relation follows Archard's law rather than Amontons' law, with [Formula: see text] (where τ is the shear stress and σ n is the normal stress) and n = 26/27, with a fractal asperity distribution, where the frictional shear stress, τ = f fractal T ml w s , where f fractal is the fractal asperity height distribution, T ml is the shear strength for frictional melting and lubrication and w s is the slip weakening. We can therefore deduce that the interfacial faults failed in shear for these experimental conditions through processes of brittle failure of asperities in

  13. Non-contact passive temperature measuring system and method of operation using micro-mechanical sensors

    DOEpatents

    Thundat, Thomas G.; Oden, Patrick I.; Datskos, Panagiotis G.

    2000-01-01

    A non-contact infrared thermometer measures target temperatures remotely without requiring the ratio of the target size to the target distance to the thermometer. A collection means collects and focusses target IR radiation on an IR detector. The detector measures thermal energy of the target over a spectrum using micromechanical sensors. A processor means calculates the collected thermal energy in at least two different spectral regions using a first algorithm in program form and further calculates the ratio of the thermal energy in the at least two different spectral regions to obtain the target temperature independent of the target size, distance to the target and emissivity using a second algorithm in program form.

  14. Micromechanical Characterization of Polysilicon Films through On-Chip Tests.

    PubMed

    Mirzazadeh, Ramin; Eftekhar Azam, Saeed; Mariani, Stefano

    2016-07-28

    When the dimensions of polycrystalline structures become comparable to the average grain size, some reliability issues can be reported for the moving parts of inertial microelectromechanical systems (MEMS). Not only the overall behavior of the device turns out to be affected by a large scattering, but also the sensitivity to imperfections gets enhanced. In this work, through on-chip tests, we experimentally investigate the behavior of thin polysilicon samples using standard electrostatic actuation/sensing. The discrepancy between the target and actual responses of each sample has then been exploited to identify: (i) the overall stiffness of the film and, according to standard continuum elasticity, a morphology-based value of its Young's modulus; (ii) the relevant over-etch induced by the fabrication process. To properly account for the aforementioned stochastic features at the micro-scale, the identification procedure has been based on particle filtering. A simple analytical reduced-order model of the moving structure has been also developed to account for the nonlinearities in the electrical field, up to pull-in. Results are reported for a set of ten film samples of constant slenderness, and the effects of different actuation mechanisms on the identified micromechanical features are thoroughly discussed.

  15. Determination of lattice parameters, strain state and composition in semipolar III-nitrides using high resolution X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Frentrup, Martin; Hatui, Nirupam; Wernicke, Tim; Stellmach, Joachim; Bhattacharya, Arnab; Kneissl, Michael

    2013-12-01

    In group-III-nitride heterostructures with semipolar or nonpolar crystal orientation, anisotropic lattice and thermal mismatch with the buffer or substrate lead to a complex distortion of the unit cells, e.g., by shearing of the lattice. This makes an accurate determination of lattice parameters, composition, and strain state under assumption of the hexagonal symmetry impossible. In this work, we present a procedure to accurately determine the lattice constants, strain state, and composition of semipolar heterostructures using high resolution X-ray diffraction. An analysis of the unit cell distortion shows that four independent lattice parameters are sufficient to describe this distortion. Assuming only small deviations from an ideal hexagonal structure, a linear expression for the interplanar distances dhkl is derived. It is used to determine the lattice parameters from high resolution X-ray diffraction 2ϑ-ω-scans of multiple on- and off-axis reflections via a weighted least-square fit. The strain and composition of ternary alloys are then evaluated by transforming the elastic parameters (using Hooke's law) from the natural crystal-fixed coordinate system to a layer-based system, given by the in-plane directions and the growth direction. We illustrate our procedure taking an example of (112¯2) AlκGa1-κN epilayers with Al-contents over the entire composition range. We separately identify the in-plane and out-of-plane strains and discuss origins for the observed anisotropy.

  16. Analysis of thermoelastic damping in laminated composite micromechanical beam resonators

    NASA Astrophysics Data System (ADS)

    Vengallatore, Srikar

    2005-12-01

    Minimization of structural damping is an essential requirement in the design of multifunctional composite micromachined resonators used for sensing and communications applications. Here, we study thermoelastic damping in symmetric, three-layered, laminated, micromechanical Euler-Bernoulli beams using an analytical framework developed by Bishop and Kinra in 1997. The frequency dependence of damping in two representative sets of structures—metallized ceramic beams and ceramic/ceramic laminates—is investigated in detail. The effects of material properties and relative volume fractions are numerically evaluated. The results indicate that metallization of Si and SiC beams using Al, Cu, Ag or Au leads to a considerable increase in damping over a broad frequency range. Similarly, coating silicon with SiC leads to a monotonic increase of the peak damping value as a function of the volume fraction of silicon carbide but, remarkably, there exists a range of frequencies at which the damping in the composite is less than that of bare silicon. Implications for the design of metallized ceramic beams, and for the simultaneous optimization of natural frequency and damping, are discussed.

  17. Microstructural Heterogeneity in Native and Engineered Fibrocartilage Directs Micromechanics and Mechanobiology

    PubMed Central

    Han, Woojin M; Heo, Su-Jin; Driscoll, Tristan P; Delucca, John F; McLeod, Claire M; Smith, Lachlan J; Duncan, Randall L; Mauck, Robert L; Elliott, Dawn M

    2015-01-01

    Treatment strategies to address pathologies of fibrocartilaginous tissue are in part limited by an incomplete understanding of structure-function relationships in these load-bearing tissues. There is therefore a pressing need to develop microengineered tissue platforms that can recreate the highly inhomogeneous tissue microstructures that are known to influence mechanotransductive processes in normal and diseased tissue. Here, we report the quantification of proteoglycan-rich microdomains in developing, aging, and diseased fibrocartilaginous tissues, and the impact of these microdomains on endogenous cell responses to physiologic deformation within a native-tissue context. We also developed a method to generate heterogeneous tissue engineered constructs (hetTECs) with microscale non-fibrous proteoglycan-rich microdomains engineered into the fibrous structure, and show that these hetTECs match the microstructural, micromechanical, and mechanobiological benchmarks of native tissue. Our tissue engineered platform should facilitate the study of the mechanobiology of developing, homeostatic, degenerating, and regenerating fibrous tissues. PMID:26726994

  18. Determination of resistance and virulence genes in Enterococcus faecalis and E. faecium strains isolated from poultry and their genotypic characterization by ADSRRS-fingerprinting.

    PubMed

    Nowakiewicz, A; Ziólkowska, G; Troscianczyk, A; Zieba, P; Gnat, S

    2017-04-01

    The aim of this study was to determine the antimicrobial resistance of E. faecalis and E. faecium strains isolated from poultry and to carry out genotypic characterization thereof with the ADSRRS-fingerprinting method (amplification of DNA fragments surrounding rare restriction sites) and analysis of the genetic relatedness between the isolates with different resistance and virulence determinants. Samples were collected from 70 4-week-old chickens and tested for Enterococcus. Minimum inhibitory concentrations of 11 antimicrobials were determined using the broth microdilution method. Detection of antibiotic resistance and virulence genes was performed using PCR, and molecular analysis was carried out using the ADSRRS-fingerprinting method. The highest percentage of strains was resistant to tetracycline (60.5%) and erythromycin (54.4%), and a large number exhibited high-level resistance to both kanamycin (42.1%) and streptomycin (34.2%). Among 8 genes encoding AME, the tested strains showed mainly the presence of [aph(3΄)-IIIa], [ant(6)-Ia], [aac(6΄)-Ie-aph(2΄΄)-Ia], and [ant(9)-Ia] genes. Phenotypic resistance to erythromycin was encoded in 98.4% strains by the ermB gene. Genotypic resistance to tetracycline in E. faecium was associated with the presence of tetM and tetL (respectively, in 95.5 and 57.7% of the isolates); in contrast, E. faecalis strains were characterized mainly by the presence of tetO (83.3%). The virulence profile was homogenous for all E. faecium strains and included only efaAfm and ccf genes. All E. faecalis strains exhibited efaAfs, gelE, and genes encoding sex pheromones. The strains tested exhibited 34 genotypic profiles. Comparative analysis of phenotypic and genotypic resistance and virulence profiles and confrontation thereof with the genotypes of the strains tested showed that strains assigned to a particular genotype have an identical phenotypic resistance profile and a panel of resistance and virulence genes. The results of this

  19. Applicability of strain measurements on a contra angle handpiece for the determination of alveolar bone quality during dental implant surgery.

    PubMed

    Krafft, Tim; Winter, Werner; Wichmann, Manfred; Karl, Matthias

    2012-07-01

    Alveolar bone quality is considered to be an important prognostic factor in dental implant stability. Although numerous methods have been described, no technique allows for reliable diagnostics. The purpose of this study was to determine if strain measurements on the shaft of a contra angle handpiece during implant bed preparation could be used for the determination of bone quality. Experiments in polyurethane foam and human cadaver bone were conducted to investigate whether strain measurements could be correlated with other diagnostic parameters, such as the surgeon's tactile sensation during drilling, implant insertion torque, implant stability, elastic modulus of bone and bone quality as assessed radiographically. Tests were also performed to determine if strain measurements could be used to distinguish various types of bone. As axial feed and contact pressure during the drilling process could not be standardized under simulated clinical conditions, substantial deviations in the time needed to complete the drilling occurred. Under controlled circumstances using polyurethane foam, this problem could be addressed by a normalization procedure, but great variations occurred in human cadaver bone. As bone quality could not be reliably determined, especially when a cortical layer was present, strain measurements on a contra angle handpiece appears to be inappropriate for this purpose. Copyright © 2011 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  20. Micromechanical Modeling of the Thermal Expansion of Graphite/copper Composites with Nonuniform Microstructure

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Pindera, Marek-Jerzy

    1994-01-01

    Two micromechanical models were developed to investigate the thermal expansion of graphite/copper (Gr/Cu) composites. The models incorporate the effects of temperature-dependent material properties, matrix inelasticity, initial residual stresses due to processing history, and nonuniform fiber distribution. The first model is based on the multiple concentric cylinder geometry, with each cylinder treated as a two-phase composite with a characteristic fiber volume fractions. By altering the fiber volume fraction of the individual cylinders, unidirectional composites with radially nonuniform fiber distributions can be investigated using this model. The second model is based on the inelastic lamination theory. By varying the fiber content in the individual laminae, composites with nonuniform fiber distribution in the thickness direction can be investigated. In both models, the properties of the individual regions (cylinders or laminae) are calculated using the method of cells micromechanical model. Classical incremental plasticity theory is used to model the inelastic response of the copper matrix at the microlevel. The models were used to characterize the effects of nonuniform fiber distribution on the thermal expansion of Gr/Cu. These effects were compared to the effects of matrix plasticity, choice of stress-free temperature, and slight fiber misalignment. It was found that the radially nonuniform fiber distribution has little effect on the thermal expansion of Gr/Cu but could become significant for composites with large fiber-matrix transverse CTE and Young's modulus mismatch. The effect of nonuniform fiber distribution in the through-thickness direction of a laminate was more significant, but only approached that of the stress-free temperature for the most extreme cases that include large amounts of bending. Subsequent comparison with experimental thermal expansion data indicated the need for more accurate characterization of the graphite fiber thermomechanical

  1. Pilot Screening to Determine Antimicrobial Synergies in a Multidrug-Resistant Bacterial Strain Library

    PubMed Central

    Kim, Si-Hyun; Park, Chulmin; Chun, Hye-Sun; Choi, Jae-Ki; Lee, Hyo-Jin; Cho, Sung-Yeon; Park, Sun Hee; Choi, Su-Mi; Choi, Jung-Hyun; Yoo, Jin-Hong

    2016-01-01

    With the rise in multidrug-resistant (MDR) bacterial infections, there has been increasing interest in combinations of ≥2 antimicrobial agents with synergistic effects. We established an MDR bacterial strain library to screen for in vitro antimicrobial synergy by using a broth microdilution checkerboard method and high-throughput luciferase-based bacterial cell viability assay. In total, 39 MDR bacterial strains, including 23 carbapenem-resistant gram-negative bacteria, 9 vancomycin-intermediate Staphylococcus aureus, and 7 vancomycin-resistant Enterococcus faecalis, were used to screen for potential antimicrobial synergies. Synergies were more frequently identified with combinations of imipenem plus trimethoprim–sulfamethoxazole for carbapenem-resistant Acinetobacter baumannii in the library. To verify this finding, we tested 34 A. baumannii clinical isolates resistant to both imipenem and trimethoprim–sulfamethoxazole by the checkerboard method. The imipenem plus trimethoprim–sulfamethoxazole combination showed synergy in the treatment of 21 (62%) of the clinical isolates. The results indicate that pilot screening for antimicrobial synergy in the MDR bacterial strain library could be valuable in the selection of combination therapeutic regimens to treat MDR bacterial infections. Further studies are warranted to determine whether this screening system can be useful to screen for the combined effects of conventional antimicrobials and new-generation antimicrobials or nonantimicrobials. PMID:26974861

  2. Glancing-incidence focussed ion beam milling: A coherent X-ray diffraction study of 3D nano-scale lattice strains and crystal defects

    DOE PAGES

    Hofmann, Felix; Harder, Ross J.; Liu, Wenjun; ...

    2018-05-11

    Here, this study presents a detailed examination of the lattice distortions introduced by glancing incidence Focussed Ion Beam (FIB) milling. Using non-destructive multi-reflection Bragg coherent X-ray diffraction we probe damage formation in an initially pristine gold micro-crystal following several stages of FIB milling. These experiments allow access to the full lattice strain tensor in the micro-crystal with ~25 nm 3D spatial resolution, enabling a nano-scale analysis of residual lattice strains and defects formed. Our results show that 30 keV glancing incidence milling produces fewer large defects than normal incidence milling at the same energy. However the resulting residual lattice strainsmore » have similar magnitude and extend up to ~50 nm into the sample. At the edges of the milled surface, where the ion-beam tails impact the sample at near-normal incidence, large dislocation loops with a range of Burgers vectors are formed. Further glancing incidence FIB polishing with 5 keV ion energy removes these dislocation loops and reduces the lattice strains caused by higher energy FIB milling. However, even at the lower ion energy, damage-induced lattice strains are present within a ~20 nm thick surface layer. These results highlight the need for careful consideration and management of FIB damage. They also show that low-energy FIB-milling is an effective tool for removing FIB-milling induced lattice strains. This is important for the preparation of micro-mechanical test specimens and strain microscopy samples.« less

  3. Glancing-incidence focussed ion beam milling: A coherent X-ray diffraction study of 3D nano-scale lattice strains and crystal defects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hofmann, Felix; Harder, Ross J.; Liu, Wenjun

    Here, this study presents a detailed examination of the lattice distortions introduced by glancing incidence Focussed Ion Beam (FIB) milling. Using non-destructive multi-reflection Bragg coherent X-ray diffraction we probe damage formation in an initially pristine gold micro-crystal following several stages of FIB milling. These experiments allow access to the full lattice strain tensor in the micro-crystal with ~25 nm 3D spatial resolution, enabling a nano-scale analysis of residual lattice strains and defects formed. Our results show that 30 keV glancing incidence milling produces fewer large defects than normal incidence milling at the same energy. However the resulting residual lattice strainsmore » have similar magnitude and extend up to ~50 nm into the sample. At the edges of the milled surface, where the ion-beam tails impact the sample at near-normal incidence, large dislocation loops with a range of Burgers vectors are formed. Further glancing incidence FIB polishing with 5 keV ion energy removes these dislocation loops and reduces the lattice strains caused by higher energy FIB milling. However, even at the lower ion energy, damage-induced lattice strains are present within a ~20 nm thick surface layer. These results highlight the need for careful consideration and management of FIB damage. They also show that low-energy FIB-milling is an effective tool for removing FIB-milling induced lattice strains. This is important for the preparation of micro-mechanical test specimens and strain microscopy samples.« less

  4. Effects of fabrication on the mechanics, microstructure and micromechanical environment of small intestinal submucosa scaffolds for vascular tissue engineering.

    PubMed

    Sánchez-Palencia, Diana M; D'Amore, Antonio; González-Mancera, Andrés; Wagner, William R; Briceño, Juan C

    2014-08-22

    In small intestinal submucosa scaffolds for functional tissue engineering, the impact of scaffold fabrication parameters on success rate may be related to the mechanotransductory properties of the final microstructural organization of collagen fibers. We hypothesized that two fabrication parameters, 1) preservation (P) or removal (R) of a dense collagen layer present in SIS and 2) SIS in a final dehydrated (D) or hydrated (H) state, have an effect on scaffold void area, microstructural anisotropy (fiber alignment) and mechanical anisotropy (global mechanical compliance). We further integrated our experimental measurements in a constitutive model to explore final effects on the micromechanical environment inside the scaffold volume. Our results indicated that PH scaffolds might exhibit recurrent and large force fluctuations between layers (up to 195 pN), while fluctuations in RH scaffolds might be larger (up to 256 pN) but not as recurrent. In contrast, both PD and RD groups were estimated to produce scarcer and smaller fluctuations (not larger than 50 pN). We concluded that the hydration parameter strongly affects the micromechanics of SIS and that an adequate choice of fabrication parameters, assisted by the herein developed method, might leverage the use of SIS for functional tissue engineering applications, where forces at the cellular level are of concern in the guidance of new tissue formation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Tissue Strain Reorganizes Collagen With a Switchlike Response That Regulates Neuronal Extracellular Signal-Regulated Kinase Phosphorylation In Vitro: Implications for Ligamentous Injury and Mechanotransduction

    PubMed Central

    Zhang, Sijia; Cao, Xuan; Stablow, Alec M.; Shenoy, Vivek B.; Winkelstein, Beth A.

    2016-01-01

    Excessive loading of ligaments can activate the neural afferents that innervate the collagenous tissue, leading to a host of pathologies including pain. An integrated experimental and modeling approach was used to define the responses of neurons and the surrounding collagen fibers to the ligamentous matrix loading and to begin to understand how macroscopic deformation is translated to neuronal loading and signaling. A neuron-collagen construct (NCC) developed to mimic innervation of collagenous tissue underwent tension to strains simulating nonpainful (8%) or painful ligament loading (16%). Both neuronal phosphorylation of extracellular signal-regulated kinase (ERK), which is related to neuroplasticity (R2 ≥ 0.041; p ≤ 0.0171) and neuronal aspect ratio (AR) (R2 ≥ 0.250; p < 0.0001), were significantly correlated with tissue-level strains. As NCC strains increased during a slowly applied loading (1%/s), a “switchlike” fiber realignment response was detected with collagen reorganization occurring only above a transition point of 11.3% strain. A finite-element based discrete fiber network (DFN) model predicted that at bulk strains above the transition point, heterogeneous fiber strains were both tensile and compressive and increased, with strains in some fibers along the loading direction exceeding the applied bulk strain. The transition point identified for changes in collagen fiber realignment was consistent with the measured strain threshold (11.7% with a 95% confidence interval of 10.2–13.4%) for elevating ERK phosphorylation after loading. As with collagen fiber realignment, the greatest degree of neuronal reorientation toward the loading direction was observed at the NCC distraction corresponding to painful loading. Because activation of neuronal ERK occurred only at strains that produced evident collagen fiber realignment, findings suggest that tissue strain-induced changes in the micromechanical environment, especially altered local

  6. Characterization of metal additive manufacturing surfaces using synchrotron X-ray CT and micromechanical modeling

    NASA Astrophysics Data System (ADS)

    Kantzos, C. A.; Cunningham, R. W.; Tari, V.; Rollett, A. D.

    2018-05-01

    Characterizing complex surface topologies is necessary to understand stress concentrations created by rough surfaces, particularly those made via laser power-bed additive manufacturing (AM). Synchrotron-based X-ray microtomography (μ XCT) of AM surfaces was shown to provide high resolution detail of surface features and near-surface porosity. Using the CT reconstructions to instantiate a micromechanical model indicated that surface notches and near-surface porosity both act as stress concentrators, while adhered powder carried little to no load. Differences in powder size distribution had no direct effect on the relevant surface features, nor on stress concentrations. Conventional measurements of surface roughness, which are highly influenced by adhered powder, are therefore unlikely to contain the information relevant to damage accumulation and crack initiation.

  7. Characterization of metal additive manufacturing surfaces using synchrotron X-ray CT and micromechanical modeling

    NASA Astrophysics Data System (ADS)

    Kantzos, C. A.; Cunningham, R. W.; Tari, V.; Rollett, A. D.

    2017-12-01

    Characterizing complex surface topologies is necessary to understand stress concentrations created by rough surfaces, particularly those made via laser power-bed additive manufacturing (AM). Synchrotron-based X-ray microtomography (μ XCT ) of AM surfaces was shown to provide high resolution detail of surface features and near-surface porosity. Using the CT reconstructions to instantiate a micromechanical model indicated that surface notches and near-surface porosity both act as stress concentrators, while adhered powder carried little to no load. Differences in powder size distribution had no direct effect on the relevant surface features, nor on stress concentrations. Conventional measurements of surface roughness, which are highly influenced by adhered powder, are therefore unlikely to contain the information relevant to damage accumulation and crack initiation.

  8. Homozygous diploid deletion strains of Saccharomyces cerevisiae that determine lag phase and dehydration tolerance.

    PubMed

    D'Elia, Riccardo; Allen, Patricia L; Johanson, Kelly; Nickerson, Cheryl A; Hammond, Timothy G

    2005-06-01

    This study identifies genes that determine length of lag phase, using the model eukaryotic organism, Saccharomyces cerevisiae. We report growth of a yeast deletion series following variations in the lag phase induced by variable storage times after drying-down yeast on filters. Using a homozygous diploid deletion pool, lag times ranging from 0 h to 90 h were associated with increased drop-out of mitochondrial genes and increased survival of nuclear genes. Simple linear regression (R2 analysis) shows that there are over 500 genes for which > 70% of the variation can be explained by lag alone. In the genes with a positive correlation, such that the gene abundance increases with lag and hence the deletion strain is suitable for survival during prolonged storage, there is a strong predominance of nucleonic genes. In the genes with a negative correlation, such that the gene abundance decreases with lag and hence the strain may be critical for getting yeast out of the lag phase, there is a strong predominance of glycoproteins and transmembrane proteins. This study identifies yeast deletion strains with survival advantage on prolonged storage and amplifies our understanding of the genes critical for getting out of the lag phase.

  9. Homozygous diploid deletion strains of Saccharomyces cerevisiae that determine lag phase and dehydration tolerance

    NASA Technical Reports Server (NTRS)

    D'Elia, Riccardo; Allen, Patricia L.; Johanson, Kelly; Nickerson, Cheryl A.; Hammond, Timothy G.

    2005-01-01

    This study identifies genes that determine length of lag phase, using the model eukaryotic organism, Saccharomyces cerevisiae. We report growth of a yeast deletion series following variations in the lag phase induced by variable storage times after drying-down yeast on filters. Using a homozygous diploid deletion pool, lag times ranging from 0 h to 90 h were associated with increased drop-out of mitochondrial genes and increased survival of nuclear genes. Simple linear regression (R2 analysis) shows that there are over 500 genes for which > 70% of the variation can be explained by lag alone. In the genes with a positive correlation, such that the gene abundance increases with lag and hence the deletion strain is suitable for survival during prolonged storage, there is a strong predominance of nucleonic genes. In the genes with a negative correlation, such that the gene abundance decreases with lag and hence the strain may be critical for getting yeast out of the lag phase, there is a strong predominance of glycoproteins and transmembrane proteins. This study identifies yeast deletion strains with survival advantage on prolonged storage and amplifies our understanding of the genes critical for getting out of the lag phase.

  10. Single-shot full strain tensor determination with microbeam X-ray Laue diffraction and a two-dimensional energy-dispersive detector.

    PubMed

    Abboud, A; Kirchlechner, C; Keckes, J; Conka Nurdan, T; Send, S; Micha, J S; Ulrich, O; Hartmann, R; Strüder, L; Pietsch, U

    2017-06-01

    The full strain and stress tensor determination in a triaxially stressed single crystal using X-ray diffraction requires a series of lattice spacing measurements at different crystal orientations. This can be achieved using a tunable X-ray source. This article reports on a novel experimental procedure for single-shot full strain tensor determination using polychromatic synchrotron radiation with an energy range from 5 to 23 keV. Microbeam X-ray Laue diffraction patterns were collected from a copper micro-bending beam along the central axis (centroid of the cross section). Taking advantage of a two-dimensional energy-dispersive X-ray detector (pnCCD), the position and energy of the collected Laue spots were measured for multiple positions on the sample, allowing the measurement of variations in the local microstructure. At the same time, both the deviatoric and hydrostatic components of the elastic strain and stress tensors were calculated.

  11. A review of techniques for visualising soft tissue microstructure deformation and quantifying strain Ex Vivo.

    PubMed

    Disney, C M; Lee, P D; Hoyland, J A; Sherratt, M J; Bay, B K

    2018-04-14

    Many biological tissues have a complex hierarchical structure allowing them to function under demanding physiological loading conditions. Structural changes caused by ageing or disease can lead to loss of mechanical function. Therefore, it is necessary to characterise tissue structure to understand normal tissue function and the progression of disease. Ideally intact native tissues should be imaged in 3D and under physiological loading conditions. The current published in situ imaging methodologies demonstrate a compromise between imaging limitations and maintaining the samples native mechanical function. This review gives an overview of in situ imaging techniques used to visualise microstructural deformation of soft tissue, including three case studies of different tissues (tendon, intervertebral disc and artery). Some of the imaging techniques restricted analysis to observational mechanics or discrete strain measurement from invasive markers. Full-field local surface strain measurement has been achieved using digital image correlation. Volumetric strain fields have successfully been quantified from in situ X-ray microtomography (micro-CT) studies of bone using digital volume correlation but not in soft tissue due to low X-ray transmission contrast. With the latest developments in micro-CT showing in-line phase contrast capability to resolve native soft tissue microstructure, there is potential for future soft tissue mechanics research where 3D local strain can be quantified. These methods will provide information on the local 3D micromechanical environment experienced by cells in healthy, aged and diseased tissues. It is hoped that future applications of in situ imaging techniques will impact positively on the design and testing of potential tissue replacements or regenerative therapies. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.

  12. Use of the VNTR typing technique to determine the origin of Mycobacterium tuberculosis strains isolated from Filipino patients in Korea.

    PubMed

    Lee, Jihye; Tupasi, Thelma E; Park, Young Kil

    2014-05-01

    With increasing international interchange of personnel, international monitoring is necessary to decrease tuberculosis incidence in the world. This study aims to develop a new tool to determine origin of Mycobacterium tuberculosis strains isolated from Filipino patients living in Korea. Thirty-two variable number tandem repeat (VNTR) loci were used for discrimination of 50 Filipino M. tuberculosis strains isolated in the Philippines, 317 Korean strains isolated in Korea, and 8 Filipino strains isolated in Korea. We found that the VNTR loci 0580, 0960, 2531, 2687, 2996, 0802, 2461, 2163a, 4052, 0424, 1955, 2074, 2347, 2401, 3171, 3690, 2372, 3232, and 4156 had different mode among copy numbers or exclusively distinct copy number in VNTR typing between Filipino and Korean M. tuberculosis strains. When these differences of the VNTR loci were applied to 8 Filipino M. tuberculosis strains isolated in Korea, 6 of them revealed Filipino type while 2 of them had Korean type. Using the differences of mode or repeated number of VNTR loci were very useful in distinguishing the Filipino strain from Korean strain.

  13. Multiple vibration modes within the organ of Corti revealed by high-resolution, outer-hair-cell-driven micromechanical motions at acoustic frequencies

    NASA Astrophysics Data System (ADS)

    Karavitaki, K. Domenica; Guinan, John J.; Mountain, David C.

    2018-05-01

    Electrically-evoked outer-hair-cell-driven micromechanical motions within the organ of Corti were visualized and quantified using a video stroboscopy system. The resulting radial motions exhibited phase transitions along the radial direction, characteristic of a system that can exhibit multiple modes of vibration. We argue that the interaction of these modes would shape the input to the inner hair cell hair bundles and resulting auditory-nerve response patterns.

  14. Associative Flow Rule Used to Include Hydrostatic Stress Effects in Analysis of Strain-Rate-Dependent Deformation of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Roberts, Gary D.

    2004-01-01

    designing reliable composite engine cases that are lighter than the metal cases in current use. The types of polymer matrix composites that are likely to be used in such an application have a deformation response that is nonlinear and that varies with strain rate. The nonlinearity and the strain-rate dependence of the composite response are due primarily to the matrix constituent. Therefore, in developing material models to be used in the design of impact-resistant composite engine cases, the deformation of the polymer matrix must be correctly analyzed. However, unlike in metals, the nonlinear response of polymers depends on the hydrostatic stresses, which must be accounted for within an analytical model. By applying micromechanics techniques along with given fiber properties, one can also determine the effects of the hydrostatic stresses in the polymer on the overall composite deformation response. First efforts to account for the hydrostatic stress effects in the composite deformation applied purely empirical methods that relied on composite-level data. In later efforts, to allow polymer properties to be characterized solely on the basis of polymer data, researchers at the NASA Glenn Research Center developed equations to model the polymers that were based on a non-associative flow rule, and efforts to use these equations to simulate the deformation of representative polymer materials were reasonably successful. However, these equations were found to have difficulty in correctly analyzing the multiaxial stress states found in the polymer matrix constituent of a composite material. To correct these difficulties, and to allow for the accurate simulation of the nonlinear strain-rate-dependent deformation analysis of polymer matrix composites, in the efforts reported here Glenn researchers reformulated the polymer constitutive equations from basic principles using the concept of an associative flow rule. These revised equations were characterized and validated in an

  15. Design and Analysis of a Micromechanical Three-Component Force Sensor for Characterizing and Quantifying Surface Roughness

    NASA Astrophysics Data System (ADS)

    Liang, Q.; Wu, W.; Zhang, D.; Wei, B.; Sun, W.; Wang, Y.; Ge, Y.

