NASA Astrophysics Data System (ADS)
Heinrich, A.; Dirnstorfer, I.; Bischoff, J.; Richter, U.; Ketelson, H.; Meiner, K.; Mikolajick, T.
2013-10-01
We report on Mueller Matrix spectroscopic ellipsometry (MM-SE) to examine undesired asymmetries in structural parameters, i.e. line edge roughness (LER). The investigation was done on a photomask containing line space arrays with intentionally modulated line edges. The Mueller Matrix (MM) elements were measured within the complete azimuth angle range (0 - 360°) and a wavelength range from 300 nm to 980 nm. The results are presented in polar coordinates with the azimuth angle and wavelength as the angular and radial coordinate, respectively. It was found that LER significantly impacts the MM elements, which is indicated by the increase of the isotropic character of the array. The experimental data are confirmed by Rigorous Coupled Wave Analysis (RCWA) simulations on perturbed arrays. Based on RCWA the impact of LER amplitudes in the nm range is determined. It was found that both deviation of critical dimension (CD) and LER amplitude impact the MM elements. Based on the intensity ratios of the elements and their spectral distribution both errors create a characteristic finger print, which allows to separate them. Finally, the required measurement precision for LER in the nm range is estimated at 0.001. This precision is challenging but achievable with today's metrology.
Invariant quantities of a nondepolarizing Mueller matrix
NASA Astrophysics Data System (ADS)
Gil, José J.; José, Ignacio San
2016-07-01
Orthogonal Mueller matrices can be considered either as corresponding to retarders or to generalized transformations of the polarization basis for the representation of Stokes vectors, so that they constitute the only type of Mueller matrices that preserve the degree of polarization and the intensity of any partially-polarized input Stokes vector. The physical quantities which remain invariant when a nondepolarizing Mueller matrix is transformed through its product by different types of orthogonal Mueller matrices are identified and interpreted, providing a better knowledge of the information contained in a nondepolarizing Mueller matrix.
NASA Astrophysics Data System (ADS)
Stoff, Susan; Chue-Sang, Joseph; Holness, Nola A.; Gandjbakhche, Amir; Chernomordik, Viktor; Ramella-Roman, Jessica
2016-02-01
Preterm birth is a worldwide health issue, as the number one cause of infant mortality and neurological disorders. Although affecting nearly 10% of all births, an accurate, reliable diagnostic method for preterm birth has, yet, to be developed. The primary constituent of the cervix, collagen, provides the structural support and mechanical strength to maintain cervical closure, through specific organization, during fetal gestation. As pregnancy progresses, the disorganization of the cervical collagen occurs to allow eventual cervical pliability so the baby can be birthed through the cervical opening. This disorganization of collagen affects the mechanical properties of the cervix and, if the changes occur prematurely, may be a significant factor leading to preterm birth. The organization of collagen can be analyzed through the use of Mueller Matrix Polarimetric imaging of the characteristic birefringence of collagen. In this research, we have built a full Mueller Matrix Polarimetry attachment to a standard colposcope to enable imaging of human cervixes during standard prenatal exams at various stages of fetal gestation. Analysis of the polarimetric images provides information of quantity and organization of cervical collagen at specific gestational stages of pregnancy. This quantitative information may provide an indication of risk of preterm birth.
Channeled partial Mueller matrix polarimetry
NASA Astrophysics Data System (ADS)
Alenin, Andrey S.; Tyo, J. S.
2015-09-01
In prior work,1,2 we introduced methods to treat channeled systems in a way that is similar to Data Reduction Method (DRM), by focusing attention on the Fourier content of the measurement conditions. Introduction of Q enabled us to more readily extract the performance of the system and thereby optimize it to obtain reconstruction with the least noise. The analysis tools developed for that exercise can be expanded to be applicable to partial Mueller Matrix Polarimeters (pMMPs), which were a topic of prior discussion as well. In this treatment, we combine the principles involved in both of those research trajectories and identify a set of channeled pMMP families. As a result, the measurement structure of such systems is completely known and the design of a channeled pMMP intended for any given task becomes a search over a finite set of possibilities, with the additional channel rotation allowing for a more desirable Mueller element mixing.
Physical quantities involved in a Mueller matrix
NASA Astrophysics Data System (ADS)
Gil, José J.
2016-05-01
The polarimetric properties of a material medium are summarized in the sixteen elements of its associated Mueller matrix. The quantities carrying specific information on the significant polarimetric features have to be defined on the basis of the analysis of the mathematical structure of Mueller matrices. It is found that any Mueller matrix can be parameterized through two retardance vectors and ten quantities that are invariant under dual retarder transformations. This parameterization leads to proper definitions of the retardance and depolarization properties, which together with the diattenuation and polarizance properties provide complete polarimetric characterization of the sample under consideration.
Snapshot retinal imaging Mueller matrix polarimeter
NASA Astrophysics Data System (ADS)
Wang, Yifan; Kudenov, Michael; Kashani, Amir; Schwiegerling, Jim; Escuti, Michael
2015-09-01
Early diagnosis of glaucoma, which is a leading cause for visual impairment, is critical for successful treatment. It has been shown that Imaging polarimetry has advantages in early detection of structural changes in the retina. Here, we theoretically and experimentally present a snapshot Mueller Matrix Polarimeter fundus camera, which has the potential to record the polarization-altering characteristics of retina with a single snapshot. It is made by incorporating polarization gratings into a fundus camera design. Complete Mueller Matrix data sets can be obtained by analyzing the polarization fringes projected onto the image plane. In this paper, we describe the experimental implementation of the snapshot retinal imaging Mueller matrix polarimeter (SRIMMP), highlight issues related to calibration, and provide preliminary images acquired from the camera.
Infrared Mueller matrix acquisition and preprocessing system.
Carrieri, Arthur H; Owens, David J; Schultz, Jonathan C
2008-09-20
An analog Mueller matrix acquisition and preprocessing system (AMMS) was developed for a photopolarimetric-based sensor with 9.1-12.0 microm optical bandwidth, which is the middle infrared wavelength-tunable region of sensor transmitter and "fingerprint" spectral band for chemical-biological (analyte) standoff detection. AMMS facilitates delivery of two alternate polarization-modulated CO(2) laser beams onto subject analyte that excite/relax molecular vibrational resonance in its analytic mass, primes the photoelastic-modulation engine of the sensor, establishes optimum throughput radiance per backscattering cross section, acquires Mueller elements modulo two laser beams in hexadecimal format, preprocesses (normalize, subtract, filter) these data, and formats the results into digitized identification metrics. Feed forwarding of formatted Mueller matrix metrics through an optimally trained and validated neural network provides pattern recognition and type classification of interrogated analyte. PMID:18806864
Fluorescent Mueller matrix analysis of a highly scattering turbid media
Satapathi, Soumitra; Soni, Jalpa; Ghosh, Nirmalya
2014-03-31
We report the fluorescent Mueller matrix analysis of a highly scattering, inhomogeneous, and low quantum yield polymeric nanoparticle system. Both the ground and the excited state anisotropy of this turbid system were measured. The excited state anisotropy was found to be higher than ground state anisotropy by inverse polar decomposition analysis. The depolarization coefficients of these polythiophene nanoparticles were experimentally determined by recording Mueller matrices from this complex random medium. This approach provides an alternative method of determining optical characteristics of low quantum efficiency turbid system like fluorescently leveled tissue phantom.
Two modulator generalized ellipsometer for complete mueller matrix measurement
Jellison, Jr., Gerald E.; Modine, Frank A.
1999-01-01
A two-modulator generalized ellipsometer (2-MGE) comprising two polarizer-photoelastic modulator (PEM) pairs, an optical light source, an optical detection system, and associated data processing and control electronics, where the PEMs are free-running. The input light passes through the first polarizer-PEM pair, reflects off the sample surface or passes through the sample, passes through the second PEM-polarizer pair, and is detected. Each PEM is free running and operates at a different resonant frequency, e.g., 50 and 60 kHz. The resulting time-dependent waveform of the light intensity is a complicated function of time, and depends upon the exact operating frequency and phase of each PEM, the sample, and the azimuthal angles of the polarizer-PEM pairs, but can be resolved into a dc component and eight periodic components. In one embodiment, the waveform is analyzed using a new spectral analysis technique that is similar to Fourier analysis to determine eight sample Mueller matrix elements (normalized to the m.sub.00 Mueller matrix element). The other seven normalized elements of the general 4.times.4 Mueller matrix can be determined by changing the azimuthal angles of the PEM-polarizer pairs with respect to the plane of incidence. Since this instrument can measure all elements of the sample Mueller matrix, it is much more powerful than standard ellipsometers.
Mueller matrix of a dicot leaf
NASA Astrophysics Data System (ADS)
Vanderbilt, Vern C.; Daughtry, Craig S. T.
2012-06-01
A better understanding of the information contained in the spectral, polarized bidirectional reflectance and transmittance of leaves may lead to improved techniques for identifying plant species in remotely sensed imagery as well as better estimates of plant moisture and nutritional status. Here we report an investigation of the optical polarizing properties of several leaves of one species, Cannabis sativa, represented by a 3x3 Mueller matrix measured over the wavelength region 400-2,400 nm. Our results support the hypothesis that the leaf surface alters the polarization of incident light - polarizing off nadir, unpolarized incident light, for example - while the leaf volume tends to depolarized incident polarized light.
Design of channeled partial Mueller matrix polarimeters.
Alenin, Andrey S; Scott Tyo, J
2016-06-01
In this paper, we introduce a novel class of systems called channeled partial Mueller matrix polarimeters (c-pMMPs). Their analysis benefits greatly by drawing from the concepts of generalized construction of channeled polarimeters as described by the modulation matrix. The modulation matrix resembles that of the data reduction method of a conventional polarimeter, but instead of using Mueller vectors as the bases, attention is focused on the Fourier properties of the measurement conditions. By leveraging the understanding of the measurement's structure, its decomposition can be manipulated to reveal noise resilience and information about the polarimeter's ability to measure the aspect of polarization that are important for any given task. We demonstrate the theory with a numerical optimization that designs c-pMMPs for the task of monitoring the damage state of a material as presented earlier by Hoover and Tyo [Appl. Opt.46, 8364 (2007)APOPAI0003-693510.1364/AO.46.008364]. We select several example systems that produce a fewer-than-full-system number of channels yet retain the ability to discriminate objects of interest. Their respective trade-offs are discussed. PMID:27409432
Stokes-vector and Mueller-matrix polarimetry [Invited].
Azzam, R M A
2016-07-01
This paper reviews the current status of instruments for measuring the full 4×1 Stokes vector S, which describes the state of polarization (SOP) of totally or partially polarized light, and the 4×4 Mueller matrix M, which determines how the SOP is transformed as light interacts with a material sample or an optical element or system. The principle of operation of each instrument is briefly explained by using the Stokes-Mueller calculus. The development of fast, automated, imaging, and spectroscopic instruments over the last 50 years has greatly expanded the range of applications of optical polarimetry and ellipsometry in almost every branch of science and technology. Current challenges and future directions of this important branch of optics are also discussed. PMID:27409699
Depolarization artifacts in dual rotating-compensator Mueller matrix ellipsometry
NASA Astrophysics Data System (ADS)
Li, Weiqi; Zhang, Chuanwei; Jiang, Hao; Chen, Xiuguo; Liu, Shiyuan
2016-05-01
Noticeable depolarization effects are observed in the measurement of the air using an in-house developed dual rotating-compensator Mueller matrix ellipsometer. We demonstrate that these depolarization effects are essentially artifacts and mainly induced when the compensator with wavelength-dependent optical properties is integrated with the finite bandwidth detector. We define a general formula to represent the actual Mueller matrix of the compensator by taking into account the depolarization artifacts. After incorporating this formula into the system model, a correction method is further proposed, and consequently, improved accuracy can be achieved in the Mueller matrix measurement.
Systematic errors for a Mueller matrix dual rotating compensator ellipsometer.
Broch, Laurent; En Naciri, Aotmane; Johann, Luc
2008-06-01
The characterization of anisotropic materials and complex systems by ellipsometry has pushed the design of instruments to require the measurement of the full reflection Mueller matrix of the sample with a great precision. Therefore Mueller matrix ellipsometers have emerged over the past twenty years. The values of some coefficients of the matrix can be very small and errors due to noise or systematic errors can induce distored analysis. We present a detailed characterization of the systematic errors for a Mueller Matrix Ellipsometer in the dual-rotating compensator configuration. Starting from a general formalism, we derive explicit first-order expressions for the errors on all the coefficients of the Mueller matrix of the sample. The errors caused by inaccuracy of the azimuthal arrangement of the optical components and residual ellipticity introduced by imperfect optical elements are shown. A new method based on a four-zone averaging measurement is proposed to vanish the systematic errors. PMID:18545594
Mueller Matrix of Specular Reflection Using an Aluminum Grating Surface with Oxide Nanofilm.
Qiu, Jun; Ran, Dongfang; Liu, Linhua; Hsu, Pei-Feng
2016-06-01
The accurate nondestructive and real-time determination of the critical dimensions of oxide nanofilms on periodic nanostructures has potential applications in nanofabrication techniques. Mueller ellipsometry is fast, accurate, nondestructive, and can be used in the ambient air. This study used the elements of a Mueller matrix of specular reflection, which is based on a Mueller ellipsometry method, to evaluate the thickness of an oxide nanofilm on an aluminum grating surface. By using non-traditional rigorous coupled-wave analysis (RCWA), we decomposed the Mueller matrix to obtain the relationship between the evaluated polarization properties of reflected light and the dimensions of oxide nanofilms on aluminum grating surfaces. We also quantitatively analyzed the Mueller matrix elements' variation due to the thicknesses of top, sidewall, and bottom oxides. We consider these oxide films are naturally formed and of nonuniform thickness on grating structures. The results show that the elements of Mueller matrix shift with the increasing of the uniform thickness of oxide at a fixed wavelength. Moreover, as oxide nanofilms on grating structures are nonuniform, the impact of the thickness of side wall oxide on the Mueller matrix elements is more obvious than that of top and bottom oxides at the relative larger incidence wavelength range. The finding of this work may facilitate the nondestructive and real-time measurement of the thickness of oxide nanofilms on metal gratings where the metal is easily oxidized. PMID:27129364
Measurement and calibration of differential Mueller matrix of distributed targets
NASA Technical Reports Server (NTRS)
Sarabandi, Kamal; Oh, Yisok; Ulaby, Fawwaz T.
1992-01-01
A rigorous method for calibrating polarimetric backscatter measurements of distributed targets is presented. By characterizing the radar distortions over the entire mainlobe of the antenna, the differential Mueller matrix is derived from the measured scattering matrices with a high degree of accuracy. It is shown that the radar distortions can be determined by measuring the polarimetric response of a metallic sphere over the main lobe of the antenna. Comparison of results obtained with the new algorithm with the results derived from the old calibration method show that the discrepancy between the two methods is less than 1 dB for the backscattering coefficients. The discrepancy is more drastic for the phase-difference statistics, indicating that removal of the radar distortions from the cross products of the scattering matrix elements cannot be accomplished with the traditional calibration methods.
Diagnostics of optical anisotropy changesin biological tissues using Mueller matrix
Ushenko, Yu A; Tomka, Yu Ya; Dubolazov, A V; Telen'ga, O Yu
2011-03-31
We study the efficiency of Mueller matrix diagnostics of birefringence in biological tissue layers with different optical thickness by measuring a set of third- and fourth-order statistical moments, characterising the coordinate distributions of the matrix element Z{sub 44} at different points of the histological section. (laser applications and other problems in quantum electronics)
Probing intrinsic anisotropies of fluorescence: Mueller matrix approach.
Saha, Sudipta; Soni, Jalpa; Chandel, Shubham; Kumar, Uday; Ghosh, Nirmalya
2015-08-01
We demonstrate that information on “intrinsic” anisotropies of fluorescence originating from preferential orientation/organization of fluorophore molecules can be probed using a Mueller matrix of fluorescence. For this purpose, we have developed a simplified model to decouple and separately quantify the depolarization property and the intrinsic anisotropy properties of fluorescence from the experimentally measured fluorescence Mueller matrix. Unlike the traditionally defined fluorescence anisotropy parameter, the Mueller matrix-derived fluorescence polarization metrics, namely, fluorescence diattenuation and polarizance parameters, exclusively deal with the intrinsic anisotropies of fluorescence. The utility of these newly derived fluorescence polarimetry parameters is demonstrated on model systems exhibiting multiple polarimetry effects, and an interesting example is illustrated on biomedically important fluorophores, collagen. PMID:26301796
Near-infrared Mueller matrix imaging for colonic cancer detection
NASA Astrophysics Data System (ADS)
Wang, Jianfeng; Zheng, Wei; Lin, Kan; Huang, Zhiwei
2016-03-01
Mueller matrix imaging along with polar decomposition method was employed for the colonic cancer detection by polarized light in the near-infrared spectral range (700-1100 nm). A high-speed (<5s) Muller matrix imaging system with dual-rotating waveplates was developed. 16 (4 by 4) full Mueller matrices of the colonic tissues (i.e., normal and caner) were acquired. Polar decomposition was further implemented on the 16 images to derive the diattentuation, depolarization, and the retardance images. The decomposed images showed clear margin between the normal and cancerous colon tissue samples. The work shows the potential of near-infrared Mueller matrix imaging for the early diagnosis and detection of malignant lesions in the colon.
Expressions for parallel decomposition of the Mueller matrix.
Sheppard, Colin J R; Castello, Marco; Diaspro, Alberto
2016-04-01
It is useful to convert between the Mueller matrix and two different Hermitian matrices, representing an optical material or system. We introduce forms for the matrices for transforming between the column vector forms of these different matrices. A review of matrix algebra is presented. We find that there is no great advantage, from the point of view of matrix manipulation, in using quantum mechanics ordering rather than the optical ordering of the Stokes parameters, as has been claimed elsewhere. PMID:27140786
Clustering of Mueller matrix images for skeletonized structure detection
NASA Astrophysics Data System (ADS)
Collet, Christophe; Zallat, Jihad; Takakura, Yoshitate
2004-04-01
This paper extends and refines previous work on clustering of polarization-encoded images. The polarization-encoded images used in this work are considered as multidimensional parametric images where a clustering scheme based on Markovian Bayesian inference is applied. Hidden Markov Chains Model (HMCM) and Hidden Hierarchical Markovian Model (HHMM) show to handle effectively Mueller images and give very good results for biological tissues (vegetal leaves). Pretreatments attempting to reduce the image dimensionality based on the Principal Component Analysis (PCA) turns out to be useless for Mueller matrix images.
NASA Astrophysics Data System (ADS)
Ushenko, Yu. A.; Prysyazhnyuk, V. P.; Gavrylyak, M. S.; Gorsky, M. P.; Bachinskiy, V. T.; Vanchuliak, O. Ya.
2015-02-01
A new information optical technique of diagnostics of the structure of polycrystalline films of blood plasma is proposed. The model of Mueller-matrix description of mechanisms of optical anisotropy of such objects as optical activity, birefringence, as well as linear and circular dichroism is suggested. The ensemble of informationally topical azimuthally stable Mueller-matrix invariants is determined. Within the statistical analysis of such parameters distributions the objective criteria of differentiation of films of blood plasma taken from healthy and patients with liver cirrhosis were determined. From the point of view of probative medicine the operational characteristics (sensitivity, specificity and accuracy) of the information-optical method of Mueller-matrix mapping of polycrystalline films of blood plasma were found and its efficiency in diagnostics of liver cirrhosis was demonstrated. Prospects of application of the method in experimental medicine to differentiate postmortem changes of the myocardial tissue was examined.
Registration scheme suitable to Mueller matrix imaging for biomedical applications
NASA Astrophysics Data System (ADS)
Guyot, Steve; Anastasiadou, Makrina; Deléchelle, Eric; de Martino, Antonello
2007-06-01
Most Mueller matrix imaging polarimeters implement sequential acquisition of at least 16 raw images of the same object with different incident and detected light polarizations. When this technique is implemented in vivo, the unavoidable motions of the subject may shift and distort the raw images to an extent such that the final Mueller images cannot be extracted. We describe a registration algorithm which solves this problem for the typical conditions of in vivo imaging, e.g. with spatially inhomogeneous medium to strong depolarization. The algorithm, based on the so called “optical flow,” is validated experimentally by comparing the Mueller images of a pig skin sample taken in static and in dynamic conditions.
Bandwidth and Noise in Spatiotemporally Modulated Mueller Matrix Polarimeters
NASA Astrophysics Data System (ADS)
Vaughn, Israel Jacob
Polarimetric systems design has seen recent utilization of linear systems theory for system descriptions. Although noise optimal systems have been shown, bandwidth performance has not been addressed in depth generally and is particularly lacking for Mueller matrix (active) polarimetric systems. Bandwidth must be considered in a systematic way for remote sensing polarimetric systems design. The systematic approach facilitates both understanding of fundamental constraints and design of higher bandwidth polarimetric systems. Fundamental bandwidth constraints result in production of polarimetric "artifacts" due to channel crosstalk upon Mueller matrix reconstruction. This dissertation analyzes bandwidth trade-offs in spatio-temporal channeled Mueller matrix polarimetric systems. Bandwidth is directly related to the geometric positioning of channels in the Fourier (channel) space, however channel positioning for polarimetric systems is constrained both physically and by design parameters like domain separability. We present the physical channel constraints and the constraints imposed when the carriers are separable between space and time. Polarimetric systems are also constrained by noise performance, and there is a trade-off between noise performance and bandwidth. I develop cost functions which account for the trade-off between noise and bandwidth for spatio-temporal polarimetric systems. The cost functions allow a systems designer to jointly optimize systems with good bandwidth and noise performance. Optimization is implemented for a candidate spatio-temporal system design, and high temporal bandwidth systems resulting from the optimization are presented. Systematic errors which impact the bandwidth performance and mitigation strategies for these systematic errors are also presented. Finally, a portable imaging Mueller matrix system is built and analyzed based on the theoretical bandwidth analysis and system bandwidth optimization. Temporal bandwidth performance is
Mueller matrix polarimetry for differentiating characteristic features of cancerous tissues
NASA Astrophysics Data System (ADS)
Du, E.; He, Honghui; Zeng, Nan; Sun, Minghao; Guo, Yihong; Wu, Jian; Liu, Shaoxiong; Ma, Hui
2014-07-01
Polarization measurements allow one to enhance the imaging contrast of superficial tissues and obtain new polarization sensitive parameters for better descriptions of the micro- and macro- structural and optical properties of complex tissues. Since the majority of cancers originate in the epithelial layer, probing the morphological and pathological changes in the superficial tissues using an expended parameter set with improved contrast will assist in early clinical detection of cancers. We carry out Mueller matrix imaging on different cancerous tissues to look for cancer specific features. Using proper scattering models and Monte Carlo simulations, we examine the relationship between the microstructures of the samples, which are represented by the parameters of the scattering model and the characteristic features of the Mueller matrix. This study gives new clues on the contrast mechanisms of polarization sensitive measurements for different cancers and may provide new diagnostic techniques for clinical applications.
Feasibility of using Backscattered Mueller Matrix Images for Bioaerosol Detection
NASA Astrophysics Data System (ADS)
Li, Changhui; Kattawar, George W.
2006-03-01
It has been shown that by looking at the backscattered radiance from an object illuminated by a laser beam one could effectively distinguish different morphologies from one another. However, if one wants to obtain all the information possible from elastic scattering either from a single particle or an ensemble of particles then one must use the Mueller matrix which contains all the polarization and radiance information available. In this talk, we will show that if we take advantage of the polarization information of the object, many more images related to the overall morphology as well as the internal structure of the object can be obtained. We will present images of the complete Mueller matrix to show the sensitivity of its sixteen components to both external and internal particle properties. We will also show that by using only one or two elements of this matrix one might be able to distinguish bioaerosols such as anthrax from more benign aerosols. We also show that the backscattering Mueller images contain more information than the forward scattering ones.
Derivation of phase statistics from the Mueller matrix. [for radar polarimetry in remote sensing
NASA Technical Reports Server (NTRS)
Sarabandi, K.
1992-01-01
Experimental observations show a strong dependence of phase differences of scattering matrix elements on the physical parameters of random media. Here, the statistical behavior of the phase differences is studied for distributed targets. The pdfs of the phase differences are derived from the Mueller matrix of the target. In deriving the density functions, it is assumed that the real and imaginary parts of the copolarized and cross-polarized terms of the scattering matrix are jointly Gaussian and their covariance matrices are found in terms of the Mueller matrix elements. The functional forms of the copolarized and cross-polarized density functions are similar and are obtained independently. It is shown that the density function of the phase difference is completely determined in terms of only two parameters.
NASA Astrophysics Data System (ADS)
Zhang, Qixing; Qiao, Lifeng; Wang, Jinjun; Fang, Jun; Zhang, Yongming
2009-11-01
The polarization properties of scattered light are being exploited to determine the optical and physical information of small particles. In this paper, a scatterometer is developed for simultaneously measuring the Mueller scattering matrix elements as functions of the scattering angle. The scatterometer uses an electro-optic modulator to modulate the polarization state of the incident light, and uses two photomultipliers provided with different polarization optics to consist multichannel polarization-state detector. The instrument takes advantage of combination of the polarizationmodulation technique and division-of -amplitude photopolarimeter, which make for a compact design and substantial increase in measurement throughput and speed. The methods of calibration and alignment using the polarizationmodulated light are established, with which the instrument is calibrated precisely. The methods of data processing and error analysis of the measured Mueller matrix elements are developed. A hybrid experimental/theoretical approach to study the light scattering properties of smoke particles is also presented.
Mueller matrix three-dimensional directional imaging of collagen fibers.
Ellingsen, Pål Gunnar; Aas, Lars Martin Sandvik; Hagen, Vegard Stenhjem; Kumar, Rajesh; Lilledahl, Magnus Borstad; Kildemo, Morten
2014-02-01
A method for measuring three-dimensional (3-D) direction images of collagen fibers in biological tissue is presented. Images of the 3-D directions are derived from the measured transmission Mueller matrix images (MMIs), acquired at different incidence angles, by taking advantage of the form birefringence of the collagen fibers. The MMIs are decomposed using the recently developed differential decomposition, which is more suited to biological tissue samples than the common polar decomposition method. Validation of the 3-D direction images was performed by comparing them with images from second-harmonic generation microscopy. The comparison found a good agreement between the two methods. It is envisaged that 3-D directional imaging could become a useful tool for understanding the collagen framework for fibers smaller than the diffraction limit. PMID:24503637
Estimation of errors in partial Mueller matrix polarimeter calibration
NASA Astrophysics Data System (ADS)
Alenin, Andrey S.; Vaughn, Israel J.; Tyo, J. Scott
2016-05-01
While active polarimeters have been shown to be successful at improving discriminability of the targets of interest from their background in a wide range of applications, their use can be problematic for cases with strong bandwidth constraints. In order to limit the number of performed measurements, a number of successive studies have developed the concept of partial Mueller matrix polarimeters (pMMPs) into a competitive solution. Like all systems, pMMPs need to be calibrated in order to yield accurate results. In this treatment we provide a method by which to select a limited number of reference objects to calibrate a given pMMP design. To demonstrate the efficacy of the approach, we apply the method to a sample system and show that, depending on the kind of errors present within the system, a significantly reduced number of reference objects measurements will suffice for accurate characterization of the errors.
NASA Astrophysics Data System (ADS)
Ushenko, Yuriy A.; Koval, Galina D.; Ushenko, Alexander G.; Dubolazov, Olexander V.; Ushenko, Vladimir A.; Novakovskaia, Olga Yu.
2016-05-01
This research presents investigation results of the diagnostic efficiency of an azimuthally stable Mueller-matrix method of analysis of laser autofluorescence of polycrystalline films of dried uterine cavity peritoneal fluid. A model of the generalized optical anisotropy of films of dried peritoneal fluid is proposed in order to define the processes of laser autofluorescence. The influence of complex mechanisms of both phase (linear and circular birefringence) and amplitude (linear and circular dichroism) anisotropies is taken into consideration. The interconnections between the azimuthally stable Mueller-matrix elements characterizing laser autofluorescence and different mechanisms of optical anisotropy are determined. The statistical analysis of coordinate distributions of such Mueller-matrix rotation invariants is proposed. Thereupon the quantitative criteria (statistic moments of the first to the fourth order) of differentiation of polycrystalline films of dried peritoneal fluid, group 1 (healthy donors) and group 2 (uterus endometriosis patients), are determined.
NASA Astrophysics Data System (ADS)
Ushenko, Yuriy A.; Koval, Galina D.; Ushenko, Alexander G.; Dubolazov, Olexander V.; Ushenko, Vladimir A.; Novakovskaia, Olga Yu.
2016-07-01
This research presents investigation results of the diagnostic efficiency of an azimuthally stable Mueller-matrix method of analysis of laser autofluorescence of polycrystalline films of dried uterine cavity peritoneal fluid. A model of the generalized optical anisotropy of films of dried peritoneal fluid is proposed in order to define the processes of laser autofluorescence. The influence of complex mechanisms of both phase (linear and circular birefringence) and amplitude (linear and circular dichroism) anisotropies is taken into consideration. The interconnections between the azimuthally stable Mueller-matrix elements characterizing laser autofluorescence and different mechanisms of optical anisotropy are determined. The statistical analysis of coordinate distributions of such Mueller-matrix rotation invariants is proposed. Thereupon the quantitative criteria (statistic moments of the first to the fourth order) of differentiation of polycrystalline films of dried peritoneal fluid, group 1 (healthy donors) and group 2 (uterus endometriosis patients), are determined.
Experimental determinations of Mueller scattering matrices for nonspherical particles.
Perry, R J; Hunt, A J; Huffman, D R
1978-09-01
Measurements have been made to determine all sixteen elements of the Mueller scattering matrix for two types of nonspherical particles. Rounded particles of ammonium sulfate and nearly cubic particles of sodium chloride in the 0.1-1.0-mum size range have been prepared by nebulizing salt water solutions and drying the droplets. Scanning electron micrographs are used to determine size distributions used in Mie calculations of all matrix elements. The expected symmetry of the scattering matrices across the diagonal was confirmed, and the expected eight of the sixteen elements were found to be zero within measurement accuracy. The rounded particles were found accurately to obey Mie theory, while the cubic particles were poorly described by Mie theory for some matrix elements and some angles. Total intensity and linear polarization measurements are presented also for a series of increasing sizes of rounded and cubic particles. A discussion of the effect of nonsphericity on the various matrix elements is given, and applications of these results are given to analysis of particle properties in the laboratory, the clouds of Venus, reflection nebulae, the zodiacal light, and atmospheric particulates. PMID:20203854
Ushenko, Yu A; Sidor, M I; Bodnar, G B; Koval', G D
2014-08-31
We report the results of studying the polarisation manifestations of laser autofluorescence of optically anisotropic structures in biological tissues. A Mueller-matrix model is proposed to describe their complex anisotropy (linear and circular birefringence, linear and circular dichroism). The relationship is established between the mechanisms of optical anisotropy and polarisation manifestations of laser autofluorescence of histological sections of rectal tissue biopsy in different spectral regions. The ranges of changes in the statistical moments of the 1st-to-4th orders, which describe the distribution of the azimuth-invariant elements of Mueller matrices of rectal tissue autofluorescence, are found. Effectiveness of laser autofluorescence polarimetry is determined and the histological sections of biopsy of benign (polyp) and malignant (adenocarcinoma) tumours of the rectal wall are differentiated for the first time. (laser biophotonics)
NASA Astrophysics Data System (ADS)
Ushenko, Yu A.; Sidor, M. I.; Bodnar, G. B.; Koval', G. D.
