Science.gov

Sample records for determining micromechanical strain

  1. Determining Micromechanical Strain in Nitinol

    SciTech Connect

    Strasberg, Matthew; /SLAC

    2006-09-27

    Nitinol is a superelastic alloy made of equal parts nickel and titanium. Due to its unique shape memory properties, nitinol is used to make medical stents, lifesaving devices used to allow blood flow in occluded arteries. Micromechanical models and even nitinol-specific finite element analysis (FEA) software are insufficient for unerringly predicting fatigue and resultant failure. Due to the sensitive nature of its application, a better understanding of nitinol on a granular scale is being pursued through X-ray diffraction techniques at the Stanford Synchrotron Radiation Laboratory (SSRL) at the Stanford Linear Accelerator Center (SLAC). Through analysis of powder diffraction patterns of nitinol under increasing tensile loads, localized strain can be calculated. We compare these results with micromechanical predictions in order to advance nitinol-relevant FEA tools. From this we hope to gain a greater understanding of how nitinol fatigues under multi-axial loads.

  2. Implementation of Higher Order Laminate Theory Into Strain Rate Dependent Micromechanics Analysis of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Kim, Heung Soo; Zhu, Linfa; Chattopadhyay, Aditi; Goldberg, Robert K.

    2004-01-01

    A procedure has been developed to investigate the nonlinear response of composite plates under large strain and high strain rate loading. A recently developed strain dependent micromechanics model is extended to account for the shear effects during impact. Four different assumptions of shear deformation effects are investigated to improve the development strain rate dependent micromechanics model. A method to determine through the thickness strain and transverse Poisson's ratio is developed. The revised micromechanics model is implemented into higher order laminate theory. Parametric studies are conducted to investigate transverse shear effects during impact.

  3. Implementation of Fiber Substructuring Into Strain Rate Dependent Micromechanics Analysis of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.

    2001-01-01

    A research program is in progress to develop strain rate dependent deformation and failure models for the analysis of polymer matrix composites subject to impact loads. Previously, strain rate dependent inelastic constitutive equations developed to model the polymer matrix were incorporated into a mechanics of materials based micromechanics method. In the current work, the micromechanics method is revised such that the composite unit cell is divided into a number of slices. Micromechanics equations are then developed for each slice, with laminate theory applied to determine the elastic properties, effective stresses and effective inelastic strains for the unit cell. Verification studies are conducted using two representative polymer matrix composites with a nonlinear, strain rate dependent deformation response. The computed results compare well to experimentally obtained values.

  4. A micromechanical damage and fracture model for polymers based on fractional strain-gradient elasticity

    NASA Astrophysics Data System (ADS)

    Heyden, S.; Li, B.; Weinberg, K.; Conti, S.; Ortiz, M.

    2015-01-01

    We formulate a simple one-parameter macroscopic model of distributed damage and fracture of polymers that is amenable to a straightforward and efficient numerical implementation. We show that the macroscopic model can be rigorously derived, in the sense of optimal scaling, from a micromechanical model of chain elasticity and failure regularized by means of fractional strain-gradient elasticity. In particular, we derive optimal scaling laws that supply a link between the single parameter of the macroscopic model, namely, the critical energy-release rate of the material, and micromechanical parameters pertaining to the elasticity and strength of the polymer chains and to the strain-gradient elasticity regularization. We show how the critical energy-release rate of specific materials can be determined from test data. Finally, we demonstrate the scope and fidelity of the model by means of an example of application, namely, Taylor-impact experiments of polyurea 1000 rods.

  5. Strains at the myotendinous junction predicted by a micromechanical model

    PubMed Central

    Sharafi, Bahar; Ames, Elizabeth G.; Holmes, Jeffrey W.; Blemker, Silvia S.

    2011-01-01

    The goal of this work was to create a finite element micromechanical model of the myotendinous junction (MTJ) to examine how the structure and mechanics of the MTJ affect the local micro-scale strains experienced by muscle fibers. We validated the model through comparisons with histological longitudinal sections of muscles fixed in slack and stretched positions. The model predicted deformations of the A-bands within the fiber near the MTJ that were similar to those measured from the histological sections. We then used the model to predict the dependence of local fiber strains on activation and the mechanical properties of the endomysium. The model predicted that peak micro-scale strains increase with activation and as the compliance of the endomysium decreases. Analysis of the models revealed that, in passive stretch, local fiber strains are governed by the difference of the mechanical properties between the fibers and the endomysium. In active stretch, strain distributions are governed by the difference in cross-sectional area along the length of the tapered region of the fiber near the MTJ. The endomysium provides passive resistance that balances the active forces and prevents the tapered region of the fiber from undergoing excessive strain. These model predictions lead to the following hypotheses: (i) the increased likelihood of injury during active lengthening of muscle fibers may be due to the increase in peak strain with activation and (ii) endomysium may play a role in protecting fibers from injury by reducing the strains within the fiber at the MTJ. PMID:21945569

  6. A Micromechanics Finite-Strain Constitutive Model of Fibrous Tissue

    PubMed Central

    Chen, Huan; Liu, Yi; Zhao, Xuefeng; Lanir, Yoram; Kassab, Ghassan S.

    2011-01-01

    Biological tissues have unique mechanical properties due to the wavy fibrous collagen and elastin microstructure. In inflation, a vessel easily distends under low pressure but becomes stiffer when the fibers are straightened to take up the load. The current microstructural models of blood vessels assume affine deformation; i.e., the deformation of each fiber is assumed to be identical to the macroscopic deformation of the tissue. This uniform-field (UF) assumption leads to the macroscopic (or effective) strain energy of the tissue that is the volumetric sum of the contributions of the tissue components. Here, a micromechanics-based constitutive model of fibrous tissue is developed to remove the affine assumption and to take into consideration the heterogeneous interactions between the fibers and the ground substance. The development is based on the framework of a recently developed second-order homogenization theory, and takes into account the waviness, orientations, and spatial distribution of the fibers, as well as the material nonlinearity at finite-strain deformation. In an illustrative simulation, the predictions of the macroscopic stress-strain relation, and the statistical deformation of the fibers are compared to the UF model, as well as finite-element (FE) simulation. Our predictions agree well with the FE results, while the UF predictions significantly overestimate. The effects of fiber distribution and waviness on the macroscopic stress-strain relation are also investigated. The present mathematical model may serves as a foundation for native as well as for engineered tissues and biomaterials. PMID:21927506

  7. A micromechanics finite-strain constitutive model of fibrous tissue

    NASA Astrophysics Data System (ADS)

    Chen, Huan; Liu, Yi; Zhao, Xuefeng; Lanir, Yoram; Kassab, Ghassan S.

    2011-09-01

    Biological tissues have unique mechanical properties due to the wavy fibrous collagen and elastin microstructure. In inflation, a vessel easily distends under low pressure but becomes stiffer when the fibers are straightened to take up the load. The current microstructural models of blood vessels assume affine deformation, i.e., the deformation of each fiber is assumed to be identical to the macroscopic deformation of the tissue. This uniform-field (UF) assumption leads to the macroscopic (or effective) strain energy of the tissue that is the volumetric sum of the contributions of the tissue components. Here, a micromechanics-based constitutive model of fibrous tissue is developed to remove the affine assumption and to take into consideration the heterogeneous interactions between the fibers and the ground substance. The development is based on the framework of a recently developed second-order homogenization theory, and takes into account the waviness, orientations and spatial distribution of the fibers, as well as the material nonlinearity at finite-strain deformation. In an illustrative simulation, the predictions of the macroscopic stress-strain relation and the statistical deformation of the fibers are compared to the UF model, as well as finite-element (FE) simulation. Our predictions agree well with the FE results, while the UF predictions significantly overestimate. The effects of fiber distribution and waviness on the macroscopic stress-strain relation are also investigated. The present mathematical model may serves as a foundation for native as well as for engineered tissues and biomaterials.

  8. Implementation of Laminate Theory Into Strain Rate Dependent Micromechanics Analysis of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.

    2000-01-01

    A research program is in progress to develop strain rate dependent deformation and failure models for the analysis of polymer matrix composites subject to impact loads. Previously, strain rate dependent inelastic constitutive equations developed to model the polymer matrix were implemented into a mechanics of materials based micromechanics method. In the current work, the computation of the effective inelastic strain in the micromechanics model was modified to fully incorporate the Poisson effect. The micromechanics equations were also combined with classical laminate theory to enable the analysis of symmetric multilayered laminates subject to in-plane loading. A quasi-incremental trapezoidal integration method was implemented to integrate the constitutive equations within the laminate theory. Verification studies were conducted using an AS4/PEEK composite using a variety of laminate configurations and strain rates. The predicted results compared well with experimentally obtained values.

  9. A Micromechanics Based Constitutive Model For Brittle Failure at High Strain Rates

    NASA Astrophysics Data System (ADS)

    Bhat, H. S.; Rosakis, A.; Sammis, C. G.

    2011-12-01

    The micromechanical damage mechanics formulated by Ashby and Sammis [1] and generalized by Desh- pande and Evans [2] has been extended to allow for a more generalized stress state and to incorporate an ex- perimentally motivated new crack growth (damage evo- lution) law that is valid over a wide range of loading rates. This law is sensitive to both the crack tip stress field and its time derivative. Incorporating this feature produces strain-rate sensitivity in the constitutive re- sponse. The model is also experimentally verified by predicting the failure strength of Dionysus-Pentelicon marble over strain rates ranging from ˜ 10-6 to 103 s-1. Model parameters determined from from quasi-static experiments were used to predict the failure strength at higher loading rates. Agreement with experimental results was excellent.

  10. A semi-micromechanic interlaminar strain analysis on curved-beam specimens

    NASA Technical Reports Server (NTRS)

    Joh, Duksung

    1990-01-01

    Experimental analyses were performed for determination of interlaminar strains in circumferentially unidirectional curved beam specimens. Semi-circular and semi-elliptic carbon-epoxy specimens were subjected to opening mode tensile loadings. Whole field measurements were recorded at load levels from about 5 to more than 90 pct of failure loads. Contour maps of displacement fields were obtained by using moire interferometry, using reference gratings of 2400 lines/mm or 60,690 lines/in. Whole field contour maps of circumferential and interlaminar strains were obtained by using moire interferometry in a semi-micromechanic scale. Various anomalous effects were observed in the displacement fields. The zig-zag fringe patterns indicated that the fiber orientation in each layer was not truly circumferential. This deviation from the unidirectionality caused free-edge effects, such as interlaminar shear strains even at the axis of symmetry and the altered normal strains in the thickness direction. In the resin rich zones between layers, the tensile interlaminar strain was excessively large due to the large compliance. As the result of the combined effect of these anomalous behaviors, the values of the interlaminar tensile strains were larger than those predicted analytically. The modulus E sub 3 was actually smaller than the assumed value E sub 2 by 20 pct.

  11. High Strain Rate Deformation Modeling of a Polymer Matrix Composite. Part 2; Composite Micromechanical Model

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Stouffer, Donald C.

    1998-01-01

    Recently applications have exposed polymer matrix composite materials to very high strain rate loading conditions, requiring an ability to understand and predict the material behavior under these extreme conditions. In this second paper of a two part report, a three-dimensional composite micromechanical model is described which allows for the analysis of the rate dependent, nonlinear deformation response of a polymer matrix composite. Strain rate dependent inelastic constitutive equations utilized to model the deformation response of a polymer are implemented within the micromechanics method. The deformation response of two representative laminated carbon fiber reinforced composite materials with varying fiber orientation has been predicted using the described technique. The predicted results compare favorably to both experimental values and the response predicted by the Generalized Method of Cells, a well-established micromechanics analysis method.

  12. Micromechanics-Based Permeability Evolution in Brittle Materials at High Strain Rates

    NASA Astrophysics Data System (ADS)

    Perol, Thibaut; Bhat, Harsha S.

    2016-08-01

    We develop a micromechanics-based permeability evolution model for brittle materials at high strain rates (≥ 100 s^{-1}). Extending for undrained deformation the mechanical constitutive description of brittle solids, whose constitutive response is governed by micro-cracks, we now relate the damage-induced strains to micro-crack aperture. We then use an existing permeability model to evaluate the permeability evolution. This model predicts both the percolative and connected regime of permeability evolution of Westerly Granite during triaxial loading at high strain rate. This model can simulate pore pressure history during earthquake coseismic dynamic ruptures under undrained conditions.

  13. Micromechanical cohesion force measurements to determine cyclopentane hydrate interfacial properties.

    PubMed

    Aman, Zachary M; Joshi, Sanjeev E; Sloan, E Dendy; Sum, Amadeu K; Koh, Carolyn A

    2012-06-15

    Hydrate aggregation and deposition are critical factors in determining where and when hydrates may plug a deepwater flowline. We present the first direct measurement of structure II (cyclopentane) hydrate cohesive forces in the water, liquid hydrocarbon and gas bulk phases. For fully annealed hydrate particles, gas phase cohesive forces were approximately twice that obtained in a liquid hydrocarbon phase, and approximately six times that obtained in the water phase. Direct measurements show that hydrate cohesion force in a water-continuous bulk may be only the product of solid-solid cohesion. When excess water was present on the hydrate surface, gas phase cohesive forces increased by a factor of three, suggesting the importance of the liquid or quasi-liquid layer (QLL) in determining cohesive force. Hydrate-steel adhesion force measurements show that, when the steel surface is coated with hydrophobic wax, forces decrease up to 96%. As the micromechanical force technique is uniquely capable of measuring hydrate-surface forces with variable contact time, the present work contains significant implications for hydrate applications in flow assurance. PMID:22484169

  14. A Micro-Mechanically Based Continuum Model for Strain-Induced Crystallization in Natural Rubber

    NASA Astrophysics Data System (ADS)

    Mistry, Sunny Jigger

    Recent experimental results show that strain-induced crystallization can substantially improve the crack growth resistance of natural rubber. While this might suggest superior designs of tires or other industrial applications where elastomers are used, a more thorough understanding of the underlying physics of strain-induced crystallization in natural rubber has to be developed before any design process can be started. The objective of this work is to develop a computationally-accessible micro-mechanically based continuum model, which is able to predict the macroscopic behavior of strain crystallizing natural rubber. While several researchers have developed micro-mechanical models of partially crystallized polymer chains, their results mainly give qualitative agreement with experimental data due to a lack of good micro-macro transition theories or the lack of computational power. However, recent developments in multiscale modeling in polymers provide new tools to continue this early work. In this thesis, a new model is proposed to model strain-induced crystallization in natural rubber. To this end, a micro-mechanical model of a constrained partially crystallized polymer chain with an extended-chain crystal is derived and connected to the macroscopic level using the non-affine micro-sphere model. On the macroscopic level, a thermodynamically consistent framework for strain-crystallizing materials is developed, and a description of the crystallization kinetics is introduced. For that matter, an evolution law for crystallization based on the gradient of the macroscopic Helmholtz free energy function (chemical potential) in combination with a simple threshold function is used. A numerical implementation of the model is proposed and its predictive performance assessed using published data.

  15. Micromechanical stimulator for localized cell loading: fabrication and strain analysis

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Zhang, Xu; Zhao, Yi

    2013-01-01

    Mechanical stimuli regulate cell structure and function during physiological processes. To understand the role of mechanical stimuli, engineered devices are developed to deliver controllable mechanical signals to cells cultured in vitro. Localized mechanical loading on selected cells are preferred when investigating intercellular communication. In this work, we fabricated and characterized a polydimethylsiloxane (PDMS) micro-device for applying controlled compressive/tensile loads to selected live cells. The device consists of nine circular PDMS membranes serving as the loading sites; the loading parameters at each site are individually controllable. The in-plane strain upon PDMS membrane deflection was experimentally characterized. The result showed that for a circular membrane with 500 µm in diameter and 60 µm thick, the radial strain from -6% (compressive) to 25% (tensile) can be achieved at the membrane center. This device allows localized cell loading with minimal fabrication/operation complexity and ease of scaling-up. It is expected to foster the development of high throughput mechanical loading systems for a broad array of cellular mechanobiological studies.

  16. A micromechanical model for estimating alveolar wall strain in mechanically ventilated edematous lungs.

    PubMed

    Chen, Zheng-long; Chen, Ya-zhu; Hu, Zhao-yan

    2014-09-15

    To elucidate the micromechanics of pulmonary edema has been a significant medical concern, which is beneficial to better guide ventilator settings in clinical practice. In this paper, we present an adjoining two-alveoli model to quantitatively estimate strain and stress of alveolar walls in mechanically ventilated edematous lungs. The model takes into account the geometry of the alveolus, the effect of surface tension, the length-tension properties of parenchyma tissue, and the change in thickness of the alveolar wall. On the one hand, our model supports experimental findings (Perlman CE, Lederer DJ, Bhattacharya J. Am J Respir Cell Mol Biol 44: 34-39, 2011) that the presence of a liquid-filled alveolus protrudes into the neighboring air-filled alveolus with the shared septal strain amounting to a maximum value of 1.374 (corresponding to the maximum stress of 5.12 kPa) even at functional residual capacity; on the other hand, it further shows that the pattern of alveolar expansion appears heterogeneous or homogeneous, strongly depending on differences in air-liquid interface tension on alveolar segments. The proposed model is a preliminary step toward picturing a global topographical distribution of stress and strain on the scale of the lung as a whole to prevent ventilator-induced lung injury. PMID:24947025

  17. Incorporation of Mean Stress Effects into the Micromechanical Analysis of the High Strain Rate Response of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Roberts, Gary D.; Gilat, Amos

    2002-01-01

    The results presented here are part of an ongoing research program, to develop strain rate dependent deformation and failure models for the analysis of polymer matrix composites subject to high strain rate impact loads. A micromechanics approach is employed in this work, in which state variable constitutive equations originally developed for metals have been modified to model the deformation of the polymer matrix, and a strength of materials based micromechanics method is used to predict the effective response of the composite. In the analysis of the inelastic deformation of the polymer matrix, the definitions of the effective stress and effective inelastic strain have been modified in order to account for the effect of hydrostatic stresses, which are significant in polymers. Two representative polymers, a toughened epoxy and a brittle epoxy, are characterized through the use of data from tensile and shear tests across a variety of strain rates. Results computed by using the developed constitutive equations correlate well with data generated via experiments. The procedure used to incorporate the constitutive equations within a micromechanics method is presented, and sample calculations of the deformation response of a composite for various fiber orientations and strain rates are discussed.

  18. Micromechanical Model for Deformation in Solids with Universal Predictions for Stress-Strain Curves and Slip Avalanches

    SciTech Connect

    Dahmen, Karin A.; Ben-Zion, Yehuda; Uhl, Jonathan T.

    2009-05-01

    A basic micromechanical model for deformation of solids with only one tuning parameter (weakening {epsilon}) is introduced. The model can reproduce observed stress-strain curves, acoustic emissions and related power spectra, event statistics, and geometrical properties of slip, with a continuous phase transition from brittle to ductile behavior. Exact universal predictions are extracted using mean field theory and renormalization group tools. The results agree with recent experimental observations and simulations of related models for dislocation dynamics, material damage, and earthquake statistics.

  19. A combined fracture-micromechanics model for tensile strain-softening in brittle materials, based on propagation of interacting microcracks

    NASA Astrophysics Data System (ADS)

    Pichler, Bernhard; Hellmich, Christian; Mang, Herbert A.

    2007-02-01

    Strain-softening is the decline in stress at increasing strain. Although microcracking is a commonly accepted reason for strain-softening, the majority of theoretical developments involve macroscopic damage evolution laws. To improve this situation, we propose a micromechanics-based damage evolution law by combining (i) the propagation criterion for a single penny-shaped crack embedded in an infinite matrix subjected to remote stresses (taken from linear-elastic fracture mechanics) and (ii) stiffness estimates for representative material volumes comprising interacting microcracks (taken from continuum micromechanics). This combination allows for modelling tensile strain-softening as a result of propagation of interacting microcracks, i.e. as a microstructural effect. The initial degree of damage, i.e. the initial microcrack size and the number of microcracks per unit volume, implies two different types of model-predicted tensile strain-softening behaviour under strain control: (i) continuous strain-softening, which occurs in case of initial damage above a critical value, and (ii) an instantaneous stress drop at the peak load (snap-back), which occurs in case of initial damage below a critical value. Copyright

  20. Micromechanical modelling of short-term and long-term large-strain behaviour of polyethylene terephthalate

    NASA Astrophysics Data System (ADS)

    Poluektov, M.; van Dommelen, J. A. W.; Govaert, L. E.; Yakimets, I.; Geers, M. G. D.

    2013-12-01

    A micromechanically based model is used to describe the mechanical behaviour of polyethylene terephthalate (PET) under uniaxial compression up to large strains and at different temperatures. The creep behaviour of isotropic PET is simulated and compared to experimental data to demonstrate the applicability of the model to describe the long-term response. The material is modelled as an aggregate of two-phase layered domains, where different constitutive laws are used for the phases. A hybrid interaction law between the domains is adopted. The crystalline phase is modelled with crystal plasticity and the amorphous phase with the Eindhoven Glassy Polymer model, taking into account material ageing effects. Model parameters for the selected constitutive laws of the phases are identified from uniaxial compression tests for fully amorphous material and semicrystalline material. Texture evolution during the deformation predicted by the model adequately matches previously observed texture evolution.

  1. Foam Micromechanics

    SciTech Connect

    Kraynik, A.M.; Neilsen, M.K.; Reinelt, D.A.; Warren, W.E.

    1998-11-03

    Foam evokes many different images: waves breaking at the seashore, the head on a pint of Guinness, an elegant dessert, shaving, the comfortable cushion on which you may be seated... From the mundane to the high tech, foams, emulsions, and cellular solids encompass a broad range of materials and applications. Soap suds, mayonnaise, and foamed polymers provide practical motivation and only hint at the variety of materials at issue. Typical of mukiphase materiaIs, the rheoIogy or mechanical behavior of foams is more complicated than that of the constituent phases alone, which may be gas, liquid, or solid. For example, a soap froth exhibits a static shear modulus-a hallmark of an elastic solid-even though it is composed primarily of two Newtonian fluids (water and air), which have no shear modulus. This apparent paradox is easily resolved. Soap froth contains a small amount of surfactant that stabilizes the delicate network of thin liq- uid films against rupture. The soap-film network deforms in response to a macroscopic strain; this increases interracial area and the corresponding sur- face energy, and provides the strain energy of classical elasticity theory [1]. This physical mechanism is easily imagined but very challenging to quantify for a realistic three-dimensional soap froth in view of its complex geome- try. Foam micromechanics addresses the connection between constituent properties, cell-level structure, and macroscopic mechanical behavior. This article is a survey of micromechanics applied to gas-liquid foams, liquid-liquid emulsions, and cellular solids. We will focus on static response where the foam deformation is very slow and rate-dependent phenomena such as viscous flow can be neglected. This includes nonlinear elasticity when deformations are large but reversible. We will also discuss elastic- plastic behavior, which involves yield phenomena. Foam structures based on polyhedra packed to fill space provide a unify- ing geometrical theme. Because a two

  2. Coronary stent strut size dependent stress-strain response investigated using micromechanical finite element models.

    PubMed

    Savage, P; O'Donnell, B P; McHugh, P E; Murphy, B P; Quinn, D F

    2004-02-01

    Cardiovascular stents are metal scaffolds that are used in the treatment of atherosclerosis. These devices are typically composed of very thin struts (< or = 100 microm thickness, for coronary applications). At this size-scale the question arises as to the suitability of using bulk material properties in stent design. This paper investigates the use of finite element analysis to predict the mechanical failure of stent struts, typical of the strut size used in coronary stents. 316 L stainless steel in uniaxial loading was considered. To accurately represent the constitutive behavior of the material at this size-scale, a computational micromechanics approach was taken involving an explicit representation of the grain structure in the steel struts, and the use of crystal plasticity theory to represent the constitutive behavior of the individual grains. The development of the finite element models is discussed and results are presented for the predictions of tensile mechanical behavior as a function of strut thickness. The results showed that using this modelling approach, a size effect, already seen experimentally, is produced. This has significant implications for stent design, especially in the context of the desire to produce smaller stents for small bore neurovascular and peripheral artery applications. PMID:15008368

  3. A micro-mechanical model to determine changes of collagen fibrils under cyclic loading

    NASA Astrophysics Data System (ADS)

    Chen, Michelle L.; Susilo, Monica E.; Ruberti, Jeffrey A.; Nguyen, Thao D.

    Dynamic mechanical loading induces growth and remodeling in biological tissues. It can alter the degradation rate and intrinsic mechanical properties of collagen through cellular activity. Experiments showed that repeated cyclic loading of a dense collagen fibril substrate increased collagen stiffness and strength, lengthened the substrate, but did not significantly change the fibril areal fraction or fibril anisotropy (Susilo, et al. ``Collagen Network Hardening Following Cyclic Tensile Loading'', Interface Focus, submitted). We developed a model for the collagen fibril substrate (Tonge, et al. ``A micromechanical modeling study of the mechanical stabilization of enzymatic degradation of collagen tissues'', Biophys J, in press.) to probe whether changes in the fibril morphology and mechanical properties can explain the tissue-level properties observed during cyclic loading. The fibrils were modeled as a continuous distribution of wavy elastica, based on experimental measurements of fibril density and collagen anisotropy, and can experience damage after a critical stress threshold. Other mechanical properties in the model were fit to the stress response measured before and after the extended cyclic loading to determine changes in the strength and stiffness of collagen fibrils.

  4. Strain Rate Dependent Deformation and Strength Modeling of a Polymer Matrix Composite Utilizing a Micromechanics Approach. Degree awarded by Cincinnati Univ.

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.

    1999-01-01

    Potential gas turbine applications will expose polymer matrix composites to very high strain rate loading conditions, requiring an ability to understand and predict the material behavior under extreme conditions. Specifically, analytical methods designed for these applications must have the capability of properly capturing the strain rate sensitivities and nonlinearities that are present in the material response. The Ramaswamy-Stouffer constitutive equations, originally developed to analyze the viscoplastic deformation of metals, have been modified to simulate the nonlinear deformation response of ductile, crystalline polymers. The constitutive model is characterized and correlated for two representative ductile polymers. Fiberite 977-2 and PEEK, and the computed results correlate well with experimental values. The polymer constitutive equations are implemented in a mechanics of materials based composite micromechanics model to predict the nonlinear, rate dependent deformation response of a composite ply. Uniform stress and uniform strain assumptions are applied to compute the effective stresses of a composite unit cell from the applied strains. The micromechanics equations are successfully verified for two polymer matrix composites. IM7/977-2 and AS4/PEEK. The ultimate strength of a composite ply is predicted with the Hashin failure criteria that were implemented in the composite micromechanics model. The failure stresses of the two composite material systems are accurately predicted for a variety of fiber orientations and strain rates. The composite deformation model is implemented in LS-DYNA, a commercially available transient dynamic explicit finite element code. The matrix constitutive equations are converted into an incremental form, and the model is implemented into LS-DYNA through the use of a user defined material subroutine. The deformation response of a bulk polymer and a polymer matrix composite are predicted by finite element analyses. The results

  5. Micromechanical Oscillating Mass Balance

    NASA Technical Reports Server (NTRS)

    Altemir, David A. (Inventor)

    1997-01-01

    A micromechanical oscillating mass balance and method adapted for measuring minute quantities of material deposited at a selected location, such as during a vapor deposition process. The invention comprises a vibratory composite beam which includes a dielectric layer sandwiched between two conductive layers. The beam is positioned in a magnetic field. An alternating current passes through one conductive layers, the beam oscillates, inducing an output current in the second conductive layer, which is analyzed to determine the resonant frequency of the beam. As material is deposited on the beam, the mass of the beam increases and the resonant frequency of the beam shifts, and the mass added is determined.

  6. Micromechanical Study of Metals

    NASA Technical Reports Server (NTRS)

    Velikov, P. A.; Stchapov, N. P.; Lorenz, W. F.

    1945-01-01

    The Institut Scientifique Experimental des Transports at Moscow established toward the end of 1925 had since its inception included in its program the study of the mechanism of plastic deformation and the problems associated with it with reference to the materials of the means of transport. Before the program thus determined upon could be carried out, it was necessary to adopt a method of research, or, more exactly, a system of such methods. Because of the modest equipment of the laboratory of the recently established institute, the choice of any particular method was determined not only by the advantages it offered but also by the resources available. As a result of a series of studies and investigations, a method was determined upon which in this paper will be denoted as the micromechanical method. The underlying basis of this method is already known. As will be seen from the description that follows, the micromechanical method is merely a combination of the micrographic study of plastic deformations with mechanical tests on small specimens. It is a well-known fact that a number of investigators have largely employed and still are employing these two procedures and have thereby obtained good results. The authors of the present paper have found it useful to combine the two methods, by making the two studies simultaneously on the sane specimen.

  7. Strain Determination Using Electron Backscatter Diffraction

    SciTech Connect

    Krause, M.; Graff, A.; Altmann, F.

    2010-11-24

    In the present paper we demonstrate the use of electron backscatter diffraction (EBSD) for high resolution elastic strain determination. Here, we focus on analysis methods based on determination of small shifts in EBSD pattern with respect to a reference pattern using cross-correlation algorithms. Additionally we highlight the excellent spatial and depth resolution of EBSD and introduce the use of simulated diffraction patterns based on dynamical diffraction theory for sensitivity estimation. Moreover the potential of EBSD for strain analysis of strained thin films with particular emphasis on appropriate target preparation which respect to occurring lattice defects is demonstrated.

  8. Micromechanics of shear banding

    SciTech Connect

    Gilman, J.J.

    1992-08-01

    Shear-banding is one of many instabilities observed during the plastic flow of solids. It is a consequence of the dislocation mechanism which makes plastic flow fundamentally inhomogeneous, and is exacerbated by local adiabatic heating. Dislocation lines tend to be clustered on sets of neighboring glide planes because they are heterogeneously generated; especially through the Koehler multiple-cross-glide mechanism. Factors that influence their mobilities also play a role. Strain-hardening decreases the mobilities within shear bands thereby tending to spread (delocalize) them. Strain-softening has the inverse effect. This paper reviews the micro-mechanisms of these phenomena. It will be shown that heat production is also a consequence of the heterogeneous nature of the microscopic flow, and that dislocation dipoles play an important role. They are often not directly observable, but their presence may be inferred from changes in thermal conductivity. It is argued that after deformation at low temperatures dipoles are distributed a la Pareto so there are many more small than large ones. Instability at upper yield point, the shapes of shear-band fronts, and mechanism of heat generation are also considered. It is shown that strain-rate acceleration plays a more important role than strain-rate itself in adiabatic instability.

  9. Micromechanics and poroelasticity of hydrated cellulose networks.

    PubMed

    Lopez-Sanchez, P; Rincon, Mauricio; Wang, D; Brulhart, S; Stokes, J R; Gidley, M J

    2014-06-01

    The micromechanics of cellulose hydrogels have been investigated using a new rheological experimental approach, combined with simulation using a poroelastic constitutive model. A series of mechanical compression steps at different strain rates were performed as a function of cellulose hydrogel thickness, combined with small amplitude oscillatory shear after each step to monitor the viscoelasticity of the sample. During compression, bacterial cellulose hydrogels behaved as anisotropic materials with near zero Poisson's ratio. The micromechanics of the hydrogels altered with each compression as water was squeezed out of the structure, and microstructural changes were strain rate-dependent, with increased densification of the cellulose network and increased cellulose fiber aggregation observed for slower compressive strain rates. A transversely isotropic poroelastic model was used to explain the observed micromechanical behavior, showing that the mechanical properties of cellulose networks in aqueous environments are mainly controlled by the rate of water movement within the structure. PMID:24784575

  10. Micromechanical damage and fracture in elastomeric polymers

    NASA Astrophysics Data System (ADS)

    Heyden, Stefanie

    This thesis aims at a simple one-parameter macroscopic model of distributed damage and fracture of polymers that is amenable to a straightforward and efficient numerical implementation. The failure model is motivated by post-mortem fractographic observations of void nucleation, growth and coalescence in polyurea stretched to failure, and accounts for the specific fracture energy per unit area attendant to rupture of the material. Furthermore, it is shown that the macroscopic model can be rigorously derived, in the sense of optimal scaling, from a micromechanical model of chain elasticity and failure regularized by means of fractional strain-gradient elasticity. Optimal scaling laws that supply a link between the single parameter of the macroscopic model, namely the critical energy-release rate of the material, and micromechanical parameters pertaining to the elasticity and strength of the polymer chains, and to the strain-gradient elasticity regularization, are derived. Based on optimal scaling laws, it is shown how the critical energy-release rate of specific materials can be determined from test data. In addition, the scope and fidelity of the model is demonstrated by means of an example of application, namely Taylor-impact experiments of polyurea rods. Hereby, optimal transportation meshfree approximation schemes using maximum-entropy interpolation functions are employed. Finally, a different crazing model using full derivatives of the deformation gradient and a core cut-off is presented, along with a numerical non-local regularization model. The numerical model takes into account higher-order deformation gradients in a finite element framework. It is shown how the introduction of non-locality into the model stabilizes the effect of strain localization to small volumes in materials undergoing softening. From an investigation of craze formation in the limit of large deformations, convergence studies verifying scaling properties of both local- and non-local energy

  11. Compound floating pivot micromechanisms

    DOEpatents

    Garcia, Ernest J.

    2001-04-24

    A new class of tilting micromechanical mechanisms have been developed. These new mechanisms use compound floating pivot structures to attain far greater tilt angles than are practical using other micromechanical techniques. The new mechanisms are also capable of bi-directional tilt about multiple axes.

  12. Micromechanics of cellularized biopolymer networks

    PubMed Central

    Jones, Christopher A. R.; Cibula, Matthew; Feng, Jingchen; Krnacik, Emma A.; McIntyre, David H.; Levine, Herbert; Sun, Bo

    2015-01-01

    Collagen gels are widely used in experiments on cell mechanics because they mimic the extracellular matrix in physiological conditions. Collagen gels are often characterized by their bulk rheology; however, variations in the collagen fiber microstructure and cell adhesion forces cause the mechanical properties to be inhomogeneous at the cellular scale. We study the mechanics of type I collagen on the scale of tens to hundreds of microns by using holographic optical tweezers to apply pN forces to microparticles embedded in the collagen fiber network. We find that in response to optical forces, particle displacements are inhomogeneous, anisotropic, and asymmetric. Gels prepared at 21 °C and 37 °C show qualitative difference in their micromechanical characteristics. We also demonstrate that contracting cells remodel the micromechanics of their surrounding extracellular matrix in a strain- and distance-dependent manner. To further understand the micromechanics of cellularized extracellular matrix, we have constructed a computational model which reproduces the main experiment findings. PMID:26324923

  13. Micromechanisms with floating pivot

    DOEpatents

    Garcia, Ernest J.

    2001-03-06

    A new class of tilting micromechanical mechanisms have been developed. These new mechanisms use floating pivot structures to relieve some of the problems encountered in the use of solid flexible pivots.

  14. Delamination micromechanics analysis

    NASA Technical Reports Server (NTRS)

    Adams, D. F.; Mahishi, J. M.

    1985-01-01

    A three-dimensional finite element analysis was developed which includes elastoplastic, orthotropic material response, and fracture initiation and propagation. Energy absorption due to physical failure processes characteristic of the heterogeneous and anisotropic nature of composite materials is modeled. A local energy release rate in the presence of plasticity was defined and used as a criterion to predict the onset and growth of cracks in both micromechanics and macromechanics analyses. This crack growth simulation technique is based upon a virtual crack extension method. A three-dimensional finite element micromechanics model is used to study the effects of broken fibers, cracked matrix and fiber-matrix debond on the fracture toughness of the unidirectional composite. The energy release rates at the onset of unstable crack growth in the micromechanics analyses are used as critical energy release rates in the macromechanics analysis. This integrated micromechanical and macromechanical fracture criterion is shown to be very effective in predicting the onset and growth of cracks in general multilayered composite laminates by applying the criterion to a single-edge notched graphite/epoxy laminate subjected to implane tension normal to the notch.