    2015-10-01

    Roughness, which can represent the trade-off between manufacturing cost and performance of mechanical components, is a critical predictor of cracks, corrosion and fatigue damage. In order to measure polished or super-finished surfaces, a novel touch probe based on three-component force sensor for characterizing and quantifying surface roughness is proposed by using silicon micromachining technology. The sensor design is based on a cross-beam structure, which ensures that the system possesses high sensitivity and low coupling. The results show that the proposed sensor possesses high sensitivity, low coupling error, and temperature compensation function. The proposed system can be used to investigate micromechanical structures with nanometer accuracy.

  16. Immunity against influenza A(H1N1) infections is determined by age at the time of initial strain circulation.

    PubMed

    Delabre, R M; Salez, N; Lapidus, N; Lemaitre, M; Leruez-Ville, M; de Lamballerie, X; Carrat, F

    2017-01-01

    We explored age-dependent patterns in haemagglutination inhibition (HI) titre to seasonal [1956 A(H1N1), 1977 A(H1N1), 2007 A(H1N1)] and pandemic [A(H1N1)pdm09] influenza strains using serological data collected from an adult French influenza cohort. Subjects were recruited by their general practitioners from 2008 to 2009 and followed until 2010. We explored age-related differences between strain-specific HI titres using 1053 serological samples collected over the study period from 398 unvaccinated subjects. HI titres against the tested seasonal and pandemic strains were determined using the HI technique. Geometric mean titres (GMTs) were estimated using regression models for interval-censored data. Generalized additive mixed models were fit to log-transformed HI estimates to study the relationship between HI titre and age (age at inclusion and/or age at initial strain circulation). GMT against one strain was consistently highest in the birth cohort exposed to that strain during childhood, with peak titres observed in subjects aged 7-8 years at the time of initial strain circulation. Our results complete previous findings on influenza A(H3N2) strains and identify a strain-dependent relationship between HI titre and age at initial strain circulation.

  17. Micromechanical Characterization of Polysilicon Films through On-Chip Tests

    PubMed Central

    Mirzazadeh, Ramin; Eftekhar Azam, Saeed; Mariani, Stefano

    2016-01-01

    When the dimensions of polycrystalline structures become comparable to the average grain size, some reliability issues can be reported for the moving parts of inertial microelectromechanical systems (MEMS). Not only the overall behavior of the device turns out to be affected by a large scattering, but also the sensitivity to imperfections gets enhanced. In this work, through on-chip tests, we experimentally investigate the behavior of thin polysilicon samples using standard electrostatic actuation/sensing. The discrepancy between the target and actual responses of each sample has then been exploited to identify: (i) the overall stiffness of the film and, according to standard continuum elasticity, a morphology-based value of its Young’s modulus; (ii) the relevant over-etch induced by the fabrication process. To properly account for the aforementioned stochastic features at the micro-scale, the identification procedure has been based on particle filtering. A simple analytical reduced-order model of the moving structure has been also developed to account for the nonlinearities in the electrical field, up to pull-in. Results are reported for a set of ten film samples of constant slenderness, and the effects of different actuation mechanisms on the identified micromechanical features are thoroughly discussed. PMID:27483268

  18. Micro-mechanical properties of different sites on woodpecker's skull.

    PubMed

    Ni, Yikun; Wang, Lizhen; Liu, Xiaoyu; Zhang, Hongquan; Lin, Chia-Ying; Fan, Yubo

    2017-11-01

    The uneven distributed microstructure featured with plate-like spongy bone in woodpecker's skull has been found to further help reduce the impact during woodpecker's pecking behavior. Therefore, this work was to investigate the micro-mechanical properties and composition on different sites of Great Spotted woodpecker's (GSW) skull. Different sites were selected on forehead, tempus and occiput, which were also compared with those of Eurasian Hoopoe (EH) and Lark birds (LB). Micro structural parameters assessed from micro computed tomography (μCT) occurred significantly difference between GSW, EH and LB. The micro finite element (micro-FE) models were developed and the simulation was performed as a compression process. The maximal stresses of GSW's micro-FE models were all lower than those of EH and LB respectively and few concentrated stresses were noticed on GSW's trabecular bone. Fourier transform infrared mapping suggesting a greater organic content in the occiput of GSW's cranial bone compared with others. The nano-hardness of the GSW's occiput was decreasing from forehead to occiput. The mechanical properties, site-dependent hardness distribution and special material composition of GSW's skull bone are newly found in this study. These factors may lead to a new design of bulk material mimicking these characteristics.

  19. Micromechanical-biochemical studies of mitotic chromosome elasticity and structure

    NASA Astrophysics Data System (ADS)

    Poirier, Michael Guy

    The structure of mitotic chromosomes was studied by combining micromechanical force measurements with microfluidic biochemical exposures. Our method is to use glass micropipettes attached to either end of a single chromosome to do mechanical experiments in the extracellular buffer. A third pipette can be used to locally 'spray' reactants so as to carry out dynamical mechanical-chemical experiments. The following elastic properties of mitotic chromosomes are found: Young's modulus, Y = 300 Pa; Poisson ratio, sigma = 0.1; Bending rigidity, B = 1 x 10 -22 J·m; Internal viscosity, eta' = 100 kg/m·sec; Volume fraction, ϕ = 0.7; Extensions of less than 3 times the relaxed length are linear and reversible; Extensions beyond 30 fold exhibit a force plateau at 15 nN and convert the chromosome to a disperse ghost-like state with little change in chromatin structure; Mitotic chromosomes are relatively isotropic; dsDNA cuts of at least every 3 kb cause the a mitotic chromosomes to fall apart; dsDNA cuts less frequently than every 50 kb do not affect mitotic chromosome structure. These results lead to the conclusion that mitotic chromosomes are a network crosslinked every 50 kb between which chromatin is fold by chromatin folding proteins, which are likely to be condensins.

  20. Determination of the State of Strain of Large Floating Covers Using Unmanned Aerial Vehicle (UAV) Aided Photogrammetry

    PubMed Central

    Ong, Wern Hann; Chiu, Wing Kong; Kuen, Thomas; Kodikara, Jayantha

    2017-01-01

    Floating covers used in waste water treatment plants are one of the many structures formed with membrane materials. These structures are usually large and can spread over an area measuring 470 m × 170 m. The aim of this paper is to describe recent work to develop an innovative and effective approach for structural health monitoring (SHM) of such large membrane-like infrastructure. This paper will propose a potentially cost-effective non-contact approach for full-field strain and stress mapping using an unmanned aerial vehicle (UAV) mounted with a digital camera and a global positioning system (GPS) tracker. The aim is to use the images acquired by the UAV to define the geometry of the floating cover using photogrammetry. In this manner, any changes in the geometry of the floating cover due to forces acting beneath resulting from its deployment and usage can be determined. The time-scale for these changes is in terms of weeks and months. The change in the geometry can be implemented as input conditions to a finite element model (FEM) for stress prediction. This will facilitate the determination of the state of distress of the floating cover. This paper investigates the possibility of using data recorded from a UAV to predict the strain level and assess the health of such structures. An investigation was first conducted on a laboratory sized membrane structure instrumented with strain gauges for comparison against strains, which were computed from 3D scans of the membrane geometry. Upon validating the technique in the laboratory, it was applied to a more realistic scenario: an outdoor test membrane structure and capable UAV were constructed to see if the shape of the membrane could be computed. The membrane displacements were then used to calculate the membrane stress and strain, state demonstrating a new way to perform structural health monitoring on membrane structures. PMID:28788081

  1. Determination of the State of Strain of Large Floating Covers Using Unmanned Aerial Vehicle (UAV) Aided Photogrammetry.

    PubMed

    Ong, Wern Hann; Chiu, Wing Kong; Kuen, Thomas; Kodikara, Jayantha

    2017-07-28

    Floating covers used in waste water treatment plants are one of the many structures formed with membrane materials. These structures are usually large and can spread over an area measuring 470 m × 170 m. The aim of this paper is to describe recent work to develop an innovative and effective approach for structural health monitoring (SHM) of such large membrane-like infrastructure. This paper will propose a potentially cost-effective non-contact approach for full-field strain and stress mapping using an unmanned aerial vehicle (UAV) mounted with a digital camera and a global positioning system (GPS) tracker. The aim is to use the images acquired by the UAV to define the geometry of the floating cover using photogrammetry. In this manner, any changes in the geometry of the floating cover due to forces acting beneath resulting from its deployment and usage can be determined. The time-scale for these changes is in terms of weeks and months. The change in the geometry can be implemented as input conditions to a finite element model (FEM) for stress prediction. This will facilitate the determination of the state of distress of the floating cover. This paper investigates the possibility of using data recorded from a UAV to predict the strain level and assess the health of such structures. An investigation was first conducted on a laboratory sized membrane structure instrumented with strain gauges for comparison against strains, which were computed from 3D scans of the membrane geometry. Upon validating the technique in the laboratory, it was applied to a more realistic scenario: an outdoor test membrane structure and capable UAV were constructed to see if the shape of the membrane could be computed. The membrane displacements were then used to calculate the membrane stress and strain, state demonstrating a new way to perform structural health monitoring on membrane structures.

  2. Micromechanical investigation of ductile failure in Al 5083-H116 via 3D unit cell modeling

    NASA Astrophysics Data System (ADS)

    Bomarito, G. F.; Warner, D. H.

    2015-01-01

    Ductile failure is governed by the evolution of micro-voids within a material. The micro-voids, which commonly initiate at second phase particles within metal alloys, grow and interact with each other until failure occurs. The evolution of the micro-voids, and therefore ductile failure, depends on many parameters (e.g., stress state, temperature, strain rate, void and particle volume fraction, etc.). In this study, the stress state dependence of the ductile failure of Al 5083-H116 is investigated by means of 3-D Finite Element (FE) periodic cell models. The cell models require only two pieces of information as inputs: (1) the initial particle volume fraction of the alloy and (2) the constitutive behavior of the matrix material. Based on this information, cell models are subjected to a given stress state, defined by the stress triaxiality and the Lode parameter. For each stress state, the cells are loaded in many loading orientations until failure. Material failure is assumed to occur in the weakest orientation, and so the orientation in which failure occurs first is considered as the critical orientation. The result is a description of material failure that is derived from basic principles and requires no fitting parameters. Subsequently, the results of the simulations are used to construct a homogenized material model, which is used in a component-scale FE model. The component-scale FE model is compared to experiments and is shown to over predict ductility. By excluding smaller nucleation events and load path non-proportionality, it is concluded that accuracy could be gained by including more information about the true microstructure in the model; emphasizing that its incorporation into micromechanical models is critical to developing quantitatively accurate physics-based ductile failure models.

  3. A methodology to determine the elastic moduli of crystals by matching experimental and simulated lattice strain pole figures using discrete harmonics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wielewski, Euan; Boyce, Donald E.; Park, Jun-Sang

    Determining reliable single crystal material parameters for complex polycrystalline materials is a significant challenge for the materials community. In this work, a novel methodology for determining those parameters is outlined and successfully applied to the titanium alloy, Ti-6Al-4V. Utilizing the results from a lattice strain pole figure experiment conducted at the Cornell High Energy Synchrotron Source, an iterative approach is used to optimize the single crystal elastic moduli by comparing experimental and simulated lattice strain pole figures at discrete load steps during a uniaxial tensile test. Due to the large number of unique measurements taken during the experiments, comparisons weremore » made by using the discrete spherical harmonic modes of both the experimental and simulated lattice strain pole figures, allowing the complete pole figures to be used to determine the single crystal elastic moduli. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.« less

  4. Micromechanics of shear localization in granular rocks - effect of temperature

    NASA Astrophysics Data System (ADS)

    Kanaya, T.; Hirth, G.

    2017-12-01

    We conducted detailed microscopy on porous sandstones deformed to varying axial strains in the low-temperature, brittle faulting regime and high-temperature, semibrittle faulting regime. This study is aimed to test the hypothsis that macroscopic faulting results from the interaction of distributed microfractures in granular rocks, and to assess how elevated temperature influences these shear loalization processes. We determined the ratio of fracture length vs. spacing for distributed microfractures (away from macroscopic faults) and compared it with fracture mechanics models of crack interaction. At low temperature, both tensile and shear microfractures obtain the critical geometry for crack-tip interaction. Both modes of microfractures occur at initial yielding and continue to lengthen with strain, in which many tensile microfractures propagate across grains. In contrast, at high temperature, only shear microfractures continue to lengthen with strain and reach the critical geometry; almost all tensile microfracutures arrest at grain boundaries. In addition, using the observed microfracture lengths and stresses, we determined the energy release rate (including interaction effects) for the longest shear microfractues characterized. These microfractures show length and stress consistent with Griffith criteria. At low temperature, shear fractures show energy release rate far greater than fracture energy, consistent with the observed dynamic failure. In contrast, at high temperature, shear microfractures show energy release rate similar to fracture energy, consistent with observed stable failire. Taken toghether, our resutls show that the linkage of shear microfracture is far more important for shear localization (macroscopic faulting) in granular rocks than in non-porous rocks. The interaction of both tentile and shear microfractures is important at low temperature, whereas that of teneile fracture is less improtant at high temperature. In addition, structure (desnity

  5. Micromechanical investigation of sand migration in gas hydrate-bearing sediments

    NASA Astrophysics Data System (ADS)

    Uchida, S.; Klar, A.; Cohen, E.

    2017-12-01

    Past field gas production tests from hydrate bearing sediments have indicated that sand migration is an important phenomenon that needs to be considered for successful long-term gas production. The authors previously developed the continuum based analytical thermo-hydro-mechanical sand migration model that can be applied to predict wellbore responses during gas production. However, the model parameters involved in the model still needs to be calibrated and studied thoroughly and it still remains a challenge to conduct well-defined laboratory experiments of sand migration, especially in hydrate-bearing sediments. Taking the advantage of capability of micromechanical modelling approach through discrete element method (DEM), this work presents a first step towards quantifying one of the model parameters that governs stresses reduction due to grain detachment. Grains represented by DEM particles are randomly removed from an isotropically loaded DEM specimen and statistical analyses reveal that linear proportionality exists between the normalized volume of detached solids and normalized reduced stresses. The DEM specimen with different porosities (different packing densities) are also considered and statistical analyses show that there is a clear transition between loose sand behavior and dense sand behavior, characterized by the relative density.

  6. Micromechanical torsional digital-to-analog converter for open-loop angular positioning applications

    NASA Astrophysics Data System (ADS)

    Zhou, Guangya; Tay, Francis E. H.; Chau, Fook Siong; Zhao, Yi; Logeeswaran, VJ

    2004-05-01

    This paper reports a novel micromechanical torsional digital-to-analog converter (MTDAC), operated in open-loop with digitally controlled precise multi-level tilt angles. The MTDAC mechanism presented is analogous to that of an electrical binary-weighted-input digital-to-analog converter (DAC). It consists of a rigid tunable platform, an array of torsional microactuators, each operating in a two-state (on/off) mode, and a set of connection beams with binary-weighted torsional stiffnesses that connect the actuators to the platform. The feasibility of the proposed MTDAC mechanism was verified numerically by finite element simulations and experimentally with a commercial optical phase-shifting interferometric system. A prototype 2-bit MTDAC was implemented using the poly-MUMPS process achieving a full-scale output tilt angle of 1.92° with a rotation step of 0.64°. This mechanism can be configured for many promising applications, particularly in beam steering-based OXC switches.

  7. Micromechanics of composites with shape memory alloy fibers in uniform thermal fields

    NASA Technical Reports Server (NTRS)

    Birman, Victor; Saravanos, Dimitris A.; Hopkins, Dale A.

    1995-01-01

    Analytical procedures are developed for a composite system consisting of shape memory alloy fibers within an elastic matrix subject to uniform temperature fluctuations. Micromechanics for the calculation of the equivalent properties of the composite are presented by extending the multi-cell model to incorporate shape memory alloy fibers. A three phase concentric cylinder model is developed for the analysis of local stresses which includes the fiber, the matrix, and the surrounding homogenized composite. The solution addresses the complexities induced by the nonlinear dependence of the in-situ martensite fraction of the fibers to the local stresses and temperature, and the local stresses developed from interactions between the fibers and matrix during the martensitic and reverse phase transformations. Results are presented for a nitinol/epoxy composite. The applications illustrate the response of the composite in isothermal longitudinal loading and unloading, and in temperature induced actuation. The local stresses developed in the composite under various stages of the martensitic and reverse phase transformation are also shown.

  8. Axisymmetric micromechanics of elastic-perfectly plastic fibrous composites under uniaxial tension loading

    NASA Technical Reports Server (NTRS)

    Lee, Jong-Won; Allen, David H.

    1993-01-01

    The uniaxial response of a continuous fiber elastic-perfectly plastic composite is modeled herein as a two-element composite cylinder. An axisymmetric analytical micromechanics solution is obtained for the rate-independent elastic-plastic response of the two-element composite cylinder subjected to tensile loading in the fiber direction for the case wherein the core fiber is assumed to be a transversely isotropic elastic-plastic material obeying the Tsai-Hill yield criterion, with yielding simulating fiber failure. The matrix is assumed to be an isotropic elastic-plastic material obeying the Tresca yield criterion. It is found that there are three different circumstances that depend on the fiber and matrix properties: fiber yield, followed by matrix yielding; complete matrix yield, followed by fiber yielding; and partial matrix yield, followed by fiber yielding, followed by complete matrix yield. The order in which these phenomena occur is shown to have a pronounced effect on the predicted uniaxial effective composite response.

  9. Implementation of a Smeared Crack Band Model in a Micromechanics Framework

    NASA Technical Reports Server (NTRS)

    Pineda, Evan J.; Bednarcyk, Brett A.; Waas, Anthony M.; Arnold, Steven M.

    2012-01-01

    The smeared crack band theory is implemented within the generalized method of cells and high-fidelity generalized method of cells micromechanics models to capture progressive failure within the constituents of a composite material while retaining objectivity with respect to the size of the discretization elements used in the model. An repeating unit cell containing 13 randomly arranged fibers is modeled and subjected to a combination of transverse tension/compression and transverse shear loading. The implementation is verified against experimental data (where available), and an equivalent finite element model utilizing the same implementation of the crack band theory. To evaluate the performance of the crack band theory within a repeating unit cell that is more amenable to a multiscale implementation, a single fiber is modeled with generalized method of cells and high-fidelity generalized method of cells using a relatively coarse subcell mesh which is subjected to the same loading scenarios as the multiple fiber repeating unit cell. The generalized method of cells and high-fidelity generalized method of cells models are validated against a very refined finite element model.

  10. Microminiaturized minimally invasive intravascular micro-mechanical systems powered and controlled via fiber-optic cable

    DOEpatents

    Fitch, Joseph P.; Hagans, Karla; Clough, Robert; Matthews, Dennis L.; Lee, Abraham P.; Krulevitch, Peter A.; Benett, William J.; Da Silva, Luiz; Celliers, Peter M.

    1998-01-01

    A micro-mechanical system for medical procedures is constructed in the basic form of a catheter having a distal end for insertion into and manipulation within a body and a near end providing for a user to control the manipulation of the distal end within the body. A fiberoptic cable is disposed within the catheter and having a distal end proximate to the distal end of the catheter and a near end for external coupling of laser light energy. A microgripper is attached to the distal end of the catheter and providing for the gripping or releasing of an object within the body. A laser-light-to-mechanical-power converter is connected to receive laser light from the distal end of the fiberoptic cable and connected to mechanically actuate the microgripper.

  11. Microminiaturized minimally invasive intravascular micro-mechanical systems powered and controlled via fiber-optic cable

    DOEpatents

    Fitch, J.P.; Hagans, K.; Clough, R.; Matthews, D.L.; Lee, A.P.; Krulevitch, P.A.; Benett, W.J.; Silva, L. Da; Celliers, P.M.

    1998-03-03

    A micro-mechanical system for medical procedures is constructed in the basic form of a catheter having a distal end for insertion into and manipulation within a body and a near end providing for a user to control the manipulation of the distal end within the body. A fiber-optic cable is disposed within the catheter and having a distal end proximate to the distal end of the catheter and a near end for external coupling of laser light energy. A microgripper is attached to the distal end of the catheter and providing for the gripping or releasing of an object within the body. A laser-light-to-mechanical-power converter is connected to receive laser light from the distal end of the fiber-optic cable and connected to mechanically actuate the microgripper. 22 figs.

  12. Structure, Dynamic Cracking Resistance, and Crack Growth Micromechanism in Pipe Billets after Thermomechanical Treatment

    NASA Astrophysics Data System (ADS)

    Simonov, M. Yu.; Simonov, Yu. N.; Shaimanov, G. S.

    2018-01-01

    The structure, dynamic cracking resistance, and micromechanisms of crack growth in initially highly tempered pipe billets made of structural carbon steel are studied after thermomechanical treatment, including cold plastic deformation by radial forging followed by annealing, under various conditions. The strength is found to be maximum after cold radial forging followed by annealing at 300°C. Cold radial forging and annealing at 600°C are shown to cause the formation of an ultrafine-grained structure with an average grain/subgrain size of 900 nm. The structural features formed in both the axial and the transverse direction after cold radial forging have been revealed. The mechanism of crack growth after heat treatment and thermomechanical treatment has been studied. The fracture surface elements formed during dynamic-crackingresistance tests have been qualitatively analyzed.

  13. Nonlinearity and Strain-Rate Dependence in the Deformation Response of Polymer Matrix Composites Modeled

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.

    2000-01-01

    There has been no accurate procedure for modeling the high-speed impact of composite materials, but such an analytical capability will be required in designing reliable lightweight engine-containment systems. The majority of the models in use assume a linear elastic material response that does not vary with strain rate. However, for containment systems, polymer matrix composites incorporating ductile polymers are likely to be used. For such a material, the deformation response is likely to be nonlinear and to vary with strain rate. An analytical model has been developed at the NASA Glenn Research Center at Lewis Field that incorporates both of these features. A set of constitutive equations that was originally developed to analyze the viscoplastic deformation of metals (Ramaswamy-Stouffer equations) was modified to simulate the nonlinear, rate-dependent deformation of polymers. Specifically, the effects of hydrostatic stresses on the inelastic response, which can be significant in polymers, were accounted for by a modification of the definition of the effective stress. The constitutive equations were then incorporated into a composite micromechanics model based on the mechanics of materials theory. This theory predicts the deformation response of a composite material from the properties and behavior of the individual constituents. In this manner, the nonlinear, rate-dependent deformation response of a polymer matrix composite can be predicted.

  14. Prediction of fracture healing under axial loading, shear loading and bending is possible using distortional and dilatational strains as determining mechanical stimuli.

    PubMed

    Steiner, Malte; Claes, Lutz; Ignatius, Anita; Niemeyer, Frank; Simon, Ulrich; Wehner, Tim

    2013-09-06

    Numerical models of secondary fracture healing are based on mechanoregulatory algorithms that use distortional strain alone or in combination with either dilatational strain or fluid velocity as determining stimuli for tissue differentiation and development. Comparison of these algorithms has previously suggested that healing processes under torsional rotational loading can only be properly simulated by considering fluid velocity and deviatoric strain as the regulatory stimuli. We hypothesize that sufficient calibration on uncertain input parameters will enhance our existing model, which uses distortional and dilatational strains as determining stimuli, to properly simulate fracture healing under various loading conditions including also torsional rotation. Therefore, we minimized the difference between numerically simulated and experimentally measured courses of interfragmentary movements of two axial compressive cases and two shear load cases (torsional and translational) by varying several input parameter values within their predefined bounds. The calibrated model was then qualitatively evaluated on the ability to predict physiological changes of spatial and temporal tissue distributions, based on respective in vivo data. Finally, we corroborated the model on five additional axial compressive and one asymmetrical bending load case. We conclude that our model, using distortional and dilatational strains as determining stimuli, is able to simulate fracture-healing processes not only under axial compression and torsional rotation but also under translational shear and asymmetrical bending loading conditions.

  15. Micromechanics of sea ice gouge in shear zones

    NASA Astrophysics Data System (ADS)

    Sammonds, Peter; Scourfield, Sally; Lishman, Ben

    2015-04-01

    The deformation of sea ice is a key control on the Arctic Ocean dynamics. Shear displacement on all scales is an important deformation process in the sea cover. Shear deformation is a dominant mechanism from the scale of basin-scale shear lineaments, through floe-floe interaction and block sliding in ice ridges through to the micro-scale mechanics. Shear deformation will not only depend on the speed of movement of ice surfaces but also the degree that the surfaces have bonded during thermal consolidation and compaction. Recent observations made during fieldwork in the Barents Sea show that shear produces a gouge similar to a fault gouge in a shear zone in the crust. A range of sizes of gouge are exhibited. The consolidation of these fragments has a profound influence on the shear strength and the rate of the processes involved. We review experimental results in sea ice mechanics from mid-scale experiments, conducted in the Hamburg model ship ice tank, simulating sea ice floe motion and interaction and compare these with laboratory experiments on ice friction done in direct shear, and upscale to field measurement of sea ice friction and gouge deformation made during experiments off Svalbard. We find that consolidation, fragmentation and bridging play important roles in the overall dynamics and fit the model of Sammis and Ben-Zion, developed for understanding the micro-mechanics of rock fault gouge, to the sea ice problem.

  16. [Determination of genetic bases of auxotrophy in Yersinia pestis ssp. caucasica strains].

    PubMed

    Odinokov, G N; Eroshenko, G A; Kukleva, L M; Shavina, N Iu; Krasnov, Ia M; Kutyrev, V V

    2012-04-01

    Based on the results of computer analysis of nucleotide sequences in strains Yersinia pestis and Y. pseudotuberculosis recorded in the files of NCBI GenBank database, differences between genes argA, aroG, aroF, thiH, and thiG of strain Pestoides F (subspecies caucasica) were found, compared to other strains of plaque agent and pseudotuberculosis microbe. Using PCR with calculated primers and the method of sequence analysis, the structure of variable regions of these genes was studied in 96 natural Y. pestis and Y. pseudotuberculosis strains. It was shown that all examined strains of subspecies caucasica, unlike strains of plague-causing agent of other subspecies and pseudotubercolosis microbe, had identical mutations in genes argA (integration of the insertion sequence IS100), aroG (insertion of ten nucleotides), aroF (inserion of IS100), thiH (insertion of nucleotide T), and thiG (deletion of 13 nucleotides). These mutations are the reason for the absence in strains belonging to this subspecies of the ability to synthesize arginine, phenylalanine, tyrosine, and vitamin B1 (thiamine), and cause their auxotrophy for these growth factors.

  17. The influence of sterilization processes on the micromechanical properties of carbon fiber-reinforced PEEK composites for bone implant applications.

    PubMed

    Godara, A; Raabe, D; Green, S

    2007-03-01

    The effect of sterilization on the structural integrity of the thermoplastic matrix composite polyetheretherketone (PEEK) reinforced with carbon fibers (CF) is investigated by nanoindentation and nanoscratch tests. The use of the material as a medical implant grade requires a detailed understanding of the micromechanical properties which primarily define its in vivo behavior. Sterilization is a mandatory process for such materials used in medical applications like bone implants. The steam and gamma radiation sterilization processes employed in this study are at sufficient levels to affect the micromechanical properties of some polymer materials, particularly in the interphase region between the polymer matrix and the reinforcing fibers. Nanoindentation and nanoscratch tests are used in this work to reveal local gradients in the hardness and the elastic properties of the interphase regions. Both methods help to explore microscopic changes in the hardness, reduced stiffness and scratch resistance in the interphase region and in the bulk polymer matrix due to the different sterilization processes employed. The results reveal that neither steam nor gamma radiation sterilization entails significant changes of the reduced elastic modulus, hardness or coefficient of friction in the bulk polymer matrix. However, minor material changes of the PEEK matrix were observed in the interphase region. Of the two sterilization methods used, the steam treatment has a more significant influence on these small changes in this region and appears to increase slightly the thickness of the interphase zone.

  18. Micromechanics, Fracture Mechanics and Gas Permeability of Composite Laminates for Cryogenic Storage Systems

    NASA Technical Reports Server (NTRS)

    Choi, Sukjoo; Sankar, Bhavani; Ebaugh, Newton C.

    2005-01-01

    A micromechanics method is developed to investigate microcrack propagation in a liquid hydrogen composite tank at cryogenic temperature. The unit cell is modeled using square and hexagonal shapes depends on fiber and matrix layout from microscopic images of composite laminates. Periodic boundary conditions are applied to the unit cell. The temperature dependent properties are taken into account in the analysis. The laminate properties estimated by the micromechanics method are compared with empirical solutions using constituent properties. The micro stresses in the fiber and matrix phases based on boundary conditions in laminate level are calculated to predict the formation of microcracks in the matrix. The method is applied to an actual liquid hydrogen storage system. The analysis predicts micro stresses in the matrix phase are large enough to cause microcracks in the composite. Stress singularity of a transverse crack normal to a ply-interface is investigated to predict the fracture behavior at cryogenic conditions using analytical and finite element analysis. When a transverse crack touches a ply-interface of a composite layer with same fiber orientation, the stress singularity is equal to 1/2. When the transverse crack propagates to a stiffer layer normal to the ply-direction, the singularity becomes less than 1/2 and vice versa. Finite element analysis is performed to predict the fracture toughness of a laminated beam subjected to fracture loads measured by four-point bending tests at room and cryogenic temperatures. As results, the fracture load at cryogenic temperature is significantly lower than that at room temperature. However, when thermal stresses are taken into consideration, for both cases of room and cryogenic temperatures, the difference of the fracture toughness becomes insignificant. The result indicates fracture toughness is a characteristic property, which is independent to temperature changes. The experimental analysis is performed to

  19. Micromechanical Tests and Geochemical Modeling to Evaluate Evolution of Rock Alteration by CO2-Water Mixtures

    NASA Astrophysics Data System (ADS)

    Aman, M.; Sun, Y.; Ilgen, A.; Espinoza, N.