2014-08-01
We report the results of studying the polarisation manifestations of laser autofluorescence of optically anisotropic structures in biological tissues. A Mueller-matrix model is proposed to describe their complex anisotropy (linear and circular birefringence, linear and circular dichroism). The relationship is established between the mechanisms of optical anisotropy and polarisation manifestations of laser autofluorescence of histological sections of rectal tissue biopsy in different spectral regions. The ranges of changes in the statistical moments of the 1st-to-4th orders, which describe the distribution of the azimuth-invariant elements of Mueller matrices of rectal tissue autofluorescence, are found. Effectiveness of laser autofluorescence polarimetry is determined and the histological sections of biopsy of benign (polyp) and malignant (adenocarcinoma) tumours of the rectal wall are differentiated for the first time.
NASA Astrophysics Data System (ADS)
Ushenko, V. A.; Sidor, M. I.; Marchuk, Yu F.; Pashkovskaya, N. V.; Andreichuk, D. R.
2015-03-01
We report a model of Mueller-matrix description of optical anisotropy of protein networks in biological tissues with allowance for the linear birefringence and dichroism. The model is used to construct the reconstruction algorithms of coordinate distributions of phase shifts and the linear dichroism coefficient. In the statistical analysis of such distributions, we have found the objective criteria of differentiation between benign and malignant tissues of the female reproductive system. From the standpoint of evidence-based medicine, we have determined the operating characteristics (sensitivity, specificity and accuracy) of the Mueller-matrix reconstruction method of optical anisotropy parameters and demonstrated its effectiveness in the differentiation of benign and malignant tumours.
Virtues of Mueller matrix detection of objects embedded in random media
NASA Astrophysics Data System (ADS)
Kattawar, George W.
2000-04-01
We will present a brief introduction to Mueller matrix imaging from cradle to adolescence and then show how it can be effectively used for detection of objects embedded in a highly scattering medium when ordinary radiance imaging might fail. We will show which elements and combination of elements are important for gaining the highest contrast against the background continuum. The mapping of certain combinations of Mueller matrix elements into an equivalent human visual system will also be discussed.
Virtues of Mueller matrix detection of objects embedded in random media
NASA Astrophysics Data System (ADS)
Kattawar, George W.
2000-06-01
We will present a brief introduction to Mueller matrix imaging (MMI) from cradle to adolescence and then show how it can be effectively used for detection of objects embedded in a highly scattering medium when ordinary radiance imaging might fail. We will show which elements and combination of elements are important for gaining the highest contrast against the background continuum. The mapping of certain combinations of Mueller matrix elements into an equivalent human visual system will also be discussed.
Stanislavchuk, T. N.; Kang, T. D.; Rogers, P. D.; Standard, E. C.; Basistyy, R.; Nita, G.; Zhou, T.; Sirenko, A. A.; Kotelyanskii, A. M.; Carr, G. L.; Kotelyanskii, M.
2013-02-15
We developed far-IR spectroscopic ellipsometer at the U4IR beamline of the National Synchrotron Light Source in Brookhaven National Laboratory. This ellipsometer is able to measure both, rotating analyzer and full-Mueller matrix spectra using rotating retarders, and wire-grid linear polarizers. We utilize exceptional brightness of synchrotron radiation in the broad spectral range between about 20 and 4000 cm{sup -1}. Fourier-transform infrared (FT-IR) spectrometer is used for multi-wavelength data acquisition. The sample stage has temperature variation between 4.2 and 450 K, wide range of {theta}-2{theta} angular rotation, {chi} tilt angle adjustment, and X-Y-Z translation. A LabVIEW-based software controls the motors, sample temperature, and FT-IR spectrometer and also allows to run fully automated experiments with pre-programmed measurement schedules. Data analysis is based on Berreman's 4 Multiplication-Sign 4 propagation matrix formalism to calculate the Mueller matrix parameters of anisotropic samples with magnetic permeability {mu}{ne} 1. A nonlinear regression of the rotating analyzer ellipsometry and/or Mueller matrix (MM) spectra, which are usually acquired at variable angles of incidence and sample crystallographic orientations, allows extraction of dielectric constant and magnetic permeability tensors for bulk and thin-film samples. Applications of this ellipsometer setup for multiferroic and ferrimagnetic materials with {mu}{ne} 1 are illustrated with experimental results and simulations for TbMnO{sub 3} and Dy{sub 3}Fe{sub 5}O{sub 12} single crystals. We demonstrate how magnetic and electric dipoles, such as magnons and phonons, can be distinguished from a single MM measurement without adducing any modeling arguments. The parameters of magnetoelectric components of electromagnon excitations are determined using MM spectra of TbMnO{sub 3}.
Wang, Ye; He, Honghui; Chang, Jintao; Zeng, Nan; Liu, Shaoxiong; Li, Migao; Ma, Hui
2015-12-01
Polarized light imaging can provide rich microstructural information of samples, and has been applied to the detections of various abnormal tissues. In this paper, we report a polarized light microscope based on Mueller matrix imaging by adding the polarization state generator and analyzer (PSG and PSA) to a commercial transmission optical microscope. The maximum errors for the absolute values of Mueller matrix elements are reduced to 0.01 after calibration. This Mueller matrix microscope has been used to examine human cervical and liver cancerous tissues with fibrosis. Images of the transformed Mueller matrix parameters provide quantitative assessment on the characteristic features of the pathological tissues. Contrast mechanism of the experimental results are backed up by Monte Carlo simulations based on the sphere-cylinder birefringence model, which reveal the relationship between the pathological features in the cancerous tissues at the cellular level and the polarization parameters. Both the experimental and simulated data indicate that the microscopic transformed Mueller matrix parameters can distinguish the breaking down of birefringent normal tissues for cervical cancer, or the formation of birefringent surrounding structures accompanying the inflammatory reaction for liver cancer. With its simple structure, fast measurement and high precision, polarized light microscope based on Mueller matrix shows a good diagnosis application prospect. PMID:26280279
NASA Astrophysics Data System (ADS)
Ushenko, V. O.
2012-10-01
This work presents the possibility of phase tomography of optical-anisotropic multilayered biological structures. The superposition approach of polarization manifestation of optical anisotropy of polycrystalline protein networks is proposed. The optical model of polycrystalline networks of biological tissues protein fibrils is presented. The technique of phase tomography based on determining the coordinate distributions of Mueller-matrix elements of biological tissues is suggested. The results of investigating the interrelation between the values of statistical (statistical moments of the 1st- 4th order) parameters are presented. They characterize the coordinate distributions of phase shifts of biological tissue layer of different optical thickness and the degree of muscle dystrophy.
NASA Astrophysics Data System (ADS)
Germer, Thomas A.; Patrick, Heather J.
2011-10-01
We measure the Mueller matrix bidirectional reflectance distribution function (BRDF) of pressed and sintered powdered polytetrafluoroethylene (PTFE) reflectance standards for an incident angle of 75°. Rotationallyaveraged Mueller matrices from the materials showed a small asymmetry M12 ≠ M21 and M34 ≠ -M43 in the in-plane geometry. This asymmetry, however, followed Helmholtz reciprocity rules. A significant anisotropy was observed in the sintered samples, which was manifested as non-zero off-block diagonal elements that depended upon rotation of the samples. Modeling using a Mueller matrix extension to the radiative transfer equation was performed. While there was not quantitative agreement, some aspects of the data were observed, including the asymmetry. Availability of an improved Mueller matrix phase function should improve the quality of the model-experiment agreement.
GDx-MM: An imaging Mueller matrix retinal polarimeter
NASA Astrophysics Data System (ADS)
Twietmeyer, Karen Marie
2007-12-01
Retinal diseases are a major cause of blindness worldwide. Although widely studied, disease mechanisms are not completely understood, and diagnostic tests may not detect disease early enough for timely intervention. The goal of this research is to contribute to research for more sensitive diagnostic tests that might use the interaction of polarized light with retinal tissue to detect subtle changes in the microstructure. This dissertation describes the GDx-MM, a scanning laser polarimeter which measures a complete 16-element Mueller matrix image of the retina. This full polarization signature may provide new comparative information on the structure of healthy and diseased retinal tissue by highlighting depolarizing structures as well as structures with varying magnitudes and orientations of retardance and diattenuation. The three major components of this dissertation are: (1) Development of methods for polarimeter optimization and error analysis; (2) Design, optimization, assembly, calibration, and validation of the GDx-MM polarimeter; and (3) Analysis of data for several human subjects. Development involved modifications to a Laser Diagnostics GDx, a commercially available scanning laser ophthalmoscope with incomplete polarization capability. Modifications included installation of polarization components, development of a data acquisition system, and implementation of algorithms to convert raw data into polarization parameter images. Optimization involved visualization of polarimeter state trajectories on the Poincare sphere and a condition number analysis of the instrument matrix. Retinal images are collected non-invasively at 20 mum resolution over a 15° visual field in four seconds. Validation of the polarimeter demonstrates a polarimetric measurement accuracy of approximately +/- 5%. Retinal polarization data was collected on normal human subjects at the University of Arizona and at Indiana University School of Optometry. Calculated polarization parameter
Sun, Minghao; He, Honghui; Zeng, Nan; Du, E; Guo, Yihong; Liu, Shaoxiong; Wu, Jian; He, Yonghong; Ma, Hui
2014-01-01
Mueller matrices can be used as a powerful tool to probe qualitatively the microstructures of biological tissues. Certain transformation processes can provide new sets of parameters which are functions of the Mueller matrix elements but represent more explicitly the characteristic features of the sample. In this paper, we take the backscattering Mueller matrices of a group of tissues with distinctive structural properties. Using both experiments and Monte Carlo simulations, we demonstrate qualitatively the characteristic features of Mueller matrices corresponding to different structural and optical properties. We also calculate two sets of transformed polarization parameters using the Mueller matrix transformation (MMT) and Mueller matrix polar decomposition (MMPD) techniques. We demonstrate that the new parameters can separate the effects due to sample orientation and present quantitatively certain characteristic features of these tissues. Finally, we apply the transformed polarization parameters to the unstained human cervix cancerous tissues. Preliminary results show that the transformed polarization parameters can provide characteristic information to distinguish the cancerous and healthy tissues. PMID:25574434
NASA Astrophysics Data System (ADS)
Fathima, Adeeba; Sujatha, N.
2016-04-01
Quantitative Mueller polarimetry optically characterizes a medium and is reflected upon by the ultrastructural changes in it. Tissue morphology changes occur during advent of diseases like cancer neoplasia. This alters the Mueller matrix characterizing the tissue as an optical element. The nucleus size undergoes an approximate doubling during the development of cancer. Cell crowding during cancer increases the number density of the nuclei per unit volume. Modeling the cell nuclei as main scattering centers, a systematic computational study on how Mueller matrix elements vary for an increase in scatterer size and number density is performed. Simulation on polarized light transport of wavelength 633nm through a slab of size 3 mm comprising of spherical scatterers in a medium of refractive index 1.33 is carried out. Light propagation is modeled using Monte Carlo method and meridian plane method is adopted for tracking the polarization state change. The stokes vector of the outgoing light is tracked to calculate the Mueller matrix images of the light backscattered from the slab. The Mueller matrix elements as well as depolarization factors are derived. The depolarization index increases with scatterer size. Along with nucleus size, change in the cell number density is also expected in the different stages of the cancer growth. Volume fraction of the scatterers in medium is varied as an indicator of this number density change. Behavior of Mueller matrix with respect to change in scattering coefficient due to variation in scatterer size and volume fraction is studied. It is observed that the depolarization index derived from Mueller matrix has selective discrimination towards the change in scattering coefficient caused due to size change and volume fraction change respectively.
Development and calibration of an automated Mueller matrix polarization imaging system.
Baba, Justin S; Chung, Jung-Rae; DeLaughter, Aimee H; Cameron, Brent D; Coté, Gerard L
2002-07-01
The high fatality rate associated with the late detection of skin cancer makes early detection crucial in preventing death. The current method for determining if a skin lesion is suspect to cancer is initially based on the patient's and physician's subjective observation of the skin lesion. Physicians use a set of parameters called the ABCD (asymmetry, border, color, diameter) rule to help facilitate diagnosis of potential cancerous lesions. Lesions that are suspicious then require a biopsy, which is a painful, invasive, and a time-consuming procedure. In an attempt to reduce the aforementioned undesirable elements currently associated with skin cancer diagnosis, a novel optical polarization-imaging system is described that has the potential to noninvasively detect cancerous lesions. The described system generates the full 16-element Mueller matrix in less than 70 s. The operation of the system was tested in transmission, specular reflection, and diffuse reflectance modes, using known samples, such as a horizontal linear polarizer, a mirror, and a diffuser plate. In addition, it was also used to image a benign lesion on a human subject. The results of the known samples are in good agreement with their theoretical values with an average accuracy of 97.96% and a standard deviation of 0.0084, using 16 polarization images. The system accuracy was further increased to 99.44% with a standard deviation of 0.005, when 36 images were used to generate the Mueller matrix. PMID:12175283
The estimation of surface roughness with the utilization of Mueller matrix
NASA Astrophysics Data System (ADS)
Yang, Wei; Gu, Guohua; Zhou, Xiaojun; Xu, Fuyuan; Ren, Kan
2016-05-01
Roughness is an important parameter to describe the microtopography of target surface. In the field of roughness detection, constraints on traditional methods are significant. Meanwhile, polarization imaging technology is gradually mature in recent years. In this paper, a method of roughness estimation with Mueller matrix is presented. Battery of lenses with fixed orientation have been introduced to produce a facula on the measured surface. Polarized information of each pixel can be obtained with the lenses of known position. According to the polarized information and Lambertian model, Stocks vector, Mueller matrix, and reflected Mueller matrix of each pixel can be acquired. Therefore, the roughness information of target surface can be obtained according to the relationship between roughness information and elements of matrix. Experimental results show that with the proposed method, efficiency of roughness detection can be improved without precision deducing. It can lay a foundation for extending the application of roughness into the field of object identification.
Reducing the orientation influence of Mueller matrix measurements for anisotropic scattering media
NASA Astrophysics Data System (ADS)
Sun, Minghao; He, Honghui; Zeng, Nan; Du, E.; He, Yonghong; Ma, Hui
2014-09-01
Mueller matrix polarimetry techniques contain rich micro-structural information of samples, such as the sizes and refractive indices of scatterers. Recently, Mueller matrix imaging methods have shown great potentials as powerful tools for biomedical diagnosis. However, the orientations of anisotropic fibrous structures in tissues have prominent influence on Mueller matrix measurements, resulting in difficulties for extracting micro-structural information effectively. In this paper, we apply the backscattering Mueller matrix imaging technique to biological samples with different microstructures, such as chicken heart muscle, bovine skeletal muscle, porcine liver and fat tissues. Experimental results show that the directions of the muscle fibers have prominent influence on the Mueller matrix elements. In order to reduce the orientation influence, we adopt the rotation-independent MMT and RLPI parameters, which were proposed in our previous studies, to the tissue samples. Preliminary results in this paper show that the orientation-independent parameters and their statistic features are helpful for analyzing the tissues to obtain their micro-structural properties. Since the micro-structure variations are often related to the pathological changes, the method can be applied to microscope imaging techniques and used to detect abnormal tissues such as cancer and other lesions for diagnosis purposes.
Study on the validity of 3 × 3 Mueller matrix decomposition.
Wang, Yunfei; Guo, Yihong; Zeng, Nan; Chen, Dongsheng; He, Honghui; Ma, Hui
2015-06-01
Using Monte Carlo simulations based on previously developed scattering models consisting of spherical and cylindrical scatterers imbedded in birefringent interstitial medium, we compare the polarization parameters extracted from the 3×3 and 4×4 Mueller matrix decomposition methods in forward and backward scattering directions. The results show that the parameters derived from the 3×3 Mueller matrix decomposition are usually not the same as those from the 4×4 Mueller matrix decomposition but display similar qualitative relations to changes in the microstructure of the sample, such as the density, size, and orientation distributions of the scatterers, and birefringence of the interstitial medium. The simulations are backed up by experiments when suitable samples are available. PMID:26039383
He, Chao; He, Honghui; Li, Xianpeng; Chang, Jintao; Wang, Ye; Liu, Shaoxiong; Zeng, Nan; He, Yonghong; Ma, Hui
2015-10-01
We present a new way to extract characteristic features of the Mueller matrix images based on their frequency distributions and the central moments. We take the backscattering Mueller matrices of tissues with distinctive microstructures, and then analyze the frequency distribution histograms (FDHs) of all the matrix elements. For anisotropic skeletal muscle and isotropic liver tissues, we find that the shapes of the FDHs and their central moment parameters, i.e., variance, skewness, and kurtosis, are not sensitive to the sample orientation. Comparisons among different tissues further indicate that the frequency distributions of Mueller matrix elements and their corresponding central moments can be used as indicators for the characteristic microstructural features of tissues. A preliminary application to human cervical cancerous tissues shows that the distribution curves and central moment parameters may have the potential to give quantitative criteria for cancerous tissues detections. PMID:26502227
NASA Astrophysics Data System (ADS)
He, Chao; He, Honghui; Li, Xianpeng; Chang, Jintao; Wang, Ye; Liu, Shaoxiong; Zeng, Nan; He, Yonghong; Ma, Hui
2015-10-01
We present a new way to extract characteristic features of the Mueller matrix images based on their frequency distributions and the central moments. We take the backscattering Mueller matrices of tissues with distinctive microstructures, and then analyze the frequency distribution histograms (FDHs) of all the matrix elements. For anisotropic skeletal muscle and isotropic liver tissues, we find that the shapes of the FDHs and their central moment parameters, i.e., variance, skewness, and kurtosis, are not sensitive to the sample orientation. Comparisons among different tissues further indicate that the frequency distributions of Mueller matrix elements and their corresponding central moments can be used as indicators for the characteristic microstructural features of tissues. A preliminary application to human cervical cancerous tissues shows that the distribution curves and central moment parameters may have the potential to give quantitative criteria for cancerous tissues detections.
NASA Astrophysics Data System (ADS)
Ellingsen, Pa˚L. Gunnar; Lilledahl, Magnus Borstad; Aas, Lars Martin Sandvik; Davies, Catharina De Lange; Kildemo, Morten
2011-11-01
The collagen meshwork in articular cartilage of chicken knee is characterized using Mueller matrix imaging and multiphoton microscopy. Direction and degree of dispersion of the collagen fibers in the superficial layer are found using a Fourier transform image-analysis technique of the second-harmonic generated image. Mueller matrix images are used to acquire structural data from the intermediate layer of articular cartilage where the collagen fibers are too small to be resolved by optical microscopy, providing a powerful multimodal measurement technique. Furthermore, we show that Mueller matrix imaging provides more information about the tissue compared to standard polarization microscopy. The combination of these techniques can find use in improved diagnosis of diseases in articular cartilage, improved histopathology, and additional information for accurate biomechanical modeling of cartilage.
Diagnosis potential of near infrared Mueller Matrix imaging for colonic adenocarcinoma
NASA Astrophysics Data System (ADS)
Wang, Jianfeng; Zheng, Wei; Lin, Kan; Huang, Zhiwei
2016-03-01
Mueller matrix imaging along with polar decomposition method was employed for the colonic adenocarcinoma detection by polarized light in the near-infrared spectral range (700-1100 nm). A high-speed (<5s) Muller matrix imaging system with dual-rotating waveplates was developed. 16 (4 by 4) full Mueller matrices of the colonic tissues (i.e., normal and caner) were acquired. Polar decomposition was further implemented on the 16 images to derive the diattentuation, depolarization, and the retardance images. The decomposed images showed clear margin between the normal and adenocarcinomaous colon tissue samples. The work shows the potential of near-infrared Mueller matrix imaging for the early diagnosis and detection of malignant lesions in the colon.
Second-order systematic errors in Mueller matrix dual rotating compensator ellipsometry.
Broch, Laurent; En Naciri, Aotmane; Johann, Luc
2010-06-10
We investigate the systematic errors at the second order for a Mueller matrix ellipsometer in the dual rotating compensator configuration. Starting from a general formalism, we derive explicit second-order errors in the Mueller matrix coefficients of a given sample. We present the errors caused by the azimuthal inaccuracy of the optical components and their influences on the measurements. We demonstrate that the methods based on four-zone or two-zone averaging measurement are effective to vanish the errors due to the compensators. For the other elements, it is shown that the systematic errors at the second order can be canceled only for some coefficients of the Mueller matrix. The calibration step for the analyzer and the polarizer is developed. This important step is necessary to avoid the azimuthal inaccuracy in such elements. Numerical simulations and experimental measurements are presented and discussed. PMID:20539341
NASA Astrophysics Data System (ADS)
Ushenko, V. A.; Gavrylyak, M. S.
2013-09-01
The optical model of polycrystalline networks of blood plasma proteins is suggested. The results of investigating the interrelation between the values of correlation (correlation area, asymmetry coefficient and autocorrelation function excess) and fractal (dispersion of logarithmic dependencies of power spectra) parameters are presented. They characterize the coordinate distributions of Mueller-matrixes elements of blood plasma smears and pathological state of the organism. The diagnostic criteria of breast cancer nascency are determined.
Development of a spectroscopic Mueller matrix imaging ellipsometer for nanostructure metrology.
Chen, Xiuguo; Du, Weichao; Yuan, Kui; Chen, Jun; Jiang, Hao; Zhang, Chuanwei; Liu, Shiyuan
2016-05-01
In this paper, we describe the development of a spectroscopic Mueller matrix imaging ellipsometer (MMIE), which combines the great power of Mueller matrix ellipsometry with the high spatial resolution of optical microscopy. A dual rotating-compensator configuration is adopted to collect the full 4 × 4 imaging Mueller matrix in a single measurement. The light wavelengths are scanned in the range of 400-700 nm by a monochromator. The instrument has measurement accuracy and precision better than 0.01 for all the Mueller matrix elements in both the whole image and the whole spectral range. The instrument was then applied for the measurement of nanostructures combined with an inverse diffraction problem solving technique. The experiment performed on a photoresist grating sample has demonstrated the great potential of MMIE for accurate grating reconstruction from spectral data collected by a single pixel of the camera and for efficient quantification of geometrical profile of the grating structure over a large area with pixel resolution. It is expected that MMIE will be a powerful tool for nanostructure metrology in future high-volume nanomanufacturing. PMID:27250435
NASA Astrophysics Data System (ADS)
Gu, Honggang; Zhang, Chuanwei; Jiang, Hao; Chen, Xiuguo; Li, Weiqi; Liu, Shiyuan
2015-06-01
Dual-rotating compensator Mueller matrix ellipsometer (DRC-MME) has been designed and applied as a powerful tool for the characterization of thin films and nanostructures. The compensators are indispensable optical components and their performances affect the precision and accuracy of DRC-MME significantly. Biplates made of birefringent crystals are commonly used compensators in the DRC-MME, and their optical axes invariably have tilt errors due to imperfect fabrication and improper installation in practice. The axis tilt error between the rotation axis and the light beam will lead to a continuous vibration in the retardance of the rotating biplate, which further results in significant measurement errors in the Mueller matrix. In this paper, we propose a simple but valid formula for the retardance calculation under arbitrary tilt angle and azimuth angle to analyze the axis tilt errors in biplates. We further study the relations between the measurement errors in the Mueller matrix and the biplate axis tilt through simulations and experiments. We find that the axis tilt errors mainly affect the cross-talk from linear polarization to circular polarization and vice versa. In addition, the measurement errors in Mueller matrix increase acceleratively with the axis tilt errors in biplates, and the optimal retardance for reducing these errors is about 80°. This work can be expected to provide some guidences for the selection, installation and commissioning of the biplate compensator in DRC-MME design.
NASA Astrophysics Data System (ADS)
Zabolotna, Natalia I.; Pavlov, Sergii V.; Radchenko, Kostiantyn O.; Stasenko, Vladyslav A.; Wójcik, Waldemar; Kussambayeva, Nazym
2015-12-01
The application field of using the Mueller-matrix polarizing reconstruction system of phase structure of biological layer for optical-anisotropic parameters differentiation of histological sections of healthy and rat's liver with hepatitis were investigated. Comparison of system informativity with known systems on indexes of sensitivity, specificity and balanced accuracy were performed.
General formalism for partial spatial coherence in reflection Mueller matrix polarimetry.
Ossikovski, Razvigor; Hingerl, Kurt
2016-09-01
Starting from the first principles, we derive the expressions governing partially coherent Mueller matrix reflection polarimetry on spatially inhomogeneous samples. These are reported both in their general form and in the practically important specific form for two juxtaposed media. PMID:27607968
Huang, Chih-Ling; Chuang, Chin-Ho; Lo, Yu-Lung
2013-07-25
Chitosan has excellent biodegradable, biocompatible and bio-absorbable properties and has been found increasing use in the biomedical field in recent decades. The linear birefringence (LB), linear diattenuation (LD), circular birefringence (CB), circular diattenuation (CD), and depolarization properties of chitosan hydrogel films crosslinked in citrate acid buffer solution (CBS) are extracted using an analytical Mueller matrix method. It is shown that the optical phase retardance property of the hydrogel films provides a reliable indication of both the chitosan concentration of the film and the pH value of the CBS crosslinking environment. In addition, chitosan hydrogel suspension with low-concentration crosslinked in CBS environments with various pH values are studied by the speckle contrast of the projected images obtained when illuminating the suspension with a scanned laser pico-projector (SLPP). It is found that for the samples crosslinked in an acidic environment, the speckle contrast decreases with an increasing pH value. By contrast, for the samples crosslinked in an alkaline CBS environment, the speckle contrast increases as the pH value increases. It is concluded that both the phase retardance and the speckle contrast enable the pH value of the CBS crosslinking solution to be reliably determined. However, of the two methods, the SLPP method yields improved measurement sensitivity. Overall, the results presented in this study show that the analytical Mueller matrix method and SLPP method provide an effective means of characterizing the optical properties, concentration and crosslinking environment of chitosan hydrogel films and suspensions. PMID:23768591
Structure of polarimetric purity of a Mueller matrix and sources of depolarization
NASA Astrophysics Data System (ADS)
Gil, José J.
2016-06-01
The depolarization properties of a medium with associated Mueller matrix M are characterized through two complementary sets of parameters, namely 1) the three indices of polarimetric purity (IPP), which are directly linked to the relative weights of the spectral components of M and provide complete information on the structure of polarimetric randomness, but are insensitive to the specific polarimetric behaviors that introduce the lack of randomness, and 2) the set of three components of purity (CP), constituted by the polarizance, the diattenuation and the degree of spherical purity. The relations between these sets of physical invariant quantities are studied by means of their representation into a common purity figure. Furthermore, the polarimetric properties of a general Mueller matrix M are parameterized in terms of sixteen meaningful quantities, three of them being the IPP, which together with the CP provide complete information on the integral depolarization properties of the medium.
Liao, Chia-Chi; Lo, Yu-Lung
2015-04-20
A method is proposed for extracting the linear birefringence (LB) and linear dichroism (LD) properties of an anisotropic optical sample using reflection-mode optical coherence tomography (OCT) and a hybrid Mueller matrix formalism. To ensure the accuracy of the extracted parameter values, a method is proposed for calibrating and compensating the polarization distortion effect induced by the beam splitters in the OCT system using a composite quarter-waveplate / half-waveplate / quarter-waveplate structure. The validity of the proposed method is confirmed by extracting the LB and LD properties of a quarter-wave plate and a defective polarizer. To the best of the authors' knowledge, the method proposed in this study represents the first reported attempt to utilize an inverse Mueller matrix formalism and a reflection-mode OCT structure to extract the LB and LD parameters of optically anisotropic samples. PMID:25969104
Alali, Sanaz; Gribble, Adam; Vitkin, I Alex
2016-03-01
A new polarimetry method is demonstrated to image the entire Mueller matrix of a turbid sample using four photoelastic modulators (PEMs) and a charge coupled device (CCD) camera, with no moving parts. Accurate wide-field imaging is enabled with a field-programmable gate array (FPGA) optical gating technique and an evolutionary algorithm (EA) that optimizes imaging times. This technique accurately and rapidly measured the Mueller matrices of air, polarization elements, and turbid phantoms. The system should prove advantageous for Mueller matrix analysis of turbid samples (e.g., biological tissues) over large fields of view, in less than a second. PMID:26974110
Mapping local anisotropy axis for scattering media using backscattering Mueller matrix imaging
NASA Astrophysics Data System (ADS)
He, Honghui; Sun, Minghao; Zeng, Nan; Du, E.; Guo, Yihong; He, Yonghong; Ma, Hui
2014-03-01
Mueller matrix imaging techniques can be used to detect the micro-structure variations of superficial biological tissues, including the sizes and shapes of cells, the structures in cells, and the densities of the organelles. Many tissues contain anisotropic fibrous micro-structures, such as collagen fibers, elastin fibers, and muscle fibers. Changes of these fibrous structures are potentially good indicators for some pathological variations. In this paper, we propose a quantitative analysis technique based on Mueller matrix for mapping local anisotropy axis of scattering media. By conducting both experiments on silk sample and Monte Carlo simulation based on the sphere-cylinder scattering model (SCSM), we extract anisotropy axis parameters from different backscattering Mueller matrix elements. Moreover, we testify the possible applications of these parameters for biological tissues. The preliminary experimental results of human cancerous samples show that, these parameters are capable to map the local axis of fibers. Since many pathological changes including early stage cancers affect the well aligned structures for tissues, the experimental results indicate that these parameters can be used as potential tools in clinical applications for biomedical diagnosis purposes.
Narayanan, Amal; Chandel, Shubham; Ghosh, Nirmalya; De, Priyadarsi
2015-09-15
Probing volume phase transition behavior of superdiluted polymer solutions both micro- and macroscopically still persists as an outstanding challenge. In this regard, we have explored 4 × 4 spectral Mueller matrix measurement and its inverse analysis for excavating the microarchitectural facts about stimuli responsiveness of "smart" polymers. Phase separation behavior of thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) and pH responsive poly(N,N-(dimethylamino)ethyl methacrylate) (PDMAEMA) and their copolymers were analyzed in terms of Mueller matrix derived polarization parameters, namely, depolarization (Δ), diattenuation (d), and linear retardance (δ). The Δ, d, and δ parameters provided useful information on both macro- and microstructural alterations during the phase separation. Additionally, the two step action ((i) breakage of polymer-water hydrogen bonding and (ii) polymer-polymer aggregation) at the molecular microenvironment during the cloud point generation was successfully probed via these parameters. It is demonstrated that, in comparison to the present techniques available for assessing the hydrophobic-hydrophilic switch over of simple stimuli-responsive polymers, Mueller matrix polarimetry offers an important advantage requiring a few hundred times dilute polymer solution (0.01 mg/mL, 1.1-1.4 μM) at a low-volume format. PMID:26287499
Extraction of optical rotation from chiral turbid medium with Mueller matrix decomposition
NASA Astrophysics Data System (ADS)
Ma, Yongchao; Sun, Ping; Liu, Wei; Yang, Qinghua; Jia, Qiongzhen
2013-09-01
Optical activity is the intrinsic property of chiral molecules. Investigation of optical activity is particularly important for diagnosing and monitoring blood glucose of diabetes. The experimental setup to obtain the Mueller matrix in the forward detection geometry is used. Three kinds of chiral turbid media are selected to be studied in the experiment. The first is the tissue phantom composed of an aqueous solution of glucose mixed with PST sphere suspensions. The second is the actual chicken blood mixed with glucose solution. The last is the vein blood plasma of diabetic patients. The results presented in this study demonstrate that the method of Mueller matrix decomposition can be used to quantitatively extract the optical rotation of chiral molecule in turbid medium. The rotation angle has linear relationship with the concentration of the optical activity material when the scattering coefficient of the turbid medium maintains unchanged. The scattering effect enlarges the rotation angle. Furthermore, optical rotation abides by the Drude's dispersion equation. The decomposition method also has been found useful applications in quantifying the optical rotations due to blood glucose in diabetic patients. The diabetic severity status can be distinguished with the rotation angle of glucose by using the decomposition method and also are in accordance with the clinical diagnosis. Thus, the method of Mueller matrix decomposition has promising applications in diabetic diagnosis.