  15. Critique of Macro Flow/Damage Surface Representations for Metal Matrix Composites Using Micromechanics

    NASA Technical Reports Server (NTRS)

    Lissenden, Cliff J.; Arnold, Steven M.

    1996-01-01

    Guidance for the formulation of robust, multiaxial, constitutive models for advanced materials is provided by addressing theoretical and experimental issues using micromechanics. The multiaxial response of metal matrix composites, depicted in terms of macro flow/damage surfaces, is predicted at room and elevated temperatures using an analytical micromechanical model that includes viscoplastic matrix response as well as fiber-matrix debonding. Macro flow/damage surfaces (i.e., debonding envelopes, matrix threshold surfaces, macro 'yield' surfaces, surfaces of constant inelastic strain rate, and surfaces of constant dissipation rate) are determined for silicon carbide/titanium in three stress spaces. Residual stresses are shown to offset the centers of the flow/damage surfaces from the origin and their shape is significantly altered by debonding. The results indicate which type of flow/damage surfaces should be characterized and what loadings applied to provide the most meaningful experimental data for guiding theoretical model development and verification.

  16. Neural Networks and Micromechanics

    NASA Astrophysics Data System (ADS)

    Kussul, Ernst; Baidyk, Tatiana; Wunsch, Donald C.

    The title of the book, "Neural Networks and Micromechanics," seems artificial. However, the scientific and technological developments in recent decades demonstrate a very close connection between the two different areas of neural networks and micromechanics. The purpose of this book is to demonstrate this connection. Some artificial intelligence (AI) methods, including neural networks, could be used to improve automation system performance in manufacturing processes. However, the implementation of these AI methods within industry is rather slow because of the high cost of conducting experiments using conventional manufacturing and AI systems. To lower the cost, we have developed special micromechanical equipment that is similar to conventional mechanical equipment but of much smaller size and therefore of lower cost. This equipment could be used to evaluate different AI methods in an easy and inexpensive way. The proved methods could be transferred to industry through appropriate scaling. In this book, we describe the prototypes of low cost microequipment for manufacturing processes and the implementation of some AI methods to increase precision, such as computer vision systems based on neural networks for microdevice assembly and genetic algorithms for microequipment characterization and the increase of microequipment precision.

  17. A Micromechanical RF Channelizer

    NASA Astrophysics Data System (ADS)

    Akgul, Mehmet

    The power consumption of a radio generally goes as the number and strength of the RF signals it must process. In particular, a radio receiver would consume much less power if the signal presented to its electronics contained only the desired signal in a tiny percent bandwidth frequency channel, rather than the typical mix of signals containing unwanted energy outside the desired channel. Unfortunately, a lack of filters capable of selecting single channel bandwidths at RF forces the front-ends of contemporary receivers to accept unwanted signals, and thus, to operate with sub-optimal efficiency. This dissertation focuses on the degree to which capacitive-gap transduced micromechanical resonators can achieve the aforementioned RF channel-selecting filters. It aims to first show theoretically that with appropriate scaling capacitive-gap transducers are strong enough to meet the needed coupling requirements; and second, to fully detail an architecture and design procedure needed to realize said filters. Finally, this dissertation provides an actual experimentally demonstrated RF channel-select filter designed using the developed procedures and confirming theoretical predictions. Specifically, this dissertation introduces four methods that make possible the design and fabrication of RF channel-select filters. The first of these introduces a small-signal equivalent circuit for parallel-plate capacitive-gap transduced micromechanical resonators that employs negative capacitance to model the dependence of resonance frequency on electrical stiffness in a way that facilitates the analysis of micromechanical circuits loaded with arbitrary electrical impedances. The new circuit model not only correctly predicts the dependence of electrical stiffness on the impedances loading the input and output electrodes of parallel-plate capacitive-gap transduced micromechanical device, but does so in a visually intuitive way that identifies current drive as most appropriate for

  18. Micromechanics of hearing

    NASA Astrophysics Data System (ADS)

    Hudspeth, A. J.

    2015-12-01

    The following summarizes the key points addressed during a tutorial session on the Micromechanics of Hearing that took place at the 12th International Workshop on the Mechanics of Hearing held at Cape Sounio, Greece, in June 2014. The tutorial was intended to present an overview of basic ideas and to address topics of current interest relevant to the Workshop. The session was recorded, and the audio file and accompanying visual content of the presentation can be found in the Mechanics of Hearing Digital Library (www.mechanicsofhearing.org).

  19. Micromechanical uncooled photon detectors

    NASA Astrophysics Data System (ADS)

    Datskos, Panos G.

    2000-04-01

    Recent advances in micro-electro-mechanical systems (MEMS) have led to the development of uncooled IR detectors operate as micromechanical thermal detectors or micromechanical quantum detectors. We report on a new method for photon detection using electronic stresses in semiconductor microstructures. Photo-induced stress in semiconductor microstructures, is caused by changes in the charge carrier density in the conduction band and photon detection results from the measurement of the photon-induced bending of semiconductor microstructures. Small changes in position of microstructures are routinely measured in atomic force microscopy where atomic imaging of surfaces relies on the measurement of small changes in the bending of microcantilevers. Changes in the conduction band charge carrier density can result either from direct photo- generation of free charge carriers or from photoelectrons emitted from thin metal film surface in contact with a semiconductor microstructure which forms a Schottky barrier. In our studies we investigated three systems: (i) Si microstructures, (ii) InSb microstructures and (iii) Si microstructures coated with a thin excess electron-hole- pairs while for InSb photo-induced stress causes the crystal lattice to expand. We will present our results and discuss our findings.

  20. Micromechanical poroelastic finite element and shear-lag models of tendon predict large strain dependent Poisson's ratios and fluid expulsion under tensile loading.

    PubMed

    Ahmadzadeh, Hossein; Freedman, Benjamin R; Connizzo, Brianne K; Soslowsky, Louis J; Shenoy, Vivek B

    2015-08-01

    As tendons are loaded, they reduce in volume and exude fluid to the surrounding medium. Experimental studies have shown that tendon stretching results in a Poisson's ratio greater than 0.5, with a maximum value at small strains followed by a nonlinear decay. Here we present a computational model that attributes this macroscopic observation to the microscopic mechanism of the load transfer between fibrils under stretch. We develop a finite element model based on the mechanical role of the interfibrillar-linking elements, such as thin fibrils that bridge the aligned fibrils or macromolecules such as glycosaminoglycans (GAGs) in the interfibrillar sliding and verify it with a theoretical shear-lag model. We showed the existence of a previously unappreciated structure-function mechanism whereby the Poisson's ratio in tendon is affected by the strain applied and interfibrillar-linker properties, and together these features predict tendon volume shrinkage under tensile loading. During loading, the interfibrillar-linkers pulled fibrils toward each other and squeezed the matrix, leading to the Poisson's ratio larger than 0.5 and fluid expulsion. In addition, the rotation of the interfibrillar-linkers with respect to the fibrils at large strains caused a reduction in the volume shrinkage and eventual nonlinear decay in Poisson's ratio at large strains. Our model also predicts a fluid flow that has a radial pattern toward the surrounding medium, with the larger fluid velocities in proportion to the interfibrillar sliding. PMID:25934322

  1. A numerical method for determining the strain rate intensity factor under plane strain conditions

    NASA Astrophysics Data System (ADS)

    Alexandrov, S.; Kuo, C.-Y.; Jeng, Y.-R.

    2016-07-01

    Using the classical model of rigid perfectly plastic solids, the strain rate intensity factor has been previously introduced as the coefficient of the leading singular term in a series expansion of the equivalent strain rate in the vicinity of maximum friction surfaces. Since then, many strain rate intensity factors have been determined by means of analytical and semi-analytical solutions. However, no attempt has been made to develop a numerical method for calculating the strain rate intensity factor. This paper presents such a method for planar flow. The method is based on the theory of characteristics. First, the strain rate intensity factor is derived in characteristic coordinates. Then, a standard numerical slip-line technique is supplemented with a procedure to calculate the strain rate intensity factor. The distribution of the strain rate intensity factor along the friction surface in compression of a layer between two parallel plates is determined. A high accuracy of this numerical solution for the strain rate intensity factor is confirmed by comparison with an analytic solution. It is shown that the distribution of the strain rate intensity factor is in general discontinuous.

  2. Composite micromechanical modeling using the boundary element method

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Hopkins, Dale A.

    1993-01-01

    The use of the boundary element method for analyzing composite micromechanical behavior is demonstrated. Stress-strain, heat conduction, and thermal expansion analyses are conducted using the boundary element computer code BEST-CMS, and the results obtained are compared to experimental observations, analytical calculations, and finite element analyses. For each of the analysis types, the boundary element results agree reasonably well with the results from the other methodologies, with explainable discrepancies. Overall, the boundary element method shows promise in providing an alternative method to analyze composite micromechanical behavior.

  3. A Micromechanical RF Channelizer

    NASA Astrophysics Data System (ADS)

    Akgul, Mehmet

    The power consumption of a radio generally goes as the number and strength of the RF signals it must process. In particular, a radio receiver would consume much less power if the signal presented to its electronics contained only the desired signal in a tiny percent bandwidth frequency channel, rather than the typical mix of signals containing unwanted energy outside the desired channel. Unfortunately, a lack of filters capable of selecting single channel bandwidths at RF forces the front-ends of contemporary receivers to accept unwanted signals, and thus, to operate with sub-optimal efficiency. This dissertation focuses on the degree to which capacitive-gap transduced micromechanical resonators can achieve the aforementioned RF channel-selecting filters. It aims to first show theoretically that with appropriate scaling capacitive-gap transducers are strong enough to meet the needed coupling requirements; and second, to fully detail an architecture and design procedure needed to realize said filters. Finally, this dissertation provides an actual experimentally demonstrated RF channel-select filter designed using the developed procedures and confirming theoretical predictions. Specifically, this dissertation introduces four methods that make possible the design and fabrication of RF channel-select filters. The first of these introduces a small-signal equivalent circuit for parallel-plate capacitive-gap transduced micromechanical resonators that employs negative capacitance to model the dependence of resonance frequency on electrical stiffness in a way that facilitates the analysis of micromechanical circuits loaded with arbitrary electrical impedances. The new circuit model not only correctly predicts the dependence of electrical stiffness on the impedances loading the input and output electrodes of parallel-plate capacitive-gap transduced micromechanical device, but does so in a visually intuitive way that identifies current drive as most appropriate for

  4. Probabilistic Fiber Composite Micromechanics

    NASA Technical Reports Server (NTRS)

    Stock, Thomas A.

    1996-01-01

    Probabilistic composite micromechanics methods are developed that simulate expected uncertainties in unidirectional fiber composite properties. These methods are in the form of computational procedures using Monte Carlo simulation. The variables in which uncertainties are accounted for include constituent and void volume ratios, constituent elastic properties and strengths, and fiber misalignment. A graphite/epoxy unidirectional composite (ply) is studied to demonstrate fiber composite material property variations induced by random changes expected at the material micro level. Regression results are presented to show the relative correlation between predictor and response variables in the study. These computational procedures make possible a formal description of anticipated random processes at the intra-ply level, and the related effects of these on composite properties.

  5. Micromechanics of fracturing in nanoceramics

    PubMed Central

    Ovid'ko, I. A.

    2015-01-01

    An overview of key experimental data and theoretical representations on fracture processes in nanoceramics is presented. The focuses are placed on crack growth in nanoceramics and their toughening micromechanics. Conventional toughening micromechanisms are discussed which effectively operate in both microcrystalline-matrix ceramics containing nanoinclusions and nanocrystalline-matrix ceramics. Particular attention is devoted to description of special (new) toughening micromechanisms related to nanoscale deformation occurring near crack tips in nanocrystalline-matrix ceramics. In addition, a new strategy for pronounced improvement of fracture toughness of ceramic materials through fabrication of ceramic–graphene nanocomposites is considered. Toughening micromechanisms are discussed which operate in such nanocomposites containing graphene platelets and/or few-layer sheets. PMID:25713442

  6. Micromechanics of fracturing in nanoceramics.

    PubMed

    Ovid'ko, I A

    2015-03-28

    An overview of key experimental data and theoretical representations on fracture processes in nanoceramics is presented. The focuses are placed on crack growth in nanoceramics and their toughening micromechanics. Conventional toughening micromechanisms are discussed which effectively operate in both microcrystalline-matrix ceramics containing nanoinclusions and nanocrystalline-matrix ceramics. Particular attention is devoted to description of special (new) toughening micromechanisms related to nanoscale deformation occurring near crack tips in nanocrystalline-matrix ceramics. In addition, a new strategy for pronounced improvement of fracture toughness of ceramic materials through fabrication of ceramic-graphene nanocomposites is considered. Toughening micromechanisms are discussed which operate in such nanocomposites containing graphene platelets and/or few-layer sheets. PMID:25713442

  7. A Micromechanical INS/GPS System for Small Satellites

    NASA Technical Reports Server (NTRS)

    Barbour, N.; Brand, T.; Haley, R.; Socha, M.; Stoll, J.; Ward, P.; Weinberg, M.

    1995-01-01

    The cost and complexity of large satellite space missions continue to escalate. To reduce costs, more attention is being directed toward small lightweight satellites where future demand is expected to grow dramatically. Specifically, micromechanical inertial systems and microstrip global positioning system (GPS) antennas incorporating flip-chip bonding, application specific integrated circuits (ASIC) and MCM technologies will be required. Traditional microsatellite pointing systems do not employ active control. Many systems allow the satellite to point coarsely using gravity gradient, then attempt to maintain the image on the focal plane with fast-steering mirrors. Draper's approach is to actively control the line of sight pointing by utilizing on-board attitude determination with micromechanical inertial sensors and reaction wheel control actuators. Draper has developed commercial and tactical-grade micromechanical inertial sensors, The small size, low weight, and low cost of these gyroscopes and accelerometers enable systems previously impractical because of size and cost. Evolving micromechanical inertial sensors can be applied to closed-loop, active control of small satellites for micro-radian precision-pointing missions. An inertial reference feedback control loop can be used to determine attitude and line of sight jitter to provide error information to the controller for correction. At low frequencies, the error signal is provided by GPS. At higher frequencies, feedback is provided by the micromechanical gyros. This blending of sensors provides wide-band sensing from dc to operational frequencies. First order simulation has shown that the performance of existing micromechanical gyros, with integrated GPS, is feasible for a pointing mission of 10 micro-radians of jitter stability and approximately 1 milli-radian absolute error, for a satellite with 1 meter antenna separation. Improved performance micromechanical sensors currently under development will be

  8. Micromechanics and anatomical changes during early ontogeny of two lianescent Aristolochia species.

    PubMed

    Köhler, L; Speck, T; Spatz, H C

    2000-04-01

    The mechanical properties of young stems of Aristolochia macrophylla Lam. and Aristolochia brasiliensis Mart. et Zucc. were studied during elongation growth and primary differentiation. Data for the modulus of elasticity, for the viscoelastic behaviour caused by longitudinal tension and for the shear modulus resulting from torsion around a longitudinal axis were related to the underlying structural changes by quantitative analysis of stem anatomy, tissue distribution, ultrastructure, and cell wall biochemistry. The orientation of cellulose microfibrils was determined by light microscopy and small-angle X-ray diffraction, and the lignin content was determined by thioglycolic acid derivatization and spectroscopic quantification. It was demonstrated that the increase in stability during early development is due to the complementary effects of increase in cell wall material, lignification, and cellulose microfibril alignment. A detailed micromechanical model, considering internal prestresses, is proposed to explain the characteristic biphasic stress-strain behaviour as well as the strain-hardening observed. PMID:10805439

  9. Micromechanics of Drosophila Audition

    NASA Astrophysics Data System (ADS)

    Göpfert, M. C.; Robert, D.

    2003-02-01

    An analysis is presented of the auditory micromechanics of the fruit fly Drosophila melanogaster. In this animal, the distal part of the antenna constitutes a resonantly tuned sound receiver, the vibrations of which are transduced by a chordotonal sense organ in the antenna's base. Analyzing the mechanical behavior of the antennal receiver by means of microscanning laser Doppler vibrometry, we show that the auditory system of wild-type flies exhibits a hardening stiffness nonlinearity and spontaneously generates oscillations in the absence of external stimuli. According to the deprivation of these mechanical properties in mechanosensory mutants, the receiver's nonlinearity and oscillation activity are introduced by chordotonal auditory neurons. Requiring the mechanoreceptor-specific extracellular linker protein No-mechanoreceptor-potential-A (NompA), NompC mechanosensory transduction channels, Beethoven (Btv), and Touch-insensitive-larva-B (TilB), nonlinearity and oscillation activity of the fly's antennal receiver depend on prominent components of the auditory transduction machinery and seem to originate from motility of auditory receptor cilia.

  10. Micromechanics for particulate reinforced composites

    NASA Technical Reports Server (NTRS)

    Murthy, Pappu L. N.; Goldberg, Robert K.; Mital, Subodh K.

    1996-01-01

    A set of micromechanics equations for the analysis of particulate reinforced composites is developed using the mechanics of materials approach. Simplified equations are used to compute homogenized or equivalent thermal and mechanical properties of particulate reinforced composites in terms of the properties of the constituent materials. The microstress equations are also presented here to decompose the applied stresses on the overall composite to the microstresses in the constituent materials. The properties of a 'generic' particulate composite as well as those of a particle reinforced metal matrix composite are predicted and compared with other theories as well as some experimental data. The micromechanics predictions are in excellent agreement with the measured values.

  11. Micromechanics Analysis Code (MAC). User Guide: Version 2.0

    NASA Technical Reports Server (NTRS)

    Wilt, T. E.; Arnold, S. M.

    1996-01-01

    The ability to accurately predict the thermomechanical deformation response of advanced composite materials continues to play an important role in the development of these strategic materials. Analytical models that predict the effective behavior of composites are used not only by engineers performing structural analysis of large-scale composite components but also by material scientists in developing new material systems. For an analytical model to fulfill these two distinct functions it must be based on a micromechanics approach which utilizes physically based deformation and life constitutive models and allows one to generate the average (macro) response of a composite material given the properties of the individual constituents and their geometric arrangement. Here the user guide for the recently developed, computationally efficient and comprehensive micromechanics analysis code's (MAC) who's predictive capability rests entirely upon the fully analytical generalized method of cells (GMC), micromechanics model is described. MAC is a versatile form of research software that 'drives' the double or triply periodic micromechanics constitutive models based upon GMC. MAC enhances the basic capabilities of GMC by providing a modular framework wherein (1) various thermal, mechanical (stress or strain control) and thermomechanical load histories can be imposed, (2) different integration algorithms may be selected, (3) a variety of constituent constitutive models may be utilized and/or implemented, and (4) a variety of fiber and laminate architectures may be easily accessed through their corresponding representative volume elements.

  12. Micromechanics Analysis Code (MAC) User Guide: Version 1.0

    NASA Technical Reports Server (NTRS)

    Wilt, T. E.; Arnold, S. M.

    1994-01-01

    The ability to accurately predict the thermomechanical deformation response of advanced composite materials continues to play an important role in the development of these strategic materials. Analytical models that predict the effective behavior of composites are used not only by engineers performing structural analysis of large-scale composite components but also by material scientists in developing new material systems. For an analytical model to fulfill these two distinct functions it must be based on a micromechanics approach which utilizes physically based deformation and life constitutive models and allows one to generate the average (macro) response of a composite material given the properties of the individual constituents and their geometric arrangement. Here the user guide for the recently developed, computationally efficient and comprehensive micromechanics analysis code, MAC, who's predictive capability rests entirely upon the fully analytical generalized method of cells, GMC, micromechanics model is described. MAC is a versatile form of research software that 'drives' the double or triple ply periodic micromechanics constitutive models based upon GMC. MAC enhances the basic capabilities of GMC by providing a modular framework wherein (1) various thermal, mechanical (stress or strain control), and thermomechanical load histories can be imposed; (2) different integration algorithms may be selected; (3) a variety of constituent constitutive models may be utilized and/or implemented; and (4) a variety of fiber architectures may be easily accessed through their corresponding representative volume elements.

  13. A micromechanical theory of grain-size dependence in metal plasticity

    NASA Astrophysics Data System (ADS)

    Weng, G. J.

    T HE EFFECT of grain-size on the elastoplastic behavior of metals is investigated from the micromechanics standpoint. First, based on the observations that dislocation pile-ups, formation of cell structures, and other inelastic activities influenced by the presence of grain boundary actually take place transcrystallinely, a grain-size dependent constitutive equation is proposed for the slip deformation of slip systems. By means of a modified Hill's self-consistent relation the local stress of a grain is calculated, and used in conjunction with this constitutive equation to evaluate the plastic strain of each constituent grain. The grain-size effect on the plastic flow of polycrystals then can be determined by an averaging process. To check the validity of the proposed theory it was finally applied to predict the stress-strain curves and flow stresses of a copper at various grain-sizes. The obtained results were found to be in good agreement with experimental data.

  14. In-situ scanning electron microscopy and atomic force microscopy Young's modulus determination of indium oxide microrods for micromechanical resonator applications

    SciTech Connect

    Bartolomé, Javier; Hidalgo, Pedro; Maestre, David; Cremades, Ana Piqueras, Javier

    2014-04-21

    Electric field induced mechanical resonances of In{sub 2}O{sub 3} microrods are studied by in-situ measurements in the chamber of a scanning electron microscope. Young's moduli of rods with different cross-sectional shapes are calculated from the resonance frequency, and a range of values between 131 and 152 GPa are obtained. A quality factor of 1180–3780 is measured from the amplitude-frequency curves, revealing the suitability of In{sub 2}O{sub 3} microrods as micromechanical resonators. The Young's modulus, E, of one of the rods is also measured from the elastic response in the force-displacement curve recorded in an atomic force microscope. E values obtained by in-situ scanning electron microscopy and by atomic force microscopy are found to differ in about 8%. The results provide data on Young's modulus of In{sub 2}O{sub 3} and confirm the suitability of in-situ scanning electron microscopy mechanical resonance measurements to investigate the elastic behavior of semiconductor microrods.

  15. The physical basis of how prion conformations determine strain phenotypes

    NASA Astrophysics Data System (ADS)

    Tanaka, Motomasa; Collins, Sean R.; Toyama, Brandon H.; Weissman, Jonathan S.

    2006-08-01

    A principle that has emerged from studies of protein aggregation is that proteins typically can misfold into a range of different aggregated forms. Moreover, the phenotypic and pathological consequences of protein aggregation depend critically on the specific misfolded form. A striking example of this is the prion strain phenomenon, in which prion particles composed of the same protein cause distinct heritable states. Accumulating evidence from yeast prions such as [PSI+] and mammalian prions argues that differences in the prion conformation underlie prion strain variants. Nonetheless, it remains poorly understood why changes in the conformation of misfolded proteins alter their physiological effects. Here we present and experimentally validate an analytical model describing how [PSI+] strain phenotypes arise from the dynamic interaction among the effects of prion dilution, competition for a limited pool of soluble protein, and conformation-dependent differences in prion growth and division rates. Analysis of three distinct prion conformations of yeast Sup35 (the [PSI+] protein determinant) and their in vivo phenotypes reveals that the Sup35 amyloid causing the strongest phenotype surprisingly shows the slowest growth. This slow growth, however, is more than compensated for by an increased brittleness that promotes prion division. The propensity of aggregates to undergo breakage, thereby generating new seeds, probably represents a key determinant of their physiological impact for both infectious (prion) and non-infectious amyloids.

  16. Micromechanical Analyses of Sturzstroms

    NASA Astrophysics Data System (ADS)

    Imre, Bernd; Laue, Jan; Springman, Sarah M.

    2010-05-01

    have been made observable and reproducible within a physical and a distinct element numerical modelling environment (DEM). As link between field evidence gained from the deposits of natural sturzstroms, the physical model within the ETH Geotechnical Drum Centrifuge (Springman et al., 2001) and the numerical model PFC-3D (Cundall and Strack, 1979; Itasca, 2005), serves a deterministic fractal analytical comminution model (Sammis et al., 1987; Steacy and Sammis, 1991). This approach allowed studying the effects of dynamic fragmentation within sturzstroms at true (macro) scale within the distinct element model, by allowing for a micro-mechanical, distinct particle based, and cyclic description of fragmentation at the same time, without losing significant computational efficiency. Theses experiments indicate rock mass and boundary conditions, which allow an alternating fragmenting and dilating dispersive regime to evolve and to be sustained long enough to replicate the spreading and run out of sturzstroms. The fragmenting spreading model supported here is able to explain the run out of a dry granular flow, beyond the travel distance predicted by a Coulomb frictional sliding model, without resorting to explanations by mechanics that can only be valid for certain, specific of the boundary conditions. The implications derived suggest that a sturzstrom, because of its strong relation to internal fractal fragmentation and other inertial effects, constitutes a landslide category of its own. Its mechanics differ significantly from all other gravity driven mass flows. This proposition does not exclude the possible appearance of frictionites, Toma hills or suspension flows etc., but it considers them as secondary features. The application of a fractal comminution model to describe natural and experimental sturzstrom deposits turned out to be a useful tool for sturzstrom research. Implemented within the DEM, it allows simulating the key features of sturzstrom successfully and

  17. Micromechanics of ambient temperature cyclic fatigue loading in a composite of CAS glass ceramic reinforced with Nicalon fibers

    SciTech Connect

    Rousseau, C.Q.; Davidson, D.L.; Campbell, J.B. )

    1994-04-01

    The behavior of a Nicalon fiber reinforced glass ceramic composite cyclicly loaded has been evaluated at ambient temperature using high-resolution micromechanical test methods. On this basis, the events leading to fracture have been found to be similar to those accompanying fracture in unidirectional tension tests. Matrix strains were determined locally at the point of matrix fracture. Crack opening displacements (CODs) were measured as a function of loading cycles, and fiber strains were determined, in some cases. It is concluded that debonding of fibers begins at the point of matrix cracking and rapidly increases. Most of the cyclic lifetime of the material is spent with fibers debonded over large distances (fractions of a millimeter); these fibers are pulled out of the matrix on each loading cycle. Final debond length, as determined by fractography, is a function of the number of cycles to fracture, and of the applied stress level. 23 refs.

  18. Strain Gage Measurement System to Determine Cryogenic Propellant Tank Level

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando; St.Cyr, William W.; VanDyke, David; McVay, Greg; Mitchell, Mark; Langford, Lester

    2003-01-01

    Measurement of tank level, particularly for cryogenic propellants, has proven to be a difficult proposition. Current methods based on differential pressure, capacitance sensors, temperature sensors, etc.; do not provide sufficiently accurate or robust measurements, especially at run time. This paper describes a simple, but effective method to determine propellant volume by measuring very small deformations of the structure supporting the tank. Results of a laboratory study to validate the method, and experimental data from a deployed system are presented. A comparison with an existing differential pressure sensor shows that the strain gage system provides a very good quality signal even during pressurization.

  19. An electrostatically rebalanced micromechanical accelerometer

    NASA Astrophysics Data System (ADS)

    Boxenhorn, Burton; Greiff, Paul

    The design and test performance of a low-cost micromechanical accelerometer (MA) with integral electrodes, developed for use with the vibratory micromechanical gyro described by Boxenhorn and Greiff (1988), are reported. The MA is a monolithic Si device of size 300 x 600 microns and comprises a torsional pendulum with capacitive readout and an electrostatic torquer. Data from 360-deg sweep tests performed in a g-field are presented in tables and graphs and discussed in detail. Results include bandwidth about 1 Hz, scale-factor error 480 ppm, stable bias of 260 microg over 203 min, and temperature effect 2100 microg/C on bias and -123 ppm/C on scale factor.

  20. Micromechanical Analyses of Sturzstroms

    NASA Astrophysics Data System (ADS)

    Imre, Bernd; Laue, Jan; Springman, Sarah M.

    2010-05-01

    have been made observable and reproducible within a physical and a distinct element numerical modelling environment (DEM). As link between field evidence gained from the deposits of natural sturzstroms, the physical model within the ETH Geotechnical Drum Centrifuge (Springman et al., 2001) and the numerical model PFC-3D (Cundall and Strack, 1979; Itasca, 2005), serves a deterministic fractal analytical comminution model (Sammis et al., 1987; Steacy and Sammis, 1991). This approach allowed studying the effects of dynamic fragmentation within sturzstroms at true (macro) scale within the distinct element model, by allowing for a micro-mechanical, distinct particle based, and cyclic description of fragmentation at the same time, without losing significant computational efficiency. Theses experiments indicate rock mass and boundary conditions, which allow an alternating fragmenting and dilating dispersive regime to evolve and to be sustained long enough to replicate the spreading and run out of sturzstroms. The fragmenting spreading model supported here is able to explain the run out of a dry granular flow, beyond the travel distance predicted by a Coulomb frictional sliding model, without resorting to explanations by mechanics that can only be valid for certain, specific of the boundary conditions. The implications derived suggest that a sturzstrom, because of its strong relation to internal fractal fragmentation and other inertial effects, constitutes a landslide category of its own. Its mechanics differ significantly from all other gravity driven mass flows. This proposition does not exclude the possible appearance of frictionites, Toma hills or suspension flows etc., but it considers them as secondary features. The application of a fractal comminution model to describe natural and experimental sturzstrom deposits turned out to be a useful tool for sturzstrom research. Implemented within the DEM, it allows simulating the key features of sturzstrom successfully and

  1. Micromechanics Analysis Code (MAC) Developed

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The ability to accurately predict the thermomechanical deformation response of advanced composite materials continues to play an important role in the development of these strategic materials. Analytical models that predict the effective behavior of composites are used not only by engineers in performing structural analysis of large-scale composite components but also by material scientists in developing new material systems. For an analytical model to fulfill these two distinct functions, it must be based on a micromechanics approach that uses physically based deformation and life constitutive models, and it must allow one to generate the average (macro) response of a composite material given the properties of the individual constituents and their geometric arrangement. Only then can such a model be used by a material scientist to investigate the effect of different deformation mechanisms on the overall response of the composite and, thereby, identify the appropriate constituents for a given application. However, if a micromechanical model is to be used in a large-scale structural analysis it must be (1) computationally efficient, (2) able to generate accurate displacement and stress fields at both the macro and micro level, and (3) compatible with the finite element method. In addition, new advancements in processing and fabrication techniques now make it possible to engineer the architectures of these advanced composite systems. Full utilization of these emerging manufacturing capabilities require the development of a computationally efficient micromechanics analysis tool that can accurately predict the effect of microstructural details on the internal and macroscopic behavior of composites. Computational efficiency is required because (1) a large number of parameters must be varied in the course of engineering (or designing) composite materials and (2) the optimization of a material's microstructure requires that the micromechanics model be integrated with

  2. Micromechanics in the Gerbil Hemicochlea

    NASA Astrophysics Data System (ADS)

    Richter, C.-P.; Dallos, P.

    2003-02-01

    Micromechanical events in the cochlea represent the combined motions of all elements that convey vibrations from the basilar membrane (BM) to the stereocilia bundles of the inner hair cells, the sensory receptors of the mammalian cochlea. Because of the difficulty of visualizing the organ of Corti (OC), experimental data on micromechanics are extremely limited. Available results represent motions viewed either from one focal plane or from the surface of a cochlear preparation. The present experiments examine cochlear micromechanics at audio frequencies by using the hemicochlea that permits the viewing of all structures in a cochlear cross-section. Stroboscopic illumination and video-flow techniques have been used to quantify the motion of selected elements. The movements at different locations revealed a tuned response across frequencies with the best frequency increasing from more basal to more apical locations. Furthermore, the vibrations showed rotational components, such as rotations around a pivot point: the inner pillar foot. Inner and outer pillar cells, inner and outer hair cells, Deiters' cells and parts of the BM move together and form a so-called "rotating wedge". The movements of Hensen's cells represent a mode of vibration different from that of the rest of the OC.

  3. Micromechanical modeling of fiber fragmentation in a single fiber metal matrix composite specimen

    NASA Astrophysics Data System (ADS)

    Davis, Jean E.

    Micromechanical models have been developed in this study to predict the longitudinal mechanical behavior of unidirectional continuous fiber composite materials under a uniaxial applied effective strain of sufficient magnitude to cause irreversible damage in the form of brittle fiber fracture, interface damage resulting in a compliant interphase region, and matrix plasticity. A single fiber composite (SFC) specimen that consists of a single silicon carbide fiber embedded in an aluminum matrix with a thin interphase layer was used to investigate these effects. The objective of this research was to create a micromechanical model to predict the longitudinal constitutive behavior of the composite as damage occurs and to determine if the interfacial shear stress can be estimated from the fiber fragment length at a given effective strain. The aluminum matrix was modeled as either linear elastic, elastic-perfectly plastic, linear strain hardening, or power-law strain hardening. Before fiber fracture, the interphase layer forms a perfect bond between the fiber and matrix. During fiber fracture, the interphase is damaged and the interfacial bond becomes imperfect. The imperfect interface may be compliant or compliant and weak, and was modeled as a spring layer with vanishing thickness. The fiber fragments are assumed to be uniformly distributed such that the fragment lengths are equal at each load level. The Weibull distribution was used to relate the fiber fragment length to the tensile strength of the fiber. An increase in the applied effective strain causes successive fiber fractures, in that the fragments become increasingly shorter. The SFCs studied had either no fiber fractures, one fracture, or successive fractures; one of the four matrix material types; and either perfect, compliant, or compliant and weak interfaces. The finite element method was used to provide numerical solutions for the state of stress and fiber length at a given applied effective strain which

  4. Micromechanical Modeling Study of Mechanical Inhibition of Enzymatic Degradation of Collagen Tissues.

    PubMed

    Tonge, Theresa K; Ruberti, Jeffrey W; Nguyen, Thao D

    2015-12-15

    This study investigates how the collagen fiber structure influences the enzymatic degradation of collagen tissues. We developed a micromechanical model of a fibrous collagen tissue undergoing enzymatic degradation based on two central hypotheses. The collagen fibers are crimped in the undeformed configuration. Enzymatic degradation is an energy activated process and the activation energy is increased by the axial strain energy density of the fiber. We determined the intrinsic degradation rate and characteristic energy for mechanical inhibition from fibril-level degradation experiments and applied the parameters to predict the effect of the crimped fiber structure and fiber properties on the degradation of bovine cornea and pericardium tissues under controlled tension. We then applied the model to examine the effect of the tissue stress state on the rate of tissue degradation and the anisotropic fiber structures that developed from enzymatic degradation. PMID:26682825

  5. Adhesion, friction and micromechanical properties of ceramics

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1988-01-01

    The adhesion, friction, and micromechanical properties of ceramics, both in monolithic and coating form, are reviewed. Ceramics are examined in contact with themselves, other harder materials, and metals. For the simplicity of discussion, the tribological properties of concern in the processes are separated into two parts. The first part discusses the pull-off force (adhesion) and the shear force required to break the interfacial junctions between contacting surfaces. The role of chemical bonding in adhesion and friction, and the effects of surface contaminant films and temperature on tribological response with respect to adhesion and friction are discussed. The second part deals with abrasion of ceramics. Elastic, plastic, and fracture behavior of ceramics in solid state contact is discussed. The scratch technique of determining the critical load needed to fracture interfacial adhesive bonds of ceramic deposited on substrates is also addressed.

  6. Micromechanics Modeling of Fracture in Nanocrystalline Metals

    NASA Technical Reports Server (NTRS)

    Glaessgen, E. H.; Piascik, R. S.; Raju, I. S.; Harris, C. E.

    2002-01-01

    Nanocrystalline metals have very high theoretical strength, but suffer from a lack of ductility and toughness. Therefore, it is critical to understand the mechanisms of deformation and fracture of these materials before their full potential can be achieved. Because classical fracture mechanics is based on the comparison of computed fracture parameters, such as stress intlmsity factors, to their empirically determined critical values, it does not adequately describe the fundamental physics of fracture required to predict the behavior of nanocrystalline metals. Thus, micromechanics-based techniques must be considered to quanti@ the physical processes of deformation and fracture within nanocrystalline metals. This paper discusses hndamental physicsbased modeling strategies that may be useful for the prediction Iof deformation, crack formation and crack growth within nanocrystalline metals.