    2015-12-01

    Injection of large volumes of CO2 into geologic formations can help reduce the atmospheric CO2 concentration and lower the impact of burning fossil fuels. However, the injection of CO2 into the subsurface shifts the chemical equilibrium between the mineral assemblage and the pore fluid. This shift will situationally facilitate dissolution and reprecipitation of mineral phases, in particular intergranular cements, and can potentially affect the long term mechanical stability of the host formation. The study of these coupled chemical-mechanical reservoir rock responses can help identify and control unexpected emergent behavior associated with geological CO2 storage.Experiments show that micro-mechanical methods are useful in capturing a variety of mechanical parameters, including Young's modulus, hardness and fracture toughness. In particular, micro-mechanical measurements are well-suited for examining thin altered layers on the surfaces of rock specimens, as well as capturing variability on the scale of lithofacies. We performed indentation and scratching tests on sandstone and siltstone rocks altered in natural CO2-brine environments, as well as on analogous samples altered under high pressure, temperature, and dissolved CO2 conditions in a controlled laboratory experiment. We performed geochemical modeling to support the experimental observations, in particular to gain the insight into mineral dissolution/precipitation as a result of the rock-water-CO2reactions. The comparison of scratch measurements performed on specimens both unaltered and altered by CO2 over geologic time scales results in statistically different values for fracture toughness and scratch hardness, indicating that long term exposure to CO2 caused mechanical degradation of the reservoir rock. Geochemical modeling indicates that major geochemical change caused by CO2 invasion of Entrada sandstone is dissolution of hematite cement, and its replacement with siderite and dolomite during the

  20. Micromechanical measurements of the effect of surfactants on cyclopentane hydrate shell properties.

    PubMed

    Brown, Erika P; Koh, Carolyn A

    2016-01-07

    Investigating the effect of surfactants on clathrate hydrate growth and morphology, especially particle shell strength and cohesion force, is critical to advancing new strategies to mitigate hydrate plug formation. In this study, dodecylbenzenesulfonic acid and polysorbate 80 surfactants were included during the growth of cyclopentane hydrates at several concentrations above and below the critical micelle concentration. A novel micromechanical method was applied to determine the force required to puncture the hydrate shell using a glass cantilever (with and without surfactants), with annealing times ranging from immediately after the hydrate nucleated to 90 minutes after formation. It was shown that the puncture force was decreased by the addition of both surfactants up to a maximum of 79%. Over the entire range of annealing times (0-90 minutes), the thickness of the hydrate shell was also measured. However, there was no clear change in shell thickness with the addition of surfactants. The growth rate of the hydrate shell was found to vary less than 15% with the addition of surfactants. The cohesive force between two hydrate particles was measured for each surfactant and found to be reduced by 28% to 78%. Interfacial tension measurements were also performed. Based on these results, microscopic changes to the hydrate shell morphology (due to the presence of surfactants) were proposed to cause the decrease in the force required to break the hydrate shell, since no macroscopic morphology changes were observed. Understanding the hydrate shell strength can be critical to reducing the capillary bridge interaction between hydrate particles or controlling the release of unconverted water from the interior of the hydrate particle, which can cause rapid hydrate conversion.

  1. Bandgap-customizable germanium using lithographically determined biaxial tensile strain for silicon-compatible optoelectronics.

    PubMed

    Sukhdeo, David S; Nam, Donguk; Kang, Ju-Hyung; Brongersma, Mark L; Saraswat, Krishna C

    2015-06-29

    Strain engineering has proven to be vital for germanium-based photonics, in particular light emission. However, applying a large permanent biaxial tensile strain to germanium has been a challenge. We present a simple, CMOS-compatible technique to conveniently induce a large, spatially homogenous strain in circular structures patterned within germanium nanomembranes. Our technique works by concentrating and amplifying a pre-existing small strain into a circular region. Biaxial tensile strains as large as 1.11% are observed by Raman spectroscopy and are further confirmed by photoluminescence measurements, which show enhanced and redshifted light emission from the strained germanium. Our technique allows the amount of biaxial strain to be customized lithographically, allowing the bandgaps of different germanium structures to be independently customized in a single mask process.

  2. Storm wave buoy equipped with micromechanical inertial unit: Results of development and testing

    NASA Astrophysics Data System (ADS)

    Gryazin, D. G.; Staroselcev, L. P.; Belova, O. O.; Gleb, K. A.

    2017-07-01

    The article describes the results of developing a wave buoy to measure the statistical characteristics of waves and the characteristics of directional spectra of three-dimensional waves. The device is designed for long-term measurements lasting up to a season, which can help solve problems in forecasting waves and preventing emergencies from wave impact on offshore platforms, hydraulic structures, and other marine facilities. The measuring unit involves triads of micromechanical gyroscopes, accelerometers, and a three-component magnetometer. A description of the device, results of laboratory research of its characteristics, and bench and full-scale tests are offered. It is noted that to assess the performance characteristics, comparative tests of the Storm wave buoy were conducted with a standard string wave probe installed on an offshore platform. It is shown that the characteristics and capabilities of the wave buoy make it possible to oust foreign devices from the domestic market.

  3. Characterization of DP600 Steel Subject to Electrohydraulic Forming

    NASA Astrophysics Data System (ADS)

    McCallum, Brent

    Electrohydraulic forming (EHF) is a manufacturing technique that transforms electrical energy into work. In EHF, a shockwave is produced as a result of a high-voltage electrical discharge between two electrodes in a water chamber, which travels through water toward the sheet and forms it into the final shape at high velocity. Strain rates can reach 10 4 s-1 in EHF. DP600 dual phase steel was formed in the Nakazima test in quasi-static (QS) condition, and EHF, performed without a mating die (free forming) and using a 34° conical die (die forming). The sheets were etched with a grid prior to testing to determine strains across each specimen. Analysis of voids was carried out to investigate the micro-mechanisms of failure in DP600 steel formed in these three processes. Nakazima specimens exhibited uniform strain behaviour up to 0.65 effective strain; EHFF up to 0.45 effective strain; and EHDF up to 0.7 effective strain.

  4. Determination of Strain Field on the Superior Surface of Excised Larynx Vocal Folds Using DIC

    PubMed Central

    Bakhshaee, Hani; Young, Jonathan; Yang, Justin C. W.; Mongeau, Luc; Miri, Amir K.

    2013-01-01

    Summary Objective/Hypothesis The objective of the present study was to quantify the mechanical strain and stress in excised porcine larynges during self-oscillation using digital image correlation (DIC) method. The use of DIC in the excised larynx setup may yield accurate measurements of the vocal fold displacement field. Study Design Ex vivo animal larynx. Methods Measurements were performed using excised porcine larynges on a humidified flow bench, equipped with two high-speed cameras and a commercially available DIC software. Surface deformations were calculated from digital images recorded at 3000 frames per second during continuous self-oscillation for four excised porcine larynges. Larynx preparation consisted of removing the supraglottal wall and the false folds. DIC yielded the deformation field on the superior visible surface of the vocal folds. Measurement data for adducted and freely suspended vocal folds were also used to estimate the distribution of the initial prephonatory strain field. An isotropic constitutive law, the polymer eight-chain model, was used to estimate the surface distributions of planar stresses from the strain data. Results The Lagrangian normal strain values were between ~16% and ~29% along the anterior-posterior direction. The motion of material points on the vocal fold surface described an elliptical trajectory during oscillation. A phase difference was observed between the anterior-posterior and the medial-lateral component of the displacement. The strain data and eight-chain model yielded a maximum stress of ~4 kPa along the medial-lateral direction on the superior surface. Conclusion DIC allowed the strain field over the superior surface of an excised porcine larynx to be quantified during self-oscillation. The approach allowed the determination of the trajectory of specific points on the vocal fold surface. The results for the excised larynx were found to be significantly different than previous results obtained using

  5. Load cell having strain gauges of arbitrary location

    DOEpatents

    Spletzer, Barry [Albuquerque, NM

    2007-03-13

    A load cell utilizes a plurality of strain gauges mounted upon the load cell body such that there are six independent load-strain relations. Load is determined by applying the inverse of a load-strain sensitivity matrix to a measured strain vector. The sensitivity matrix is determined by performing a multivariate regression technique on a set of known loads correlated to the resulting strains. Temperature compensation is achieved by configuring the strain gauges as co-located orthogonal pairs.

  6. Microstructural effects on damage evolution in shocked copper polycrystals

    DOE PAGES

    Lieberman, Evan J.; Lebensohn, Ricardo A.; Menasche, David B.; ...

    2016-07-01

    Three-dimensional crystal orientation fields of a copper sample, characterized before and after shock loading using High Energy Diffraction Microscopy, are used for input and validation of direct numerical simulations using a Fast Fourier Transform (FFT)-based micromechanical model. The locations of the voids determined by X-ray tomography in the incipiently-spalled sample, predominantly found near grain boundaries, were traced back and registered to the pre-shocked microstructural image. Using FFT-based simulations with direct input from the initial microstructure, micromechanical fields at the shock peak stress were obtained. Statistical distributions of micromechanical fields restricted to grain boundaries that developed voids after the shock aremore » compared with corresponding distributions for all grain boundaries. Distributions of conventional measures of stress and strain (deviatoric and mean components) do not show correlation with the locations of voids in the post-shocked image. Neither does stress triaxiality, surface traction or grain boundary inclination angle, in a significant way. On the other hand, differences in Taylor factor and accumulated plastic work across grain boundaries do correlate with the occurrence of damage. As a result, damage was observed to take place preferentially at grain boundaries adjacent to grains having very different plastic response.« less

  7. Determination of Predominance of Influenza Virus Strains in the Americas.

    PubMed

    Azziz-Baumgartner, Eduardo; Garten, Rebecca J; Palekar, Rakhee; Cerpa, Mauricio; Mirza, Sara; Ropero, Alba Maria; Palomeque, Francisco S; Moen, Ann; Bresee, Joseph; Shaw, Michael; Widdowson, Marc-Alain

    2015-07-01

    During 2001-2014, predominant influenza A(H1N1) and A(H3N2) strains in South America predominated in all or most subsequent influenza seasons in Central and North America. Predominant A(H1N1) and A(H3N2) strains in North America predominated in most subsequent seasons in Central and South America. Sharing data between these subregions may improve influenza season preparedness.

  8. Complete genome sequence of a novel Plum pox virus strain W isolate determined by 454 pyrosequencing.

    PubMed

    Sheveleva, Anna; Kudryavtseva, Anna; Speranskaya, Anna; Belenikin, Maxim; Melnikova, Natalia; Chirkov, Sergei

    2013-10-01

    The near-complete (99.7 %) genome sequence of a novel Russian Plum pox virus (PPV) isolate Pk, belonging to the strain Winona (W), has been determined by 454 pyrosequencing with the exception of the thirty-one 5'-terminal nucleotides. This region was amplified using 5'RACE kit and sequenced by the Sanger method. Genomic RNA released from immunocaptured PPV particles was employed for generation of cDNA library using TransPlex Whole transcriptome amplification kit (WTA2, Sigma-Aldrich). The entire Pk genome has identity level of 92.8-94.5 % when compared to the complete nucleotide sequences of other PPV-W isolates (W3174, LV-141pl, LV-145bt, and UKR 44189), confirming a high degree of variability within the PPV-W strain. The isolates Pk and LV-141pl are most closely related. The Pk has been found in a wild plum (Prunus domestica) in a new region of Russia indicating widespread dissemination of the PPV-W strain in the European part of the former USSR.

  9. Micromechanical Aspects of Hydraulic Fracturing Processes

    NASA Astrophysics Data System (ADS)

    Galindo-torres, S. A.; Behraftar, S.; Scheuermann, A.; Li, L.; Williams, D.

    2014-12-01

    A micromechanical model is developed to simulate the hydraulic fracturing process. The model comprises two key components. Firstly, the solid matrix, assumed as a rock mass with pre-fabricated cracks, is represented by an array of bonded particles simulated by the Discrete Element Model (DEM)[1]. The interaction is ruled by the spheropolyhedra method, which was introduced by the authors previously and has been shown to realistically represent many of the features found in fracturing and communition processes. The second component is the fluid, which is modelled by the Lattice Boltzmann Method (LBM). It was recently coupled with the spheropolyhedra by the authors and validated. An advantage of this coupled LBM-DEM model is the control of many of the parameters of the fracturing fluid, such as its viscosity and the injection rate. To the best of the authors' knowledge this is the first application of such a coupled scheme for studying hydraulic fracturing[2]. In this first implementation, results are presented for a two-dimensional situation. Fig. 1 shows one snapshot of the LBM-DEM coupled simulation for the hydraulic fracturing where the elements with broken bonds can be identified and the fracture geometry quantified. The simulation involves a variation of the underground stress, particularly the difference between the two principal components of the stress tensor, to explore the effect on the fracture path. A second study focuses on the fluid viscosity to examine the effect of the time scales of different injection plans on the fracture geometry. The developed tool and the presented results have important implications for future studies of the hydraulic fracturing process and technology. references 1. Galindo-Torres, S.A., et al., Breaking processes in three-dimensional bonded granular materials with general shapes. Computer Physics Communications, 2012. 183(2): p. 266-277. 2. Galindo-Torres, S.A., A coupled Discrete Element Lattice Boltzmann Method for the

  10. Dynamically tuned vibratory micromechanical gyroscope accelerometer

    NASA Astrophysics Data System (ADS)

    Lee, Byeungleul; Oh, Yong-Soo; Park, Kyu-Yeon; Ha, Byeoungju; Ko, Younil; Kim, Jeong-gon; Kang, Seokjin; Choi, Sangon; Song, Ci M.

    1997-11-01

    A comb driving vibratory micro-gyroscope, which utilizes the dynamically tunable resonant modes for a higher rate- sensitivity without an accelerational error, has been developed and analyzed. The surface micromachining technology is used to fabricate the gyroscope having a vibrating part of 400 X 600 micrometers with 6 mask process, and the poly-silicon structural layer is deposited by LPCVD at 625 degrees C. The gyroscope and the interface electronics housed in a hermetically sealed vacuum package for low vibrational damping condition. This gyroscope is designed to be driven in parallel to the substrate by electrostatic forces and subject to coriolis forces along vertically, with a folded beam structure. In this scheme, the resonant frequency of the driving mode is located below than that of the sensing mode, so it is possible to adjust the sensing mode with a negative stiffness effect by applying inter-plate voltage to tune the vibration modes for a higher rate-sensitivity. Unfortunately, this micromechanical vibratory gyroscope is also sensitive to vertical acceleration force, especially in the case of a low stiffness of the vibrating structure for detecting a very small coriolis force. In this study, we distinguished the rate output and the accelerational error by phase sensitivity synchronous demodulator and devised a feedback loop to maintain resonant frequency of the vertical sensing mode by varying the inter-plate tuning voltage according to the accelerational output. Therefore, this gyroscope has a high rate-sensitivity without an acceleration error, and also can be used for a resonant accelerometer. This gyroscope was tested on the rotational rate table at the separation of 50(Hz) resonant frequencies by dynamically tuning feedback loop. Also self-sustained oscillating loop is used to apply dc 2(V) + ac 30(mVpk) driving voltage to the drive electrodes. The characteristics of the gyroscope at 0.1 (deg/sec) resolution, 50 (Hz) bandwidth, and 1.3 (m

  11. Zero-power infrared digitizers based on plasmonically enhanced micromechanical photoswitches

    NASA Astrophysics Data System (ADS)

    Qian, Zhenyun; Kang, Sungho; Rajaram, Vageeswar; Cassella, Cristian; McGruer, Nicol E.; Rinaldi, Matteo

    2017-10-01

    State-of-the-art sensors use active electronics to detect and discriminate light, sound, vibration and other signals. They consume power constantly, even when there is no relevant data to be detected, which limits their lifetime and results in high costs of deployment and maintenance for unattended sensor networks. Here we propose a device concept that fundamentally breaks this paradigm—the sensors remain dormant with near-zero power consumption until awakened by a specific physical signature associated with an event of interest. In particular, we demonstrate infrared digitizing sensors that consist of plasmonically enhanced micromechanical photoswitches (PMPs) that selectively harvest the impinging electromagnetic energy in design-defined spectral bands of interest, and use it to create mechanically a conducting channel between two electrical contacts, without the need for any additional power source. Our zero-power digitizing sensor prototypes produce a digitized output bit (that is, a large and sharp off-to-on state transition with an on/off conductance ratio >1012 and subthreshold slope >9 dec nW-1) when exposed to infrared radiation in a specific narrow spectral band (∼900 nm bandwidth in the mid-infrared) with the intensity above a power threshold of only ∼500 nW, which is not achievable with any existing photoswitch technologies.

  12. Bulk strain solitons as a tool for determination of the third order elastic moduli of composite materials

    NASA Astrophysics Data System (ADS)

    Semenova, I. V.; Belashov, A. V.; Garbuzov, F. E.; Samsonov, A. M.; Semenov, A. A.

    2017-06-01

    We demonstrate an alternative approach to determination of the third order elastic moduli of materials based on registration of nonlinear bulk strain waves in three basic structural waveguides (rod, plate and shell) and further calculation of the Murnaghan moduli from the recorded wave parameters via simple algebra. These elastic moduli are available in literature for a limited number of materials and are measured with considerable errors, that evidences a demand in novel approaches to their determination.

  13. Micromechanical combined stress analysis: MICSTRAN, a user manual

    NASA Technical Reports Server (NTRS)

    Naik, R. A.

    1992-01-01

    Composite materials are currently being used in aerospace and other applications. The ability to tailor the composite properties by the appropriate selection of its constituents, the fiber and matrix, is a major advantage of composite materials. The Micromechanical Combined Stress Analysis (MICSTRAN) code provides the materials engineer with a user-friendly personal computer (PC) based tool to calculate overall composite properties given the constituent fiber and matrix properties. To assess the ability of the composite to carry structural loads, the materials engineer also needs to calculate the internal stresses in the composite material. MICSTRAN is a simple tool to calculate such internal stresses with a composite ply under combined thermomechanical loading. It assumes that the fibers have a circular cross-section and are arranged either in a repeating square or diamond array pattern within a ply. It uses a classical elasticity solution technique that has been demonstrated to calculate accurate stress results. Input to the program consists of transversely isotropic fiber properties and isotropic matrix properties such as moduli, Poisson's ratios, coefficients of thermal expansion, and volume fraction. Output consists of overall thermoelastic constants and stresses. Stresses can be computed under the combined action of thermal, transverse, longitudinal, transverse shear, and longitudinal shear loadings. Stress output can be requested along the fiber-matrix interface, the model boundaries, circular arcs, or at user-specified points located anywhere in the model. The MICSTRAN program is Windows compatible and takes advantage of the Microsoft Windows graphical user interface which facilitates multitasking and extends memory access far beyond the limits imposed by the DOS operating system.

  14. Preparation of polystyrene brush film by radical chain-transfer polymerization and micromechanical properties

    NASA Astrophysics Data System (ADS)

    Zhao, Jing; Chen, Miao; An, Yanqing; Liu, Jianxi; Yan, Fengyuan

    2008-12-01

    A radical chain-transfer polymerization technique has been applied to graft-polymerize brushes of polystyrene (PSt) on single-crystal silicon substrates. 3-Mercapto-propyltrimethoxysilane (MPTMS), as a chain-transfer agent for grafting, was immobilized on the silicon surface by a self-assembling process. The structure and morphology of the graft-functionalized silicon surfaces were characterized by the means of contact-angle measurement, ellipsometric thickness measurement, Fourier transformation infrared (FTIR) spectroscopy, and atomic force microscopy (AFM). The nanotribological and micromechanical properties of the as-prepared polymer brush films were investigated by frictional force microscopy (FFM), force-volume analysis and scratch test. The results indicate that the friction properties of the grafted polymer films can be improved significantly by the treatment of toluene, and the chemically bonded polystyrene film exhibits superior scratch resistance behavior compared with the spin-coated polystyrene film. The resultant polystyrene brush film is expected to develop as a potential lubrication coating for microelectromechanical systems (MEMS).

  15. Prediction of Elastic Constants of the Fuzzy Fibre Reinforced Polymer Using Computational Micromechanics

    NASA Astrophysics Data System (ADS)

    Pawlik, Marzena; Lu, Yiling

    2018-05-01

    Computational micromechanics is a useful tool to predict properties of carbon fibre reinforced polymers. In this paper, a representative volume element (RVE) is used to investigate a fuzzy fibre reinforced polymer. The fuzzy fibre results from the introduction of nanofillers in the fibre surface. The composite being studied contains three phases, namely: the T650 carbon fibre, the carbon nanotubes (CNTs) reinforced interphase and the epoxy resin EPIKOTE 862. CNTs are radially grown on the surface of the carbon fibre, and thus resultant interphase composed of nanotubes and matrix is transversely isotropic. Transversely isotropic properties of the interphase are numerically implemented in the ANSYS FEM software using element orientation command. Obtained numerical predictions are compared with the available analytical models. It is found that the CNTs interphase significantly increased the transverse mechanical properties of the fuzzy fibre reinforced polymer. This extent of enhancement changes monotonically with the carbon fibre volume fraction. This RVE model enables to investigate different orientation of CNTs in the fuzzy fibre model.

  16. Strain measurements in composite bolted-joint specimens

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Lightfoot, M. C.; Perry, J. C.

    1979-01-01

    Strain data from a series of bolted joint tests is presented. Double lap, double hole, double lap, single hole, and open hole tensile specimens were tested and the strain gage locations, load strain responses, and load axial displacement responses are presented. The open hole specimens were gaged to determine strain concentration factors. The double lap, double hole specimens were gaged to determine the uniformity of the strain in the joint and the amount of load transferred past the first bolt. The measurements indicated roughly half the load passed the first bolt to be reacted by the second bolt.

  17. [Determination of in vitro susceptibilities of Brucella spp. strains against 11 different antibacterial gents isolated from blood cultures].

    PubMed

    Keşli, Recep; Bilgin, Hüseyin; Yılmaz, Halim

    2017-07-01

    Brucellosis is a worldwide zoonotic disease and still continuous to be a major public health problem. In this study, it was aimed to identify the Brucella strains to the species level isolated from blood cultures, and to determine the rate of antimicrobial susceptibility against eleven antibacterial agents. A total of 106 Brucella spp. strains were included in the study, which were isolated from blood cultures in University of Health Sciences, Konya Training and Research Hospital, Medical Microbiology Laboratory between January 2011 and June 2013. Identification of the isolated strains were mainly based on conventional methods. In vitro antibacterial susceptibilities of azithromycin, ciprofloxacin, doxycycline, gentamicin, levofloxacin, moxifloxacin, rifampicin, streptomycin, tetracycline, tigecycline, and trimethoprim/sulfamethoxazole, were evaluated by using the gradient (E-test, bioMerieux, France) strip method. The bacterial suspensions adjusted to 0.5 McFarland turbidity was inoculated to Mueller Hinton agar plates, supplemented with 5% sheep blood, and E-test strips of selected antibacterial were applied. The plates were incubated in ambient air 48 hours at 37ºC and Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 29213 were used as quality control strains for antimicrobial susceptibility testing. Minimum inhibitors concentration (MIC) values were interpreted according to Clinical and Laboratory Standards Institute (CLSI) guidelines for slow-growing bacteria such as Haemophilus spp. Of the 106 Brucella spp. strains included in to the study, 90 were identified as Brucella melitensis, and 16 were Brucella abortus. MIC90 values of azithromycin, ciprofloxacin, doxycycline, gentamicin, levofloxacin, moxifloxacin, rifampicin, streptomycin, tetracycline, tigecycline, and trimethoprim/sulfamethoxazole were determined as 1 µg/ml, 0.25 µg/ml, 0.19 µg/ml, 0.25 µg/ml, 0.19 µg/ml, 0.75 µg/ml, 0.25 µg/ml, 0.75 µg/ml, 0.38 µg/ml, 0.64 µg/ml, and 0

  18. Low-frequency sound affects active micromechanics in the human inner ear

    PubMed Central

    Kugler, Kathrin; Wiegrebe, Lutz; Grothe, Benedikt; Kössl, Manfred; Gürkov, Robert; Krause, Eike; Drexl, Markus

    2014-01-01

    Noise-induced hearing loss is one of the most common auditory pathologies, resulting from overstimulation of the human cochlea, an exquisitely sensitive micromechanical device. At very low frequencies (less than 250 Hz), however, the sensitivity of human hearing, and therefore the perceived loudness is poor. The perceived loudness is mediated by the inner hair cells of the cochlea which are driven very inadequately at low frequencies. To assess the impact of low-frequency (LF) sound, we exploited a by-product of the active amplification of sound outer hair cells (OHCs) perform, so-called spontaneous otoacoustic emissions. These are faint sounds produced by the inner ear that can be used to detect changes of cochlear physiology. We show that a short exposure to perceptually unobtrusive, LF sounds significantly affects OHCs: a 90 s, 80 dB(A) LF sound induced slow, concordant and positively correlated frequency and level oscillations of spontaneous otoacoustic emissions that lasted for about 2 min after LF sound offset. LF sounds, contrary to their unobtrusive perception, strongly stimulate the human cochlea and affect amplification processes in the most sensitive and important frequency range of human hearing. PMID:26064536

  19. Micromechanical modeling of short glass-fiber reinforced thermoplastics-Isotropic damage of pseudograins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kammoun, S.; Brassart, L.; Doghri, I.

    A micromechanical damage modeling approach is presented to predict the overall elasto-plastic behavior and damage evolution in short fiber reinforced composite materials. The practical use of the approach is for injection molded thermoplastic parts reinforced with short glass fibers. The modeling is proceeded as follows. The representative volume element is decomposed into a set of pseudograins, the damage of which affects progressively the overall stiffness and strength up to total failure. Each pseudograin is a two-phase composite with aligned inclusions having same aspect ratio. A two-step mean-field homogenization procedure is adopted. In the first step, the pseudograins are homogenized individuallymore » according to the Mori-Tanaka scheme. The second step consists in a self-consistent homogenization of homogenized pseudograins. An isotropic damage model is applied at the pseudograin level. The model is implemented as a UMAT in the finite element code ABAQUS. Model is shown to reproduce the strength and the anisotropy (Lankford coefficient) during uniaxial tensile tests on samples cut under different directions relative to the injection flow direction.« less

  20. Micromechanical modeling of short glass-fiber reinforced thermoplastics-Isotropic damage of pseudograins

    NASA Astrophysics Data System (ADS)

    Kammoun, S.; Brassart, L.; Robert, G.; Doghri, I.; Delannay, L.

    2011-05-01

    A micromechanical damage modeling approach is presented to predict the overall elasto-plastic behavior and damage evolution in short fiber reinforced composite materials. The practical use of the approach is for injection molded thermoplastic parts reinforced with short glass fibers. The modeling is proceeded as follows. The representative volume element is decomposed into a set of pseudograins, the damage of which affects progressively the overall stiffness and strength up to total failure. Each pseudograin is a two-phase composite with aligned inclusions having same aspect ratio. A two-step mean-field homogenization procedure is adopted. In the first step, the pseudograins are homogenized individually according to the Mori-Tanaka scheme. The second step consists in a self-consistent homogenization of homogenized pseudograins. An isotropic damage model is applied at the pseudograin level. The model is implemented as a UMAT in the finite element code ABAQUS. Model is shown to reproduce the strength and the anisotropy (Lankford coefficient) during uniaxial tensile tests on samples cut under different directions relative to the injection flow direction.

  1. Cooperative effect of the attenuation determinants derived from poliovirus sabin 1 strain is essential for attenuation of enterovirus 71 in the NOD/SCID mouse infection model.

    PubMed

    Arita, Minetaro; Ami, Yasushi; Wakita, Takaji; Shimizu, Hiroyuki

    2008-02-01

    Enterovirus 71 (EV71) is a causative agent of hand, foot, and mouth disease and is also associated with serious neurological disorders. An attenuated EV71 strain [EV71(S1-3')] has been established in the cynomolgus monkey infection model; this strain contains the attenuation determinants derived from the type 1 poliovirus vaccine strain, Sabin 1 [PV1(Sabin)], in the 5' nontranslated region (NTR), 3D polymerase, and 3' NTR. In this study, we analyzed the effect of the attenuation determinants of PV1(Sabin) on EV71 infection in a NOD/SCID mouse infection model. We isolated a mouse-adapted EV71 strain [EV71(NOD/SCID)] that causes paralysis of the hind limbs in 3- to 4-week-old NOD/SCID mice by adaptation of the virulent EV71(Nagoya) strain in the brains of NOD/SCID mice. A single mutation at nucleotide 2876 that caused an amino acid change in capsid protein VP1 (change of the glycine at position 145 to glutamic acid) was essential for the mouse-adapted phenotype in NOD/SCID mice. Next, we introduced attenuation determinants derived from PV1(Sabin) along with the mouse adaptation mutation into the EV71(Nagoya) genome. In 4-week-old mice, the determinants in the 3D polymerase and 3' NTR, which are the major temperature-sensitive determinants, had a strong effect on attenuation. In contrast, the effect of individual determinants was weak in 3-week-old NOD/SCID mice, and all the determinants were required for substantial attenuation. These results suggest that a cooperative effect of the attenuation determinants of PV1(Sabin) is essential for attenuated neurovirulence of EV71.

