Science.gov

Sample records for determining precise oligosaccharidic

  1. Precise Orbit Determination for ALOS

    NASA Technical Reports Server (NTRS)

    Nakamura, Ryo; Nakamura, Shinichi; Kudo, Nobuo; Katagiri, Seiji

    2007-01-01

    The Advanced Land Observing Satellite (ALOS) has been developed to contribute to the fields of mapping, precise regional land coverage observation, disaster monitoring, and resource surveying. Because the mounted sensors need high geometrical accuracy, precise orbit determination for ALOS is essential for satisfying the mission objectives. So ALOS mounts a GPS receiver and a Laser Reflector (LR) for Satellite Laser Ranging (SLR). This paper deals with the precise orbit determination experiments for ALOS using Global and High Accuracy Trajectory determination System (GUTS) and the evaluation of the orbit determination accuracy by SLR data. The results show that, even though the GPS receiver loses lock of GPS signals more frequently than expected, GPS-based orbit is consistent with SLR-based orbit. And considering the 1 sigma error, orbit determination accuracy of a few decimeters (peak-to-peak) was achieved.

  2. In vitro determination of prebiotic properties of oligosaccharides derived from an orange juice manufacturing by-product stream.

    PubMed

    Manderson, K; Pinart, M; Tuohy, K M; Grace, W E; Hotchkiss, A T; Widmer, W; Yadhav, M P; Gibson, G R; Rastall, R A

    2005-12-01

    Fermentation properties of oligosaccharides derived from orange peel pectin were assessed in mixed fecal bacterial culture. The orange peel oligosaccharide fraction contained glucose in addition to rhamnogalacturonan and xylogalacturonan pectic oligosaccharides. Twenty-four-hour, temperature- and pH-controlled, stirred anaerobic fecal batch cultures were used to determine the effects that oligosaccharides derived from orange products had on the composition of the fecal microbiota. The effects were measured through fluorescent in situ hybridization to determine changes in bacterial populations, fermentation end products were analyzed by high-performance liquid chromatography to assess short-chain fatty acid concentrations, and subsequently, a prebiotic index (PI) was determined. Pectic oligosaccharides (POS) were able to increase the bifidobacterial and Eubacterium rectale numbers, albeit resulting in a lower prebiotic index than that from fructo-oligosaccharide metabolism. Orange albedo maintained the growth of most bacterial populations and gave a PI similar to that of soluble starch. Fermentation of POS resulted in an increase in the Eubacterium rectale numbers and concomitantly increased butyrate production. In conclusion, this study has shown that POS can have a beneficial effect on the fecal microflora; however, a classical prebiotic effect was not found. An increase in the Eubacterium rectale population was found, and butyrate levels increased, which is of potential benefit to the host. PMID:16332825

  3. High performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) for the sensitive determination of hyaluronan oligosaccharides.

    PubMed

    Rothenhöfer, Martin; Grundmann, Marco; Bernhardt, Günther; Matysik, Frank-Michael; Buschauer, Armin

    2015-04-15

    High performance anion exchange chromatography (HPAEC) with pulsed amperometric detection (PAD) was optimized for the analysis of oligosaccharides derived from the extracellular matrix component hyaluronan. Using this sensitive approach, the separation of oligosaccharides consisting of two (molecular weight ca. 0.8 kDa) up to 25-30 (molecular weight: ca. 9.5-11.4 kDa) disaccharide moieties was possible. Standard oligosaccharides (comprising 2-4 repetitive disaccharides) were detectable at very low amounts of 0.2-0.3 pmol (20-30 nM). Including 10 min of column equilibration, a complex mixture of low molecular weight hyaluronan can be analyzed within 40 min. The HPAEC method was successfully applied to the study of the size-dependency of both the action of bovine testicular hyaluronidase (BTH) and the precipitation of hyaluronan by cetyltrimethylammonium bromide (CTAB), a physicochemical reaction often used for the determination of hyaluronan and hyaluronidase activity. PMID:25768984

  4. Degradation of Misfolded Endoplasmic Reticulum Glycoproteins in Saccharomyces cerevisiae Is Determined by a Specific Oligosaccharide Structure

    PubMed Central

    Jakob, Claude A.; Burda, Patricie; Roth, Jürgen; Aebi, Markus

    1998-01-01

    In Saccharomyces cerevisiae, transfer of N-linked oligosaccharides is immediately followed by trimming of ER-localized glycosidases. We analyzed the influence of specific oligosaccharide structures for degradation of misfolded carboxypeptidase Y (CPY). By studying the trimming reactions in vivo, we found that removal of the terminal α1,2 glucose and the first α1,3 glucose by glucosidase I and glucosidase II respectively, occurred rapidly, whereas mannose cleavage by mannosidase I was slow. Transport and maturation of correctly folded CPY was not dependent on oligosaccharide structure. However, degradation of misfolded CPY was dependent on specific trimming steps. Degradation of misfolded CPY with N-linked oligosaccharides containing glucose residues was less efficient compared with misfolded CPY bearing the correctly trimmed Man8GlcNAc2 oligosaccharide. Reduced rate of degradation was mainly observed for mis- folded CPY bearing Man6GlcNAc2, Man7GlcNAc2 and Man9GlcNAc2 oligosaccharides, whereas Man8GlcNAc2 and, to a lesser extent, Man5GlcNAc2 oligosaccharides supported degradation. These results suggest a role for the Man8GlcNAc2 oligosaccharide in the degradation process. They may indicate the presence of a Man8GlcNAc2-binding lectin involved in targeting of misfolded glycoproteins to degradation in S. cerevisiae. PMID:9732283

  5. The Seasat Precision Orbit Determination Experiment

    NASA Technical Reports Server (NTRS)

    Tapley, B. D.; Born, G. H.

    1980-01-01

    The objectives and conclusions reached during the Seasat Precision Orbit Determination Experiment are discussed. It is noted that the activities of the experiment team included extensive software calibration and validation and an intense effort to validate and improve the dynamic models which describe the satellite's motion. Significant improvement in the gravitational model was obtained during the experiment, and it is pointed out that the current accuracy of the Seasat altitude ephemeris is 1.5 m rms. An altitude ephemeris for the Seasat spacecraft with an accuracy of 0.5 m rms is seen as possible with further improvements in the geopotential, atmospheric drag, and solar radiation pressure models. It is concluded that since altimetry missions with a 2-cm precision altimeter are contemplated, the precision orbit determination effort initiated under the Seasat Project must be continued and expanded.

  6. Attentional Priority Determines Working Memory Precision

    PubMed Central

    Klyszejko, Zuzanna; Rahmati, Masih; Curtis, Clayton E

    2014-01-01

    Visual working memory is a system used to hold information actively in mind for a limited time. The number of items and the precision with which we can store information has limits that define its capacity. How much control do we have over the precision with which we store information when faced with these severe capacity limitations? Here, we tested the hypothesis that rank-ordered attentional priority determines the precision of multiple working memory representations. We conducted two psychophysical experiments that manipulated the priority of multiple items in a two-alternative forced choice task (2AFC) with distance discrimination. In Experiment 1, we varied the probabilities with which memorized items were likely to be tested. To generalize the effects of priority beyond simple cueing, in Experiment 2, we manipulated priority by varying monetary incentives contingent upon successful memory for items tested. Moreover, we illustrate our hypothesis using a simple model that distributed attentional resources across items with rank-ordered priorities. Indeed, we found evidence in both experiments that priority affects the precision of working memory in a monotonic fashion. Our results demonstrate that representations of priority may provide a mechanism by which resources can be allocated to increase the precision with which we encode and briefly store information. PMID:25240420

  7. Minimal oligosaccharide structures required for induction of immune responses against meningococcal immunotype L1, L2, and L3,7,9 lipopolysaccharides determined by using synthetic oligosaccharide-protein conjugates.

    PubMed Central

    Verheul, A F; Boons, G J; Van der Marel, G A; Van Boom, J H; Jennings, H J; Snippe, H; Verhoef, J; Hoogerhout, P; Poolman, J T

    1991-01-01

    The 12 types of meningococcal lipopolysaccharide (LPS) (immunotypes) contain immunotype-specific and cross-reactive epitopes situated on the oligosaccharide part of the LPS molecules. To identify useful cross-reactive epitopes and to determine minimal oligosaccharide structures required for the induction of an immune response against the most prevalent immunotypes, L1, L2, and L3,7,9, synthetic as well as native LPS-derived oligosaccharides were conjugated with tetanus toxoid. L3,7,9 phosphoethanolamine (PEA) group-containing oligosaccharide-tetanus toxoid conjugates evoked high immunoglobulin G (IgG) antibody levels in rabbits which were detected by an L2-, L3,7,9-, and, depending on the antiserum, L1-specific enzyme-linked immunosorbent assay (ELISA). Inhibition studies revealed that an identical antibody population was detected by L1 and L3,7,9 ELISA, indicating a similar tertiary structure of the inner core oligosaccharide of these two immunotypes. These antibodies recognize PEA group-containing epitopes present on the L1 and L3,7,9 LPS. An L2 PEA group-containing oligosaccharide-tetanus toxoid conjugate elicited L2- and L3,7,9-specific IgG antibodies, but in contrast with the L3,7,9 conjugates, no L1-specific IgG antibodies were evoked. These results indicate that L1 and L2 LPS do not contain cross-reactive epitopes, whereas both L2 and L3,7,9 LPS and L1 and L3,7,9 LPS possess common determinants. Three linear oligosaccharides and one branched oligosaccharide, representing partial structures of the inner core oligosacchardes of meningococcal LPS, were synthesized. Only the branched synthetic oligosaccharide-containing conjugate was able to induce and L1- and L3,7,9-specific immune response, whereas the linear oligosaccharide-protein conjugates evoked L2-specific immune responses. The branched oligosaccharide (beta-D-Glcp(1----4)-[L-alpha-D-Hepp(1----3)]-L-alpha-D-Hepp ) is therefore considered a minimal structure required for the induction of an immune

  8. Oligosaccharides in several Philippine indigenous food legumes: determination, localization and removal.

    PubMed

    Revilleza, M J; Mendoza, E M; Raymundo, L C

    1990-01-01

    The oligosaccharide profile of raw mature seeds of seven different legumes indigenous to the Philippines was measured in 70% ethanol extracts of the seeds by thin layer chromatography using HPTLC plates and quantified by a densitometer. Based on the results, the legumes could be ranked according to decreasing oligosaccharide content or flatulence potential as follows: Sam-samping (Clitoria ternatea) greater than hyacinth bean (Dolichos lablab) greater than sabawel (Mucuna pruriens) greater than lima bean (Phaseolus lunatus) greater than swordbean (Canavalia gladiata) greater than rice bean (Vigna umbellata) greater than jack bean (Canavalia ensiformis). Sam-samping had 4.79% total oligosaccharides and hyacinth bean or batao, 3.66%. A jack bean accession had 1.79% oligosaccharides. Simple processing methods were tested to detoxify the oligosaccharides. Soaking the batao seeds had no effect while boiling even resulted in a net 23-31% increase in the levels of raffinose, stachyose and verbascose. On the other hand, two min of dry roasting resulted in complete removal of oligosaccharides whereas germination resulted in about 30-40% decrease after 1 and 2 days, respectively. PMID:2345736

  9. Precision orbit determination software validation experiment

    NASA Technical Reports Server (NTRS)

    Schutz, B. E.; Tapley, B. D.; Eanes, R. J.; Marsh, J. G.; Williamson, R. G.; Martin, T. V.

    1980-01-01

    This paper presents the results of an experiment which was designed to ascertain the level of agreement between GEODYN and UTOPIA, two completely independent computer programs used for precision orbit determination, and to identify the sources which limit the agreement. For a limited set of models and a seven-day data set arc length, the altitude components of the ephemeris obtained by the two programs agree at the sub-centimeter level throughout the arc.

  10. Accelerometers for Precise GNSS Orbit Determination

    NASA Astrophysics Data System (ADS)

    Hugentobler, Urs; Schlicht, Anja

    2016-07-01

    The solar radiation pressure is the largest non-gravitational acceleration on GNSS satellites limiting the accuracy of precise orbit models. Other non-gravitational accelerations may be thrusts for station keeping maneuvers. Accelerometers measure the motion of a test mass that is shielded against satellite surface forces with respect to a cage that is rigidly connected to the satellite. They can thus be used to measure these difficult-to-model non-gravitational accelerations. Accelerometers however typically show correlated noise as well as a drift of the scaling factors converting measured voltages to accelerations. The scaling thus needs to be regularly calibrated. The presented study is based on several simulated scenarios including orbit determination of accelerometer-equipped Galileo satellites. It shall evaluate different options on how to accommodate accelerometer measurements in the orbit integrator, indicate to what extent currently available accelerometers can be used to improve the modeling of non-gravitational accelerations on GNSS satellites for precise orbit determination, and assess the necessary requirements for an accelerometer that can serve this purpose.

  11. Annotation and structural elucidation of bovine milk oligosaccharides and determination of novel fucosylated structures

    PubMed Central

    Aldredge, Danielle L; Geronimo, Maria R; Hua, Serenus; Nwosu, Charles C; Lebrilla, Carlito B; Barile, Daniela

    2013-01-01

    Bovine milk oligosaccharides (BMOs) are recognized by the dairy and food industries, as well as by infant formula manufacturers, as novel, high-potential bioactive food ingredients. Recent studies revealed that bovine milk contains complex oligosaccharides structurally related to those previously thought to be present in only human milk. These BMOs are microbiotic modulators involved in important biological activities, including preventing pathogen binding to the intestinal epithelium and serving as nutrients for a selected class of beneficial bacteria. Only a small number of BMO structures are fully elucidated. To better understand the potential of BMOs as a class of biotherapeutics, their detailed structure analysis is needed. This study initiated the development of a structure library of BMOs and a comprehensive evaluation of structure-related specificity. The bovine milk glycome was profiled by high-performance mass spectrometry and advanced separation techniques to obtain a comprehensive catalog of BMOs, including several novel, lower abundant neutral and fucosylated oligosaccharides that are often overlooked during analysis. Structures were identified using isomer-specific tandem mass spectroscopy and targeted exoglycosidase digestions to produce a BMO library detailing retention time, accurate mass and structure to allow their rapid identification in future studies. PMID:23436288

  12. Precise Orbit Determination for Altimeter Satellites

    NASA Astrophysics Data System (ADS)

    Zelensky, N. P.; Luthcke, S. B.; Rowlands, D. D.; Lemoine, F. G.; Beckley, B. B.; Wang, Y.; Chinn, D. S.

    2002-05-01

    Orbit error remains a critical component in the error budget for all radar altimeter missions. This paper describes the ongoing work at GSFC to improve orbits for three radar altimeter satellites: TOPEX/POSEIDON (T/P), Jason, and Geosat Follow-On (GFO). T/P has demonstrated that, the time variation of ocean topography can be determined with an accuracy of a few centimeters, thanks to the availability of highly accurate orbits (2-3 cm radially) produced at GSFC. Jason, the T/P follow-on, is intended to continue measurement of the ocean surface with the same, if not better accuracy. Reaching the Jason centimeter accuracy orbit goal would greatly benefit the knowledge of ocean circulation. Several new POD strategies which promise significant improvement to the current T/P orbit are evaluated over one year of data. Also, preliminary, but very promising Jason POD results are presented. Orbit improvement for GFO has been dramatic, and has allowed this mission to provide a POESEIDON class altimeter product. The GFO Precise Orbit Ephemeris (POE) orbits are based on satellite laser ranging (SLR) tracking supplemented with GFO/GFO altimeter crossover data. The accuracy of these orbits were evaluated using several tests, including independent TOPEX/GFO altimeter crossover data. The orbit improvements are shown over the years 2000 and 2001 for which the POEs have been completed.

  13. Effect of sucrose concentration on the composition of enzymatically synthesized short-chain fructo-oligosaccharides as determined by FTIR and multivariate analysis.

    PubMed

    Romano, Nelson; Santos, Mauricio; Mobili, Pablo; Vega, Roberto; Gómez-Zavaglia, Andrea

    2016-07-01

    Fructo-oligosaccharides (FOS) are mixtures of oligosaccharides composed of fructose and glucose units. As their composition is determined by the synthesis conditions, the goals of this work were: (a) to engineer FOS of different composition by adjusting the sucrose concentration used as initial substrate; (b) to define partial least square (PLS) based-models to quantify all the sugars present in the reaction medium directly from the FTIR spectra. The yield of each reaction was calculated as the percentage of initial sucrose converted to each oligosaccharide, as monitored by HPLC. In parallel, the reactions were followed by FTIR. Six different PLS models aiming to determine the concentration of each carbohydrate present in the reaction medium were calibrated and independently validated. The means of predicted values fitted well to those obtained by HPLC. Determining FOS composition directly from the FTIR spectra represents a useful tool to monitor enzymatic synthesis, with strong impact at both an academic and an industrial level. PMID:26920320

  14. Action patterns of amylolytic enzymes as determined by the [1-14C]malto-oligosaccharide mapping method.

    PubMed

    Pazur, J H; Marchetti, N T

    1992-04-01

    A valuable technique for oligosaccharide mapping, utilizing radioactive malto-oligosaccharides, multiple-ascent p.c., and radioautography, has been developed for identifying the action patterns of the glucoamylase isozymes, alpha-amylases, beta-amylase, glucosyltransferase, and glucanosyltransferase. The glucoamylase isozymes act by multi-chain mechanisms on malto-oligosaccharides and most likely on starch and glycogen. The alpha-amylases act endo-wise and randomly hydrolyze alpha-(1----4)- but not alpha-(1----6)-glucosidic bonds. These amylases may act by single-chain and/or multi-chain mechanisms, depending on the number of hydrolytic attacks per single encounter of the enzyme and the substrate. The beta-amylases hydrolyze malto-oligosaccharides by a multi-chain mechanism. A fungal glucosyltransferase from Aspergillus niger transfers glucose units by a single-chain mechanism from maltose to glucosyl acceptors to yield new gluco-oligosaccharides with alpha-(1----4) and alpha-(1----6) linkages. A novel type of transferase isolated from Bacillus subtilis acts by a multi-chain mechanism and transfers segments of 2 to 5 glucose residues from malto-oligosaccharides to acceptor co-substrates. An alpha-amylase from the same organism removes maltotriose units from the non-reducing ends of oligosaccharides by a multi-chain mechanism. PMID:1379885

  15. GRAS NRT Precise Orbit Determination: Operational Experience

    NASA Technical Reports Server (NTRS)

    MartinezFadrique, Francisco M.; Mate, Alberto Agueda; Rodriquez-Portugal, Francisco Sancho

    2007-01-01

    EUMETSAT launched the meteorological satellite MetOp-A in October 2006; it is the first of the three satellites that constitute the EUMETSAT Polar System (EPS) space segment. This satellite carries a challenging and innovative instrument, the GNSS Receiver for Atmospheric Sounding (GRAS). The goal of the GRAS instrument is to support the production of atmospheric profiles of temperature and humidity with high accuracy, in an operational context, based on the bending of the GPS signals traversing the atmosphere during the so-called occultation periods. One of the key aspects associated to the data processing of the GRAS instrument is the necessity to describe the satellite motion and GPS receiver clock behaviour with high accuracy and within very strict timeliness limitations. In addition to these severe requirements, the GRAS Product Processing Facility (PPF) must be integrated in the EPS core ground segment, which introduces additional complexity from the data integration and operational procedure points of view. This paper sets out the rationale for algorithm selection and the conclusions from operational experience. It describes in detail the rationale and conclusions derived from the selection and implementation of the algorithms leading to the final orbit determination requirements (0.1 mm/s in velocity and 1 ns in receiver clock error at 1 Hz). Then it describes the operational approach and extracts the ideas and conclusions derived from the operational experience.

  16. Precise and Accurate Density Determination of Explosives Using Hydrostatic Weighing

    SciTech Connect

    B. Olinger

    2005-07-01

    Precise and accurate density determination requires weight measurements in air and water using sufficiently precise analytical balances, knowledge of the densities of air and water, knowledge of thermal expansions, availability of a density standard, and a method to estimate the time to achieve thermal equilibrium with water. Density distributions in pressed explosives are inferred from the densities of elements from a central slice.

  17. Development and validation of a HPLC method for determination of degree of polymerization of xylo-oligosaccharides.

    PubMed

    Pu, Jianghua; Zhao, Xia; Wang, Qingchi; Wang, Yingdi; Zhou, Hui

    2016-12-15

    A reliable reversed-phase HPLC method was developed for high resolution separation and high sensitivity determination of xylo-oligosaccharides (XOS) with degree of polymerization from 2 to 8. The method was carried out on a Kromasil C18 column using pre-column derivatization with 1-phenyl-3-methyl-5-pyrazolone (PMP) and UV detection at 245nm. The effects of pH value of mobile phase, volume proportion of acetonitrile, concentration of ammonium acetate buffer and flow rate on the retention time and degree of separation of XOS derivatives were investigated. A satisfactory result was achieved in 25min with a mobile phase of 10mmol/L ammonium acetate buffer (pH5.5)-acetonitrile by a gradient elution at 0.8mL/min. In addition, this method was validated by liquid chromatography-tandem mass spectroscopy (LC-MS) analysis and several uncertain compounds were identified. The proposed HPLC method is suitable for the compositional analysis and quality control of XOS. PMID:27451231

  18. Linkage Determination of Linear Oligosaccharides by MSn (n > 2) Collision-Induced Dissociation of Z1 Ions in the Negative Ion Mode

    NASA Astrophysics Data System (ADS)

    Konda, Chiharu; Bendiak, Brad; Xia, Yu

    2013-12-01

    Obtaining unambiguous linkage information between sugars in oligosaccharides is an important step in their detailed structural analysis. An approach is described that provides greater confidence in linkage determination for linear oligosaccharides based on multiple-stage tandem mass spectrometry (MSn, n >2) and collision-induced dissociation (CID) of Z1 ions in the negative ion mode. Under low energy CID conditions, disaccharides 18O-labeled on the reducing carbonyl group gave rise to Z1 product ions (m/z 163) derived from the reducing sugar, which could be mass-discriminated from other possible structural isomers having m/z 161. MS3 CID of these m/z 163 ions showed distinct fragmentation fingerprints corresponding to the linkage types and largely unaffected by sugar unit identities or their anomeric configurations. This unique property allowed standard CID spectra of Z1 ions to be generated from a small set of disaccharide samples that were representative of many other possible isomeric structures. With the use of MSn CID (n = 3 - 5), model linear oligosaccharides were dissociated into overlapping disaccharide structures, which were subsequently fragmented to form their corresponding Z1 ions. CID data of these Z1 ions were collected and compared with the standard database of Z1 ion CID using spectra similarity scores for linkage determination. As the proof-of-principle tests demonstrated, we achieved correct determination of individual linkage types along with their locations within two trisaccharides and a pentasaccharide.

  19. Improved DORIS accuracy for precise orbit determination and geodesy

    NASA Technical Reports Server (NTRS)

    Willis, Pascal; Jayles, Christian; Tavernier, Gilles

    2004-01-01

    In 2001 and 2002, 3 more DORIS satellites were launched. Since then, all DORIS results have been significantly improved. For precise orbit determination, 20 cm are now available in real-time with DIODE and 1.5 to 2 cm in post-processing. For geodesy, 1 cm precision can now be achieved regularly every week, making now DORIS an active part of a Global Observing System for Geodesy through the IDS.

  20. Sequencing of oligosaccharides using enzyme array digestion with electrochemical and fluorescent detections

    SciTech Connect

    Sun, M.; Lee, C.S.

    1997-12-31

    The objective of this study is to develop a rapid and sensitive method for oligosaccharide sequencing. The oligosaccharides are subjected to the enzyme array digestion with exoglycosidases of known and well-defined specificities. The enzyme array method involves the division of oligosaccharide sample into aliquots, and the incubation of each aliquot with a precisely defined mixture of exoglycosidases. In the enzyme array method, the presence of a specific linkage anywhere in the oligosaccharide is determined by the inability of an enzyme mixture lacking a given enzyme to cleave that linkage ( a stop point) and the ability of the other enzymes to cleave the linkage up to that point. The direct quantification of released monosaccharides from the enzyme array can be achieved by using pulsed amperometric detection (PAD) or by fluorescent derivatization with a fluorophoric agent. The measured monosaccharide concentrations in combination with the enzyme array analysis provide detail characterization of oligosaccharides with their sugar composition, configuration, and linkage information, The released monosaccharides are further quantified by anion exchange chromatography and capillary electrophoresis for the comparison with the results obtained from PAD and fluorescence measurements. Our enzyme array-electrochemical (or fluorescent) detection method does not require any separation procedure and any prior labeling of oligosaccharide and have several practical advantages over the current carbohydrate sequencing techniques including simplicity, speed, and the ability to use small amounts of starting material.

  1. Structural confirmation of novel oligosaccharides isolated from sugar beet molasses.

    PubMed

    Abe, Tatsuya; Kikuchi, Hiroto; Aritsuka, Tsutomu; Takata, Yusuke; Fukushi, Eri; Fukushi, Yukiharu; Kawabata, Jun; Ueno, Keiji; Onodera, Shuichi; Shiomi, Norio

    2016-07-01

    Eleven oligosaccharides were isolated from sugar beet molasses using carbon-Celite column chromatography and HPLC. The constituent sugars and linkage positions were determined using methylation analysis, MALDI-TOF-MS, and NMR measurements. The configurations of isolated oligosaccharides were confirmed based on detailed NMR analysis. Based on our results, three of the 11 oligosaccharides were novel. PMID:26920296

  2. Precise Determination of the Strangeness Magnetic Moment of the Nucleon

    SciTech Connect

    Leinweber, D B; Boinepalli, S; Cloet, I C; Thomas, A W; Williams, A G; Young, R D; Zanotti, J M; Zhang, J B

    2005-06-01

    By combining the constraints of charge symmetry with new chiral extrapolation techniques and recent low mass lattice QCD simulations of the individual quark contributions to the magnetic moments of the nucleon octet, we obtain a precise determination of the strange magnetic moment of the proton. The result, namely G{sub M}{sup s} = -0.051 +/- 0.021 mu{sub N}, is consistent with the latest experimental measurements but an order of magnitude more precise. This poses a tremendous challenge for future experiments.

  3. Precise Determination of the Strangeness Magnetic Moment of the Nucleon

    SciTech Connect

    Leinweber, D.B.; Boinepalli, S.; Cloet, I.C.; Williams, A.G.; Young, R.D.; Zhang, J.B.; Thomas, A.W.; Zanotti, J.M.

    2005-06-03

    By combining the constraints of charge symmetry with new chiral extrapolation techniques and recent low mass quenched lattice-QCD simulations of the individual quark contributions to the magnetic moments of the nucleon octet, we obtain a precise determination of the strange magnetic moment of the proton. The result, namely, G{sub M}{sup s}=(-0.046{+-}0.019){mu}{sub N} is consistent with the latest experimental measurements but an order of magnitude more precise. This poses a tremendous challenge for future experiments.

  4. Oligosaccharides of Cabernet Sauvignon, Syrah and Monastrell red wines.

    PubMed

    Apolinar-Valiente, Rafael; Romero-Cascales, Inmaculada; Williams, Pascale; Gómez-Plaza, Encarna; López-Roca, José María; Ros-García, José María; Doco, Thierry

    2015-07-15

    Wine oligosaccharides were recently characterized and their concentrations, their composition and their roles on different wines remain to be determined. The concentration and composition of oligosaccharides in Cabernet Sauvignon, Syrah and Monastrell wines was studied. Oligosaccharide fractions were isolated by high resolution size-exclusion chromatography. The neutral and acidic sugar composition was determined by gas chromatography. The MS spectra of the oligosaccharides were performed on an AccuTOF mass spectrometer. Molar-mass distributions were determined by coupling size exclusion chromatography with a multi-angle light scattering device (MALLS) and a differential refractive index detector. Results showed significant differences in the oligosaccharidic fraction from Cabernet Sauvignon, Syrah and Monastrell wines. This study shows the influence that the grape variety seems have on the quantity, composition and structure of oligosaccharides in the finished wine. To our knowledge, this is the first report to research the oligosaccharides composition of Cabernet Sauvignon, Syrah and Monastrell wines. PMID:25722170

  5. Precision Attitude Determination for an Infrared Space Telescope

    NASA Technical Reports Server (NTRS)

    Benford, Dominic J.

    2008-01-01

    We have developed performance simulations for a precision attitude determination system using a focal plane star tracker on an infrared space telescope. The telescope is being designed for the Destiny mission to measure cosmologically distant supernovae as one of the candidate implementations for the Joint Dark Energy Mission. Repeat observations of the supernovae require attitude control at the level of 0.010 arcseconds (0.05 microradians) during integrations and at repeat intervals up to and over a year. While absolute accuracy is not required, the repoint precision is challenging. We have simulated the performance of a focal plane star tracker in a multidimensional parameter space, including pixel size, read noise, and readout rate. Systematic errors such as proper motion, velocity aberration, and parallax can be measured and compensated out. Our prediction is that a relative attitude determination accuracy of 0.001 to 0.002 arcseconds (0.005 to 0.010 microradians) will be achievable.

  6. Precise Determination of the Helical Repeat of Tobacco Mosaic Virus

    SciTech Connect

    Kendall, A.; McDonald, M.; Stubbs, G.

    2009-06-01

    Tobacco mosaic virus (TMV) is widely used as a distance standard in electron microscopy, fiber diffraction, and other imaging techniques. The dimension used as a reference is the pitch of the viral helix, 23 {angstrom}. This distance, however, has never been measured with any great degree of precision. The helical pitch of TMV has been determined to be 22.92 {+-}0.03 {angstrom} by X-ray fiber diffraction methods using highly collimated synchrotron radiation.

  7. Precise determination of the helical repeat of tobacco mosaic virus

    SciTech Connect

    Kendall, Amy; McDonald, Michele; Stubbs, Gerald

    2007-12-05

    Tobacco mosaic virus (TMV) is widely used as a distance standard in electron microscopy, fiber diffraction, and other imaging techniques. The dimension used as a reference is the pitch of the viral helix, 23 A. This distance, however, has never been measured with any great degree of precision. The helical pitch of TMV has been determined to be 22.92 {+-} 0.03 A by X-ray fiber diffraction methods using highly collimated synchrotron radiation.

  8. Precision orbit determination using TOPEX/Poseidon TDRSS observations

    NASA Technical Reports Server (NTRS)

    Teles, Jerome; Putney, B.; Phelps, J.; Mccarthy, J.; Eddy, W.; Klosko, S.

    1993-01-01

    The TOPEX/Poseidon (T/P) Mission carries a variety of packages to support experimental, precision and operational orbit determination. Included are a GPS transponder, laser retro-reflectors, the French-developed Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) Doppler tracking system and a Tracking Data Relay Satellite System (TDRSS) transponder. Presently, TDRSS tracking is used for operational orbit support and is processed with force and measurement modeling consistent with this purpose. However, the low noise and extensive geographical coverage of the TDRSS/TOPEX data allows an assessment of TDRSS Precision Orbit Determination (POD) capabilities by comparison to the T/P precision orbit determination. The Geodynamics (GEODYN) Orbit Determination System is used to process laser and DORIS data to produce the precision orbits for the T/P Project. GEODYN has been modified recently to support the TDRSS observations. TDRSS data analysis can now benefit from the extensive force modeling and reference frame stability needed to meet the orbit determination (OD) goals of the T/P Mission. This analysis has concentrated on the strongest of the TDRSS measurement types, its two-way average range rate. Both the TDRSS and T/P orbits have been assessed in combination with the global satellite laser ranging (SLR) data and by themselves. These results indicate that significant improvement in the TDRSS ephemerides is obtained when the T/P orbit is well determined by SLR, and the TDRSS/TOPEX Doppler link is used to position TDRSS. Meter-level TDRSS positioning uncertainty is achieved using this approach. When the TDRSS orbit location is provided by this approach, the two-way range rate from a single TDRSS (i.e. West only) can provide T/P orbits with sub-meter radial accuracies and two meter RMS total position agreement with SLR defined orbits. These preliminary results indicate improved modeling of the TDRSS measurement through the elimination of heretofore

  9. Strategies for high-precision Global Positioning System orbit determination

    NASA Technical Reports Server (NTRS)

    Lichten, Stephen M.; Border, James S.

    1987-01-01

    Various strategies for the high-precision orbit determination of the GPS satellites are explored using data from the 1985 GPS field test. Several refinements to the orbit determination strategies were found to be crucial for achieving high levels of repeatability and accuracy. These include the fine tuning of the GPS solar radiation coefficients and the ground station zenith tropospheric delays. Multiday arcs of 3-6 days provided better orbits and baselines than the 8-hr arcs from single-day passes. Highest-quality orbits and baselines were obtained with combined carrier phase and pseudorange solutions.

  10. Precise GPS orbit determination results from 1985 field tests

    NASA Technical Reports Server (NTRS)

    Lichten, S. M.; Border, J. S.; Wu, S.-C.; Williams, B. G.; Yunck, T. P.

    1986-01-01

    Data from three different receiver types have been used to obtain precise orbits for the satellites of the Global Positioning System (GPS). The data were collected during the 1985 March-April GPS experiment to test and validate GPS techniques for precision orbit determination and geodesy. A new software package developed at the Jet Propulsion Laboratory (JPL), GIPSY (GPS Inferred Positioning SYstem), was used to process the data. To assess orbit accuracy, solutions are compared using integrated doppler data from various different receiver types, different fiducial sites, and independent data arcs, including one spanning six days. From these intercomparisons, orbit accuracy for a well-tracked GPS satellite of three meters in altitude and about five meters in each of down and cross-track components are inferred.

  11. Can an ancestral condition for milk oligosaccharides be determined? Evidence from the Tasmanian echidna (Tachyglossus aculeatus setosus).

    PubMed

    Oftedal, Olav T; Nicol, Stewart C; Davies, Noel W; Sekii, Nobuhiro; Taufik, Epi; Fukuda, Kenji; Saito, Tadao; Urashima, Tadasu

    2014-09-01

    The monotreme pattern of egg-incubation followed by extended lactation represents the ancestral mammalian reproductive condition, suggesting that monotreme milk may include saccharides of an ancestral type. Saccharides were characterized from milk of the Tasmanian echidna Tachyglossus aculeatus setosus. Oligosaccharides in pooled milk from late lactation were purified by gel filtration and high-performance liquid chromatography using a porous graphitized carbon column and characterized by (1)H NMR spectroscopy; oligosaccharides in smaller samples from early and mid-lactation were separated by ultra-performance liquid chromatography and characterized by negative electrospray ionization mass spectrometry (ESI-MS) and tandem collision mass spectroscopy (MS/MS) product ion patterns. Eight saccharides were identified by (1)H NMR: lactose, 2'-fucosyllactose, difucosyllactose (DFL), B-tetrasaccharide, B-pentasaccharide, lacto-N-fucopentaose III (LNFP3), 4-O-acetyl-3'-sialyllactose [Neu4,5Ac(α2-3)Gal(β1-4)Glc] and 4-O-acetyl-3'-sialyl-3-fucosyllactose [Neu4,5Ac(α2-3)Gal(β1-4)[Fuc(α1-3)]Glc]. Six of these (all except DFL and LNFP3) were present in early and mid-lactation per ESI-MS, although some at trace levels. Four additional oligosaccharides examined by ESI-MS and MS/MS are proposed to be 3'-sialyllactose [Neu5Ac(α2-3)Gal(β1-4)Glc], di-O-acetyl-3'-sialyllactose [Neu4,5,UAc3(α2-3)Gal(β1-4)Glc where U = 7, 8 or 9], 4-O-acetyl-3'-sialyllactose sulfate [Neu4,5Ac(α2-3)Gal(β1-4)GlcS, where position of the sulfate (S) is unknown] and an unidentified 800 Da oligosaccharide containing a 4-O-acetyl-3'-sialyllactose core. 4-O-acetyl-3'-sialyllactose was the predominant saccharide at all lactation stages. 4-O-Acetylation is known to protect sialyllactose from bacterial sialidases and may be critical to prevent microbial degradation on the mammary areolae and/or in the hatchling digestive tract so that sialyllactose can be available for enterocyte uptake. The ability to

  12. Precise orbit determination based on raw GPS measurements

    NASA Astrophysics Data System (ADS)

    Zehentner, Norbert; Mayer-Gürr, Torsten

    2016-03-01

    Precise orbit determination is an essential part of the most scientific satellite missions. Highly accurate knowledge of the satellite position is used to geolocate measurements of the onboard sensors. For applications in the field of gravity field research, the position itself can be used as observation. In this context, kinematic orbits of low earth orbiters (LEO) are widely used, because they do not include a priori information about the gravity field. The limiting factor for the achievable accuracy of the gravity field through LEO positions is the orbit accuracy. We make use of raw global positioning system (GPS) observations to estimate the kinematic satellite positions. The method is based on the principles of precise point positioning. Systematic influences are reduced by modeling and correcting for all known error sources. Remaining effects such as the ionospheric influence on the signal propagation are either unknown or not known to a sufficient level of accuracy. These effects are modeled as unknown parameters in the estimation process. The redundancy in the adjustment is reduced; however, an improvement in orbit accuracy leads to a better gravity field estimation. This paper describes our orbit determination approach and its mathematical background. Some examples of real data applications highlight the feasibility of the orbit determination method based on raw GPS measurements. Its suitability for gravity field estimation is presented in a second step.

  13. Precise Orbit Determination of BeiDou Navigation Satellite System

    NASA Astrophysics Data System (ADS)

    He, Lina; Ge, Maorong; Wang, Jiexian; Wickert, Jens; Schuh, Harald

    2013-04-01

    China has been developing its own independent satellite navigation system since decades. Now the COMPASS system, also known as BeiDou, is emerging and gaining more and more interest and attention in the worldwide GNSS communities. The current regional BeiDou system is ready for its operational service around the end of 2012 with a constellation including five Geostationary Earth Orbit satellites (GEO), five Inclined Geosynchronous Orbit satellites (IGSO) and four Medium Earth orbit (MEO) satellites in operation. Besides the open service with positioning accuracy of around 10m which is free to civilian users, both precise relative positioning, and precise point positioning are demonstrated as well. In order to enhance the BeiDou precise positioning service, Precise Orbit Determination (POD) which is essential of any satellite navigation system has been investigated and studied thoroughly. To further improving the orbits of different types of satellites, we study the impact of network coverage on POD data products by comparing results from tracking networks over the Chinese territory, Asian-Pacific, Asian and of global scale. Furthermore, we concentrate on the improvement of involving MEOs on the orbit quality of GEOs and IGSOs. POD with and without MEOs are undertaken and results are analyzed. Finally, integer ambiguity resolution which brings highly improvement on orbits and positions with GPS data is also carried out and its effect on POD data products is assessed and discussed in detail. Seven weeks of BeiDou data from a ground tracking network, deployed by Wuhan University is employed in this study. The test constellation includes four GEO, five IGSO and two MEO satellites in operation. The three-day solution approach is employed to enhance its strength due to the limited coverage of the tracking network and the small movement of most of the satellites. A number of tracking scenarios and processing schemas are identified and processed and overlapping orbit

  14. Precise attitude determination of defunct satellite laser ranging tragets

    NASA Astrophysics Data System (ADS)

    Pittet, Jean-Noel; Schildknecht, Thomas; Silha, Jiri

    2016-07-01

    The Satellite Laser Ranging (SLR) technology is used to determine the dynamics of objects equipped with so-called retro-reflectors or retro-reflector arrays (RRA). This type of measurement allows to range to the spacecraft with very high precision, which leads to determination of very accurate orbits. Non-active spacecraft, which are not any more attitude controlled, tend to start to spin or tumble under influence of the external and internal torques. Such a spinning can be around one constant axis of rotation or it can be more complex, when also precession and nutation motions are present. The rotation of the RRA around the spacecraft's centre of mass can create both a oscillation pattern of laser range signal and a periodic signal interruption when the RRA is hidden behind the satellite. In our work we will demonstrate how the SLR ranging technique to cooperative targets can be used to determine precisely their attitude state. The processing of the obtained data will be discussed, as well as the attitude determination based on parameters estimation. Continuous SLR measurements to one target can allow to accurately monitor attitude change over time which can be further used for the future attitude modelling. We will show our solutions of the attitude states determined for the non-active ESA satellite ENVISAT based on measurements acquired during year 2013-2015 by Zimmerwald SLR station, Switzerland. The angular momentum shows a stable behaviour with respect to the orbital plane but is not aligned with orbital momentum. The determination of the inertial rotation over time, shows it evolving between 130 to 190 seconds within two year. Parameter estimation also bring a strong indication of a retrograde rotation. Results on other former satellites in low and medium Earth orbit such as TOPEX/Poseidon or GLONASS type will be also presented.

  15. Precision Orbit Determination for the Lunar Reconnaissance Orbiter

    NASA Astrophysics Data System (ADS)

    Lemoine, F. G.; Mazarico, E.; Rowlands, D. D.; Torrence, M. H.; McGarry, J. F.; Neumann, G. A.; Mao, D.; Smith, D. E.; Zuber, M. T.

    2010-05-01

    The Lunar Reconnaissance Orbiter (LRO) spacecraft was launched on June 18, 2009. In mid-September 2009, the spacecraft orbit was changed from its commissioning orbit (30 x 216 km polar) to a quasi-frozen polar orbit with an average altitude of 50km (+-15km). One of the goals of the LRO mission is to develop a new lunar reference frame to facilitate future exploration. Precision Orbit Determination is used to achieve the accuracy requirements, and to precisely geolocate the high-resolution datasets obtained by the LRO instruments. In addition to the tracking data most commonly used to determine spacecraft orbits in planetary missions (radiometric Range and Doppler), LRO benefits from two other types of orbital constraints, both enabled by the Lunar Orbiter Laser Altimeter (LOLA) instrument. The altimetric data collected as the instrument's primary purpose can be used to derive constraints on the orbit geometry at the times of laser groundtrack intersections (crossovers). The multi-beam configuration and high firing-rate of LOLA further improves the strength of these crossovers, compared to what was possible with the MOLA instrument onboard Mars Global Surveyor (MGS). Furthermore, one-way laser ranges (LR) between Earth International Laser Ranging Service (ILRS) stations and the spacecraft are made possible by the addition of a small telescope mounted on the spacecraft high-gain antenna. The photons received from Earth are transmitted to one LOLA detector by a fiber optics bundle. Thanks to the accuracy of the LOLA timing system, the precision of 5-s LR normal points is below 10cm. We present the first results of the Precision Orbit Determination (POD) of LRO through the commissioning and nominal phases of the mission. Orbit quality is discussed, and various gravity fields are evaluated with the new (independent) LRO radio tracking data. The altimetric crossovers are used as an independent data type to evaluate the quality of the orbits. The contribution of the LR

  16. Simple column-switching ion chromatography method for determining eight monosaccharides and oligosaccharides in honeydew and nectar.

    PubMed

    Ni, Chengzhu; Zhu, Binhe; Wang, Nani; Wang, Muhua; Chen, Suqing; Zhang, Jiajie; Zhu, Yan

    2016-03-01

    Honeydew is excreted by aphids as a sweet waste and nectar is floral honey. Honeydew and nectar are complicated samples which consist of various sugars and amino acids. In this work, a simple ion chromatography with column-switching method was developed for the simultaneous analysis of 8 monosaccharides and oligosaccharides in honeydew and nectar. A reversed-phase column was used as a pretreatment column to eliminate organics on-line and sugars were eluted from a collection loop to analytical column by using column-switching technique. This method showed good linearity (r⩾0.9994) and afforded low limits of detection ranging from 1.55 to 10.17μgL(-1) for all the analytes. Recoveries ranged from 95% to 105% and repeatability results were acceptable with relative standard deviation of less than 3.21% (n=6). This method was successfully applied to quantification of these sugars in honeydew and nectar. These results showed honeydew had much more oligosaccharides than nectar. PMID:26471592

  17. Precise determination of lattice phase shifts and mixing angles

    NASA Astrophysics Data System (ADS)

    Lu, Bing-Nan; Lähde, Timo A.; Lee, Dean; Meißner, Ulf-G.

    2016-09-01

    We introduce a general and accurate method for determining lattice phase shifts and mixing angles, which is applicable to arbitrary, non-cubic lattices. Our method combines angular momentum projection, spherical wall boundaries and an adjustable auxiliary potential. This allows us to construct radial lattice wave functions and to determine phase shifts at arbitrary energies. For coupled partial waves, we use a complex-valued auxiliary potential that breaks time-reversal invariance. We benchmark our method using a system of two spin-1/2 particles interacting through a finite-range potential with a strong tensor component. We are able to extract phase shifts and mixing angles for all angular momenta and energies, with precision greater than that of extant methods. We discuss a wide range of applications from nuclear lattice simulations to optical lattice experiments.

  18. Improving GLONASS Precise Orbit Determination through Data Connection

    PubMed Central

    Liu, Yang; Ge, Maorong; Shi, Chuang; Lou, Yidong; Wickert, Jens; Schuh, Harald

    2015-01-01

    In order to improve the precision of GLONASS orbits, this paper presents a method to connect the data segments of a single station-satellite pair to increase the observation continuity and, consequently, the strength of the precise orbit determination (POD) solution. In this method, for each GLONASS station-satellite pair, the wide-lane ambiguities derived from the Melbourne–Wübbena combination are statistically tested and corrected for phase integer offsets and then the same is carried out for the narrow-lane ambiguities calculated from the POD solution. An experimental validation was carried out using one-month GNSS data of a global network with 175 IGS stations. The result shows that, on average, 27.1% of the GLONASS station-satellite pairs with multiple data segments could be connected to a single long observation arc and, thus, only one ambiguity parameter was estimated. Using the connected data, the GLONASS orbit overlapping RMS at the day boundaries could be reduced by 19.2% in ideal cases with an averaged reduction of about 6.3%. PMID:26633414

  19. Modeling radiation forces acting on satellites for precision orbit determination

    NASA Technical Reports Server (NTRS)

    Marshall, J. A.; Antreasian, P. G.; Rosborough, G. W.; Putney, B. H.

    1992-01-01

    Models of the TOPEX/Poseidon spacecraft are developed by means of finite-element analyses for use in generating acceleration histories for various orbit orientations which account for nonconservative radiation forces. The acceleration profiles are developed with an analysis based on the use of the 'box-wing' model in which the satellite is modeled as a combination of flat plates. The models account for the effects of solar, earth-albedo, earth-IR, and spacecraft-thermal radiation. The finite-element analysis gives the total force and induced accelerations acting on the satellite. The plate types used in the analysis have parameters that can be adjusted to optimize model performance according to the micromodel analysis and tracking observations. Acceleration related to solar radiation pressure is modeled effectively, and the techniques are shown to be useful for the precise orbit determinations required for spacecraft such as the TOPEX/Poseidon.

  20. Precise baseline determination for the TanDEM-X mission

    NASA Astrophysics Data System (ADS)

    Koenig, Rolf; Moon, Yongjin; Neumayer, Hans; Wermuth, Martin; Montenbruck, Oliver; Jäggi, Adrian

    The TanDEM-X mission will strive for generating a global precise Digital Elevation Model (DEM) by way of bi-static SAR in a close formation of the TerraSAR-X satellite, already launched on June 15, 2007, and the TanDEM-X satellite to be launched in May 2010. Both satellites carry the Tracking, Occultation and Ranging (TOR) payload supplied by the GFZ German Research Centre for Geosciences. The TOR consists of a high-precision dual-frequency GPS receiver, called Integrated GPS Occultation Receiver (IGOR), and a Laser retro-reflector (LRR) for precise orbit determination (POD) and atmospheric sounding. The IGOR is of vital importance for the TanDEM-X mission objectives as the millimeter level determination of the baseline or distance between the two spacecrafts is needed to derive meter level accurate DEMs. Within the TanDEM-X ground segment GFZ is responsible for the operational provision of precise baselines. For this GFZ uses two software chains, first its Earth Parameter and Orbit System (EPOS) software and second the BERNESE software, for backup purposes and quality control. In a concerted effort also the German Aerospace Center (DLR) generates precise baselines independently with a dedicated Kalman filter approach realized in its FRNS software. By the example of GRACE the generation of baselines with millimeter accuracy from on-board GPS data can be validated directly by way of comparing them to the intersatellite K-band range measurements. The K-band ranges are accurate down to the micrometer-level and therefore may be considered as truth. Both TanDEM-X baseline providers are able to generate GRACE baselines with sub-millimeter accuracy. By merging the independent baselines by GFZ and DLR, the accuracy can even be increased. The K-band validation however covers solely the along-track component as the K-band data measure just the distance between the two GRACE satellites. In addition they inhibit an un-known bias which must be modelled in the comparison, so the

  1. TOPEX/Poseidon precision orbit determination production and expert system

    NASA Technical Reports Server (NTRS)

    Putney, Barbara; Zelensky, Nikita; Klosko, Steven

    1993-01-01

    TOPEX/Poseidon (T/P) is a joint mission between NASA and the Centre National d'Etudes Spatiales (CNES), the French Space Agency. The TOPEX/Poseidon Precision Orbit Determination Production System (PODPS) was developed at Goddard Space Flight Center (NASA/GSFC) to produce the absolute orbital reference required to support the fundamental ocean science goals of this satellite altimeter mission within NASA. The orbital trajectory for T/P is required to have a RMS accuracy of 13 centimeters in its radial component. This requirement is based on the effective use of the satellite altimetry for the isolation of absolute long-wavelength ocean topography important for monitoring global changes in the ocean circulation system. This orbit modeling requirement is at an unprecedented accuracy level for this type of satellite. In order to routinely produce and evaluate these orbits, GSFC has developed a production and supporting expert system. The PODPS is a menu driven system allowing routine importation and processing of tracking data for orbit determination, and an evaluation of the quality of the orbit so produced through a progressive series of tests. Phase 1 of the expert system grades the orbit and displays test results. Later phases undergoing implementation, will prescribe corrective actions when unsatisfactory results are seen. This paper describes the design and implementation of this orbit determination production system and the basis for its orbit accuracy assessment within the expert system.

  2. Analysis of HY2A precise orbit determination using DORIS

    NASA Astrophysics Data System (ADS)

    Gao, Fan; Peng, Bibo; Zhang, Yu; Evariste, Ngatchou Heutchi; Liu, Jihua; Wang, Xiaohui; Zhong, Min; Lin, Mingsen; Wang, Nazi; Chen, Runjing; Xu, Houze

    2015-03-01

    HY2A is the first Chinese marine dynamic environment satellite. The payloads include a radar altimeter to measure the sea surface height in combination with a high precision orbit to be determined from tracking data. Onboard satellite tracking includes GPS, SLR, and the DORIS DGXX receiver which delivers phase and pseudo-range measurements. CNES releases raw phase and pseudo-range measurements with RINEX DORIS 3.0 format and pre-processed Doppler range-rate with DORIS 2.2 data format. However, the VMSI software package developed by Van Martin Systems, Inc which is used to estimate HY2A DORIS orbits can only process Doppler range-rate but not the DORIS phase data which are available with much shorter latency. We have proposed a method of constructing the phase increment data, which are similar to range-rate data, from RINEX DORIS 3.0 phase data. We compute the HY2A orbits from June, 2013 to August, 2013 using the POD strategy described in this paper based on DORIS 2.2 range-rate data and our reconstructed phase increment data. The estimated orbits are evaluated by comparing with the CNES precise orbits and SLR residuals. Our DORIS-only orbits agree with the precise GPS + SLR + DORIS CNES orbits radially at 1-cm and about 3-cm in the other two directions. SLR test with the 50° cutoff elevation shows that the CNES orbit can achieve about 1.1-cm accuracy in radial direction and our DORIS-only POD solutions are slightly worse. In addition, other HY2A DORIS POD concerns are discussed in this paper. Firstly, we discuss the frequency offset values provided with the RINEX data and find that orbit accuracy for the case when the frequency offset is applied is worse than when it is not applied. Secondly, HY2A DORIS antenna z-offsets are estimated using two kinds of measurements from June, 2013 to August, 2013. The results show that the measurement errors contribute a total of about 2-cm difference of estimated z-offset. Finally, we estimate HY2A orbits selecting 3 days with

  3. Improving integer ambiguity resolution for GLONASS precise orbit determination

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Ge, Maorong; Shi, Chuang; Lou, Yidong; Wickert, Jens; Schuh, Harald

    2016-05-01

    The frequency division multiple access adopted in present GLONASS introduces inter-frequency bias (IFB) at the receiver-end both in code and phase observables, which makes GLONASS ambiguity resolution rather difficult or even not available, especially for long baselines up to several thousand kilometers. This is one of the major reasons that GLONASS could hardly reach the orbit precision of GPS, both in terms of consistency among individual International GNSS Service (IGS) analysis centers and discontinuity at the overlapping day boundaries. Based on the fact that the GLONASS phase IFB is similar on L1 and L2 bands in unit of length and is a linear function of the frequency number, several approaches have been developed to estimate and calibrate the IFB for integer ambiguity resolution. However, they are only for short and medium baselines. In this study, a new ambiguity resolution approach is developed for GLONASS global networks. In the approach, the phase ambiguities in the ionosphere-free linear combination are directly transformed with a wavelength of about 5.3 cm, according to the special frequency relationship of GLONASS L1 and L2 signals. After such transformation, the phase IFB rate can be estimated and corrected precisely and then the corresponding double-differenced ambiguities can be directly fixed to integers even for baselines up to several thousand kilometers. To evaluate this approach, experimental validations using one-month data of a global network with 140 IGS stations was carried out for GLONASS precise orbit determination. The results show that the GLONASS double-difference ambiguity resolution for long baselines could be achieved with an average fixing-rate of 91.4 %. Applying the fixed ambiguities as constraints, the GLONASS orbit overlapping RMS at the day boundaries could be reduced by 37.2 % in ideal cases and with an averaged reduction of about 21.4 %, which is comparable with that by the GPS ambiguity resolution. The orbit improvement is

  4. Precise Orbit Determination of the GOCE Re-Entry Phase

    NASA Astrophysics Data System (ADS)

    Gini, Francesco; Otten, Michiel; Springer, Tim; Enderle, Werner; Lemmens, Stijn; Flohrer, Tim

    2015-03-01

    During the last days of the GOCE mission, after the GOCE spacecraft ran out of fuel, it slowly decayed before finally re-entering the atmosphere on the 11th November 2013. As an integrated part of the AOCS, GOCE carried a GPS receiver that was in operations during the re-entry phase. This feature provided a unique opportunity for Precise Orbit Determination (POD) analysis. As part of the activities carried out by the Navigation Support Office (HSO-GN) at ESOC, precise ephemerides of the GOCE satellite have been reconstructed for the entire re-entry phase based on the available GPS observations of the onboard LAGRANGE receiver. All the data available from the moment the thruster was switched off on the 21st of October 2013 to the last available telemetry downlink on the 10th November 2013 have been processed, for a total of 21 daily arcs. For this period a dedicated processing sequence has been defined and implemented within the ESA/ESOC NAvigation Package for Earth Observation Satellites (NAPEOS) software. The computed results show a post-fit RMS of the GPS undifferenced carrier phase residuals (ionospheric-free linear combination) between 6 and 14 mm for the first 16 days which then progressively increases up to about 80 mm for the last available days. An orbit comparison with the Precise Science Orbits (PSO) generated at the Astronomical Institute of the University of Bern (AIUB, Bern, Switzerland) shows an average difference around 9 cm for the first 8 daily arcs and progressively increasing up to 17 cm for the following days. During this reentry phase (21st of October - 10th November 2013) a substantial drop in the GOCE altitude is observed, starting from about 230 km to 130 km where the last GPS measurements were taken. During this orbital decay an increment of a factor of 100 in the aerodynamic acceleration profile is observed. In order to limit the mis-modelling of the non-gravitational forces (radiation pressure and aerodynamic effects) the newly developed

  5. Improving integer ambiguity resolution for GLONASS precise orbit determination

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Ge, Maorong; Shi, Chuang; Lou, Yidong; Wickert, Jens; Schuh, Harald

    2016-08-01

    The frequency division multiple access adopted in present GLONASS introduces inter-frequency bias (IFB) at the receiver-end both in code and phase observables, which makes GLONASS ambiguity resolution rather difficult or even not available, especially for long baselines up to several thousand kilometers. This is one of the major reasons that GLONASS could hardly reach the orbit precision of GPS, both in terms of consistency among individual International GNSS Service (IGS) analysis centers and discontinuity at the overlapping day boundaries. Based on the fact that the GLONASS phase IFB is similar on L1 and L2 bands in unit of length and is a linear function of the frequency number, several approaches have been developed to estimate and calibrate the IFB for integer ambiguity resolution. However, they are only for short and medium baselines. In this study, a new ambiguity resolution approach is developed for GLONASS global networks. In the approach, the phase ambiguities in the ionosphere-free linear combination are directly transformed with a wavelength of about 5.3 cm, according to the special frequency relationship of GLONASS L1 and L2 signals. After such transformation, the phase IFB rate can be estimated and corrected precisely and then the corresponding double-differenced ambiguities can be directly fixed to integers even for baselines up to several thousand kilometers. To evaluate this approach, experimental validations using one-month data of a global network with 140 IGS stations was carried out for GLONASS precise orbit determination. The results show that the GLONASS double-difference ambiguity resolution for long baselines could be achieved with an average fixing-rate of 91.4 %. Applying the fixed ambiguities as constraints, the GLONASS orbit overlapping RMS at the day boundaries could be reduced by 37.2 % in ideal cases and with an averaged reduction of about 21.4 %, which is comparable with that by the GPS ambiguity resolution. The orbit improvement is

  6. Precise satellite orbit determination with particular application to ERS-1

    NASA Astrophysics Data System (ADS)

    Fernandes, Maria Joana Afonso Pereira

    The motivation behind this study is twofold. First to assess the accuracy of ERS-1 long arc ephemerides using state of the art models. Second, to develop improved methods for determining precise ERS-1 orbits using either short or long arc techniques. The SATAN programs, for the computation of satellite orbits using laser data were used. Several facilities were added to the original programs: the processing of PRARE range and altimeter data, and a number of algorithms that allow more flexible solutions by adjusting a number of additional parameters. The first part of this study, before the launch of ERS-1, was done with SEAS AT data. The accuracy of SEASAT orbits computed with PRARE simulated data has been determined. The effect of temporal distribution of tracking data along the arc and the extent to which altimetry can replace range data have been investigated. The second part starts with the computation of ERS-1 long arc solutions using laser data. Some aspects of modelling the two main forces affecting ERS-l's orbit are investigated. With regard to the gravitational forces, the adjustment of a set of geopotential coefficients has been considered. With respect to atmospheric drag, extensive research has been carried out on determining the influence on orbit accuracy of the measurements of solar fluxes (P10.7 indices) and geomagnetic activity (Kp indices) used by the atmospheric model in the computation of atmospheric density at satellite height. Two new short arc methods have been developed: the Constrained and the Bayesian method. Both methods are dynamic and consist of solving for the 6 osculating elements. Using different techniques, both methods overcome the problem of normal matrix ill- conditioning by constraining the solution. The accuracy and applicability of these methods are discussed and compared with the traditional non-dynamic TAR method.

  7. Precise determination of ferrous iron in silicate rocks

    NASA Astrophysics Data System (ADS)

    Yokoyama, Tetsuya; Nakamura, Eizo

    2002-03-01

    We have developed a highly precise method for the determination of ferrous iron (Fe 2+) in silicate rocks. Our new method is based on Wilson's procedure (1955) in which surplus V 5+ is used to oxidize Fe 2+ into Fe 3+ while equivalently reducing V 5+ into V 4+. Because V 4+ is more resistant to atmospheric oxidation than Fe 2+, Fe 2+ in the sample can be determined by measuring unreacted V 5+ by adding excess Fe 2+ after sample decomposition and then titrating the unreacted Fe 2+ with Cr 6+. With our method, which involves conditioning the sample solution with 5 M H 2SO 4 in a relatively small beaker (7 mL), the oxidation of Fe 2+ or V 4+ that leads to erroneous results can be completely avoided, even in 100-h sample decompositions at 100°C. We have measured the concentration of FeO in 15 standard silicate rock powders provided by the Geological Survey of Japan (GSJ). Analytical reproducibility was better than 0.5% (1σ) for all but those samples that had small amounts of Fe 2+ (<1.5 wt.% of FeO). Fourteen of these samples gave FeO contents significantly higher than the GSJ reference values. This likely indicates that the GSJ reference values, obtained by compiling previously published data, contain a large number of poor-quality data obtained by methods with lower recovery of Fe 2+ caused by oxidation or insufficient sample decomposition during analyses. To achieve accurate determinations of Fe 2+ in our method, several factors besides the oxidation must be considered, including: (1) long-term variations in the concentration of Fe 2+ solution must be corrected; (2) excess use of the indicator must be avoided; and (3) the formation of inert FeF + complex must be avoided during titration when using boric acid as a masking agent.

  8. High precision determination of the terrestrial 40K abundance

    NASA Astrophysics Data System (ADS)

    Naumenko, Maria O.; Mezger, Klaus; Nägler, Thomas F.; Villa, Igor M.

    2013-12-01

    Recent improvements in the precision of mass spectrometric measurements have reduced the uncertainty of K-Ar and 39Ar-40Ar ages measured on geological materials. Now the major sources of uncertainty are the uncertainties on the 40K decay constant and the absolute abundance of 40K. In order to improve on this situation we determined the abundance of the 40K isotope in terrestrial standards. A ThermoFischer Triton+ thermal ionization mass spectrometer was used for K isotope ratio measurements of the NIST K standard reference materials SRM 918b and SRM 985. Ion beams were measured in Faraday cups with amplifiers equipped with 1010, 1011 and 1012 Ω resistors. Three measurement protocols were used: (A) dynamic measurement with in-run fractionation correction by normalization to the IUPAC recommended isotope ratio 41K/39K = 0.072 1677; (B) total evaporation; (C) a modified total evaporation with interblock baseline measurements. Different measurement protocols were combined with different loading procedures. The best results were obtained by loading samples on single oxidized tantalum filaments with 0.1 M H3PO4. The total ion yields (ionization + transmission) were tested for the evaporation procedures (B) and (C) and ranged up to 48%. The resulting best estimate for the 40K/39K ratio is 0.000 125 116 ± 57 (2σ), corresponding to an isotopic abundance 40K/K = (1.1668 ± 8) × 10-4.

  9. [Simultaneous determination of monosaccharides, disaccharides, oligosaccharides and sugar alcohols in foods by high performance liquid chromatography with evaporative light-scattering detection].

    PubMed

    Ding, Hongliu; Li, Can; Jin, Ping; Yuan, Lihong; Yao, Yongqing; Chen, Ying; Li, Pei

    2013-08-01

    A simple and efficient method was established based on high performance liquid chromatography (HPLC) to separate and detect thirteen analytes of monosaccharides, disaccharides, oligosaccharides and sugar alcohols (xylose, fructose, glucose, sucrose, maltose, lactose, 1-kestose, nystose, 1F-fructofuranosyl nystose, erythritol, mannitol, xylitol, maltitol) in foods. The separation was performed on an NH2 column with the gradient elution of acetonitrile-water as the mobile phases. The analytes were detected by an evaporative light-scattering detector (ELSD). All the thirteen sugars had good linearities within 0.1 - 5 g/L with the correlation coefficients between 0.9901 - 0.9996. The limits of detection (LOD) were all less than 0.1 g/L. The precisions of the method expressed as RSDs were in the range of 2.69% -7.21%. The recoveries of the thirteen analytes spiked in real samples ranged from 96.1% to 105.2%. This method was applied to the actual sample testings and the results showed the food labels were greatly different from the actual compositions. PMID:24369618

  10. Robust and precise baseline determination of distributed spacecraft in LEO

    NASA Astrophysics Data System (ADS)

    Allende-Alba, Gerardo; Montenbruck, Oliver

    2016-01-01

    Recent experience with prominent formation flying missions in Low Earth Orbit (LEO), such as GRACE and TanDEM-X, has shown the feasibility of precise relative navigation at millimeter and sub-millimeter levels using GPS carrier phase measurements with fixed integer ambiguities. However, the robustness and availability of the solutions provided by current algorithms may be highly dependent on the mission profile. The main challenges faced in the LEO scenario are the resulting short continuous carrier phase tracking arcs along with the observed rapidly changing ionospheric conditions, which in the particular situation of long baselines increase the difficulty of correct integer ambiguity resolution. To reduce the impact of these factors, the present study proposes a strategy based on a reduced-dynamics filtering of dual-frequency GPS measurements for precise baseline determination along with a dedicated scheme for integer ambiguity resolution, consisting of a hybrid sequential/batch algorithm based on the maximum a posteriori and integer aperture estimators. The algorithms have been tested using flight data from the GRACE, TanDEM-X and Swarm missions in order to assess their robustness to different formation and baseline configurations. Results with the GRACE mission show an average 0.7 mm consistency with the K/Ka-band ranging measurements over a period of more than two years in a baseline configuration of 220 km. Results with TanDEM-X data show an average of 3.8 mm consistency of kinematic and reduced-dynamic solutions in the along-track component over a period of 40 days in baseline configurations of 500 m and 75 km. Data from Swarm A and Swarm C spacecraft are largely affected by atmospheric scintillation and contain half cycle ambiguities. The results obtained under such conditions show an overall consistency between kinematic and reduced-dynamic solutions of 1.7 cm in the along-track component over a period of 30 days in a variable baseline of approximately 60

  11. Ion exchange chromatographic separation and isolation of oligosaccharides of intact low-molecular-weight heparin for the determination of their anticoagulant and anti-inflammatory properties.

    PubMed

    Shastri, Madhur D; Johns, Cameron; Hutchinson, Joseph P; Khandagale, Manish; Patel, Rahul P

    2013-07-01

    It is well known that enoxaparin, a widely used anticoagulant and low-molecular-weight heparin containing a large number of oligosaccharides, possesses anti-inflammatory activity. Whilst enoxaparin has shown promising results in various inflammatory disorders, some of its oligosaccharides have anti-inflammatory properties and others increase the risk of bleeding due to their anticoagulant effects. The aim of this study was to develop an effective ion exchange chromatographic (IC) technique which allows the separation, isolation and, consequently, the identification of different oligosaccharides of enoxaparin with or without anticoagulant activity. The developed method utilises a semi-preparative CarboPac PA100 (9 × 250 mm) ion exchange column with sodium chloride gradient elution and UV detection at 232 nm. The method successfully resolved enoxaparin into more than 30 different peaks. IC-derived oligosaccharides with high, moderate, low or no anticoagulant activity were identified using an anti-factor Xa assay. The anti-inflammatory activity of selected oligosaccharides was investigated using the Griess assay. Using this technique, the oligosaccharides of enoxaparin with low or no anticoagulant activity, whilst exhibiting significant anti-inflammatory activity, could be fractionated. This technique can provide a platform to identify the oligosaccharides which are devoid of significant anticoagulant activity and are responsible for the therapeutic effects of enoxaparin that have been observed in various inflammatory conditions. PMID:23712644

  12. GOCE: precise orbit determination for the entire mission

    NASA Astrophysics Data System (ADS)

    Bock, Heike; Jäggi, Adrian; Beutler, Gerhard; Meyer, Ulrich

    2014-07-01

    The Gravity field and steady-state Ocean Circulation Explorer (GOCE) was the first Earth explorer core mission of the European Space Agency. It was launched on March 17, 2009 into a Sun-synchronous dusk-dawn orbit and re-entered into the Earth's atmosphere on November 11, 2013. The satellite altitude was between 255 and 225 km for the measurement phases. The European GOCE Gravity consortium is responsible for the Level 1b to Level 2 data processing in the frame of the GOCE High-level processing facility (HPF). The Precise Science Orbit (PSO) is one Level 2 product, which was produced under the responsibility of the Astronomical Institute of the University of Bern within the HPF. This PSO product has been continuously delivered during the entire mission. Regular checks guaranteed a high consistency and quality of the orbits. A correlation between solar activity, GPS data availability and quality of the orbits was found. The accuracy of the kinematic orbit primarily suffers from this. Improvements in modeling the range corrections at the retro-reflector array for the SLR measurements were made and implemented in the independent SLR validation for the GOCE PSO products. The satellite laser ranging (SLR) validation finally states an orbit accuracy of 2.42 cm for the kinematic and 1.84 cm for the reduced-dynamic orbits over the entire mission. The common-mode accelerations from the GOCE gradiometer were not used for the official PSO product, but in addition to the operational HPF work a study was performed to investigate to which extent common-mode accelerations improve the reduced-dynamic orbit determination results. The accelerometer data may be used to derive realistic constraints for the empirical accelerations estimated for the reduced-dynamic orbit determination, which already improves the orbit quality. On top of that the accelerometer data may further improve the orbit quality if realistic constraints and state-of-the-art background models such as gravity field

  13. Task precision at transfer determines specificity of perceptual learning

    PubMed Central

    Jeter, Pamela E.; Dosher, Barbara Anne; Petrov, Alexander; Lu, Zhong-Lin

    2016-01-01

    Perceptual learning, the improvement in performance with practice, reflects plasticity in the adult visual system. We challenge a standard claim that specificity of perceptual learning depends on task difficulty during training, instead showing that specificity, or conversely transfer, is primarily controlled by the precision demands (i.e., orientation difference) of the transfer task. Thus, for an orientation discrimination task, transfer of performance improvement is observed in low-precision transfer tasks, while specificity of performance improvement is observed in high-precision transfer tasks, regardless of the precision of initial training. The nature of specificity places important constraints on mechanisms of transfer in visual learning. These results contribute to understanding generalization of practiced improvements that may be key to the development of expertise and for applications in remediation. PMID:19757940

  14. Status of Precise Orbit Determination for Jason-2 Using GPS

    NASA Technical Reports Server (NTRS)

    Melachroinos, S.; Lemoine, F. G.; Zelensky, N. P.; Rowlands, D. D.; Pavlis, D. E.

    2011-01-01

    The JASON-2 satellite, launched in June 2008, is the latest follow-on to the successful TOPEX/Poseidon (T/P) and JASON-I altimetry missions. JASON-2 is equipped with a TRSR Blackjack GPS dual-frequency receiver, a laser retroreflector array, and a DORIS receiver for precise orbit determination (POD). The most recent time series of orbits computed at NASA GSFC, based on SLR/DORIS data have been completed using both ITRF2005 and ITRF2008. These orbits have been shown to agree radially at 1 cm RMS for dynamic vs SLRlDORIS reduced-dynamic orbits and in comparison with orbits produced by other analysis centers (Lemoine et al., 2010; Zelensky et al., 2010; Cerri et al., 2010). We have recently upgraded the GEODYN software to implement model improvements for GPS processing. We describe the implementation of IGS standards to the Jason2 GEODYN GPS processing, and other dynamical and measurement model improvements. Our GPS-only JASON-2 orbit accuracy is assessed using a number of tests including analysis of independent SLR and altimeter crossover residuals, orbit overlap differences, and direct comparison to orbits generated at GSFC using SLR and DORIS tracking, and to orbits generated externally at other centers. Tests based on SLR and the altimeter crossover residuals provide the best performance indicator for independent validation of the NASAlGSFC GPS-only reduced dynamic orbits. For the ITRF2005 and ITRF2008 implementation of our GPS-only obits we are using the IGS05 and IGS08 standards. Reduced dynamic versus dynamic orbit differences are used to characterize the remaining force model error and TRF instability. We evaluate the GPS vs SLR & DORIS orbits produced using the GEODYN software and assess in particular their consistency radially and the stability of the altimeter satellite reference frame in the Z direction for both ITRF2005 and ITRF2008 as a proxy to assess the consistency of the reference frame for altimeter satellite POD.

  15. Visual information throughout a reach determines endpoint precision.

    PubMed

    Ma-Wyatt, Anna; McKee, Suzanne P

    2007-05-01

    People make rapid, goal-directed movements to interact with their environment. Because these movements have consequences, it is important to be able to control them with a high level of precision and accuracy. Our hypothesis is that vision guides rapid hand movements, thereby enhancing their accuracy and precision. To test this idea, we asked observers to point to a briefly presented target (110 ms). We measured the impact of visual information on endpoint precision by using a shutter to close off view of the hand 50, 110 and 250 ms into the reach. We found that precision was degraded if the view of the hand was restricted at any time during the reach, despite the fact that the target disappeared long before the reach was completed. We therefore conclude that vision keeps the hand on the planned trajectory. We then investigated the effects of a perturbation of target position during the reach. For these experiments, the target remained visible until the reach was completed. The target position was shifted at 110, 180 or 250 ms into the reach. Early shifts in target position were easily compensated for, but late shifts led to a shift in the mean position of the endpoints; observers pointed to the center of the two locations, as a kind of best bet on the position of the target. Visual information is used to guide the hand throughout a reach and has a significant impact on endpoint precision. PMID:17109109

  16. Structural basis for the interaction between human milk oligosaccharides and the bacterial lectin PA-IIL of Pseudomonas aeruginosa

    PubMed Central

    2005-01-01

    One of the mechanisms contributing to the protection by breast-feeding of the newborn against enteric diseases is related to the ability of human milk oligosaccharides to prevent the attachment of pathogenic bacteria to the duodenual epithelium. Indeed, a variety of fucosylated oligosaccharides, specific to human milk, form part of the innate immune system. In the present study, we demonstrate the specific blocking of PA-IIL, a fucose-binding lectin of the human pathogen Pseudomonas aeruginosa, by milk oligosaccharides. Two fucosylated epitopes, Lewis a and 3-fucosyl-lactose (Lewis x glucose analogue) bind to the lectin with dissociation constants of 2.2×10−7 M and 3.6×10−7 M respectively. Thermodynamic studies indicate that these interactions are dominated by enthalpy. The entropy contribution is slightly favourable when binding to fucose and to the highest-affinity ligand, Lewis a. The high-resolution X-ray structures of two complexes of PA-IIL with milk oligosaccharides allow the precise determination of the conformation of a trisaccharide and a pentasaccharide. The different types of interaction between the oligosaccharides and the protein involve not only hydrogen bonding, but also calcium- and water-bridged contacts, allowing a rationalization of the thermodynamic data. This study provides important structural information about compounds that could be of general application in new therapeutic strategies against bacterial infections. PMID:15790314

  17. Rapid and precise determination of ATP using a modified photometer

    USGS Publications Warehouse

    Shultz, David J.; Stephens, Doyle W.

    1980-01-01

    An inexpensive delay timer was designed to modify a commercially available ATP photometer which allows a disposable tip pipette to be used for injecting either enzyme or sample into the reaction cuvette. The disposable tip pipette is as precise and accurate as a fixed-needle syringe but eliminates the problem of sample contamination and decreases analytical time. (USGS)

  18. High precision photon flux determination for photon tagging experiments

    SciTech Connect

    Teymurazyan, A; Ahmidouch, A; Ambrozewicz, P; Asratyan, A; Baker, K; Benton, L; Burkert, V; Clinton, E; Cole, P; Collins, P; Dale, D; Danagoulian, S; Davidenko, G; Demirchyan, R; Deur, A; Dolgolenko, A; Dzyubenko, G; Ent, R; Evdokimov, A; Feng, J; Gabrielyan, M; Gan, L; Gasparian, A; Glamazdin, A; Goryachev, V; Hardy, K; He, J; Ito, M; Jiang, L; Kashy, D; Khandaker, M; Kolarkar, A; Konchatnyi, M; Korchin, A; Korsch, W; Kosinov, O; Kowalski, S; Kubantsev, M; Kubarovsky, V; Larin, I; Lawrence, D; Li, X; Martel, P; Matveev, V; McNulty, D; Mecking, B; Milbrath, B; Minehart, R; Miskimen, R; Mochalov, V; Nakagawa, I; Overby, S; Pasyuk, E; Payen, M; Pedroni, R; Prok, Y; Ritchie, B; Salgado, C; Shahinyan, A; Sitnikov, A; Sober, D; Stepanyan, S; Stevens, W; Underwood, J; Vasiliev, A; Vishnyakov, V; Wood, M; Zhou, S

    2014-07-01

    The Jefferson Laboratory PrimEx Collaboration has developed and implemented a method to control the tagged photon flux in photoproduction experiments at the 1% level over the photon energy range from 4.9 to 5.5 GeV. This method has been successfully implemented in a high precision measurement of the neutral pion lifetime. Here, we outline the experimental equipment and the analysis techniques used to accomplish this. These include the use of a total absorption counter for absolute flux calibration, a pair spectrometer for online relative flux monitoring, and a new method for post-bremsstrahlung electron counting.

  19. High precision photon flux determination for photon tagging experiments

    NASA Astrophysics Data System (ADS)

    Teymurazyan, A.; Ahmidouch, A.; Ambrozewicz, P.; Asratyan, A.; Baker, K.; Benton, L.; Burkert, V.; Clinton, E.; Cole, P.; Collins, P.; Dale, D.; Danagoulian, S.; Davidenko, G.; Demirchyan, R.; Deur, A.; Dolgolenko, A.; Dzyubenko, G.; Ent, R.; Evdokimov, A.; Feng, J.; Gabrielyan, M.; Gan, L.; Gasparian, A.; Glamazdin, A.; Goryachev, V.; Hardy, K.; He, J.; Ito, M.; Jiang, L.; Kashy, D.; Khandaker, M.; Kolarkar, A.; Konchatnyi, M.; Korchin, A.; Korsch, W.; Kosinov, O.; Kowalski, S.; Kubantsev, M.; Kubarovsky, V.; Larin, I.; Lawrence, D.; Li, X.; Martel, P.; Matveev, V.; McNulty, D.; Mecking, B.; Milbrath, B.; Minehart, R.; Miskimen, R.; Mochalov, V.; Nakagawa, I.; Overby, S.; Pasyuk, E.; Payen, M.; Pedroni, R.; Prok, Y.; Ritchie, B.; Salgado, C.; Shahinyan, A.; Sitnikov, A.; Sober, D.; Stepanyan, S.; Stevens, W.; Underwood, J.; Vasiliev, A.; Vishnyakov, V.; Wood, M.; Zhou, S.

    2014-12-01

    The Jefferson Laboratory PrimEx Collaboration has developed and implemented a method to control the tagged photon flux in photoproduction experiments at the 1% level over the photon energy range from 4.9 to 5.5 GeV. This method has been successfully implemented in a high precision measurement of the neutral pion lifetime. Here, we outline the experimental equipment and the analysis techniques used to accomplish this. These include the use of a total absorption counter for absolute flux calibration, a pair spectrometer for online relative flux monitoring, and a new method for post-bremsstrahlung electron counting.

  20. Validation of individual GOCE accelerometers by precise orbit determination

    NASA Astrophysics Data System (ADS)

    Visser, Pieter N. A. M.

    2012-07-01

    The European Space Agency (ESA) Gravity field and steady-state Ocean Circular Explorer (GOCE) carries a gradiometer consisting of three pairs of accelerometers in an orthogonal triad. Precise GOCE science orbit solutions (PSO), which are based on Satellite-to-Satellite Tracking (SST) observations by the Global Positioning System (GPS) and which are claimed to be at the few cm precision level, can be used to validate the observations taken by the accelerometers. This has been done for each individual accelerometer by a dynamic orbit fit of the time series of position coordinates from the PSOs, where the accelerometer observations represent the non-gravitational accelerations. Since the accelerometers do not coincide with the center of mass of the GOCE satellite, the observations have to be corrected for rotational and gravity gradient terms. This is opposed to using the so-called common-mode accelerations, provided the center of the gradiometer coincides with the center of mass. Dynamic orbit fits based on these common-mode accelerations therefore served as reference. It will be shown that for all individual accelerometers similar dynamic orbit fits can be obtained, provided the above mentioned corrections are made. When using the common-mode accelerations, similar fits are obtained. In addition, attention will be paid to the possibility of estimating accelerometer calibration parameters, such as biases and scale factors.

  1. Purification, characterization and biological activities of a garlic oligosaccharide.

    PubMed

    Tsukamoto, Sadaji; Okamoto, Kouji; Inanaga, Junji; Karasaki, Yuji

    2008-06-01

    A novel oligosaccharide was purified from garlic (Allium sativum L.) bulbs via hot water extraction, ammonium sulfate precipitation, gel filtration and ion exchange chromatography. The molecular weight of the oligosaccharide was determined to be 1800. A nuclear magnetic resonance (NMR) study showed that ten fructose molecules were connected by beta1-2 linkage to a terminal glucose. The oligosaccharide had cytotoxic activities against human malignant lymphoma cells (U937) and colon adenocarcinoma cells (WiDr) in vitro. Furthermore, this oligosaccharide significantly suppressed the growth of murine colon adenocarcinoma cells (colon 26) in vivo. The oligosaccharide also stimulated interferon-gamma production by human peripheral blood lymphocyte in vitro, indicating that it may activate the immunological pathways and suppress the growth of tumors in vivo. PMID:18655544

  2. High Precision 40K/39K Ratio Determination

    NASA Astrophysics Data System (ADS)

    Naumenko, M. O.; Mezger, K.; Nagler, T. F.; Villa, I. M.