  7. Method for preventing micromechanical structures from adhering to another object

    DOEpatents

    Smith, James H.; Ricco, Antonio J.

    1998-01-01

    A method for preventing micromechanical structures from adhering to another object includes the step of immersing a micromechanical structure and its associated substrate in a chemical species that does not stick to itself. The method can be employed during the manufacture of micromechanical structures to prevent micromechanical parts from sticking or adhering to one another and their associated substrate surface.

  8. Method for preventing micromechanical structures from adhering to another object

    DOEpatents

    Smith, J.H.; Ricco, A.J.

    1998-06-16

    A method for preventing micromechanical structures from adhering to another object includes the step of immersing a micromechanical structure and its associated substrate in a chemical species that does not stick to itself. The method can be employed during the manufacture of micromechanical structures to prevent micromechanical parts from sticking or adhering to one another and their associated substrate surface. 3 figs.

  9. Three-dimensional micromechanical modeling of voided polymeric materials

    NASA Astrophysics Data System (ADS)

    Danielsson, M.; Parks, D. M.; Boyce, M. C.

    2002-02-01

    A three-dimensional micromechanical unit cell model for particle-filled materials is presented. The cell model is based on a Voronoi tessellation of particles arranged on a body-centered cubic (BCC) array. The three-dimensionality of the present cell model enables the study of several deformation modes, including uniaxial, plane strain and simple shear deformations, as well as arbitrary principal stress states. The unit cell model is applied to studies on the micromechanical and macromechanical behavior of rubber-toughened polycarbonate. Different load cases are examined, including plane strain deformation, simple shear deformation and principal stress states. For a constant macroscopic strain rate, the different load cases show that the macroscopic flow strength of the blend decreases with an increase in void volume fraction, as expected. The main mechanism for plastic deformation is broad shear banding across inter-particle ligaments. The distributed nature of plastic straining acts to reduce the amount of macroscopic strain softening in the blend as the initial void volume fraction is increased. In the case of plane strain deformation, the plastic flow is observed to initiate across inter-particle ligaments in the direction of constraint. This particular mode of deformation could not have been captured using a two-dimensional, plane strain idealization of cylindrical voids in a matrix. The potential for localized crazing and/or cavitation in the matrix is addressed. It is observed that the introduction of voids acts to relieve hydrostatic stress in the matrix material, compared to the homopolymer. It is also seen that the predicted peak hydrostatic stress in the matrix is higher under plane strain deformation than under triaxial tension (with equal lateral stresses), for the same macroscopic stress triaxiality. The effect of void volume fraction on the macroscopic uniaxial tension behavior of the different blends is examined using a Considère construction for

  10. Micromechanical modeling of temperature-dependent initiation fracture toughness in advanced aluminum alloys

    SciTech Connect

    Haynes, M.J.; Somerday, B.P.; Gangloff, R.P.; Lach, C.L.

    1997-12-31

    The temperature dependence of the plane-strain initiation fracture toughness (K{sub JICi}) is modeled micromechanically for a variety of advanced aluminum alloys that fail by microvoid processes. Materials include precipitation-hardened ingot metallurgy, spray formed, submicron-grain-size powder metallurgy, and metal-matrix composite alloys. A critical-plastic-strain-controlled model, employing tensile yield strength, elastic modulus, work hardening, and reduction of area measurements, successfully predicts K{sub JICi} versus temperature for eight alloys, providing a strong confirmation of this approach. Modeling shows that K{sub JICi} is controlled by the interplay between the temperature dependencies of the intrinsic failure locus {bar {var_epsilon}}{sub f}{sup p}({sigma}{sub m}/{sigma}{sub fl}) and the crack-tip stress/strain fields governed by alloy flow properties. Uncertainties in {bar {var_epsilon}}{sub f}{sup p}({sigma}{sub m}/{sigma}{sub fl}), as well as the critical distance (volume) for crack-tip damage evolution, hinder absolute predictions of K{sub JICi}. Critical distance (calculated from the model) correlates with the nearest-neighbor spacing of void-nucleating particles and with the extent of primary void growth determined from quantitative fractography. These correlations suggest a means to predict absolute plane-strain fracture toughness.

  11. Micromechanical Models of Helical Superstructures in Ligament and Tendon Fibers Predict Large Poisson’s Ratios

    PubMed Central

    Reese, Shawn P.; Maas, Steve A.; Weiss, Jeffrey A.

    2010-01-01

    Experimental measurements of the Poisson’s ratio in tendon and ligament tissue greatly exceed the isotropic limit of 0.5. This is indicative of volume loss during tensile loading. The microstructural origin of the large Poisson’s ratios is unknown. It was hypothesized that a helical organization of fibrils within a fiber would result in a large Poisson’s ratio in ligaments and tendons, and that this helical organization would be compatible with the crimped nature of these tissues, thus modeling their classic nonlinear stress strain behavior. Micromechanical finite element models were constructed to represent crimped fibers with a super helical organization, composed of fibrils embedded within a matrix material. A homogenization procedure was performed to determine both the effective Poisson’s ratio and the Poisson function. The results showed that helical fibril organization within a crimped fiber was capable of simultaneously predicting large Poisson’s ratios and the nonlinear stress strain behavior seen experimentally. Parametric studies revealed that the predicted Poisson’s ratio was strongly dependent on the helical pitch, crimp angle and the material coefficients. The results indicated that, for physiologically relevant parameters, the models were capable of predicting the large Poisson’s ratios seen experimentally. It was concluded that helical organization within a crimped fiber can produce both the characteristic nonlinear stress strain behavior and large Poisson’s ratios, while fiber crimp alone could only account for the nonlinear stress-strain behavior. PMID:20181336

  12. Quantification of damage evolution for a micromechanical model of ductile fracture in spallation of tantalum

    SciTech Connect

    Zurek, A.K.; Thissell, W.R.; Tonks, D.L.; Hixon, R.; Addessio, F.

    1997-05-01

    The authors present quantification of micromechanical features such as voids that comprise the ductile fracture obtained under uniaxial strain condition in a spall test of commercial purity tantalum. Two evolutionary parameters of ductile fracture void formation are quantified: (i) the void volume fraction (porosity) and its distribution with respect to the distance from the main spall fracture plane, and (ii) void diameter distribution. The results complement the discussion of the implications of void clustering and linking for micromechanical modeling of ductile fracture as presented in a paper by D. L. Tonks et al. in this volume.

  13. The micromechanical behavior of lyophilized glutaraldehyde-treated bovine pericardium under uniaxial tension.

    PubMed

    Sánchez-Arévalo, F M; Farfán, M; Covarrubias, D; Zenit, R; Pulos, G

    2010-11-01

    The micromechanical behavior of lyophilized glutaraldehyde bovine pericardium undergoing uniaxial tension was studied by digital image correlation. The experiments were conducted simultaneously at macromechanical and micromechanical levels, to correlate the mechanical response of this biomaterial at different scales. From the experiments, displacement and force data were acquired; in addition, an image sequence of each sample surface was registered with a high-definition camera. With the images, it was possible to obtain the vector displacement field between pairs of images and then the in-plane strain was calculated. The secant and final moduli of this material were obtained at macromechanical and micromechanical levels. A good agreement between the micro and macro moduli was observed. This analysis is a useful alternative technique for studying this biomaterial when local properties are needed for medical applications. PMID:20826372

  14. Implementation of Improved Transverse Shear Calculations and Higher Order Laminate Theory Into Strain Rate Dependent Analyses of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Lin-Fa; Kim, Soo; Chattopadhyay, Aditi; Goldberg, Robert K.

    2004-01-01

    A numerical procedure has been developed to investigate the nonlinear and strain rate dependent deformation response of polymer matrix composite laminated plates under high strain rate impact loadings. A recently developed strength of materials based micromechanics model, incorporating a set of nonlinear, strain rate dependent constitutive equations for the polymer matrix, is extended to account for the transverse shear effects during impact. Four different assumptions of transverse shear deformation are investigated in order to improve the developed strain rate dependent micromechanics model. The validities of these assumptions are investigated using numerical and theoretical approaches. A method to determine through the thickness strain and transverse Poisson's ratio of the composite is developed. The revised micromechanics model is then implemented into a higher order laminated plate theory which is modified to include the effects of inelastic strains. Parametric studies are conducted to investigate the mechanical response of composite plates under high strain rate loadings. Results show the transverse shear stresses cannot be neglected in the impact problem. A significant level of strain rate dependency and material nonlinearity is found in the deformation response of representative composite specimens.

  15. Noninvasive in vivo determination of residual strains and stresses.

    PubMed

    Donmazov, Samir; Piskin, Senol; Pekkan, Kerem

    2015-06-01

    Vascular growth and remodeling during embryonic development are associated with blood flow and pressure induced stress distribution, in which residual strains and stresses play a central role. Residual strains are typically measured by performing in vitro tests on the excised vascular tissue. In this paper, we investigated the possibility of estimating residual strains and stresses using physiological pressure-radius data obtained through in vivo noninvasive measurement techniques, such as optical coherence tomography or ultrasound modalities. This analytical approach first tested with in vitro results using experimental data sets for three different arteries such as rabbit carotid artery, rabbit thoracic artery, and human carotid artery based on Fung's pseudostrain energy function and Delfino's exponential strain energy function (SEF). We also examined residual strains and stresses in the human swine iliac artery using the in vivo experimental ultrasound data sets corresponding to the systolic-to-diastolic region only. This allowed computation of the in vivo residual stress information for loading and unloading states separately. Residual strain parameters as well as the material parameters were successfully computed with high accuracy, where the relative errors are introduced in the range of 0-7.5%. Corresponding residual stress distributions demonstrated global errors all in acceptable ranges. A slight discrepancy was observed in the computed reduced axial force. Results of computations performed based on in vivo experimental data obtained from loading and unloading states of the artery exhibited alterations in material properties and residual strain parameters as well. Emerging noninvasive measurement techniques combined with the present analytical approach can be used to estimate residual strains and stresses in vascular tissues as a precursor for growth estimates. This approach is also validated with a finite element model of a general two-layered artery

  16. Local structure determination in strained-layer semiconductors

    NASA Astrophysics Data System (ADS)

    Woicik, Joseph C.

    The theory of elasticity accurately describes the deformations of macroscopic bodies under the action of applied stress [1]. In this review, we examine the internal mechanisms of elasticity for strained-layer semiconductor heterostructures. In particular, we present extended x-ray-absorption fine structure (EXAFS) and x-ray diffraction (XRD) measurements to show how the bond lengths and bond angles in semiconductor thin-alloy films change with strain when they are grown coherently on substrates with different lattice constants. The structural distortions measured by experiment are compared to valence-force field (VFF) calculations and other theoretical models. Atomic switching and interfacial strain at buried interfaces are also discussed.

  17. Micromechanical analysis of porous SMA

    NASA Astrophysics Data System (ADS)

    Sepe, V.; Auricchio, F.; Marfia, S.; Sacco, E.

    2015-08-01

    The present paper deals with computational micromechanical analyses of porous shape memory alloy (SMA). Porous SMAs are considered composite materials made of a dense SMA matrix including voids. A three-dimensional constitutive law is presented for the dense SMA able to reproduce the pseudo-elastic as well as the shape memory effects and, moreover, to account for the different elastic properties of the austenite and martensite phases. Furthermore, a numerical procedure is developed and the overall behavior of the porous SMA is recovered studying a representative volume element. Comparisons between the numerical results, recovered using the proposed modeling, and experimental data available in the literature are presented. The case of closed and open porosity is investigated. Parametric studies have been conducted in order to investigate the influence of the porosity, the shape and orientation of the pores on the overall mechanical response and, mainly, on the energy absorption dissipation capability.

  18. Determination of Predominance of Influenza Virus Strains in the Americas

    PubMed Central

    Garten, Rebecca J.; Palekar, Rakhee; Cerpa, Mauricio; Mirza, Sara; Ropero, Alba Maria; Palomeque, Francisco S.; Moen, Ann; Bresee, Joseph; Shaw, Michael; Widdowson, Marc-Alain

    2015-01-01

    During 2001–2014, predominant influenza A(H1N1) and A(H3N2) strains in South America predominated in all or most subsequent influenza seasons in Central and North America. Predominant A(H1N1) and A(H3N2) strains in North America predominated in most subsequent seasons in Central and South America. Sharing data between these subregions may improve influenza season preparedness. PMID:26079140

  19. Micromechanisms of thermomechanical fatigue: A comparison with isothermal fatigue

    NASA Technical Reports Server (NTRS)

    Bill, R. C.

    1986-01-01

    Thermomechanical Fatigue (TMF) experiments were conducted on Mar-M 200, B-1900, and PWA-1480 (single crystals) over temperature ranges representative of gas turbine airfoil environments. The results were examined from both a phenomenological basis and a micromechanical basis. Depending on constituents present in the superalloy system, certain micromechanisms dominated the crack initiation process and significantly influenced the TMF lives as well as sensitivity of the material to the type TMF cycle imposed. For instance, high temperature cracking around grain boundary carbides in Mar-M 200 resulted in short in-phase TMF lives compared to either out-of-phase or isothermal lives. In single crystal PWA-1480, the type of coating applied was seen to be the controlling factor in determining sensitivity to the type of TMF cycle imposed. Micromechanisms of deformation were observed over the temperature range of interest to the TMF cycles, and provided some insight as to the differences between TMF damage mechanisms and isothermal damage mechanisms. Finally, the applicability of various life prediction models to TMF results was reviewed. Current life prediction models based on isothermal data must be modified before being generally applied to TMF.

  20. A viscoplastic micromechanical model for the yield strength of nanocrystalline materials

    SciTech Connect

    Lebensohn, R; Bringa, E; Caro, A

    2006-03-14

    In this paper we present a micromechanical approach based on Fast Fourier Transforms to study the role played by dislocation glide and grain boundary (GB) accommodation in the determination of the plastic behavior of nanostructured materials. For this, we construct unit cells representing self-similar polycrystals with different grain sizes in the nanometer range and use local constitutive equations for slip and GB accommodation. We study the effect of grain size, strain rate and pressure on the local and effective behavior of nanostructured fcc materials with parameters obtained from experiments and atomistic simulations. Predictions of a previous qualitative pressure-sensitive model for the effective yield strength behind a shock front are substantially improved by considering strain partition between slip and GB activity. Under quasiestatic conditions, assuming diffusion-controlled mechanisms at GB, the model predicts a strain-rate sensitivity increase in nanocrystalline samples with respect to the same coarse-grained material of the same order as in recently published experiments.

  1. Bio-Inspired Micromechanical Directional Acoustic Sensor

    NASA Astrophysics Data System (ADS)

    Swan, William; Alves, Fabio; Karunasiri, Gamani

    Conventional directional sound sensors employ an array of spatially separated microphones and the direction is determined using arrival times and amplitudes. In nature, insects such as the Ormia ochracea fly can determine the direction of sound using a hearing organ much smaller than the wavelength of sound it detects. The fly's eardrums are mechanically coupled, only separated by about 1 mm, and have remarkable directional sensitivity. A micromechanical sensor based on the fly's hearing system was designed and fabricated on a silicon on insulator (SOI) substrate using MEMS technology. The sensor consists of two 1 mm2 wings connected using a bridge and to the substrate using two torsional legs. The dimensions of the sensor and material stiffness determine the frequency response of the sensor. The vibration of the wings in response to incident sound at the bending resonance was measured using a laser vibrometer and found to be about 1 μm/Pa. The electronic response of the sensor to sound was measured using integrated comb finger capacitors and found to be about 25 V/Pa. The fabricated sensors showed good directional sensitivity. In this talk, the design, fabrication and characteristics of the directional sound sensor will be described. Supported by ONR and TDSI.

  2. Elongated Tetrakaidecahedron Micromechanics Model for Space Shuttle External Tank Foams

    NASA Technical Reports Server (NTRS)

    Sullivan, Roy M.; Ghosn, Louis J.; Lerch, Bradley A.; Baker, Eric H.

    2009-01-01

    The results of microstructural characterization studies and physical and mechanical testing of BX-265 and NCFI24-124 foams are reported. A micromechanics model developed previously by the authors is reviewed, and the resulting equations for the elastic constants, the relative density, and the strength of the foam in the principal material directions are presented. The micromechanics model is also used to derive equations to predict the effect of vacuum on the tensile strength and the strains induced by exposure to vacuum. Using a combination of microstructural dimensions and physical and mechanical measurements as input, the equations for the elastic constants and the relative density are applied and the remaining microstructural dimensions are predicted. The predicted microstructural dimensions are in close agreement with the average measured values for both BX-265 and NCFI24-124. With the microstructural dimensions, the model predicts the ratio of the strengths in the principal material directions for both foams. The model is also used to predict the Poisson s ratios, the vacuum-induced strains, and the effect of vacuum on the tensile strengths. However, the comparison of these predicted values with the measured values is not as favorable.

  3. [Antimicrobial susceptibility of Neisseria gonorrhoeae strains determined by disk diffusion].

    PubMed

    Llanes Caballero, R; Acosta Giraldo, J C; Sosa Puente, J; Guzmán Hernández, D; Gutiérrez González, O; Llop Hernández, A

    1999-01-01

    The Gonoccocus Laboratory of "Pedro Kourí" Tropical Medicine Institute carried out a study of in vitro susceptibility of Neisseria gonorrhoeae to penicillin, tetracycline, cefuroxime ceftriaxone, cefotaxine and ciprofoxacin by means of a disk diffusion method with the culture medium agar base GC plus supplement. In the first phase, the method was standardized and the reference N. gonorrhoeae ATCC 49226 strain was used whereas in the second phase, 50 gonococcal strains isolated in 8 provinces during 1995 and 1996 were examined. The results of such standardization confirmed that the antimicrobial susceptibility values were within the allowable limits. 52 and 34% of strains were resistant to penicillin and tetracycline respectively and all of them showed susceptibility to the rest of evaluated antimicrobial drugs. We recommend the use of the disk diffusion method for surveillance of gonococci resistance to these drugs in our country. PMID:10887570

  4. Rotamer strain as a determinant of protein structural specificity.

    PubMed Central

    Lazar, G. A.; Johnson, E. C.; Desjarlais, J. R.; Handel, T. M.

    1999-01-01

    We present direct evidence for a change in protein structural specificity due to hydrophobic core packing. High resolution structural analysis of a designed core variant of ubiquitin reveals that the protein is in slow exchange between two conformations. Examination of side-chain rotamers indicates that this dynamic response and the lower stability of the protein are coupled to greater strain and mobility in the core. The results suggest that manipulating the level of side-chain strain may be one way of fine tuning the stability and specificity of proteins. PMID:10631975

  5. [Identification and determination of sensitivity to antibiotics of 31 clinical strains of Acinetobacter other than A. baumannii].

    PubMed

    Freney, J; Bouvet, P J; Tixier, C

    1989-01-01

    Precise identification and determination of MICs of clinical isolates of Acinetobacter identified to other species than the hospital species A. baumannii were carried out. On 260 Acinetobacter strains isolated in an hospital over a 6 months period, 31 strains (12 p. cent) were identified to species other than A. baumannii. Among these 31 strains, A. Iwoffii sensu stricto (16 strains) and A. haemolyticus (6 strains) were mostly recovered. Eight glucose oxidizing strains were identified to A. haemolyticus (6 strains), Acinetobacter genospecies 3 (2 strains), and A. Iwoffii sensu stricto (1 strain). Antibiotic susceptibilities of these strains were greater than those commonly observed with A. baumannii strains. PMID:2930020

  6. Micromechanics of Spray-On Foam Insulation

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Aboudi, Jacob; Arnold, Steven M.; Sullivan, Roy M.

    2007-01-01

    Understanding the thermo-mechanical response of the Space Shuttle External Tank spray-on foam insulation (SOFI) material is critical, to NASA's Return to Flight effort. This closed-cell rigid polymeric foam is used to insulate the metallic Space Shuttle External Tank, which is at cryogenic temperatures immediately prior to and during lift off. The shedding of the SOFI during ascent led to the loss of the Columbia, and eliminating/minimizing foam lass from the tank has become a priority for NASA as it seeks to resume scheduled space shuttle missions. Determining the nature of the SOFI material behavior in response to both thermal and mechanical loading plays an important role as any structural modeling of the shedding phenomenon k predicated on knowledge of the constitutive behavior of the foam. In this paper, the SOFI material has been analyzed using the High-Fidelity Generalized Method of Cells (HFGMC) micromechanics model, which has recently been extended to admit a triply-periodic 3-D repeating unit cell (RUC). Additional theoretical extensions that mere made in order to enable modeling of the closed-cell-foam material include the ability to represent internal boundaries within the RUC (to simulated internal pores) and the ability to impose an internal pressure within the simulated pores. This latter extension is crucial as two sources contribute to significant internal pressure changes within the SOFI pores. First, gas trapped in the pores during the spray process will expand or contract due to temperature changes. Second, the pore pressure will increase due to outgassing of water and other species present in the foam skeleton polymer material. With HFGMC's new pore pressure modeling capabilities, a nonlinear pressure change within the simulated pore can be imposed that accounts for both of these sources, in addition to stmdar&-thermal and mechanical loading; The triply-periodic HFGMC micromechanics model described above was implemented within NASA GRC's MAC

  7. Method of Manufacturing a Micromechanical Oscillating Mass Balance

    NASA Technical Reports Server (NTRS)

    Altemir, David A. (Inventor)

    1999-01-01

    A micromechanical oscillating mass balance and method adapted for measuring minute quantities of material deposited at a selected location, such as during a vapor deposition process. The invention comprises a vibratory composite beam which includes a dielectric layer sandwiched between two conductive layers.The beam is positioned in a magnetic field. An alternating current passes through one conductive layers, the beam oscillates, inducing an output current in the second conductive layer, which is analyzed to determine the resonant frequency of the beam. As material is deposited on the beam, the mass of the beam increases and the resonant frequency of the beam shifts, and the mass added is determined.

  8. Using Micromechanical Resonators to Measure Rheological Properties and Alcohol Content of Model Solutions and Commercial Beverages

    PubMed Central

    Paxman, Rosemary; Stinson, Jake; Dejardin, Anna; McKendry, Rachel A.; Hoogenboom, Bart W.

    2012-01-01

    Micromechanic resonators provide a small-volume and potentially high-throughput method to determine rheological properties of fluids. Here we explore the accuracy in measuring mass density and viscosity of ethanol-water and glycerol-water model solutions, using a simple and easily implemented model to deduce the hydrodynamic effects on resonating cantilevers of various length-to-width aspect ratios. We next show that these measurements can be extended to determine the alcohol percentage of both model solutions and commercial beverages such as beer, wine and liquor. This demonstrates how micromechanical resonators can be used for quality control of every-day drinks. PMID:22778654

  9. Micromechanical models for textile composites

    NASA Technical Reports Server (NTRS)

    Sankar, Bhavani V.; Marrey, Ramesh V.

    1995-01-01

    Numerical and analytical micromechanical models are presented to predict the thermoelastic behavior of a textile composite. In the numerical model, the unit-cell is discretized with finite elements, and periodic boundary conditions are imposed between opposite faces of the unit-cell. For a thin textile composite, stress gradients effects through the thickness are demonstrated. The consequent difference in the stiffness and strength behavior of thick and thin composites are discussed. The numerical model is implemented to predict 3-D thermo-elastic constants for a thick textile composite, and the plate thermo-mechanical properties for a thin textile composite. The numerical model is extended to compute the thermal residual microstresses due to processing to predict the composite failure envelopes. An analytical model - Selective Averaging Method (SAM) - is proposed, which is based on a judicious combination of stiffness and compliance averaging to estimate the 3-D elastic constants. Both the models are tested and verified for several examples by comparing the stiffness properties with elasticity solutions and available results.

  10. Computational micromechanical analysis of the representative volume element of bituminous composite materials

    NASA Astrophysics Data System (ADS)

    Ozer, Hasan; Ghauch, Ziad G.; Dhasmana, Heena; Al-Qadi, Imad L.

    2016-03-01

    Micromechanical computational modeling is used in this study to determine the smallest domain, or Representative Volume Element (RVE), that can be used to characterize the effective properties of composite materials such as Asphalt Concrete (AC). Computational Finite Element (FE) micromechanical modeling was coupled with digital image analysis of surface scans of AC specimens. Three mixtures with varying Nominal Maximum Aggregate Size (NMAS) of 4.75 mm, 12.5 mm, and 25 mm, were prepared for digital image analysis and computational micromechanical modeling. The effects of window size and phase modulus mismatch on the apparent viscoelastic response of the composite were numerically examined. A good agreement was observed in the RVE size predictions based on micromechanical computational modeling and image analysis. Micromechanical results indicated that a degradation in the matrix stiffness increases the corresponding RVE size. Statistical homogeneity was observed for window sizes equal to two to three times the NMAS. A model was presented for relating the degree of statistical homogeneity associated with each window size for materials with varying inclusion dimensions.

  11. Computational micromechanical analysis of the representative volume element of bituminous composite materials

    NASA Astrophysics Data System (ADS)

    Ozer, Hasan; Ghauch, Ziad G.; Dhasmana, Heena; Al-Qadi, Imad L.

    2016-08-01

    Micromechanical computational modeling is used in this study to determine the smallest domain, or Representative Volume Element (RVE), that can be used to characterize the effective properties of composite materials such as Asphalt Concrete (AC). Computational Finite Element (FE) micromechanical modeling was coupled with digital image analysis of surface scans of AC specimens. Three mixtures with varying Nominal Maximum Aggregate Size (NMAS) of 4.75 mm, 12.5 mm, and 25 mm, were prepared for digital image analysis and computational micromechanical modeling. The effects of window size and phase modulus mismatch on the apparent viscoelastic response of the composite were numerically examined. A good agreement was observed in the RVE size predictions based on micromechanical computational modeling and image analysis. Micromechanical results indicated that a degradation in the matrix stiffness increases the corresponding RVE size. Statistical homogeneity was observed for window sizes equal to two to three times the NMAS. A model was presented for relating the degree of statistical homogeneity associated with each window size for materials with varying inclusion dimensions.

  12. Use of Ti Plasmid DNA Probes for Determining Tumorigenicity of Agrobacterium Strains

    PubMed Central

    Burr, Thomas J.; Norelli, John L.; Katz, Barbara H.; Bishop, Andrew L.

    1990-01-01

    Probes consisting of T-DNA genes from the Ti plasmid of Agrobacterium tumefaciens were used for determining tumorigenicity of strains. Two 32P-labeled probes hybridized with 28 of 28 tumorigenic strains of the pathogen but not with 20 of 22 nontumorigenic strains. One probe, pTHE17, consists of all but the far left portion of the T-DNA of strain C58. Probe SmaI7 consists of SmaI fragment 7 of pTiC58, including onc genes 1, 4, and 6a and most of 2. Another probe, pAL4044, consisting of the vir region of strain Ach-5, hybridized with several nontumorigenic as well as tumorigenic strains. Colony hybridizations were done with 28 tumorigenic and 22 nontumorigenic Agrobacterium strains. About 106 CFU of the different tumorigenic strains were detectable with this method. Southern analyses confirmed the presence or absence of Ti plasmids in strains for which tumorigenicity was questioned. Colony hybridization with the T-DNA probes provides a rapid and sensitive means for determining the tumorigenic nature of Agrobacterium strains. Images PMID:16348218

  13. Use of Ti plasmid DNA probes for determining tumorigenicity of agrobacterium strains

    SciTech Connect

    Burr, T.J.; Norelli, J.L.; Katz, B.H.; Bishop, A.L. )

    1990-06-01

    Probes consisting of T-DNA genes from the Ti plasmid of Agrobacterium tumefaciens were used for determining tumorigenicity of strains. Two {sup 32}P-labeled probes hybridized with 28 of 28 tumorigenic strains of the pathogen but not with 20 of 22 nontumorigenic strains. One probe, pTHE17, consists of all but the far left portion of the T-DNA of strain C58. Probe SmaI7 consists of SmaI fragment 7 of pTiC58, including onc genes 1, 4, and 6a and most of 2. Another probe, pAL4044, consisting of the vir region of strain Ach-5, hybridized with several nontumorigenic as well as tumorigenic strains. Colony hybridizations were done with 28 tumorigenic and 22 nontumorigenic Agrobacterium strains. About 10{sup 6} CFU of the different tumorigenic strains were detectable with this method. Southern analyses confirmed the presence or absence of Ti plasmids in strains for which tumorigenicity was questioned. Colony hybridization with the T-DNA probes provides a rapid and sensitive means for determining the tumorigenic nature of Agrobacterium strains.

  14. Micromechanics and constitutive modeling of connective soft tissues.

    PubMed

    Fallah, A; Ahmadian, M T; Firozbakhsh, K; Aghdam, M M

    2016-07-01

    In this paper, a micromechanical model for connective soft tissues based on the available histological evidences is developed. The proposed model constituents i.e. collagen fibers and ground matrix are considered as hyperelastic materials. The matrix material is assumed to be isotropic Neo-Hookean while the collagen fibers are considered to be transversely isotropic hyperelastic. In order to take into account the effects of tissue structure in lower scales on the macroscopic behavior of tissue, a strain energy density function (SEDF) is developed for collagen fibers based on tissue hierarchical structure. Macroscopic response and properties of tissue are obtained using the numerical homogenization method with the help of ABAQUS software. The periodic boundary conditions and the proposed constitutive models are implemented into ABAQUS using the DISP and the UMAT subroutines, respectively. The existence of the solution and stable material behavior of proposed constitutive model for collagen fibers are investigated based on the poly-convexity condition. Results of the presented micromechanics model for connective tissues are compared and validated with available experimental data. Effects of geometrical and material parameters variation at microscale on macroscopic mechanical behavior of tissues are investigated. The results show that decrease in collagen content of the connective tissues like the tendon due to diseases leads 20% more stretch than healthy tissue under the same load which can results in connective tissue malfunction and hypermobility in joints. PMID:26807767

  15. Incorporating Micro-Mechanics Based Damage Models into Earthquake Rupture Simulations

    NASA Astrophysics Data System (ADS)

    Bhat, H.; Rosakis, A.; Sammis, C. G.

    2012-12-01

    The micromechanical damage mechanics formulated by Ashby and Sammis, 1990 and generalized by Deshpande and Evans 2008 has been extended to allow for a more generalized stress state and to incorporate an experimentally motivated new crack growth (damage evolution) law that is valid over a wide range of loading rates. This law is sensitive to both the crack tip stress field and its time derivative. Incorporating this feature produces additional strain-rate sensitivity in the constitutive response. The model is also experimentally verified by predicting the failure strength of Dionysus-Pentelicon marble over a wide range of strain rates. Model parameters determined from quasi-static experiments were used to predict the failure strength at higher loading rates. Agreement with experimental results was excellent. After this verification step the constitutive law was incorporated into a Finite Element Code focused on simulating dynamic earthquake ruptures with specific focus on the ends of the fault (fault tip process zone) and the resulting strong ground motion radiation was studied.

  16. Experimental determination of the strain and strain rate dependence of the fraction of plastic work converted to heat

    SciTech Connect

    Hodowany, J.; Ravichandran, G.; Rosakis, A.J.

    1995-12-31

    When metals are deformed dynamically, there is insufficient time for heat generated by plastic deformation to be conducted to the surroundings. Thus, the conversion of plastic work into heat at high strain rates can result in significant temperature increases, which contribute to thermal softening, thereby altering a material`s constitutive response. The fraction of plastic work converted to heat represents the strength of the coupling term between temperature and mechanical fields in thermalmechanical problems involving plastic flow. The experimental determination of this constitutive function is important since it is an integral part of the formulation of coupled thermomechanical field equations. This fraction also plays an important role in failure mode characterization for metals deforming at high rates of strain, such as the formation of adiabatic shear bands. This investigation systematically examines the rate of conversion of plastic work to heat in metals under dynamic loading. Temperature was measured in-situ using an array of high speed In-Sb infrared detectors. The plastic work rate and the heat generation rate were determined directly from experimental data. The ratio of heat generation rate to plastic work rate, i.e., the relative rate at which plastic work is converted to heat, was calculated from this data. The functional dependence of this quantity upon strain and strain rate is reported for 1020 steel, 2024 aluminum, Ti-6Al-4V titanium alloy, and C300 maraging steel.

  17. Cyclic stress-strain curve determination for D6AC steel by three methods

    NASA Technical Reports Server (NTRS)

    Nachtigall, A. J.

    1977-01-01

    The room temperature cyclic stress-strain was determined for D6AC low alloy steel by three different methods. The method that involves the use of a single specimen monotonic tension test after cyclic straining provided the best agreement with the accepted basic method which requires a number of companion specimen tests. The single specimen test is also the simplest to conduct.

  18. The Relationship Between Constraint and Ductile Fracture Initiation as Defined by Micromechanical Analyses

    NASA Technical Reports Server (NTRS)

    Panontin, Tina L.; Sheppard, Sheri D.

    1994-01-01

    initiation loads and to calculate the associated (critical) global fracture parameters. The loads are verified experimentally, and microscopy is used to measure pre-crack length, crack tip opening displacement (CTOD), and the amount of stable crack growth. Results for A516-70 steel indicate that the constraint-modified, critical strain criterion with a critical length approximately equal to the grain size (0.0025 inch) provides accurate predictions of crack initiation. The critical void growth criterion is shown to considerably underpredict crack initiation loads with the same critical length. The relationship between the critical value of the J-integral for ductile crack initiation and crack depth for SECT and SECB specimens has been determined using the constraint-modified, critical strain criterion, demonstrating that this micromechanical model can be used to correct in-plane constraint effects due to crack depth and bending vs. tension loading. Finally, the relationship developed for the SECT specimens is used to predict the behavior of circumferentially cracked pipe specimens.

  19. Analogy among microfluidics, micromechanics, and microelectronics.

    PubMed

    Li, Sheng-Shian; Cheng, Chao-Min

    2013-10-01

    We wish to illuminate the analogous link between microfluidic-based devices, and the already established pairing of micromechanics and microelectronics to create a triangular/three-way scientific relationship as a means of interlinking familial disciplines and accomplishing two primary goals: (1) to facilitate the modeling of multidisciplinary domains; and, (2) to enable us to co-simulate the entire system within a compact circuit simulator (e.g., Cadence or SPICE). A microfluidic channel-like structure embedded in a micro-electro-mechanical resonator via our proposed CMOS-MEMS technology is used to illustrate the connections among microfluidics, micromechanics, and microelectronics. PMID:23963526

  20. A micromechanical approach to elastic and viscoelastic properties of fiber reinforced concrete

    SciTech Connect

    Pasa Dutra, V.F.; Maghous, S. Campos Filho, A.; Pacheco, A.R.

    2010-03-15

    Some aspects of the constitutive behavior of fiber reinforced concrete (FRC) are investigated within a micromechanical framework. Special emphasis is put on the prediction of creep of such materials. The linear elastic behavior is first examined by implementation of a Mori-Tanaka homogenization scheme. The micromechanical predictions for the overall stiffness prove to be very close to finite element solutions obtained from the numerical analysis of a representative elementary volume of FRC modeled as a randomly heterogeneous medium. The validation of the micromechanical concepts based on comparison with a set of experiments, shows remarkable predictive capabilities of the micromechanical representation. The second part of the paper is devoted to non-ageing viscoelasticity of FRC. Adopting a Zener model for the behavior of the concrete matrix and making use of the correspondence principle, the homogenized relaxation moduli are derived analytically. The validity of the model is established by mean of comparison with available experiment measurements of creep strain of steel fiber reinforced concrete under compressive load. Finally, the model predictions are compared to those derived from analytical models formulated within a one-dimensional setting.

  1. Simultaneous strain measurement with determination of a zero strain reference for the medial and lateral ligaments of the ankle.