  2. Determining Recoverable and Irrecoverable Contributions to Accumulated Strain in a NiTiPd High-Temperature Shape Memory Alloy During Thermomechanical Cycling

    NASA Technical Reports Server (NTRS)

    Monroe, J. A.; Karaman, I.; Lagoudas, D. C.; Bigelow, G.; Noebe, R. D.; Padula, S., II

    2011-01-01

    When Ni(29.5)Ti(50.5)Pd30 shape memory alloy is thermally cycled under stress, significant strain can accumulate due to elasticity, remnant oriented martensite and plasticity. The strain due to remnant martensite can be recovered by further thermal cycling under 0 MPa until the original transformation-induced volume change and martensite coefficient of thermal expansion are obtained. Using this technique, it was determined that the 8.15% total accumulated strain after cycling under 200 MPa consisted of 0.38%, 3.97% and 3.87% for elasticity, remnant oriented martensite and creep/plasticity, respectively.

  3. Direct measurement of intrinsic critical strain and internal strain in barrier films

    NASA Astrophysics Data System (ADS)

    Vellinga, W. P.; De Hosson, J. Th. M.; Bouten, P. C. P.

    2011-08-01

    Resistance measurements during uniaxial tensile deformation of very thin (10 nm) conducting oxide films deposited on 150 nm SiN films on polyethylene naphthalate are discussed. It is first shown that certain characteristics of resistance versus strain curves are representative for the fracture behavior of the SiN film and not for that of the thin conducting oxide film. Subsequently, it is shown that the hysteresis in curves of resistance as a function of strain offers a way to directly measure the intrinsic critical strain of the SiN film without the need to determine internal strains from independent (curvature) measurements that rely on knowledge of moduli and geometry. The method should be applicable, in general, to measure intrinsic critical strain and residual strains of thin brittle films on polymers. Advantages and limitations of the method are discussed.

  4. Phenotypic and Molecular Antibiotic Resistance Determination of Airborne Coagulase Negative Staphylococcus spp. Strains from Healthcare Facilities in Southern Poland.

    PubMed

    Lenart-Boroń, Anna; Wolny-Koładka, Katarzyna; Stec, Joanna; Kasprowic, Andrzej

    2016-10-01

    This study assessed the antimicrobial resistance of airborne Staphylococcus spp. strains isolated from healthcare facilities in southern Poland. A total of 55 isolates, belonging to 10 coagulase-negative staphylococci (CoNS) species, isolated from 10 healthcare facilities (including hospitals and outpatient units) were included in the analysis. The most frequently identified species were Staphylococcus saprophyticus and Staphylococcus warneri, which belong to normal human skin flora, but can also be the cause of common and even severe nosocomial infections. Disk diffusion tests showed that the bacterial strains were most frequently resistant to erythromycin and tetracycline and only 18% of strains were susceptible to all tested antimicrobials. Polymerase chain reaction amplification of specific gene regions was used to determine the presence of the Macrolide-Lincosamide-Streptogramin resistance mechanisms in CoNS. The molecular analysis, conducted using specific primer pairs, identified the msrA1 gene, encoding active efflux pumps in bacterial cells, as the most frequent resistance gene. As many as seven antibiotic resistance genes were found in one isolate, whereas the most common number of resistance genes per isolate was five (n = 17). It may be concluded that drug resistance was widely spread among the tested strains, but the resulting antimicrobial resistance profile indicates that in the case of infection, the use of antibiotics from the basic antibiogram group will be effective in therapy. However, before administering treatment, determination of the specific antimicrobial resistance should be conducted, particularly in the case of hospitalized patients.

  5. A two-scale model for dynamic damage evolution

    NASA Astrophysics Data System (ADS)

    Keita, Oumar; Dascalu, Cristian; François, Bertrand

    2014-03-01

    This paper presents a new micro-mechanical damage model accounting for inertial effect. The two-scale damage model is fully deduced from small-scale descriptions of dynamic micro-crack propagation under tensile loading (mode I). An appropriate micro-mechanical energy analysis is combined with homogenization based on asymptotic developments in order to obtain the macroscopic evolution law for damage. Numerical simulations are presented in order to illustrate the ability of the model to describe known behaviors like size effects for the structural response, strain-rate sensitivity, brittle-ductile transition and wave dispersion.

  6. A method for determination of equine hoof strain patterns using photoelasticity: an in vitro study.

    PubMed

    Dejardin, L M; Arnoczky, S P; Cloud, G L

    1999-05-01

    During impact, equine hooves undergo viscoelastic deformations which may result in potentially harmful strains. Previous hoof strain studies using strain gauges have been inconclusive due to arbitrary gauge placement. Photoelastic stress analysis (PSA) is a full-field technique which visually displays strains over entire loaded surfaces. This in vitro study identifies normal hoof strain patterns using PSA. Custom-made photoelastic plastic sheets were applied to the hoof surface. The hooves were axially loaded (225 kg) under level and varus/valgus conditions. Strain patterns were video-recorded through a polariscope. Strains were concentrated between middle and distal thirds of the hoof wall regardless of the loading conditions. This strain distribution appears to result from the differential expansion of the hoof wall under load. Increasing load resulted in higher strains and asymmetric loading resulted in an ipsilateral increase in strain magnitudes without altering strain locations. This study shows that PSA is a reliable method with which to evaluate hoof strains in vitro and is sensitive enough to reflect subtle load-related strain alterations.

  7. Two-dimensional surface strain measurement based on a variation of Yamaguchi's laser-speckle strain gauge

    NASA Technical Reports Server (NTRS)

    Barranger, John P.

    1990-01-01

    A novel optical method of measuring 2-D surface strain is proposed. Two linear strains along orthogonal axes and the shear strain between those axes is determined by a variation of Yamaguchi's laser-speckle strain gage technique. It offers the advantages of shorter data acquisition times, less stringent alignment requirements, and reduced decorrelation effects when compared to a previously implemented optical strain rosette technique. The method automatically cancels the translational and rotational components of rigid body motion while simplifying the optical system and improving the speed of response.

  8. Holographic Moire, An Optical Tool For The Determination Of Displacements, Strains, Contours, And Slopes Of Surfaces

    NASA Astrophysics Data System (ADS)

    Sciammarella, Cesar A.

    1982-06-01

    In conventional holographic interferometry, the observed fringe patterns are determined by the object displacement and deformation, and by the illumination and observation configurations. The obtained information may not be in the most convenient form for further data processing. To overcome this problem, and to create new possibilities, holographic fringe patterns can be changed by modifying the optical setup. As a result of these modifications, well-known procedures of the moire method can be applied to holographic interferometry. Components of displacement and components of the strain tensor can be isolated and measured separately. Surface contours and slopes can also be determined.

  9. Colony Dimorphism in Bradyrhizobium Strains

    PubMed Central

    Sylvester-Bradley, Rosemary; Thornton, Philip; Jones, Peter

    1988-01-01

    Ten isolates of Bradyrhizobium spp. which form two colony types were studied; the isolates originated from a range of legume species. The two colony types differed in the amount of gum formed or size or both, depending on the strain. Whole 7-day-old colonies of each type were subcultured to determine the proportion of cells which had changed to the other type. An iterative computerized procedure was used to determine the rate of switching per generation between the two types and to predict proportions reached at equilibrium for each strain. The predicted proportions of the wetter (more gummy) or larger colony type at equilibrium differed significantly between strains, ranging from 0.9999 (strain CIAT 2383) to 0.0216 (strain CIAT 2469), because some strains switched faster from dry to wet (or small to large) and others switched faster from wet to dry (or large to small). Predicted equilibrium was reached after about 140 generations in strain USDA 76. In all but one strain (CIAT 3030) the growth rate of the wetter colony type was greater than or similar to that of the drier type. The mean difference in generation time between the two colony types was 0.37 h. Doubling times calculated for either colony type after 7 days of growth on the agar surface ranged from 6.0 to 7.3 h. The formation of two persistent colony types by one strain (clonal or colony dimorphism) may be a common phenomenon among Bradyrhizobium strains. Images PMID:16347599

  10. Structural studies on lipopolysaccharides of serologically non-typable strains of Helicobacter pylori, AF1 and 007, expressing Lewis antigenic determinants.

    PubMed

    Knirel, Y A; Kocharova, N A; Hynes, S O; Widmalm, G; Andersen, L P; Jansson, P E; Moran, A P

    1999-11-01

    In contrast to other Helicobacter pylori strains, which have serologically detectable Lewis(x)+ (Le(x)) and Lewis(y)++ (++Le(y)) antigenic determinants in the O-specific polysaccharide chains of the lipopolysaccharides, H. pylori AF1 and 007 were non-typable with anti-Le(x) and anti-Le(y) antibodies. The carbohydrate portions of the lipopolysaccharides were liberated by mild acid hydrolysis and subsequently studied by sugar and methylation analyses, 1H-NMR spectroscopy and electrospray ionization-mass spectrometry. Compared with each other, and with lipopolysaccharides of strains studied previously, the lipopolysaccharides of both AF1 and 007 showed similarities, but also differences, in the structures of the core region and O-specific polysaccharide chains. The O-specific polysaccharide chains of both strains consisted of a short or long polyfucosylated poly-N-acetyl-beta-lactosamine chains, which were distinguished from those of other strains by a high degree of fucosylation producing a polymeric Le(x)chain terminating with Le(x) or Le(y) units:[sequence: see text] where n = 0 or 1 in strain AF1 and 0 in strain 007, m = 0-2, 6-7 in strain AF1 and m = 0-2, 6-7 or approximately 40 in strain 007, the medium-size species being predominant. Therefore, compared with other strains, the lack of reactivity of lipopolysaccharide of H. pylori AF1 and 007 with anti-Le(x) and anti-Le(y) may reflect the presence of a polymeric Le(x) chain and has important implications for serological and pathogenesis studies. As the substitution pattern of a D-glycero-D-manno-heptose residue in the outer core varied in the two strains, and an extended DD-heptan chain was present in some lipopolysaccharide species but not in others, this region was less conservative than the inner core region. The inner core L-glycero-D-manno-heptose region of both strains carried a 2-aminoethyl phosphate group, rather than a phosphate group, as reported previously for other H. pylori strains.

  11. ICAN: A versatile code for predicting composite properties

    NASA Technical Reports Server (NTRS)

    Ginty, C. A.; Chamis, C. C.

    1986-01-01

    The Integrated Composites ANalyzer (ICAN), a stand-alone computer code, incorporates micromechanics equations and laminate theory to analyze/design multilayered fiber composite structures. Procedures for both the implementation of new data in ICAN and the selection of appropriate measured data are summarized for: (1) composite systems subject to severe thermal environments; (2) woven fabric/cloth composites; and (3) the selection of new composite systems including those made from high strain-to-fracture fibers. The comparisons demonstrate the versatility of ICAN as a reliable method for determining composite properties suitable for preliminary design.

  12. Radiation effects in concrete for nuclear power plants, Part II: Perspective from micromechanical modeling

    DOE PAGES

    Le Pape, Yann; Field, Kevin G.; Remec, Igor

    2014-11-15

    The need to understand and characterize the effects of neutron irradiation on concrete has become urgent because of the possible extension of service life of many nuclear power generating stations. Current knowledge is primarily based on a collection of data obtained in test reactors. These results are inherently difficult to interpret because materials and testing conditions are inconsistent. A micromechanical approach based on the Hashin composite sphere model is presented to derive a first-order separation of the effects of radiation on cement paste and aggregate, and, also, on their interaction. Although the scarcity of available data limits the validation ofmore » the model, it appears that, without negating a possible gamma-ray induced effect, the neutron-induced damage and swelling of aggregate plays a predominant role on the overall concrete expansion and the damage of the cement paste. Finally, the radiation-induced volumetric expansion (RIVE) effects can also be aided by temperature elevation and shrinkage in the cement paste.« less

  13. Micromechanics effects in creep of metal-matrix composites

    NASA Astrophysics Data System (ADS)

    Davis, L. C.; Allison, J. E.

    1995-12-01

    The creep of metal-matrix composites is analyzed by finite element techniques. An axisymmetric unit-cell model with spherical reinforcing particles is used. Parameters appropriate to TiC particles in a precipitation-hardened (2219) Al matrix are chosen. The effects of matrix plasticity and residual stresses on the creep of the composite are calculated. We confirm (1) that the steady-state rate is independent of the particle elastic moduli and the matrix elastic and plastic properties, (2) that the ratio of composite to matrix steady-state rates depends only on the volume fraction and geometry of the reinforcing phase, and (3) that this ratio can be determined from a calculation of the stress-strain relation for the geometrically identical composite (same phase volume and geometry) with rigid particles in the appropriate power-law hardening matrix. The values of steady-state creep are compared to experimental ones (Krajewski et al.). Continuum mechanics predictions give a larger reduction of the composite creep relative to the unreinforced material than measured, suggesting that the effective creep rate of the matrix is larger than in unreinforced precipitation-hardened Al due to changes in microstructure, dislocation density, or creep mechanism. Changes in matrix creep properties are also suggested by the comparison of calculated and measured creep strain rates in the primary creep regime, where significantly different time dependencies are found. It is found that creep calculations performed for a timeindependent matrix creep law can be transformed to obtain the creep for a time-dependent creep law.

  14. Silicone-based elastic composites able to generate energy on micromechanical impulse

    NASA Astrophysics Data System (ADS)

    Racles, Carmen; Ignat, Mircea; Bele, Adrian; Dascalu, Mihaela; Lipcinski, Daniel; Cazacu, Maria

    2016-08-01

    Elastic composites were prepared based on a polydimethylsiloxane-α,ω-diol (M w = 139 000 g mol-1), different α,ω-bis(trimethylsiloxy)poly(methylcyanopropyl-methylhexyl-methylhydro)siloxanes as the polar group component and TEOS as a cross-linking agent and silica generator. The resulting materials consisted of polar-nonpolar interconnected networks as matrices which had 7.4 or 9.5 wt% in situ generated silica and contained up to 2.74 wt% CN groups. The films formed were tested for electromechanical response to a micromechanical impulse. It was found that their performance was proportional to their electromechanical sensitivity (β = ɛ‧/Y, where ɛ‧ is the dielectric permittivity and Y is Young’s modulus); thus it can be adjusted by their composition, via tailoring the dielectric and mechanical properties. The generated voltage peak-to-peak measured was between 3.75 and 12.3 V mm-1. The best result for the tested materials (i.e. harvested energy of 460 nJ or energy density of 4.6 μJ cm-3, as a response to a micro-impulse of 0.017 kg m s-1) was obtained for a film having ɛ‧ = 3.6 and Y = 0.19 MPa.

  15. Micromechanical models to guide the development of synthetic ‘brick and mortar’ composites

    NASA Astrophysics Data System (ADS)

    Begley, Matthew R.; Philips, Noah R.; Compton, Brett G.; Wilbrink, David V.; Ritchie, Robert O.; Utz, Marcel

    2012-08-01

    This paper describes a micromechanical analysis of the uniaxial response of composites comprising elastic platelets (bricks) bonded together with thin elastic perfectly plastic layers (mortar). The model yields closed-form results for the spatial variation of displacements in the bricks as a function of constituent properties, which can be used to calculate the effective properties of the composite, including elastic modulus, strength and work-to-failure. Regime maps are presented which indicate critical stresses for failure of the bricks and mortar as a function of constituent properties and brick architecture. The solution illustrates trade-offs between elastic modulus, strength and dissipated work that are a result of transitions between various failure mechanisms associated with brick rupture and rupture of the interfaces. Detailed scaling relationships are presented with the goal of providing material developers with a straightforward means to identify synthesis targets that balance competing mechanical behaviors and optimize material response. Ashby maps are presented to compare potential brick and mortar composites with existing materials, and identify future directions for material development.

  16. Lab on chip microdevices for cellular mechanotransduction in urothelial cells

    NASA Astrophysics Data System (ADS)

    Maziz, A.; Guan, N.; Svennersten, K.; Hallén-Grufman, K.; Jager, Edwin W. H.

    2016-04-01

    Cellular mechanotransduction is crucial for physiological function in the lower urinary tract. The bladder is highly dependent on the ability to sense and process mechanical inputs, illustrated by the regulated filling and voiding of the bladder. However, the mechanisms by which the bladder integrates mechanical inputs, such as intravesicular pressure, and controls the smooth muscles, remain unknown. To date no tools exist that satisfactorily mimic in vitro the dynamic micromechanical events initiated e.g. by an emerging inflammatory process or a growing tumour mass in the urinary tract. More specifically, there is a need for tools to study these events on a single cell level or in a small population of cells. We have developed a micromechanical stimulation chip that can apply physiologically relevant mechanical stimuli to single cells to study mechanosensitive cells in the urinary tract. The chips comprise arrays of microactuators based on the electroactive polymer polypyrrole (PPy). PPy offers unique possibilities and is a good candidate to provide such physiological mechanical stimulation, since it is driven at low voltages, is biocompatible, and can be microfabricated. The PPy microactuators can provide mechanical stimulation at different strains and/or strain rates to single cells or clusters of cells, including controls, all integrated on one single chip, without the need to preprepare the cells. This paper reports initial results on the mechano-response of urothelial cells using the micromechanical stimulation chips. We show that urothelial cells are viable on our microdevices and do respond with intracellular Ca2+ increase when subjected to a micro-mechanical stimulation.

  17. Rheology of arc dacite lavas: experimental determination at low strain rates

    NASA Astrophysics Data System (ADS)

    Avard, Geoffroy; Whittington, Alan G.

    2012-07-01

    Andesitic-dacitic volcanoes exhibit a large variety of eruption styles, including explosive eruptions, endogenous and exogenous dome growth, and kilometer-long lava flows. The rheology of these lavas can be investigated through field observations of flow and dome morphology, but this approach integrates the properties of lava over a wide range of temperatures. Another approach is through laboratory experiments; however, previous studies have used higher shear stresses and strain rates than are appropriate to lava flows. We measured the apparent viscosity of several lavas from Santiaguito and Bezymianny volcanoes by uniaxial compression, between 1,109 and 1,315 K, at low shear stress (0.085 to 0.42 MPa), low strain rate (between 1.1 × 10-8 and 1.9 × 10-5 s-1), and up to 43.7 % total deformation. The results show a strong variability of the apparent viscosity between different samples, which can be ascribed to differences in initial porosity and crystallinity. Deformation occurs primarily by compaction, with some cracking and/or vesicle coalescence. Our experiments yield apparent viscosities more than 1 order of magnitude lower than predicted by models based on experiments at higher strain rates. At lava flow conditions, no evidence of a yield strength is observed, and the apparent viscosity is best approached by a strain rate- and temperature-dependent power law equation. The best fit for Santiaguito lava, for temperatures between 1,164 and 1,226 K and strain rates lower than 1.8 × 10-4 s-1, is log {η_{{app}}} = - 0.738 + 9.24 × {10^3}{/}T(K) - 0.654 \\cdot log dot{\\varepsilon } where η app is apparent viscosity and dot{\\varepsilon } is strain rate. This equation also reproduced 45 data for a sample from Bezymianny with a root mean square deviation of 0.19 log unit Pa s. Applying the rheological model to lava flow conditions at Santiaguito yields calculated apparent viscosities that are in reasonable agreement with field observations and suggests that

  18. Modal strain energies in COSMIC NASTRAN

    NASA Technical Reports Server (NTRS)

    Snyder, B. D.; Venkayya, V. B.

    1989-01-01

    A computer program was developed to take a NASTRAN output file from a normal modes analysis and calculate the modal strain energies of selected elements. The FORTRAN program can determine the modal strain energies for CROD, CBAR, CELAS, CTRMEM, CQDMEM2, and CSHEAR elements. Modal strain energies are useful in estimating damping in structures.

  19. Micromechanics of pressure-induced grain crushing in porous rocks

    NASA Astrophysics Data System (ADS)

    Davis, Daniel M.

    1990-01-01

    The hydrostatic compaction behavior of a suite of porous sandstones was investigated at confining pressures up to 600 MPa and constant pore pressures ranging up to 50 MPa. These five sandstones (Boise, Kayenta, St. Peter, Berea, and Weber) were selected because of their wide range of porosity (5-35%) and grain size (60-460 μm). We tested the law of effective stress for the porosity change as a function of pressure. Except for Weber sandstone (which has the lowest porosity and smallest grain size), the hydrostat of each sandstone shows an inflection point corresponding to a critical effective pressure beyond which an accelerated, irrecoverable compaction occurs. Our microstructural observations show that brittle grain crushing initiates at this critical pressure. We also observed distributed cleavage cracking in calcite and intensive kinking in mica. The critical pressures for grain crushing in our sandstones range from 75 to 380 MPa. In general, a sandstone with higher porosity and larger grain size has a critical pressure which is lower than that of a sandstone with lower porosity and smaller grain size. We formulate a Hertzian fracture model to analyze the micromechanics of grain crushing. Assuming that the solid grains have preexisting microcracks with dimensions which scale with grain size, we derive an expression for the critical pressure which depends on the porosity, grain size, and fracture toughness of the solid matrix. The theoretical prediction is in reasonable agreement with our experimental data as well as other data from soil and rock mechanics studies for which the critical pressures range over 3 orders of magnitude.

  20. A suitable Xylella fastidiosa CVC strain for post-genome studies.

    PubMed

    Teixeira, Diva do Carmo; Rocha, Sanvai Regina Prado; de Santos, Mateus Almeida; Mariano, Anelise Galdino; Li, Wen Bin; Monteiro, Patricia Brant

    2004-12-01

    The genome sequence of the pathogen Xylella fastidiosa Citrus Variegated Chlorosis (CVC) strain 9a5c has revealed many genes related to pathogenicity mechanisms and virulence determinants. However, strain 9a5c is resistant to genetic transformation, impairing mutant production for the analysis of pathogenicity mechanisms and virulence determinants of this fastidious phytopathogen. By screening different strains, we found out that cloned strains J1a12, B111, and S11400, all isolated from citrus trees affected by CVC, are amenable to transformation, and J1a12 has been used as a model strain in a functional genomics program supported by FAPESP (São Paulo State Research Foundation). However, we have found that strain J1a12, unlike strains 9a5c and B111, was incapable of inducing CVC symptoms when inoculated in citrus plants. We have now determined that strain B111 is an appropriate candidate for post-genome studies of the CVC strain of X. fastidiosa.

  1. Micromechanical analysis of a hybrid composite—effect of boron carbide particles on the elastic properties of basalt fiber reinforced polymer composite

    NASA Astrophysics Data System (ADS)

    Krishna Golla, Sai; Prasanthi, P.

    2016-11-01

    A fiber reinforced polymer (FRP) composite is an important material for structural application. The diversified application of FRP composites has become the center of attention for interdisciplinary research. However, improvements in the mechanical properties of this class of materials are still under research for different applications. The reinforcement of inorganic particles in a composite improves its structural properties due to their high stiffness. The present research work is focused on the prediction of the mechanical properties of the hybrid composites where continuous fibers are reinforced in a micro boron carbide particle mixed polypropylene matrix. The effectiveness of the addition of 30 wt. % of boron carbide (B4C) particle contributions regarding the longitudinal and transverse properties of the basalt fiber reinforced polymer composite at various fiber volume fractions is examined by finite element analysis (FEA). The experimental approach is the best way to determine the properties of the composite but it is expensive and time-consuming. Therefore, the finite element method (FEM) and analytical methods are the viable methods for the determination of the composite properties. The FEM results were obtained by adopting a micromechanics approach with the support of FEM. Assuming a uniform distribution of reinforcement and considering one unit-cell of the whole array, the properties of the composite materials are determined. The predicted elastic properties from FEA are compared with the analytical results. The results suggest that B4C particles are a good reinforcement for the enhancement of the transverse properties of basalt fiber reinforced polypropylene.

  2. Finite element modeling to determine thermal residual strain distribution of bonded composite repairs for structural health monitoring design

    NASA Astrophysics Data System (ADS)

    Baker, Wayne; Jones, Rhys; Davis, Claire; Galea, Stephen C.

    2002-11-01

    The economic implication of fleet upgrades, particularly in Australia with military aircraft such as the F-111 and F/A-18, has led to an increasing reliance on composite repair technology to address fatigue and corrosion-affected aircraft components. The increasing use of such repairs has led to a research effort to develop various in-situ health monitoring systems that may be incorporated with a repair. This paper reports on the development of a theoretical methodology that uses finite element analysis (FEA) to model the strain profiles which optical sensors, on or within the patch, will be exposed to under various operational scenarios, including load and disbond. Numerical techniques are then used to predict the fibre Bragg grating (FBG) reflections which occur with these strain profiles. The quality of these reflection are a key consideration when designing FBG based structural health monitoring (SHM) systems. This information can be used to optimise the location of both surface mounted, and embedded sensors, and determine feasibility of SHM system design. Research was conducted into the thermal residual strain (TRS) within the patch. A finite element study revealed the presence of significant thermal residual strain gradients along the surface of the tapered region of the patch. As Bragg gratings are particularly sensitive to strain gradients, (producing a result similar to a chirped grating) the strain gradient on the composite at potential sensor locations both under load, and in the event of disbond was considered. A sufficiently high gradient leads to an altered Bragg reflection. These spurious reflections need to be considered, and theoretically obtained reflections can provide information to allow for load scenarios where the Bragg shift is not a smooth, well defined peak. It can also be shown that embedded fibres offer a higher average thermal residual strain reading, while being subject to a much lower strain gradient. This particularly favors the

  3. Method to Determine the Stress-Strain Response of As-Formed Thin-Walled Tubular Structures Using a Flaring Apparatus

    NASA Astrophysics Data System (ADS)

    Jurendic, S.; Anderson, D.

    2017-09-01

    Finite element simulations are used extensively to refine the forming steps of draw and wall iron (DWI) aluminum bottles; therefore, accurate material data is required Unfortunately, the material properties of the base sheet cannot presently be used for simulation of the later forming stages due to preceding significant deformation (ironing) and thermal treatments. Measuring the stress-strain response using traditional methods (e.g. tensile test) becomes increasingly difficult at later stages of the bottle forming process due to a significant diameter reduction of the bottle neck from successive die-necking stages. Moreover, failure during forming tends to occur in the final deformation stages when the bottle opening is rolled over, creating a brim roll, at which point brim roll splits may occur. Knowledge of the stress-strain response prior to the roll over may lead to improved product design, reduced waste, and an optimized product. Therefore, this work details a flaring apparatus and data analysis method to determine the stress-strain response in the die-necked region of thin-walled aluminum bottles fabricated from AA3104 sheet metal.

  4. A New and General Formulation of the Parametric HFGMC Micromechanical Method for Three-Dimensional Multi-Phase Composites

    NASA Technical Reports Server (NTRS)

    Haj-Ali, Rami; Aboudi, Jacob

    2012-01-01

    The recent two-dimensional (2-D) parametric formulation of the high fidelity generalized method of cells (HFGMC) reported by the authors is generalized for the micromechanical analysis of three-dimensional (3-D) multiphase composites with periodic microstructure. Arbitrary hexahedral subcell geometry is developed to discretize a triply periodic repeating unit-cell (RUC). Linear parametric-geometric mapping is employed to transform the arbitrary hexahedral subcell shapes from the physical space to an auxiliary orthogonal shape, where a complete quadratic displacement expansion is performed. Previously in the 2-D case, additional three equations are needed in the form of average moments of equilibrium as a result of the inclusion of the bilinear terms. However, the present 3-D parametric HFGMC formulation eliminates the need for such additional equations. This is achieved by expressing the coefficients of the full quadratic polynomial expansion of the subcell in terms of the side or face average-displacement vectors. The 2-D parametric and orthogonal HFGMC are special cases of the present 3-D formulation. The continuity of displacements and tractions, as well as the equilibrium equations, are imposed in the average (integral) sense as in the original HFGMC formulation. Each of the six sides (faces) of a subcell has an independent average displacement micro-variable vector which forms an energy-conjugate pair with the transformed average-traction vector. This allows generating symmetric stiffness matrices along with internal resisting vectors for the subcells which enhances the computational efficiency. The established new parametric 3-D HFGMC equations are formulated and solution implementations are addressed. Several applications for triply periodic 3-D composites are presented to demonstrate the general capability and varsity of the present parametric HFGMC method for refined micromechanical analysis by generating the spatial distributions of local stress fields

  5. [Phylogenetic relationship of street rabies virus strains and their antigenic reactivity with antibodies induced by vaccine strains. I. Analysis of phylogenetic relationship of street rabies virus strains isolated in Poland].

    PubMed

    Sadkowska-Todys, M

    2000-01-01

    The aims of these studies were: genetic characteristic of street rabies virus strains isolated from different animal species in Poland and determination of phylogenetic relationships to reference laboratory strains of the street rabies viruses belonging to genotype 1 and 5. The variability of rabies isolates and their phylogenetic relationship were studied by comparing the nucleotide sequence of the virus genome fragment. The Polish strains of genotype 1 belong to four phylogenetic groups (NE, CE, NEE, EE) corresponding to four variants: fox-racoon dog (F-RD); European fox 1 (F1); European fox 2 (F2) and European fox 3 (F3). On the Polish territories there are no rabies strains representing the variant dog-wolf and typical for arctic fox variant. The similarity of nucleotide and amino acid sequences of street rabies strains belonging to genotype 1 and laboratory strain CVS is very high. It is about 91% similarity at nucleotide level and 95% at amino acid level. Rabies strain CVS is similar to genotype 5 bat strains (EBL 1) only in about 69% and 74% at nucleotide and amino acid level, respectively. The genetic divergence of rabies strains circulating in Poland raised the need of permanent epidemiological and virological surveillance. The genotype and variant of isolated strains should be determined (using PCR and RLFP methods).