    2012-12-01

    Potassium is one of the eight most abundant chemical elements in the Earth's crust and a major element in many rock-forming minerals. The isotope 40K is radioactive and undergoes β- decay to 40Ca (ca. 89.3%) and electron capture to 40Ar (ca. 10.7%). Both decays can potentially be used as dating systems. The most commonly used branch is the decay of 40K to 40Ar because it can yield highly precise ages. Both decay schemes rely on the knowledge of the 40K branching ratio and the natural 40K abundance. A 40K abundance of 0.011672±41 % was measured on terrestrial material [1]. The relative uncertainty of 0.35 % has not been improved since. Recent improvements in the precision of mass spectrometric measurements have led to the situation that the uncertainties on the K decay constant and the abundance of 40K are a major source of uncertainty on the measured ages. A more precise definition of the 40K decay constant was attempted by different research groups within the last decade [2-9] but the goal of obtaining 0.1 % relative uncertainty on K-Ar ages for geological materials, as requested by the EARTHtime initiative, has not been achieved yet. In order to improve on this situation we studied the abundances of the K isotopes in terrestrial standards. A ThermoFischer Triton+ thermal ionisation mass spectrometer was used for K isotope ratio measurements of the NIST SRM 918b K standard loaded on Ta filaments with 0.1M phosphoric acid. Three techniques were applied: (A) dynamic measurement with in-run normalisation to the IUPAC value 41K/39K=0.072168; (B) a simple total evaporation procedure; (C) the "NBL-modified" total evaporation [10]. The 40K ion beam was measured in a Faraday cup with a 1E12 Ω resistor; 39K and 41K were collected in Faraday cups with 1E11 Ω resistors. Amplifier gains were intercalibrated by supplying fixed voltages off-line. Different measurement techniques were combined with different loading procedures. We also tested ionisation yields for the

  3. [Determination of fructo-oligosaccharides in milk powder by high performance liquid chromatography-quadrupole/electrostatic field orbitrap high resolution mass spectrometry].

    PubMed

    Liu, Yun; Ding, Tao; Xu, Suli; Wu, Bin; Shen, Chongyu; Zhang, Rui; Wang, Yan; Fei, Xiaoqing

    2015-10-01

    A method of high performance liquid chromatography-quadrupole/electrostatic field Orbitrap high resolution mass spectrometry (HPLC-Q/Orbitrap MS) was developed to determine fructo-oligosaccharides in milk powder. The milk powder samples were dissolved in deionized water. Subsequently, an aqueous solution of zinc acetate was used to precipitate protein. After centrifugation, the final aqueous solution was filtered by a polytetrafluoroethylene (PTFE) membrane with pore size of 0.22 μm. The analytes were separated on a Carbohydrate column (100 mm x 2.1 mm, 2.6 μm) through gradient elution with the combination of acetonitrile and 0.1% formic acid aqueous solution. The target-MS/MS templates were performed at isolation window of m/z 4.0 and collision energy of 30 eV in positive mode to extract the accurate product ion mass of analytes. Under the optimal condition, 1-kestose (GF2), nystose (GF3) and 1-F-β-fructofuranosyl nystose (GF4) were well separated and the accuracy of extracted mass routinely detected was below 5 x 10(-6) (5 ppm). The whole analysis time is only ten minutes. The detection limits for GF2 and GF3 were 100 μg/kg, and the detection limit for GF4 was 55 μg/kg. Good linearities were obtained in their respective linear ranges with correlation coefficients higher than 0.998. The average recoveries at three spiked levels (5, 10 and 20 mg/kg) were in the range of 75.8%-107.3% and the relative standard deviations (RSDs) were in the range of 1.6% - 8.3%. The proposed method is simple, sensitive, fast and only in need of precipitation of proteins. The interference of matrix can be eliminated through the selection of product ion. The results were convenient and reliable and thus can be used in the large batch determination of any milk powder. PMID:26930960

  4. Precise Orbit Determination for the GEOSAT Follow-On Spacecraft

    NASA Technical Reports Server (NTRS)

    Lemoine, Frank G.; Rowlands, David D.; Zelensky, Nikita P.; Luthcke, Scott B.; Cox, Christopher M.; Marr, Gregory C.

    1999-01-01

    The US Navy's GEOSAT Follow-On spacecraft was launched on February 10, 1998 with its primary mission objective to map the oceans using a radar altimeter. The spacecraft tracking complement consists of GPS receivers, a laser retroreflector and Doppler beacons. Since the GPS receivers have not yet returned reliable data, the only means of providing high-quality precise orbits has been though satellite laser ranging (SLR). SLR has tracked the spacecraft since April 22, 1998, and an average of 7 passes per day have been obtained from US and foreign stations. Since the predicted radial orbit error due to the gravity field is only two to three cm, the largest contributor to the high SLR residuals (10 cm) is the mismodelling of the non-conservative forces. The SLR residuals show a clear correlation with beta prime (solar elevation) angle, peaking in mid-August 1998 when the beta prime angle reached -80 to -90 degrees. We report in this paper on the analysis of the GFO tracking data (SLR, Doppler, and if available GPS) using GEODYN, and on the tuning of the non-conservative force model and the gravity model using these data.

  5. High-Precision Determination of the Neutron Coherent Scattering Length

    PubMed Central

    Wagh, Apoorva G.; Abbas, Sohrab

    2005-01-01

    The neutron coherent scattering length bc has been determined interferometrically to an uncertainty of about 5 × 10−5 by measuring the nondispersive phase. We propose improving the uncertainty to about 10−6 by optimizing various parameters of the interferometric experiment. Any uncertainty in the bc determination arising from possible variations in the constitution of the ambient air can be eliminated by performing the experiment in vacuum. When such uncertainty is attained, it becomes necessary to account for the neutron beam refraction at the sample-ambient interfaces, to infer the correct bc from the observed phase. The formula for the phase used hitherto is approximate and would significantly overestimate bc. The refractive index for neutrons can thus be determined to a phenomenal uncertainty of about 10−12. PMID:27308128

  6. Precise determination of neutron binding energy of 64Cu

    NASA Astrophysics Data System (ADS)

    Telezhnikov, S. A.; Granja, C.; Honzatko, J.; Pospisil, S.; Tomandl, I.

    2016-05-01

    The neutron binding energy in 64Cu has been accurately measured in thermal neutron capture. A composite target of natural Cu and NaCl was used on a high flux neutron beam using a large measuring time. The γ-ray spectrum emitted in the ( n, γ) reaction was measured with a HPGe detector in large statistics (up to 106 events per channel). Intrinsic limitations of HPGe detectors, which restrict the accuracy of energy calibration, were determined. The value B n of 64Cu was determined as 7915.867(24) keV.

  7. A reduced-dynamic technique for precise orbit determination

    NASA Technical Reports Server (NTRS)

    Wu, S. C.; Yunck, T. P.; Thornton, C. L.

    1990-01-01

    Observations of the Global Positioning System (GPS) will enable a reduced-dynamic technique for achieving subdecimeter orbit determination of earth-orbiting satellites. With this technique, information on the transition between satellite states at different observing times is furnished by both a formal dynamic model and observed satellite positional change (which is inferred kinematically from continuous GPS carrier-phase data). The relative weighting of dynamic and kinematic information can be freely varied. Covariance studies show that in situations where observing geometry is poor and the dynamic model is good, the model dominates determination of the state transition; where the dynamic model is poor and the geometry strong, carrier phase governs the determination of the transition. When neither kinematic nor dynamic information is clearly superior, the reduced-dynamic combination of the two can substantially improve the orbit-determination solution. Guidelines are given here for selecting a near-optimal weighting for the reduced-dynamic solution, and sensitivity of solution accuracy to this weighting is examined.

  8. Precision orbit determination at the NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Putney, B.; Kolenkiewicz, R.; Smith, D.; Dunn, P.; Torrence, M. H.

    1990-01-01

    This paper describes the GEODYN computer program developed by the Geodynamics Branch at the NASA Goddard Space Flight Center and outlines the procedure for accurate satellite orbit and tracking-data analyses. The capabilities of the program allow the development of gravity fields as large as 90 by 90, and a complete modeling of tidal parameters. It is also feasible to numerically integrate a continuous orbit of a satellite such as Lageos for up to 12 years. The evolution of the orbit can be studied, and, by comparison with locally determined orbits, force model improvements can be made. The GEODYN flow diagrams are presented.

  9. Towards More Precise Determinations of the Quark Mixing Phase β.

    PubMed

    Ligeti, Zoltan; Robinson, Dean J

    2015-12-18

    We derive a new flavor symmetry relation for the determination of the weak phase β=ϕ_{1} from time-dependent CP asymmetries and B→J/ψP decay rates. In this relation, the contributions to sin2β proportional to V_{ub} are parametrically suppressed compared to the contributions in the B→J/ψK^{0} time-dependent CP asymmetry alone. This relation uses only SU(3) flavor symmetry, and does not require further diagrammatic assumptions. The current data either fluctuate at the 2σ level from expectations, or may hint at effects of unexpected magnitude from contributions proportional to V_{ub} or from isospin breaking. PMID:26722914

  10. Precise Baseline Determination for the TanDEM-X Mission

    NASA Astrophysics Data System (ADS)

    Moon, Y.; Koenig, R.; Wermuth, M.; Montenbruck, O.; Jaeggi, A.

    2011-12-01

    The principal goal of the TanDEM-X mission is the generation of a global Digital Elevation Model (DEM) with 2 meters relative vertical accuracy. To achieve this requirement, the relative trajectory between TerraSAR-X and TanDEM-X, called baseline, should be determined with an accuracy of 1 millimeter. For this purpose, the German Research Centre for Geosciences (GFZ) has provided the Tracking, Occultation and Ranging (TOR) payload for both TerraSAR-X and TanDEM-X. Using the geodetic grade GPS data from the TOR instruments installed on both satellites, GFZ has been providing operationally TanDEM-X baseline products since the launch of the TanDEM-X in June 2011. In this contribution, an overview of the TanDEM-X project, the role of the baseline and its operational provision from three different software solutions within the ground segment and future prospects are given. The quality of the different baseline products will be assessed using one-year of operationally generated baseline products from GFZ and DLR. Two baseline solutions from the EPOS and BERNESE software packages by GFZ and one solution from the GHOST/FRNS software package by DLR are compared in terms of standard deviation and mean of the differences. The long-term series provides a focus on the bias track between the baseline solutions. Then the topic of calibrating the bias of the baselines via SAR data taken over test areas is discussed. In a final step, the different baseline solutions are corrected for their bias and merged for noise reduction into an optimal baseline being input to the operational DEM production.

  11. Oligosaccharides in Food and Agriculture

    NASA Astrophysics Data System (ADS)

    Collins, Michelle E.; Rastall, Robert A.

    Oligosaccharides are an integral part of the daily diet for humans and animals. They are primarily used for their nutritional properties, however they are currently receiving much attention due to their physiological effect on the microflora of the gastrointestinal tract. Galacto-oligosaccharides and the fructan-type oligosaccharides, namely FOS and inulin are well established as beneficial to the host and are classified as prebiotic based on data from clinical studies. These compounds dominate this sector of the market, although there are oligosaccharides emerging which have produced very interesting in vitro results in terms of prebiotic status and human trials are required to strengthen the claim. Such compounds include pectic oligosaccharides, gluco-oligosaccharides, gentio-oligosaccharides, kojio-oligosaccharides, and alternan oligosaccharides. The raw materials for production of these prebiotic compounds are derived from natural sources such as plants but also from by products of the food processing industry. In addition to being prebiotic these compounds can be incorporated into foodstuffs due to the physiochemical properties they possess.

  12. Precise Orbit Determination of the Lunar Reconnaissance Orbiter and inferred gravity field information

    NASA Astrophysics Data System (ADS)

    Maier, A.; Baur, O.; Krauss, S.

    2014-04-01

    This contribution deals with Precise Orbit Determination of the Lunar Reconnaissance Orbiter, which is tracked with optical laser ranges in addition to radiometric Doppler range-rates and range observations. The optimum parameterization is assessed by overlap analysis tests that indicate the inner precision of the computed orbits. Information about the very long wavelengths of the lunar gravity field is inferred from the spacecraft positions. The NASA software packages GEODYN II and SOLVE were used for orbit determination and gravity field recovery [1].

  13. Synthesis of branched cyclomalto-oligosaccharides using Pseudomonas isoamylase.

    PubMed

    Abe, J; Mizowaki, N; Hizukuri, S; Koizumi, K; Utamura, T

    1986-10-15

    Branched cyclomalto-oligosaccharides (cyclodextrins) were synthesised from cyclomalto-oligosaccharides and maltose or maltotriose through the reverse action of Pseudomonas isoamylase. The reaction rate was greater with maltotriose than with maltose, and with increasing size of the cyclomalto-oligosaccharide (cG6 less than cG7 less than cG8). Maltotriose is effective as both a side-chain donor and acceptor, and three isomers of 6-O-alpha-maltotriosylmaltotriose (branched G6) were formed through mutual condensation, but maltose was effective only as a side-chain donor. Each branched cyclomalto-oligosaccharide and G6 was purified by liquid chromatography, and their structures were determined by chemical, enzymic, and 13C-n.m.r. spectroscopic analyses. PMID:3791296

  14. Stable isotope labeling of oligosaccharide cell surface antigens

    SciTech Connect

    Unkefer, C.J.; Silks, L.A. III; Martinez, R.A.

    1998-12-31

    The overall goal of this Laboratory Directed Research and Development (LDRD) project was to develop new methods for synthesis of {sup 13}C-labeled oligosaccharides that are required for nuclear magnetic resonance (NMR) studies of their solution conformation. Oligosaccharides are components of the cell`s outer surface and are involved in important processes such as cell-cell recognition and adhesion. Recently, Danishefsky and coworkers at Slone-Kettering Cancer Center developed a method for the solid-phase chemical synthesis of oligosaccharides. The specific goal of this LDRD project was to prepare uniform {sup 13}C-labeled aldohexose precursors required for the solid-phase synthesis of the Lewis blood-group antigenic determinants. We report the synthesis of {sup 13}C-labeled D-glucal, D-galactal and Fucosyl precursors. We have been collaborating with the Danishefsky group on the synthesis of the Lewis oligosaccharides and the NMR analysis of their solution conformation.

  15. Preparation and antibacterial activity of oligosaccharides derived from dandelion.

    PubMed

    Qian, Li; Zhou, Yan; Teng, Zhaolin; Du, Chun-Ling; Tian, Changrong

    2014-03-01

    In this study, we prepared oligosaccharides from dandelion (Taraxacum officinale) by hydrolysis with hydrogen peroxide (H2O2) and investigated their antibacterial activity. The optimum hydrolysis conditions, as determined using the response surface methodology, were as follows: reaction time, 5.12h; reaction temperature, 65.53 °C and H2O2 concentration, 3.16%. Under these conditions, the maximum yield of the oligosaccharides reached 25.43%. The sugar content in the sample was 96.8%, and the average degree of polymerisation was approximately 9. The oligosaccharides showed high antibacterial activity against Escherichia coli, Bacillus subtilis and Staphylococcus aureus, indicating that dandelion-derived oligosaccharides have the potential to be used as antibacterial agents. PMID:24368113

  16. Sucrose and Related Oligosaccharides

    NASA Astrophysics Data System (ADS)

    Eggleston, Gillian

    Sucrose (α-D-glucopyranosyl-(1↔2)-β-D-fructofuranoside) is the most common low-molecular-weight sugar found in the plant kingdom. It is ubiquitously known as common table sugar and primarily produced industrially from sugarcane (Saccharum officinarum) and sugar beet (Beta vulgaris); the basics of the industrial manufacture of sucrose are outlined in this chapter. Commercial sucrose has a very high purity (> 99.9%) making it one of the purest organic substances produced on an industrial scale. Value-addition to sucrose via chemical and biotechnological reactions is becoming more important for the diversification of the sugar industry to maintain the industries' competitiveness in a world increasingly turning to a bio-based economy. The basis for the chemical reactivity of sucrose is the eight hydroxyl groups present on the molecule, although, sucrose chemical reactivity is regarded as difficult. Increasing use of enzymatic biotechnological techniques to derivatize sucrose is expected, to add special functionalities to sucrose products like biodegradability, biocompatibility, and non-toxicity. Analysis of sucrose by colorimetric, enzymatic, oxidation-reduction and chromatography methods are discussed. Oligosaccharides related to sucrose are outlined in detail and include sucrose-based plant, honey and in vitro oligosaccharides.

  17. Centroiding Experiment for Determining the Positions of Stars with High Precision

    NASA Astrophysics Data System (ADS)

    Yano, T.; Araki, H.; Hanada, H.; Tazawa, S.; Gouda, N.; Kobayashi, Y.; Yamada, Y.; Niwa, Y.

    2010-12-01

    We have experimented with the determination of the positions of star images on a detector with high precision such as 10 microarcseconds, required by a space astrometry satellite, JASMINE. In order to accomplish such a precision, we take the following two procedures. (1) We determine the positions of star images on the detector with the precision of about 0.01 pixel for one measurement, using an algorithm for estimating them from photon weighted means of the star images. (2) We determine the positions of star images with the precision of about 0.0001-0.00001 pixel, which corresponds to that of 10 microarcseconds, using a large amount of data over 10000 measurements, that is, the error of the positions decreases according to the amount of data. Here, we note that the procedure 2 is not accomplished when the systematic error in our data is not excluded adequately even if we use a large amount of data. We first show the method to determine the positions of star images on the detector using photon weighted means of star images. This algorithm, used in this experiment, is very useful because it is easy to calculate the photon weighted mean from the data. This is very important in treating a large amount of data. Furthermore, we need not assume the shape of the point spread function in deriving the centroid of star images. Second, we show the results in the laboratory experiment for precision of determining the positions of star images. We obtain that the precision of estimation of positions of star images on the detector is under a variance of 0.01 pixel for one measurement (procedure 1). We also obtain that the precision of the positions of star images becomes a variance of about 0.0001 pixel using about 10000 measurements (procedure 2).

  18. Determination of Precise Pre-Main-Sequence Stellar Properties through Stellar and Disk Orbital Dynamics

    NASA Astrophysics Data System (ADS)

    Stassun, Keivan

    2016-05-01

    We summarize the current state-of-the-art in the measurement of direct, precise stellar masses at pre-main-sequence ages through the analysis of eclipsing binary orbits and circumstellar disk dynamics. We highlight two key issues: (1) The masses determined from disk dynamics require more precise distance determinations that should become available from Gaia soon, and (2) many eclipsing binaries appear disturbed by the presence of tertiary companions that inject heat into and puff up one or both of the inner binary stars, however the dynamical mechanism by which orbital energy is injected as heat remains unknown.

  19. Precise Astronomical Azimuth Determination By Qdaedalus System to the Sun, Moon, and Planets in Daytime Conditions

    NASA Astrophysics Data System (ADS)

    Völgyesi, L.; Tóth, G.; Bürki, B.; Guillaume, S.

    2014-12-01

    The traditional method of astronomical azimuth determination involves measurements at night to stars (Polaris). QDAEDALUS, developed by the team of the Geodesy and Geodynamics Lab (GGL, led by Prof. M. Rothacher) of ETH Zürich is a unique system combining Total Stations and modern CCD technique. It provides precise astronomical azimuths within 15 minutes of observation time at night. Furthermore, observations in daytime conditions are a challenging requirement in practice of Astro-geodetic azimuth determination. In order to perform daylight measurements, the QDAEDALUS system has been improved by allowing precise azimuth measurements to Sun, Moon, and Planets in daylight conditions by expanding the processing software with precise solar, lunar, and planetary ephemerides. With such functionality the system has a unique capability to measure astronomical azimuths with an accuracy of 0.3-0.5 arcsecs in normal daylight conditions within 20 to 25 minutes of measurement time.

  20. Cashew juice containing prebiotic oligosaccharides.

    PubMed

    da Silva, Isabel Moreira; Rabelo, Maria Cristiane; Rodrigues, Sueli

    2014-09-01

    The enzyme dextransucrase in a medium containing sucrose and an acceptor as substrate synthesizes prebiotics oligosaccharides. The cashew apple juice works as a source of acceptors because it is rich in glucose and fructose (enzyme acceptors). The use of cashew apple juice becomes interesting because it aims at harnessing the peduncle of the cashew that is wasted during the nut processing, which is the product of greater economic expression. The production of dextransucrase enzyme was done by fermentative process by inoculating the bacterium Leuconostoc mesenteroides NRRL B512F into a culture medium containing sucrose as the only carbon source. Thus, the aim of this work was the production of prebiotic oligosaccharides by enzymatic process with addition of the dextransucrase enzyme to the clarified cashew apple juice. Dextran yield was favored by the combination of low concentrations of sucrose and reducing sugars. The formation of oligosaccharides was favored by increasing the concentration of reducing sugars and by the combination of high concentrations of sucrose and reducing sugars, the highest concentration of oligosaccharides obtained was 104.73 g/L and the qualitative analysis showed that at concentrations of 25 g/L and 75 g/L of sucrose and reducing sugar, respectively, it is possible to obtain oligosaccharides of degree of polymerization up to 12. The juice containing prebiotic oligosaccharide is a potential new functional beverage. PMID:25190866

  1. Determination of Yield and Soil Variability in Louisiana Sugarcane Using Selected Tools of Precision Agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Precision agriculture is a production strategy that may help sugarcane producers decrease input costs, maximize profits, and minimize any negative environmental impact through better management of soil and crop variability. To determine the extent of variability present in commercial sugarcane fiel...

  2. Precise characterization of Guatemalan obsidian sources, and source determination of artifacts from Quirigua

    SciTech Connect

    Stross, F.H.; Sheets, P.; Asaro, F.; Michel, H.V.

    1983-01-01

    For the determination of provenience of obsidian artifacts, precise and accurate measurements of composition patterns of the geologic sources are necessary for definitive and cost-effective assignments. Inter-comparison of data from different laboratories is often difficult. Suggestions for maximizing the usefulness of data already in the literature are made, contributions to a useful data bank of source composition patterns are recorded, and provenience determinations of 30 artifacts excavated in Quirigua, Guatemala are presented to exemplify the technique.

  3. A randomised, double-blind, placebo controlled cross-over study to determine the gastrointestinal effects of consumption of arabinoxylan-oligosaccharides enriched bread in healthy volunteers

    PubMed Central

    2012-01-01

    Background Prebiotics are food ingredients, usually non-digestible oligosaccharides, that are selectively fermented by populations of beneficial gut bacteria. Endoxylanases, altering the naturally present cereal arabinoxylans, are commonly used in the bread industry to improve dough and bread characteristics. Recently, an in situ method has been developed to produce arabinoxylan-oligosaccharides (AXOS) at high levels in breads through the use of a thermophilic endoxylanase. AXOS have demonstrated potentially prebiotic properties in that they have been observed to lead to beneficial shifts in the microbiota in vitro and in murine, poultry and human studies. Methods A double-blind, placebo controlled human intervention study was undertaken with 40 healthy adult volunteers to assess the impact of consumption of breads with in situ produced AXOS (containing 2.2 g AXOS) compared to non-endoxylanase treated breads. Volatile fatty acid concentrations in faeces were assessed and fluorescence in situ hybridisation was used to assess changes in gut microbial groups. Secretory immunoglobulin A (sIgA) levels in saliva were also measured. Results Consumption of AXOS-enriched breads led to increased faecal butyrate and a trend for reduced iso-valerate and fatty acids associated with protein fermentation. Faecal levels of bifidobacteria increased following initial control breads and remained elevated throughout the study. Lactobacilli levels were elevated following both placebo and AXOS-breads. No changes in salivary secretory IgA levels were observed during the study. Furthermore, no adverse effects on gastrointestinal symptoms were reported during AXOS-bread intake. Conclusions AXOS-breads led to a potentially beneficial shift in fermentation end products and are well tolerated. PMID:22657950

  4. A precise determination of the void percolation threshold for two distributions of overlapping spheres

    SciTech Connect

    RINTOUL,MARK DANIEL

    2000-01-25

    The void percolation threshold is calculated for a distribution of overlapping spheres with equal radii, and for a binary sized distribution of overlapping spheres, where half of the spheres have radii twice as large as the other half. Using systems much larger than previous work, the authors determine a much more precise value for the percolation thresholds and correlation length exponent. The values for the percolation thresholds are shown to be significantly different, in contrast with previous, less precise works that speculated that the threshold might be universal with respect to sphere size distribution.

  5. A high precision attitude determination and control system for the UYS-1 nanosatellite

    NASA Astrophysics Data System (ADS)

    Chaurais, J. R.; Ferreira, H. C.; Ishihara, J. Y.; Borges, R. A.; Kulabukhov, A. M.; Larin, V. A.; Belikov, V. V.

    This paper presents the design of a high precision attitude determination and control system for the UYS-1 Ukrainian nanosatellite. Its main task is the 3-axis stabilization with less than 0.5° angle errors, so the satellite may take high precision photos of Earth's surface. To accomplish this task, this system comprises a star tracker and three reaction wheels. To avoid external disturbances and actuators faults, a PD-type and a PID-type robust controllers are simulated and the results are compared to an empirically adjusted PD controller.

  6. The GLAS Algorithm Theoretical Basis Document for Precision Orbit Determination (POD)

    NASA Technical Reports Server (NTRS)

    Rim, Hyung Jin; Yoon, S. P.; Schultz, Bob E.

    2013-01-01

    The Geoscience Laser Altimeter System (GLAS) was the sole instrument for NASA's Ice, Cloud and land Elevation Satellite (ICESat) laser altimetry mission. The primary purpose of the ICESat mission was to make ice sheet elevation measurements of the polar regions. Additional goals were to measure the global distribution of clouds and aerosols and to map sea ice, land topography and vegetation. ICESat was the benchmark Earth Observing System (EOS) mission to be used to determine the mass balance of the ice sheets, as well as for providing cloud property information, especially for stratospheric clouds common over polar areas. The GLAS instrument operated from 2003 to 2009 and provided multi-year elevation data needed to determine changes in sea ice freeboard, land topography and vegetation around the globe, in addition to elevation changes of the Greenland and Antarctic ice sheets. This document describes the Precision Orbit Determination (POD) algorithm for the ICESat mission. The problem of determining an accurate ephemeris for an orbiting satellite involves estimating the position and velocity of the satellite from a sequence of observations. The ICESatGLAS elevation measurements must be very accurately geolocated, combining precise orbit information with precision pointing information. The ICESat mission POD requirement states that the position of the instrument should be determined with an accuracy of 5 and 20 cm (1-s) in radial and horizontal components, respectively, to meet the science requirements for determining elevation change.

  7. Central difference predictive filter for attitude determination with low precision sensors and model errors

    NASA Astrophysics Data System (ADS)

    Cao, Lu; Chen, Xiaoqian; Misra, Arun K.

    2014-12-01

    Attitude determination is one of the key technologies for Attitude Determination and Control System (ADCS) of a satellite. However, serious model errors may exist which will affect the estimation accuracy of ACDS, especially for a small satellite with low precision sensors. In this paper, a central difference predictive filter (CDPF) is proposed for attitude determination of small satellites with model errors and low precision sensors. The new filter is proposed by introducing the Stirling's polynomial interpolation formula to extend the traditional predictive filter (PF). It is shown that the proposed filter has higher accuracy for the estimation of system states than the traditional PF. It is known that the unscented Kalman filter (UKF) has also been used in the ADCS of small satellites with low precision sensors. In order to evaluate the performance of the proposed filter, the UKF is also employed to compare it with the CDPF. Numerical simulations show that the proposed CDPF is more effective and robust in dealing with model errors and low precision sensors compared with the UKF or traditional PF.

  8. Precise Orbit Determination of LEO Satellite Using Dual-Frequency GPS Data

    NASA Astrophysics Data System (ADS)

    Hwang, Yoola; Lee, Byoung-Sun; Kim, Jaehoon; Yoon, Jae-Cheol

    2009-06-01

    KOrea Multi-purpose SATellite (KOMPSAT)-5 will be launched at 550km altitude in 2010. Accurate satellite position (20 cm) and velocity (0.03 cm/s) are required to treat highly precise Synthetic Aperture Radar (SAR) image processing. Ionosphere delay was eliminated using dual frequency GPS data and double differenced GPS measurement removed common clock errors of both GPS satellites and receiver. SAC-C carrier phase data with 0.1 Hz sampling rate was used to achieve precise orbit determination (POD) with ETRI GNSS Precise Orbit Determination (EGPOD) software, which was developed by ETRI. Dynamic model approach was used and satellite's position, velocity, and the coefficients of solar radiation pressure and drag were adjusted once per arc using Batch Least Square Estimator (BLSE) filter. Empirical accelerations for sinusoidal radial, along-track, and cross track terms were also estimated once per revolution for unmodeled dynamics. Additionally piece-wise constant acceleration for cross-track direction was estimated once per arc. The performance of POD was validated by comparing with JPL's Precise Orbit Ephemeris (POE).

  9. Precise orbit determination for GRACE using undifferenced or doubly differenced GPS data

    NASA Astrophysics Data System (ADS)

    Jäggi, A.; Hugentobler, U.; Bock, H.; Beutler, G.

    The two GRACE satellites provide the ideal platform to study the performance of different strategies for precise orbit determination using undifferenced or doubly differenced GPS data. We use pseudo-stochastic orbit modeling techniques in a batch least-squares environment for the two GRACE satellites to outline the mutual benefits of processing doubly differenced instead of undifferenced GPS data. We either process the space baseline only, the space-ground baselines only, or both types of baselines together, and show that the fixing of the GPS double difference carrier phase ambiguities has a significant impact on the space baseline, but also on the space-ground baselines. The validation of the relative orbit positions by inter-satellite K-band observations shows precisions of better than 1 mm in the case of fixed space baseline ambiguities, precisions of a few millimeter in the case of fixed space-ground baseline ambiguities, and precisions of about 1 cm in the case of float ambiguities. We discuss the differences between the various GRACE orbit solutions in order to formulate well suited orbit determination strategies tailored to the GRACE configuration. Satellite laser ranging observations indicate that accuracies between 2 cm and 2.5 cm are achieved.

  10. High-Precision Microwave Spectroscopy of Muonium for Determination of Muonic Magnetic Moment

    NASA Astrophysics Data System (ADS)

    Torii, H. A.; Higashi, Y.; Higuchi, T.; Matsuda, Y.; Mizutani, T.; Tajima, M.; Tanaka, K. S.; Ueno, Y.; Fukao, Y.; Iinuma, H.; Ikedo, Y.; Kadono, R.; Kawamura, N.; Koda, A.; Kojima, K. M.; Mibe, T.; Miyake, Y.; Nagamine, K.; Nishiyama, K.; Ogitsu, T.; Okubo, R.; Saito, N.; Sasaki, K.; Shimomura, K.; Strasser, P.; Sugano, M.; Toyoda, A.; Ueno, K.; Yamamoto, A.; Yoshida, M.; Ishida, K.; Iwasaki, M.; Kamigaito, O.; Tomono, D.; Kanda, S.; Kubo, K.; Aoki, M.; Torikai, E.; Kawall, D.

    2016-02-01

    The muonium atom is a system suitable for precision measurements for determination of muon’s fundamental properties as well as for the test of quantum electrodynamics (QED). A microwave spectroscopy experiment of this exotic atom is being prepared at J-PARC, jointly operated by KEK and JAEA in Japan, aiming at an improved relative precision at a level of 10‑8 in determination of the muonic magnetic moment. A major improvement of statistical uncertainty is expected with the higher muon intensity of the pulsed beam at J-PARC, while reduction of various sources of systematic uncertainties are being studied: those arising from microwave power fluctuations, magnetic field inhomogeneity, muon stopping distribution and atomic collisional shift of resonance frequencies. Experimental strategy and methods are presented in this paper, with an emphasis on our recent development of apparatuses and evaluation of systematic uncertainties.

  11. Precision Attitude Determination System (PADS) design and analysis. Two-axis gimbal star tracker

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Development of the Precision Attitude Determination System (PADS) focused chiefly on the two-axis gimballed star tracker and electronics design improved from that of Precision Pointing Control System (PPCS), and application of the improved tracker for PADS at geosynchronous altitude. System design, system analysis, software design, and hardware design activities are reported. The system design encompasses the PADS configuration, system performance characteristics, component design summaries, and interface considerations. The PADS design and performance analysis includes error analysis, performance analysis via attitude determination simulation, and star tracker servo design analysis. The design of the star tracker and electronics are discussed. Sensor electronics schematics are included. A detailed characterization of the application software algorithms and computer requirements is provided.

  12. Precision Analysis Based on Complicated Error Simulation for the Orbit Determination with the Space Tracking Ship

    NASA Astrophysics Data System (ADS)

    Lei, YANG; Caifa, GUO; Zhengxu, DAI; Xiaoyong, LI; Shaolin, WANG

    2016-02-01

    The space tracking ship is a moving platform in the TT&C network. The orbit determination precision of the ship plays a key role in the TT&C mission. Based on the measuring data obtained by the ship-borne equipments, the paper presents the mathematic models of the complicated error from the space tracking ship, which can separate the random error and the correction residual error with secondary low frequency from the complicated error. An error simulation algorithm is proposed to analyze the orbit determination precision based on the two set of the different equipments. With this algorithm, a group of complicated error can be simulated from a measured sample. The simulated error groups can meet the requirements of sufficient complicated error for the equipment tests before the mission execution, which is helpful to the practical application.

  13. Contributions of Satellite Laser Ranging to the Precise Orbit Determination of Low Earth Orbiters

    NASA Astrophysics Data System (ADS)

    Wirnsberger, H.; Krauss, S.; Baur, O.

    2014-11-01

    Space-based monitoring and modeling of the system Earth requires precise knowledge of the orbits of artificial satellites. In this framework, since decades Satellite Laser Ranging (SLR) contributes with high measurement accuracy and robust tracking data to precise orbit determination. One essential role of SLR tracking is the external validation of orbit solutions derived from Global Navigation Satellite Systems (GNSS), such as the Global Positioning System (GPS). This valuable task of external validation is performed by the comparison of computed ranges based on orbit solutions and unambiguous SLR tracking data (observed ranges). Apart from validation, extension of the existing SLR network by passive antennas in combination with multistatic observations provides improvements in orbit determination processes with the background of sparse tracking data. Conceptually, these multistatic observations refer to the tracking of spacecraft from an active SLR-station and the detection of the diffuse reflected photons from the spacecraft at one or more passive stations.

  14. TerraSAR-X precise orbit determination with real-time GPS ephemerides

    NASA Astrophysics Data System (ADS)

    Wermuth, M.; Hauschild, A.; Montenbruck, O.; Kahle, R.

    2012-09-01

    For active and future Earth observation missions, the availability of near real-time precise orbit information is becoming more and more important. The latency and quality of precise orbit determination results is mainly driven by the availability of precise GPS ephemerides and clocks. In order to have high-quality GPS ephemerides and clocks available at real-time, the German Space Operations Center (GSOC) has developed the real-time clock estimation system RETICLE. The system receives data streams with GNSS observations from the global tracking network of the International GNSS Service (IGS) in real-time. Using the known station position, RETICLE estimates precise GPS satellite clock offsets and drifts based on the most recent available ultra rapid predicted orbits provided by the IGS. The clock offset estimates have an accuracy of better than 0.3 ns and are globally valid. The latency of the estimated clocks is approximately 7 s after the observation epoch. Another limiting factor is the frequency of satellite downlinks and the latency of the data transfer from the ground station to the operations center. Therefore a near real-time scenario using GPS observation data from the TerraSAR-X mission is examined in which the satellite has about one ground station contact per orbit or respectively one contact in 90 min. This test campaign shows that precise orbits can be obtained in near real-time. With the use of estimated clocks an orbit accuracy of better than 10 cm (3D-RMS) can be obtained. The evaluation of satellite laser ranging (SLR) observations shows residuals of 2.1 cm (RMS) for orbits using RECTICLE and residuals of 4.2 cm (RMS) for orbits using the IGS ultra rapid ephemerides and clocks products. Hence the use of estimated clocks improves the orbit determination accuracy significantly (˜factor 2) compared to using predicted clocks.

  15. Tests of daily time variable Earth gravity field solutions for precise orbit determination of altimetry satellites

    NASA Astrophysics Data System (ADS)

    Rudenko, Sergei; Gruber, Christian

    2016-04-01

    This study makes use of current GFZ monthly and daily gravity field products from 2002 to 2014 based on radial basis functions (RBF) instead of time variable gravity field modeling for precise orbit determination of altimetry satellites. Since some monthly solutions are missing in the GFZ GRACE RL05a solution and in order to reach a better quality for the precise orbit determination, daily generated RBF solutions obtained from Kalman filtered GRACE data processing and interpolated in case of gaps have been used. Moreover, since the geopotential coefficients of low degrees are better determined using SLR observations to geodetic satellites like Lageos, Stella, Starlette and Ajisai than from GRACE observations, these terms are co-estimated in the RBF solutions by using apriori SLR-derived values up to degree and order 4. Precise orbits for altimetry satellites Envisat (2002-2012), Jason-1 (2002-2013) and Jason-2 (2008-2014) are then computed over the given time intervals using this approach and compared with the orbits obtained when using other models such as EIGEN-6S4. An analysis of the root-mean-square values of the observation fits of SLR and DORIS observations and the orbit arcs overlaps will allow us to draw a conclusion on the quality of the RBF solution and to use these new trajectories for sea level trend estimates and geophysical application.

  16. Precise and direct determination of the half-life of 41Ca

    NASA Astrophysics Data System (ADS)

    Jörg, Gerhard; Amelin, Yuri; Kossert, Karsten; Lierse v. Gostomski, Christoph

    2012-07-01

    Calcium-41 plays an important role in the long-term evaluation of the safety of final repositories for nuclear waste and is used to study the fine-scale chronology of the formation of the Solar System. Both applications are hindered by insufficient precision and poor consistency of previous determinations of the half-life. This work reports a half-life for 41Ca of (9.94 ± 0.15) × 104 years, which was determined with a combination of methods, chosen to provide the best possible precision. The activity was measured by liquid scintillation counting (LSC) exploiting the triple-to-double coincidence ratio method (TDCR); the absolute isotopic composition was determined by thermal ionization mass spectrometry (TIMS) and isotope dilution. Enhanced precision and accuracy of the 41Ca half-life will allow the improvement of safety analyses for final deposit sites of nuclear waste and of dating first solids, and better constrain the stellar environment of the formation of the Solar System.

  17. Experimental Study on the Precise Orbit Determination of the BeiDou Navigation Satellite System

    PubMed Central

    He, Lina; Ge, Maorong; Wang, Jiexian; Wickert, Jens; Schuh, Harald

    2013-01-01

    The regional service of the Chinese BeiDou satellite navigation system is now in operation with a constellation including five Geostationary Earth Orbit satellites (GEO), five Inclined Geosynchronous Orbit (IGSO) satellites and four Medium Earth Orbit (MEO) satellites. Besides the standard positioning service with positioning accuracy of about 10 m, both precise relative positioning and precise point positioning are already demonstrated. As is well known, precise orbit and clock determination is essential in enhancing precise positioning services. To improve the satellite orbits of the BeiDou regional system, we concentrate on the impact of the tracking geometry and the involvement of MEOs, and on the effect of integer ambiguity resolution as well. About seven weeks of data collected at the BeiDou Experimental Test Service (BETS) network is employed in this experimental study. Several tracking scenarios are defined, various processing schemata are designed and carried out; and then, the estimates are compared and analyzed in detail. The results show that GEO orbits, especially the along-track component, can be significantly improved by extending the tracking network in China along longitude direction, whereas IGSOs gain more improvement if the tracking network extends in latitude. The involvement of MEOs and ambiguity-fixing also make the orbits better. PMID:23529116

  18. Experimental study on the precise orbit determination of the BeiDou navigation satellite system.

    PubMed

    He, Lina; Ge, Maorong; Wang, Jiexian; Wickert, Jens; Schuh, Harald

    2013-01-01

    The regional service of the Chinese BeiDou satellite navigation system is now in operation with a constellation including five Geostationary Earth Orbit satellites (GEO), five Inclined Geosynchronous Orbit (IGSO) satellites and four Medium Earth Orbit (MEO) satellites. Besides the standard positioning service with positioning accuracy of about 10 m, both precise relative positioning and precise point positioning are already demonstrated. As is well known, precise orbit and clock determination is essential in enhancing precise positioning services. To improve the satellite orbits of the BeiDou regional system, we concentrate on the impact of the tracking geometry and the involvement of MEOs, and on the effect of integer ambiguity resolution as well. About seven weeks of data collected at the BeiDou Experimental Test Service (BETS) network is employed in this experimental study. Several tracking scenarios are defined, various processing schemata are designed and carried out; and then, the estimates are compared and analyzed in detail. The results show that GEO orbits, especially the along-track component, can be significantly improved by extending the tracking network in China along longitude direction, whereas IGSOs gain more improvement if the tracking network extends in latitude. The involvement of MEOs and ambiguity-fixing also make the orbits better. PMID:23529116

  19. Precise Orbit Determination of LAGEOS satellites: results on fundamental physics and perspectives

    NASA Astrophysics Data System (ADS)

    Peron, Roberto; Lucchesi, David

    2012-07-01

    The LAGEOS satellites, launched for geodynamics and geophysics purposes, are offering also an outstanding test bench to fundamental physics. Indeed, their physical characteristics, as well as those of their orbits, and the availability of high--quality tracking data provided by the International Laser Ranging Service, allow for precise tests of gravitational theories. In this talk recent work on data analysis will be presented. A fairly large amount of LAGEOS and LAGEOS II Satellite Laser Ranging data has been analyzed with NASA/GSFC Geodyn II software, using a set of dedicated models for satellite dynamics, and the related post--fit residuals have been analyzed. In particular, general relativistic effects leave peculiar imprint on nodal longitude, argument of perigee and inclination behaviour, which have been used to obtain precise estimates of the related parameters. The most precise --- as today --- estimate of the effects on argument of perigee has been obtained, providing a direct measurement of the relativistic ``Schwarzschild'' precession in the field of the Earth. At the same time the constraints on a non--Newtonian (i.e. Yukawa--type) gravitational dynamics have been improved. The measurement error budget will be discussed, emphasizing the role of gravitational and, especially, of non--gravitational forces modeling on the overall precise orbit determination quality, as well as on future new measurements and constraints of the gravitational interaction.

  20. Inulin Potential for Enzymatic Obtaining of Prebiotic Oligosaccharides.

    PubMed

    Flores, Adriana C; Morlett, Jesús A; Rodríguez, Raúl

    2016-08-17

    Oligosaccharides have been marketed since the 80s as low-calorie agents and recently have gained interest in the pharmaceutical and food industry as functional sweeteners and prebiotic enriching population of Bifidobacteria. Currently, they have an approximated value of $200 per kg and recently, inulin has been proposed as a feedstock for production of oligosaccharides through selective hydrolysis by action of endoinulinase. High optimum temperature (60°C) and thermostability are two important criteria that determine suitability of this enzyme for industrial applications as well as enzyme cost, a major limiting factor. Significant reduction in cost can be achieved by employing low-value and abundant inulin-rich plants as Jerusalem artichoke, dahlia, yacon, garlic, and onion, among others. In general, the early harvested tubers of these plants contain a greater amount of highly polymerized sugar fractions, which offer more industrial value than late-harvested tubers or those after storage. Also, development of recombinant microorganisms could be useful to reduce the cost of enzyme technology for large-scale production of oligosaccharides. In the case of fungal inulinases, several studies of cloning and modification have been made to achieve greater efficiency. The present paper reviews inulin from vegetable sources as feedstock for oligosaccharides production through the action of inulinases, the impact of polymerization degree of inulin and its availability, and some strategies to increase oligosaccharide production. PMID:25746219

  1. On the Precision of Artificial Satellite Orbit Determination from Observations from an Orbiting Platform

    NASA Astrophysics Data System (ADS)

    Murison, Marc A.

    2006-06-01

    This paper addresses the characterization of the precision of observationally determined orbit parameters when optical observations are taken of an artificial satellite ("target") from another orbiting body ("platform"). Of interest are, among others, optimal platform orbits and optimal observing strategies for a given level of observational astrometric precision and for certain types of target orbits. Classical orbit determination methods are not particularly amenable for gaining analytical insight into the characterization of the determined orbital parameter errors. Here we make an attempt to bypass classical orbit determination and look for an approach that can instead make use of certain approximations to the relative distance and velocity vectors. Furthermore, given the modern possibility for spectroscopic optical instruments in space, we also investigate what may additionally be gained from radial velocity observations. We start with the distance and velocity vectors of an orbiting target body with respect to an orbiting observation platform. We approximate the relative distance and velocity vectors, allowed by certain assumptions such as small eccentricities, relative inclination angle(s), and ratio of orbit radii. We then analytically propagate the observational errors through the equations and characterize what target orbit parameter errors we are able. It turns out this is more difficult than anticipated at first. We then perform numerical simulations to more completely characterize the behaviors of the determined orbit parameter errors.

  2. Precise orbit determination of the Lunar Reconnaissance Orbiter and first gravity field results

    NASA Astrophysics Data System (ADS)

    Maier, Andrea; Baur, Oliver

    2014-05-01

    The Lunar Reconnaissance Orbiter (LRO) was launched in 2009 and is expected to orbit the Moon until the end of 2014. Among other instruments, LRO has a highly precise altimeter on board demanding an orbit accuracy of one meter in the radial component. Precise orbit determination (POD) is achieved with radiometric observations (Doppler range rates, ranges) on the one hand, and optical laser ranges on the other hand. LRO is the first satellite at a distance of approximately 360 000 to 400 000 km from the Earth that is routinely tracked with optical laser ranges. This measurement type was introduced to achieve orbits of higher precision than it would be possible with radiometric observations only. In this contribution we investigate the strength of each measurement type (radiometric range rates, radiometric ranges, optical laser ranges) based on single-technique orbit estimation. In a next step all measurement types are combined in a joined analysis. In addition to POD results, preliminary gravity field coefficients are presented being a subsequent product of the orbit determination process. POD and gravity field estimation was accomplished with the NASA/GSFC software packages GEODYN and SOLVE.

  3. Determination of the half-life of 213Fr with high precision

    NASA Astrophysics Data System (ADS)

    Fisichella, M.; Musumarra, A.; Farinon, F.; Nociforo, C.; Del Zoppo, A.; Figuera, P.; La Cognata, M.; Pellegriti, M. G.; Scuderi, V.; Torresi, D.; Strano, E.

    2013-07-01

    High-precision measurement of half-life and Qα value of neutral and highly charged α emitters is a major subject of investigation currently. In this framework, we recently pushed half-life measurements of neutral emitters to a precision of a few per mil. This result was achieved by using different techniques and apparatuses at Istituto Nazionale di Fisica Nucleare Laboratori Nazionali del Sud (INFN-LNS) and GSI Darmstadt. Here we report on 213Fr half-life determination [T1/2(213Fr) = 34.14±0.06 s] at INFN-LNS, detailing the measurement protocol used. Direct comparison with the accepted value in the literature shows a discrepancy of more than three sigma. We propose this new value as a reference, discussing previous experiments.

  4. Precise age determinations and petrogenetic studies using the K-Ca method

    NASA Astrophysics Data System (ADS)

    Marshall, B. D.; Depaolo, D. J.

    1982-12-01

    New mass spectrometric techniques are used to reassess the capabilities of the K-40 to Ca-40 radioactive decay for yielding precise ages of various geological materials. A brief discussion of the principles underlying the system's use is presented as a preliminary, and the analytical procedures are described. To test the method, a mineral isochron has been obtained on a sample of Pikes Peak granite which has been shown to have concordant K-Ar, Rb-Sr, and U-Pb ages. Plagioclase, K-feldspar, biotite, and whole rock yield an age of 1041 + or 32 m.y., in agreement with previous age determinations. The initial Ca-40/Ca-42 indicates that assimilation of high K/Ca crust was insufficient to affect calcium isotopes. The results show that the K-Ca system can be used as a precise geochronometer for common felsic igneous and metamorphic rocks, and may prove applicable to sedimentary rocks containing authigenic K minerals.

  5. Precise determination of the void percolation threshold for two distributions of overlapping spheres

    SciTech Connect

    Rintoul, M. D.

    2000-07-01

    The void percolation threshold is calculated for a distribution of overlapping spheres with equal radii, and for a binary-sized distribution of overlapping spheres, where half of the spheres have radii twice as large as the other half. Using systems much larger than previous work, we determine a much more precise value for the percolation thresholds and correlation length exponent. The value of the percolation threshold for the monodisperse case is shown to be 0.0301{+-}0.0003, whereas the value for the bidisperse case is shown to be p{sub c}=0.0287{+-}0.0005. The fact that these are significantly different is in contrast with previous, less precise works that speculated that the threshold might be universal with respect to sphere size distribution. (c) 2000 The American Physical Society.

  6. High precision Faraday collector MC-ICPMS thorium isotope ratio determination

    NASA Astrophysics Data System (ADS)

    Potter, Emma-Kate; Stirling, Claudine H.; Andersen, Morten B.; Halliday, Alex N.

    2005-12-01

    Uranium-series dating of carbonate materials requires precise determination of the spike sample thorium isotope ratio, 230Th/229Th. This ratio is commonly measured using ion counting techniques, however the precision of analyses using ion counting devices suffers from beam intensity limitations, drift in multiplier gain and non-linearities in electron multiplier response. Here, we describe the application of multiple-collector inductively coupled plasma mass spectrometry (MC-ICPMS) to determine thorium isotope ratios at hitherto unattained precision. For the first time, thorium isotope analyses were performed using only Faraday collectors coupled to 1011 [Omega] feedback resistors in the amplifier system. Spiked thorium solutions were concentrated to produce 230Th and 229Th signal intensities of around 50 mV and 100 mV, respectively (across a 1011 [Omega] resistor) and are run at high intensity for a short period of time (~1 min). These analyses yield a 230Th/229Th external reproducibility of better than 0.3[per mille sign] for ~25-30 pg of consumed 230Th. This is a factor of two better than the best published thermal ionisation mass spectrometry (TIMS) and MC-ICPMS techniques for similar sample sizes, and represents up to an order of magnitude improvement over many other established protocols. Combined with new techniques for high precision Faraday measurement of uranium isotopic composition [1], this permits improvements in the uncertainty of U-series ages to better than 0.1 thousand years (ka) at 100 ka and 1 ka at 300 ka. It should also be possible to resolve events to ~14 ka at 600 ka. Using these techniques, the U-series dating limit can be extended from 500-600 ka to 800 ka enabling a more detailed study of the frequency of late Pleistocene climate events.

  7. High-precision determination of iron oxidation state in silicate glasses using XANES

    SciTech Connect

    Cottrell, Elizabeth; Kelley, Katherine A.; Lanzirotti, Antonio; Fischer, Rebecca A.

    2009-11-04

    Fe K-edge X-ray absorption near-edge structure (XANES) and Moessbauer spectra were collected on natural basaltic glasses equilibrated over a range of oxygen fugacity (QFM - 3.5 to QFM + 4.5). The basalt compositions and fO{sub 2} conditions were chosen to bracket the natural range of redox conditions expected for basalts from mid-ocean ridge, ocean island, back-arc basin, and arc settings, in order to develop a high-precision calibration for the determination of Fe{sup 3+}/{Sigma}Fe in natural basalts. The pre-edge centroid energy, corresponding to the 1s {yields} 3d transition, was determined to be the most robust proxy for Fe oxidation state, affording significant advantages compared to the use of other spectral features. A second-order polynomial models the correlation between the centroid and Fe{sup 3+}/{Sigma}Fe, yielding a precision of {+-} 0.0045 in Fe{sup 3+}/{Sigma}Fe for glasses with Fe{sup 3+}/{Sigma}Fe > 8%, which is comparable to the precision of wet chemistry. This high precision relies on a Si (311) monochromator to better define the Fe{sup 2+} and Fe{sup 3+} transitions, accurate and robust modeling of the pre-edge feature, dense fO{sub 2}-coverage and compositional appropriateness of reference glasses, and application of a non-linear drift correction. Through re-analysis of the reference glasses across three synchrotron beam sessions, we show that the quoted precision can be achieved (i.e., analyses are reproducible) across multiple synchrotron beam sessions, even when spectral collection conditions (detector parameters or sample geometry) change. Rhyolitic glasses were also analyzed and yield a higher centroid energy at a given Fe{sup 3+}/{Sigma}Fe than basalts, implying that major variations in melt structure affect the relationship between centroid position and Fe{sup 3+}/{Sigma}Fe, and that separate calibrations are needed for the determination of oxidation state in basalts and rhyolites.

  8. Sugar loss and enzyme inhibition due to oligosaccharide accumulation during high solids-loading enzymatic hydrolysis

    DOE PAGESBeta

    Xue, Saisi; Uppugundla, Nirmal; Bowman, Michael J.; Cavalier, David; Da Costa Sousa, Leonardo; Dale, Bruce E.; Balan, Venkatesh

    2015-11-26

    inhibitory effects of oligosaccharides on commercial enzymes. In conclusion, the carbohydrate composition of the recalcitrant oligosaccharides, ratios of different DP oligomers and their distribution profiles were determined. Recalcitrance and enzyme inhibition studies help determine whether the commercial enzyme mixtures lack the enzyme activities required to completely de-polymerize the plant cell wall. Such studies clarify the reasons for oligosaccharide accumulation and contribute to strategies by which oligosaccharides can be converted into fermentable sugars and provide higher biofuel yields with less enzyme.« less

  9. Sugar loss and enzyme inhibition due to oligosaccharide accumulation during high solids-loading enzymatic hydrolysis

    SciTech Connect

    Xue, Saisi; Uppugundla, Nirmal; Bowman, Michael J.; Cavalier, David; Da Costa Sousa, Leonardo; Dale, Bruce E.; Balan, Venkatesh

    2015-11-26

    inhibitory effects of oligosaccharides on commercial enzymes. In conclusion, the carbohydrate composition of the recalcitrant oligosaccharides, ratios of different DP oligomers and their distribution profiles were determined. Recalcitrance and enzyme inhibition studies help determine whether the commercial enzyme mixtures lack the enzyme activities required to completely de-polymerize the plant cell wall. Such studies clarify the reasons for oligosaccharide accumulation and contribute to strategies by which oligosaccharides can be converted into fermentable sugars and provide higher biofuel yields with less enzyme.

  10. Asparagine-linked oligosaccharides on lutropin, follitropin, and thyrotropin: distributions of sulfated and sialylated oligosaccharides on bovine, ovine, and human pituitary glycoprotein hormones

    SciTech Connect

    Green, E.D.; Baenziger, J.U.

    1988-01-05

    The asparagine-linked oligosaccharides on the pituitary glycoprotein hormones lutropin (LH), follitropin (FSH), and thyrotropin (TSH) consist of a heterogeneous array of neutral, sulfated, sialylated, and sulfated/sialylated structures. In this study, the authors determined the relative quantities of the various asparagine-linked oligosaccharides on LH, FSH, and TSH from these three animal species. The proportions of sulfated versus sialylated oligosaccharides varied markedly among the different hormones. Both hormone- and animal species-specific differences in the types and distributions of sulfated, sialylated, and sulfated/sialylated structures were evident. In particular, LH and FSH, which are synthesized in the same pituitary cell and bear ..cap alpha..-subunits with the identical amino acid sequence, contained significantly different distributions of sulfated and sialylated oligosaccharides. For all three animal species, the ratio of sialylated to sulfated oligosaccharides differed by >10-fold for LH and FSH, with sulfated structures dominating on LH and sialylated structures on FSH. Sialylated oligosaccharides were also heterogeneous with respect to sialic acid linkage (..cap alpha..2,3 versus ..cap alpha..2,6). The differences in oligosaccharide structures among the various pituitary glycoprotein hormones as well as among the various glycosylation sites within a single hormone support the hypothesis that glycosylation may serve important functional roles in the expression and/or regulation of hormone bioactivity.

  11. Quantification of neutral human milk oligosaccharides by graphitic carbon HPLC with tandem mass spectrometry

    PubMed Central

    Bao, Yuanwu; Chen, Ceng; Newburg, David S.

    2012-01-01

    Defining the biologic roles of human milk oligosaccharides (HMOS) requires an efficient, simple, reliable, and robust analytical method for simultaneous quantification of oligosaccharide profiles from multiple samples. The HMOS fraction of milk is a complex mixture of polar, highly branched, isomeric structures that contain no intrinsic facile chromophore, making their resolution and quantification challenging. A liquid chromatography-mass spectrometry (LC-MS) method was devised to resolve and quantify 11 major neutral oligosaccharides of human milk simultaneously. Crude HMOS fractions are reduced, resolved by porous graphitic carbon HPLC with a water/acetonitrile gradient, detected by mass spectrometric specific ion monitoring, and quantified. The HPLC separates isomers of identical molecular weights allowing 11 peaks to be fully resolved and quantified by monitoring mass to charge (m/z) ratios of the deprotonated negative ions. The standard curves for each of the 11 oligosaccharides is linear from 0.078 or 0.156 to 20 μg/mL (R2 > 0.998). Precision (CV) ranges from 1% to 9%. Accuracy is from 86% to 104%. This analytical technique provides sensitive, precise, accurate quantification for each of the 11 milk oligosaccharides and allows measurement of differences in milk oligosaccharide patterns between individuals and at different stages of lactation. PMID:23068043

  12. Precise determination of stable chlorine isotopic ratios in low-concentration natural samples

    NASA Astrophysics Data System (ADS)

    Magenheim, A. J.; Spivack, A. J.; Volpe, C.; Ransom, B.

    1994-07-01

    Investigation of stable chlorine isotopes in geological materials has been hindered by large sample requirements and/or lack of analytical precision. Here we describe precise methods for the extraction, isolation, and isotopic analysis of low levels of chlorine in both silicate and aerosol samples. Our standard procedure uses 2 μg of Cl for each isotopic analysis. External reproducibility (1 σ) is 0.25%. for the 37Cl /35Cl measurements. Chlorine is extracted from silicate samples (typically containing at least 20 μg of Cl) via pyrohydrolysis using induction heating and water vapor as the carrier, and the volatilized chlorine is condensed in aqueous solution. Atmospheric aerosols collected on filters are simply dissolved in water. Prior to isotopic measurement, removal of high levels of SO 42-, F -, and organic compounds is necessary for the production of stable ion beams. Sulfate is removed by BaSCO 4 precipitation, F - by CaF 2 precipitation, and organic compounds are extracted with activated carbon. Chlorine is converted to stoichiometric CsCl by cation exchange, and isotopic ratios are determined by thermal ionization mass spectrometry of Cs 2Cl +. We demonstrate that the sensitivity and precision of this method allow resolution of natural variations in chlorine isotopic composition, and thereby provide insight to some fundamental aspects of chlorine geochemistry.

  13. On the Determination of the Blank Shape Contour for Thin Precision Parts Obtained by Stamping

    NASA Astrophysics Data System (ADS)

    Azaouzi, M.; Delamézière, A.; Naceur, H.; Sibaud, D.; Batoz, J. L.; Belouettar, S.

    2007-05-01

    The present study deals with the "automatic" determination of the initial blank shape contour for 3D thin metallic precision parts obtained by stamping, knowing the 3D CAD geometry of the final part (the desired product). The forming process can involve several steps presented in this paper that consists in applying a heuristic method of optimization to find out the initial blank shape of thin precision metallic part in order to obtain a final part, with a required 3D geometry (specified). The purpose of the present approach is to replace the experimental trial and error optimization method used currently, which is expensive and time consuming. The principle of the "heuristic" optimization method is to first estimate the blank shape using the Inverse Approach, then to compensate the shape error calculated in each node of the blank contour. The "heuristic" optimization loop is done using a precise incremental code (Abaqus Explicit or Stampack) and, the iterations loop is stopped when the shape errors are within some initially fixed tolerances. The method is tested in the case of a special stamping process where the parts are pressed in one or more steps using a manual press, without blank holder and by the mean of tools having complex shape. The sensitivities of the process parameters regarding the optimal solution are investigated.

  14. A demonstration of high precision GPS orbit determination for geodetic applications

    NASA Technical Reports Server (NTRS)

    Lichten, S. M.; Border, J. S.

    1987-01-01

    High precision orbit determination of Global Positioning System (GPS) satellites is a key requirement for GPS-based precise geodetic measurements and precise low-earth orbiter tracking, currently under study at JPL. Different strategies for orbit determination have been explored at JPL with data from a 1985 GPS field experiment. The most successful strategy uses multi-day arcs for orbit determination and includes fine tuning of spacecraft solar pressure coefficients and station zenith tropospheric delays using the GPS data. Average rms orbit repeatability values for 5 of the GPS satellites are 1.0, 1.2, and 1.7 m in altitude, cross-track, and down-track componenets when two independent 5-day fits are compared. Orbit predictions up to 24 hours outside the multi-day arcs agree within 4 m of independent solutions obtained with well tracked satellites in the prediction interval. Baseline repeatability improves with multi-day as compared to single-day arc orbit solutions. When tropospheric delay fluctuations are modeled with process noise, significant additional improvement in baseline repeatability is achieved. For a 246-km baseline, with 6-day arc solutions for GPS orbits, baseline repeatability is 2 parts in 100 million (0.4-0.6 cm) for east, north, and length components and 8 parts in 100 million for the vertical component. For 1314 and 1509 km baselines with the same orbits, baseline repeatability is 2 parts in 100 million for the north components (2-3 cm) and 4 parts in 100 million or better for east, length, and vertical components.

  15. Precision GPS orbit determination strategies for an earth orbiter and geodetic tracking system

    NASA Technical Reports Server (NTRS)

    Lichten, Stephen M.; Bertiger, Willy I.; Border, James S.

    1988-01-01

    Data from two 1985 GPS field tests were processed and precise GPS orbits were determined. With a combined carrier phase and pseudorange, the 1314-km repeatability improves substantially to 5 parts in 10 to the 9th (0.6 cm) in the north and 2 parts in 10 to the 8th (2-3 cm) in the other components. To achieve these levels of repeatability and accuracy, it is necessary to fine-tune the GPS solar radiation coefficients and ground station zenith tropospheric delays.

  16. Precise phase determination with the built-in spectral interferometry in two-dimensional electronic spectroscopy.

    PubMed

    Zhang, Yizhu; Yan, T-M; Jiang, Y H

    2016-09-01

    A new method determining the precise phase of pulse sequences in two-dimensional electronic spectroscopy (2DES) is proposed merely using the already built-in spectral interferometry. The approach is easily implemented without the supplementary instrumental construction, only at the expense of a few additional scanning and data-fitting processes. This method is executed with the sample in place, effectively avoiding the phase ambiguities of the beam propagation in samples, thus calibrating the absolute phase at the exact interaction region. The new proposed method is expected to improve the phasing procedure in 2DES in a more convenient way. PMID:27607991

  17. Improved treatment of global positioning system force parameters in precise orbit determination applications

    NASA Technical Reports Server (NTRS)

    Vigue, Y.; Lichten, S. M.; Muellerschoen, R. J.; Blewitt, G.; Heflin, M. B.

    1993-01-01

    Data collected from a worldwide 1992 experiment were processed at JPL to determine precise orbits for the satellites of the Global Positioning System (GPS). A filtering technique was tested to improve modeling of solar-radiation pressure force parameters for GPS satellites. The new approach improves orbit quality for eclipsing satellites by a factor of two, with typical results in the 25- to 50-cm range. The resultant GPS-based estimates for geocentric coordinates of the tracking sites, which include the three DSN sites, are accurate to 2 to 8 cm, roughly equivalent to 3 to 10 nrad of angular measure.

  18. Chromatographic Separations of Enantiomers and Underivatized Oligosaccharides

    SciTech Connect

    Ying Liu

    2004-12-19

    My graduate research has focused on separation science and bioanalytical analysis, which emphasized in method development. It includes three major areas: enantiomeric separations using high performance liquid chromatography (HPLC), Super/subcritical fluid chromatography (SFC), and capillary electrophoresis (CE); drug-protein binding behavior studies using CE; and carbohydrate analysis using liquid chromatograph-electrospray ionization mass spectrometry (LC-ESI-MS). Enantiomeric separations continue to be extremely important in the pharmaceutical industry. An in-depth evaluation of the enantiomeric separation capabilities of macrocyclic glycopeptides CSPs with SFC mobile phases was investigated using a set of over 100 chiral compounds. It was found that the macrocyclic based CSPs were able to separate enantiomers of various compounds with different polarities and functionalities. Seventy percent of all separations were achieved in less than 4 min due to the high flow rate (4.0 ml/min) that can be used in SFC. Drug-protein binding is an important process in determining the activity and fate of a drug once it enters the body. Two drug/protein systems have been studied using frontal analysis CE method. More sensitive fluorescence detection was introduced in this assay, which overcame the problem of low sensitivity that is common when using UV detection for drug-protein studies. In addition, the first usage of an argon ion laser with 257 nm beam coupled with CCD camera as a frontal analysis detection method enabled the simultaneous observation of drug fluorescence as well as the protein fluorescence. LC-ESI-MS was used for the separation and characterization of underivatized oligosaccharide mixtures. With the limits of detection as low as 50 picograms, all individual components of oligosaccharide mixtures (up to 11 glucose-units long) were baseline resolved on a Cyclobond I 2000 column and detected using ESI-MS. This system is characterized by high chromatographic

  19. Precise determination of critical exponents and equation of state by field theory methods

    NASA Astrophysics Data System (ADS)

    Zinn-Justin, J. Z.

    2001-04-01

    Renormalization group, and in particular its quantum field theory implementation has provided us with essential tools for the description of the phase transitions and critical phenomena beyond mean field theory. We therefore review the methods, based on renormalized φ34 quantum field theory and renormalization group, which have led to a precise determination of critical exponents of the N-vector model (Le Guillou and Zinn-Justin, Phys. Rev. Lett. 39 (1977) 95; Phys. Rev. B 21 (1980) 3976; Guida and Zinn-Justin, J. Phys. A 31 (1998) 8103; cond-mat/9803240) and of the equation of state of the 3D Ising model (Guida and Zinn-Justin, Nucl. Phys. B 489 [FS] (1997) 626, hep-th/9610223). These results are among the most precise available probing field theory in a non-perturbative regime. Precise calculations first require enough terms of the perturbative expansion. However perturbation series are known to be divergent. The divergence has been characterized by relating it to instanton contributions. The information about large-order behaviour of perturbation series has then allowed to develop efficient “summation” techniques, based on Borel transformation and conformal mapping (Le Guillou and Zinn-Justin (Eds.), Large Order Behaviour of Perturbation Theory, Current Physics, vol. 7, North-Holland, Amsterdam, 1990). We first discuss exponents and describe our recent results (Guida and Zinn-Justin, 1998). Compared to exponents, the determination of the scaling equation of state of the 3D Ising model involves a few additional (non-trivial) technical steps, like the use of the parametric representation, and the order dependent mapping method. From the knowledge of the equation of state a number of ratio of critical amplitudes can also be derived. Finally we emphasize that few physical quantities which are predicted by renormalization group to be universal have been determined precisely, and much work remains to be done. Considering the steady increase in the available

  20. A Precise Position and Attitude Determination System for Lightweight Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Eling, C.; Klingbeil, L.; Wieland, M.; Kuhlmann, H.

    2013-08-01

    In many unmanned aerial vehicle (UAV) applications a direct georeferencing is required. The reason can be that the UAV flies autonomous and must be navigated precisely, or that the UAV performs a remote sensing operation, where the position of the camera has to be known at the moment of the recording. In our application, a project called Mapping on Demand, we are motivated by both of these reasons. The goal of this project is to develop a lightweight autonomously flying UAV that is able to identify and measure inaccessible three-dimensional objects by use of visual information. Due to payload and space limitations, precise position and attitude determination of micro- and mini-sized UAVs is very challenging. The limitations do not only affect the onboard computing capacity, but they are also noticeable when choosing the georeferencing sensors. In this article, we will present a new developed onboard direct georeferencing system which is real-time capable, applicable for lightweight UAVs and provides very precise results (position accuracy σ < 5 cm and attitude accuracy σ < 0.5 deg). In this system GPS, inertial sensors, magnetic field sensors, a barometer as well as stereo video cameras are used as georeferencing sensors. We will describe the hardware development and will go into details of the implemented software. In this context especially the RTK-GPS software and the concept of the attitude determination by use of inertial sensors, magnetic field sensors as well as an onboard GPS baseline will be highlighted. Finally, results of first field tests as well as an outlook on further developments will conclude this contribution.

  1. DPOD2005 : Realization of a DORIS terrestrial reference frame for precise orbit determination

    NASA Astrophysics Data System (ADS)

    Willis, Pascal; Ries, John C.; Soudarin, Laurent; Zelensky, Nikita; Pavlis, Erricos C.

    Scientific studies related to altimetry data (mean sea level determination and its time evolution) require centimeter-level orbit determination in the radial component of the satellite. Change in station coordinates and velocities affect the orbit determination and the derived oceanographic results. Following the release of the ITRF2005, we conducted an extensive study related to the DORIS tracking network. For all ground beacons, we verified if the ITRF2005 position and velocity can be extrapolated in time without significant loss of precision. We tried to identified discontinuities in the DORIS coordinates time series, either caused by physical reason, such as Earthquakes, or by instrumental causes. We also identified time periods for which data for a specific station should not be used for orbit determination. In particular, specific stations such as Socorro Island, on which horizontal and vertical movements are detected from the DORIS results will be presented and can be explained by a volcano deformation. Finally, a more complex example will be provided for the Arequipa station, where a major Earthquake happened on June 23, 2001 and for which some relaxation effects are noticeable in the velocity determination even 2 years after the station displacement. A complete set of positions and velocities (by intervals) is given (DPOD2005) and will be used for Jason and TOPEX orbit determination.

  2. Novel technique for high-precision Bragg-angle determination in crystal x-ray spectroscopy

    SciTech Connect

    Braun, J.; Bruhns, H.; Trinczek, M.; Lopez-Urrutia, J. R. Crespo; Ullrich, J.

    2005-07-15

    A novel technique for a high-precision large acceptance determination of the Bragg angle in crystal x-ray spectroscopy is presented and demonstrated. The method exploits visible light beams as fiducials reflected on the x-ray crystal's surface to ensure exact knowledge of the position on the crystal at which the x rays are reflected, replacing entrance slits, thus making flat crystals suitable for low x-ray fluxes. It can be shown that many error sources arising from uncertainties in the determination of geometrical properties are eliminated in this way. A flat crystal x-ray spectrometer based on this technique has been designed, built, and tested using the most precisely known wavelengths emitted by highly charged ions, namely H- and He-like argon. The result for the 1s2p {sup 1}P{sub 1}{yields}1s{sup 2} {sup 1}S{sub 0} w-line of He-like argon exhibits a statistical uncertainty of 3.8 ppm and an estimated systematic error of about 3 ppm, thus becoming the most accurate measurement of the He-like resonance transition in highly charged ions. It is shown that achieving a systematic error of below 1 ppm is feasible with this method. Therefore, our technique should allow reaching total accuracies approaching 1 ppm on transitions of mid-Z highly charged ions, which would provide challenging tests for state-of-the-art theoretical predictions.

  3. High-precision laser-assisted absolute determination of x-ray diffraction angles

    SciTech Connect

    Kubicek, K.; Braun, J.; Bruhns, H.; Crespo Lopez-Urrutia, J. R.; Mokler, P. H.; Ullrich, J.

    2012-01-15

    A novel technique for absolute wavelength determination in high-precision crystal x-ray spectroscopy recently introduced has been upgraded reaching unprecedented accuracies. The method combines visible laser beams with the Bond method, where Bragg angles ({theta} and -{theta}) are determined without any x-ray reference lines. Using flat crystals this technique makes absolute x-ray wavelength measurements feasible even at low x-ray fluxes. The upgraded spectrometer has been used in combination with first experiments on the 1s2p {sup 1}P{sub 1}{yields} 1s{sup 2} {sup 1}S{sub 0} w-line in He-like argon. By resolving a minute curvature of the x-ray lines the accuracy reaches there the best ever reported value of 1.5 ppm. The result is sensitive to predicted second-order QED contributions at the level of two-electron screening and two-photon radiative diagrams and will allow for the first time to benchmark predicted binding energies for He-like ions at this level of precision.

  4. The GPS Topex/Poseidon precise orbit determination experiment - Implications for design of GPS global networks

    NASA Technical Reports Server (NTRS)

    Lindqwister, Ulf J.; Lichten, Stephen M.; Davis, Edgar S.; Theiss, Harold L.

    1993-01-01

    Topex/Poseidon, a cooperative satellite mission between United States and France, aims to determine global ocean circulation patterns and to study their influence on world climate through precise measurements of sea surface height above the geoid with an on-board altimeter. To achieve the mission science aims, a goal of 13-cm orbit altitude accuracy was set. Topex/Poseidon includes a Global Positioning System (GPS) precise orbit determination (POD) system that has now demonstrated altitude accuracy better than 5 cm. The GPS POD system includes an on-board GPS receiver and a 6-station GPS global tracking network. This paper reviews early GPS results and discusses multi-mission capabilities available from a future enhanced global GPS network, which would provide ground-based geodetic and atmospheric calibrations needed for NASA deep space missions while also supplying tracking data for future low Earth orbiters. Benefits of the enhanced global GPS network include lower operations costs for deep space tracking and many scientific and societal benefits from the low Earth orbiter missions, including improved understanding of ocean circulation, ocean-weather interactions, the El Nino effect, the Earth thermal balance, and weather forecasting.

  5. TerraSAR-X precise orbit determination with real-time GPS ephemerides

    NASA Astrophysics Data System (ADS)

    Wermuth, Martin; Hauschild, Andre; Montenbruck, Oliver; Kahle, Ralph

    TerraSAR-X is a German Synthetic Aperture Radar (SAR) satellite, which was launched in June 2007 from Baikonour. Its task is to acquire radar images of the Earth's surface. In order to locate the radar data takes precisely, the satellite is equipped with a high-quality dual-frequency GPS receiver -the Integrated Geodetic and Occultation Receiver (IGOR) provided by the GeoForschungsZentrum Potsdam (GFZ). Using GPS observations from the IGOR instrument in a reduced dynamic precise orbit determination (POD), the German Space Operations Center (DLR/GSOC) is computing rapid and science orbit products on a routine basis. The rapid orbit products arrive with a latency of about one hour after data reception with an accuracy of 10-20 cm. Science orbit products are computed with a latency of five days achieving an accuracy of about 5cm (3D-RMS). For active and future Earth observation missions, the availability of near real-time precise orbit information is becoming more and more important. Other applications of near real-time orbit products include the processing of GNSS radio occulation measurements for atmospheric sounding as well as altimeter measurements of ocean surface heights, which are nowadays employed in global weather and ocean circulation models with short latencies. For example after natural disasters it is necessary to evaluate the damage by satellite images as soon as possible. The latency and quality of POD results is mainly driven by the availability of precise GPS ephemerides. In order to have high-quality GPS ephemerides available at real-time, GSOC has developed the real-time clock estimation system RETICLE. The system receives NTRIP-data streams with GNSS observations from the global tracking network of IGS in real-time. Using the known station position, RETICLE estimates precise GPS satellite clock offsets and drifts based on the most recent available IGU predicted orbits. The clock offset estimates have an accuracy of better than 0.3 ns and are

  6. High-precision orbit determination for high-earth elliptical orbiters using the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Lichten, S. M.; Estefan, J. A.

    1990-01-01

    Orbit covariance analyses pertaining to the Japanese VLBI Space Observatory Program (VSOP) MUSES-B satellite and to the International VLBI Satellite are presented. It is determined that a combination of Doppler and GPS measurements can provide the orbit accuracy required to support advanced radio interferometric experiments. For the VSOP, the required orbit accuracy of 130 m is easily met with two-way Doppler as the primary type of data; the 0.4 cm/s VSOP velocity requirement is also feasible provided that precise ground calibrations of tropospheric delays and station coordinates are available. It is concluded that combining the data from a VSOP GPS flight instrument with the ground GPS and two-way Doppler data will significantly enhance orbit determination accuracy in position and velocity.

  7. A proposed experimental method for interpreting Doppler effect measurements and determining their precision

    NASA Technical Reports Server (NTRS)

    Klann, P. G.

    1973-01-01

    The principal problem in the measurement of the Doppler reactivity effect is separating it from the thermal reactivity effects of the expansion of the heated sample. It is shown in this proposal that the thermal effects of sample expansion can be experimentally determined by making additional measurements with porous samples having the same mass and/or volume as the primary sample. By combining these results with independent measurements of the linear temperature coefficient and the computed temperature dependence of the Doppler coefficient the magnitude of the Doppler coefficient may be extracted from the data. These addiational measurements are also useful to experimentally determine the precision of the reactivity oscillator technique used to measure the reactivity effects of the heated sample.

  8. A numerical method for determining highly precise electron energy distribution functions from Langmuir probe characteristics

    SciTech Connect

    Bang, Jin-Young; Chung, Chin-Wook

    2010-12-15

    Electron energy distribution functions (EEDFs) were determined from probe characteristics using a numerical ac superimposed method with a distortion correction of high derivative terms by varying amplitude of a sinusoidal perturbation voltage superimposed onto the dc sweep voltage, depending on the related electron energy. Low amplitude perturbation applied around the plasma potential represented the low energy peak of the EEDF exactly, and high amplitude perturbation applied around the floating potential was effective to suppress noise or distortion of the probe characteristic, which is fatal to the tail electron distribution. When a small random noise was imposed over the stabilized prove characteristic, the numerical differentiation method was not suitable to determine the EEDF, while the numerical ac superimposed method was able to obtain a highly precise EEDF.

  9. Robust Flight Path Determination for Mars Precision Landing Using Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Bayard, David S.; Kohen, Hamid

    1997-01-01

    This paper documents the application of genetic algorithms (GAs) to the problem of robust flight path determination for Mars precision landing. The robust flight path problem is defined here as the determination of the flight path which delivers a low-lift open-loop controlled vehicle to its desired final landing location while minimizing the effect of perturbations due to uncertainty in the atmospheric model and entry conditions. The genetic algorithm was capable of finding solutions which reduced the landing error from 111 km RMS radial (open-loop optimal) to 43 km RMS radial (optimized with respect to perturbations) using 200 hours of computation on an Ultra-SPARC workstation. Further reduction in the landing error is possible by going to closed-loop control which can utilize the GA optimized paths as nominal trajectories for linearization.

  10. Phase center modeling for LEO GPS receiver antennas and its impact on precise orbit determination

    NASA Astrophysics Data System (ADS)

    Jäggi, Adrian; Dach, R.; Montenbruck, O.; Hugentobler, U.; Bock, H.; Beutler, G.