    PubMed

    Ozeki, Satoru; Yasuda, Kazunori; Kaneda, Kiyoshi; Yamakoshi, Kenichi; Yamanoi, Takahiro

    2002-09-01

    The strain changes of the central part of the anterior talofibular ligament (ATFL), the posterior talofibular ligament (PTFL), the calcaneofibular ligament (CFL), and the tibiocalcaneal ligament (TCL) were measured simultaneously for a full range of ankle motion. Twelve fresh frozen amputated ankles were used. To measure the strain changes of the ligaments, a Galium-Indium-filled silastic strain transducer was implanted in the center of each ligament. The zero strain reference was determined immediately after the measurement of strain changes in five of the 12 ankles by tensile testing of each bone-ligament-bone preparation. The maximum strain change of the ATFL, the PTFL, the CFL and the TFL were 7.9%, 5.9%, 5.3% and 5.2%, respectively. The ATFL was elongated in plantar flexion and shortened in dorsiflexion. The PTFL and the CFL were shortened in plantar flexion and elongated in dorsiflexion. The TCL was the longest around the neutral position and became shorter in planter flexion and dorsiflexion. The results showed that the ATFL was taut in plantar flexion over 16.2 degrees, the PTFL and the CFL were taut in dorsiflexion over 18 degrees and 17.8 degrees respectively, and the TCL was taut between 9.5 degrees of dorsiflexion and 9.5 degrees of plantar flexion. The length change pattern was different among the ankle ligaments, although there was only a slight difference between that of the PTFL and the CFL. This study provides fundamental data useful in studying ankle ligament reconstruction. PMID:12356180

  2. Micromechanical analysis of native and cross-linked collagen type I fibrils supports the existence of microfibrils.

    PubMed

    Yang, L; van der Werf, K O; Dijkstra, P J; Feijen, J; Bennink, M L

    2012-02-01

    The mechanical properties of individual collagen fibrils of approximately 200 nm in diameter were determined using a slightly adapted AFM system. Single collagen fibrils immersed in PBS buffer were attached between an AFM cantilever and a glass surface to perform tensile tests at different strain rates and stress relaxation measurements. The stress-strain behavior of collagen fibrils immersed in PBS buffer comprises a toe region up to a stress of 5 MPa, followed by the heel and linear region at higher stresses. Hysteresis and strain-rate dependent stress-strain behavior of collagen fibrils were observed, which suggest that single collagen fibrils have viscoelastic properties. The stress relaxation process of individual collagen fibrils could be best fitted using a two-term Prony series. Furthermore, the influence of different cross-linking agents on the mechanical properties of single collagen fibrils was investigated. Based on these results, we propose that sliding of microfibrils with respect to each other plays a role in the viscoelastic behavior of collagen fibrils in addition to the sliding of collagen molecules with respect to each other. Our finding provides a better insight into the relationship between the structure and mechanical properties of collagen and the micro-mechanical behavior of tissues. PMID:22301184

  3. Method for determining the hardness of strain hardening articles of tungsten-nickel-iron alloy

    DOEpatents

    Wallace, Steven A.

    1984-01-01

    The present invention is directed to a rapid nondestructive method for determining the extent of strain hardening in an article of tungsten-nickel-iron alloy. The method comprises saturating the article with a magnetic field from a permanent magnet, measuring the magnetic flux emanating from the article, comparing the measurements of the magnetic flux emanating from the article with measured magnetic fluxes from similarly shaped standards of the alloy with known amounts of strain hardening to determine the hardness.

  4. A micromechanical device that monitors arterial pressure during general anesthesia and in intensive care units

    NASA Astrophysics Data System (ADS)

    Andreeva, A. V.; Luchinin, V. V.; Kuzmina, K. A.; Klyavinek, A. S.; Karelov, A. E.

    2015-12-01

    A vibroacoustic fiber optic system that consists of micromechanical components designated for use in medicine and biology is reviewed. A theoretical analysis of a fiber optic microphone is done and its optimal construction parameters are determined. The possibility of using the developed system with magnetic resonance tomography to noninvasively measure man's arterial pressure is specified.

  5. A probabilistic approach to composite micromechanics

    NASA Technical Reports Server (NTRS)

    Stock, T. A.; Bellini, P. X.; Murthy, P. L. N.; Chamis, C. C.

    1988-01-01

    Probabilistic composite micromechanics methods are developed that simulate expected uncertainties in unidirectional fiber composite properties. These methods are in the form of computational procedures using Monte Carlo simulation. A graphite/epoxy unidirectional composite (ply) is studied to demonstrate fiber composite material properties at the micro level. Regression results are presented to show the relative correlation between predicted and response variables in the study.

  6. Ex vivo determination of bone tissue strains for an in vivo mouse tibial loading model.

    PubMed

    Carriero, Alessandra; Abela, Lisa; Pitsillides, Andrew A; Shefelbine, Sandra J

    2014-07-18

    Previous studies introduced the digital image correlation (DIC) as a viable technique for measuring bone strain during loading. In this study, we investigated the sensitivity of a DIC system in determining surface strains in a mouse tibia while loaded in compression through the knee joint. Specifically, we examined the effect of speckle distribution, facet size and overlap, initial vertical alignment of the bone into the loading cups, rotation with respect to cameras, and ex vivo loading configurations on the strain contour maps measured with a DIC system. We loaded tibiae of C57BL/6 mice (12 and 18 weeks old male) up to 12 N at 8 N/min. Images of speckles on the bone surface were recorded at 1N intervals and DIC was used to compute strains. Results showed that speckles must have the correct size and density with respect to the facet size of choice for the strain distribution to be computed and reproducible. Initial alignment of the bone within the loading cups does not influence the strain distribution measured during peak loading, but bones must be placed in front of the camera with the same orientation in order for strains to be comparable. Finally, the ex vivo loading configurations with the tibia attached to the entire mouse, or to the femur and foot, or only to the foot, showed different strain contour maps. This work provides a better understanding of parameters affecting full field strain measurements from DIC in ex vivo murine tibial loading tests. PMID:24835472

  7. Micromechanical Modeling of Woven Metal Matrix Composites

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Pindera, Marek-Jerzy

    1997-01-01

    This report presents the results of an extensive micromechanical modeling effort for woven metal matrix composites. The model is employed to predict the mechanical response of 8-harness (8H) satin weave carbon/copper (C/Cu) composites. Experimental mechanical results for this novel high thermal conductivity material were recently reported by Bednarcyk et al. along with preliminary model results. The micromechanics model developed herein is based on an embedded approach. A micromechanics model for the local (micro-scale) behavior of the woven composite, the original method of cells (Aboudi), is embedded in a global (macro-scale) micromechanics model (the three-dimensional generalized method of cells (GMC-3D) (Aboudi). This approach allows representation of true repeating unit cells for woven metal matrix composites via GMC-3D, and representation of local effects, such as matrix plasticity, yarn porosity, and imperfect fiber-matrix bonding. In addition, the equations of GMC-3D were reformulated to significantly reduce the number of unknown quantities that characterize the deformation fields at the microlevel in order to make possible the analysis of actual microstructures of woven composites. The resulting micromechanical model (WCGMC) provides an intermediate level of geometric representation, versatility, and computational efficiency with respect to previous analytical and numerical models for woven composites, but surpasses all previous modeling work by allowing the mechanical response of a woven metal matrix composite, with an elastoplastic matrix, to be examined for the first time. WCGMC is employed to examine the effects of composite microstructure, porosity, residual stresses, and imperfect fiber-matrix bonding on the predicted mechanical response of 8H satin C/Cu. The previously reported experimental results are summarized, and the model predictions are compared to monotonic and cyclic tensile and shear test data. By considering appropriate levels of porosity

  8. Three-dimensional micromechanical models for the nonlinear analysis of pultruded composite structures

    NASA Astrophysics Data System (ADS)

    Kilic, Mustafa Hakan

    This study presents a new three-dimensional (3D) micromechanics-based nonlinear framework for the analysis of pultruded composite structures. The proposed material modeling framework is a nested micromechanical approach that explicitly recognizes the different composite systems within the cross-section of a pultruded composite member. The 3D lamination theory is used to generate a homogenized nonlinear effective response using a through-thickness representative stacking sequence. Different 3D micromechanical models can be used to represent the composite layers within the repeating stacking sequence, e.g. roving layer, continuous filament mat (CFM), and woven fabrics. The proposed modeling framework is applied for pultruded composite material systems made from roving and CFM. The roving layer is idealized using an existing 3D nonlinear micromechanics model for a unidirectional fiber reinforced material. A simple nonlinear micromechanical model for the CFM layer is introduced and implemented. The overall modeling approach is able to predict both the elastic and nonlinear response of the composite material based on the in-situ properties and response of the fiber and matrix constituents. Experimental data, from off-axis tests of pultruded plates, is used to verify the proposed modeling approach. The 3D modeling framework shows good prediction capabilities for the overall effective elastic constants, as well as the nonlinear multi-axial stress-strain response. In addition, a simple degradation and damage modeling is coupled with the proposed analysis framework. Several applications are performed for the nonlinear analysis of pultruded composite structures, such as progressive failure analysis of notched plates, bending of short beams, and damage analysis of pultruded FRP bolted connections.

  9. Determination of Constant Strain Gradients of Elastically Bent Crystal Using X-ray Mirage Fringes

    NASA Astrophysics Data System (ADS)

    Jongsukswat, Sukswat; Fukamachi, Tomoe; Hirano, Kenji; Ju, Dongying; Negishi, Riichirou; Shimojo, Masayuki; Hirano, Keiichi; Kawamura, Takaaki

    2012-07-01

    Two experimental approaches are studied to determine a parameter of the strain gradient in an elastically bent crystal. In one approach, the parameter is determined by measuring the third peak of the X-ray mirage interference fringes and in the other, by measuring the region where no mirage diffraction beam reaches on the lateral surface of the crystal. Using the X-rays from synchrotron radiation, the mirage fringes have been observed in the 220 reflection of the Si crystal whose strain is controlled in cantilever bending. These two approaches both give accurate values of the parameter of the strain gradient, showing good agreement with the values calculated using elastic theory. In addition, the residual strain due to gravity is observed by measuring mirage fringes when the bending force becomes zero.

  10. A spider's biological vibration filter: micromechanical characteristics of a biomaterial surface.

    PubMed

    Young, Seth L; Chyasnavichyus, Marius; Erko, Maxim; Barth, Friedrich G; Fratzl, Peter; Zlotnikov, Igor; Politi, Yael; Tsukruk, Vladimir V

    2014-11-01

    A strain-sensing lyriform organ (HS-10) found on all of the legs of a Central American wandering spider (Cupiennius salei) detects courtship, prey and predator vibrations transmitted by the plant on which it sits. It has been suggested that the viscoelastic properties of a cuticular pad directly adjacent to the sensory organ contribute to the organ's pronounced high-pass characteristics. Here, we investigate the micromechanical properties of the cuticular pad biomaterial in search of a deeper understanding of its impact on the function of the vibration sensor. These properties are considered to be an effective adaptation for the selective detection of signals for frequencies >40 Hz. Using surface force spectroscopy mapping we determine the elastic modulus of the pad surface over a temperature range of 15-40 °C at various loading frequencies. In the glassy state, the elastic modulus was ~100 MPa, while in the rubbery state the elastic modulus decreased to 20 MPa. These data are analyzed according to the principle of time-temperature superposition to construct a master curve that relates mechanical properties, temperature and stimulus frequencies. By estimating the loss and storage moduli vs. temperature and frequency it was possible to make a direct comparison with electrophysiology experiments, and it was found that the dissipation of energy occurs within a frequency window whose position is controlled by environmental temperatures. PMID:25065547

  11. Micromechanics-Based Progressive Failure Analysis of Composite Laminates Using Different Constituent Failure Theories

    NASA Technical Reports Server (NTRS)

    Moncada, Albert M.; Chattopadhyay, Aditi; Bednarcyk, Brett A.; Arnold, Steven M.

    2008-01-01

    Predicting failure in a composite can be done with ply level mechanisms and/or micro level mechanisms. This paper uses the Generalized Method of Cells and High-Fidelity Generalized Method of Cells micromechanics theories, coupled with classical lamination theory, as implemented within NASA's Micromechanics Analysis Code with Generalized Method of Cells. The code is able to implement different failure theories on the level of both the fiber and the matrix constituents within a laminate. A comparison is made among maximum stress, maximum strain, Tsai-Hill, and Tsai-Wu failure theories. To verify the failure theories the Worldwide Failure Exercise (WWFE) experiments have been used. The WWFE is a comprehensive study that covers a wide range of polymer matrix composite laminates. The numerical results indicate good correlation with the experimental results for most of the composite layups, but also point to the need for more accurate resin damage progression models.

  12. Analysis of metal-matrix composite structures. I - Micromechanics constitutive theory. II - Laminate analyses

    NASA Technical Reports Server (NTRS)

    Arenburg, R. T.; Reddy, J. N.

    1991-01-01

    The micromechanical constitutive theory is used to examine the nonlinear behavior of continuous-fiber-reinforced metal-matrix composite structures. Effective lamina constitutive relations based on the Abouli micromechanics theory are presented. The inelastic matrix behavior is modeled by the unified viscoplasticity theory of Bodner and Partom. The laminate constitutive relations are incorporated into a first-order deformation plate theory. The resulting boundary value problem is solved by utilizing the finite element method. Attention is also given to computational aspects of the numerical solution, including the temporal integration of the inelastic strains and the spatial integration of bending moments. Numerical results the nonlinear response of metal matrix composites subjected to extensional and bending loads are presented.

  13. Micromechanical Modeling of R-Curve Behaviors in Human Cortical Bone

    PubMed Central

    Chan, Kwai S.; Nicolella, Daniel P.

    2012-01-01

    The risk of bone fracture increases with age because of a variety of factors that include, among others, decreasing bone quantity and quality due to increasing porosity and crack density with age. Experimental evidence has indicated that changes in bone microstructure and trace mineralization with age can result in different crack-tip strain field and fracture response, leading to different fracture mechanisms and R-curve behaviors. In this paper, a micromechanical modeling approach is developed to predict the R-curve response of bone tissue by delineating fracture mechanisms that lead to microdamage and ligament bridging by incorporating the influence of increasing porosity and crack density with age. The effects of age on fracture of human femur cortical bone due to porosity (bone quantity) and bone quality (crack density) with age are then examined via the micromechanical model. PMID:23158217

  14. Yield function for metal powder compaction based on micromechanics of particle deformation

    SciTech Connect

    PavanaChand, C.; KrishnaKumar, R.

    1996-09-15

    A new method based on the micromechanics of powder particle deformation for evaluating the yield function parameters is attempted. 2D particles in close packed arrangements with two different starting relative densities are considered. These unit cells are studied under plane strain conditions for basic densification response using Large Strain elasto-plastic Finite Element Analysis. Macroscopic values of stresses and the relative densities are recorded for different loading paths. Within the basic form of Shima`s yield function these material parameters are computed. The yield function parameters thus computed are found to be in good agreement with the experimental results reported on copper powder.

  15. Probabilistic micromechanics for high-temperature composites

    NASA Technical Reports Server (NTRS)

    Reddy, J. N.

    1993-01-01

    The three-year program of research had the following technical objectives: the development of probabilistic methods for micromechanics-based constitutive and failure models, application of the probabilistic methodology in the evaluation of various composite materials and simulation of expected uncertainties in unidirectional fiber composite properties, and influence of the uncertainties in composite properties on the structural response. The first year of research was devoted to the development of probabilistic methodology for micromechanics models. The second year of research focused on the evaluation of the Chamis-Hopkins constitutive model and Aboudi constitutive model using the methodology developed in the first year of research. The third year of research was devoted to the development of probabilistic finite element analysis procedures for laminated composite plate and shell structures.

  16. Casimir Forces On A Silicon Micromechanical Chip

    SciTech Connect

    Zou, J.; Marset, zsolt; Rodriguez, A.W.; Reid, M. T.H.; McCauley, A. P.; Kravchenko, Ivan I; Bao, Y.; Johnson, S. G.; Chan, Ho Bun

    2013-01-01

    Quantum fluctuations give rise to van der Waals and Casimir forces that dominate the interaction between electrically neutral objects at sub-micron separations. Under the trend of miniaturization, such quantum electrodynamical effects are expected to play an important role in micro- and nano-mechanical devices. Nevertheless, so far the Casimir force has been experimentally observed only in situations involving an external object manually positioned close to a micromechanical element on a silicon chip. Here, we demonstrate the Casimir effect between two silicon components on the same substrate. In addition to providing an integrated and compact platform for Casimir force measurements, this scheme also opens the possibility of tailoring the Casimir force using lithographically defined components of non-conventional shapes on a single micromechanical chip.

  17. Determination of antibiotic resistance pattern and bacteriocin sensitivity of Listeria monocytogenes strains isolated from different foods in turkey

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study aimed to determine the antibiotic resistance pattern and bacteriocin sensitivity of Listeria monocytogenes strains isolated from animal derived foods. With disc diffusion assay, all fourteen L. monocytogenes strains were susceptible to the antibiotics, including penicillin G, vancomycin, ...

  18. Micromechanical apparatus for measurement of forces

    DOEpatents

    Tanner, Danelle Mary; Allen, James Joe

    2004-05-25

    A new class of micromechanical dynamometers has been disclosed which are particularly suited to fabrication in parallel with other microelectromechanical apparatus. Forces in the microNewton regime and below can be measured with such dynamometers which are based on a high-compliance deflection element (e.g. a ring or annulus) suspended above a substrate for deflection by an applied force, and one or more distance scales for optically measuring the deflection.

  19. Synchronization of Micromechanical Oscillators Using Light

    NASA Astrophysics Data System (ADS)

    Zhang, Mian; Wiederhecker, Gustavo S.; Manipatruni, Sasikanth; Barnard, Arthur; McEuen, Paul; Lipson, Michal

    2012-12-01

    Synchronization, the emergence of spontaneous order in coupled systems, is of fundamental importance in both physical and biological systems. We demonstrate the synchronization of two dissimilar silicon nitride micromechanical oscillators, that are spaced apart by a few hundred nanometers and are coupled through an optical cavity radiation field. The tunability of the optical coupling between the oscillators enables one to externally control the dynamics and switch between coupled and individual oscillation states. These results pave a path toward reconfigurable synchronized oscillator networks.

  20. Determination of a Dynamic Feeding Strategy for Recombinant Pichia pastoris Strains

    PubMed Central

    Spadiut, Oliver; Dietzsch, Christian; Herwig, Christoph

    2015-01-01

    The knowledge of certain strain specific parameters of recombinant P. pastoris strains is required to be able to set up a feeding regime for fed-batch cultivations. To date, these parameters are commonly determined either by time-consuming and labor-intensive continuous cultivations or by several, consecutive fed-batch cultivations. Here, we describe a fast method based on batch experiments with methanol pulses to extract certain strain characteristic parameters, which are required to set up a dynamic feeding strategy for P. pastoris strains based on specific substrate uptake rate (qs). We further describe in detail the course of actions which have to be taken to obtain the desired dynamics during feeding. PMID:24744034

  1. Determination of third-order elastic moduli via parameters of bulk strain solitons

    NASA Astrophysics Data System (ADS)

    Garbuzov, F. E.; Samsonov, A. M.; Semenov, A. A.; Shvartz, A. G.

    2016-02-01

    A method is proposed aimed for determination of the third-order elastic moduli (Murnaghan moduli) based on the estimation of measured parameters of bulk strain solitons in the three main waveguide configurations, a rod, a plate, and a shell. Formulas connecting the third-order moduli of the waveguide material and the parameters of a solitary strain wave (amplitude, velocity, full width at half-maximum) are derived. If the soliton parameters measured in three waveguide types manufactured from the same material are available, determination of the third-order elastic moduli is reduced to the solution of a system of three algebraic equations with a nondegenerate matrix.

  2. Micromechanics Modeling of Composites Subjected to Multiaxial Progressive Damage in the Constituents

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Aboudi, Jacob; Amold, Steven M.

    2010-01-01

    The high-fidelity generalized method of cells composite micromechanics model is extended to include constituent-scale progressive damage via a proposed damage model. The damage model assumes that all material nonlinearity is due to damage in the form of reduced stiffness, and it uses six scalar damage variables (three for tension and three for compression) to track the damage. Damage strains are introduced that account for interaction among the strain components and that also allow the development of the damage evolution equations based on the constituent material uniaxial stress strain response. Local final-failure criteria are also proposed based on mode-specific strain energy release rates and total dissipated strain energy. The coupled micromechanics-damage model described herein is applied to a unidirectional E-glass/epoxy composite and a proprietary polymer matrix composite. Results illustrate the capability of the coupled model to capture the vastly different character of the monolithic (neat) resin matrix and the composite in response to far-field tension, compression, and shear loading.

  3. Comparison of Saccharomyces cerevisiae strains of clinical and nonclinical origin by molecular typing and determination of putative virulence traits

    PubMed Central

    Klingberg, Trine Danø; Lesnik, Urska; Arneborg, Nils; Raspor, Peter; Jespersen, Lene

    2008-01-01

    Saccharomyces cerevisiae strains of clinical and nonclinical origin were compared by pulse field gel electrophoresis. Complete separation between strains of clinical origin and food strains by their chromosome length polymorphism was not obtained even though there was a tendency for the clinical and food strains to cluster separately. All the investigated strains, except for one food strain, were able to grow at temperatures ≥37 °C but not at 42 °C. Great strain variations were observed in pseudohyphal growth and invasiveness, but the characters were not linked to strains of clinical origin. The adhesion capacities of the yeast strains to a human intestinal epithelial cell line (Caco-2) in response to different nutritional availabilities were determined, as were the effects of the strains on the transepithelial electrical resistance (TER) across polarized monolayers of Caco-2 cells. The yeast strains displayed very low adhesion capacities to Caco-2 cells (0.6–6.2%), and no significant difference was observed between the strains of clinical and nonclinical origin. Both S. cerevisiae strains of clinical and non-clinical origin increased the TER of polarized monolayers of Caco-2 cells. Based on the results obtained in this study, no specific virulence factor was found that clearly separated the strains of clinical origin from the strains of nonclinical origin. On the contrary, all investigated strains of S. cerevisiae were found to strengthen the epithelial barrier function. PMID:18355272

  4. Cervical strain determined by ultrasound elastography and its association with spontaneous preterm delivery

    PubMed Central

    Hernandez-Andrade, Edgar; Romero, Roberto; Korzeniewski, Steven J.; Ahn, Hyunyoung; Aurioles-Garibay, Alma; Garcia, Maynor; Schwartz, Alyse G.; Yeo, Lami; Chaiworapongsa, Tinnakorn; Hassan, Sonia S.

    2014-01-01

    Objective To determine if there is an association between cervical strain, evaluated using ultrasound elastography, and spontaneous preterm delivery (sPTD) <37 weeks of gestation. Methods One hundred and eighty nine (189) women at 16–24 weeks of gestation were evaluated. Ultrasound elastography was used to estimate cervical strain in three anatomical planes: one mid-sagittal in the same plane used for cervical length measurement, and two cross sectional images: one at the level of the internal cervical os, and the other at the level of the external cervical os. In each plane, two regions of interest (endocervix and entire cervix) were examined; a total of six regions of interest were evaluated. Results The prevalence of sPTD was 11% (21/189). Strain values from each of the six cervical regions correlated weakly with cervical length (r= −0.24, p<0.001 to r= −0.03, p=0.69). Strain measurements obtained in a cross sectional view of the internal cervical os were significantly associated with sPTD. Women with strain values ≤25th centile in the endocervical canal (0.19) and in the entire cervix (0.14) were 80% less likely to have a sPTD than women with strain values >25th centile (endocervical: odds ratio [OR] 0.2; 95% confidence interval [CI], 0.03–0.96; entire cervix: OR 0.17; 95% CI, 0.03–0.9). Additional adjustment for gestational age, race, smoking status, parity, maternal age, pre-pregnancy body mass index and previous preterm delivery did not appreciably alter the magnitude or statistical significance of these associations. Strain values obtained from the external cervical os and from the sagittal view were not associated with sPTD. Conclusion Low strain values in the internal cervical os were associated with a significantly lower risk of spontaneous preterm delivery <37 weeks of gestation. PMID:24356388

  5. Comparison of Four Methods for Determining Lysostaphin Susceptibility of Various Strains of Staphylococcus aureus

    PubMed Central

    Kusuma, Caroline M.; Kokai-Kun, John F.

    2005-01-01

    Lysostaphin is an endopeptidase that cleaves the pentaglycine cross-bridges of the staphylococcal cell wall rapidly lysing the bacteria. Recently, lysostaphin has been examined for its potential to treat infections and to clear Staphylococcus aureus nasal colonization, requiring a reliable method for determining the lysostaphin susceptibility of strains of S. aureus. We compared four methods for determining the lysostaphin susceptibility of 57 strains of methicillin-sensitive S. aureus, methicillin-resistant S. aureus, vancomycin intermediately susceptible S. aureus (VISA), mupirocin-resistant S. aureus, and various defined genetic mutants of S. aureus. Three reference lysostaphin-resistant S. aureus variants were also included in the assays as negative controls. The assays examined included turbidity, MIC, minimum bactericidal concentration (MBC), and disk diffusion assays. All of the strains of S. aureus tested, including a VISA strain which had previously been reported to be lysostaphin resistant, were susceptible to lysostaphin by all four methods. The three reference lysostaphin-resistant variants were resistant by all four methods. The disk diffusion assay was the simplest method to differentiate lysostaphin-susceptible S. aureus strains from lysostaphin-resistant variants, while the MBC assay could be used as a follow-up assay if required. In the disk diffusion assay, all strains of S. aureus tested revealed zones of inhibition of ≥11 mm using a 50-μg lysostaphin disk, while the three reference lysostaphin-resistant S. aureus variants had no zones of inhibition. In MBC assays, concentrations of lysostaphin ranging from 0.16 μg/ml to 2.5 μg/ml were found to cause a 3 log or greater drop from the initial CFU of S. aureus within 30 min for all strains tested. PMID:16048934

  6. Antibiotic resistance determinants in a Pseudomonas putida strain isolated from a hospital.

    PubMed

    Molina, Lázaro; Udaondo, Zulema; Duque, Estrella; Fernández, Matilde; Molina-Santiago, Carlos; Roca, Amalia; Porcel, Mario; de la Torre, Jesús; Segura, Ana; Plesiat, Patrick; Jeannot, Katy; Ramos, Juan-Luis

    2014-01-01

    Environmental microbes harbor an enormous pool of antibiotic and biocide resistance genes that can impact the resistance profiles of animal and human pathogens via horizontal gene transfer. Pseudomonas putida strains are ubiquitous in soil and water but have been seldom isolated from humans. We have established a collection of P. putida strains isolated from in-patients in different hospitals in France. One of the isolated strains (HB3267) kills insects and is resistant to the majority of the antibiotics used in laboratories and hospitals, including aminoglycosides, ß-lactams, cationic peptides, chromoprotein enediyne antibiotics, dihydrofolate reductase inhibitors, fluoroquinolones and quinolones, glycopeptide antibiotics, macrolides, polyketides and sulfonamides. Similar to other P. putida clinical isolates the strain was sensitive to amikacin. To shed light on the broad pattern of antibiotic resistance, which is rarely found in clinical isolates of this species, the genome of this strain was sequenced and analysed. The study revealed that the determinants of multiple resistance are both chromosomally-borne as well as located on the pPC9 plasmid. Further analysis indicated that pPC9 has recruited antibiotic and biocide resistance genes from environmental microorganisms as well as from opportunistic and true human pathogens. The pPC9 plasmid is not self-transmissible, but can be mobilized by other bacterial plasmids making it capable of spreading antibiotic resistant determinants to new hosts. PMID:24465371

  7. Antibiotic Resistance Determinants in a Pseudomonas putida Strain Isolated from a Hospital

    PubMed Central

    Duque, Estrella; Fernández, Matilde; Molina-Santiago, Carlos; Roca, Amalia; Porcel, Mario; de la Torre, Jesús; Segura, Ana; Plesiat, Patrick; Jeannot, Katy; Ramos, Juan-Luis

    2014-01-01

    Environmental microbes harbor an enormous pool of antibiotic and biocide resistance genes that can impact the resistance profiles of animal and human pathogens via horizontal gene transfer. Pseudomonas putida strains are ubiquitous in soil and water but have been seldom isolated from humans. We have established a collection of P. putida strains isolated from in-patients in different hospitals in France. One of the isolated strains (HB3267) kills insects and is resistant to the majority of the antibiotics used in laboratories and hospitals, including aminoglycosides, ß-lactams, cationic peptides, chromoprotein enediyne antibiotics, dihydrofolate reductase inhibitors, fluoroquinolones and quinolones, glycopeptide antibiotics, macrolides, polyketides and sulfonamides. Similar to other P. putida clinical isolates the strain was sensitive to amikacin. To shed light on the broad pattern of antibiotic resistance, which is rarely found in clinical isolates of this species, the genome of this strain was sequenced and analysed. The study revealed that the determinants of multiple resistance are both chromosomally-borne as well as located on the pPC9 plasmid. Further analysis indicated that pPC9 has recruited antibiotic and biocide resistance genes from environmental microorganisms as well as from opportunistic and true human pathogens. The pPC9 plasmid is not self-transmissible, but can be mobilized by other bacterial plasmids making it capable of spreading antibiotic resistant determinants to new hosts. PMID:24465371

  8. Micromechanics of plastic deformation and phase transformation in a three-phase TRIP-assisted advanced high strength steel: Experiments and modeling

    NASA Astrophysics Data System (ADS)

    Srivastava, Ankit; Ghassemi-Armaki, Hassan; Sung, Hyokyung; Chen, Peng; Kumar, Sharvan; Bower, Allan F.

    2015-05-01

    The micromechanics of plastic deformation and phase transformation in a three-phase advanced high strength steel are analyzed both experimentally and by microstructure-based simulations. The steel examined is a three-phase (ferrite, martensite and retained austenite) quenched and partitioned sheet steel with a tensile strength of ~980 MPa. The macroscopic flow behavior and the volume fraction of martensite resulting from the austenite-martensite transformation during deformation were measured. In addition, micropillar compression specimens were extracted from the individual ferrite grains and the martensite particles, and using a flat-punch nanoindenter, stress-strain curves were obtained. Finite element simulations idealize the microstructure as a composite that contains ferrite, martensite and retained austenite. All three phases are discretely modeled using appropriate crystal plasticity based constitutive relations. Material parameters for ferrite and martensite are determined by fitting numerical predictions to the micropillar data. The constitutive relation for retained austenite takes into account contributions to the strain rate from the austenite-martensite transformation, as well as slip in both the untransformed austenite and product martensite. Parameters for the retained austenite are then determined by fitting the predicted flow stress and transformed austenite volume fraction in a 3D microstructure to experimental measurements. Simulations are used to probe the role of the retained austenite in controlling the strain hardening behavior as well as internal stress and strain distributions in the microstructure.

  9. Granular micromechanics based micromorphic model predicts frequency band gaps

    NASA Astrophysics Data System (ADS)

    Misra, Anil; Poorsolhjouy, Payam

    2016-03-01

    Granular materials are typically characterized by complex structure and composition. Continuum modeling, therefore, remains the mainstay for describing properties of these material systems. In this paper, we extend the granular micromechanics approach by considering enhanced kinematic analysis. In this analysis, a decomposition of the relative movements of interacting grain pairs into parts arising from macro-scale strain as well as micro-scale strain measures is introduced. The decomposition is then used to formulate grain-scale deformation energy functions and derive inter-granular constitutive laws. The macro-scale deformation energy density is defined as a summation of micro-scale deformation energy defined for each interacting grain pair. As a result, a micromorphic continuum model for elasticity of granular media is derived and applied to investigate the wave propagation behavior. Dispersion graphs for different cases and different ratios between the microscopic stiffness parameters have been presented. It is seen that the model has the capability to present band gaps over a large range of wave numbers.

  10. Sequence determination of a mildly virulent strain (CU-2) of Gallid herpesvirus type 2 using 454 pyrosequencing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The complete DNA sequence of the mildly virulent Gallid herpesvirus type 2 strain CU-2 was determined and consists of 176,922 bp with an overall gene organization typical of class E alphaherpesviruses. Phylogenetically, this strain partitions in its own branch between the virulent strains RB-1B, Md1...

  11. Time And Temperature Dependent Micromechanical Properties Of Solder Joints For 3D-Package Integration

    NASA Astrophysics Data System (ADS)

    Roellig, Mike; Meier, Karsten; Metasch, Rene

    2010-11-01

    The recent development of 3D-integrated electronic packages is characterized by the need to increase the diversity of functions and to miniaturize. Currently many 3D-integration concepts are being developed and all of them demand new materials, new designs and new processing technologies. The combination of simulation and experimental investigation becomes increasingly accepted since simulations help to shorten the R&D cycle time and reduce costs. Numerical calculations like the Finite-Element-Method are strong tools to calculate stress conditions in electronic packages resulting from thermal strains due to the manufacturing process and environmental loads. It is essential for the application of numerical calculations that the material data is accurate and describes sufficiently the physical behaviour. The developed machine allows the measurement of time and temperature dependent micromechanical properties of solder joints. Solder joints, which are used to mechanically and electrically connect different packages, are physically measured as they leave the process. This allows accounting for process influences, which may change material properties. Additionally, joint sizes and metallurgical interactions between solder and under bump metallization can be respected by this particular measurement. The measurement allows the determination of material properties within a temperature range of 20° C-200° C. Further, the time dependent creep deformation can be measured within a strain-rate range of 10-31/s-10-81/s. Solder alloys based on Sn-Ag/Sn-Ag-Cu with additionally impurities and joint sizes down to O/ 200 μm were investigated. To finish the material characterization process the material model coefficient were extracted by FEM-Simulation to increase the accuracy of data.

  12. Determining a Prony Series for a Viscoelastic Material From Time Varying Strain Data

    NASA Technical Reports Server (NTRS)

    Tzikang, Chen

    2000-01-01

    In this study a method of determining the coefficients in a Prony series representation of a viscoelastic modulus from rate dependent data is presented. Load versus time test data for a sequence of different rate loading segments is least-squares fitted to a Prony series hereditary integral model of the material tested. A nonlinear least squares regression algorithm is employed. The measured data includes ramp loading, relaxation, and unloading stress-strain data. The resulting Prony series which captures strain rate loading and unloading effects, produces an excellent fit to the complex loading sequence.

  13. A micromechanics-based strength prediction methodology for notched metal matrix composites

    NASA Technical Reports Server (NTRS)

    Bigelow, C. A.

    1992-01-01

    An analytical micromechanics based strength prediction methodology was developed to predict failure of notched metal matrix composites. The stress-strain behavior and notched strength of two metal matrix composites, boron/aluminum (B/Al) and silicon-carbide/titanium (SCS-6/Ti-15-3), were predicted. The prediction methodology combines analytical techniques ranging from a three dimensional finite element analysis of a notched specimen to a micromechanical model of a single fiber. In the B/Al laminates, a fiber failure criteria based on the axial and shear stress in the fiber accurately predicted laminate failure for a variety of layups and notch-length to specimen-width ratios with both circular holes and sharp notches when matrix plasticity was included in the analysis. For the SCS-6/Ti-15-3 laminates, a fiber failure based on the axial stress in the fiber correlated well with experimental results for static and post fatigue residual strengths when fiber matrix debonding and matrix cracking were included in the analysis. The micromechanics based strength prediction methodology offers a direct approach to strength prediction by modeling behavior and damage on a constituent level, thus, explicitly including matrix nonlinearity, fiber matrix debonding, and matrix cracking.

  14. Using digital image correlation to determine bone surface strains during loading and after adaptation of the mouse tibia.

    PubMed

    Sztefek, Pavel; Vanleene, Maximilien; Olsson, Robin; Collinson, Rebecca; Pitsillides, Andrew A; Shefelbine, Sandra

    2010-03-01

    Previous models of cortical bone adaptation, in which loading is imposed on the bone, have estimated the strains in the tissue using strain gauges, analytical beam theory, or finite element analysis. We used digital image correlation (DIC), tracing a speckle pattern on the surface of the bone during loading, to determine surface strains in a murine tibia during compressive loading through the knee joint. We examined whether these surface strains in the mouse tibia are modified following two weeks of load-induced adaptation by comparison with contralateral controls. Results indicated non-uniform strain patterns with isolated areas of high strain (0.5%), particularly on the medial side. Strain measurements were reproducible (standard deviation of the error 0.03%), similar between specimens, and in agreement with strain gauge measurements (between 0.1 and 0.2% strain). After structural adaptation, strains were more uniform across the tibial surface, particularly on the medial side where peak strains were reduced from 0.5% to 0.3%. Because DIC determines local strains over the entire surface, it will provide a better understanding of how strain stimulus influences the bone response during adaptation. PMID:20005517

  15. Micromechanics Analysis Code With Generalized Method of Cells (MAC/GMC): User Guide. Version 3

    NASA Technical Reports Server (NTRS)

    Arnold, S. M.; Bednarcyk, B. A.; Wilt, T. E.; Trowbridge, D.