  6. Finite element modeling predictions of region-specific cell-matrix mechanics in the meniscus.

    PubMed

    Upton, Maureen L; Guilak, Farshid; Laursen, Tod A; Setton, Lori A

    2006-06-01

    The knee meniscus exhibits significant spatial variations in biochemical composition and cell morphology that reflect distinct phenotypes of cells located in the radial inner and outer regions. Associated with these cell phenotypes is a spatially heterogeneous microstructure and mechanical environment with the innermost regions experiencing higher fluid pressures and lower tensile strains than the outer regions. It is presently unknown, however, how meniscus tissue mechanics correlate with the local micromechanical environment of cells. In this study, theoretical models were developed to study mechanics of inner and outer meniscus cells with varying geometries. The results for an applied biaxial strain predict significant regional differences in the cellular mechanical environment with evidence of tensile strains along the collagen fiber direction of approximately 0.07 for the rounded inner cells, as compared to levels of 0.02-0.04 for the elongated outer meniscus cells. The results demonstrate an important mechanical role of extracellular matrix anisotropy and cell morphology in regulating the region-specific micromechanics of meniscus cells, that may further play a role in modulating cellular responses to mechanical stimuli.

  7. Utilization of the Generalized Method of Cells to Analyze the Deformation Response of Laminated Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.

    2012-01-01

    In order to practically utilize ceramic matrix composites in aircraft engine components, robust analysis tools are required that can simulate the material response in a computationally efficient manner. The MAC/GMC software developed at NASA Glenn Research Center, based on the Generalized Method of Cells micromechanics method, has the potential to meet this need. Utilizing MAC/GMC, the effective stiffness properties, proportional limit stress and ultimate strength can be predicted based on the properties and response of the individual constituents. In this paper, the effective stiffness and strength properties for a representative laminated ceramic matrix composite with a large diameter fiber are predicted for a variety of fiber orientation angles and laminate orientations. As part of the analytical study, methods to determine the in-situ stiffness and strength properties of the constituents required to appropriately simulate the effective composite response are developed. The stiffness properties of the representative composite have been adequately predicted for all of the fiber orientations and laminate configurations examined in this study. The proportional limit stresses and strains and ultimate stresses and strains were predicted with varying levels of accuracy, depending on the laminate orientation. However, for the cases where the predictions did not have the desired level of accuracy, the specific issues related to the micromechanics theory were identified which could lead to difficulties that were encountered that could be addressed in future work.

  8. Job Strain and Determinants in Staff Working in Institutions for People with Intellectual Disabilities in Taiwan: A Test of the Job Demand-Control-Support Model

    ERIC Educational Resources Information Center

    Lin, Jin-Ding; Lee, Tzong-Nan; Yen, Chia-Feng; Loh, Ching-Hui; Hsu, Shang-Wei; Wu, Jia-Ling; Chu, Cordia M.

    2009-01-01

    Little is known about the job strain of staff working in disability institutions. This study investigated the staff's job strain profile and its determinants which included the worker characteristics and the psychosocial working environments in Taiwan. A cross-sectional study survey was carried out among 1243 workers by means of a self-answered…

  9. Micromechanics of transformation fields in ageing linear viscoelastic composites: effects of phase dissolution or precipitation

    NASA Astrophysics Data System (ADS)

    Honorio, Tulio

    2017-11-01

    Transformation fields, in an affine formulation characterizing mechanical behavior, describe a variety of physical phenomena regardless their origin. Different composites, notably geomaterials, present a viscoelastic behavior, which is, in some cases of industrial interest, ageing, i.e. it evolves independently with respect to time and loading time. Here, a general formulation of the micromechanics of prestressed or prestrained composites in Ageing Linear Viscoelasticity (ALV) is presented. Emphasis is put on the estimation of effective transformation fields in ALV. The result generalizes Ageing Linear Thermo- and Poro-Viscoelasticity and it can be used in approaches coping with a phase transformation. Additionally, the results are extended to the case of locally transforming materials due to non-coupled dissolution and/or precipitation of a given (elastic or viscoelastic) phase. The estimations of locally transforming composites can be made with respect to different morphologies. As an application, estimations of the coefficient of thermal expansion of a hydrating alite paste are presented.

  10. A magnetically actuated cellular strain assessment tool for quantitative analysis of strain induced cellular reorientation and actin alignment

    NASA Astrophysics Data System (ADS)

    Khademolhosseini, F.; Liu, C.-C.; Lim, C. J.; Chiao, M.

    2016-08-01

    Commercially available cell strain tools, such as pneumatically actuated elastomer substrates, require special culture plates, pumps, and incubator setups. In this work, we present a magnetically actuated cellular strain assessment tool (MACSAT) that can be implemented using off-the-shelf components and conventional incubators. We determine the strain field on the MACSAT elastomer substrate using numerical models and experimental measurements and show that a specific region of the elastomer substrate undergoes a quasi-uniaxial 2D stretch, and that cells confined to this region of the MACSAT elastomer substrate undergo tensile, compressive, or zero axial strain depending on their angle of orientation. Using the MACSAT to apply cyclic strain on endothelial cells, we demonstrate that actin filaments within the cells reorient away from the stretching direction, towards the directions of minimum axial strain. We show that the final actin orientation angles in strained cells are spread over a region of compressive axial strain, confirming previous findings on the existence of a varied pre-tension in the actin filaments of the cytoskeleton. We also demonstrate that strained cells exhibit distinctly different values of actin alignment coherency compared to unstrained cells and therefore propose that this parameter, i.e., the coherency of actin alignment, can be used as a new readout to determine the occurrence/extent of actin alignment in cell strain experiments. The tools and methods demonstrated in this study are simple and accessible and can be easily replicated by other researchers to study the strain response of other adherent cells.

  11. Moire strain analysis of paper

    Treesearch

    R. E. Rowlands; P. K. Beasley; D. E. Gunderson

    1983-01-01

    Efficient use of paper products involves using modern aspects of materials science and engineering mechanics. This implies the ability to determine simultaneously different components of strain at multiple locations and under static or dynamic conditions. Although measuring strains in paper has been a topic of interest for over 40 years, present capability remains...

  12. Micromachined sensor for stress measurement and micromechanical study of free-standing thin films for MEMS applications

    NASA Astrophysics Data System (ADS)

    Zhang, Ping

    Microelectromechanical systems (MEMS) have a wide range of applications. In the field of wireless and microwave technology, considerable attention has been given to the development and integration of MEMS-based RF (radio frequency) components. An RF MEMS switch requires low insertion loss, high isolation, and low actuation voltage - electrical aspects that have been extensively studied. The mechanical requirements of the switch, such as low sensitivity to built-in stress and high reliability, greatly depend on the micromechanical properties of the switch materials, and have not been thoroughly explored. RF MEMS switches are typically in the form of a free-standing thin film structure. Large stress gradients and across-wafer stress variations developed during fabrication severely degrade their electrical performance. A micromachined stress measurement sensor has been developed that can potentially be employed for in-situ monitoring of stress evolution and stress variation. The sensors were micromachined using five masks on two wafer levels, each measuring 5x3x1 mm. They function by means of an electron tunneling mechanism, where a 2x2 mm silicon nitride membrane elastically deflects under an applied deflection voltage via an external feedback circuitry. For the current design, the sensors are capable of measuring tensile stresses up to the GPa range under deflection voltages of 50--100 V. Sensor functionality was studied by finite element modeling and a theoretical analysis of square membrane deflection. While the mechanical properties of thin films on substrates have been extensively studied, studies of free-standing thin films have been limited due to the practical difficulties in sample handling and testing. Free-standing Al and Al-Ti thin films specimens have been successfully fabricated and microtensile and stress relaxation tests have been performed using a custom-designed micromechanical testing apparatus. A dedicated TEM (transmission electron microscopy

  13. Strain improvement of chymosin-producing strains of Aspergillus niger var. awamori using parasexual recombination.

    PubMed

    Bodie, E A; Armstrong, G L; Dunn-Coleman, N S

    1994-05-01

    Parasexual recombination was used to obtain improved chymosin-producing strains and to perform genetic analysis on existing strains. Chlorate resistance was used to select for a variety of spontaneous nitrate assimilation pathway mutations in strains previously improved for chymosin production using classical strain improvement methods including mutation and screening, and selection for 2-deoxyglucose resistance (dgr). Diploids of these improved strains were generated via parasexual recombination and were isolated on selective media by complementation of nitrate assimilation mutations. A preliminary genetic analysis of diploid and haploid segregants indicated that the dgr trait, resulting in overexpression of chymosin, was recessive. Also, mutations in two different dgr genes resulted in an increased level of chymosin production. When these mutations were combined via parasexual recombination, the resulting haploid segregants produced about 15% more chymosin than either parental strain. CHEF gel electrophoresis was used to determine the chromosomal location of the integrated chymosin DNA sequences, and to verify diploidy in one case where the chromosome composition of two haploid parents differed.

  14. Micromechanical Modeling of Anisotropic Damage-Induced Permeability Variation in Crystalline Rocks

    NASA Astrophysics Data System (ADS)

    Chen, Yifeng; Hu, Shaohua; Zhou, Chuangbing; Jing, Lanru

    2014-09-01

    This paper presents a study on the initiation and progress of anisotropic damage and its impact on the permeability variation of crystalline rocks of low porosity. This work was based on an existing micromechanical model considering the frictional sliding and dilatancy behaviors of microcracks and the recovery of degraded stiffness when the microcracks are closed. By virtue of an analytical ellipsoidal inclusion solution, lower bound estimates were formulated through a rigorous homogenization procedure for the damage-induced effective permeability of the microcracks-matrix system, and their predictive limitations were discussed with superconducting penny-shaped microcracks, in which the greatest lower bounds were obtained for each homogenization scheme. On this basis, an empirical upper bound estimation model was suggested to account for the influences of anisotropic damage growth, connectivity, frictional sliding, dilatancy, and normal stiffness recovery of closed microcracks, as well as tensile stress-induced microcrack opening on the permeability variation, with a small number of material parameters. The developed model was calibrated and validated by a series of existing laboratory triaxial compression tests with permeability measurements on crystalline rocks, and applied for characterizing the excavation-induced damage zone and permeability variation in the surrounding granitic rock of the TSX tunnel at the Atomic Energy of Canada Limited's (AECL) Underground Research Laboratory (URL) in Canada, with an acceptable agreement between the predicted and measured data.

  15. [Determination of the profiles of secondary metabolites characteristic of Alternaria strains isolated from tomato].

    PubMed

    Benavidez Rozo, Martha Elizabeth; Patriarca, Andrea; Cabrera, Gabriela; Fernández Pinto, Virginia E

    2014-01-01

    Many Alternaria species have been studied for their ability to produce bioactive secondary metabolites, such as tentoxin (TEN), some of which have toxic properties. The main food contaminant toxins are tenuazonic acid, alternariol (AOH), alternariol monomethyl ether (AME), altenuene, and altertoxins i, ii and iii. To determine the profiles of secondary metabolites characteristic of Alternaria strains isolated from tomato for their chemotaxonomic classification. The profiles of secondary metabolites were determined by HPLC MS. The Alternaria isolates obtained from spoiled tomatoes belong, according to their morphological characteristics, to the species groups Alternaria alternata, Alternaria tenuissima and Alternaria arborescens, with A. tenuissima being the most frequent. The most frequent profiles of secondary metabolites belonging to the species groups A. alternata (AOH, AME, TEN), A. tenuissima (AOH, AME, TEN, tenuazonic acid) and A. arborescens (AOH, AME, TEN, tenuazonic acid) were determined, with some isolates of the latter being able to synthesize AAL toxins. Secondary metabolite profiles are a useful tool for the differentiation of small spored Alternaria isolates not easily identifiable by their morphological characteristics. Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  16. MEMS resonant load cells for micro-mechanical test frames: feasibility study and optimal design

    NASA Astrophysics Data System (ADS)

    Torrents, A.; Azgin, K.; Godfrey, S. W.; Topalli, E. S.; Akin, T.; Valdevit, L.

    2010-12-01

    This paper presents the design, optimization and manufacturing of a novel micro-fabricated load cell based on a double-ended tuning fork. The device geometry and operating voltages are optimized for maximum force resolution and range, subject to a number of manufacturing and electromechanical constraints. All optimizations are enabled by analytical modeling (verified by selected finite elements analyses) coupled with an efficient C++ code based on the particle swarm optimization algorithm. This assessment indicates that force resolutions of ~0.5-10 nN are feasible in vacuum (~1-50 mTorr), with force ranges as large as 1 N. Importantly, the optimal design for vacuum operation is independent of the desired range, ensuring versatility. Experimental verifications on a sub-optimal device fabricated using silicon-on-glass technology demonstrate a resolution of ~23 nN at a vacuum level of ~50 mTorr. The device demonstrated in this article will be integrated in a hybrid micro-mechanical test frame for unprecedented combinations of force resolution and range, displacement resolution and range, optical (or SEM) access to the sample, versatility and cost.

  17. Effect of Static Strains on Diffusion

    NASA Technical Reports Server (NTRS)

    Girifalco, L. A.; Grimes, H. H.

    1961-01-01

    A theory is developed that gives the diffusion coefficient in strained systems as an exponential function of the strain. This theory starts with the statistical theory of the atomic jump frequency as developed by Vineyard. The parameter determining the effect of strain on diffusion is related to the changes in the inter-atomic forces with strain. Comparison of the theory with published experimental results for the effect of pressure on diffusion shows that the experiments agree with the form of the theoretical equation in all cases within experimental error.

  18. The influence of strain rate and hydrogen on the plane-strain ductility of Zircaloy cladding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Link, T.M.; Motta, A.T.; Koss, D.A.

    1998-03-01

    The authors studied the ductility of unirradiated Zircaloy-4 cladding under loading conditions prototypical of those found in reactivity-initiated accidents (RIA), i.e.: near plane-strain deformation in the hoop direction (transverse to the cladding axis) at room temperature and 300 C and high strain rates. To conduct these studies, they developed a specimen configuration in which near plane-strain deformation is achieved in the gage section, and a testing methodology that allows one to determine both the limit strain at the onset of localized necking and the fracture strain. The experiments indicate that there is little effect of strain rate (10{sup {minus}3} tomore » 10{sup 2} s{sup {minus}1}) on the ductility of unhydrided Zircaloy tubing deformed under near plane-strain conditions at either room temperature or 300 C. Preliminary experiments on cladding containing 190 ppm hydrogen show only a small loss of fracture strain but no clear effect on limit strain. The experiments also indicate that there is a significant loss of Zircaloy ductility when surface flaws are present in the form of thickness imperfections.« less

  19. Nonlinear mesomechanics of composites with periodic microstructure

    NASA Technical Reports Server (NTRS)

    Walker, Kevin P.; Jordan, Eric H.; Freed, Alan D.

    1989-01-01

    This work is concerned with modeling the mechanical deformation or constitutive behavior of composites comprised of a periodic microstructure under small displacement conditions at elevated temperature. A mesomechanics approach is adopted which relates the microimechanical behavior of the heterogeneous composite with its in-service macroscopic behavior. Two different methods, one based on a Fourier series approach and the other on a Green's function approach, are used in modeling the micromechanical behavior of the composite material. Although the constitutive formulations are based on a micromechanical approach, it should be stressed that the resulting equations are volume averaged to produce overall effective constitutive relations which relate the bulk, volume averaged, stress increment to the bulk, volume averaged, strain increment. As such, they are macromodels which can be used directly in nonlinear finite element programs such as MARC, ANSYS and ABAQUS or in boundary element programs such as BEST3D. In developing the volume averaged or efective macromodels from the micromechanical models, both approaches will require the evaluation of volume integrals containing the spatially varying strain distributions throughout the composite material. By assuming that the strain distributions are spatially constant within each constituent phase-or within a given subvolume within each constituent phase-of the composite material, the volume integrals can be obtained in closed form. This simplified micromodel can then be volume averaged to obtain an effective macromodel suitable for use in the MARC, ANSYS and ABAQUS nonlinear finite element programs via user constitutive subroutines such as HYPELA and CMUSER. This effective macromodel can be used in a nonlinear finite element structural analysis to obtain the strain-temperature history at those points in the structure where thermomechanical cracking and damage are expected to occur, the so called damage critical points of

  20. Phylogeny of 54 representative strains of species in the family Pasteurellaceae as determined by comparison of 16S rRNA sequences.

    PubMed Central

    Dewhirst, F E; Paster, B J; Olsen, I; Fraser, G J

    1992-01-01

    Virtually complete 16S rRNA sequences were determined for 54 representative strains of species in the family Pasteurellaceae. Of these strains, 15 were Pasteurella, 16 were Actinobacillus, and 23 were Haemophilus. A phylogenetic tree was constructed based on sequence similarity, using the Neighbor-Joining method. Fifty-three of the strains fell within four large clusters. The first cluster included the type strains of Haemophilus influenzae, H. aegyptius, H. aphrophilus, H. haemolyticus, H. paraphrophilus, H. segnis, and Actinobacillus actinomycetemcomitans. This cluster also contained A. actinomycetemcomitans FDC Y4, ATCC 29522, ATCC 29523, and ATCC 29524 and H. aphrophilus NCTC 7901. The second cluster included the type strains of A. seminis and Pasteurella aerogenes and H. somnus OVCG 43826. The third cluster was composed of the type strains of Pasteurella multocida, P. anatis, P. avium, P. canis, P. dagmatis, P. gallinarum, P. langaa, P. stomatis, P. volantium, H. haemoglobinophilus, H. parasuis, H. paracuniculus, H. paragallinarum, and A. capsulatus. This cluster also contained Pasteurella species A CCUG 18782, Pasteurella species B CCUG 19974, Haemophilus taxon C CAPM 5111, H. parasuis type 5 Nagasaki, P. volantium (H. parainfluenzae) NCTC 4101, and P. trehalosi NCTC 10624. The fourth cluster included the type strains of Actinobacillus lignieresii, A. equuli, A. pleuropneumoniae, A. suis, A. ureae, H. parahaemolyticus, H. parainfluenzae, H. paraphrohaemolyticus, H. ducreyi, and P. haemolytica. This cluster also contained Actinobacillus species strain CCUG 19799 (Bisgaard taxon 11), A. suis ATCC 15557, H. ducreyi ATCC 27722 and HD 35000, Haemophilus minor group strain 202, and H. parainfluenzae ATCC 29242. The type strain of P. pneumotropica branched alone to form a fifth group. The branching of the Pasteurellaceae family tree was quite complex. The four major clusters contained multiple subclusters. The clusters contained both rapidly and slowly evolving

  1. Deformation and Fabric in Compacted Clay Soils

    NASA Astrophysics Data System (ADS)

    Wensrich, C. M.; Pineda, J.; Luzin, V.; Suwal, L.; Kisi, E. H.; Allameh-Haery, H.

    2018-05-01

    Hydromechanical anisotropy of clay soils in response to deformation or deposition history is related to the micromechanics of platelike clay particles and their orientations. In this article, we examine the relationship between microstructure, deformation, and moisture content in kaolin clay using a technique based on neutron scattering. This technique allows for the direct characterization of microstructure within representative samples using traditional measures such as orientation density and soil fabric tensor. From this information, evidence for a simple relationship between components of the deviatoric strain tensor and the deviatoric fabric tensor emerge. This relationship may provide a physical basis for future anisotropic constitutive models based on the micromechanics of these materials.

  2. The micro-mechanics of strength, durability and damage tolerance in composites: new insights from high resolution computed tomography

    NASA Astrophysics Data System (ADS)

    Spearing, S. Mark; Sinclair, Ian

    2016-07-01

    Recent work, led by the authors, on impact damage resistance, particle toughening and tensile fibre failure is reviewed in order to illustrate the use of high-resolution X-ray tomography to observe and quantify damage mechanisms in carbon fibre composite laminates. Using synchrotron and micro-focus X-ray sources resolutions of less than 1 μm have been routinely achieved. This enables individual broken fibres and the micromechanisms of particle toughening to be observed and quantified. The data for fibre failure, cluster formation and overall tensile strength are compared with model predictions. This allows strategies for future model development to be identified. The overall implications for using such high-resolution 3-D measurements to inform a “data-rich mechanics” approach to materials evaluation and modeling is discussed.

  3. Micromechanical modelling of polyethylene

    NASA Astrophysics Data System (ADS)

    Alvarado Contreras, Jose Andres

    2008-10-01

    The increasing use of polyethylene in diverse applications motivates the need for understanding how its molecular properties relate to the overall behaviour of the material. Although microstructure and mechanical properties of polymers have been the subject of several studies, the irreversible microstructural rearrangements occurring at large deformations are not completely understood. The purpose of this thesis is to describe how the concepts of Continuum Damage Mechanics can be applied to modelling of polyethylene materials under different loading conditions. The first part of the thesis consists of the theoretical formulation and numerical implementation of a three-dimensional micromechanical model for crystalline polyethylene. Based on the theory of shear slip on crystallographic planes, the proposed model is expressed in the framework of viscoplasticity coupled with degradation at large deformations. Earlier models aid in the interpretation of the mechanical behaviour of crystalline polyethylene under different loading conditions; however, they cannot predict the microstructural damage caused by deformation. The model, originally due to Parks and Ahzi (199o), was further developed in the light of the concept of Continuum Damage Mechanics to consider the original microstructure, the particular irreversible rearrangements, and the deformation mechanisms. Damage mechanics has been a matter of intensive research by many authors, yet it has not been introduced to the micromodelling of semicrystalline polymeric materials such as polyethylene. Regarding the material representation, the microstructure is simplified as an aggregate of randomly oriented and perfectly bonded crystals. To simulate large deformations, the new constitutive model attempts to take into account existence of intracrystalline microcracks. The second part of the work presents the theoretical formulation and numerical implementation of a three-dimensional constitutive model for the mechanical

  4. INTERLAYER MICROMECHANICS OF THE AORTIC HEART VALVE LEAFLET

    PubMed Central

    Buchanan, Rachel M.; Sacks, Michael S.

    2014-01-01

    While the mechanical behaviors of the fibrosa and ventricularis layers of the aortic valve (AV) leaflet are understood, little information exists on their mechanical interactions mediated by the GAG-rich central spongiosa layer. Parametric simulations of the interlayer interactions of the AV leaflets in flexure utilized a tri-layered finite element (FE) model of circumferentially oriented tissue sections to investigate inter-layer sliding hypothesized to occur. Simulation results indicated that the leaflet tissue functions as a tightly bonded structure when the spongiosa effective modulus was at least 25% that of the fibrosa and ventricularis layers. Novel studies that directly measured transmural strain in flexure of AV leaflet tissue specimens validated these findings. Interestingly, a smooth transmural strain distribution indicated that the layers of the leaflet indeed act as a bonded unit, consistent with our previous observations (Stella and Sacks, 2007) of a large number of transverse collagen fibers interconnecting the fibrosa and ventricularis layers. Additionally, when the tri-layered FE model was refined to match the transmural deformations, a layer-specific bimodular material model (resulting in four total moduli) accurately matched the transmural strain and moment-curvature relations simultaneously. Collectively, these results provide evidence, contrary to previous assumptions, that the valve layers function as a bonded structure in the low-strain flexure deformation mode. Most likely, this results directly from the transverse collagen fibers that bind the layers together to disable physical sliding and maintain layer residual stresses. Further, the spongiosa may function as a general dampening layer while the AV leaflets deforms as a homogenous structure despite its heterogeneous architecture. PMID:24292631

  5. In situ synchrotron high-energy X-ray diffraction study of microscopic deformation behavior of a hard-soft dual phase composite containing phase transforming matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Junsong; Hao, Shijie; Jiang, Daqiang

    This study explored a novel intermetallic composite design concept based on the principle of lattice strain matching enabled by the collective atomic load transfer. It investigated the hard-soft microscopic deformation behavior of a Ti3Sn/TiNi eutectic hard-soft dual phase composite by means of in situ synchrotron high-energy X-ray diffraction (HE-XRD) during compression. The composite provides a unique micromechanical system with distinctive deformation behaviors and mechanisms from the two components, with the soft TiNi matrix deforming in full compliance via martensite variant reorientation and the hard Ti3Sn lamellae deforming predominantly by rigid body rotation, producing a crystallographic texture for the TiNi matrixmore » and a preferred alignment for the Ti3Sn lamellae. HE-XRD reveals continued martensite variant reorientation during plastic deformation well beyond the stress plateau of TiNi. The hard and brittle Ti3Sn is also found to produce an exceptionally large elastic strain of 1.95% in the composite. This is attributed to the effect of lattice strain matching between the transformation lattice distortion of the TiNi matrix and the elastic strain of Ti3Sn lamellae. With such unique micromechanic characteristics, the composite exhibits high strength and large ductility.« less

  6. Biaxial strain in graphene adhered to shallow depressions.

    PubMed

    Metzger, Constanze; Rémi, Sebastian; Liu, Mengkun; Kusminskiy, Silvia V; Castro Neto, Antonio H; Swan, Anna K; Goldberg, Bennett B

    2010-01-01

    Measurements on graphene exfoliated over a substrate prepatterned with shallow depressions demonstrate that graphene does not remain free-standing but instead adheres to the substrate despite the induced biaxial strain. The strain is homogeneous over the depression bottom as determined by Raman measurements. We find higher Raman shifts and Gruneisen parameters of the phonons underlying the G and 2D bands under biaxial strain than previously reported. Interference modeling is used to determine the vertical position of the graphene and to calculate the optimum dielectric substrate stack for maximum Raman signal.

  7. Candidiasis During Pregnancy May Result From Isogenic Commensal Strains

    PubMed Central

    Daniels, Wayne; Glover, Douglas D.; Essmann, Michael

    2001-01-01

    Objective: Our laboratory previously demonstrated that asymptomatic vaginal colonization during pregnancy is a factor predisposing patients to subsequent symptomatic vulvovaginal candidiasis. It is unknown whether symptoms result from strain replacement or a change in host relationship to the original colonizing strain. This study was undertaken to determine whether Candida albicans isolates from asymptomatic women could be responsible for subsequent symptomatic vaginitis. Methods: We retained isolates of C. albicans from women followed longitudinally through pregnancy, and identified six pairs of cultures from women who were colonized without symptoms and who later became symptomatic (average time 14 weeks). We used a random amplification of polymorphic DNA (RAPD) analysis to determine whether isolates from our study patients were genetically similar or dissimilar. Results: Analysis of these pairs of yeast strains by RAPD revealed that five of the six women had symptoms apparently due to the same yeast strain that was found initially as a commensal strain. To increase the power of these observations, we also performed RAPD analysis on six randomly selected yeast strains from other women in this study who had not become symptomatic to determine whether any of these unrelated strains matched strains from those women who became symptomatic. Conclusion: Symptomatic yeast vaginitis is usually due to strains of C. albicans already carried in the lower genital tract, underscoring the need to understand regulation of growth and virulence of the organism in vivo. PMID:11495556

  8. Strain-induced three-photon effects

    NASA Astrophysics Data System (ADS)

    Jeong, Jae-Woo; Shin, Sung-Chul; Lyubchanskii, I. L.; Varyukhin, V. N.

    2000-11-01

    Strain-induced three-photon effects such as optical second-harmonic generation and hyper-Rayleigh light scattering, characterized by electromagnetic radiation at the double frequency of an incident light, are phenomenologically investigated by adopting a nonlinear photoelastic interaction. The relations between the strain and the nonlinear optical susceptibility for crystal surfaces with point symmetries of 4mm and 3m are described by a symmetry analysis of the nonlinear photoelastic tensor. We theoretically demonstrate a possibility of determining the strain components by measuring the rotational anisotropy of radiation at the second-harmonic frequency. Hyper-Rayleigh light scattering by dislocation strain is also described using a nonlinear photoelastic tensor. The angular dependencies of light scattered at the double frequency of an incident light for different scattering geometries are analyzed.

  9. Comparison of two methods for detection of strain localization in sheet forming

    NASA Astrophysics Data System (ADS)

    Lumelskyj, Dmytro; Lazarescu, Lucian; Banabic, Dorel; Rojek, Jerzy

    2018-05-01

    This paper presents a comparison of two criteria of strain localization in experimental research and numerical simulation of sheet metal forming. The first criterion is based on the analysis of the through-thickness thinning (through-thickness strain) and its first time derivative in the most strained zone. The limit strain in the second method is determined by the maximum of the strain acceleration. Experimental and numerical investigation have been carried out for the Nakajima test performed for different specimens of the DC04 grade steel sheet. The strain localization has been identified by analysis of experimental and numerical curves showing the evolution of strains and their derivatives in failure zones. The numerical and experimental limit strains calculated from both criteria have been compared with the experimental FLC evaluated according to the ISO 12004-2 norm. It has been shown that the first method predicts formability limits closer to the experimental FLC. The second criterion predicts values of strains higher than FLC determined according to ISO norm. These values are closer to the strains corresponding to the fracture limit. The results show that analysis of strain evolution allows us to determine strain localization in numerical simulation and experimental studies.