Wang, Ye; He, Honghui; Chang, Jintao; He, Chao; Liu, Shaoxiong; Li, Migao; Zeng, Nan; Wu, Jian; Ma, Hui
2016-07-01
Today the increasing cancer incidence rate is becoming one of the biggest threats to human health.Among all types of cancers, liver cancer ranks in the top five in both frequency and mortality rate all over the world. During the development of liver cancer, fibrosis often evolves as part of a healing process in response to liver damage, resulting in cirrhosis of liver tissues. In a previous study, we applied the Mueller matrix microscope to pathological liver tissue samples and found that both the Mueller matrix polar decomposition (MMPD) and Mueller matrix transformation (MMT) parameters are closely related to the fibrous microstructures. In this paper,we take this one step further to quantitatively facilitate the fibrosis detections and scorings of pathological liver tissue samples in different stages from cirrhosis to cancer using the Mueller matrix microscope. The experimental results of MMPD and MMT parameters for the fibrotic liver tissue samples in different stages are measured and analyzed. We also conduct Monte Carlo simulations based on the sphere birefringence model to examine in detail the influence of structural changes in different fibrosis stages on the imaging parameters. Both the experimental and simulated results indicate that the polarized light microscope and transformed Mueller matrix parameter scan provide additional quantitative information helpful for fibrosis detections and scorings of liver cirrhosis and cancers. Therefore, the polarized light microscope and transformed Mueller matrix parameters have a good application prospect in liver cancer diagnosis. PMID:27087003
NASA Astrophysics Data System (ADS)
Wang, Ye; He, Honghui; Chang, Jintao; He, Chao; Liu, Shaoxiong; Li, Migao; Zeng, Nan; Wu, Jian; Ma, Hui
2016-07-01
Today the increasing cancer incidence rate is becoming one of the biggest threats to human health. Among all types of cancers, liver cancer ranks in the top five in both frequency and mortality rate all over the world. During the development of liver cancer, fibrosis often evolves as part of a healing process in response to liver damage, resulting in cirrhosis of liver tissues. In a previous study, we applied the Mueller matrix microscope to pathological liver tissue samples and found that both the Mueller matrix polar decomposition (MMPD) and Mueller matrix transformation (MMT) parameters are closely related to the fibrous microstructures. In this paper, we take this one step further to quantitatively facilitate the fibrosis detections and scorings of pathological liver tissue samples in different stages from cirrhosis to cancer using the Mueller matrix microscope. The experimental results of MMPD and MMT parameters for the fibrotic liver tissue samples in different stages are measured and analyzed. We also conduct Monte Carlo simulations based on the sphere birefringence model to examine in detail the influence of structural changes in different fibrosis stages on the imaging parameters. Both the experimental and simulated results indicate that the polarized light microscope and transformed Mueller matrix parameters can provide additional quantitative information helpful for fibrosis detections and scorings of liver cirrhosis and cancers. Therefore, the polarized light microscope and transformed Mueller matrix parameters have a good application prospect in liver cancer diagnosis.
NASA Astrophysics Data System (ADS)
Ushenko, V. O.; Prysyazhnyuk, V. P.; Dubolazov, O. V.; Savich, O. V.; Novakovska, O. Y.; Olar, O. V.
2015-09-01
The model of Mueller-matrix description of mechanisms of optical anisotropy typical for polycrystalline films of bile - optical activity, birefringence, as well as linear and circular dichroism - is suggested. Within the statistical analysis of such distributions the objective criteria of differentiation of films of bile from the dead you people different times were determined. From the point of view of probative medicine the operational characteristics (sensitivity, specificity and accuracy) of the method of Muellermatrix reconstruction of optical anisotropy parameters were found and its efficiency in another task - diagnostics of diseases of internal organs of rats was demonstrated.
Mueller matrix imaging of targets under an air-sea interface.
Zhai, Peng-Wang; Kattawar, George W; Yang, Ping
2009-01-10
The Mueller matrix imaging method is a powerful tool for target detection. In this study, the effect of the air-sea interface on the detection of underwater objects is studied. A backward Monte Carlo code has been developed to study this effect. The main result is that the reflection of the diffuse sky light by the interface reduces the Mueller image contrast. If the air-sea interface is ruffled by wind, the distinction between different regions of the underwater target is smoothed out. The effect of the finite size of an active light source is also studied. The image contrast is found to be relatively insensitive to the size of the light source. The volume scattering function plays an important role on the underwater object detection. Generally, a smaller asymmetry parameter decreases the contrast of the polarimetry images. PMID:19137035
NASA Astrophysics Data System (ADS)
He, Honghui; Sun, Minghao; Zeng, Nan; Du, E.; Liu, Shaoxiong; Guo, Yihong; Wu, Jian; He, Yonghong; Ma, Hui
2014-10-01
Polarization measurements are sensitive to the microstructure of tissues and can be used to detect pathological changes. Many tissues contain anisotropic fibrous structures. We obtain the local orientation of aligned fibrous scatterers using different groups of the backscattering Mueller matrix elements. Experiments on concentrically well-aligned silk fibers and unstained human papillary thyroid carcinoma tissues show that the m22, m33, m23, and m32 elements have better contrast but higher degeneracy for the extraction of orientation angles. The m12 and m13 elements show lower contrast, but allow us to determine the orientation angle for the fibrous scatterers along all directions. Moreover, Monte Carlo simulations based on the sphere-cylinder scattering model indicate that the oblique incidence of the illumination beam introduces some errors in the orientation angles obtained by both methods. Mapping the local orientation of anisotropic tissues may not only provide information on pathological changes, but can also give new leads to reduce the orientation dependence of polarization measurements.
Kildemo, Morten; Maria, Jérôme; Ellingsen, Pål G; Aas, Lars M S
2013-07-29
Decomposition methods have been applied to in-plane Mueller matrix ellipsometric scattering data of the Spectralon reflectance standard. Data were measured at the wavelengths 532 nm and 1500 nm, using an achromatic optimal Mueller matrix scatterometer applying a photomultiplier tube and a high gain InGaAs detector for the two wavelengths. A parametric model with physical significance was deduced through analysis of the product decomposed matrices. It is found that when the data are analyzed as a function of the scattering angle, similar to particle scattering, the matrix elements are largely independent of incidence angle. To the first order, we propose that a Guassian lineshape is appropriate to describe the polarization index, while the decomposed diagonal elements of the retardance matrix have a form resembling Rayleigh single scattering. New models are proposed for the off diagonal elements of the measured Mueller matrix. PMID:23938723
Active polarization imaging system to discriminate adaptively with diagonal Mueller matrix
NASA Astrophysics Data System (ADS)
Geng, Lixiang; Chen, Qian; Qian, Weixian; Gu, Guohua
2015-11-01
A promising method to optimize the polarization state of two-channel active polarization imaging system is presented. In this method, it is seminal that the detecting function of the imaging system is regarded as a discriminant projection of the observed objects' polarization features (elements of the Mueller matrix). The polarization state can be seen as a physical classifier which can be obtained by training samples. The image acquired with the system that has the designed optimal polarization state become discriminative results directly. The effectiveness of the proposed method and the discriminative ability of the optimal polarization state are demonstrated by the experimental results.
Modeling the rabbit's eye with the Mueller matrix for birefringent properties
NASA Astrophysics Data System (ADS)
Baba, Justin S.; Cooper, Califf T.; Cote, Gerard L.
2003-07-01
The effect of changing corneal birefringence, due to motion artifact, remains a major obstacle to the development of an accurate non-invasive polarimetric glucose sensor for patients with diabetes mellitus. Consequently, there is still a need to characterize fully, and to quantify the relative changes in corneal birefringence to facilitate the optimization of detection algorithms, enabling in vivo accuracy within 10mg/dl. In this paper, we present preliminary results, utilizing a Mueller matrix imaging technique, that demonstrates notable relative changes in the apparent retardance and in the apparent fast axis location of rabbit cornea.
NASA Astrophysics Data System (ADS)
Gribble, Adam; Alali, Sanaz; Vitkin, Alex
2016-03-01
Polarized light has many applications in biomedical imaging. The interaction of a biological sample with polarized light reveals information about its composition, both structural and functional. For example, the polarimetry-derived metric of linear retardance (birefringence) is dependent on tissue structural organization (anisotropy) and can be used to diagnose myocardial infarct; circular birefringence (optical rotation) can measure glucose concentrations. The most comprehensive type of polarimetry analysis is to measure the Mueller matrix, a polarization transfer function that completely describes how a sample interacts with polarized light. To derive this 4x4 matrix it is necessary to observe how a tissue interacts with different polarizations. A well-suited approach for tissue polarimetry is to use photoelastic modulators (PEMs), which dynamically modulate the polarization of light. Previously, we have demonstrated a rapid time-gated Stokes imaging system that is capable of characterizing the state of polarized light (the Stokes vector) over a large field, after interacting with any turbid media. This was accomplished by synchronizing CCD camera acquisition times relative to two PEMs using a field-programmable gate array (FPGA). Here, we extend this technology to four PEMs, yielding a polarimetry system that is capable of rapidly measuring the complete sample Mueller matrix over a large field of view, with no moving parts and no beam steering. We describe the calibration procedure and evaluate the accuracy of the measurements. Results are shown for tissue-mimicking phantoms, as well as initial biological samples.
NASA Astrophysics Data System (ADS)
Le Roy-Brehonnet, F.; Le Jeune, B.
Polarization is an important property of several physical phenomena such as Rayleigh and Raman ( High intensity Raman Interactions: A. Penzkofer, A. Lauberteau, and W. Kaiser, Progress in Quantum Electronics, 6) (1982) scattering ( Multi-photon Scattering Molecular Spectroscopy, S. Kielich, Progress in Optics, E. Wolf(ed.) North-Holland, Amsterdam) (1983) or fluorescence ( Principles of Fluorescence Spectroscopy, J.R. Lakowicz, Plenum Press) (1986) for example, but also for laser spectral lines ( Laser Lines in Atomic Species, C. S. Willett, Progress in Quantum Electronics, 1) (1969). So, the polarimetric aspect for the propagation in media, such as fibres (Recent progress in fibre optics, G. Cancellieri, F. Chiaraluce, Progress in Quantum Electronics, 18) (1994), the atmosphere and the sea ( Light Scattering by Small Particles (Dover, New York, 1981), must be considered. Following general considerations on the different polarimetric formalisms(Chapter I), this paper first presents a review of present theoretical works on the exploitation of the Mueller matrix (Chapter II). This is followed by original studies of our own, concerning the possibility of extracting polarizing and depolarizing properties of a target characterized by a Mueller matrix (Chapter III). We then study the depolarization effects induced by targets in the Poincare´space (Chapter IV). This depolarization is induced by multiple reflections on rough surfaces or due to partial volume scattering. We have developed an algorithm, based on the knowledge of experimental noise, to classify experimental Mueller matrices according to their polarimetric characteristics. The laser imaging set-up used is described and the method (such as dichroic and birefringent ferrofluid samples) and surfaces (such as sand and other natural targets, dielectric or metallic rough targets).
Chandel, Shubham; Soni, Jalpa; Ray, Subir kumar; Das, Anwesh; Ghosh, Anirudha; Raj, Satyabrata; Ghosh, Nirmalya
2016-01-01
Information on the polarization properties of scattered light from plasmonic systems are of paramount importance due to fundamental interest and potential applications. However, such studies are severely compromised due to the experimental difficulties in recording full polarization response of plasmonic nanostructures. Here, we report on a novel Mueller matrix spectroscopic system capable of acquiring complete polarization information from single isolated plasmonic nanoparticle/nanostructure. The outstanding issues pertaining to reliable measurements of full 4 × 4 spectroscopic scattering Mueller matrices from single nanoparticle/nanostructures are overcome by integrating an efficient Mueller matrix measurement scheme and a robust eigenvalue calibration method with a dark-field microscopic spectroscopy arrangement. Feasibility of quantitative Mueller matrix polarimetry and its potential utility is illustrated on a simple plasmonic system, that of gold nanorods. The demonstrated ability to record full polarization information over a broad wavelength range and to quantify the intrinsic plasmon polarimetry characteristics via Mueller matrix inverse analysis should lead to a novel route towards quantitative understanding, analysis/interpretation of a number of intricate plasmonic effects and may also prove useful towards development of polarization-controlled novel sensing schemes. PMID:27212687
Chandel, Shubham; Soni, Jalpa; Ray, Subir Kumar; Das, Anwesh; Ghosh, Anirudha; Raj, Satyabrata; Ghosh, Nirmalya
2016-01-01
Information on the polarization properties of scattered light from plasmonic systems are of paramount importance due to fundamental interest and potential applications. However, such studies are severely compromised due to the experimental difficulties in recording full polarization response of plasmonic nanostructures. Here, we report on a novel Mueller matrix spectroscopic system capable of acquiring complete polarization information from single isolated plasmonic nanoparticle/nanostructure. The outstanding issues pertaining to reliable measurements of full 4 × 4 spectroscopic scattering Mueller matrices from single nanoparticle/nanostructures are overcome by integrating an efficient Mueller matrix measurement scheme and a robust eigenvalue calibration method with a dark-field microscopic spectroscopy arrangement. Feasibility of quantitative Mueller matrix polarimetry and its potential utility is illustrated on a simple plasmonic system, that of gold nanorods. The demonstrated ability to record full polarization information over a broad wavelength range and to quantify the intrinsic plasmon polarimetry characteristics via Mueller matrix inverse analysis should lead to a novel route towards quantitative understanding, analysis/interpretation of a number of intricate plasmonic effects and may also prove useful towards development of polarization-controlled novel sensing schemes. PMID:27212687
NASA Astrophysics Data System (ADS)
Chandel, Shubham; Soni, Jalpa; Ray, Subir Kumar; Das, Anwesh; Ghosh, Anirudha; Raj, Satyabrata; Ghosh, Nirmalya
2016-05-01
Information on the polarization properties of scattered light from plasmonic systems are of paramount importance due to fundamental interest and potential applications. However, such studies are severely compromised due to the experimental difficulties in recording full polarization response of plasmonic nanostructures. Here, we report on a novel Mueller matrix spectroscopic system capable of acquiring complete polarization information from single isolated plasmonic nanoparticle/nanostructure. The outstanding issues pertaining to reliable measurements of full 4 × 4 spectroscopic scattering Mueller matrices from single nanoparticle/nanostructures are overcome by integrating an efficient Mueller matrix measurement scheme and a robust eigenvalue calibration method with a dark-field microscopic spectroscopy arrangement. Feasibility of quantitative Mueller matrix polarimetry and its potential utility is illustrated on a simple plasmonic system, that of gold nanorods. The demonstrated ability to record full polarization information over a broad wavelength range and to quantify the intrinsic plasmon polarimetry characteristics via Mueller matrix inverse analysis should lead to a novel route towards quantitative understanding, analysis/interpretation of a number of intricate plasmonic effects and may also prove useful towards development of polarization-controlled novel sensing schemes.
NASA Astrophysics Data System (ADS)
He, Chao; He, Honghui; Chang, Jintao; Ma, Hui
2016-03-01
Polarization imaging techniques are recognized as potentially powerful tools to detect the structural changes of biological tissues. Meanwhile, spectral features of the scattered light can also provide abundant microstructural information, therefore can be applied in biomedical studies. In this paper, we adopt the polarization reflectance spectral imaging to analyze the microstructural changes of hydrolyzing skeletal muscle tissues. We measure the Mueller matrix, which is a comprehensive description of the polarization properties, of the bovine skeletal muscle samples in different periods of time, and analyze its behavior using the multispectral Mueller matrix transformation (MMT) technique. The experimental results show that for bovine skeletal muscle tissues, the backscattered spectral MMT parameters have different values and variation features at different stages. We can also find the experimental results indicate that the stages of hydrolysis for bovine skeletal muscle samples can be judged by the spectral MMT parameters. The results presented in this work show that combining with the spectral technique, the MMT parameters have the potential to be used as tools for meat quality detection and monitoring.
He, Chao; He, Honghui; Chang, Jintao; Dong, Yang; Liu, Shaoxiong; Zeng, Nan; He, Yonghong; Ma, Hui
2015-08-01
In this paper, we take the transmission 3 × 3 linear polarization Mueller matrix images of the unstained thin slices of human cervical and thyroid cancer tissues, and analyze their multispectral behavior using the Mueller matrix transformation (MMT) parameters. The experimental results show that for both cervical and thyroid cancerous tissues, the characteristic features of multispectral transmitted MMT parameters can be used to distinguish the normal and abnormal areas. Moreover, Monte Carlo simulations based on the sphere-cylinder birefringence model (SCBM) provide additional information of the relations between the characteristic spectral features of the MMT parameters and the microstructures of the tissues. Comparisons between the experimental and simulated data confirm that the contrast mechanism of the transmission MMT imaging for cancer detection is the breaking down of birefringent normal tissues for cervical cancer, or the formation of birefringent surrounding structures accompanying the inflammatory reaction for thyroid cancer. It is also testified that, the characteristic spectral features of polarization imaging techniques can provide more detailed microstructural information of tissues for diagnosis applications. PMID:26309757
Polarimetry group theory analysis in biological tissue phantoms by Mueller coherency matrix
NASA Astrophysics Data System (ADS)
Fanjul-Vélez, Félix; Ortega-Quijano, Noé; Arce-Diego, José Luis
2010-11-01
The characterization of biological tissues by optical techniques provides several advantages over other techniques. Optical techniques enable to perform high resolution and contrast imaging, in a non-invasive way and with no-contact. Biological tissues are turbid media that strongly scatter light. The ultrastructure of some tissues makes them present a certain degree of anisotropy. Both scattering and anisotropy affect light polarization. Some pathologies alter these characteristics of the tissue. As a consequence polarized light can be used to extract additional information and achieve a better diagnosis. In this work, Group Theory is applied to analyse the polarization behavior of several samples. Firstly, the Mueller matrix for each sample is measured. Then, the Mueller Coherency matrix is obtained by means of the SU(4)-O + (6) homomorphism. Finally, the target decomposition theorem is applied by analyzing the eigenvalues and eigenvectors, and subsequently the different polarimetric effects are separated. In this way, the contrast of tissue imaging can be increased. This analysis is applied to biological tissue phantoms, which consisted on glucose suspensions of polystyrene spheres with different scatterer concentrations. Their behaviour can be modeled by means of single or multiple scattering depending on the concentration, either in the Rayleigh or Mie regimes. The same procedure could be used in a wide range of applications, like the study of cancerous cells that grow without control in cell cultures, or erythrocytes monitoring in anemia. The technique also has a great potential to be applied in Polarization Sensitive Optical Coherence Tomography (PS-OCT).
He, Chao; He, Honghui; Chang, Jintao; Dong, Yang; Liu, Shaoxiong; Zeng, Nan; He, Yonghong; Ma, Hui
2015-01-01
In this paper, we take the transmission 3 × 3 linear polarization Mueller matrix images of the unstained thin slices of human cervical and thyroid cancer tissues, and analyze their multispectral behavior using the Mueller matrix transformation (MMT) parameters. The experimental results show that for both cervical and thyroid cancerous tissues, the characteristic features of multispectral transmitted MMT parameters can be used to distinguish the normal and abnormal areas. Moreover, Monte Carlo simulations based on the sphere-cylinder birefringence model (SCBM) provide additional information of the relations between the characteristic spectral features of the MMT parameters and the microstructures of the tissues. Comparisons between the experimental and simulated data confirm that the contrast mechanism of the transmission MMT imaging for cancer detection is the breaking down of birefringent normal tissues for cervical cancer, or the formation of birefringent surrounding structures accompanying the inflammatory reaction for thyroid cancer. It is also testified that, the characteristic spectral features of polarization imaging techniques can provide more detailed microstructural information of tissues for diagnosis applications. PMID:26309757
NASA Technical Reports Server (NTRS)
Ulaby, F. T.; Sarabandi, K.; Nashashibi, A.
1992-01-01
Attention is given to the statistical properties of the Mueller matrix of distributed targets, with emphasis on the copolarized phase angle phi sub c. The latter is shown to exhibit a pdf that is characterized completely by two parameters alpha and zeta, both of which are related to the elements of the Mueller matrix of the target. The parameter alpha governs the width of the pdf, and zeta governs the mean value of phi sub c. It is shown that the magnitudes S sub vv, S sub hh, and S sub hv, and the parameters alpha and zeta completely specify the Mueller matrix, and therefore contain all the statistical information available from the polarimetric backscatter response of the target. These results are verified with experimental observations that show that alpha and zeta are related to the physical and dielectric properties of soil and vegetation targets.
NASA Astrophysics Data System (ADS)
Dixit, Dhairya J.
based patterning process. This work focuses on understanding the efficacy of MMSE base scatterometry for characterizing complex DSA structures. For example, the use of symmetry-antisymmetry properties associated with Mueller matrix (MM) elements to understand the topography of the periodic nanostructures and measure defectivity. Simulations (the forward problem approach of scatterometry) are used to investigate MM elements' sensitivity to changes in DSA structure such as one vs. two contact hole patterns and predict sensitivity to dimensional changes. A regression-based approach is used to extract feature shape parameters of the DSA structures by fitting simulated optical spectra to experimental optical spectra. Detection of the DSA defects is a key to reducing defect density for eventual manufacturability and production use of DSA process. Simulations of optical models of structures containing defects are used to evaluate the sensitivity of MM elements to DSA defects. This study describes the application of MMSE to determine the DSA pattern defectivity via spectral comparisons based on optical anisotropy and depolarization. The use of depolarization and optical anisotropy for characterization of experimental MMSE data is a very recent development in scatterometry. In addition, reconstructed scatterometry models are used to calculate line edge roughness in 28 nm pitch Si fins fabricated using DSA patterning process.
Kuntman, Ertan; Arteaga, Oriol
2016-04-01
A procedure for the parallel decomposition of a depolarizing Mueller matrix with an associated rank 2 covariance matrix into its two nondepolarizing components is presented. We show that, if one of the components agrees with certain symmetry conditions, the arbitrary decomposition becomes unique, and its calculation is straightforward. Solutions for six different symmetries, which are relevant for the physical interpretation of polarimetric measurements, are provided. With this procedure, a single polarimetric measurement is sufficient to fully disclose the complete polarimetric response of two different systems and evaluate their weights in the overall response. The decomposition method we propose is illustrated by obtaining the ellipsometric responses of a silicon wafer and a holographic grating from a single measurement in which the light spot illuminates sectors of both materials. In a second example, we use the decomposition to analyze an optical system in which a polarizing film is partially covered by another misaligned film. PMID:27139655
Alali, Sanaz; Vitkin, Alex
2015-06-01
Polarized light point measurements and wide-field imaging have been studied for many years in an effort to develop accurate and information-rich tissue diagnostic methods. However, the extensive depolarization of polarized light in thick biological tissues has limited the success of these investigations. Recently, advances in technology and conceptual understanding have led to a significant resurgence of research activity in the promising field of bulk tissue polarimetry. In particular, with the advent of improved measurement, analysis, and interpretation methods, including Mueller matrix decomposition, new diagnostic avenues, such as quantification of microstructural anisotropy in bulk tissues, have been enabled. Further, novel technologies have improved the speed and the accuracy of polarimetric instruments for ex vivo and in vivo diagnostics. In this paper, we review some of the recent progress in tissue polarimetry, provide illustrative application examples, and offer an outlook to the future of polarized light imaging in bulk biological tissues. PMID:25793658
NASA Astrophysics Data System (ADS)
Alali, Sanaz; Vitkin, Alex
2015-06-01
Polarized light point measurements and wide-field imaging have been studied for many years in an effort to develop accurate and information-rich tissue diagnostic methods. However, the extensive depolarization of polarized light in thick biological tissues has limited the success of these investigations. Recently, advances in technology and conceptual understanding have led to a significant resurgence of research activity in the promising field of bulk tissue polarimetry. In particular, with the advent of improved measurement, analysis, and interpretation methods, including Mueller matrix decomposition, new diagnostic avenues, such as quantification of microstructural anisotropy in bulk tissues, have been enabled. Further, novel technologies have improved the speed and the accuracy of polarimetric instruments for ex vivo and in vivo diagnostics. In this paper, we review some of the recent progress in tissue polarimetry, provide illustrative application examples, and offer an outlook to the future of polarized light imaging in bulk biological tissues.
Mueller matrix ellipsometric detection of profile asymmetry in nanoimprinted grating structures
Chen, Xiuguo; Ma, Zhichao; Xu, Zhimou; Zhang, Chuanwei; Jiang, Hao; Liu, Shiyuan
2014-11-21
Mueller matrix ellipsometry (MME) is applied to detect foot-like asymmetry encountered in nanoimprint lithography (NIL) processes. We present both theoretical and experimental results which show that MME has good sensitivity to both the magnitude and direction of asymmetric profiles. The physics behind the use of MME for asymmetry detection is the breaking of electromagnetic reciprocity theorem for the zeroth-order diffraction of asymmetric gratings. We demonstrate that accurate characterization of asymmetric nanoimprinted gratings can be achieved by performing MME measurements in a conical mounting with the plane of incidence parallel to grating lines and meanwhile incorporating depolarization effects into the optical model. The comparison of MME-extracted asymmetric profile with the measurement by cross-sectional scanning electron microscopy also reveals the strong potential of this technique for in-line monitoring NIL processes, where symmetric structures are desired.
Depolarizing differential Mueller matrix of homogeneous media under Gaussian fluctuation hypothesis.
Devlaminck, Vincent
2015-10-01
In this paper, we address the issue of the existence of a solution of depolarizing differential Mueller matrix for a homogeneous medium. Such a medium is characterized by linear changes of its differential optical properties with z the thickness of the medium. We show that, under a short correlation distance assumption, it is possible to derive such linear solution, and we clarify this solution in the particular case where the random fluctuation processes associated to the optical properties are Gaussian white noise-like. A solution to the problem of noncommutativity of a previously proposed model [J. Opt. Soc. Am.30, 2196 (2013)JOSAAH0030-394110.1364/JOSAA.30.002196] is given by assuming a random permutation of the order of the layers and by averaging all the differential matrices resulting from these permutations. It is shown that the underlying assumption in this case is exactly the Gaussian white noise assumption. Finally, a recently proposed approach [Opt. Lett.39, 4470 (2014)OPLEDP0146-959210.1364/OL.39.004470] for analysis of the statistical properties related to changes in optical properties is revisited, and the experimental conditions of application of these results are specified. PMID:26479926
Ex vivo characterization of normal and adenocarcinoma colon samples by Mueller matrix polarimetry
NASA Astrophysics Data System (ADS)
Ahmad, Iftikhar; Ahmad, Manzoor; Khan, Karim; Ashraf, Sumara; Ahmad, Shakil; Ikram, Masroor
2015-05-01
Mueller matrix polarimetry along with polar decomposition algorithm was employed for the characterization of ex vivo normal and adenocarcinoma human colon tissues by polarized light in the visible spectral range (425-725 nm). Six derived polarization metrics [total diattenuation (DT), retardance (RT), depolarization (ΔT), linear diattenuation (DL), retardance (δ), and depolarization (ΔL)] were compared for normal and adenocarcinoma colon tissue samples. The results show that all six polarimetric properties for adenocarcinoma samples were significantly higher as compared to the normal samples for all wavelengths. The Wilcoxon rank sum test illustrated that total retardance is a good candidate for the discrimination of normal and adenocarcinoma colon samples. Support vector machine classification for normal and adenocarcinoma based on the four polarization properties spectra (ΔT, ΔL, RT,and δ) yielded 100% accuracy, sensitivity, and specificity, while both DT and D showed 66.6%, 33.3%, and 83.3% accuracy, sensitivity, and specificity, respectively. The combination of polarization analysis and given classification methods provides a framework to distinguish the normal and cancerous tissues.
Optical characterization of murine model's in-vivo skin using Mueller matrix polarimetric imaging
NASA Astrophysics Data System (ADS)
Mora-Núñez, Azael; Martinez-Ponce, Geminiano; Garcia-Torales, Guillermo
2015-12-01
Mueller matrix polarimetric imaging (MMPI) provides a complete characterization of an anisotropic optical medium. Subsequent single value decomposition allows image interpretation in terms of basic optical anisotropies, such as depolarization, diattenuation, and retardance. In this work, healthy in-vivo skin at different anatomical locations of a biological model (Rattus norvegicus) was imaged by the MMPI technique using 532nm coherent illumination. The body parts under study were back, abdomen, tail, and calvaria. Because skin components are randomly distributed and skin thickness depends on its location, polarization measures arise from the average over a single detection element (pixel) and on the number of free optical paths, respectively. Optical anisotropies over the imaged skin indicates, mainly, the presence of components related to the physiology of the explored region. In addition, a MMPI-based comparison between a tumor on the back of one test subject and proximal healthy skin was made. The results show that the single values of optical anisotropies can be helpful in distinguishing different areas of in-vivo skin and also lesions.
Ex vivo characterization of normal and adenocarcinoma colon samples by Mueller matrix polarimetry.
Ahmad, Iftikhar; Ahmad, Manzoor; Khan, Karim; Ashraf, Sumara; Ahmad, Shakil; Ikram, Masroor
2015-05-01
Mueller matrix polarimetry along with polar decomposition algorithm was employed for the characterization of ex vivo normal and adenocarcinoma human colon tissues by polarized light in the visible spectral range (425-725 nm). Six derived polarization metrics [total diattenuation (DT ), retardance (RT ), depolarization(ΔT ), linear diattenuation (DL), retardance (δ), and depolarization (ΔL)] were compared for normal and adenocarcinoma colon tissue samples. The results show that all six polarimetric properties for adenocarcinoma samples were significantly higher as compared to the normal samples for all wavelengths. The Wilcoxon rank sum test illustrated that total retardance is a good candidate for the discrimination of normal and adenocarcinoma colon samples. Support vector machine classification for normal and adenocarcinoma based on the four polarization properties spectra (ΔT , ΔL, RT ,and δ) yielded 100% accuracy, sensitivity, and specificity, while both DTa nd DL showed 66.6%, 33.3%, and 83.3% accuracy, sensitivity, and specificity, respectively. The combination of polarization analysis and given classification methods provides a framework to distinguish the normal and cancerous tissues. PMID:26021717
Calibration of misalignment errors in composite waveplates using Mueller matrix ellipsometry.