    2009-12-01

    Most satellites in a low-Earth orbit (LEO) with demanding requirements on precise orbit determination (POD) are equipped with on-board receivers to collect the observations from Global Navigation Satellite systems (GNSS), such as the Global Positioning System (GPS). Limiting factors for LEO POD are nowadays mainly encountered with the modeling of the carrier phase observations, where a precise knowledge of the phase center location of the GNSS antennas is a prerequisite for high-precision orbit analyses. Since 5 November 2006 (GPS week 1400), absolute instead of relative values for the phase center location of GNSS receiver and transmitter antennas are adopted in the processing standards of the International GNSS Service (IGS). The absolute phase center modeling is based on robot calibrations for a number of terrestrial receiver antennas, whereas compatible antenna models were subsequently derived for the remaining terrestrial receiver antennas by conversion (from relative corrections), and for the GNSS transmitter antennas by estimation. However, consistent receiver antenna models for space missions such as GRACE and TerraSAR-X, which are equipped with non-geodetic receiver antennas, are only available since a short time from robot calibrations. We use GPS data of the aforementioned LEOs of the year 2007 together with the absolute antenna modeling to assess the presently achieved accuracy from state-of-the-art reduced-dynamic LEO POD strategies for absolute and relative navigation. Near-field multipath and cross-talk with active GPS occultation antennas turn out to be important and significant sources for systematic carrier phase measurement errors that are encountered in the actual spacecraft environments. We assess different methodologies for the in-flight determination of empirical phase pattern corrections for LEO receiver antennas and discuss their impact on POD. By means of independent K-band measurements, we show that zero-difference GRACE orbits can be

  11. Precise orbit determination of Multi-GNSS constellation including GPS GLONASS BDS and GALIEO

    NASA Astrophysics Data System (ADS)

    Dai, Xiaolei

    2014-05-01

    In addition to the existing American global positioning system (GPS) and the Russian global navigation satellite system (GLONASS), the new generation of GNSS is emerging and developing, such as the Chinese BeiDou satellite navigation system (BDS) and the European GALILEO system. Multi-constellation is expected to contribute to more accurate and reliable positioning and navigation service. However, the application of multi-constellation challenges the traditional precise orbit determination (POD) strategy that was designed usually for single constellation. In this contribution, we exploit a more rigorous multi-constellation POD strategy for the ongoing IGS multi-GNSS experiment (MGEX) where the common parameters are identical for each system, and the frequency- and system-specified parameters are employed to account for the inter-frequency and inter-system biases. Since the authorized BDS attitude model is not yet released, different BDS attitude model are implemented and their impact on orbit accuracy are studied. The proposed POD strategy was implemented in the PANDA (Position and Navigation Data Analyst) software and can process observations from GPS, GLONASS, BDS and GALILEO together. The strategy is evaluated with the multi-constellation observations from about 90 MGEX stations and BDS observations from the BeiDou experimental tracking network (BETN) of Wuhan University (WHU). Of all the MGEX stations, 28 stations record BDS observation, and about 80 stations record GALILEO observations. All these data were processed together in our software, resulting in the multi-constellation POD solutions. We assessed the orbit accuracy for GPS and GLONASS by comparing our solutions with the IGS final orbit, and for BDS and GALILEO by overlapping our daily orbit solution. The stability of inter-frequency bias of GLONASS and inter-system biases w.r.t. GPS for GLONASS, BDS and GALILEO were investigated. At last, we carried out precise point positioning (PPP) using the multi

  12. Chemical characterization of oligosaccharides in the milk of six species of New and Old World monkeys.

    PubMed

    Goto, Kohta; Fukuda, Kenji; Senda, Akitsugu; Saito, Tadao; Kimura, Kazumasa; Glander, Kenneth E; Hinde, Katie; Dittus, Wolfgang; Milligan, Lauren A; Power, Michael L; Oftedal, Olav T; Urashima, Tadasu

    2010-10-01

    Human and great ape milks contain a diverse array of milk oligosaccharides, but little is known about the milk oligosaccharides of other primates, and how they differ among taxa. Neutral and acidic oligosaccharides were isolated from the milk of three species of Old World or catarrhine monkeys (Cercopithecidae: rhesus macaque (Macaca mulatta), toque macaque (Macaca sinica) and Hamadryas baboon (Papio hamadryas)) and three of New World or platyrrhine monkeys (Cebidae: tufted capuchin (Cebus apella) and Bolivian squirrel monkey (Saimiri boliviensis); Atelidae: mantled howler (Alouatta palliata)). The milks of these species contained 6-8% total sugar, most of which was lactose: the estimated ratio of oligosaccharides to lactose in Old World monkeys (1:4 to 1:6) was greater than in New World monkeys (1:12 to 1:23). The chemical structures of the oligosaccharides were determined mainly by (1)H-NMR spectroscopy. Oligosaccharides containing the type II unit (Gal(β1-4)GlcNAc) were found in the milk of the rhesus macaque, toque macaque, Hamadryas baboon and tufted capuchin, but oligosaccharides containing the type I unit (Gal(β1-3)GlcNAc), which have been found in human and many great ape milks, were absent from the milk of all species studied. Oligosaccharides containing Lewis x (Gal(β1-4)[Fuc(α1-3)]GlcNAc) and 3-fucosyl lactose (3-FL, Gal(β1-4)[Fuc(α1-3)]Glc) were found in the milk of the three cercopithecid monkey species, while 2-fucosyl lactose (5'-FL, Fuc(α1-2)Gal(β1-4)Glc) was absent from all species studied. All of these milks contained acidic oligosaccharides that had N-acetylneuraminic acid as part of their structures, but did not contain oligosaccharides that had N-glycolylneuraminic acid, in contrast to the milk or colostrum of great apes which contain both types of acidic oligosaccharides. Two GalNAc-containing oligosaccharides, lactose 3'-O-sulfate and lacto-N-novopentaose I (Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc) were found only in the milk

  13. Precision Orbit Determination for the Lunar Reconnaissance Orbiter: orbit quality and gravity field estimation

    NASA Astrophysics Data System (ADS)

    Mazarico, E.; Rowlands, D. D.; Neumann, G. A.; Lemoine, F. G.; Torrence, M. H.; Smith, D. E.; Zuber, M. T.; Mao, D.

    2010-12-01

    We present results of the Precision Orbit Determination work undertaken by the Lunar Orbiter Laser Altimeter (LOLA) Science Team for the Lunar Reconnaissance Orbiter (LRO) mission, in order to meet the position knowledge accuracy requirements (50-m total position) and to precisely geolocate the LRO datasets. In addition to the radiometric tracking data, one-way laser ranges (LR) between Earth stations and the spacecraft are made possible by a small telescope mounted on the spacecraft high-gain antenna. The photons received from Earth are transmitted to one LOLA detector by a fiber optics bundle. The LOLA timing system enables 5-s LR normal points with precision better than 10cm. Other types of geodetic constraints are derived from the altimetric data itself. The orbit geometry can be constrained at the times of laser groundtrack intersections (crossovers). Due to the Moon's slow rotation, orbit solutions and normal equations including altimeter crossovers are processed and created in one month batches. Recent high-resolution topographic maps near the lunar poles are used to produce a new kind of geodetic constraints. Purely geometric, those do not necessitate actual groundtrack intersections. We assess the contributions of those data types, and the quality of our orbits. Solutions which use altimetric crossover meet the horizontal 50-m requirement, and perform usually better (10-20m). We also obtain gravity field solutions based on LRO and historical data. The various LRO data are accumulated into normal equations, separately for each one month batch and for each measurement type, which enables the final weights to be adjusted during the least-squares inversion step. Expansion coefficients to degree and order 150 are estimated, and a Kaula rule is still needed to stabilize the farside field. The gravity field solutions are compared to previous solutions (GLGM-3, LP150Q, SGM100h) and the geopotential predicted from the latest LOLA spherical harmonic expansion.

  14. Precision Time Transfer and Obit Determination Using Laser Ranging to Lunar Reconnaissance Orbiter

    NASA Astrophysics Data System (ADS)

    Mao, D.; Barker, M. K.; Clarke, C. B.; Golder, J. E.; Hoffman, E.; Horvath, J. E.; Mazarico, E.; Mcgarry, J.; Neumann, G. A.; Torrence, M. H.; Rowlands, D. D.; Skillman, D.; Smith, D. E.; Sun, X.; Zuber, M. T.

    2011-12-01

    Since the commissioning of LRO in June, 2009, one-way laser ranging (LR) to Lunar Reconnaissance Orbiter (LRO) has been conducted successfully from NASA's Next Generation Satellite Laser Ranging System (NGSLR) at Goddard Geophysical and Astronomical observatory (GGAO) in Greenbelt, Maryland. With the support of the International Laser Ranging Service (ILRS), ten international satellite laser ranging (SLR) ground stations have participated in this experiment and over 1200 hours of ranging data have been collected. In addition to supplementing the precision orbit determination (POD) of LRO, LR is able to perform time transfer between the ground station and the spacecraft clocks. The LRO clock oscillator is stable to 1 part in 10^{12} over several hours, and as stable for much longer periods after correcting for a long-term drift rate and an aging rate. With a precisely-determined LRO ephemeris, the oscillator-determined laser pulse receive time can be differenced with ground station clock transmit times using H-maser and GPS-steered Rb oscillators as references. Simultaneous ranging to LRO among 2, 3, or 4 ground stations has made it possible for relative time transfer among the participating LR stations. Results have shown about 100 ns difference between some LR stations and the primary NGSLR station. At present, the time transfer accuracy is limited to 100 ns at NGSLR. However, an All-View GPS receiver has been installed, which, in combination with a H-maser, is expected to improve the accuracy to 1 ns r.m.s. at NGSLR. Results of new ranging and time transfer experiments using the new time base will be reported. The ability to use LR for time transfer validates the selection of a commercially-supplied, oven-controlled crystal oscillator on board LRO for one-way laser ranging.The increased clock accuracy also provides stronger orbit constraints for LRO POD. The improvements due to including LR data in the LRO POD will be presented.

  15. Determining neutrino mass hierarchy by precision measurements in electron and muon neutrino disappearance experiments

    SciTech Connect

    Minakata, H.; Nunokawa, H.; Parke, S.J.; Zukanovich Funchal, R.; /Sao Paulo U.

    2006-07-01

    Recently a new method for determining the neutrino mass hierarchy by comparing the effective values of the atmospheric {Delta}m{sup 2} measured in the electron neutrino disappearance channel, {Delta}m{sup 2}(ee), with the one measured in the muon neutrino disappearance channel, {Delta}m{sup 2}({mu}{mu}), was proposed. If {Delta}m{sup 2}(ee) is larger (smaller) than {Delta}m{sup 2} ({mu}{mu}) the hierarchy is of the normal (inverted) type. We re-examine this proposition in the light of two very high precision measurements: {Delta}m{sup 2}({mu}{mu}) that may be accomplished by the phase II of the Tokai-to-Kamioka (T2K) experiment, for example, and {Delta}m{sup 2}(ee) that can be envisaged using the novel Moessbauer enhanced resonant {bar {nu}}{sub e} absorption technique. Under optimistic assumptions for the systematic uncertainties of both measurements, we estimate the parameter region of ({theta}{sub 13}, {delta}) in which the mass hierarchy can be determined. If {theta}{sub 13} is relatively large, sin{sup 2} 2{theta}{sub 13} {approx}> 0.05, and both of {Delta}m{sup 2}(ee) and {Delta}m{sup 2}({mu}{mu}) can be measured with the precision of {approx} 0.5 % it is possible to determine the neutrino mass hierarchy at > 95% CL for 0.3{pi} {approx}< {delta} {approx}< 1.7 {pi} for the current best fit values of all the other oscillation parameters.

  16. Evaluation of precision estimates for fiber-dimensional and electrical hygrometers for water activity determinations.

    PubMed

    Stroup, W H; Peeler, J T; Smith, K

    1987-01-01

    The precision of instruments used in 3 collaborative studies conducted within the Food and Drug Administration over a 4-year period (1981, 1982, 1984) for water activity (aw) determinations according to the official AOAC method is evaluated. Calibration responses of the instruments were tested for linearity over the aw range from 0.75 to 0.97. Average absolute percent difference between predicted and assigned aw values for the linear model ranged from 0.3 to 0.7% for a fiber-dimensional hygrometer (Abbeon) and 3 electrical hygrometers (Beckman, Rotronics, and Weather Measure). The calibration responses for another electrical hygrometer (Hygrodynamics) were nonlinear. The fiber-dimensional hygrometer yielded mean aw values and precision estimates that did not differ significantly from those obtained with the electrical hygrometers for (NH4)2SO4slush, KNO3 slush, sweetened condensed milk, pancake syrup, and cheese spread. However, the mean aw value for a soy sauce was 0.838 for the electrical hygrometers compared with 0.911 for the fiber-dimensional hygrometer. The fiber-dimensional hygrometer was affected by a volatile component(s) in the soy sauce that caused an erroneously high aw value. Pooled estimates of reproducibility (Sx) in the 3 studies were 0.008 for the fiber-dimensional hygrometer and 0.010 for the electrical hygrometers; these values were not significantly different from those reported in the study that verified the current official AOAC method. PMID:3436906

  17. Precise Determination of the Lyman-1 Transition Energy in Hydrogen-like Gold Ions with Microcalorimeters

    NASA Astrophysics Data System (ADS)

    Kraft-Bermuth, S.; Andrianov, V.; Bleile, A.; Echler, A.; Egelhof, P.; Grabitz, P.; Kilbourne, C.; Kiselev, O.; McCammon, D.; Scholz, P.

    2014-09-01

    The precise determination of the transition energy of the Lyman-1 line in hydrogen-like heavy ions provides a sensitive test of quantum electrodynamics in very strong Coulomb fields. We report the determination of the Lyman-1 transition energy of gold ions (Au) with microcalorimeters at the experimental storage ring at GSI. X-rays produced by the interaction of 125 MeV/u Au ions with an internal argon gas-jet target were detected. The detector array consisted of 14 pixels with silicon thermistors and Sn absorbers, for which an energy resolution of 50 eV for an X-ray energy of 59.5 keV was obtained in the laboratory. The Lyman-1 transition energy was determined for each pixel in the laboratory frame, then transformed into the emitter frame and averaged. A Dy-159 source was used for energy calibration. The absolute positions of the detector pixels, which are needed for an accurate correction of the Doppler shift, were determined by topographic measurements and by scanning a collimated Am-241 source across the cryostat window. The energy of the Lyman-1 line in the emitter frame is eV, in good agreement with theoretical predictions. The systematic error is dominated by the uncertainty in the position of the cryostat relative to the interaction region of beam and target.

  18. A Comparison of TOPEX/Poseidon TDRESS-based Operational Orbit Determination Results with the Precision Orbit Ephemeris

    NASA Technical Reports Server (NTRS)

    Frauenholz, R. B.; Bhat, R. S.; Shapiro, B. E.; Leavitt, R. K.

    1998-01-01

    Since its' launch on August 10, 1992, the TOPEX/Poseidon satellite hs successfully observed the earth's ocean circulation using a combination of precision orbit determination (POD) and dual-frequency radar altimetry.

  19. Advanced application flight experiments precision attitude determination system. Volume 2: System tests

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The performance capability of each of two precision attitude determination systems (PADS), one using a strapdown star tracker, and the other using a single-axis gimbal star tracker was measured in the laboratory under simulated orbit conditions. The primary focus of the evaluation was on the contribution to the total system accuracy by the star trackers, and the effectiveness of the software algorithms in functioning with actual sensor signals. A brief description of PADS, the laboratory test configuration and the test facility, is given along with a discussion of the data handling and display, laboratory computer programs, PADS performance evaluation programs, and the strapdown and gimbal system tests. Results are presented and discussed.

  20. SURFING: A Program for Precise Determination of Sample Position in Stress Measurements Via Neutron Diffraction

    SciTech Connect

    Wang, D.-Q.

    2000-08-08

    Precise determination of the specimen position relative to the sampling volume for texture and stress measurements by neutron diffraction is difficult or sometimes impossible using only optical devices due to large or irregular sample dimensions and/or complicated shape of the sampling volume. The knowledge of the shape and size of the sampling volume allows development of a general mathematical model for the intensity variation with a parallelogram-shape sampling volume moving from outside to inside the specimen for both transmission and reflection geometric set-ups. Both fixed slits and radial collimators are options in defining the geometrical setup. The attenuation by the sample also has been taken into account in this model. Experimental results agree well with the model calculations. The program SURFING is based on the model calculation and was written in Labwindows/CVI{copyright}.

  1. Precise Orbit Determination for LEO Spacecraft Using GNSS Tracking Data from Multiple Antennas

    NASA Technical Reports Server (NTRS)

    Kuang, Da; Bertiger, William; Desai, Shailen; Haines, Bruce

    2010-01-01

    To support various applications, certain Earth-orbiting spacecrafts (e.g., SRTM, COSMIC) use multiple GNSS antennas to provide tracking data for precise orbit determination (POD). POD using GNSS tracking data from multiple antennas poses some special technical issues compared to the typical single-antenna approach. In this paper, we investigate some of these issues using both real and simulated data. Recommendations are provided for POD with multiple GNSS antennas and for antenna configuration design. The observability of satellite position with multiple antennas data is compared against single antenna case. The impact of differential clock (line biases) and line-of-sight (up, along-track, and cross-track) on kinematic and reduced-dynamic POD is evaluated. The accuracy of monitoring the stability of the spacecraft structure by simultaneously performing POD of the spacecraft and relative positioning of the multiple antennas is also investigated.

  2. High-precision determination of the electric and magnetic form factors of the proton.

    PubMed

    Bernauer, J C; Achenbach, P; Ayerbe Gayoso, C; Böhm, R; Bosnar, D; Debenjak, L; Distler, M O; Doria, L; Esser, A; Fonvieille, H; Friedrich, J M; Friedrich, J; Gómez Rodríguez de la Paz, M; Makek, M; Merkel, H; Middleton, D G; Müller, U; Nungesser, L; Pochodzalla, J; Potokar, M; Sánchez Majos, S; Schlimme, B S; Sirca, S; Walcher, Th; Weinriefer, M

    2010-12-10

    New precise results of a measurement of the elastic electron-proton scattering cross section performed at the Mainz Microtron MAMI are presented. About 1400 cross sections were measured with negative four-momentum transfers squared up to Q² = 1 (GeV/c)² with statistical errors below 0.2%. The electric and magnetic form factors of the proton were extracted by fits of a large variety of form factor models directly to the cross sections. The form factors show some features at the scale of the pion cloud. The charge and magnetic radii are determined to be ½ = 0.879(5)stat(4)syst(2)model(4)group fm and ½ = 0.777(13)stat(9)syst(5)model(2)group fm. PMID:21231520

  3. High-Precision Determination of the Electric and Magnetic Form Factors of the Proton

    SciTech Connect

    Bernauer, J. C.; Achenbach, P.; Ayerbe Gayoso, C.; Boehm, R.; Distler, M. O.; Doria, L.; Esser, A.; Friedrich, J.; Gomez Rodriguez de la Paz, M.; Merkel, H.; Middleton, D. G.; Mueller, U.; Nungesser, L.; Pochodzalla, J.; Sanchez Majos, S.; Schlimme, B. S.; Walcher, Th.; Weinriefer, M.; Bosnar, D.; Makek, M.

    2010-12-10

    New precise results of a measurement of the elastic electron-proton scattering cross section performed at the Mainz Microtron MAMI are presented. About 1400 cross sections were measured with negative four-momentum transfers squared up to Q{sup 2}=1 (GeV/c){sup 2} with statistical errors below 0.2%. The electric and magnetic form factors of the proton were extracted by fits of a large variety of form factor models directly to the cross sections. The form factors show some features at the scale of the pion cloud. The charge and magnetic radii are determined to be {sup 1/2}=0.879(5){sub stat}(4){sub syst}(2){sub model}(4){sub group} fm and {sup 1/2}=0.777(13){sub stat}(9){sub syst}(5){sub model}(2){sub group} fm.

  4. Analytical methodology for determination of helicopter IFR precision approach requirements. [pilot workload and acceptance level

    NASA Technical Reports Server (NTRS)

    Phatak, A. V.

    1980-01-01

    A systematic analytical approach to the determination of helicopter IFR precision approach requirements is formulated. The approach is based upon the hypothesis that pilot acceptance level or opinion rating of a given system is inversely related to the degree of pilot involvement in the control task. A nonlinear simulation of the helicopter approach to landing task incorporating appropriate models for UH-1H aircraft, the environmental disturbances and the human pilot was developed as a tool for evaluating the pilot acceptance hypothesis. The simulated pilot model is generic in nature and includes analytical representation of the human information acquisition, processing, and control strategies. Simulation analyses in the flight director mode indicate that the pilot model used is reasonable. Results of the simulation are used to identify candidate pilot workload metrics and to test the well known performance-work-load relationship. A pilot acceptance analytical methodology is formulated as a basis for further investigation, development and validation.

  5. Invited Article: A precise instrument to determine the Planck constant, and the future kilogram

    NASA Astrophysics Data System (ADS)

    Haddad, D.; Seifert, F.; Chao, L. S.; Li, S.; Newell, D. B.; Pratt, J. R.; Williams, C.; Schlamminger, S.

    2016-06-01

    A precise instrument, called a watt balance, compares mechanical power measured in terms of the meter, the second, and the kilogram to electrical power measured in terms of the volt and the ohm. A direct link between mechanical action and the Planck constant is established by the practical realization of the electrical units derived from the Josephson and the quantum Hall effects. We describe in this paper the fourth-generation watt balance at the National Institute of Standards and Technology (NIST), and report our initial determination of the Planck constant obtained from data taken in late 2015 and the beginning of 2016. A comprehensive analysis of the data and the associated uncertainties led to the SI value of the Planck constant, h = 6.626 069 83(22) × 10-34 J s. The relative standard uncertainty associated with this result is 34 × 10-9.

  6. Molecular Line Parameters Precisely Determined by a Cavity Ring-Down Spectrometer

    NASA Astrophysics Data System (ADS)

    Hu, Shui-Ming; Tan, Yan; Wang, Jin; Lu, Yan; Cheng, Cunfeng; Sun, Yu Robert; Liu, An-Wen

    2015-06-01

    A cavity ring-down spectrometer calibrated with a set of precise atomic lines was built to retrieve precise line parameters in the near infrared.~[1,2] The spectrometer allows us to detect absorptions with a sensitivity of 10-11~cm-1 and a spectral precision up to 10-6~cm-1. Ro-vibrational lines in the second overtone of H_2 have been observed, including the extremely weak S_3(5) line with a line intensity less than 1× 10-30cm/molecule, which is among the weakest molecular lines detected by absorption in the gas phase. The absolute line positions of H_2 agree well with the high-level quantum chemical calculations including relativistic and QED corrections, with the deviation being less than 5× 10-4~cm-1.~[3,4] A quantitative study has also been carried out on the ν_1+5ν_3 band of CO_2.~[5] It was the first CO_2 band observed 80 years ago in the spectrum of Venus. We determined the line positions with an accuracy of 3× 10-5~cm-1, two orders of magnitude better than previous studies. Similar studies have been carried out to determine the line parameters of H_2O~[6] and CO~[7] in the spectral regions near 0.8~μm. The spectroscopic parameters can be used in varies studies, from the atmospheres of the earth-like planets to the test of fundamental physics. References [1] H. Pan, et al. Rev. Sci. Instrum. 82, 103110 (2011). [2] C.-F. Cheng, Opt. Expr. 20, 9956 (2012). [3] C.-F. Cheng, et al. Phys. Rev. A 85, 024501 (2012). [4] y. Tan, et al. J. Mol. Spectrosc. 300, 60 (2014). [5] Y. Lu, et al. Astrophys. J. 775, 71 (2013). [6] Y. Lu, et al. JQSRT 118, 96 (2013). [7] Y. Tan, et al. ``Ro-vibrational analysis of the fifth overtone of CO at 802~nm'', under preparation.

  7. Entry Abort Determination Using Non-Adaptive Neural Networks for Mars Precision Landers

    NASA Technical Reports Server (NTRS)

    Graybeal, Sarah R.; Kranzusch, Kara M.

    2005-01-01

    The 2009 Mars Science Laboratory (MSL) will attempt the first precision landing on Mars using a modified version of the Apollo Earth entry guidance program. The guidance routine, Entry Terminal Point Controller (ETPC), commands the deployment of a supersonic parachute after converging the range to the landing target. For very dispersed cases, ETPC may not converge the range to the target and safely command parachute deployment within Mach number and dynamic pressure constraints. A full-lift up abort can save 85% of these failed trajectories while abandoning the precision landing objective. Though current MSL requirements do not call for an abort capability, an autonomous abort capability may be desired, for this mission or future Mars precision landers, to make the vehicle more robust. The application of artificial neural networks (NNs) as an abort determination technique was evaluated by personnel at the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC). In order to implement an abort, a failed trajectory needs to be recognized in real time. Abort determination is dependent upon several trajectory parameters whose relationships to vehicle survival are not well understood, and yet the lander must be trained to recognize unsafe situations. Artificial neural networks (NNs) provide a way to model these parameters and can provide MSL with the artificial intelligence necessary to independently declare an abort. Using the 2009 Mars Science Laboratory (MSL) mission as a case study, a non-adaptive NN was designed, trained and tested using Monte Carlo simulations of MSL descent and incorporated into ETPC. Neural network theory, the development history of the MSL NN, and initial testing with severe dust storm entry trajectory cases are discussed in Reference 1 and will not be repeated here. That analysis demonstrated that NNs are capable of recognizing failed descent trajectories and can significantly increase the survivability of MSL for very

  8. DPTRAJ/ODP - DOUBLE PRECISION TRAJECTORY ANALYSIS AND ORBIT DETERMINATION PROGRAM

    NASA Technical Reports Server (NTRS)

    Breckheimer, P. J.

    1994-01-01

    The Double Precision Trajectory Analysis Program, DPTRAJ, and the Orbit Determination Program, ODP, have been developed and improved over the years to provide the NASA Jet Propulsion Laboratory with a highly reliable and accurate navigation capability for their deep space missions such as VOYAGER. DPTRAJ and ODP are each collections of programs which work together to provide the desired computational results. DPTRAJ, ODP, and their supporting utility programs are capable of handling the massive amounts of data and performing the various numerical calculations required for solving the navigation problems associated with planetary fly-by and lander missions. They were used extensively in support of NASA's VOYAGER project. DPTRAJ produces a spacecraft ephemeris by numerical integration of the equations of motion, which can be formulated using a full set of acceleration models. For each particular trajectory case the extent of the modeling employed and the precision of the integration process are controlled by user input specifications. The equation of motion used includes four types of terms. An acceleration term accounts for the basic conic motion of the spacecraft with respect to the central body. Terms that measure the attraction of the perturbing bodies on the spacecraft and terms that indirectly affect the motion as perturbations on the central body may be included. Terms are also provided to account for other gravitational and non-gravitational effects on the motion. ODP's function is the processing of the observational data in order to compute precise estimates of the spacecraft, or lander, position coordinate histories. This function is executed by processing the observation data and auxiliary calibration information. ODP also computes a spacecraft state vector, or a lander position vector, along with parameters which define the acceleration. The heart of the ODP process is a data fitting subprocess in which validated, edited, and corrected observational data

  9. Detection and quantitation of low abundance oligosaccharides in recombinant monoclonal antibodies.

    PubMed

    Ponniah, Gomathinayagam; Nowak, Christine; Gonzalez, Nidia; Miano, Dino; Liu, Hongcheng

    2015-03-01

    Oligosaccharides are critical for structural integrity, stability, and biological functions of recombinant monoclonal antibodies. It is relatively easy to characterize, quantify, and determine the impact of major glycoforms. While challenging to detect and quantify, certain low abundance oligosaccharides are highly relevant to the stability and functions of recombinant monoclonal antibodies. Methods were established in this study based on enzymatic digestion to consolidate peaks of the same type of oligosaccharides by removing heterogeneity and thus increase detectability of low abundance peaks. Endo H was used to collapse high mannose oligosaccharides to a single peak of GlcNAc for ease of detection and quantitation. β-Galactosidase and β-N-acetylhexosaminidase were used to convert complex oligosaccharides into two peaks containing either GlcNAc2Man3Fuc or GlcNAc2Man3, which simplified the chromatograms and data analysis. More importantly, low abundance hybrid oligosaccharides can only be detected and qualified after β-galactosidase and β-N-acetylhexosaminidase digestion. Detection and quantitation of low abundance oligosaccharides can also be achieved using a combination of all three enzymes. These methods can be applied to the development of recombinant monoclonal antibody therapeutics. PMID:25647617

  10. Precise orbit determination for the FORMOSAT-3/COSMIC satellite mission using GPS

    NASA Astrophysics Data System (ADS)

    Hwang, Cheinway; Tseng, Tzu-Pang; Lin, Tingjung; Švehla, Dražen; Schreiner, Bill

    2009-05-01

    The joint Taiwan-US mission FORMOSAT-3/ COSMIC (COSMIC) was launched on April 17, 2006. Each of the six satellites is equipped with two POD antennas. The orbits of the six satellites are determined from GPS data using zero-difference carrier-phase measurements by the reduced dynamic and kinematic methods. The effects of satellite center of mass (COM) variation, satellite attitude, GPS antenna phase center variation (PCV), and cable delay difference on the COSMIC orbit determination are studied. Nominal attitudes estimated from satellite state vectors deliver a better orbit accuracy when compared to observed attitude. Numerical tests show that the COSMIC COM must be precisely calibrated in order not to corrupt orbit determination. Based on the analyses of the 5 and 6-h orbit overlaps of two 30-h arcs, orbit accuracies from the reduced dynamic and kinematic solutions are nearly identical and are at the 2-3 cm level. The mean RMS difference between the orbits from this paper and those from UCAR (near real-time) and WHU (post-processed) is about 10 cm, which is largely due to different uses of GPS ephemerides, high-rate GPS clocks and force models. The kinematic orbits of COSMIC are expected to be used for recovery of temporal variations in the gravity field.

  11. The ST5000: a high-precision star tracker and attitude determination system

    NASA Astrophysics Data System (ADS)

    Percival, Jeffrey W.; Nordsieck, Kenneth H.; Jaehnig, Kurt P.

    2008-07-01

    The University of Wisconsin's Space Astronomy Laboratory has designed and built a Star Tracker suitable for use on sounding rockets and class D satellites. This device brings together autonomous attitude determination ("Lost in Space" mode), multi-star tracking, and a novel form of Progressive Image Transmission (US patent #5,991,816), which allows the device to be used as an ultra-low bandwidth imager. The Star Tracker 5000 (ST5000) reached operational status in a suborbital sounding rocket flight in August 2007. The ST5000 determined the rocket's inertial (FK5) attitude with arcsecond precision using its autonomous attitude determination capability, and then provided continuous sub-arc-second tracking for the full 360-second on-target portion of the flight. The ST5000 RMS tracking error was 0.54 arc-seconds in yaw and pitch, and 17 arc-seconds in roll. The vehicle RMS jitter was 0.5 arc-seconds in yaw and pitch, and 10 arc-seconds in roll. The ST5000 was funded by NASA grants NAG5-7026 and NAG5-8588.

  12. Real-time, autonomous precise satellite orbit determination using the global positioning system

    NASA Astrophysics Data System (ADS)

    Goldstein, David Ben

    2000-10-01

    The desire for autonomously generated, rapidly available, and highly accurate satellite ephemeris is growing with the proliferation of constellations of satellites and the cost and overhead of ground tracking resources. Autonomous Orbit Determination (OD) may be done on the ground in a post-processing mode or in real-time on board a satellite and may be accomplished days, hours or immediately after observations are processed. The Global Positioning System (GPS) is now widely used as an alternative to ground tracking resources to supply observation data for satellite positioning and navigation. GPS is accurate, inexpensive, provides continuous coverage, and is an excellent choice for autonomous systems. In an effort to estimate precise satellite ephemeris in real-time on board a satellite, the Goddard Space Flight Center (GSFC) created the GPS Enhanced OD Experiment (GEODE) flight navigation software. This dissertation offers alternative methods and improvements to GEODE to increase on board autonomy and real-time total position accuracy and precision without increasing computational burden. First, GEODE is modified to include a Gravity Acceleration Approximation Function (GAAF) to replace the traditional spherical harmonic representation of the gravity field. Next, an ionospheric correction method called Differenced Range Versus Integrated Doppler (DRVID) is applied to correct for ionospheric errors in the GPS measurements used in GEODE. Then, Dynamic Model Compensation (DMC) is added to estimate unmodeled and/or mismodeled forces in the dynamic model and to provide an alternative process noise variance-covariance formulation. Finally, a Genetic Algorithm (GA) is implemented in the form of Genetic Model Compensation (GMC) to optimize DMC forcing noise parameters. Application of GAAF, DRVID and DMC improved GEODE's position estimates by 28.3% when applied to GPS/MET data collected in the presence of Selective Availability (SA), 17.5% when SA is removed from the GPS

  13. Modeling of Non-Gravitational Forces for Precise and Accurate Orbit Determination

    NASA Astrophysics Data System (ADS)

    Hackel, Stefan; Gisinger, Christoph; Steigenberger, Peter; Balss, Ulrich; Montenbruck, Oliver; Eineder, Michael

    2014-05-01

    Remote sensing satellites support a broad range of scientific and commercial applications. The two radar imaging satellites TerraSAR-X and TanDEM-X provide spaceborne Synthetic Aperture Radar (SAR) and interferometric SAR data with a very high accuracy. The precise reconstruction of the satellite's trajectory is based on the Global Positioning System (GPS) measurements from a geodetic-grade dual-frequency Integrated Geodetic and Occultation Receiver (IGOR) onboard the spacecraft. The increasing demand for precise radar products relies on validation methods, which require precise and accurate orbit products. An analysis of the orbit quality by means of internal and external validation methods on long and short timescales shows systematics, which reflect deficits in the employed force models. Following the proper analysis of this deficits, possible solution strategies are highlighted in the presentation. The employed Reduced Dynamic Orbit Determination (RDOD) approach utilizes models for gravitational and non-gravitational forces. A detailed satellite macro model is introduced to describe the geometry and the optical surface properties of the satellite. Two major non-gravitational forces are the direct and the indirect Solar Radiation Pressure (SRP). The satellite TerraSAR-X flies on a dusk-dawn orbit with an altitude of approximately 510 km above ground. Due to this constellation, the Sun almost constantly illuminates the satellite, which causes strong across-track accelerations on the plane rectangular to the solar rays. The indirect effect of the solar radiation is called Earth Radiation Pressure (ERP). This force depends on the sunlight, which is reflected by the illuminated Earth surface (visible spectra) and the emission of the Earth body in the infrared spectra. Both components of ERP require Earth models to describe the optical properties of the Earth surface. Therefore, the influence of different Earth models on the orbit quality is assessed. The scope of

  14. Impact of Ionosphere on GPS-based Precise Orbit Determination of Low Earth Orbiters

    NASA Astrophysics Data System (ADS)

    Arnold, D.; Jaeggi, A.; Beutler, G.; Meyer, U.; Schaer, S.

    2015-12-01

    Deficiencies in geodetic products derived from the orbital trajectories of Low Earth Orbiting (LEO) satellites determined by GPS-based Precise Orbit Determination (POD) were identified in recent years. The precise orbits of the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) mission are, e.g., severely affected by an increased position noise level over the geomagnetic poles and spurious signatures along the Earth's geomagnetic equator (see Fig. 1, which shows the carrier phase residuals of a reduced-dynamic orbit determination for GOCE in m). Such degradations may directly map into the gravity fields recovered from the orbits. They are related to a disturbed GPS signal propagation through the Earth's ionosphere and indicate that the GPS observation model and/or the data pre-processing need to be improved. While GOCE was the first mission where severe ionosphere-related problems became obvious, the GPS-based LEO POD of satellites of the more recent missions Swarm and Sentinel-1A turn out to be affected, as well. We characterize the stochastic and systematic behavior of the ionosphere by analyzing GPS data collected by the POD antennas of various LEO satellites covering a broad altitude range (e.g., GRACE, GOCE and Swarm) and for periods covering significant parts of an entire solar cycle, which probe substantially different ionosphere conditions. The information may provide the basis for improvements of data pre-processing to cope with the ionosphere-induced problems of LEO POD. The performance of cycle slip detection can, e.g., be degraded by large changes of ionospheric refraction from one measurement epoch to the next. Geographically resolved information on the stochastic properties of the ionosphere above the LEOs provide more realistic threshold values for cycle slip detection algorithms. Removing GPS data showing large ionospheric variations is a crude method to mitigate the ionosphere-induced artifacts in orbit and gravity field products

  15. Application of Vehicle Dynamic Modeling in Uavs for Precise Determination of Exterior Orientation

    NASA Astrophysics Data System (ADS)

    Khaghani, M.; Skaloud, J.

    2016-06-01

    Advances in unmanned aerial vehicles (UAV) and especially micro aerial vehicle (MAV) technology together with increasing quality and decreasing price of imaging devices have resulted in growing use of MAVs in photogrammetry. The practicality of MAV mapping is seriously enhanced with the ability to determine parameters of exterior orientation (EO) with sufficient accuracy, in both absolute and relative senses (change of attitude between successive images). While differential carrier phase GNSS satisfies cm-level positioning accuracy, precise attitude determination is essential for both direct sensor orientation (DiSO) and integrated sensor orientation (ISO) in corridor mapping or in block configuration imaging over surfaces with low texture. Limited cost, size, and weight of MAVs represent limitations on quality of onboard navigation sensors and puts emphasis on exploiting full capacity of available resources. Typically short flying times (10-30 minutes) also limit the possibility of estimating and/or correcting factors such as sensor misalignment and poor attitude initialization of inertial navigation system (INS). This research aims at increasing the accuracy of attitude determination in both absolute and relative senses with no extra sensors onboard. In comparison to classical INS/GNSS setup, novel approach is presented here to integrated state estimation, in which vehicle dynamic model (VDM) is used as the main process model. Such system benefits from available information from autopilot and physical properties of the platform in enhancing performance of determination of trajectory and parameters of exterior orientation consequently. The navigation system employs a differential carrier phase GNSS receiver and a micro electro-mechanical system (MEMS) grade inertial measurement unit (IMU), together with MAV control input from autopilot. Monte-Carlo simulation has been performed on trajectories for typical corridor mapping and block imaging. Results reveal

  16. GOCE Precise Orbit Determination for the Entire Mission- Challenges in the Final Mission Phase

    NASA Astrophysics Data System (ADS)

    Jaggi, A.; Bock, H.; Meyer, U.

    2015-03-01

    The Gravity field and steady-state Ocean Circulation Explorer (GOCE), ESA’s first Earth Explorer core mission, was launched on March 17, 2009 into a sun-synchronous dusk-dawn orbit and eventually re-entered into the Earth’s atmosphere on November 11, 2013. A precise science orbit (PSO) product was provided by the GOCE High-level Processing Facility (HPF) from the GPS high-low Satellite-to-Satellite Tracking (hl-SST) data from the beginning until the very last days of the mission. We recapitulate the PSO procedure and refer to the results achieved until the official end of the GOCE mission on October 21, 2013, where independent validations with Satellite Laser Ranging (SLR) measurements confirmed a high quality of the PSO product of about 2 cm 1-D RMS. We then focus on the period after the official end of the mission, where orbits could still be determined thanks to the continuously running GPS receivers delivering high quality data until a few hours before the re-entry into the Earth’s atmosphere. We address the challenges encountered for orbit determination during these last days and report on adaptions in the PSO procedure to also obtain good orbit results at the unprecedented low orbital altitudes below 224 km.

  17. Precise timing of the last interglacial period from mass spectrometric determination of thorium-230 in corals

    NASA Technical Reports Server (NTRS)

    Chen, J. H.; Wasserburg, G. J.; Ku, T.-L.; Edwards, R. Lawrence

    1987-01-01

    The development of mass spectrometric techniques for determination of Th-230 abundance has made it possible to reduce analytical errors in (U-238)-(U-234)-(Th-230) dating of corals even with very small samples. Samples of 6 x 10 to the 8th atoms of Th-230 can be measured to an accuracy of + or - 3 percent (2sigma), and 3 x 10 to the 10th atoms of Th-230 can be measured to an accuracy of + or - 0.2 percent. The time range over which useful age data on corals can be obtained now ranges from about 50 to about 500,000 years. For young corals, this approach may be preferable to C-14 dating. The precision with which the age of a coral can now be determined should make it possible to critically test the Milankovitch hypothesis concerning Pleistocene climate fluctuations. Analyses of a number of corals that grew during the last interglacial period yield ages of 122,000 to 130,000 years. The ages coincide with, or slightly post-date, the summer solar insolation high at 65 deg N latitude which occurred 128,000 years ago. This supports the idea that changes in Pleistocene climate can be the result of variations in the distribution of solar insolation caused by changes in the geometry of the earth's orbit and rotation axis.

  18. The Human Milk Metabolome Reveals Diverse Oligosaccharide Profiles123

    PubMed Central

    Smilowitz, Jennifer T.; O’Sullivan, Aifric; Barile, Daniela; German, J. Bruce; Lönnerdal, Bo; Slupsky, Carolyn M.

    2013-01-01

    Breast milk delivers nutrition and protection to the developing infant. There has been considerable research on the high-molecular-weight milk components; however, low-molecular-weight metabolites have received less attention. To determine the effect of maternal phenotype and diet on the human milk metabolome, milk collected at day 90 postpartum from 52 healthy women was analyzed by using proton nuclear magnetic resonance spectroscopy. Sixty-five milk metabolites were quantified (mono-, di-, and oligosaccharides; amino acids and derivatives; energy metabolites; fatty acids and associated metabolites; vitamins, nucleotides, and derivatives; and others). The biological variation, represented as the percentage CV of each metabolite, varied widely (4–120%), with several metabolites having low variation (<20%), including lactose, urea, glutamate, myo-inositol, and creatinine. Principal components analysis identified 2 clear groups of participants who were differentiable on the basis of milk oligosaccharide concentration and who were classified as secretors or nonsecretors of fucosyltransferase 2 (FUT2) gene products according to the concentration of 2′-fucosyllactose, lactodifucotetraose, and lacto-N-fucopentaose I. Exploration of the interrelations between the milk sugars by using Spearman rank correlations revealed significant positive and negative associations, including positive correlations between fucose and products of the FUT2 gene and negative correlations between fucose and products of the fucosyltransferase 3 (FUT3) gene. The total concentration of milk oligosaccharides was conserved among participants (%CV = 18%), suggesting tight regulation of total oligosaccharide production; however, concentrations of specific oligosaccharides varied widely between participants (%CV = 30.4–84.3%). The variability in certain milk metabolites suggests possible roles in infant or infant gut microbial development. This trial was registered at clinicaltrials.gov as NCT

  19. Analysis of Prebiotic Oligosaccharides

    NASA Astrophysics Data System (ADS)

    Sanz, M. L.; Ruiz-Matute, A. I.; Corzo, N.; Martínez-Castro, I.

    Carbohydrates and more specifically prebiotics, are complex mixtures of isomers with different degrees of polymerization (DP), monosaccharide units and/or glycosidic linkages. Many efforts are focused on the search for new products and the determination of their biological activity. However, the study of their chemical structure is fundamental to both acquire a basic knowledge of the carbohydrate and to increase the understanding of the mechanisms for their metabolic effect.

  20. High Precision, Directly Determined Radii and Effective Temperatures for Giant Stars

    NASA Astrophysics Data System (ADS)

    van Belle, Gerard

    have demonstrated the potential of all aspects of this program, and through the proposed effort will unify the diverse components to study these giants. A homogenous catalog of linear radii and effective temperatures for hundreds of giants will be generated, which in turn will be used to calibrate radius and temperature scales for application to the broad population of giants. Significance. Fundamental temperature and radius scales are used throughout stellar astrophysics, including stellar structure studies, stellar modeling, galactic spectral synthesis, planet detection studies, and star formation theory. We expect to reduce the error in effective temperature calibration by 2-4x, and the error in linear radius by 2-3x or more. A high- precision improvement to these scales will, in turn, broadly advance a wide swath of studies that depend on precisely knowing the radii and temperature of stars. This proposal aims to produce the definitive linear radius and effective temperature scales for giants. A significant improvement in the determinations of the radii and effective temperatures of giant stars across the HR diagram will have far reaching consequences across the broad expanse of astrophysical research. Relevance to NASA. High-precision calibrations of temperature scales are essential to flux calibrations of past and ongoing NASA science satellite observations, such as those from Spitzer and WISE, and a significantly improved linear radius reference markedly improves Kepler discoveries in both the exoplanet and asteroseismology areas. In addition to the high scientific potential of this program, it also provides technical benefits by furthering interferometric techniques that will be critical for future high angular resolution astronomy.

  1. Precise Orbit Determination of the two LAGEOS and LARES satellites and the LARASE activities

    NASA Astrophysics Data System (ADS)

    Massimo Lucchesi, David; Peron, Roberto; Anselmo, Luciano; Bassan, Massimo; Magnafico, Carmelo; Nobili, Anna Maria; Pardini, Carmen; Pucacco, Giuseppe; Stanga, Ruggero; Visco, Massimo

    2016-04-01

    The LAser RAnged Satellites Experiment (LARASE) research program aims to provide an original contribution in testing and verifying Einstein's theory of General Relativity (GR) in its Weak-Field and Slow-Motion (WFSM) limit by means of the powerful Satellite Laser Ranging (SLR) technique. Therefore, in this perspective, a Precise Orbit Determination (POD) of a dedicated set of passive laser-ranged satellites is required. In particular, the joint analysis of the orbit of the two LAGEOS (LAser GEOdynamic Satellite) satellites with that of the more recently launched LARES (LAser RElativity Satellite) satellite will be exploited in order to obtain precise measurements of the gravitational interaction in the field of the Earth. A major point to be reached within the activities of LARASE is to provide the relativistic measurements with an error budget of the various systematic effects (both gravitational and non-gravitational) that be robust and reliable. This requires a careful analysis of the various disturbing effects on the orbit of the considered satellites, especially for the new LARES. This activity has been planned both for the gravitational and the non-gravitational perturbations (NGP). Therefore, we started to re-visit, update and improve previous dynamical models, especially for the NGP, and we also developed new models in such a way to improve the current dynamical models used in space geodesy to account for the main perturbations acting on the orbit of LAGEOS and LARES. We focused especially on the spin dynamics, the drag effects (especially for LARES, because of its much lower height with respect to the two LAGEOS) and, at a preliminary level, the thermal ones that, as it is well known from the literature, are very important for the LAGEOS satellites. These studies are of fundamental importance not only for the objective of a reliable error budget, but also in order to improve the POD. In this context, because of the importance of the LAGEOS satellites in

  2. Hydrophilic interaction liquid chromatography for the separation, purification, and quantification of raffinose family oligosaccharides from Lycopus lucidus Turcz.

    PubMed

    Liang, Tu; Fu, Qing; Li, Fangbing; Zhou, Wei; Xin, Huaxia; Wang, Hui; Jin, Yu; Liang, Xinmiao

    2015-08-01

    A systematic strategy based on hydrophilic interaction liquid chromatography was developed for the separation, purification and quantification of raffinose family oligosaccharides from Lycopus lucidus Turcz. Methods with enough hydrophilicity and selectivity were utilized to resolve the problems encountered in the separation of oligosaccharides such as low retention, low resolution and poor solubility. The raffinose family oligosaccharides in L. lucidus Turcz. were isolated using solid-phase extraction followed by hydrophilic interaction liquid chromatography at semi-preparative scale to obtain standards of stachyose, verbascose and ajugose. Utilizing the obtained oligosaccharides as standards, a quantitative determination method was developed, validated and applied for the content determination of raffinose family oligosaccharides both in the aerial and root parts of L. lucidus Turcz. There were no oligosaccharides in the aerial parts, while in the root parts, the total content was 686.5 mg/g with the average distribution: raffinose 66.5 mg/g, stachyose 289.0 mg/g, verbascose 212.4 mg/g, and ajugose 118.6 mg/g. The result provided the potential of roots of L. lucidus Turcz. as new raffinose family oligosaccharides sources for functional food. Moreover, since the present systematic strategy is efficient, sensitive and robust, separation, purification and quantification of oligosaccharides by hydrophilic interaction liquid chromatography seems to be possible. PMID:26011699

  3. Generalized interval-valued fuzzy variable precision rough sets determined by fuzzy logical operators

    NASA Astrophysics Data System (ADS)

    Qing Hu, Bao

    2015-11-01

    The fuzzy rough set model and interval-valued fuzzy rough set model have been introduced to handle databases with real values and interval values, respectively. Variable precision rough set was advanced by Ziarko to overcome the shortcomings of misclassification and/or perturbation in Pawlak rough sets. By combining fuzzy rough set and variable precision rough set, a variety of fuzzy variable precision rough sets were studied, which cannot only handle numerical data, but are also less sensitive to misclassification. However, fuzzy variable precision rough sets cannot effectively handle interval-valued data-sets. Research into interval-valued fuzzy rough sets for interval-valued fuzzy data-sets has commenced; however, variable precision problems have not been considered in interval-valued fuzzy rough sets and generalized interval-valued fuzzy rough sets based on fuzzy logical operators nor have interval-valued fuzzy sets been considered in variable precision rough sets and fuzzy variable precision rough sets. These current models are incapable of wide application, especially on misclassification and/or perturbation and on interval-valued fuzzy data-sets. In this paper, these models are generalized to a more integrative approach that not only considers interval-valued fuzzy sets, but also variable precision. First, we review generalized interval-valued fuzzy rough sets based on two fuzzy logical operators: interval-valued fuzzy triangular norms and interval-valued fuzzy residual implicators. Second, we propose generalized interval-valued fuzzy variable precision rough sets based on the above two fuzzy logical operators. Finally, we confirm that some existing models, including rough sets, fuzzy variable precision rough sets, interval-valued fuzzy rough sets, generalized fuzzy rough sets and generalized interval-valued fuzzy variable precision rough sets based on fuzzy logical operators, are special cases of the proposed models.

  4. A Novel Method for Precise Onboard Real-Time Orbit Determination with a Standalone GPS Receiver

    PubMed Central

    Wang, Fuhong; Gong, Xuewen; Sang, Jizhang; Zhang, Xiaohong

    2015-01-01

    Satellite remote sensing systems require accurate, autonomous and real-time orbit determinations (RTOD) for geo-referencing. Onboard Global Positioning System (GPS) has widely been used to undertake such tasks. In this paper, a novel RTOD method achieving decimeter precision using GPS carrier phases, required by China’s HY2A and ZY3 missions, is presented. A key to the algorithm success is the introduction of a new parameter, termed pseudo-ambiguity. This parameter combines the phase ambiguity, the orbit, and clock offset errors of the GPS broadcast ephemeris together to absorb a large part of the combined error. Based on the analysis of the characteristics of the orbit and clock offset errors, the pseudo-ambiguity can be modeled as a random walk, and estimated in an extended Kalman filter. Experiments of processing real data from HY2A and ZY3, simulating onboard operational scenarios of these two missions, are performed using the developed software SATODS. Results have demonstrated that the position and velocity accuracy (3D RMS) of 0.2–0.4 m and 0.2–0.4 mm/s, respectively, are achieved using dual-frequency carrier phases for HY2A, and slightly worse results for ZY3. These results show it is feasible to obtain orbit accuracy at decimeter level of 3–5 dm for position and 0.3–0.5 mm/s for velocity with this RTOD method. PMID:26690149

  5. Determination of the 154Sm ionization energy by high-precision laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Schmitt, A.; Bushaw, B. A.; Wendt, K.

    2004-04-01

    High-resolution resonance ionization mass spectrometry has been used to determine the ionization energy of 154Sm. Three-step resonant excitation with single-frequency lasers populates a series of ell = 3, J = 4 Rydberg levels in the range of n = 60-160, covering the range of 30 cm-1 to 4 cm-1 below the first ionization limit. Although samarium has a complex electronic structure with eight valence electrons, series of nearly unperturbed levels could be observed. Analysis includes shifts caused by a single perturbing state, an extended Ritz term for quantum defect variation at lower n, and corrections for residual electric fields. The resulting series convergence limit has an uncertainty of 4 × 10-5 cm-1, while the final value EI (154Sm) = 45 519.307 93(43) cm-1 also accounts for the uncertainty in absolute laser frequencies coupling the Rydberg spectrum to the J = 0 ground state and other systematic errors. Precision is improved by nearly four orders of magnitude over previous values.

  6. A Novel Method for Precise Onboard Real-Time Orbit Determination with a Standalone GPS Receiver.

    PubMed

    Wang, Fuhong; Gong, Xuewen; Sang, Jizhang; Zhang, Xiaohong

    2015-01-01

    Satellite remote sensing systems require accurate, autonomous and real-time orbit determinations (RTOD) for geo-referencing. Onboard Global Positioning System (GPS) has widely been used to undertake such tasks. In this paper, a novel RTOD method achieving decimeter precision using GPS carrier phases, required by China's HY2A and ZY3 missions, is presented. A key to the algorithm success is the introduction of a new parameter, termed pseudo-ambiguity. This parameter combines the phase ambiguity, the orbit, and clock offset errors of the GPS broadcast ephemeris together to absorb a large part of the combined error. Based on the analysis of the characteristics of the orbit and clock offset errors, the pseudo-ambiguity can be modeled as a random walk, and estimated in an extended Kalman filter. Experiments of processing real data from HY2A and ZY3, simulating onboard operational scenarios of these two missions, are performed using the developed software SATODS. Results have demonstrated that the position and velocity accuracy (3D RMS) of 0.2-0.4 m and 0.2-0.4 mm/s, respectively, are achieved using dual-frequency carrier phases for HY2A, and slightly worse results for ZY3. These results show it is feasible to obtain orbit accuracy at decimeter level of 3-5 dm for position and 0.3-0.5 mm/s for velocity with this RTOD method. PMID:26690149

  7. Factors determining the stability, resolution, and precision of a conventional Raman spectrometer.

    PubMed

    Fukura, Satoshi; Mizukami, Tomoyuki; Odake, Shoko; Kagi, Hiroyuki

    2006-08-01

    We verified the performance of a conventional Raman spectrometer, which is composed of a 30 cm single polychromator, a Si based charge-coupled device (CCD) camera, and a holographic supernotch filter. For that purpose, the time change of the peak positions of Raman spectra of naphthalene and fluorescence spectra of ruby (Cr-doped Al(2)O(3)) were monitored continually. A time-dependent deviation composed of two components was observed: a monotonous drift up to 0.4 cm(-1) and a periodic oscillation with a range of 0.15 cm(-1). The former component was stabilized at approximately 2000 s after the CCD detector was cooled, indicating that incomplete refrigeration of the CCD detector induced the drift. The latter component synchronized with the periodic oscillation of the room temperature, indicating that thermal expansion or contraction of the whole apparatus induced this oscillation. The implemental deviation is reduced when measurements are conducted using a sufficiently cooled CCD detector at a constant room temperature. Moreover, the effect of the room temperature oscillation is lowered in a spectrum acquired over a duration that is longer than one cycle of this oscillation. Applying the least squares fitting method to carefully measured spectra enhanced the precision of the determination of the peak position to 0.05 cm(-1) using the spectrometer with pixel resolution of 1.5 cm(-1). PMID:16925934

  8. Precise timing of the last interglacial period from mass spectrometric determination of thorium-230 in corals

    SciTech Connect

    Edwards, R.L.; Chen, J.H.; Ku, T.L.; Wasserburg, G.J.

    1987-06-19

    The development of mass spectrometric techniques for determination of STTh abundance has made it possible to reduce analytical errors in STYU-STUU-STTh dating of corals even with very small samples. Samples of 6 x 10Y atoms of STTh can be measured to an accuracy of +/- 3% (2sigma) and 3 x 10 atoms of STTh can be measured to an accuracy of +/- 0.2%. The time range over which useful age data on corals can be obtained now ranges from about 50 to about 500,000 years. For young corals, this approach may be preferable to UC dating. The precision should make it possible to critically test the Milankovitch hypothesis concerning Pleistocene climate fluctuations. Analyses of a number of corals that grew during the last interglacial period yield ages of 122,000 to 130,000 years. The ages coincide with, or slightly postdate, the summer solar insolation high at 65N latitude which occurred 128,000 years ago. This supports the idea that changes in Pleistocene climate can be the result of variations in the distribution of solar insolation caused by changes in the geometry of the earth's orbit and rotation axis.

  9. Determination of earthquake magnitude using GPS displacement waveforms from real-time precise point positioning

    NASA Astrophysics Data System (ADS)

    Fang, Rongxin; Shi, Chuang; Song, Weiwei; Wang, Guangxing; Liu, Jingnan

    2014-01-01

    For earthquake and tsunami early warning and emergency response, earthquake magnitude is the crucial parameter to be determined rapidly and correctly. However, a reliable and rapid measurement of the magnitude of an earthquake is a challenging problem, especially for large earthquakes (M > 8). Here, the magnitude is determined based on the GPS displacement waveform derived from real-time precise point positioning (RTPPP). RTPPP results are evaluated with an accuracy of 1 cm in the horizontal components and 2-3 cm in the vertical components, indicating that the RTPPP is capable of detecting seismic waves with amplitude of 1 cm horizontally and 2-3 cm vertically with a confidence level of 95 per cent. In order to estimate the magnitude, the unique information provided by the GPS displacement waveform is the horizontal peak displacement amplitude. We show that the empirical relation of Gutenberg (1945) between peak displacement and magnitude holds up to nearly magnitude 9.0 when displacements are measured with GPS. We tested the proposed method for three large earthquakes. For the 2010 Mw 7.2 El Mayor-Cucapah earthquake, our method provides a magnitude of M7.18 ± 0.18. For the 2011 Mw 9.0 Tohoku-oki earthquake the estimated magnitude is M8.74 ± 0.06, and for the 2010 Mw 8.8 Maule earthquake the value is M8.7 ± 0.1 after excluding some near-field stations. We, therefore, conclude that depending on the availability of high-rate GPS observations, a robust value of magnitude up to 9.0 for a point source earthquake can be estimated within tens of seconds or a few minutes after an event using a few GPS stations close to the epicentre. The rapid magnitude could be as a pre-requisite for tsunami early warning, fast source inversion and emergency response is feasible.

  10. Structure, oligosaccharide structures, and posttranslationally modified sites of the nicotinic acetylcholine receptor.

    PubMed Central

    Poulter, L; Earnest, J P; Stroud, R M; Burlingame, A L

    1989-01-01

    Using mass spectrometry, we have examined the transmembrane topography of the nicotinic acetylcholine receptor, a five-subunit glycosylated protein complex that forms a gated ion channel in the neuromuscular junction. The primary sequences of the four polypeptide chains making up the acetylcholine receptor from Torpedo californica contain many possible sites for glycosylation or phosphorylation. We have used liquid secondary ion mass spectrometry to identify posttranslationally modified residues and to determine the intact oligosaccharide structures of the carbohydrate present on the acetylcholine receptor. Asparagine-143 of the alpha subunit (in consensus numbering) is shown to be glycosylated with high-mannose oligosaccharide. Asparagine-453 of the gamma subunit is not glycosylated, a fact that bears on the question of the orientations of putative transmembranous helices M3, MA, and M4. The structures of the six major acetylcholine receptor oligosaccharides are determined: the major components (70%) are of the high-mannose type, with bi-, tri-, and tetraantennary complex oligosaccharides making up approximately equal to 22 mol% of the total carbohydrate. This application of a multichannel array detector mass spectrometer provided a breakthrough in sensitivity that allowed us to identify the site of attachment of, and the sequence of, oligosaccharides on a 300-kDa membrane protein from only 5 pmol of the isolated oligosaccharide. Images PMID:2771948

  11. Preparation of κ-carra-oligosaccharides with microwave assisted acid hydrolysis method

    NASA Astrophysics Data System (ADS)

    Li, Guangsheng; Zhao, Xia; Lv, Youjing; Li, Miaomiao; Yu, Guangli

    2015-04-01

    A rapid method of microwave assisted acid hydrolysis was established to prepare κ-carra-oligosaccharides. The optimal hydrolysis condition was determined by an orthogonal test. The degree of polymerization (DP) of oligosaccharides was detected by high performance thin layer chromatography (HPTLC) and polyacrylamide gel electrophoresis (PAGE). Considering the results of HPTLC and PAGE, the optimum condition of microwave assisted acid hydrolysis was determined. The concentration of κ-carrageenan was 5 mg mL-1; the reaction solution was adjusted to pH 3 with diluted hydrochloric acid; the solution was hydrolyzed under microwave irradiation at 100 for 15 °C min. Oligosaccharides were separated by a Superdex 30 column (2.6 cm × 90 cm) using AKTA Purifier UPC100 and detected with an online refractive index detector. Each fraction was characterized by electrospray ionization mass spectrometry (ESI-MS). The data showed that odd-numbered κ-carra-oligosaccharides with DP ranging from 3 to 21 could be obtained with this method, and the structures of the oligosaccharides were consistent with those obtained by traditional mild acid hydrolysis. The new method was more convenient, efficient and environment-friendly than traditional mild acid hydrolysis. Our results provided a useful reference for the preparation of oligosaccharides from other polysaccharides.

  12. U-Pb systematics of the unique achondrite Ibitira: Precise age determination and petrogenetic implications

    NASA Astrophysics Data System (ADS)

    Iizuka, Tsuyoshi; Amelin, Yuri; Kaltenbach, Angela; Koefoed, Piers; Stirling, Claudine H.

    2014-05-01

    Ibitira is an unbrecciated, equilibrated vesicular basaltic achondrite that is considered to have originated on a parent body distinct from all other known meteorites. We present the first combined high-precision U and Pb isotopic data for this unique meteorite. The 238U/235U value of 137.777 ± 0.013 determined for the whole rock is comparable to values determined for bulk chondrites and other basaltic achondrites. This value results in corrections of -1.1 Ma for Pb-Pb dates calculated using the previously assumed invariant 238U/235U value of 137.88. Using the determined 238U/235U value, the 7 most radiogenic Pb isotopic analyses for acid-leached pyroxene-rich and whole rock fractions yield an isochron Pb-Pb age of 4556.75 ± 0.57 Ma, in excellent agreement with the results of Mn-Cr chronology which give the ages of 4557.4 ± 2.5 Ma and 4555.9 ± 3.2 Ma using the U-corrected Pb-Pb age of D'Orbigny as a time anchor. Along with the previously proposed thermal history of Ibitira and our closure temperature estimates for Pb diffusion, the Pb-Pb age is interpreted as the timing of the last chemical equilibration and coarse pyroxene exsolution that occurred during high temperature metamorphism. The metamorphism may have been caused by burial of Ibitira lava under successive lava flows and, if so, the Pb-Pb age should post-date the crystallization by a short time interval. The Pb isotopic data for acid leachates suggest partial re-equilibration of Pb between plagioclase and phosphate, perhaps during an impact event at 4.49 Ga, as recorded by K-Ar systematics. The whole rock 238U/204Pb indicates that compared to CI chondrites, Ibitira is less depleted in Pb than in some alkali elements despite a lower condensation temperature of Pb than the alkali elements. The restricted Pb depletion may reflect preferential concentration of metals with high fluid/melt partition coefficients including Pb and Zn as a result of fluid exsolution and migration within the parent magma. We

  13. The Ability of Bifidobacteria To Degrade Arabinoxylan Oligosaccharide Constituents and Derived Oligosaccharides Is Strain Dependent

    PubMed Central

    Rivière, Audrey; Moens, Frédéric; Selak, Marija; Maes, Dominique; Weckx, Stefan

    2014-01-01

    Arabinoxylan oligosaccharides (AXOS) are prebiotic carbohydrates with promising health-promoting properties that stimulate the activity of specific colon bacteria, in particular bifidobacteria. However, the mechanisms by which bifidobacterial strains break down these compounds in the colon is still unknown. This study investigates AXOS consumption of a large number of bifidobacterial strains (36), belonging to 11 different species, systematically. To determine their degradation mechanisms, all strains were grown on a mixture of arabinose and xylose, xylo-oligosaccharides, and complex AXOS molecules as the sole added energy sources. Based on principal component and cluster analyses of their different arabinose substituent and/or xylose backbone consumption patterns, five clusters that were species independent could be distinguished among the bifidobacterial strains tested. In parallel, the strains were screened for the presence of genes encoding several putative AXOS-degrading enzymes, but no clear-cut correlation could be made with the different degradation mechanisms. The intra- and interspecies differences in the consumption patterns of AXOS indicate that bifidobacterial strains could avoid competition among each other or even could cooperate jointly to degrade these complex prebiotics. The knowledge gained on the AXOS degradation mechanisms in bifidobacteria can be of importance in the rational design of prebiotics with tailor-made composition and thus increased specificity in the colon. PMID:24141124

  14. A Rapid, Convenient, and Precise Method for the Absolute Determination of the Acceleration of Gravity.

    ERIC Educational Resources Information Center

    Manche, Emanuel P.

    1979-01-01

    Describes a compact and portable apparatus for the measurement, with a high degree of precision, the value of the gravitational acceleration g. The apparatus consists of a falling mercury drop and an electronic timing circuit. (GA)

  15. Determination of the Thermal Offset of the Eppley Precision Spectral Pyranometer

    NASA Technical Reports Server (NTRS)

    Haeffelin, Martial; Kato, Seiji; Smith, Amie M.; Rutledge, C. Ken; Charlock, Thomas P.; Mahan, J. Robert

    2001-01-01

    Eppley's precision spectral pyranometer (PSP) is used in networks around the world to measure downwelling diffuse and global solar irradiance at the surface of the Earth. In recent years several studies have shown significant discrepancy between irradiances measured by pyranometers and those computed by atmospheric radiative transfer models. Pyranometer measurements have been questioned because observed diffuse irradiances sometimes are below theoretical minimum values for a pure molecular atmosphere, and at night the instruments often produce nonzero signals ranging between + 5 and - 10 W/sq m. We install thermistor sondes in the body of a PSP as well as on its inner dome to monitor the temperature gradients within the instrument, and we operate a pyrgeometer (PIR) instrument side by side with the PSP. We derive a relationship between the PSP output and thermal radiative exchange by the dome and the detector and a relationship between the PSP output and the PIR thermopile output (net-IR). We determine the true PSP offset by quickly capping the instrument at set time intervals. For a ventilated and shaded PSP, the thermal offset can reach - 15 W/sq m under clear skies, whereas it remains close to zero for low overcast clouds. We estimate the PSP thermal offset by two methods: (1) using the PSP temperatures and (2) using the PIR net-IR signal. The offset computed from the PSP temperatures yields a reliable estimate of the true offset (+/- 1 W/sq m). The offset computed from net-IR is consistent with the true offset at night and under overcast skies but predicts only part of the true range under clear skies.

  16. Initial results of precise orbit and clock determination for COMPASS navigation satellite system

    NASA Astrophysics Data System (ADS)

    Zhao, Qile; Guo, Jing; Li, Min; Qu, Lizhong; Hu, Zhigang; Shi, Chuang; Liu, Jingnan

    2013-05-01

    The development of the COMPASS satellite system is introduced, and the regional tracking network and data availability are described. The precise orbit determination strategy of COMPASS satellites is presented. Data of June 2012 are processed. The obtained orbits are evaluated by analysis of post-fit residuals, orbit overlap comparison and SLR (satellite laser ranging) validation. The RMS (root mean square) values of post-fit residuals for one month's data are smaller than 2.0 cm for ionosphere-free phase measurements and 2.6 m for ionosphere-free code observations. The 48-h orbit overlap comparison shows that the RMS values of differences in the radial component are much smaller than 10 cm and those of the cross-track component are smaller than 20 cm. The SLR validation shows that the overall RMS of observed minus computed residuals is 68.5 cm for G01 and 10.8 cm for I03. The static and kinematic PPP solutions are produced to further evaluate the accuracy of COMPASS orbit and clock products. The static daily COMPASS PPP solutions achieve an accuracy of better than 1 cm in horizontal and 3 cm in vertical. The accuracy of the COMPASS kinematic PPP solutions is within 1-2 cm in the horizontal and 4-7 cm in the vertical. In addition, we find that the COMPASS kinematic solutions are generally better than the GPS ones for the selected location. Furthermore, the COMPASS/GPS combinations significantly improve the accuracy of GPS only PPP solutions. The RMS values are basically smaller than 1 cm in the horizontal components and 3-4 cm in the vertical component.

  17. High precision determination of the gluon fusion Higgs boson cross-section at the LHC

    NASA Astrophysics Data System (ADS)

    Anastasiou, Charalampos; Duhr, Claude; Dulat, Falko; Furlan, Elisabetta; Gehrmann, Thomas; Herzog, Franz; Lazopoulos, Achilleas; Mistlberger, Bernhard

    2016-05-01

    We present the most precise value for the Higgs boson cross-section in the gluon-fusion production mode at the LHC. Our result is based on a perturbative expansion through N3LO in QCD, in an effective theory where the top-quark is assumed to be infinitely heavy, while all other Standard Model quarks are massless. We combine this result with QCD corrections to the cross-section where all finite quark-mass effects are included exactly through NLO. In addition, electroweak corrections and the first corrections in the inverse mass of the top-quark are incorporated at three loops. We also investigate the effects of threshold resummation, both in the traditional QCD framework and following a SCET approach, which resums a class of π2 contributions to all orders. We assess the uncertainty of the cross-section from missing higher-order corrections due to both perturbative QCD effects beyond N3LO and unknown mixed QCD-electroweak effects. In addition, we determine the sensitivity of the cross-section to the choice of parton distribution function (PDF) sets and to the parametric uncertainty in the strong coupling constant and quark masses. For a Higgs mass of m H = 125 GeV and an LHC center-of-mass energy of 13 TeV, our best prediction for the gluon fusion cross-section is σ =48.58{pb}_{-3.27pb}^{+2.22pb}(theory)± 1.56pb(3.20%)(PDF+{α}_s).

  18. The challenge of precise orbit determination for STSAT-2C using extremely sparse SLR data

    NASA Astrophysics Data System (ADS)

    Kim, Young-Rok; Park, Eunseo; Kucharski, Daniel; Lim, Hyung-Chul; Kim, Byoungsoo

    2016-03-01

    The Science and Technology Satellite (STSAT)-2C is the first Korean satellite equipped with a laser retro-reflector array for satellite laser ranging (SLR). SLR is the only on-board tracking source for precise orbit determination (POD) of STSAT-2C. However, POD for the STSAT-2C is a challenging issue, as the laser measurements of the satellite are extremely sparse, largely due to the inaccurate two-line element (TLE)-based orbit predictions used by the SLR tracking stations. In this study, POD for the STSAT-2C using extremely sparse SLR data is successfully implemented, and new laser-based orbit predictions are obtained. The NASA/GSFC GEODYN II software and seven-day arcs are used for the SLR data processing of two years of normal points from March 2013 to May 2015. To compensate for the extremely sparse laser tracking, the number of estimation parameters are minimized, and only the atmospheric drag coefficients are estimated with various intervals. The POD results show that the weighted root mean square (RMS) post-fit residuals are less than 10 m, and the 3D day boundaries vary from 30 m to 3 km. The average four-day orbit overlaps are less than 20/330/20 m for the radial/along-track/cross-track components. The quality of the new laser-based prediction is verified by SLR observations, and the SLR residuals show better results than those of previous TLE-based predictions. This study demonstrates that POD for the STSAT-2C can be successfully achieved against extreme sparseness of SLR data, and the results can deliver more accurate predictions.

  19. Nature and biosynthesis of galacto-oligosaccharides related to oligosaccharides in human breast milk

    PubMed Central

    Intanon, Montira; Arreola, Sheryl Lozel; Pham, Ngoc Hung; Kneifel, Wolfgang; Haltrich, Dietmar; Nguyen, Thu-Ha

    2014-01-01

    Human milk oligosaccharides (HMO) are prominent among the functional components of human breast milk. While HMO have potential applications in both infants and adults, this potential is limited by the difficulties in manufacturing these complex structures. Consequently, functional alternatives such as galacto-oligosaccharides are under investigation, and nowadays, infant formulae are supplemented with galacto-oligosaccharides to mimic the biological effects of HMO. Recently, approaches toward the production of defined human milk oligosaccharide structures using microbial, fermentative methods employing single, appropriately engineered microorganisms were introduced. Furthermore, galactose-containing hetero-oligosaccharides have attracted an increasing amount of attention because they are structurally more closely related to HMO. The synthesis of these novel oligosaccharides, which resemble the core of HMO, is of great interest for applications in the food industry. PMID:24571717

  20. A new sequencing approach for N-unsubstituted heparin/heparan sulfate oligosaccharides.

    PubMed

    Liang, Qun Tao; Xiao, Xiao Mao; Lin, Jian Hui; Wei, Zheng

    2015-07-01

    The rare N-unsubstituted glucosamine (GlcNH(3)(+)) residues in heparan sulfate (HS) have important biological and pathophysiological roles. Because of their low natural abundance, the use of chemically generated, structurally defined, N-unsubstituted heparin/HS oligosaccharides can greatly contribute to the investigation of their natural role in HS. However, the sequencing of mixtures of chemically generated oligosaccharides presents major challenges due to the difficulties in separating isomers and the available detection methods. In this study, we developed and validated a simple and sensitive method for the sequence analysis of N-unsubstituted heparin/HS oligosaccharides. This protocol involves pH 4 nitrous acid (HNO(2)) degradation, size-exclusion HPLC and ion-pair reversed-phase liquid chromatography-ion trap/time-of-flight mass spectrometry (IPRP-LC-ITTOF MS). We unexpectedly found that absorbance at 232 nm (normally used for specific detection of C4-C5 unsaturated oligosaccharides) was, in most cases, still sufficiently sensitive to also simultaneously detect saturated oligosaccharides during HPLC, thus simplifying the positional analysis of GlcNH(3)(+)) residues. The IPRP-LC-ITTOF MS system can supply further structural information leading to full sequence determination of the original oligosaccharide. This new methodology has been used to separate and sequence a variety of chemically generated, N-unsubstituted dp6 species containing between 1 and 3 GlcNH(3)(+)) residues per oligosaccharide in different positional combinations. This strategy offers possibilities for the sequencing of natural N-unsubstituted oligosaccharides from HS and should also be applicable, with minor modification, for sequencing at N-sulfated residues using alternative pH 1.5 HNO(2) scission. PMID:25677303

  1. Advances in Analysis of Human Milk Oligosaccharides123

    PubMed Central

    Ruhaak, L. Renee; Lebrilla, Carlito B.

    2012-01-01

    Oligosaccharides in human milk strongly influence the composition of the gut microflora of neonates. Because it is now clear that the microflora play important roles in the development of the infant immune system, human milk oligosaccharides (HMO) are studied frequently. Milk samples contain complex mixtures of HMO, usually comprising several isomeric structures that can be either linear or branched. Traditionally, HMO profiling was performed using HPLC with fluorescence or UV detection. By using porous graphitic carbon liquid chromatography MS, it is now possible to separate and identify most of the isomers, facilitating linkage-specific analysis. Matrix-assisted laser desorption ionization time-of-flight analysis allows fast profiling, but does not allow isomer separation. Novel MS fragmentation techniques have facilitated structural characterization of HMO that are present at lower concentrations. These techniques now facilitate more accurate studies of HMO consumption as well as Lewis blood group determinations. PMID:22585919

  2. Comparative Analysis of Archaeal Lipid-linked Oligosaccharides That Serve as Oligosaccharide Donors for Asn Glycosylation.

    PubMed

    Taguchi, Yuya; Fujinami, Daisuke; Kohda, Daisuke

    2016-05-20

    The glycosylation of asparagine residues is the predominant protein modification in all three domains of life. An oligosaccharide chain is preassembled on a lipid-phospho carrier and transferred onto asparagine residues by the action of a membrane-bound enzyme, oligosaccharyltransferase. The oligosaccharide donor for the oligosaccharyl transfer reaction is dolichol-diphosphate-oligosaccharide in Eukaryota and polyprenol-diphosphate-oligosaccharide in Eubacteria. The donor in some archaeal species was reportedly dolichol-monophosphate-oligosaccharide. Thus, the difference in the number of phosphate groups aroused interest in whether the use of the dolichol-monophosphate type donors is widespread in the domain Archaea. Currently, all of the archaeal species with identified oligosaccharide donors have belonged to the phylum Euryarchaeota. Here, we analyzed the donor structures of two species belonging to the phylum Crenarchaeota, Pyrobaculum calidifontis and Sulfolobus solfataricus, in addition to two species from the Euryarchaeota, Pyrococcus furiosus and Archaeoglobus fulgidus The electrospray ionization tandem mass spectrometry analyses confirmed that the two euryarchaeal oligosaccharide donors were the dolichol-monophosphate type and newly revealed that the two crenarchaeal oligosaccharide donors were the dolichol-diphosphate type. This novel finding is consistent with the hypothesis that the ancestor of Eukaryota is rooted within the TACK (Thaum-, Aig-, Cren-, and Korarchaeota) superphylum, which includes Crenarchaea. Our comprehensive study also revealed that one archaeal species could contain two distinct oligosaccharide donors for the oligosaccharyl transfer reaction. The A. fulgidus cells contained two oligosaccharide donors bearing oligosaccharide moieties with different backbone structures, and the S. solfataricus cells contained two oligosaccharide donors bearing stereochemically different dolichol chains. PMID:27015803

  3. Lactodifucotetraose, a human milk oligosaccharide, attenuates platelet function and inflammatory cytokine release.

    PubMed

    Newburg, David S; Tanritanir, Ayse C; Chakrabarti, Subrata

    2016-07-01

    Human milk strongly quenches inflammatory processes in vitro, and breastfed infants have lower incidence of inflammatory diseases than those fed artificially. Platelets from neonates, in contrast to those from adults, are less responsive to platelet agonists such as collagen, thrombin, ADP, and epinephrine. Breastfed infants absorb oligosaccharides intact from the human milk in their gut to the circulation. This study was to determine whether these oligosaccharides can attenuate platelet function and platelet secretion of pro-inflammatory proteins, and to identify the active component. The natural mixture of oligosaccharides from human milk and pure individual human milk oligosaccharides were tested for their ability to modulate responses of platelets isolated from human blood following exposure to thrombin, ADP, and collagen. Human milk and the natural mixture of human milk oligosaccharides inhibited platelet release of inflammatory proteins. Of the purified human milk oligosaccharides tested, only lactodifucotetraose (LDFT) significantly inhibited thrombin induced release of the pro-inflammatory proteins RANTES and sCD40L. LDFT also inhibited platelet adhesion to a collagen-coated surface, as well as platelet aggregation induced by ADP or collagen. These data indicate that LDFT may help modulate hemostasis by suppressing platelet-induced inflammatory processes in breastfed infants. This activity suggests further study of LDFT for its potential as a therapeutic agent in infants and adults. PMID:26743063

  4. Towards the GEOSAT Follow-On Precise Orbit Determination Goals of High Accuracy and Near-Real-Time Processing

    NASA Technical Reports Server (NTRS)

    Lemoine, Frank G.; Zelensky, Nikita P.; Chinn, Douglas S.; Beckley, Brian D.; Lillibridge, John L.

    2006-01-01

    The US Navy's GEOSAT Follow-On spacecraft (GFO) primary mission objective is to map the oceans using a radar altimeter. Satellite laser ranging data, especially in combination with altimeter crossover data, offer the only means of determining high-quality precise orbits. Two tuned gravity models, PGS7727 and PGS7777b, were created at NASA GSFC for GFO that reduce the predicted radial orbit through degree 70 to 13.7 and 10.0 mm. A macromodel was developed to model the nonconservative forces and the SLR spacecraft measurement offset was adjusted to remove a mean bias. Using these improved models, satellite-ranging data, altimeter crossover data, and Doppler data are used to compute both daily medium precision orbits with a latency of less than 24 hours. Final precise orbits are also computed using these tracking data and exported with a latency of three to four weeks to NOAA for use on the GFO Geophysical Data Records (GDR s). The estimated orbit precision of the daily orbits is between 10 and 20 cm, whereas the precise orbits have a precision of 5 cm.

  5. Important factors determining the nanoscale tracking precision of dynamic microtubule ends.

    PubMed

    Bohner, G; Gustafsson, N; Cade, N I; Maurer, S P; Griffin, L D; Surrey, T

    2016-01-01

    Tracking dynamic microtubule ends in fluorescence microscopy movies provides insight into the statistical properties of microtubule dynamics and is vital for further analysis that requires knowledge of the trajectories of the microtubule ends. Here we analyse the performance of a previously developed automated microtubule end tracking routine; this has been optimized for comparatively low signal-to-noise image sequences that are characteristic of microscopy movies of dynamic microtubules growing in vitro. Sequences of simulated microtubule images were generated assuming a variety of different experimental conditions. The simulated movies were then tracked and the tracking errors were characterized. We found that the growth characteristics of the microtubules within realistic ranges had a negligible effect on the tracking precision. The fluorophore labelling density, the pixel size of the images, and the exposure times were found to be important parameters limiting the tracking precision which could be explained using concepts of single molecule localization microscopy. The signal-to-noise ratio was found to be a good single predictor of the tracking precision: typical experimental signal-to-noise ratios lead to tracking precisions in the range of tens of nanometres, making the tracking program described here a useful tool for dynamic microtubule end tracking with close to molecular precision. PMID:26444439

  6. Important factors determining the nanoscale tracking precision of dynamic microtubule ends

    PubMed Central

    BOHNER, G.; GUSTAFSSON, N.; CADE, N.I.; MAURER, S.P.; GRIFFIN, L.D.

    2016-01-01

    Summary Tracking dynamic microtubule ends in fluorescence microscopy movies provides insight into the statistical properties of microtubule dynamics and is vital for further analysis that requires knowledge of the trajectories of the microtubule ends. Here we analyse the performance of a previously developed automated microtubule end tracking routine; this has been optimized for comparatively low signal‐to‐noise image sequences that are characteristic of microscopy movies of dynamic microtubules growing in vitro. Sequences of simulated microtubule images were generated assuming a variety of different experimental conditions. The simulated movies were then tracked and the tracking errors were characterized. We found that the growth characteristics of the microtubules within realistic ranges had a negligible effect on the tracking precision. The fluorophore labelling density, the pixel size of the images, and the exposure times were found to be important parameters limiting the tracking precision which could be explained using concepts of single molecule localization microscopy. The signal‐to‐noise ratio was found to be a good single predictor of the tracking precision: typical experimental signal‐to‐noise ratios lead to tracking precisions in the range of tens of nanometres, making the tracking program described here a useful tool for dynamic microtubule end tracking with close to molecular precision. PMID:26444439

  7. A Precise, Simple, and Low-Cost Experiment to Determine the Isobaric Expansion Coefficient for Physical Chemistry Students

    ERIC Educational Resources Information Center

    Pe´rez, Eduardo

    2015-01-01

    The procedure of a physical chemistry experiment for university students must be designed in a way that the accuracy and precision of the measurements is properly maintained. However, in many cases, that requires costly and sophisticated equipment not readily available in developing countries. A simple, low-cost experiment to determine isobaric…

  8. Purity of potassium hydrogen phthalate, determination with precision coulometric and volumetric titration--a comparison.