  10. Processing of a fiber-reinforced transparent glass matrix composite and study of micromechanics of load transfer from matrix to fiber using micro-fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Banerjee, Debangshu

    The brittleness of monolithic ceramic materials can be overcome by reinforcing them with high strength, high modulus ceramic fibers. These ceramic matrix composites exhibit improved strength, toughness, and work of fracture. Successful design of a ceramic matrix composite (CMC) depends on two factors: proper choice of fiber, matrix, and interface material, and understanding the mechanics of fracture. The conventional techniques for measuring stress and strain at a local level in CMCs are based on indirect experiments and analytical models. In recent years a couple of optical techniques have been explored for non- contact and direct evaluation of the stress and strain in materials, such as laser Raman spectroscopy and fluorescence spectroscopy. In order to employ spectroscopy to study stress in a composite, a transparent matrix was needed. In this study a SiC fiber reinforced transparent glass matrix composite was developed. A tape casting, binder burnout, and sintering route was adopted to achieve the optimum transparency with proper fiber alignment and interfacial properties. Sapphire fibers were used to act as probe to generate fluorescence signals for measuring stress. A fugitive carbon coating was developed to act as a weak interface for the sapphire fiber, which otherwise, forms a strong bond with the matrix. A fixture was designed to apply stress on the composite specimen, in situ, under the microscope of the spectrometer. Using fluorescence spectroscopy, the micromechanics of load transfer from matrix to fibers were studied. Studies were conducted on both strongly and weakly bonded fibers, as well as on single fiber, and multi fiber situations. Residual stresses arising from thermal expansion mismatch have been mapped along the fiber length with resolution in microns. Residual axial stress was found to follow a shear lag profile along the fiber length. A finite residual axial stress was detected at the fiber ends. Correction of the measured stress for sample

  11. Strain gage system evaluation program

    NASA Technical Reports Server (NTRS)

    Dolleris, G. W.; Mazur, H. J.; Kokoszka, E., Jr.

    1978-01-01

    A program was conducted to determine the reliability of various strain gage systems when applied to rotating compressor blades in an aircraft gas turbine engine. A survey of current technology strain gage systems was conducted to provide a basis for selecting candidate systems for evaluation. Testing and evaluation was conducted in an F 100 engine. Sixty strain gage systems of seven different designs were installed on the first and third stages of an F 100 engine fan. Nineteen strain gage failures occurred during 62 hours of engine operation, for a survival rate of 68 percent. Of the failures, 16 occurred at blade-to-disk leadwire jumps (84 percent), two at a leadwire splice (11 percent), and one at a gage splice (5 percent). Effects of erosion, temperature, G-loading, and stress levels are discussed. Results of a post-test analysis of the individual components of each strain gage system are presented.

  12. Mumps Hoshino and Torii vaccine strains were distinguished from circulating wild strains.

    PubMed

    Sawada, Akihito; Yamaji, Yoshiaki; Nakayama, Tetsuo

    2013-06-01

    Aseptic meningitis and acute parotitis have been observed after mumps vaccination. Mumps outbreaks have been reported in Japan because of low vaccine coverage, and molecular differentiation is required to determine whether these cases are vaccine associated. RT-nested PCR was performed in the small hydrophobic gene region, and viruses were differentiated by restriction fragment length polymorphism assay. A total of 584 nucleotides were amplified. The PCR product of the Hoshino strain was cut into two fragments (313 and 271 nucleotides) by MfeI; that of the Torii strain was digested with EcoT22I, resulting in 332- and 252-nucleotide fragments. Both strains were genotype B and had an XbaI site, resulting in two fragments: 299 and 285 nucleotides. Current circulating wild types were cut only by XbaI or MfeI. However, the MfeI site of the wild types was different from that of the Hoshino strain, resulting in 451- and 133-nucleotide fragments. Using three restriction enzymes, two mumps vaccine strains were distinguished from wild types, and this separation was applied to the identification of vaccine-related adverse events.

  13. Utility of an optically-based, micromechanical system for printing collagen fibers

    PubMed Central

    Paten, Jeffrey A.; Tilburey, Graham E.; Molloy, Eileen A.; Zareian, Ramin; Trainor, Christopher V.

    2013-01-01

    Collagen's success as the principal structural element in load-bearing, connective tissue has motivated the development of numerous engineering approaches designed to recapitulate native fibril morphology and strength. It has been shown recently that collagen fibers can be drawn from monomeric solution through a fiber forming buffer (FFB), followed by numerous additional treatments in a complex serial process. However, internal fibril alignment, packing and resultant mechanical behavior of the fibers have not been optimized and remain inferior to native tissue. Further, no system has been developed which permits simultaneous application of molecular crowding, measurement of applied load, and direct observation of polymerization dynamics during fiber printing. The ability to perform well-controlled investigations early in the process of fiber formation, which vary single input parameters (i.e. collagen concentration, crowding agent concentration, draw rate, flow rate, temperature, pH, etc.) should substantially improve fiber morphology and strength. We have thus designed, built, and tested a versatile, in situ, optically-based, micromechanical assay and fiber printing system which permits the correlation of parameter changes with mechanical properties of fibers immediately after deposition into an FFB. We demonstrate the sensitivity of the assay by detecting changes in the fiber mechanics in response to draw rate, collagen type, small changes in the molecular crowding agent concentration and to variations in pH. In addition we found the ability to observe fiber polymerization dynamics leads to intriguing new insights into collagen assembly behavior. PMID:23352045

  14. Determination of the strain distribution for the Si3N4 passivated AlGaN/AlN/GaN heterostructure field-effect transistors

    NASA Astrophysics Data System (ADS)

    Fu, Chen; Lin, Zhaojun; Liu, Yan; Cui, Peng; Lv, Yuanjie; Zhou, Yang; Dai, Gang; Luan, Chongbiao

    2017-11-01

    A method to determine the strain distribution of the AlGaN barrier layer after the device fabrication and the passivation process has been presented. By fitting the calculated parasitic source access resistance with the measured ones for the AlGaN/AlN/GaN HFETs and using the polarization Coulomb field scattering theory, the strain variation of the AlGaN barrier layer after the passivation process has been quantitatively studied. The results show that the tensile strain in the access regions of the AlGaN barrier layer has been increased by 4.62% for the 250 nm-Si3N4 passivated device, and has been decreased by 2.0% for the 400 nm-Si3N4 passivated device, compared to that of before the passivation, respectively. For the gate region of the two devices, the tensile strain has been decreased by 60.77% and increased by 3.60% after the passivation of different thicknesses, oppositely.

  15. Refinement of determination of critical thresholds of stress-strain behaviour by using AE data: potential for evaluation of durability of natural stone

    NASA Astrophysics Data System (ADS)

    Prikryl, Richard; Lokajíček, Tomáš

    2017-04-01

    According to previous studies, evaluation of stress-strain behaviour (in uniaxial compression) of various rocks appears to be effective tool allowing for prediction of resistance of natural stone to some physical weathering processes. Precise determination of critical thresholds, specifically of 'crack initiation' and 'crack damage' is fundamental issue in this approach. In contrast to 'crack damage stress/strain threshold', which can be easily read from deflection point on volumetric curve, detection of 'crack initiation' is much more difficult. Besides previously proposed mathematical processing of axial stress-strain curve, recording of acoustic emission (AE) data and their processing provide direct measure of various stress/strain thresholds, specifically of 'crack initiation'. This specific parameter is required during successive computation of energetic parameters (mechanical work), that can be stored by a material without formation of new defects (microcracks) due to acting stress. Based on our experimental data, this mechanical work seems to be proportional to the resistance of a material to formation of mode I (tensile) cracks that are responsible for destruction of subsurface below exposed faces of natural stone.

  16. Genetic characterization of L-Zagreb mumps vaccine strain.

    PubMed

    Ivancic, Jelena; Gulija, Tanja Kosutic; Forcic, Dubravko; Baricevic, Marijana; Jug, Renata; Mesko-Prejac, Majda; Mazuran, Renata

    2005-04-01

    Eleven mumps vaccine strains, all containing live attenuated virus, have been used throughout the world. Although L-Zagreb mumps vaccine has been licensed since 1972, only its partial nucleotide sequence was previously determined (accession numbers , and ). Therefore, we sequenced the entire genome of L-Zagreb vaccine strain (Institute of Immunology Inc., Zagreb, Croatia). In order to investigate the genetic stability of the vaccine, sequences of both L-Zagreb master seed and currently produced vaccine batch were determined and no difference between them was observed. A phylogenetic analysis based on SH gene sequence has shown that L-Zagreb strain does not belong to any of established mumps genotypes and that it is most similar to old, laboratory preserved European strains (1950s-1970s). L-Zagreb nucleotide and deduced protein sequences were compared with other mumps virus sequences obtained from the GenBank. Emphasis was put on functionally important protein regions and known antigenic epitopes. The extensive comparisons of nucleotide and deduced protein sequences between L-Zagreb vaccine strain and other previously determined mumps virus sequences have shown that while the functional regions of HN, V, and L proteins are well conserved among various mumps strains, there can be a substantial amino acid difference in antigenic epitopes of all proteins and in functional regions of F protein. No molecular pattern was identified that can be used as a distinction marker between virulent and attenuated strains.

  17. Computational micromechanics of woven composites

    NASA Technical Reports Server (NTRS)

    Hopkins, Dale A.; Saigal, Sunil; Zeng, Xiaogang

    1991-01-01

    The bounds on the equivalent elastic material properties of a composite are presently addressed by a unified energy approach which is valid for both unidirectional and 2D and 3D woven composites. The unit cell considered is assumed to consist, first, of the actual composite arrangement of the fibers and matrix material, and then, of an equivalent pseudohomogeneous material. Equating the strain energies due to the two arrangements yields an estimate of the upper bound for the material equivalent properties; successive increases in the order of displacement field that is assumed in the composite arrangement will successively produce improved upper bound estimates.

  18. Temperature measurement by thermal strain imaging with diagnostic power ultrasound, with potential for thermal index determination.

    PubMed

    Liang, Hai-Dong; Zhou, Li-Xia; Wells, Peter N T; Halliwell, Michael

    2009-05-01

    Over the years, there has been a substantial increase in acoustic exposure in diagnostic ultrasound as new imaging modalities with higher intensities and frame rates have been introduced; and more electronic components have been packed into the probe head, so that there is a tendency for it to become hotter. With respect to potential thermal effects, including those which may be hazardous occurring during ultrasound scanning, there is a correspondingly growing need for in vivo techniques to guide the operator as to the actual temperature rise occurring in the examined tissues. Therefore, an in vivo temperature estimator would be of considerable practical value. The commonly-used method of tissue thermal index (TI) measurement with a hydrophone in water could underestimate the actual value of TI (in one report by as much as 2.9 times). To obtain meaningful results, it is necessary to map the temperature elevation in 2-D (or 3-D) space. We present methodology, results and validation of a 2-D spatial and temporal thermal strain ultrasound temperature estimation technique in phantoms, and its apparently novel application in tracking the evolution of heat deposition at diagnostic exposure levels. The same ultrasound probe is used for both transmission and reception. The displacement and thermal strain estimation methods are similar to those used in high-intensity focused ultrasound thermal monitoring. The use of radiofrequency signals permits the application of cross correlation as a similarity measurement for tracking feature displacement. The displacement is used to calculate the thermal strain directly related to the temperature rise. Good agreement was observed between the temperature rise and the ultrasound power and scan duration. Thermal strain up to 1.4% was observed during 4000-s scan. Based on the results obtained for the temperature range studied in this work, the technique demonstrates potential for applicability in phantom (and possibly in vivo tissue

  19. Horizontal gene transfer in Histophilus somni and its role in the evolution of pathogenic strain 2336, as determined by comparative genomic analyses

    PubMed Central

    2011-01-01

    Background Pneumonia and myocarditis are the most commonly reported diseases due to Histophilus somni, an opportunistic pathogen of the reproductive and respiratory tracts of cattle. Thus far only a few genes involved in metabolic and virulence functions have been identified and characterized in H. somni using traditional methods. Analyses of the genome sequences of several Pasteurellaceae species have provided insights into their biology and evolution. In view of the economic and ecological importance of H. somni, the genome sequence of pneumonia strain 2336 has been determined and compared to that of commensal strain 129Pt and other members of the Pasteurellaceae. Results The chromosome of strain 2336 (2,263,857 bp) contained 1,980 protein coding genes, whereas the chromosome of strain 129Pt (2,007,700 bp) contained only 1,792 protein coding genes. Although the chromosomes of the two strains differ in size, their average GC content, gene density (total number of genes predicted on the chromosome), and percentage of sequence (number of genes) that encodes proteins were similar. The chromosomes of these strains also contained a number of discrete prophage regions and genomic islands. One of the genomic islands in strain 2336 contained genes putatively involved in copper, zinc, and tetracycline resistance. Using the genome sequence data and comparative analyses with other members of the Pasteurellaceae, several H. somni genes that may encode proteins involved in virulence (e.g., filamentous haemaggutinins, adhesins, and polysaccharide biosynthesis/modification enzymes) were identified. The two strains contained a total of 17 ORFs that encode putative glycosyltransferases and some of these ORFs had characteristic simple sequence repeats within them. Most of the genes/loci common to both the strains were located in different regions of the two chromosomes and occurred in opposite orientations, indicating genome rearrangement since their divergence from a common

  20. Horizontal gene transfer in Histophilus somni and its role in the evolution of pathogenic strain 2336, as determined by comparative genomic analyses.

    PubMed

    Siddaramappa, Shivakumara; Challacombe, Jean F; Duncan, Alison J; Gillaspy, Allison F; Carson, Matthew; Gipson, Jenny; Orvis, Joshua; Zaitshik, Jeremy; Barnes, Gentry; Bruce, David; Chertkov, Olga; Detter, J Chris; Han, Cliff S; Tapia, Roxanne; Thompson, Linda S; Dyer, David W; Inzana, Thomas J

    2011-11-23

    Pneumonia and myocarditis are the most commonly reported diseases due to Histophilus somni, an opportunistic pathogen of the reproductive and respiratory tracts of cattle. Thus far only a few genes involved in metabolic and virulence functions have been identified and characterized in H. somni using traditional methods. Analyses of the genome sequences of several Pasteurellaceae species have provided insights into their biology and evolution. In view of the economic and ecological importance of H. somni, the genome sequence of pneumonia strain 2336 has been determined and compared to that of commensal strain 129Pt and other members of the Pasteurellaceae. The chromosome of strain 2336 (2,263,857 bp) contained 1,980 protein coding genes, whereas the chromosome of strain 129Pt (2,007,700 bp) contained only 1,792 protein coding genes. Although the chromosomes of the two strains differ in size, their average GC content, gene density (total number of genes predicted on the chromosome), and percentage of sequence (number of genes) that encodes proteins were similar. The chromosomes of these strains also contained a number of discrete prophage regions and genomic islands. One of the genomic islands in strain 2336 contained genes putatively involved in copper, zinc, and tetracycline resistance. Using the genome sequence data and comparative analyses with other members of the Pasteurellaceae, several H. somni genes that may encode proteins involved in virulence (e.g., filamentous haemaggutinins, adhesins, and polysaccharide biosynthesis/modification enzymes) were identified. The two strains contained a total of 17 ORFs that encode putative glycosyltransferases and some of these ORFs had characteristic simple sequence repeats within them. Most of the genes/loci common to both the strains were located in different regions of the two chromosomes and occurred in opposite orientations, indicating genome rearrangement since their divergence from a common ancestor. Since the

  1. Virtual strain gage size study

    DOE PAGES

    Reu, Phillip L.

    2015-09-22

    DIC is a non-linear low-pass spatial filtering operation; whether we consider the effect of the subset and shape function, the strain window used in the strain calculation, of other post-processing of the results, each decision will impact the spatial resolution, of the measurement. More fundamentally, the speckle size limits, the spatial resolution by dictating the smallest possible subset. After this decision the processing settings are controlled by the allowable noise level balanced by possible bias errors created by the data filtering. This article describes a process to determine optimum DIC software settings to determine if the peak displacements or strainsmore » are being found.« less

  2. Quantitative assessment of viable cells of Lactobacillus plantarum strains in single, dual and multi-strain biofilms.

    PubMed

    Fernández Ramírez, Mónica D; Kostopoulos, Ioannis; Smid, Eddy J; Nierop Groot, Masja N; Abee, Tjakko

    2017-03-06

    Biofilms of Lactobacillus plantarum are a potential source for contamination and recontamination of food products. Although biofilms have been mostly studied using single species or even single strains, it is conceivable that in a range of environmental settings including food processing areas, biofilms are composed of multiple species with each species represented by multiple strains. In this study six spoilage related L. plantarum strains FBR1-FBR6 and the model strain L. plantarum WCFS1 were characterised in single, dual and multiple strain competition models. A quantitative PCR approach was used with added propidium monoazide (PMA) enabling quantification of intact cells in the biofilm, representing the viable cell fraction that determines the food spoilage risk. Our results show that the performance of individual strains in multi-strain cultures generally correlates with their performance in pure culture, and relative strain abundance in multi-strain biofilms positively correlated with the relative strain abundance in suspended (planktonic) cultures. Performance of individual strains in dual-strain biofilms was highly influenced by the presence of the secondary strain, and in most cases no correlation between the relative contributions of viable planktonic cells and viable cells in the biofilm was noted. The total biofilm quantified by CV staining of the dual and multi-strain biofilms formed was mainly correlated to CV values of the dominant strain obtained in single strain studies. However, the combination of strain FBR5 and strain WCFS1 showed significantly higher CV values compared to the individual performances of both strains indicating that total biofilm formation was higher in this specific condition. Notably, L. plantarum FBR5 was able to outgrow all other strains and showed the highest relative abundance in dual and multi-strain biofilms. All the dual and multi-strain biofilms contained a considerable number of viable cells, representing a potential

  3. Lattice strain measurements on sandstones under load using neutron diffraction

    NASA Astrophysics Data System (ADS)

    Frischbutter, A.; Neov, D.; Scheffzük, Ch.; Vrána, M.; Walther, K.

    2000-11-01

    Neutron diffraction methods (both time-of-flight- and angle-dispersive diffraction) are applied to intracrystalline strain measurements on geological samples undergoing uniaxial increasing compressional load. The experiments were carried out on Cretaceous sandstones from the Elbezone (East Germany), consisting of >95% quartz which are bedded but without crystallographic preferred orientation of quartz. From the stress-strain relation the Young's modulus for our quartz sample was determined to be (72.2±2.9) GPa using results of the neutron time-of-flight method. The influence of different kinds of bedding in sandstones (laminated and convolute bedding) could be determined. We observed differences of factor 2 (convolute bedding) and 3 (laminated bedding) for the elastic stiffness, determined with angle dispersive neutron diffraction (crystallographic strain) and with strain gauges (mechanical strain). The data indicate which geological conditions may influence the stress-strain behaviour of geological materials. The influence of bedding on the stress-strain behaviour of a laminated bedded sandstone was indicated by direct residual stress measurements using neutron time-of-flight diffraction. The measurements were carried out six days after unloading the sample. Residual strain was measured for three positions from the centre to the periphery and within two radial directions of the cylinder. We observed that residual strain changes from extension to compression in a different manner for two perpendicular directions of the bedding plane.

  4. Biological assay of attenuated strain NADL-2 and virulent strain NADL-8 of porcine parvovirus.

    PubMed

    Mengeling, W L; Pejsak, Z; Paul, P S

    1984-11-01

    Attenuated strain NADL-2 and virulent strain NADL-8 of porcine parvovirus (PPV) were titrated in vivo and in vitro under similar conditions to provide a better understanding of some of the factors involved in virulence of PPV in causing maternal reproductive failure of swine. Both strains cause fetal death when they are injected directly into fetal fluids, but only strain NADL-8 does so when administered to pregnant swine. The strains were tested for their hemagglutinating activity (HA), median cell culture infective dose (CCID50), median fetal infective dose (FID50), and median fetal lethal dose (FLD50). The FID50 and FLD50 were determined by injecting virus directly into the amniotic fluid of fetuses in utero at 44 +/- 2 days of gestation and collecting the fetuses 15 +/- 1 days later. Both strains had an HA titer of 64, suggesting that there is a similar number of virions in stock preparations. However, other measurements differed markedly. The CCID50, FID50, and FLD50 were 10(5.5), 10(3.5), and 10(0.5), respectively, for strain NADL-2, and 10(4.5), 10(7.7), and 10(6.3), respectively, for strain NADL-8. Collectively, the values indicate that more than 10,000 times as much strain NADL-2 would need to reach the conceptus transplacentally to establish infection. These observations may help to explain the different consequences of oronasal exposure of pregnant swine to these strains of PPV.

  5. Relationships of left ventricular strain and strain rate to wall stress and their afterload dependency.

    PubMed

    Murai, Daisuke; Yamada, Satoshi; Hayashi, Taichi; Okada, Kazunori; Nishino, Hisao; Nakabachi, Masahiro; Yokoyama, Shinobu; Abe, Ayumu; Ichikawa, Ayako; Ono, Kota; Kaga, Sanae; Iwano, Hiroyuki; Mikami, Taisei; Tsutsui, Hiroyuki

    2017-05-01

    Whether and how left ventricular (LV) strain and strain rate correlate with wall stress is not known. Furthermore, it is not determined whether strain or strain rate is less dependent on the afterload. In 41 healthy young adults, LV global peak strain and systolic peak strain rate in the longitudinal direction (LS and LSR, respectively) and circumferential direction (CS and CSR, respectively) were measured layer-specifically using speckle tracking echocardiography (STE) before and during a handgrip exercise. Among all the points before and during the exercise, all the STE parameters significantly correlated linearly with wall stress (LS: r = -0.53, p < 0.01, LSR: r = -0.28, p < 0.05, CS in the inner layer: r = -0.72, p < 0.01, CSR in the inner layer: r = -0.47, p < 0.01). Strain more strongly correlated with wall stress than strain rate (r = -0.53 for LS vs. r = -0.28 for LSR, p < 0.05; r = -0.72 for CS vs. r = -0.47 for CSR in the inner layer, p < 0.05), whereas the interobserver variability was similar between strain and strain rate (longitudinal 6.2 vs. 5.2 %, inner circumferential 4.8 vs. 4.7 %, mid-circumferential 7.9 vs. 6.9 %, outer circumferential 10.4 vs. 9.7 %), indicating that the differences in correlation coefficients reflect those in afterload dependency. It was thus concluded that LV strain and strain rate linearly and inversely correlated with wall stress in the longitudinal and circumferential directions, and strain more strongly depended on afterload than did strain rate. Myocardial shortening should be evaluated based on the relationships between these parameters and wall stress.

  6. Creep Strain and Strain Rate Response of 2219 Al Alloy at High Stress Levels

    NASA Technical Reports Server (NTRS)

    Taminger, Karen M. B.; Wagner, John A.; Lisagor, W. Barry

    1998-01-01

    As a result of high localized plastic deformation experienced during proof testing in an International Space Station connecting module, a study was undertaken to determine the deformation response of a 2219-T851 roll forging. After prestraining 2219-T851 Al specimens to simulate strains observed during the proof testing, creep tests were conducted in the temperature range from ambient temperature to 107 C (225 F) at stress levels approaching the ultimate tensile strength of 2219-T851 Al. Strain-time histories and strain rate responses were examined. The strain rate response was extremely high initially, but decayed rapidly, spanning as much as five orders of magnitude during primary creep. Select specimens were subjected to incremental step loading and exhibited initial creep rates of similar magnitude for each load step. Although the creep rates decreased quickly at all loads, the creep rates dropped faster and reached lower strain rate levels for lower applied loads. The initial creep rate and creep rate decay associated with primary creep were similar for specimens with and without prestrain; however, prestraining (strain hardening) the specimens, as in the aforementioned proof test, resulted in significantly longer creep life.

  7. Bone strain magnitude is correlated with bone strain rate in tetrapods: implications for models of mechanotransduction

    PubMed Central

    Aiello, B. R.; Iriarte-Diaz, J.; Blob, R. W.; Butcher, M. T.; Carrano, M. T.; Espinoza, N. R.; Main, R. P.; Ross, C. F.

    2015-01-01

    Hypotheses suggest that structural integrity of vertebrate bones is maintained by controlling bone strain magnitude via adaptive modelling in response to mechanical stimuli. Increased tissue-level strain magnitude and rate have both been identified as potent stimuli leading to increased bone formation. Mechanotransduction models hypothesize that osteocytes sense bone deformation by detecting fluid flow-induced drag in the bone's lacunar–canalicular porosity. This model suggests that the osteocyte's intracellular response depends on fluid-flow rate, a product of bone strain rate and gradient, but does not provide a mechanism for detection of strain magnitude. Such a mechanism is necessary for bone modelling to adapt to loads, because strain magnitude is an important determinant of skeletal fracture. Using strain gauge data from the limb bones of amphibians, reptiles, birds and mammals, we identified strong correlations between strain rate and magnitude across clades employing diverse locomotor styles and degrees of rhythmicity. The breadth of our sample suggests that this pattern is likely to be a common feature of tetrapod bone loading. Moreover, finding that bone strain magnitude is encoded in strain rate at the tissue level is consistent with the hypothesis that it might be encoded in fluid-flow rate at the cellular level, facilitating bone adaptation via mechanotransduction. PMID:26063842

  8. Job strain and male fertility.

    PubMed

    Hjollund, Niels Henrik I; Bonde, Jens Peter E; Henriksen, Tine Brink; Giwercman, Aleksander; Olsen, Jørn

    2004-01-01

    Job strain, defined as high job demands and low job control, has not previously been explored as a possible determinant of male fertility. We collected prospective data on job strain among men, and describe the associations with semen quality and probability of conceiving a clinical pregnancy during a menstrual cycle. Danish couples (N = 399) who were trying to become pregnant for the first time were followed for up to 6 menstrual periods. All men collected semen samples, and a blood sample was drawn from both partners. Job demand and job control were measured by a self-administered questionnaire at entry, and in each cycle the participants recorded changes in job control or job demand during the previous 30 days. In adjusted analyses, no associations were found between any semen characteristic or sexual hormones and any job strain variable. The odds for pregnancy were not associated with job strain. Psychologic job strain encountered in normal jobs in Denmark does not seem to affect male reproductive function.

  9. Micro-Mechanical Viscoelastic Properties of Crosslinked Hydrogels Using the Nano-Epsilon Dot Method.

    PubMed

    Mattei, Giorgio; Cacopardo, Ludovica; Ahluwalia, Arti

    2017-08-02

    Engineering materials that recapitulate pathophysiological mechanical properties of native tissues in vitro is of interest for the development of biomimetic organ models. To date, the majority of studies have focused on designing hydrogels for cell cultures which mimic native tissue stiffness or quasi-static elastic moduli through a variety of crosslinking strategies, while their viscoelastic (time-dependent) behavior has been largely ignored. To provide a more complete description of the biomechanical environment felt by cells, we focused on characterizing the micro-mechanical viscoelastic properties of crosslinked hydrogels at typical cell length scales. In particular, gelatin hydrogels crosslinked with different glutaraldehyde (GTA) concentrations were analyzed via nano-indentation tests using the nano-epsilon dot method. The experimental data were fitted to a Maxwell Standard Linear Solid model, showing that increasing GTA concentration results in increased instantaneous and equilibrium elastic moduli and in a higher characteristic relaxation time. Therefore, not only do gelatin hydrogels become stiffer with increasing crosslinker concentration (as reported in the literature), but there is also a concomitant change in their viscoelastic behavior towards a more elastic one. As the degree of crosslinking alters both the elastic and viscous behavior of hydrogels, caution should be taken when attributing cell response merely to substrate stiffness, as the two effects cannot be decoupled.

  10. Inelastic deformation of metal matrix composites

    NASA Technical Reports Server (NTRS)

    Lissenden, C. J.; Herakovich, C. T.; Pindera, M-J.

    1993-01-01

    A theoretical model capable of predicting the thermomechanical response of continuously reinforced metal matrix composite laminates subjected to multiaxial loading was developed. A micromechanical model is used in conjunction with nonlinear lamination theory to determine inelastic laminae response. Matrix viscoplasticity, residual stresses, and damage to the fiber/matrix interfacial zone are explicitly included in the model. The representative cell of the micromechanical model is considered to be in a state of generalized plane strain, enabling a quasi two-dimensional analysis to be performed. Constant strain finite elements are formulated with elastic-viscoplastic constitutive equations. Interfacial debonding is incorporated into the model through interface elements based on the interfacial debonding theory originally presented by Needleman, and modified by Tvergaard. Nonlinear interfacial constitutive equations relate interfacial tractions to displacement discontinuities at the interface. Theoretical predictions are compared with the results of an experimental program conducted on silicon carbide/titanium (SiC/Ti) unidirectional, (O4), and angle-ply, (+34)(sub s), tubular specimens. Multiaxial loading included increments of axial tension, compression, torque, and internal pressure. Loadings were chosen in an effort to distinguish inelastic deformation due to damage from matrix plasticity and separate time-dependent effects from time-independent effects. Results show that fiber/matrix debonding is nonuniform throughout the composite and is a major factor in the effective response. Also, significant creep behavior occurs at relatively low applied stress levels at room temperature.