    1999-01-01

    The ability to accurately predict the thermomechanical deformation response of advanced composite materials continues to play an important role in the development of these strategic materials. Analytical models that predict the effective behavior of composites are used not only by engineers performing structural analysis of large-scale composite components but also by material scientists in developing new material systems. For an analytical model to fulfill these two distinct functions it must be based on a micromechanics approach which utilizes physically based deformation and life constitutive models and allows one to generate the average (macro) response of a composite material given the properties of the individual constituents and their geometric arrangement. Here the user guide for the recently developed, computationally efficient and comprehensive micromechanics analysis code, MAC, who's predictive capability rests entirely upon the fully analytical generalized method of cells, GMC, micromechanics model is described. MAC/ GMC is a versatile form of research software that "drives" the double or triply periodic micromechanics constitutive models based upon GMC. MAC/GMC enhances the basic capabilities of GMC by providing a modular framework wherein 1) various thermal, mechanical (stress or strain control) and thermomechanical load histories can be imposed, 2) different integration algorithms may be selected, 3) a variety of material constitutive models (both deformation and life) may be utilized and/or implemented, and 4) a variety of fiber architectures (both unidirectional, laminate and woven) may be easily accessed through their corresponding representative volume elements contained within the supplied library of RVEs or input directly by the user, and 5) graphical post processing of the macro and/or micro field quantities is made available.

  16. Strain-specific determinants of beet curly top geminivirus DNA replication.

    PubMed

    Choi, I R; Stenger, D C

    1995-02-01

    The Logan and CFH strains of the geminivirus beet curly top virus (BCTV) possess cis- and trans-DNA replication factors which exhibit specificity and are not functionally interchangeable. We demonstrate that the cis-acting replication specificity element is entirely contained within a 82- to 97-bp fragment which includes most of the viral DNA origin of replication. We also demonstrate that the strain-specific trans-acting replication determinant is located within amino acid residues 3-89 of the BCTV C1 replication protein. Transient replication assays indicated that chimeric BCTV genomes containing reciprocally exchanged regions of the CFH and Logan genomes were replication competent when the cis- and trans-replication specificity elements were derived from the same strain. Two reciprocal chimeric viral genomes with heterologous cis- and trans-replication elements were incapable of self-replication, yet could trans-replicate one another in a coinoculation experiment. Only chimeric genomes possessing the Logan trans-replication element were capable of mobilizing and amplifying a transgenic Logan derived DI-DNA. DI-DNA mobilization and amplification occurred in transient replication assays even when the helper virus genome was incapable of self-replication, providing that the trans-replication element was derived from the Logan strain. These results genetically define specific regions of the BCTV C1 replication protein determining viral DNA replication origin recognition and provide clear evidence that strains of BCTV have evolved specific cis- and trans-replication factors which functionally define the Logan and CFH strains as distinct viral agents. PMID:7856103

  17. Approximate Micromechanics Treatise of Composite Impact

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Handler, Louis M.

    2005-01-01

    A formalism is described for micromechanic impact of composites. The formalism consists of numerous equations which describe all aspects of impact from impactor and composite conditions to impact contact, damage progression, and penetration or containment. The formalism is based on through-the-thickness displacement increments simulation which makes it convenient to track local damage in terms of microfailure modes and their respective characteristics. A flow chart is provided to cast the formalism (numerous equations) into a computer code for embedment in composite mechanic codes and/or finite element composite structural analysis.

  18. Micromechanics of composite laminate compression failures

    NASA Technical Reports Server (NTRS)

    Guynn, E. Gail; Bradley, Walter L.

    1988-01-01

    The purpose of this annual progress report is to summarize the work effort and results accomplished from July 1987 through July 1988 on NASA Research Grant NAG1-659 entitled Micromechanics of Composite Laminate Compressive Failure. The report contains: (1) the objective of the proposed research, (2) the summary of accomplishments, (3) a more extensive review of compression literature, (4) the planned material (and corresponding properties) received to date, (5) the results for three possible specimen geometries, experimental procedures planned, and current status of the experiments, and (6) the work planned for the next contract year.

  19. Micromechanics of high temperature deformation and failure

    NASA Technical Reports Server (NTRS)

    Nasser, S. N.; Weertman, J. R.

    1985-01-01

    The micromechanics of the constitutive behavior of elastoplastic materials at high temperatures was examined. The experimental work focused on the development of microscopic defects in superalloys (Waspaloy), especially the formation of voids at grain boundary carbides, and slip induced surface cracks within grains upon cyclic loading at high temperatures. The influence of these defects on the life expectancy of the material was examined. The theoretical work consists of two parts: (1) analytical description of the mechanisms that lead to defects observed experimentally; and (2) development of macroscopic elastoplastic nonlinear constitutive relations based on mechanical modeling.

  20. Straining GOR tolerance determinations are a measure of G-duration not G-level tolerance.

    PubMed

    Burton, R R

    1999-03-01

    Straining gradual G onset rate (GOR) tolerances are considered by physiologists as a measure of G-level tolerance. Using recently developed G-level and G-duration mathematical models, it was found that straining GOR tolerances may well be a measure of tolerance to G-duration. G-duration tolerance was determined to be limited with the onset of fatigue and not cardiovascular insufficiency. G-level tolerances that were predicted using a mathematical model were higher than determined using straining GOR tolerance measurements of subjects on a centrifuge. Also the G-duration tolerance mathematical model showed that those centrifuge subjects had not expended all of their "energy reserve" during their sustained G exposure most probably because of the onset of fatigue. Even if they were able to use all of their potential energy reserve, their G-duration tolerance would not have allowed them to reach the maximum G-level predicted with the G-level tolerance model. It is therefore concluded that the straining GOR tolerance profile, with G onset rates of 0.1G/s, is not a measure of G-level tolerance, as has been assumed, but is a measure of G-duration tolerance. These findings have significant safety implications world-wide since this straining GOR profile is commonly used as a G-level tolerance fighter-pilot-selection determination; i.e. pilot selection standards for G-level tolerance are not a measure of G-level tolerance. In testing equipment design changes, the proper G tolerance profiles must be used to correctly measure its impact on G tolerance. PMID:11543406

  1. Material Properties Test to Determine Ultimate Strain and True Stress-True Strain Curves for High Yield Steels

    SciTech Connect

    K.R. Arpin; T.F. Trimble

    2003-04-01

    This testing was undertaken to develop material true stress-true strain curves for elastic-plastic material behavior for use in performing transient analysis. Based on the conclusions of this test, the true stress-true strain curves derived herein are valid for use in elastic-plastic finite element analysis for structures fabricated from these materials. In addition, for the materials tested herein, the ultimate strain values are greater than those values cited as the limits for the elastic-plastic strain acceptance criteria for transient analysis.

  2. Determination of a zero strain reference for the anteromedial band of the anterior cruciate ligament.

    PubMed

    Fleming, B C; Beynnon, B D; Tohyama, H; Johnson, R J; Nichols, C E; Renström, P; Pope, M H

    1994-11-01

    The objective of this study was to verify a method previously used to determine a reference length for calculations of anterior cruciate ligament strain. In nine knee specimens, an arthroscopic force probe and a Hall effect transducer were placed in the anteromedial band of the ligament. Anteroposterior-directed shear loads then were applied to the knee joint with the knee flexed to 30 degrees. From the sigmoidal curve for shear load versus displacement of the anterior cruciate ligament midsubstance, the length of the transducer at the inflection point was determined graphically by two independent examiners. Previous studies suggested that the inflection point corresponds to the slack-taut transition of the anteromedial band. The force probe was used to determine the actual length of the transducer when the anteromedial band became load bearing. No significant differences were found between the reference lengths determined by the inflection point method and the force probe. The force probe demonstrated that the anterior cruciate ligament became load bearing when an anterior shear load of 8.8 N was applied to the tibia with the knee at 30 degrees of flexion. Furthermore, multiple cycles of anteroposterior shear loading did not influence these values. The force probe verified that the inflection method provides a reasonable estimate of the absolute strain reference (within 0.7% strain). PMID:7983554

  3. Determination of Dehydrogenase Activities Involved in D-Glucose Oxidation in Gluconobacter and Acetobacter Strains

    PubMed Central

    Sainz, Florencia; Jesús Torija, María; Matsutani, Minenosuke; Kataoka, Naoya; Yakushi, Toshiharu; Matsushita, Kazunobu; Mas, Albert

    2016-01-01

    Acetic acid bacteria (AAB) are known for rapid and incomplete oxidation of an extensively variety of alcohols and carbohydrates, resulting in the accumulation of organic acids as the final products. These oxidative fermentations in AAB are catalyzed by PQQ- or FAD- dependent membrane-bound dehydrogenases. In the present study, the enzyme activity of the membrane-bound dehydrogenases [membrane-bound PQQ-glucose dehydrogenase (mGDH), D-gluconate dehydrogenase (GADH) and membrane-bound glycerol dehydrogenase (GLDH)] involved in the oxidation of D-glucose and D-gluconic acid (GA) was determined in six strains of three different species of AAB (three natural and three type strains). Moreover, the effect of these activities on the production of related metabolites [GA, 2-keto-D-gluconic acid (2KGA) and 5-keto-D-gluconic acid (5KGA)] was analyzed. The natural strains belonging to Gluconobacter showed a high mGDH activity and low activity in GADH and GLDH, whereas the Acetobacter malorum strain presented low activity in the three enzymes. Nevertheless, no correlation was observed between the activity of these enzymes and the concentration of the corresponding metabolites. In fact, all the tested strains were able to oxidize D-glucose to GA, being maximal at the late exponential phase of the AAB growth (24 h), which coincided with D-glucose exhaustion and the maximum mGDH activity. Instead, only some of the tested strains were capable of producing 2KGA and/or 5KGA. In the case of Gluconobacter oxydans strains, no 2KGA production was detected which is related to the absence of GADH activity after 24 h, while in the remaining strains, detection of GADH activity after 24 h resulted in a high accumulation of 2KGA. Therefore, it is possible to choose the best strain depending on the desired product composition. Moreover, the sequences of these genes were used to construct phylogenetic trees. According to the sequence of gcd, gene coding for mGDH, Acetobacter and Komagataeibacter

  4. Determination of Dehydrogenase Activities Involved in D-Glucose Oxidation in Gluconobacter and Acetobacter Strains.

    PubMed

    Sainz, Florencia; Jesús Torija, María; Matsutani, Minenosuke; Kataoka, Naoya; Yakushi, Toshiharu; Matsushita, Kazunobu; Mas, Albert

    2016-01-01

    Acetic acid bacteria (AAB) are known for rapid and incomplete oxidation of an extensively variety of alcohols and carbohydrates, resulting in the accumulation of organic acids as the final products. These oxidative fermentations in AAB are catalyzed by PQQ- or FAD- dependent membrane-bound dehydrogenases. In the present study, the enzyme activity of the membrane-bound dehydrogenases [membrane-bound PQQ-glucose dehydrogenase (mGDH), D-gluconate dehydrogenase (GADH) and membrane-bound glycerol dehydrogenase (GLDH)] involved in the oxidation of D-glucose and D-gluconic acid (GA) was determined in six strains of three different species of AAB (three natural and three type strains). Moreover, the effect of these activities on the production of related metabolites [GA, 2-keto-D-gluconic acid (2KGA) and 5-keto-D-gluconic acid (5KGA)] was analyzed. The natural strains belonging to Gluconobacter showed a high mGDH activity and low activity in GADH and GLDH, whereas the Acetobacter malorum strain presented low activity in the three enzymes. Nevertheless, no correlation was observed between the activity of these enzymes and the concentration of the corresponding metabolites. In fact, all the tested strains were able to oxidize D-glucose to GA, being maximal at the late exponential phase of the AAB growth (24 h), which coincided with D-glucose exhaustion and the maximum mGDH activity. Instead, only some of the tested strains were capable of producing 2KGA and/or 5KGA. In the case of Gluconobacter oxydans strains, no 2KGA production was detected which is related to the absence of GADH activity after 24 h, while in the remaining strains, detection of GADH activity after 24 h resulted in a high accumulation of 2KGA. Therefore, it is possible to choose the best strain depending on the desired product composition. Moreover, the sequences of these genes were used to construct phylogenetic trees. According to the sequence of gcd, gene coding for mGDH, Acetobacter and Komagataeibacter

  5. Pattern recognition characterizations of micromechanical and morphological materials states via analytical quantitative ultrasonics

    NASA Technical Reports Server (NTRS)

    Williams, J. H., Jr.; Lee, S. S.

    1986-01-01

    One potential approach to the quantitative acquisition of discriminatory information that can isolate a single structural state is pattern recognition. The pattern recognition characterizations of micromechanical and morphological materials states via analytical quantiative ultrasonics are outlined. The concepts, terminology, and techniques of statistical pattern recognition are reviewed. Feature extraction and classification and states of the structure can be determined via a program of ultrasonic data generation.

  6. Strain-Based Damage Determination Using Finite Element Analysis for Structural Health Management

    NASA Technical Reports Server (NTRS)

    Hochhalter, Jacob D.; Krishnamurthy, Thiagaraja; Aguilo, Miguel A.

    2016-01-01

    A damage determination method is presented that relies on in-service strain sensor measurements. The method employs a gradient-based optimization procedure combined with the finite element method for solution to the forward problem. It is demonstrated that strains, measured at a limited number of sensors, can be used to accurately determine the location, size, and orientation of damage. Numerical examples are presented to demonstrate the general procedure. This work is motivated by the need to provide structural health management systems with a real-time damage characterization. The damage cases investigated herein are characteristic of point-source damage, which can attain critical size during flight. The procedure described can be used to provide prognosis tools with the current damage configuration.

  7. Determination of Strain Field on the Superior Surface of Excised Larynx Vocal Folds Using DIC

    PubMed Central

    Bakhshaee, Hani; Young, Jonathan; Yang, Justin C. W.; Mongeau, Luc; Miri, Amir K.

    2013-01-01

    Summary Objective/Hypothesis The objective of the present study was to quantify the mechanical strain and stress in excised porcine larynges during self-oscillation using digital image correlation (DIC) method. The use of DIC in the excised larynx setup may yield accurate measurements of the vocal fold displacement field. Study Design Ex vivo animal larynx. Methods Measurements were performed using excised porcine larynges on a humidified flow bench, equipped with two high-speed cameras and a commercially available DIC software. Surface deformations were calculated from digital images recorded at 3000 frames per second during continuous self-oscillation for four excised porcine larynges. Larynx preparation consisted of removing the supraglottal wall and the false folds. DIC yielded the deformation field on the superior visible surface of the vocal folds. Measurement data for adducted and freely suspended vocal folds were also used to estimate the distribution of the initial prephonatory strain field. An isotropic constitutive law, the polymer eight-chain model, was used to estimate the surface distributions of planar stresses from the strain data. Results The Lagrangian normal strain values were between ~16% and ~29% along the anterior-posterior direction. The motion of material points on the vocal fold surface described an elliptical trajectory during oscillation. A phase difference was observed between the anterior-posterior and the medial-lateral component of the displacement. The strain data and eight-chain model yielded a maximum stress of ~4 kPa along the medial-lateral direction on the superior surface. Conclusion DIC allowed the strain field over the superior surface of an excised porcine larynx to be quantified during self-oscillation. The approach allowed the determination of the trajectory of specific points on the vocal fold surface. The results for the excised larynx were found to be significantly different than previous results obtained using

  8. Designing a Micro-Mechanical Transistor

    SciTech Connect

    Mainieri, R.

    1999-06-03

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Micro-mechanical electronic systems are chips with moving parts. They are fabricated with the same techniques that are used to manufacture electronic chips, sharing their low cost. Micro-mechanical chips can also contain electronic components. By combining mechanical parts with electronic parts it becomes possible to process signal mechanically. To achieve designs comparable to those obtained with electronic components it is necessary to have a mechanical device that can change its behavior in response to a small input - a mechanical transistor. The work proposed will develop the design tools for these complex-shaped resonant structures using the geometrical ray technique. To overcome the limitations of geometrical ray chaos, the dynamics of the rays will be studied using the methods developed for the study of nonlinear dynamical systems. T his leads to numerical methods that execute well in parallel computer architectures, using a limited amount of memory and no inter-process communication.

  9. Simplified Micromechanics of Plain Weave Composites

    NASA Technical Reports Server (NTRS)

    Mital, Subodh K.; Murthy, Pappu L. N.; Chamis, Christos C.

    1996-01-01

    A micromechanics based methodology to simulate the complete hygro-thermomechanical behavior of plain weave composites is developed. This methodology is based on micromechanics and the classical laminate theory. The methodology predicts a complete set of thermal, hygral and mechanical properties of plain woven composites, generates necessary data for use in a finite element structural analysis, and predicts stresses all the way from the laminate to the constituent level. This methodology is used in conjunction with a composite mechanics code to analyze and predict the properties/response of a generic graphite/epoxy woven textile composite and a plain weave ceramic composite. The fiber architecture, including the fiber waviness and fiber end distributions through the thickness, is properly accounted for. Predicted results compare reasonably well with those from detailed three-dimensional finite element analyses as well as available experimental data. However, the main advantage of the proposed methodology is its high computational efficiency as compared with three-dimensional finite element analyses.

  10. Method for forming suspended micromechanical structures

    DOEpatents

    Fleming, James G.

    2000-01-01

    A micromachining method is disclosed for forming a suspended micromechanical structure from {111} crystalline silicon. The micromachining method is based on the use of anisotropic dry etching to define lateral features of the structure which are etched down into a {111}-silicon substrate to a first etch depth, thereby forming sidewalls of the structure. The sidewalls are then coated with a protection layer, and the substrate is dry etched to a second etch depth to define a spacing of the structure from the substrate. A selective anisotropic wet etchant (e.g. KOH, EDP, TMAH, NaOH or CsOH) is used to laterally undercut the structure between the first and second etch depths, thereby forming a substantially planar lower surface of the structure along a {111} crystal plane that is parallel to an upper surface of the structure. The lateral extent of undercutting by the wet etchant is controlled and effectively terminated by either timing the etching, by the location of angled {111}-silicon planes or by the locations of preformed etch-stops. This present method allows the formation of suspended micromechanical structures having large vertical dimensions and large masses while allowing for detailed lateral features which can be provided by dry etch definition. Additionally, the method of the present invention is compatible with the formation of electronic circuitry on the substrate.

  11. Probing the micro-mechanical behavior of bone via high-energy x-rays.

    SciTech Connect

    Almer, J.; Stock, S. R.; X-Ray Science Division; Northwestern Univ.

    2006-01-01

    Bone is a highly-adaptive, particulate-reinforced composite which, through a complex hierarchical structure, achieves excellent mechanical performance. The composite preserves, to a large degree, the desirable properties of the individual components: high toughness of the bone matrix, collagen fibrils stabilized by water, and high stiffness of the reinforcing phase, nano-sized crystallites of carbonated apatite. Understanding bone fragility (osteoporosis) requires quantifying mechanical input to bone and identifying 'weak-link' microstructures. This mechanical input has been quantified in vivo with strain gages attached to cortical bone, but attached strain gages do not probe subsurface mechanical response. We addressed this shortcoming recently by appling wide- and small-angle x-ray scattering to canine fibula sections, to study the micro-mechanical response of bone on different length scales. These data provide a unique view of load partition between the constituent phases of bone, and here we extend these measurements to an entire rat tibia, where strain gradients due to bending are anticipated. Tibiae of 14 week old Sprague-Dawley rats were studied. A 3D microCT rendering of the sample and definitions of the loading (y) and transverse (x) directions appear in Fig.1, with the y-axis approximately parallel to the bone's longitudinal axis. Due to the curved shape of the tibia, significant sample bending in the x-direction was anticipated even under uniaxial compression, similar to that expected in vivo (there was little curvature in the y-z plane). The sample cross-section at y=0 was determined by microCT to be approximately 4 mm{sup 2}. The sample was potted in epoxy and compressed in a load frame designed for in situ x-ray scattering studies. Loading was in displacement control, at a rate of 0.06 {micro}m/sec. The aggregate macroscopic response was followed using a load cell combined with strain gages located on both the 'convex' (-x) and 'concave' (+x) sides of

  12. On the Finite Element Implementation of the Generalized Method of Cells Micromechanics Constitutive Model

    NASA Technical Reports Server (NTRS)

    Wilt, T. E.

    1995-01-01

    The Generalized Method of Cells (GMC), a micromechanics based constitutive model, is implemented into the finite element code MARC using the user subroutine HYPELA. Comparisons in terms of transverse deformation response, micro stress and strain distributions, and required CPU time are presented for GMC and finite element models of fiber/matrix unit cell. GMC is shown to provide comparable predictions of the composite behavior and requires significantly less CPU time as compared to a finite element analysis of the unit cell. Details as to the organization of the HYPELA code are provided with the actual HYPELA code included in the appendix.

  13. Micromechanical modeling of advanced materials

    SciTech Connect

    Silling, S.A.; Taylor, P.A.; Wise, J.L.; Furnish, M.D.

    1994-04-01

    Funded as a laboratory-directed research and development (LDRD) project, the work reported here focuses on the development of a computational methodology to determine the dynamic response of heterogeneous solids on the basis of their composition and microstructural morphology. Using the solid dynamics wavecode CTH, material response is simulated on a scale sufficiently fine to explicitly represent the material`s microstructure. Conducting {open_quotes}numerical experiments{close_quotes} on this scale, the authors explore the influence that the microstructure exerts on the material`s overall response. These results are used in the development of constitutive models that take into account the effects of microstructure without explicit representation of its features. Applying this methodology to a glass-reinforced plastic (GRP) composite, the authors examined the influence of various aspects of the composite`s microstructure on its response in a loading regime typical of impact and penetration. As a prerequisite to the microscale modeling effort, they conducted extensive materials testing on the constituents, S-2 glass and epoxy resin (UF-3283), obtaining the first Hugoniot and spall data for these materials. The results of this work are used in the development of constitutive models for GRP materials in transient-dynamics computer wavecodes.

  14. Micromechanics-Based Inelastic Finite Element Analysis Accomplished Via Seamless Integration of MAC/GMC

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M.; Trowbridge, D.

    2001-01-01

    A critical issue in the micromechanics-based analysis of composite structures becomes the availability of a computationally efficient homogenization technique: one that is 1) Capable of handling the sophisticated, physically based, viscoelastoplastic constitutive and life models for each constituent; 2) Able to generate accurate displacement and stress fields at both the macro and the micro levels; 3) Compatible with the finite element method. The Generalized Method of Cells (GMC) developed by Paley and Aboudi is one such micromechanical model that has been shown to predict accurately the overall macro behavior of various types of composites given the required constituent properties. Specifically, the method provides "closed-form" expressions for the macroscopic composite response in terms of the properties, size, shape, distribution, and response of the individual constituents or phases that make up the material. Furthermore, expressions relating the internal stress and strain fields in the individual constituents in terms of the macroscopically applied stresses and strains are available through strain or stress concentration matrices. These expressions make possible the investigation of failure processes at the microscopic level at each step of an applied load history.

  15. A micromechanics constitutive model of transformation plasticity with shear and dilatation effect

    NASA Astrophysics Data System (ADS)

    Sun, Q. P.; Hwang, K. C.; Yu, S. W.

    B ASED on micromechanics, thermodynamics and microscale t → m transformation mechanism considerations a micromechanics constitutive model which takes into account both the dilatation and shear effects of the transformation is proposed to describe the plastic, pseudoelastic and shape memory behaviors of structural ceramics during transformation under different temperatures. In the derivation, a constitutive element (representative material sample) was used which contains many of the transformed m-ZrO 2 grains or precipitates as the second phase inclusions embedded in an elastic matrix. Under some basic assumptions, analytic expressions for the Helmholtz and complementary free energy of the constitutive element are derived in a self-consistent manner by using the Mori-Tanaka method which takes into account the interaction between the transformed inclusions. The derived free energy is a function of externally applied macroscopic stress (or strain), temperature, volume fraction of transformed phase and the averaged stressfree transformation strain (eigenstrain) of all the transformed inclusions in the constitutive element, the latter two quantities being considered to be the internal variables describing the micro-structural rearrangement in the constitutive element. In the framework of the Hill-Rice internal variable constitutive theory, the transformation yield function and incremental stress strain relations, in analogy to the theory of metal plasticity, for proportional and non-proportional loading histories are derived, respectively. The theoretical predictions are compared with the available experimental data of Mg-PSZ and Ce-TZP polycrystalline toughening ceramics.

  16. Surface strain-field determination of tympanic membrane using 3D-digital holographic interferometry

    NASA Astrophysics Data System (ADS)

    Hernandez-Montes, María del S.; Mendoza Santoyo, Fernando; Muñoz, Silvino; Perez, Carlos; de la Torre, Manuel; Flores, Mauricio; Alvarez, Luis

    2015-08-01

    In order to increase the understanding of soft tissues mechanical properties, 3D Digital Holographic Interferometry (3D-DHI) was used to quantify the strain-field on a cat tympanic membrane (TM) surface. The experiments were carried out applying a constant sound-stimuli pressure of 90 dB SPL (0.632 Pa) on the TM at 1.2 kHz. The technique allows the accurate acquisition of the micro-displacement data along the x, y and z directions, which is a must for a full characterization of the tissue mechanical behavior under load, and for the calculation of the strain-field in situ. The displacements repeatability in z direction shows a standard deviation of 0.062 μm at 95% confidence level. In order to realize the full 3D characterization correctly the contour of the TM surface was measured employing the optically non-contact two-illumination positions contouring method. The x, y and z displacements combined with the TM contour data allow the evaluation its strain-field by spatially differentiating the u(m,n), v(m,n), and w(m,n) deformation components. The accurate and correct determination of the TM strain-field leads to describing its elasticity, which is an important parameter needed to improve ear biomechanics studies, audition processes and TM mobility in both experimental measurements and theoretical analysis of ear functionality and its modeling.

  17. Some guidelines for determining foot-and-mouth disease vaccine strain matching by serology.

    PubMed

    Mattion, Nora; Goris, Nesya; Willems, Tom; Robiolo, Blanca; Maradei, Eduardo; Beascoechea, Claudia Perez; Perez, Alejandro; Smitsaart, Eliana; Fondevila, Norberto; Palma, Eduardo; De Clercq, Kris; La Torre, José

    2009-01-29

    The selection of matching strains for use in outbreaks of foot-and-mouth disease (FMD) virus can be assessed in vivo or by serological r-value determination. Sera from animals involved in vaccine potency and cross-protection trials performed using the "Protection against Podal Generalization" (PPG) test for two serotype A strains were collected and analyzed by the virus neutralization test (VNT) and liquid-phase ELISA (lpELISA) in three laboratories. The average VNT r-values for medium and high serum titer classes from the A(24) Cruzeiro vaccinated animals were in line with the A/Arg/01 heterologous PPG outcome for all testing laboratories, suggesting that the vaccine strain A(24) Cruzeiro is unlikely to protect against the field isolate A/Arg/01. The corresponding lpELISA r-values were slightly higher and indicate a closer relationship between both strains. Pooling of serum samples significantly reduced the inter-animal and inter-trial variation. The results suggest that a suitable reference serum for vaccine matching r-value experiments might be a pool or a medium to high VNT or lpELISA titer serum. Furthermore, the VNT seems to produce the most reproducible inter-laboratory results. More work is, however, needed in order to substantiate these claims. PMID:19041355

  18. Stress distributions and material properties determined in articular cartilage from MRI-based finite strains.

    PubMed

    Butz, Kent D; Chan, Deva D; Nauman, Eric A; Neu, Corey P

    2011-10-13

    The noninvasive measurement of finite strains in biomaterials and tissues by magnetic resonance imaging (MRI) enables mathematical estimates of stress distributions and material properties. Such methods allow for non-contact and patient-specific modeling in a manner not possible with traditional mechanical testing or finite element techniques. Here, we employed three constitutive (i.e. linear Hookean, and nonlinear Neo-Hookean and Mooney-Rivlin) relations with known loading conditions and MRI-based finite strains to estimate stress patterns and material properties in the articular cartilage of tibiofemoral joints. Displacement-encoded MRI was used to determine two-dimensional finite strains in juvenile porcine joints, and an iterative technique estimated stress distributions and material properties with defined constitutive relations. Stress distributions were consistent across all relations, although the stress magnitudes varied. Material properties for femoral and tibial cartilage were found to be consistent with those reported in literature. Further, the stress estimates from Hookean and Neo-Hookean, but not Mooney-Rivlin, relations agreed with finite element-based simulations. A nonlinear Neo-Hookean relation provided the most appropriate model for the characterization of complex and spatially dependent stresses using two-dimensional MRI-based finite strain. These results demonstrate the feasibility of a new and computationally efficient technique incorporating MRI-based deformation with mathematical modeling to non-invasively evaluate the mechanical behavior of biological tissues and materials. PMID:21920526

  19. Screening of Lignocellulose-Degrading Superior Mushroom Strains and Determination of Their CMCase and Laccase Activity

    PubMed Central

    Fen, Li; Xuwei, Zhu; Nanyi, Li; Puyu, Zhang; Shuang, Zhang; Xue, Zhao; Pengju, Li; Qichao, Zhu; Haiping, Lin

    2014-01-01

    In order to screen lignocellulose-degrading superior mushroom strains ten strains of mushrooms (Lentinus edodes939, Pholiota nameko, Lentinus edodes868, Coprinus comatus, Macrolepiota procera, Auricularia auricula, Hericium erinaceus, Grifola frondosa, Pleurotus nebrodensis, and Shiraia bambusicola) were inoculated onto carboxymethylcellulose agar-Congo red plates to evaluate their ability to produce carbomethyl cellulase (CMCase). The results showed that the ratio of transparent circle to mycelium circle of Hericium erinaceus was 8.16 (P < 0.01) higher than other strains. The filter paper culture screening test showed that Hericium erinaceus and Macrolepiota procera grew well and showed extreme decomposition of the filter paper. When cultivated in guaiacol culture medium to detect their abilities to secrete laccase, Hericium erinaceus showed the highest ability with the largest reddish brown circles of 4.330 cm. CMCase activity determination indicated that Coprinus comatus and Hericium erinaceus had the ability to produce CMCase with 33.92 U/L on the 9th day and 22.58 U/L on the 10th day, respectively, while Coprinus comatus and Pleurotus nebrodensis had the ability to produce laccase with 496.67 U/L and 489.17 U/L on the 16th day and 18th day. Based on the results, Coprinus comatus might be the most promising lignocellulose-degrading strain to produce both CMCase and laccase at high levels. PMID:24693246

  20. Screening of lignocellulose-degrading superior mushroom strains and determination of their CMCase and laccase activity.

    PubMed

    Fen, Li; Xuwei, Zhu; Nanyi, Li; Puyu, Zhang; Shuang, Zhang; Xue, Zhao; Pengju, Li; Qichao, Zhu; Haiping, Lin

    2014-01-01

    In order to screen lignocellulose-degrading superior mushroom strains ten strains of mushrooms (Lentinus edodes939, Pholiota nameko, Lentinus edodes868, Coprinus comatus, Macrolepiota procera, Auricularia auricula, Hericium erinaceus, Grifola frondosa, Pleurotus nebrodensis, and Shiraia bambusicola) were inoculated onto carboxymethylcellulose agar-Congo red plates to evaluate their ability to produce carbomethyl cellulase (CMCase). The results showed that the ratio of transparent circle to mycelium circle of Hericium erinaceus was 8.16 (P < 0.01) higher than other strains. The filter paper culture screening test showed that Hericium erinaceus and Macrolepiota procera grew well and showed extreme decomposition of the filter paper. When cultivated in guaiacol culture medium to detect their abilities to secrete laccase, Hericium erinaceus showed the highest ability with the largest reddish brown circles of 4.330 cm. CMCase activity determination indicated that Coprinus comatus and Hericium erinaceus had the ability to produce CMCase with 33.92 U/L on the 9th day and 22.58 U/L on the 10th day, respectively, while Coprinus comatus and Pleurotus nebrodensis had the ability to produce laccase with 496.67 U/L and 489.17 U/L on the 16th day and 18th day. Based on the results, Coprinus comatus might be the most promising lignocellulose-degrading strain to produce both CMCase and laccase at high levels. PMID:24693246

  1. Micro-mechanics of ionic electroactive polymer actuators

    NASA Astrophysics Data System (ADS)

    Punning, Andres; Põldsalu, Inga; Kaasik, Friedrich; Vunder, Veiko; Aabloo, Alvo

    2015-04-01

    Commonly, modeling of the bending behavior of the ionic electroactive polymer (IEAP) actuators is based on the classical mechanics of cantilever beam. It is acknowledged, that the actuation of the ionic electroactive polymer (IEAP) actuators is symmetric about the centroid - the convex side of the actuator is expanding and the concave side is contracting for exactly the same amount, while the thickness of the actuator remains invariant. Actuating the IEAP actuators and sensors under scanning electron microscope (SEM), in situ, reveals that for some types of them this approach is incorrect. Comparison of the SEM micrographs using the Digital Image Correction (DIC) method results with the precise strain distribution of the IEAP actuators in two directions: in the axial direction, and in the direction of thickness. This information, in turn, points to the physical processes taking place within the electrodes as well as membrane of the trilayer laminate of sub-millimeter thickness. Comparison of the EAP materials, engaged as an actuator as well as a sensor, reveals considerable differences between the micro-mechanics of the two modes.

  2. Method for identifying biochemical and chemical reactions and micromechanical processes using nanomechanical and electronic signal identification

    DOEpatents

    Holzrichter, John F.; Siekhaus, Wigbert J.

    1997-01-01

    A scanning probe microscope, such as an atomic force microscope (AFM) or a scanning tunneling microscope (STM), is operated in a stationary mode on a site where an activity of interest occurs to measure and identify characteristic time-varying micromotions caused by biological, chemical, mechanical, electrical, optical, or physical processes. The tip and cantilever assembly of an AFM is used as a micromechanical detector of characteristic micromotions transmitted either directly by a site of interest or indirectly through the surrounding medium. Alternatively, the exponential dependence of the tunneling current on the size of the gap in the STM is used to detect micromechanical movement. The stationary mode of operation can be used to observe dynamic biological processes in real time and in a natural environment, such as polymerase processing of DNA for determining the sequence of a DNA molecule.

  3. Method for identifying biochemical and chemical reactions and micromechanical processes using nanomechanical and electronic signal identification

    DOEpatents

    Holzrichter, J.F.; Siekhaus, W.J.

    1997-04-15

    A scanning probe microscope, such as an atomic force microscope (AFM) or a scanning tunneling microscope (STM), is operated in a stationary mode on a site where an activity of interest occurs to measure and identify characteristic time-varying micromotions caused by biological, chemical, mechanical, electrical, optical, or physical processes. The tip and cantilever assembly of an AFM is used as a micromechanical detector of characteristic micromotions transmitted either directly by a site of interest or indirectly through the surrounding medium. Alternatively, the exponential dependence of the tunneling current on the size of the gap in the STM is used to detect micromechanical movement. The stationary mode of operation can be used to observe dynamic biological processes in real time and in a natural environment, such as polymerase processing of DNA for determining the sequence of a DNA molecule. 6 figs.