Gu, Honggang; Liu, Shiyuan; Chen, Xiuguo; Zhang, Chuanwei
2015-02-01
Composite waveplates consisting of two or more single waveplates are widely used in optical instruments, such as ellipsometry, polarimetry, cryptography, and photoelasticity. Accurate calibration of the misalignment errors in composite waveplates is of great importance (to minimize or correct the spurious artifacts in the final collected spectral data of these instruments induced by the misalignment errors). In this paper, we choose the fast axis azimuth and the rotary angle of composite waveplates as the detected characteristic parameters to calibrate the misalignment errors in composite waveplates. We first derive a general analytical model to describe the relationship between the mislignment errors and the characteristic parameters, and then propose an inverse approach to the calibration of the misalignment errors in composite waveplates. An experimental device based on the dual rotating-compensator Mueller matrix ellipsometry principle is set up to measure the characteristic parameters of composite waveplates. Both numerical simulations and experiments on an MgF(2)-MgF(2)-quartz triplate demonstrate the correctness and efficiency of the proposed approach. It is expected that the proposed approach can be readily extended to calibrate the misalignment errors in more complex composite waveplates. PMID:25967775
Chue-Sang, Joseph; Bai, Yuqiang; Stoff, Susan; Straton, David; Ramaswamy, Sharan; Ramella-Roman, Jessica C
2016-07-01
Mueller matrix polarimetry and polarization-sensitive optical coherence tomography (PS-OCT) are two emerging techniques utilized in the assessment of tissue anisotropy. While PS-OCT can provide cross-sectional images of local tissue birefringence through its polarimetric sensitivity, Mueller matrix polarimetry can be used to measure bulk polarimetric properties such as depolarization, diattenuation, and retardance. To this day true quantification of PS-OCT data can be elusive, partly due to the reliance on inverse models for the characterization of tissue birefringence and the influence of instrumentation noise. Similarly for Mueller matrix polarimetry, calculation of retardance or depolarization may be influenced by tissue heterogeneities that could be monitored with PS-OCT. Here, we propose an instrument that combines Mueller matrix polarimetry and PS-OCT. Through the co-registration of the two systems, we aim at achieving a better understanding of both modalities. PMID:26934019
NASA Astrophysics Data System (ADS)
Chue-Sang, Joseph; Bai, Yuqiang; Stoff, Susan; Straton, David; Ramaswamy, Sharan; Ramella-Roman, Jessica C.
2016-07-01
Mueller matrix polarimetry and polarization-sensitive optical coherence tomography (PS-OCT) are two emerging techniques utilized in the assessment of tissue anisotropy. While PS-OCT can provide cross-sectional images of local tissue birefringence through its polarimetric sensitivity, Mueller matrix polarimetry can be used to measure bulk polarimetric properties such as depolarization, diattenuation, and retardance. To this day true quantification of PS-OCT data can be elusive, partly due to the reliance on inverse models for the characterization of tissue birefringence and the influence of instrumentation noise. Similarly for Mueller matrix polarimetry, calculation of retardance or depolarization may be influenced by tissue heterogeneities that could be monitored with PS-OCT. Here, we propose an instrument that combines Mueller matrix polarimetry and PS-OCT. Through the co-registration of the two systems, we aim at achieving a better understanding of both modalities.
Borovoi, Anatoli; Konoshonkin, Alexander; Kustova, Natalia; Okamoto, Hajime
2012-12-17
A general view of the backscattering Mueller matrix for the quasi-horizontally oriented hexagonal ice crystals of cirrus clouds has been obtained in the case of tilted and scanning lidars. It is shown that the main properties of this matrix are caused by contributions from two qualitatively different components referred to the specular and corner-reflection terms. The numerical calculation of the matrix is worked out in the physical optics approximation. These matrices calculated for two wavelengths and two tilt angles (initial and present) of CALIPSO lidar are presented as a data bank. The depolarization and color ratios for these data have been obtained and discussed. PMID:23263056
Dong, Yang; He, Honghui; He, Chao; Zhou, Jialing; Zeng, Nan; Ma, Hui
2016-01-01
Silk fibers suffer from microstructural changes due to various external environmental conditions including daily washings. In this paper, we take the backscattering Mueller matrix images of silk samples for non-destructive and real-time quantitative characterization of the wavelength-scale microstructure and examination of the effects of washing by different detergents. The 2D images of the 16 Mueller matrix elements are reduced to the frequency distribution histograms (FDHs) whose central moments reveal the dominant structural features of the silk fibers. A group of new parameters are also proposed to characterize the wavelength-scale microstructural changes of the silk samples during the washing processes. Monte Carlo (MC) simulations are carried out to better understand how the Mueller matrix parameters are related to the wavelength-scale microstructure of silk fibers. The good agreement between experiments and simulations indicates that the Mueller matrix polarimetry and FDH based parameters can be used to quantitatively detect the wavelength-scale microstructural features of silk fibers. Mueller matrix polarimetry may be used as a powerful tool for non-destructive and in situ characterization of the wavelength-scale microstructures of silk based materials. PMID:27517919
Dong, Yang; He, Honghui; He, Chao; Zhou, Jialing; Zeng, Nan; Ma, Hui
2016-01-01
Silk fibers suffer from microstructural changes due to various external environmental conditions including daily washings. In this paper, we take the backscattering Mueller matrix images of silk samples for non-destructive and real-time quantitative characterization of the wavelength-scale microstructure and examination of the effects of washing by different detergents. The 2D images of the 16 Mueller matrix elements are reduced to the frequency distribution histograms (FDHs) whose central moments reveal the dominant structural features of the silk fibers. A group of new parameters are also proposed to characterize the wavelength-scale microstructural changes of the silk samples during the washing processes. Monte Carlo (MC) simulations are carried out to better understand how the Mueller matrix parameters are related to the wavelength-scale microstructure of silk fibers. The good agreement between experiments and simulations indicates that the Mueller matrix polarimetry and FDH based parameters can be used to quantitatively detect the wavelength-scale microstructural features of silk fibers. Mueller matrix polarimetry may be used as a powerful tool for non-destructive and in situ characterization of the wavelength-scale microstructures of silk based materials. PMID:27517919
Arwin, Hans; Berlind, Torun; Johs, Blaine; Järrendahl, Kenneth
2013-09-23
Since one hundred years it is known that some scarab beetles reflect elliptically and near-circular polarized light as demonstrated by Michelson for the beetle Chrysina resplendens. The handedness of the polarization is in a majority of cases left-handed but also right-handed polarization has been found. In addition, brilliant colors with metallic shine are observed. The polarization and color effects are generated in the beetle exoskeleton, the so-called cuticle. The objective of this work is to demonstrate that structural parameters and materials optical functions of these photonic structures can be extracted by advanced modeling of spectral multi-angle Mueller-matrix data recorded from beetle cuticles. A dual-rotating compensator ellipsometer is used to record normalized Mueller-matrix data in the spectral range 400 - 800 nm at angles of incidence in the range 25-75°. Analysis of data measured on the scarab beetle Cetonia aurata are presented in detail. The model used in the analysis mimics a chiral nanostructure and is based on a twisted layered structure. Given the complexity of the nanostructure, an excellent fit between experimental and model data is achieved. The obtained model parameters are the spectral variation of the refractive indices of the cuticle layers and structural parameters of the chiral structure. PMID:24104152
Wang, Jianfeng; Zheng, Wei; Lin, Kan; Huang, Zhiwei
2016-01-01
We report the development and implementation of a unique integrated Mueller-matrix (MM) near-infrared (NIR) imaging and Mueller-matrix point-wise diffuse reflectance (DR) spectroscopy technique for improving colonic cancer detection and diagnosis. Point-wise MM DR spectra can be acquired from any suspicious tissue areas indicated by MM imaging. A total of 30 paired colonic tissue specimens (normal vs. cancer) were measured using the integrated MM imaging and point-wise MM DR spectroscopy system. Polar decomposition algorithms are employed on the acquired images and spectra to derive three polarization metrics including depolarization, diattentuation and retardance for colonic tissue characterization. The decomposition results show that tissue depolarization and retardance are significantly decreased (p<0.001, paired 2-sided Student’s t-test, n = 30); while the tissue diattentuation is significantly increased (p<0.001, paired 2-sided Student’s t-test, n = 30) associated with colonic cancer. Further partial least squares discriminant analysis (PLS-DA) and leave-one tissue site-out, cross validation (LOSCV) show that the combination of the three polarization metrics provide the best diagnostic accuracy of 95.0% (sensitivity: 93.3%, and specificity: 96.7%) compared to either of the three polarization metrics (sensitivities of 93.3%, 83.3%, and 80.0%; and specificities of 90.0%, 96.7%, and 80.0%, respectively, for the depolarization, diattentuation and retardance metrics) for colonic cancer detection. This work suggests that the integrated MM NIR imaging and point-wise MM NIR diffuse reflectance spectroscopy has the potential to improve the early detection and diagnosis of malignant lesions in the colon. PMID:27446640
NASA Astrophysics Data System (ADS)
Todorović, Miloš; Ai, Jun; Pereda Cubian, David; Stoica, George; Wang, Lihong
2006-02-01
National Health Interview Survey (NHIS) estimates more than 1.1 million burn injuries per year in the United States, with nearly 15,000 fatalities from wounds and related complications. An imaging modality capable of evaluating burn depths non-invasively is the polarization-sensitive optical coherence tomography. We report on the use of a high-speed, fiber-based Mueller-matrix OCT system with continuous source-polarization modulation for burn depth evaluation. The new system is capable of imaging at near video-quality frame rates (8 frames per second) with resolution of 10 μm in biological tissue (index of refraction: 1.4) and sensitivity of 78 dB. The sample arm optics is integrated in a hand-held probe simplifying the in vivo experiments. The applicability of the system for burn depth determination is demonstrated using biological samples of porcine tendon and porcine skin. The results show an improved imaging depth (1 mm in tendon) and a clear localization of the thermally damaged region. The burnt area determined from OCT images compares well with the histology, thus proving the system's potential for burn depth determination.
NASA Astrophysics Data System (ADS)
Gil, José J.; Ossikovski, Razvigor; José, Ignacio San
2016-04-01
Singular Mueller matrices play an important role in polarization algebra and have peculiar properties that stem from the fact that either the medium exhibits maximum diattenuation and/or polarizance, or because its associated canonical depolarizer has the property of fully randomizing, the circular component (at least) of the states of polarization of light incident on it. The formal reasons for which the Mueller matrix M of a given medium is singular are systematically investigated, analyzed and interpreted in the framework of the serial decompositions and the characteristic ellipsoids of M. The analysis allows for a general classification and geometric representation of singular Mueller matrices, of potential usefulness to experimentalists dealing with such media.
Gil, José J; Ossikovski, Razvigor; José, Ignacio San
2016-04-01
Singular Mueller matrices play an important role in polarization algebra and have peculiar properties that stem from the fact that either the medium exhibits maximum diattenuation and/or polarizance or because its associated canonical depolarizer has the property of fully randomizing the circular component (at least) of the states of polarization of light incident on it. The formal reasons for which the Mueller matrix M of a given medium is singular are systematically investigated, analyzed, and interpreted in the framework of the serial decompositions and the characteristic ellipsoids of M. The analysis allows for a general classification and geometric representation of singular Mueller matrices, which are of potential usefulness to experimentalists dealing with such media. PMID:27140769
Nonlinear Stokes-Mueller polarimetry
NASA Astrophysics Data System (ADS)
Samim, Masood; Krouglov, Serguei; Barzda, Virginijus
2016-01-01
The Stokes-Mueller polarimetry is generalized to include nonlinear optical processes such as second- and third-harmonic generation, sum- and difference-frequency generations with Kleinman symmetry. The overall algebraic form of the polarimetry is preserved, where the incoming and outgoing radiations are represented by column vectors and the intervening medium is represented by a matrix. Expressions for the generalized nonlinear Stokes vector and the Mueller matrix are provided in terms of coherency and correlation matrices, expanded by higher-dimensional analogues of Pauli matrices. In all cases, the outgoing radiation is represented by the conventional 4 ×1 Stokes vector, while dimensions of the incoming radiation Stokes vector and Mueller matrix depend on the order of the process being examined. In addition, the relations between components of nonlinear susceptibility tensor and Mueller matrix are explicitly provided. The approach of combining linear and nonlinear optical elements is discussed within the context of polarimetry.
Stochastic determination of matrix determinants.
Dorn, Sebastian; Ensslin, Torsten A
2015-07-01
Matrix determinants play an important role in data analysis, in particular when Gaussian processes are involved. Due to currently exploding data volumes, linear operations-matrices-acting on the data are often not accessible directly but are only represented indirectly in form of a computer routine. Such a routine implements the transformation a data vector undergoes under matrix multiplication. While efficient probing routines to estimate a matrix's diagonal or trace, based solely on such computationally affordable matrix-vector multiplications, are well known and frequently used in signal inference, there is no stochastic estimate for its determinant. We introduce a probing method for the logarithm of a determinant of a linear operator. Our method rests upon a reformulation of the log-determinant by an integral representation and the transformation of the involved terms into stochastic expressions. This stochastic determinant determination enables large-size applications in Bayesian inference, in particular evidence calculations, model comparison, and posterior determination. PMID:26274302
Stochastic determination of matrix determinants
NASA Astrophysics Data System (ADS)
Dorn, Sebastian; Enßlin, Torsten A.
2015-07-01
Matrix determinants play an important role in data analysis, in particular when Gaussian processes are involved. Due to currently exploding data volumes, linear operations—matrices—acting on the data are often not accessible directly but are only represented indirectly in form of a computer routine. Such a routine implements the transformation a data vector undergoes under matrix multiplication. While efficient probing routines to estimate a matrix's diagonal or trace, based solely on such computationally affordable matrix-vector multiplications, are well known and frequently used in signal inference, there is no stochastic estimate for its determinant. We introduce a probing method for the logarithm of a determinant of a linear operator. Our method rests upon a reformulation of the log-determinant by an integral representation and the transformation of the involved terms into stochastic expressions. This stochastic determinant determination enables large-size applications in Bayesian inference, in particular evidence calculations, model comparison, and posterior determination.
NASA Astrophysics Data System (ADS)
Chang, Jintao; He, Honghui; Wang, Ye; Huang, Yi; Li, Xianpeng; He, Chao; Liao, Ran; Zeng, Nan; Liu, Shaoxiong; Ma, Hui
2016-05-01
A polarization microscope is a useful tool to reveal the optical anisotropic nature of a specimen and can provide abundant microstructural information about samples. We present a division of focal plane (DoFP) polarimeter-based polarization microscope capable of simultaneously measuring both the Stokes vector and the 3×4 Mueller matrix with an optimal polarization illumination scheme. The Mueller matrix images of unstained human carcinoma tissue slices show that the m24 and m34 elements can provide important information for pathological observations. The characteristic features of the m24 and m34 elements can be enhanced by polarization staining under illumination by a circularly polarized light. Hence, combined with a graphics processing unit acceleration algorithm, the DoFP polarization microscope is capable of real-time polarization imaging for potential quick clinical diagnoses of both standard and frozen slices of human carcinoma tissues.
Carrieri, Arthur H; Copper, Jack; Owens, David J; Roese, Erik S; Bottiger, Jerold R; Everly, Robert D; Hung, Kevin C
2010-01-20
An active spectrophotopolarimeter sensor and support system were developed for a military/civilian defense feasibility study concerning the identification and standoff detection of biological aerosols. Plumes of warfare agent surrogates gamma-irradiated Bacillus subtilis and chicken egg white albumen (analytes), Arizona road dust (terrestrial interferent), water mist (atmospheric interferent), and talcum powders (experiment controls) were dispersed inside windowless chambers and interrogated by multiple CO(2) laser beams spanning 9.1-12.0 microm wavelengths (lambda). Molecular vibration and vibration-rotation activities by the subject analyte are fundamentally strong within this "fingerprint" middle infrared spectral region. Distinct polarization-modulations of incident irradiance and backscatter radiance of tuned beams generate the Mueller matrix (M) of subject aerosol. Strings of all 15 normalized elements {M(ij)(lambda)/M(11)(lambda)}, which completely describe physical and geometric attributes of the aerosol particles, are input fields for training hybrid Kohonen self-organizing map feed-forward artificial neural networks (ANNs). The properly trained and validated ANN model performs pattern recognition and type-classification tasks via internal mappings. A typical ANN that mathematically clusters analyte, interferent, and control aerosols with nil overlap of species is illustrated, including sensitivity analysis of performance. PMID:20090802
NASA Astrophysics Data System (ADS)
Martinez, V. A.; Stanislavchuk, T. N.; Sirenko, A. A.; Litvinchuk, A. P.; Wang, Yazhong; Cheong, S. W.
Optical properties of multiferroic orthoferrites RFeO3 (R=Tb,Dy) bulk crystals have been studied in the far-infrared range from 50 to 1000 cm-1 and temperatures from 7 K to 300 K. Mueller matrix and rotating analyzer ellipsometry measurements were carried out at the U4IR beamline of the National Synchrotron Light Source at Brookhaven National Lab. Optical phonon spectra and crystal field excitations were measured for all three orthorhombic axes of RFeO3. In the experimental temperature dependencies of the phonon frequencies we found non-Grüneisen behavior caused by the electron-phonon and spin-phonon interactions. We determined the symmetries and selection rules for the crystal field transitions in Tb3+ and Dy3+ ions. Magnetic field dependencies of the optical spectra allowed us to determine anisotropy of the crystal field g-factors for Tb3+ and Dy3+ ions. This Project is supported by collaborative DOE Grant DE-FG02-07ER46382 between Rutgers U. and NJIT. Use of NSLS-BNL was supported by DOE DE-AC02-98CH10886. V.A. Martinez was supported by NEU NSF-1343716.
Westphal, Peter; Kaltenbach, Johannes-Maria; Wicker, Kai
2016-04-01
A good understanding of the corneal birefringence properties is essential for polarimetric glucose monitoring in the aqueous humor of the eye. Therefore, we have measured complete 16-element Mueller matrices of single-pass transitions through nine porcine corneas in-vitro, spectrally resolved in the range 300…1000 nm. These ellipsometric measurements have been performed at several angles of incidence at the apex and partially at the periphery of the corneas. The Mueller matrices have been decomposed into linear birefringence, circular birefringence (i.e. optical rotation), depolarization, and diattenuation. We found considerable circular birefringence, strongly increasing with decreasing wavelength, for most corneas. Furthermore, the decomposition revealed significant dependence of the linear retardance (in nm) on the wavelength below 500 nm. These findings suggest that uniaxial and biaxial crystals are insufficient models for a general description of the corneal birefringence, especially in the blue and in the UV spectral range. The implications on spectral-polarimetric approaches for glucose monitoring in the eye (for diabetics) are discussed. PMID:27446644
Westphal, Peter; Kaltenbach, Johannes-Maria; Wicker, Kai
2016-01-01
A good understanding of the corneal birefringence properties is essential for polarimetric glucose monitoring in the aqueous humor of the eye. Therefore, we have measured complete 16-element Mueller matrices of single-pass transitions through nine porcine corneas in-vitro, spectrally resolved in the range 300…1000 nm. These ellipsometric measurements have been performed at several angles of incidence at the apex and partially at the periphery of the corneas. The Mueller matrices have been decomposed into linear birefringence, circular birefringence (i.e. optical rotation), depolarization, and diattenuation. We found considerable circular birefringence, strongly increasing with decreasing wavelength, for most corneas. Furthermore, the decomposition revealed significant dependence of the linear retardance (in nm) on the wavelength below 500 nm. These findings suggest that uniaxial and biaxial crystals are insufficient models for a general description of the corneal birefringence, especially in the blue and in the UV spectral range. The implications on spectral-polarimetric approaches for glucose monitoring in the eye (for diabetics) are discussed. PMID:27446644
Mueller-matrices polarization selection of two-dimensional linear and circular birefringence images
NASA Astrophysics Data System (ADS)
Ushenko, V. A.; Zabolotna, N. I.; Pavlov, S. V.; Burcovets, D. M.; Novakovska, O. Yu.
2013-12-01
The work consists of investigation results of diagnostic efficiency of a new azimuthally stable Mueller-matrix method of analysis of laser autofluorescence coordinate distributions of biological tissues histological sections. A new model of generalized optical anisotropy of biological tissues protein networks is proposed in order to define the processes of laser autofluorescence. The influence of complex mechanisms of both phase anisotropy (linear birefringence and optical activity) and linear (circular) dichroism is taken into account. The interconnections between the azimuthally stable Mueller-matrix elements characterizing laser autofluorescence and different mechanisms of optical anisotropy are determined. The complex statistic, correlation and fractal analysis of coordinate distributions of such Mueller-matrix rotation invariants is proposed. Thereupon the quantitative criteria (statistic moments of the 1st to the 4th order, correlation moment, fratal parameters) of differentiation of histological sections of uterus wall tumor - group 1 (polypus) and group 2 (adenocarcinoma) are estimated.
View of Mueller property along East Avenue, looking northeast. Mueller ...
View of Mueller property along East Avenue, looking northeast. Mueller house in the foreground and row of magnolia trees along East Avenue. - Ernst Mueller House, 6563 East Avenue, Rancho Cucamonga, San Bernardino County, CA
On optimal filtering of measured Mueller matrices
NASA Astrophysics Data System (ADS)
Gil, José J.
2016-07-01
While any two-dimensional mixed state of polarization of light can be represented by a combination of a pure state and a fully random state, any Mueller matrix can be represented by a convex combination of a pure component and three additional components whose randomness is scaled in a proper and objective way. Such characteristic decomposition constitutes the appropriate framework for the characterization of the polarimetric randomness of the system represented by a given Mueller matrix, and provides criteria for the optimal filtering of noise in experimental polarimetry.
Constraints on Mueller matrices of polarization optics
NASA Technical Reports Server (NTRS)
Kostinski, Alexander B.; Givens, Clark R.; Kwiatkowski, John M.
1993-01-01
The issue of physical realizability constraints on depolarizing scattering or imaging systems is addressed. In particular, the overpolarization problem, i.e., the problem of ensuring that the output degree of polarization is always smaller than (or equal to) unity, is discussed in detail. A set of necessary conditions for the elements of a Mueller matrix is derived. These conditions can be used to test the accuracy of polarimetric measurements and computations. Several recent experimental examples from polarization optics and radar are discussed.
Narrow band 3 × 3 Mueller polarimetric endoscopy
Qi, Ji; Ye, Menglong; Singh, Mohan; Clancy, Neil T.; Elson, Daniel S.
2013-01-01
Mueller matrix polarimetric imaging has shown potential in tissue diagnosis but is challenging to implement endoscopically. In this work, a narrow band 3 × 3 Mueller matrix polarimetric endoscope was designed by rotating the endoscope to generate 0°, 45° and 90° linearly polarized illumination and positioning a rotating filter wheel in front of the camera containing three polarisers to permit polarization state analysis for backscattered light. The system was validated with a rotating linear polarizer and a diffuse reflection target. Initial measurements of 3 × 3 Mueller matrices on a rat are demonstrated, followed by matrix decomposition into the depolarization and retardance matrices for further analysis. Our work shows the feasibility of implementing polarimetric imaging in a rigid endoscope conveniently and economically in order to reveal diagnostic information. PMID:24298405
Murine Mueller cells are progenitor cells for neuronal cells and fibrous tissue cells
Florian, Christian; Langmann, Thomas; Weber, Bernhard H.F.; Morsczeck, Christian
2008-09-19
Mammalian Mueller cells have been reported to possess retinal progenitor cell properties and generate new neurons after injury. This study investigates murine Mueller cells under in vitro conditions for their capability of dedifferentiation into retinal progenitor cells. Mueller cells were isolated from mouse retina, and proliferating cells were expanded in serum-containing medium. For dedifferentiation, the cultured cells were transferred to serum-replacement medium (SRM) at different points in time after their isolation. Interestingly, early cell passages produced fibrous tissue in which extracellular matrix proteins and connective tissue markers were differentially expressed. In contrast, aged Mueller cell cultures formed neurospheres in SRM that are characteristic for neuronal progenitor cells. These neurospheres differentiated into neuron-like cells after cultivation on laminin/ornithine cell culture substrate. Here, we report for the first time that murine Mueller cells can be progenitors for both, fibrous tissue cells and neuronal cells, depending on the age of the cell culture.
100 kHz Mueller polarimeter for laser scanning polarimetric microscopy
NASA Astrophysics Data System (ADS)
Le Gratiet, A.; Dubreuil, M.; Rivet, S.; Le Grand, Y.
2016-04-01
A new setup was recently proposed to perform Mueller matrix polarimetry at 100 kHz using a swept laser source, high order retarders and a single channel photodetector. In this communication, we present the implementation of this setup on a laser scanning microscope to perform high speed scanning Mueller microscopy in transmission. Calibration of the instrument is briefly described and precision and stability over time are evaluated. Finally, Mueller images of a manufactured scene are reported. To our best knowledge, this is the first time that Mueller polarimetry is performed using a laser scanning microscope. We further plan to develop confocal/nonlinear/Mueller microscopy from the same setup in order to produce multimodal contrast images of biological samples.
NASA Astrophysics Data System (ADS)
Olsen, Kenneth H.; Ansorge, Joerg
Stephan Mueller, professor emeritus at the Institute of Geophysics at the Swiss Federal Institute of Technology (ETH) in Zurich and highly respected leader of international geoscience, died February 17, 1997. His untimely death, due to pneumonia following intestinal surgery, came just 18 months after his retirement from the ETH Chair of Geophysics and Directorship of the Swiss Seismological Service. He is survived by his wife, Doris, two sons, and six grandchildren. Mueller received a diploma in physics at the University of Stuttgart in 1957 and an M.S. in electrical engineering from Columbia University in New York in 1959. As an undergraduate at Stuttgart, he was influenced by seismologist Wilhelm Hillerand geophysics quickly became his major academic and career objective. After receiving a 1954-1955 German Academic Interchange Scholarship at Columbia, Mueller sought out Maurice Ewing and his group at Lamont Geological Observatory, where Mueller's enthusiasm for geophysics was strongly encouraged. While at Lamont, he participated in the first U.S. deep-sea geophysical expedition in the Mediterranean Sea during the summer of 1956 aboard the RV Vema.
Rolling Element Bearing Stiffness Matrix Determination (Presentation)
Guo, Y.; Parker, R.
2014-01-01
Current theoretical bearing models differ in their stiffness estimates because of different model assumptions. In this study, a finite element/contact mechanics model is developed for rolling element bearings with the focus of obtaining accurate bearing stiffness for a wide range of bearing types and parameters. A combined surface integral and finite element method is used to solve for the contact mechanics between the rolling elements and races. This model captures the time-dependent characteristics of the bearing contact due to the orbital motion of the rolling elements. A numerical method is developed to determine the full bearing stiffness matrix corresponding to two radial, one axial, and two angular coordinates; the rotation about the shaft axis is free by design. This proposed stiffness determination method is validated against experiments in the literature and compared to existing analytical models and widely used advanced computational methods. The fully-populated stiffness matrix demonstrates the coupling between bearing radial, axial, and tilting bearing deflections.
Observations of Comet Mueller (1993a)
NASA Astrophysics Data System (ADS)
Ferro, Anthony J.
1994-12-01
Low resolution long slit spectra of C/Mueller (1993a) obtained with the Steward Observatory 2.3m telescope are presented. Production rates for NH_2 obtained from the observed fluxes and a Monte Carlo/molecular dynamics model have been determined. The model accounts for molecular photodisociation and is presented together with results from other standard comet coma models. Narrow band images centered on the NH_2 (8-0) band at about 6338 Angstroms, also obtained with the 2.3m Steward telescope, are also presented and compared with the model predictions.
Matrix transformations for spacecraft attitude determination
NASA Technical Reports Server (NTRS)
Cauffman, D. P.
1972-01-01
A common problem for experimental space physicists is the determination of the attitude matrix T which transforms vectors between representations in X and X' coordinate systems according to (vector V sub X) = (T sub XX')(vector V sub X'). A straightforward, simple, and efficient solution for the transformation matrix is a double-cross transformation. It is calculated from any two directions A and B, which are vectors normalized to unit length and are known in both X and X' coordinates. The B direction need be known only well enough to define the plane in which vectors A and B lie. The problem of the intersection of two cones as applicable to attitude solutions is also discussed.
NASA Astrophysics Data System (ADS)
Vizet, Jérémy; Manhas, Sandeep; Tran, Jacqueline; Validire, Pierre; Benali, Abdelali; Garcia-Caurel, Enric; Pierangelo, Angelo; Martino, Antonello De; Pagnoux, Dominique
2016-07-01
This paper reports a technique based on spectrally differential measurement for determining the full Mueller matrix of a biological sample through an optical fiber. In this technique, two close wavelengths were used simultaneously, one for characterizing the fiber and the other for characterizing the assembly of fiber and sample. The characteristics of the fiber measured at one wavelength were used to decouple its contribution from the measurement on the assembly of fiber and sample and then to extract sample Mueller matrix at the second wavelength. The proof of concept was experimentally validated by measuring polarimetric parameters of various calibrated optical components through the optical fiber. Then, polarimetric images of histological cuts of human colon tissues were measured, and retardance, diattenuation, and orientation of the main axes of fibrillar regions were displayed. Finally, these images were successfully compared with images obtained by a free space Mueller microscope. As the reported method does not use any moving component, it offers attractive integration possibilities with an endoscopic probe.
Vizet, Jérémy; Manhas, Sandeep; Tran, Jacqueline; Validire, Pierre; Benali, Abdelali; Garcia-Caurel, Enric; Pierangelo, Angelo; De Martino, Antonello; Pagnoux, Dominique
2016-07-01
This paper reports a technique based on spectrally differential measurement for determining the full Mueller matrix of a biological sample through an optical fiber. In this technique, two close wavelengths were used simultaneously, one for characterizing the fiber and the other for characterizing the assembly of fiber and sample. The characteristics of the fiber measured at one wavelength were used to decouple its contribution from the measurement on the assembly of fiber and sample and then to extract sample Mueller matrix at the second wavelength. The proof of concept was experimentally validated by measuring polarimetric parameters of various calibrated optical components through the optical fiber. Then, polarimetric images of histological cuts of human colon tissues were measured, and retardance, diattenuation, and orientation of the main axes of fibrillar regions were displayed. Finally, these images were successfully compared with images obtained by a free space Mueller microscope. As the reported method does not use any moving component, it offers attractive integration possibilities with an endoscopic probe. PMID:26848782
Mueller based scatterometry and optical characterization of semiconductor materials
NASA Astrophysics Data System (ADS)
Muthinti, Gangadhara Raja
Scatterometry is one of the most useful metrology methods for the characterization and control of critical dimensions (CD) and the detailed topography of periodic structures found in microelectronics fabrication processes. Spectroscopic ellipsometry (SE) and normal incidence reflectometry (NI) based scatterometry are the most widely used optical methodologies for metrology of these structures. Evolution of better optical hardware and faster computing capabilities led to the development of Mueller Matrix (MM) based Scatterometry (MMS). Dimensional metrology using full Mueller Matrix (16 element) scatterometry in the wavelength range of 245nm-1000nm was discussed in this work. Unlike SE and NI, MM data provides complete information about the optical reflection and transmission of polarized light reflected from a sample. MM is a 4x4 transformation matrix (16 elements) describing the change in the intensities of incident polarized light expressed by means of a Stokes Vector. The symmetry properties associated with MM provide an excellent means of measuring and understanding the topography of the periodic nanostructures. Topography here refers to uniformity of the periodic order of arrayed structure. The advantage of MMS over traditional SE Scatterometry is the ability of MMS to measure samples that have anisotropic optical properties and depolarize light. The present work focuses on understanding the Mueller based Scatterometry with respect to other methodologies by a systematic approach. Several laterally complex nano-scale structures with dimensions in the order of nanometers were designed and fabricated using e-beam lithography. Also Mueller based analysis was used to extract profile information and anisotropy coefficients of complex 3D FinFET, SOI fin grating structures. Later, Spectroscopic Mueller matrix (all 16 elements) and SE data were collected in planar diffraction mode for the samples using a J.A. Woollam RC2(TM) Spectroscopic Ellipsometer. Nano
Transformation of full 4 × 4 Mueller matrices: a quantitative technique for biomedical diagnosis
NASA Astrophysics Data System (ADS)
He, Honghui; Chang, Jintao; He, Chao; Ma, Hui
2016-03-01
Polarization images contain abundant microstructural information of samples. Recently, as a comprehensive description of the structural and optical properties of complex media, the Mueller matrix imaging has been widely applied to biomedical studies, especially cancer detections. In previous works, we proposed a technique to transform the backscattering 3 × 3 Mueller matrices into a group of quantitative parameters with clear relationships to specific microstructures. In this paper, we extend this transformation method to full 4 × 4 Mueller matrices of both the back and forward scattering directions. Using the experimental results of phantoms and Monte Carlo simulation based on the sphere-cylinder birefringence model, we fit the Mueller matrix elements to trigonometric curves in polar coordinates and obtain a new set of transformation parameters, which can be expressed as analytical functions of 16 Mueller matrix elements. Both the experimental and simulated results demonstrate that the transformation parameters have simple relationships to the characteristic microstructural properties, including the densities and orientations of fibrous structures, the sizes of the scatterers, and the depolarization power of the samples. We also apply the transformation parameters of full 4 × 4 Mueller matrices to human liver cancerous tissues. Preliminary imaging results show that the parameters can quantitatively reflect the formation of fibrous birefringent tissues accompanying the cancerous processes. The findings presented in this study can be useful for in vivo or in vitro polarization imaging of tissues for diagnostic applications.