    PubMed

    Recknagel, Sebastian; Breitenbach, Martin; Pautz, Joachim; Lück, Detlef

    2007-09-19

    The mass fraction of potassium hydrogen phthalate (KHP) from a specific batch was certified as an acidimetric standard. Two different analytical methods on a metrological level were used to carry out certification analysis: precision constant current coulometric and volumetric titration with NaOH. It could be shown that with a commercial automatic titration system in combination with a reliable software for the end-point detection it is possible to produce equivalent results with the same accuracy in comparison to a definite method handled by a fundamental apparatus for traceable precision coulometry. Prerequisite for titrations are that a high number of single measurement are applied which are calibrated with a high precision certified reference material. PMID:17870288

  9. Cooperative Interactions of Oligosaccharide and Peptide Moieties of a Glycopeptide Derived from IgE with Galectin-9.

    PubMed

    Nakakita, Shin-Ichi; Itoh, Aiko; Nakakita, Yukari; Nonaka, Yasuhiro; Ogawa, Takashi; Nakamura, Takanori; Nishi, Nozomu

    2016-01-01

    We previously showed that galectin-9 suppresses degranulation of mast cells through protein-glycan interaction with IgE. To elucidate the mechanism of the interaction in detail, we focused on identification and structural analysis of IgE glycans responsible for the galectin-9-induced suppression using mouse monoclonal IgE (TIB-141). TIB-141 in combination with the antigen induced degranulation of RBL-2H3 cells, which was almost completely inhibited by human and mouse galectin-9. Sequential digestion of TIB-141 with lysyl endopeptidase and trypsin resulted in the identification of a glycopeptide (H-Lys13-Try3; 48 amino acid residues) with a single N-linked oligosaccharide near the N terminus capable of neutralizing the effect of galectin-9 and another glycopeptide with two N-linked oligosaccharides (H-Lys13-Try1; 16 amino acid residues) having lower activity. Enzymatic elimination of the oligosaccharide chain from H-Lys13-Try3 and H-Lys13-Try1 completely abolished the activity. Removal of the C-terminal 38 amino acid residues of H-Lys13-Try3 with glutamyl endopeptidase, however, also resulted in loss of the activity. We determined the structures of N-linked oligosaccharides of H-Lys13-Try1. The galectin-9-binding fraction of pyridylaminated oligosaccharides contained asialo- and monosialylated bi/tri-antennary complex type oligosaccharides with a core fucose residue. The structures of the oligosaccharides were consistent with the sugar-binding specificity of galectin-9, whereas the nonbinding fraction contained monosialylated and disialylated biantennary complex type oligosaccharides with a core fucose residue. Although the oligosaccharides linked to H-Lys13-Try3 could not be fully characterized, these results indicate the possibility that cooperative binding of oligosaccharide and neighboring polypeptide structures of TIB-141 to galectin-9 affects the overall affinity and specificity of the IgE-lectin interaction. PMID:26582205

  10. A precise determination of the triplet energy of C sub 60 by photoacoustic calorimetry

    SciTech Connect

    Hung, R.R.; Grabowski, J.J. )

    1991-08-08

    The relatively new technique of time-resolved, pulsed-laser photoacoustic calorimetry has been exploited to precisely determine the triplet-state energy of C{sub 60}, the newly discovered spheroidal allotrope of carbon. Excitation at 510 nm, in the long-wavelength absorption band of C{sub 60}, produces C{sub 60}(T{sub 1}) with unit efficiency; in the presence of dioxygen, triplet C{sub 60} is readily quenched by energy transfer. Photoacoustic waves were recorded for C{sub 60} in argon-saturated, air-saturated, and partially argon-saturated toluene solutions. Each experimental wave was then fit to a two-component model, the first component of which corresponds to production of C{sub 60}(T{sub 1}) and the second of which relates to its decay. The recovered heat-deposition parameters are {phi}{sub 1} = 0.359 {plus minus} 0.005 and {phi}{sub 2} = 0.237 {plus minus} 0.011; these correspond to the fraction of the absorbed photon energy that is released in forming C{sub 60}(T{sub 1}) and in the quenching of C{sub 60}(T{sub 1}) by dioxygen. Since the quantum yield for intersystem crossing of C{sub 60}, from S{sub 1} to T{sub 1}, is unity, {phi}{sub 1} corresponds to a C{sub 60}(T{sub 1}) energy of 36.0 {plus minus} 0.6 kcal mol{sup {minus}1}. Since the energy of C{sub 60}(T{sub 1}) is defined by {phi}{sub 1} and the energy of O{sub 2}({sup 1}{Delta}) is known {phi}{sub 2} is used to calculate a singlet oxygen sensitization quantum yield of 1.01 {plus minus} 0.03. The lifetime of C{sub 60}(T{sub 1}) in argon-saturated toluene is found to be > 10 {mu}s, and in air-saturated toluene, to be 290 {plus minus} 40 ns.

  11. Precise orbit determination for quad-constellation satellites at Wuhan University: strategy, result validation, and comparison

    NASA Astrophysics Data System (ADS)

    Guo, Jing; Xu, Xiaolong; Zhao, Qile; Liu, Jingnan

    2016-02-01

    This contribution summarizes the strategy used by Wuhan University (WHU) to determine precise orbit and clock products for Multi-GNSS Experiment (MGEX) of the International GNSS Service (IGS). In particular, the satellite attitude, phase center corrections, solar radiation pressure model developed and used for BDS satellites are addressed. In addition, this contribution analyzes the orbit and clock quality of the quad-constellation products from MGEX Analysis Centers (ACs) for a common time period of 1 year (2014). With IGS final GPS and GLONASS products as the reference, Multi-GNSS products of WHU (indicated by WUM) show the best agreement among these products from all MGEX ACs in both accuracy and stability. 3D Day Boundary Discontinuities (DBDs) range from 8 to 27 cm for Galileo-IOV satellites among all ACs' products, whereas WUM ones are the largest (about 26.2 cm). Among three types of BDS satellites, MEOs show the smallest DBDs from 10 to 27 cm, whereas the DBDs for all ACs products are at decimeter to meter level for GEOs and one to three decimeter for IGSOs, respectively. As to the satellite laser ranging (SLR) validation for Galileo-IOV satellites, the accuracy evaluated by SLR residuals is at the one decimeter level with the well-known systematic bias of about -5 cm for all ACs. For BDS satellites, the accuracy could reach decimeter level, one decimeter level, and centimeter level for GEOs, IGSOs, and MEOs, respectively. However, there is a noticeable bias in GEO SLR residuals. In addition, systematic errors dependent on orbit angle related to mismodeled solar radiation pressure (SRP) are present for BDS GEOs and IGSOs. The results of Multi-GNSS combined kinematic PPP demonstrate that the best accuracy of position and fastest convergence speed have been achieved using WUM products, particularly in the Up direction. Furthermore, the accuracy of static BDS only PPP degrades when the BDS IGSO and MEO satellites switches to orbit-normal orientation

  12. Urine oligosaccharide pattern in patients with hyperprolactinaemia.

    PubMed

    Ekman, Bertil; Wahlberg, Jeanette; Landberg, Eva

    2015-11-01

    Free milk-type oligosaccharides are produced during pregnancy and lactation and may have an impact on several cells in the immune system. Our aim was to investigate if patients with isolated hyperprolactinaemia, not related to pregnancy, also have increased synthesis and urinary excretion of milk-type oligosaccharides and to compare the excretion pattern with that found during pregnancy. Urine samples were collected as morning sample from 18 patients with hyperprolactinaemia, 13 healthy controls with normal prolactin levels and four pregnant women. After purification, lactose and free oligosaccharides were analysed and quantified by high-performance anion-exchange chromatography with pulsed amperometric detection. The identity of peaks was confirmed by exoglycosidase treatment and comparison with oligosaccharide standards. Prolactin was measured in serum collected between 09 and 11 a.m. by a standardized immunochemical method. Patients with hyperprolactinaemia had higher urinary excretion of lactose than normoprolactinemic controls and urinary lactose correlated positively to prolactin levels (r = 0.51, p < 0.05). Increased levels of the fucosylated oligosaccharides 2-fucosyl lactose and lacto-di-fucotetraose were found in urine from three and two patients, respectively. The acidic oligosaccharide 3-sialyl lactose was found in high amount in urine from two patients with prolactin of >10,000 mU/l. However, pregnant women in their third trimester had the highest concentration of all these oligosaccharides and excretion increased during pregnancy. This study is first to show that both lactose and certain fucosylated and sialylated milk-type oligosaccharides are increased in some patients with hyperprolactinaemia. It remains to elucidate the functional importance of these findings. PMID:26275984

  13. Gliding Motility of Mycoplasma mobile on Uniform Oligosaccharides

    PubMed Central

    Kasai, Taishi; Hamaguchi, Tasuku

    2015-01-01

    ABSTRACT The binding and gliding of Mycoplasma mobile on a plastic plate covered by 53 uniform oligosaccharides were analyzed. Mycoplasmas bound to and glided on only 21 of the fixed sialylated oligosaccharides (SOs), showing that sialic acid is essential as the binding target. The affinities were mostly consistent with our previous results on the inhibitory effects of free SOs and suggested that M. mobile recognizes SOs from the nonreducing end with four continuous sites as follows. (i and ii) A sialic acid at the nonreducing end is tightly recognized by tandemly connected two sites. (iii) The third site is recognized by a loose groove that may be affected by branches. (iv) The fourth site is recognized by a large groove that may be enhanced by branches, especially those with a negative charge. The cells glided on uniform SOs in manners apparently similar to those of the gliding on mixed SOs. The gliding speed was related inversely to the mycoplasma's affinity for SO, suggesting that the detaching step may be one of the speed determinants. The cells glided faster and with smaller fluctuations on the uniform SOs than on the mixtures, suggesting that the drag caused by the variation in SOs influences gliding behaviors. IMPORTANCE Mycoplasma is a group of bacteria generally parasitic to animals and plants. Some Mycoplasma species form a protrusion at a pole, bind to solid surfaces, and glide in the direction of the protrusion. These procedures are essential for parasitism. Usually, mycoplasmas glide on mixed sialylated oligosaccharides (SOs) derived from glycoprotein and glycolipid. Since gliding motility on uniform oligosaccharides has never been observed, this study gives critical information about recognition and interaction between receptors and SOs. PMID:26148712

  14. Piping inspection instrument carriage with precise and repeatable position control and location determination

    DOEpatents

    Hapstack, M.; Talarek, T.R.; Zollinger, W.T.; Heckendorn, F.M. II; Park, L.R.

    1994-02-15

    An instrument carriage for inspection of piping comprises front and rear leg assemblies for engaging the interior of the piping and supporting and centering the carriage therein, and an instrumentation arm carried by a shaft system running from the front to rear leg assemblies. The shaft system has a screw shaft for moving the arm axially and a spline gear for moving the arm azimuthally. The arm has a pair of air cylinders that raise and lower a plate in the radial direction. On the plate are probes including an eddy current probe and an ultrasonic testing probe. The ultrasonic testing probe is capable of spinning 360[degree] about its axis. The instrument carriage uses servo motors and pressurized air cylinders for precise actuation of instrument components and precise, repeatable actuation of position control mechanisms. 8 figures.

  15. Piping inspection instrument carriage with precise and repeatable position control and location determination

    DOEpatents

    Hapstack, Mark; Talarek, Ted R.; Zollinger, W. Thor; Heckendorn, II, Frank M.; Park, Larry R.

    1994-01-01

    An instrument carriage for inspection of piping comprises front and rear leg assemblies for engaging the interior of the piping and supporting and centering the carriage therein, and an instrumentation arm carried by a shaft system running from the front to rear leg assemblies. The shaft system has a screw shaft for moving the arm axially and a spline gear for moving the arm azimuthally. The arm has a pair of air cylinders that raise and lower a plate in the radial direction. On the plate are probes including an eddy current probe and an ultrasonic testing probe. The ultrasonic testing probe is capable of spinning 360.degree. about its axis. The instrument carriage uses servo motors and pressurized air cylinders for precise actuation of instrument components and precise, repeatable actuation of position control mechanisms.

  16. Profiling N-linked oligosaccharides from IgG by high-performance anion-exchange chromatography with pulsed amperometric detection.

    PubMed

    Rohrer, Jeffrey S; Basumallick, Lipika; Hurum, Deanna C

    2016-06-01

    Understanding and characterizing protein therapeutic glycosylation is important with growing evidence that glycosylation impacts biological efficacy, pharmacokinetics and cellular toxicity. Protein expression systems and reactor conditions can impact glycosylation, leading to potentially undesirable glycosylation. For example, high-mannose species may be present, which are atypical of human antibody glycosylation. Their presence in the Fc domain has been linked to increased serum clearance of immunoglobulin G (IgG) antibodies. High-performance anion-exchange chromatography with pulsed amperometric detection (HPAE-PAD) is an effective tool for determining glycans present in glycoprotein therapeutics. We report an improved HPAE-PAD method for IgG oligosaccharide separation. The neutral glycans are well resolved, including separation of high-mannose species from typical human IgG glycans. Oligosaccharide identification was performed by comparison to known standards in conjunction with selective exoglycosidase digestion of both standards and released glycans. Retention times (RTs) of known glycans were compared with the retention times of maltose, maltotriose and maltotetraose standards to define a retention index value for each glycan. These retention indices were used to aid identification of glycans from an example monoclonal antibody sample of unknown glycosylation. Method ruggedness was evaluated across duplicate systems, analysts and triplicate column lots. Comparing two systems with different analysts and columns, retention time precision relative standard deviations (RSDs) were between 0.63 and 4.0% while retention indices precision RSDs ranged from 0.27 to 0.56%. The separation is orthogonal to capillary electrophoresis-based separation of labeled IgG oligosaccharides. PMID:26786498

  17. An evaluation of the precision of fin ray, otolith, and scale age determinations for brook trout

    USGS Publications Warehouse

    Stolarski, J.T.; Hartman, K.J.

    2008-01-01

    The ages of brook trout Salvelinus fontinalis are typically estimated using scales despite a lack of research documenting the effectiveness of this technique. The use of scales is often preferred because it is nonlethal and is believed to require less effort than alternative methods. To evaluate the relative effectiveness of different age estimation methodologies for brook trout, we measured the precision and processing times of scale, sagittal otolith, and pectoral fin ray age estimation techniques. Three independent readers, age bias plots, coefficients of variation (CV = 100 x SD/mean), and percent agreement (PA) were used to measure within-reader, among-structure bias and within-structure, among-reader precision. Bias was generally minimal; however, the age estimates derived from scales tended to be lower than those derived from otoliths within older (age > 2) cohorts. Otolith, fin ray, and scale age estimates were within 1 year of each other for 95% of the comparisons. The measures of precision for scales (CV = 6.59; PA = 82.30) and otoliths (CV = 7.45; PA = 81.48) suggest higher agreement between these structures than with fin rays (CV = 11.30; PA = 65.84). The mean per-sample processing times were lower for scale (13.88 min) and otolith techniques (12.23 min) than for fin ray techniques (22.68 min). The comparable processing times of scales and otoliths contradict popular belief and are probably a result of the high proportion of regenerated scales within samples and the ability to infer age from whole (as opposed to sectioned) otoliths. This research suggests that while scales produce age estimates rivaling those of otoliths for younger (age > 3) cohorts, they may be biased within older cohorts and therefore should be used with caution. ?? Copyright by the American Fisheries Society 2008.

  18. Precise determination of the open ocean 234U/238U composition

    NASA Astrophysics Data System (ADS)

    Andersen, M. B.; Stirling, C. H.; Zimmermann, B.; Halliday, A. N.

    2010-12-01

    Uranium has a long residence time in the open oceans, and therefore, its salinity-normalized U concentration and 234U/238U activity ratio (expressed herein as δ234U, the ‰ deviation from secular equilibrium) are assumed to be uniform. The marine 234U/238U activity ratio is currently in radioactive disequilibrium and shows a ˜15% excess of 234U with respect to the secular equilibrium value due to continuous input from riverine sources. Knowledge of the marine δ234U, and how it has evolved through the Quaternary, is important for validating age accuracy in the U series dating of marine carbonates, which is increasingly relied upon for providing a chronological basis in paleoclimate research. However, accurate and precise measurements of δ234U are technically difficult. Thus, existing compilations of the open ocean δ234U value vary by up to ˜10‰, and the assumed uniformity in the oceanic δ234U remains to be confirmed. Using MC-ICPMS techniques and a suite of multiple Faraday cups instead of the typical configurations based on a combined Faraday cup-multiplier array, a long-term reproducibility of better than ±0.3‰ (2σ) is achieved for δ234U measurements. Applying these very high precision techniques to open ocean seawater samples, an average δ234U of 146.8 ± 0.1‰ (2σm, n = 19) is obtained. These high-precision seawater measurements yield an external reproducibility of better than ±0.4‰ (2σ) and show that the open oceans have a uniform δ234U on the sub-‰ level. These new data constrain the vertical mixing time of the open oceans to less than 1000 years.

  19. Precise Determination of the Neutron Magnetic Form Factor to Higher Q{sup 2}

    SciTech Connect

    William K. Brooks; Jeffery D. Lachniet

    2004-10-01

    The neutron elastic magnetic form factor G{sub M}{sup n} has been extracted from quasielastic scattering from deuterium in the CEBAF Large Acceptance Spectrometer, CLAS. The kinematic coverage of the measurement is continuous over a broad range, extending from below 1 GeV{sup 2} to nearly 5 GeV{sup 2} in four-momentum transfer squared. High precision is achieved by employing a ratio technique in which most uncertainties cancel, and by a simultaneous in-situ calibration of the neutron detection efficiency, the largest correction to the data. Preliminary results are shown with statistical errors only.

  20. Fixed-point single-precision estimation. [Kalman filtering for NASA Standard Spacecraft Computer orbit determination algorithm

    NASA Technical Reports Server (NTRS)

    Thompson, E. H.; Farrell, J. L.

    1976-01-01

    Monte Carlo simulation of autonomous orbit determination has validated the use of an 18-bit NASA Standard Spacecraft Computer (NSSC) for the extended Kalman filter. Dimensionally consistent scales are chosen for all variables in the algorithm, such that nearly all of the onboard computation can be performed in single precision without matrix square root formulations. Allowable simplifications in algorithm implementation and practical means of ensuring convergence are verified for accuracies of a few km provided by star/vertical observations

  1. A Study into the Method of Precise Orbit Determination of a HEO Orbiter by GPS and Accelerometer

    NASA Technical Reports Server (NTRS)

    Ikenaga, Toshinori; Hashida, Yoshi; Unwin, Martin

    2007-01-01

    In the present day, orbit determination by Global Positioning System (GPS) is not unusual. Especially for low-cost small satellites, position determination by an on-board GPS receiver provides a cheap, reliable and precise method. However, the original purpose of GPS is for ground users, so the transmissions from all of the GPS satellites are directed toward the Earth s surface. Hence there are some restrictions for users above the GPS constellation to detect those signals. On the other hand, a desire for precise orbit determination for users in orbits higher than GPS constellation exists. For example, the next Japanese Very Long Baseline Interferometry (VLBI) mission "ASTRO-G" is trying to determine its orbit in an accuracy of a few centimeters at apogee. The use of GPS is essential for such ultra accurate orbit determination. This study aims to construct a method for precise orbit determination for such high orbit users, especially in High Elliptical Orbits (HEOs). There are several approaches for this objective. In this study, a hybrid method with GPS and an accelerometer is chosen. Basically, while the position cannot be determined by an on-board GPS receiver or other Range and Range Rate (RARR) method, all we can do to estimate the user satellite s position is to propagate the orbit along with the force model, which is not perfectly correct. However if it has an accelerometer (ACC), the coefficients of the air drag and the solar radiation pressure applied to the user satellite can be updated and then the propagation along with the "updated" force model can improve the fitting accuracy of the user satellite s orbit. In this study, it is assumed to use an accelerometer available in the present market. The effects by a bias error of an accelerometer will also be discussed in this paper.

  2. Modeling radiation forces acting on TOPEX/Poseidon for precision orbit determination

    NASA Technical Reports Server (NTRS)

    Marshall, J. A.; Luthcke, S. B.; Antreasian, P. G.; Rosborough, G. W.

    1992-01-01

    Geodetic satellites such as GEOSAT, SPOT, ERS-1, and TOPEX/Poseidon require accurate orbital computations to support the scientific data they collect. Until recently, gravity field mismodeling was the major source of error in precise orbit definition. However, albedo and infrared re-radiation, and spacecraft thermal imbalances produce in combination no more than a 6-cm radial root-mean-square (RMS) error over a 10-day period. This requires the development of nonconservative force models that take the satellite's complex geometry, attitude, and surface properties into account. For TOPEX/Poseidon, a 'box-wing' satellite form was investigated that models the satellite as a combination of flat plates arranged in a box shape with a connected solar array. The nonconservative forces acting on each of the eight surfaces are computed independently, yielding vector accelerations which are summed to compute the total aggregate effect on the satellite center-of-mass. In order to test the validity of this concept, 'micro-models' based on finite element analysis of TOPEX/Poseidon were used to generate acceleration histories in a wide variety of orbit orientations. These profiles are then compared to the box-wing model. The results of these simulations and their implication on the ability to precisely model the TOPEX/Poseidon orbit are discussed.

  3. Precise determination of the mass of a Cooper pair of electrons in superconducting niobium

    SciTech Connect

    Tate, J.

    1988-01-01

    A superconducting, thin-film niobium ring deposited on the equator of a precision quartz hemispherical rotor was used to measure the ratio of Planck's constant to the mass of a Cooper pair of electrons, h/m*. A precision of 5 ppm (statistical) and an accuracy of 30 ppm (systematic) were obtained for a combined, root sum of squares error of 30 ppm. As a result of two macroscopic quantum phenomena-flux quantization and the London moment, the flux through a rotating, superconducting ring is a multivalued function of its rotation frequency. The flux goes to zero at certain equally spaced frequencies. The ratio h/m* is proportional to this frequency spacing. It is also proportional to the cross sectional area of the niobium ring. Using the values for Planck's constant and the rest mass of the electron recommended in the most recent fundamental constants revision, the mass measured in this experiment is larger than twice the free electron mass by 84 +/- 30 ppm. The result disagrees with theoretical predictions that this experiment would observe a mass smaller than twice the free electron mass by 8 ppm.

  4. Calibration and validation of individual GOCE accelerometers by precise orbit determination

    NASA Astrophysics Data System (ADS)

    Visser, P. N. A. M.; IJssel, J. A. A. van den

    2016-01-01

    The European Space Agency Gravity field and steady-state Ocean Circular Explorer (GOCE) carries a gradiometer consisting of three pairs of accelerometers in an orthogonal triad. Precise GOCE science orbit solutions (PSO), which are based on satellite-to-satellite tracking observations by the Global Positioning System and which are claimed to be at the few cm precision level, can be used to calibrate and validate the observations taken by the accelerometers. This has been done for each individual accelerometer by a dynamic orbit fit of the time series of position co-ordinates from the PSOs, where the accelerometer observations represent the non-gravitational accelerations. Since the accelerometers do not coincide with the center of mass of the GOCE satellite, the observations have to be corrected for rotational and gravity gradient terms. This is not required when using the so-called common-mode accelerometer observations, provided the center of the gradiometer coincides with the GOCE center of mass. Dynamic orbit fits based on these common-mode accelerations therefore served as reference. It is shown that for all individual accelerometers, similar dynamic orbit fits can be obtained provided the above-mentioned corrections are made. In addition, accelerometer bias estimates are obtained that are consistent with offsets in the gravity gradients that are derived from the GOCE gradiometer observations.

  5. Precision Determination of Atmospheric Extinction at Optical and Near IR Wavelengths

    SciTech Connect

    Burke, David L.; Axelrod, T.; Blondin, Stephane; Claver, Chuck; Ivezic, Zeljko; Jones, Lynne; Saha, Abhijit; Smith, Allyn; Smith, R.Chris; Stubbs, Christopher W.; /Harvard-Smithsonian Ctr. Astrophys.

    2011-08-24

    The science goals for future ground-based all-sky surveys, such as the Dark Energy Survey, PanSTARRS, and the Large Synoptic Survey Telescope, require calibration of broadband photometry that is stable in time and uniform over the sky to precisions of a per cent or better, and absolute calibration of color measurements that are similarly accurate. This performance will need to be achieved with measurements made from multiple images taken over the course of many years, and these surveys will observe in less than ideal conditions. This paper describes a technique to implement a new strategy to directly measure variations of atmospheric transmittance at optical wavelengths and application of these measurements to calibration of ground-based observations. This strategy makes use of measurements of the spectra of a small catalog of bright 'probe' stars as they progress across the sky and back-light the atmosphere. The signatures of optical absorption by different atmospheric constituents are recognized in these spectra by their characteristic dependences on wavelength and airmass. State-of-the-art models of atmospheric radiation transport and modern codes are used to accurately compute atmospheric extinction over a wide range of observing conditions. We present results of an observing campaign that demonstrate that correction for extinction due to molecular constituents and aerosols can be done with precisions of a few millimagnitudes with this technique.

  6. Oligosaccharide Binding Proteins from Bifidobacterium longum subsp. infantis Reveal a Preference for Host Glycans

    PubMed Central

    Garrido, Daniel; Kim, Jae Han; German, J. Bruce; Raybould, Helen E.; Mills, David A.

    2011-01-01

    Bifidobacterium longum subsp. infantis (B. infantis) is a common member of the infant intestinal microbiota, and it has been characterized by its foraging capacity for human milk oligosaccharides (HMO). Its genome sequence revealed an overabundance of the Family 1 of solute binding proteins (F1SBPs), part of ABC transporters and associated with the import of oligosaccharides. In this study we have used the Mammalian Glycan Array to determine the specific affinities of these proteins. This was correlated with binding protein expression induced by different prebiotics including HMO. Half of the F1SBPs in B. infantis were determined to bind mammalian oligosaccharides. Their affinities included different blood group structures and mucin oligosaccharides. Related to HMO, other proteins were specific for oligomers of lacto-N-biose (LNB) and polylactosamines with different degrees of fucosylation. Growth on HMO induced the expression of specific binding proteins that import HMO isomers, but also bind blood group and mucin oligosaccharides, suggesting coregulated transport mechanisms. The prebiotic inulin induced other family 1 binding proteins with affinity for intestinal glycans. Most of the host glycan F1SBPs in B. infantis do not have homologs in other bifidobacteria. Finally, some of these proteins were found to be adherent to intestinal epithelial cells in vitro. In conclusion, this study represents further evidence for the particular adaptations of B. infantis to the infant gut environment, and helps to understand the molecular mechanisms involved in this process. PMID:21423604

  7. Xyloglucan oligosaccharides promote growth and activate cellulase: Evidence for a role of cellulase in cell expansion. [Pisum sativum L

    SciTech Connect

    McDougall, G.J.; Fry, S.C. )

    1990-07-01

    Oligosaccharides produced by the action of fungal cellulase on xyloglucans promoted the elongation of etiolated pea (Pisum sativum L.) stem segments in a straight-growth bioassay designed for the determination of auxins. The oligosaccharides were most active at about 1 micromolar. We tested the relative growth-promoting activities of four HPLC-purified oligosaccharides which shared a common glucose{sub 4} {center dot} xylose{sub 3} (XG7) core. The substituted oligosaccharides XG8 (glucose{sub 4} {center dot} xylose{sub 3} {center dot} galactose) and XG9n (glucose{sub 4} {center dot} xylose{sub 3} {center dot} galactose{sub 2}) were more effective than XG7 itself and XG9 (glucose{sub 4} {center dot} xylose{sub 3} {center dot} galactose {center dot} fucose). The same oligosaccharides also promoted the degradation, assayed viscometrically, of xyloglucan by an acidic cellulase from bean (Phaseolus vulgaris L.) leaves. The oligosaccharides were highly active at 10{sup {minus}4} molar, causing up to a fourfold increase in activity, but the effect was still detectable at 1 micromolar. Those oligosaccharides (XG8 and XG9n) which best promoted growth, stimulated cellulase activity to the greatest extent. The oligosaccharides did not stimulate the action of the cellulase in an assay based on the conversion of ({sup 3}H)xyloglucan to ethanol-soluble fragments. This suggests that the oligosaccharides enhanced the midchain hydrolysis of xyloglucan molecules (which would rapidly reduce the viscosity of the solution), at the expense of cleavage near the termini (which would yield ethanol-soluble products).

  8. Oligosaccharide Binding in Escherichia coli Glycogen Synthase

    SciTech Connect

    Sheng, Fang; Yep, Alejandra; Feng, Lei; Preiss, Jack; Geiger, James H.

    2010-11-17

    Glycogen/starch synthase elongates glucan chains and is the key enzyme in the synthesis of glycogen in bacteria and starch in plants. Cocrystallization of Escherichia coli wild-type glycogen synthase (GS) with substrate ADPGlc and the glucan acceptor mimic HEPPSO produced a closed form of GS and suggests that domain-domain closure accompanies glycogen synthesis. Cocrystallization of the inactive GS mutant E377A with substrate ADPGlc and oligosaccharide results in the first oligosaccharide-bound glycogen synthase structure. Four bound oligosaccharides are observed, one in the interdomain cleft (G6a) and three on the N-terminal domain surface (G6b, G6c, and G6d). Extending from the center of the enzyme to the interdomain cleft opening, G6a mostly interacts with the highly conserved N-terminal domain residues lining the cleft of GS. The surface-bound oligosaccharides G6c and G6d have less interaction with enzyme and exhibit a more curled, helixlike structural arrangement. The observation that oligosaccharides bind only to the N-terminal domain of GS suggests that glycogen in vivo probably binds to only one side of the enzyme to ensure unencumbered interdomain movement, which is required for efficient, continuous glucan-chain synthesis.

  9. Grafting of oligosaccharides onto synthetic polymer colloids.

    PubMed

    Mange, Siyabonga; Dever, Cédric; De Bruyn, Hank; Gaborieau, Marianne; Castignolles, Patrice; Gilbert, Robert G

    2007-06-01

    A new method to form colloidally stable oligosaccharide-grafted synthetic polymer particles has been developed. The oligosaccharides, of weight-average degree of polymerization approximately 38, were obtained by enzymatic debranching of amylopectin. Through the use of a cerium(IV)-based redox initiation process, oligosaccharide chains are grafted onto a synthetic polymer colloid comprising electrostatically stabilized poly(methyl methacrylate) or polystyrene latex particles swollen with methyl methacrylate monomer. Ce(IV) creates a radical species on these oligosaccharides, which then propagates, initially with aqueous-phase monomer, then with the methyl methacrylate monomer inside the particles. Ultracentrifugation, NMR, and total starch analyses together prove that the grafting process has occurred, with at least 7.7 wt % starch grafted and a grafting efficiency of 33%. The surfactant used in latex preparation was removed by dialysis, resulting in particles colloidally stabilized with only linear starch as a steric stabilizer. The debranched starch that comprises these oligosaccharides is found to be a remarkably effective colloidal stabilizer, albeit at low electrolyte concentration, stabilizing particles with very sparse surface coverage. PMID:17497920

  10. The Coyote Universe. I. Precision Determination of the Nonlinear Matter Power Spectrum

    NASA Astrophysics Data System (ADS)

    Heitmann, Katrin; White, Martin; Wagner, Christian; Habib, Salman; Higdon, David

    2010-05-01

    Near-future cosmological observations targeted at investigations of dark energy pose stringent requirements on the accuracy of theoretical predictions for the nonlinear clustering of matter. Currently, N-body simulations comprise the only viable approach to this problem. In this paper, we study various sources of computational error and methods to control them. By applying our methodology to a large suite of cosmological simulations we show that results for the (gravity-only) nonlinear matter power spectrum can be obtained at 1% accuracy out to k ~ 1 h Mpc-1. The key components of these high accuracy simulations are precise initial conditions, very large simulation volumes, sufficient mass resolution, and accurate time stepping. This paper is the first in a series of three; the final aim is a high-accuracy prediction scheme for the nonlinear matter power spectrum that improves current fitting formulae by an order of magnitude.

  11. THE COYOTE UNIVERSE. I. PRECISION DETERMINATION OF THE NONLINEAR MATTER POWER SPECTRUM

    SciTech Connect

    Heitmann, Katrin; White, Martin; Wagner, Christian; Habib, Salman; Higdon, David

    2010-05-20

    Near-future cosmological observations targeted at investigations of dark energy pose stringent requirements on the accuracy of theoretical predictions for the nonlinear clustering of matter. Currently, N-body simulations comprise the only viable approach to this problem. In this paper, we study various sources of computational error and methods to control them. By applying our methodology to a large suite of cosmological simulations we show that results for the (gravity-only) nonlinear matter power spectrum can be obtained at 1% accuracy out to k {approx} 1 h Mpc{sup -1}. The key components of these high accuracy simulations are precise initial conditions, very large simulation volumes, sufficient mass resolution, and accurate time stepping. This paper is the first in a series of three; the final aim is a high-accuracy prediction scheme for the nonlinear matter power spectrum that improves current fitting formulae by an order of magnitude.

  12. Determination of Personalized IOL-Constants for the Haigis Formula under Consideration of Measurement Precision

    PubMed Central

    Leydolt, Christina; Menapace, Rupert; Eppig, Timo; Langenbucher, Achim

    2016-01-01

    The capabilities of a weighted least squares approach for the optimization of the intraocular lens (IOL) constants for the Haigis formula are studied in comparison to an ordinary least squares approach. The weights are set to the inverse variances of the effective optical anterior chamber depth. The effect of random measurement noise is simulated 100000 times using data from N = 69 cataract patients and the measurement uncertainty of two different biometers. A second, independent data set (N = 33) is used to show the differences that can be expected between both methods. The weighted least squares formalism reduces the effect of measurement error on the final constants. In more than 64% it will result in a better approximation, if the measurement errors are estimated correctly. The IOL constants can be calculated with higher precision using the weighted least squares method. PMID:27391100

  13. Precise major component determinations in deep-sea sediments using Fourier Transform Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Herbert, Timothy D.; Tom, Brian A.; Burnett, Chris

    1992-04-01

    Experiments using Fourier Transform Infrared Spectroscopy (FTIR) on a set of powdered deep-sea sediment samples show that it is an efficient method of quantifying the relative abundances of quartz, clay, and calcite. Ratios of absorption bands characteristic of different minerals are precise and reproducible to a relative error of about 1 % provided that samples are ground to <2 μm. FTIR results, calibrated to geochemical measurements, therefore offer a more rapid means of producing sedimentary time series data than do elemental or phase-specific extractions. Calibration of results to absolute amounts of sedimentary phases is possible for minerals with unique absorption bands. Highly IR-absorbant minerals such as quartz and calcite are quantitatively detectable in amounts as low as 5% in a mixture. In addition, FTIR measurements complement elemental analyses by allowing the accurate partitioning of elements, such as Si, which may occur in several phases.

  14. Precise determination of strontium isotope ratios by TIMS to authenticate tomato geographical origin.

    PubMed

    Trincherini, P R; Baffi, C; Barbero, P; Pizzoglio, E; Spalla, S

    2014-02-15

    Thermal Ionisation Mass Spectrometry (TIMS) was applied to discriminate a total of 118 tomato samples (berries, "passata", tinned tomatoes, sauce, double and triple concentrate) coming from two different countries. The TIMS technique gave significantly different results for the (87)Sr/(86)Sr ratios and δ‰ values between Chinese and Italian tomato samples, irrespective of the treatment type. This technique proved to be a "robust" method, suitable for a precise discrimination of the two geographical origins. TIMS was able, within the Italian samples, to discriminate different geographical production areas, by virtue of different (87)Sr/(86)Sr ratios and δ‰ values. This technique could be employed in the field of food safety and quality, as a profitable tool for authenticating tomato geographical origin. PMID:24128488

  15. The use of laser altimetry data in Chang'E-1 precision orbit determination

    NASA Astrophysics Data System (ADS)

    Chang, Sheng-Qi; Huang, Yong; Li, Pei-Jia; Hu, Xiao-Gong; Fan, Min

    2016-09-01

    Accurate altimetric measurement not only can be applied to the calculation of a topography model but also can be used to improve the quality of the orbit reconstruction in the form of crossovers. Altimetry data from the Chang'E-1 (CE-1) laser altimeter are analyzed in this paper. The differences between the crossover constraint equation in the form of height discrepancies and in the form of minimum distances are mainly discussed. The results demonstrate that the crossover constraint equation in the form of minimum distances improves the CE-1 orbit precision. The overlap orbit performance has increased ∼ 30% compared to the orbit using only tracking data. External assessment using the topography model also shows orbit improvement. The results will be helpful for recomputing ephemeris and improving the CE-1 topography model.

  16. Complete NMR assignment of a bisecting hybrid-type oligosaccharide transferred by Mucor hiemalis endo-β-N-acetylglucosaminidase.

    PubMed

    Yamanoi, Takashi; Oda, Yoshiki; Katsuraya, Kaname; Inazu, Toshiyuki; Yamamoto, Kenji

    2016-06-01

    This study describes the complete nuclear magnetic resonance (NMR) spectral assignment of a bisecting hybrid-type oligosaccharide 1, transferred by Mucor hiemalis endo-β-N-acetylglucosaminidase (Endo-M). Through (1)H- and (13)C-NMR, DQF-COSY, HSQC, HMBC, TOCSY, and NOESY experiments, we determine the structure of the glycoside linkage formed by the Endo-M transglycosylation, i.e., the connection between GlcNAc and GlcNAc in oligosaccharide 1. PMID:27131291

  17. Precision laser surveying instrument using atmospheric turbulence compensation by determining the absolute displacement between two laser beam components

    DOEpatents

    Veligdan, James T.

    1993-01-01

    Atmospheric effects on sighting measurements are compensated for by adjusting any sighting measurements using a correction factor that does not depend on atmospheric state conditions such as temperature, pressure, density or turbulence. The correction factor is accurately determined using a precisely measured physical separation between two color components of a light beam (or beams) that has been generated using either a two-color laser or two lasers that project different colored beams. The physical separation is precisely measured by fixing the position of a short beam pulse and measuring the physical separation between the two fixed-in-position components of the beam. This precisely measured physical separation is then used in a relationship that includes the indexes of refraction for each of the two colors of the laser beam in the atmosphere through which the beam is projected, thereby to determine the absolute displacement of one wavelength component of the laser beam from a straight line of sight for that projected component of the beam. This absolute displacement is useful to correct optical measurements, such as those developed in surveying measurements that are made in a test area that includes the same dispersion effects of the atmosphere on the optical measurements. The means and method of the invention are suitable for use with either single-ended systems or a double-ended systems.

  18. High-precision onboard orbit determination for small satellites - the GPS-based XNSon X-SAT

    NASA Astrophysics Data System (ADS)

    Gill, E.; Montenbruck, O.; Arichandran, K.; Tan, S.H.; Bretschneider

    2004-11-01

    X-SAT is a mini-satellite developed by the Satellite Engineering Centre of the Nanyang Technological University at Singapore. The focus of the technology- driven mission is the high-resolution remote sensing of the Southeast Asian region for environmental monitoring. To achieve the ambitious mission objectives, the GPS-based X-SAT Navigation System (XNS) will provide high-precision onboard orbit determination solutions as well as orbit forecasts. With a targeted real-time position accuracy of about 1-2 m 3D r.m.s., the XNS provides an unprecedented accuracy performance and thus enables the support of any satellite mission which requires precise onboard position knowledge.

  19. Metabolism of Oligosaccharides and Starch in Lactobacilli: A Review

    PubMed Central

    Gänzle, Michael G.; Follador, Rainer

    2012-01-01

    Oligosaccharides, compounds that are composed of 2–10 monosaccharide residues, are major carbohydrate sources in habitats populated by lactobacilli. Moreover, oligosaccharide metabolism is essential for ecological fitness of lactobacilli. Disaccharide metabolism by lactobacilli is well understood; however, few data on the metabolism of higher oligosaccharides are available. Research on the ecology of intestinal microbiota as well as the commercial application of prebiotics has shifted the interest from (digestible) disaccharides to (indigestible) higher oligosaccharides. This review provides an overview on oligosaccharide metabolism in lactobacilli. Emphasis is placed on maltodextrins, isomalto-oligosaccharides, fructo-oligosaccharides, galacto-oligosaccharides, and raffinose-family oligosaccharides. Starch is also considered. Metabolism is discussed on the basis of metabolic studies related to oligosaccharide metabolism, information on the cellular location and substrate specificity of carbohydrate transport systems, glycosyl hydrolases and phosphorylases, and the presence of metabolic genes in genomes of 38 strains of lactobacilli. Metabolic pathways for disaccharide metabolism often also enable the metabolism of tri- and tetrasaccharides. However, with the exception of amylase and levansucrase, metabolic enzymes for oligosaccharide conversion are intracellular and oligosaccharide metabolism is limited by transport. This general restriction to intracellular glycosyl hydrolases differentiates lactobacilli from other bacteria that adapted to intestinal habitats, particularly Bifidobacterium spp. PMID:23055996

  20. Cell-associated oligosaccharides of Bradyrhizobium spp.

    PubMed Central

    Miller, K J; Gore, R S; Johnson, R; Benesi, A J; Reinhold, V N

    1990-01-01

    We report the initial characterization of the cell-associated oligosaccharides produced by four Bradyrhizobium strains: Bradyrhizobium japonicum USDA 110, USDA 94, and ATCC 10324 and Bradyrhizobium sp. strain 32H1. The cell-associated oligosaccharides of these strains were found to be composed solely of glucose and were predominantly smaller than the cyclic beta-1,2-glucans produced by Agrobacterium and Rhizobium species. Linkage studies and nuclear magnetic resonance analyses demonstrated that the bradyrhizobial glucans are linked primarily by beta-1,6 and beta-1,3 glycosidic bonds. Thus, the bradyrhizobia appear to synthesize cell-associated oligosaccharides of structural character substantially different from that of the cyclic beta-1,2-glucans produced by Agrobacterium and Rhizobium species. PMID:2294083

  1. Enzymatic production of specifically distributed hyaluronan oligosaccharides.

    PubMed

    Yuan, Panhong; Lv, Mengxian; Jin, Peng; Wang, Miao; Du, Guocheng; Chen, Jian; Kang, Zhen

    2015-09-20

    High-molecular-mass hyaluronan (HA) was controllably depolymerized in pure aqueous solution with recombinant leech hyaluronidase (HAase). The HAase concentration per unit HA and hydrolysis time played important roles in molecular mass distribution. By modulating the concentrations of HAase and controlling the hydrolysis time, any molar-mass-defined HA oligomers could be efficiently and specifically produced on a large scale (40 g/L), such as HA oligosaccharides with weight-average molar mass of 4000, 10,000, and 30,000Da and end hydrolysates containing only HA6 and HA4. High performance liquid chromatography-size exclusion chromatography, polyacrylamide gel electrophoresis, capillary zone electrophoresis, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry confirmed low polydispersity of the produced molar-mass-defined HA oligosaccharides. Therefore, large-scale production of defined HA oligosaccharides with narrow molecular mass distribution will significantly promote progress in related research and its potential applications. PMID:26050905

  2. Composition and antioxidant activity of water-soluble oligosaccharides from Hericium erinaceus.

    PubMed

    Hou, Yiling; Ding, Xiang; Hou, Wanru

    2015-05-01

    Oligosaccharide are carbohydrate molecules, comprising repeating units joined together by glycosidic bonds. In recent years, an increasing number of oligosaccharides have been reported to exhibit various biological activities, including antitumor, immune-stimulation and antioxidation effects. In the present study, crude water‑soluble oligosaccharides were extracted from the fruiting bodies of Hericium erinaceus with water and then successively purified by diethylaminoethyl‑cellulose 52 and Sephadex G‑100 column chromatography, yielding one major oligosaccharide fraction: Hericium erinaceus oligosaccharide (HEO‑A). The structural features of HEO‑A were investigated by a combination of monosaccharide component analysis by thin layer chromatography, infrared spectroscopy, nuclear magnetic resonance spectroscopy, scanning electron microscopy and high‑performance gel permeation chromatography. The results indicated that HEO‑A was composed of D‑xylose and D‑glucose, and the average molecular size was ~1,877 Da. The antioxidant activity of HEO‑A was evaluated using three biochemical methods to determine the scavenging activity of HEO‑A on 1,1‑diphenyl‑2‑picrylhydrazyl, hydrogen peroxide and 2,2'‑azino‑bis(3‑ethylbenzthiazoline‑6‑sufonic acid) diammonium radicals. The results indicated that HEO‑A may serve as an effective healthcare food and source of natural antioxidant compounds. PMID:25529054

  3. Precise Determination of the Baseline Between the TerraSAR-X and TanDEM-X Satellites

    NASA Astrophysics Data System (ADS)

    Koenig, Rolf; Rothacher, Markus; Michalak, Grzegorz; Moon, Yongjin

    TerraSAR-X, launched on June 15, 2007, and TanDEM-X, to be launched in September 2009, both carry the Tracking, Occultation and Ranging (TOR) category A payload instrument package. The TOR consists of a high-precision dual-frequency GPS receiver, called Integrated GPS Occultation Receiver (IGOR), for precise orbit determination and atmospheric sounding and a Laser retro-reflector (LRR) serving as target for the global Satellite Laser Ranging (SLR) ground station network. The TOR is supplied by the GeoForschungsZentrum Potsdam (GFZ) Germany, and the Center for Space Research (CSR), Austin, Texas. The objective of the German/US collaboration is twofold: provision of atmospheric profiles for use in numerical weather predictions and climate studies from the occultation data and precision SAR data processing based on precise orbits and atmospheric products. For the scientific objectives of the TanDEM- X mission, i.e., bi-static SAR together with TerraSAR-X, the dual-frequency GPS receiver is of vital importance for the millimeter level determination of the baseline or distance between the two spacecrafts. The paper discusses the feasibility of generating millimeter baselines by the example of GRACE, where for validation the distance between the two GRACE satellites is directly available from the micrometer-level intersatellite link measurements. The distance of the GRACE satellites is some 200 km, the distance of the TerraSAR-X/TanDEM-X formation will be some 200 meters. Therefore the proposed approach is then subject to a simulation of the foreseen TerraSAR-X/TanDEM-X formation. The effect of varying space environmental conditions, of possible phase center variations, multi path, and of varying center of mass of the spacecrafts are evaluated and discussed.

  4. Precise, fast, and flexible determination of protein interactions by affinity capillary electrophoresis: part 3: anions.

    PubMed

    Xu, Yuanhong; Redweik, Sabine; El-Hady, Deia Abd; Albishri, Hassan M; Preu, Lutz; Wätzig, Hermann

    2014-08-01

    The binding of physiologically anionic species or negatively charged drug molecules to proteins is of great importance in biochemistry and medicine. Since affinity capillary electrophoresis (ACE) has already proven to be a suitable analytical tool to study the influence of ions on proteins, this technique was applied here for comprehensively studying the influence of various anions on proteins of BSA, β-lactoglobulin, ovalbumin, myoglobin, and lysozyme. The analysis was performed using different selected anions of succinate, glutamate, phosphate, acetate, nitrate, iodide, thiocyanate, and pharmaceuticals (salicylic acid, aspirin, and ibuprofen) that exist in the anionic form at physiological pH 7.4. Due to the excellent repeatability and precision of the ACE measurements, not necessarily strong but significant influences of the anions on the proteins were found in many cases. Different influences in the observed bindings indicated change of charge, mass, or conformational changes of the proteins due to the binding with the studied anions. Combining the mobility-shift and pre-equilibrium ACE modes, rapidity and reversibility of the protein-anion bindings were discussed. Further, circular dichroism has been used as an orthogonal approach to characterize the interactions between the studied proteins and anions to confirm the ACE results. Since phosphate and various anions from amino acids and small organic acids such as succinate or acetate are present in very high concentrations in the cellular environment, even weak influences are certainly relevant as well. PMID:24436007

  5. Impact of the ionosphere on GPS-based precise orbit determination of Low Earth Orbiters

    NASA Astrophysics Data System (ADS)

    Arnold, Daniel; Jäggi, Adrian; Meyer, Ulrich; Beutler, Gerhard

    2016-04-01

    GPS-derived kinematic precise Swarm orbits are significantly affected by increased position noise over the geomagnetic poles and spurious signatures along the geomagnetic equator. The latter deficiencies were identified for the first time for the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) mission and are attributed to the distortion of the GPS carrier signal when propagating through portions of the Earth's ionosphere with a large free electron content. Via the GPS-derived kinematic Swarm positions, the spurious signatures along the geomagnetic equator map directly into the derived gravity fields. This was already the case for GOCE and obviously is also true for Swarm. To identify the root cause of the problem, the stochastic and deterministic behavior of the ionosphere is characterized by analyzing data collected by the GPS receivers on various LEO satellites. We compare in particular the performance of the Swarm and the GRACE receivers, because no obvious degradations occur in GRACE orbit and gravity field solutions. Removing GPS data with large ionospheric variations mitigates the ionosphere-induced artifacts in orbits and gravity fields. We illustrate the impact of this measure on the Swarm orbit and gravity field solutions. Making use of the geographically resolved ionosphere characteristics, e.g., to establish better data weighting schemes, results in a better POD performance for LEO satellites.

  6. Composite tube and plate manufacturing repeatability as determined by precision measurements of thermal strain

    NASA Astrophysics Data System (ADS)

    Riddle, Lenn A.; Tucker, James R.; Bluth, A. Marcel

    2013-09-01

    Composite materials often carry the reputation of demonstrating high variability in critical material properties. The JWST telescope metering structure is fabricated of several thousand separate composite piece parts. The stringent dimensional stability requirements on the metering structure require the critical thermal strain response of every composite piece be verified either at the billet or piece part level. JWST is a unique composite space structure in that it has required the manufacturing of several hundred composite billets that cover many lots of prepreg and many years of fabrication. The flight billet thermal expansion acceptance criteria limits the coefficient of thermal expansion (CTE) to a tolerance ranging between +/-0.014 ppm/K to +/-0.04 ppm/K around a prescribed nominal when measured from 293 K down to 40 K. The different tolerance values represent different material forms including flat plates and different tube cross-section dimensions. A precision measurement facility was developed that could measure at the required accuracy and at a pace that supported the composite part fabrication rate. The test method and facility is discussed and the results of a statistical process analysis of the flight composite billets are surveyed.

  7. Precision determination of electroweak coupling from atomic parity violation and implications for particle physics.

    PubMed

    Porsev, S G; Beloy, K; Derevianko, A

    2009-05-01

    We carry out high-precision calculation of parity violation in a cesium atom, reducing theoretical uncertainty by a factor of 2 compared to previous evaluations. We combine previous measurements with calculations and extract the weak charge of the 133Cs nucleus, QW=-73.16(29)expt(20)theor. The result is in agreement with the standard model (SM) of elementary particles. This is the most accurate to-date test of the low-energy electroweak sector of the SM. In combination with the results of high-energy collider experiments, we confirm the energy dependence (or "running") of the electroweak force over an energy range spanning 4 orders of magnitude (from approximately 10 MeV to approximately 100 GeV). Additionally, our result places constraints on a variety of new physics scenarios beyond the SM. In particular, we increase the lower limit on the masses of extra Z bosons predicted by models of grand unification and string theories. PMID:19518856

  8. Generation and structural validation of a library of diverse xyloglucan-derived oligosaccharides, including an update on xyloglucan nomenclature.

    PubMed

    Tuomivaara, Sami T; Yaoi, Katsuro; O'Neill, Malcolm A; York, William S

    2015-01-30

    Xyloglucans are structurally complex plant cell wall polysaccharides that are involved in cell growth and expansion, energy metabolism, and signaling. Determining the structure-function relationships of xyloglucans would benefit from the availability of a comprehensive and structurally diverse collection of rigorously characterized xyloglucan oligosaccharides. Here, we present a workflow for the semi-preparative scale generation and purification of neutral and acidic xyloglucan oligosaccharides using a combination of enzymatic and chemical treatments and size-exclusion chromatography. Twenty-six of these oligosaccharides were purified to near homogeneity and their structures validated using a combination of matrix-assisted laser desorption/ionization mass spectrometry, high-performance anion exchange chromatography, and 1H nuclear magnetic resonance spectroscopy. Mass spectrometry and analytical chromatography were compared as methods for xyloglucan oligosaccharide quantification. 1H chemical shifts were assigned using two-dimensional correlation spectroscopy. A comprehensive update of the nomenclature describing xyloglucan side-chain structures is provided for reference. PMID:25497333

  9. Precision Determination of Electron Scattering Angle by Differential Nuclear Recoil Energy Method

    SciTech Connect

    Liyanage, Nilanga; Saenboonruang, Kiadtisak

    2015-09-01

    The accurate determination of the scattered electron angle is crucial to electron scattering experiments, both with open-geometry large-acceptance spectrometers and ones with dipole-type magnetic spectrometers for electron detection. In particular, for small central-angle experiments using dipole-type magnetic spectrometers, in which surveys are used to measure the spectrometer angle with respect to the primary electron beam, the importance of the scattering angle determination is emphasized. However, given the complexities of large experiments and spectrometers, the accuracy of such surveys is limited and insufficient to meet demands of some experiments. In this article, we present a new technique for determination of the electron scattering angle based on an accurate measurement of the primary beam energy and the principle of differential nuclear recoil. This technique was used to determine the scattering angle for several experiments carried out at the Experimental Hall A, Jefferson Lab. Results have shown that the new technique greatly improved the accuracy of the angle determination compared to surveys.

  10. Precision determination of electron scattering angle by differential nuclear recoil energy method

    SciTech Connect

    Liyanage, N.; Saenboonruang, K.

    2015-12-01

    The accurate determination of the scattered electron angle is crucial to electron scattering experiments, both with open-geometry large-acceptance spectrometers and ones with dipole-type magnetic spectrometers for electron detection. In particular, for small central-angle experiments using dipole-type magnetic spectrometers, in which surveys are used to measure the spectrometer angle with respect to the primary electron beam, the importance of the scattering angle determination is emphasized. However, given the complexities of large experiments and spectrometers, the accuracy of such surveys is limited and insufficient to meet demands of some experiments. In this article, we present a new technique for determination of the electron scattering angle based on an accurate measurement of the primary beam energy and the principle of differential nuclear recoil. This technique was used to determine the scattering angle for several experiments carried out at the Experimental Hall A, Jefferson Lab. Results have shown that the new technique greatly improved the accuracy of the angle determination compared to surveys.

  11. Precise determination of earth's center of mass using measurements from the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Vigue, Yvonne; Lichten, Stephen M.; Blewitt, Geoffrey; Heflin, Michael B.; Malla, Rajendra P.

    1992-01-01

    Global Positioning System (GPS) data from a worldwide geodetic experiment were collected during a 3-week period early in 1991. Geocentric station coordinates were estimated using the GPS data, thus defining a dynamically determined reference frame origin which should coincide with the earth center of mass, or geocenter. The 3-week GPS average geocenter estimates agree to 7-13 cm with geocenter estimates determined from satellite laser ranging, a well-established technique. The RMS of daily GPS geocenter estimates were 4 cm for x and y, and 30 cm for z.

  12. 13 Years of TOPEX/POSEIDON Precision Orbit Determination and the 10-fold Improvement in Expected Orbit Accuracy

    NASA Technical Reports Server (NTRS)

    Lemoine, F. G.; Zelensky, N. P.; Luthcke, S. B.; Rowlands, D. D.; Beckley, B. D.; Klosko, S. M.

    2006-01-01

    Launched in the summer of 1992, TOPEX/POSEIDON (T/P) was a joint mission between NASA and the Centre National d Etudes Spatiales (CNES), the French Space Agency, to make precise radar altimeter measurements of the ocean surface. After the remarkably successful 13-years of mapping the ocean surface T/P lost its ability to maneuver and was de-commissioned January 2006. T/P revolutionized the study of the Earth s oceans by vastly exceeding pre-launch estimates of surface height accuracy recoverable from radar altimeter measurements. The precision orbit lies at the heart of the altimeter measurement providing the reference frame from which the radar altimeter measurements are made. The expected quality of orbit knowledge had limited the measurement accuracy expectations of past altimeter missions, and still remains a major component in the error budget of all altimeter missions. This paper describes critical improvements made to the T/P orbit time series over the 13-years of precise orbit determination (POD) provided by the GSFC Space Geodesy Laboratory. The POD improvements from the pre-launch T/P expectation of radial orbit accuracy and Mission requirement of 13-cm to an expected accuracy of about 1.5-cm with today s latest orbits will be discussed. The latest orbits with 1.5 cm RMS radial accuracy represent a significant improvement to the 2.0-cm accuracy orbits currently available on the T/P Geophysical Data Record (GDR) altimeter product.

  13. Using GLONASS for precise determination of navigation parameters under interference from various sources*

    NASA Astrophysics Data System (ADS)

    Tyapkin, V. N.; Fateev, Yu L.; Dmitriev, D. D.; Kartsan, I. N.; Zelenkov, P. V.; Goncharov, A. E.; Nasyrov, I. R.

    2016-04-01

    This article discusses the main approaches to the designs of systems for determining location and spatial attitude based on satellite navigation equipment. The article describes possible solutions for constructing an angular attitude measurement system capable of spatial interference selection on the basis of a single antenna system.

  14. Precise determination of the refractive index of suspended particles: light transmission as a function of refractive index mismatch

    NASA Astrophysics Data System (ADS)

    McClymer, J. P.

    2016-08-01

    Many fluids appear white because refractive index differences lead to multiple scattering. In this paper, we use safe, low-cost commercial index matching fluids to quantitatively study light transmission as a function of index mismatch, reduce multiple scattering to allow single scattering probes, and to precisely determine the index of refraction of suspended material. The transmission profile is compared with Rayleigh-Gans and Mie theory predictions. The procedure is accessible as a student laboratory project, while providing advantages over other standard methods of measuring the refractive index of an unknown nanoparticle, making it valuable to researchers.

  15. Detection and Quantitation of Afucosylated N-Linked Oligosaccharides in Recombinant Monoclonal Antibodies Using Enzymatic Digestion and LC-MS

    NASA Astrophysics Data System (ADS)

    Du, Yi; May, Kimberly; Xu, Wei; Liu, Hongcheng

    2012-07-01

    The presence of N-linked oligosaccharides in the CH2 domain has a significant impact on the structure, stability, and biological functions of recombinant monoclonal antibodies. The impact is also highly dependent on the specific oligosaccharide structures. The absence of core-fucose has been demonstrated to result in increased binding affinity to Fcγ receptors and, thus, enhanced antibody-dependent cellular cytotoxicity (ADCC). Therefore, a method that can specifically determine the level of oligosaccharides without the core-fucose (afucosylation) is highly desired. In the current study, recombinant monoclonal antibodies and tryptic peptides from the antibodies were digested using endoglycosidases F2 and H, which cleaves the glycosidic bond between the two primary GlcNAc residues. As a result, various oligosaccharides of either complex type or high mannose type that are commonly observed for recombinant monoclonal antibodies are converted to either GlcNAc residue only or GlcNAc with the core-fucose. The level of GlcNAc represents the sum of all afucosylated oligosaccharides, whereas the level of GlcNAc with the core-fucose represents the sum of all fucosylated oligosaccharides. LC-MS analysis of the enzymatically digested antibodies after reduction provided a quick estimate of the levels of afucosylation. An accurate determination of the level of afucosylation was obtained by LC-MS analysis of glycopeptides after trypsin digestion.

  16. Atom-chip based quantum gravimetry for the precise determination of absolute local gravity

    NASA Astrophysics Data System (ADS)

    Abend, S.

    2015-12-01

    We present a novel technique for the precise measurement of absolute local gravity based on cold atom interferometry. Atom interferometry utilizes the interference of matter waves interrogated by laser light to read out inertial forces. Today's generation of these devices typically operate with test mass samples, that consists of ensembles of laser cooled atoms. Their performance is limited by the velocity spread and finite-size of the test masses that impose systematic uncertainties at the level of a few μGal. Rather than laser cooled atoms we employ quantum degenerate ensembles, so called Bose-Einstein condensates, as ultra-sensitive probes for gravity. These sources offer unique properties in temperature as well as in ensemble size that will allow to overcome the current limitations with the next generation of sensors. Furthermore, atom-chip technologies offer the possibility to generate Bose-Einstein condensates in a fast and reliable way. We show a lab-based prototype that uses the atom-chip itself to retro-reflect the interrogation laser and thus serving as inertial reference inside the vacuum. With this setup it is possible to demonstrate all necessary steps to measure gravity, including the preparation of the source, spanning an interferometer as well as the detection of the output signal, within an area of 1 cm3 right below the atom-chip and to analyze relevant systematic effects. In the framework of the center of excellence geoQ a next generation device is under construction at the Institut für Quantenoptik, that will allow for in-field measurements. This device will feature a state-of-the-art atom-chip source with a high-flux of ultra-cold atoms at a repetition rate of 1-2 Hz. In cooperation with the Müller group at the Institut für Erdmessung the sensor will be characterized in the laboratory first, to be ultimately employed in campaigns to measure the Fennoscandian uplift at the level of 1 μGal. The presented work is part of the center of

  17. In-situ and non-destructive focus determination device for high-precision laser applications

    NASA Astrophysics Data System (ADS)

    Armbruster, Oskar; Naghilou, Aida; Pöhl, Hannes; Kautek, Wolfgang

    2016-09-01

    A non-destructive, in-line, and low-cost focusing device based on an image sensor has been developed and demonstrated. It allows an in situ focus determination for a broad variety of laser types (e.g. cw and pulsed lasers). It provides stringent focusing conditions with high numerical apertures. This approach does not require sub-picosecond and/or auxiliary lasers, or high fluences above damage thresholds. Applications of this system include, but are not limited to the laser-illumination of micro-electrodes, pump-probe microscopy on thin films, and laser ablation of small samples without sufficient surface area for focus determination by ablation. An uncertainty of the focus position by an order of magnitude less than the respective Rayleigh length could be demonstrated.

  18. Sub-meter GPS orbit determination and high precision user positioning - A demonstration

    NASA Technical Reports Server (NTRS)

    Lichten, Stephen M.; Bertiger, Willy I.; Katsigris, Eugenia C.

    1988-01-01

    High-accuracy orbit solutions have been obtained for GPS satellites, and submeter orbit accuracy is demonstrated for two well-tracked satellites. Orbit accuracy was tested based upon orbit repeatability from independent data sets, orbit prediction, ground baseline determination, and formal errors. Baselines of up to 2000 km in North America found with the GPS orbits show a daily repeatability of 0.3-1.5 parts in 10 to the 8th, and are found to agree well with VLBI solutions at the level of 0.3-3 parts in 10 to the 8th. Baselines were also determined between Florida and sites in the Caribbean region over 1000 km away, with a daily repeatability of 1-4 parts in 10 to the 8th.

  19. Variations in prebiotic oligosaccharide fermentation by intestinal lactic acid bacteria.

    PubMed

    Endo, Akihito; Nakamura, Saki; Konishi, Kenta; Nakagawa, Junichi; Tochio, Takumi

    2016-01-01

    Prebiotic oligosaccharides confer health benefits on the host by modulating the gut microbiota. Intestinal lactic acid bacteria (LAB) are potential targets of prebiotics; however, the metabolism of oligosaccharides by LAB has not been fully characterized. Here, we studied the metabolism of eight oligosaccharides by 19 strains of intestinal LAB. Among the eight oligosaccharides used, 1-kestose, lactosucrose and galactooligosaccharides (GOSs) led to the greatest increases in the numbers of the strains tested. However, mono- and disaccharides accounted for more than half of the GOSs used, and several strains only metabolized the mono- and di-saccharides in GOSs. End product profiles indicated that the amounts of lactate produced were generally consistent with the bacterial growth recorded. Oligosaccharide profiling revealed the interesting metabolic manner in Lactobacillus paracasei strains, which metabolized all oligosaccharides, but left sucrose when cultured with fructooligosaccharides. The present study clearly indicated that the prebiotic potential of each oligosaccharide differs. PMID:26888650

  20. New Food Oligosaccharides via Alternansucrase Acceptor Reactions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alternansucrase [EC 2.4.1.140] is a glycosyltransferase from food-grade bacteria that is capable of synthesizing unique polysaccharides and oligosaccharides from sucrose. The enzyme typically produces the high-molecular weight polysaccharide alternan. However, in the presence of low-molecular weig...

  1. Standardisation and precise determination of the half-life of (44)Sc.

    PubMed

    García-Toraño, E; Peyrés, V; Roteta, M; Sánchez-Cabezudo, A I; Romero, E; Martínez Ortega, A

    2016-03-01

    The half-life of the positron-emitter (44)Sc has been determined by following the decay rate with two measurement systems; an Ionisation Chamber and a HPGe detector. The combination of seven results gives a value of T1/2=4.042 (25)h, about 2% higher than the recommended value of T1/2=3.97 (4)h (Browne, 2011) and with a lower uncertainty. This radionuclide has also been standardised by coincidence counting, and liquid scintillation counting techniques. A (44)Ti/(44)Sc generator developed at CIEMAT was used to obtain the (44)Sc solutions used in all measurements. PMID:26701659

  2. The GLAS Algorithm Theoretical Basis Document for Precision Attitude Determination (PAD)

    NASA Technical Reports Server (NTRS)

    Bae, Sungkoo; Smith, Noah; Schutz, Bob E.

    2013-01-01

    The Geoscience Laser Altimeter System (GLAS) was the sole instrument for NASAs Ice, Cloud and land Elevation Satellite (ICESat) laser altimetry mission. The primary purpose of the ICESat mission was to make ice sheet elevation measurements of the polar regions. Additional goals were to measure the global distribution of clouds and aerosols and to map sea ice, land topography and vegetation. ICESat was the benchmark Earth Observing System (EOS) mission to be used to determine the mass balance of the ice sheets, as well as for providing cloud property information, especially for stratospheric clouds common over polar areas.

  3. High Fidelity Non-Gravitational Force Models for Precise and Accurate Orbit Determination of TerraSAR-X

    NASA Astrophysics Data System (ADS)

    Hackel, Stefan; Montenbruck, Oliver; Steigenberger, -Peter; Eineder, Michael; Gisinger, Christoph

    Remote sensing satellites support a broad range of scientific and commercial applications. The two radar imaging satellites TerraSAR-X and TanDEM-X provide spaceborne Synthetic Aperture Radar (SAR) and interferometric SAR data with a very high accuracy. The increasing demand for precise radar products relies on sophisticated validation methods, which require precise and accurate orbit products. Basically, the precise reconstruction of the satellite’s trajectory is based on the Global Positioning System (GPS) measurements from a geodetic-grade dual-frequency receiver onboard the spacecraft. The Reduced Dynamic Orbit Determination (RDOD) approach utilizes models for the gravitational and non-gravitational forces. Following a proper analysis of the orbit quality, systematics in the orbit products have been identified, which reflect deficits in the non-gravitational force models. A detailed satellite macro model is introduced to describe the geometry and the optical surface properties of the satellite. Two major non-gravitational forces are the direct and the indirect Solar Radiation Pressure (SRP). Due to the dusk-dawn orbit configuration of TerraSAR-X, the satellite is almost constantly illuminated by the Sun. Therefore, the direct SRP has an effect on the lateral stability of the determined orbit. The indirect effect of the solar radiation principally contributes to the Earth Radiation Pressure (ERP). The resulting force depends on the sunlight, which is reflected by the illuminated Earth surface in the visible, and the emission of the Earth body in the infrared spectra. Both components of ERP require Earth models to describe the optical properties of the Earth surface. Therefore, the influence of different Earth models on the orbit quality is assessed within the presentation. The presentation highlights the influence of non-gravitational force and satellite macro models on the orbit quality of TerraSAR-X.

  4. Application of MC-ICPMS to the precise determination of tellurium isotope compositions in chondrites, iron meteorites and sulfides

    NASA Astrophysics Data System (ADS)

    Fehr, Manuela A.; Rehkämper, Mark; Halliday, Alex N.

    2004-03-01

    New mass spectrometric techniques have been developed for the precise and accurate determination of Te isotope compositions. The methods are suitable for the analysis of stony and iron meteorites as well as sulfide mineral separates, such that they can be applied to search for Te isotope anomalies in various solar system materials. Tellurium is first separated from its matrix with a two-stage liquid chromatographic procedure. For iron meteorites, solvent-extraction is used to isolate Te from Fe prior to the column separation. The isotope composition of Te is then determined by multiple-collector inductively coupled plasma-mass spectrometry (MC-ICPMS). Tellurium has a very high first ionization potential and thus MC-ICPMS is much more suitable for the isotopic analyses than positive ion thermal ionization mass spectrometry (TIMS). Only about 100 ng Te are required for a single high precision measurement. Analyses of two terrestrial sulfides, the carbonaceous chondrite Allende and the iron meteorite Canyon Diablo reveal that these have Te isotope compositions that are identical to the terrestrial standard within uncertainty. The Te isotope data acquired for standard solutions as well as meteorites and sulfides display reproducibilities (2[sigma]) of approximately +/-4500 ppm for 120Te/128Te, +/-140 ppm for 122Te/128Te, +/-100 ppm for 124Te/128Te, +/-30 ppm for 126Te/128Te, and +/-60 ppm for 130Te/128Te. Compared to published results for meteorite samples obtained by TIMS, this represents an improvement in precision of about one to two orders of magnitude for 122-130Te/128Te and by a factor of 4 for 120Te/128Te. A number of experiments furthermore demonstrate that the isotope data acquired by MC-ICPMS are accurate, even for complex geological samples.

  5. A Complication in Determining the Precise Age of the Solar System

    NASA Astrophysics Data System (ADS)

    Brennecka, G. A.

    2010-01-01

    Primitive components in meteorites contain a detailed record of the conditions and processes in the solar nebula, the cloud of dust and gas surrounding the infant Sun. Determining accurately when the first materials formed requires the lead-lead (Pb-Pb) dating method, a method based on the decay of uranium (U) isotopes to Pb isotopes. The initial ratio of U-238 to U-235 is critical to determining the ages correctly, and many studies have concluded that the ratio is constant for any given age. However, my colleagues at Arizona State University, Institut fur Geowissenschaften, Goethe-Universitat (Frankfurt, Germany), and the Senckenberg Forschungsinstitut und Naturmuseum (also in Frankfurt) and I have found that some calcium-aluminum-rich inclusions (CAIs) in chondritic meteorites deviate from the conventional value for the U-238/U-235 ratio. This could lead to inaccuracies of up to 5 million years in the age of these objects, if no correction is made. Variations in the concentrations of thorium and neodymium with the U-238/U-235 ratio suggest that the ratio may have been lowered by the decay of curium-247, which decays to U-235 with a half-life of 15.6 million years. Curium-247 is created in certain types of energetic supernovae, so its presence suggests that a supernova added material to the pre-solar interstellar cloud between 110 and 140 million years before the Solar System began to form.

  6. High-precision temperature determination of evaporating light-absorbing and non-light-absorbing droplets.

    PubMed

    Derkachov, G; Jakubczyk, D; Woźniak, M; Archer, J; Kolwas, M

    2014-10-30

    Models describing evaporation or condensation of a droplet have existed for over a century, and the temporal evolutions of droplet radius and temperature could be predicted. However, the accuracy of results was questionable, since the models contain free parameters and the means of accurate calibration were not available. In previous work (Hołyst et al. Soft Matter 2013, 9, 7766), a model with an efficacious parametrization in terms of the mean free path was proposed and calibrated with molecular dynamics numerical experiment. It was shown that it is essentially possible to determine reliably the temperature of a steadily evaporating/condensing homogeneous droplet relative to ambient temperature when the evolution of the droplet radius is known. The accuracy of such measurement can reach fractions of mK. In the case of an evaporating droplet of pure liquid, the (droplet) temperature is constant during the stationary stage of evaporation. In this paper, we show that, in many cases, it is also possible to determine the temporal evolution of droplet temperature from the evolution of the droplet radius if the droplet (initial) composition is known. We found the droplet radius evolution with high accuracy and obtained the evolution of droplet temperature (and composition) for droplets of (i) a two-component mixture of pure liquids; (ii) solutions of solid in liquid, one that is non-surface-active and another that is; and (iii) suspensions of non-light-absorbing and light-absorbing particles. PMID:25290035

  7. Enhancing the kinematic precise orbit determination of low earth orbiters using GPS receiver clock modelling

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Yue, Xiaokui; Yuan, Jianping; Rizos, Chris

    2014-11-01

    Clock error estimation has been the focus of a great deal of research because of the extensive usage of clocks in GPS positioning applications. The receiver clock error in the spacecraft orbit determination is commonly estimated on an epoch-by-epoch basis, along with the spacecraft’s position. However, due to the high correlation between the spacecraft orbit altitude and the receiver clock parameters, estimates of the radial component are degraded in the kinematic approach. Using clocks with high stability, the predictable behaviour of the receiver oscillator can be exploited to improve the positioning accuracy, especially for the radial component. This paper introduces two GPS receiver clock models to describe the deterministic and stochastic property of the receiver clock, both of which can improve the accuracy of kinematic orbit determination for spacecraft in low earth orbit. In particular, the clock parameters are estimated as time offset and frequency offset in the two-state model. The frequency drift is also estimated as an unknown parameter in the three-state model. Additionally, residual non-deterministic random errors such as frequency white noise, frequency random walk noise and frequency random run noise are modelled. Test results indicate that the positioning accuracy could be improved significantly using one day of GRACE flight data. In particular, the error of the radial component was reduced by over 40.0% in the real-time scenario.

  8. Precise equilibrium structure determination of hydrazoic acid (HN{sub 3}) by millimeter-wave spectroscopy

    SciTech Connect

    Amberger, Brent K.; Esselman, Brian J.; Woods, R. Claude; McMahon, Robert J.; Stanton, John F.

    2015-09-14

    The millimeter-wave spectrum of hydrazoic acid (HN{sub 3}) was analyzed in the frequency region of 235-450 GHz. Transitions from a total of 14 isotopologues were observed and fit using the A-reduced or S-reduced Hamiltonian. Coupled-cluster calculations were performed to obtain a theoretical geometry, as well as rotation-vibration interaction corrections. These calculated vibration-rotation correction terms were applied to the experimental rotational constants to obtain mixed theoretical/experimental equilibrium rotational constants (A{sub e}, B{sub e}, and C{sub e}). These equilibrium rotational constants were then used to obtain an equilibrium (R{sub e}) structure using a least-squares fitting routine. The R{sub e} structural parameters are consistent with a previously published R{sub s} structure, largely falling within the uncertainty limits of that R{sub s} structure. The present R{sub e} geometric parameters of HN{sub 3} are determined with exceptionally high accuracy, as a consequence of the large number of isotopologues measured experimentally and the sophisticated (coupled-cluster theoretical treatment (CCSD(T))/ANO2) of the vibration-rotation interactions. The R{sub e} structure exhibits remarkable agreement with the CCSD(T)/cc-pCV5Z predicted structure, validating both the accuracy of the ab initio method and the claimed uncertainties of the theoretical/experimental structure determination.

  9. A precise ionization method for determination of the energy deposited in small sites of irradiated objects

    SciTech Connect

    Bigildeev, E.A.; Lappa, A.V.

    1994-09-01

    The ionization method for determination of the energy deposited in sensitive sites of irradiated objects is usually used with the assumption that deposited energy is directly proportional to the number of ionization in a site. This assumption fails in two cases important for nanometer-sized sites: (1) when the fluctuation characteristics of deposited energy such as higher moments, probability distributions, etc. are determined instead of the mean value; (2) when the radiation field in a site is spatially non-uniform. In this paper both cases are investigated. Exact formulae connecting energy and ionization quantities (moments, cumulants, probability distributions) are established as well as practical procedures to obtain energy quantities from those of ionization. The validity of the direct proportionality principle is analyzed and approximate methods to correct it are propose. Some microdosimetric results are presented. The solution of these problems required that we refine some known notions and introduce new terms. In particular, in the paper the necessity of distinguishing two distinct types of events and correspondingly two sets of microdosimetric quantities is noted; new radiation parameters such as the fluctuation W value and non-equivalence factor for the events are defined and investigated numerically. 12 refs., 5 figs.

  10. GPS-Based Precision Orbit Determination for a New Era of Altimeter Satellites: Jason-1 and ICESat

    NASA Technical Reports Server (NTRS)

    Luthcke, Scott B.; Rowlands, David D.; Lemoine, Frank G.; Zelensky, Nikita P.; Williams, Teresa A.

    2003-01-01

    Accurate positioning of the satellite center of mass is necessary in meeting an altimeter mission's science goals. The fundamental science observation is an altimetric derived topographic height. Errors in positioning the satellite's center of mass directly impact this fundamental observation. Therefore, orbit error is a critical Component in the error budget of altimeter satellites. With the launch of the Jason-1 radar altimeter (Dec. 2001) and the ICESat laser altimeter (Jan. 2003) a new era of satellite altimetry has begun. Both missions pose several challenges for precision orbit determination (POD). The Jason-1 radial orbit accuracy goal is 1 cm, while ICESat (600 km) at a much lower altitude than Jason-1 (1300 km), has a radial orbit accuracy requirement of less than 5 cm. Fortunately, Jason-1 and ICESat POD can rely on near continuous tracking data from the dual frequency codeless BlackJack GPS receiver and Satellite Laser Ranging. Analysis of current GPS-based solution performance indicates the l-cm radial orbit accuracy goal is being met for Jason-1, while radial orbit accuracy for ICESat is well below the 54x1 mission requirement. A brief overview of the GPS precision orbit determination methodology and results for both Jason-1 and ICESat are presented.

  11. DETERMINATION OF INTERSTITIAL CHLORIDE IN SHALES AND CONSOLIDATED ROCKS BY A PRECISION LEACHING TECHNIQUE.

    USGS Publications Warehouse

    Manheim, Frank T.; Peck, E.E.; Lane, Candice M.

    1985-01-01

    The authors have devised a technique for determining chloride in interstitial water of consolidated rocks. Samples of rocks ranging from 5 to 10 g are crushed and sieved under controlled conditions and then ground with distilled water to submicron size in a closed mechanical mill. The chloride concentrations and total pore-water concentrations, obtained earlier from the same samples by low-temperature vacuum desiccation, are used to arrive at the 'original' pore-water chloride concentrations by a simple iteration procedure. Interstitial chlorinity results obtained from Cretaceous and Jurassic strata in the Gulf of Mexico coastal areas ranged from 20 to 100 g/kg Cl with reproducibility approaching plus or minus 1%.

  12. High-precision determination of the pi, K, D, and Ds decay constants from lattice QCD.

    PubMed

    Follana, E; Davies, C T H; Lepage, G P; Shigemitsu, J

    2008-02-15

    We determine D and D(s) decay constants from lattice QCD with 2% errors, 4 times better than experiment and previous theory: f(D(s))=241(3) MeV, f(D)=207(4) MeV, and fD(s))/f(D)=1.164(11). We also obtain f(K)/f(pi)=1.189(7) and (f(D(s))/f(D))/(f(K)/f(pi))=0.979(11). Combining with experiment gives V(us)=0.2262(14) and V(cs)/V(cd) of 4.43(41). We use a highly improved quark discretization on MILC gluon fields that include realistic sea quarks, fixing the u/d, s, and c masses from the pi, K, and eta(c) meson masses. This allows a stringent test against experiment for D and D(s) masses for the first time (to within 7 MeV). PMID:18352458

  13. Double-resonant photoionization efficiency spectroscopy: A precise determination of the adiabatic ionization potential of DCO

    NASA Astrophysics Data System (ADS)

    Foltynowicz, Robert J.; Robinson, Jason D.; Grant, Edward R.

    2001-03-01

    We report the first high-resolution measurement of the adiabatic ionization potential of DCO and the fundamental bending frequency of DCO+. Fixing a first-laser frequency on selected ultraviolet transitions to individual rotational levels in the (000) band of the 3pπ 2Π intermediate Rydberg state of DCO, we scan a second visible laser over the range from 20 000 to 20 300 cm-1 to record double resonance photoionization efficiency (DR/PIE) spectra. Intermediate resonance with this Rydberg state facilitates transitions to the threshold for producing ground-state cations by bridging the Franck-Condon gap between the bent neutral radical and linear cation. By selecting a single rotational state for ionization, double-resonant excitation eliminates thermal congestion. Spectroscopic features for first-photon resonance are identified by reference to a complete assignment of the 3pπ 2Π(000)-X 2A'(000) band system of DCO. Calibration with HCO, for which the adiabatic ionization threshold is accurately known, establishes an experimental instrument function that accounts for collisional effects on the shape of the photoionization efficiency spectrum near threshold. Analysis of the DR/PIE threshold for DCO yields an adiabatic ionization threshold of 65 616±3 cm-1. By extrapolation of vibrationally autoionizing Rydberg series accessed from the Σ+ component of the 3pπ 2Π(010) intermediate state, we determine an accurate rotationally state-resolved threshold for producing DCO+(010). This energy, together with the threshold determined for the vibrational ground state of the cation provides a first estimate of the bending frequency for DCO+ as 666±3 cm-1. Assignment of the (010) autoionization spectrum further yields a measurement of an energy of 4.83±0.01 cm-1 for the (2-1) rotational transition in the 1Σ+(0110) state of DCO+.