  4. Readout of micromechanical cantilever sensor arrays by Fabry-Perot interferometry

    SciTech Connect

    Wehrmeister, Jana; Fuss, Achim; Saurenbach, Frank; Berger, Ruediger; Helm, Mark

    2007-10-15

    The increasing use of micromechanical cantilevers in sensing applications causes a need for reliable readout techniques of micromechanical cantilever sensor (MCS) bending. Current optical beam deflection techniques suffer from drawbacks such as artifacts due to changes in the refraction index upon exchange of media. Here, an adaptation of the Fabry-Perot interferometer is presented that allows simultaneous determination of MCS bending and changes in the refraction index of media. Calibration of the instrument with liquids of known refraction index provides an avenue to direct measurement of bending with nanometer precision. Versatile construction of flow cells in combination with alignment features for substrate chips allows simultaneous measurement of two MCS situated either on the same, or on two different support chips. The performance of the instrument is demonstrate in several sensing applications, including adsorption experiments of alkanethioles on MCS gold surfaces, and measurement of humidity changes in air.

  5. Readout of micromechanical cantilever sensor arrays by Fabry-Perot interferometry.

    PubMed

    Wehrmeister, Jana; Fuss, Achim; Saurenbach, Frank; Berger, Rüdiger; Helm, Mark

    2007-10-01

    The increasing use of micromechanical cantilevers in sensing applications causes a need for reliable readout techniques of micromechanical cantilever sensor (MCS) bending. Current optical beam deflection techniques suffer from drawbacks such as artifacts due to changes in the refraction index upon exchange of media. Here, an adaptation of the Fabry-Perot interferometer is presented that allows simultaneous determination of MCS bending and changes in the refraction index of media. Calibration of the instrument with liquids of known refraction index provides an avenue to direct measurement of bending with nanometer precision. Versatile construction of flow cells in combination with alignment features for substrate chips allows simultaneous measurement of two MCS situated either on the same, or on two different support chips. The performance of the instrument is demonstrate in several sensing applications, including adsorption experiments of alkanethioles on MCS gold surfaces, and measurement of humidity changes in air. PMID:17979440

  6. Influence of pyrogenic particles on the micromechanical behavior of thin sol-gel layers.

    PubMed

    Schönstedt, B; Garnweitner, G; Barth, N; Mühlmeister, A; Kwade, A

    2011-07-01

    Coatings based on sol-gel technology with different types of nanoparticles embedded into the sol-gel matrix were fabricated, and the resulting properties were investigated. Pyrogenic silica nanoparticles were added to the sol before coating. The silica particles varied in primary particle size and agglomerate size, and in their surface modification. The particles were wetted in ethanol and dispersed to certain finenesses. The difference in agglomerate size was partly caused by varying particle types, but also by the dispersing processes that were applied to the particles. The resulting coatings were examined by visual appearance and SEM microscopy. Furthermore, their micromechanical properties were determined by nanoindentation. The results show an important influence from the added nanoparticles and their properties on the visual appearance as well as the micromechanical behavior of the sol-gel coatings. It is shown that, in fact, the particle size distribution can have a major impact on the coating properties as well as the surface modification. PMID:21630652

  7. Micromechanics of intraply hybrid composites: Elastic and thermal properties

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.

    1979-01-01

    Composite micromechanics are used to derive equations for predicting the elastic and thermal properties of unidirectional intraply hybrid composites. The results predicted using these equations are compared with those predicted using approximate equations based on the rule of mixtures, linear laminate theory, finite element analysis and limited experimental data. The comparisons for three different intraply hybrids indicate that all four methods predict approximately the same elastic properties and are in good agreement with measured data. The micromechanics equations and linear laminate theory predict about the same values for thermal expansion coefficients. The micromechanics equations predict through-the-thickness properties which are in good agreement with the finite element results.

  8. Micromechanics-based strength and lifetime prediction of polymer composites

    NASA Astrophysics Data System (ADS)

    Bandorawalla, Tozer Jamshed

    With the increasing use of composite materials for diverse applications ranging from civil infrastructure to offshore oil exploration, the durability of these materials is an important issue. Practical and accurate models for lifetime will enable engineers to push the boundaries of design and make the most efficient use of composite materials, while at the same time maintaining the utmost standards of safety. The work described in this dissertation is an effort to predict the strength and rupture lifetime of a unidirectional carbon fiber/polymer matrix composite using micromechanical techniques. Sources of material variability are incorporated into these models to predict probabilistic distributions for strength and lifetime. This approach is best suited to calculate material reliability for a desired lifetime under a given set of external conditions. A systematic procedure, with experimental verification at each important step, is followed to develop the predictive models in this dissertation. The work begins with an experimental and theoretical understanding of micromechanical stress redistribution due to fiber fractures in unidirectional composite materials. In-situ measurements of fiber stress redistribution are made in macromodel composites where the fibers are large enough that strain gauges can be mounted directly onto the fibers. The measurements are used to justify and develop a new form of load sharing where the load of the broken fiber is redistributed only onto the nearest adjacent neighbors. The experimentally verified quasi-static load sharing is incorporated into a Monte Carlo simulation for tensile strength modeling. Very good agreement is shown between the predicted and experimental strength distribution of a unidirectional composite. For the stress-rupture models a time and temperature dependent load-sharing analysis is developed to compute stresses due to an arbitrary sequence of fiber fractures. The load sharing is incorporated into a simulation

  9. Tetracycline and oxytetracycline resistance determinants detected in Bacillus cereus strains isolated from honey samples.

    PubMed

    López, A C; de Ortúzar, R V M; Alippi, A M

    2008-01-01

    The aim of this study was to investigate the presence of tetracycline and oxytetracycline resistance determinants in Bacillus cereus strains isolated from honey samples. Of a total of 77 isolates analyzed, 30 (39%) exhibited resistance to tetracyclines according to the results of a disk diffusion method. Resistant strains (n=30) were screened by PCR for the presence of the resistant determinants tetK, tetL, tetM, tetO, tetW, otrA and otrB and their MIC values for tetracycline, oxytetracycline and minocycline were assessed. According to the PCR results, 23 isolates (77%) presented at least one tetracycline or oxytetracycline resistance determinant. The tetK genotype was present in 10 isolates while the tetL, tetM, and otrA genotypes were present in 3, 2, and 5 isolates, respectively. In addition, 2 isolates of the tetK plus tetM genotype, 1 of the tetK plus tetL genotype, and 1 of the tetK plus otrA genotype were found. All isolates were tetW, tetO and otrB negatives. On the other hand, 7 isolates (23%) showed a tetracycline-resistant and/or minocycline-resistant phenotype (MIC) but did not carry any of the tet or otr determinants investigated in this study. This research has shown that B. cereus isolates from honey samples contain a variety of tetracycline and oxytetracycline resistance genes, including the tetK and tetL determinants which encode for efflux proteins, and tetM and otrA, which encode for ribosomal protection proteins. These findings indicate that strains isolated from honeys could represent a reservoir for tetracycline resistance genes. To our knowledge, this is the first report of tetracycline-resistant and oxytetracycline-resistant B. cereus strains carrying the tetK determinant, and also the first report of oxytetracycline-resistant and tetracycline-resistant Bacillus species carrying the otrA determinant. PMID:19213248

  10. The importance of anchorage in determining a strained protein loop conformation.

    PubMed Central

    Hodel, A.; Kautz, R. A.; Adelman, D. M.; Fox, R. O.

    1994-01-01

    We examine the role of the conformational restriction imposed by constrained ends of a protein loop on the determination of a strained loop conformation. The Lys 116-Pro 117 peptide bond of staphylococcal nuclease A exists in equilibrium between the cis and trans isomers. The folded protein favors the strained cis isomer with an occupancy of 90%. This peptide bond is contained in a solvent-exposed, flexible loop of residues 112-117 whose ends are anchored by Val 111 and Asn 118. Asn 118 is constrained by 2 side-chain hydrogen bonds. We investigate the importance of this constraint by replacing Asn 118 with aspartate, alanine, and glycine. We found that removing 1 or more of the hydrogen bonds observed in Asn 118 stabilizes the trans configuration over the cis configuration. By protonating the Asp 118 side chain of N118D through decreased pH, the hydrogen bonding character of Asp 118 approached that of Asn 118 in nuclease A, and the cis configuration was stabilized relative to the trans configuration. These data suggest that the rigid anchoring of the loop end is important in establishing the strained cis conformation. The segment of residues 112-117 in nuclease A provides a promising model system for study of the basic principles that determine polypeptide conformations. Such studies could be useful in the rational design or redesign of protein molecules. PMID:8003973

  11. Creep of a C-S-H gel: a micromechanical approach.

    PubMed

    Sanahuja, Julien; Dormieux, Luc

    2010-03-01

    Both clays and calcium silicate hydrates(the main hydration products of Portland cements) exhibit a microstructure made up of lamellar particles. The microscopic mechanism responsible for the macroscopic creep of such materials is often described as the relative sliding of the sheets. This paper proposes a micromechanical approach to estimate the macroscopic creep behavior rising from this microscopic mechanism. The asymptotic evolution of creep at both short- and long-term is especially investigated. More precisely, a non-vanishing initial elastic strain is retrieved. At long-term, a threshold on porosity appears. At lower porosities, the creep evolution admits an asymptotic strain. At higher porosities, it admits an asymptotic strain rate. PMID:20209241

  12. Biocompatible MEMS electrode array for determination of three-dimensional strain.

    PubMed

    Evans, Boyd M; Mahfouz, Mohamed R; Pritchard, Emily R

    2006-01-01

    Sensor arrays for the measurement of the load condition of polyethylene spacers in the total knee arthroplasty (TKA) prosthesis have been developed. Arrays of capacitive sensors are used to determine the three-dimensional strain within the polyethylene prosthesis component. Data from these sensors can be used to give researchers better understanding of component motion, loading, and wear phenomena for a large range of activities. These sensors implemented on a large scale will give clinicians feedback for individual patient biomechanics without the requirement for patient exposure to X-ray radiation. Patients will benefit from smart prosthetic components which allow clinicians monitor biomechanics and loading by applying noninvasive remedies such as orthotics or physical therapy for patients exhibiting poor biomechanics before wear or component failure become issues. In this paper, we present research regarding the design of a biocompatible strain sensor and the fabrication of microelectrode arrays on biocompatible polymer materials. PMID:17946223

  13. Flavohaemoglobin HmpX: a new pathogenicity determinant in Erwinia chrysanthemi strain 3937.

    PubMed

    Favey, S; Labesse, G; Vouille, V; Boccara, M

    1995-04-01

    Unlike wild-type Erwinia chrysanthemi strain 3937, which fully macerates inoculated Saintpaulia plants, HmpX- mutants produce necrotic lesions or no symptoms. The hmpX gene was sequenced and the corresponding protein sequence analysed. We show that HmpX belongs to a family of flavohaemoproteins (HMP), previously identified in two yeasts and in Escherichia coli. Comparisons of protein sequences at the secondary structure level by hydrophobic cluster analysis have shown that HmpX possesses two functional regions, a haemoglobin domain in its N-terminal part and a flavin reductase domain in its C-terminal part. In an HmpX- strain, the synthesis of pectate lyases, which are pathogenicity determinants in E. chrysanthemi, was reduced in conditions of low oxygen tension. Using gus fusion in hmpX, it was shown that hmpX transcription was induced in coculture with tobacco cells. A putative function for HmpX is discussed. PMID:7773389

  14. Strain Determination On Curved Surfaces Using Far-Field Objective Laser Speckles

    NASA Astrophysics Data System (ADS)

    Chiang, F. P.; Kin, C. C.

    1982-06-01

    Most of the laser speckle methods utilize subjective speckles in that speckles are recorded through a lens whose aperture determines the admitted spatial frequencies. Objective speckles are those intrinsically formed by the scattering wavelets. In this paper we propose the use of far-field objective speckles generated from a ground glass to measure surface displacement and strain. The object's surface is coated with a photosensitive material and placed inside the speckle field. Double exposure is made on the photosenstive coating before and after the application of load. Young's fringes are generated by probing the surface coating with a narrow laser beam. Surface strain can then be calculated from these fringes. The method can be applied to doubly-curved surfaces and opaque materials.

  15. Micromechanics of inelastic compaction in micritic and allochemical limestones

    NASA Astrophysics Data System (ADS)

    Vajdova, Veronika; Baud, Patrick; Zhu, Wei; Wu, Lily; Wong, Teng-Fong

    2010-05-01

    , inelastic compaction in the micritic Tavel limestone is associated with pore collapse that seems to initiate from stress concentrations at the surface of an equant pore, which induce a ring of localized cataclastic damage in its periphery. Damage appeared to develop preferentially around the macropores. While our observations for Indiana and Majella limestones suggested that the micromechanical process is qualitatively similar, they also showed that the spatial distribution of damage in the allochemical limestones can be complicated by its uneven partitioning among the allochems, micrite and sparite. In Indiana limestone, many allochems remain relatively intact even after the cement has undergone significant microcracking and fragmentation, with the implication that significant strength contrast exists between the allochems and cement. In Majella limestone, the asymmetry in damage intensity is not as pronounced, suggesting a less pronounced mechanical contrast between rudist shells and cement. In the three limestones, significant mechanical twinning was observed in samples deformed to relatively high level of non-elastic strain. Motivated by the microstructural observations a new model has recently been developed, that treats a limestone as a dual porosity medium, with the total porosity partitioned between macroporosity and microporosity.

  16. Micromechanical modelling of partially molten and sand reinforced polycrystalline ice

    NASA Astrophysics Data System (ADS)

    Castelnau, O.; Duval, P.

    2009-12-01

    The viscoplastic behaviour of polycrystalline ice is strongly affected by the very strong anisotropy of ice crystals. Indeed, in the dislocations creep regime relevant for ice sheet flow, dislocation glide on the basal plane of ice single crystals leads to strain-rates ~6 order of magnitude larger than strain-rates that might be obtain if only non-basal glide is activated. At the polycrystal scale, this behaviour is responsible for a strong mechanical interaction between grains in the secondary (stationary) creep regime, and strain-rate is essentially partitioned between soft grains well-oriented for basal glide and hard grains exhibiting an unfavourable orientation for basal slip. As a consequence, the macroscopic flow stress at the polycrystal scale essentially depends on the resistance of the hardest slip systems or on the associated accommodation processes such as climb of basal dislocation on non-basal planes. Creep experiments performed on polycrystalline ices containing a small amount (less than 10% volume fraction) of liquid water show a dramatic increase of strain-rate, by more than one order of magnitude, compared to solid ice when deformed under similar thermo-mechanical conditions. Similarly, a strong hardening is observed when polycrystalline ice is reinforced by sand (which can be considered as a rigid phase here). This behaviour can be explained by micromechanical models, which aims at estimating the mechanical interactions between grains. For example, the presence of water releases stress concentrations at grain boundaries and therefore favours the inactivation of non-basal systems. To estimate such effect and to reach quantitative comparison with experimental data, we make use of the recent Second-Order homogenization mean-field approach of Ponte-Castaneda, based on self-consistent scheme. The advantage of this approach, which has been shown to provide excellent results when applied to many different non-linear composite materials, comes from the

  17. Coupling a Bose condensate to micromechanical oscillators

    NASA Astrophysics Data System (ADS)

    Kemp, Chandler; Fox, Eli; Flanz, Scott; Vengalattore, Mukund

    2011-05-01

    We describe the construction of a compact apparatus to investigate the interaction of a spinor Bose-Einstein condensate and a micromechanical oscillator. The apparatus uses a double magneto-optical trap, Raman sideband cooling, and evaporative cooling to rapidly produce a 87Rb BEC in close proximity to a high Q membrane. The micromotion of the membrane results in small Zeeman shifts at the location of the BEC due to a magnetic domain attached to the oscillator. Detection of this micromotion by the condensate results in a backaction on the membrane. We investigate prospects of using this backaction to generate nonclassical states of the mechanical oscillator. This work was funded by the DARPA ORCHID program.

  18. Generation of Random Numbers by Micromechanism

    NASA Astrophysics Data System (ADS)

    Mita, Makoto; Toshiyoshi, Hiroshi; Ataka, Manabu; Fujita, Hiroyuki

    We have successfully developed a novel micromechanism of random number generator (RNG) by using the silicon micromachining technique. The MEM(Micro Electro Mechanical)RNG produce a series of random numbers by using the pull-in instability of electrostatic actuation operated with a typical dc 150 volt. The MEM RNG is made by the deep reactive ion etching of a silicon-on-insulator(SOI) wafer, and is very small compared with the conventional RNG hardware based on the randomness of thermal noise or isotope radiation. Quality of randomness has been experimentally confirmed by the self-correlation study of the generated series of numbers. The MEM RNG proposed here would be a true random number generation, which is needed for the highly secured encryption system of today’s information technology.

  19. Micromechanical Modeling Efforts for Advanced Composites

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Over the past two decades, NASA Lewis Research Center's in-house efforts in analytical modeling for advanced composites have yielded several computational predictive tools. These are, in general, based on simplified micromechanics equations. During the last 3 years, our efforts have been directed primarily toward developing prediction tools for high temperature ceramic matrix composite (CMC's) materials. These materials are being considered for High Speed Research program applications, specifically for combustor liners. In comparison to conventional materials, CMC's offer several advantages: high specific stiffness and strength, and higher toughness and nonbrittle failure in comparison to monolithic ceramics, as well as environmental stability and wear resistance for both roomtemperature and elevated-temperature applications. Under the sponsorship of the High Temperature Engine Materials Program (HITEMP), CMC analytical modeling has resulted in the computational tool Ceramic Matrix Composites Analyzer (CEMCAN).

  20. Micromechanical modeling of heterogeneous energetic materials

    SciTech Connect

    Baer, M.R.; Kipp, M.E.; Swol, F. van

    1998-09-01

    In this work, the mesoscale processes of consolidation, deformation and reaction of shocked porous energetic materials are studied using shock physics analysis of impact on a collection of discrete HMX crystals. High resolution three-dimensional CTH simulations indicate that rapid deformation occurs at material contact points causing large amplitude fluctuations of stress states having wavelengths of the order of several particle diameters. Localization of energy produces hot-spots due to shock focusing and plastic work near grain boundaries as material flows to interstitial regions. These numerical experiments demonstrate that hot-spots are strongly influenced by multiple crystal interactions. Chemical reaction processes also produce multiple wave structures associated with particle distribution effects. This study provides new insights into the micromechanical behavior of heterogeneous energetic materials strongly suggesting that initiation and reaction of shocked heterogeneous materials involves states distinctly different than single jump state descriptions.

  1. Micromechanical models for textile structural composites

    NASA Technical Reports Server (NTRS)

    Marrey, Ramesh V.; Sankar, Bhavani V.

    1995-01-01

    The objective is to develop micromechanical models for predicting the stiffness and strength properties of textile composite materials. Two models are presented to predict the homogeneous elastic constants and coefficients of thermal expansion of a textile composite. The first model is based on rigorous finite element analysis of the textile composite unit-cell. Periodic boundary conditions are enforced between opposite faces of the unit-cell to simulate deformations accurately. The second model implements the selective averaging method (SAM), which is based on a judicious combination of stiffness and compliance averaging. For thin textile composites, both models can predict the plate stiffness coefficients and plate thermal coefficients. The finite element procedure is extended to compute the thermal residual microstresses, and to estimate the initial failure envelope for textile composites.

  2. Seismic and micromechanical studies of rock fracture

    NASA Astrophysics Data System (ADS)

    Young, R. Paul; Hazzard, James F.; Pettitt, Will S.

    2000-06-01

    “Earthquakes” occur as the result of stress redistribution on major fractures in the earth's crust and are also observed as scaled phenomena along grain boundaries and microcracks. Earthquake seismology has significantly contributed to our knowledge of fault processes, but our fundamental understanding of how micro-fractures progressively weaken rocks and how this contributes to macro-deformation processes is far from understood. Recent advances in particulate mechanics now mean fracture processes can be modelled dynamically to study the micromechanics of fracturing in rock. In addition, advances in recording and analysing very high frequency acoustic emissions (AE) allow for detailed examination of micro-cracking. The paper describes how particle models and AE monitoring techniques can be used in conjunction to test specific hypotheses about natural and induced rock fracture processes at the grain scale. Intermediate scale processes (between laboratory and field studies) are also studied by examining rock fracture in an underground research laboratory.

  3. A strongly coupled Λ-type micromechanical system

    NASA Astrophysics Data System (ADS)

    Okamoto, Hajime; Schilling, Ryan; Schütz, Hendrik; Sudhir, Vivishek; Wilson, Dalziel J.; Yamaguchi, Hiroshi; Kippenberg, Tobias J.

    2016-04-01

    We study a classical Λ-type three-level system based on three high-Q micromechanical beam resonators embedded in a gradient electric field. By modulating the strength of the field at the difference frequency between adjacent beam modes, we realize strong dynamic two-mode coupling, via the dielectric force. Driving adjacent pairs simultaneously, we observe the formation of a purely mechanical "dark" state and an all-phononic analog of coherent population trapping—signatures of strong three-mode coupling. The Λ-type micromechanical system is a natural extension of previously demonstrated "two-level" micromechanical systems and adds to the toolbox for engineering of all-phononic micromechanical circuits and arrays.

  4. Apparatus for raising or tilting a micromechanical structure

    DOEpatents

    Allen, James J.

    2008-09-09

    An active hinge apparatus is disclosed which can be used to raise a micromechanical structure (e.g. a plate or micromirror) on a substrate. The active hinge apparatus utilizes one or more of teeth protruding outward from an axle which also supports the micromechanical structure on one end thereof. A rack is used to engage the teeth and rotate the axle to raise the micromechanical structure and tilt the structure at an angle to the substrate. Motion of the rack is provided by an actuator which can be a mechanically-powered actuator, or alternately an electrostatic comb actuator or a thermal actuator. A latch can be optionally provided in the active hinge apparatus to lock the micromechanical structure in an "erected" position.

  5. Micromechanics model for predicting anisotropic electrical conductivity of carbon fiber composite materials

    NASA Astrophysics Data System (ADS)

    Haider, Mohammad Faisal; Haider, Md. Mushfique; Yasmeen, Farzana

    2016-07-01

    Heterogeneous materials, such as composites consist of clearly distinguishable constituents (or phases) that show different electrical properties. Multifunctional composites have anisotropic electrical properties that can be tailored for a particular application. The effective anisotropic electrical conductivity of composites is strongly affected by many parameters including volume fractions, distributions, and orientations of constituents. Given the electrical properties of the constituents, one important goal of micromechanics of materials consists of predicting electrical response of the heterogeneous material on the basis of the geometries and properties of the individual phases, a task known as homogenization. The benefit of homogenization is that the behavior of a heterogeneous material can be determined without resorting or testing it. Furthermore, continuum micromechanics can predict the full multi-axial properties and responses of inhomogeneous materials, which are anisotropic in nature. Effective electrical conductivity estimation is performed by using classical micromechanics techniques (composite cylinder assemblage method) that investigates the effect of the fiber/matrix electrical properties and their volume fractions on the micro scale composite response. The composite cylinder assemblage method (CCM) is an analytical theory that is based on the assumption that composites are in a state of periodic structure. The CCM was developed to extend capabilities variable fiber shape/array availability with same volume fraction, interphase analysis, etc. The CCM is a continuum-based micromechanics model that provides closed form expressions for upper level length scales such as macro-scale composite responses in terms of the properties, shapes, orientations and constituent distributions at lower length levels such as the micro-scale.

  6. Micromechanical evaluation of bone microstructures under load

    NASA Astrophysics Data System (ADS)

    Mueller, Ralph; Boesch, Tobias; Jarak, Drazen; Stauber, Martin; Nazarian, Ara; Tantillo, Michelle; Boyd, Steven

    2002-01-01

    Many bones within the axial and appendicular skeleton are subjected to repetitive, cyclic loading during the course of ordinary daily activities. If this repetitive loading is of sufficient magnitude or duration, fatigue failure of the bone tissue may result. In clinical orthopedics, trabecular fatigue fractures are observed as compressive stress fractures in the proximal femur, vertebrae, calcaneus and tibia, and are often preceded by buckling and bending of microstructural elements. However, the relative importance of bone density and architecture in the aetiology of these fractures is poorly understood. The aim of the study was to investigate failure mechanisms of 3D trabecular bone using micro-computed tomography (mCT). Because of its nondestructive nature, mCT represents an ideal approach for performing not only static measurements of bone architecture but also dynamic measurements of failure initiation and propagation as well as damage accumulation. For the purpose of the study, a novel micro-compression device was devised to measure loaded trabecular bone specimens directly in a micro-tomographic system. A 3D snapshot of the structure under load was taken for each load step in the mCT providing 34 mm nominal resolution. An integrated mini-button load cell in the compression device combined with the displacement computed directly from the mCT scout view was used to record the load-displacement curve. From the series of 3D images, failure of the trabecular architecture could be observed, and in a rod-like type of architecture it could be described by an initial buckling and bending of structural elements followed by a collapse of the overloaded trabeculae. A computational method was developed to quantify individual trabecular strains during failure. The four main steps of the algorithm were (i) sequential image alignment, (ii) identification of landmarks (trabecular nodes), (iii) determine nodal connectivity, and (iv) to compute the nodal displacements and

  7. Homozygous diploid deletion strains of Saccharomyces cerevisiae that determine lag phase and dehydration tolerance

    NASA Technical Reports Server (NTRS)

    D'Elia, Riccardo; Allen, Patricia L.; Johanson, Kelly; Nickerson, Cheryl A.; Hammond, Timothy G.

    2005-01-01

    This study identifies genes that determine length of lag phase, using the model eukaryotic organism, Saccharomyces cerevisiae. We report growth of a yeast deletion series following variations in the lag phase induced by variable storage times after drying-down yeast on filters. Using a homozygous diploid deletion pool, lag times ranging from 0 h to 90 h were associated with increased drop-out of mitochondrial genes and increased survival of nuclear genes. Simple linear regression (R2 analysis) shows that there are over 500 genes for which > 70% of the variation can be explained by lag alone. In the genes with a positive correlation, such that the gene abundance increases with lag and hence the deletion strain is suitable for survival during prolonged storage, there is a strong predominance of nucleonic genes. In the genes with a negative correlation, such that the gene abundance decreases with lag and hence the strain may be critical for getting yeast out of the lag phase, there is a strong predominance of glycoproteins and transmembrane proteins. This study identifies yeast deletion strains with survival advantage on prolonged storage and amplifies our understanding of the genes critical for getting out of the lag phase.

  8. Pilot Screening to Determine Antimicrobial Synergies in a Multidrug-Resistant Bacterial Strain Library

    PubMed Central

    Kim, Si-Hyun; Park, Chulmin; Chun, Hye-Sun; Choi, Jae-Ki; Lee, Hyo-Jin; Cho, Sung-Yeon; Park, Sun Hee; Choi, Su-Mi; Choi, Jung-Hyun; Yoo, Jin-Hong

    2016-01-01

    With the rise in multidrug-resistant (MDR) bacterial infections, there has been increasing interest in combinations of ≥2 antimicrobial agents with synergistic effects. We established an MDR bacterial strain library to screen for in vitro antimicrobial synergy by using a broth microdilution checkerboard method and high-throughput luciferase-based bacterial cell viability assay. In total, 39 MDR bacterial strains, including 23 carbapenem-resistant gram-negative bacteria, 9 vancomycin-intermediate Staphylococcus aureus, and 7 vancomycin-resistant Enterococcus faecalis, were used to screen for potential antimicrobial synergies. Synergies were more frequently identified with combinations of imipenem plus trimethoprim–sulfamethoxazole for carbapenem-resistant Acinetobacter baumannii in the library. To verify this finding, we tested 34 A. baumannii clinical isolates resistant to both imipenem and trimethoprim–sulfamethoxazole by the checkerboard method. The imipenem plus trimethoprim–sulfamethoxazole combination showed synergy in the treatment of 21 (62%) of the clinical isolates. The results indicate that pilot screening for antimicrobial synergy in the MDR bacterial strain library could be valuable in the selection of combination therapeutic regimens to treat MDR bacterial infections. Further studies are warranted to determine whether this screening system can be useful to screen for the combined effects of conventional antimicrobials and new-generation antimicrobials or nonantimicrobials. PMID:26974861

  9. Pilot Screening to Determine Antimicrobial Synergies in a Multidrug-Resistant Bacterial Strain Library.

    PubMed

    Kim, Si-Hyun; Park, Chulmin; Chun, Hye-Sun; Lee, Dong-Gun; Choi, Jae-Ki; Lee, Hyo-Jin; Cho, Sung-Yeon; Park, Sun Hee; Choi, Su-Mi; Choi, Jung-Hyun; Yoo, Jin-Hong

    2016-07-01

    With the rise in multidrug-resistant (MDR) bacterial infections, there has been increasing interest in combinations of ≥2 antimicrobial agents with synergistic effects. We established an MDR bacterial strain library to screen for in vitro antimicrobial synergy by using a broth microdilution checkerboard method and high-throughput luciferase-based bacterial cell viability assay. In total, 39 MDR bacterial strains, including 23 carbapenem-resistant gram-negative bacteria, 9 vancomycin-intermediate Staphylococcus aureus, and 7 vancomycin-resistant Enterococcus faecalis, were used to screen for potential antimicrobial synergies. Synergies were more frequently identified with combinations of imipenem plus trimethoprim-sulfamethoxazole for carbapenem-resistant Acinetobacter baumannii in the library. To verify this finding, we tested 34 A. baumannii clinical isolates resistant to both imipenem and trimethoprim-sulfamethoxazole by the checkerboard method. The imipenem plus trimethoprim-sulfamethoxazole combination showed synergy in the treatment of 21 (62%) of the clinical isolates. The results indicate that pilot screening for antimicrobial synergy in the MDR bacterial strain library could be valuable in the selection of combination therapeutic regimens to treat MDR bacterial infections. Further studies are warranted to determine whether this screening system can be useful to screen for the combined effects of conventional antimicrobials and new-generation antimicrobials or nonantimicrobials. PMID:26974861

  10. Determination of bending-induced strain in optical fibers by use of quantitative phase imaging.

    PubMed

    Roberts, A; Thorn, K; Michna, M L; Dragomir, N; Farrell, P; Baxter, G

    2002-01-15

    Quantitative phase microscopy with polarized light has been used to determine the change in refractive index introduced into an optical fiber when the fiber is bent through a constant radius of curvature. By obtaining phase images for two orthogonal directions of the polarization of the incident light, one can infer the induced axial strain profile within the fiber. Radii of curvature from 1 to 8 cm were considered, and in each case excellent agreement, within lambda/100, was obtained between experimental results and theory. PMID:18007720

  11. Determination of bending-induced strain in optical fibers by use of quantitative phase imaging

    NASA Astrophysics Data System (ADS)

    Roberts, A.; Thorn, K.; Michna, M. L.; Dragomir, N.; Farrell, P.; Baxter, G.

    2002-01-01

    Quantitative phase microscopy with polarized light has been used to determine the change in refractive index introduced into an optical fiber when the fiber is bent through a constant radius of curvature. By obtaining phase images for two orthogonal directions of the polarization of the incident light, one can infer the induced axial strain profile within the fiber. Radii of curvature from 1 to 8 cm were considered, and in each case excellent agreement, within λ/100, was obtained between experimental results and theory.

  12. Temperature measurement by thermal strain imaging with diagnostic power ultrasound, with potential for thermal index determination.

    PubMed

    Liang, Hai-Dong; Zhou, Li-Xia; Wells, Peter N T; Halliwell, Michael

    2009-05-01

    Over the years, there has been a substantial increase in acoustic exposure in diagnostic ultrasound as new imaging modalities with higher intensities and frame rates have been introduced; and more electronic components have been packed into the probe head, so that there is a tendency for it to become hotter. With respect to potential thermal effects, including those which may be hazardous occurring during ultrasound scanning, there is a correspondingly growing need for in vivo techniques to guide the operator as to the actual temperature rise occurring in the examined tissues. Therefore, an in vivo temperature estimator would be of considerable practical value. The commonly-used method of tissue thermal index (TI) measurement with a hydrophone in water could underestimate the actual value of TI (in one report by as much as 2.9 times). To obtain meaningful results, it is necessary to map the temperature elevation in 2-D (or 3-D) space. We present methodology, results and validation of a 2-D spatial and temporal thermal strain ultrasound temperature estimation technique in phantoms, and its apparently novel application in tracking the evolution of heat deposition at diagnostic exposure levels. The same ultrasound probe is used for both transmission and reception. The displacement and thermal strain estimation methods are similar to those used in high-intensity focused ultrasound thermal monitoring. The use of radiofrequency signals permits the application of cross correlation as a similarity measurement for tracking feature displacement. The displacement is used to calculate the thermal strain directly related to the temperature rise. Good agreement was observed between the temperature rise and the ultrasound power and scan duration. Thermal strain up to 1.4% was observed during 4000-s scan. Based on the results obtained for the temperature range studied in this work, the technique demonstrates potential for applicability in phantom (and possibly in vivo tissue

  13. Atomic Force Microscopy Reveals Regional Variations in the Micromechanical Properties of the Pericellular and Extracellular Matrices of the Meniscus

    PubMed Central

    Sanchez-Adams, Johannah; Wilusz, Rebecca E.; Guilak, Farshid

    2014-01-01

    Regional variations in the composition and architecture of the extracellular matrix (ECM) and pericellular matrix (PCM) of the knee meniscus play important roles in determining the local mechanical environment of meniscus cells. In this study, atomic force microscopy was used to spatially map the mechanical properties of matched ECM and perlecan-labeled PCM sites within the outer, middle, and inner porcine medial meniscus, and to evaluate the properties of the proximal surface of each region. The elastic modulus of the PCM was significantly higher in the outer region (151.4±38.2 kPa) than the inner region (27.5±8.8 kPa), and ECM moduli were consistently higher than region-matched PCM sites in both the outer (320.8±92.5 kPa) and inner (66.1±31.4 kPa) regions. These differences were associated with a higher proportion of aligned collagen fibers and lower glycosaminoglycan content in the outer region. Regional variations in the elastic moduli and some viscoelastic properties were observed on the proximal surface of the meniscus, with the inner region exhibiting the highest moduli overall. These results indicate that matrix architecture and composition play an important role in the regional micromechanical properties of the meniscus, suggesting that the local stress-strain environment of meniscal cells may vary significantly among the different regions. PMID:23568545

  14. Micromechanics of stress-induced martensitic transformation in mono- and polycrystalline shape memory alloys: Ni-Ti

    SciTech Connect

    Liang, Y.; Taya, M.; Mori, T.

    1999-07-01

    Stress-induced martensitic transformation in single crystals and polycrystals are examined on the basis of micromechanics. A simple method to find a stress- and elastic energy-free martensite plate (combined variant), which consists of two variants, is presented. External and internal stresses preferentially produce a combined variant, to which the stresses supply the largest work upon its formation. Using the chemical energy change with temperature, the phase boundary between the parent and martensitic phases is determined in stress-temperature diagrams. The method is extended to a polycrystal, modeled as an aggregate of spherical grains. The grains constitute axisymmetric multiple fiber textures and a uniaxial load is applied to the fiber axis. The occurrence and progress of transformation are followed by examining a stress state in the grains. The stress is the sum of the external stress and internal stress. The difference in the fraction of transformation and, thus, in transformation strains between the grains causes the internal stress, which is calculated with the average field method. After a short transition stage, all the grains start to transform, and the external uniaxial stress to continue the transformation increases linearly thereafter. The external stress at the end of the transition is defined as the macroscopic yield stress due to the transformation in polycrystals. The yield stress tends to saturate, as the number of the textures increases.

  15. Optimum growth temperature determination for GaInSb/InAs strained layer superlattices

    SciTech Connect

    Davis, J.L.; Wagner, R.J.; Waterman, J.R.

    1993-05-01

    To determine the optimum growth temperature for GaInSb/InAs strained layer superlattices (SLS) a series of SLS was grown over the temperature range 357-433 {degrees}C. Temperatures were estimated by determining the absorption spectrum of the GaAs substrate, hence its band gap, and thus its temperature. SLS were evaluated by single crystal x-ray diffraction and interband magnetoabsorption (IMA) measurements. X-ray spectra showed as many as eight peaks due to the superlattice. The quality of the superlattices as indicated by the x-ray data had a well defined maximum between 390 and 410 {degrees}C. IMA measurements indicated band gaps from 85 to 154 meV. 15 refs., 2 figs., 1 tab.