View from northern portion of Mueller property, looking south with ...
View from northern portion of Mueller property, looking south with row of magnolia trees on western boundary of the property. Mueller house in the background. - Ernst Mueller House, 6563 East Avenue, Rancho Cucamonga, San Bernardino County, CA
Skylab Concept by George Mueller
NASA Technical Reports Server (NTRS)
1966-01-01
This is a sketch of Skylab, as drawn by George E. Mueller, NASA associate administrator for Manned Space Flight. This concept drawing was created at a meeting at the Marshall Space Flight Center on August 19, 1966. The image details the station's major elements. In 1970, the station became known as Skylab. Three manned Skylab missions (Skylab 2 in May 1973; Skylab 3 in July 1973; and Skylab 4 in November 1973) were flown on which experiments were conducted in:space science, earth resources, life sciences, space technology, and student projects.
Arwin, H; Mendoza-Galván, A; Magnusson, R; Andersson, A; Landin, J; Järrendahl, K; Garcia-Caurel, E; Ossikovski, R
2016-07-15
Transmission Mueller-matrix spectroscopic ellipsometry is applied to the cuticle of the beetle Cetonia aurata in the spectral range 300-1000 nm. The cuticle is optically reciprocal and exhibits circular Bragg filter features for green light. By using differential decomposition of the Mueller matrix, the circular and linear birefringence as well as dichroism of the beetle cuticle are quantified. A maximum value of structural optical activity of 560°/mm is found. PMID:27420518
Determination of Matrix Diffusion Properties of Granite
Holtta, Pirkko; Siitari-Kauppi, Marja; Huittinen, Nina; Poteri, Antti
2007-07-01
Rock-core column experiments were introduced to estimate the diffusion and sorption properties of Kuru Grey granite used in block-scale experiments. The objective was to examine the processes causing retention in solute transport through rock fractures, especially matrix diffusion. The objective was also to estimate the importance of retention processes during transport in different scales and flow conditions. Rock-core columns were constructed from cores drilled into the fracture and were placed inside tubes to form flow channels in the 0.5 mm gap between the cores and the tube walls. Tracer experiments were performed using uranin, HTO, {sup 36}Cl, {sup 131}I, {sup 22}Na and {sup 85}Sr at flow rates of 1-50 {mu}L.min{sup -1}. Rock matrix was characterized using {sup 14}C-PMMA method, scanning electron microscopy (SEM), energy dispersive X-ray micro analysis (EDX) and the B.E.T. method. Solute mass flux through a column was modelled by applying the assumption of a linear velocity profile and molecular diffusion. Coupling of the advection and diffusion processes was based on the model of generalised Taylor dispersion in the linear velocity profile. Experiments could be modelled applying a consistent parameterization and transport processes. The results provide evidence that it is possible to investigate matrix diffusion at the laboratory scale. The effects of matrix diffusion were demonstrated on the slightly-sorbing tracer breakthrough curves. Based on scoping calculations matrix diffusion begins to be clearly observable for non-sorbing tracer when the flow rate is 0.1 {mu}L.min{sup -1}. The experimental results presented here cannot be transferred directly to the spatial and temporal scales that prevail in an underground repository. However, the knowledge and understanding of transport and retention processes gained from this study is transferable to different scales from laboratory to in-situ conditions. (authors)
Ossikovski, Razvigor; Vizet, Jérémy
2016-07-01
We report on the identification of the two algebraic invariants inherent to Mueller matrix polarimetry measurements performed through double pass illumination-collection optics (e.g., an optical fiber or an objective) of unknown polarimetric response. The practical use of the invariants, potentially applicable to the characterization of nonreciprocal media, is illustrated on experimental examples. PMID:27367103
View of northern portion of Mueller property, looking south. Row ...
View of northern portion of Mueller property, looking south. Row of magnolia trees along western property boundary on East Avenue. - Ernst Mueller House, 6563 East Avenue, Rancho Cucamonga, San Bernardino County, CA
View of northwest portion of Mueller property, looking southeast. Row ...
View of northwest portion of Mueller property, looking southeast. Row of magnolia trees along western boundary on east avenue. - Ernst Mueller House, 6563 East Avenue, Rancho Cucamonga, San Bernardino County, CA
View of northern portion of Mueller property from the intersection ...
View of northern portion of Mueller property from the intersection of East Avenue and Highland Avenue, looking south. North side of the Mueller House visible in the background. Remnants of citrus grove in background. - Ernst Mueller House, 6563 East Avenue, Rancho Cucamonga, San Bernardino County, CA
Fast determination of the optimal rotational matrix for macromolecular superpositions.
Liu, Pu; Agrafiotis, Dimitris K; Theobald, Douglas L
2010-05-01
Finding the rotational matrix that minimizes the sum of squared deviations between two vectors is an important problem in bioinformatics and crystallography. Traditional algorithms involve the inversion or decomposition of a 3 x 3 or 4 x 4 matrix, which can be computationally expensive and numerically unstable in certain cases. Here, we present a simple and robust algorithm to rapidly determine the optimal rotation using a Newton-Raphson quaternion-based method and an adjoint matrix. Our method is at least an order of magnitude more efficient than conventional inversion/decomposition methods, and it should be particularly useful for high-throughput analyses of molecular conformations. PMID:20017124
Statistical analysis of effective singular values in matrix rank determination
NASA Technical Reports Server (NTRS)
Konstantinides, Konstantinos; Yao, Kung
1988-01-01
A major problem in using SVD (singular-value decomposition) as a tool in determining the effective rank of a perturbed matrix is that of distinguishing between significantly small and significantly large singular values to the end, conference regions are derived for the perturbed singular values of matrices with noisy observation data. The analysis is based on the theories of perturbations of singular values and statistical significance test. Threshold bounds for perturbation due to finite-precision and i.i.d. random models are evaluated. In random models, the threshold bounds depend on the dimension of the matrix, the noisy variance, and predefined statistical level of significance. Results applied to the problem of determining the effective order of a linear autoregressive system from the approximate rank of a sample autocorrelation matrix are considered. Various numerical examples illustrating the usefulness of these bounds and comparisons to other previously known approaches are given.
70 kHz full 4x4 Mueller polarimeter and simultaneous fiber calibration for endoscopic applications.
Rivet, Sylvain; Bradu, Adrian; Podoleanu, Adrian
2015-09-01
A new set-up is proposed to measure the full polarimetric properties of a sample through an optical fiber, paving the way to full-Mueller endoscopic imaging. The technique combines a channeled spectrum polarimeter and an interferometer. This permits high-speed measurement of two Mueller matrices simultaneously. The first matrix characterizes only the fiber while the second characterizes both fiber and sample. The instrument is validated on vacuum, a quarter-wave plate and a linear polarizer for single-point measurements. Insensitivity of the polarimetric measurement to fiber disturbances is proven while manipulating the fiber. PMID:26368471
RF system calibration for global Q matrix determination.
Padormo, Francesco; Beqiri, Arian; Malik, Shaihan J; Hajnal, Joseph V
2016-06-01
The use of multiple transmission channels (known as Parallel Transmission, or PTx) provides increased control of the MRI signal formation process. This extra flexibility comes at a cost of uncertainty of the power deposited in the patient under examination: the electric fields produced by each transmitter can interfere in such a way to lead to excessively high heating. Although it is not possible to determine local heating, the global Q matrix (which allows the whole-body Specific Absorption Rate (SAR) to be known for any PTx pulse) can be measured in-situ by monitoring the power incident upon and reflected by each transmit element during transmission. Recent observations have shown that measured global Q matrices can be corrupted by losses between the coil array and location of power measurement. In this work we demonstrate that these losses can be accounted for, allowing accurate global Q matrix measurement independent of the location of the power measurement devices. PMID:26747407
RF system calibration for global Q matrix determination
Padormo, Francesco; Beqiri, Arian; Malik, Shaihan J.; Hajnal, Joseph V.
2016-01-01
The use of multiple transmission channels (known as Parallel Transmission, or PTx) provides increased control of the MRI signal formation process. This extra flexibility comes at a cost of uncertainty of the power deposited in the patient under examination: the electric fields produced by each transmitter can interfere in such a way to lead to excessively high heating. Although it is not possible to determine local heating, the global Q matrix (which allows the whole-body Specific Absorption Rate (SAR) to be known for any PTx pulse) can be measured in-situ by monitoring the power incident upon and reflected by each transmit element during transmission. Recent observations have shown that measured global Q matrices can be corrupted by losses between the coil array and location of power measurement. In this work we demonstrate that these losses can be accounted for, allowing accurate global Q matrix measurement independent of the location of the power measurement devices. PMID:26747407
An Empirical State Error Covariance Matrix Orbit Determination Example
NASA Technical Reports Server (NTRS)
Frisbee, Joseph H., Jr.
2015-01-01
State estimation techniques serve effectively to provide mean state estimates. However, the state error covariance matrices provided as part of these techniques suffer from some degree of lack of confidence in their ability to adequately describe the uncertainty in the estimated states. A specific problem with the traditional form of state error covariance matrices is that they represent only a mapping of the assumed observation error characteristics into the state space. Any errors that arise from other sources (environment modeling, precision, etc.) are not directly represented in a traditional, theoretical state error covariance matrix. First, consider that an actual observation contains only measurement error and that an estimated observation contains all other errors, known and unknown. Then it follows that a measurement residual (the difference between expected and observed measurements) contains all errors for that measurement. Therefore, a direct and appropriate inclusion of the actual measurement residuals in the state error covariance matrix of the estimate will result in an empirical state error covariance matrix. This empirical state error covariance matrix will fully include all of the errors in the state estimate. The empirical error covariance matrix is determined from a literal reinterpretation of the equations involved in the weighted least squares estimation algorithm. It is a formally correct, empirical state error covariance matrix obtained through use of the average form of the weighted measurement residual variance performance index rather than the usual total weighted residual form. Based on its formulation, this matrix will contain the total uncertainty in the state estimate, regardless as to the source of the uncertainty and whether the source is anticipated or not. It is expected that the empirical error covariance matrix will give a better, statistical representation of the state error in poorly modeled systems or when sensor performance
View of the northwest portion of Mueller property from the ...
View of the northwest portion of Mueller property from the intersection of East Avenue and Highland Avenue, looking southeast. Row of Magnolia trees along western property boundary. Remnants of citrus grove in background. - Ernst Mueller House, 6563 East Avenue, Rancho Cucamonga, San Bernardino County, CA
Determining material properties of metal-matrix composites by NDE
NASA Astrophysics Data System (ADS)
Liaw, P. K.; Shannon, R. E.; Clark, W. G.; Harrigan, W. C.; Jeong, H.; Hsu, D. K.
1992-10-01
Nondestructive evaluation (NDE) is a promising means of studying silicon carbide particulate (SiCp)-reinforced aluminum metal-matrix composite (MMC) products at various processing stages. Eddy current techniques are effective in characterizing alloy powders and in evaluating the percentage of reinforcement in Al/SiCp powder mixtures. Ultrasonic methods can be used to identify SiCp clusters in large-scale, powder metallurgy processed MMC billets, while eddy current techniques can detect near-surface density variations. Ultrasonic techniques can also be used to determine the anisotropic stiffness constants of composite extrusions; the measured moduli are in good agreement with those determined by tensile testing. These results suggest that NDE can be used to provide on-line, closed-loop control of MMC manufacturing.
Two-vector representation of a nondepolarizing Mueller matrix
NASA Astrophysics Data System (ADS)
Gil, José J.; San José, Ignacio
2016-09-01
A geometric view of the polarimetric properties of a nondepolarizing medium is presented by means of a pair of vectors in the Poincaré sphere. An alternative representation constituted by a set of vectors contained in the equatorial plane of the Poincaré sphere is also defined and interpreted. The analyses of the magnitudes and relative orientations of the constitutive vectors of such simple representations allow for a classification of nondepolarizing media.
19. MUELLER FIRE HYDRANT NEAR LAUNCHING PAD IN STATION "0". ...
19. MUELLER FIRE HYDRANT NEAR LAUNCHING PAD IN STATION "0". - Edwards Air Force Base, South Base Sled Track, Edwards Air Force Base, North of Avenue B, between 100th & 140th Streets East, Lancaster, Los Angeles County, CA
Kate Hevner Mueller: Woman for a Changing World.
ERIC Educational Resources Information Center
Coomes, Michael D.; And Others
1987-01-01
Presents biographical information, career recollections, and responses to counseling issues from Kate Hevner Mueller, former Dean of Women at Indiana University and matriarch of a student affairs preparation program. (ABB)
Dr. Hugh Dryden Swearing in Dr. George E. Mueller
NASA Technical Reports Server (NTRS)
1963-01-01
Dr. George E. Mueller being sworn in, as Associate Administrator for the Office of Manned Space Flight for NASA, by Dr. Hugh L. Dryden NASAs Deputy Administrator. The ceremony took place at NASA HQ in Washington, DC on September 3, 1963. Mueller served as Associate Administrator from 1963 to 1969, where he was responsible for overseeing the completion of Project Apollo and for beginning the development of the Space Shuttle.
Attitude determination using vector observations: A fast optimal matrix algorithm
NASA Technical Reports Server (NTRS)
Markley, F. Landis
1993-01-01
The attitude matrix minimizing Wahba's loss function is computed directly by a method that is competitive with the fastest known algorithm for finding this optimal estimate. The method also provides an estimate of the attitude error covariance matrix. Analysis of the special case of two vector observations identifies those cases for which the TRIAD or algebraic method minimizes Wahba's loss function.
NASA Astrophysics Data System (ADS)
Babilotte, P.; Dubreuil, M.; Rivet, S.; Lijour, Y.; Sevrain, D.; Martin, L.; Le Brun, G.; Le Grand, Y.; Le Jeune, B.
2011-10-01
Human liver biopsy samples, consisting into a 16 μm thickness biomaterial chemically fixed into a formaldehyde matrix, and stained by red picrosirius dye, are analysed for different states of fibrosis degeneration. Polarimetric methods, and specially Mueller polarimetry based on wavelength coding, have been qualified as an efficient tool to describe many different biological aspects. The polarimetric characteristics of the media, extracted from a Lu and Chipman decomposition1, 2 of their Mueller Matrix (MM), are correlated with the degeneracy level of tissue. Different works and results linked to the clinical analysis will be presented and compared to previous performed works.3 Polarimetric imaging will be presented and compared with SHG measurements. A statistical analysis of the distribution of polarimetric parameters (such as the retardance R and depolarisation Pd) will be presented too, in order to characterise the liver fibrosis level into the biomaterial under study.
Ground Operations of the ISS GNC Babb-Mueller Atmospheric Density Model
NASA Technical Reports Server (NTRS)
Brogan, Jonathan
2002-01-01
The ISS GNC system was updated recently with a new software release that provides onboard state determination capability. Prior to this release, only the Russian segment maintained and propagated the onboard state, which was periodically updated through Russian ground tracking. The new software gives the US segment the capability for maintaining the onboard state, and includes new GPS and state vector propagation capabilities. Part of this software package is an atmospheric density model based on the Babb-Mueller algorithm. Babb-Mueller efficiently mimics a full analytical density model, such as the Jacchia model. While lacchia is very robust and is used in the Mission Control Center, it is too computationally intensive for use onboard. Thus, Babb-Mueller was chosen as an alternative. The onboard model depends on a set of calibration coefficients that produce a curve fit to the lacchia model. The ISS GNC system only maintains one set of coefficients onboard, so a new set must be uplinked by controllers when the atmospheric conditions change. The onboard density model provides a real-time density value, which is used to calculate the drag experienced by the ISS. This drag value is then incorporated into the onboard propagation of the state vector. The propagation of the state vector, and therefore operation of the BabbMueller algorithm, will be most critical when GPS updates and secondary state vector sources fail. When GPS is active, the onboard state vector will be updated every ten seconds, so the propagation error is irrelevant. When GPS is inactive, the state vector must be updated at least every 24 hours, based on current protocol. Therefore, the Babb-Mueller coefficients must be accurate enough to fulfill the state vector accuracy requirements for at least one day. A ground operations concept was needed in order to manage both the on board Babb-Mueller density model and the onboard state quality. The Babb-Mueller coefficients can be determined operationally
Mueller-Lyer decrement: practice or prolonged inspection?
NASA Technical Reports Server (NTRS)
Schiano, D. J.; Jordan, K.
1990-01-01
Noting the similarity between the illusion decrement and selective adaptation paradigms, Long has challenged the view that illusion decrement effects reflect a strategic--as opposed to a structural--underlying mechanism, and has called for further research on this issue. To investigate the confound between prolonged free inspection and repeated trials in the standard decrement procedure, the effects of three inspection conditions (continuous, intermittent, and immediate) on the magnitude of the overestimation Mueller-Lyer illusion have been assessed under two levels of trials (a total of two or six judgments). Significant illusion decline was found only under conditions of repeated trials, with either continuous or intermittent inspection. These findings do not support the predictions of purely structural theories (including neural adaptation and efferent readiness theories), according to which degree of decrement should be determined solely by viewing time. Instead, the data demonstrate that illusion decrement is a product of practice, providing converging evidence for the view of decrement as involving a cognitive 'recalibration' or learning process.
Some measurements for determining strangeness matrix elements in the nucleon
Henley, E.M.; Pollock, S.J.; Ying, S. ); Frederico, T. , Sao Jose dos Campos, SP . Inst. de Estudos Avancados); Krein, . Inst. de Fisica Teorica); Williams, A.G. )
1991-01-01
Some experiments to measure strangeness matrix elements of the proton are proposed. Two of these suggestions are described in some detail, namely electro-production of phi mesons and the difference between neutrino and antineutrino scattering for isospin zero targets such as deuterium.
Some measurements for determining strangeness matrix elements in the nucleon
Henley, E.M.; Pollock, S.J.; Ying, S.; Frederico, T.; Krein,; Williams, A.G.
1991-12-31
Some experiments to measure strangeness matrix elements of the proton are proposed. Two of these suggestions are described in some detail, namely electro-production of phi mesons and the difference between neutrino and antineutrino scattering for isospin zero targets such as deuterium.
Sudakov resummations in Mueller-Navelet dijet production
NASA Astrophysics Data System (ADS)
Mueller, A. H.; Szymanowski, Lech; Wallon, Samuel; Xiao, Bo-Wen; Yuan, Feng
2016-03-01
In high energy hadron-hadron collisions, dijet production with large rapidity separation proposed by Mueller and Navelet, is one of the most interesting processes which can help us to directly access the well-known Balitsky-Fadin-Kuraev-Lipatov evolution dynamics. The objective of this work is to study the Sudakov resummation of Mueller-Navelet jets. Through the one-loop calculation, Sudakov type logarithms are obtained for this process when the produced dijets are almost back-to-back. These results could play an important role in the phenomenological study of dijet correlations with large rapidity separation at the LHC.
Determination of the full scattering matrix using coherent Fourier scatterometry.
Kumar, Nitish; Cisotto, Luca; Roy, Sarathi; Ramanandan, Gopika K P; Pereira, Silvania F; Paul Urbach, H
2016-06-01
We demonstrate a method to obtain within an arbitrary numerical aperture (NA) the entire scattering matrix of a scatterer by using focused beam coherent Fourier scatterometry. The far-field intensities of all scattered angles within the NA of the optical system are obtained in one shot. The corresponding phases of the field are obtained by an interferometric configuration. This method enables the retrieval of the maximum available information about the scatterer from scattered far-field data contained in the given NA of the system. PMID:27411195
Extracellular matrix structure and nano-mechanics determine megakaryocyte function.
Malara, Alessandro; Gruppi, Cristian; Pallotta, Isabella; Spedden, Elise; Tenni, Ruggero; Raspanti, Mario; Kaplan, David; Tira, Maria Enrica; Staii, Cristian; Balduini, Alessandra
2011-10-20
Cell interactions with matrices via specific receptors control many functions, with chemistry, physics, and membrane elasticity as fundamental elements of the processes involved. Little is known about how biochemical and biophysical processes integrate to generate force and, ultimately, to regulate hemopoiesis into the bone marrow-matrix environment. To address this hypothesis, in this work we focus on the regulation of MK development by type I collagen. By atomic force microscopy analysis, we demonstrate that the tensile strength of fibrils in type I collagen structure is a fundamental requirement to regulate cytoskeleton contractility of human MKs through the activation of integrin-α2β1-dependent Rho-ROCK pathway and MLC-2 phosphorylation. Most importantly, this mechanism seemed to mediate MK migration, fibronectin assembly, and platelet formation. On the contrary, a decrease in mechanical tension caused by N-acetylation of lysine side chains in type I collagen completely reverted these processes by preventing fibrillogenesis. PMID:21828129
Structural Determinants of Binding of Aromates to Extracellular Matrix
Zhang, Yufen; Lukacova, Viera; Bartus, Vladimir; Balaz, Stefan
2008-01-01
For small molecules acting in tissues, including signaling peptides, effectors, inhibitors, and other drug candidates, nonspecific binding to the extracellular matrix (ECM) is a critical phenomenon affecting their disposition, toxicity, and other effects. A commercially available ECM mimic, forming a solidified layer at the bottom of the vials, was used to measure the association constants of 25 simple aromatic compounds to two forms of ECM proteins, solidified (s-ECM) and dissolved (d-ECM) in the buffer during the incubation. Except for small homologous series, the binding data did not correlate with the lipophilicity and acidity of the compounds, contrary to a common expectation for nonspecific binding. To elucidate the putative structures of averaged binding sites of s-ECM and d-ECM, the Comparative Molecular Field Analysis (CoMFA) was applied in a modified version taking into consideration that multiple modes and multiple species may be involved. The method shapes a receptor site model from a set of grid points, in which the interaction energies between a probe atom and superimposed ligands are calculated. Electrostatic and steric energies in the grid points are characterized by regression coefficients. The forward-selection, nonlinear regression analysis was used to optimize the coefficients in the novel multi-species, multi-mode CoMFA models. These models showed satisfactory descriptive and predictive abilities for both s-ECM and d-ECM binding data, which were better than those obtained with the standard, one-mode CoMFA analysis. The calibrated models, defining the electrostatic and van der Waals regions of putative binding sites, are suitable for the prediction of ECM binding for untested chemicals. PMID:17226922
Experimental determination of the density matrix describing collisionally produced H(n = 3) atoms
Havener, C.C.; Rouze, N.; Westerveld, W.B.; Risley, A.J.S.
1986-01-01
An experimental technique and analysis procedure is described for determining the axially symmetric density matrix for collisionally produced H(n = 3) atoms by measuring the Stokes parameters which characterize the emitted Balmer- radiation as a function of axial and transverse electric fields applied in the collision cell. The electric fields induce strong characteristic variations in the Stokes parameters. The 14 independent elements of the density matrix are determined by fitting the observed Stokes parameters with signals calculated from a theoretical analysis of the experiment. The physical interpretation of the density matrix is presented in terms of graphs of the electron probability distribution and the electron current distribution. Examples of the determination of the density matrix are given for 40-, 60-, and 80-keV H +He electron-transfer collisions.
Second harmonic generation double stokes Mueller polarimetric microscopy of myofilaments
Kontenis, Lukas; Samim, Masood; Karunendiran, Abiramy; Krouglov, Serguei; Stewart, Bryan; Barzda, Virginijus
2016-01-01
The experimental implementation of double Stokes Mueller polarimetric microscopy is presented. This technique enables a model-independent and complete polarimetric characterization of second harmonic generating samples using 36 Stokes parameter measurements at different combinations of incoming and outgoing polarizations. The degree of second harmonic polarization and the molecular nonlinear susceptibility ratio are extracted for individual focal volumes of a fruit fly larva wall muscle. PMID:26977362
Sonic hedgehog promotes stem-cell potential of Mueller glia in the mammalian retina
Wan Jin; Zheng Hua; Xiao Honglei; She Zhenjue; Zhou Guomin
2007-11-16
Mueller glia have been demonstrated to display stem-cell properties after retinal damage. Here, we report this potential can be regulated by Sonic hedgehog (Shh) signaling. Shh can stimulate proliferation of Mueller glia through its receptor and target gene expressed on them, furthermore, Shh-treated Mueller glia are induced to dedifferentiate by expressing progenitor-specific markers, and then adopt cell fate of rod photoreceptor. Inhibition of signaling by cyclopamine inhibits proliferation and dedifferentiation. Intraocular injection of Shh promotes Mueller glia activation in the photoreceptor-damaged retina, Shh also enhances neurogenic potential by producing more rhodopsin-positive photoreceptors from Mueller glia-derived cells. Together, these results provide evidences that Mueller glia act as potential stem cells in mammalian retina, Shh may have therapeutic effects on these cells for promoting the regeneration of retinal neurons.
Stiffness matrix determination of composite materials using lamb wave group velocity measurements
NASA Astrophysics Data System (ADS)
Putkis, O.; Croxford, A. J.
2013-04-01
The use of Lamb waves in Non-Destructive Evaluation (NDE) and Structural Health Monitoring (SHM) is gaining popularity due to their ability to travel long distances without significant attenuation, therefore offering large area inspections with a small number of sensors. The design of a Lamb-wave-based NDE/SHM system for composite materials is more complicated than for metallic materials due to the directional dependence of Lamb wave propagation characteristics such as dispersion and group velocity. Propagation parameters can be theoretically predicted from known material properties, specifically the stiffness matrix and density. However, in practice it is difficult to obtain the stiffness matrix of a particular material or structure with high accuracy, hence introducing errors in theoretical predictions and inaccuracies in the resulting propagation parameters. Measured Lamb wave phase velocities can be used to infer the stiffness matrix, but the measurements are limited to the principal directions due to the steering effect (different propagation directions of phase and corresponding group velocities). This paper proposes determination of the stiffness matrix from the measured group velocities, which can be unambiguously measured in any direction. A highly anisotropic carbon-fibre-reinforced polymer plate is chosen for the study. The influence of different stiffness matrix elements on the directional group velocity profile is investigated. Thermodynamic Simulated Annealing (TSA) is used as a tool for inverse, multi variable inference of the stiffness matrix. A good estimation is achieved for particular matrix elements.
Efficient computation of Hamiltonian matrix elements between non-orthogonal Slater determinants
NASA Astrophysics Data System (ADS)
Utsuno, Yutaka; Shimizu, Noritaka; Otsuka, Takaharu; Abe, Takashi
2013-01-01
We present an efficient numerical method for computing Hamiltonian matrix elements between non-orthogonal Slater determinants, focusing on the most time-consuming component of the calculation that involves a sparse array. In the usual case where many matrix elements should be calculated, this computation can be transformed into a multiplication of dense matrices. It is demonstrated that the present method based on the matrix-matrix multiplication attains ˜80% of the theoretical peak performance measured on systems equipped with modern microprocessors, a factor of 5-10 better than the normal method using indirectly indexed arrays to treat a sparse array. The reason for such different performances is discussed from the viewpoint of memory access.
Parametric studies to determine the effect of compliant layers on metal matrix composite systems
NASA Technical Reports Server (NTRS)
Caruso, J. J.; Chamis, C. C.; Brown, H. C.
1990-01-01
Computational simulation studies are conducted to identify compliant layers to reduce matrix stresses which result from the coefficient of thermal expansion mismatch and the large temperature range over which the current metal matrix composites will be used. The present study includes variations of compliant layers and their properties to determine their influence on unidirectional composite and constituent response. Two simulation methods are used for these studies. The first approach is based on a three-dimensional linear finite element analysis of a 9 fiber unidirectional composite system. The second approach is a micromechanics based nonlinear computer code developed to determine the behavior of metal matrix composite system for thermal and mechanical loads. The results show that an effective compliant layer for the SCS 6 (SiC)/Ti-24Al-11Nb (Ti3Al + Nb) and SCS 6 (SiC)/Ti-15V-3Cr-3Sn-3Al (Ti-15-3) composite systems should have modulus 15 percent that of the matrix and a coefficient of thermal expansion of the compliant layer roughly equal to that of the composite system without the CL. The matrix stress in the longitudinal and the transverse tangent (loop) direction are tensile for the Ti3Al + Nb and Ti-15-3 composite systems upon cool down from fabrication. The fiber longitudinal stress is compressive from fabrication cool down. Addition of a recommended compliant layer will result in a reduction in the composite modulus.
Ziaková, Alica; Brandsteterová, Eva; Blahová, Eva
2003-01-01
Matrix solid-phase dispersion (MSPD) was used for sample preparation of plant material (Melissa officinalis, Lemon Balm) prior to liquid chromatography of rosmarinic, caffeic and protocatechuic acids, phenolic compounds present in this herb. Different MSPD sorbents and various elution agents were tested and the optimal extraction conditions determined with the aim to obtain extraction recoveries greater than 90% for all analytes. PMID:12568390
Technology Transfer Automated Retrieval System (TEKTRAN)
A multi-spectral fluorescence imaging technique was used to detect defect cherry tomatoes. The fluorescence excitation and emission matrix was used to measure for defects, sound surface, and stem areas to determine the optimal fluorescence excitation and emission wavelengths for discrimination. Two-...
Determining the Number of Components from the Matrix of Partial Correlations
ERIC Educational Resources Information Center
Velicer, Wayne F.
1976-01-01
A method is presented for determining the number of components to retain in a principal components or image components analysis which utilizes a matrix of partial correlations. Advantages and uses of the method are discussed and a comparison of the proposed method with existing methods is presented. (JKS)
Determination of δ88/86Sr Using Matrix Correction by MC-ICP-MS
NASA Astrophysics Data System (ADS)
Zhu, B.; Yang, T.; Bian, X. P.; Zhu, Z. Y.