  14. A Method of Determining Accuracy and Precision for Dosimeter Systems Using Accreditation Data

    SciTech Connect

    Rick Cummings and John Flood

    2010-12-01

    A study of the uncertainty of dosimeter results is required by the national accreditation programs for each dosimeter model for which accreditation is sought. Typically, the methods used to determine uncertainty have included the partial differentiation method described in the U.S. Guide to Uncertainty in Measurements or the use of Monte Carlo techniques and probability distribution functions to generate simulated dose results. Each of these techniques has particular strengths and should be employed when the areas of uncertainty are required to be understood in detail. However, the uncertainty of dosimeter results can also be determined using a Model II One-Way Analysis of Variance technique and accreditation testing data. The strengths of the technique include (1) the method is straightforward and the data are provided under accreditation testing and (2) the method provides additional data for the analysis of long-term uncertainty using Statistical Process Control (SPC) techniques. The use of SPC to compare variances and standard deviations over time is described well in other areas and is not discussed in detail in this paper. The application of Analysis of Variance to historic testing data indicated that the accuracy in a representative dosimetry system (Panasonic® Model UD-802) was 8.2%, 5.1%, and 4.8% and the expanded uncertainties at the 95% confidence level were 10.7%, 14.9%, and 15.2% for the Accident, Protection Level-Shallow, and Protection Level-Deep test categories in the Department of Energy Laboratory Accreditation Program, respectively. The 95% level of confidence ranges were (0.98 to 1.19), (0.90 to 1.20), and (0.90 to 1.20) for the three groupings of test categories, respectively.

  15. A method of determining accuracy and precision for dosimeter systems using accreditation data.

    PubMed

    Cummings, Frederick; Flood, John R

    2010-12-01

    A study of the uncertainty of dosimeter results is required by the national accreditation programs for each dosimeter model for which accreditation is sought. Typically, the methods used to determine uncertainty have included the partial differentiation method described in the U.S. Guide to Uncertainty in Measurements or the use of Monte Carlo techniques and probability distribution functions to generate simulated dose results. Each of these techniques has particular strengths and should be employed when the areas of uncertainty are required to be understood in detail. However, the uncertainty of dosimeter results can also be determined using a Model II One-Way Analysis of Variance technique and accreditation testing data. The strengths of the technique include (1) the method is straightforward and the data are provided under accreditation testing and (2) the method provides additional data for the analysis of long-term uncertainty using Statistical Process Control (SPC) techniques. The use of SPC to compare variances and standard deviations over time is described well in other areas and is not discussed in detail in this paper. The application of Analysis of Variance to historic testing data indicated that the accuracy in a representative dosimetry system (Panasonic® Model UD-802) was 8.2%, 5.1%, and 4.8% and the expanded uncertainties at the 95% confidence level were 10.7%, 14.9%, and 15.2% for the Accident, Protection Level-Shallow, and Protection Level-Deep test categories in the Department of Energy Laboratory Accreditation Program, respectively. The 95% level of confidence ranges were (0.98 to 1.19), (0.90 to 1.20), and (0.90 to 1.20) for the three groupings of test categories, respectively. PMID:21068596

  16. Mechanisms involved in enhancement of the expression and function of aggrecanases by hyaluronan oligosaccharides

    PubMed Central

    Ariyoshi, Wataru; Takahashi, Nobunori; Hida, Daisuke; Knudson, Cheryl B.; Knudson, Warren

    2011-01-01

    Objective Small hyaluronan (HA) oligosaccharides serve as competitive receptor antagonists to displace HA from the cell surface and induce cell signaling events. In articular chondrocytes this cell signaling is mediated by the HA receptor CD44 and induces stimulation of genes involved in matrix degradation such as matrix metalloproteinases as well as matrix repair genes including collagen type II, aggrecan and HA synthase-2. The objective of this study was to determine changes in the expression and function of aggrecanases after disruption of chondrocyte CD44-HA interactions. Methods Bovine articular chondrocytes or bovine cartilage tissue were pre-treated with a variety of inhibitors of major signaling pathways prior to the addition of HA oligosaccharides. Changes in aggrecanase were monitored by real time reverse transcriptase-polymerase chain reaction and western blot analysis of ADAMTS4, ADAMTS5 and aggrecan proteolytic fragments. To test the interactions between ADAMTS4 and MT4-MMP, protein lysates purified from stimulated chondrocytes were subjected to co-immunoprecipitation. Results Disruption of chondrocyte CD44-HA interactions with HA oligosaccharides induced the transcription of ADAMTS4 and ADAMTS5 in time- and dose-dependent manner. The association of GPI-anchored MT4-MMP with ADAMTS4 was also induced in articular chondrocytes by HA oligosaccharides. Inhibition of the NF-κB pathway blocked HA oligosaccharides-mediated stimulation of aggrecanases. Conclusions Disruptive changes in chondrocyte-matrix interactions by HA oligosaccharides induce matrix degradation and elevate aggrecanases via the activation of the NF-κB signaling pathway. PMID:21905012

  17. Structural Characterization of Neutral Oligosaccharides by Laser-Enhanced In-Source Decay of MALDI-FTICR MS

    NASA Astrophysics Data System (ADS)

    Yang, Hongmei; Yu, Yingning; Song, Fengrui; Liu, Shuying

    2011-05-01

    MALDI in-source decay (ISD) technique described to date has proven to be a convenient and rapid method for sequencing purified peptides and proteins. However, the general ISD still can not produce adequate fragments for the detailed structural elucidation of oligosaccharides. In this study, an efficient and practical method termed the laser-enhanced ISD (LEISD) technique of MALDI-FTICR MS allows highly reliable and abundant fragmentation of the neutral oligosaccharides, which was attributed to the ultrahigh irradiation laser of mJ level. The yield of ISD fragmentation was evaluated under different laser powers for 7 neutral oligosaccharides using DHB as matrix. Better quality ISD spectra including fragment ions in low-mass region were obtained at higher laser power. Results from the LEISD of oligosaccharides demonstrated that a significantly better signal-to-noise ratio (S/N) and more structural information could be obtained in comparison to the conventional CID. It was also suggested that the valuable A ions derived from cross-ring cleavage of the linear oligosaccharides allowed the distinction among α(1 → 4)-, α(1 → 6)-, β(1 → 4)-, and β(1 → 3)-linked isobaric structures according to fragment types and intensities. In addition, ideal fragmentation ions observed by LEISD method facilitated the determination of the sequences and branched points of complex oligosaccharides from human milk.

  18. Accurate and precise determination of critical properties from Gibbs ensemble Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Dinpajooh, Mohammadhasan; Bai, Peng; Allan, Douglas A.; Siepmann, J. Ilja

    2015-09-01

    Since the seminal paper by Panagiotopoulos [Mol. Phys. 61, 813 (1997)], the Gibbs ensemble Monte Carlo (GEMC) method has been the most popular particle-based simulation approach for the computation of vapor-liquid phase equilibria. However, the validity of GEMC simulations in the near-critical region has been questioned because rigorous finite-size scaling approaches cannot be applied to simulations with fluctuating volume. Valleau [Mol. Simul. 29, 627 (2003)] has argued that GEMC simulations would lead to a spurious overestimation of the critical temperature. More recently, Patel et al. [J. Chem. Phys. 134, 024101 (2011)] opined that the use of analytical tail corrections would be problematic in the near-critical region. To address these issues, we perform extensive GEMC simulations for Lennard-Jones particles in the near-critical region varying the system size, the overall system density, and the cutoff distance. For a system with N = 5500 particles, potential truncation at 8σ and analytical tail corrections, an extrapolation of GEMC simulation data at temperatures in the range from 1.27 to 1.305 yields Tc = 1.3128 ± 0.0016, ρc = 0.316 ± 0.004, and pc = 0.1274 ± 0.0013 in excellent agreement with the thermodynamic limit determined by Potoff and Panagiotopoulos [J. Chem. Phys. 109, 10914 (1998)] using grand canonical Monte Carlo simulations and finite-size scaling. Critical properties estimated using GEMC simulations with different overall system densities (0.296 ≤ ρt ≤ 0.336) agree to within the statistical uncertainties. For simulations with tail corrections, data obtained using rcut = 3.5σ yield Tc and pc that are higher by 0.2% and 1.4% than simulations with rcut = 5 and 8σ but still with overlapping 95% confidence intervals. In contrast, GEMC simulations with a truncated and shifted potential show that rcut = 8σ is insufficient to obtain accurate results. Additional GEMC simulations for hard-core square-well particles with various ranges of the

  19. Accurate and precise determination of critical properties from Gibbs ensemble Monte Carlo simulations

    SciTech Connect

    Dinpajooh, Mohammadhasan; Bai, Peng; Allan, Douglas A.; Siepmann, J. Ilja

    2015-09-21

    Since the seminal paper by Panagiotopoulos [Mol. Phys. 61, 813 (1997)], the Gibbs ensemble Monte Carlo (GEMC) method has been the most popular particle-based simulation approach for the computation of vapor–liquid phase equilibria. However, the validity of GEMC simulations in the near-critical region has been questioned because rigorous finite-size scaling approaches cannot be applied to simulations with fluctuating volume. Valleau [Mol. Simul. 29, 627 (2003)] has argued that GEMC simulations would lead to a spurious overestimation of the critical temperature. More recently, Patel et al. [J. Chem. Phys. 134, 024101 (2011)] opined that the use of analytical tail corrections would be problematic in the near-critical region. To address these issues, we perform extensive GEMC simulations for Lennard-Jones particles in the near-critical region varying the system size, the overall system density, and the cutoff distance. For a system with N = 5500 particles, potential truncation at 8σ and analytical tail corrections, an extrapolation of GEMC simulation data at temperatures in the range from 1.27 to 1.305 yields T{sub c} = 1.3128 ± 0.0016, ρ{sub c} = 0.316 ± 0.004, and p{sub c} = 0.1274 ± 0.0013 in excellent agreement with the thermodynamic limit determined by Potoff and Panagiotopoulos [J. Chem. Phys. 109, 10914 (1998)] using grand canonical Monte Carlo simulations and finite-size scaling. Critical properties estimated using GEMC simulations with different overall system densities (0.296 ≤ ρ{sub t} ≤ 0.336) agree to within the statistical uncertainties. For simulations with tail corrections, data obtained using r{sub cut} = 3.5σ yield T{sub c} and p{sub c} that are higher by 0.2% and 1.4% than simulations with r{sub cut} = 5 and 8σ but still with overlapping 95% confidence intervals. In contrast, GEMC simulations with a truncated and shifted potential show that r{sub cut} = 8σ is insufficient to obtain accurate results. Additional GEMC simulations for hard

  20. Recent advances on separation and characterization of human milk oligosaccharides.

    PubMed

    Mantovani, Veronica; Galeotti, Fabio; Maccari, Francesca; Volpi, Nicola

    2016-06-01

    Free human milk oligosaccharides (HMOs) are unique due to their highly complex nature and important emerging biological and protective functions during early life such as prebiotic activity, pathogen deflection, and epithelial and immune cell modulation. Moreover, four genetically determined heterogeneous HMO secretory groups are known to be based on their structure and composition. Over the years, several analytical techniques have been applied to characterize and quantitate HMOs, including nuclear magnetic resonance spectroscopy, high-performance liquid chromatography (HPLC), high pH anion-exchange chromatography, off-line and on-line mass spectrometry (MS), and capillary electrophoresis (CE). Even if these techniques have proven to be efficient and simple, most glycans have no significant UV absorption and derivatization with fluorophore groups prior to separation usually results in higher sensitivity and an improved chromatographic/electrophoretic profile. Consequently, the analysis by HPLC/CE of derivatized milk oligosaccharides with different chromophoric active tags has been developed. However, UV or fluorescence detection does not provide specific structural information and this is a key point in particular related to the highly complex nature of the milk glycan mixtures. As a consequence, for a specific determination of complex mixtures of oligomers, analytical separation is usually required with evaluation by means of MS, which has been successfully applied to HMOs, resulting in efficient compositional analysis and profiling in various milk samples. This review aims to give an overview of the current state-of-the-art techniques used in HMO analysis. PMID:26801168

  1. Precise orbit determination of BeiDou constellation based on BETS and MGEX network.

    PubMed

    Lou, Yidong; Liu, Yang; Shi, Chuang; Yao, Xiuguang; Zheng, Fu

    2014-01-01

    Chinese BeiDou Navigation Satellite System is officially operational as a regional constellation with five Geostationary Earth Orbit (GEO) satellites, five Inclined Geosynchronous Satellite Orbit (IGSO) satellites and four Medium Earth Orbit (MEO) satellites. Observations from the BeiDou Experimental Tracking Stations (BETS) and the IGS Multi-GNSS Experiment (MGEX) network from 1 January to 31 March 2013 are processed for orbit determination of the BeiDou constellation. Various arc lengths and solar radiation pressure parameters are investigated. The reduced set of ECOM five-parameter model produces better performance than the full set of ECOM nine-parameter model for BeiDou IGSO and MEO. The orbit overlap for the middle days of 3-day arc solutions is better than 20 cm and 14 cm for IGSO and MEO in RMS, respectively. Satellite laser ranging residuals are better than 10 cm for both IGSO and MEO. For BeiDou GEO, the orbit overlap of several meters and satellite laser ranging residuals of several decimetres can be achieved. PMID:24733025

  2. Precise orbit determination of BeiDou constellation based on BETS and MGEX network

    NASA Astrophysics Data System (ADS)

    Lou, Yidong; Liu, Yang; Shi, Chuang; Yao, Xiuguang; Zheng, Fu

    2014-04-01

    Chinese BeiDou Navigation Satellite System is officially operational as a regional constellation with five Geostationary Earth Orbit (GEO) satellites, five Inclined Geosynchronous Satellite Orbit (IGSO) satellites and four Medium Earth Orbit (MEO) satellites. Observations from the BeiDou Experimental Tracking Stations (BETS) and the IGS Multi-GNSS Experiment (MGEX) network from 1 January to 31 March 2013 are processed for orbit determination of the BeiDou constellation. Various arc lengths and solar radiation pressure parameters are investigated. The reduced set of ECOM five-parameter model produces better performance than the full set of ECOM nine-parameter model for BeiDou IGSO and MEO. The orbit overlap for the middle days of 3-day arc solutions is better than 20 cm and 14 cm for IGSO and MEO in RMS, respectively. Satellite laser ranging residuals are better than 10 cm for both IGSO and MEO. For BeiDou GEO, the orbit overlap of several meters and satellite laser ranging residuals of several decimetres can be achieved.

  3. Assessment of a non-dedicated GPS receiver system for precise airborne attitude determination

    SciTech Connect

    Cannon, M.E.; Sun, H.; Owen, T.E.; Meindl, M.A.

    1994-09-01

    The use of a non-dedicated GPS receiver system for attitude determination was assessed in airborne mode through a test conducted at Sandia National Laboratories. Four independent NovAtel GPSCard{trademark} receivers were installed in Sandia`s Twin Engine Otter with two antennas mounted on the fuselage and two on the wing tips at separations of 6 to 18 m. A strapdown INS was also on board the aircraft in order to provide an independent attitude reference at rates between 4 and 10 Hz. During the multi-day test, GPS measurements were recorded between 1 and 10 Hz. Carrier phase measurements were post-processed using a double difference approach developed at The University of Calgary in which integer ambiguities were resolved in seconds using the known antenna separations as constraints. The tracking capability of the system is demonstrated under dynamics consisting of roll and pitch angles up to 45 and 12 degrees, respectively. Comparisons between the GPS and INS attitude angles are presented for two of the test days and show agreement at the several arcminute level. Conclusions are made with respect to system accuracy and performance in an operational airborne environment.

  4. Precise orbit determination of BeiDou constellation based on BETS and MGEX network

    PubMed Central

    Lou, Yidong; Liu, Yang; Shi, Chuang; Yao, Xiuguang; Zheng, Fu

    2014-01-01

    Chinese BeiDou Navigation Satellite System is officially operational as a regional constellation with five Geostationary Earth Orbit (GEO) satellites, five Inclined Geosynchronous Satellite Orbit (IGSO) satellites and four Medium Earth Orbit (MEO) satellites. Observations from the BeiDou Experimental Tracking Stations (BETS) and the IGS Multi-GNSS Experiment (MGEX) network from 1 January to 31 March 2013 are processed for orbit determination of the BeiDou constellation. Various arc lengths and solar radiation pressure parameters are investigated. The reduced set of ECOM five-parameter model produces better performance than the full set of ECOM nine-parameter model for BeiDou IGSO and MEO. The orbit overlap for the middle days of 3-day arc solutions is better than 20 cm and 14 cm for IGSO and MEO in RMS, respectively. Satellite laser ranging residuals are better than 10 cm for both IGSO and MEO. For BeiDou GEO, the orbit overlap of several meters and satellite laser ranging residuals of several decimetres can be achieved. PMID:24733025

  5. JASON-1 Precise Orbit Determination (POD)with SLR and DORIS Tracking

    NASA Technical Reports Server (NTRS)

    Zelensky, N. P.; Luthcke, S. B.; Rowlands, D. D.; Beckley, B. D.; Lemoine, Frank G.; Wang, Y. M.; Chinn, D. S.; Williams, T. A.

    2002-01-01

    Jason-1, the TOPEX/POSEIDON (T/P) radar altimeter follow-on, is intended to continue measurement of the ocean surface with the same, if not better accuracy. T/P has demonstrated that, the time variation of ocean topography can be determined with an accuracy of a few centimeters, thanks to the availability of highly accurate orbits based on SLR and DORIS tracking. For verification and cross-calibration, Jason-1, was initially injected into the T/P orbit, flying just 72 seconds ahead of T/P. This configuration lasted over 21 Jason cycles. In mid-August T/P was maneuvered into its final tandem configuration, a parallel groundtrack, in order to improve the combined coverage. Preliminary investigations using cycles 1-9, shown at the June 2002 SWT, indicated that nominal Jason orbits can achieve the 2-3 cm accuracy objective, however several puzzling aspects of SLR and DORIS measurement modeling were also observed. This paper presents recent analysis of Jason SLR+DORIS POD spanning more than 20 cycles, and revisits several of the more puzzling issues, including estimation of the Laser Retroreflector Array (LRA) offset. The accuracy of the orbits and of the measurement modeling are evaluated using several tests, including SLR, DORIS, and altimeter crossover residual analysis, altimeter collinear analysis, and direct comparison with GPS and other orbits. T/P POD results over the same period are used as a reference.

  6. LC-MS/MS analysis of permethylated free oligosaccharides and N-glycans derived from human, bovine, and goat milk samples.

    PubMed

    Dong, Xue; Zhou, Shiyue; Mechref, Yehia

    2016-06-01

    Oligosaccharides in milk not only provide nutrition to the infants but also have significant immune biofunctions such as inhibition of pathogen binding to the host cell. The main component in milk oligosaccharides is free oligosaccharides. Since the proteins in milk are highly glycosylated, N-glycans in milk also play an import role. In this study, we investigated the permethylated free oligosaccharides and N-glycans extracted from bovine, goat, and human milks using LC-MS/MS. Quantitation profiles of free oligosaccharides and N-glycans were reported. The number of free oligosaccharides observed in bovine, goat, and human milk samples (without isomeric consideration) were 11, 8, and 11, respectively. Human milk had more complex free oligosaccharides structures than the other two milk samples. Totally 58, 21, and 43 N-glycan structures (without isomeric consideration) were associated with whey proteins extracted from bovine, goat, and human milk samples, respectively. Bovine milk free oligosaccharides and N-glycans from whey proteins were highly sialylated and to a lesser extend fucosylated. Goat and human milk free oligosaccharides and N-glycans from whey proteins were both highly fucosylated. Also, the isomeric glycans in milk samples were determined by porous graphitic carbon LC at elevated temperatures. For example, separation of human milk free oligosaccharide Gal-GlcNAc-(Fuc)-Gal-Glc and Gal-GlcNAc-Gal-Glc-Fuc isomers was achieved using porous graphitic carbon column. Permethylation of the glycan structures facilitated the interpretation of MS/MS. For example, internal cleavage and glycosidic bond cleavage are readily distinguished in the tandem mass spectra of permethylated glycans. This feature resulted in the identification of several isomers. PMID:26959529

  7. Precise Determination of the Direct-Indirect Band Gap Energy Crossover In AlxGa1-xAs

    NASA Astrophysics Data System (ADS)

    Fluegel, Brian; Beaton, Daniel; Alberi, Kirstin; Mascarenhas, Angelo

    2014-03-01

    AlxGa1-xAs is a technologically important semiconductor material system for optoelectronic applications due to its type I band alignment with GaAs under nearly lattice-matched conditions. Heterostructure design often relies on exactly controlling the relative positions of the Γ and X conduction band edges, yet despite over three decades of research on this alloy, the precise energy and composition of the direct-indirect band gap crossover is still not well resolved. We report the results of our most recent investigation of AlxGa1-xAs (0.28 < x<0.42) epitaxial films, in which the observation of concurrent photoluminescence (PL) emission peaks from the direct and indirect band gaps combined with time-resolved PL information yields a precise determination of the direct-indirect band gap crossover energy and composition. This work was supported by the DOE Office of Science, Basic Energy Sciences under contract DE-AC36-08GO28308. Acknowledgement: the samples were provided by John Reno from Sandia National Laboratory.

  8. De Novo Sequencing of Complex Mixtures of Heparan Sulfate Oligosaccharides.

    PubMed

    Huang, Rongrong; Zong, Chengli; Venot, Andre; Chiu, Yulun; Zhou, Dandan; Boons, Geert-Jan; Sharp, Joshua S

    2016-05-17

    Here, we describe the first sequencing method of a complex mixture of heparan sulfate tetrasaccharides by LC-MS/MS. Heparin and heparan sulfate (HS) are linear polysaccharides that are modified in a complex manner by N- and O-sulfation, N-acetylation, and epimerization of the uronic acid. Heparin and HS are involved in various essential cellular communication processes. The structural analysis of these glycosaminoglycans is challenging due to the lability of their sulfate groups, the high heterogeneity of modifications, and the epimerization of the uronic acids. While advances in liquid chromatography (LC) and mass spectrometry (MS) have enabled compositional profiling of HS oligosaccharide mixtures, online separation and detailed structural analysis of isomeric and epimeric HS mixtures has not been achieved. Here, we report the development and evaluation of a chemical derivatization and tandem mass spectrometry method that can separate and identify isomeric and epimeric structures from complex mixtures. A series of well-defined synthetic HS tetrasaccharides varying in sulfation patterns and uronic acid epimerization were analyzed by chemical derivatization and LC-MS/MS. These synthetic compounds made it possible to establish relationships between HS structure, chromatographic behavior and MS/MS fragmentation characteristics. Using the analytical characteristics determined through the analysis of the synthetic HS tetrasaccharide standards, an HS tetrasacharide mixture derived from natural sources was successfully sequenced. This method represents the first sequencing of complex mixtures of HS oligosaccharides, an essential milestone in the analysis of structure-function relationships of these carbohydrates. PMID:27087275

  9. Tracking developmentally regulated post-synthetic processing of homogalacturonan and chitin using reciprocal oligosaccharide probes.

    PubMed

    Mravec, Jozef; Kračun, Stjepan K; Rydahl, Maja G; Westereng, Bjørge; Miart, Fabien; Clausen, Mads H; Fangel, Jonatan U; Daugaard, Mathilde; Van Cutsem, Pierre; De Fine Licht, Henrik H; Höfte, Herman; Malinovsky, Frederikke G; Domozych, David S; Willats, William G T

    2014-12-01

    Polysaccharides are major components of extracellular matrices and are often extensively modified post-synthetically to suit local requirements and developmental programmes. However, our current understanding of the spatiotemporal dynamics and functional significance of these modifications is limited by a lack of suitable molecular tools. Here, we report the development of a novel non-immunological approach for producing highly selective reciprocal oligosaccharide-based probes for chitosan (the product of chitin deacetylation) and for demethylesterified homogalacturonan. Specific reciprocal binding is mediated by the unique stereochemical arrangement of oppositely charged amino and carboxy groups. Conjugation of oligosaccharides to fluorophores or gold nanoparticles enables direct and rapid imaging of homogalacturonan and chitosan with unprecedented precision in diverse plant, fungal and animal systems. We demonstrated their potential for providing new biological insights by using them to study homogalacturonan processing during Arabidopsis thaliana root cap development and by analyzing sites of chitosan deposition in fungal cell walls and arthropod exoskeletons. PMID:25395456

  10. Oligosaccharides in Urine, Blood, and Feces of Piglets Fed Milk Replacer Containing Galacto-oligosaccharides.

    PubMed

    Difilippo, Elisabetta; Bettonvil, Monique; Willems, Rianne H A M; Braber, Saskia; Fink-Gremmels, Johanna; Jeurink, Prescilla V; Schoterman, Margriet H C; Gruppen, Harry; Schols, Henk A

    2015-12-23

    Human milk oligosaccharides (HMOs) are absorbed into the blood (about 1% of the HMO intake) and subsequently excreted in urine, where they may protect the infant from pathogen infection. As dietary galacto-oligosaccharides (GOS) have partial structural similarities with HMOs, this study investigated the presence of GOS and oligosaccharides originating from milk replacer in blood serum, urine, and cecal and fecal samples of piglets, as a model for human infants. Using liquid chromatography-mass spectrometry and capillary electrophoresis with fluorescence detection, oligosaccharides originating from piglet diet including 3'-sialyllactose and specific GOS ranging from degree of polymerization 3 to 6 were detected in blood serum and in urine of piglets. In blood serum, GOS levels ranged from 16 to 23 μg/mL, representing about 0.1% of the GOS daily intake. In urine, approximately 0.85 g of GOS/g of creatinine was found. Cecum digesta and feces contained low amounts of oligosaccharides, suggesting an extensive GOS intestinal fermentation in piglets. PMID:26621571

  11. Precise Determination of Hypocenters and Focal Mechanisms of Volcanic Earthquakes by the Volcano Observation Network of NIED

    NASA Astrophysics Data System (ADS)

    Ueda, H.; Kohno, Y.; Nagai, M.; Miyagi, Y.; Fujita, E.; Kozono, T.; Tanada, T.

    2012-12-01

    Volcanic earthquakes are usually observed by a seismometer network on a volcano before and during eruptions, caused by crustal stress changes due to underground magma movements or an accumulation into a magma chamber. Precise hypocentral locations and focal mechanisms of the earthquakes provide information on the magmatic process and allow us to assess and predict the volcanic activity. However, focal mechanisms of volcanic earthquakes are not monitored except for relatively large earthquakes because of small size of volcanic earthquakes (M<3) and heterogeneity of volcanic structures. The obstacles also prevent automatic determination of hypocentral locations which are needed for short term eruption prediction. National Institute for Earth Science and Disaster Prevention (NIED) has been developing the volcano observation networks near the major active volcanos in Japan since 2009. The observation networks are equipped with short period seismometers and pendulum type tiltmeters at the bottom of borehole 200 m deep, and broad band seismometers and GPS antennas on the ground. We developed a monitoring technique for precise determination of hypocenters and focal mechanisms of volcanic earthquakes by using similarity of seismic wave forms and the high quality short period seismometer data of the volcano observation networks. Firstly, we extract earthquake groups which have similar seismic wave forms including P and S waves with correlation coefficient of more than 0.9 on more than three stations. Secondly, we display the wave forms with the similar phases in a row and stack them to reduce noises, and then precisely pick again the phases and first motion polarities of P waves. Thirdly, we relocate the hypocenters by Double-Difference method (Waldhauser and Ellsworth, 2000, BSSA) and estimate focal mechanisms by using P wave first motion polarity and S/P amplitude ratios (Hardebeck and Shearer, 2003, BSSA). We applied the technique to earthquake catalogs of Mt. Fuji and

  12. JASON-1 Precise Orbit Determination (POD) Through the Combination and Comparison of GPS, SLR, DORIS and Altimeter Crossover Data

    NASA Technical Reports Server (NTRS)

    Luthcke, S. B.; Zelensky, N. P.; Lemoine, Frank G.; Chinn, D. S.; Williams, T. A.

    2002-01-01

    Jason-1, launched on December 7, 2001, is continuing the time series of centimeter level ocean topography observations as the follow-on to the highly successful TOPEX/POSEIDON (T/P) radar altimeter satellite. The precision orbit determination (POD) is a critical component to meeting the ocean topography goals of the mission. T/P has demonstrated that the time variation of ocean topography can be determined with an accuracy of a few centimeters, thanks to the availability of highly accurate orbits based primarily on SLR+DORIS tracking. The Jason-1 mission is intended to continue measurement of the ocean surface with the same, if not better accuracy. Fortunately, Jason-1 POD can rely on four independent tracking data types available including near continuous tracking data from the dual frequency codeless BlackJack GPS receiver. Orbit solutions computed using individual and various combinations of GPS, SLR, DORIS and altimeter crossover data types have been determined from over 100 days of Jason-1 tracking data. The performance of the orbit solutions and tracking data has been evaluated. Orbit solution evaluation and comparison has provided insight into possible areas of refinement. Several aspects of the POD process are examined to obtain orbit improvements including measurement modeling, force modeling and solution strategy. The results of these analyses will be presented.

  13. JASON-1 Precise Orbit Determination (POD) Through the Combination and Comparison of GPS, SLR, DORIS and Altimeter Crossover Data

    NASA Technical Reports Server (NTRS)

    Luthcke, Scott B.; Zelensky, N. P.; Rowlands, D. D.; Lemoine, F. G.; Chinn, D. S.; Williams, T. A.

    2002-01-01

    Jason-1, launched on December 7,2001, is continuing the time series of centimeter level ocean topography observations as the follow-on to the highly successful TOPEX/POSEIDON (T/P) radar altimeter satellite. The precision orbit determination (POD) is a critical component to meeting the ocean topography goals of the mission. T P has demonstrated that the time variation of ocean topography can be determined with an accuracy of a few centimeters, thanks to the availability of highly accurate orbits based primarily on SLR+DORIS tracking. The Jason-1 mission is intended to continue measurement of the ocean surface with the same, if not better accuracy. Fortunately, Jason- 1 POD can rely on four independent tracking data types available including near continuous tracking data from the dual frequency codeless BlackJack GPS receiver. Orbit solutions computed using individual and various combinations of GPS, SLR, DORIS and altimeter crossover data types have been determined from over 100 days of Jason-1 tracking data, The performance of the orbit solutions and tracking data has been evaluated. Orbit solution evaluation and comparison has provided insight into possible areas of refinement. Several aspects of the POD process are examined to obtain orbit improvements including measurement modeling, force modeling and solution strategy. The results of these analyses will be presented.

  14. Cellobiohydrolases Produce Different Oligosaccharides from Chitosan.

    PubMed

    Tegl, Gregor; Öhlknecht, Christoph; Vielnascher, Robert; Rollett, Alexandra; Hofinger-Horvath, Andreas; Kosma, Paul; Guebitz, Georg M

    2016-06-13

    Chito-oligosaccharides (COSs) are bioactive molecules with interesting characteristics; however, their exploitation is still restricted due to limited amounts accessible with current production strategies. Here we present a strategy for the production of COSs based on hydrolysis of chitosan by using readily available glycosidases. Cellobiohydrolases (EC 3.2.1.91) were compared with chitosanases (EC 3.2.1.132) regarding their ability for COS production, and the resulting fractions were analyzed by MS and NMR. The oligosaccharides had a degree of polymerization between three and six units, and the degree of acetylation (DA) varied depending on the applied enzyme. Different cellobiohydrolases produced COSs with varying DA, and based on comprehensive NMR analysis the preferred cleavage sites of the respective enzymes that show chitosanase and chitinase activity were elucidated. The study reveals the high potential of readily available cellulolytic enzymes besides chitosanases for the production of COSs with distinct structure facilitating access to this bioactive compound class. PMID:27214513

  15. Oligosaccharide formation during commercial pear juice processing.

    PubMed

    Willems, Jamie L; Low, Nicholas H

    2016-08-01

    The effect of enzyme treatment and processing on the oligosaccharide profile of commercial pear juice samples was examined by high performance anion exchange chromatography with pulsed amperometric detection and capillary gas chromatography with flame ionization detection. Industrial samples representing the major stages of processing produced with various commercial enzyme preparations were studied. Through the use of commercially available standards and laboratory scale enzymatic hydrolysis of pectin, starch and xyloglucan; galacturonic acid oligomers, glucose oligomers (e.g., maltose and cellotriose) and isoprimeverose were identified as being formed during pear juice production. It was found that the majority of polysaccharide hydrolysis and oligosaccharide formation occurred during enzymatic treatment at the pear mashing stage and that the remaining processing steps had minimal impact on the carbohydrate-based chromatographic profile of pear juice. Also, all commercial enzyme preparations and conditions (time and temperature) studied produced similar carbohydrate-based chromatographic profiles. PMID:26988479

  16. Profiling oligosaccharidurias by electrospray tandem mass spectrometry: quantifying reducing oligosaccharides.

    PubMed

    Ramsay, Steven L; Meikle, Peter J; Hopwood, John J; Clements, Peter R

    2005-10-01

    A method to semiquantify urinary oligosaccharides from patients suffering from oligosaccharidurias is presented. 1-Phenyl-3-methyl-5-pyrazolone has been used to derivatize urinary oligosaccharides prior to analysis by electrospray ionization-tandem mass spectrometry (ESI-MS/MS). Disease-specific oligosaccharides were identified for several oligosaccharidurias, including GM1 gangliosidosis, GM2 gangliosidosis, sialic acid storage disease, sialidase/neuraminidase deficiency, galactosialidosis, I-cell disease, fucosidosis, Pompe and Gaucher diseases, and alpha-mannosidosis. The oligosaccharides were referenced against the internal standard, methyl lactose, to produce ratios for comparison with control samples. Elevations in specific urinary oligosaccharides were indicative of lysosomal disease and the defective catabolic enzyme. This method has been adapted to enable assay of large sample numbers and could readily be extended to other oligosaccharidurias and to monitor oligosaccharide levels in patients receiving treatment. It also has immediate potential for incorporation into a newborn screening program. PMID:16111643

  17. Revision of the oligosaccharide structures of yeast carboxypeptidase Y

    SciTech Connect

    Ballou, L.; Hernandez, L.M.; Alvarado, E.; Ballou, C.E. )

    1990-05-01

    The N-linked oligosaccharides from baker's yeast carboxypeptidase Y were analyzed by {sup 1}H NMR and specific mannosidase digestion and found to be identical to those from the Saccharomyces cerevisiae mnn9 mutant bulk mannoprotein. The results support the view that the mnn mutants make oligosaccharides that are a true reflection of the normal biosynthetic pathway and confirm that a recently revised yeast oligosaccharide structure is applicable to wild-type mannoproteins.

  18. Divergent Synthesis of Heparan Sulfate Oligosaccharides.

    PubMed

    Dulaney, Steven B; Xu, Yongmei; Wang, Peng; Tiruchinapally, Gopinath; Wang, Zhen; Kathawa, Jolian; El-Dakdouki, Mohammad H; Yang, Bo; Liu, Jian; Huang, Xuefei

    2015-12-18

    Heparan sulfates are implicated in a wide range of biological processes. A major challenge in deciphering their structure and activity relationship is the synthetic difficulties to access diverse heparan sulfate oligosaccharides with well-defined sulfation patterns. In order to expedite the synthesis, a divergent synthetic strategy was developed. By integrating chemical synthesis and two types of O-sulfo transferases, seven different hexasaccharides were obtained from a single hexasaccharide precursor. This approach combined the flexibility of chemical synthesis with the selectivity of enzyme-catalyzed sulfations, thus simplifying the overall synthetic operations. In an attempt to establish structure activity relationships of heparan sulfate binding with its receptor, the synthesized oligosaccharides were incorporated onto a glycan microarray, and their bindings with a growth factor FGF-2 were examined. The unique combination of chemical and enzymatic approaches expanded the capability of oligosaccharide synthesis. In addition, the well-defined heparan sulfate structures helped shine light on the fine substrate specificities of biosynthetic enzymes and confirm the potential sequence of enzymatic reactions in biosynthesis. PMID:26574650

  19. Effect of fructo-oligosaccharide and isomalto-oligosaccharide addition on baking quality of frozen dough.

    PubMed

    Park, Eun Young; Jang, Sung-Bum; Lim, Seung-Taik

    2016-12-15

    The baking quality of frozen doughs containing different levels of fructo-oligosaccharides (FO) or isomalto-oligosaccharides (IMO) (3-9%, w/w flour), and stored for 0-8weeks at -18°C, was examined. The addition of FO or IMO increased the proof volume of the dough and the loaf volume of bread prepared from frozen dough. A 6% addition of FO or IMO was optimum, giving the highest proof volume and bread loaf volume, but a higher concentration than 6% induced low baking quality including lower proof volume and bread loaf volume. The bread crumb was moister and softer after the addition of FO or IMO before, and even after, frozen storage. Darker crumb colour was observed in the bread after the addition of FO or IMO. The oligosaccharides added to the frozen dough were effective in improving the quality of bread made from frozen dough, except for resulting in a darker bread crumb. PMID:27451167

  20. Oligosaccharides of milk and colostrum in non-human mammals.

    PubMed

    Urashima, T; Saito, T; Nakamura, T; Messer, M

    2001-05-01

    Mammalian milk or colostrum usually contains, in addition to lactose, a variety of neutral and acidic oligosaccharides. Although the oligosaccharides of human milk have been reviewed in several recent publications, those of non-human mammals have received much less attention. This paper reviews the chemical structures and the variety of milk oligosaccharides in species other than humans, including placental mammals (e.g. primates, domestic herbivores, bears and other carnivores, the rat and the elephant) as well as monotremes (platypus and echidna) and marsupials (e.g. wallaby). The gastrointestinal digestion and absorption and the possible biological functions of these oligosaccharides are also discussed. PMID:11925504

  1. Structure analysis and laxative effects of oligosaccharides isolated from bananas.

    PubMed

    Wang, Juan; Huang, Hui Hua; Cheng, Yan Feng; Yang, Gong Ming

    2012-10-01

    Banana oligosaccharides (BOS) were extracted with water, and then separated and purified using column chromatography. Gel penetration chromatography was used to determine the molecular weights. Thin layer chromatogram and capillary electrophoresis were employed to analyze the monosaccharide composition. The indican bond and structure of the BOS molecule were determined using Fourier transform infrared spectroscopy and nuclear magnetic resonance. Results showed that BOS were probably composed of eight β-D-pyran glucose units linked with 1→6 indican bonds. The laxative effects of BOS were investigated in mice using the method described in "Handbook of Technical Standards for Testing and Assessment of Health Food in China." The length of the small intestine over which a carbon suspension solution advanced in mice treated with low-, middle-, and high-dose BOS was significantly greater than that in the model group, suggesting that BOS are effective in accelerating the movement of the small intestine. PMID:23039112

  2. The Precise Determination of Cd Isotope Ratio in Geological Samples by MC-ICP-MS with Ion Exchange Separation

    NASA Astrophysics Data System (ADS)

    Du, C.; Hu, S.; Wang, D.; Jin, L.; Guo, W.

    2014-12-01

    Cadmium (Cd) is a trace element which occurs at μg g-1 level abundances in the crust. Cd isotopes have great prospects in the study of the cosmogony, the trace of anthropogenic sources, the micronutrient cycling and the ocean productivity. This study develops an optimized technique for the precise and accurate determination of Cd isotopic compositions. Cd was separated from the matrix by elution with AG-MP-1 anionic exchange chromatographic resin. The matrix elements (K, Na, Ca, Al, Fe, and Mg etc.), polyatomic interfered elements (Ge, Ga, Zr, Nb, Ru, and Mo), and isobaric interfered elements (In, Pd and most of Sn) were eluted using HCl with gradient descent concentrations (2, 0.3, 0.06, 0.012 and 0.0012 mol L-1). The same elution procedure was repeated to eliminate the residuel Sn (Sn/Cd < 0.018). The collected Cd was analyzed using MC-ICP-MS, in which the instrumental mass fractionation was controlled by a "sample-standard bracketing" technique. The recovery of Cd larger than 96.85%, and the δ114/110Cd are in the range of -1.43~+0.20‰ for ten geological reference materials (GSD-3a, GSD-5a, GSD-7a, GSD-6, GSD-9, GSD-10, GSD-11, GSD-12, GSD-23, and GSS-1). The δ114/110Cd obtained for GSS-1 soil sample relative to the NIST SRM 3108 Cd solution was 0.20, which was coherent with the literature values (0.08±0.23). This method had a precision of 0.001~0.002% (RSD), an error range of 0.06~0.14 (δ114/110Cd, 2σ), and a long-term reproducibility of 0.12 (δ114/110Cd, 2σ).

  3. Structure of a Sialo-Oligosaccharide from Glycophorin in Carp Red Blood Cell Membranes

    PubMed Central

    Aoki, Takahiko; Chimura, Kenji; Sugiura, Hikaru; Mizuno, Yasuko

    2014-01-01

    We isolated a high-purity carp glycophorin from carp erythrocyte membranes and prepared the oligosaccharide fraction from glycophorin by β-elimination [1]. The oligosaccharide fraction was separated into two components (P-1 and P-2) using a Glyco-Pak DEAE column. These O-linked oligosaccharides (P-1 and P-2) were composed of glucose, galactose, fucose, N-acetylgalactosamine and N-glycolylneuraminic acid (NeuGc). The P-1 and P-2 contained one and two NeuGc residues, respectively, and the P-1 exhibited bacteriostatic activity [1]. Using NMR and GC-MS, we determined that the structure of the bacteriostatic P-1 was NeuGcα2→6 (Fucα1→4) (Glcα1→3) Galβ1→4GalNAc-ol. This O-linked oligosaccharide was unique for a vertebrate with respect to the hexosamine and hexose linkages and its non-chain structure. PMID:25402951

  4. Rapid-throughput glycomics applied to human milk oligosaccharide profiling for large human studies.

    PubMed

    Totten, Sarah M; Wu, Lauren D; Parker, Evan A; Davis, Jasmine C C; Hua, Serenus; Stroble, Carol; Ruhaak, L Renee; Smilowitz, Jennifer T; German, J Bruce; Lebrilla, Carlito B

    2014-12-01

    Glycomic analysis is the comprehensive determination of glycan (oligosaccharide) structures with quantitative information in a biological sample. Rapid-throughput glycomics is complicated due to the lack of a template, which has greatly facilitated analysis in the field of proteomics. Furthermore, the large similarities in structures make fragmentation spectra (as obtained in electron impact ionization and tandem mass spectrometry) less definitive for identification as it has been in metabolomics. In this study, we develop a concept of rapid-throughput glycomics on human milk oligosaccharides, which have proven to be an important bioactive component of breast milk, providing the infant with protection against pathogenic infection and supporting the establishment of a healthy microbiota. To better understand the relationship between diverse oligosaccharides structures and their biological function as anti-pathogenic and prebiotic compounds, large human studies are needed, which necessitate rapid- to high-throughput analytical platforms. Herein, a complete glycomics methodology is presented, evaluating the most effective human milk oligosaccharide (HMO) extraction protocols, the linearity and reproducibility of the nano-liquid chromatography chip time-of-flight mass spectrometry (nano-LC chip-TOF MS) method, and the efficacy of newly developed, in-house software for chromatographic peak alignment that allows for rapid data analysis. High instrument stability and retention time reproducibility, together with the successful automated alignment of hundreds of features in hundreds of milk samples, allow for the use of an HMO library for rapid assignment of fully annotated structures. PMID:25358913

  5. Precise Orbit Determination for GEOSAT Follow-On Using Satellite Laser Ranging Data and Intermission Altimeter Crossovers

    NASA Technical Reports Server (NTRS)

    Lemoine, Frank G.; Rowlands, David D.; Luthcke, Scott B.; Zelensky, Nikita P.; Chinn, Douglas S.; Pavlis, Despina E.; Marr, Gregory

    2001-01-01

    The US Navy's GEOSAT Follow-On Spacecraft was launched on February 10, 1998 with the primary objective of the mission to map the oceans using a radar altimeter. Following an extensive set of calibration campaigns in 1999 and 2000, the US Navy formally accepted delivery of the satellite on November 29, 2000. Satellite laser ranging (SLR) and Doppler (Tranet-style) beacons track the spacecraft. Although limited amounts of GPS data were obtained, the primary mode of tracking remains satellite laser ranging. The GFO altimeter measurements are highly precise, with orbit error the largest component in the error budget. We have tuned the non-conservative force model for GFO and the gravity model using SLR, Doppler and altimeter crossover data sampled over one year. Gravity covariance projections to 70x70 show the radial orbit error on GEOSAT was reduced from 2.6 cm in EGM96 to 1.3 cm with the addition of SLR, GFO/GFO and TOPEX/GFO crossover data. Evaluation of the gravity fields using SLR and crossover data support the covariance projections and also show a dramatic reduction in geographically-correlated error for the tuned fields. In this paper, we report on progress in orbit determination for GFO using GFO/GFO and TOPEX/GFO altimeter crossovers. We will discuss improvements in satellite force modeling and orbit determination strategy, which allows reduction in GFO radial orbit error from 10-15 cm to better than 5 cm.

  6. High-precision (p,t) reaction to determine {sup 25}Al(p,{gamma}){sup 26}Si reaction rates

    SciTech Connect

    Matic, A.; Berg, A. M. van den; Harakeh, M. N.; Woertche, H. J.; Berg, G. P. A.; Couder, M.; Goerres, J.; LeBlanc, P.; O'Brien, S.; Wiescher, M.; Fujita, K.; Hatanaka, K.; Sakemi, Y.; Shimizu, Y.; Tameshige, Y.; Tamii, A.; Yosoi, M.; Adachi, T.; Fujita, Y.; Shimbara, Y.

    2010-08-15

    Since the identification of ongoing {sup 26}Al production in the universe, the reaction sequence {sup 24}Mg(p,{gamma}){sup 25}Al({beta}{sup +{nu}}){sup 25}Mg(p,{gamma}){sup 26}Al has been studied intensively. At temperatures where the radiative capture on {sup 25}Al (t{sub 1/2}=7.2 s) becomes faster than the {beta}{sup +} decay, the production of {sup 26}Al can be reduced due to the depletion of {sup 25}Al. To determine the resonances relevant for the {sup 25}Al(p,{gamma}){sup 26}Si bypass reaction, we measured the {sup 28}Si(p,t){sup 26}Si reaction with high-energy precision using the Grand Raiden spectrometer at the Research Center for Nuclear Physics, Osaka. Several new energy levels were found above the p threshold and for known states excitation energies were determined with smaller uncertainties. The calculated stellar rates of the bypass reaction agree well with previous results, suggesting that these rates are well established.

  7. Proposal for precision determination of 7.8 eV isomeric state in 229Th at heavy ion storage ring

    NASA Astrophysics Data System (ADS)

    Ma, X.; Wen, W. Q.; Huang, Z. K.; Wang, H. B.; Yuan, Y. J.; Wang, M.; Sun, Z. Y.; Mao, L. J.; Yang, J. C.; Xu, H. S.; Xiao, G. Q.; Zhan, W. L.

    2015-11-01

    The ultraviolet optical transition of the isomeric state in 229Th has attracted much attention recently due to its potential application to building an atomic/nuclear clock with ultra-high precision. However, the lowest nuclear excitation energy and the lifetime of the first excited state of 229Th were not measured directly and precisely until now, and how to precisely determine this isomer state of the 229Th is an urgent requirement. Here an experimental approach of using a technique similar to that of dielectronic recombination to measure the transition energy of the isomer state of 229Th at heavy ion storage rings is described. It is expected that the resonant transition can be found and determined with a precision better than several milli-eV.

  8. Tissue-specific N-glycosylation, site-specific oligosaccharide patterns and lentil lectin recognition of rat Thy-1.

    PubMed Central

    Parekh, R B; Tse, A G; Dwek, R A; Williams, A F; Rademacher, T W

    1987-01-01

    To examine the extent to which protein structure and tissue-type influence glycosylation, we have determined the oligosaccharide structures at each of the three glycosylation sites (Asn-23, 74 and 98) of the cell surface glycoprotein Thy-1 isolated from rat brain and thymus. The results show that there is tissue-specificity of glycosylation and that superimposed on this is a significant degree of site-specificity. On the basis of the site distribution of oligosaccharides, we find that no Thy-1 molecules are in common between the two tissues despite the amino acid sequences being identical. We suggest, therefore, that by controlling N-glycosylation a tissue creates an unique set of glycoforms (same polypeptide but with oligosaccharides that differ either in sequence or disposition). The structures at each of the three sites were also determined for the thymocyte Thy-1 that binds to lentil lectin (Thy-1 L+) and for that which does not (Thy-1 L-). Segregation of intact thymus Thy-1 into two distinct sets of glycoforms by lentil lectin was found to be due to the structures at site 74. Analysis of oligosaccharide structures at the 'passenger' sites (23 and 98) suggests that either Thy-1 L+ and Thy-1 L- molecules are made in different cell-types or that the biosynthesis of oligosaccharides at one site is influenced by the glycosylation at other sites. PMID:2886334

  9. Comparison of TOPEX/Poseidon orbit determination solutions obtained by the Goddard Space Flight Center Flight Dynamics Division and Precision Orbit Determination Teams

    NASA Technical Reports Server (NTRS)

    Doll, C.; Mistretta, G.; Hart, R.; Oza, D.; Cox, C.; Nemesure, M.; Bolvin, D.; Samii, Mina V.

    1993-01-01

    Orbit determination results are obtained by the Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) using the Goddard Trajectory Determination System (GTDS) and a real-time extended Kalman filter estimation system to process Tracking Data and Relay Satellite (TDRS) System (TDRSS) measurements in support of the Ocean Topography Experiment (TOPEX)/Poseidon spacecraft navigation and health and safety operations. GTDS is the operational orbit determination system used by the FDD, and the extended Kalman fliter was implemented in an analysis prototype system, the Real-Time Orbit Determination System/Enhanced (RTOD/E). The Precision Orbit Determination (POD) team within the GSFC Space Geodesy Branch generates an independent set of high-accuracy trajectories to support the TOPEX/Poseidon scientific data. These latter solutions use the Geodynamics (GEODYN) orbit determination system with laser ranging tracking data. The TOPEX/Poseidon trajectories were estimated for the October 22 - November 1, 1992, timeframe, for which the latest preliminary POD results were available. Independent assessments were made of the consistencies of solutions produced by the batch and sequential methods. The batch cases were assessed using overlap comparisons, while the sequential cases were assessed with covariances and the first measurement residuals. The batch least-squares and forward-filtered RTOD/E orbit solutions were compared with the definitive POD orbit solutions. The solution differences were generally less than 10 meters (m) for the batch least squares and less than 18 m for the sequential estimation solutions. The differences among the POD, GTDS, and RTOD/E solutions can be traced to differences in modeling and tracking data types, which are being analyzed in detail.

  10. Determination of the precision and accuracy of morphological measurements using the Kinect™ sensor: comparison with standard stereophotogrammetry.

    PubMed

    Bonnechère, B; Jansen, B; Salvia, P; Bouzahouene, H; Sholukha, V; Cornelis, J; Rooze, M; Van Sint Jan, S

    2014-01-01

    The recent availability of the Kinect™ sensor, a low-cost Markerless Motion Capture (MMC) system, could give new and interesting insights into ergonomics (e.g. the creation of a morphological database). Extensive validation of this system is still missing. The aim of the study was to determine if the Kinect™ sensor can be used as an easy, cheap and fast tool to conduct morphology estimation. A total of 48 subjects were analysed using MMC. Results were compared with measurements obtained from a high-resolution stereophotogrammetric system, a marker-based system (MBS). Differences between MMC and MBS were found; however, these differences were systematically correlated and enabled regression equations to be obtained to correct MMC results. After correction, final results were in agreement with MBS data (p = 0.99). Results show that measurements were reproducible and precise after applying regression equations. Kinect™ sensors-based systems therefore seem to be suitable for use as fast and reliable tools to estimate morphology. Practitioner Summary: The Kinect™ sensor could eventually be used for fast morphology estimation as a body scanner. This paper presents an extensive validation of this device for anthropometric measurements in comparison to manual measurements and stereophotogrammetric devices. The accuracy is dependent on the segment studied but the reproducibility is excellent. PMID:24646374

  11. A dual-styli micro-machined system for precise determination of the thickness of free-standing thin films

    NASA Astrophysics Data System (ADS)

    Li, Zhi; Gao, Sai; Wolff, Helmut; Brand, Uwe; Koenders, Ludger

    2014-05-01

    Free-standing thin membranes have now been widely applied in various research and industrial fields. As one of the key parameters of thin membranes, the membrane thickness is demanded to be precisely determined. A traceable membrane thickness measurement system is presented in this paper. It utilizes a pair of micro-machined nano-force transducers to actively detect both surfaces of a free-standing micro-machined membrane. Thanks to the high force sensitivity (down to a few Nanonewton) and a relatively large movement range (up to 10 μm) of the MEMS transducers in use, the proposed thickness measurement micro-system is capable of measuring membranes with small open aperture and membrane thicknesses down to sub-100 nm. In addition, the in-plane movement of the MEMS-transducers is measured in real-time by a single-frequency laser interferometer with nanometric resolution, which is traceable to the SI unit. Numerical analysis of the tip-membrane mechanical contact at nano-scale has been undertaken, which guides the selection of appropriate stylus radius used for experiments. Design and construction of the miniature thickness measurement system are detailed in this paper, including the first measurement results, which prove the feasibility of the proposed measurement system.

  12. Precise orbit and attitude determination using redundant low-cost single-frequency GNSS receivers on a CubeSat

    NASA Astrophysics Data System (ADS)

    Willi, Daniel; Fisler, Michael; Hollenstein, Christine; Männel, Benjamin; Meindl, Michael; Xu, Hui; Rothacher, Markus

    2016-07-01

    CubETH is a technology demonstration mission aimed at using low-cost commercial-off-the-shelf GNSS receivers for space applications. Precise orbit and attitude determination, on-board as well as in post-processing, are the main mission goals. The one unit cube-satellite is equipped with five GNSS antennas, each of them connected to two u-blox multi-GNSS receivers. The position estimation on the satellite is based on the receiver navigation solution. We show that (1) the proper correction of the ionospheric path delay and (2) the position propagation in the Kalman filter are of uppermost importance. Based on available data from the GRACE and GOCE missions, we show how an adapted Klobuchar model leads to a better estimation of the path delay in low Earth orbits. Based on recent signal-simulator tests, we illustrate how the linear propagation in the receiver Kalman filter leads to systematic errors and exhibit a method for improvement.

  13. Precise determination of the chemical diffusion coefficient of calcium-doped lanthanum chromites by means of electrical conductivity relaxation

    SciTech Connect

    Yasuda, Isamu; Hikita, Tomoji . Fundamental Technology Research Lab.)

    1994-05-01

    Chemical relaxation experiments were conducted on sintered samples of calcium-doped lanthanum chromites by abruptly changing the oxygen partial pressure in the atmosphere and following the time change of conductivity. The re-equilibration kinetics was analyzed by fitting the relaxation data to the solutions of Fick's second law for appropriate boundary conditions. The diffusion equation ignoring the effect of surface reaction failed to describe the transient behavior especially for the initial stage, while that taking the surface effect into account gave a satisfactory interpretation of the overall relaxation process and allowed a precise determination of the two kinetic parameters: oxygen chemical diffusion coefficient and surface reaction rate constant. The chemical diffusion coefficients increased with a decrease of the oxygen partial pressure due to the corresponding change in the concentration of the moving species. The activation energy was similar to that of oxygen vacancy diffusion coefficients in other monocrystalline perovskites, suggesting that the measured diffusion coefficients were attributable to lattice diffusion. The surface reaction rate constant increased with a decrease of the oxygen partial pressure similarly to the reported oxygen nonstoichiometry, which implies that the presence of oxygen vacancies plays an important role in the surface reaction kinetics.

  14. Enhancing the chemoenzymatic synthesis of arabinosylated xylo-oligosaccharides by GH51 α-L-arabinofuranosidase.

    PubMed

    Arab-Jaziri, Faten; Bissaro, Bastien; Tellier, Charles; Dion, Michel; Fauré, Régis; O'Donohue, Michael J

    2015-01-12

    Random mutagenesis was performed on the α-l-arabinofuranosidase of Thermobacillus xylanilyticus in order to enhance its ability to perform transarabinofuranosylation using natural xylo-oligosaccharides as acceptors. To achieve this goal, a two-step, high-throughput digital imaging protocol involving a colorimetric substrate was used to screen a library of 30,000 mutants. In the first step this screen selected for hydrolytically-impaired mutants, and in the second step the screen identified mutants whose global activity was improved in the presence of a xylo-oligosaccharide mixture. Thereby, 199 mutants displaying lowered hydrolytic activity and modified properties were detected. In the presence of these xylo-oligosaccharides, most of the 199 (i.e., 70%) enzymes were less inhibited and some (18) mutants displayed an unambiguous alleviation of inhibition (<25% loss of activity). More precise monitoring of reactions catalyzed by the most promising mutants revealed a significant improvement of the synthesis yields of transglycosylation products (up to 18% compared to 9% for the parental enzyme) when xylobiose was present in the reaction. Genetic analysis of improved mutants revealed that many of the amino acid substitutions that correlate with the modified phenotype are located in the vicinity of the active site, particularly in subsite -1. Consequently, we hypothesize that these mutations modify the active site topology or the molecular interaction network of the l-arabinofuranoside donor substrate, thus impairing the hydrolysis and concomitantly favoring transglycosylation onto natural acceptors. PMID:25464083

  15. The novel structure of the core oligosaccharide backbone of the lipopolysaccharide from the Plesiomonas shigelloides strain CNCTC 80/89 (serotype O13).

    PubMed

    Kaszowska, Marta; Jachymek, Wojciech; Niedziela, Tomasz; Koj, Sabina; Kenne, Lennart; Lugowski, Czeslaw

    2013-10-18

    The new structure of the core oligosaccharide of Plesiomonas shigelloides CNCTC 80/89 (serotype O13) lipopolysaccharide has been investigated by chemical methods, (1)H and (13)C NMR spectroscopy and matrix-assisted laser-desorption/ionization time of flight (MALDI-TOF). It was concluded that the core oligosaccharide of P. shigelloides CNCTC 80/89 is a nonasaccharide with the following structure: The position of glycine was determined by MALDI-TOF MS/MS analyses. PMID:23920477

  16. The Application of GIM in Precise Orbit Determination for LEO Satellites with Single-Frequency GPS Measurements

    NASA Astrophysics Data System (ADS)

    Peng, Dong-ju; Wu, Bin

    2012-10-01

    With the precise GPS ephemeris and clock error available, the iono- spheric delay is left as the dominant error source in the single-frequency GPS data. Thus, the removal of ionospheric effects is a ma jor prerequisite for an improved orbit reconstruction of LEO satellites based on the single-frequency GPS data. In this paper, the use of Global Ionospheric Maps (GIM) in kine- matic and dynamic orbit determinations for LEO satellites with single-frequency GPS pseudorange measurements is discussed first, and then, estimating the iono- spheric scale factor to remove the ionospheric effects from the C/A-code pseu- dorange measurements for both kinematic and dynamic orbit determinations is addressed. As it is known that the ionospheric delay of space-borne GPS sig- nals is strongly dependent on the orbit altitudes of LEO satellites, we select the real C/A-code pseudorange measurement data of the CHAMP, GRACE, TerraSAR-X and SAC-C satellites with altitudes between 300 km and 800 km as sample data in this paper. It is demonstrated that the approach to eliminating ionospheric effects in C/A-code pseudorange measurements by estimating the ionospheric scale factor is highly effective. Employing this approach, the accu- racy of both kinematic and dynamic orbits can be improved notably. Among those five LEO satellites, CHAMP with the lowest orbit altitude has the most remarkable improvements in orbit accuracy, which are 55.6% and 47.6% for kine- matic and dynamic orbits, respectively. SAC-C with the highest orbit altitude has the least improvements in orbit accuracy accordingly, which are 47.8% and 38.2%, respectively.

  17. A Precise Determination of the Mid-infrared Interstellar Extinction Law Based on the APOGEE Spectroscopic Survey

    NASA Astrophysics Data System (ADS)

    Xue, Mengyao; Jiang, B. W.; Gao, Jian; Liu, Jiaming; Wang, Shu; Li, Aigen

    2016-06-01

    A precise measure of the mid-infrared interstellar extinction law is crucial for investigating the properties of interstellar dust, especially larger-sized grains. Based on the stellar parameters derived from the SDSS-III/Apache Point Observatory Galaxy Evolution Experiment (APOGEE) spectroscopic survey, we select a large sample of G-type and K-type giants as the tracers of the Galactic mid-infrared extinction. We calculate the intrinsic stellar color excesses from the stellar effective temperatures and use them to determine the mid-infrared extinction for a given line of sight. For the entire sky of the Milky Way surveyed by APOGEE, we derive the extinctions (relative to {A}{{{K}}{{S}}}, the K S-band extinction at wavelength λ = 2.16 μm) for the four Wide-field Infrared Survey Explorer (WISE) bands at 3.4, 4.6, 12, and 22 μm, the four Spitzer/Infrared Array Camera bands at 3.6, 4.5, 5.8, and 8 μm, the Spitzer/MIPS24 band at 23.7 μm, and, for the first time, the AKARI/S9W band at 8.23 μm. Our results agree with previous works in that the extinction curve is flat in the ∼3–8 μm wavelength range and is generally consistent with the {R}V = 5.5 model curve, except our determination exceeds the model prediction in the WISE/W4 band. Although some previous works found that the mid-IR extinction law appears to vary with the extinction depth {A}{{{K}}{{S}}}, no noticeable variation has been found in this work. The uncertainties are analyzed in terms of the bootstrap resampling method and Monte-Carlo simulation and are found to be rather small.

  18. Consumption of Human Milk Oligosaccharides by Gut-related Microbes

    PubMed Central

    Marcobal, Angela; Barboza, Mariana; Froehlich, John W.; Block, David E.; German, J. Bruce; Lebrilla, Carlito B.; Mills, David A.

    2010-01-01

    Human milk contains large amounts of complex oligosaccharides that putatively modulate the intestinal microbiota of breast-fed infants by acting as decoy binding sites for pathogens and as prebiotics for enrichment of beneficial bacteria. Several bifidobacterial species have been shown to grow well on human milk oligosaccharides. However, little data exists on other bacterial species. In this work we examined 16 bacterial strains belonging to 10 different genera for growth on human milk oligosaccharides. For this propose, we used a chemically-defined medium, ZMB1, which allows vigorous growth of a number gut–related microorganisms in a fashion similar to complex media. Interestingly, Bifidobacterium longum subsp. infantis, Bacteroides fragilis and Bacteroides vulgatus strains were able to metabolize milk oligosaccharides with high efficiency, while Enterococcus, Streptococcus, Veillonella, Eubacterium, Clostridium, and Escherichia coli strains grew less well or not at all. Mass spectrometry-based glycoprofiling of the oligosaccharide consumption behavior revealed a specific preference for fucosylated oligosaccharides by Bifidobacterium longum subsp. infantis and Bacteroides vulgatus. This work expands the current knowledge of human milk oligosaccharides consumption by gut microbes, revealing bacteroides as avid consumer of this substrate. These results provide insight on how human milk oligosaccharides shape the infant intestinal microbiota. PMID:20394371

  19. Nitric Oxide-Releasing Chitosan Oligosaccharides as Antibacterial Agents

    PubMed Central

    Lu, Yuan; Slomberg, Danielle L.; Schoenfisch, Mark H.

    2014-01-01

    Secondary amine-functionalized chitosan oligosaccharides of different molecular weights (i.e., ~2500, 5000, 10000) were synthesized by grafting 2-methyl aziridine from the primary amines on chitosan oligosaccharides, followed by reaction with nitric oxide (NO) gas under basic conditions to yield N-diazeniumdiolate NO donors. The total NO storage, maximum NO flux, and half-life of the resulting NO-releasing chitosan oligosaccharides were controlled by the molar ratio of 2-methyl aziridine to primary amines (e.g., 1:1, 2:1) and the functional group surrounding the N-diazeniumdiolates (e.g., polyethylene glycol (PEG) chains), respectively. The secondary amine-modified chitosan oligosaccharides greatly increased the NO payload over existing biodegradable macromolecular NO donors. In addition, the water-solubility of the chitosan oligosaccharides enabled their penetration across the extracellular polysaccharides matrix of Pseudomonas aeruginosa biofilms and association with embedded bacteria. The effectiveness of these chitosan oligosaccharides at biofilm eradication was shown to depend on both the molecular weight and ionic characteristics. Low molecular weight and cationic chitosan oligosaccharides exhibited rapid association with bacteria throughout the entire biofilm, leading to enhanced biofilm killing. At concentrations resulting in 5-log killing of bacteria in Pseudomonas aeruginosa biofilms, the NO-releasing and control chitosan oligosaccharides elicited no significant cytotoxicity to mouse fibroblast L929 cells in vitro. PMID:24268196

  20. Binding of oligosaccharides of hyaluronic acid to proteoglycans (Short Communication)

    PubMed Central

    Hardingham, Timothy E.; Muir, Helen

    1973-01-01

    Oligosaccharides derived from hyaluronic acid were shown to inhibit proteoglycan–hyaluronic acid interaction, as measured in a viscometer. The relative inhibition increased with the size of the oligosaccharide and the results suggested that decasaccharides were the smallest fragments able to bind strongly to the proteoglycan. PMID:4273187

  1. Automated assembly of oligosaccharides containing multiple cis-glycosidic linkages.

    PubMed

    Hahm, Heung Sik; Hurevich, Mattan; Seeberger, Peter H

    2016-01-01

    Automated glycan assembly (AGA) has advanced from a concept to a commercial technology that rapidly provides access to diverse oligosaccharide chains as long as 30-mers. To date, AGA was mainly employed to incorporate trans-glycosidic linkages, where C2 participating protecting groups ensure stereoselective couplings. Stereocontrol during the installation of cis-glycosidic linkages cannot rely on C2-participation and anomeric mixtures are typically formed. Here, we demonstrate that oligosaccharides containing multiple cis-glycosidic linkages can be prepared efficiently by AGA using monosaccharide building blocks equipped with remote participating protecting groups. The concept is illustrated by the automated syntheses of biologically relevant oligosaccharides bearing various cis-galactosidic and cis-glucosidic linkages. This work provides further proof that AGA facilitates the synthesis of complex oligosaccharides with multiple cis-linkages and other biologically important oligosaccharides. PMID:27580973

  2. Three Decades of Precision Orbit Determination Progress, Achievements, Future Challenges and its Vital Contribution to Oceanography and Climate Research

    NASA Technical Reports Server (NTRS)

    Luthcke, Scott; Rowlands, David; Lemoine, Frank; Zelensky, Nikita; Beckley, Brian; Klosko, Steve; Chinn, Doug

    2006-01-01

    Although satellite altimetry has been around for thirty years, the last fifteen beginning with the launch of TOPEX/Poseidon (TP) have yielded an abundance of significant results including: monitoring of ENS0 events, detection of internal tides, determination of accurate global tides, unambiguous delineation of Rossby waves and their propagation characteristics, accurate determination of geostrophic currents, and a multi-decadal time series of mean sea level trend and dynamic ocean topography variability. While the high level of accuracy being achieved is a result of both instrument maturity and the quality of models and correction algorithms applied to the data, improving the quality of the Climate Data Records produced from altimetry is highly dependent on concurrent progress being made in fields such as orbit determination. The precision orbits form the reference frame from which the radar altimeter observations are made. Therefore, the accuracy of the altimetric mapping is limited to a great extent by the accuracy to which a satellite orbit can be computed. The TP mission represents the first time that the radial component of an altimeter orbit was routinely computed with an accuracy of 2-cm. Recently it has been demonstrated that it is possible to compute the radial component of Jason orbits with an accuracy of better than 1-cm. Additionally, still further improvements in TP orbits are being achieved with new techniques and algorithms largely developed from combined Jason and TP data analysis. While these recent POD achievements are impressive, the new accuracies are now revealing subtle systematic orbit error that manifest as both intra and inter annual ocean topography errors. Additionally the construction of inter-decadal time series of climate data records requires the removal of systematic differences across multiple missions. Current and future efforts must focus on the understanding and reduction of these errors in order to generate a complete and

  3. Reliable and integrated technique for determining resonant frequency in radio frequency resonators. Application to a high-precision resonant cavity-based displacement sensor

    NASA Astrophysics Data System (ADS)

    Jauregui, Rigoberto; Asua, Estibaliz; Portilla, Joaquin; Etxebarria, Victor

    2015-03-01

    This paper presents a reliable and integrated technique for determining the resonant frequency of radio frequency resonators, which can be of interest for different purposes. The approach uses a heterodyne scheme as phase detector coupled to a voltage-controlled oscillator. The system seeks the oscillator frequency that produces a phase null in the resonator, which corresponds to the resonant frequency. A complete explanation of the technique to determine the resonant frequency is presented and experimentally tested. The method has been applied to a high-precision displacement sensor based on resonant cavity, obtaining a theoretical nanometric precision.

  4. Isolation of inulin-type oligosaccharides from Chinese traditional medicine: Morinda officinalis How and their characterization using ESI-MS/MS.

    PubMed

    Yang, Zhenmin; Yi, Yongtao; Gao, Chuanchuan; Hou, Dengke; Hu, Jun; Zhao, Mingyue

    2010-01-01

    Inulin-type oligosaccharides with different DP were prepared by size-exclusion chromatography and purity of each oligosaccharide was determined by HPLC equipped with cyclodextrin-bond column. The purities of obtained inulin-type oligosaccharides with different DP were more than 98% by one-step process. The DP and molecular weight were obtained through ESI-MS in negative mode. The characterization of the inulin-type oligosaccharides with different DP was studied by MS/MS spectra obtained by collision-induced dissociation of molecular ions ([M-H](-)). When the DP was lower, the fragment ions were formed through cross-ring cleavages of two bonds within the sugar ring and glycosidic cleavages. However, with the increase of DP, the ions resulting from glycosidic cleavages between two sugar residues were predominant. PMID:20091714

  5. The application of the ITRF2014 Product Center solutions with respect to Altimeter Satellite Precise Orbit Determination

    NASA Astrophysics Data System (ADS)

    Lemoine, Frank G.; Zelensky, Nikita P.; Couhert, Alexandre; Jalabert, Eva; Chinn, Douglas S.

    2016-04-01

    The IERS product centers, IGN, DGFI, and JPL, have prepared new solution realizations of the International Terrestrial Reference Frame (ITRF), based on the analysis and the combination SINEX solutions submitted by the individual geodetic techniques: Satellite Laser Ranging (SLR), Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS), Very Long Baseline Interferometry (VLBI), and Global Navigation Satellite Systems (GNSS). We evaluate these solutions with respect to their orbit determination performance, including RMS of fit, and other orbit metrics, including altimeter crossovers, focusing on the altimeter satellites, in particular TOPEX/Poseidon, Jason-1, and Jason-2, but also Cryosat-2 and Envisat. We also evaluate the POD performance using the Jason-2 JPL/reduced-dynamic orbits as a reference. We have conducted a preliminary evaluation of the new solutions so far released, ITRF2014P (IGN), and DTRF2014 (DGFI) with respect to the Jason-2 satellite, and find a significant improvement in the DORIS satellite RMS of fit for DORIS-only orbit computations. Over 260 orbit cycles (July 2008 to August 2015) the RMS of fit improves from 0.3667 mm/s for DPOD2008 to 0.3646 and 0.3645 mm/s for the two new ITRF2014 realizations. The following stations show improvements in RMS of fit of more than 0.02 mm/s, which is significant for DORIS data: KRUB/KRWB (Kourou), CIDB (Cibinong), JIUB (Jiufeng), YEMB (Yellowknife), MATB (Marion Island), FUTB (Futuna), and ARFB (Arequipa). In this paper we also focus on the SLR performance, and we evaluate how the new ITRF2014 reference frame realization can be integrated into the next generation of precision orbit improvements for the Jason series of satellites.

  6. The Application of GIM in Precise Orbit Determination for LEO Satellites with Single-frequency GPS Measurements

    NASA Astrophysics Data System (ADS)

    Peng, D. J.; Wu, B.

    2012-01-01

    With the availability of precise GPS ephemeris and clock solution, the ionospheric range delay is left as the dominant error sources in the post-processing of space-borne GPS data from single-frequency receivers. Thus, the removal of ionospheric effects is a major prerequisite for an improved orbit reconstruction of LEO satellites equipped with low cost single-frequency GPS receivers. In this paper, the use of Global Ionospheric Maps (GIM) in kinematic and dynamic orbit determination for LEO satellites with single-frequency GPS measurements is discussed first,and then, estimating the scale factor of ionosphere to remove the ionospheric effects in C/A code pseudo-range measurements in both kinematic and adynamia orbit defemination approaches is addressed. As it is known the ionospheric path delay of space-borne GPS signals is strongly dependent on the orbit altitudes of LEO satellites, we selected real space-borne GPS data from CHAMP, GRACE, TerraSAR-X and SAC-C satellites with altitudes between 300 km and 800 km as sample data in this paper. It is demonstrated that the approach of eliminating ionospheric effects in space-borne C/A code pseudo-range by estimating the scale factor of ionosphere is highly effective. Employing this approach, the accuracy of both kinematic and dynamic orbits can be improved notably. Among those five LEO satellites, CHAMP with the lowest orbit altitude has the most remarkable orbit accuracy improvements, which are 55.6% and 47.6% for kinematic and dynamic approaches, respectively. SAC-C with the highest orbit altitude has the least orbit accuracy improvements accordingly, which are 47.8% and 38.2%, respectively.

  7. A rationally engineered yeast pyruvyltransferase Pvg1p introduces sialylation-like properties in neo-human-type complex oligosaccharide.

    PubMed

    Higuchi, Yujiro; Yoshinaga, Sho; Yoritsune, Ken-Ichi; Tateno, Hiroaki; Hirabayashi, Jun; Nakakita, Shin-Ichi; Kanekiyo, Miho; Kakuta, Yoshimitsu; Takegawa, Kaoru

    2016-01-01

    Pyruvylation onto the terminus of oligosaccharide, widely seen from prokaryote to eukaryote, confers negative charges on the cell surface and seems to be functionally similar to sialylation, which is found at the end of human-type complex oligosaccharide. However, detailed molecular mechanisms underlying pyruvylation have not been clarified well. Here, we first determined the crystal structure of fission yeast pyruvyltransferase Pvg1p at a resolution of 2.46 Å. Subsequently, by combining molecular modeling with mutational analysis of active site residues, we obtained a Pvg1p mutant (Pvg1p(H168C)) that efficiently transferred pyruvyl moiety onto a human-type complex glycopeptide. The resultant pyruvylated human-type complex glycopeptide recognized similar lectins on lectin arrays as the α2,6-sialyl glycopeptides. This newly-generated pyruvylation of human-type complex oligosaccharides would provide a novel method for glyco-bioengineering. PMID:27194449

  8. A rationally engineered yeast pyruvyltransferase Pvg1p introduces sialylation-like properties in neo-human-type complex oligosaccharide

    PubMed Central

    Higuchi, Yujiro; Yoshinaga, Sho; Yoritsune, Ken-ichi; Tateno, Hiroaki; Hirabayashi, Jun; Nakakita, Shin-ichi; Kanekiyo, Miho; Kakuta, Yoshimitsu; Takegawa, Kaoru

    2016-01-01

    Pyruvylation onto the terminus of oligosaccharide, widely seen from prokaryote to eukaryote, confers negative charges on the cell surface and seems to be functionally similar to sialylation, which is found at the end of human-type complex oligosaccharide. However, detailed molecular mechanisms underlying pyruvylation have not been clarified well. Here, we first determined the crystal structure of fission yeast pyruvyltransferase Pvg1p at a resolution of 2.46 Å. Subsequently, by combining molecular modeling with mutational analysis of active site residues, we obtained a Pvg1p mutant (Pvg1pH168C) that efficiently transferred pyruvyl moiety onto a human-type complex glycopeptide. The resultant pyruvylated human-type complex glycopeptide recognized similar lectins on lectin arrays as the α2,6-sialyl glycopeptides. This newly-generated pyruvylation of human-type complex oligosaccharides would provide a novel method for glyco-bioengineering. PMID:27194449

  9. Preparation and antioxidant activity of xanthan oligosaccharides derivatives with similar substituting degrees.

    PubMed

    Xiong, Xiaoying; Li, Ming; Xie, Jing; Xue, Bin; Sun, Tao

    2014-12-01

    Maleoyl xanthan oligosaccharides (XGOSMAs) and phthaloyl xanthan oligosaccharides (XGOSPAs) were prepared by reacting xanthan oligosaccharides with maleic anhydride and phthalic anhydride, respectively. The substituting degrees (DSs) of XGOSMAs and XGOSPAs were determined by a neutralization reaction. XGOAMA-1 (DS=0.30), XGOSPA (DS=0.31), XGOSMA-2 (DS=0.62) and XGOSPA-2 (DS=0.60) were selected for structural characterization and antioxidant activity evaluation. Their structural changes were confirmed by Fourier transform infrared spectra (FT-IR), and their molecular weights were determined with a gel permeation chromatography method (GPC). The pyruvate acid and reducing sugar contents were determined by ultraviolet spectrophotometry and the dinitrosalicylic acid method. The antioxidant activity was evaluated by the scavenging of the superoxide anion radical (O2(-)), hydroxyl radical (OH), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical and determination of reducing power. The results indicated that XGOSPA exhibited higher antioxidant activity than XGOSMA with similar substituting degrees in all the above mentioned antioxidant evaluation systems, which may be related to the fact that phthaloyl group has a stronger electron-withdrawing effect than the maleoyl group. PMID:24996297

  10. Multifunctional fructans and raffinose family oligosaccharides

    PubMed Central

    den Ende, Wim Van

    2013-01-01

    Fructans and raffinose family oligosaccharides (RFOs) are the two most important classes of water-soluble carbohydrates in plants. Recent progress is summarized on their metabolism (and regulation) and on their functions in plants and in food (prebiotics, antioxidants). Interest has shifted from the classic inulin-type fructans to more complex fructans. Similarly, alternative RFOs were discovered next to the classic RFOs. Considerable progress has been made in the understanding of structure–function relationships among different kinds of plant fructan metabolizing enzymes. This helps to understand their evolution from (invertase) ancestors, and the evolution and role of so-called “defective invertases.” Both fructans and RFOs can act as reserve carbohydrates, membrane stabilizers and stress tolerance mediators. Fructan metabolism can also play a role in osmoregulation (e.g., flower opening) and source–sink relationships. Here, two novel emerging roles are highlighted. First, fructans and RFOs may contribute to overall cellular reactive oxygen species (ROS) homeostasis by specific ROS scavenging processes in the vicinity of organellar membranes (e.g., vacuole, chloroplasts). Second, it is hypothesized that small fructans and RFOs act as phloem-mobile signaling compounds under stress. It is speculated that such underlying antioxidant and oligosaccharide signaling mechanisms contribute to disease prevention in plants as well as in animals and in humans. PMID:23882273

  11. C-Glycosyl Analogs of Oligosaccharides

    NASA Astrophysics Data System (ADS)

    Vauzeilles, Boris; Urban, Dominique; Doisneau, Gilles; Beau, Jean-Marie

    This chapter covers the synthesis of a large collection of "C-oligosaccharides ", synthetic analogs of naturally occurring oligosaccharides in which a carbon atom replaces the anomeric, interglycosidic oxygen atom. These non-natural constructs are stable to chemical and enzymatic degradation, and are primarily devised to probe carbohydrate-based biological processes. These mainly target carbohydrate-protein interactions such as the modulation of glycoenzyme (glycosylhydrolases and transferases) activities or the design of ligands for lectin Carbohydrate Recognition Domains. The discussion is based on the key carbon-carbon bond assembling steps on carbohydrate templates: ionic (anionic and cationic chemistries, sigmatropic rearrangements) or radical assemblage, and olefin metathesis. Synthetic schemes in which at least one of the monosaccharide units is constructed by total synthesis or by cyclization of acyclic chiral chains are presented separately in a "partial de novo synthesis" section. The review also provides comments, when they are known, on the conformational and binding properties of these synthetic analogs, as well as their biological behavior when tested.