  16. Determination of H5N1 vaccine potency using reference antisera from heterologous strains of influenza

    PubMed Central

    Vodeiko, Galina M.; Weir, Jerry P.

    2011-01-01

    Please cite this paper as: Vodeiko and Weir (2011). Determination of H5N1 vaccine potency using reference antisera from heterologous strains of influenza. Influenza and Other Respiratory Viruses 6(3), 176–187. Background  Standardization of inactivated influenza vaccines by hemagglutinin (HA) content is performed by the single radial immunodiffusion (SRID) method. Regulatory agencies prepare, calibrate, and distribute SRID reagent standards necessary for testing of seasonal influenza vaccines, and a similar process is used to produce potency reagents for candidate pandemic influenza vaccines that are manufactured for emergency stockpiles. Objectives  Because of the concerns in generating a timely strain‐specific potency antiserum for an emerging pandemic virus, we evaluated the feasibility of using heterologous potency reference antiserum as a replacement for a strain‐specific (homologous) antiserum in the SRID potency assay for stockpiled H5N1 vaccines. Results  The results indicate that a heterologous H5N1 antiserum can be used to determine the accurate potency of inactivated H5N1 influenza vaccines. Additionally, when H5N1 vaccine was subjected to an accelerated stability protocol, both homologous and heterologous antisera provided similar measurements of vaccine potency decline. Limitations to the heterologous antiserum approach to potency determination were shown by the inability of antiserum to recent seasonal H1N1 viruses to work in an SRID assay with the 2009 pandemic H1N1 A/California/07/2009 antigen. Conclusions  The data demonstrate the feasibility of using heterologous antiserum for potency determination of at least some candidate vaccines in case of a shortage or delay of homologous antiserum. Further, the results suggest the prudence of stockpiling a broad library of potency reagents including many strains of influenza viruses with pandemic potential to provide an added measure of assurance that reagent production would not be a

  17. Coexistence of plasmid-mediated quinolone resistance determinants and AmpC-Beta-Lactamases in Escherichia coli strains in Egypt.

    PubMed

    Abd El-Aziz, N K; Gharib, A A

    2015-01-01

    Three kinds of plasmid—mediated quinolone resistance (PMQR) determinants (qnr genes, qepA and aac(6')—Ib—cr) have been discovered and shown to be widely distributed among clinical isolates. To characterize the prevalence of PMQR determinants among AmpC—producing E. coli strains in food—producing animals and animal by—products in Egypt, twenty—nine E. coli strains were tested for their susceptibilities to antimicrobials and screened for PMQR determinants and AmpC Beta lactamases using PCR and plasmid profiling. It was found that qnr genes being detected alone or in combination with qepA or aac(6')—Ib—cr genes in 11 (37.9%) strains comprising 9 for qnrA and only one for both qnrB and qnrS. Moreover, qepA and aac(6')—Ib—cr were detected in 41.38% and 3.45% of E. coli strains, respectively. The ampC β—lactamase genes were detected in 75.86 % of all strains and in 100% and 53.3% of the PMQR determinant—positive and negative strains, respectively. In several cases, plasmid profiling of E. coli strains exhibiting the coexistence of both PMQR determinants and ampC genes on a single plasmid as a first report in Egypt that may contribute to rapid spread and increase in bacterial resistance, which is important to public health concern. PMID:26475385

  18. Micromechanics and constitutive models for soft active materials with phase evolution

    NASA Astrophysics Data System (ADS)

    Wang, Binglian

    Soft active materials, such as shape memory polymers, liquid crystal elastomers, soft tissues, gels etc., are materials that can deform largely in response to external stimuli. Micromechanics analysis of heterogeneous materials based on finite element method is a typically numerical way to study the thermal-mechanical behaviors of soft active materials with phase evolution. While the constitutive models that can precisely describe the stress and strain fields of materials in the process of phase evolution can not be found in the databases of some commercial finite element analysis (FEA) tools such as ANSYS or Abaqus, even the specific constitutive behavior for each individual phase either the new formed one or the original one has already been well-known. So developing a computationally efficient and general three dimensional (3D) thermal-mechanical constitutive model for soft active materials with phase evolution which can be implemented into FEA is eagerly demanded. This paper first solved this problem theoretically by recording the deformation history of each individual phase in the phase evolution process, and adopted the idea of effectiveness by regarding all the new formed phase as an effective phase with an effective deformation to make this theory computationally efficient. A user material subroutine (UMAT) code based on this theoretical constitutive model has been finished in this work which can be added into the material database in Abaqus or ANSYS and can be easily used for most soft active materials with phase evolution. Model validation also has been done through comparison between micromechanical FEA and experiments on a particular composite material, shape memory elastomeric composite (SMEC) which consisted of an elastomeric matrix and the crystallizable fibre. Results show that the micromechanics and the constitutive models developed in this paper for soft active materials with phase evolution are completely relied on.

  19. Dissociation of immune determinants of outer membrane proteins of Chlamydia psittaci strain guinea pig inclusion conjunctivitis.

    PubMed Central

    Westbay, T D; Dascher, C C; Hsia, R C; Bavoil, P M; Zauderer, M

    1994-01-01

    Chlamydia trachomatis is an important human pathogen. Research to develop a Chlamydia vaccine has focused on the major outer membrane protein (MOMP). Determinants of this protein elicit serovar-specific neutralizing antibodies which are thought to play a critical role in protective immunity. MOMP-specific antibody responses are highly variable in the polymorphic population. Genetic factors which might influence the MOMP-specific immune response are consequently of particular interest. The C. psittaci strain guinea pig inclusion conjunctivitis (GPIC) is a natural pathogen of the guinea pig that causes both ocular and genital tract infections that closely resemble those caused by C. trachomatis in humans. As such, it provides an excellent model for disease. In this report, we explore the influence of major histocompatibility complex-linked genes on the MOMP-specific antibody response in mice immunized with either whole GPIC elementary bodies or recombinant GPIC MOMP. Our results indicate that the MOMP-specific antibody response is major histocompatibility complex linked such that mice of the H-2d haplotype are high responders while mice of the H-2k haplotype are low responders. We demonstrate that MOMP-specific B cells are present in H-2k strains which are, however, deficient in MOMP-specific helper T cells. Although immunization of low-MOMP-responder strains with whole chlamydial elementary bodies induces high levels of immunoglobulin G antibody specific for Omp2, the cysteine-rich outer membrane protein, MOMP-specific B cells are unable to receive help from Omp2-specific T cells. The failure of intermolecular help from Omp2-specific T cells and related observations raise important issues regarding the processing and presentation of chlamydial antigens and the design of optimal subunit vaccines. Images PMID:7525489

  20. Micromechanics of brittle faulting and cataclastic flow in Berea sandstone

    NASA Astrophysics Data System (ADS)

    Menéndez, Beatriz; Zhu, Wenlu; Wong, Teng-Fong

    1996-01-01

    The micromechanics of failure in Berea sandstone were investigated by characterizing quantitatively the evolution of damage under the optical and scanning electron microscopes. Three series of triaxial compression experiments were conducted at the fixed pore pressure of 10 MPa and confining pressures of 20, 50 and 260 MPa, respectively, corresponding to three different failure modes: shear localization with positive dilatancy, shear localization with relatively little dilatancy and distributed cataclastic flow. To distinguish the effect of non-hydrostatic stress from that of hydrostatic pressure, a fourth suite of hydrostatically loaded samples was also studied. Using stereological procedures, we characterized quantitatively the following damage parameters: microcrack density and its anisotropy, pore-size distribution, comminuted volume fraction and mineral damage index. In the brittle regime, shear localization did not develop until the post-failure stage, after the peak stress had been attained. The microcrack density data show that very little intragranular cracking occurred before the peak stress was attained. We infer that dilatancy and acoustic emission activity in the prefailure stage are primarily due to intergranular cracking, probably related to the shear rupture of lithified and cemented grain contacts. Near the peak stress, intragranular cracking initiates from grain contacts and this type of Hertzian fracture first develops in isolated clusters, and their subsequent coalescence results in shear localization in the post-failure stage. The very high density of intragranular microcracking and pronounced stress-induced anisotropy in the post-failure samples are the consequence of shear localization and compactive processes operative inside the shear band. In contrast, Hertzian fracture was a primary cause for shear-enhanced compaction and strain hardening throughout the cataclastic flow regime. Grain crushing and pore collapse seem to be most intense in

  1. Failure Criterion for Brick Masonry: A Micro-Mechanics Approach

    NASA Astrophysics Data System (ADS)

    Kawa, Marek

    2015-02-01

    The paper deals with the formulation of failure criterion for an in-plane loaded masonry. Using micro-mechanics approach the strength estimation for masonry microstructure with constituents obeying the Drucker-Prager criterion is determined numerically. The procedure invokes lower bound analysis: for assumed stress fields constructed within masonry periodic cell critical load is obtained as a solution of constrained optimization problem. The analysis is carried out for many different loading conditions at different orientations of bed joints. The performance of the approach is verified against solutions obtained for corresponding layered and block microstructures, which provides the upper and lower strength bounds for masonry microstructure, respectively. Subsequently, a phenomenological anisotropic strength criterion for masonry microstructure is proposed. The criterion has a form of conjunction of Jaeger critical plane condition and Tsai-Wu criterion. The model proposed is identified based on the fitting of numerical results obtained from the microstructural analysis. Identified criterion is then verified against results obtained for different loading orientations. It appears that strength of masonry microstructure can be satisfactorily described by the criterion proposed.

  2. Micromechanical structures and microelectronics for acceleration sensing

    SciTech Connect

    Davies, B.R.; Montague, S.; Smith, J.H.; Lemkin, M.

    1997-08-01

    MEMS is an enabling technology that may provide low-cost devices capable of sensing motion in a reliable and accurate manner. This paper describes work in MEMS accelerometer development at Sandia National Laboratories. This work leverages a process for integrating both the micromechanical structures and microelectronis circuitry of a MEMS accelerometer on the same chip. The design and test results of an integrated MEMS high-g accelerometer will be detailed. Additionally a design for a high-g fuse component (low-G or {approx} 25 G accelerometer) will be discussed in the paper (where 1 G {approx} 9.81 m/s). In particular, a design team at Sandia was assembled to develop a new micromachined silicon accelerometer which would be capable of surviving and measuring high-g shocks. Such a sensor is designed to be cheaper and more reliable than currently available sensors. A promising design for a suspended plate mass sensor was developed and the details of that design along with test data will be documented in the paper. Future development in this area at Sandia will focus on implementing accelerometers capable of measuring 200 kilo-g accelerations. Accelerometer development at Sandia will also focus on multi-axis acceleration measurement with integrated microelectronics.

  3. Contact micromechanics in granular media with clay

    SciTech Connect

    Ita, S.L.

    1994-08-01

    Many granular materials, including sedimentary rocks and soils, contain clay particles in the pores, grain contacts, or matrix. The amount and location of the clays and fluids can influence the mechanical and hydraulic properties of the granular material. This research investigated the mechanical effects of clay at grain-to-grain contacts in the presence of different fluids. Laboratory seismic wave propagation tests were conducted at ultrasonic frequencies using spherical glass beads coated with Montmorillonite clay (SWy-1) onto which different fluids were adsorbed. For all bead samples, seismic velocity increased and attenuation decreased as the contact stiffnesses increased with increasing stress demonstrating that grain contacts control seismic transmission in poorly consolidated and unconsolidated granular material. Coating the beads with clay added stiffness and introduced viscosity to the mechanical contact properties that increased the velocity and attenuation of the propagating seismic wave. Clay-fluid interactions were studied by allowing the clay coating to absorb water, ethyl alcohol, and hexadecane. Increasing water amounts initially increased seismic attenuation due to clay swelling at the contacts. Attenuation decreased for higher water amounts where the clay exceeded the plastic limit and was forced from the contact areas into the surrounding open pore space during sample consolidation. This work investigates how clay located at grain contacts affects the micromechanical, particularly seismic, behavior of granular materials. The need for this work is shown by a review of the effects of clays on seismic wave propagation, laboratory measurements of attenuation in granular media, and proposed mechanisms for attenuation in granular media.

  4. Single coil bistable, bidirectional micromechanical actuator

    DOEpatents

    Tabat, Ned; Guckel, Henry

    1998-09-15

    Micromechanical actuators capable of bidirectional and bistable operation can be formed on substrates using lithographic processing techniques. Bistable operation of the microactuator is obtained using a single coil and a magnetic core with a gap. A plunger having two magnetic heads is supported for back and forth linear movement with respect to the gap in the magnetic core, and is spring biased to a neutral position in which the two heads are on each side of the gap in the core. The single electrical coil is coupled to the core and is provided with electrical current to attract one of the heads toward the core by reluctance action to drive the plunger to a limit of travel in one direction. The current is then cut off and the plunger returns by spring action toward the gap, whereafter the current is reapplied to the coil to attract the other head of the plunger by reluctance action to drive the plunger to its other limit of travel. This process can be repeated at a time when switching of the actuator is required.

  5. Frequency division using a micromechanical resonance cascade

    SciTech Connect

    Qalandar, K. R. Gibson, B.; Sharma, M.; Ma, A.; Turner, K. L.; Strachan, B. S.; Shaw, S. W.

    2014-12-15

    A coupled micromechanical resonator array demonstrates a mechanical realization of multi-stage frequency division. The mechanical structure consists of a set of N sequentially perpendicular microbeams that are connected by relatively weak elastic elements such that the system vibration modes are localized to individual microbeams and have natural frequencies with ratios close to 1:2:⋯:2{sup N}. Conservative (passive) nonlinear inter-modal coupling provides the required energy transfer between modes and is achieved by finite deformation kinematics. When the highest frequency beam is excited, this arrangement promotes a cascade of subharmonic resonances that achieve frequency division of 2{sup j} at microbeam j for j = 1, …, N. Results are shown for a capacitively driven three-stage divider in which an input signal of 824 kHz is passively divided through three modal stages, producing signals at 412 kHz, 206 kHz, and 103 kHz. The system modes are characterized and used to delineate the range of AC input voltages and frequencies over which the cascade occurs. This narrow band frequency divider has simple design rules that are scalable to higher frequencies and can be extended to a larger number of modal stages.

  6. Measuring the micromechanical properties of embryonic tissues.

    PubMed

    Chevalier, Nicolas R; Gazguez, Elodie; Dufour, Sylvie; Fleury, Vincent

    2016-02-01

    Local mechanical properties play an important role in directing embryogenesis, both at the cell (differentiation, migration) and tissue level (force transmission, organ formation, morphogenesis). Measuring them is a challenge as embryonic tissues are small (μm to mm) and soft (0.1-10kPa). We describe here how glass fiber cantilevers can be fabricated, calibrated and used to apply small forces (0.1-10μN), measure contractile activity and assess the bulk tensile elasticity of embryonic tissue. We outline how pressure (hydrostatic or osmotic) can be applied to embryonic tissue to quantify stiffness anisotropy. These techniques can be assembled at low cost and with a minimal amount of equipment. We then present a protocol to prepare tissue sections for local elasticity and adhesion measurements using the atomic force microscope (AFM). We compare AFM nanoindentation maps of native and formaldehyde fixed embryonic tissue sections and discuss how the local elastic modulus obtained by AFM compares to that obtained with other bulk measurement methods. We illustrate all of the techniques presented on the specific example of the chick embryonic digestive tract, emphasizing technical issues and common pitfalls. The main purpose of this report is to make these micromechanical measurement techniques accessible to a wide community of biologists and biophysicists. PMID:26255132

  7. A method for determination of equine hoof strain patterns using photoelasticity: an in vitro study.

    PubMed

    Dejardin, L M; Arnoczky, S P; Cloud, G L

    1999-05-01

    During impact, equine hooves undergo viscoelastic deformations which may result in potentially harmful strains. Previous hoof strain studies using strain gauges have been inconclusive due to arbitrary gauge placement. Photoelastic stress analysis (PSA) is a full-field technique which visually displays strains over entire loaded surfaces. This in vitro study identifies normal hoof strain patterns using PSA. Custom-made photoelastic plastic sheets were applied to the hoof surface. The hooves were axially loaded (225 kg) under level and varus/valgus conditions. Strain patterns were video-recorded through a polariscope. Strains were concentrated between middle and distal thirds of the hoof wall regardless of the loading conditions. This strain distribution appears to result from the differential expansion of the hoof wall under load. Increasing load resulted in higher strains and asymmetric loading resulted in an ipsilateral increase in strain magnitudes without altering strain locations. This study shows that PSA is a reliable method with which to evaluate hoof strains in vitro and is sensitive enough to reflect subtle load-related strain alterations. PMID:10402137

  8. Virulence Attributes and Host Response Assays for Determining Pathogenic Potential of Pseudomonas Strains Used in Biotechnology

    PubMed Central

    Tayabali, Azam F.; Coleman, Gordon; Nguyen, Kathy C.

    2015-01-01

    Pseudomonas species are opportunistically pathogenic to humans, yet closely related species are used in biotechnology applications. In order to screen for the pathogenic potential of strains considered for biotechnology applications, several Pseudomonas strains (P.aeruginosa (Pa), P.fluorescens (Pf), P.putida (Pp), P.stutzeri (Ps)) were compared using functional virulence and toxicity assays. Most Pa strains and Ps grew at temperatures between 28°C and 42°C. However, Pf and Pp strains were the most antibiotic resistant, with ciprofloxacin and colistin being the most effective of those tested. No strain was haemolytic on sheep blood agar. Almost all Pa, but not other test strains, produced a pyocyanin-like chromophore, and caused cytotoxicity towards cultured human HT29 cells. Murine endotracheal exposures indicated that the laboratory reference strain, PAO1, was most persistent in the lungs. Only Pa strains induced pro-inflammatory and inflammatory responses, as measured by elevated cytokines and pulmonary Gr-1 -positive cells. Serum amyloid A was elevated at ≥ 48 h post-exposure by only some Pa strains. No relationship was observed between strains and levels of peripheral leukocytes. The species designation or isolation source may not accurately reflect pathogenic potential, since the clinical strain Pa10752 was relatively nonvirulent, but the industrial strain Pa31480 showed comparable virulence to PAO1. Functional assays involving microbial growth, cytotoxicity and murine immunological responses may be most useful for identifying problematic Pseudomonas strains being considered for biotechnology applications. PMID:26619347

  9. Strain energy release rate determination of stress intensity factors by finite element methods

    NASA Technical Reports Server (NTRS)

    Walsh, R. M., Jr.; Pipes, R. B.

    1985-01-01

    The stiffness derivative finite element technique is used to determine the Mode I stress intensity factors for three-crack configurations. The geometries examined include the double edge notch, single edge notch, and the center crack. The results indicate that when the specified guidelines of the Stiffness Derivative Method are used, a high degree of accuracy can be achieved with an optimized, relatively coarse finite element mesh composed of standard, four-node, plane strain, quadrilateral elements. The numerically generated solutions, when compared with analytical ones, yield results within 0.001 percent of each other for the double edge crack, 0.858 percent for the single edge crack, and 2.021 percent for the center crack.

  10. Atrial fibrillation per se was a major determinant of global left ventricular longitudinal systolic strain

    PubMed Central

    Lee, Hung-Hao; Lee, Meng-Kuang; Lee, Wen-Hsien; Hsu, Po-Chao; Chu, Chun-Yuan; Lee, Chee-Siong; Lin, Tsung-Hsien; Voon, Wen-Chol; Lai, Wen-Ter; Sheu, Sheng-Hsiung; Su, Ho-Ming

    2016-01-01

    Abstract Atrial fibrillation (AF) may cause systolic abnormality via inadequate diastolic filling and tachycardia-induced cardiomyopathy. Global longitudinal strain (GLS) is a very sensitive method for detecting subtle left ventricular systolic dysfunction. Hence, this study aimed to evaluate whether AF patients had a more impaired GLS, AF was a major determinant of GLS, and determine the major correlates of GLS in AF patients. The study included 137 patients with persistent AF and left ventricular ejection fraction (LVEF) above 50% and 137 non-AF patients matched according to age, gender, and LVEF. Comprehensive echocardiography with GLS assessment was performed for all cases. Compared with non-AF patients, AF patients had a more impaired GLS, a larger left atrial volume index, higher transmitral E wave velocity (E), and early diastolic mitral velocity (Ea) (all P < 0.001) but comparable E/Ea. After adjustment for baseline and echocardiographic characteristics, the presence of AF remained significantly associated with impaired GLS (β = 0.533, P < 0.001). In addition, multivariate analysis of AF patients indicated that faster heart rates and decreased E, Ea, and LVEF were associated with more impaired GLS. This study demonstrated that AF patients had a more impaired GLS than non-AF patients, although LVEF was comparable between the 2 groups. AF was a major determinant of GLS even after adjustment for relevant clinical and echocardiographic parameters. PMID:27368031

  11. Metal matrix composite micromechanics: In-situ behavior influence on composite properties

    NASA Technical Reports Server (NTRS)

    Murthy, P. L. N.; Hopkins, D. A.; Chamis, C. C.

    1989-01-01

    Recent efforts in computational mechanics methods for simulating the nonlinear behavior of metal matrix composites have culminated in the implementation of the Metal Matrix Composite Analyzer (METCAN) computer code. In METCAN material nonlinearity is treated at the constituent (fiber, matrix, and interphase) level where the current material model describes a time-temperature-stress dependency of the constituent properties in a material behavior space. The composite properties are synthesized from the constituent instantaneous properties by virtue of composite micromechanics and macromechanics models. The behavior of metal matrix composites depends on fabrication process variables, in situ fiber and matrix properties, bonding between the fiber and matrix, and/or the properties of an interphase between the fiber and matrix. Specifically, the influence of in situ matrix strength and the interphase degradation on the unidirectional composite stress-strain behavior is examined. These types of studies provide insight into micromechanical behavior that may be helpful in resolving discrepancies between experimentally observed composite behavior and predicted response.

  12. Micromechanical simulation of damage progression in carbon phenolic composites

    NASA Technical Reports Server (NTRS)

    Slattery, Kerry T.

    1993-01-01

    Carbon/phenolic composites are used extensively as ablative insulating materials in the nozzle region of solid rocket motors. The current solid rocket motor (RSRM) on the space shuttle is fabricated from woven rayon cloth which is carbonized and then impregnated with the phenolic resin. These plies are layed up in the desired configuration and cured to form the finished part. During firing, the surface of the carbon/phenolic insulation is exposed to 5000 F gases from the rocket exhaust. The resin pyrolizes and the material chars to a depth which progresses with time. The rate of charring and erosion are generally predictable, and the insulation depth is designed to allow adequate safety margins over the firing time of the motor. However, anomalies in the properties and response of the carbon/phenolic materials can lead to severe material damage which may decrease safety margins to unacceptable levels. Three macro damage modes which were observed in fired nozzles are: ply lift, 'wedge out', and pocketing erosion. Ply lift occurs in materials with plies oriented nearly parallel to the surface. The damage occurs in a region below the charred material where material temperatures are relatively low - about 500 F. Wedge out occurs at the intersection of nozzle components whose plies are oriented at about 45 deg. The corner of the block of material breaks off along a ply interface. Pocketing erosion occurs in material with plies oriented normal to the surface. Thermal expansion is restrained in two directions resulting in large tensile strains and material failure normal to the surface. When a large section of material is removed as a result of damage, the insulation thickness is reduced which may lead to failure of the nozzle due to excessive heating of critical components. If these damage events cannot be prevented with certainty, the designer must increase the thickness of the insulator thus adding to both weight and cost. One of the difficulties in developing a full

  13. Digital model for X-ray diffraction with application to composition and strain determination in strained InAs/GaSb superlattices

    SciTech Connect

    Meng, Yifei; Kim, Honggyu; Zuo, Jian-Min; Rouviére, Jean-Luc

    2014-07-07

    We propose a digital model for high quality superlattices by including fluctuations in the superlattice periods. The composition and strain profiles are assumed to be coherent and persist throughout the superlattice. Using this model, we have significantly improved the fit with experimental X-ray diffraction data recorded from the nominal InAs/GaSb superlattice. The lattice spacing of individual layers inside the superlattice and the extent of interfacial intermixing are refined by including both (002) and (004) and their satellite peaks in the fitting. For the InAs/GaSb strained layer superlattice, results show: (i) the GaSb-on-InAs interface is chemically sharper than the InAs-on-GaSb interface, (ii) the GaSb layers experience compressive strain with In incorporation, (iii) there are interfacial strain associated with InSb-like bonds in GaSb and GaAs-like bonds in InAs, (iv) Sb substitutes a significant amount of In inside InAs layer near the InAs-on-GaSb interface. For support, we show that the composition profiles determined by X-ray diffraction are in good agreement with those obtained from atom probe tomography measurement. Comparison with the kinetic growth model shows a good agreement in terms of the composition profiles of anions, while the kinetic model underestimates the intermixing of cations.

  14. A macro-micromechanics analysis of a notched metal matrix composite

    NASA Technical Reports Server (NTRS)

    Bigelow, Catherine A.; Naik, Rajiv A.

    1992-01-01

    Macro- and micromechanics analysis were conducted to determine the matrix and fiber behaviors near the notch in a center-notched metal-matrix composite. In this approach, the macrolevel analysis models the entire notched specimen using a 3D finite element program that uses the vanishing-fiber-diameter model to simulate the elastic-plastic behavior of the matrix and the elastic behavior of the fiber. The microlevel behavior is analyzed using a discrete fiber-matrix model containing one fiber and the surrounding matrix. The viability of this analysis is demonstrated using results for a boron/aluminum monolayer.

  15. Squeezed light from a silicon micromechanical resonator.

    PubMed

    Safavi-Naeini, Amir H; Gröblacher, Simon; Hill, Jeff T; Chan, Jasper; Aspelmeyer, Markus; Painter, Oskar

    2013-08-01

    Monitoring a mechanical object's motion, even with the gentle touch of light, fundamentally alters its dynamics. The experimental manifestation of this basic principle of quantum mechanics, its link to the quantum nature of light and the extension of quantum measurement to the macroscopic realm have all received extensive attention over the past half-century. The use of squeezed light, with quantum fluctuations below that of the vacuum field, was proposed nearly three decades ago as a means of reducing the optical read-out noise in precision force measurements. Conversely, it has also been proposed that a continuous measurement of a mirror's position with light may itself give rise to squeezed light. Such squeezed-light generation has recently been demonstrated in a system of ultracold gas-phase atoms whose centre-of-mass motion is analogous to the motion of a mirror. Here we describe the continuous position measurement of a solid-state, optomechanical system fabricated from a silicon microchip and comprising a micromechanical resonator coupled to a nanophotonic cavity. Laser light sent into the cavity is used to measure the fluctuations in the position of the mechanical resonator at a measurement rate comparable to its resonance frequency and greater than its thermal decoherence rate. Despite the mechanical resonator's highly excited thermal state (10(4) phonons), we observe, through homodyne detection, squeezing of the reflected light's fluctuation spectrum at a level 4.5 ± 0.2 per cent below that of vacuum noise over a bandwidth of a few megahertz around the mechanical resonance frequency of 28 megahertz. With further device improvements, on-chip squeezing at significant levels should be possible, making such integrated microscale devices well suited for precision metrology applications. PMID:23925241

  16. Micromechanical properties of keratin intermediate filament networks.

    PubMed

    Sivaramakrishnan, Sivaraj; DeGiulio, James V; Lorand, Laszlo; Goldman, Robert D; Ridge, Karen M

    2008-01-22

    Keratin intermediate filaments (KIFs) form cytoskeletal KIF networks that are essential for the structural integrity of epithelial cells. However, the mechanical properties of the in situ network have not been defined. Particle-tracking microrheology (PTM) was used to obtain the micromechanical properties of the KIF network in alveolar epithelial cells (AECs), independent of other cytoskeletal components, such as microtubules and microfilaments. The storage modulus (G') at 1 Hz of the KIF network decreases from the perinuclear region (335 dyn/cm(2)) to the cell periphery (95 dyn/cm(2)), yielding a mean value of 210 dyn/cm(2). These changes in G' are inversely proportional to the mesh size of the network, which increases approximately 10-fold from the perinuclear region (0.02 microm(2)) to the cell periphery (0.3 microm(2)). Shear stress (15 dyn/cm(2) for 4 h) applied across the surface of AECs induces a more uniform distribution of KIF, with the mesh size of the network ranging from 0.02 microm(2) near the nucleus to only 0.04 microm(2) at the cell periphery. This amounts to a 40% increase in the mean G'. The storage modulus of the KIF network in the perinuclear region accurately predicts the shear-induced deflection of the cell nucleus to be 0.87 +/- 0.03 microm. The high storage modulus of the KIF network, coupled with its solid-like rheological behavior, supports the role of KIF as an intracellular structural scaffold that helps epithelial cells to withstand external mechanical forces. PMID:18199836

  17. The rabies virus glycoprotein determines the distribution of different rabies virus strains in the brain.

    PubMed

    Yan, Xiuzhen; Mohankumar, Puliyur S; Dietzschold, Bernhard; Schnell, Matthies J; Fu, Zhen F

    2002-08-01

    The contribution of rabies virus (RV) glycoprotein (G) in viral distribution in the brain was examined by immunohistochemistry following stereotaxic inoculation into the rat hippocampus. Viruses used in this study include the highly neuroinvasive challenge virus standard strains (CVS-N2C and CVS-B2C) and the nonneuroinvasive attenuated SN-10 strain, as well as SN-10-derived recombinant viruses expressing the G gene from CVS-N2C (RN2C) or CVS-B2C (RB2C). The distribution of recombinant viruses in the brain was similar to those of the parental viruses from which the G was derived. For example, while CVS-B2C- and RB2C-infected neurons were seen preferentially in the hippocampus, cortex, and hypothalamus, CVS-N2C- and RN2C-infected neurons were preferentially found in the hippocampus, cortex, and thalamus. SN-10 infected efficiently almost all the brain regions. To further study the role of the RV G in virus spreading, we examined the distribution of RV antigen in brains infected with a recombinant RV in which the SN-10 G was replaced with vesicular stomatitis virus (VSV) G (SN-10-VG) was examined. The spreading of SN-10-VG to the cortex and the thalamus was drastically reduced, but the number of infected neurons in hippocampus and hypothalamus, particularly the paraventricular nucleus, was similar to the SN-10 virus. This pattern of spreading resembles that of VSV. Together, our data demonstrate that it is the G protein that determines the distribution pattern of RV in the brain. PMID:12161819

  18. Determination of remodeling parameters for a strain-adaptive finite element model of the distal ulna.

    PubMed

    Neuert, Mark A C; Dunning, Cynthia E

    2013-09-01

    Strain energy-based adaptive material models are used to predict bone resorption resulting from stress shielding induced by prosthetic joint implants. Generally, such models are governed by two key parameters: a homeostatic strain-energy state (K) and a threshold deviation from this state required to initiate bone reformation (s). A refinement procedure has been performed to estimate these parameters in the femur and glenoid; this study investigates the specific influences of these parameters on resulting density distributions in the distal ulna. A finite element model of a human ulna was created using micro-computed tomography (µCT) data, initialized to a homogeneous density distribution, and subjected to approximate in vivo loading. Values for K and s were tested, and the resulting steady-state density distribution compared with values derived from µCT images. The sensitivity of these parameters to initial conditions was examined by altering the initial homogeneous density value. The refined model parameters selected were then applied to six additional human ulnae to determine their performance across individuals. Model accuracy using the refined parameters was found to be comparable with that found in previous studies of the glenoid and femur, and gross bone structures, such as the cortical shell and medullary canal, were reproduced. The model was found to be insensitive to initial conditions; however, a fair degree of variation was observed between the six specimens. This work represents an important contribution to the study of changes in load transfer in the distal ulna following the implementation of commercial orthopedic implants. PMID:23804949

  19. Determination of critical stress triaxiality along yield locus of isotropic ductile materials under plane strain condition

    NASA Astrophysics Data System (ADS)

    Bhadauria, S. S.; Pathak, K. K.; Hora, M. S.

    2012-09-01

    It is widely accepted that failure due to plastic deformation in metals greatly depends on the stress triaxiality factor (TF). This article investigates the variation of stress triaxiality along the yield locus of ductile materials. Von Mises yield criteria and triaxiality factor have been used to determine the critical limits of stress triaxiality for the materials under plane strain condition. A generalized mathematical model for triaxiality factor has been formulated and a constrained optimization has been carried out using genetic algorithm. Finite element analysis of a two dimensional square plate has been carried out to verify the results obtained by the mathematical model. It is found that the set of values of the first and the second principal stresses on the yield locus, which results in maximum stress triaxiality, can be used to determine the location at which crack initiation may occur. Thus, the results indicate that while designing a certain component, such combination of stresses which leads the stress triaxiality to its critical value, should be avoided.

  20. Sex Determination in Bluegill Sunfish Lepomis macrochirus: Effect of Temperature on Sex Ratio of Four Geographic Strains.

    PubMed

    Shen, Zhi-Gang; Wang, Han-Ping; Yao, Hong; O'Bryant, Paul; Rapp, Dean; Zhu, Kun-Qian

    2016-06-01

    There is increasing evidence that temperature effects on sex ratio in fish species are ubiquitous. Temperature effects on sex ratio could be influenced by parent, strain, and population, whether in fish species with temperature-dependent sex determination or genetic sex determination plus temperature effects. In the present study, effects of genotype-temperature interactions on sex determination in bluegill sunfish were further investigated, based on our previous results, using four geographic strains: Hebron, Jones, Hocking, and Missouri. In the Hebron strain, the two higher-temperature treatment groups (24 °C and 32 °C) produced more males than the low-temperature treatment group (17 °C) from 6 days post-hatching (dph) to 90 dph. In contrast, the low-temperature treatment produced more males than the other two higher-temperature treatments in the Jones strain. No significant effects of temperature on sex ratio were detected in the other two strains. Our results from sex ratio variance in different treatment times suggest that the thermosensitive period of sex differentiation occurs prior to 40 dph. Our results further confirmed that genotype-temperature interactions influence sex determination in bluegill. Therefore, to significantly increase the proportion of males, which grow faster and larger than females, a consumer- and environment-friendly approach may be achieved through selection of temperature sensitivity in bluegill. PMID:27365415

  1. Phylogenomics of Xanthomonas field strains infecting pepper and tomato reveals diversity in effector repertoires and identifies determinants of host specificity

    PubMed Central

    Schwartz, Allison R.; Potnis, Neha; Timilsina, Sujan; Wilson, Mark; Patané, José; Martins, Joaquim; Minsavage, Gerald V.; Dahlbeck, Douglas; Akhunova, Alina; Almeida, Nalvo; Vallad, Gary E.; Barak, Jeri D.; White, Frank F.; Miller, Sally A.; Ritchie, David; Goss, Erica; Bart, Rebecca S.; Setubal, João C.; Jones, Jeffrey B.; Staskawicz, Brian J.

    2015-01-01

    Bacterial spot disease of pepper and tomato is caused by four distinct Xanthomonas species and is a severely limiting factor on fruit yield in these crops. The genetic diversity and the type III effector repertoires of a large sampling of field strains for this disease have yet to be explored on a genomic scale, limiting our understanding of pathogen evolution in an agricultural setting. Genomes of 67 Xanthomonas euvesicatoria (Xe), Xanthomonas perforans (Xp), and Xanthomonas gardneri (Xg) strains isolated from diseased pepper and tomato fields in the southeastern and midwestern United States were sequenced in order to determine the genetic diversity in field strains. Type III effector repertoires were computationally predicted for each strain, and multiple methods of constructing phylogenies were employed to understand better the genetic relationship of strains in the collection. A division in the Xp population was detected based on core genome phylogeny, supporting a model whereby the host-range expansion of Xp field strains on pepper is due, in part, to a loss of the effector AvrBsT. Xp-host compatibility was further studied with the observation that a double deletion of AvrBsT and XopQ allows a host range expansion for Nicotiana benthamiana. Extensive sampling of field strains and an improved understanding of effector content will aid in efforts to design disease resistance strategies targeted against highly conserved core effectors. PMID:26089818

  2. Phylogenomics of Xanthomonas field strains infecting pepper and tomato reveals diversity in effector repertoires and identifies determinants of host specificity.