  11. Determination of Strain Rate Sensitivity of Micro-struts Manufactured Using the Selective Laser Melting Method

    NASA Astrophysics Data System (ADS)

    Gümrük, Recep; Mines, R. A. W.; Karadeniz, Sami

    2018-03-01

    Micro-lattice structures manufactured using the selective laser melting (SLM) process provides the opportunity to realize optimal cellular materials for impact energy absorption. In this paper, strain rate-dependent material properties are measured for stainless steel 316L SLM micro-lattice struts in the strain rate range of 10-3 to 6000 s-1. At high strain rates, a novel version of the split Hopkinson Bar has been developed. Strain rate-dependent materials data have been used in Cowper-Symonds material model, and the scope and limit of this model in the context of SLM struts have been discussed. Strain rate material data and the Cowper-Symonds model have been applied to the finite element analysis of a micro-lattice block subjected to drop weight impact loading. The model output has been compared to experimental results, and it has been shown that the increase in crush stress due to impact loading is mainly the result of strain rate material behavior. Hence, a systematic methodology has been developed to investigate the impact energy absorption of a micro-lattice structure manufactured using additive layer manufacture (SLM). This methodology can be extended to other micro-lattice materials and configurations, and to other impact conditions.

  12. Growth differences and competition between Listeria monocytogenes strains determine their predominance on ham slices and lead to bias during selective enrichment with the ISO protocol.

    PubMed

    Zilelidou, Evangelia; Manthou, Evanthia; Skandamis, Panagiotis

    2016-10-17

    Listeria monocytogenes strains are widespread in the environment where they live well mixed, often resulting in multiple strains contaminating a single food sample. The occurrence of different strains in the same food might trigger strain competition, contributing to uneven growth of strains in food and to bias during selective procedures. We tested the growth of seven L. monocytogenes strains (C5, 6179, ScottA, PL24, PL25, PL26, PL27) on ham slices and on nutrient-rich agar at 10°C, singly and in combinations. Strains were made resistant to different antibiotics for their selective enumeration. In addition, growth of single strains (axenic culture) and competition between strains in xenic cultures of two strains was evaluated in enrichment broth and on selective agar. According to ISO 11290-1:1996/Amd 1:2004 standard protocol for detection of L. monocytogenes, two enrichment steps both followed by streaking on ALOA were performed. Strain cultures were directly added in the enrichment broth or used to inoculate minced beef and sliced hams which were then mixed with enrichment broth. 180-360 colonies were used to determine the relative percentage of each strain recovered on plates per enrichment step. The data showed a significant impact of co-cultivation on the growth of six out of seven strains on ham and a bias towards certain strains during selective enrichment. Competition was manifested by: (i) cessation of growth for the outcompeted strain when the dominant strain reached stationary phase, (ii) reduction of growth rates or (iii) total suppression of growth (both on ham and in enrichment broth or ALOA). Outgrowth of strains by their competitors on ALOA resulted in limited to no recovery, with the outcompeting strain accounting for up to 100% of the total recovered colonies. The observed bias was associated with the enrichment conditions (i.e. food type added to the enrichment broth) and the strain-combination. The outcome of growth competition on food or

  13. Application of genotypic and phenotypic analyses to commercial probiotic strain identity and relatedness.

    PubMed

    Yeung, P S M; Kitts, C L; Cano, R; Tong, P S; Sanders, M E

    2004-01-01

    The objective of this study was to generate strain-specific genomic patterns of a bank of 67 commercial and reference probiotic strains, with a focus on probiotic lactobacilli. Pulsed-field gel electrophoresis (PFGE) was used as the primary method for strain differentiation. This method was compared with carbohydrate fermentation analysis. To supplement visual comparison, PFGE patterns were analysed quantitatively by cluster analysis using unweighted pair group method with arithmetic averages. SmaI, NotI and XbaI were found to effectively generate clear and easy-to-interpret PFGE patterns of a range of probiotic strains. Some probiotic strains from different sources shared highly similar PFGE patterns. Results document the value of genotypic strain identification methods, combined with phenotypic methods, for determining probiotic strain identity and relatedness. No correlation was found between relatedness determined by carbohydrate fermentation profiles alone compared with PFGE analysis alone. Some commercial strains are probably derived from similar sources. This approach is valuable to the probiotic industry to develop commercial strain identification patterns, to provide quality control of strain manufacturing production runs, to track use of protected strains and to determine the relatedness among different research and commercial probiotic strains.

  14. Temperature-Dependent Electrical and Micromechanical Properties of Lanthanum Titanate with Additions of Yttria

    NASA Technical Reports Server (NTRS)

    Goldsby, Jon C.

    2010-01-01

    Temperature-dependent elastic properties were determined by establishing continuous flexural vibrations in the material at its lowest resonance frequency of 31tHz. The imaginary part of the complex impedance plotted as a function of frequency and temperature reveals a thermally activated peak, which decreases in magnitude as the temperature increases. Additions of yttria do not degrade the electromechanical in particularly the elastic and anelastic properties of lanthanum titanate. Y2O3/La2Ti2O7 exhibits extremely low internal friction and hence may be more mechanical fatigue-resistant at low strains.

  15. Construction of an Optical Fiber Strain Gauge

    NASA Astrophysics Data System (ADS)

    Sulaiman, Najwa

    This project is focused on the construction of an optical fiber strain gauge that is based on a strain gauge described by Butter and Hocker. Our gauge is designed to generate an interference pattern from the signals carried on two bare single-mode fibers that are fastened to an aluminum cantilever. When the cantilever experiences flexural stress, the interference pattern should change. By observing this change, it is possible to determine the strain experienced by the cantilever. I describe the design and construction of our optical fiber strain gauge as well as the characterization of different parts of the apparatus.

  16. Swelling equilibrium of dentin adhesive polymers formed on the water-adhesive phase boundary: Experiments and micromechanical model

    PubMed Central

    Misra, Anil; Parthasarathy, Ranganathan; Ye, Qiang; Singh, Viraj; Spencer, Paulette

    2013-01-01

    During their application to the wet, oral environment, dentin adhesives can experience phase separation and composition change which can compromise the quality of the hybrid layer formed at the dentin-adhesive interface. The chemical composition of polymer phases formed in the hybrid layer can be represented using a ternary water-adhesive phase diagram. In this paper, these polymer phases have been characterized using a suite of mechanical tests and swelling experiments. The experimental results were evaluated using granular micromechanics based model that incorporates poro-mechanical effects and polymer-solvent thermodynamics. The variation of the model parameters and model-predicted polymer properties has been studied as a function of composition along the phase boundary. The resulting structure-property correlations provide insight into interactions occurring at the molecular level in the saturated polymer system. These correlations can be used for modeling the mechanical behavior of hybrid layer, and are expected to aid in the design and improvement of water-compatible dentin adhesive polymers. PMID:24076070

  17. Characterization of virulent West Nile virus Kunjin strain, Australia, 2011.

    PubMed

    Frost, Melinda J; Zhang, Jing; Edmonds, Judith H; Prow, Natalie A; Gu, Xingnian; Davis, Rodney; Hornitzky, Christine; Arzey, Kathleen E; Finlaison, Deborah; Hick, Paul; Read, Andrew; Hobson-Peters, Jody; May, Fiona J; Doggett, Stephen L; Haniotis, John; Russell, Richard C; Hall, Roy A; Khromykh, Alexander A; Kirkland, Peter D

    2012-05-01

    To determine the cause of an unprecedented outbreak of encephalitis among horses in New South Wales, Australia, in 2011, we performed genomic sequencing of viruses isolated from affected horses and mosquitoes. Results showed that most of the cases were caused by a variant West Nile virus (WNV) strain, WNV(NSW2011), that is most closely related to WNV Kunjin (WNV(KUN)), the indigenous WNV strain in Australia. Studies in mouse models for WNV pathogenesis showed that WNV(NSW2011) is substantially more neuroinvasive than the prototype WNV(KUN) strain. In WNV(NSW2011), this apparent increase in virulence over that of the prototype strain correlated with at least 2 known markers of WNV virulence that are not found in WNV(KUN). Additional studies are needed to determine the relationship of the WNV(NSW2011) strain to currently and previously circulating WNV(KUN) strains and to confirm the cause of the increased virulence of this emerging WNV strain.

  18. Development of an Onboard Strain Recorder

    DTIC Science & Technology

    1990-01-01

    Investigations ...................... .910 2-3 Strain Sensors of Previous Investigations ..................... 11 2-4 Signal Conditioning of Previous...the time the strain sensor is installed or calibrated. If a maximum stress or force is to be determined, careful structural analysis is required to...such as deckhouse edges have been instrumented as cracks appear. Extreme care concerning placement and orientation of sensor installation is required

  19. Flow/Damage Surfaces for Fiber-Reinforced Metals Having Different Periodic Microstructures

    NASA Technical Reports Server (NTRS)

    Lissenden, Cliff J.; Arnold, Steven M.; Iyer, Saiganesh K.

    1998-01-01

    Flow/damage surfaces can be defined in terms of stress, inelastic strain rate, and internal variables using a thermodynamics framework. A macroscale definition relevant to thermodynamics and usable in an experimental program is employed to map out surfaces of constant inelastic power in various stress planes. The inelastic flow of a model silicon carbide/ titanium composite system having rectangular, hexagonal, and square diagonal fiber packing arrays subjected to biaxial stresses is quantified by flow/damage surfaces that are determined numerically from micromechanics, using both finite element analysis and the generalized method of cells. Residual stresses from processing are explicitly included and damage in the form of fiber-matrix debonding under transverse tensile and/or shear loading is represented by a simple interface model. The influence of microstructural architecture is largest whenever fiber-matrix debonding is not an issue; for example in the presence of transverse compressive stresses. Additionally, as the fiber volume fraction increases, so does the effect of microstructural architecture. With regard to the micromechanics analysis, the overall inelastic flow predicted by the generalized method of cells is in excellent agreement with that predicted using a large number of displacement-based finite elements.

  20. Flow/Damage Surfaces for Fiber-Reinforced Metals having Different Periodic Microstructures

    NASA Technical Reports Server (NTRS)

    Lissenden, Cliff J.; Arnold, Steven M.; Iyer, Saiganesh K.

    1998-01-01

    Flow/damage surfaces can be defined in terms of stress, inelastic strain rate, and internal variables using a thermodynamics framework. A macroscale definition relevant to thermodynamics and usable in an experimental program is employed to map out surfaces of constant inelastic power in various stress planes. The inelastic flow of a model silicon carbide/ titanium composite system having rectangular, hexagonal, and square diagonal fiber packing, arrays subjected to biaxial stresses is quantified by flow/damage surfaces that are determined numerically from micromechanics. using both finite element analysis and the generalized method of cells. Residual stresses from processing are explicitly included and damage in the form of fiber-matrix debonding under transverse tensile and/or shear loading is represented by a simple interface model. The influence of microstructural architecture is largest whenever fiber-matrix debonding is not an issue, for example in the presence of transverse compressive stresses. Additionally, as the fiber volume fraction increases, so does the effect of microstructural architecture. With regard to the micromechanics analysis, the overall inelastic flow predicted by the generalized method of cells is in excellent agreement with that predicted using a large number of displacement-based finite elements.

  1. The mechanical consequences of load bearing in the equine third metacarpal across speed and gait: the nonuniform distributions of normal strain, shear strain, and strain energy density

    PubMed Central

    Rubin, Clinton T.; Seeherman, Howard; Qin, Yi-Xian; Gross, Ted S.

    2013-01-01

    Distributions of normal strain, shear strain, and strain energy density (SED) were determined across the midshaft of the third metacarpal (MCIII, or cannon bone) of 3 adult thoroughbred horses as a function of speed and gait. A complete characterization of the mechanical demands of the bone made through the stride and from mild through the extremes of locomotion was possible by using three 3-element rosette strain gauges bonded at the diaphyseal midshaft of the MCIII and evaluating the strain output with beam theory and finite element analysis. Mean ± sd values of normal strain, shear strain, and SED increased with speed and peaked during a canter (−3560±380 microstrain, 1760±470 microstrain, and 119±23 kPa, respectively). While the location of these peaks was similar across animals and gaits, the resulting strain distributions across the cortex were consistently nonuniform, establishing between a 73-fold (slow trot) to a 330-fold (canter) disparity between the sites of maximum and minimum SED for each gait cycle. Using strain power density as an estimate of strain history across the bone revealed a 154-fold disparity between peak and minimum at the walk but fell to ∼32-fold at the canter. The nonuniform, minimally varying, strain environment suggests either that bone homeostasis is mediated by magnitude-independent mechanical signals or that the duration of stimuli necessary to establish and maintain tissue integrity is relatively brief, and thus the vast majority of strain information is disregarded.—Rubin, C. T., Seeherman, H., Qin, Y.-X., Gross, T. S., The mechanical consequences of load bearing in the equine third metacarpal across speed and gait: the nonuniform distributions of normal strain, shear strain, and strain energy density. PMID:23355269

  2. Determination of Material Constitutive Laws for Inconel 718 Superalloy Under Different Strain Rates and Working Temperatures

    NASA Astrophysics Data System (ADS)

    Grzesik, W.; Niesłony, P.; Laskowski, P.

    2017-12-01

    In this paper, a special procedure for the prediction of parameters of the Johnson-Cook constitutive material models is proposed based on the experimental data and specially developed MATLAB scripts which allow advanced modeling of complex 3D response surfaces. Experimental investigations concern two various strain rates of 10-3 and 101 1/s and the testing temperature ranging from the ambient up to 700 °C. As a result, a set of mathematical equations which fit the experimental data is determined. The applicability of the experimentally derived constitutive models to the FEM modeling of real machining processes of Inconel 718 alloy is verified.

  3. Fabrication and characterization of a CNT forest integrated micromechanical resonator for a rarefied gas analyzer in a medium vacuum atmosphere

    NASA Astrophysics Data System (ADS)

    Sugano, Koji; Matsumoto, Ryu; Tsutsui, Ryota; Kishihara, Hiroyuki; Matsuzuka, Naoki; Yamashita, Ichiro; Uraoka, Yukiharu; Isono, Yoshitada

    2016-07-01

    This study focuses on the development of a multi-walled carbon nanotube (MWCNT) forest integrated micromechanical resonator working as a rarefied gas analyzer for nitrogen (N2) and hydrogen (H2) gases in a medium vacuum atmosphere. The resonant response is detected in the form of changes in the resonant frequency or damping effects, depending on the rarefied gas species. The carbon nanotube (CNT) forest on the resonator enhances the effective specific surface area of the resonator, such that the variation of the resonant frequency and the damping effect based on the gas species increase significantly. We developed the fabrication process for the proposed resonator, which consists of standard micro-electro-mechanical systems (MEMS) processes and high-density CNT synthesis on the resonator mass. The high-density CNT synthesis was realized using multistep alternate coating of two types of ferritin proteins that act as catalytic iron particles. Two devices with different CNT densities were fabricated and characterized to evaluate the effect of the surface area of the CNT forest on the resonant response as a function of gas pressures ranging from 0.011 to 1 Pa for N2 and H2. Considering the damping effect, we found that the device with higher density was able to distinguish N2 and H2 clearly, whereas the device with lower density showed no difference between N2 and H2. We confirmed that a larger surface area showed a higher damping effect. These results were explained based on the kinetic theory of gases. In the case of resonant frequency, the relative resonant frequency shift increased with gas pressure and surface area because of the adsorption of gas molecules on the resonator surfaces. Higher density CNT forest adsorbed more gas molecules on the surfaces. The developed CNT forest integrated micromechanical resonator could successfully detect N2 and H2 gases and distinguish between them under pressures of 1 Pa.

  4. Anelastic Strain Recovery Analysis Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ASR4 is a nonlinear least-squares regression of Anelastic Strain Recovery (ASR) data for the purpose of determining in situ stress orientations and magnitudes. ASR4 fits the viscoelastic model of Warpinski and Teufel to measure ASR data, calculates the stress orientations directly, and stress magnitudes if sufficient input data are available. The code also calculates the stress orientation using strain-rosette equations, and it calculates stress magnitudes using Blanton''s approach, assuming sufficient input data are available.

  5. Strain rate effects on mechanical properties of fiber composites, part 3

    NASA Technical Reports Server (NTRS)

    Daniel, I. M.; Liber, T.

    1976-01-01

    An experimental investigation was conducted to determine the strain rate effects in fiber composites. Unidirectional composite specimens of boron/epoxy, graphite/epoxy, S-glass/epoxy and Kevlar/epoxy were tested to determine longitudinal, transverse and intralaminar (in-plane) shear properties. In the Longitudinal direction the Kevlar/epoxy shows a definite increase in both modulus and strength with strain rate. In the transverse direction, a general trend toward higher strength with strain rate is noticed. The intralaminar shear moduli and strengths of boron/epoxy and graphite/epoxy show a definite rise with strain rate.

  6. Full-Genome Sequencing Identifies in the Genetic Background Several Determinants That Modulate the Resistance Phenotype in Methicillin-Resistant Staphylococcus aureus Strains Carrying the Novel mecC Gene

    PubMed Central

    de Lencastre, Hermínia; Tomasz, Alexander

    2017-01-01

    ABSTRACT Most methicillin-resistant Staphylococcus aureus (MRSA) strains are resistant to beta-lactam antibiotics due to the presence of the mecA gene, encoding an extra penicillin-binding protein (PBP2A) that has low affinity for virtually all beta-lactam antibiotics. Recently, a new resistance determinant—the mecC gene—was identified in S. aureus isolates recovered from humans and dairy cattle. Although having typically low MICs to beta-lactam antibiotics, MRSA strains with the mecC determinant are also capable of expressing high levels of oxacillin resistance when in an optimal genetic background. In order to test the impact of extensive beta-lactam selection on the emergence of mecC-carrying strains with high levels of antibiotic resistance, we exposed the prototype mecC-carrying MRSA strain, LGA251, to increasing concentrations of oxacillin. LGA251 was able to rapidly adapt to high concentrations of oxacillin in growth medium. In such laboratory mutants with increased levels of oxacillin resistance, we identified mutations in genes with no relationship to the mecC regulatory system, indicating that the genetic background plays an important role in the establishment of the levels of oxacillin resistance. Our data also indicate that the stringent stress response plays a critical role in the beta-lactam antibiotic resistance phenotype of MRSA strains carrying the mecC determinant. PMID:28069659

  7. Ultrasonic and micromechanical study of damage and elastic properties of SiC/RBSN ceramic composites. [Reaction Bonded Silicon Nitride

    NASA Technical Reports Server (NTRS)

    Chu, Y. C.; Hefetz, M.; Rokhlin, S. I.; Baaklini, G. Y.

    1992-01-01

    Ultrasonic techniques are employed to develop methods for nondestructive evaluation of elastic properties and damage in SiC/RBSN composites. To incorporate imperfect boundary conditions between fibers and matrix into a micromechanical model, a model of fibers having effective anisotropic properties is introduced. By inverting Hashin's (1979) microstructural model for a composite material with microscopic constituents the effective fiber properties were found from ultrasonic measurements. Ultrasonic measurements indicate that damage due to thermal shock is located near the surface, so the surface wave is most appropriate for estimation of the ultimate strength reduction and critical temperature of thermal shock. It is concluded that bonding between laminates of SiC/RBSN composites is severely weakened by thermal oxidation. Generally, nondestructive evaluation of thermal oxidation effects and thermal shock shows good correlation with measurements previously performed by destructive methods.

  8. Investigation of Macroscopic Brittle Creep Failure Caused by Microcrack Growth Under Step Loading and Unloading in Rocks

    NASA Astrophysics Data System (ADS)

    Li, Xiaozhao; Shao, Zhushan

    2016-07-01

    The growth of subcritical cracks plays an important role in the creep of brittle rock. The stress path has a great influence on creep properties. A micromechanics-based model is presented to study the effect of the stress path on creep properties. The microcrack model of Ashby and Sammis, Charles' Law, and a new micro-macro relation are employed in our model. This new micro-macro relation is proposed by using the correlation between the micromechanical and macroscopic definition of damage. A stress path function is also introduced by the relationship between stress and time. Theoretical expressions of the stress-strain relationship and creep behavior are derived. The effects of confining pressure on the stress-strain relationship are studied. Crack initiation stress and peak stress are achieved under different confining pressures. The applied constant stress that could cause creep behavior is predicted. Creep properties are studied under the step loading of axial stress or the unloading of confining pressure. Rationality of the micromechanics-based model is verified by the experimental results of Jinping marble. Furthermore, the effects of model parameters and the unloading rate of confining pressure on creep behavior are analyzed. The coupling effect of step axial stress and confining pressure on creep failure is also discussed. The results provide implications on the deformation behavior and time-delayed rockburst mechanism caused by microcrack growth on surrounding rocks during deep underground excavations.

  9. Regulation of the cnr Cobalt and Nickel Resistance Determinant from Ralstonia sp. Strain CH34†

    PubMed Central

    Grass, Gregor; Große, Cornelia; Nies, Dietrich H.

    2000-01-01

    Ralstonia sp. strain CH34 is resistant to nickel and cobalt cations. Resistance is mediated by the cnr determinant located on plasmid pMOL28. The cnr genes are organized in two clusters, cnrYXH and cnrCBA. As revealed by reverse transcriptase PCR and primer extension, transcription from these operons is initiated from promoters located upstream of the cnrY and cnrC genes. These two promoters exhibit conserved sequences at the −10 (CCGTATA) and −35 (CRAGGGGRAG) regions. The CnrH gene product, which is required for expression of both operons, is a sigma factor belonging to the sigma L family, whose activity seems to be governed by the membrane-bound CnrY and CnrX gene products in response to Ni2+. Half-maximal activation from the cnrCBA operon was determined by using appropriate lacZ gene fusions and was shown to occur at an Ni2+ concentration of about 50 μM. PMID:10671463

  10. Strain-controlled fatigue of acrylic bone cement.

    PubMed

    Carter, D R; Gates, E I; Harris, W H

    1982-09-01

    Monotonic tensile tests and tension-compression fatigue tests were conducted of wet acrylic bone cement specimens at 37 degrees C. All testing was conducted in strain control at a strain rate of 0.02/s. Weibull analysis of the tensile tests indicated that monotonic fracture was governed more strongly by strain than stress. The number of cycles to fatigue failure was also more strongly controlled by strain amplitude than stress amplitude. Specimen porosity distribution played a major role in determining the tensile and fatigue strengths. The degree of data scatter suggests that Weibull analysis of fatigue data may be useful in developing design criteria for the surgical use of bone cement.

  11. Practical on-site measurement of heat strain with the use of a perceptual strain index.

    PubMed

    Chan, Albert P C; Yang, Y

    2016-02-01

    There have been increased interests in research on quantifying heat strain of construction workers and formulating corresponding guidelines for working in hot weather. The aim of this study was to validate a subjective measurement tool, the perceptual strain index (PeSI), for measuring heat strain in real-work settings. A total of sixteen construction workers were invited to participate in the field surveys. Empiric-based human monitoring was carried out with simultaneous micrometeorological (wet-bulb globe temperature, WBGT), physiological (heart rate, HR), and perceptual (perceived exertion, RPE; thermal sensation, TS) measurements throughout the test. The relative heart rate (RHR), the physiological strain index (PSIHR), and the PeSI were then calculated accordingly. The PeSI exhibited moderate correlations with WBGT and RHR (r = 0.42 and 0.40, respectively), which indicated the PeSI was sensitive to the variants of WBGT and RHR. The results of regression analysis indicated that the PeSI changed in the same general manner as the PSIHR, with a relatively large determination coefficient (R(2) = 0.67). The established perceptual strain zone illustrated that the PeSI ranging from 7 to 8 would be the exposure limit of construction workers in hot weather. The PeSI is a simple, robust, reliable, and user-friendly tool for heat strain assessment in occupational settings. The perceptual strain zone will provide practical guidelines for on-site heat strain monitoring for construction workers.

  12. Linking strain anisotropy and plasticity in copper metallization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, Conal E., E-mail: conal@us.ibm.com; Jordan-Sweet, Jean; Priyadarshini, Deepika

    2015-05-04

    The elastic anisotropy of copper leads to significant variation in the x-ray elastic constants (XEC), which link diffraction-based strain measurements to stress. An accurate depiction of the mechanical response in copper thin films requires a determination of an appropriate grain interaction model that lies between Voigt and Reuss limits. It is shown that the associated XEC weighting fraction, x*, between these limits provides a metric by which strain anisotropy can be quantified. Experimental values of x*, as determined by a linear regression scheme of diffraction data collected from multiple reflections, reveal the degree of strain anisotropy and its dependence onmore » plastic deformation induced during in-situ and ex-situ thermal treatments.« less

  13. Enterobacter Strains Might Promote Colon Cancer.

    PubMed

    Yurdakul, Dilşad; Yazgan-Karataş, Ayten; Şahin, Fikrettin

    2015-09-01

    Many studies have been performed to determine the interaction between bacterial species and cancer. However, there has been no attempts to demonstrate a possible relationship between Enterobacter spp. and colon cancer so far. Therefore, in the present study, it is aimed to investigate the effects of Enterobacter strains on colon cancer. Bacterial proteins were isolated from 11 Enterobacter spp., one Morganella morganii, and one Escherichia coli strains, and applied onto NCM460 (Incell) and CRL1790 (ATCC) cell lines. Cell viability and proliferation were determined in MTS assay. Flow Cytometry was used to detect CD24 level and apoptosis. Real-Time PCR studies were performed to determine NFKB and Bcl2 expression. Graphpad Software was used for statistical analysis. The results showed that proteins, isolated from the Enterobacter spp., have significantly increased cell viability and proliferation, while decreasing the apoptosis of the cell lines tested. The data in the present study indicated that Enterobacter strains might promote colon cancer. Moreover, Enterobacter spp. could be a clinically important factor for colon cancer initiation and progression. Studies can be extended on animal models in order to develop new strategies for treatment.

  14. Tensile stress-strain behavior of graphite/epoxy laminates

    NASA Technical Reports Server (NTRS)

    Garber, D. P.

    1982-01-01

    The tensile stress-strain behavior of a variety of graphite/epoxy laminates was examined. Longitudinal and transverse specimens from eleven different layups were monotonically loaded in tension to failure. Ultimate strength, ultimate strain, and strss-strain curves wee obtained from four replicate tests in each case. Polynominal equations were fitted by the method of least squares to the stress-strain data to determine average curves. Values of Young's modulus and Poisson's ratio, derived from polynomial coefficients, were compared with laminate analysis results. While the polynomials appeared to accurately fit the stress-strain data in most cases, the use of polynomial coefficients to calculate elastic moduli appeared to be of questionable value in cases involving sharp changes in the slope of the stress-strain data or extensive scatter.

  15. Noninvasive characterization of carotid plaque strain.

    PubMed

    Khan, Amir A; Sikdar, Siddhartha; Hatsukami, Thomas; Cebral, Juan; Jones, Michael; Huston, John; Howard, George; Lal, Brajesh K

    2017-06-01

    Current risk stratification of internal carotid artery plaques based on diameter-reducing percentage stenosis may be unreliable because ischemic stroke results from plaque disruption with atheroembolization. Biomechanical forces acting on the plaque may render it vulnerable to rupture. The feasibility of ultrasound-based quantification of plaque displacement and strain induced by hemodynamic forces and their relationship to high-risk plaques have not been determined. We studied the feasibility and reliability of carotid plaque strain measurement from clinical B-mode ultrasound images and the relationship of strain to high-risk plaque morphology. We analyzed carotid ultrasound B-mode cine loops obtained in patients with asymptomatic ≥50% stenosis during routine clinical scanning. Optical flow methods were used to quantify plaque motion and shear strain during the cardiac cycle. The magnitude (maximum absolute shear strain rate [MASSR]) and variability (entropy of shear strain rate [ESSR] and variance of shear strain rate [VSSR]) of strain were combined into a composite shear strain index (SSI), which was assessed for interscan repeatability and correlated with plaque echolucency. Nineteen patients (mean age, 70 years) constituting 36 plaques underwent imaging; 37% of patients (n = 7) showed high strain (SSI ≥0.5; MASSR, 2.2; ESSR, 39.7; VSSR, 0.03) in their plaques; the remaining clustered into a low-strain group (SSI <0.5; MASSR, 0.58; ESSR, 21.2; VSSR, 0.002). The area of echolucent morphology was greater in high-strain plaques vs low-strain plaques (28% vs 17%; P = .018). Strain measurements showed low variability on Bland-Altman plots with cluster assignment agreement of 76% on repeated scanning. Two patients developed a stroke during 2 years of follow-up; both demonstrated high SSI (≥0.5) at baseline. Carotid plaque strain is reliably computed from routine B-mode imaging using clinical ultrasound machines. High plaque strain correlates with known

  16. Residual strain gradient determination in metal matrix composites by synchrotron X-ray energy dispersive diffraction

    NASA Technical Reports Server (NTRS)

    Kuntz, Todd A.; Wadley, Haydn N. G.; Black, David R.

    1993-01-01

    An X-ray technique for the measurement of internal residual strain gradients near the continuous reinforcements of metal matrix composites has been investigated. The technique utilizes high intensity white X-ray radiation from a synchrotron radiation source to obtain energy spectra from small (0.001 cu mm) volumes deep within composite samples. The viability of the technique was tested using a model system with 800 micron Al203 fibers and a commercial purity titanium matrix. Good agreement was observed between the measured residual radial and hoop strain gradients and those estimated from a simple elastic concentric cylinders model. The technique was then used to assess the strains near (SCS-6) silicon carbide fibers in a Ti-14Al-21Nb matrix after consolidation processing. Reasonable agreement between measured and calculated strains was seen provided the probe volume was located 50 microns or more from the fiber/matrix interface.