2014-12-01
Stable Sr isotopic compositions (δ88/86Sr) in marine carbonates potentially provide key information on paleoseawater temperature (Rüggeberg et al. 2008). Traditional methods for δ88/86Sr determination by 87Sr-84Sr double-spike TIMS or MC-ICP-MS require chemical purification of Sr before spectrometric measurements because of matrix effects. Recent studies suggested that the matrix-matching method, in which matrix-matched standard solutions were used to bracket untreated water samples, gave precise and accurate results for sulfur isotopic ratios by MC-ICP-MS (Lin et al., 2014). The obvious advantage of this method is that there is no need for chemical purification, thus eliminating the possibility of isotope fractionation during the ion chromatography and expediting sample throughput. In this study, we applied the matrix-matching method to δ88/86Sr determination by MC-ICP-MS. NIST 987 Sr solution and a purified seawater sample (collected from the South China Sea) were selected for this study. Given that major matrices in carbonate come form Ca2+, NIST 987 and SW solutions containing 40 ppm Ca2+ were prepared by adding high-purity Ca solution. All solutions used contained 200 ppb Sr and the 88Sr/86Sr ratios were measured using a Neptune MC-ICP-MS. The purified SW was first determined using SSB method, in which pure NIST 987 was used as standard to bracket SW and yielded δ88/86Sr value of 0.366 ± 0.008‰ (2SE, n = 10). The δ88/86Sr values of Ca-bearing SW were then measured by using pure NIST 987 solution as the working standard to investigate matrix effects. The determined δ88/86Sr value (0.039 ± 0.021‰; 2SE, n = 10) deviated obviously from the reference value. Finally, the matrix-matched NIST 987 was applied as the working standard to bracket the Ca-bearing SW, and the measured δ88/86Sr value is 0.351 ± 0.009‰ (2SE, n = 10), consistent with the reference value within uncertainties. The consistent δ88/86Sr values and comparable external precision
Optimization of the determinant of the Vandermonde matrix and related matrices
Lundengård, Karl; Österberg, Jonas; Silvestrov, Sergei
2014-12-10
Various techniques for interpolation of data, moment matching in stochastic applications and various methods in numerical analysis can be described using Vandermonde matrices. For this reason the properties of the determinant of the Vandermonde matrix and related matrices are interesting. Here the extreme points of the Vandermonde determinant, and related determinants, on some simple surfaces such as the unit sphere are analyzed, both numerically and analytically. Some results are also visualized in various dimensions. The extreme points of the Vandermonde determinant are also related to the roots of certain orthogonal polynomials such as the Hermite polynomials.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-07
... October 25, 2010 (75 FR 65519). ] At the request of the State agency, the Department reviewed the... Employment and Training Administration Mueller Steam Specialty Formerly Known As Core Industries Including... Assistance on October 7, 2010, applicable to workers of Mueller Steam Specialty, including on-site...
Lin, Psang Dain
2012-02-01
The first-order derivative matrix of a function with respect to a variable vector is referred to as the Jacobian matrix in mathematics. Current commercial software packages for the analysis and design of optical systems use a finite difference (FD) approximation methodology to estimate the Jacobian matrix of the wavefront aberration with respect to all of the independent system variables in a single raytracing pass such that the change of the wavefront aberration can be determined simply by computing the product of the developed Jacobian matrix and the corresponding changes in the system variables. The proposed method provides an ideal basis for automatic optical system design applications in which the merit function is defined in terms of wavefront aberration. The validity of the proposed approach is demonstrated by means of two illustrative examples. It is shown that the proposed method requires fewer iterations than the traditional FD approach and yields a more reliable and precise optimization performance. However, the proposed method incurs an additional CPU overhead in computing the Jacobian matrix of the merit function. As a result, the CPU time required to complete the optimization process is longer than that required by the FD method. PMID:22307119
Hepatocyte fate upon TGF-β challenge is determined by the matrix environment.
Meyer, Christoph; Liebe, Roman; Breitkopf-Heinlein, Katja; Liu, Yan; Müller, Alexandra; Rakoczy, Pia; Thomas, Maria; Weng, Honglei; Bachmann, Anastasia; Ebert, Matthias; Dooley, Steven
2015-06-01
Primary hepatocytes are a versatile tool to investigate all aspects of liver function, and frequently used in drug development and testing. Upon TGF-β challenge, hepatocytes either undergo an epithelial to mesenchymal transition (EMT) or apoptosis: culture on stiff collagen (monolayer) results in EMT whereas hepatocytes in a soft collagen matrix (sandwich) undergo programmed cell death. In this study, we analyzed the transcriptional programs triggered by TGF-β under different culture conditions. Our results indicate that TGF-β initiates an identical transcription profile in hepatocytes irrespective of the cellular environment. The fact that we nevertheless observe two vastly different phenotypes indicates that the matrix environment rather than the TGF-β induced expression signature is the major determinant of the hepatocellular response. To confirm the impact of the surrounding matrix environment on the hepatocytes׳ phenotype in response to TGF-β signaling, we studied the effect of Snail overexpression and knockout in both culture conditions. Neither genetic manipulation showed an impact on hepatocytes' fate upon TGF-β treatment, confirming the crucial role of the surrounding matrix. Our findings provide novel insights into the hepatocellular basis of the fate decision between EMT and apoptotic cell death, and might explain why liver cells can react in very different manners to identical stimuli when tissue remodeling has changed the matrix environment, as occurs in a fibrotic liver. PMID:25982745
A high definition Mueller polarimetric endoscope for tissue characterisation
Qi, Ji; Elson, Daniel S.
2016-01-01
The contrast mechanism of medical endoscopy is mainly based on metrics of optical intensity and wavelength. As another fundamental property of light, polarization can not only reveal tissue scattering and absorption information from a different perspective, but can also provide insight into directional tissue birefringence properties to monitor pathological changes in collagen and elastin. Here we demonstrate a low cost wide field high definition Mueller polarimetric endoscope with minimal alterations to a rigid endoscope. We show that this novel endoscopic imaging modality is able to provide a number of image contrast mechanisms besides traditional unpolarized radiation intensity, including linear depolarization, circular depolarization, cross-polarization, directional birefringence and dichroism. This enhances tissue features of interest, and additionally reveals tissue micro-structure and composition, which is of central importance for tissue diagnosis and image guidance for surgery. The potential applications of the Mueller polarimetric endoscope include wide field early epithelial cancer diagnosis, surgical margin detection and energy-based tissue fusion monitoring, and could further benefit a wide range of endoscopic investigations through intra-operative guidance. PMID:27173145
A high definition Mueller polarimetric endoscope for tissue characterisation.
Qi, Ji; Elson, Daniel S
2016-01-01
The contrast mechanism of medical endoscopy is mainly based on metrics of optical intensity and wavelength. As another fundamental property of light, polarization can not only reveal tissue scattering and absorption information from a different perspective, but can also provide insight into directional tissue birefringence properties to monitor pathological changes in collagen and elastin. Here we demonstrate a low cost wide field high definition Mueller polarimetric endoscope with minimal alterations to a rigid endoscope. We show that this novel endoscopic imaging modality is able to provide a number of image contrast mechanisms besides traditional unpolarized radiation intensity, including linear depolarization, circular depolarization, cross-polarization, directional birefringence and dichroism. This enhances tissue features of interest, and additionally reveals tissue micro-structure and composition, which is of central importance for tissue diagnosis and image guidance for surgery. The potential applications of the Mueller polarimetric endoscope include wide field early epithelial cancer diagnosis, surgical margin detection and energy-based tissue fusion monitoring, and could further benefit a wide range of endoscopic investigations through intra-operative guidance. PMID:27173145
A high definition Mueller polarimetric endoscope for tissue characterisation
NASA Astrophysics Data System (ADS)
Qi, Ji; Elson, Daniel S.
2016-05-01
The contrast mechanism of medical endoscopy is mainly based on metrics of optical intensity and wavelength. As another fundamental property of light, polarization can not only reveal tissue scattering and absorption information from a different perspective, but can also provide insight into directional tissue birefringence properties to monitor pathological changes in collagen and elastin. Here we demonstrate a low cost wide field high definition Mueller polarimetric endoscope with minimal alterations to a rigid endoscope. We show that this novel endoscopic imaging modality is able to provide a number of image contrast mechanisms besides traditional unpolarized radiation intensity, including linear depolarization, circular depolarization, cross-polarization, directional birefringence and dichroism. This enhances tissue features of interest, and additionally reveals tissue micro-structure and composition, which is of central importance for tissue diagnosis and image guidance for surgery. The potential applications of the Mueller polarimetric endoscope include wide field early epithelial cancer diagnosis, surgical margin detection and energy-based tissue fusion monitoring, and could further benefit a wide range of endoscopic investigations through intra-operative guidance.
Local 3D matrix confinement determines division axis through cell shape
He, Lijuan; Chen, Weitong; Wu, Pei-Hsun; Jimenez, Angela; Wong, Bin Sheng; San, Angela; Konstantopoulos, Konstantinos; Wirtz, Denis
2016-01-01
How the division axis is determined in mammalian cells embedded in three-dimensional (3D) matrices remains elusive, despite that many types of cells divide in 3D environments. Cells on two-dimensional (2D) substrates typically round up completely to divide. Here, we show that in 3D collagen matrices, mammalian cells such as HT1080 human fibrosarcoma and MDA-MB-231 breast cancer cells exhibit division modes distinct from their Counterparts on 2D substrates, with a markedly higher fraction of cells remaining highly elongated through mitosis in 3D matrices. The long axis of elongated mitotic cells accurately predicts the division axis, independently of matrix density and cell-matrix interactions. This 3D-specific elongated division mode is determined by the local confinement produced by the matrix and the ability of cells to protrude and locally remodel the matrix via β1 integrin. Elongated division is readily recapitulated using collagen-coated microfabricated channels. Cells depleted of β1 integrin still divide in the elongated mode in microchannels, suggesting that 3D confinement is sufficient to induce the elongated cell-division phenotype. PMID:26515603
Carson, Mary C; Bullock, Graham; Bebak-Williams, Julie
2002-01-01
This paper describes related procedures to determine the amount of oxytetracycline (OTC) present in trout tissue (muscle with skin attached), biofilter sand, sediment, and tank water from a recirculating aquaculture system. OTC was extracted from the matrixes by different techniques, depending on complexity of the matrix and desired OTC detection level in that matrix. Listed in order of increasing complexity, OTC was extracted from tank water by dilution with acidic buffer containing ethylenediaminetetraacetic acid (EDTA); from biofilter sand by shaking with 0.1 N HCl; from sediment by homogenization and shaking with buffer/EDTA; and from ground trout by homogenization and shaking with buffer/EDTA (twice), with further cleanup and concentration of the extract on a polymeric solid-phase extraction cartridge. The 4 procedures all used the same reversed-phase gradient chromatography on a polymeric column with UV detection at 350 nm. The lower limit of detection (estimated) and upper limit of validation for each of these 4 matrixes were 0.04-4.0 microg/g (ppm; trout), 0.03-20 ppm (biofilter sand), 1-6000 ppm (sediment), and 0.003-10 ppm (water). Recoveries ranged from 82 to 108%, with relative standard deviation <20% over the applicable concentration ranges. These procedures were used to monitor OTC residues resulting from medicated feed administered to rainbow trout in a recirculating aquaculture system. PMID:11990017
Smith, F.G.; Crain, J.S.
1995-12-31
The determination of thorium, uranium, and uranium progeny (e.g. {sup 226}Ra) in environmental samples is of considerable interest in terms of human health. Traditional radiochemical determinations of long-lived radioisotopes often require rigorous chemical separations and long duration measurements by techniques such as {alpha}-spectrometry. Inductively coupled plasma mass spectrometry (ICP-MS) offers sub-ppt (1 ng/L) detection limits for the actinides with minimal sample preparation and high sample throughput. However, sample preconcentration and/or matrix elimination is required to achieve required detection limits below 1ppq (1 pg/L). This paper describes a batch preconcentration/matrix elimination system for off-line sample preparation. An aliquot of an actinide selective polymer beads is added to a sample and pumped through a filter. Unbound sample matrix components are washed to waste then the beads with bound actinides are released in a small volume. The preconcentrate is then introduced to the ICP-MS by pneumatic or ultrasonic nebulization. Data for a variety of natural water matrices (well, spring, lake, river, and tapwater) will be presented.
Matrix solid phase dispersion method for determination of polycyclic aromatic hydrocarbons in moss.
Concha-Graña, Estefanía; Muniategui-Lorenzo, Soledad; De Nicola, Flavia; Aboal, Jesús R; Rey-Asensio, Ana Isabel; Giordano, Simonetta; Reski, Ralf; López-Mahía, Purificación; Prada-Rodríguez, Darío
2015-08-01
In this work a matrix solid-phase dispersion extraction method, followed by programmed temperature vaporization-gas chromatography-tandem mass spectrometry determination is proposed for the analysis of polycyclic aromatic hydrocarbons (PAHs) in moss samples. A devitalized, cultivated Sphagnum palustre L. moss clone obtained from the "Mossclone" EU-FP7 Project was used for the optimization and validation of the proposed method. Good trueness (84-116%), precision (intermediate precision lower than 11%) and sensitivity (quantitation limits lower than 1.7ngg(-1)) were obtained. The proposed method was compared with other procedures applied for this complex matrix, achieving a considerable reduction of sample amount, solvent volume and time consumption. The procedure was successfully tested for the analysis of PAHs in exposed moss clone samples for the monitoring of air pollution. Finally, the method was also tested for its suitability in the analysis of PAHs in other moss species as well as a lichen species. PMID:26105781
The biofilm matrix of Campylobacter jejuni determined by fluorescence lectin-binding analysis.
Turonova, Hana; Neu, Thomas R; Ulbrich, Pavel; Pazlarova, Jarmila; Tresse, Odile
2016-05-01
Campylobacter jejuni is responsible for the most common bacterial foodborne gastroenteritis. Despite its fastidious growth, it can survive harsh conditions through biofilm formation. In this work, fluorescence lectin-binding analysis was used to determine the glycoconjugates present in the biofilm matrix of two well-described strains. Screening of 72 lectins revealed strain-specific patterns with six lectins interacting with the biofilm matrix of both strains. The most common sugar moiety contained galactose and N-acetylgalactosamine. Several lectins interacted with N-acetylglucosamine and sialic acid, probably originated from the capsular polysaccharides, lipooligosaccharides and N-glycans of C. jejuni. In addition, glycoconjugates containing mannose and fucose were detected within the biofilm, which have not previously been found in the C. jejuni envelope. Detection of thioflavin T and curcumin highlighted the presence of amyloids in the cell envelope without association with specific cell appendages. The lectins ECA, GS-I, HMA and LEA constitute a reliable cocktail to detect the biofilm matrix of C. jejuni. PMID:27097059
Determination of the complex acoustic scattering matrix of a right-angled duct.
Graf, Thomas; Pan, Jie
2013-07-01
A method for determining the complete higher-order scattering matrix of an acoustic discontinuity is developed. The method is demonstrated for a right-angled waveguide bend, and the magnitude and phase of the reflection and transmission coefficients are extracted precisely. The procedure is straightforward and based on the solutions to the Helmholtz equation by the finite element method (FEM). The consistency of the scattering coefficients found by this method is verified by their properties of symmetry, and their accuracy is established by the conservation of energy. The reliability of the new technique is further proved by means of an arbitrary sound source and by comparing the direct FEM response to the reflection matrix calculation. Some features of the scattering matrix as a function of frequency are surprising, such as the steps and reversion of the phase evolution or the complete loss of transmission of the incoming wave. The methodology detailed in this paper can be extended to other multiport junctions, such as T-junctions or size discontinuities in ducts. PMID:23862807
NASA Astrophysics Data System (ADS)
Liu, Yizhuang; Nowak, Maciej A.; Zahed, Ismail
2016-08-01
We derive an exact formula for the stochastic evolution of the characteristic determinant of a class of deformed Wishart matrices following from a chiral random matrix model of QCD at finite chemical potential. In the WKB approximation, the characteristic determinant describes a sharp droplet of eigenvalues that deforms and expands at large stochastic times. Beyond the WKB limit, the edges of the droplet are fuzzy and described by universal edge functions. At the chiral point, the characteristic determinant in the microscopic limit is universal. Remarkably, the physical chiral condensate at finite chemical potential may be extracted from current and quenched lattice Dirac spectra using the universal edge scaling laws, without having to solve the QCD sign problem.
Baek, In-Suck; Kim, Moon S.; Lee, Hoosoo; Lee, Wang-Hee; Cho, Byoung-Kwan
2014-01-01
A multi-spectral fluorescence imaging technique was used to detect defective cherry tomatoes. The fluorescence excitation and emission matrix was used to measure for defects, sound surface and stem areas to determine the optimal fluorescence excitation and emission wavelengths for discrimination. Two-way ANOVA revealed the optimal excitation wavelength for detecting defect areas was 410 nm. Principal component analysis (PCA) was applied to the fluorescence emission spectra of all regions at 410 nm excitation to determine the emission wavelengths for defect detection. The major emission wavelengths were 688 nm and 506 nm for the detection. Fluorescence images combined with the determined emission wavebands demonstrated the feasibility of detecting defective cherry tomatoes with >98% accuracy. Multi-spectral fluorescence imaging has potential utility in non-destructive quality sorting of cherry tomatoes. PMID:25405507
Multiresidue determination of pesticides in lanolin using matrix solid-phase dispersion.
Pérez, Andrés; González, Gabriel; González, Joaquín; Heinzen, Horacio
2010-01-01
An efficient, fast, and accurate matrix solid-phase dispersion sample cleanup procedure was developed specifically for the determination of pesticide residues in lanolin. The scope of the method for organophosphorus, organochlorine, and pyrethroid insecticides is the same as that of official methods from various pharmacopeias. After lanolin dispersion on C18 bonded silica, pesticides are eluted with acetonitrile saturated with n-hexane. Recoveries ranged from 83 to 118% with RSD values of < 20% for most pesticides listed, in compliance with the requirements of European and U.S. pharmacopeias. PMID:20480919
On-line electrodialytic matrix isolation for chromatographic determination of organic acids in wine.
Ohira, Shin-Ichi; Kuhara, Kenta; Shigetomi, Aki; Yamasaki, Takayuki; Kodama, Yuko; Dasgupta, Purnendu K; Toda, Kei
2014-10-31
Chromatographic determination of organic acids is widely performed, but the matrix often calls for lengthy and elaborate sample preparation prior to actual analysis. Matrix components, e.g., proteins, non-ionics, lipids etc. are typically removed by a combination of centrifugation/filtration and solid phase extraction (SPE) that may include the use of ion-exchange media. Here we report the quantitative electrodialytic transfer of organic acids from complex samples to ultrapure water in seconds using cellulose membranes modified with N,N-dimethylaminoethyl methacrylate, which essentially eliminates the negative ζ-potential of a regenerated cellulose membrane surface. The transfer characteristics of the ion transfer device (ITD) were evaluated with linear carboxylic acids. While the ion transfer efficiencies may be affected by the acid dissociation constants, in most cases it is possible to achieve quantitative transfer under optimized device residence time (solution flow rate) and the applied voltage. In addition, the transfer efficiency was unaffected by the wide natural variation of pH represented in real samples. The approach was applied to organic acids in various samples, including red wine, considered to represent an especially difficult matrix. While quantitative transfer of the organic acids (as judged by agreement with standard pretreatment procedures involving SPE) was achieved, transfer of other matrix components was <5%. The processed samples could then be chromatographically analyzed in a straightforward manner. We used ion exclusion chromatography with direct UV detection; in treated samples; there was a dramatic reduction of the large early peaks observed compared to only 0.45μm membrane filtered samples. PMID:25465003
Determination of aflatoxins in rice samples by ultrasound-assisted matrix solid-phase dispersion.
Manoochehri, Mahboobeh; Asgharinezhad, Ali Akbar; Safaei, Mahdi
2015-01-01
This work describes the application of ultrasound-assisted matrix solid-phase dispersion as an extraction and sample preparation approach for aflatoxins (B1, B2, G1 and G2) and subsequent determination of them by high-performance liquid chromatography-fluorescence detection. A Box-Behnken design in combination with response surface methodology was used to determine the affecting parameters on the extraction procedure. The influence of different variables including type of dispersing phase, sample-to-dispersing phase ratio, type and quantity of clean-up phase, ultrasonication time, ultrasonication temperature, nature and volume of the elution solvent was investigated in the optimization study. C18, primary-secondary amine (PSA) and acetonitrile were selected as dispersing phase, clean-up phase and elution solvent, respectively. The obtained optimized values were sample-to-dispersing phase ratio of 1 : 1, 60 mg of PSA, 11 min ultrasonication time, 30°C ultrasonication temperature and 4 mL acetonitrile. Under the optimal conditions, the limits of detection were ranged from 0.09 to 0.14 ng g(-1) and the precisions [relative standard deviation (RSD%)] were <8.6%. The recoveries of the matrix solid-phase dispersion process ranged from 78 to 83% with RSD <10% in all cases. Finally, this method was successfully applied to the extraction of trace amounts of aflatoxins in rice samples. PMID:24771057
Determination of metrafenone in vegetables by matrix solid-phase dispersion and HPLC-UV method.
Li, Jianjun; Li, Yangyang; Xu, Dongliang; Zhang, Jingyu; Wang, Yuxi; Luo, Chao
2017-01-01
A simple method for determination of metrafenone in vegetables by matrix solid-phase dispersion (MSPD) and HPLC was developed. All vegetable samples were extracted with dichloromethane, and then the extracts were directly separated on a reversed-phase column with isocratic elution without a cleanup step. The linearity of metrafenone was good with the concentration between 0.005 and 5mg/kg, and the limit of detection (LOD) of the metrafenone was 0.002mg/kg. The recoveries ranged from 86.5% to 104.8% with the relative standard deviations (RSDs) in the range of 2.1-7.9% (n=6). The results indicated that the method was simple, rapid, highly sensitive and suitable for the determination of metrafenone in vegetables. PMID:27507450
Randles, Michael J; Woolf, Adrian S; Huang, Jennifer L; Byron, Adam; Humphries, Jonathan D; Price, Karen L; Kolatsi-Joannou, Maria; Collinson, Sophie; Denny, Thomas; Knight, David; Mironov, Aleksandr; Starborg, Toby; Korstanje, Ron; Humphries, Martin J; Long, David A; Lennon, Rachel
2015-12-01
Glomerular disease often features altered histologic patterns of extracellular matrix (ECM). Despite this, the potential complexities of the glomerular ECM in both health and disease are poorly understood. To explore whether genetic background and sex determine glomerular ECM composition, we investigated two mouse strains, FVB and B6, using RNA microarrays of isolated glomeruli combined with proteomic glomerular ECM analyses. These studies, undertaken in healthy young adult animals, revealed unique strain- and sex-dependent glomerular ECM signatures, which correlated with variations in levels of albuminuria and known predisposition to progressive nephropathy. Among the variation, we observed changes in netrin 4, fibroblast growth factor 2, tenascin C, collagen 1, meprin 1-α, and meprin 1-β. Differences in protein abundance were validated by quantitative immunohistochemistry and Western blot analysis, and the collective differences were not explained by mutations in known ECM or glomerular disease genes. Within the distinct signatures, we discovered a core set of structural ECM proteins that form multiple protein-protein interactions and are conserved from mouse to man. Furthermore, we found striking ultrastructural changes in glomerular basement membranes in FVB mice. Pathway analysis of merged transcriptomic and proteomic datasets identified potential ECM regulatory pathways involving inhibition of matrix metalloproteases, liver X receptor/retinoid X receptor, nuclear factor erythroid 2-related factor 2, notch, and cyclin-dependent kinase 5. These pathways may therefore alter ECM and confer susceptibility to disease. PMID:25896609
NASA Astrophysics Data System (ADS)
Ahuja, Sanjay; Ellingson, William A.; Stuckey, J. B.; Koehl, E. R.
1996-03-01
Ceramic matrix composites are being developed for numerous high temperature applications, including rotors and combustors for advanced turbine engines, heat exchanger and hot-gas filters for coal gasification plants. Among the materials of interest are silicon-carbide-fiber- reinforced-silicon-carbide (SiC(f)/SiC), silicon-carbide-fiber-reinforced-silicon-nitride (SiC(f)/Si3N4), aluminum-oxide-reinforced-alumina (Al2O3(f)/Al2O3, etc. In the manufacturing of these ceramic composites, the conditions of the fiber/matrix interface are critical to the mechanical and thermal behavior of the component. Defects such as delaminations and non-uniform porosity can directly affect the performance. A nondestructive evaluation (NDE) method, developed at Argonne National Laboratory has proved beneficial in analyzing as-processed conditions and defect detection created during manufacturing. This NDE method uses infrared thermal imaging for full-field quantitative measurement of the distribution of thermal diffusivity in large components. Intensity transform algorithms have been used for contrast enhancement of the output image. Nonuniformity correction and automatic gain control are used to dynamically optimize video contrast and brightness, providing additional resolution in the acquired images. Digital filtering, interpolation, and least-squares-estimation techniques have been incorporated for noise reduction and data acquisition. The Argonne NDE system has been utilized to determine thermal shock damage, density variations, and variations in fiber coating in a full array of test specimens.
Determination of fiber-matrix interface failure parameters from off-axis tests
NASA Technical Reports Server (NTRS)
Naik, Rajiv A.; Crews, John H., Jr.
1993-01-01
Critical fiber-matrix (FM) interface strength parameters were determined using a micromechanics-based approach together with failure data from off-axis tension (OAT) tests. The ply stresses at failure for a range of off-axis angles were used as input to a micromechanics analysis that was performed using the personal computer-based MICSTRAN code. FM interface stresses at the failure loads were calculated for both the square and the diamond array models. A simple procedure was developed to determine which array had the more severe FM interface stresses and the location of these critical stresses on the interface. For the cases analyzed, critical FM interface stresses were found to occur with the square array model and were located at a point where adjacent fibers were closest together. The critical FM interface stresses were used together with the Tsai-Wu failure theory to determine a failure criterion for the FM interface. This criterion was then used to predict the onset of ply cracking in angle-ply laminates for a range of laminate angles. Predictions for the onset of ply cracking in angle-ply laminates agreed with the test data trends.
Simpson, Garth J
2016-04-01
Despite the rapidly growing use of second harmonic generation (SHG) and two-photon excited fluorescence (TPEF) microscopy, opportunities for relating polarization-dependent measurements back to local structure and molecular orientation are often confounded by losses in polarization purity. In this work, connections linking Mueller tensor and Jones tensor descriptions of polarization-dependent SHG and TPEF are shown to substantially simplify partially depolarized microscopy measurements. These connections were facilitated by the derivation of several new tensor identity relations, based on generalization of established transformations of matrices and vectors. Methods are described for integrating local-frame symmetry and azimuthal rotation angle for simplifying the Mueller tensor. Through simple expressions bridging the Mueller and Jones formalisms, mathematical models for partial depolarization can greatly simplify interpretation of SHG and TPEF measurements to reconstruct the more general Mueller tensors using the much more concise Jones descriptions for the purely polarized components. Integrating the Mueller architecture allows polarization-dependent SHG and TPEF measurements to be connected back to a relatively small set of free parameters related to local structure and orientation. PMID:26918624
The capabilities of gas chromatography/matrix isolation-infrared (GC/MI-IR) spectrometry for determination of semivolatile organic compounds (SVOCs) in air sample extracts were evaluated. ystematic experiment, using xylene isomers as test compounds, were conducted to determine th...
Salih, Bekir; Celikbiçak, Omür; Döker, Serhat; Doğan, Mehmet
2007-03-28
Poly(N-(hydroxymethyl)methacrylamide)-1-allyl-2-thiourea) hydrogels, poly(NHMMA-ATU), were synthesized by gamma radiation using (60)Co gamma source in the ternary mixture of NHMMA-ATU-H(2)O. These hydrogels were used for the specific gold, silver, platinum and palladium recovery, pre-concentration and matrix elimination from the solutions containing trace amounts of precious metal ions. Elimination of inorganic matrices such as different transition and heavy metal ions, and anions was performed by adjusting the solution pH to 0.5 that was the selective adsorption pH of the precious metal ions. Desorption of the precious metal ions was performed by using 0.8 M thiourea in 3M HCl as the most efficient desorbing agent with recovery values more than 95%. In the desorption medium, thiourea effect on the atomic signal was eliminated by selecting proper pyrolysis and atomization temperatures for all precious metal ions. Precision and the accuracy of the results were improved in the graphite furnace-atomic absorption spectrometer (GFAAS) measurements by applying the developed matrix elimination method performing the adsorption at pH 0.5. Pre-concentration factors of the studied precious metal ions were found to be at least 1000-fold. Detection limits of the precious metal ions were found to be less than 10 ng L(-1) of the all studied precious metal ions by using the proposed pre-concentration method. Determination of trace levels of the precious metals in the sea-water, anode slime, geological samples and photographic fixer solutions were performed using GFAAS clearly after applying the adsorption-desorption cycle onto the poly(NHMMA-UTU) hydrogels. PMID:17386783
Qian, Weixian; Zhou, Xiaojun; Lu, Yingcheng; Xu, Jiang
2015-09-15
Both the Jones and Mueller matrices encounter difficulties when physically modeling mixed materials or rough surfaces due to the complexity of light-matter interactions. To address these issues, we derived a matrix called the paths correlation matrix (PCM), which is a probabilistic mixture of Jones matrices of every light propagation path. Because PCM is related to actual light propagation paths, it is well suited for physical modeling. Experiments were performed, and the reflection PCM of a mixture of polypropylene and graphite was measured. The PCM of the mixed sample was accurately decomposed into pure polypropylene's single reflection, pure graphite's single reflection, and depolarization caused by multiple reflections, which is consistent with the theoretical derivation. Reflection parameters of rough surface can be calculated from PCM decomposition, and the results fit well with the theoretical calculations provided by the Fresnel equations. These theoretical and experimental analyses verify that PCM is an efficient way to physically model light-matter interactions. PMID:26371930
Wu, Yunqi; Hussain, Munir; Fassihi, Reza
2005-06-15
A simple spectrophotometric method for determination of glucosamine release from sustained release (SR) hydrophilic matrix tablet based on reaction with ninhydrin is developed, optimized and validated. The purple color (Ruhemann purple) resulted from the reaction was stabilized and measured at 570 nm. The method optimization was essential as many procedural parameters influenced the accuracy of determination including the ninhydrin concentration, reaction time, pH, reaction temperature, purple color stability period, and glucosamine/ninhydrin ratio. Glucosamine tablets (600 mg) with different hydrophilic polymers were formulated and manufactured on a rotary press. Dissolution studies were conducted (USP 26) using deionized water at 37+/-0.2 degrees C with paddle rotation of 50 rpm, and samples were removed manually at appropriate time intervals. Under given optimized reaction conditions that appeared to be critical, glucosamine was quantitatively analyzed and the calibration curve in the range of 0.202-2.020 mg (r=0.9999) was constructed. The recovery rate of the developed method was 97.8-101.7% (n=6). Reproducible dissolution profiles were achieved from the dissolution studies performed on different glucosamine tablets. The developed method is easy to use, accurate and highly cost-effective for routine studies relative to HPLC and other techniques. PMID:15925217
Rotation Matrix Method Based on Ambiguity Function for GNSS Attitude Determination.