    PubMed

    Schwartz, Allison R; Potnis, Neha; Timilsina, Sujan; Wilson, Mark; Patané, José; Martins, Joaquim; Minsavage, Gerald V; Dahlbeck, Douglas; Akhunova, Alina; Almeida, Nalvo; Vallad, Gary E; Barak, Jeri D; White, Frank F; Miller, Sally A; Ritchie, David; Goss, Erica; Bart, Rebecca S; Setubal, João C; Jones, Jeffrey B; Staskawicz, Brian J

    2015-01-01

    Bacterial spot disease of pepper and tomato is caused by four distinct Xanthomonas species and is a severely limiting factor on fruit yield in these crops. The genetic diversity and the type III effector repertoires of a large sampling of field strains for this disease have yet to be explored on a genomic scale, limiting our understanding of pathogen evolution in an agricultural setting. Genomes of 67 Xanthomonas euvesicatoria (Xe), Xanthomonas perforans (Xp), and Xanthomonas gardneri (Xg) strains isolated from diseased pepper and tomato fields in the southeastern and midwestern United States were sequenced in order to determine the genetic diversity in field strains. Type III effector repertoires were computationally predicted for each strain, and multiple methods of constructing phylogenies were employed to understand better the genetic relationship of strains in the collection. A division in the Xp population was detected based on core genome phylogeny, supporting a model whereby the host-range expansion of Xp field strains on pepper is due, in part, to a loss of the effector AvrBsT. Xp-host compatibility was further studied with the observation that a double deletion of AvrBsT and XopQ allows a host range expansion for Nicotiana benthamiana. Extensive sampling of field strains and an improved understanding of effector content will aid in efforts to design disease resistance strategies targeted against highly conserved core effectors. PMID:26089818

  3. Determination of Longwall Mining-Induced Stress Using the Strain Energy Method

    NASA Astrophysics Data System (ADS)

    Rezaei, Mohammad; Hossaini, Mohammad Farouq; Majdi, Abbas

    2015-11-01

    Extraction of the coal seam causes stress redistribution around the mined panel in longwall mining. The weight of bridging strata and strata that cantilevers over the destressed zone is shifted to adjacent gates, pillars, and abutments surrounding the longwall panel. Thus, knowledge of the mining-induced stress is very important to enable accurate design of gate supports and pillar dimensions. In this paper, an analytical model based on the strain energy balance in longwall coal mining is developed to determine the mining-induced stress over gates and pillars. In the proposed model, the height of the destressed zone above the mined panel, total induced stress, abutment angle, vertical component of induced stress, and coefficient of stress concentration over gates and pillars are determined analytically. As a case study, the proposed model is used to determine the coefficient of stress concentration over the gates and pillars in Tabas coal mine of Iran. In order to evaluate the effect of the proposed model's incorporated parameters on the coefficient of stress concentration, a sensitivity analysis is conducted based on the actual data of Tabas coal mine. Also, the proposed model is validated against the in-situ measurement as well as numerical and analytical models with the same boundary conditions. The validation results show that the proposed model is in agreement with the in-situ measurement and numerical model, but has differences compared with the available analytical models. Considering the obtained results, it can be concluded that the proposed analytical model can be used to calculate the mining-induced stress, aiming to reach the optimum design of gate supports and pillar dimensions.

  4. Simulation of micromechanical behavior of polycrystals: finite elements vs. fast Fourier transforms

    SciTech Connect

    Lebensohn, Ricardo A; Prakash, Arun

    2009-01-01

    In this work, we compare finite element and fast Fourier transform approaches for the prediction of micromechanical behavior of polycrystals. Both approaches are full-field approaches and use the same visco-plastic single crystal constitutive law. We investigate the texture and the heterogeneity of the inter- and intragranular, stress and strain fields obtained from the two models. Additionally, we also look into their computational performance. Two cases - rolling of aluminium and wire drawing of tungsten - are used to evaluate the predictions of the two mode1s. Results from both the models are similar, when large grain distortions do not occur in the polycrystal. The finite element simulations were found to be highly computationally intensive, in comparison to the fast Fourier transform simulations.

  5. Realistic micromechanical modeling and simulation of two-phase heterogeneous materials

    NASA Astrophysics Data System (ADS)

    Sreeranganathan, Arun

    This dissertation research focuses on micromechanical modeling and simulations of two-phase heterogeneous materials exhibiting anisotropic and non-uniform microstructures with long-range spatial correlations. Completed work involves development of methodologies for realistic micromechanical analyses of materials using a combination of stereological techniques, two- and three-dimensional digital image processing, and finite element based modeling tools. The methodologies are developed via its applications to two technologically important material systems, namely, discontinuously reinforced aluminum composites containing silicon carbide particles as reinforcement, and boron modified titanium alloys containing in situ formed titanium boride whiskers. Microstructural attributes such as the shape, size, volume fraction, and spatial distribution of the reinforcement phase in these materials were incorporated in the models without any simplifying assumptions. Instrumented indentation was used to determine the constitutive properties of individual microstructural phases. Micromechanical analyses were performed using realistic 2D and 3D models and the results were compared with experimental data. Results indicated that 2D models fail to capture the deformation behavior of these materials and 3D analyses are required for realistic simulations. The effect of clustering of silicon carbide particles and associated porosity on the mechanical response of discontinuously reinforced aluminum composites was investigated using 3D models. Parametric studies were carried out using computer simulated microstructures incorporating realistic microstructural attributes. The intrinsic merit of this research is the development and integration of the required enabling techniques and methodologies for representation, modeling, and simulations of complex geometry of microstructures in two- and three-dimensional space facilitating better understanding of the effects of microstructural geometry

  6. Design and Implementation of a Micromechanical Silicon Resonant Accelerometer

    PubMed Central

    Huang, Libin; Yang, Hui; Gao, Yang; Zhao, Liye; Liang, Jinxing

    2013-01-01

    The micromechanical silicon resonant accelerometer has attracted considerable attention in the research and development of high-precision MEMS accelerometers because of its output of quasi-digital signals, high sensitivity, high resolution, wide dynamic range, anti-interference capacity and good stability. Because of the mismatching thermal expansion coefficients of silicon and glass, the micromechanical silicon resonant accelerometer based on the Silicon on Glass (SOG) technique is deeply affected by the temperature during the fabrication, packaging and use processes. The thermal stress caused by temperature changes directly affects the frequency output of the accelerometer. Based on the working principle of the micromechanical resonant accelerometer, a special accelerometer structure that reduces the temperature influence on the accelerometer is designed. The accelerometer can greatly reduce the thermal stress caused by high temperatures in the process of fabrication and packaging. Currently, the closed-loop drive circuit is devised based on a phase-locked loop. The unloaded resonant frequencies of the prototype of the micromechanical silicon resonant accelerometer are approximately 31.4 kHz and 31.5 kHz. The scale factor is 66.24003 Hz/g. The scale factor stability is 14.886 ppm, the scale factor repeatability is 23 ppm, the bias stability is 23 μg, the bias repeatability is 170 μg, and the bias temperature coefficient is 0.0734 Hz/°C. PMID:24256978

  7. Sensitive determination of nonlinear properties of berea sandstone at low strains

    NASA Astrophysics Data System (ADS)

    Smith, Eric; TenCate, James A.

    2000-07-01

    Resonant response functions of a sandstone bar, measured at strain magnitudes between 10-8 and 10-6 at several temperatures, are used to extract Young's modulus and loss tangent as functions of frequency and driving force. Expressing the distorted shape of nonlinear resonances in terms of shifts in the resonant frequency and Q enables correlation analysis of these functions against components of the strain response function. Resonance shifts are found to be strongly correlated with somewhat complicated functions of strain, but only weakly with frequency or phase of the response. Decomposing the data along contours of constant strain magnitude yields the quantitative scaling of resonance shifts with strain, which shows a superposition of both conventional and necessarily hysteretic nonlinear sources. No statistically significant temperature dependence is found in the coefficients of the fits.

  8. Experimental determination of strain partitioning among individual grains in the bulk of an aluminium multicrystal

    SciTech Connect

    Haldrup, K.

    2008-07-15

    A recently developed marker-based technique for mapping of the displacement gradient tensor and the strain throughout the bulk of optically opaque specimens is presented and applied to an aluminium alloy multicrystal. Through investigations at 4%, 10% and 14% axial strains, the internal strain field is observed to be non-homogenous with the observed patterns present throughout the range of strains investigated. The morphology of the strain field is visualized with a resolution better than 50{mu}m and variations are tentatively associated with the grain structure as recorded by EBSD. Future applications of the technique in combination with other 3-dimensional approaches are discussed with respect to comparison with Finite Element modelling approaches.

  9. Identification of microstructural characteristics in lightweight aggregate concretes by micromechanical modelling including the interfacial transition zone (ITZ)

    SciTech Connect

    Ke, Y.; Ortola, S.; Beaucour, A.L.; Dumontet, H.

    2010-11-15

    An approach which combines both experimental techniques and micromechanical modelling is developed in order to characterise the elastic behaviour of lightweight aggregate concretes (LWAC). More than three hundred LWAC specimens with various lightweight aggregate types (5) of several volume ratios and three different mortar matrices (normal, HP, VHP) are tested. The modelling is based on iterative homogenisation process and includes the ITZ specificities experimentally observed with scanning electron microscopy (SEM). In agreement with experimental measurements, the effects of mix design parameters as well as of the interfacial transition zone (ITZ) on concrete mechanical performances are quantitatively analysed. Confrontations with experimental results allow identifying the elastic moduli of LWA which are difficult to determine experimentally. Whereas the traditional empirical formulas are not sufficiently precise, predictions of LWAC elastic behaviours computed with the micromechanical models appear in good agreement with experimental measurements.

  10. An Efficient Implementation of the GMC Micromechanics Model for Multi-Phased Materials with Complex Microstructures

    NASA Technical Reports Server (NTRS)

    Pindera, Marek-Jerzy; Bednarcyk, Brett A.

    1997-01-01

    An efficient implementation of the generalized method of cells micromechanics model is presented that allows analysis of periodic unidirectional composites characterized by repeating unit cells containing thousands of subcells. The original formulation, given in terms of Hill's strain concentration matrices that relate average subcell strains to the macroscopic strains, is reformulated in terms of the interfacial subcell tractions as the basic unknowns. This is accomplished by expressing the displacement continuity equations in terms of the stresses and then imposing the traction continuity conditions directly. The result is a mixed formulation wherein the unknown interfacial subcell traction components are related to the macroscopic strain components. Because the stress field throughout the repeating unit cell is piece-wise uniform, the imposition of traction continuity conditions directly in the displacement continuity equations, expressed in terms of stresses, substantially reduces the number of unknown subcell traction (and stress) components, and thus the size of the system of equations that must be solved. Further reduction in the size of the system of continuity equations is obtained by separating the normal and shear traction equations in those instances where the individual subcells are, at most, orthotropic. The reformulated version facilitates detailed analysis of the impact of the fiber cross-section geometry and arrangement on the response of multi-phased unidirectional composites with and without evolving damage. Comparison of execution times obtained with the original and reformulated versions of the generalized method of cells demonstrates the new version's efficiency.

  11. Draft Genome Sequence of Neisseria gonorrhoeae Strain NG_869 with Penicillin, Tetracycline and Ciprofloxacin Resistance Determinants Isolated from Malaysia.

    PubMed

    Ang, Geik Yong; Yu, Choo Yee; Yong, Delicia Ann; Cheong, Yuet Meng; Yin, Wai-Fong; Chan, Kok-Gan

    2016-06-01

    Gonorrhea is a sexually transmitted infection caused by Neisseria gonorrhoeae and the increasing reports of multidrug-resistant gonococcal isolates are a global public health care concern. Herein, we report the genome sequence of N. gonorrhoeae strain NG_869 isolated from Malaysia which may provide insights into the drug resistance determinants in gonococcal bacteria. PMID:27570316

  12. Development of numerical methods to problems of micromechanics

    NASA Astrophysics Data System (ADS)

    Garcia-Martinez, Jose Ramon

    In this dissertation we utilize the finite element method to investigate three micromechanical problems. In Chapter 2, we study the compliance contribution tensor H of multiple branched cracks. The cracks grow from a deltoid pore at their center into a triple crack. For plain strain conditions, two-dimensional models of the branched crack are modeled and solved in ABAQUS. The displacement field over the surface of the branched crack and the deltoid is curve fitted to carry out the integral surface of the compliance contribution tensor H. The predicted values are in good agreement with analytical solution. In Chapter 3 a three-dimensional finite element program using an unaligned mesh with an eight-node isoparametric element is developed to study the compliance contribution tensor H of cavities with superellipsoid shapes. A mesh clustering algorithm to increase the number of elements inside and near the superellipsoid surface to obtain a mesh independent solution is used. The numerical results are compared with the analytical solution of a sphere; the error of the numerical approximation varied from 8 to 11%. It is found that the number of elements inside the superellipsoid are insufficient. An algorithm to mesh independently the volumes inside and outside the cube is proposed to increase the accuracy in the calculation of H. As n1 and n2 increase, the numerical solutions show that, H1111 → 0 and H2211 → 0. Although, for these concave shapes no analytical solution exists a bound of 0 for the terms H 1111 and H2211 is suggested. Finally, in Chapter 4 a numerical verification of the cross-property connection between the effective fluid permeability and the effective electrical conductivity is study. A molecular dynamics algorithm is used to generate a set of different microstructural patterns. The volumetric average over a cubic volume is used to obtain the effective electrical conductivity and the effective fluid permeability. The tortuosity of the porous phase

  13. Determination of the strain rate dependent thermal softening behavior of thermoplastic materials for crash simulations

    NASA Astrophysics Data System (ADS)

    Hopmann, Christian; Klein, Jan; Schöngart, Maximilian

    2016-03-01

    Thermoplastic materials are increasingly used as a light weight replacement for metal, especially in automotive applications. Typical examples are frontends and bumpers. The loads on these structures are very often impulsive, for example in a crash situation. A high rate of loading causes a high strain rate in the material which has a major impact on the mechanical behavior of thermoplastic materials. The stiffness as well as the rigidity of polymers increases to higher strain rates. The increase of the mechanical properties is superimposed at higher rates of loading by another effect which works reducing on stiffness and rigidity, the increase of temperature caused by plastic deformation. The mechanical behavior of thermoplastic materials is influenced by temperature opposing to strain rate. The stiffness and rigidity are decreased to higher values of temperature. The effect of thermal softening on thermoplastic materials is investigated at IKV. For this purpose high-speed tensile tests are performed on a blend, consisting of Polybutylenterephthalate (PBT) and Polycarbonate (PC). In preliminary investigations the effects of strain rate on the thermomechanical behavior of thermoplastic materials was studied by different authors. Tensile impact as well as split Hopkinson pressure bar (SHPB) tests were conducted in combination with high-speed temperature measurement, though, the authors struggled especially with temperature measurement. This paper presents an approach which uses high-speed strain measurement to transpire the link between strain, strain rate and thermal softening as well as the interdependency between strain hardening and thermal softening. The results show a superimposition of strain hardening and thermal softening, which is consistent to preliminary investigations. The advantage of the presented research is that the results can be used to calibrate damage and material models to perform mechanical simulations using Finite Element Analysis.

  14. Direct determination of strain with diffraction-limit accuracy by moiré deflectometry.

    PubMed

    Kafri, O; Keren, E; Kreske, K M

    1989-02-15

    In-plane strain is traditionally mapped by fixing a grating onto a test object and monitoring its displacements under stress by either a moiré method or interferometry. The strain (or displacement derivative) is obtained by an additional mathematical or moiré shearing technique. We suggest an application of moiré deflectometry that will yield the strain directly. The setup is much simpler than existing methods and has the additional advantages of tunable sensitivity and immunity to mechanical shock and vibration. PMID:19749866

  15. Smart materials: strain sensing and stress determination by means of nanotube sensing systems, composites, and devices

    NASA Technical Reports Server (NTRS)

    Barrera, Enrique V. (Inventor); Nagarajaiah, Satish (Inventor); Dharap, Prasad (Inventor); Zhiling, Li (Inventor); Kim, Jong Dae (Inventor)

    2010-01-01

    The present invention is directed toward devices comprising carbon nanotubes that are capable of detecting displacement, impact, stress, and/or strain in materials, methods of making such devices, methods for sensing/detecting/monitoring displacement, impact, stress, and/or strain via carbon nanotubes, and various applications for such methods and devices. The devices and methods of the present invention all rely on mechanically-induced electronic perturbations within the carbon nanotubes to detect and quantify such stress/strain. Such detection and quantification can rely on techniques which include, but are not limited to, electrical conductivity/conductance and/or resistivity/resistance detection/measurements, thermal conductivity detection/measurements, electroluminescence detection/measurements, photoluminescence detection/measurements, and combinations thereof. All such techniques rely on an understanding of how such properties change in response to mechanical stress and/or strain.

  16. Structure determination of the exopolysaccharide produced by Lactobacillus rhamnosus strains RW-9595M and R.

    PubMed Central

    Van Calsteren, Marie-Rose; Pau-Roblot, Corinne; Bégin, André; Roy, Denis

    2002-01-01

    Exopolysaccharides (EPSs) were isolated and purified from Lactobacillus rhamnosus strains RW-9595M, which has been shown to possess cytokine-stimulating activity, and R grown under various fermentation conditions (carbon source, incubation temperature and duration). Identical (1)H NMR spectra were obtained in all cases. Molecular masses were determined by gel permeation chromatography. The primary structure was elucidated using chemical and spectroscopic techniques. Organic acid, monosaccharide and absolute configuration analyses gave the following composition: pyruvate, 1; D-glucose, 2; D-galactose, 1; and l-rhamnose, 4. Methylation analysis indicated the presence of three residues of 3-linked rhamnose, and one residue each of 2,3-linked rhamnose, 2-linked glucose, 3-linked glucose and 4,6-linked galactose. The EPS was submitted to periodate oxidation followed by borohydride reduction. Monosaccharide analysis of the resulting polysaccharide gave the new composition: rhamnose, 4; and glucose, 1. Methylation analysis confirmed the loss of the 2-linked glucose and 4,6-linked galactose residues. On the basis of one- and two-dimensional (1)H and (13)C NMR data, the structure of the native EPS was consistent with the following heptasaccharide repeating unit: [3Rha alpha-3Glc beta-3[Gal4,6(R)Py alpha-2]Rha alpha-3Rha alpha-3Rha alpha-2Glc alpha-](n) where Rha corresponds to rhamnose (6-deoxymannose) and Py corresponds to pyruvate acetal. Complete (1)H and (13)C assignments are reported for the native and the corresponding pyruvate-hydrolysed polysaccharide. Electrospray MS and MS/MS data are given for the oligosaccharide produced by Smith degradation. PMID:11903041

  17. Experimental method of determining the stress-strain state of bodies on the basis of the absorption of light

    SciTech Connect

    Myl`nikov, A.V.; Rudyak, Yu.A.

    1995-11-01

    Various analytical and experimental methods have been devised for determining stresses and strains in solids [1,2,4,5,6,7]. Among the experimental methods are optical methods based on the refraction and interference of light, polarization (photoelasticity), moire fringes, holographic effects, and other phenomena. All of these methods are based on changes in the index of refraction of electromagnetic waves as a result if the manifestation of optical anisotropy in loaded specimens made of special materials. They also rely on precise measurements of strains of loaded objects obtained by holographic techniques.

  18. Determination of lattice parameters, strain state and composition in semipolar III-nitrides using high resolution X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Frentrup, Martin; Hatui, Nirupam; Wernicke, Tim; Stellmach, Joachim; Bhattacharya, Arnab; Kneissl, Michael

    2013-12-01

    In group-III-nitride heterostructures with semipolar or nonpolar crystal orientation, anisotropic lattice and thermal mismatch with the buffer or substrate lead to a complex distortion of the unit cells, e.g., by shearing of the lattice. This makes an accurate determination of lattice parameters, composition, and strain state under assumption of the hexagonal symmetry impossible. In this work, we present a procedure to accurately determine the lattice constants, strain state, and composition of semipolar heterostructures using high resolution X-ray diffraction. An analysis of the unit cell distortion shows that four independent lattice parameters are sufficient to describe this distortion. Assuming only small deviations from an ideal hexagonal structure, a linear expression for the interplanar distances dhkl is derived. It is used to determine the lattice parameters from high resolution X-ray diffraction 2ϑ-ω-scans of multiple on- and off-axis reflections via a weighted least-square fit. The strain and composition of ternary alloys are then evaluated by transforming the elastic parameters (using Hooke's law) from the natural crystal-fixed coordinate system to a layer-based system, given by the in-plane directions and the growth direction. We illustrate our procedure taking an example of (112¯2) AlκGa1-κN epilayers with Al-contents over the entire composition range. We separately identify the in-plane and out-of-plane strains and discuss origins for the observed anisotropy.

  19. The nano-epsilon dot method for strain rate viscoelastic characterisation of soft biomaterials by spherical nano-indentation.

    PubMed

    Mattei, G; Gruca, G; Rijnveld, N; Ahluwalia, A

    2015-10-01

    Nano-indentation is widely used for probing the micromechanical properties of materials. Based on the indentation of surfaces using probes with a well-defined geometry, the elastic and viscoelastic constants of materials can be determined by relating indenter geometry and measured load and displacement to parameters which represent stress and deformation. Here we describe a method to derive the viscoelastic properties of soft hydrated materials at the micro-scale using constant strain rates and stress-free initial conditions. Using a new self-consistent definition of indentation stress and strain and corresponding unique depth-independent expression for indentation strain rate, the epsilon dot method, which is suitable for bulk compression testing, is transformed to nano-indentation. We demonstrate how two materials can be tested with a displacement controlled commercial nano-indentor using the nano-espilon dot method (nano-ε̇M) to give values of instantaneous and equilibrium elastic moduli and time constants with high precision. As samples are tested in stress-free initial conditions, the nano-ε̇M could be useful for characterising the micro-mechanical behaviour of soft materials such as hydrogels and biological tissues at cell length scales. PMID:26143307

  20. Host Determinants of Prion Strain Diversity Independent of Prion Protein Genotype

    PubMed Central

    Crowell, Jenna; Hughson, Andrew; Caughey, Byron

    2015-01-01

    ABSTRACT Phenotypic diversity in prion diseases can be specified by prion strains in which biological traits are propagated through an epigenetic mechanism mediated by distinct PrPSc conformations. We investigated the role of host-dependent factors on phenotypic diversity of chronic wasting disease (CWD) in different host species that express the same prion protein gene (Prnp). Two CWD strains that have distinct biological, biochemical, and pathological features were identified in transgenic mice that express the Syrian golden hamster (SGH) Prnp. The CKY strain of CWD had a shorter incubation period than the WST strain of CWD, but after transmission to SGH, the incubation period of CKY CWD was ∼150 days longer than WST CWD. Limited proteinase K digestion revealed strain-specific PrPSc polypeptide patterns that were maintained in both hosts, but the solubility and conformational stability of PrPSc differed for the CWD strains in a host-dependent manner. WST CWD produced PrPSc amyloid plaques in the brain of the SGH that were partially insoluble and stable at a high concentration of protein denaturant. However, in transgenic mice, PrPSc from WST CWD did not assemble into plaques, was highly soluble, and had low conformational stability. Similar studies using the HY and DY strains of transmissible mink encephalopathy resulted in minor differences in prion biological and PrPSc properties between transgenic mice and SGH. These findings indicate that host-specific pathways that are independent of Prnp can alter the PrPSc conformation of certain prion strains, leading to changes in the biophysical properties of PrPSc, neuropathology, and clinical prion disease. IMPORTANCE Prions are misfolded pathogenic proteins that cause neurodegeneration in humans and animals. Transmissible prion diseases exhibit a spectrum of disease phenotypes and the basis of this diversity is encoded in the structure of the pathogenic prion protein and propagated by an epigenetic mechanism. In

  1. Strain accommodation in inelastic deformation of glasses

    NASA Astrophysics Data System (ADS)

    Murali, P.; Ramamurty, U.; Shenoy, Vijay B.

    2007-01-01

    Motivated by recent experiments on metallic glasses, we examine the micromechanisms of strain accommodation including crystallization and void formation during inelastic deformation of glasses by employing molecular statics simulations. Our atomistic simulations with Lennard-Jones-like potentials suggests that a softer short range interaction between atoms favors crystallization. Compressive hydrostatic strain in the presence of a shear strain promotes crystallization whereas a tensile hydrostatic strain is found to induce voids. The deformation subsequent to the onset of crystallization includes partial reamorphization and recrystallization, suggesting important atomistic mechanisms of plastic dissipation in glasses.

  2. Quaternary Structure of Pathological Prion Protein as a Determining Factor of Strain-Specific Prion Replication Dynamics

    PubMed Central

    Chapuis, Jérôme; Sibille, Pierre; Herzog, Laetitia; Reine, Fabienne; Jaumain, Emilie; Laude, Hubert; Rezaei, Human; Béringue, Vincent

    2013-01-01

    Prions are proteinaceous infectious agents responsible for fatal neurodegenerative diseases in animals and humans. They are essentially composed of PrPSc, an aggregated, misfolded conformer of the ubiquitously expressed host-encoded prion protein (PrPC). Stable variations in PrPSc conformation are assumed to encode the phenotypically tangible prion strains diversity. However the direct contribution of PrPSc quaternary structure to the strain biological information remains mostly unknown. Applying a sedimentation velocity fractionation technique to a panel of ovine prion strains, classified as fast and slow according to their incubation time in ovine PrP transgenic mice, has previously led to the observation that the relationship between prion infectivity and PrPSc quaternary structure was not univocal. For the fast strains specifically, infectivity sedimented slowly and segregated from the bulk of proteinase-K resistant PrPSc. To carefully separate the respective contributions of size and density to this hydrodynamic behavior, we performed sedimentation at the equilibrium and varied the solubilization conditions. The density profile of prion infectivity and proteinase-K resistant PrPSc tended to overlap whatever the strain, fast or slow, leaving only size as the main responsible factor for the specific velocity properties of the fast strain most infectious component. We further show that this velocity-isolable population of discrete assemblies perfectly resists limited proteolysis and that its templating activity, as assessed by protein misfolding cyclic amplification outcompetes by several orders of magnitude that of the bulk of larger size PrPSc aggregates. Together, the tight correlation between small size, conversion efficiency and duration of disease establishes PrPSc quaternary structure as a determining factor of prion replication dynamics. For certain strains, a subset of PrP assemblies appears to be the best template for prion replication. This has

  3. Micromechanical properties of intercalated compounds of graphite oxide with dodecahydro- closо-dodecaboric acid

    NASA Astrophysics Data System (ADS)

    Karpenko, A. A.; Saldin, V. I.

    2016-08-01

    The micromechanical properties (Young's modulus, deformation, and adhesion) of the intercalated compound of graphite oxide with dodecahydro- closo-dodecaboric acid were studied by atomic force microscopy, transmission electron microscopy, and Raman spectroscopy and compared with the same characteristics of the starting graphite oxide. The significant difference in the micromechanical properties of the materials under study is dictated by differences in the topography and properties of their film surface, which, in turn, can be determined by their chemical composition. The introduction of dodecahydro- closo-dodecaboric acid in the interplanar space of graphite oxide affects the structuring of the latter. A considerable increase in the adhesion of the intercalated compound relative to that of oxide graphite is explained by high adhesive properties of the introduced acid, the Young's modulus of graphite oxide being higher than that of the intercalated compound. This was attributed to the high hydrophilicity of dodecahydro- closo-dodecaboric acid and the difficulty of water removal from the interplanar space; water plasticizes the material, which becomes softer than graphite oxide. The difference in the structure of the coating of the intercalated compounds and the starting graphite oxide was found to be also reflected by their Raman spectra, namely, by the increased intensity of the D line with the preserved position of the G line, which points to the impurity nature of the intercalate and the unchanged hexagonal lattice of graphite.

  4. Applicability of a Micromechanics Model Based on Actual Microstructure for Failure Prediction of DP Steels

    SciTech Connect

    Choi, Kyoo Sil; Soulami, Ayoub; Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.

    2009-04-01

    In this paper, various micromechanics models based on actual microstructures of DP steels are examined in order to determine the reasonable range of martensite volume fraction where the methodology described in this study can be applied. For this purpose, various micromechanics-based finite element models are first created based on the actual microstructures of DP steels with different martensite volume fractions. These models are, then, used to investigate the influence of ductility of the constituent ferrite and martensite phases and also the influence of voids in the ferrite phase on the overall ductility of DP steels. The computational results indicate that there is a range of martensite volume fraction where the phase inhomogeneity between the ferrite and martensite phases has dominant effect on the overall ductility of DP steels, defeating the influence of the ductility of each phase and the voids in the ferrite phase, and that this phase inhomogeneity dominant region includes the range of marteniste volume fraction between 15% and 40%. Therefore, the methodology, adopted in this study, may be applied to DP steels within the phase inhomogeneity dominant region in tailoring the DP steel design for its intended purpose and desired properties.

  5. Determination and analysis of torsion equivalent stress-equivalent strain relation of low carbon alloy

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Jiang, Gongfeng; Yu, Xiutao; Deng, Tianhua; Zhang, Yiliang

    2008-11-01

    Typical pressure vessel materials' torsion equivalent stress-equivalent strain relationships under large deformation condition are researched in this paper. Because the length and the diameter of the specimen may change under uniaxial tension, it's impossible to make effective measurement and analysis for the mechanical properties of the specimen, especially after the necking. The form and cross-section size of cylindrical specimen do not change in torsion test, so that the large strain's constitutive relationship is more accurate than that obtained from an axial tension test. So that cylindrical specimen's torsion test is attempted to obtain the shear stress-shear strain curves of typical pressure vessel materials 16MnR and Q235. Consider that the stress is non-homogeneous in the cross-section of cylindrical specimen, thin wall tube specimen is also used in the torsion test, and the maximum differences between cylindrical specimen's results and thin-wall tube's are 10% and 13% respectively. Tension true stress-true strain curves, torsion equivalent stress-equivalent strain curves are also compared in this paper and the results showed that description of the torsion constitutive relationship is more complete than that of tension. At last, constitutive equations are fitted and the mathematical representations are obtained.

  6. Determination of Three-Dimensional Ventricular Strain Distributions in Gene-Targeted Mice Using Tagged MRI

    PubMed Central

    Chuang, Joyce S.; Zemljic-Harpf, Alice; Ross, Robert S.; Frank, Lawrence R.; McCulloch, Andrew D.; Omens, Jeffrey H.

    2012-01-01

    A model-based method for calculating three-dimensional (3D) cardiac wall strain distributions in the mouse has been developed and tested in a genetically engineered mouse model of dilated cardiomyopathy. Data from MR tagging and harmonic phase (HARP) tracking were used to measure material point displacements, and 3D Lagrangian strains were calculated throughout the entire left ventricle (LV) with a deformable parametric model. A mouse model where cardiomyocytes are specifically made deficient in vinculin (VclKO) were compared to wild-type (WT) littermates. 3D strain analysis revealed differences in LV wall mechanics between WT and VclKO mice at 8 weeks of age when systolic function had just begun to decline. Most notably, end-systolic radial strain and torsional shear were reduced in VclKO hearts which contributed to regional mechanical dysfunction. This study demonstrates the feasibility of using MRI tagging methods to detect alterations in 3D myocardial strain distributions in genetically engineered mouse models of cardiovascular disease. PMID:20981782

  7. A chromosomal chloramphenicol acetyltransferase determinant from a probiotic strain of Bacillus clausii.

    PubMed

    Galopin, Sébastien; Cattoir, Vincent; Leclercq, Roland

    2009-06-01

    The mechanism of resistance to chloramphenicol was studied in four strains of Bacillus clausii included in a probiotic mixture, which is administered to humans for prevention of gastrointestinal side effects due to oral antibiotic therapy. By cloning experiments, a chloramphenicol acetyltransferase (CAT) gene, cat(Bcl), coding for a putative 228-amino acid CAT protein was identified in B. clausii SIN. The deduced amino acid sequence displayed from 31% to 85% identity with 56 CAT proteins from other Gram-positive bacterial strains. The cat(Bcl) gene was also detected by PCR in the three other B. clausii strains resistant to chloramphenicol, whereas it was absent in the three control strains susceptible to chloramphenicol. Pulse-field gel electrophoresis of total DNA digested by I-CeuI followed by hybridization with a cat-specific probe as well as unsuccessful repeated attempts of in vitro transfer of chloramphenicol resistance to various recipient cells indicated that cat(Bcl) was chromosomally located in all four resistant B. clausii strains. PMID:19459958

  8. Micromechanical Model of a Surrogate for Collagenous Soft Tissues: Development, Validation and Analysis of Mesoscale Size Effects

    PubMed Central

    Reese, Shawn P.; Ellis, Benjamin J.; Weiss, Jeffrey A.

    2013-01-01

    Aligned, collagenous tissues such as tendons and ligaments are composed primarily of water and type I collagen, organized hierarchically into nanoscale fibrils, microscale fibers and mesoscale fascicles. Force transfer across scales is complex and poorly understood. Since innervation, the vasculature, damage mechanisms and mechanotransduction occur at the microscale and mesoscale, understanding multiscale interactions is of high importance. This study used a physical model in combination with a computational model to isolate and examine the mechanisms of force transfer between scales. A collagen-based surrogate served as the physical model. The surrogate consisted of extruded collagen fibers embedded within a collagen gel matrix. A micromechanical finite element model of the surrogate was validated using tensile test data that was recorded using a custom tensile testing device mounted on a confocal microscope. Results demonstrated that the experimentally measured macroscale strain was not representative of the microscale strain, which was highly inhomogeneous. The micromechanical model, in combination with a macroscopic continuum model, revealed that the microscale inhomogeneity resulted from size effects in the presence of a constrained boundary. A sensitivity study indicated that significant scale effects would be present over a range of physiologically relevant inter-fiber spacing values and matrix material properties. The results indicate that the traditional continuum assumption is not valid for describing the macroscale behavior of the surrogate, and that boundary-induced size effects are present. PMID:23400805

  9. Strain determination in bone sections with simultaneous 3D digital holographic interferometry

    NASA Astrophysics Data System (ADS)

    Alvarez, Araceli Sánchez; De la Torre Ibarra, Manuel H.; Santoyo, Fernando Mendoza; Anaya, Tonatiuh-Saucedo

    2014-06-01

    A 3D digital holographic interferometer was used to measure the surface strain components in two different bovine's bone sections. The applied force on the sample was induced by a precisely controlled lateral micro compression. The simultaneous acquisition capability of the system helps to record a fast sequence of images, each one containing three independent holograms that result in three orthogonal displacement components u, v and w from which the surface strain components ɛx, ɛy and γxy over the bone's field of view were calculated. This research study was carried out in two different bone sections: the cortical bone and the medullary cavity/yellow marrow section. The resulting strain concentrators are of great importance to better understand the mechanical response of complex biological structures such as this bovine femoral bone.

  10. Nonlinear Visco-Elastic Response of Composites via Micro-Mechanical Models

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.; Sridharan, Srinivasan

    2005-01-01

    Micro-mechanical models for a study of nonlinear visco-elastic response of composite laminae are developed and their performance compared. A single integral constitutive law proposed by Schapery and subsequently generalized to multi-axial states of stress is utilized in the study for the matrix material. This is used in conjunction with a computationally facile scheme in which hereditary strains are computed using a recursive relation suggested by Henriksen. Composite response is studied using two competing micro-models, viz. a simplified Square Cell Model (SSCM) and a Finite Element based self-consistent Cylindrical Model (FECM). The algorithm is developed assuming that the material response computations are carried out in a module attached to a general purpose finite element program used for composite structural analysis. It is shown that the SSCM as used in investigations of material nonlinearity can involve significant errors in the prediction of transverse Young's modulus and shear modulus. The errors in the elastic strains thus predicted are of the same order of magnitude as the creep strains accruing due to visco-elasticity. The FECM on the other hand does appear to perform better both in the prediction of elastic constants and the study of creep response.