  12. Structural analysis of the asparagine-linked oligosaccharides of cholinesterases. N-linked carbohydrates of cholinesterases

    SciTech Connect

    Saxena, A.; Doctor, B.P.

    1995-12-31

    Cholinesterases are serine esterases that hydrolyse choline esters faster than other substrates. They are highly glycosylated proteins with up to 24% of their molecular weight constituted of carbohydrates. Here we report the results of our studies on the glycosylation of fetal bovine serum acetylcholinesterase (FBS AChE) and horse serum butyrylcholinesterase (Eq BChE). Analysis of the monosaccharide content of the two enzymes indicated that Eq BChE contained 520 nmoles of monosaccharide/mg protein, as compared to 1290 nmoles/mg protein for Eq BChE. Both enzymes contained mannose, galactose, N-acetylglucosamine and sialic acid. Fucose was present in Eq BChE only. The structures of the two major oligosaccharides from FBS AChE and one major oligosaccharide from Eq BChE were determined and found to be very similar except that one of the oligosaccharides from FBS AChE contained a galactose alphal-3 galactose betal-4-determinant which has been identified as a potentially immunogenic determinant.

  13. Affinity entrapment of oligosaccharides and glycopeptides using free lectin solution.

    PubMed

    Yodoshi, Masahiro; Oyama, Takehiro; Masaki, Ken; Kakehi, Kazuaki; Hayakawa, Takao; Suzuki, Shigeo

    2011-01-01

    Two procedures were proposed for the specific recovery of fluorescent derivatives of glycoprotein-derived oligosaccharides and tryptic glycopeptides using certain plant lectins. The first was based on the salting out of oligosaccharide-lectin conjugates with ammonium sulfate. Oligosaccharides specifically bound to lectins were recovered free from lectins using ethanol precipitation after dissolution in water. This method enabled group separation of 2-aminopyridine-labeled oligosaccharides derived from ovalbumin to galacto-oligosaccharides and agalacto-oligosaccharides by Ricinus communis agglutinin, and to high mannose- and hybrid-type oligosaccharides by wheat-germ agglutinin. Fractional precipitation based on differences in affinity for concanavalin A was accomplished by adding an appropriate concentration of methyl α-mannoside as an inhibitor. In the second method, tryptic digests of glycoproteins were mixed with a lectin solution, and the glycopeptide-lectin conjugates were specifically trapped on a centrifugal ultrafiltration membrane with cut-off of 10 kD. Trapped glycopeptides, as retentates, were passed through membranes by resuspension in diluted acid. This method is particularly useful for the enrichment of glycopeptides in protease digestion mixtures for glycosylation analyses by liquid chromatography-mass spectrometry. PMID:21478615

  14. Phospho-oligosaccharide dependent phosphorylation of ATP citrate lyase.

    PubMed

    Puerta, J; Mato, J M; Alemany, S

    1990-01-01

    The effect of insulin on ATP citrate lyase phosphorylation has been shown to be mimicked by a phospho-oligosaccharide in intact adipocytes. We demonstrate that the addition of phospho-oligosaccharide to intact adipocytes enhances the phosphorylation of ATP citrate lyase in the same tryptic peptide as insulin does. The addition of phospho-oligosaccharide to an adipocyte extract also results in an increase in ATP citrate lyase phosphorylation but in a different site than that observed in intact cells. The phospho-oligosaccharide-dependent incorporation of phosphate into ATP citrate lyase in intact cells is resistant to isopropanol and acetic acid, but the phosphoenzyme phosphorylated in cell extracts is acid labile. In cell extracts, the addition of phospho-oligosaccharide markedly inhibits ATP hydrolysis, which may explain the effect of this molecule on ATP citrate lyase phosphorylation in broken cells. These results support the hypothesis that this phospho-oligosaccharide mediates some of the effects of insulin on protein phosphorylation. They also indicate that caution should be exercised in interpreting the results obtained by adding phospho-oligosaccharide to broken cell preparations. PMID:2119547

  15. Structural characterization of neutral oligosaccharides with blood-group A and H activity isolated from bovine submaxillary mucin.

    PubMed Central

    Savage, A V; D'Arcy, S M; Donoghue, C M

    1991-01-01

    In this study we investigated the structures of 11 neutral oligosaccharides released from bovine submaxillary mucin by alkaline borohydride treatment and isolated by h.p.l.c. One hexa-, one penta-, three tetra-, four tri- and two di-saccharides containing core types 1, 2, 3 or 4 were obtained. We report their structures, determined by a combination of one- and two-dimensional 1H n.m.r. spectroscopy at 270 MHz and methylation analysis involving g.l.c.-m.s., along with their approximate molar ratios. Only three of these oligosaccharides have previously been reported in this source. Of the new oligosaccharides, one contains the blood-group-A antigenic determinant, two contain the blood-group-H type 2 determinant, while another contains the blood-group-H type 3 determinant. The oligosaccharide GlcNAc beta (1----6)[GlcNAc beta (1----3)]GalNAcol, although previously found as a core structure, has been isolated here as a novel trisaccharide. PMID:1718265

  16. Typing of Blood-Group Antigens on Neutral Oligosaccharides by Negative-Ion Electrospray Ionization Tandem Mass Spectrometry

    PubMed Central

    Zhang, Hongtao; Zhang, Shuang; Tao, Guanjun; Zhang, Yibing; Mulloy, Barbara; Zhan, Xiaobei; Chai, Wengang

    2013-01-01

    Blood-group antigens, such as those containing fucose and bearing the ABO(H)- and Lewis-type determinants expressed on the carbohydrate chains of glycoproteins and glycolipids, and also on unconjugated free oligosaccharides in human milk and other secretions, are associated with various biological functions. We have previously shown the utility of negative-ion electrospay ionization tandem mass spectrometry with collision-induced dissociation (ESI-CID-MS/MS) for typing of Lewis (Le) determinants, e.g. Lea, Lex, Leb, and Ley on neutral and sialylated oligosaccharide chains. In the present report we extended the strategy to characterization of blood-group A-, B- and H-determinants on type 1 and type 2, and also on type 4 globoside chains to provide a high sensitivity method for typing of all the major blood-group antigens, including the A, B, H, Lea, Lex, Leb, and Ley determinants, present in oligosaccharides. Using the principles established we identified two minor unknown oligosaccharide components present in the products of enzymatic synthesis by bacterial fermentation. We also demonstrated that the unique fragmentations derived from the D- and 0,2A-type cleavages observed in ESI-CID-MS/MS, which are important for assigning blood-group and chain types, only occur under the negative-ion conditions for reducing sugars but not for reduced alditols or under positive-ion conditions. PMID:23692402

  17. "Three sources and three component parts" of free oligosaccharides.

    PubMed

    Pismenetskaya, I U; Butters, T D

    2014-01-01

    Metabolism of glycoproteins and glycolipids is accompanied by the appearance of unbound structural analogues of the carbohydrate portion of glycoconjugates or so called free oligosaccharides. There are their several sources inside the cell: 1) multistep pathways of N-glycosylation, 2) the cell quality control and ER-associated degradation of misglycosylated and/or misfolded glycoproteins, 3) lysosomal degradation of mature glycoconjugates. In this review the information about the ways of free oligosaccharides appearance in different cell compartments and details of their structures depending on the source is summarized. In addition, extracellular free oligosaccharides, their structures and changes under normal and pathological conditions are discussed. PMID:25816601

  18. Bacteroides in the Infant Gut Consume Milk Oligosaccharides via Mucus-Utilization Pathways

    PubMed Central

    Marcobal, A.; Barboza, M.; Sonnenburg, E.D.; Pudlo, N.; Martens, E.C.; Desai, P.; Lebrilla, C.B.; Weimer, B.C.; Mills, D.A.; German, J.B.; Sonnenburg, J.L.

    2011-01-01

    Summary Newborns are colonized with an intestinal microbiota shortly after birth but the factors governing the retention and abundance of specific microbial lineages are unknown. Nursing infants consume human milk oligosaccharides (HMOs) that pass undigested to the distal gut where they may be digested by microbes. We determined that the prominent neonate gut residents, Bacteroides thetaiotaomicron and Bacteroides fragilis, induce the same genes during HMO consumption that are used to harvest host mucus glycans, which are structurally similar to HMOs. Lacto-N-neotetraose, a specific HMO component, selects for HMO-adapted species such as Bifidobacterium infantis, which cannot use mucus, and provides a selective advantage to B. infantis in vivo when bi-associated with B. thetaiotaomicron in the gnotobiotic mouse gut. This indicates that the complex oligosaccharide mixture within HMOs attracts both mutualistic mucus-adapted species and HMO-adapted bifidobacteria to the infant intestine that likely facilitate both milk and future solid food digestion. PMID:22036470

  19. Spatial distribution of precisely determined hypocenters and focal mechanisms in the Izu-Honshu collision zone, central Japan

    NASA Astrophysics Data System (ADS)

    Yukutake, Y.; Takeda, T.; Honda, R.; Yoshida, A.

    2010-12-01

    In the Tanzawa region, central Japan, where the Izu-Bonin arc collides into the Honshu crust, the Philippine Sea plate (PHS) subducts intricately and the seismicity is particularly high. The configuration of the PHS plate in the region has been estimated based on the hypocenter distribution, seismic velocity tomography, and seismic profile (e.g. Ishida, 1992; Matsubara et al., 2005; Sato et al., 2005). However, the relationship between the structure of the PHP and the seismicity in the collision zone is still not clearly understood. To elucidate the seismotectonics, it is essential to get precisely determined hypocenters and focal mechanisms. We used data from 107 permanent online stations operated by Hot Springs Research Institute of Kanagawa Prefecture, NIED Hi-net and JMA, which are located within 80-km from the epicenters. We relocated hypocenters of 4351 events that occurred in and around the Tanzawa region with the double-difference relocation algorithm (DD method) (Waldhauser and Ellsworth, 2000), using the differential arrival time obtained by both manual picking and waveform cross-correlation analysis. Then, we determined the focal mechanisms of 420 events using the absolute P- and SH-wave amplitudes by adding the P-wave polarities. We found that the earthquakes in the eastern Tanzawa region are distributed along the planar zone slightly dipping toward east. On the other hand, the earthquakes in the western region spread out in the volume of approximately 10 km × 10 km × 10 km. We examined similarity between the focal mechanisms of earthquakes and a reference of focal mechanism that is inferred from the configuration and relative motion of the PHP. We assumed the fault plane direction of the reference focal mechanism based on the fault model of the 1923 Kanto Earthquake (Matsu'ura et al., 1980). The slip direction is assumed so as to be consistent with the relative motion of the PHP with respect to the Eurasian plate in the Kanto region (Seno, 1993). The

  20. LC-MS n Analysis of Isomeric Chondroitin Sulfate Oligosaccharides Using a Chemical Derivatization Strategy

    NASA Astrophysics Data System (ADS)

    Huang, Rongrong; Pomin, Vitor H.; Sharp, Joshua S.

    2011-09-01

    Improved methods for structural analyses of glycosaminoglycans (GAGs) are required to understand their functional roles in various biological processes. Major challenges in structural characterization of complex GAG oligosaccharides using liquid chromatography-mass spectrometry (LC-MS) include the accurate determination of the patterns of sulfation due to gas-phase losses of the sulfate groups upon collisional activation and inefficient on-line separation of positional sulfation isomers prior to MS/MS analyses. Here, a sequential chemical derivatization procedure including permethylation, desulfation, and acetylation was demonstrated to enable both on-line LC separation of isomeric mixtures of chondroitin sulfate (CS) oligosaccharides and accurate determination of sites of sulfation by MS n . The derivatized oligosaccharides have sulfate groups replaced with acetyl groups, which are sufficiently stable to survive MS n fragmentation and reflect the original sulfation patterns. A standard reversed-phase LC-MS system with a capillary C18 column was used for separation, and MS n experiments using collision-induced dissociation (CID) were performed. Our results indicate that the combination of this derivatization strategy and MS n methodology enables accurate identification of the sulfation isomers of CS hexasaccharides with either saturated or unsaturated nonreducing ends. Moreover, derivatized CS hexasaccharide isomer mixtures become separable by LC-MS method due to different positions of acetyl modifications.

  1. Characterization of the oligosaccharides of plasma sex hormone binding globulin from noncirrhotic alcoholic patients.

    PubMed

    Valladares, L; Erices, A; Lioi, X; Iturriaga, H

    2000-05-01

    In previous reports we have demonstrated high plasma levels of sex hormone-binding globulin (SHBG) in asymptomatic alcoholic men. In the present work the physicochemical properties of SHBG from plasma of noncirrhotic alcoholic patients have been further compared with SHBG of control subjects. Steroid binding to SHBG was similar for the two groups: alcoholic men, K(d) of 0.62 +/- 0.07 nM and control individuals, K(d) of 0.70 +/- 0.10 nM. The structure of oligosaccharides attached to SHBG from controls and alcoholic men were determined by using serial chromatography. Our data indicated that 7% of SHBG of control individuals was not retarded by the Con-A column, whereas approximately 30% of SHBG of alcoholic men eluted in the void volume of Con A. Approximately 46% of SHBG of alcoholics applied to Con A, possessed biantennary complex oligosaccharides, as indicated by the fact that it could be eluted with methyl-alpha-D-glucopyranoside and by its retention on wheat germ agglutinin; in contrast, when SHBG from control men was analyzed, approximately 51% was eluted with methyl-alpha-D-glucopyranoside. Approximately 9% of the biantennary complex oligosaccharides on SHBG of control men and none of those on SHBG from alcoholic men were fucosylated on the chitobiose core, as determined by chromatography on Lenn culinaris lectin. Galactosylated oligosaccharides were also present on the SHBG fraction as indicated by its interaction with Ricinus communis-I. Approximately 24% of SHBG of alcoholic men and 39% of those on SHBG from control individuals applied to Con-A were retained and could be eluted with methyl-alpha-D-mannopyranoside. Evidence based on the binding on mannoside-eluted SHBG to Con-A, wheat germ agglutinin, and R. communis-I indicated that at least the SHBG in this fraction, from alcoholics or controls, contained two glycosylation sites and that the sites were differentially glycosylated. PMID:10751639

  2. High mannose oligosaccharide of phytohemagglutinin is attached to asparagine 12 and the modified oligosaccharide to asparagine 60. [Phaseolus vulgaris

    SciTech Connect

    Sturm, A.; Chrispeels, M.J.

    1986-05-01

    Phytohemagglutinin, the lectin of the common bean Phaseolus vulgaris, has a high mannose and a modified (fucosylated) oligosaccharide on each polypeptide. Fractionation by high performance liquid chromatography of tryptic digests of (/sup 3/H)fucose or (/sup 3/H)glucosamine labeled phytohemagglutinin, followed by amino acid sequencing of the isolated glycopeptides, shows that the high mannose oligosaccharide is attached to Asn/sup 12/ and the modified oligosaccharide to Asn /sup 60/ of the protein. In animal glycoproteins, high mannose chains are rarely found at the N-terminal side of complex chains.

  3. Synbiotic matrices derived from plant oligosaccharides and polysaccharides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A porous synbiotic matrix was prepared by lyophilization of alginate and pectin or fructan oligosaccharides and polysaccharides cross-linked with calcium. These synbiotic matrices were excellent physical structures to support the growth of Lactobacillus acidophilus (1426) and Lactobacillus reuteri (...

  4. The Gaia-ESO Survey: Empirical determination of the precision of stellar radial velocities and projected rotation velocities

    NASA Astrophysics Data System (ADS)

    Jackson, R. J.; Jeffries, R. D.; Lewis, J.; Koposov, S. E.; Sacco, G. G.; Randich, S.; Gilmore, G.; Asplund, M.; Binney, J.; Bonifacio, P.; Drew, J. E.; Feltzing, S.; Ferguson, A. M. N.; Micela, G.; Neguerela, I.; Prusti, T.; Rix, H.-W.; Vallenari, A.; Alfaro, E. J.; Allende Prieto, C.; Babusiaux, C.; Bensby, T.; Blomme, R.; Bragaglia, A.; Flaccomio, E.; Francois, P.; Hambly, N.; Irwin, M.; Korn, A. J.; Lanzafame, A. C.; Pancino, E.; Recio-Blanco, A.; Smiljanic, R.; Van Eck, S.; Walton, N.; Bayo, A.; Bergemann, M.; Carraro, G.; Costado, M. T.; Damiani, F.; Edvardsson, B.; Franciosini, E.; Frasca, A.; Heiter, U.; Hill, V.; Hourihane, A.; Jofré, P.; Lardo, C.; de Laverny, P.; Lind, K.; Magrini, L.; Marconi, G.; Martayan, C.; Masseron, T.; Monaco, L.; Morbidelli, L.; Prisinzano, L.; Sbordone, L.; Sousa, S. G.; Worley, C. C.; Zaggia, S.

    2015-08-01

    Context. The Gaia-ESO Survey (GES) is a large public spectroscopic survey at the European Southern Observatory Very Large Telescope. Aims: A key aim is to provide precise radial velocities (RVs) and projected equatorial velocities (vsini) for representative samples of Galactic stars, which will complement information obtained by the Gaia astrometry satellite. Methods: We present an analysis to empirically quantify the size and distribution of uncertainties in RV and vsini using spectra from repeated exposures of the same stars. Results: We show that the uncertainties vary as simple scaling functions of signal-to-noise ratio (S/N) and vsini, that the uncertainties become larger with increasing photospheric temperature, but that the dependence on stellar gravity, metallicity and age is weak. The underlying uncertainty distributions have extended tails that are better represented by Student's t-distributions than by normal distributions. Conclusions: Parametrised results are provided, which enable estimates of the RV precision for almost all GES measurements, and estimates of the vsini precision for stars in young clusters, as a function of S/N, vsini and stellar temperature. The precision of individual high S/N GES RV measurements is 0.22-0.26 km s-1, dependent on instrumental configuration. Based on observations collected with the FLAMES spectrograph at VLT/UT2 telescope (Paranal Observatory, ESO, Chile), for the Gaia- ESO Large Public Survey (188.B-3002).Full Table 2 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/580/A75

  5. Rapid and precise determination of natural carbonate rare earth elements in femtogram quantities by ICP-SF-MS

    NASA Astrophysics Data System (ADS)

    Wu, C.; Liu, Y.; Shen, C.

    2011-12-01

    A rapid and precise technique for measuring of femtogram quantity rare earth elements (REE) levels in natural carbonate samples by ICP-SF-MS has been developed at the Department of Geosciences, National Taiwan University. REE/Ca ratios are calculated directly from the intensities of the ion beams of 46Ca, 139La, 140Ce, 141Pr, 146Nd, 147Sm, 153Eu, 160Gd, 159Tb, 163Dy, 165Ho, 166Er, 169Tm, 172Yb, and 175Lu using external matrix-matched synthetic standards to correct for instrumental ratio drifting and mass discrimination. A routine measurement time of 3 minutes is typical for one sample containing 20-40-ppm [Ca]. Replicate measurements made on natural coral and foraminiferal samples with REE/Ca ratios of 2-242 nmol/mol show external precisions of 1.9-6.5% (2RSD) can be achieved with only 10-1000 femtogram REEs in 10-20 μg carbonate consumed. The key advantages of this established technique are (1) to provide a possibility of directly analyzing REE isotopic composition in femtogram quantities without chemical separation steps, and (2) to potentially offer high precision and high temporal resolution REE records for diverse carbonates, such as corals, foraminifera, sclerosponges, tufa, and speleothems.

  6. Deproteinated palm kernel cake-derived oligosaccharides: A preliminary study

    NASA Astrophysics Data System (ADS)

    Fan, Suet Pin; Chia, Chin Hua; Fang, Zhen; Zakaria, Sarani; Chee, Kah Leong

    2014-09-01

    Preliminary study on microwave-assisted hydrolysis of deproteinated palm kernel cake (DPKC) to produce oligosaccharides using succinic acid was performed. Three important factors, i.e., temperature, acid concentration and reaction time, were selected to carry out the hydrolysis processes. Results showed that the highest yield of DPKC-derived oligosaccharides can be obtained at a parameter 170 °C, 0.2 N SA and 20 min of reaction time.

  7. Determination of SU(2) chiral perturbation theory low energy constants from a precise description of pion-pion scattering threshold parameters

    NASA Astrophysics Data System (ADS)

    Nebreda, J.; Peláez, J. R.; Ríos, G.

    2013-09-01

    We determine the values of the one- and two-loop low energy constants appearing in the SU(2) Chiral Perturbation Theory calculation of pion-pion scattering. For this we use a recent and precise sum rule determination of some scattering lengths and slopes that appear in the effective range expansion. In addition we provide sum rules for these coefficients up to third order in the expansion. Our results when using only the scattering lengths and slopes of the S, P, D, and F waves are consistent with previous determinations but seem to require higher order contributions if they are to accommodate the third order coefficients of the effective range expansion.

  8. Fluorographic detection of tritiated glycopeptides and oligosaccharides separated on polyacrylamide gels: analysis of glycans from Dictyostelium discoideum glycoproteins

    SciTech Connect

    Prem Das, O.; Henderson, E.J.

    1986-11-01

    Previous workers have shown that oligosaccharides and glycopeptides can be separated by electrophoresis in buffers containing borate ions. However, normal fluorography of tritium-labeled structures cannot be performed because the glycans are soluble and can diffuse during equilibration with scintillants. This problem has been circumvented by equilibration of the gel with 2,5-diphenyloxazole (PPO) prior to electrophoresis. The presence of PPO in the gel during electrophoresis does not alter mobility of the glycopeptides and oligosaccharides. After electrophoresis, the gel is simply dried and fluorography performed. This allows sensitive and precise comparisons of labeled samples in parallel lanes of a slab gel and, since mobilities are highly reproducible, between different gels. The procedure is preparative in that after fluorography the gel bands can be quantitatively eluted for further study, without any apparent modification by the procedure. In this report, the procedure is illustrated by fractionation of both neutral and anionic glycopeptides produced by the cellular slime mold Dictyostelium discoideum.

  9. Distribution of Heparan Sulfate Oligosaccharides in Murine Mucopolysaccharidosis Type IIIA

    PubMed Central

    Mason, Kerryn; Meikle, Peter; Hopwood, John; Fuller, Maria

    2014-01-01

    Heparan sulfate (HS) catabolism begins with endo-degradation of the polysaccharide to smaller HS oligosaccharides, followed by the sequential action of exo-enzymes to reduce these oligosaccharides to monosaccharides and inorganic sulfate. In mucopolysaccharidosis type IIIA (MPS IIIA) the exo-enzyme, N-sulfoglucosamine sulfohydrolase, is deficient resulting in an inability to hydrolyze non-reducing end glucosamine N-sulfate esters. Consequently, partially degraded HS oligosaccharides with non-reducing end glucosamine sulfate esters accumulate. We investigated the distribution of these HS oligosaccharides in tissues of a mouse model of MPS IIIA using high performance liquid chromatography electrospray ionization-tandem mass spectrometry. Oligosaccharide levels were compared to total uronic acid (UA), which was used as a measure of total glycosaminoglycan. Ten oligosaccharides, ranging in size from di- to hexasaccharides, were present in all the tissues examined including brain, spleen, lung, heart, liver, kidney and urine. However, the relative levels varied up to 10-fold, suggesting different levels of HS turnover and storage. The relationship between the di- and tetrasaccharides and total UA was tissue specific with spleen and kidney showing a different disaccharide:total UA ratio than the other tissues. The hexasaccharides showed a stronger correlation with total UA in all tissue types suggesting that hexasaccharides may more accurately reflect the storage burden in these tissues. PMID:25513953

  10. Oligosaccharide structure and amino acid sequence of the major glycopeptides of mature human. beta. -hexosaminidase

    SciTech Connect

    O'Dowd, B.F.; Cumming, D.A.; Gravel, R.A.; Mahuran, D.

    1988-07-12

    Human ..beta..-hexosaminidase is a lysosomal enzyme that hydrolyzes terminal N-acetylhexosamines from GM/sub 2/ ganglioside, oligosaccharides, and other carbohydrate-containing macromolecules. There are two major forms of hexosaminidase: hexosaminidase A, with the structure ..cap alpha..(..beta../sub a/..beta../sub b/), and hexosaminidase B, 2(..beta../sub a/..beta../sub b/). Like other lysosomal proteins, hexosaminidase is targeted to its destination via glycosylation and processing in the rough endoplasmic reticulum and Golgi apparatus. Phosphorylation of specific mannose residues allows binding of the protein to the phosphomannosyl receptor and transfer to the lysosome. In order to define the structure and placement of the oligosaccharides in mature hexosaminidase and thus identify candidate mannose 6-phosphate recipient sites, the major tryptic/chymotryptic glycopeptides from each isozyme were purified by reverse-phase high-performance liquid chromatography. Two major concanavalin A binding glycopeptides, localized to the ..beta../sub b/f chain, and one non concanavalin A binding glycopeptide, localized to the ..beta../sub a/ chain, were found associated with the ..beta..-subunit in both hexosaminidase A and hexosaminidase B. The oligosaccharide structures were determined by nuclear magnetic resonance spectrometry. The unique glycopeptide associated with the ..beta../sub a/ chain contained a single GlcNAc residue. Thus all three mature polypeptides comprising the ..cap alpha.. and ..beta.. subunits of hexosaminidase contain carbohydrate, the structures of which have the appearance of being partially degraded in the lysosome. In the ..cap alpha.. chain they found only one possible site for in vivo phosphorylation. In the ..beta.. it is unclear if only one or all three of the sites could have contained phosphate. However, mature placental hexosaminidase A and B can be rephosphorylated in vitro. This requires the presence of an oligosaccharide containing an ..cap

  11. The Predominance of Type I Oligosaccharides Is a Feature Specific to Human Breast Milk123

    PubMed Central

    Urashima, Tadasu; Asakuma, Sadaki; Leo, Fiame; Fukuda, Kenji; Messer, Michael; Oftedal, Olav T.

    2012-01-01

    Human milk and colostrum contain ∼12–13 g/L and ∼22–24 g/L of oligosaccharides, respectively. The chemical structures of >100 human milk oligosaccharides (HMO) have been characterized to date. We determined the concentrations of 10 neutral and 9 acidic colostrum HMO collected during the first 3 d of lactation by using reverse phase HPLC after derivatization with 2-aminopyridine or 1-methyl-3-phenyl-5-pyrazolon. The predominant oligosaccharides were Fuc(α1-2)Gal(β1-4Glc (2′-FL), Fuc(α1-2)Gal(β1-3)GlcNAc(β1-3)Gal(β1-4)Glc (LNFP I), Fuc(α1-2)Gal(β1-3)[Fuc(α1-4)]GlcNAc(β1-3)Gal(β1-4)Glc (LNDFH I), and Gal(β1-3)GlcNAc(β1-3)Gal(β1-4)Glc (LNT), the concentration of each of which was ∼1–3 g/L. Because these HMO, other than 2′-FL, all contain the Lacto-N-biose type I structure [Gal(β1-3)GlcNAc], we conclude that HMO containing the type I structure predominate over those containing the N-acetyllactosamine type II structure [Gal(β1-4)GlcNAc]. This appears to be a feature that is specific to humans, because the milk and colostrum of other species, including apes and monkeys, either contain only type II oligosaccharides or type II predominate over type I. It is possible that type I HMO may have importance as substrates for beneficial bifidobacteria in breast-fed infants. The biological importance of type I HMO predominance warrants further study, both in relation to human health and to human evolution. PMID:22585927

  12. Evolved beta-galactosidases from Geobacillus stearothermophilus with improved transgalactosylation yield for galacto-oligosaccharide production.

    PubMed

    Placier, Gaël; Watzlawick, Hildegard; Rabiller, Claude; Mattes, Ralf

    2009-10-01

    A mutagenesis approach was applied to the beta-galactosidase BgaB from Geobacillus stearothermophilus KVE39 in order to improve its enzymatic transglycosylation of lactose into oligosaccharides. A simple screening strategy, which was based on the reduction of the hydrolysis of a potential transglycosylation product (lactosucrose), provided mutant enzymes possessing improved synthetic properties for the autocondensation product from nitrophenyl-galactoside and galacto-oligosaccharides (GOS) from lactose. The effects of the mutations on enzyme activity and kinetics were determined. An change of one arginine to lysine (R109K) increased the oligosaccharide yield compared to that for the wild-type BgaB. Subsequently, saturation mutagenesis at this position demonstrated that valine and tryptophan further increased the transglycosylation performance of BgaB. During the transglycosylation reaction with lactose of the evolved beta-galactosidases, a major trisaccharide was formed. Its structure was characterized as beta-D-galactopyranosyl-(1-->3)-beta-D-galactopyranosyl-(1-->4)-D-glucopyranoside (3'-galactosyl-lactose). At the lactose concentration of 18% (wt/vol), this trisaccharide was obtained in yields of 11.5% (wt/wt) with GP21 (BgaB R109K), 21% with GP637.2 (BgaB R109V), and only 2% with the wild-type BgaB enzyme. GP643.3 (BgaB R109W) was shown to be the most efficient mutant, with a 3'-galactosyl-lactose production of 23%. PMID:19666723

  13. Precise Determination of Enantiomeric Excess by a Sensitivity Enhanced Two-Dimensional Band-Selective Pure-Shift NMR.

    PubMed

    Rachineni, Kavitha; Kakita, Veera Mohana Rao; Dayaka, Satyanarayana; Vemulapalli, Sahithya Phani Babu; Bharatam, Jagadeesh

    2015-07-21

    Unambiguous identification and precise quantification of enantiomers in chiral mixtures is crucial for enantiomer specific synthesis as well as chemical analysis. The task is often challenging for mixtures with high enantiomeric excess and for complex molecules with strong (1)H-(1)H scalar (J) coupling network. The recent advancements in (1)H-(1)H decoupling strategies to suppress the J-interactions offered new possibilities for NMR based unambiguous discrimination and quantification enantiomers. Herein, we discuss a high resolution two-dimensional pure-shift zCOSY NMR method with homonuclear band-selective decoupling in both the F1 and F2 dimensions (F1F2-HOBS-zCOSY). This advanced method shows a sharp improvement in resolution over the other COSY methods and also eliminates the problems associated with the overlapping decoupling sidebands. The efficacy of this method has been exploited for precise quantification of enantiomeric excess (ee) ratio (R/S) up to 99:1 in the presence of very low concentrations of chiral lanthanide shift reagents (CLSR) or chiral solvating agents (CSA). The F1F2-HOBS-zCOSY is simple and can be easily implemented on any modern NMR spectrometers, as a routine analytical tool. PMID:26091767

  14. Current Geoid Studies in Turkey and the need for Local High-Precision Astrogeodetic Geoid Determination Using CCD/Zenith Cameras

    NASA Astrophysics Data System (ADS)

    Halicioglu, K.; Ozener, H.; Deniz, R.

    2008-12-01

    During the last few years, the development of CCD image sensors at a reasonable price made the instruments of astrogeodetic observation possible to use for local high-precision astrogeodetic geoid and gravity field determination. Generally, the geoids of most European countries are in centimeter level accuracy except in mountainous regions. Turkish geoid also has accuracy problems in mountainous regions especially in the eastern parts of Anatolia and around boundaries of Marmara Sea. Studies performed in Europe in last decade indicate that, to reach the centimeter level accuracy in mountainous areas, astrogeodetic vertical deflections are more effective than gravimetric and other geoid determination methods. Turkey had started the geoid determination studies in 1976 with 13 absolute gravity points. Turkish National Fundamental Gravity Network (TNFGRN), densificated with 1st and 2nd order 66245 gravity points in Potsdam Gravity datum. TG03 has a final internal precision of 1 cm at the observation points and the external accuracy is within decimeter level. High precision in astrogeodetic geoid determination techniques are scarcely published by some universities around Europe using CCD/Zenith cameras. There are various zenith camera systems developed as state-of- art instrumentations using both CCD sensors for imaging stellar objects and GPS receivers for ellipsoidal coordinates, in order to determine the direction of the plumb line. These systems are designed and tested where conventional techniques are not sufficient. In this study, increasing accuracy of Turkish geoid is subjected to using CCD/Zenith cameras in the province of Istanbul. The planning test area is going to use the data available on the GPS/Leveling geoid of Istanbul and produce astrogeodetic data on a profile starting from the north shore of Marmara region, passing through the Marmara Sea to the south. The astrogeodetic instruments will be designed for engineering studies that are needed to determine

  15. SAR Interferometry and Precise Leveling for the Determination of Vertical Displacements in the Upper Rhine Graben Area, Southwest Germany

    NASA Astrophysics Data System (ADS)

    Fuhrmann, T.; Schenk, A.; Westerhaus, M.; Zippelt, K.; Heck, B.

    2013-12-01

    The PS-InSAR (Persistent Scatterer SAR Interferometry) method and precise levelings provide a unique database to detect recent displacements of the Earth's surface. Data of both measurement techniques are analyzed at Geodetic Institute, Karlsruhe Institute of Technology, in order to gain detailed insight into the velocity field of the Upper Rhine Graben (URG). As central and most prominent segment of the European Cenozoic rift system, the seismically and tectonically active Rhine Graben is of steady geo-scientific interest. In the last decades, the URG is characterized by small tectonic movements (< 1mm/a), but an extensive use of its geopotentials (mining, groundwater usage, oil extraction, geothermal energy) inducing larger surface displacements. To assess the geohazards in the URG area, we aim to provide a map of the current 3D surface displacements with high precision and high spatial resolution. The InSAR and leveling data, and the location of permanent GNSS sites primarily analyzed for the horizontal velocity field, are displayed in Fig. 1. Precise levelings have been carried out by the surveying authorities of Germany, France and Switzerland over the last 100 years building a network of leveling lines. A kinematic network adjustment is applied on the leveling data, providing an accurate solution for vertical displacement rates with accuracies of 0.2 to 0.4 mm/a. The biggest disadvantage of the leveling database is the sparse spatial distribution of the measurement points. Therefore, PS-InSAR is used to significantly increase the number of points within the leveling loops. To obtain a high accuracy for line of sight displacement rates, ERS-1/2 and Envisat data from ascending and descending orbits covering a period from 1992 to 2000 and 2002 to 2010, resp., are processed using StaMPS (Stanford Method for Persistent Scatterers). As the tectonic displacements cover a large area, the separation of atmospheric effects and orbit errors plays an important role in

  16. Effect of Leuconostoc mesenteroides NRRL B-512F Dextransucrase Carboxy-Terminal Deletions on Dextran and Oligosaccharide Synthesis

    PubMed Central

    Monchois, Vincent; Reverte, Augustin; Remaud-Simeon, Magali; Monsan, Pierre; Willemot, René-Marc

    1998-01-01

    Dextransucrase (DSR-S) from Leuconostoc mesenteroides NRRL B-512F is a glucosyltransferase that catalyzes synthesis of soluble dextran from sucrose. In the presence of efficient acceptor molecules, such as maltose, the reaction pathway is shifted toward glucooligosaccharide synthesis. Like glucosyltransferases from oral streptococci, DSR-S possesses a C-terminal glucan-binding domain composed of a series of tandem repeats. In order to determine the role of the C-terminal region of DSR-S in dextran or oligosaccharide synthesis, four DSR-S genes with deletions at the 3′ end were constructed. The results showed that the C-terminal region modulated the initial velocity of dextran synthesis but that the Km for sucrose, the optimum pH, and the activation energy were all unaffected by the deletions. The C-terminal domain modulated the rate of oligosaccharide synthesis whatever acceptor molecule was used (a good acceptor molecule such as maltose or a poor acceptor molecule such as fructose). The C-terminal domain seemed to play no role in the catalytic process in dextran and oligosaccharide synthesis. In fact, it seems that the role of the C-terminal domain of DSR-S may be to facilitate the translation of dextran and oligosaccharides from the catalytic site. PMID:9572930

  17. Biomimetic oligosaccharide and peptide surfactant polymers designed for cardiovascular biomaterials

    NASA Astrophysics Data System (ADS)

    Ruegsegger, Mark Andrew

    A common problem associated with cardiovascular devices is surface induced thrombosis initiated by the rapid, non-specific adsorption of plasma proteins onto the biomaterial surface. Control of the initial protein adsorption is crucial to achieve the desired longevity of the implanted biomaterial. The cell membrane glycocalyx acts as a non-thrombogenic interface through passive (dense oligosaccharide structures) and active (ligand/receptor interactions) mechanisms. This thesis is designed to investigate biomimicry of the cell glycocalyx to minimize non-specific protein adsorption and promote specific ligand/receptor interactions. Biomimetic macromolecules were designed through the molecular-scale engineering of polymer surfactants, utilizing a poly(vinyl amine) (PVAm) backbone to which hydrophilic (dextran, maltose, peptide) and hydrophobic alkyl (hexanoyl or hexanal) chains are simultaneously attached. The structure was controlled through the molar feed ratio of hydrophobic-to-hydrophilic groups, which also provided control of the solution and surface-active properties. To mimic passive properties, a series of oligomaltose surfactants were synthesized with increasing saccharide length (n = 2, 7, 15 where n is number of glucose units) to investigate the effect of coating height on protein adsorption. The surfactants were characterized by infra red (IR) and nuclear magnetic resonance (NMR) spectroscopies for structural properties and atomic force microscopy (AFM) and contact angle goniometry for surface activity. Protein adsorption under dynamic flow (5 dyn/cm2) was reduced by 85%--95% over the bare hydrophobic substrate; platelet adhesion dropped by ˜80% compared to glass. Peptide ligands were incorporated into the oligosaccharide surfactant to promote functional activity of the passive coating. The surfactants were synthesized to contain 0%, 25%, 50%, 75%, and 100% peptide ligand density and were stable on hydrophobic surfaces. The peptide surface density was

  18. Precision determination of the πN scattering lengths and the charged πNN coupling constant

    NASA Astrophysics Data System (ADS)

    Ericson, T. E. O.; Loiseau, B.; Thomas, A. W.

    2000-01-01

    We critically evaluate the isovector GMO sumrule for the charged πNN coupling constant using recent precision data from π-p and π-d atoms and with careful attention to systematic errors. From the π-d scattering length we deduce the pion-proton scattering lengths 1/2(aπ-p + aπ-n) = (-20 +/- 6(statistic)+/-10 (systematic) .10-4m-1πc and 1/2(aπ-p - aπ-n) = (903 +/- 14) . 10-4m-1πc. From this a direct evaluation gives g2c(GMO)/4π = 14.20 +/- 0.07 (statistic)+/-0.13(systematic) or f2c/4π = 0.0786 +/- 0.0008.

  19. Campylobacter jejuni free oligosaccharides: function and fate.

    PubMed

    Nothaft, Harald; Liu, Xin; Li, Jianjun; Szymanski, Christine M

    2010-01-01

    The Campylobacter jejuni N-linked protein glycosylation pathway produces a heptasaccharide that is added to >65 periplasmic and membrane proteins and is also released into the periplasm as the free oligosaccharide (fOS). The fOS is a novel soluble component of the C. jejuni periplasmic space that exists in 10-fold greater quantities than its asparagine-linked counterpart. Structurally, fOS is the same heptasaccharide that is found attached to asparagine residues on C. jejuni glycoproteins and both glycans are cleaved from the undecaprenylpyrophosphate anchor by the previously identified oligosaccharyltransferase PglB, which we have now shown to be a bifunctional enzyme also displaying hydrolase activity. The fOS levels in C. jejuni, similar to bacterial periplasmic glucans, can be manipulated by altering the salt and osmolyte concentrations in the growth environment. Here, we outline potential functions of fOS and raise new questions about the underlying mechanism involved in PglB-mediated fOS release from its lipid anchor and fOS retention within the C. jejuni periplasm. PMID:21178500

  20. Historical Aspects of Human Milk Oligosaccharides1234

    PubMed Central

    Kunz, Clemens

    2012-01-01

    This review focuses on important observations regarding infant health around 1900 when breastfeeding was not considered a matter of importance. The discovery of lactobacilli and bifidobacteria and their relevance for health and disease was an important milestone leading to a decrease in infant mortality in the first year of life. At the same time, pediatricians realized that the fecal composition of breast-fed and bottle-fed infants differed. Observations indicated that this difference is linked to milk composition, particularly due to the milk carbohydrate fraction. Circa 1930, a human milk carbohydrate fraction called gynolactose was identified. This was the starting point of research on human milk oligosaccharides (HMO). In the following years, the first HMO were identified and their functions investigated. Studies after 1950 focused on the identification of various HMO as the bifidus factor in human milk. In the following 30 years, a tremendous amount of research was done with regard to the characterization of individual HMO and HMO patterns in milk. In this short introduction to the history of HMO research, which ends circa 1980, some outstanding scientists in pediatrics and chemistry and their pioneering contributions to research in the field of HMO are presented. PMID:22585922

  1. Precise isotope-ratio determination by CGC hyphenated to ICP-MCMS for speciation of trace amounts of gaseous sulfur, with SF6 as example compound.

    PubMed

    Krupp, Eva M; Pécheyran, Christophe; Meffan-Main, Simon; Donard, Olivier F X

    2004-01-01

    Capillary gas chromatography coupled to an inductively coupled plasma mass spectrometer with multiple-collector detection (GC-ICP-MCMS) has been used to assess the precision and instrumental mass bias in sulfur isotope-ratio determination for the gaseous sulfur species SF6. The isotopic composition of the compound was certified by the institute for reference materials and measurements (IRMM, Belgium) and is available as PIGS 2010. Integration of the peaks (peak half-width 1.4 s) was performed using a special peak-integration method based on definition of the integration area by assessment of a uniform isotope-ratio area within the chromatographic peak. Instrumental mass bias was determined to be approximately 12% per mass unit and proved to be stable in the concentration range measured. Replicate injections of 2, 10, 20, and 30 ng (as S) SF6 diluted in argon gave precision for the 32S/34S ratio from 0.6% RSD for 2-ng injections to 0.03% RSD for 30-ng injections. The 32S/33S and 33S/34S isotope-ratio precision was better than 0.4% RSD for injections of 10 ng (as S) and higher. Detection limits were in the absolute pg range for all measured sulfur isotopes. PMID:14618293

  2. Breakthrough in orbit determination of a binary. - In expectation of astrometric observations with high precision such as VERA and JASMINE -

    NASA Astrophysics Data System (ADS)

    Asada, Hideki

    2006-11-01

    There exists a very classical inverse problem regarding orbit determination of a binary system: "when an orbital plane of two bodies is inclined with respect to the line of sight, observables are their positions projected onto a celestial sphere. How do we determine the orbital elements from observations?" A "complete exact solution" has been found. It is reviewed with some related topics.

  3. The importance of precision radar tracking data for the determination of density and winds from the high-altitude inflatable sphere

    NASA Technical Reports Server (NTRS)

    Schmidlin, F. J.; Michel, W. R.

    1985-01-01

    Analysis of inflatable sphere measurements obtained during the Energy Budget and MAP/WINE campaigns led to questions concerning the precision of the MPS-36 radar used for tracking the spheres; the compatibility of the sphere program with the MPS-36 radar tracking data; and the oversmoothing of derived parameters at high altitudes. Simulations, with winds having sinusoidal vertical wavelengths, were done with the sphere program (HIROBIN) to determine the resolving capability of various filters. It is concluded that given a precision radar and a perfectly performing sphere, the HIROBIN filters can be adjusted to provide small-scale perturbation information to 70 km (i.e., sinusoidal wavelengths of 2 km). It is recommended that the HIROBIN program be modified to enable it to use a variable length filter, that adjusts to fall velocity and accelerations to provide wind data with small perturbations.

  4. Precise determination of full matrix of piezo-optic coefficients with a four-point bending technique: the example of lithium niobate crystals.

    PubMed

    Krupych, Oleg; Savaryn, Viktoriya; Vlokh, Rostyslav

    2014-04-01

    A recently proposed technique representing a combination of digital imaging laser interferometry with a classical four-point bending method is applied to a canonical nonlinear optical crystal, LiNbO₃, to precisely determine a full matrix of its piezo-optic coefficients (POCs). The contribution of a secondary piezo-optic effect to the POCs is investigated experimentally and analyzed theoretically. Based on the POCs thus obtained, a full matrix of strain-optic coefficients (SOCs) is calculated and the appropriate errors are estimated. A comparison of our experimental errors for the POCs and SOCs with the known reference data allows us to claim the present technique as the most precise. PMID:24787189

  5. Heparin oligosaccharides: inhibitors of the biological activity of bFGF on Caco-2 cells.

    PubMed Central

    Jayson, G. C.; Gallagher, J. T.

    1997-01-01

    A number of growth factors, including members of the fibroblast growth factor (FGF) family - hepatocyte growth factor, vascular endothelial growth factor and heparin-binding epidermal growth factor - are dependent on heparan sulphate (HS) for biological activity mediated through their high-affinity signal-transducing receptors. This obligate requirement for HS prompted the search for antagonists of HS function that could be used as anti-growth factor drugs for the treatment of cancer. Basic FGF (bFGF) was the focus of this study. Caco-2, a human colon carcinoma cell line, was adapted to growth in serum-free medium so that investigation of its growth factor requirements for growth and migration could be performed in defined conditions (Jayson GC, Evans GS, Pemberton PW, Lobley RW, Allen T 1994, Cancer Res, 54, 5718-5723). This cell line multiplied and moved in a dose-dependent manner in response to bFGF. Here, we show that the mitogenic response to bFGF is dependent on the presence of heparan sulphate. A library of heparin oligosaccharides with uniform composition but variable length was generated [general formula [IdoA(2S)-GlcNS(6S)n], and oligosaccharides of defined lengths were tested for their ability to inhibit the biological activity of bFGF. While intact heparin and heparin-derived fragments of 12 monosaccharide units did not affect bFGF-induced cell division or bFGF-induced cell migration, octasaccharides and decasaccharides potently inhibited the bFGF-induced growth and migration responses. In particular, octasaccharides completely inhibited these biological activities at 10 microg ml-, a clinically achievable and tolerable concentration. This study shows that the length of an oligosaccharide determines its ability to block the biological activity of bFGF. The observation that the biological activity of cell-surface heparan sulphate can be antagonized in this way in a human carcinoma cell line suggests that oligosaccharides should be investigated further as

  6. Innovations in Mass Spectrometry for Precise and Accurate Isotope Ratio Determination from Very Small Analyte Quantities (Invited)

    NASA Astrophysics Data System (ADS)

    Lloyd, N. S.; Bouman, C.; Horstwood, M. S.; Parrish, R. R.; Schwieters, J. B.

    2010-12-01

    This presentation describes progress in mass spectrometry for analysing very small analyte quantities, illustrated by example applications from nuclear forensics. In this challenging application, precise and accurate (‰) uranium isotope ratios are required from 1 - 2 µm diameter uranium oxide particles, which comprise less than 40 pg of uranium. Traditionally these are analysed using thermal ionisation mass spectrometry (TIMS), and more recently using secondary ionisation mass spectrometry (SIMS). Multicollector inductively-coupled plasma mass spectrometry (MC-ICP-MS) can offer higher productivity compared to these techniques, but is traditionally limited by low efficiency of analyte utilisation (sample through to ion detection). Samples can either be introduced as a solution, or sampled directly from solid using laser ablation. Large multi-isotope ratio datasets can help identify provenance and intended use of anthropogenic uranium and other nuclear materials [1]. The Thermo Scientific NEPTUNE Plus (Bremen, Germany) with ‘Jet Interface’ option offers unparalleled MC-ICP-MS sensitivity. An analyte utilisation of c. 4% has previously been reported for uranium [2]. This high-sensitivity configuration utilises a dry high-capacity (100 m3/h) interface pump, special skimmer and sampler cones and a desolvating nebuliser system. Coupled with new acquisition methodologies, this sensitivity enhancement makes possible the analysis of micro-particles and small sample volumes at higher precision levels than previously achieved. New, high-performance, full-size and compact discrete dynode secondary electron multipliers (SEM) exhibit excellent stability and linearity over a large dynamic range and can be configured to simultaneously measure all of the uranium isotopes. Options for high abundance-sensitivity filters on two ion beams are also available, e.g. for 236U and 234U. Additionally, amplifiers with high ohm (1012 - 1013) feedback resistors have been developed to

  7. Three-Dimensional Orientation Determination of Stationary Anisotropic Nanoparticles with Sub-Degree Precision under Total Internal Reflection Scattering Microscopy

    SciTech Connect

    Marchuk, Kyle; Fang, Ning

    2013-11-13

    Single-particle and single-molecule orientation determination plays a vital role in deciphering nanoscale motion in complex environments. Previous attempts to determine the absolute three-dimensional orientation of anisotropic particles rely on subjective pattern matching and are inherently plagued by high degrees of uncertainty. Herein, we describe a method utilizing total internal reflection scattering microscopy to determine the 3D orientation of gold nanorods with subdegree uncertainty. The method is then applied to the biologically relevant system of microtubule cargo loading. Finally, we demonstrate the method holds potential for identifying single particles versus proximate neighbors within the diffraction limited area.

  8. Precise determination of the 1s Lamb Shift in hydrogen-like heavy ions at the ESR storage ring using microcalorimeters

    NASA Astrophysics Data System (ADS)

    Kraft-Bermuth, S.; Andrianov, V.; Bleile, A.; Echler, A.; Egelhof, P.; Grabitz, P.; Ilieva, S.; Kiselev, O.; Kilbourne, C.; McCammon, D.; Meier, J. P.; Scholz, P.

    2015-11-01

    The precise determination of the energy of the Lyman α1 and α2 lines in hydrogen-like heavy ions provides a sensitive test of quantum electrodynamics in very strong Coulomb fields. To improve the precision of such experiments, the new detector concept of microcalorimeters, which detect the temperature change of an absorber after an incoming particle or photon has deposited its energy as heat, is now exploited. The microcalorimeters for x-rays used in these experiments consist of arrays of silicon thermometers and x-ray absorbers made of high-Z material. With such detectors, a relative energy resolution of about 1 per mille is obtained in the energy regime of 50-100 keV. Two successful measurement campaigns to determine the 1s Lamb Shift in Pb81+ and Au78+ have been completed: a prototype array has been applied successfully for the determination of the 1s Lamb Shift of Pb81+ at the ESR storage ring at GSI in a first test experiment. Based on the results of this test, a full array with 32 pixels has been equipped and has recently been applied to determine the 1s Lamb Shift in Au78+ ions. The energy of the Lyman-α1 line agrees within error bars well with theoretical predictions. The obtained accuracy is already comparable to the best accuracy obtained with conventional germanium detectors for hydrogen-like uranium.

  9. Enzymatic degradation of oligosaccharides in pinto bean flour.

    PubMed

    Song, Danfeng; Chang, Sam K C

    2006-02-22

    The use of dry edible beans is limited due to the presence of flatulence factors, the raffinose oligosaccharides. Our objective was to investigate the process for the removal of oligosaccharides from pinto bean using enzymatic treatment and to compare it to removal by soaking and cooking methods. Crude enzyme preparation was produced by six fungal species on wheat bran- and okara-based substrates with soy tofu whey. The loss of raffinose oligosaccharides after soaking pinto beans for 16 h at the room temperature was 10%, after cooking for 90 min was 52%, and after autoclaving for 30 min was 58%. On the other hand, the treatment using crude alpha-galactosidase (60 U mL(-1)) produced by Aspergillus awamori NRRL 4869 from wheat bran-based substrate with soy tofu whey on pinto bean flour for 2 h completely hydrolyzed raffinose oligosaccharides. These results supported that the enzymatic treatment was the most effective among various processing methods tested for removing the raffinose oligosaccharides, and hence, crude alpha-galactosidases from fungi have potential use in the food industry. PMID:16478251

  10. Structural confirmation of oligosaccharides newly isolated from sugar beet molasses

    PubMed Central

    2012-01-01

    Background Sugar beet molasses is a viscous by-product of the processing of sugar beets into sugar. The molasses is known to contain sucrose and raffinose, a typical trisaccharide, with a well-established structure. Although sugar beet molasses contains various other oligosaccharides as well, the structures of those oligosaccharides have not been examined in detail. The purpose of this study was isolation and structural confirmation of these other oligosaccharides found in sugar beet molasses. Results Four oligosaccharides were newly isolated from sugar beet molasses using high-performance liquid chromatography (HPLC) and carbon-Celite column chromatography. Structural confirmation of the saccharides was provided by methylation analysis, matrix-assisted laser desorption/ionaization time of flight mass spectrometry (MALDI-TOF-MS), and nuclear magnetic resonance (NMR) measurements. Conclusion The following oligosaccharides were identified in sugar beet molasses: β-D-galactopyranosyl-(1- > 6)-β-D-fructofuranosyl-(2 <-> 1)-α-D-glucopyranoside (named β-planteose), α-D-galactopyranosyl-(1- > 1)-β-D-fructofuranosyl-(2 <-> 1)-α-D-glucopyranoside (named1-planteose), α-D-glucopyranosyl-(1- > 6)-α-D-glucopyranosyl-(1 <-> 2)-β-D-fructofuranoside (theanderose), and β-D-glucopyranosyl-(1- > 3)-α-D-glucopyranosyl-(1 <-> 2)-β-D-fructofuranoside (laminaribiofructose). 1-planteose and laminaribiofructose were isolated from natural sources for the first time. PMID:22925105

  11. Precisely determined the surface displacement by the ionospheric mitigation using the L-band SAR Interferometry over Mt.Baekdu

    NASA Astrophysics Data System (ADS)

    Lee, Won-Jin; Jung, Hyung-Sup; Park, Sun-Cheon; Lee, Duk Kee

    2016-04-01

    Mt. Baekdu (Changbaishan in Chinese) is located on the border between China and North Korea. It has recently attracted the attention of volcanic unrest during 2002-2005. Many researchers have applied geophysical approaches to detect magma system of beneath Mt.Baekdu such as leveling, Global Positioning System (GPS), gases analysis, seismic analysis, etc. Among them, deformation measuring instruments are important tool to evaluate for volcanism. In contrast to GPS or other deformation measuring instruments, Synthetic Aperture Radar Interferometry (InSAR) has provided high resolution of 2-D surface displacement from remote sensed data. However, Mt. Baekdu area has disturbed by decorrelation on interferogram because of wide vegetation coverage. To overcome this limitation, L-band system of long wavelength is more effective to detect surface deformation. In spite of this advantage, L-band can surfer from more severe ionospheric phase distortions than X- or C- band system because ionospheric phase distortions are inverse proportion to the radar frequency. Recently, Multiple Aperture Interferometry (MAI) based ionospheric phase distortions mitigation method have proposed and investigated. We have applied this technique to the Mt.Baekdu area to measure surface deformation precisely using L-band Advanced Land Observing Satellite-1(ALOS-1) Phased Array type L-band Synthetic Aperture Radar(PALSAR) data acquiring from 2006 to 2011.

  12. Precise oxygen and hydrogen isotope determination in nanoliter quantities of speleothem inclusion water by cavity ring-down spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Uemura, Ryu; Nakamoto, Masashi; Asami, Ryuji; Mishima, Satoru; Gibo, Masakazu; Masaka, Kosuke; Jin-Ping, Chen; Wu, Chung-Che; Chang, Yu-Wei; Shen, Chuan-Chou

    2016-01-01

    Speleothem inclusion-water isotope compositions are a promising new climatic proxy, but their applicability is limited by their low content in water and by analytical challenges. We have developed a precise and accurate isotopic technique that is based on cavity ring-down spectroscopy (CRDS). This method features a newly developed crushing apparatus, a refined sample extraction line, careful evaluation of the water/carbonate adsorption effect. After crushing chipped speleothem in a newly-developed crushing device, released inclusion water is purified and mixed with a limited amount of nitrogen gas in the extraction line for CRDS measurement. We have measured 50-260 nL of inclusion water from 77 to 286 mg of stalagmite deposits sampled from Gyokusen Cave, Okinawa Island, Japan. The small sample size requirement demonstrates that our analytical technique can offer high-resolution inclusion water-based paleoclimate reconstructions. The 1σ reproducibility for different stalagmites ranges from ±0.05 to 0.61‰ for δ18O and ±0.0 to 2.9‰ for δD. The δD vs. δ18O plot for inclusion water from modern stalagmites is consistent with the local meteoric water line. The 1000 ln α values based on calcite and fluid inclusion measurements from decades-old stalagmites are in agreement with the data from present-day farmed calcite experiment. Combination of coeval carbonate and fluid inclusion data suggests that past temperatures at 9-10 thousand years ago (ka) and 26 ka were 3.4 ± 0.7 °C and 8.2 ± 2.4 °C colder than at present, respectively.

  13. Ozone column density determination from direct irradiance measurements in the ultraviolet performed by a four-channel precision filter radiometer.

    PubMed

    Ingold, T; Mätzler, C; Wehrli, C; Heimo, A; Kämpfer, N; Philipona, R

    2001-04-20

    Ultraviolet light was measured at four channels (305, 311, 318, and 332 nm) with a precision filter radiometer (UV-PFR) at Arosa, Switzerland (46.78 degrees , 9.68 degrees , 1850 m above sea level), within the instrument trial phase of a cooperative venture of the Swiss Meteorological Institute (MeteoSwiss) and the Physikalisch-Meteorologisches Observatorium Davos/World Radiation Center. We retrieved ozone-column density data from these direct relative irradiance measurements by adapting the Dobson standard method for all possible single-difference wavelength pairs and one double-difference pair (305/311 and 305/318) under conditions of cloud-free sky and of thin clouds (cloud optical depth <2.5 at 500 nm). All UV-PFR retrievals exhibited excellent agreement with those of collocated Dobson and Brewer spectrophotometers for data obtained during two months in 1999. Combining the results of the error analysis and the findings of the validation, we propose to retrieve ozone-column density by using the 305/311 single difference pair and the double-difference pair. Furthermore, combining both retrievals by building the ratio of ozone-column density yields information that is relevant to data quality control. Estimates of the 305/311 pair agree with measurements by the Dobson and Brewer instruments within 1% for both the mean and the standard deviation of the differences. For the double pair these values are in a range up to 1.6%. However, this pair is less sensitive to model errors. The retrieval performance is also consistent with satellite-based data from the Earth Probe Total Ozone Mapping Spectrometer (EP-TOMS) and the Global Ozone Monitoring Experiment instrument (GOME). PMID:18357202

  14. Verification on the use of the Inoue method for precisely determining glomerular filtration rate in Philippine pediatrics

    NASA Astrophysics Data System (ADS)

    Magcase, M. J. D. J.; Duyan, A. Q.; Carpio, J.; Carbonell, C. A.; Trono, J. D.

    2015-06-01

    The objective of this study is to validate the Inoue method so that it would be the preferential choice in determining glomerular filtration rate (GFR) in Philippine pediatrics. The study consisted of 36 patients ranging from ages 2 months to 19 years old. The subjects used were those who were previously subjected to in-vitro method. The scintigrams of the invitro method was obtained and processed for split percentage uptake and for parameters needed to obtain Inoue GFR. The result of this paper correlates the Inoue GFR and In-vitro method (r = 0.926). Thus, Inoue method is a viable, simple, and practical technique in determining GFR in pediatric patients.

  15. 40 CFR 80.584 - What are the precision and accuracy criteria for approval of test methods for determining the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... criteria for approval of test methods for determining the sulfur content of motor vehicle diesel fuel, NRLM diesel fuel, and ECA marine fuel? 80.584 Section 80.584 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor...

  16. 40 CFR 80.584 - What are the precision and accuracy criteria for approval of test methods for determining the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... criteria for approval of test methods for determining the sulfur content of motor vehicle diesel fuel, NRLM diesel fuel, and ECA marine fuel? 80.584 Section 80.584 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor...

  17. Natural variability in bovine milk oligosaccharides from Danish Jersey and Holstein-Friesian breeds

    PubMed Central

    Sundekilde, Ulrik K; Barile, Daniela; Meyrand, Mickael; Poulsen, Nina A; Larsen, Lotte B; Lebrilla, Carlito B.; Bruce, German J.; Bertram, Hanne C

    2012-01-01

    Free oligosaccharides are key components of human milk and play multiple roles in the health of the neonate, by stimulating growth of selected beneficial bacteria in the gut, participating in development of the brain and exerting anti-pathogenic activity. However, the concentration of oligosaccharides is low in mature bovine milk, normally used for infant formula, compared with both human colostrum and mature human milk. Characterization of bovine milk oligosaccharides in different breeds is crucial for the identification of viable sources for oligosaccharide purification. An improved source of oligosaccharides can lead to infant formula with improved oligosaccharide functionality. In the present study we have analyzed milk oligosaccharides by high-performance liquid chromatography chip quadrupole time-of-flight mass spectrometry and performed a detailed data analysis using both univariate and multivariate methods. Both statistical tools revealed several differences in oligosaccharide profiles between milk samples from the two Danish breeds; Jersey and Holstein-Friesians. Jersey milk contained higher relative amounts of both sialylated and the more complex neutral fucosylated oligosaccharides, while the Holstein-Friesian milk had higher abundance of smaller and simpler neutral oligosaccharides. The statistical analyses revealed that Jersey milk contain significantly higher levels of fucosylated oligosaccharides than Holstein-Friesian milk. Jersey milk also possesses oligosaccharides with a higher degree of complexity and functional residues (fucose and sialic acid) suggesting it may therefore offer advantages in term of a wider array of bioactivities. PMID:22632419

  18. Natural variability in bovine milk oligosaccharides from Danish Jersey and Holstein-Friesian breeds.

    PubMed

    Sundekilde, Ulrik K; Barile, Daniela; Meyrand, Mickael; Poulsen, Nina A; Larsen, Lotte B; Lebrilla, Carlito B; German, J Bruce; Bertram, Hanne C

    2012-06-20

    Free oligosaccharides are key components of human milk and play multiple roles in the health of the neonate, by stimulating growth of selected beneficial bacteria in the gut, participating in development of the brain, and exerting antipathogenic activity. However, the concentration of oligosaccharides is low in mature bovine milk, normally used for infant formula, compared with both human colostrum and mature human milk. Characterization of bovine milk oligosaccharides in different breeds is crucial for the identification of viable sources for oligosaccharide purification. An improved source of oligosaccharides can lead to infant formula with improved oligosaccharide functionality. In the present study we have analyzed milk oligosaccharides by high-performance liquid chromatography chip quadrupole time-of-flight mass spectrometry and performed a detailed data analysis using both univariate and multivariate methods. Both statistical tools revealed several differences in oligosaccharide profiles between milk samples from the two Danish breeds, Jersey and Holstein-Friesians. Jersey milk contained higher relative amounts of both sialylated and the more complex neutral fucosylated oligosaccharides, while the Holstein-Friesian milk had higher abundance of smaller and simpler neutral oligosaccharides. The statistical analyses revealed that Jersey milk contains levels of fucosylated oligosaccharides significantly higher than that of Holstein-Friesian milk. Jersey milk also possesses oligosaccharides with a higher degree of complexity and functional residues (fucose and sialic acid), suggesting it may therefore offer advantages in term of a wider array of bioactivities. PMID:22632419

  19. Characterization of an antigenic oligosaccharide from Leptospira interrogans serovar pomona and its role in immunity.

    PubMed Central

    Midwinter, A; Vinh, T; Faine, S; Adler, B

    1994-01-01

    An antigenic oligosaccharide fraction derived from the lipopolysaccharide of Leptospira interrogans serovar pomona was isolated by endo-glycosidase H digestion and column chromatography. The oligosaccharide contained rhamnose, ribose, glucose, and glucosamine and inhibited the binding of opsonic, protective monoclonal antibodies directed against the lipopolysaccharide. When conjugated to diphtheria toxoid, the oligosaccharide elicited the production of agglutinating, opsonic antibodies. Images PMID:7960129

  20. Novel arabinan and galactan oligosaccharides from dicotyledonous plants.

    PubMed

    Wefers, Daniel; Tyl, Catrin E; Bunzel, Mirko

    2014-01-01

    Arabinans and galactans are neutral pectic side chains and an important part of the cell walls of dicotyledonous plants. To get a detailed insight into their fine structure, various oligosaccharides were isolated from quinoa, potato galactan, and sugar beet pulp after enzymatic treatment. LC-MS(2) and one- and two-dimensional NMR spectroscopy were used for unambiguous structural characterization. It was demonstrated that arabinans contain β-(1→3)-linked arabinobiose as a side chain in quinoa seeds, while potato galactan was comprised of β-(1→4)-linked galactopyranoses which are interspersed with α-(1→4)-linked arabinopyranoses. Additionally, an oligosaccharide with two adjacent arabinofuranose units O2-substituted with two ferulic acid monomers was characterized. The isolated oligosaccharides gave further insight into the structures of pectic side chains and may have an impact on plant physiology and dietary fiber fermentation. PMID:25426490

  1. Optimization of Oligosaccharide Synthesis from Cellobiose by Dextransucrase

    NASA Astrophysics Data System (ADS)

    Kim, Misook; Day, Donal F.

    There is a growing market for oligosaccharides as sweeteners, prebiotics, anticariogenic compounds, and immunostimulating agents in both food and pharmaceutical industries. Interest in novel carbohydrate-based products has grown because of their reduced toxicity and low immune response. Cellobiose is potentially valuable as a nondigestible sugar. The reaction of cellobiose, as an acceptor with a sucrose as a donor, catalyzed by a dextransucrase from Leuconostoc mesenteroides B-512FMCM, produced a series of cellobio-oligosaccharides. This production system was optimized using a Box-Behnken experimental design for 289 mM of sucrose and 250 mM of cellobiose and 54 U of the enzyme at pH 5.2 and 30 °C, to produce maximum yields of oligosaccharide.

  2. Novel arabinan and galactan oligosaccharides from dicotyledonous plants

    NASA Astrophysics Data System (ADS)

    Wefers, Daniel; Tyl, Catrin; Bunzel, Mirko

    2014-11-01

    Arabinans and galactans are neutral pectic side chains and an important part of the cell walls of dicotyledonous plants. To get a detailed insight into their fine structure, various oligosaccharides were isolated from quinoa, potato galactan, and sugar beet pulp after enzymatic treatment. LC-MS2 and one- and two-dimensional NMR spectroscopy were used for unambiguous structural characterization. It was demonstrated that arabinans contain β-(1→3)-linked arabinobiose as a side chain in quinoa seeds, while potato galactan was comprised of β-(1→4)-linked galactopyranoses which are interspersed with α-(1→4)-linked arabinopyranoses. Additionally, an oligosaccharide with two adjacent arabinofuranose units O2-substituted with two ferulic acid monomers was characterized. The isolated oligosaccharides gave further insight into the structures of pectic side chains and may have an impact on plant physiology and dietary fiber fermentation.

  3. Novel arabinan and galactan oligosaccharides from dicotyledonous plants

    PubMed Central

    Wefers, Daniel; Tyl, Catrin E.; Bunzel, Mirko

    2014-01-01

    Arabinans and galactans are neutral pectic side chains and an important part of the cell walls of dicotyledonous plants. To get a detailed insight into their fine structure, various oligosaccharides were isolated from quinoa, potato galactan, and sugar beet pulp after enzymatic treatment. LC-MS2 and one- and two-dimensional NMR spectroscopy were used for unambiguous structural characterization. It was demonstrated that arabinans contain β-(1→3)-linked arabinobiose as a side chain in quinoa seeds, while potato galactan was comprised of β-(1→4)-linked galactopyranoses which are interspersed with α-(1→4)-linked arabinopyranoses. Additionally, an oligosaccharide with two adjacent arabinofuranose units O2-substituted with two ferulic acid monomers was characterized. The isolated oligosaccharides gave further insight into the structures of pectic side chains and may have an impact on plant physiology and dietary fiber fermentation. PMID:25426490

  4. PRECISE THROUGHPUT DETERMINATION OF THE PanSTARRS TELESCOPE AND THE GIGAPIXEL IMAGER USING A CALIBRATED SILICON PHOTODIODE AND A TUNABLE LASER: INITIAL RESULTS

    SciTech Connect

    Stubbs, Christopher W.; Doherty, Peter; Cramer, Claire; Narayan, Gautham; Brown, Yorke J.; Lykke, Keith R.; Woodward, John T.; Tonry, John L.

    2010-12-15

    We have used a precision-calibrated photodiode as the fundamental metrology reference in order to determine the relative throughput of the PanSTARRS telescope and the Gigapixel imager, from 400 nm to 1050 nm. Our technique uses a tunable laser as a source of illumination on a transmissive flat-field screen. We determine the full-aperture system throughput as a function of wavelength, including (in a single integral measurement) the mirror reflectivity, the transmission functions of the filters and the corrector optics, and the detector quantum efficiency, by comparing the light seen by each pixel in the CCD array to that measured by a precision-calibrated silicon photodiode. This method allows us to determine the relative throughput of the entire system as a function of wavelength, for each pixel in the instrument, without observations of celestial standards. We present promising initial results from this characterization of the PanSTARRS system, and we use synthetic photometry to assess the photometric perturbations due to throughput variation across the field of view.

  5. Rates of processing of the high mannose oligosaccharide units at the three glycosylation sites of mouse thyrotropin and the two sites of free alpha-subunits

    SciTech Connect

    Miura, Y.; Perkel, V.S.; Magner, J.A.

    1988-09-01

    We have determined the structures of high mannose (Man) oligosaccharide units at individual glycosylation sites of mouse TSH. Mouse thyrotropic tumor tissue was incubated with D-(2-/sup 3/H)Man with or without (/sup 14/C)tyrosine ((/sup 14/C) Tyr) for 2, 3, or 6 h, and for a 3-h pulse followed by a 2-h chase. TSH heterodimers or free alpha-subunits were obtained from homogenates using specific antisera. After reduction and alkylation, subunits were treated with trypsin. The tryptic fragments were then loaded on a reverse phase HPLC column to separate tryptic fragments bearing labeled oligosaccharides. The N-linked oligosaccharides were released with endoglycosidase-H and analyzed by paper chromatography. Man9GlcNac2 and Man8GlcNac2 units predominated at each time point and at each specific glycosylation site, but the processing of high Man oligosaccharides differed at each glycosylation site. The processing at Asn23 of TSH beta-subunits was slower than that at Asn56 or Asn82 of alpha-subunits. The processing at Asn82 was slightly faster than that at Asn56 for both alpha-subunits of TSH heterodimers and free alpha-subunits. The present study demonstrates that the early processing of oligosaccharides differs at the individual glycosylation sites of TSH and free alpha-subunits, perhaps because of local conformational differences.

  6. New Method for Determining Isotopic Values of Glutamic Acid and Phenylalanine for Estimation of Precise Trophic Position in Food Web Studies

    NASA Astrophysics Data System (ADS)

    Kamath, T.; Broek, T.; McCarthy, M.

    2012-12-01

    Compound Specific Isotope Analysis of Amino Acids (CSI-AA) has emerged as a highly precise new method of determining trophic levels of both aquatic and terrestrial organisms. Multiple studies have now shown that δ15N values for glutamic acid (Glu) and phenylalanine (Phe) can be coupled to provide extremely precise estimates of trophic position in diverse food web studies. The standard gas chromatography—isotope ratio mass spectrometer (GC-IRMS) approach is presently limited to a select number of labs since necessary equipment is both expensive and not widely accessible. Furthermore, typical GC-IRMS δ15N precision (±1‰) is significantly lower than usual bulk δ15N values (±0.1‰), thus presenting a considerable setback for precise trophic level calculations. In this study, we develop a new dual-column method to purify Glu and Phe using high performance liquid chromatography (HPLC). Phe is purified using an analytical scale reverse phase column embedded with anionic ion-pairing reagents and collected using automated fraction collection. Glu is separated from the non-polar amino acids using the same column and further purified using a hydrophilic interaction liquid chromatography (HILIC) cation and anion-exchange column and collected via automated fraction collection. Isotopic analysis of the purified AAs is then conducted on an elemental analyzer—isotope ratio mass spectrometer (EA-IRMS). As a test of this method, we present and compare the trophic position of five marine organisms—cyanobacteria, deep-sea bamboo coral, juvenile and adult white sea bass, and harbor seal, calculated using Glu and Phe δ15N values produced by both GC-IRMS and our HPLC-EA-IRMS approach. The preliminary results of this study suggest that the HPLC-EA-IRMS method is a viable alternative to GC-IRMS, which should allow accurate trophic position estimates to be made by more researchers using more readily available instrumentation.

  7. Determination of short-term error caused by the reference clock in precision time-interval measurement and generation

    NASA Astrophysics Data System (ADS)

    Kalisz, Jozef

    1988-06-01

    A simple analysis based on the randomized clock cycle T(o) yields a useful formula on its variance in terms of the Allan variance. The short-term uncertainty of the measured or generated time interval t is expressed by the standard deviation in an approximate form as a function of the Allen variance. The estimates obtained are useful for determining the measurement uncertainty of time intervals within the approximate range of 10 ms-100 s.

  8. Synthetic oligosaccharides as heparin-mimetics displaying anticoagulant properties.

    PubMed

    Avci, Fikri Y; Karst, Nathalie A; Linhardt, Robert J

    2003-01-01

    Heparin and low molecular weight heparins are major clinical anticoagulants and the drugs of choice for the treatment of deep venous thrombosis. The discovery of an antithrombin binding domain in heparin focused interest on understanding the mechanism of heparin's antithrombotic/ anticoagulant activity. Various heparin-mimetic oligosaccharides have been prepared in an effort to replace polydisperse heparin and low molecular weight heparins with a structurally-defined anticoagulant. The goal of attaining a heparin-mimetic with no unwanted side-effects has also provided motivation for these efforts. This article reviews structure-activity relationship (SAR) of structurally-defined heparin-mimetic oligosaccharides. PMID:14529394

  9. Role of human milk oligosaccharides in Group B Streptococcus colonisation.

    PubMed

    Andreas, Nicholas J; Al-Khalidi, Asmaa; Jaiteh, Mustapha; Clarke, Edward; Hyde, Matthew J; Modi, Neena; Holmes, Elaine; Kampmann, Beate; Mehring Le Doare, Kirsty

    2016-08-01

    Group B Streptococcus (GBS) infection is a major cause of morbidity and mortality in infants. The major risk factor for GBS disease is maternal and subsequent infant colonisation. It is unknown whether human milk oligosaccharides (HMOs) protect against GBS colonisation. HMO production is genetically determined and linked to the Lewis antigen system. We aimed to investigate the association between HMOs and infant GBS colonisation between birth and postnatal day 90. Rectovaginal swabs were collected at delivery, as well as colostrum/breast milk, infant nasopharyngeal and rectal swabs at birth, 6 days and days 60-89 postpartum from 183 Gambian mother/infant pairs. GBS colonisation and serotypes were determined using culture and PCR. (1)H nuclear magnetic resonance spectroscopy was used to characterise the mother's Lewis status and HMO profile in breast milk. Mothers who were Lewis-positive were significantly less likely to be colonised by GBS (X (2)=12.50, P<0.001). Infants of Lewis-positive mothers were less likely GBS colonised at birth (X (2)=4.88 P=0.03) and more likely to clear colonisation between birth and days 60-89 than infants born to Lewis-negative women (P=0.05). There was no association between Secretor status and GBS colonisation. In vitro work revealed that lacto-N-difucohexaose I (LNDFHI) correlated with a reduction in the growth of GBS. Our results suggest that HMO such as LNDFHI may be a useful adjunct in reducing maternal and infant colonisation and hence invasive GBS disease. Secretor status offers utility as a stratification variable in GBS clinical trials. PMID:27588204

  10. Role of human milk oligosaccharides in Group B Streptococcus colonisation

    PubMed Central

    Andreas, Nicholas J; Al-Khalidi, Asmaa; Jaiteh, Mustapha; Clarke, Edward; Hyde, Matthew J; Modi, Neena; Holmes, Elaine; Kampmann, Beate; Mehring Le Doare, Kirsty

    2016-01-01

    Group B Streptococcus (GBS) infection is a major cause of morbidity and mortality in infants. The major risk factor for GBS disease is maternal and subsequent infant colonisation. It is unknown whether human milk oligosaccharides (HMOs) protect against GBS colonisation. HMO production is genetically determined and linked to the Lewis antigen system. We aimed to investigate the association between HMOs and infant GBS colonisation between birth and postnatal day 90. Rectovaginal swabs were collected at delivery, as well as colostrum/breast milk, infant nasopharyngeal and rectal swabs at birth, 6 days and days 60–89 postpartum from 183 Gambian mother/infant pairs. GBS colonisation and serotypes were determined using culture and PCR. 1H nuclear magnetic resonance spectroscopy was used to characterise the mother's Lewis status and HMO profile in breast milk. Mothers who were Lewis-positive were significantly less likely to be colonised by GBS (X2=12.50, P<0.001). Infants of Lewis-positive mothers were less likely GBS colonised at birth (X2=4.88 P=0.03) and more likely to clear colonisation between birth and days 60–89 than infants born to Lewis-negative women (P=0.05). There was no association between Secretor status and GBS colonisation. In vitro work revealed that lacto-N-difucohexaose I (LNDFHI) correlated with a reduction in the growth of GBS. Our results suggest that HMO such as LNDFHI may be a useful adjunct in reducing maternal and infant colonisation and hence invasive GBS disease. Secretor status offers utility as a stratification variable in GBS clinical trials. PMID:27588204

  11. Large-scale production of highly enriched 28Si for the precise determination of the Avogadro constant

    NASA Astrophysics Data System (ADS)

    Becker, P.; Schiel, D.; Pohl, H.-J.; Kaliteevski, A. K.; Godisov, O. N.; Churbanov, M. F.; Devyatykh, G. G.; Gusev, A. V.; Bulanov, A. D.; Adamchik, S. A.; Gavva, V. A.; Kovalev, I. D.; Abrosimov, N. V.; Hallmann-Seiffert, B.; Riemann, H.; Valkiers, S.; Taylor, P.; DeBièvre, P.; Dianov, E. M.

    2006-07-01

    An attempt is described to replace the present definition of the kilogram with the mass of a certain number of silicon atoms. A prerequisite for this is that the Avogadro constant, NA, is determined with a relative uncertainty of better than 2 × 10-8. For the determination, silicon crystals are used. However, the difficulty arising thereby is the measurement of the average molar mass of natural Si. Consequently, a worldwide collaboration has been launched to produce approximately a 5 kg 28Si single crystal with an enrichment factor greater than 99.985% and of sufficient chemical purity so that it can be used to determine NA with the targeted relative measurement uncertainty mentioned above. In the following, the first successful tests of all technological steps will be reported (enrichment of SiF4, distillation into silane and chemical purification, chemical vapour deposition of polycrystalline 28Si, floating zone growth of a dislocation-free single crystal) and new equipment for the production of high-purity 28Si with an enrichment of not less than 99.99% will be described. All steps are well defined by a Technical Road Map (TRM28) and all key results are measured by new mass spectrometric, IR spectroscopic and other chemical and physical methods, such as Hall effect, photoluminescence, laser scattering and x-ray topographic methods (TRM for Analytical Monitoring and Certification, TRM28-AMC). The initial enrichment of the gas is >0.999 95 and the depletion during the entire process is <0.000 05. The isotopic homogeneity is checked by natural Si crystal growth and does, in the enriched sphere, not exceed 5 × 10-10, relatively. The C content of the final material is less than 1015 atoms cm-3 and the specific resistance is 400-1000 Ω cm.

  12. Application of scanning angle Raman spectroscopy for determining the location of buried polymer interfaces with tens of nanometer precision

    DOE PAGESBeta

    Damin, Craig A.; Nguyen, Vy H. T.; Niyibizi, Auguste S.; Smith, Emily A.

    2015-02-11

    Near-infrared scanning angle (SA) Raman spectroscopy was utilized to determine the interface location in bilayer films (a stack of two polymer layers) of polystyrene (PS) and polycarbonate (PC). Finite-difference-time-domain (FDTD) calculations of the sum square electric field (SSEF) for films with total bilayer thicknesses of 1200–3600 nm were used to construct models for simultaneously measuring the film thickness and the location of the buried interface between the PS and PC layers. Samples with total thicknesses of 1320, 1890, 2300, and 2750 nm and varying PS/PC interface locations were analyzed using SA Raman spectroscopy. Comparing SA Raman spectroscopy and optical profilometrymore » measurements, the average percent difference in the total bilayer thickness was 2.0% for films less than ~2300 nm thick. The average percent difference in the thickness of the PS layer, which reflects the interface location, was 2.5% when the PS layer was less than ~1800 nm. The SA Raman spectroscopy has been shown to be a viable, non-destructive method capable of determining the total bilayer thickness and buried interface location for bilayer samples consisting of thin polymer films with comparable indices of refraction.« less

  13. Application of scanning angle Raman spectroscopy for determining the location of buried polymer interfaces with tens of nanometer precision

    SciTech Connect

    Damin, Craig A.; Nguyen, Vy H. T.; Niyibizi, Auguste S.; Smith, Emily A.