Yang, Yingdong; Mao, Xuchu; Tian, Weifeng
2016-01-01
Global navigation satellite systems (GNSS) are well suited for attitude determination. In this study, we use the rotation matrix method to resolve the attitude angle. This method achieves better performance in reducing computational complexity and selecting satellites. The condition of the baseline length is combined with the ambiguity function method (AFM) to search for integer ambiguity, and it is validated in reducing the span of candidates. The noise error is always the key factor to the success rate. It is closely related to the satellite geometry model. In contrast to the AFM, the LAMBDA (Least-squares AMBiguity Decorrelation Adjustment) method gets better results in solving the relationship of the geometric model and the noise error. Although the AFM is more flexible, it is lack of analysis on this aspect. In this study, the influence of the satellite geometry model on the success rate is analyzed in detail. The computation error and the noise error are effectively treated. Not only is the flexibility of the AFM inherited, but the success rate is also increased. An experiment is conducted in a selected campus, and the performance is proved to be effective. Our results are based on simulated and real-time GNSS data and are applied on single-frequency processing, which is known as one of the challenging case of GNSS attitude determination. PMID:27338390
Decomposition of density matrix renormalization group states into a Slater determinant basis
NASA Astrophysics Data System (ADS)
Moritz, Gerrit; Reiher, Markus
2007-06-01
The quantum chemical density matrix renormalization group (DMRG) algorithm is difficult to analyze because of the many numerical transformation steps involved. In particular, a decomposition of the intermediate and the converged DMRG states in terms of Slater determinants has not been accomplished yet. This, however, would allow one to better understand the convergence of the algorithm in terms of a configuration interaction expansion of the states. In this work, the authors fill this gap and provide a determinantal analysis of DMRG states upon convergence to the final states. The authors show that upon convergence, DMRG provides the same complete-active-space expansion for a given set of active orbitals as obtained from a corresponding configuration interaction calculation. Additional insight into DMRG convergence is provided, which cannot be obtained from the inspection of the total electronic energy alone. Indeed, we will show that the total energy can be misleading as a decrease of this observable during DMRG microiteration steps may not necessarily be taken as an indication for the pickup of essential configurations in the configuration interaction expansion. One result of this work is that a fine balance can be shown to exist between the chosen orbital ordering, the guess for the environment operators, and the choice of the number of renormalized states. This balance can be well understood in terms of the decomposition of total and system states in terms of Slater determinants.
Decomposition of density matrix renormalization group states into a Slater determinant basis.
Moritz, Gerrit; Reiher, Markus
2007-06-28
The quantum chemical density matrix renormalization group (DMRG) algorithm is difficult to analyze because of the many numerical transformation steps involved. In particular, a decomposition of the intermediate and the converged DMRG states in terms of Slater determinants has not been accomplished yet. This, however, would allow one to better understand the convergence of the algorithm in terms of a configuration interaction expansion of the states. In this work, the authors fill this gap and provide a determinantal analysis of DMRG states upon convergence to the final states. The authors show that upon convergence, DMRG provides the same complete-active-space expansion for a given set of active orbitals as obtained from a corresponding configuration interaction calculation. Additional insight into DMRG convergence is provided, which cannot be obtained from the inspection of the total electronic energy alone. Indeed, we will show that the total energy can be misleading as a decrease of this observable during DMRG microiteration steps may not necessarily be taken as an indication for the pickup of essential configurations in the configuration interaction expansion. One result of this work is that a fine balance can be shown to exist between the chosen orbital ordering, the guess for the environment operators, and the choice of the number of renormalized states. This balance can be well understood in terms of the decomposition of total and system states in terms of Slater determinants. PMID:17614539
Rotation Matrix Method Based on Ambiguity Function for GNSS Attitude Determination
Yang, Yingdong; Mao, Xuchu; Tian, Weifeng
2016-01-01
Global navigation satellite systems (GNSS) are well suited for attitude determination. In this study, we use the rotation matrix method to resolve the attitude angle. This method achieves better performance in reducing computational complexity and selecting satellites. The condition of the baseline length is combined with the ambiguity function method (AFM) to search for integer ambiguity, and it is validated in reducing the span of candidates. The noise error is always the key factor to the success rate. It is closely related to the satellite geometry model. In contrast to the AFM, the LAMBDA (Least-squares AMBiguity Decorrelation Adjustment) method gets better results in solving the relationship of the geometric model and the noise error. Although the AFM is more flexible, it is lack of analysis on this aspect. In this study, the influence of the satellite geometry model on the success rate is analyzed in detail. The computation error and the noise error are effectively treated. Not only is the flexibility of the AFM inherited, but the success rate is also increased. An experiment is conducted in a selected campus, and the performance is proved to be effective. Our results are based on simulated and real-time GNSS data and are applied on single-frequency processing, which is known as one of the challenging case of GNSS attitude determination. PMID:27338390
Rodríguez-González, N; González-Castro, M J; Beceiro-González, E; Muniategui-Lorenzo, S
2015-04-15
A method based on Matrix Solid Phase Dispersion (MSPD) for determination of nine triazines in mussels has been optimised in terms of the sorbents used for extracting and cleaning-up. Two dispersing agents: C18 and florisil, and eight cleanup co-sorbents: florisil, silica, silica/alumina, Envi™ Carb, Envi-Carb-II/PSA, SAX/PSA, Envi-Carb-II /SAX/PSA and C18 were assayed. Analytes were eluted using 20 mL of ethyl acetate and 5 mL of acetonitrile and finally the extract was concentrated to dryness, re-constituted with 1 mL methanol and determined by HPLC-DAD. The best results were obtained with C18 as dispersing agent and Envi-Carb-II/SAX/PSA as clean-up co-column. Recoveries ranged between 79% and 99% and repeatability and reproducibility were below than 16% for all compounds. The linearity of the calibration curves yielded the R(2)⩾0.9993. The LOQ values ranged from 0.10 to 0.18 mg kg(-1) dried sample. Finally the method was applied to the analysis of mussel samples from Galicia (NW Spain). PMID:25466037
André, M; Malmström, M E; Neretnieks, I
2009-11-01
Permanent storage of spent nuclear fuel in crystalline bedrock is investigated in several countries. For this storage scenario, the host rock is the third and final barrier for radionuclide migration. Sorption reactions in the crystalline rock matrix have strong retardative effects on the transport of radionuclides. To assess the barrier properties of the host rock it is important to have sorption data representative of the undisturbed host rock conditions. Sorption data is in the majority of reported cases determined using crushed rock. Crushing has been shown to increase a rock samples sorption capacity by creating additional surfaces. There are several problems with such an extrapolation. In studies where this problem is addressed, simple models relating the specific surface area to the particle size are used to extrapolate experimental data to a value representative of the host rock conditions. In this article, we report and compare surface area data of five size fractions of crushed granite and of 100 mm long drillcores as determined by the Brunauer Emmet Teller (BET)-method using N(2)-gas. Special sample holders that could hold large specimen were developed for the BET measurements. Surface area data on rock samples as large as the drillcore has not previously been published. An analysis of this data show that the extrapolated value for intact rock obtained from measurements on crushed material was larger than the determined specific surface area of the drillcores, in some cases with more than 1000%. Our results show that the use of data from crushed material and current models to extrapolate specific surface areas for host rock conditions can lead to over estimation interpretations of sorption ability. The shortcomings of the extrapolation model are discussed and possible explanations for the deviation from experimental data are proposed. PMID:19781807
Antonelli, Maria-Rosaria; Pierangelo, Angelo; Novikova, Tatiana; Validire, Pierre; Benali, Abdelali; Gayet, Brice; De Martino, Antonello
2011-01-01
Polarimetric imaging is emerging as a viable technique for tumor detection and staging. As a preliminary step towards a thorough understanding of the observed contrasts, we present a set of numerical Monte Carlo simulations of the polarimetric response of multilayer structures representing colon samples in the backscattering geometry. In a first instance, a typical colon sample was modeled as one or two scattering “slabs” with monodisperse non absorbing scatterers representing the most superficial tissue layers (the mucosa and submucosa), above a totally depolarizing Lambertian lumping the contributions of the deeper layers (muscularis and pericolic tissue). The model parameters were the number of layers, their thicknesses and morphology, the sizes and concentrations of the scatterers, the optical index contrast between the scatterers and the surrounding medium, and the Lambertian albedo. With quite similar results for single and double layer structures, this model does not reproduce the experimentally observed stability of the relative magnitudes of the depolarizing powers for incident linear and circular polarizations. This issue was solved by considering bimodal populations including large and small scatterers in a single layer above the Lambertian, a result which shows the importance of taking into account the various types of scatterers (nuclei, collagen fibers and organelles) in the same model. PMID:21750762
Noncontact Determination of Antisymmetric Plate Wave Velocity in Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Kautz, Harold E.
1998-01-01
High-temperature materials are of increasing importance in the development of more efficient engines and components for the aeronautics industry. In particular, ceramic matrix composite (CMC) and metal matrix composite (MMC) structures are under active development for these applications. The acousto-ultrasonic (AU) method has been shown to be useful for assessing mechanical properties in composite structures. In particular, plate wave analysis can characterize composites in terms of their stiffness moduli. It is desirable to monitor changes in mechanical properties that occur during thermomechanical testing and to monitor the health of components whose geometry or position make them hard to reach with conventional ultrasonic probes. In such applications, it would be useful to apply AU without coupling directly to the test surface. For a number of years, lasers have been under investigation as remote ultrasonic input sources and ultrasound detectors. The use of an ultrasonic transducer coupled through an air gap has also been under study. So far at the NASA Lewis Research Center, we have been more successful in using lasers as ultrasonic sources than as output devices. On the other hand, we have been more successful in using an air-coupled piezoelectric transducer as an output device than as an input device. For this reason, we studied the laser in/air-coupled-transducer out combination-using a pulsed NdYAG laser as the ultrasonic source and an air-coupled-transducer as the detector. The present work is focused on one of the AU parameters of interest, the ultrasonic velocity of the antisymmetric plate-wave mode. This easily identified antisymmetric pulse can be used to determine shear and flexure modulus. It was chosen for this initial work because the pulse arrival times are likely to be the most precise. The following schematic illustrates our experimental arrangement for using laser in/air-transducer out on SiC/SiC composite tensile specimens. The NdYAG pulse was
NASA Astrophysics Data System (ADS)
Romanowicz, M.
2015-05-01
This research focuses on studying the effect of the constitutive law adopted for a matrix material on the compressive response of a unidirectional fiber reinforced polymer matrix composite. To investigate this effect, a periodic unit cell model of a unidirectional composite with an initial fiber waviness and inelastic behavior of the matrix was used. The sensitivity of the compressive strength to the hydrostatic pressure, the flow rule and the fiber misalignment angle were presented. The model was verified against an analytical solution and experimental data. Results of this study indicate that a micromechanical model with correctly identified material parameters provides a useful alternative to theoretical models and experimentation.
Hollas, C.L.; Arnone, G.; Brunson, G.; Coop, K.
1996-09-01
The accuracy of TRU (transuranic) waste assay using the differential die-away technique depends upon significant corrections to compensate for the effects of the matrix material in which the TRU waste is located. The authors have used a new instrument, the Combined Thermal/Epithermal Neutron (CTEN) instrument for the assay of TRU waste, to develop methods to improve the accuracy of these corrections. Neutrons from a pulsed 14-MeV neutron generator are moderated in the walls of the CTEN cavity and induce fission in the TRU material. The prompt neutrons from these fission events are detected in cadmium-wrapped {sup 3}He neutron detectors. They report new methods of data acquisition and analysis to extract correlation in the neutron signals resulting form fission during active interrogation. They use the correlation information in conjunction with the total number of neutrons to determine the fraction of fission neutrons transmitted through the matrix material into the {sup 3}He detectors. This determination allows them to cleanly separate the matrix effects into two processes: matrix modification upon the neutron interrogating flux and matrix modification upon the fraction of fission neutrons transmitted to the neutron detectors. This transmission information is also directly applied in a neutron multiplicity analysis in the passive assay of {sup 240}Pu.
NASA Astrophysics Data System (ADS)
Gallup, G. A.
1986-07-01
In a recent article [Phys. Rev. A 31, 2107 (1985)] Leasure and Balint-Kurti claim to give a more efficient algorithm than any previously available for determining matrix elements of the Hamiltonian in valence-bond calculations. Actually, an algorithm of no significant difference and the same efficiency has been available since 1972 and has been applied to valence-bond calculations.
Wong, Maelene L; Wong, Janelle L; Vapniarsky, Natalia; Griffiths, Leigh G
2016-06-01
The immunological potential of animal-derived tissues and organs is the critical hurdle to increasing their clinical implementation. Glutaraldehyde-fixation cross-links proteins in xenogeneic tissues (e.g., bovine pericardium) to delay immune rejection, but also compromises the regenerative potential of the resultant biomaterial. Unfixed xenogeneic biomaterials in which xenoantigenicity has been ameliorated and native extracellular matrix (ECM) architecture has been maintained have the potential to overcome limitations of current clinically utilized glutaraldehyde-fixed biomaterials. The objective of this work was to determine how residual antigenicity and ECM architecture preservation modulate recipient immune and regenerative responses towards unfixed bovine pericardium (BP) ECM scaffolds. Disruption of ECM architecture during scaffold generation, with either SDS-decellularization or glutaraldehyde-fixation, stimulated recipient foreign body response and resultant fibrotic encapsulation following leporine subpannicular implantation. Conversely, BP scaffolds subjected to stepwise removal of hydrophilic and lipophilic antigens using amidosulfobetaine-14 (ASB-14) maintained native ECM architecture and thereby avoided fibrotic encapsulation. Removal of hydrophilic and lipophilic antigens significantly decreased local and systemic graft-specific, adaptive immune responses and subsequent calcification of BP scaffolds compared to scaffolds undergoing hydrophile removal only. Critically, removal of antigenic components and preservation of ECM architecture with ASB-14 promoted full-thickness recipient non-immune cellular repopulation of the BP scaffold. Further, unlike clinically utilized fixed BP, ASB-14-treated scaffolds fostered rapid intimal and medial vessel wall regeneration in a porcine carotid patch angioplasty model. This work highlights the importance of residual antigenicity and ECM architecture preservation in modulating recipient immune and regenerative
NASA Astrophysics Data System (ADS)
Zhou, Xiao-jun; Wang, Xiu-qin; Gu, Guo-hua; Yang, Wei; Qian, Wei-xian
2014-12-01
In this paper, we propose to obtain the optical characteristics on material surface by Mueller calculus. In our research, a new metric for Mueller matrices, named R(M) , is defined to describe the polarization and depolarization characteristics on material surface by analyzing the constitute of Mueller matrices. The definition of R(M) is derived from the definition of the depolarization scalar metric for Mueller matrices named Q (M ) which can show the diattenuation and depolarization characteristics. With the advantage of Q (M ) , we assumed and proved the advantage of R(M) against the traditional metrics, the polarizance parameter P(M) and the depolarization index DI (M ) . This comparison can fully illustrate the value of R(M) . It is considered that P(M) and DI (M ) which cannot analyze the optical characteristics commonly to give a comprehensive evaluation. However, composed of P(M) and DI (M ) , R(M) can comprehensively reflect the optical signification which P(M) and DI (M ) represent. R(M) can be used to analyze different optical polarized characteristics on material surface with five bounds as totally depolarizing, partially depolarizing, totally polarizing, partially polarizing, nondepolarizing nonpolarizing. This means that R(M) can enable us to distinguish different materials by their different polarized characteristic on surface. With the definition of R(M) , it can be known that how the optical polarized characteristics work to change the polarized state of incident light on material surface.
Simultaneous and Successive Cognitive Processes in the Mueller-Lyer Illusion.
ERIC Educational Resources Information Center
Jarman, Ronald F.
1979-01-01
Analyzes third grade children's performance on the Mueller-Lyer Illusion for whole and partial presentations of the figure. Results do not support Piaget's theory of perceptual development but are consistent with the theory of simultaneous and successive syntheses. (Author/BH)
Dr. George Mueller Follows the Progress of the Apollo 11 Mission
NASA Technical Reports Server (NTRS)
1969-01-01
Dr. George E. Mueller, Associate Administrator for Manned Space Flight, NASA, follows the progress of the Apollo 11 mission. This photo was taken on July 16, 1969 in the Launch Control Center at the Spaceport on the morning of the launch.
FBI Director Mueller Cites Partnerships as Key to Combating Crime and Terrorism
ERIC Educational Resources Information Center
Blake, Christopher G.
2008-01-01
At the Public Policy General Session held June 30 during IACLEA's 50th Anniversary Annual Conference, FBI Director Robert S. Mueller told the audience that through its partnerships with IACLEA and other law enforcement organizations and agencies, the FBI has made great strides in combating both crime and terrorism in the communities and on…
Smith, F.G.; Wiederin, D.R.; Mortlock, R.
1994-12-31
Determination of the rare earth elements is important in the study of sedimentary processes. Geological and environmental samples often contain very low levels of these elements, and detection by plasma spectroscopy (ICP-AES, ICP-MS) is difficult unless a preconcentration and/or matrix elimination procedure is performed prior to analysis.; An automated batch preconcentration/matrix elimination system offers rapid, off-line sample preparation for a variety of sample types. A chelating form of a solid suspended reagent is added to a pH-adjusted sample. The suspended reagent with any bound elements are trapped in a hollow fiber membrane filter while unbound matrix components are washed to waste. The reagent with bound analytes are then released in a small volume. The system works in concert with an autosampler for unattended operation. Application to a variety of geological and environmental samples will be described.
Loper, Bobby L; Anderson, Kim A
2003-01-01
The following pyrethrin and pyrethroid pesticides were determined in urine and water matrixes by liquid chromatography with diode array detection (LC-DAD): pyrethrin I, pyrethrin II, tetramethrin, baythroid, bifenthrin, fenvalerate, phenothrin, allethrin, resmethrin, cis-permethrin, and trans-permethrin. In addition, 3-phenoxybenzyl alcohol, a metabolite of various pyrethroids, was also successfully determined by the analytical method. The matrix extraction was simple, inexpensive, and fast, using only sodium chloride and acetonitrile. The acetonitrile extract was filtered and analyzed by LC-DAD. The method detection limits for the pyrethrin pesticides in 5 mL urine were determined to range from 0.002 to 0.04 microg/mL, depending on the individual pyrethrin. Recoveries from spiked tap water ranged from 77 to 96%; recoveries from urine ranged from 80 to 117%. This method is especially well-suited to clinical investigations, in which rapid analysis of forensic samples is often required. PMID:14979708
NASA Technical Reports Server (NTRS)
Bar-Cohen, Y.; Mal, A.; Lih, S.
1995-01-01
Heat and fire damage to composite structures cause loss of strength that cannot be detected by current NDE methods unless physical damage occurs. Further, there is a lack of fundamental understanding of the mechanism of damage from thermal exposure of organic matrix composites to elevated temperatures. Information compiled from field reports and lab experiments increasingly suggests that there is material degradation and it is not necessarily involved with the introduction of physical defects. In recent years, various researchers examined the potential to identifying thermal degradation to organic matrix composites prior to delamination. The methods that were used include: ultrasonics, backscattered X-ray, eddy current, thermography, drift and LPF spectroscopies, acousto-ultrasonics and hardness testing. None of these methods were able to correlate NDE results with loss of mechanical properties.
Neutrino mass determination from a four-zero texture mass matrix
NASA Astrophysics Data System (ADS)
Barranco, J.; Delepine, D.; Lopez-Lozano, L.
2012-09-01
We analyze the different parametrizations of a general four-zero texture mass matrix for quarks and leptons that are able to reproduce the Cabibbo-Kobayashi-Maskawa and Pontecorvo-Maki-Nakagawa-Sakata mixing matrices. This study is done through an χ2 analysis. In the quark sector, only four solutions are found to be compatible with the Cabibbo-Kobayashi-Maskawa mixing matrix. In the leptonic sector, using the last experimental results about the mixing angles in the neutrino sector, our χ2 analysis shows a preferred value for mν3 to be around 0.05 eV, independent of the parametrization of the four-zero texture mass matrices chosen for the charged leptons and neutrinos.
Vom Eyser, C; Palmu, K; Otterpohl, R; Schmidt, T C; Tuerk, J
2015-01-01
Producing valuable biochar from waste materials using thermal processes like hydrothermal carbonization (HTC) has gained attention in recent years. However, the fate of micropollutants present in these waste sources have been neglected, although they might entail the risk of environmental pollution. Thus, an HPLC-MS/MS method was developed for 12 pharmaceuticals to determine the micropollutant load of biochar, which was made from sewage sludge via HTC within 4 h at 210 °C. Pressurized liquid extraction was applied to extract the compounds. Because of the high load of co-extracted matter, matrix effects in HPLC-MS/MS were investigated using matrix effect profiles. Interfering compounds suppressed 50% of the phenazone signal in sewage sludge and 70% in biochar, for example. The quantification approaches external calibration, internal standard analysis, and standard addition were compared considering recovery rates, standard deviations, and measurement uncertainties. The external analysis resulted in decreased or enhanced recovery rates. Spiking before LC-MS/MS compensated instrumental matrix effects. Still, recovery rates remained below 70% for most compounds because this approach neglects sample losses during the extraction. Internal standards compensated for the matrix effects sufficiently for up to five compounds. The standard addition over the whole procedure proved to compensate for the matrix effects for 11 compounds and achieved recovery rates between 85 and 125%. Additionally, results showed good reproducibility and validity. Only sulfamethoxazole recovery rate remained below 70% in sewage sludge. Real sample analysis showed that three pharmaceuticals were detected in the biochar, while the corresponding sewage sludge source contained 8 of the investigated compounds. PMID:25098418
NASA Astrophysics Data System (ADS)
McKee, Marc D.
2008-09-01
Progress in biomineralization research in recent years has identified, characterized and described functions for key noncollagenous extracellular matrix proteins regulating crystal growth in the skeleton and dentition. Some of these same proteins expressed in soft tissues undergoing pathologic calcification also inhibit ectopic crystal growth. In addition to extracellular matrix proteins regulating matrix mineralization, the enzyme tissue-nonspecific alkaline phosphatase—which is highly expressed by cells in mineralized tissues—cleaves pyrophosphate, an anionic small-molecule inhibitor of mineralization. Together with the required mineral ion availability necessary for crystal growth, these molecular determinants appear to function in limiting the spread of pathologic calcification seen in soft tissues such as blood vessels and kidneys. Osteopontin, in particular, is a potent calcification inhibitor that accumulates in mineralized tissues and in calcified deposits during vascular calcification and nephrolithiasis/urolithiasis. Additional research is required to establish the exact temporal sequence in which the molecular determinants of pathologic calcification appear relative to mineral crystal growth in different tissues, and to establish their relationship (if any) to the activation of osteogenic differentiation programs.
Gañán, Judith; Morante-Zarcero, Sonia; Gallego-Picó, Alejandrina; Garcinuño, Rosa María; Fernández-Hernando, Pilar; Sierra, Isabel
2014-08-01
A molecularly imprinted polymer-matrix solid-phase dispersion methodology for simultaneous determination of five steroids in goat milk samples was proposed. Factors affecting the extraction recovery such as sample/dispersant ratio and washing and elution solvents were investigated. The molecularly imprinted polymer used as dispersant in the matrix solid-phase dispersion procedure showed high affinity to steroids, and the obtained extracts were sufficiently cleaned to be directly analyzed. Analytical separation was performed by micellar electrokinetic chromatography using a capillary electrophoresis system equipped with a diode array detector. A background electrolyte composed of borate buffer (25mM, pH 9.3), sodium dodecyl sulfate (10mM) and acetonitrile (20%) was used. The developed MIP-MSPD methodology was applied for direct determination of testosterone (T), estrone (E1), 17β-estradiol (17β-E2), 17α-ethinylestradiol (EE2) and progesterone (P) in different goat milk samples. Mean recoveries obtained ranged from 81% to 110%, with relative standard deviations (RSD)≤12%. The molecularly imprinted polymer-matrix solid-phase dispersion method is fast, selective, cost-effective and environment-friendly compared with other pretreatment methods used for extraction of steroids in milk. PMID:24881547
Matrix effect and optimization of LC-MSn determination of trachylobane-360 in mice blood.
Pita, João Carlos Lima Rodrigues; Gomes, Isis Fernandes; dos Santos, Socrates Golzio; Tavares, Josean Fechine; da Silva, Marcelo Sobral; Diniz, Margareth de Fátima Formiga Melo; Sobral, Marianna Vieira
2014-11-01
Xylopia langsdorffiana A. St.-Hil. & Tul. (Annonaceae) is popularly known as "pimenteira-da-terra". Various constituents have been isolated from this species, including diterpenes, such as 8(17), 12E, 14-labdatrien-18-oic acid, ent-atisan-7α, 16α-diol (xylodiol), ent-7α-hydroxytrachyloban-18-oic acid (trachylobane-318) and ent-7α-acetoxytrachyloban-18-oic acid, a crystalline solid with a molecular weight of 360 and molecular formula of C22H32O4 (trachylobane-360). When administered intraperitoneally to mice, trachylobane-360 (T-360) significantly inhibits growth of the solid tumor sarcoma 180 transplanted in mice, without causing alterations in biochemical, hematological and histopathological parameters that are frequently associated with the clinical use of antineoplastic. Furthermore, this diterpene blocks voltage-dependent calcium channels (Cav), showing spasmolytic activity. The present study shows that variables such as extraction solvent (methanol, acetonitrile and chloroform), centrifugation force (1000, 7000 and 14,000×g), and centrifugation time (5, 15 and 25min), are important in the liquid-liquid extraction of T-360 from male Swiss mice blood in HPLC-MSn studies. The study confirms matrix influence on recovery and detection of T-360. The recovery for T-360 was 37.02% using chloroform as better extractor solvent, while centrifuged at 14,000×g for 15min demonstrated the importance of the parameters chosen for the extraction/recovery process of analyte. The effect of mice blood matrix for T-360 was -51.23%. This method was optimized by repeating the extraction procedure and acidification of samples. These conditions were essential in increasing recovery (49.47%) by decreasing the matrix effect (-37.60%). The efficiency of the process, after optimization with two extractions and acidification, increased by 14.19% when compared to the initial method, from 18.05% to 32.24%. According to Marchi et al. (2010), the matrix effect does not necessarily need to
Does the Mueller-Lyer Illusion Include the Misperception of Egocentric Location?
NASA Technical Reports Server (NTRS)
Welch, Robert B.; Post, Robert B.; Lum, Wayland; Holton, Emily M. (Technical Monitor)
1997-01-01
The reported absence of egocentric localization errors when pointing open-loop at the vertices of the Mueller-Lyer (M-L) illusion figure was confirmed in several studies which were designed to ensure the normal strength of the illusion during the pointing responses. However, when one of the two 'fins' was removed, the resulting M-L figure was substantially mislocalized. A theory of the expanding and contracting spatial effects of fins is proposed to explain these results.
NASA Astrophysics Data System (ADS)
Becotte-Haigh, Paul; Tyson, Julian F.; Denoyer, Eric; Hinds, Michael W.
1996-12-01
Arsenic was determined in gold by flow injection hydride generation inductively coupled plasma-mass spectrometry following a batch mode reductive precipitation removal of the interfering gold matrix. A solution of potassium iodide, L-ascorbic acid, and hydrochloric acid was used as the reluctant. The recovery of gold by precipitation and filtration was 99 ± 3%. The detection limit for arsenic in gold was 55 ng g -1 in the solid. The concentration of arsenic that was determined in the Royal Canadian Mint gold sample FAU-10 was 29.7 μg g -1 in the solid; this value was indistinguishable, with 95% confidence, from values determined at the Royal Canadian Mint by graphite furnace atomic absorption spectrometry and by inductively coupled plasma-mass spectrometry. The standard deviation for four replicate determinations of the arsenic in FAU-10 was 0.972 μg g -1 in the solid.
NASA Astrophysics Data System (ADS)
Pierangelo, Angelo; Manhas, Sandeep; Benali, Abdelali; Fallet, Clément; Totobenazara, Jean-Laurent; Antonelli, Maria-Rosaria; Novikova, Tatiana; Gayet, Brice; De Martino, Antonello; Validire, Pierre
2013-04-01
This work is devoted to a first exploration of Mueller polarimetric imaging for the detection of residual cancer after neoadjuvant treatment for the rectum. Three samples of colorectal carcinomas treated by radiochemotherapy together with one untreated sample are analyzed ex vivo before fixation in formalin by using a multispectral Mueller polarimetric imaging system operated from 500 to 700 nm. The Mueller images, analyzed using the Lu-Chipmann decomposition, show negligible diattenuation and retardation. The nonirradiated rectum exhibits a variation of depolarization with cancer evolution stage. At all wavelengths on irradiated samples, the contrast between the footprint of the initial tumor and surrounding healthy tissue is found to be much smaller for complete tumor regression than when a residual tumor is present, even at volume fractions of the order of 5%. This high sensitivity is attributed to the modification of stromal collagen induced by the cancer. The depolarization contrast between treated cancer and healthy tissue is found to increase monotonously with the volume fraction of residual cancer in the red part of the spectrum. Polarimetric imaging is a promising technique for detecting short-time small residual cancers, which is valuable information for pathological diagnosis and patient management by clinicians.
Criticality Detection Using a Mirion Technologies DRM-2NC Remote Area Monitor Geiger-Mueller Probe
NASA Astrophysics Data System (ADS)
Kryskow, Adam P.
The prompt fission neutron activation and subsequent response of a DRM-2NC Geiger-Mueller probe (manufactured by Mirion Technologies) was investigated for the purpose of creating a criticality accident detection algorithm with sensitivity and false positive suppression comparable to modern criticality accident detection systems. The expected decay pattern of secondary emissions arising from the neutron induced activity of the Geiger-Mueller probe was investigated experimentally in high neutron fluence environments at research reactors operated by the University of Massachusetts Lowell, Pennsylvania State University, and the White Sands Missile Range of Los Alamos National Laboratory. Monte Carlo techniques were used to both identify key probe materials responsible for the majority of the Geiger-Mueller response and investigate the effects of boron doping to increase detector sensitivity and enhance the signal to noise ratio. Subsequently, a statistical algorithm centered on a point weighted linear regression of the combined effective half-life was developed as the basis for criticality declaration. Final testing of the system indicated that the system was capable of meeting all ANSI criticality accident criteria with sufficient sensitivity to the minimum accident of concern, an adequate response time, and an extremely low likelihood of false alarm.
Local Sharing as a Predominant Determinant of Synaptic Matrix Molecular Dynamics
Zamorano, Pedro; Dresbach, Thomas; Boeckers, Tobias; Gundelfinger, Eckart D; Garner, Craig C; Ziv, Noam E
2006-01-01
Recent studies suggest that central nervous system synapses can persist for weeks, months, perhaps lifetimes, yet little is known as to how synapses maintain their structural and functional characteristics for so long. As a step toward a better understanding of synaptic maintenance we examined the loss, redistribution, reincorporation, and replenishment dynamics of Synapsin I and ProSAP2/Shank3, prominent presynaptic and postsynaptic matrix molecules, respectively. Fluorescence recovery after photobleaching and photoactivation experiments revealed that both molecules are continuously lost from, redistributed among, and reincorporated into synaptic structures at time-scales of minutes to hours. Exchange rates were not affected by inhibiting protein synthesis or proteasome-mediated protein degradation, were accelerated by stimulation, and greatly exceeded rates of replenishment from somatic sources. These findings indicate that the dynamics of key synaptic matrix molecules may be dominated by local protein exchange and redistribution, whereas protein synthesis and degradation serve to maintain and regulate the sizes of local, shared pools of these proteins. PMID:16903782
Experimental determination of the H( n =3) density matrix for 80-keV H sup + on He
Ashburn, J.R.; Cline, R.A.; Stone, C.D.; van der Burgt, P.J.M.; Westerveld, W.B.; Risley, J.S. )
1989-11-01
The density matrix is determined for H({ital n}=3) atoms produced in axially symmetric electron-transfer collisions of 80-keV protons on helium. In the experiment axial or transverse electric fields with respect to the proton beam are applied to the collision region. The intensity and polarization of Balmer-{alpha} radiation emitted by the H({ital n}=3) atoms are measured as a function of the strength of the external electric field. Detailed analysis of the measured optical signals, taking into account the time evolution of the H({ital n}=3) atoms in the applied electric field, makes it possible to extract the complete density matrix of the H({ital n}=3) atoms at the moment of their formation, averaged over all impact parameters. Significant improvements in the experimental technique and in the data analysis associated with the fit of the density matrix to the optical signals have eliminated systematic effects that were present in our previous work (Phys. Rev. A 33, 276 (1986)).