  17. Genealogy of principal strains of the yeast genetic stock center.

    PubMed

    Mortimer, R K; Johnston, J R

    1986-05-01

    We have constructed a genealogy of strain S288C, from which many of the mutant and segregant strains currently used in studies on the genetics and molecular biology of Saccharomyces cerevisiae have been derived. We have determined that its six progenitor strains were EM93, EM126, NRRL YB-210 and the three baking strains Yeast Foam, FLD and LK. We have estimated that approximately 88% of the gene pool of S288C is contributed by strain EM93. The principal ancestral genotypes were those of segregant strains EM93-1C and EM93-3B, initially distributed by C. C. Lindegren to several laboratories. We have analyzed an isolate of lyophilized culture of strain EM93 and determined its genotype as MATa/MAT alpha SUC2/SUC2 GAL2/gal2 MAL/MAL mel/mel CUP1/cup1 FLO1/flo1. Strain EM93 is therefore the probable origin of genes SUC2, gal2, CUP1 and flo1 of S288C. We give details of the current availability of several of the progenitor strains and propose that this genealogy should be of assistance in elucidating the origins of several types of genetic and molecular heterogeneities in Saccharomyces.

  18. Modeling creep behavior of fiber composites

    NASA Technical Reports Server (NTRS)

    Chen, J. L.; Sun, C. T.

    1988-01-01

    A micromechanical model for the creep behavior of fiber composites is developed based on a typical cell consisting of a fiber and the surrounding matrix. The fiber is assumed to be linearly elastic and the matrix nonlinearly viscous. The creep strain rate in the matrix is assumed to be a function of stress. The nominal stress-strain relations are derived in the form of differential equations which are solved numerically for off-axis specimens under uniaxial loading. A potential function and the associated effective stress and effective creep strain rates are introduced to simplify the orthotropic relations.

  19. Micromechanics of Size Effect in Failure Due to Distributed Cracking

    DTIC Science & Technology

    1990-02-26

    Eshelby’s theorem for eigenstrains in elliptical inclusions in an infinite elastic solid. The special cases of localization of strain into a spherical...into an ellipsoidal region in an infinite solid. The Department at Civil Engineering, solution exploits Eshelby’s theorem for eigenstrains in...band does not represent an exact solution because the strain eO (the eigenstrain ) in order to fit into the hole perfectly boundary conditions cannot be

  20. Significance of third-order elasticity for determination of the pressure coefficient of the light emission in strained quantum wells

    NASA Astrophysics Data System (ADS)

    Łepkowski, S. P.

    2008-10-01

    We investigate the contribution arising from third-order elasticity to the pressure coefficient of the light emission (dEE/dP) in strained zinc-blende InGaAs/GaAs and InGaN/GaN quantum wells (QWs) grown in a (001) direction. In the framework of the third-order elasticity theory, we develop a model of pressure tuning of strains in these structures, which is then used to determine the coefficient dEE/dP . In the calculations of dEE/dP , we use a consistent set of the second- and third-order elastic constants which has been obtained from ab initio calculations. Our results indicate that the usage of third-order elasticity leads to significant reduction in dEE/dP in strained (001)-oriented InGaAs/GaAs and InGaN/GaN QWs, in comparison to the values of dEE/dP obtained by using the linear theory of elasticity. In the case of InGaAs/GaAs QWs, the values of dEE/dP calculated using third-order elasticity are in reasonable agreement with experimental data. For InGaN/GaN QWs, better agreement between theoretical and experimental values of dEE/dP is obtained when instead of third-order elasticity, pressure dependence of the second-order elastic constants is taken into account.

  1. [Determination of DNA content in individual Yersinia pestis cells by using flow cytofluorimetry method: comparative analysis of inhomogeneity in cultures of strains with various biological properties].

    PubMed

    Kravtsov, A L; Liapin, M N; Shmel'kova, T P; Golovko, E M; Maliukova, T A; Kostiukova, T A; Ezhov, I N

    2011-01-01

    Comparative analysis of Yersinia pestis strains with various biological properties by DNA content in individual cells. Virulent strain 231, avirulent strain KM 260 (12) [231], that is its isogenic (no-plasmid) derivative, and vaccine strain EV NIIEG were used. 48-hour agar cultures of the studied strains reproduced at 28 degrees C and their subcultures obtained by cultivation of the initial cultures by aeration on liquid nutrient medium from 37 degrees C were prepared. DNA of the fixed bacteria was dyed by a mixture of ethidium bromide and mitramycin, and then the bacteria were studied by using flow cytofluorimeter for the determination of rates of cells with relatively low or high DNA content in the studied bacterial populations. The degree of inhomogeneity of a bacterial population was evaluated by DNA histogram variation coefficient value. In 6 hours of growth at 37 degrees C in optically non-dense bacterial cultures a high degree of DNA content per cell inhomogeneity was established that is related to the activation of DNA replication process in bacteria. In 48 hours of growth this inhomogeneity completely disappeared in the virulent strain cultures and remained in the avirulent strain cultures of the plague pathogen. Based on the studied parameters the vaccine strain held an intermediate position. Further studies of the plague culture DNA content per cell inhomogeneity may become a base for the operative strain differentiation based on pathogenicity level (hazard) for humans, and therefore the requirements for the management of safe working conditions with this microorganism.

  2. In vitro sensitivity of Hungarian Actinobaculum suis strains to selected antimicrobials.

    PubMed

    Biksi, I; Major, Andrea; Fodor, L; Szenci, O; Vetési, F

    2003-01-01

    In vitro antimicrobial sensitivity of 12 Hungarian isolates and the type strain ATCC 33144 of Actinobaculum suis to different antimicrobial compounds was determined both by the agar dilution and by the disc diffusion method. By agar dilution, MIC50 values in the range of 0.05-3.125 micrograms/ml were determined for penicillin, ampicillin, ceftiofur, doxycycline, tylosin, pleuromutilins, chloramphenicol, florfenicol, enrofloxacin and lincomycin. The MIC50 value of oxytetracycline and spectinomycin was 6.25 and 12.5 micrograms/ml, respectively. For ofloxacin, flumequine, neomycin, streptomycin, gentamicin, nalidixic acid, nitrofurantoin and sulphamethoxazole + trimethoprim MIC50 values were in the range of 25-100 micrograms/ml. With the disc diffusion method, all strains were sensitive to penicillin, cephalosporins examined, chloramphenicol and florfenicol, tetracyclines examined, pleuromutilins, lincomycin and tylosin. Variable sensitivity was observed for fluoroquinolones (flumequine, enrofloxacin, ofloxacin), most of the strains were susceptible to marbofloxacin. Almost all strains were resistant to aminoglycosides but most of them were sensitive to spectinomycin. A strong correlation was determined for disc diffusion and MIC results (Spearman's rho 0.789, p < 0001). MIC values of the type strain and MIC50 values of other tested strains did not differ significantly. Few strains showed a partially distinct resistance pattern for erythromycin, lincomycin and ampicillin in both methods.

  3. Time-dependent response of filamentary composite spherical pressure vessels

    NASA Technical Reports Server (NTRS)

    Dozier, J. D.

    1983-01-01

    A filamentary composite spherical pressure vessel is modeled as a pseudoisotropic (or transversely isotropic) composite shell, with the effects of the liner and fill tubes omitted. Equations of elasticity, macromechanical and micromechanical formulations, and laminate properties are derived for the application of an internally pressured spherical composite vessel. Viscoelastic properties for the composite matrix are used to characterize time-dependent behavior. Using the maximum strain theory of failure, burst pressure and critical strain equations are formulated, solved in the Laplace domain with an associated elastic solution, and inverted back into the time domain using the method of collocation. Viscoelastic properties of HBFR-55 resin are experimentally determined and a Kevlar/HBFR-55 system is evaluated with a FORTRAN program. The computed reduction in burst pressure with respect to time indicates that the analysis employed may be used to predict the time-dependent response of a filamentary composite spherical pressure vessel.

  4. Evaluation of strains in bituminous surfaces : stiffness-fatigue investigation.

    DOT National Transportation Integrated Search

    1973-01-01

    The study was designed to determine if strains in Virginia's thin asphaltic pavements were high enough to cause early fatigue failure. Strains were computed with the Chevron multilayer computer program, and also measured on selected highways using el...

  5. Micromechanics-Based Damage Analysis of Fracture in Ti5553 Alloy with Application to Bolted Sectors

    NASA Astrophysics Data System (ADS)

    Bettaieb, Mohamed Ben; Van Hoof, Thibaut; Minnebo, Hans; Pardoen, Thomas; Dufour, Philippe; Jacques, Pascal J.; Habraken, Anne Marie

    2015-03-01

    A physics-based, uncoupled damage model is calibrated using cylindrical notched round tensile specimens made of Ti5553 and Ti-6Al-4V alloys. The fracture strain of Ti5553 is lower than for Ti-6Al-4V in the full range of stress triaxiality. This lower ductility originates from a higher volume fraction of damage sites. By proper heat treatment, the fracture strain of Ti5553 increases by almost a factor of two, as a result of a larger damage nucleation stress. This result proves the potential for further optimization of the damage resistance of the Ti5553 alloy. The damage model is combined with an elastoviscoplastic law in order to predict failure in a wide range of loading conditions. In particular, a specific application involving bolted sectors is addressed in order to determine the potential of replacing the Ti-6Al-4V by the Ti5553 alloy.

  6. Determination of Aseismic Creep or Strain Field on the Main Marmara Fault

    NASA Astrophysics Data System (ADS)

    Özbey, V.; Yavasoglu, H.; Masson, F.; Klein, E.; Alkan, M. N.; Alkan, R. M.

    2016-12-01

    Plate motion affecting the Earth's crust have occurred for millions of years. Determination of strain accumulation based on the plate motion is commonly monitored with GPS in recent years. The North Anatolian Fault (NAF) Zone, which is one of the fastest faults in the world, extends along all North Anatolia from Bingöl to Saros Gulf. Several destructive earthquakes occurred there, such as Izmit (in 1999, Mw=7.4) and Duzce (in 1999, Mw=7.2) in last century. The NAFZ is dividing into southern and northern branches to the east of Marmara region and the Northern branch (Main Marmara Fault-MMF) is crossing the Marmara Sea, starting in from the Gulf of Izmit - Adapazarı and reaching the Gulf of Saros. According to recent studies, the MMF is the largest unbroken part of the fault and is divided into segments (among which the Central Marmara-CM and Prince's Island-PI segments). The determination of the deformation accumulated on the MMF has become extremely important especially after the 1999 Izmit earthquake. Recent studies have demonstrated that the Prince's Island segment is fully locked. However, studies that are focused on the Central Marmara segment, that is located offshore Istanbul, a giant metropole that has more than 14 million population, do not conclude about the presence of a seismic gap, capable of generating a big earthquake. Therefore, in the scope of this study, a new GPS network will be established at short and long distance from the Main Marmara Fault, to densify the existing GPS network. several campaign measurements will be necessary to compute a velocity field. The velocity field will reveal the compression and variations of accumulation rate on the fault. Also, the amount of aseismic creep deep within the fault will be determined using Elastic Displacement Modeling method, allowing to conclude about the existence of a seismic gap on the Main Marmara Fault originated from aseismic deformation or not.

  7. PhyloFlu, a DNA microarray for determining the phylogenetic origin of influenza A virus gene segments and the genomic fingerprint of viral strains.

    PubMed

    Paulin, Luis F; de los D Soto-Del Río, María; Sánchez, Iván; Hernández, Jesús; Gutiérrez-Ríos, Rosa M; López-Martínez, Irma; Wong-Chew, Rosa M; Parissi-Crivelli, Aurora; Isa, P; López, Susana; Arias, Carlos F

    2014-03-01

    Recent evidence suggests that most influenza A virus gene segments can contribute to the pathogenicity of the virus. In this regard, the hemagglutinin (HA) subtype of the circulating strains has been closely surveyed, but the reassortment of internal gene segments is usually not monitored as a potential source of an increased pathogenicity. In this work, an oligonucleotide DNA microarray (PhyloFlu) designed to determine the phylogenetic origins of the eight segments of the influenza virus genome was constructed and validated. Clades were defined for each segment and also for the 16 HA and 9 neuraminidase (NA) subtypes. Viral genetic material was amplified by reverse transcription-PCR (RT-PCR) with primers specific to the conserved 5' and 3' ends of the influenza A virus genes, followed by PCR amplification with random primers and Cy3 labeling. The microarray unambiguously determined the clades for all eight influenza virus genes in 74% (28/38) of the samples. The microarray was validated with reference strains from different animal origins, as well as from human, swine, and avian viruses from field or clinical samples. In most cases, the phylogenetic clade of each segment defined its animal host of origin. The genomic fingerprint deduced by the combined information of the individual clades allowed for the determination of the time and place that strains with the same genomic pattern were previously reported. PhyloFlu is useful for characterizing and surveying the genetic diversity and variation of animal viruses circulating in different environmental niches and for obtaining a more detailed surveillance and follow up of reassortant events that can potentially modify virus pathogenicity.

  8. Determination of antimicrobial susceptibility patterns in Staphylococcus aureus strains recovered from patients at two main health facilities in Kabul, Afghanistan.

    PubMed

    Naimi, Haji Mohammad; Rasekh, Hamidullah; Noori, Ahmad Zia; Bahaduri, Mohammad Aman

    2017-11-29

    Staphylococcus aureus (S. aureus) is a major pathogen implicated in skin and soft tissue infections, abscess in deep organs, toxin mediated diseases, respiratory tract infections, urinary tract infections, post-surgical wound infections, meningitis and many other diseases. Irresponsible and over use of antibiotics has led to an increased presence of multidrug resistant organisms and especially methicillin resistant Staphylococcus aureus (MRSA) as a major public health concern in Afghanistan. As a result, there are many infections with many of them undiagnosed or improperly diagnosed. We aimed to establish a baseline of knowledge regarding the prevalence of MRSA in Kabul, Afghanistan, as well as S. aureus antimicrobial susceptibility to current available antimicrobials, while also determining those most effective to treat S. aureus infections. Samples were collected from patients at two main Health facilities in Kabul between September 2016 and February 2017. Antibiotic susceptibility profiles were determined by the disc diffusion method and studied using standard CLSI protocols. Out of 105 strains of S. aureus isolated from pus, urine, tracheal secretions, and blood, almost half (46; 43.8%) were methicillin-sensitive Staphylococcus aureus (MSSA) while 59 (56.2%) were Methicillin-resistant Staphylococcus aureus (MRSA). All strains were susceptible to vancomycin. In total, 100 (95.2%) strains were susceptible to rifampicin, 96 (91.4%) susceptible to clindamycin, 94 (89.5%) susceptible to imipenem, 83 (79.0%) susceptible to gentamicin, 81(77.1%) susceptible to doxycycline, 77 (77.1%) susceptible to amoxicillin + clavulanic acid, 78 (74.3%) susceptible to cefazolin, 71 (67.6%) susceptible to tobramycin, 68 (64.8%) susceptible to chloramphenicol, 60 (57.1%) were susceptible to trimethoprim-sulfamethoxazole, 47 (44.8%) susceptible to ciprofloxacin, 38 (36.2%) susceptible to azithromycin and erythromycin, 37 (35.2%) susceptible to ceftriaxone and 11 (10.5%) were

  9. Strain analysis of SiGe microbridges

    NASA Astrophysics Data System (ADS)

    Anthony, Ross; Gilbank, Ashley; Crowe, Iain; Knights, Andrew

    2018-02-01

    We present the analysis of UV (325 nm) Raman scattering spectra from silicon-germanium (SiGe) microbridges where the SiGe has been formed using the so-called "condensation technique". As opposed to the conventional condensation technique in which SiGe is grown epitaxially, we use high-dose ion implantation of Ge ions into SOI as a means to introduce the initial Ge profile. The subsequent oxidation both repairs implantation induced damage, and forms epitaxial Ge. Using Si-Si and Si-Ge optical phonon modes, as well as the ratio of integrated intensities for Ge-Ge and Si-Si, we can determine both the composition and strain of the material. We show that although the material is compressively strained following condensation, by fabricating microbridge structures we can create strain relaxed or tensile strained structures, with subsequent interest for photonic applications.

  10. StrainSeeker: fast identification of bacterial strains from raw sequencing reads using user-provided guide trees.

    PubMed

    Roosaare, Märt; Vaher, Mihkel; Kaplinski, Lauris; Möls, Märt; Andreson, Reidar; Lepamets, Maarja; Kõressaar, Triinu; Naaber, Paul; Kõljalg, Siiri; Remm, Maido

    2017-01-01

    Fast, accurate and high-throughput identification of bacterial isolates is in great demand. The present work was conducted to investigate the possibility of identifying isolates from unassembled next-generation sequencing reads using custom-made guide trees. A tool named StrainSeeker was developed that constructs a list of specific k -mers for each node of any given Newick-format tree and enables the identification of bacterial isolates in 1-2 min. It uses a novel algorithm, which analyses the observed and expected fractions of node-specific k -mers to test the presence of each node in the sample. This allows StrainSeeker to determine where the isolate branches off the guide tree and assign it to a clade whereas other tools assign each read to a reference genome. Using a dataset of 100 Escherichia coli isolates, we demonstrate that StrainSeeker can predict the clades of E. coli with 92% accuracy and correct tree branch assignment with 98% accuracy. Twenty-five thousand Illumina HiSeq reads are sufficient for identification of the strain. StrainSeeker is a software program that identifies bacterial isolates by assigning them to nodes or leaves of a custom-made guide tree. StrainSeeker's web interface and pre-computed guide trees are available at http://bioinfo.ut.ee/strainseeker. Source code is stored at GitHub: https://github.com/bioinfo-ut/StrainSeeker.

  11. A wide extent of inter-strain diversity in virulent and vaccine strains of alphaherpesviruses.

    PubMed

    Szpara, Moriah L; Tafuri, Yolanda R; Parsons, Lance; Shamim, S Rafi; Verstrepen, Kevin J; Legendre, Matthieu; Enquist, L W

    2011-10-01

    Alphaherpesviruses are widespread in the human population, and include herpes simplex virus 1 (HSV-1) and 2, and varicella zoster virus (VZV). These viral pathogens cause epithelial lesions, and then infect the nervous system to cause lifelong latency, reactivation, and spread. A related veterinary herpesvirus, pseudorabies (PRV), causes similar disease in livestock that result in significant economic losses. Vaccines developed for VZV and PRV serve as useful models for the development of an HSV-1 vaccine. We present full genome sequence comparisons of the PRV vaccine strain Bartha, and two virulent PRV isolates, Kaplan and Becker. These genome sequences were determined by high-throughput sequencing and assembly, and present new insights into the attenuation of a mammalian alphaherpesvirus vaccine strain. We find many previously unknown coding differences between PRV Bartha and the virulent strains, including changes to the fusion proteins gH and gB, and over forty other viral proteins. Inter-strain variation in PRV protein sequences is much closer to levels previously observed for HSV-1 than for the highly stable VZV proteome. Almost 20% of the PRV genome contains tandem short sequence repeats (SSRs), a class of nucleic acids motifs whose length-variation has been associated with changes in DNA binding site efficiency, transcriptional regulation, and protein interactions. We find SSRs throughout the herpesvirus family, and provide the first global characterization of SSRs in viruses, both within and between strains. We find SSR length variation between different isolates of PRV and HSV-1, which may provide a new mechanism for phenotypic variation between strains. Finally, we detected a small number of polymorphic bases within each plaque-purified PRV strain, and we characterize the effect of passage and plaque-purification on these polymorphisms. These data add to growing evidence that even plaque-purified stocks of stable DNA viruses exhibit limited sequence

  12. A high-quality factor of 267 000 micromechanical silicon resonator utilizing TED-free torsional vibration mode

    NASA Astrophysics Data System (ADS)

    Nakamura, K.; Naito, Y.; Onishi, K.; Kawakatsu, H.

    2012-12-01

    In industrial applications of a micromechanical silicon resonator as a physical sensor, a high-quality factor Q and a low-temperature coefficient of Q (TCQ) are required for high sensitivity in a wide temperature range. Although the newly developed thin film encapsulation technique enables a beam to operate with low viscous damping in a vacuum cavity, the Q of a flexural vibration mode is limited by thermo-elastic damping (TED). We proposed a torsional beam resonator which features both a high Q and a low TCQ because theoretically the torsional vibration mode does not suffer from TED. From experiments, Q of 267 000 and TCQ of 1.4 for the 20 MHz torsional vibration mode were observed which were superior to those of the flexural mode. The pressure of the residual gas in the cavity of only 20 pl volume, which is one of the energy loss factors limiting the Q, was successfully estimated to be 1-14 Pa. Finally, the possibilities of improving the Q and the difference of the measured TCQ from a theoretical value were discussed.

  13. Smart materials: strain sensing and stress determination by means of nanotube sensing systems, composites, and devices

    NASA Technical Reports Server (NTRS)

    Kim, Jong Dae (Inventor); Nagarajaiah, Satish (Inventor); Barrera, Enrique V. (Inventor); Dharap, Prasad (Inventor); Zhiling, Li (Inventor)

    2010-01-01

    The present invention is directed toward devices comprising carbon nanotubes that are capable of detecting displacement, impact, stress, and/or strain in materials, methods of making such devices, methods for sensing/detecting/monitoring displacement, impact, stress, and/or strain via carbon nanotubes, and various applications for such methods and devices. The devices and methods of the present invention all rely on mechanically-induced electronic perturbations within the carbon nanotubes to detect and quantify such stress/strain. Such detection and quantification can rely on techniques which include, but are not limited to, electrical conductivity/conductance and/or resistivity/resistance detection/measurements, thermal conductivity detection/measurements, electroluminescence detection/measurements, photoluminescence detection/measurements, and combinations thereof. All such techniques rely on an understanding of how such properties change in response to mechanical stress and/or strain.

  14. Oxidation of Wine Polyphenols by Secretomes of Wild Botrytis cinerea Strains from White and Red Grape Varieties and Determination of Their Specific Laccase Activity.

    PubMed

    Zimdars, Sabrina; Hitschler, Julia; Schieber, Andreas; Weber, Fabian

    2017-12-06

    Processing of Botrytis cinerea-infected grapes leads to enhanced enzymatic browning reactions mainly caused by the enzyme laccase which is able to oxidize a wide range of phenolic compounds. The extent of color deterioration depends on the activity of the enzymes secreted by the fungus. The present study revealed significant differences in the oxidative properties of secretomes of several B. cinerea strains isolated from five grape varieties. The presumed laccase-containing secretomes varied in their catalytic activity toward six phenolic compounds present in grapes. All strains led to identical product profiles for five of six substrates, but two strains showed deviating product profiles during gallic acid oxidation. Fast oxidation of caffeic acid, ferulic acid, and malvidin 3-O-glucoside was observed. Product formation rates and relative product concentrations were determined. The results reflect the wide range of enzyme activity and the corresponding different impact on color deterioration by B. cinerea.

  15. Strain screen and haplotype association mapping of wheel running in inbred mouse strains.

    PubMed

    Lightfoot, J Timothy; Leamy, Larry; Pomp, Daniel; Turner, Michael J; Fodor, Anthony A; Knab, Amy; Bowen, Robert S; Ferguson, David; Moore-Harrison, Trudy; Hamilton, Alicia

    2010-09-01

    Previous genetic association studies of physical activity, in both animal and human models, have been limited in number of subjects and genetically homozygous strains used as well as number of genomic markers available for analysis. Expansion of the available mouse physical activity strain screens and the recently published dense single-nucleotide polymorphism (SNP) map of the mouse genome (approximately 8.3 million SNPs) and associated statistical methods allowed us to construct a more generalizable map of the quantitative trait loci (QTL) associated with physical activity. Specifically, we measured wheel running activity in male and female mice (average age 9 wk) in 41 inbred strains and used activity data from 38 of these strains in a haplotype association mapping analysis to determine QTL associated with activity. As seen previously, there was a large range of activity patterns among the strains, with the highest and lowest strains differing significantly in daily distance run (27.4-fold), duration of activity (23.6-fold), and speed (2.9-fold). On a daily basis, female mice ran further (24%), longer (13%), and faster (11%). Twelve QTL were identified, with three (on Chr. 12, 18, and 19) in both male and female mice, five specific to males, and four specific to females. Eight of the 12 QTL, including the 3 general QTL found for both sexes, fell into intergenic areas. The results of this study further support the findings of a moderate to high heritability of physical activity and add general genomic areas applicable to a large number of mouse strains that can be further mined for candidate genes associated with regulation of physical activity. Additionally, results suggest that potential genetic mechanisms arising from traditional noncoding regions of the genome may be involved in regulation of physical activity.

  16. Phase-based Bragg intragrating distributed strain sensor

    NASA Astrophysics Data System (ADS)

    Huang, S.; Ohn, M. M.; Measures, R. M.

    1996-03-01

    A strain-distribution sensing technique based on the measurement of the phase spectrum of the reflected light from a fiber-optic Bragg grating is described. When a grating is subject to a strain gradient, the grating will experience a chirp and therefore the resonant wavelength will vary along the grating, causing wavelength-dependent penetration depth. Because the group delay for each wavelength component is related to its penetration depth and the resonant wavelength is determined by strain, a measured phase spectrum can then indicate the local strain as a function of location within the grating. This phase-based Bragg grating sensing technique offers a powerful new means for studying some important effects over a few millimeters or centimeters in smart structures.

  17. Natural Strain

    NASA Technical Reports Server (NTRS)

    Freed, Alan D.

    1995-01-01

    The purpose of this paper is to present a consistent and thorough development of the strain and strain-rate measures affiliated with Hencky. Natural measures for strain and strain-rate, as I refer to them, are first expressed in terms of of the fundamental body-metric tensors of Lodge. These strain and strain-rate measures are mixed tensor fields. They are mapped from the body to space in both the Eulerian and Lagrangian configurations, and then transformed from general to Cartesian fields. There they are compared with the various strain and strain-rate measures found in the literature. A simple Cartesian description for Hencky strain-rate in the Lagrangian state is obtained.

  18. Simulation of Intergranular Ductile Cracking in β Titanium Alloys Based on a Micro-Mechanical Damage Model

    PubMed Central

    Li, Huan; Li, Jinshan; Tang, Bin; Fan, Jiangkun; Yuan, Huang

    2017-01-01

    The intergranular crack propagation of the lamellar structure β titanium alloys is investigated by using a modified Gurson-type damage model. The representative microstructure of the lamellar alloy, which consists of the soft α phase layer surrounding the hard grain interiors, is generated based on an advanced Voronoi algorithm. Both the normal fracture due to void growth and the shear fracture associated with void shearing are considered for the grain boundary α layer. The individual phase properties are determined according to the experimental nanoindentation result and the macroscopic stress–strain curve from a uni-axial tensile test. The effects of the strain hardening exponent of the grain interiors and the void shearing mechanism of the grain boundary α layer on fracture toughness and the intergranular crack growth behavior are emphatically studied. The computational predictions indicate that fracture toughness can be increased with increasing the strain hardening ability of the grain interiors and void shearing can be deleterious to fracture toughness. Based on the current simulation technique, qualitative understanding of relationships between the individual phase features and the fracture toughness of the lamellar alloys can be obtained, which provides useful suggestions to the heat treatment process of the β titanium alloys. PMID:29084171

  19. Simulation of Intergranular Ductile Cracking in β Titanium Alloys Based on a Micro-Mechanical Damage Model.

    PubMed

    Li, Huan; Li, Jinshan; Tang, Bin; Fan, Jiangkun; Yuan, Huang

    2017-10-30

    The intergranular crack propagation of the lamellar structure β titanium alloys is investigated by using a modified Gurson-type damage model. The representative microstructure of the lamellar alloy, which consists of the soft α phase layer surrounding the hard grain interiors, is generated based on an advanced Voronoi algorithm. Both the normal fracture due to void growth and the shear fracture associated with void shearing are considered for the grain boundary α layer. The individual phase properties are determined according to the experimental nanoindentation result and the macroscopic stress-strain curve from a uni-axial tensile test. The effects of the strain hardening exponent of the grain interiors and the void shearing mechanism of the grain boundary α layer on fracture toughness and the intergranular crack growth behavior are emphatically studied. The computational predictions indicate that fracture toughness can be increased with increasing the strain hardening ability of the grain interiors and void shearing can be deleterious to fracture toughness. Based on the current simulation technique, qualitative understanding of relationships between the individual phase features and the fracture toughness of the lamellar alloys can be obtained, which provides useful suggestions to the heat treatment process of the β titanium alloys.

  20. BIOCHEMISTRY OF NORMAL AND IRRADIATED STRAINS OF HYMENOLEPIS DIMINUTA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fairbairn, D.; Wertheim, G.; Harpur, R.P.

    1961-09-01

    An irradiated strain of H. diminuta was developed in which morphological anomalies persisted for at least 7 generations. This and the normal strain from which it was derived were corapared for biochemical differences, which might lead to the discovery of a biocheraical lesion. No significant differences were found in fresh weights between normal and irradiated strains of H. diminuta. Samples of H. diminuta were then prepared, and their composition determined. There was a notable loss of carbohydrates by tapeworms during 24 hr of in vivo fasting, amounting to 56% and 62% in the normal and irradiated strains, respectively. On themore » other hand, lipids increased by 10% and protein by 4% in both strains, which suggests that the substances were not concerned with energy metabolism during starvation. The giycogen of both normal and irradiated strains of H. diminuta obtained from fed or fasted rats, determined directly or after maintenance of the parasites in glucose-saline, accounted for 99% of the alkali-stable carbohydrates. which in turn, comprised about 96% of the total carbohydrates. In general, no notable differences in the growth, chemical composition, or gross metabolism between normal and irradiated strains of H. diminuta were recognized. Thus, the morphological changes due to irradiation previously described are the reflection of biochemical events. (H.H.D.)« less