    2015-02-11

    Near-infrared scanning angle (SA) Raman spectroscopy was utilized to determine the interface location in bilayer films (a stack of two polymer layers) of polystyrene (PS) and polycarbonate (PC). Finite-difference-time-domain (FDTD) calculations of the sum square electric field (SSEF) for films with total bilayer thicknesses of 1200–3600 nm were used to construct models for simultaneously measuring the film thickness and the location of the buried interface between the PS and PC layers. Samples with total thicknesses of 1320, 1890, 2300, and 2750 nm and varying PS/PC interface locations were analyzed using SA Raman spectroscopy. Comparing SA Raman spectroscopy and optical profilometry measurements, the average percent difference in the total bilayer thickness was 2.0% for films less than ~2300 nm thick. The average percent difference in the thickness of the PS layer, which reflects the interface location, was 2.5% when the PS layer was less than ~1800 nm. The SA Raman spectroscopy has been shown to be a viable, non-destructive method capable of determining the total bilayer thickness and buried interface location for bilayer samples consisting of thin polymer films with comparable indices of refraction.

  14. Precision spectroscopy of 2S-nP transitions in atomic hydrogen for a new determination of the Rydberg constant and the proton charge radius

    NASA Astrophysics Data System (ADS)

    Beyer, Axel; Maisenbacher, Lothar; Khabarova, Ksenia; Matveev, Arthur; Pohl, Randolf; Udem, Thomas; Hänsch, Theodor W.; Kolachevsky, Nikolai

    2015-10-01

    Precision measurements of transition frequencies in atomic hydrogen provide important input for a number of fundamental applications, such as stringent tests of QED and the extraction of fundamental constants. Here we report on precision spectroscopy of the 2S-4P transition in atomic hydrogen with a reproducibility of a few parts in 1012. Utilizing a cryogenic beam of hydrogen atoms in the metastable 2S state reduces leading order systematic effects of previous experiments of this kind. A number of different systematic effects, especially line shape modifications due to quantum interference in spontaneous emission, are currently under investigation. Once fully characterized, our measurement procedure can be applied to higher lying 2S-nP transitions (n=6,8,9,10) and we hope to contribute to an improved determination of the Rydberg constant and the proton root mean square charge radius by this series of experiments. Ultimately, this improved determination will give deeper insight into ‘the proton size puzzle’ from the electronic hydrogen side.

  15. Precise determination of Cr and Co in certified reference material of silicon nitride by neutron activation analysis using internal standardization.

    PubMed

    Miura, Tsutomu; Matsue, Hideaki; Kuroiwa, Takayoshi; Chiba, Koichi

    2009-07-01

    Neutron activation analysis with an internal standard correction was applied to the determination of Cr and Co in a ceramics certified reference material (NMIJ CRM 8004-a silicon nitride powder). Cesium was used as an internal standard to compensate for any inhomogeneity of the neutron flux through an irradiation capsule and to improve the repeatability of gamma-ray measurements. It was found that the linearity of the calibration curves of Cr and Co was improved by using an internal standard. The analytical results of Cr and Co in NMIJ CRM 8004-a were in good agreement with those obtained by ICP-OES, ICP-sector field mass spectrometry (ICP-SFMS), and isotope dilution/ICP-SFMS for Cr. The relative expanded uncertainties (k = 2) were 1.9% for Cr and 1.5% for Co. The uncertainties were comparable to those of atomic spectrometric methods. PMID:19609027

  16. The precision of wet atmospheric deposition data from national atmospheric deposition program/national trends network sites determined with collocated samplers

    USGS Publications Warehouse

    Nilles, M.A.; Gordon, J.D.; Schroder, L.J.

    1994-01-01

    A collocated, wet-deposition sampler program has been operated since October 1988 by the U.S. Geological Survey to estimate the overall sampling precision of wet atmospheric deposition data collected at selected sites in the National Atmospheric Deposition Program and National Trends Network (NADP/NTN). A duplicate set of wet-deposition sampling instruments was installed adjacent to existing sampling instruments at four different NADP/NTN sites for each year of the study. Wet-deposition samples from collocated sites were collected and analysed using standard NADP/NTN procedures. Laboratory analyses included determinations of pH, specific conductance, and concentrations of major cations and anions. The estimates of precision included all variability in the data-collection system, from the point of sample collection through storage in the NADP/NTN database. Sampling precision was determined from the absolute value of differences in the analytical results for the paired samples in terms of median relative and absolute difference. The median relative difference for Mg2+, Na+, K+ and NH4+ concentration and deposition was quite variable between sites and exceeded 10% at most sites. Relative error for analytes whose concentrations typically approached laboratory method detection limits were greater than for analytes that did not typically approach detection limits. The median relative difference for SO42- and NO3- concentration, specific conductance, and sample volume at all sites was less than 7%. Precision for H+ concentration and deposition ranged from less than 10% at sites with typically high levels of H+ concentration to greater than 30% at sites with low H+ concentration. Median difference for analyte concentration and deposition was typically 1.5-2-times greater for samples collected during the winter than during other seasons at two northern sites. Likewise, the median relative difference in sample volume for winter samples was more than double the annual median

  17. Factors influence accuracy and precision in the determination of the elemental composition of defense waste glass by ICP-emission spectrometry

    SciTech Connect

    Goode, S.R.

    1995-12-31

    The influence of instrumental factors on the accuracy and precision of the determination of the composition of glass and glass feedstock is presented. In addition, the effects of different methods of sampling, dissolution methods, and standardization procedures and their effect on the quality of the chemical analysis will also be presented. The target glass simulates the material that will be prepared by the vitrification of highly radioactive liquid defense waste. The glass and feedstock streams must be well characterized to ensure a durable glass; current models estimate a 100,000 year lifetime. The elemental composition will be determined by ICP-emission spectrometry with radiation exposure issues requiring a multielement analysis for all constituents, on a single analytical sample, using compromise conditions.

  18. Determining neutrino mass hierarchy by precise measurements of two delta m**2 in electron-neutrino and muon-neutrino disappearance experiments

    SciTech Connect

    Minakata, H.; Nunokawa, H.; Parke, Stephen J.; Zukanovich Funchal, R.; /Sao Paulo U.

    2006-09-01

    In this talk, the authors discuss the possibility of determining the neutrino mass hierarchy by comparing the two effective atmospheric neutrino mass squared differences measured, respectively, in electron, and in muon neutrino disappearance oscillation experiments. if the former, is larger (smaller) than the latter, the mass hierarchy is of normal (inverted) type. They consider two very high precision (a few per mil) measurements of such mass squared differences by the phase II of the T2K (Tokai-to-Kamioka) experiment and by the novel Moessbauer enhanced resonant {bar {nu}}{sub e} absorption technique. Under optimistic assumptions for the systematic errors of both measurements, they determine the region of sensitivities where the mass hierarchy can be distinguished. Due to the tight space limitation, they present only the general idea and show a few most important plots.

  19. Xylo- and cello-oligosaccharide oxidation by gluco-oligosaccharide oxidase from Sarocladium strictum and variants with reduced substrate inhibition

    PubMed Central

    2013-01-01

    Background The oxidation of carbohydrates from lignocellulose can facilitate the synthesis of new biopolymers and biochemicals, and also reduce sugar metabolism by lignocellulolytic microorganisms, reserving aldonates for fermentation to biofuels. Although oxidoreductases that oxidize cellulosic hydrolysates have been well characterized, none have been reported to oxidize substituted or branched xylo-oligosaccharides. Moreover, this is the first report that identifies amino acid substitutions leading to GOOX variants with reduced substrate inhibition. Results The recombinant wild type gluco-oligosaccharide oxidase (GOOX) from the fungus Sarocladium strictum, along with variants that were generated by site-directed mutagenesis, retained the FAD cofactor, and showed high activity on cello-oligosaccharide and xylo-oligosaccharides, including substituted and branched xylo-oligosaccharides. Mass spectrometric analyses confirmed that GOOX introduces one oxygen atom to oxidized products, and 1H NMR and tandem mass spectrometry analysis confirmed that oxidation was restricted to the anomeric carbon. The A38V mutation, which is close to a predicted divalent ion-binding site in the FAD-binding domain of GOOX but 30 Å away from the active site, significantly increased the kcat and catalytic efficiency of the enzyme on all oligosaccharides. Eight amino acid substitutions were separately introduced to the substrate-binding domain of GOOX-VN (at positions Y72, E247, W351, Q353 and Q384). In all cases, the Km of the enzyme variant was higher than that of GOOX, supporting the role of corresponding residues in substrate binding. Most notably, W351A increased Km values by up to two orders of magnitude while also increasing kcat up to 3-fold on cello- and xylo-oligosaccharides and showing no substrate inhibition. Conclusions This study provides further evidence that S. strictum GOOX has broader substrate specificity than the enzyme name implies, and that substrate inhibition can be

  20. The asparagine-linked oligosaccharides on bovine fetuin. Structural analysis of N-glycanase-released oligosaccharides by 500-megahertz 1H NMR spectroscopy.

    PubMed

    Green, E D; Adelt, G; Baenziger, J U; Wilson, S; Van Halbeek, H

    1988-12-01

    The structures of the entire population of sialylated asparagine-linked oligosaccharides present on bovine fetuin were elucidated. Asparagine-linked oligosaccharides were released from fetuin with N-glycanase, radiolabeled by reduction with NaB[3H]4, and fractionated by anion-exchange high performance liquid chromatography (HPLC), ion-suppression amine adsorption HPLC, and concanavalin A affinity chromatography. The 3H-labeled oligosaccharide fractions obtained were analyzed by 500-MHz 1H nuclear magnetic resonance spectroscopy, revealing the presence of 23 distinct oligosaccharide structures. These oligosaccharides differed in extent of sialylation (3% mono-, 35% di-, 54% tri-, and 8% tetrasialylated), number of peripheral branches (17% di- and 83% tribranched), linkage (alpha 2,3 versus alpha 2,6) and location of sialic acid moieties, and linkage (beta 1,4 versus beta 1,3) of galactose residues. This represents the first time that the asparagine-linked oligosaccharides of fetuin have been successfully fractionated and characterized as sialylated species. The sialylated oligosaccharides derived from fetuin were also used to further define the specificities of the lectins leukoagglutinating phytohemagglutinin and Ricinus communis agglutinin I. The behavior of these oligosaccharides during lectin affinity HPLC further establishes the structural features which predominate in the interaction of oligosaccharides with leukoagglutinating phytohemagglutinin and R. communis agglutinin I. PMID:2461366

  1. Simultaneous analysis of heparosan oligosaccharides by isocratic liquid chromatography with charged aerosol detection/mass spectrometry.

    PubMed

    Ji, Xiaohu; Hu, Guixin; Zhang, Qiongyan; Wang, Fengshan; Liu, Chunhui

    2016-11-01

    Uncovering the biological roles of heparosan oligosaccharides requires a simple and robust method for their separation and identification. We reported on systematic investigations of the retention behaviors of synthetic heparosan oligosaccharides on porous graphitic carbon (PGC) column by HPLC with charged aerosol detection. Oligosaccharides were strongly retained by PGC material in water-acetonitrile mobile phase, and eluted by trifluoroacetic acid occurring as narrow peaks. Addition of small fraction of methanol led to better selectivity of PGC to oligosaccharides than acetonitrile modifier alone, presumably, resulting from displacement of methanol to give different chemical environment at the PGC surface. Van't-Hoff plots demonstrated that retention behaviors highly depended on the column temperature and oligosaccharide moieties. By implementing the optimal MeOH content and temperature, a novel isocratic elution method was successfully developed for baseline resolution and identification of seven heparosan oligosaccharides using PGC-HPLC-CAD/MS. This approach allows for rapid analysis of heparosan oligosaccharides from various sources. PMID:27516280

  2. Precise Orbit Determination for GEOSAT Follow-On Using Satellite Laser Ranging Data and Intermission Altimeter Crossovers

    NASA Technical Reports Server (NTRS)

    Lemoine, F. G.; Rowlands, D. D.; Luthcke, S. B.; Zelensky, N. P.; Chinn, D. S.; Pavlis, D. E.; Marr, G. C.

    2001-01-01

    The U.S. Navy's GEOSAT Follow-On Spacecraft was launched on February 10, 1998 and the primary objective of the mission was to map the oceans using a radar altimeter. Following an extensive set of calibration campaigns in 1999 and 2000, the US Navy formally accepted delivery of the satellite on November 29, 2000. The spacecraft is tracked by satellite laser ranging (SLR) and Doppler (Tranet-style) beacons. Although a limited amount of GPS data were obtained, the primary mode of tracking remains satellite laser ranging. In this paper, we report on progress in orbit determination for GFO using GFO/GFO and TOPEX/GFO altimeter crossovers. We have tuned the nonconservative force model for GFO and the gravity model using SLR, Doppler and altimeter crossover data spanning over one year. Preliminary results show that the predicted radial orbit error from the gravity field covariance to 70x70 on GEOSAT was reduced from 2.6 cm in EGM96 to 1.9 cm with the addition of only five months of the GFO SLR and GFO/GFO crossover data. Further progress is possible with the addition of more data, particularly the TOPEX/GFO crossovers. We will evaluate the tuned GFO gravity model (a derivative of EGM96) using altimeter data from the GEOSAT mission. In January 2000, a limited quantity of GPS data were obtained. We will use these GPS data in conjunction with the SLR and altimeter crossover data obtained over the same time span to compute quasi-reduced dynamic orbits which will also aid in the evaluation of the tuned GFO geopotential model.

  3. Precise Determination of the Intensity of 226Ra Alpha Decay to the 186 keV Excited State

    SciTech Connect

    S.P. LaMont; R.J. Gehrke; S.E. Glover; R.H. Filby

    2001-04-01

    There is a significant discrepancy in the reported values for the emission probability of the 186 keV gamma-ray resulting from the alpha decay of 226 Ra to 186 keV excited state of 222 Rn. Published values fall in the range of 3.28 to 3.59 gamma-rays per 100 alpha-decays. An interesting observation is that the lower value, 3.28, is based on measuring the 186 keV gamma-ray intensity relative to the 226 Ra alpha-branch to the 186 keV level. The higher values, which are close to 3.59, are based on measuring the gamma-ray intensity from mass standards of 226 Ra that are traceable to the mass standards prepared by HÓNIGSCHMID in the early 1930''s. This discrepancy was resolved in this work by carefully measuring the 226 Ra alpha-branch intensities, then applying the theoretical E2 multipolarity internal conversion coefficient of 0.692±0.007 to calculate the 186 keV gamma-ray emission probability. The measured value for the alpha branch to the 186 keV excited state was (6.16±0.03)%, which gives a 186 keV gamma-ray emission probability of (3.64±0.04)%. This value is in excellent agreement with the most recently reported 186 keV gamma-ray emission probabilities determined using 226 Ra mass standards.

  4. Effect of sialylation and complexity of FSH oligosaccharides on inhibin production by granulosa cells.

    PubMed

    Loreti, Nazareth; Ambao, Verónica; Andreone, Luz; Trigo, Romina; Bussmann, Ursula; Campo, Stella

    2013-02-01

    Granulosa cell (GC) inhibin A and B production is regulated by FSH and gonadal factors. This gonadotrophin is released as a mixture of glycoforms, which induce different biological responses in vivo and in vitro. Our aim was to determine the effect of recombinant human FSH (rhFSH) glycosylation variants on inhibin A and B production by rat GCs. Preparative isoelectro focusing was used to isolate more acidic/sialylated (pH <4.00) and less acidic/sialylated (pH >5.00) rhFSH charge analogues. Concanavalin A was used to isolate unbound and firmly bound rhFSH glycoforms on the basis of their oligosaccharide complexity. GCs, obtained from oestrogen-primed immature rats, were cultured with either native rhFSH or its glycosylation variants. Inhibin A and B were determined using specific ELISAs. Results were expressed as mean±s.e.m. Under basal conditions, inhibin A was the predominant dimer produced (inhibin A: 673±55; inhibin B: 80±4  pg/ml). More acidic/sialylated charge analogues stimulated inhibin B production when compared to inhibin A at all doses studied; by contrast, less acidic/sialylated charge analogues stimulated inhibin A production and elicited no effect on inhibin B. Glycoforms bearing complex oligosaccharides showed a potent stimulatory effect on inhibin B when compared to inhibin A production (i.e. dose 1  ng/ml: 4.9±0.5 vs 0.9±0.1-fold stimulation, P<0.001). Glycoforms bearing hybrid-type oligosaccharides favoured inhibin A production (i.e. dose 4  ng/ml 2.9±0.1 vs 1.6±0.1-fold stimulation, P<0.05). These results show that the sialylation degree as well as the complexity of oligosaccharides present in the rhFSH molecule may be considered additional factors that differentially regulate dimeric inhibin production by rat GCs. PMID:23166369

  5. Screening Substrate Properties of Microorganisms for Biosensor Detection of Oligosaccharides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oligosaccharides feature high biological activity ensuring their wide application in the biotechnology, food, and cosmetic industries. On the other hand they are considered environmental pollutants. The study outlines a biosensor approach to detect these substances which is important from above st...

  6. Novel oligosaccharide constituents of the cellulase complex of Bacteroides cellulosolvens.

    PubMed

    Gerwig, G J; Kamerling, J P; Vliegenthart, J F; Morag, E; Lamed, R; Bayer, E A

    1992-04-15

    The multiple cellulase-containing protein complex, isolated from the cellulolytic bacterium Bacteroides cellulosolvens, contains oligosaccharides which are O-linked mainly to a 230-kDa subunit. The oligosaccharide chains were liberated by alkaline-borohydride treatment and fractionated as oligosaccharide alditols via gel-permeation chromatography and HPLC. The fractions were investigated by one- and two-dimensional (correlation, homonuclear Hartmann-Hahn, rotating-frame nuclear Overhauser enhancement) 500-MHz 1H-NMR spectroscopy in combination with monosaccharide and methylation analyses and with fast-atom-bombardment mass spectrometry. The following carbohydrate structures could be established: [formula: see text] The results indicate an interesting similarity between the oligosaccharide moieties of the cellulase complex of B. cellulosolvens and of Clostridium thermocellum [Gerwig, G. J., Kamerling, J. P., Vliegenthart, J. F. G., Morag (Morgenstern), E., Lamed, R. & Bayer, E. A. (1991) Eur. J. Biochem. 196, 115-122], having 3, 5 and 6 as common elements. The furanose form of a terminal alpha-D-galactose residue demonstrated an inhibitory effect on the interaction of Griffonia simplicifolia I isolectin B4 with the cellulosome-like entity of B. cellulosolvens. PMID:1572372

  7. Capillary electrophoresis of sialylated oligosaccharides in milk from different species.

    PubMed

    Monti, Lucia; Cattaneo, Tiziana Maria Piera; Orlandi, Mario; Curadi, Maria Claudia

    2015-08-28

    Oligosaccharides are relevant components of human milk, which have been quite well studied for their pre-biotic effect and their capacity in stimulating the immune system. Since oligosaccharides from milk of non-human mammals received so far less attention, the aim of this work was the application of capillary electrophoresis (CE) for the analysis of sialylated oligosaccharides in cow, goat and equine (mare and donkey) milk to possibly identify potential sources of oligosaccharides to use as health promoting ingredients in functional foods. Human milk was used as reference milk. A recent CE technique was applied to resolve and quantify 3-sialyllactose (3-SL), 6-sialyllactose (6-SL) and disialyl-lacto-N-tetraose (DSLNT). Analysis of non-human milk samples confirmed differences among species and individuals: DSLNT, which was the most abundant compound in human milk (455-805μg/mL) was missing in most of the samples. In most cases, 3-SL showed to be the most concentrated of the quantified analytes, with values ranging from 12 to 77μg/mL. PMID:26228851

  8. Oligosaccharide binding to barley alpha-amylase 1.

    PubMed

    Robert, Xavier; Haser, Richard; Mori, Haruhide; Svensson, Birte; Aghajari, Nushin

    2005-09-23

    Enzymatic subsite mapping earlier predicted 10 binding subsites in the active site substrate binding cleft of barley alpha-amylase isozymes. The three-dimensional structures of the oligosaccharide complexes with barley alpha-amylase isozyme 1 (AMY1) described here give for the first time a thorough insight into the substrate binding by describing residues defining 9 subsites, namely -7 through +2. These structures support that the pseudotetrasaccharide inhibitor acarbose is hydrolyzed by the active enzymes. Moreover, sugar binding was observed to the starch granule-binding site previously determined in barley alpha-amylase isozyme 2 (AMY2), and the sugar binding modes are compared between the two isozymes. The "sugar tongs" surface binding site discovered in the AMY1-thio-DP4 complex is confirmed in the present work. A site that putatively serves as an entrance for the substrate to the active site was proposed at the glycone part of the binding cleft, and the crystal structures of the catalytic nucleophile mutant (AMY1D180A) complexed with acarbose and maltoheptaose, respectively, suggest an additional role for the nucleophile in the stabilization of the Michaelis complex. Furthermore, probable roles are outlined for the surface binding sites. Our data support a model in which the two surface sites in AMY1 can interact with amylose chains in their naturally folded form. Because of the specificities of these two sites, they may locate/orient the enzyme in order to facilitate access to the active site for polysaccharide chains. Moreover, the sugar tongs surface site could also perform the unraveling of amylose chains, with the aid of Tyr-380 acting as "molecular tweezers." PMID:16030022

  9. Precision translator

    DOEpatents

    Reedy, Robert P.; Crawford, Daniel W.

    1984-01-01

    A precision translator for focusing a beam of light on the end of a glass fiber which includes two turning fork-like members rigidly connected to each other. These members have two prongs each with its separation adjusted by a screw, thereby adjusting the orthogonal positioning of a glass fiber attached to one of the members. This translator is made of simple parts with capability to keep adjustment even in condition of rough handling.

  10. Precision translator

    DOEpatents

    Reedy, R.P.; Crawford, D.W.

    1982-03-09

    A precision translator for focusing a beam of light on the end of a glass fiber which includes two turning fork-like members rigidly connected to each other. These members have two prongs each with its separation adjusted by a screw, thereby adjusting the orthogonal positioning of a glass fiber attached to one of the members. This translator is made of simple parts with capability to keep adjustment even in condition of rough handling.

  11. High-precision determination of the isotopic composition of dissolved iron in iron depleted seawater by double spike multicollector-ICPMS.

    PubMed

    Lacan, Francois; Radic, Amandine; Labatut, Marie; Jeandel, Catherine; Poitrasson, Franck; Sarthou, Geraldine; Pradoux, Catherine; Chmeleff, Jerome; Freydier, Remi

    2010-09-01

    This work demonstrates the feasibility of the measurement of the isotopic composition of dissolved iron in seawater for an iron concentration range, 0.05-1 nmol L(-1), allowing measurements in most oceanic waters, including Fe depleted waters of high nutrient low chlorophyll areas. It presents a detailed description of our previously published protocol, with significant improvements on detection limit and blank contribution. Iron is preconcentrated using a nitriloacetic acid superflow resin and purified using an AG 1-x4 anion exchange resin. The isotopic ratios are measured with a multicollector-inductively coupled plasma mass spectrometer (MC-ICPMS) Neptune, coupled with a desolvator (Aridus II or Apex-Q), using a (57)Fe-(58)Fe double spike mass bias correction. A Monte Carlo test shows that optimum precision is obtained for a double spike composed of approximately 50% (57)Fe and 50% (58)Fe and a sample to double spike quantity ratio of approximately 1. Total procedural yield is 91 +/- 25% (2SD, n = 55) for sample sizes from 20 to 2 L. The procedural blank ranges from 1.4 to 1.1 ng, for sample sizes ranging from 20 to 2 L, respectively, which, converted into Fe concentrations, corresponds to blank contributions of 0.001 and 0.010 nmol L(-1), respectively. Measurement precision determined from replicate measurements of seawater samples and standard solutions is 0.08 per thousand (delta(56)Fe, 2SD). The precision is sufficient to clearly detect and quantify isotopic variations in the oceans, which so far have been observed to span 2.5 per thousand and thus opens new perspectives to elucidate the oceanic iron cycle. PMID:20701301

  12. Purification and characterization of a xyloglucan oligosaccharide-specific xylosidase from pea seedlings

    SciTech Connect

    O'Neill, R.A.; Albersheim, P.; Darvill, A.G. )

    1989-12-05

    An {alpha}-xylosidase that acts on oligosaccharide fragments of xyloglucan, a plant cell wall polysaccharide, was purified from pea (Pisum sativum) epicotyls that had been treated with an auxin analog. The enzyme had an apparent molecular mass of 85,000 Da according to sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 79,000 Da according to gel-permeation chromatography under nondenaturing conditions. The purified xylosidase consisted of a series of closely related, enzymatically active proteins with isoelectric points ranging from about pH 7.35 to 7.7; the xylosidases were separated by chromatofocusing. The pH optimum of the mixed xylosidase was 4.9-5.1. The substrate specificity of the xylosidase mixture was determined by purification and structural characterization of the products of treating xyloglucan-oligosaccharide substrates with the enzyme. Characterization of the substrates and products included elution volume from a gel-permeation column, glycosyl residue and glycosyl linkage composition analyses, fast atom bombardment-mass spectrometry, and {sup 1}H NMR spectroscopy. The enzyme specifically cleaved only one of the {alpha}-xylosidic linkages of xyloglucan-oligosaccharide substrates, the one attached to a 6-linked glucosyl residue, not those attached to the 4,6-linked glucosyl residues. The enzyme was unable to cleave the xylosidic linkage of p-nitrophenyl-{alpha}-D-xylopyranoside or the {alpha}-xylosidic linkage to C-6 of glucose in the disaccharide isoprimeverose. The enzyme was also unable to release measurable amounts of xylose from large xyloglucan polymers.

  13. Conversion of biomass-derived oligosaccharides into lipids

    PubMed Central

    2014-01-01

    Background Oligocelluloses and oligoxyloses are partially hydrolyzed products from lignocellulosic biomass hydrolysis. Biomass hydrolysates usually contain monosaccharides as well as various amounts of oligosaccharides. To utilize biomass hydrolysates more efficiently, it is important to identify microorganisms capable of converting biomass-derived oligosaccharides into biofuels or biochemicals. Results We have demonstrated that the oleaginous yeast Cryptococcus curvatus can utilize either oligocelluloses or oligoxyloses as sole carbon sources for microbial lipid production. When oligocelluloses were used, lipid content and lipid coefficient were 35.9% and 0.20 g/g consumed sugar, respectively. When oligoxyloses were used, lipid coefficient was 0.17 g/g consumed sugar. Ion chromatography analysis showed oligocelluloses with a degree of polymerization from 2 to 9 were assimilated. Our data suggested that these oligosaccharides were transported into cells and then hydrolyzed by cytoplasmic enzymes. Further analysis indicated that these enzymes were inducible by oligocelluloses. Lipid production on cellulose by C. curvatus using the simultaneous saccharification and lipid production process in the absence of cellobiase achieved essentially identical results to that in the presence of cellobiase, suggesting that oligocelluloses generated in situ were utilized with high efficiency. This study has provided inspiring information for oligosaccharides utilization, which should facilitate biorefinery based on lignocellulosic biomass. Conclusions C. curvatus can directly utilize biomass-derived oligosaccharides. Oligocelluloses are transported into the cells and then hydrolyzed by cytoplasmic enzymes. A simultaneous saccharification and lipid production process can be conducted without oligocelluloses accumulation in the absence of cellobiase by C. curvatus, which could reduce the enzyme costs. PMID:24472330

  14. Status of the Precision Orbit Determination solutions for the most recent altimeter missions: focusing on the long-term stability for the analysis of Mean Sea Level trends

    NASA Astrophysics Data System (ADS)

    Couhert, Alexandre; Cerri, Luca

    2012-07-01

    The reference Ocean Surface Topography Mission/Jason-2 satellite (CNES/NASA) has been in orbit for four years (since June 2008). It extends the continuous record of highly accurate sea surface height measurements begun in 1992 by the Topex/Poseidon mission and continued in 2001 by the Jason-1 mission. The complementary missions CryoSat-2 (ESA) and HY-2A (CNSA), with lower altitudes and higher inclinations, were launched in April 2010 and August 2011, respectively. Although the two last satellites fly in different orbits, they contribute to the altimeter constellation while enhancing the global coverage. The CNES Precision Orbit Determination (POD) Group delivers precise and homogeneous orbit solutions for these independent altimeter missions. This talk will address the issues related to the long-term stability of the orbit solutions; in particular, it focuses on the impact of the time-varying gravity field on the geographically correlated errors that are of interest for the altimeter analyst and on the recent modeling improvements that allow to deliver consistent orbit solutions across different missions. We will also give an overview of the performance of the tracking systems, and address some issues (like the use of a geocenter model on DORIS-SLR coordinates) concerning the prospects for improvements in modeling of the tracking data that would allow to improve the accuracy of the POD solutions in the long run.

  15. Fast high-precision on-line determination of hydrogen isotope ratios of water or ice by continuous-flow isotope ratio mass spectrometry.

    PubMed

    Huber, C; Leuenberger, M

    2003-01-01

    A new fast high-precision on-line technique is described for the determination of hydrogen isotope ratios of water by continuous-flow mass spectrometry. For the first time H(2)/H(2)O-equilibration using a platinum catalyst has been used in a fully continuous process. A significant reduction in the H(2)/H(2)O-equilibration time is achieved by a complete vaporization of the water and by increasing the exchange temperature to 100 degrees C. The analysis time is only approximately 5 min/sample which includes equilibration and processing. Measurement precision and accuracy are better than 1 per thousand and sample consumption is only approximately 5 microL. This new technique allows the measurement of a wide range of aqueous samples either in a semi-continuous way (discrete samples are injected one after another) or in a fully continuous way. This allows us, for the first time, to make continuous measurements of ice cores. PMID:12811755

  16. Purification of Derivatized Oligosaccharides by Solid Phase Extraction for Glycomic Analysis

    PubMed Central

    Zhang, Qiwei; Li, Henghui; Feng, Xiaojun; Liu, Bi-Feng; Liu, Xin

    2014-01-01

    Profiling of glycans released from proteins is very complex and important. To enhance the detection sensitivity, chemical derivatization is required for the analysis of carbohydrates. Due to the interference of excess reagents, a simple and reliable purification method is usually necessary for the derivatized oligosaccharides. Various SPE based methods have been applied for the clean-up process. To demonstrate the differences among these methods, seven types of self-packed SPE cartridges were systematically compared in this study. The optimized conditions were determined for each type of cartridge and it was found that microcrystalline cellulose was the most appropriate SPE material for the purification of derivatized oligosaccharide. Normal phase HPLC analysis of the derivatized maltoheptaose was realized with a detection limit of 0.12 pmol (S N−1 = 3) and a recovery over 70%. With the optimized SPE method, relative quantification analysis of N-glycans from model glycoproteins were carried out accurately and over 40 N-glycans from human serum samples were determined regardless of the isomers. Due to the high stability and sensitivity, microcrystalline cellulose cartridge showed potential applications in glycomics analysis. PMID:24705408

  17. Reduced immunogenicity of beta-lactoglobulin by conjugation with acidic oligosaccharides.

    PubMed

    Hattori, Makoto; Miyakawa, Shunpei; Ohama, Yukie; Kawamura, Hiroyuki; Yoshida, Tadashi; To-o, Kenji; Kuriki, Takashi; Takahashi, Koji

    2004-07-14

    Bovine beta-lactoglobulin (beta-LG) was conjugated with the acidic oligosaccharides, alginic acid oligosaccharide (ALGO) and phosphoryl oligosaccharides (POs) by the Maillard reaction to reduce the immunogenicity of beta-LG. The molar ratios of beta-LG to ALGO and POs in the conjugates were 1:6 and 1:8. The carbohydrate-binding sites in the beta-LG-ALGO conjugate were partially identified to be (60)Lys, (77)Lys, (100)Lys, (138)Lys, and (141)Lys. The isoelectric point of each conjugate was lower than that of beta-LG. CD spectra indicated that the secondary structure of beta-LG was almost maintained after conjugation. The results of fluorescence studies indicated that the conformation around Trp had not changed in each conjugate and that the surface of each conjugate was covered with a saccharide chain. Structural analyses with monoclonal antibodies indicated that the conformation around (8)Lys-(19)Trp (beta-sheet, random coil, short helix) in the conjugates had changed, whereas the native structure was maintained around (15)Val-(29)Ile (beta-sheet) and (125)Thr-(135)Lys (alpha-helix). The beta-LG-ALGO and beta-LG-POs conjugates maintained 77 and 70% of the retinol binding activity of beta-LG. Conjugation with ALGO and POs substantially enhanced the thermal stability of beta-LG. The anti-beta-LG antibody response was markedly reduced after immunization with both conjugates in BALB/c, C57BL/6, and C3H/He mice. B cell epitopes of beta-LG and the conjugate recognized in these mice were determined with 15-mer multipin peptides, and the linear epitope profiles of the conjugates were found to be similar to those of beta-LG, whereas the antibody response to each epitope was dramatically reduced. In particular, effective reduction of the antibody response was observed in the vicinity of the carbohydrate-binding sites. Conjugation of beta-LG with these acidic oligosaccharides was effective in reducing the immunogenicity of beta-LG. The conjugates obtained in this study are

  18. Precise Determination of the Strong Coupling Constant at NNLO in QCD from the Three-Jet Rate in Electron-Positron Annihilation at LEP

    SciTech Connect

    Dissertori, G.; Gehrmann-DeRidder, A.; Gehrmann, T.; Glover, E. W. N.; Heinrich, G.; Stenzel, H.

    2010-02-19

    We present the first determination of the strong coupling constant from the three-jet rate in e{sup +}e{sup -} annihilation at LEP, based on a next-to-next-to-leading-order (NNLO) perturbative QCD prediction. More precisely, we extract {alpha}{sub s}(M{sub Z}) by fitting perturbative QCD predictions at O({alpha}{sub s}{sup 3}) to data from the ALEPH experiment at LEP. Over a large range of the jet-resolution parameter y{sub cut}, this observable is characterized by small nonperturbative corrections and an excellent stability under renormalization scale variation. We find {alpha}{sub s}(M{sub Z})=0.1175+-0.0020(expt)+-0.0015(theor), which is more accurate than the values of {alpha}{sub s}(M{sub Z}) from e{sup +}e{sup -} event-shape data currently used in the world average.

  19. Inter-observer Precision and Physiologic Variability of MRI Landmarks Used to Determine Rotational Alignment in Conventional and Patient-Specific TKA

    PubMed Central

    Park, Andrew; Nam, Denis; Friedman, Michael; Duncan, Stephen; Hillen, Travis; Barrack, Robert

    2014-01-01

    Preoperative planning for patient-specific guides (PSGs) in total knee arthroplasty (TKA) requires identification of anatomic landmarks on three-dimensional imaging studies. The aim of this study was to assess the accuracy and precision with which landmarks commonly used to determine rotational alignment in TKA can be identified on magnetic resonance imaging (MRI). Two orthopaedic surgeons and two musculoskeletal radiologists independently reviewed a sequential series of 114 MRIs of arthritic knees. The magnitude of interobserver variability was high, suggesting an inherent risk of inconsistency when these landmarks are used in PSG fabrication. Additionally, there was a high degree of physiologic variation among patients, indicating that assuming standard relationships among anatomic landmarks when placing TKA components may lead to rotational malalignment relative to each patient's native anatomy. PMID:25267537

  20. High Precision Determination of the β Decay QEC Value of 11C and Implications on the Tests of the Standard Model

    NASA Astrophysics Data System (ADS)

    Gulyuz, K.; Bollen, G.; Brodeur, M.; Bryce, R. A.; Cooper, K.; Eibach, M.; Izzo, C.; Kwan, E.; Manukyan, K.; Morrissey, D. J.; Naviliat-Cuncic, O.; Redshaw, M.; Ringle, R.; Sandler, R.; Schwarz, S.; Sumithrarachchi, C. S.; Valverde, A. A.; Villari, A. C. C.

    2016-01-01

    We report the determination of the QEC value of the mirror transition of 11C by measuring the atomic masses of 11C and 11B using Penning trap mass spectrometry. More than an order of magnitude improvement in precision is achieved as compared to the 2012 Atomic Mass Evaluation (Ame2012) [Chin. Phys. C 36, 1603 (2012)]. This leads to a factor of 3 improvement in the calculated F t value. Using the new value, QEC=1981.690 (61 ) keV , the uncertainty on F t is no longer dominated by the uncertainty on the QEC value. Based on this measurement, we provide an updated estimate of the Gamow-Teller to Fermi mixing ratio and standard model values of the correlation coefficients.

  1. High Precision Determination of the β Decay Q(EC) Value of (11)C and Implications on the Tests of the Standard Model.

    PubMed

    Gulyuz, K; Bollen, G; Brodeur, M; Bryce, R A; Cooper, K; Eibach, M; Izzo, C; Kwan, E; Manukyan, K; Morrissey, D J; Naviliat-Cuncic, O; Redshaw, M; Ringle, R; Sandler, R; Schwarz, S; Sumithrarachchi, C S; Valverde, A A; Villari, A C C

    2016-01-01

    We report the determination of the Q(EC) value of the mirror transition of (11)C by measuring the atomic masses of (11)C and (11)B using Penning trap mass spectrometry. More than an order of magnitude improvement in precision is achieved as compared to the 2012 Atomic Mass Evaluation (Ame2012) [Chin. Phys. C 36, 1603 (2012)]. This leads to a factor of 3 improvement in the calculated Ft value. Using the new value, Q(EC)=1981.690(61)  keV, the uncertainty on Ft is no longer dominated by the uncertainty on the Q(EC) value. Based on this measurement, we provide an updated estimate of the Gamow-Teller to Fermi mixing ratio and standard model values of the correlation coefficients. PMID:26799013

  2. Precise Determination of Brillouin Scattering Spectrum Using a Virtually Imaged Phase Array (VIPA) Spectrometer and Charge-Coupled Device (CCD) Camera.

    PubMed

    Meng, Zhaokai; Yakovlev, Vladislav V

    2016-08-01

    Brillouin spectroscopy is an emerging tool for microscopic optical imaging as it allows noninvasive assessment of viscoelastic properties of materials. The use of atomic-molecular absorption cells as ultra-narrow notch filters allows acquisition of Brillouin spectra from turbid samples despite their strong elastic scattering. However, such systems alter the shapes of the Brillouin lines, making the precise determination of the Brillouin shift difficult. In this report, we propose a simple method for analyzing the Brillouin spectrum using a customized least-square fitting algorithm. The absorption spectrum induced by the atomic-molecular cell was taken into consideration. The capability of the method is confirmed by processing experimental spectroscopic data from the pure water at different temperatures. The accuracy of the measurements of ±1 MHz spectral line shift is experimentally demonstrated. PMID:27296309

  3. Milk Oligosaccharide Variation in Sow Milk and Milk Oligosaccharide Fermentation in Piglet Intestine.

    PubMed

    Difilippo, Elisabetta; Pan, Feipeng; Logtenberg, Madelon; Willems, Rianne H A M; Braber, Saskia; Fink-Gremmels, Johanna; Schols, Henk Arie; Gruppen, Harry

    2016-03-16

    Porcine milk oligosaccharides (PMOs) were analyzed in six colostrum and two mature milk samples from Dutch Landrace sows. In total, 35 PMOs were recognized of which 13 were new for the PMO literature: neutral HexNAc-Hex, β4'-galactosyllactose, putative GalNAc(α/β1-3)Gal(β1-4)Glc, lacto-N-fucopentaose-II, lacto-N-tetraose, galactose substituted lacto-N-neohexaose, lacto-N-hexaose and difucosyl-lacto-N-hexaose, and acidic Neu5Ac(α2-6)GlcNAc(β1-3)Gal(β1-4)Glc, sialyllacto-N-tetraose-a and -b, Neu5Ac2-Hex3, and sialyllacto-N-fucopentaose-II. PMOs were analyzed using capillary electrophoresis with laser-induced florescence detection or mass spectrometry and using liquid chromatography with mass spectrometry. Interindividual variation regarding PMO presence and concentration was observed between porcine milks. Within a limited sample set, a 43% decrease of the major PMOs was found during a 1 w lactation period. Interestingly, while some PMOs decreased, some other PMOs increased in concentration. PMOs were also monitored in fecal samples of suckling piglets. In feces of 1-2 d old piglets, few intact PMOs were found, indicating considerable PMO fermentation at early stage of life. PMID:26882005

  4. Chitosan and its oligosaccharide derivatives (chito-oligosaccharides) as feed supplements in poultry and swine nutrition.

    PubMed

    Swiatkiewicz, S; Swiatkiewicz, M; Arczewska-Wlosek, A; Jozefiak, D

    2015-02-01

    Chitosan is a non-toxic polyglucosamine, widespread in nature, which is deacetylated to varying degrees form of chitin, a component of exoskeleton of shrimps, crabs and insects. Because chitosan contains reactive functional groups, that is, amino acids and hydroxyl groups, it is characterised by antimicrobial, anti-inflammatory, anti-oxidative, antitumor, immunostimulatory and hypocholesterolemic properties when fed as dietary additive for farm animals. This article reviews and discusses the results of studies on the effects of dietary chitosan and its oligosaccharide derivatives on performance and metabolic response in poultry and pigs, that is, haematological, biochemical and immunological blood characteristics, microbiological profile of intestines, intestinal morphology and digestibility of nutrients, as well as on the quality of meat and eggs. The results of most of the experiments presented in this review indicate that chitosan used as a feed additive for poultry and pigs has some beneficial, biological effects, including immunomodulatory, anti-oxidative, antimicrobial and hypocholesterolemic properties. These properties of chitosan, unlike many other kinds of feed additives, were often reflected in improved growth performance (body weight gain and/or feed conversion ratio) of young animals, that is, broiler chickens and weaned pigs. PMID:25041091

  5. Fermentation properties and potential prebiotic activity of Bimuno® galacto-oligosaccharide (65 % galacto-oligosaccharide content) on in vitro gut microbiota parameters.

    PubMed

    Grimaldi, Roberta; Swann, Jonathan R; Vulevic, Jelena; Gibson, Glenn R; Costabile, Adele

    2016-08-01

    Prebiotic oligosaccharides have the ability to generate important changes in the gut microbiota composition that may confer health benefits to the host. Reducing the impurities in prebiotic mixtures could expand their applications in food industries and improve their selectivity and prebiotic effect on the potential beneficial bacteria such as bifidobacteria and lactobacilli. This study aimed to determine the in vitro potential fermentation properties of a 65 % galacto-oligosaccharide (GOS) content Bimuno® GOS (B-GOS) on gut microbiota composition and their metabolites. Fermentation of 65 % B-GOS was compared with 52 % B-GOS in pH- and volume-controlled dose-response anaerobic batch culture experiments. In total, three different doses (1, 0·5 and 0·33 g equivalent to 0·1, 0·05 and 0·033 g/l) were tested. Changes in the gut microbiota during a time course were identified by fluorescence in situ hybridisation, whereas small molecular weight metabolomics profiles and SCFA were determined by 1H-NMR analysis and GC, respectively. The 65 % B-GOS showed positive modulation of the microbiota composition during the first 8 h of fermentation with all doses. Administration of the specific doses of B-GOS induced a significant increase in acetate as the major SCFA synthesised compared with propionate and butyrate concentrations, but there were no significant differences between substrates. The 65 % B-GOS in syrup format seems to have, in all the analysis, an efficient prebiotic effect. However, the applicability of such changes remains to be shown in an in vivo trial. PMID:27267934

  6. Precision Muonium Spectroscopy

    NASA Astrophysics Data System (ADS)

    Jungmann, Klaus P.

    2016-09-01

    The muonium atom is the purely leptonic bound state of a positive muon and an electron. It has a lifetime of 2.2 µs. The absence of any known internal structure provides for precision experiments to test fundamental physics theories and to determine accurate values of fundamental constants. In particular ground state hyperfine structure transitions can be measured by microwave spectroscopy to deliver the muon magnetic moment. The frequency of the 1s-2s transition in the hydrogen-like atom can be determined with laser spectroscopy to obtain the muon mass. With such measurements fundamental physical interactions, in particular quantum electrodynamics, can also be tested at highest precision. The results are important input parameters for experiments on the muon magnetic anomaly. The simplicity of the atom enables further precise experiments, such as a search for muonium-antimuonium conversion for testing charged lepton number conservation and searches for possible antigravity of muons and dark matter.

  7. Plant nuclear pore complex proteins are modified by novel oligosaccharides with terminal N-acetylglucosamine.

    PubMed Central

    Heese-Peck, A; Cole, R N; Borkhsenious, O N; Hart, G W; Raikhel, N V

    1995-01-01

    Only a few nuclear pore complex (NPC) proteins, mainly in vertebrates and yeast but none in plants, have been well characterized. As an initial step to identify plant NPC proteins, we examined whether NPC proteins from tobacco are modified by N-acetylglucosamine (GlcNAc). Using wheat germ agglutinin, a lectin that binds specifically to GlcNAc in plants, specific labeling was often found associated with or adjacent to NPCs. Nuclear proteins containing GlcNAc can be partially extracted by 0.5 M salt, as shown by a wheat germ agglutinin blot assay, and at least eight extracted proteins were modified by terminal GlcNAc, as determined by in vitro galactosyltransferase assays. Sugar analysis indicated that the plant glycans with terminal GlcNAc differ from the single O-linked GlcNAc of vertebrate NPC proteins in that they consist of oligosaccharides that are larger in size than five GlcNAc residues. Most of these appear to be bound to proteins via a hydroxyl group. This novel oligosaccharide modification may convey properties to the plant NPC that are different from those of vertebrate NPCs. PMID:8589629

  8. Structural basis for the recognition of complex-type biantennary oligosaccharides by Pterocarpus angolensis lectin.

    PubMed

    Buts, Lieven; Garcia-Pino, Abel; Imberty, Anne; Amiot, Nicolas; Boons, Geert-Jan; Beeckmans, Sonia; Versées, Wim; Wyns, Lode; Loris, Remy

    2006-06-01

    The crystal structure of Pterocarpus angolensis lectin is determined in its ligand-free state, in complex with the fucosylated biantennary complex type decasaccharide NA2F, and in complex with a series of smaller oligosaccharide constituents of NA2F. These results together with thermodynamic binding data indicate that the complete oligosaccharide binding site of the lectin consists of five subsites allowing the specific recognition of the pentasaccharide GlcNAc beta(1-2)Man alpha(1-3)[GlcNAc beta(1-2)Man alpha(1-6)]Man. The mannose on the 1-6 arm occupies the monosaccharide binding site while the GlcNAc residue on this arm occupies a subsite that is almost identical to that of concanavalin A (con A). The core mannose and the GlcNAc beta(1-2)Man moiety on the 1-3 arm on the other hand occupy a series of subsites distinct from those of con A. PMID:16704415

  9. Role of N-linked oligosaccharides in the biosynthetic processing of the cystic fibrosis membrane conductance regulator.

    PubMed

    Chang, Xiu-Bao; Mengos, April; Hou, Yue-Xian; Cui, Liying; Jensen, Timothy J; Aleksandrov, Andrei; Riordan, John R; Gentzsch, Martina

    2008-09-01

    The epithelial chloride channel CFTR is a glycoprotein that is modified by two N-linked oligosaccharides. The most common mutant CFTR protein in patients with cystic fibrosis, DeltaF508, is misfolded and retained by ER quality control. As oligosaccharide moieties of glycoproteins are known to mediate interactions with ER lectin chaperones, we investigated the role of N-linked glycosylation in the processing of wild-type and DeltaF508 CFTR. We found that N-glycosylation and ER lectin interactions are not major determinants of trafficking of wild-type and DeltaF508 from the ER to the plasma membrane. Unglycosylated CFTR, generated by removal of glycosylation sites or treatment of cells with the N-glycosylation inhibitor tunicamycin, did not bind calnexin, but did traffic to the cell surface and exhibited chloride channel activity. Most importantly, unglycosylated DeltaF508 CFTR still could not escape quality control in the early secretory pathway and remained associated with the ER. However, the absence of N-linked oligosaccharides did reduce the stability of wild-type CFTR, causing significantly more-rapid turnover in post-ER compartments. Surprisingly, the individual N-linked carbohydrates do not play equivalent roles and modulate the fate of the wild-type protein in different ways in its early biosynthetic pathway. PMID:18682497

  10. Role of N-linked oligosaccharides in the biosynthetic processing of the cystic fibrosis membrane conductance regulator

    PubMed Central

    Chang, Xiu-bao; Mengos, April; Hou, Yue-xian; Cui, Liying; Jensen, Timothy J.; Aleksandrov, Andrei; Riordan, John R.; Gentzsch, Martina

    2009-01-01

    Summary The epithelial chloride channel CFTR is a glycoprotein that is modified by two N-linked oligosaccharides. The most common mutant CFTR protein in patients with cystic fibrosis, ΔF508, is misfolded and retained by ER quality control. As oligosaccharide moieties of glycoproteins are known to mediate interactions with ER lectin chaperones, we investigated the role of N-linked glycosylation in the processing of wild-type and ΔF508 CFTR. We found that N-glycosylation and ER lectin interactions are not major determinants of trafficking of wild-type and ΔF508 from the ER to the plasma membrane. Unglycosylated CFTR, generated by removal of glycosylation sites or treatment of cells with the N-glycosylation inhibitor tunicamycin, did not bind calnexin, but did traffic to the cell surface and exhibited chloride channel activity. Most importantly, unglycosylated Δ F508 CFTR still could not escape quality control in the early secretory pathway and remained associated with the ER. However, the absence of N-linked oligosaccharides did reduce the stability of wild-type CFTR, causing significantly more-rapid turnover in post-ER compartments. Surprisingly, the individual N-linked carbohydrates do not play equivalent roles and modulate the fate of the wild-type protein in different ways in its early biosynthetic pathway. PMID:18682497

  11. Precise determination of the low-energy hadronic contribution to the muon g -2 from analyticity and unitarity: An improved analysis

    NASA Astrophysics Data System (ADS)

    Ananthanarayan, B.; Caprini, Irinel; Das, Diganta; Imsong, I. Sentitemsu

    2016-06-01

    The two-pion low-energy contribution to the anomalous magnetic moment of the muon, aμ≡(g -2 )μ/2 , expressed as an integral over the modulus squared of the pion electromagnetic form factor, brings a relatively large contribution to the theoretical error, since the low accuracy of experimental measurements in this region is amplified by the drastic increase of the integration kernel. We derive stringent constraints on the two-pion contribution by exploiting analyticity and unitarity of the pion electromagnetic form factor. To avoid the poor knowledge of the modulus of this function, we use instead its phase, known with high precision in the elastic region from Roy equations for pion-pion scattering via the Fermi-Watson theorem. Above the inelastic threshold we adopt a conservative integral condition on the modulus, determined from data and perturbative QCD. Additional high precision data on the modulus in the range 0.65-0.71 GeV, obtained from e+e- annihilation and τ -decay experiments, are used to improve the predictions on the modulus at lower energies by means of a parametrization-free analytic extrapolation. The results are optimal for a given input and do not depend on the unknown phase of the form factor above the inelastic threshold. The present work improves a previous analysis based on the same technique, including more experimental data and employing better statistical tools for their treatment. We obtain for the contribution to aμ from below 0.63 GeV the value (133.258 ±0.723 )×10-10 , which amounts to a reduction of the theoretical error by about 6 ×10-11 .

  12. Determination of the Boltzmann constant by means of precision measurements of H2(18)O line shapes at 1.39  μm.

    PubMed

    Moretti, L; Castrillo, A; Fasci, E; De Vizia, M D; Casa, G; Galzerano, G; Merlone, A; Laporta, P; Gianfrani, L

    2013-08-01

    We report on a new implementation of Doppler broadening thermometry based on precision absorption spectroscopy by means of a pair of offset-frequency locked extended-cavity diode lasers at 1.39  μm. The method consists in the highly accurate observation of the shape of the 4(4,1)→4(4,0) line of the H2(18)O ν1+ν3 band, in a water vapor sample at thermodynamic equilibrium. A sophisticated and extremely refined spectral analysis procedure is adopted for the retrieval of the Doppler width as a function of the gas pressure, taking into account the Dicke narrowing effect, the speed dependence of relaxation rates, and the physical correlation between velocity-changing and dephasing collisions. A spectroscopic determination of the Boltzmann constant with a combined (type A and type B) uncertainty of 24 parts over 10(6) is reported. This is the best result obtained so far by means of an optical method. Our determination is in agreement with the recommended CODATA value. PMID:23971548

  13. High-precision (p,t) reaction measurement to determine {sup 18}Ne({alpha},p){sup 21}Na reaction rates

    SciTech Connect

    Matic, A.; Berg, A. M. van den; Harakeh, M. N.; Woertche, H. J.; Berg, G. P. A.; Couder, M.; Fisker, J. L.; Goerres, J.; LeBlanc, P.; O'Brien, S.; Wiescher, M.; Fujita, K.; Hatanaka, K.; Sakemi, Y.; Shimizu, Y.; Tameshige, Y.; Tamii, A.; Yosoi, M.; Adachi, T.; Fujita, Y.

    2009-11-15

    x-ray bursts are identified as thermonuclear explosions in the outer atmosphere of accreting neutron stars. The thermonuclear runaway is fueled by the {alpha}p process that describes a sequence of ({alpha},p) reactions triggered by the {sup 18}Ne({alpha},p){sup 21}Na breakout reaction from the hot CNO cycles. We studied the level structure of the compound nucleus {sup 22}Mg by measuring the {sup 24}Mg(p,t){sup 22}Mg reaction at the Grand Raiden spectrometer at Research Center for Nuclear Physics, Osaka. A large number of {alpha}-unbound states was identified and precise excitation energies were determined. Based on shell model and {alpha}-cluster model calculations we predict the level parameters for determining the stellar reaction rate of {sup 18}Ne({alpha},p){sup 21}Na for a wide temperature range. x-ray burst simulations have been performed to study the impact of the reaction on the x-ray burst luminosity.

  14. Preparation and antioxidant activities of oligosaccharides from Crassostrea gigas.

    PubMed

    Wu, Shengjun; Huang, Xiaolian

    2017-02-01

    Oligosaccharides were prepared from Crassostrea gigas by hydrolysis of polysaccharide in C. gigas with peroxide oxygen (H2O2). The hydrolysates were cleared of protein, filtered, ultrafiltered and precipitated with absolute ethanol to give C. gigas oligosaccharides (CGOs). Factors affecting CGO yields, i.e., reaction time, temperature, and H2O2 concentration, were optimised as follows: 2.96h reaction time, 84.71°C reaction temperature, and 2.46% H2O2 concentration. Under these conditions, the maximum yield of CGOs reached 10.61%. The CGOs were then partially characterised by Fourier transform infrared spectroscopy, UV spectroscopy, monosaccharide composition, and antioxidant activities. Results indicate that CGOs possessed strong hydroxyl radical activity, 2,2-diphenyl-β-picrylhydrazyl-radical-scavenging activity and reducing capacity at a concentration of 100μg/mL. PMID:27596415

  15. Preparation of oligosaccharides from Chinese yam and their antioxidant activity.

    PubMed

    Chen, Yi-Feng; Zhu, Qin; Wu, Shengjun

    2015-04-15

    In the present study, the oligosaccharides from Chinese yam were prepared by hydrolysis with hydrogen peroxide (H2O2), which can cleave the glycosidic bonds in polysaccharides. The hydrolysis conditions were optimised by using a central composite design (CCD) as follows: reaction time 4.02 h, temperature 84.35 °C, and H2O2 concentration 2.46%, under which the yield of Chinese yam derived oligosaccharides (CYOs) reached 11.73%, which was consistent with the predicted yield by analysis of the results of CCD (11.89%). The CYOs products were partially characterised by chemical component and Fourier transform infrared spectrum. The CYOs scavenged hydroxyl radical by 89.05% at the concentration of 100 μg/mL, indicating that the CYOs may be a viable option for use as a food antioxidant. PMID:25466131

  16. Fructo-oligosaccharides: Production, Purification and Potential Applications.

    PubMed

    Bali, Vandana; Panesar, Parmjit S; Bera, Manab B; Panesar, Reeba

    2015-01-01

    The nutritional and therapeutic benefits of prebiotics have attracted the keen interest of consumers and food processing industry for their use as food ingredients. Fructo-oligosaccharides (FOS), new alternative sweeteners, constitute 1-kestose, nystose, and 1-beta-fructofuranosyl nystose produced from sucrose by the action of fructosyltransferase from plants, bacteria, yeast, and fungi. FOS has low caloric values, non-cariogenic properties, and help gut absorption of ions, decrease levels of lipids and cholesterol and bifidus-stimulating functionality. The purified linear fructose oligomers are added to various food products like cookies, yoghurt, infant milk products, desserts, and beverages due to their potential health benefits. This review is focused on the various aspects of biotechnological production, purification and potential applications of fructo-oligosaccharides. PMID:24915337

  17. The chromatographic analysis of oligosaccharides and preparation of 1-kestose and nystose in yacon.

    PubMed

    Zhu, Zhen-Yuan; Lian, Hong-Yu; Si, Chuan-Ling; Liu, Yang; Liu, Nian; Chen, Jing; Ding, Li-Na; Yao, Qiang; Zhang, Yongmin

    2012-05-01

    The thin-layer chromatographic analysis of the crude oligosaccharides extracted from yacon revealed the presence of glucose, fructose, sucrose, 1-kestose and nystose. The qualitative and quantitative analysis was carried out on oligosaccharides by high pressure liquid chromatography and the results showed that the contents of d-glucose, fructose, sucrose, 1-kestose, nystose and 1-fructofuranosyl nystose in oligosaccharides were 38.30%, 16.44%, 14.58%, 12.29%, 12.17%, 6.20%, respectively. The content of the fructooligosaccharides in oligosaccharides was 30.66%. The crude oligosaccharides were separated and purified by silica gel column chromatography. The two fractions obtained from crude oligosaccharides were 1-kestose and nystose, which were identified by mass spectra. The yield of 1-kestose and nystose were 10.36% and 9.73%, respectively. The purity of 1-kestose was 82.9% and of nystose was 73.6%. PMID:22013906

  18. Gaseous response to ingestion of a poorly absorbed fructo-oligosaccharide sweetener.

    PubMed

    Stone-Dorshow, T; Levitt, M D

    1987-07-01

    Fructo-oligosaccharides are naturally occurring sweet substances that are poorly absorbed and have the potential to be clinically useful nonnutritive sweeteners. Because most nonabsorbed carbohydrates are fermented yielding gas, we assessed flatulent symptoms and H2 excretion during ingestion of fructo-oligosaccharide (5 g tid) for 12 d. Ten subjects had significantly greater flatulence while taking the oligosaccharide than did five subjects taking sucrose (5 g tid). Breath H2 after 10 g fructo-oligosaccharide was similar to that of 10 g lactulose, suggesting near total malabsorption of the fructo-oligosaccharide. Although previous studies found a marked diminution in breath H2 after prolonged exposure to lactulose, breath H2 response increased by 50% after a 12-d period on the oligosaccharide and gaseous symptoms did not improve. We conclude that adaptation of colonic bacteria to carbohydrate malabsorption is variable and may depend upon quantity or nature of the carbohydrate. PMID:3604970

  19. Extraction of CO2 from air samples for isotopic analysis and limits to ultra high precision delta18O determination in CO2 gas.

    PubMed

    Werner, R A; Rothe, M; Brand, W A

    2001-01-01

    The determination of delta18O values in CO2 at a precision level of +/-0.02 per thousand (delta-notation) has always been a challenging, if not impossible, analytical task. Here, we demonstrate that beyond the usually assumed major cause of uncertainty - water contamination - there are other, hitherto underestimated sources of contamination and processes which can alter the oxygen isotope composition of CO2. Active surfaces in the preparation line with which CO2 comes into contact, as well as traces of air in the sample, can alter the apparent delta18O value both temporarily and permanently. We investigated the effects of different surface materials including electropolished stainless steel, Duran glass, gold and quartz, the latter both untreated and silanized. CO2 frozen with liquid nitrogen showed a transient alteration of the 18O/16O ratio on all surfaces tested. The time to recover from the alteration as well as the size of the alteration varied with surface type. Quartz that had been ultrasonically cleaned for several hours with high purity water (0.05 microS) exhibited the smallest effect on the measured oxygen isotopic composition of CO2 before and after freezing. However, quartz proved to be mechanically unstable with time when subjected to repeated large temperature changes during operation. After several days of operation the gas released from the freezing step contained progressively increasing trace amounts of O2 probably originating from inclusions within the quartz, which precludes the use of quartz for cryogenically trapping CO2. Stainless steel or gold proved to be suitable materials after proper pre-treatment. To ensure a high trapping efficiency of CO2 from a flow of gas, a cold trap design was chosen comprising a thin wall 1/4" outer tube and a 1/8" inner tube, made respectively from electropolished stainless steel and gold. Due to a considerable 18O specific isotope effect during the release of CO2 from the cold surface, the thawing time had to

  20. Eukaryotic Oligosaccharyltransferase Generates Free Oligosaccharides during N-Glycosylation*

    PubMed Central

    Harada, Yoichiro; Buser, Reto; Ngwa, Elsy M.; Hirayama, Hiroto; Aebi, Markus; Suzuki, Tadashi

    2013-01-01

    Asparagine (N)-linked glycosylation regulates numerous cellular activities, such as glycoprotein quality control, intracellular trafficking, and cell-cell communications. In eukaryotes, the glycosylation reaction is catalyzed by oligosaccharyltransferase (OST), a multimembrane protein complex that is localized in the endoplasmic reticulum (ER). During N-glycosylation in the ER, the protein-unbound form of oligosaccharides (free oligosaccharides; fOSs), which is structurally related to N-glycan, is released into the ER lumen. However, the enzyme responsible for this process remains unidentified. Here, we demonstrate that eukaryotic OST generates fOSs. Biochemical and genetic analyses using mutant strains of Saccharomyces cerevisiae revealed that the generation of fOSs is tightly correlated with the N-glycosylation activity of OST. Furthermore, we present evidence that the purified OST complex can generate fOSs by hydrolyzing dolichol-linked oligosaccharide, the glycan donor substrate for N-glycosylation. The heterologous expression of a single subunit of OST from the protozoan Leishmania major in S. cerevisiae demonstrated that this enzyme functions both in N-glycosylation and generation of fOSs. This study provides insight into the mechanism of PNGase-independent formation of fOSs. PMID:24062310

  1. Cellulase-assisted extraction of oligosaccharides from defatted rice bran.

    PubMed

    Patindol, J; Wang, L; Wang, Y-J

    2007-11-01

    Defatted rice bran was subjected to cellulase treatment in order to increase its extractable oligosaccharides. Various combinations of enzyme concentration (0%, 0.5%, 1.0%, and 2.0%), temperature (room, 30, 40, and 50 degrees C), and time (1, 3, 5, and 16 h) were tested to identify the optimum extraction conditions. The saccharide content and composition of the extracts were analyzed by high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD). Digestibility was assayed in vitro with human salivary and porcine pancreatic alpha-amylases. Extraction yield ranged from 13.4% (without cellulase) to 39.9% (with 2% cellulase). Total carbohydrates, reducing sugars, and crude protein of the dried extracts ranged from 69.2% to 87.2%, 18.7% to 62.3%, and 7.1% to 22.3%, respectively. Mono- and disaccharides constituted more than 50% of the total carbohydrates in the extracts. Inherent oligosaccharides and those produced by cellulolysis made up less than 25%. The in vitro digestibility of the extracts by alpha-amylases was lower compared with that of the original rice bran sample and potato dextrin, which could be attributed to the increased concentrations of oligosaccharides and reducing sugars. PMID:18034713

  2. Laminin oligosaccharides play a pivotal role in cell spreading.

    PubMed

    Tanzer, M L; Giniger, M S; Chandrasekaran, S

    1993-01-01

    The basement membrane glycoprotein laminin promotes cell adhesion, spreading and neurite outgrowth. We can uncouple cell adhesion and spreading (or neurite outgrowth) when unglycosylated laminin is used as a substratum. Mouse melanoma cells, B16F1 line, readily attach to unglycosylated laminin but fail to spread once adherent. Spreading can be restored by titration with glycosylated laminin or with laminin glycopeptides. When the laminin substratum is absent in the test chambers, the cells do not adhere when either intact laminin or its glycopeptides are then added. Analyses show that these added substances are recoverable from the culture medium and do not bind to the chamber surfaces. Use of selective inhibitors which interfere with carbohydrate processing yields several glycoforms of laminin which we have isolated and examined for their ability to support cell adhesion and spreading. Laminin which is enriched in high mannose oligosaccharides is much more effective in promoting cell spreading than laminin which is enriched in hybrid oligosaccharides. These results are consistent with earlier studies which showed that ConA, which primarily recognizes mannose residues, could also uncouple cell adhesion and spreading. Although mono- and disaccharides failed to restore cell spreading, we have found that addition of various mannose oligosaccharides to adherent cells effectively reestablishes their spreading behavior. The extent of cell spreading which is achieved by the added saccharides is related to their amount, their duration of addition, and their molecular structures.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8165563

  3. Separation of radiolabelled glycosaminoglycan oligosaccharides by polyacrylamide-gel electrophoresis.

    PubMed Central

    Hampson, I N; Gallagher, J T

    1984-01-01

    Glycosaminoglycan oligosaccharides generated by treatment of biosynthetically radiolabelled dermatan sulphate and hyaluronic acid with chondroitin AC lyase or testicular hyaluronidase may be resolved into a series of discrete bands by polyacrylamide-gel electrophoresis. Bands were identified by fixation in glacial acetic acid containing 20% (w/v) 2,5-diphenyloxazole followed by fluorography. The bands represented glycans which differed in size by one disaccharide unit. For the larger oligosaccharides (decasaccharides and above) of similar charge: mass ratio, there was a linear relationship between electrophoretic mobility and log Mr. However, the smaller species showed anomalous migration patterns. Consideration of the structures of the fragments produced by the different enzyme treatments suggests that copolymeric and homopolymeric oligosaccharides may be separated by polyacrylamide-gel electrophoresis. There are many potential applications of this technique, foremost amongst them being studies on the molecular size heterogeneity and patterns of enzyme-mediated depolymerization of native glycosaminoglycan chains and investigations into rates of polymer chain elongation and post-polymerization modification reactions so essential to glycosaminoglycan function. Images Fig. 1. Fig. 2. Fig. 5. Fig. 6. PMID:6477495

  4. Synthesis of heparin-like oligosaccharides on polymer supports.

    PubMed

    Ojeda, Rafael; Terentí, Olimpia; de Paz, José-Luis; Martín-Lomas, Manuel

    2004-01-01

    The biological functions of a variety of proteins are regulated by heparan sulfate glycosaminoglycans. In order to facilitate the elucidation of the molecular basis of glycosaminoglycan-protein interactions we have developed syntheses of heparin-like oligosaccharides on polymer supports. A completely stereoselective strategy previously developed by us for the synthesis of these oligosaccharides in solution has been extended to the solid phase using an acceptor-bound approach. Both a soluble polymer support and a polyethylene glycol-grafted polystyrene resin have been used and different strategies for the attachment of the acceptor to the support have been explored. The attachment of fully protected disaccharide building blocks to a soluble support through the carboxylic group of the uronic acid unit by a succinic ester linkage, the use of trichloroacetimidates as glycosylating agents and of a functionalized Merryfield type resin for the capping process allowed for the construction of hexasaccharide and octasaccharide fragments containing the structural motif of the regular region of heparin. This strategy may facilitate the synthesis of glycosaminoglycan oligosaccharides by using the required building blocks in the glycosylation sequence. PMID:15486451

  5. Milk Oligosaccharides over Time of Lactation from Different Dog Breeds

    PubMed Central

    Macias Rostami, Shirin; Bénet, Thierry; Spears, Julie; Reynolds, Arleigh; Satyaraj, Ebenezer; Sprenger, Norbert; Austin, Sean

    2014-01-01

    The partnership of humans and dogs goes back to over 10'000 years, yet relatively little is known about a dog's first extra-uterine nutrition particularly when it comes to milk oligosaccharides. We set out to identify and quantify milk oligosaccharides over the course of lactation from different dog breeds (Labrador retriever, Schnauzer and 3 Alaskan husky crossbreeds). To this end, 2 different chromatographic methods with fluorescence and mass spectrometry detection were developed and one was validated for quantification. Besides lactose and lactose-sulphate, we identified 2 different trisaccharides composed of 3 hexose units, 3′sialyllactose (3′SL), 6′sialyllactose (6′SL), 2′fucosyllactose (2′FL), and a tetrasaccharide composed of 2 hexoses, an N-acetylhexosamine and a deoxyhexose. 3′SL was present at the highest levels in milk of all dog breeds starting at around 7.5 g/L and dropping to about 1.5 g/L in the first 10 days of lactation. 6′SL was about 10 times less abundant and 2′FL and the tetrasaccharide had rather varying levels in the milk of the different breeds with the tetrasaccharide only detectable in the Alaskan husky crossbreeds. The longitudinal and quantitative data of milk oligosaccharides from different dog breeds are an important basis to further our understanding on their specific biological roles and also on the specific nutritional requirements of lactating puppies. PMID:24924915

  6. High-performance liquid chromatography of monosaccharides and oligosaccharides in a complex biological matrix.

    PubMed

    Peelen, G O; de Jong, J G; Wevers, R A

    1991-11-01

    Analysis of oligosaccharides in complex biological matrices is hampered by the fact that oligosaccharides, closely related in structure, are difficult to separate from each other and that conventional detection procedures (refraction index and uv detection) are not specific enough for carbohydrates. Prepurification of samples by procedures like desalting or gel filtration is often used but can lead to the loss of specific oligosaccharides. We have used pellicular anion chromatography in combination with a postcolumn reaction for reducing carbohydrates based on 4-aminobenzoylhydrazide. This procedure not only detected normal mono- and oligosaccharides but N-acetylhexosamines and reducing N-acetylhexosamine containing oligosaccharides as well. A sensitivity of about 20-25 pmol for non-GlcNAc containing mono- or oligosaccharides and between 30-50 pmol for GlcNAc or oligosaccharides with GlcNAc at the reducing side was reached. The postcolumn detection was compared with pulsed amperometric detection and appeared to be more specific for mono- and oligosaccharides. Except for deproteination to protect the column, no further sample preparation was needed with this system for our application (urines). In this way pellicular anion chromatography in combination with this postcolumn reaction reaction to be a sensitive and specific HPLC procedure for analysis of monosaccharides and oligosaccharides in complex biological matrices. PMID:1799219

  7. An Update on Oligosaccharides and Their Esters from Traditional Chinese Medicines: Chemical Structures and Biological Activities

    PubMed Central

    Chen, Xiang-Yang; Wang, Ru-Feng; Liu, Bin

    2015-01-01

    A great number of naturally occurring oligosaccharides and oligosaccharide esters have been isolated from traditional Chinese medicinal plants, which are used widely in Asia and show prominent curative effects in the prevention and treatment of kinds of diseases. Numerous in vitro and in vivo experiments have revealed that oligosaccharides and their esters exhibited various activities, including antioxidant, antidepressant, cytotoxic, antineoplastic, anti-inflammatory, neuroprotective, cerebral protective, antidiabetic, plant growth-regulatory, and immunopotentiating activities. This review summarizes the investigations on the distribution, chemical structures, and bioactivities of natural oligosaccharides and their esters from traditional Chinese medicines between 2003 and 2013. PMID:25861364

  8. Structural study of asparagine-linked oligosaccharide moiety of taste-modifying protein, miraculin.

    PubMed

    Takahashi, N; Hitotsuya, H; Hanzawa, H; Arata, Y; Kurihara, Y

    1990-05-15

    The structures of the N-linked oligosaccharides of miraculin, which is a taste modifying glycoprotein isolated from miracle fruits, berries of Richadella dulcifica, are reported. Asparagine-linked oligosaccharides were released from the protein by glycopeptidase (almond) digestion. The reducing ends of the oligosaccharide chains thus obtained were aminated with a fluorescent reagent, 2-aminopyridine, and the mixture of pyridylamino derivatives of the oligosaccharides was separated by high performance liquid chromatography (HPLC) on an ODS-silica column. More than five kinds of oligosaccharide fractions were separated by the one chromatographic run. The structure of each oligosaccharide thus isolated was analyzed by a combination of sequential exoglycosidase digestion and another kind of HPLC with an amidesilica column. Furthermore, high resolution proton nuclear magnetic resonance (1H NMR) measurements were carried out. It was found that 1) five oligosaccharides obtained are a series of compounds with xylose-containing common structural core, Xyl beta 1----2 (Man alpha 1----6) Man beta 1----4-GlcNAc beta 1----4 (Fuca1----3)GlcNAc, 2) a variety of oligosaccharide structures are significant for two glycosylation sites, Asn-42 and Asn-186, and 3) two new oligosaccharides, B and D, with unusual structures containing monoantennary complex-type were characterized. (formula; see text) PMID:2335505

  9. Structural analysis of underivatized neutral human milk oligosaccharides in the negative ion mode by nano-electrospray MS(n) (part 1: methodology).

    PubMed

    Pfenninger, Anja; Karas, Michael; Finke, Berndt; Stahl, Bernd

    2002-11-01

    Underivatized neutral oligosaccharides from human milk were analyzed by nano-electrospray ionization (ESI) using a quadrupole ion trap mass spectrometer (QIT-MS) in the negative-ion mode. Under these conditions neutral oligosaccharides are observed as deprotonated molecules [M-H]- with high intensity. CID-experiments of these species with the charge localized at the reducing end lead to C-type fragment ions forming a "new" reducing end. Fragmentations are accompanied by cross-ring cleavages that yield information about linkages of internal monosaccharides. Several isomeric compounds with distinct structural features, such as different glycosidic linkages, fucosylation and branching sites were investigated. The rules governing the fragmentation behavior of this class of oligosaccharides were elucidated and tested for a representative number of certain isomeric glycoforms using the MS/MS and MS(n) capabilities of the QIT. On the basis of the specific fragmentation behavior of deprotonated molecules, the position of fucoses and the linkage type (Gal beta-->3 GlcNAc or Gal beta1-->4 GlcNAc) could be determined and linear and branched could be differentiated. Rules could be established which can be applied in further investigations of these types of oligosaccharides even from heterogenous mixtures. PMID:12443024

  10. Metabolic engineering of microbes for oligosaccharide and polysaccharide synthesis

    PubMed Central

    Ruffing, Anne; Chen, Rachel Ruizhen

    2006-01-01

    Metabolic engineering has recently been embraced as an effective tool for developing whole-cell biocatalysts for oligosaccharide and polysaccharide synthesis. Microbial catalysts now provide a practical means to derive many valuable oligosaccharides, previously inaccessible through other methods, in sufficient quantities to support research and clinical applications. The synthesis process based upon these microbes is scalable as it avoids expensive starting materials. Most impressive is the high product concentrations (up to 188 g/L) achieved through microbe-catalyzed synthesis. The overall cost for selected molecules has been brought to a reasonable range (estimated $ 30–50/g). Microbial synthesis of oligosaccharides and polysaccharides is a carbon-intensive and energy-intensive process, presenting some unique challenges in metabolic engineering. Unlike nicotinamide cofactors, the required sugar nucleotides are products of multiple interacting pathways, adding significant complexity to the metabolic engineering effort. Besides the challenge of providing the necessary mammalian-originated glycosyltransferases in active form, an adequate uptake of sugar acceptors can be an issue when another sugar is necessary as a carbon and energy source. These challenges are analyzed, and various strategies used to overcome these difficulties are reviewed in this article. Despite the impressive success of the microbial coupling strategy, there is a need to develop a single strain that can achieve at least the same efficiency. Host selection and the manner with which the synthesis interacts with the central metabolism are two important factors in the design of microbial catalysts. Additionally, unlike in vitro enzymatic synthesis, product degradation and byproduct formation are challenges of whole-cell systems that require additional engineering. A systematic approach that accounts for various and often conflicting requirements of the synthesis holds the key to deriving an

  11. A SIMPLE PHOTOMETER FOR PRECISE DETERMINATION OF DISSOLVED OXYGEN CONCENTRATION BY THE WINKLER METHOD WITH RECOMMENDATIONS FOR IMPROVING RESPIRATION RATE MEASUREMENTS IN AQUATIC ORGANISMS

    EPA Science Inventory

    A simple inexpensive photometer designed for Winkler titration end-point detection is described. The precision of replicate dissolved oxygen measurements using this instrument was 0.06-0.22%. This high precision is needed to measure the small changes in dissolved oxygen concentra...

  12. Exoglycosidase purity and linkage specificity: assessment using oligosaccharide substrates and high-pH anion-exchange chromatography with pulsed amperometric detection.

    PubMed

    Tyagarajan, K; Forte, J G; Townsend, R R

    1996-01-01

    Simplified HPLC protocols to determine the activity and linkage specificity and to detect the most commonly-encountered contaminants in available exoglycosidase preparations (Jacob and Scudder, Methods Enzymol., 230, 280-300, 1994) were developed. Monosaccharides and oligosaccharides were analyzed in a single chromatographic step using high-pH anion-exchange chromatography with pulsed amperometric detection. All analyses were performed with underivatized oligosaccharide substrates and by direct injection of unprocessed, diluted enzyme digests into the chromatograph. The sialidase from Newcastle disease virus was found to release both alpha (2-->3)- and alpha (2-->6)-linked Neu5Ac from a triantennary, lactosamine-type oligosaccharide. The activity of alpha-galactosidase from green coffee beans was assayed using Gal alpha(1-->3)[Fuc-alpha(1ar2)]Gal by detection of Gal and Fuc alpha(1-->3)Gal. The linkage specificities of beta-galactosidases from Streptococcus pneumoniae and bovine testis were assessed using Gal beta(1-->3 or 4)GlcNAc beta(1-->3)beta(1-->4)Glc as substrates. Contaminating beta-N-acetylhexosaminidase activity in the beta-galactosidase preparation was assayed using an agalactobiantennary oligosaccharide. The alpha(1-->3 or 4) linkage specificity of fucosidase III from almond meal was confirmed (Scudder et al., J. Biol. Chem. 265, 16472-16477, 1990) by its inactivity against a biantennary oligosaccharide with all Fuc residues linked alpha(1-->6). An alpha-fucosidase from chicken liver was found to cleave alpha(1-->2,3 or 6)-linked Fuc residues from oligosaccharides. The activity of jack bean (Canavalia ensiformis) alpha-mannosidase was assayed with a relatively resistant substrate, Man alpha(1-->3)- Man beta(1-->4)GlcNAc. A GlcNAc beta(1-->4)-terminated triantennary oligosaccharide was used to assay for contaminating beta-N-acetylhexosaminidase activity in alpha-mannosidase preparations and to determine the linkage and branch specificity of beta

  13. Sensitive and precise HPLC method with back-extraction clean-up step for the determination of sildenafil in rat plasma and its application to a pharmacokinetic study.

    PubMed

    Strach, Beata; Wyska, Elżbieta; Pociecha, Krzysztof; Krupa, Anna; Jachowicz, Renata

    2015-10-01

    A sensitive HPLC method was developed and validated for the determination of sildenafil concentrations in rat plasma (200 μL) using a liquid-liquid extraction procedure and paroxetine as an internal standard. In order to eliminate interferences and improve the peak shape, a back-extraction into an acidic solution was utilized. Chromatographic separation was achieved on a cyanopropyl bonded-phase column with a mobile phase composed of 50 m m potassium dihydrogen phosphate buffer (pH 4.5) and acetonitrile (75:25, v/v), pumped at the flow rate of 1 mL/min. A UV detector was set at 230 nm. A calibration curve was constructed within a concentration range from 10 to 1500 ng/mL. The limit of detection was 5 ng/mL. The inter- and intra-day precisions of the assay were in the ranges 2.91-7.33 and 2.61-6.18%, respectively, and the accuracies for inter- and intra-day runs were within 0.14-3.92 and 0.44-2.96%, respectively. The recovery of sildenafil was 85.22 ± 4.54%. Tests confirmed the stability of sildenafil in plasma during three freeze-thaw cycles and during long-term storage at -20 and -80°C for up to 2 months. The proposed method was successfully applied to a pharmacokinetic study in rats. PMID:25864807

  14. Determination of (241)Pu by the method of disturbed radioactive equilibrium using 2πα-counting and precision gamma-spectrometry.

    PubMed

    Alekseev, I; Kuzmina, T

    2016-04-01

    A simple technique is proposed for the determination of the content of (241)Pu, which is based on disturbance of radioactive equilibrium in the genetically related (237)U←(241)Pu→(241)Am decay chain of radionuclides, with the subsequent use of 2πα-counting and precision gamma-spectroscopy for monitoring the process of restoration of that equilibrium. It has been shown that the data on dynamics of accumulation of the daughter (241)Am, which were obtained from the results of measurements of α- and γ-spectra of the samples, correspond to the estimates calculated for the chain of two genetically related radionuclides, the differences in the estimates of (241)Pu radioactivity not exceeding 2%. Combining the different methods of registration (2πα-counting, semiconductor alpha- and gamma-spectrometry) enables the proposed method to be efficiently applied both for calibration of (241)Pu-sources (from several hundreds of kBq and higher) and for radioisotopic analysis of plutonium mixtures. In doing so, there is a deep purification of (241)Pu from its daughter decay products required due to unavailability of commercial detectors that could make it possible, based only on analysis of alpha-spectra, to conduct quantitative analysis of the content of (238)Pu and (241)Am. PMID:26868275

  15. Fast and precise method for Pb isotope ratio determination in complex matrices using GC-MC-ICPMS: application to crude oil, kerogen, and asphaltene samples.