Sanzolone, R.F.; Chao, T.T.
1978-01-01
Suppression caused by five of the seven matrix elements studied (Si, Al, Fe, Ca and Mg) was observed in the atomic-absorption determination of manganese in geological materials, when synthetic solutions and the recommended oxidizing air-acetylene flame were used. The magnitude of the suppression effects depends on (1) the kind and concentration of the interfering elements, (2) the type of acid medium, and (3) the concentration of manganese to be determined. All interferences noted are removed or alleviated by using a reducing nitrous oxide-acetylene flame. The atomic-absorption method using this flame can be applied to the determination of total and extractable manganese in a wide range of geological materials without interferences. Analyses of six U.S. Geological Survey rock standards for manganese gave results in agreement with the reported values. ?? 1978.
Fang, C.K.; Fang, R.L.; Weng, W.P.; Chuang, T.H.
1999-10-01
An ultrasonic testing technique was employed to determine the volume fraction of alumina particulate reinforcement in 6061 aluminum matrix composites. this study was performed on various composites with Al{sub 2}O{sub 3} nominal volume fractions of 10, 15, and 20%. For comparison, other techniques were employed as well, including the Archimedes method, metallographic image analysis, X-ray diffraction, and acid dissolution. Observations indicated that ultrasonic testing and acid dissolution methods are more reliable than the other techniques, while ultrasonic testing is faster than the acid dissolution method.
Bunch, Josephine; Clench, Malcolm R; Richards, Don S
2004-01-01
Matrix-assisted laser desorption/ionisation (MALDI) quadrupole time-of-flight mass spectrometry (Q-TOFMS) has been used to detect and image the distribution of a xenobiotic substance in skin. Porcine epidermal tissue was treated with 'Nizoral', a medicated shampoo containing ketoconazole (+/-)-1-acetyl-4-[p-[[(2R,4S)-2-(2,4-dichlorophenyl)-2-(imidazol-1-ylmethyl)-1,3-dioxolan-4-yl]methoxy]phenyl]piperazine) as active ingredient. Following incubation for 1 h at 37 degrees C all excess formulation was washed from the surface. A cross-section of the drug-treated tissue was then blotted onto a cellulose membrane, precoated in matrix (alpha-cyano-4-hydroxycinnamic acid (CHCA)), by airspray deposition. In separate experiments the tissue surface was treated with Nizoral within a triangular former, and subsequently blotted onto a matrix-coated membrane. Sample membranes were then mounted into the recess of specialised MALDI targets with adhesive tape. All samples were analysed by MALDI-TOFMS using an Applied Biosystem 'Q-star Pulsar i' hybrid Q-TOF mass spectrometer fitted with an orthagonal MALDI ion source and imaging software. Detection of the protonated molecule was readily achievable by this technique. Treatment of the tissue within a template gave rise to images depicting the expected distribution of the drug, demonstrating that this technique is capable of producing spatially useful data. Ion images demonstrating the permeation of the applied compound into the skin were achieved by imaging a cross-sectional imprint of treated tissue. A calibration graph for the determination of ketoconazole was prepared using the sodium adduct of the matrix ion as an internal standard. This enabled construction of a quantitative profile of drug in skin. Conventional haematoxylin and eosin staining and microscopy methods were employed to obtain a histological image of the porcine epidermal tissue. Superimposing the mass spectrometric and histological images appeared to indicate drug
Density-matrix based determination of low-energy model Hamiltonians from ab initio wavefunctions
Changlani, Hitesh J.; Zheng, Huihuo; Wagner, Lucas K.
2015-09-14
We propose a way of obtaining effective low energy Hubbard-like model Hamiltonians from ab initio quantum Monte Carlo calculations for molecular and extended systems. The Hamiltonian parameters are fit to best match the ab initio two-body density matrices and energies of the ground and excited states, and thus we refer to the method as ab initio density matrix based downfolding. For benzene (a finite system), we find good agreement with experimentally available energy gaps without using any experimental inputs. For graphene, a two dimensional solid (extended system) with periodic boundary conditions, we find the effective on-site Hubbard U{sup ∗}/t to be 1.3 ± 0.2, comparable to a recent estimate based on the constrained random phase approximation. For molecules, such parameterizations enable calculation of excited states that are usually not accessible within ground state approaches. For solids, the effective Hamiltonian enables large-scale calculations using techniques designed for lattice models.
NASA Astrophysics Data System (ADS)
Abbas, Laith K.; Zhou, Qinbo; Hendy, Hossam; Rui, Xiaoting
2015-08-01
The analysis of natural vibration characteristics has become one of important steps of the manufacture and dynamic design in the aerospace industry. This paper presents a new scenario called virtual cutting in the context of the transfer matrix method of linear multibody systems closed-loop topology for computing the free vibration characteristics of elastically coupled flexible launch vehicle boosters. In this approach, the coupled system is idealized as a triple-beam system-like structure coupled by linear translational springs, where a non-uniform free-free Euler-Bernoulli beam is used. A large thrust-to-weight ratio leads to large axial accelerations that result in an axial inertia load distribution from nose to tail. Consequently, it causes the development of significant compressive forces along the length of the launch vehicle. Therefore, it is important to take into account this effect in the transverse vibration model. This scenario does not need the global dynamics equations of a system, and it has high computational efficiency and low memory requirements. The validity of the presented scenario is achieved through comparison to other approaches published in the literature.
Ćirić, Andrija; Prosen, Helena; Jelikić-Stankov, Milena; Đurđević, Predrag
2012-09-15
In the present work the LC-MS/MS method with solid phase extraction for simultaneous determination of bioflavonoids rutin, quercetin, hesperidin, hesperetin and kaempferol in some food samples (red onion, orange peel and honey) was developed and the matrix effect accompanying this determination was quantified. The matrix effect evaluated using a postextraction addition method was found to be negative in the range -44 to -0.5%, indicating ionization suppression and strongly depended on bioflavonoid concentration. The observed matrix effect was explained taking into account the co-elution of phenolic acids, in terms of their acid-base and hydrophilic properties. The efficacy of extraction expressed as the absolute recoveries of flavonoids were 88-96%, indicating very good efficiency of extraction. The extracts of food samples obtained either by Soxhlet or ultrasonic extraction were analyzed for bioflavonoid content by the LC-MS/MS method in selected reaction monitoring mode using a triple quadrupole detector and standard addition method, which was found to be the most suitable calibration approach for these samples. The optimized separation was achieved on a Phenomenex Gemini C18 column with gradient elution and mobile phase composition A: 2% acetic acid in water and B: acetonitrile. R(s) values were in the range from 1.3 to 3.1, indicating good selectivity of the method. The obtained results (mg/100g fresh weight) for different bioflavonids were for rutin 0.16, for quercetin in the range 0.65-56, for hesperidin 0.016-24, for hesperetin 0.0068-36.4 and for kaempferol 0.14-1.63 and generally show good agreement with published data. Low detection limits (0.014-0.063 μg/mL) were obtained with acceptable recoveries (86-114%). Total time of analysis was less than 40 min, therefore the proposed method represents significant improvement over existing methods. PMID:22967624
Kishida, K; Furusawa, N
2001-12-01
Simultaneous determination of the six sulfonamides (SAs) sulfadiazine, sulfadimidine, sulfamonomethoxine, sulfamethoxazole, sulfadimethoxine and sulfaquinoxaline in chicken using matrix solid-phase dispersion (MSPD) with neutral aluminium oxide as an MSPD sorbent and high-performance liquid chromatography (HPLC) is presented. In the present MSPD, six SAs could be isolated by only one step, elution with a 70% (v/v) aqueous ethanol solution, without the sorbent conditioning and the sorbent-tissue matrix washing. For the HPLC determination, a LiChrospher 100 RP-8 and a mixture of 1% acetic acid solution (pH 3.0, in water)-acetonitrile-N,N-dimethylformamide (78:22:5, v/v/v) as the mobile phase with a photodiode array detector were used. Average recoveries were greater than 87.6% with relative standard deviations between 0.5 and 8.6%. The total time and amount of solvent required for the analysis of one sample were <1.5 h and <12 ml, respectively. PMID:11765084
NASA Astrophysics Data System (ADS)
Liu, Qingyang
2010-07-01
This paper proposes the use of photochemical vapor generation with acetic acid as sample introduction for the direct determination of ultra-trace mercury in white vinegars by atomic fluorescence spectrometry. Under ultraviolet irradiation, the sample matrix (acetic acid) can reduce mercury ion to atomic mercury Hg 0, which is swept by argon gas into an atomic fluorescence spectrometer for subsequent analytical measurements. The effects of several factors such as the concentration of acetic acid, irradiation time, the flow rate of the carrier gas and matrix effects were discussed and optimized to give detection limits of 0.08 ng mL -1 for mercury. Using the experimental conditions established during the optimization (3% v/v acetic acid, 30 s irradiation time and 20 W mercury lamp), the precision levels, expressed as relative standard deviation, were 4.6% (one day) and 7.8% (inter-day) for mercury ( n = 9). Addition/recovery tests for evaluation of the accuracy were in the range of 92-98% for mercury. The method was also validated by analysis of vinegar samples without detectable amount of Hg spiked with aqueous standard reference materials (GBW(E) 080392 and GBW(E) 080393). The results were also compared with those obtained by acid digestion procedure and determination of mercury by ICP-MS. There was no significant difference between the results obtained by the two methods based on a t-test (at 95% confidence level).
Multiscreening determination of organic pollutants in molluscs using matrix solid phase dispersion.
Ziarrusta, H; Olivares, M; Delgado, A; Posada-Ureta, O; Zuloaga, O; Etxebarria, N
2015-04-24
This work describes the optimisation, validation and application of matrix solid-phase dispersion (MSPD) coupled to gas chromatography mass spectrometry, both single quadrupole (GC-MS) and tandem (GC-MS/MS), for the quantification in molluscs of up to 40 different analytes belonging to several families of priority and emerging organic contaminants, including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), organochlorine pesticides (OCPs), organophosphorus pesticides (OPPs) and musk fragrances. The MSPD procedure was fully optimised with a special focus on the clean-up strategy. The best recoveries were obtained using glass syringes, 0.30 g of freeze-dried sample, 0.30 g of Florisil as solid support, 4.00 g of activated silica and 25 mL of dichloromethane as elution solvent. Using GC-MS/MS the method afforded good linearities (r(2), between 0.980 and 0.9996), adequate repeatability and reproducibility (RSD<17% and 33%, respectively) and low instrumental limits of detection (between 0.010 and 2.74 ng mL(-1)). The accuracy of the method was evaluated using different approaches, i.e. assessment of spiked fish hatchery samples, laboratory reference material and standard reference material (SRM 2977). Satisfactory apparent recoveries were obtained for all the target analytes after correction with the corresponding labelled surrogate, except for PAHs in the case of SRM 2977, which required the use of the standard addition method. Finally, MSPD was applied to mollusc species collected in Colombia and Nicaragua, where PAHs, PCBs, musks and pesticides were detected at low ng g(-1) levels. PMID:25796618
NASA Technical Reports Server (NTRS)
Donegan, James J
1954-01-01
Three matrice methods are developed and presented for determining the longitudinal-stability derivatives from transient flight data. In these methods the expressions for some of the stability derivatives are in the form generally used in stability calculations. The first method requires the combination of four measurements in time-history form, two of which must be incremental elevator deflection and incremental tail load and the other two measurements can be chosen from a possible three, namely incremental load factor, pitching velocity, and angle of attack. The method demonstrates the use of the tail load to separate the pitching-moment derivatives and to determine the downwash derivative. (author)
NASA Astrophysics Data System (ADS)
Dikunets, M. A.; Appolonova, S. A.; Rodchenkov, G. M.
2009-04-01
This work presents a high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) procedure for selective and reliable screening of corticosteroids and diuretics in human urine. Sample preparation included the extraction, evaporation of the organic extract under nitrogen, and solution of the dry residue. The extract was analyzed by HPLC combined with tandem mass spectrometry using electro-spraying ionization at atmospheric pressure with negative ion recording. The mass spectra of all compounds were recorded, and the characteristic ions, retention times, and detection limits were determined. The procedure was validated by evaluating the degree of the matrix suppression of ionization, extraction of analytes from human biological liquid, and the selectivity and specificity of determination.
NASA Technical Reports Server (NTRS)
Donegan, James J; Pearson, Henry A
1952-01-01
A matrix method is presented for determining the longitudinal-stability coefficients and frequency response of an aircraft from arbitrary maneuvers. The method is devised so that it can be applied to time-history measurements of combinations of such simple quantities as angle of attack, pitching velocity, load factor, elevator angle, and hinge moment to obtain the over-all coefficients. Although the method has been devised primarily for the evaluation of stability coefficients which are of primary interest in most aircraft loads and stability studies, it can be used also, with a simple additional computation, to determine the frequency-response characteristics. The entire procedure can be applied or extended to other problems which can be expressed by linear differential equations.
NASA Technical Reports Server (NTRS)
Bar-Cohen, Y.; Lih, S-S.; Mal, A. K.
1995-01-01
Reported on is the development of a quantitative NDE method, using stiffness analysis, for the determination of the degradation of composite materials that are exposed to elevated temperatures, prior to the formation of delaminations or other defects. Methods of testing describe a specimen immersed in water and subjected to ultra- sound, with reflected pulses or tone-burst (leaky Lamb wave) analysis.
PDGF stimulation of Mueller cell proliferation: Contributions of c-JNK and the PI3K/Akt pathway
Moon, Sang Woong; Chung, Eun Jee; Jung, Sun-Ah; Lee, Joon H.
2009-10-09
Platelet-derived growth factor (PDGF) has a critical role in proliferative vitreoretinopathy (PVR) as a chemoattractant and mitogen for retinal pigment epithelial cells and retinal glial cells. Here, we investigated the potential effects of PDGF on the proliferation of Mueller cells and the intracellular signaling pathway mediating these changes. PDGF induced Mueller cell proliferation and increased phosphorylation of the PDGF receptor (PDGFR), as shown by an MTT assay and immunoprecipitation analyses. Both effects were blocked by JNJ, a PDGFR-selective tyrosine kinase inhibitor. PDGF also stimulated phosphorylation of c-JNK and Akt. PDGF-induced Mueller cell proliferation was significantly reduced by pre-treatment with SP600125 and LY294002, inhibitors of c-JNK and Akt phosphorylation, respectively. Our findings collectively indicate that PDGF-stimulated Mueller cell proliferation occurs via activation of the c-JNK and PI3K/Akt signaling pathways. These data provide useful information in establishing the role of Mueller cells in the development of proliferative vitreoretinopathy.
Structural and Molecular Determinants of Membrane Binding by the HIV-1 Matrix Protein.
Mercredi, Peter Y; Bucca, Nadine; Loeliger, Burk; Gaines, Christy R; Mehta, Mansi; Bhargava, Pallavi; Tedbury, Philip R; Charlier, Landry; Floquet, Nicolas; Muriaux, Delphine; Favard, Cyril; Sanders, Charles R; Freed, Eric O; Marchant, Jan; Summers, Michael F
2016-04-24
Assembly of HIV-1 particles is initiated by the trafficking of viral Gag polyproteins from the cytoplasm to the plasma membrane, where they co-localize and bud to form immature particles. Membrane targeting is mediated by the N-terminally myristoylated matrix (MA) domain of Gag and is dependent on the plasma membrane marker phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2]. Recent studies revealed that PI(4,5)P2 molecules containing truncated acyl chains [tr-PI(4,5)P2] are capable of binding MA in an "extended lipid" conformation and promoting myristoyl exposure. Here we report that tr-PI(4,5)P2 molecules also readily bind to non-membrane proteins, including HIV-1 capsid, which prompted us to re-examine MA-PI(4,5)P2 interactions using native lipids and membrane mimetic liposomes and bicelles. Liposome binding trends observed using a recently developed NMR approach paralleled results of flotation assays, although the affinities measured under the equilibrium conditions of NMR experiments were significantly higher. Native PI(4,5)P2 enhanced MA binding to liposomes designed to mimic non-raft-like regions of the membrane, suggesting the possibility that binding of the protein to disordered domains may precede Gag association with, or nucleation of, rafts. Studies with bicelles revealed a subset of surface and myr-associated MA residues that are sensitive to native PI(4,5)P2, but cleft residues that interact with the 2'-acyl chains of tr-PI(4,5)P2 molecules in aqueous solution were insensitive to native PI(4,5)P2 in bicelles. Our findings call to question extended-lipid MA:membrane binding models, and instead support a model put forward from coarse-grained simulations indicating that binding is mediated predominantly by dynamic, electrostatic interactions between conserved basic residues of MA and multiple PI(4,5)P2 and phosphatidylserine molecules. PMID:26992353
NASA Technical Reports Server (NTRS)
Marques, E. R. C.; Williams, J. H., Jr.
1986-01-01
The elastic constants of a fiberglass epoxy unidirectional composite are determined by measuring the phase velocities of longitudinal and shear stress waves via the through transmission ultrasonic technique. The waves introduced into the composite specimens were generated by piezoceramic transducers. Geometric lengths and the times required to travel those lengths were used to calculate the phase velocities. The model of the transversely isotropic medium was adopted to relate the velocities and elastic constants.
NASA Astrophysics Data System (ADS)
Stafilov, Trajče; Zendelovska, Dragica; Pavlovska, Gorica; Čundeva, Katarina
2002-05-01
The interferences of Ca and Mg as matrix elements in dolomite and gypsum on Ag, Cd, Cr, Mn, Tl and Zn absorbances during their electrothermal atomic absorption spectrometric (ETAAS) determination are investigated. The results reveal that Ca and Mg do not interfere on Zn and Mn, tend to decrease absorbances of Ag, Cd and Cr, while Tl suffers the most significant influence. A flotation separation method is proposed to eliminate matrix interferences. Hydrated iron(III) oxide, Fe 2O 3· xH 2O, and iron(III) hexamethylenedithiocarbamate, Fe(HMDTC) 3, are applied as flotation collectors. The influence of hydrophobic dithiocarbamate anion, HMDTC, on flotation recoveries of each analyte is studied. The most suitable concentrations of dolomite and gypsum solutions for flotation are determined. To avoid flotation suppression due to the reaction of Ca 2+ and Mg 2+ with surfactant ions, a fit foaming agent was selected. The elements present in dolomite and gypsum as traces have been analyzed by ETAAS. Their ETAAS limits of detection following flotation are found to be 0.021 μg·g -1 for Ag, 0.019 μg·g -1 for Cd, 0.014 μg·g -1 for Cr and 0.11 μg·g -1 for Tl. The determination of Mn and Zn can be performed by flame AAS (FAAS). The limit of detection for Mn is 1.5 μg·g -1, while for Zn 0.8 μg·g -1.
NASA Astrophysics Data System (ADS)
Schantz, Michele M.; Duewer, David L.; Parris, Reenie M.; May, Willie E.; Archer, Marcellé; Mussell, Chris; Carter, David; Konopelko, Leonid A.; Kustikov, Yury A.; Krylov, Anatoli I.; Fatina, Olga V.
2005-01-01
Ethanol is important both forensically ('drunk driving' or driving while under the influence, 'DWI', regulations) and commercially (alcoholic beverages). Blood- and breath-alcohol testing can be imposed on individuals operating private vehicles such as cars, boats, or snowmobiles, or operators of commercial vehicles like trucks, planes, and ships. The various levels of blood alcohol that determine whether these operators are considered legally impaired vary depending on the circumstances and locality. Accurate calibration and validation of instrumentation is critical in areas of forensic testing where quantitative analysis directly affects the outcome of criminal prosecutions, as is the case with the determination of ethanol in blood and breath. Additionally, the accurate assessment of the alcoholic content of beverages is a commercially important commodity. In 2002, the CCQM conducted a Key Comparison (CCQM-K27) for the determination of ethanol in aqueous matrix with nine participants. A report on this project has been approved by the CCQM and can be found at the BIPM website and in this Technical Supplement. CCQM-K27 comprised three samples, one at low mass fraction of ethanol in water (nominal concentration of 0.8 mg/g), one at high level (nominal concentration of 120 mg/g), and one wine matrix (nominal concentration of 81 mg/g). Overall agreement among eight participants using gas chromatography with flame ionization detection (GC-FID), titrimetry, isotope dilution gas chromatography/mass spectrometry (GC-IDMS), and gas chromatography-combustion-isotope ratio mass spectrometry (ID-GC-C-IRMS) was good. The ninth participant used a headspace GC-FID method that had not been validated in an earlier pilot study (CCQM-P35). A follow-on Key Comparison, CCQM-K27-Subsequent, was initiated in 2003 to accommodate laboratories that had not been ready to benchmark their methods in the original CCQM-K27 study or that wished to benchmark a different method. Four levels of
Determining the Effective Dimensionality of the Genetic Variance–Covariance Matrix
Hine, Emma; Blows, Mark W.
2006-01-01
Determining the dimensionality of G provides an important perspective on the genetic basis of a multivariate suite of traits. Since the introduction of Fisher's geometric model, the number of genetically independent traits underlying a set of functionally related phenotypic traits has been recognized as an important factor influencing the response to selection. Here, we show how the effective dimensionality of G can be established, using a method for the determination of the dimensionality of the effect space from a multivariate general linear model introduced by Amemiya (1985). We compare this approach with two other available methods, factor-analytic modeling and bootstrapping, using a half-sib experiment that estimated G for eight cuticular hydrocarbons of Drosophila serrata. In our example, eight pheromone traits were shown to be adequately represented by only two underlying genetic dimensions by Amemiya's approach and factor-analytic modeling of the covariance structure at the sire level. In contrast, bootstrapping identified four dimensions with significant genetic variance. A simulation study indicated that while the performance of Amemiya's method was more sensitive to power constraints, it performed as well or better than factor-analytic modeling in correctly identifying the original genetic dimensions at moderate to high levels of heritability. The bootstrap approach consistently overestimated the number of dimensions in all cases and performed less well than Amemiya's method at subspace recovery. PMID:16547106
Structure determination of individual electron-nuclear spin complexes in a solid-state matrix
NASA Astrophysics Data System (ADS)
Laraoui, Abdelghani; Pagliero, Daniela; Meriles, Carlos
2015-03-01
A spin-based quantum computer will store and process information via ``spin complexes'' formed by a small number of interacting electronic and nuclear spins within a solid-state host. Unlike present electronic circuits, differences in the atomic composition and local geometry make each of these spin clusters distinct from the rest. Integration of these units into a working network thus builds on our ability to determine the cluster atomic structure, a problem we tackle herein with the aid of a magnetic resonance protocol. Using the nitrogen-vacancy (NV) center in diamond as a model system, we show analytically and numerically that the spatial coordinates of weakly coupled 13C spins can be determined by selectively transferring and retrieving spin polarization. The technique's spatial resolution can reach up to 0.1 nm, limited by the NV spin coherence lifetime. No external magnetic field gradient is required, which makes this imaging scheme applicable to NV-13C complexes buried deep inside the crystal host. Further, this approach can be adapted to nuclear spins other than 13C, and thus applied to the characterization of individual molecules anchored to the diamond surface.
Li, Changjun; Zhen, Gehua; Chai, Yu; Xie, Liang; Crane, Janet L.; Farber, Emily; Farber, Charles R.; Luo, Xianghang; Gao, Peisong; Cao, Xu; Wan, Mei
2016-01-01
Mesenchymal stem cells (MSCs) participate in the repair/remodelling of many tissues, where MSCs commit to different lineages dependent on the cues in the local microenvironment. Here we show that TGFβ-activated RhoA/ROCK signalling functions as a molecular switch regarding the fate of MSCs in arterial repair/remodelling after injury. MSCs differentiate into myofibroblasts when RhoA/ROCK is turned on, endothelial cells when turned off. The former is pathophysiologic resulting in intimal hyperplasia, whereas the latter is physiological leading to endothelial repair. Further analysis revealed that MSC RhoA activation promotes formation of an extracellular matrix (ECM) complex consisting of connective tissue growth factor (CTGF) and vascular endothelial growth factor (VEGF). Inactivation of RhoA/ROCK in MSCs induces matrix metalloproteinase-3-mediated CTGF cleavage, resulting in VEGF release and MSC endothelial differentiation. Our findings uncover a novel mechanism by which cell–ECM interactions determine stem cell lineage specificity and offer additional molecular targets to manipulate MSC-involved tissue repair/regeneration. PMID:27126736
Li, Changjun; Zhen, Gehua; Chai, Yu; Xie, Liang; Crane, Janet L; Farber, Emily; Farber, Charles R; Luo, Xianghang; Gao, Peisong; Cao, Xu; Wan, Mei
2016-01-01
Mesenchymal stem cells (MSCs) participate in the repair/remodelling of many tissues, where MSCs commit to different lineages dependent on the cues in the local microenvironment. Here we show that TGFβ-activated RhoA/ROCK signalling functions as a molecular switch regarding the fate of MSCs in arterial repair/remodelling after injury. MSCs differentiate into myofibroblasts when RhoA/ROCK is turned on, endothelial cells when turned off. The former is pathophysiologic resulting in intimal hyperplasia, whereas the latter is physiological leading to endothelial repair. Further analysis revealed that MSC RhoA activation promotes formation of an extracellular matrix (ECM) complex consisting of connective tissue growth factor (CTGF) and vascular endothelial growth factor (VEGF). Inactivation of RhoA/ROCK in MSCs induces matrix metalloproteinase-3-mediated CTGF cleavage, resulting in VEGF release and MSC endothelial differentiation. Our findings uncover a novel mechanism by which cell-ECM interactions determine stem cell lineage specificity and offer additional molecular targets to manipulate MSC-involved tissue repair/regeneration. PMID:27126736
Bartczak, Dorota; Vincent, Phil; Goenaga-Infante, Heidi
2015-06-01
We propose for the first time methodology for the determination of a number-based concentration of silica (SiO2) nanoparticles (NP) in biological serum using nanoparticle tracking analysis (NTA) as the online detector for asymmetric flow field-flow fractionation (AF4). The degree of selectivity offered by AF4 was found necessary to determine reliably number-based concentration of the measured NP in the complex matrix with a relative measurement error of 5.1% (as relative standard deviation, n = 3) and without chemical sample pretreatment. The simultaneous online coupling to other size and concentration detectors, such as multiangle light scattering (MALS) and ICPMS, for the measurement of the same NP suspension, was used to confirm the particle size determined with NTA and the equivalent particle number determined by AF4/NTA, respectively. The size- and number-based concentration data obtained by independent techniques were in a good agreement. The developed methodology can easily be extended to other types of particles or particle suspensions and other complex matrices provided that the particle size is above the limit of detection for NTA. PMID:25970520
Final report on AFRIMETS.QM-K27: Determination of ethanol in aqueous matrix
NASA Astrophysics Data System (ADS)
Archer, Marcellé; Fernandes-Whaley, Maria; Visser, Ria; de Vos, Jayne; Prins, Sara; Rosso, Adriana; Ruiz de Arechavaleta, Mariana; Tahoun, Ibrahim; Kakoulides, Elias; Luvonga, Caleb; Muriira, Geoffrey; Naujalis, Evaldas; Zakaria, Osman Bin; Buzoianu, Mirella; Bebic, Jelena; Achour Mounir, Ben; Thanh, Ngo Huy
2013-01-01
From within AFRIMETS, the Regional Metrology Organization (RMO) for Africa, the RMO Key Comparison AFRIMETS.QM-K27 was coordinated by the National Metrology Institute of South Africa (NMISA) in 2011. Ten Metrology Institutes participated, comprising three AFRIMETS, two APMP, four EURAMET and one SIM participant. Participants were required to determine the forensic level concentration of two aqueous ethanol solutions that were gravimetrically prepared by the NMISA. Concentrations were expected to lie in the range of 0.1 mg/g to 5.0 mg/g. The accurate determination of ethanol content in aqueous medium is critical for regulatory forensic and trade purposes. The CCQM Organic Analysis Working Group has carried out several key comparisons (CCQM-K27 series) on the determination of ethanol in wine and aqueous matrices. Developing NMIs now had the opportunity to link to the earlier CCQM-K27 studies through the AFRIMETS.QM-K27 study. Gas chromatography coupled to flame ionisation or mass spectrometric detection was applied by eight of the participants, while three participants (including NMISA) applied titrimetry for the ethanol assay. The assigned reference value of the aqueous ethanol solutions was used to link AFRIMETS.QM-K27 to the CCQM-K27 key comparison reference value. The assigned reference values for AFRIMETS.QM-K27 Level 1 and Level 2 were (0.3249 ± 0.0021) mg/g (k = 2) and (4.6649 ± 0.0152) mg/g (k = 2), respectively. The reference values were determined using the purity-corrected gravimetric preparation values, while the standard uncertainty incorporated the gravimetric preparation and titrimetric homogeneity uncertainties. From previous CCQM-K27 studies, the expected spread (%CV) of higher order measurements of ethanol in aqueous medium is about 0.85% relative. In this study the CV for Level 1 is about 12% (10% with two outliers removed) and for Level 2 about 4%. Three of the ten laboratories submitted results within 1.5% of the gravimetric reference value for
Feng, Chia-Hsien; Lu, Chi-Yu
2009-09-01
Arecoline is the main alkaloid present in the areca nut (or betel nut) and it has central nervous system effects. Its pharmacological activities induce the constriction of the bronchial smooth muscles, and stimulation of the lacrimal and intestinal glands. Chewing areca nut is harmful to health because this habit may increase the risk of the development of oral cancer. In this study, a fast method was provided for the determination of areca alkaloids by matrix-assisted laser desorption ionization (MALDI) mass spectrometer with a time-of-flight (TOF) analyzer. Traditionally the MALDI-TOF method was not suitable for the analysis of small molecular weight (m/z<600) compounds because of the high background of the matrix. In this study, a new matrix was utilized to decrease the background interference effectively. After simple sample preparation, 1 microL sample supernatant was mixed with 1 microL matrix and then deposited on the target plate. This new matrix was also used to test the MALDI imaging experiment. Application of this MALDI-TOF method for trace analysis of arecoline by this new matrix in human plasma at sub microM level proved workable. PMID:19699399
Sutherland, Christina A; Nicolau, David P
2016-07-01
Herein, we report the development and validation of an HPLC method to analyze ceftolozane and tazobactam simultaneously in human plasma, human serum, swine serum and saline matrixes. A reversed-phase column was used with a UV detector set at 260 nm and switched to 218 nm. The mobile phase consisted of methanol and sodium phosphate buffer at a flow rate of 1.1 mL/min. Cefepime was used as the internal standard. The standard curves were linear over a range of 0.4-50 μg/mL. This methodology represents a simple, reproducible approach to the determination of drug concentrations with sufficient accuracy and precision for pharmacokinetic studies undertaken with this recently FDA-approved antimicrobial therapy. PMID:27048639