    PubMed

    Sanabria-Ortega, Georgia; Pécheyran, Christophe; Bérail, Sylvain; Donard, Olivier F X

    2012-09-18

    A new method to determine Pb isotope ratio without ion-exchange-matrix separation is proposed. After acid digestion, Pb was ethylated to Et(4)Pb, separated from the digested solution (black shale, asphaltene, crude oil and kerogen) by extraction in isooctane, and then injected into a gas chromatograph coupled to a multicollector inductively coupled plasma mass spectrometer. Seven isotopes ((202)Hg, (203)Tl, (204)Pb, (205)Tl, (206)Pb, (207)Pb, (208)Pb) were monitored simultaneously with peak duration of 23 s. GC elution was operated under wet plasma conditions where a thallium standard solution was introduced to the mass spectrometer for mass bias correction. The total time of the procedure (sample preparation and analysis, after acid digestion) was reduced by a factor of 15 compared to conventional-continuous sample introduction. Data treatment was carried out using the linear regression slope method. Mass bias was corrected using the double correction method (first thallium normalization followed by classical bracketing). For the (208/206)Pb and (207/206)Pb ratios, precision (2RSD(EXT), n = 21) was 49 and 69 ppm, and the bias between experimental results and reference values was better than 0.0033 and 0.0007 ‰, when injecting 1.2 ng of ethylated Pb SRM NIST 981 solution. Results obtained by this method were validated by comparison with those obtained via conventional-continuous sample introduction. The applicability of this approach was demonstrated with the analysis of black shale, asphaltene, crude oil and kerogen samples. PMID:22845833

  16. Cellular effects of deoxynojirimycin analogues: inhibition of N-linked oligosaccharide processing and generation of free glucosylated oligosaccharides

    PubMed Central

    2004-01-01

    In the accompanying paper [Mellor, Neville, Harvey, Platt, Dwek and Butters (2004) Biochem. J. 381, 861–866] we treated HL60 cells with N-alk(en)yl-deoxynojirimycin (DNJ) compounds to inhibit glucosphingolipid (GSL) biosynthesis and identified a number of non-GSL-derived, small, free oligosaccharides (FOS) most likely produced due to inhibition of the oligosaccharide-processing enzymes α-glucosidases I and II. When HL60 cells were treated with concentrations of N-alk(en)ylated DNJ analogues that inhibited GSL biosynthesis completely, N-butyl- and N-nonyl-DNJ inhibited endoplasmic reticulum (ER) glucosidases I and II, but octadecyl-DNJ did not, probably due to the lack of ER lumen access for this novel, long-chain derivative. Glucosidase inhibition resulted in the appearance of free Glc1–3Man structures, which is evidence of Golgi glycoprotein endomannosidase processing of oligosaccharides with retained glucose residues. Additional large FOS was also detected in cells following a 16 h treatment with N-butyl- and N-nonyl-DNJ. When these FOS structures (>30, including >20 species not present in control cells) were characterized by enzyme digests and MALDI-TOF (matrix-assisted laser-desorption ionization–time-of-flight) MS, all were found to be polymannose-type oligosaccharides, of which the majority were glucosylated and had only one reducing terminal GlcNAc (N-acetylglucosamine) residue (FOS-GlcNAc1), demonstrating a cytosolic location. These results support the proposal that the increase in glucosylated FOS results from enzyme-mediated cytosolic cleavage of oligosaccharides from glycoproteins exported from the ER because of misfolding or excessive retention. Importantly, the present study characterizes the cellular properties of DNJs further and demonstrates that side-chain modifications allow selective inhibition of protein and lipid glycosylation pathways. This represents the most detailed characterization of the FOS structures arising from ER

  17. Novel High-Molecular Weight Fucosylated Milk Oligosaccharides Identified in Dairy Streams

    PubMed Central

    Mehra, Raj; Barile, Daniela; Marotta, Mariarosaria; Lebrilla, Carlito B.; Chu, Caroline; German, J. Bruce

    2014-01-01

    Oligosaccharides are the third largest component in human milk. This abundance is remarkable because oligosaccharides are not digestible by the newborn, and yet they have been conserved and amplified during evolution. In addition to encouraging the growth of a protective microbiota dominated by bifidobacteria, oligosaccharides have anti-infective activity, preventing pathogens from binding to intestinal cells. Although it would be advantageous adding these valuable molecules to infant milk formula, the technologies to reproduce the variety and complexity of human milk oligosaccharides by enzymatic/organic synthesis are not yet mature. Consequently, there is an enormous interest in alternative sources of these valuable oligosaccharides. Recent research has demonstrated that bovine milk and whey permeate also contain oligosaccharides. Thus, a thorough characterization of oligosaccharides in bovine dairy streams is an important step towards fully assessing their specific functionalities. In this study, bovine milk oligosaccharides (BMOs) were concentrated by membrane filtration from a readily available dairy stream called “mother liquor”, and analyzed by high accuracy MALDI FT-ICR mass spectrometry. The combination of HPLC and accurate mass spectrometry allowed the identification of ideal processing conditions leading to the production of Kg amount of BMO enriched powders. Among the BMOs identified, 18 have high-molecular weight and corresponded in size to the most abundant oligosaccharides present in human milk. Notably 6 oligosaccharides contained fucose, a sugar monomer that is highly abundant in human milk, but is rarely observed in bovine milk. This work shows that dairy streams represent a potential source of complex milk oligosaccharides for commercial development of unique dairy ingredients in functional foods that reproduce the benefits of human milk. PMID:24810963

  18. Galactoglucomannan Oligosaccharide Supplementation Affects Nutrient Digestibility, Fermentation End-Product Production, and Large Bowel Microbiota of the Dog

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A galactoglucomannan oligosaccharide (GGMO) obtained from fiberboard production was evaluated as a dietary supplement for dogs. The GGMO substrate contained high concentrations of oligosaccharides containing mannose, xylose, and glucose, with the mannose component accounting for 35% of dry matter. ...

  19. The Galectin CvGal1 from the Eastern Oyster (Crassostrea virginica) Binds to Blood Group A Oligosaccharides on the Hemocyte Surface*

    PubMed Central

    Feng, Chiguang; Ghosh, Anita; Amin, Mohammed N.; Giomarelli, Barbara; Shridhar, Surekha; Banerjee, Aditi; Fernández-Robledo, José A.; Bianchet, Mario A.; Wang, Lai-Xi; Wilson, Iain B. H.; Vasta, Gerardo R.

    2013-01-01

    The galectin CvGal1 from the eastern oyster (Crassostrea virginica), which possesses four tandemly arrayed carbohydrate recognition domains, was previously shown to display stronger binding to galactosamine and N-acetylgalactosamine relative to d-galactose. CvGal1 expressed by phagocytic cells is “hijacked” by the parasite Perkinsus marinus to enter the host, where it proliferates and causes systemic infection and death. In this study, a detailed glycan array analysis revealed that CvGal1 preferentially recognizes type 2 blood group A oligosaccharides. Homology modeling of the protein and its oligosaccharide ligands supported this preference over type 1 blood group A and B oligosaccharides. The CvGal ligand models were further validated by binding, inhibition, and competitive binding studies of CvGal1 and ABH-specific monoclonal antibodies with intact and deglycosylated glycoproteins, hemocyte extracts, and intact hemocytes and by surface plasmon resonance analysis. A parallel glycomic study carried out on oyster hemocytes (Kurz, S., Jin, C., Hykollari, A., Gregorich, D., Giomarelli, B., Vasta, G. R., Wilson, I. B. H., and Paschinger, K. (2013) J. Biol. Chem. 288,) determined the structures of oligosaccharides recognized by CvGal1. Proteomic analysis of the hemocyte glycoproteins identified β-integrin and dominin as CvGal1 “self”-ligands. Despite strong CvGal1 binding to P. marinus trophozoites, no binding of ABH blood group antibodies was observed. Thus, parasite glycans structurally distinct from the blood group A oligosaccharides on the hemocyte surface may function as potentially effective ligands for CvGal1. We hypothesize that carbohydrate-based mimicry resulting from the host/parasite co-evolution facilitates CvGal1-mediated cross-linking to β-integrin, located on the hemocyte surface, leading to cell activation, phagocytosis, and host infection. PMID:23824193

  20. The galectin CvGal1 from the eastern oyster (Crassostrea virginica) binds to blood group A oligosaccharides on the hemocyte surface.

    PubMed

    Feng, Chiguang; Ghosh, Anita; Amin, Mohammed N; Giomarelli, Barbara; Shridhar, Surekha; Banerjee, Aditi; Fernández-Robledo, José A; Bianchet, Mario A; Wang, Lai-Xi; Wilson, Iain B H; Vasta, Gerardo R

    2013-08-23

    The galectin CvGal1 from the eastern oyster (Crassostrea virginica), which possesses four tandemly arrayed carbohydrate recognition domains, was previously shown to display stronger binding to galactosamine and N-acetylgalactosamine relative to d-galactose. CvGal1 expressed by phagocytic cells is "hijacked" by the parasite Perkinsus marinus to enter the host, where it proliferates and causes systemic infection and death. In this study, a detailed glycan array analysis revealed that CvGal1 preferentially recognizes type 2 blood group A oligosaccharides. Homology modeling of the protein and its oligosaccharide ligands supported this preference over type 1 blood group A and B oligosaccharides. The CvGal ligand models were further validated by binding, inhibition, and competitive binding studies of CvGal1 and ABH-specific monoclonal antibodies with intact and deglycosylated glycoproteins, hemocyte extracts, and intact hemocytes and by surface plasmon resonance analysis. A parallel glycomic study carried out on oyster hemocytes (Kurz, S., Jin, C., Hykollari, A., Gregorich, D., Giomarelli, B., Vasta, G. R., Wilson, I. B. H., and Paschinger, K. (2013) J. Biol. Chem. 288) determined the structures of oligosaccharides recognized by CvGal1. Proteomic analysis of the hemocyte glycoproteins identified β-integrin and dominin as CvGal1 "self"-ligands. Despite strong CvGal1 binding to P. marinus trophozoites, no binding of ABH blood group antibodies was observed. Thus, parasite glycans structurally distinct from the blood group A oligosaccharides on the hemocyte surface may function as potentially effective ligands for CvGal1. We hypothesize that carbohydrate-based mimicry resulting from the host/parasite co-evolution facilitates CvGal1-mediated cross-linking to β-integrin, located on the hemocyte surface, leading to cell activation, phagocytosis, and host infection. PMID:23824193

  1. Precision Polarization of Neutrons

    NASA Astrophysics Data System (ADS)

    Martin, Elise; Barron-Palos, Libertad; Couture, Aaron; Crawford, Christopher; Chupp, Tim; Danagoulian, Areg; Estes, Mary; Hona, Binita; Jones, Gordon; Klein, Andi; Penttila, Seppo; Sharma, Monisha; Wilburn, Scott

    2009-05-01

    Determining polarization of a cold neutron beam to high precision is required for the next generation neutron decay correlation experiments at the SNS, such as the proposed abBA and PANDA experiments. Precision polarimetry measurements were conducted at Los Alamos National Laboratory with the goal of determining the beam polarization to the level of 10-3 or better. The cold neutrons from FP12 were polarized using optically polarized ^3He gas as a spin filter, which has a highly spin-dependent absorption cross section. A second ^ 3He spin filter was used to analyze the neutron polarization after passing through a resonant RF spin rotator. A discussion of the experiment and results will be given.

  2. A versatile and scalable strategy for glycoprofiling bifidobacterial consumption of human milk oligosaccharides

    PubMed Central

    LoCascio, Riccardo G.; Niñonuevo, Milady R.; Kronewitter, Scott R.; Freeman, Samara L.; German, J. Bruce; Lebrilla, Carlito B.; Mills, David A.

    2009-01-01

    Summary Human milk contains approximately 200 complex oligosaccharides believed to stimulate the growth and establishment of a protective microbiota in the infant gut. The lack of scalable analytical techniques has hindered the measurement of bacterial metabolism of these and other complex prebiotic oligosaccharides. An in vitro, multi‐strain, assay capable of measuring kinetics of bacterial growth and detailed oligosaccharide consumption analysis by FTICR‐MS was developed and tested simultaneously on 12 bifidobacterial strains. For quantitative consumption, deuterated and reduced human milk oligosaccharide (HMO) standards were used. A custom software suite developed in house called Glycolyzer was used to process the large amounts of oligosaccharide mass spectra automatically with 13C corrections based on de‐isotoping protocols. High growth on HMOs was characteristic of Bifidobacterium longum biovar infantis strains, which consumed nearly all available substrates, while other bifidobacterial strains tested, B. longum bv. longum, B. adolescentis, B. breve and B. bifidum, showed low or only moderate growth ability. Total oligosaccharide consumption ranged from a high of 87% for B. infantis JCM 7009 to only 12% for B. adolescentis ATCC 15703. A detailed analysis of consumption glycoprofiles indicated strain‐specific capabilities towards differential metabolism of milk oligosaccharides. This method overcomes previous limitations in the quantitative, multi‐strain analysis of bacterial metabolism of HMOs and represents a novel approach towards understanding bacterial consumption of complex prebiotic oligosaccharides. PMID:21261928

  3. Understanding the fundamental mechanism behind accumulation of oligosaccharides during high solids loading enzymatic hydrolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During enzymatic hydrolysis of biomass, polysaccharides are cleaved by glycosyl hydrolases to soluble oligosaccharides and further hydrolyzed by ß-glucosidase, ß-xylosidase and other enzymes to monomeric sugars. However, commercial enzyme mixtures do not hydrolyze all of these oligosaccharides and v...

  4. Detection of milk oligosaccharides in plasma of infants

    PubMed Central

    Ruhaak, L. Renee; Stroble, Carol; Underwood, Mark A.; Lebrilla, Carlito B.

    2014-01-01

    Human Milk Oligosaccharides (HMO) are one of the major components of human milk. HMO are non-digestible by the human gut, where they are known to play important functions as prebiotics and decoys for binding pathogens. Moreover, it has been proposed that HMO may provide sialic acids to the infant that are important in brain development, however this would require absorption of HMO into the bloodstream. HMO have consistently been found in the urine of humans and other mammals, suggesting systemic absorption. Here we present a procedure for the profiling of milk oligosaccharides (MO) in plasma samples obtained from 13 term infants hospitalized for surgery for congenital heart disease. The method comprises protein denaturation, oligosaccharide reduction and porous graphitized carbon solid phase extraction for purification followed by analysis using nHPLC-PGC-chip-TOF-MS. Approximately 15 free MO were typically observed in the plasma of human infants, including LNT, LDFP, LNFT, 3’SL, 6’SL, 3’SLN and 6’SLN, of which the presence was confirmed using fragmentation studies. A novel third isomer of SLN, not found in human or bovine milk was also consistently detected. Differences in the free MO profiles were observed between infants that were totally formula-fed and infants that received at least some part breast milk. Our results indicate that free MO similar in structure to those found in human milk and urine are present in the blood of infants. The method and results presented here will facilitate further research toward the possible roles of free MO in the development of the infant. PMID:25059723

  5. Hyaluronidase and Hyaluronan Oligosaccharides Promote Neurological Recovery after Intraventricular Hemorrhage

    PubMed Central

    Vinukonda, Govindaiah; Dohare, Preeti; Arshad, Arslan; Zia, Muhammad T.; Panda, Sanjeet; Korumilli, Ritesh; Kayton, Robert; Hascall, Vincent C.; Lauer, Mark E.

    2016-01-01

    Intraventricular hemorrhage (IVH) in premature infants results in inflammation, arrested oligodendrocyte progenitor cell (OPC) maturation, and reduced myelination of the white matter. Hyaluronan (HA) inhibits OPC maturation and complexes with the heavy chain (HC) of glycoprotein inter-α-inhibitor to form pathological HA (HC–HA complex), which exacerbates inflammation. Therefore, we hypothesized that IVH would result in accumulation of HA, and that either degradation of HA by hyaluronidase treatment or elimination of HCs from pathological HA by HA oligosaccharide administration would restore OPC maturation, myelination, and neurological function in survivors with IVH. To test these hypotheses, we used the preterm rabbit model of glycerol-induced IVH and analyzed autopsy samples from premature infants. We found that total HA levels were comparable in both preterm rabbit pups and human infants with and without IVH, but HA receptors—CD44, TLR2, TLR4—were elevated in the forebrain of both humans and rabbits with IVH. Hyaluronidase treatment of rabbits with IVH reduced CD44 and TLR4 expression, proinflammatory cytokine levels, and microglia infiltration. It also promoted OPC maturation, myelination, and neurological recovery. HC–HA and tumor necrosis factor-stimulated gene-6 were elevated in newborns with IVH; and depletion of HC–HA levels by HA oligosaccharide treatment reduced inflammation and enhanced myelination and neurological recovery in rabbits with IVH. Hence, hyaluronidase or HA oligosaccharide treatment represses inflammation, promotes OPC maturation, and restores myelination and neurological function in rabbits with IVH. These therapeutic strategies might improve the neurological outcome of premature infants with IVH. SIGNIFICANCE STATEMENT Approximately 12,000 premature infants develop IVH every year in the United States, and a large number of survivors with IVH develop cerebral palsy and cognitive deficits. The onset of IVH induces inflammation

  6. Potent fluoro-oligosaccharide probes of adhesion in Toxoplasmosis.

    PubMed

    Allman, Sarah A; Jensen, Henrik H; Vijayakrishnan, Balakumar; Garnett, James A; Leon, Ester; Liu, Yan; Anthony, Daniel C; Sibson, Nicola R; Feizi, Ten; Matthews, Stephen; Davis, Benjamin G

    2009-10-12

    Unnatural, NMR- and MRI-active fluorinated sugar probes, designed and synthesised to bind to the pathogenic protein TgMIC1 from Toxoplasma gondii, were found to display binding potency equal to and above that of the natural ligand. Dissection of the binding mechanism and modes, including the first X-ray crystal structures of a fluoro-oligosaccharide bound to a lectin, demonstrate that it is possible to create effective fluorinated probe ligands for the study of, and perhaps intervention in, sugar-protein binding events. PMID:19750531

  7. Synthesis of Galacto-oligosaccharide in Two-phase System.

    PubMed

    Gui, Li-Qiong; Wei, Dong-Zhi; Cui, Yu-Min; Yu, Jun-Tang

    1999-01-01

    35 of the total products of galacto-oligosaccharide (GOS) could be obtained from the two-phase system with cyclohexane and ethyl acetate as bulk organic phases and 15% phosphate buffer as aqueous phase. The effects of temperature pH of buffer lactose concentration galactose and glucose and the immobilization of enzyme on the synthesis of GOS were studied. It was found that the reaction temperature and initial lactose concentration didn'thave obvious effects while the addition of glucose and galactose somewhat affected the GOS yield and the GOS yields could reach 64.78% with lactase immobilized on resin D345. PMID:12136210

  8. Fluorous-assisted chemoenzymatic synthesis of heparan sulfate oligosaccharides.

    PubMed

    Cai, Chao; Dickinson, Demetria M; Li, Lingyun; Masuko, Sayaka; Suflita, Matt; Schultz, Victor; Nelson, Shawn D; Bhaskar, Ujjwal; Liu, Jian; Linhardt, Robert J

    2014-04-18

    The chemoenzymatic synthesis of heparan sulfate tetrasaccharide (1) and hexasaccharide (2) with a fluorous tag attached at the reducing end is reported. The fluorous tert-butyl dicarbonate ((F)Boc) tag did not interfere with enzymatic recognition for both elongation and specific sulfation, and flash purification was performed by standard fluorous solid-phase extraction (FSPE). Based on an (F)Boc attached disaccharide as acceptor, a series of partial N-sulfated, 6-O-sulfated heparan sulfate oligosaccharides were successfully synthesized employing fluorous techniques. PMID:24697306

  9. Hyaluronidase and Hyaluronan Oligosaccharides Promote Neurological Recovery after Intraventricular Hemorrhage.

    PubMed

    Vinukonda, Govindaiah; Dohare, Preeti; Arshad, Arslan; Zia, Muhammad T; Panda, Sanjeet; Korumilli, Ritesh; Kayton, Robert; Hascall, Vincent C; Lauer, Mark E; Ballabh, Praveen

    2016-01-20

    Intraventricular hemorrhage (IVH) in premature infants results in inflammation, arrested oligodendrocyte progenitor cell (OPC) maturation, and reduced myelination of the white matter. Hyaluronan (HA) inhibits OPC maturation and complexes with the heavy chain (HC) of glycoprotein inter-α-inhibitor to form pathological HA (HC-HA complex), which exacerbates inflammation. Therefore, we hypothesized that IVH would result in accumulation of HA, and that either degradation of HA by hyaluronidase treatment or elimination of HCs from pathological HA by HA oligosaccharide administration would restore OPC maturation, myelination, and neurological function in survivors with IVH. To test these hypotheses, we used the preterm rabbit model of glycerol-induced IVH and analyzed autopsy samples from premature infants. We found that total HA levels were comparable in both preterm rabbit pups and human infants with and without IVH, but HA receptors--CD44, TLR2, TLR4--were elevated in the forebrain of both humans and rabbits with IVH. Hyaluronidase treatment of rabbits with IVH reduced CD44 and TLR4 expression, proinflammatory cytokine levels, and microglia infiltration. It also promoted OPC maturation, myelination, and neurological recovery. HC-HA and tumor necrosis factor-stimulated gene-6 were elevated in newborns with IVH; and depletion of HC-HA levels by HA oligosaccharide treatment reduced inflammation and enhanced myelination and neurological recovery in rabbits with IVH. Hence, hyaluronidase or HA oligosaccharide treatment represses inflammation, promotes OPC maturation, and restores myelination and neurological function in rabbits with IVH. These therapeutic strategies might improve the neurological outcome of premature infants with IVH. Significance statement: Approximately 12,000 premature infants develop IVH every year in the United States, and a large number of survivors with IVH develop cerebral palsy and cognitive deficits. The onset of IVH induces inflammation of the

  10. Core Oligosaccharide of Plesiomonas shigelloides PCM 2231 (Serotype O17) Lipopolysaccharide—Structural and Serological Analysis

    PubMed Central

    Maciejewska, Anna; Lukasiewicz, Jolanta; Kaszowska, Marta; Man-Kupisinska, Aleksandra; Jachymek, Wojciech; Lugowski, Czeslaw

    2013-01-01

    The herein presented complete structure of the core oligosaccharide of lipopolysaccharide (LPS) P. shigelloides Polish Collection of Microorganisms (PCM) 2231 (serotype O17) was investigated by 1H, 13C NMR spectroscopy, mass spectrometry, chemical analyses and serological methods. The core oligosaccharide is composed of an undecasaccharide, which represents the second core type identified for P. shigelloides serotype O17 LPS. This structure is similar to that of the core oligosaccharide of P. shigelloides strains 302-73 (serotype O1) and 7-63 (serotype O17) and differs from these only by one sugar residue. Serological screening of 55 strains of P. shigelloides with the use of serum against identified core oligosaccharide conjugated with bovine serum albumin (BSA) indicated the presence of similar structures in the LPS core region of 28 O-serotypes. This observation suggests that the core oligosaccharide structure present in strain PCM 2231 could be the most common type among P. shigelloides lipopolysaccharides. PMID:23389090

  11. Disruption and eradication of P. aeruginosa biofilms using nitric oxide-releasing chitosan oligosaccharides

    PubMed Central

    Reighard, Katelyn P.; Hill, David B.; Dixon, Graham A.; Worley, Brittany; Schoenfisch, Mark H.

    2015-01-01

    Biofilm disruption and eradication were investigated as a function of nitric oxide- (NO) releasing chitosan oligosaccharide dose with results compared to control (ie non-NO-releasing) chitosan oligosaccharides and tobramycin. Quantification of biofilm expansion/contraction and multiple-particle tracking microrheology were used to assess the structural integrity of the biofilm before and after antibacterial treatment. While tobramycin had no effect on the physical properties of the biofilm, NO-releasing chitosan oligosaccharides exhibited dose-dependent behavior with biofilm degradation. Control chitosan oligosaccharides increased biofilm elasticity, indicating that the scaffold may mitigate the biofilm disrupting power of nitric oxide somewhat. The results from this study indicate that nitric oxide-releasing chitosan oligosaccharides act as dual-action therapeutics capable of eradicating and physically disrupting P. aeruginosa biofilms. PMID:26610146

  12. Carbohydrate-deficient glycoprotein syndrome: not an N-linked oligosaccharide processing defect, but an abnormality in lipid-linked oligosaccharide biosynthesis?

    PubMed Central

    Powell, L D; Paneerselvam, K; Vij, R; Diaz, S; Manzi, A; Buist, N; Freeze, H; Varki, A

    1994-01-01

    The carbohydrate-deficient glycoprotein syndrome (CDGS) is a developmental disease associated with an abnormally high isoelectric point of serum transferrin. Carbohydrate analyses of this glycoprotein initially suggested a defect in N-linked oligosaccharide processing, although more recent studies indicate a defect in the attachment of these sugar chains to the protein. We studied both serum glycoproteins and fibroblast-derived [2-3H]mannose-labeled oligosaccharides from CDGS patients and normal controls. While there was a decrease in the glycosylation of serum glycoproteins of affected individuals, differences were not seen in either monosaccharide composition or oligosaccharide structures. The lectin-binding profiles of glycopeptides from [2-3H]-mannose-labeled fibroblasts were likewise indistinguishable. However, the incorporation of [2-3H]mannose into both glycoproteins and the dolichol-linked oligosaccharide precursor was significantly reduced. Thus, at least in some patients, CDGS is not due to a defect in processing of N-linked oligosaccharides, but rather to defective synthesis and transfer of nascent dolichol-linked oligosaccharide precursors. This abnormality could result in both a failure to glycosylate some sites on some proteins, as well as secondary abnormalities in overall glycoprotein processing and/or function. PMID:7962535

  13. Asparagine-linked oligosaccharides on lutropin, follitropin, and thyrotropin: structural elucidation of the sulfated and sialylated oligosaccharides on bovine, ovine, and human pituitary glycoprotein hormones

    SciTech Connect

    Green, E.D.; Baenziger, J.U.

    1988-01-05

    The authors have elucidated the structures of the anionic asparagine-linked oligosaccharides present on the glycoprotein hormones lutropin (luteinizing hormone), follitropin (follicle-stimulating hormone), and thyrotropin (thyroid-stimulating hormone). Purified hormones, isolated from bovine, ovine, and human pituitaries, were digested with N-glycanase, and the released oligosaccharides were reduced with NaB(/sup 3/H)/sub 4/. The /sup 3/H-labeled oligosaccharides from each hormone were then fractionated by anion-exchange high performance liquid chromatography (HPLC) into populations differing in the number of sulfate and/or sialic acid moieties. The sulfated, sialylated, and sulfated/sialylated structures, which together comprised 67-90% of the asparagine-linked oligosaccharides on the pituitary glycoprotein hormones, were highly heterogeneous and displayed hormone- as well as animal species-specific features. A previously uncharacterized dibranched oligosaccharide, bearing one residue each of sulfate and sialic acid, was found on all of the hormones except bovine lutropin. In this study, they describe the purification and detailed structural characterizations of the sulfated, sialylated, and sulfated/sialylated oligosaccharides found on lutropin, follitropin, and thyrotropin from several animal species.

  14. Interaction of the Heparin-Binding Consensus Sequence of β-Amyloid Peptides with Heparin and Heparin-Derived Oligosaccharides.

    PubMed

    Nguyen, Khanh; Rabenstein, Dallas L

    2016-03-10

    Alzheimer's disease (AD) is characterized by the presence of amyloid plaques in the AD brain. Comprised primarily of the 40- and 42-residue β-amyloid (Aβ) peptides, there is evidence that the heparan sulfate (HS) of heparan sulfate proteoglycans (HSPGs) plays a role in amyloid plaque formation and stability; however, details of the interaction of Aβ peptides with HS are not known. We have characterized the interaction of heparin and heparin-derived oligosaccharides with a model peptide for the heparin- and HS-binding domain of Aβ peptides (Ac-VHHQKLV-NH2; Aβ(12-18)), with mutants of Aβ(12-18), and with additional histidine-containing peptides. The nature of the binding interaction was characterized by NMR, binding constants and other thermodynamic parameters were determined by isothermal titration calorimetry (ITC), and relative binding affinities were determined by heparin affinity chromatography. The binding of Aβ(12-18) by heparin and heparin-derived oligosaccharides is pH-dependent, with the imidazolium groups of the histidine side chains interacting site-specifically within a cleft created by a trisaccharide sequence of heparin, the binding is mediated by electrostatic interactions, and there is a significant entropic contribution to the binding free energy as a result of displacement of Na(+) ions from heparin upon binding of cationic Aβ(12-18). The binding constant decreases as the size of the heparin-derived oligosaccharide decreases and as the concentration of Na(+) ion in the bulk solution increases. Structure-binding relationships characterized in this study are analyzed and discussed in terms of the counterion condensation theory of the binding of cationic peptides by anionic polyelectrolytes. PMID:26872053

  15. Assignment of the Stereochemistry and Anomeric Configuration of Sugars within Oligosaccharides Via Overlapping Disaccharide Ladders Using MSn

    NASA Astrophysics Data System (ADS)

    Konda, Chiharu; Londry, Frank A.; Bendiak, Brad; Xia, Yu

    2014-08-01

    A systematic approach is described that can pinpoint the stereo-structures (sugar identity, anomeric configuration, and location) of individual sugar units within linear oligosaccharides. Using a highly modified mass spectrometer, dissociation of linear oligosaccharides in the gas phase was optimized along multiple-stage tandem dissociation pathways (MSn, n = 4 or 5). The instrument was a hybrid triple quadrupole/linear ion trap mass spectrometer capable of high-efficiency bidirectional ion transfer between quadrupole arrays. Different types of collision-induced dissociation (CID), either on-resonance ion trap or beam-type CID could be utilized at any given stage of dissociation, enabling either glycosidic bond cleavages or cross-ring cleavages to be maximized when wanted. The approach first involves optimizing the isolation of disaccharide units as an ordered set of overlapping substructures via glycosidic bond cleavages during early stages of MSn, with explicit intent to minimize cross-ring cleavages. Subsequently, cross-ring cleavages were optimized for individual disaccharides to yield key diagnostic product ions ( m/ z 221). Finally, fingerprint patterns that establish stereochemistry and anomeric configuration were obtained from the diagnostic ions via CID. Model linear oligosaccharides were derivatized at the reducing end, allowing overlapping ladders of disaccharides to be isolated from MSn. High confidence stereo-structural determination was achieved by matching MSn CID of the diagnostic ions to synthetic standards via a spectral matching algorithm. Using this MSn ( n = 4 or 5) approach, the stereo-structures, anomeric configurations, and locations of three individual sugar units within two pentasaccharides were successfully determined.

  16. Subcellular localization of glycosidases and glycosyltransferases involved in the processing of N-linked oligosaccharides

    SciTech Connect

    Sturm, A.; Johnson, K.D.; Szumilo, T.; Elbein, A.D.; Chrispeels, M.J.

    1987-11-01

    Using isopycnic sucrose gradients, we have ascertained the subcellular location of several enzymes involved in the processing of the N-linked oligosaccharides of glycoproteins in developing cotyledons of the common bean, Phaseolus vulgaris. All are localized in the endoplasmic reticulum (ER) or Golgi complex as determined by co-sedimentation with the ER marker, NADH-cytochrome c reductase, or the Golgi marker, glucan synthase I. Glucosidase activity, which removes glucose residues from Glc/sub 3/Man/sub 9/(GlcNAc)/sub 2/, was found exclusively in the ER. All other processing enzymes, which act subsequent to the glucose trimming steps, are associates with Golgi. These include mannosidase I (removes 1-2 mannose residues from Man/sub 6-9/(GlcNAc)/sub 2/), mannosidase II (removes mannose residues from GlcNAcMan/sub 5/(GlcNAc)/sub 2/), and fucosyltransferase (transfers a fucose residue to the Asn-linked GlcNAc of appropriate glycans). The authors have previously reported the localization of two other glycan modifying enzymes (GlcNAc-transferase and xylosyltranferase activities) in the Golgi complex. Attempts at subfractionation of the Golgi fraction on shallow sucrose gradients yielded similar patterns of distribution for all the Golgi processing enzymes. Subfractionation on Percoll gradients resulted in two peaks of the Golgi marker enzyme inosine diphosphatase, whereas the glycan processing enzymes were all enriched in the peak of lower density. These results do not lend support to the hypothesis that N-linked oligosaccharide processing enzymes are associated with Golgi cisternae of different densities.

  17. Alterations in Regulatory T Cells Induced by Specific Oligosaccharides Improve Vaccine Responsiveness in Mice

    PubMed Central

    Schijf, Marcel A.; Kerperien, JoAnn; Bastiaans, Jacqueline; Szklany, Kirsten; Meerding, Jenny; Hofman, Gerard; Boon, Louis; van Wijk, Femke; Garssen, Johan; van’t Land, Belinda

    2013-01-01

    Prophylactic vaccinations are generally performed to protect naïve individuals with or without suppressed immune responsiveness. In a mouse model for Influenza vaccinations the specific alterations of CD4+CD25+Foxp3+ regulatory T-cells (Tregs) in the immune modulation induced by orally supplied oligosaccharides containing scGOS/lcFOS/pAOS was assessed. This dietary intervention increased vaccine specific DTH responses. In addition, a significant increased percentage of T-bet+ (Th1) activated CD69+CD4+ T cells (p<0.001) and reduced percentage of Gata-3+ (Th2) activated CD69+CD4+T cells (p<0.001) was detected in the mesenteric lymph nodes (MLN) of mice receiving scGOS/lcFOS/pAOS compared to control mice. Although no difference in the number or percentage of Tregs (CD4+Foxp3+) could be determined after scGOS/lcFOS/pAOS intervention, the percentage of CXCR3 + /T-bet+ (Th1-Tregs) was significantly reduced (p<0.05) in mice receiving scGOS/lcFOS/pAOS as compared to mice receiving placebo diets. Moreover, although no absolute difference in suppressive capacity could be detected, an alteration in cytokine profile suggests a regulatory T cell shift towards a reducing Th1 suppression profile, supporting an improved vaccination response. In conclusion These data are indicative for improved vaccine responsiveness due to reduced Th1 suppressive capacity in the Treg population of mice fed the oligosaccharide specific diet, showing compartmentalization within the Treg population. The modulation of Tregs to control immune responses provides an additional arm of intervention using alternative strategies possibly leading to the development of improved vaccines. PMID:24073243

  18. Novel, Precise, Accurate Ion-Pairing Method to Determine the Related Substances of the Fondaparinux Sodium Drug Substance: Low-Molecular-Weight Heparin.

    PubMed

    Deshpande, Amol A; Madhavan, P; Deshpande, Girish R; Chandel, Ravi Kumar; Yarbagi, Kaviraj M; Joshi, Alok R; Moses Babu, J; Murali Krishna, R; Rao, I M

    2016-01-01

    Fondaparinux sodium is a synthetic low-molecular-weight heparin (LMWH). This medication is an anticoagulant or a blood thinner, prescribed for the treatment of pulmonary embolism and prevention and treatment of deep vein thrombosis. Its determination in the presence of related impurities was studied and validated by a novel ion-pair HPLC method. The separation of the drug and its degradation products was achieved with the polymer-based PLRPs column (250 mm × 4.6 mm; 5 μm) in gradient elution mode. The mixture of 100 mM n-hexylamine and 100 mM acetic acid in water was used as buffer solution. Mobile phase A and mobile phase B were prepared by mixing the buffer and acetonitrile in the ratio of 90:10 (v/v) and 20:80 (v/v), respectively. Mobile phases were delivered in isocratic mode (2% B for 0-5 min) followed by gradient mode (2-85% B in 5-60 min). An Evaporative Light Scattering Detector (ELSD) was connected to the LC system to detect the responses of chromatographic separation. Further, the drug was subjected to stress studies for acidic, basic, oxidative, photolytic, and thermal degradations as per ICH guidelines and the drug was found to be labile in acid, base hydrolysis, and oxidation, while stable in neutral, thermal, and photolytic degradation conditions. The method provided linear responses over the concentration range of the LOQ to 0.30% for each impurity with respect to the analyte concentration of 12.5 mg/mL, and regression analysis showed a correlation coefficient value (r(2)) of more than 0.99 for all the impurities. The LOD and LOQ were found to be 1.4 µg/mL and 4.1 µg/mL, respectively, for fondaparinux. The developed ion-pair method was validated as per ICH guidelines with respect to accuracy, selectivity, precision, linearity, and robustness. PMID:27110496

  19. Novel, Precise, Accurate Ion-Pairing Method to Determine the Related Substances of the Fondaparinux Sodium Drug Substance: Low-Molecular-Weight Heparin

    PubMed Central

    Deshpande, Amol A.; Madhavan, P.; Deshpande, Girish R.; Chandel, Ravi Kumar; Yarbagi, Kaviraj M.; Joshi, Alok R.; Moses Babu, J.; Murali Krishna, R.; Rao, I. M.

    2016-01-01

    Fondaparinux sodium is a synthetic low-molecular-weight heparin (LMWH). This medication is an anticoagulant or a blood thinner, prescribed for the treatment of pulmonary embolism and prevention and treatment of deep vein thrombosis. Its determination in the presence of related impurities was studied and validated by a novel ion-pair HPLC method. The separation of the drug and its degradation products was achieved with the polymer-based PLRPs column (250 mm × 4.6 mm; 5 μm) in gradient elution mode. The mixture of 100 mM n-hexylamine and 100 mM acetic acid in water was used as buffer solution. Mobile phase A and mobile phase B were prepared by mixing the buffer and acetonitrile in the ratio of 90:10 (v/v) and 20:80 (v/v), respectively. Mobile phases were delivered in isocratic mode (2% B for 0–5 min) followed by gradient mode (2–85% B in 5–60 min). An Evaporative Light Scattering Detector (ELSD) was connected to the LC system to detect the responses of chromatographic separation. Further, the drug was subjected to stress studies for acidic, basic, oxidative, photolytic, and thermal degradations as per ICH guidelines and the drug was found to be labile in acid, base hydrolysis, and oxidation, while stable in neutral, thermal, and photolytic degradation conditions. The method provided linear responses over the concentration range of the LOQ to 0.30% for each impurity with respect to the analyte concentration of 12.5 mg/mL, and regression analysis showed a correlation coefficient value (r2) of more than 0.99 for all the impurities. The LOD and LOQ were found to be 1.4 µg/mL and 4.1 µg/mL, respectively, for fondaparinux. The developed ion-pair method was validated as per ICH guidelines with respect to accuracy, selectivity, precision, linearity, and robustness. PMID:27110496

  20. Significance of galactinol and raffinose family oligosaccharide synthesis in plants

    PubMed Central

    Sengupta, Sonali; Mukherjee, Sritama; Basak, Papri; Majumder, Arun L.

    2015-01-01

    Abiotic stress induces differential expression of genes responsible for the synthesis of raffinose family of oligosaccharides (RFOs) in plants. RFOs are described as the most widespread D-galactose containing oligosaccharides in higher plants. Biosynthesis of RFOs begin with the activity of galactinol synthase (GolS; EC 2.4.1.123), a GT8 family glycosyltransferase that galactosylates myo-inositol to produce galactinol. Raffinose and the subsequent higher molecular weight RFOs (Stachyose, Verbascose, and Ajugose) are synthesized from sucrose by the subsequent addition of activated galactose moieties donated by Galactinol. Interestingly, GolS, the key enzyme of this pathway is functional only in the flowering plants. It is thus assumed that RFO synthesis is a specialized metabolic event in higher plants; although it is not known whether lower plant groups synthesize any galactinol or RFOs. In higher plants, several functional importance of RFOs have been reported, e.g., RFOs protect the embryo from maturation associated desiccation, are predominant transport carbohydrates in some plant families, act as signaling molecule following pathogen attack and wounding and accumulate in vegetative tissues in response to a range of abiotic stresses. However, the loss-of-function mutants reported so far fail to show any perturbation in those biological functions. The role of RFOs in biotic and abiotic stress is therefore still in debate and their specificity and related components remains to be demonstrated. The present review discusses the biology and stress-linked regulation of this less studied extension of inositol metabolic pathway. PMID:26379684

  1. Galacto-oligosaccharides and Colorectal Cancer: Feeding our Intestinal Probiome

    PubMed Central

    Bruno-Barcena, Jose M.; Azcarate-Peril, M. Andrea

    2014-01-01

    Prebiotics are ingredients selectively fermented by the intestinal microbiota that promote changes in the microbial community structure and/or their metabolism, conferring health benefits to the host. Studies show that β (1–4) galacto-oligosaccharides [β (1–4) GOS], lactulose and fructo-oligosaccharides increase intestinal concentration of lactate and short chain fatty acids, and stool frequency and weight, and they decrease fecal concentration of secondary bile acids, fecal pH, and nitroreductase and β-glucuronidase activities suggesting a clear role in colorectal cancer (CRC) prevention. This review summarizes research on prebiotics bioassimilation, specifically β (1–4) GOS, and their potential role in CRC. We also evaluate research that show that the impact of prebiotics on host physiology can be direct or through modulation of the gut intestinal microbiome, specifically the probiome (autochtonous beneficial bacteria), we present studies on a potential role in CRC progression to finally describe the current state of β (1–4) GOS generation for industrial production. PMID:25584074

  2. Xylo-Oligosaccharide Process Development, Composition, and Techno-Economic Analysis. Cooperative Research and Development Final Report, CRADA Number CRD-12-483

    SciTech Connect

    Shekiro, Joe; Elander, Richard

    2015-12-01

    The purpose of this cooperative work agreement between General Mills Inc. (GMI) and NREL is to determine the feasibility of producing a valuable food ingredient (xylo-oligosaccharides or XOS), a highly soluble fiber material, from agricultural waste streams, at an advantaged cost level relative to similar existing ingredients. The scope of the project includes pilot-scale process development (Task 1), compositional analysis (Task 2), and techno-economic analysis (Task 3).

  3. Towards precision medicine.

    PubMed

    Ashley, Euan A

    2016-08-16

    There is great potential for genome sequencing to enhance patient care through improved diagnostic sensitivity and more precise therapeutic targeting. To maximize this potential, genomics strategies that have been developed for genetic discovery - including DNA-sequencing technologies and analysis algorithms - need to be adapted to fit clinical needs. This will require the optimization of alignment algorithms, attention to quality-coverage metrics, tailored solutions for paralogous or low-complexity areas of the genome, and the adoption of consensus standards for variant calling and interpretation. Global sharing of this more accurate genotypic and phenotypic data will accelerate the determination of causality for novel genes or variants. Thus, a deeper understanding of disease will be realized that will allow its targeting with much greater therapeutic precision. PMID:27528417

  4. Comparison of amino acid digestibility of feedstuffs determined with the precision-fed cecectomized rooster assay and the standardized ileal amino acid digestibility assay

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to evaluate and compare amino acid digestibility of several feedstuffs using 2 commonly accepted methods: the precision-fed cecectomized rooster assay (PFR) and the standardized ileal amino acid assay (SIAAD). Six corn, 6 corn distillers dried grains with or without s...

  5. MALDI Q-TOF CID MS for Diagnostic Ion Screening of Human Milk Oligosaccharide Samples

    PubMed Central

    Jovanović, Marko; Tyldesley-Worster, Richard; Pohlentz, Gottfried; Peter-Katalinić, Jasna

    2014-01-01

    Human milk oligosaccharides (HMO) represent the bioactive components of human milk, influencing the infant’s gastrointestinal microflora and immune system. Structurally, they represent a highly complex class of analyte, where the main core oligosaccharide structures are built from galactose and N-acetylglucosamine, linked by 1–3 or 1–4 glycosidic linkages and potentially modified with fucose and sialic acid residues. The core structures can be linear or branched. Additional structural complexity in samples can be induced by endogenous exoglycosidase activity or chemical procedures during the sample preparation. Here, we show that using matrix-assisted laser desorption/ionization (MALDI) quadrupole-time-of-flight (Q-TOF) collision-induced dissociation (CID) as a fast screening method, diagnostic structural information about single oligosaccharide components present in a complex mixture can be obtained. According to sequencing data on 14 out of 22 parent ions detected in a single high molecular weight oligosaccharide chromatographic fraction, 20 different oligosaccharide structure types, corresponding to over 30 isomeric oligosaccharide structures and over 100 possible HMO isomers when biosynthetic linkage variations were taken into account, were postulated. For MS/MS data analysis, we used the de novo sequencing approach using diagnostic ion analysis on reduced oligosaccharides by following known biosynthetic rules. Using this approach, de novo characterization has been achieved also for the structures, which could not have been predicted. PMID:24743894

  6. Preparation and characterisation of the oligosaccharides derived from Chinese water chestnut polysaccharides.

    PubMed

    Wu, Sheng-Jun; Yu, Lin

    2015-08-15

    Hydrogen peroxide (H2O2) is a strong oxidant that cleaves glycosidic bonds in polysaccharides. In this study, the oligosaccharides were prepared by removing the starch from Chinese water chestnuts through hydrolysis using α-amylase and then hydrolysing the remaining polysaccharides with H2O2, during which the oligosaccharide yield was monitored. The yield of oligosaccharide was affected by reaction time, temperature, and H2O2 concentration. Extended reaction times, high temperatures, and high H2O2 concentrations decreased oligosaccharide yield. Under optimum conditions (i.e., reaction time of 4h, reaction temperature of 80°C, and 2.5% H2O2 concentration), the maximum oligosaccharide yield was 3.91%. The oligosaccharides derived from Chinese water chestnuts polysaccharides exhibited strong hydroxyl and 2,2-diphenyl-β-picrylhydrazyl radical scavenging activity when applied at a concentration of 100 μg/mL. The results indicate that the oligosaccharides derived from Chinese water chestnuts polysaccharides possessed good antioxidant properties and can be developed as a new dietary supplement and functional food. PMID:25794714

  7. Application of ultrasound for enhanced extraction of prebiotic oligosaccharides from selected fruits and vegetables.

    PubMed

    Jovanovic-Malinovska, Ruzica; Kuzmanova, Slobodanka; Winkelhausen, Eleonora

    2015-01-01

    Ultrasound assisted extraction (UAE) was used to extract oligosaccharides from selected fruits (blueberry, nectarine, raspberry, watermelon) and vegetables (garlic, Jerusalem artichoke, leek, scallion, spring garlic and white onion). The individual fractions of the oligosaccharides were analyzed: 1-kestose (GF2), nystose (GF3) and 1F-β-fructofuranosylnystose (GF4) from the fructo-oligosaccharides (FOS), and raffinose and stachyose from the raffinose family oligosaccharides (RFO). Extraction parameters including solvent concentration (35-85% v/v), extraction temperature (25-50°C) and sonication time (5-15min) were examined using response surface methodology (RSM). Ethanol concentration of 63% v/v, temperature of 40°C and extraction time of 10min gave maximal concentration of the extracted oligosaccharides. The experimental values under optimal conditions were consistent with the predicted values. UAE increased the concentration of extracted oligosaccharides in all fruits and vegetables from 2 to 4-fold compared to conventional extraction. The highest increase of total oligosaccharides extracted by UAE was detected in Jerusalem artichoke, 7.17±0.348g/100gFW, compared to 1.62±0.094g/100gFW with conventional method. PMID:25116595

  8. Insulin-induced phospho-oligosaccharide stimulates amino acid transport in isolated rat hepatocytes.

    PubMed Central

    Varela, I; Avila, M; Mato, J M; Hue, L

    1990-01-01

    The ability of the insulin-induced phospho-oligosaccharide to stimulate amino acid transport was studied in isolated rat hepatocytes. At low alpha-aminoisobutyric acid concentrations (0.1 mM), both 100 nM-insulin and 10 microM-phospho-oligosaccharide doubled amino acid uptake after 2 h of incubation. This stimulation was prevented by 0.1 mM-cycloheximide or 5 micrograms of actinomycin D/ml, indicating that the phospho-oligosaccharide, like insulin, was acting via the synthesis of a high-affinity transport component. The effects of the phospho-oligosaccharide and of insulin were blocked by Ins2P (2.5 mM), but not by myo-inositol, inositol hexaphosphoric acid or several monosaccharides such as mannose, glucosamine and galactose. Both the temporal effect on amino acid entry and the extent of stimulation of this process by the phospho-oligosaccharide indicate that this molecule mimics, and may mediate, some of the long-term actions of insulin. However, the effects of phospho-oligosaccharide and insulin were not exactly the same, since the effect of insulin, but not of the phospho-oligosaccharide, was additive with that of glucagon. PMID:2185744

  9. Profiling pneumococcal type 3-derived oligosaccharides by high resolution liquid chromatography-tandem mass spectrometry

    PubMed Central

    Li, Guoyun; Li, Lingyun; Xue, Changhu; Middleton, Dustin; Linhardt, Robert J.; Avci, Fikri Y.

    2015-01-01

    Pneumococcal type-3 polysaccharide (Pn3P) is considered a major target for the development of a human vaccine to protect against Streptococcus pneumonia infection. Thus, it is critical to develop methods for the preparation and analysis of Pn3P-derived oligosaccharides to better understand its immunological properties. In this paper, we profile oligosaccharides, generated by the free radical depolymerization of Pn3P, using liquid chromatography (LC)-tandem mass spectrometry (MS/MS). Hydrophilic liquid interaction chromatography (HILIC)-mass spectrometry (MS) revealed a series of oligosaccharides with an even- and odd-number of saccharide residues, ranging from monosaccharide, degree of polymerization (dp1) to large oligosaccharides up to dp 20, generated by free radical depolymerization. Isomers of oligosaccharides with an even number of sugar residues were easily separated on a HILIC column, and their sequences could be distinguished by comparing MS/MS of these oligosaccharides and their reduced alditols. Fluorescent labeling with 2-aminoacridone (AMAC) followed by reversed phase (RP)-LC-MS/MS was applied to analyze and sequence poorly separated product mixtures, as RP-LC affords higher resolution of AMAC-labeled oligosaccharides than does HILIC-based separation. The present methodology can be potentially applied to profiling other capsular polysaccharides. PMID:25913329

  10. Bovine Milk as a Source of Functional Oligosaccharides for Improving Human Health12

    PubMed Central

    Zivkovic, Angela M.; Barile, Daniela

    2011-01-01

    Human milk oligosaccharides are complex sugars that function as selective growth substrates for specific beneficial bacteria in the gastrointestinal system. Bovine milk is a potentially excellent source of commercially viable analogs of these unique molecules. However, bovine milk has a much lower concentration of these oligosaccharides than human milk, and the majority of the molecules are simpler in structure than those found in human milk. Specific structural characteristics of milk-derived oligosaccharides are crucial to their ability to selectively enrich beneficial bacteria while inhibiting or being less than ideal substrates for undesirable and pathogenic bacteria. Thus, if bovine milk products are to provide human milk–like benefits, it is important to identify specific dairy streams that can be processed commercially and cost-effectively and that can yield specific oligosaccharide compositions that will be beneficial as new food ingredients or supplements to improve human health. Whey streams have the potential to be commercially viable sources of complex oligosaccharides that have the structural resemblance and diversity of the bioactive oligosaccharides in human milk. With further refinements to dairy stream processing techniques and functional testing to identify streams that are particularly suitable for enriching beneficial intestinal bacteria, the future of oligosaccharides isolated from dairy streams as a food category with substantiated health claims is promising. PMID:22332060

  11. Oligosaccharide mapping of heparan sulphate by polyacrylamide-gradient-gel electrophoresis and electrotransfer to nylon membrane.

    PubMed Central

    Turnbull, J E; Gallagher, J T

    1988-01-01

    A new method that we have called 'oligosaccharide mapping' is described for the analysis of radiolabelled heparan sulphate and other glycosaminoglycans. The method involves specific enzymic or chemical scission of polysaccharide chains followed by high-resolution separation of the degradation products by polyacrylamide-gradient-gel electrophoresis. The separated oligosaccharides are immobilized on charged nylon membranes by electrotransfer and detected by fluorography. A complex pattern of discrete bands is observed covering an oligosaccharide size range from degree of polymerization (d.p.) 2 (disaccharide) to approximately d.p. 40. Separation is due principally to differences in Mr, though the method also seems to detect variations in conformation of oligosaccharide isomers. Resolution of oligosaccharides is superior to that obtained with isocratic polyacrylamide-gel-electrophoresis systems or gel chromatography, and reveals structural details that are not accessible by other methods. For example, in this paper we demonstrate a distinctive repeating doublet pattern of iduronate-rich oligosaccharides in heparitinase digests of mouse fibroblast heparan sulphate. This pattern may be a general feature of mammalian heparan sulphates. Oligosaccharide mapping should be a valuable method for the analysis of fine structure and sequence of heparan sulphate and other complex polysaccharides, and for making rapid assessments of the molecular distinctions between heparan sulphates from different sources. Images Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 7. Fig. 8. PMID:2969727

  12. Structural requirements for sulfation of asparagine-linked oligosaccharides of lutropin.

    PubMed Central

    Green, E D; Morishima, C; Boime, I; Baenziger, J U

    1985-01-01

    Human and bovine pituitary glycoprotein hormones (lutropin, follitropin, and thyrotropin) contain varying amounts of N-acetylgalactosamine and sulfate. The sulfate on asparagine-linked oligosaccharides of bovine lutropin (bLH) is present exclusively on GalNAc in the sequence GalNAc(beta 1-4)GlcNAc(beta 1-2)Man alpha. We have examined the structural requirements for sulfation of bLH oligosaccharides by using a reconstituted cell-free system. After cleavage from the protein, oligosaccharides containing the sequence GalNAc(beta 1-4)Glc-NAc(beta 1-2)Man alpha were sulfated by enzymes in pituitary membranes. Addition of one or two sulfates was observed, depending upon the number of GalNAc acceptor sites on the oligosaccharide. Neither GalNAc alone nor oligosaccharides devoid of GalNAc were sulfated. Membranes from placenta or liver did not sulfate oligosaccharides released from bLH, indicating that the sulfating activity is pituitary-specific. The lack of peptide dependence for sulfation, in conjunction with the oligosaccharide specificity, suggests that the sequence GalNAc(beta 1-4)GlcNAc(beta 1-2)Man alpha contains the recognition signal for the sulfotransferase(s). PMID:3865202

  13. Comparative structural study of N-linked oligosaccharides of urinary and recombinant erythropoietins.

    PubMed

    Tsuda, E; Goto, M; Murakami, A; Akai, K; Ueda, M; Kawanishi, G; Takahashi, N; Sasaki, R; Chiba, H; Ishihara, H

    1988-07-26

    The structures of the N-linked oligosaccharides of the urinary erythropoietin (u-EPO) purified from urine of aplastic anemic patients were analyzed and compared with those for recombinant erythropoietin (r-EPO) prepared with baby hamster kidney (BHK) cells. Asparagine-linked neutral oligosaccharides were released from each EPO protein by N-oligosaccharide glycopeptidase (almond) digestion. The reducing ends of the oligosaccharide chains thus obtained were aminated with a fluorescent reagent, 2-aminopyridine, and the mixture of pyridylamino derivatives of the oligosaccharides was separated by high-performance liquid chromatography (HPLC) on an ODS silica column. More than 8 and 13 kinds of oligosaccharide fractions for u-EPO and r-EPO (BHK), respectively, were completely separated by the one-step HPLC procedure. The structure of each oligosaccharide thus isolated was analyzed by a combination of sequential exoglycosidase digestion and another kind of HPLC with an amide-silica column. Furthermore, high-resolution proton nuclear magnetic resonance (1H NMR) spectroscopy and methylation analyses were carried out in the case of r-EPO (BHK).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3179269

  14. Site-specific analysis of N-linked oligosaccharides of recombinant lysosomal arylsulfatase A produced in different cell lines.

    PubMed

    Schröder, Stephan; Matthes, Frank; Hyden, Pia; Andersson, Claes; Fogh, Jens; Müller-Loennies, Sven; Braulke, Thomas; Gieselmann, Volkmar; Matzner, Ulrich

    2010-02-01

    Metachromatic leukodystrophy (MLD) is a lysosomal storage disease caused by a deficiency of the lysosomal enzyme arylsulfatase A (ASA). Enzyme replacement therapy (ERT) is a therapeutic option for MLD and other lysosomal disorders. This therapy depends on N-linked oligosaccharide-mediated delivery of intravenously injected recombinant enzyme to the lysosomes of patient cells. Because of the importance of N-linked oligosaccharide side chains in ERT, we examined the composition of the three N-linked glycans of four different recombinant ASAs in a site-specific manner. Depending on the culture conditions and the cell line expressing the enzyme, we detected a high variability of the high-mannose-type N-glycans which prevail at all glycosylation sites. Our data show that the composition of the glycans is largely determined by substantial trimming in the medium. The susceptibility for trimming is different for the glycans at the three N-glycosylation sites. Interestingly, which of the glycans is most susceptible to trimming also depends on production conditions. CHO cells cultured under bioreactor conditions yielded recombinant ASA with the most preserved N-glycan structures, the highest mannose-6-phosphate content and the highest similarity to non-recombinant enzyme. Notably, roughly one-third of the N-glycans released from the three glycosylation sites were fucosylated. In the last years, numerous recombinant lysosomal enzymes were used for preclinical ERT trials. Our data show that the oligosaccharide structures were very different in these trials making it difficult to draw common conclusions from the various investigations. PMID:19864504

  15. Precision powder feeder

    DOEpatents

    Schlienger, M. Eric; Schmale, David T.; Oliver, Michael S.

    2001-07-10

    A new class of precision powder feeders is disclosed. These feeders provide a precision flow of a wide range of powdered materials, while remaining robust against jamming or damage. These feeders can be precisely controlled by feedback mechanisms.

  16. Helicopter flight investigation to determine the effects of a closed-circuit TV on performance of a precision sling-load handling task

    NASA Technical Reports Server (NTRS)

    Dicarlo, D. J.; Kelley, H. L.; Spivey, D. L.

    1974-01-01

    Helicopter sling-load operations have been limited during hover and low-speed flight by the degree of precision achieved by the pilot/helicopter/sling-load combination. Previous attempts to improve precision have included stabilization of the load and helicopter and the addition of a pilot station directly facing the load. In these tests, use of a closed-circuit TV as a display that would permit sling-load delivery and placement by the forward-facing pilot was evaluated using a CH-54B helicopter. In all, three test cases were documented, which included the following: (1) forward-facing pilot using the TV display, (2) forward-facing pilot using verbal commands from a load-facing observer, and (3) aft-facing pilot using direct visual cues. The results indicate that a comparable level of performance was achieved for each test case; however, an increase in pilot workload was noted when the TV system was used.

  17. [Automated recording of precision profiles for the radioimmunological determination of T4 using a pocket calculator of the HP-41 CV type].

    PubMed

    Ditu, M; Waud, J M; Hamilton, R G; Wagner, H N

    1984-01-01

    Precision profiles as useful tool for assurance of assay quality in 10 independent T4RIAs have been automatically obtained using a small programmable pocket calculator HP-41 CV. For each T4 assay batch, the within-assay coefficient of variation varied from 7 to 11% in the hormone concentration range of 2 to 20 micrograms/dl. The difference in coefficient of variation for all the 10 successive assay batches of T4, never exceeded 1% in the same hormone concentrations regions. All the above findings demonstrate that the precision profile can be used as a powerful tool for assessing the assay quality and consistency of overall random error between successive assay batches. PMID:6536211

  18. A comparative study of the size-heterogeneous high mannose oligosaccharides of some insect vitellins.

    PubMed

    Nordin, J H; Gochoco, C H; Wojchowski, D M; Kunkel, J G

    1984-01-01

    Comparative studies of the carbohydrate component from vitellins of the cockroaches Blattella germanica, Blaberus discoidalis, Periplaneta americana and Simploce capitata and the locust Locusta migratoria have been conducted. Chemical, enzymatic and chromatographic analyses show that each vitellin contains variably processed high mannose type oligosaccharides. While all have a common size range they occur as two distinct classes based on the proportion of individual saccharides present. Oligosaccharide size distribution is not a characteristic of an individual animal but of the species. Because oligosaccharide heterogeneity also occurs in B. germanica vitellogenin (the hemolymph precursor of vitellin), it does not result from structural changes during or after its uptake by the egg. PMID:6509925

  19. Human Milk Oligosaccharides: Evolution, Structures and Bioselectivity as Substrates for Intestinal Bacteria

    PubMed Central

    German, J. Bruce; Freeman, Samara L.; Lebrilla, Carlito B.; Mills, David A.

    2010-01-01

    Human milk contains a high concentration of diverse soluble oligosaccharides that are carbohydrate polymers formed from a relatively small number of different monosaccharides. Novel methods combining liquid chromatography with high resolution mass spectrometry have identified approximately 200 unique oligosaccharides structures varying from 3 to 22 sugars. The increasing structural complexity of oligosaccharides follows the general pattern of mammalian and primate evolution though the concentration and diversity of these structures in homo sapiens are strikingly more abundant. There is also considerable diversity among different human mothers in the structures of oligosaccharides. Milks from randomly selected mothers contain as few as 23 and as many as 130 different oligosaccharides. The functional implications of this diversity are not yet known. Despite the role of milk to serve as a sole nutrient source for mammalian infants, the majority of the oligosaccharides in milk are not digestible by human infants. This apparent paradox raises the obvious questions about the functions of these oligosaccharides and how their diverse molecular structures affect their functions. The nutritional function that is most frequently attributed to milk oligosaccharides is to serve as prebiotics –a form of indigestible carbohydrate that is selectively fermented by desirable gut microflora. This function was tested by purifying human milk oligosaccharides and providing these as the sole carbon source to various intestinal bacteria. Indeed, the selectively of providing the complex mixture of oligosaccharides pooled from dozens of human milk samples is remarkable. Among a variety of Bifidobacteria tested only Bifidobacteria longum biovar infantis was able to grow extensively on human milk oligosaccharides as sole carbon source. The genomic sequence of this strain revealed approximately 700 genes that are unique to infantis, including a variety of co-regulated glycosidases, relative

  20. High-resolution preparative separation of glycosaminoglycan oligosaccharides by polyacrylamide gel electrophoresis1

    PubMed Central

    Laremore, Tatiana N.; Ly, Mellisa; Solakyildirim, Kemal; Zagorevski, Dmitri V.; Linhardt, Robert J.

    2010-01-01

    Separation of milligram amounts of heparin oligosaccharides ranging in degree of polymerization from 4 to 32 is achieved within 6 hours using continuous-elution polyacrylamide gel electrophoresis (CE-PAGE) on commercially available equipment. The purity and structural integrity of CE-PAGE-separated oligosaccharides are confirmed by strong-anion exchange high-pressure liquid chromatography, electrospray ionization Fourier transform mass spectrometry and two-dimensional nuclear magnetic resonance spectroscopy. The described method is straightforward and time-efficient, affording size-homogeneous oligosaccharides that can be used in sequencing, protein binding, and other structure-function relationship studies. PMID:20211145

  1. Precision spectroscopy of Helium

    SciTech Connect

    Cancio, P.; Giusfredi, G.; Mazzotti, D.; De Natale, P.; De Mauro, C.; Krachmalnicoff, V.; Inguscio, M.

    2005-05-05

    Accurate Quantum-Electrodynamics (QED) tests of the simplest bound three body atomic system are performed by precise laser spectroscopic measurements in atomic Helium. In this paper, we present a review of measurements between triplet states at 1083 nm (23S-23P) and at 389 nm (23S-33P). In 4He, such data have been used to measure the fine structure of the triplet P levels and, then, to determine the fine structure constant when compared with equally accurate theoretical calculations. Moreover, the absolute frequencies of the optical transitions have been used for Lamb-shift determinations of the levels involved with unprecedented accuracy. Finally, determination of the He isotopes nuclear structure and, in particular, a measurement of the nuclear charge radius, are performed by using hyperfine structure and isotope-shift measurements.

  2. Breast Milk Oligosaccharides: Structure-Function Relationships in the Neonate

    PubMed Central

    Smilowitz, Jennifer T.; Lebrilla, Carlito B.; Mills, David A.; German, J. Bruce; Freeman, Samara L.

    2015-01-01

    In addition to providing complete postnatal nutrition, breast milk is a complex biofluid that delivers bioactive components for the growth and development of the intestinal and immune systems. Lactation is a unique opportunity to understand the role of diet in shaping the intestinal environment including the infant microbiome. Of considerable interest is the diversity and abundance of milk glycans that are energetically costly for the mammary gland to produce yet indigestible by infants. Milk glycans comprise free oligosaccharides, glycoproteins, glycopeptides, and glycolipids. Emerging technological advances are enabling more comprehensive, sensitive, and rapid analyses of these different classes of milk glycans. Understanding the impact of inter- and intraindividual glycan diversity on function is an important step toward interventions aimed at improving health and preventing disease. This review discusses the state of technology for glycan analysis and how specific structure-function knowledge is enhancing our understanding of early nutrition in the neonate. PMID:24850388

  3. PITOMBA: Parameter Interface for Oligosaccharide Molecules Based on Atoms.

    PubMed

    Rusu, Victor H; Baron, Riccardo; Lins, Roberto D

    2014-11-11

    A novel four-bead coarse-grained (CG) model for carbohydrates denoted PITOMBA was devised using a bottom-up approach based on the atomistic GROMOS 53A6GLYC force field and on experimental thermodynamical data. The model was developed to be used in conjunction with the SPC CG water model (J. Chem. Phys. 2011, 134, 084110) and the GROMOS force field functional form. Explicit electrostatic interactions are considered by assigning point charges to each CG bead. Validation of the model is presented to a variety of structural and thermodynamic properties for mono- and oligosaccharides in solution. In addition, the model development philosophy allows for prompt extensions to include hexopyranose chains with diverse glycosidic linkages and branches. PMID:26584387

  4. Plant growth-promoting oligosaccharides produced from tomato waste.

    PubMed

    Suzuki, Toshisada; Tomita-Yokotani, Kaori; Tsubura, Hirokazu; Yoshida, Shigeki; Kusakabe, Isao; Yamada, Kosumi; Miki, Yoichi; Hasegawa, Koji

    2002-01-01

    Tomato juice waste was hydrolyzed with acid. Tomato juice waste (500 g; wet weight) was heated with 0.5 N HCl (2.5 l) at 70 degrees C for 4 h. After neutralization, the growth-promoting extracts (300 g; dry weight) in the plants were produced from the tomato waste. The acid extract significantly promoted the growth of cockscomb (Celosia argentea L.) and tomato (Lycopersicon esculentum L.) seedlings. We have recognized potent plant growth-promoting substances in the acid extract from tomato waste. The most effective components in the active fraction were almost all oligogalacturonic acids (DP 6-12). This paper is the first report that plant growth-promoting oligosaccharides can be directly produced from tomato juice waste. It is possible that the substances from the tomato waste can become useful plant growth regulators in the agriculture field in the future. PMID:11762911

  5. How a plant lectin recognizes high mannose oligosaccharides.

    PubMed

    Garcia-Pino, Abel; Buts, Lieven; Wyns, Lode; Imberty, Anne; Loris, Remy

    2007-08-01

    The crystal structure of Pterocarpus angolensis seed lectin is presented in complex with a series of high mannose (Man) oligosaccharides ranging from Man-5 to Man-9. Despite that several of the nine Man residues of Man-9 have the potential to bind in the monosaccharide-binding site, all oligomannoses are bound in the same unique way, employing the tetrasaccharide sequence Manalpha(1-2)Manalpha(1-6)[Manalpha(1-3)]Manalpha(1-. Isothermal titration calorimetry titration experiments using Man-5, Man-9, and the Man-9-containing glycoprotein soybean (Glycine max) agglutinin as ligands confirm the monovalence of Man-9 and show a 4-times higher affinity for Man-9 when it is presented to P. angolensis seed lectin in a glycoprotein context. PMID:17556509

  6. Breast milk oligosaccharides: structure-function relationships in the neonate.

    PubMed

    Smilowitz, Jennifer T; Lebrilla, Carlito B; Mills, David A; German, J Bruce; Freeman, Samara L

    2014-01-01

    In addition to providing complete postnatal nutrition, breast milk is a complex biofluid that delivers bioactive components for the growth and development of the intestinal and immune systems. Lactation is a unique opportunity to understand the role of diet in shaping the intestinal environment including the infant microbiome. Of considerable interest is the diversity and abundance of milk glycans that are energetically costly for the mammary gland to produce yet indigestible by infants. Milk glycans comprise free oligosaccharides, glycoproteins, glycopeptides, and glycolipids. Emerging technological advances are enabling more comprehensive, sensitive, and rapid analyses of these different classes of milk glycans. Understanding the impact of inter- and intraindividual glycan diversity on function is an important step toward interventions aimed at improving health and preventing disease. This review discusses the state of technology for glycan analysis and how specific structure-function knowledge is enhancing our understanding of early nutrition in the neonate. PMID:24850388

  7. Synthetic heparin and heparan sulfate oligosaccharides and their protein interactions.

    PubMed

    Zulueta, Medel Manuel L; Lin, Shu-Yi; Hu, Yu-Peng; Hung, Shang-Cheng

    2013-12-01

    Heparin and heparan sulfate bind a host of basic proteins that take advantage of the sugar's dense structural information. The significance of these interactions in various aspects of development, physiology, and disease stimulated keen interest in evaluating structure-activity relationships. The well-defined heparin and heparan sulfate oligosaccharides needed for these studies can be mainly accessed by chemical synthesis and, more recently by chemoenzymatic means. The various synthetic strategies available to chemical synthesis have recently enabled the acquisition of several regular and irregular sequences, including a number of dodecasaccharides, through improved coupling methods and judicial protecting group manipulations. Controlled chain elongation and critical application of modification enzymes allowed the generation of well-defined constructs via chemoenzymatic synthesis. Investigations of various protein interactions with the synthetic constructs delivered valuable information that could aid future drug development endeavors. PMID:24182748

  8. Alginate oligosaccharides: enzymatic preparation and antioxidant property evaluation.

    PubMed

    Falkeborg, Mia; Cheong, Ling-Zhi; Gianfico, Carlo; Sztukiel, Katarzyna Magdalena; Kristensen, Kasper; Glasius, Marianne; Xu, Xuebing; Guo, Zheng

    2014-12-01

    Alginate oligosaccharides (AOs) prepared from alginate, by alginate lyase-mediated depolymerization, were structurally characterized by mass spectrometry, infrared spectrometry and thin layer chromatography. Studies of their antioxidant activities revealed that AOs were able to completely (100%) inhibit lipid oxidation in emulsions, superiorly to ascorbic acid (89% inhibition). AOs showed radical scavenging activity towards ABTṠ, hydroxyl, and superoxide radicals, which might explain their excellent antioxidant activity. The radical scavenging activity is suggested to originate mainly from the presence of the conjugated alkene acid structure formed during enzymatic depolymerization. According to the resonance hybrid theory, the parent radicals of AOs are delocalized through allylic rearrangement, and as a consequence, the reactive intermediates are stabilized. AOs were weak ferrous ion chelators. This work demonstrated that AOs obtained from a facile enzymatic treatment of abundant alginate is an excellent natural antioxidant, which may find applications in the food industry. PMID:24996323

  9. Precision GPS ephemerides and baselines

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Based on the research, the area of precise ephemerides for GPS satellites, the following observations can be made pertaining to the status and future work needed regarding orbit accuracy. There are several aspects which need to be addressed in discussing determination of precise orbits, such as force models, kinematic models, measurement models, data reduction/estimation methods, etc. Although each one of these aspects was studied at CSR in research efforts, only points pertaining to the force modeling aspect are addressed.

  10. Human milk oligosaccharides: Every baby needs a sugar mama

    PubMed Central

    Bode, Lars

    2012-01-01

    Human milk oligosaccharides (HMOs) are a family of structurally diverse unconjugated glycans that are highly abundant in and unique to human milk. Originally, HMOs were discovered as a prebiotic “bifidus factor” that serves as a metabolic substrate for desired bacteria and shapes an intestinal microbiota composition with health benefits for the breast-fed neonate. Today, HMOs are known to be more than just “food for bugs”. An accumulating body of evidence suggests that HMOs are antiadhesive antimicrobials that serve as soluble decoy receptors, prevent pathogen attachment to infant mucosal surfaces and lower the risk for viral, bacterial and protozoan parasite infections. In addition, HMOs may modulate epithelial and immune cell responses, reduce excessive mucosal leukocyte infiltration and activation, lower the risk for necrotizing enterocolitis and provide the infant with sialic acid as a potentially essential nutrient for brain development and cognition. Most data, however, stem from in vitro, ex vivo or animal studies and occasionally from association studies in mother–infant cohorts. Powered, randomized and controlled intervention studies will be needed to confirm relevance for human neonates. The first part of this review introduces the pioneers in HMO research, outlines HMO structural diversity and describes what is known about HMO biosynthesis in the mother's mammary gland and their metabolism in the breast-fed infant. The second part highlights the postulated beneficial effects of HMO for the breast-fed neonate, compares HMOs with oligosaccharides in the milk of other mammals and in infant formula and summarizes the current roadblocks and future opportunities for HMO research. PMID:22513036

  11. Characterization of a bifidobacterial system that utilizes galacto-oligosaccharides.

    PubMed

    Shigehisa, Akira; Sotoya, Hidetsugu; Sato, Takashi; Hara, Taeko; Matsumoto, Hoshitaka; Matsuki, Takahiro

    2015-07-01

    The galacto-oligosaccharide (GOS) OLIGOMATE 55N (Yakult) is a mixture of oligosaccharides, the main component of which is 4'-galactosyllactose (4'-GL). Numerous reports have shown that GOSs are non-digestible, reach the colon and selectively stimulate the growth of bifidobacteria. The product has been used as a food ingredient and its applications have expanded rapidly. However, the bifidobacterial glycoside hydrolases and transporters responsible for utilizing GOSs have not been characterized sufficiently. In this study, we aimed to identify and characterize genes responsible for metabolizing 4'-GL in Bifidobacterium breve strain Yakult. We attempted to identify B. breve Yakult genes induced by 4'-GL using transcriptional profiling during growth in basal medium containing 4'-GL with a custom microarray. We found that BbrY_0420, which encodes solute-binding protein (SBP), and BbrY_0422, which encodes β-galactosidase, were markedly upregulated relative to that during growth in basal medium containing lactose. Investigation of the substrate specificity of recombinant BbrY_0420 protein using surface plasmon resonance showed that BbrY_0420 protein bound to 4'-GL, but not to 3'-GL and 6'-GL, structural isomers of 4'-GL. Additionally, BbrY_0420 had a strong affinity for 4-galactobiose (4-GB), suggesting that this SBP recognized the non-reducing terminal structure of 4'-GL. Incubation of purified recombinant BbrY_0422 protein with 4'-GL, 3'-GL, 6'-GL and 4-GB revealed that the protein efficiently hydrolysed 4'-GL and 4-GB, but did not digest 3'-GL, 6'-GL or lactose, suggesting that BbrY_0422 digested the bond within Gal1,4-β-Gal. Thus, BbrY_0420 (SBP) and BbrY_0422 (β-galactosidase) had identical, strict substrate specificity, suggesting that they were coupled by co-induction to facilitate the transportation and hydrolysis of 4'-GL. PMID:25903756

  12. Primary structure determination of five sialylated oligosaccharides derived from bronchial mucus glycoproteins of patients suffering from cystic fibrosis. The occurrence of the NeuAc alpha(2----3)Gal beta(1----4)[Fuc alpha(1----3)] GlcNAc beta(1----.) structural element revealed by 500-MHz 1H NMR spectroscopy.

    PubMed

    Lamblin, G; Boersma, A; Klein, A; Roussel, P; van Halbeek, H; Vliegenthart, J F

    1984-07-25

    The structure of sialylated carbohydrate units of bronchial mucins obtained from cystic fibrosis patients was investigated by 500-MHz 1H NMR spectroscopy in conjunction with sugar analysis. After subjecting the mucins to alkaline borohydride degradation, sialylated oligosaccharide-alditols were isolated by anion-exchange chromatography and fractionated by high performance liquid chromatography. Five compounds could be obtained in a rather pure state; their structures were established as the following: A-1, NeuAc alpha(2----3)Gal beta(1----4) [Fuc alpha(1----3)]GlcNAc beta(1----3)Gal-NAc-ol; A-2, NeuAc alpha(2----3)Gal beta(1----4)GlcNAc beta(1----6)-[GlcNAc beta (1----3)]GalNAc-o1; A-3, NeuAc alpha(2----3)Gal beta-(1----4)[Fuc alpha(1----3)]GlcNAc beta(1----3)Gal beta(1----3) GalNAc-o1; A-4, NeuAc alpha(2----3)Gal beta(1----4)[Fuc alpha(1----3)]Glc-NAc NAc beta(1----6)[GlcNAc beta(1----3)]GalNAc-o1; A-6,NeuAc alpha-(2----3) Gal beta(1----4)[Fuc alpha(1----3)]GlcNAc beta(1----6)[Gal beta-(1----4) GlcNAc beta(1----3)]GalNAc-o1. The simultaneous presence of sialic acid in alpha(2----3)-linkage to Gal and fucose in alpha(1----3)-linkage to GlcNAc of the same N-acetyllactosamine unit could be adequately proved by high resolution 1H NMR spectroscopy. This sequence constitutes a novel structural element for mucins. PMID:6746638

  13. A precise radiographic method to determine the location of the inferior alveolar canal in the posterior edentulous mandible: implications for dental implants. Part 1: Technique.

    PubMed

    Stella, J P; Tharanon, W

    1990-01-01

    In severely atrophic or osteoporotic mandibles, the location of the inferior alveolar nerve may vary considerably, both superoinferiorly and mediolaterally. A clinician's ability to reliably locate this nerve within the mandible would permit the surgical planning of implant placement in the posterior edentulous mandible. Eight edentulous cadaver mandibles were studied. A technique that precisely locates the inferior alveolar nerve within the mandible is described. The technique will aid the surgeon in planning a surgical approach to the posterior mandible with reduced risk of injury to the inferior alveolar nerve. PMID:2391135

  14. Intestinal infections and prebiotics: the roles of oligosaccharides in promoting health

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prebiotic oligosaccharides exert activity against pathogens partly by stimulating the growth and/or activity of commensal bacteria that provide health benefits (lower pH, bacteriocin production, immune system modulation, competitive exclusion). This review describes alternative mechanisms of action...

  15. Pet food and feed applications of inulin, oligofructose and other oligosaccharides.

    PubMed

    Flickinger, E A; Fahey, G C

    2002-05-01

    Prebiotics may be considered as functional food ingredients. They are attracting considerable interest from pet owners, pet food manufacturers, livestock producers and feed manufacturers. The most common forms of prebiotics are nondigestible oligosaccharides (NDO), including inulin, oligofructose mannanoligosaccharides, gluco-oligosaccharides, and galacto-oligosaccharides. These NDO are nondigestible by enzymes present in the mammalian small intestine, but are fermented by bacteria present in the hindgut of nonruminants. Inulin and oligofructose are present in measurable quantities in feed ingredients like wheat, wheat by-products, barley, and peanut hulls. Consumption of prebiotic oligosaccharides elicits several purported health benefits. In companion animals, prebiotics have been shown to improve gut microbial ecology and enhance stool quality. In production livestock and poultry, prebiotics are employed to control pathogenic bacteria, reduce faecal odour, and enhance growth performance. Research to date indicates positive effects of prebiotics on health status and performance of companion animals, livestock, and poultry. PMID:12088533

  16. Precision measurements in supersymmetry

    SciTech Connect

    Feng, J.L.

    1995-05-01

    Supersymmetry is a promising framework in which to explore extensions of the standard model. If candidates for supersymmetric particles are found, precision measurements of their properties will then be of paramount importance. The prospects for such measurements and their implications are the subject of this thesis. If charginos are produced at the LEP II collider, they are likely to be one of the few available supersymmetric signals for many years. The author considers the possibility of determining fundamental supersymmetry parameters in such a scenario. The study is complicated by the dependence of observables on a large number of these parameters. He proposes a straightforward procedure for disentangling these dependences and demonstrate its effectiveness by presenting a number of case studies at representative points in parameter space. In addition to determining the properties of supersymmetric particles, precision measurements may also be used to establish that newly-discovered particles are, in fact, supersymmetric. Supersymmetry predicts quantitative relations among the couplings and masses of superparticles. The author discusses tests of such relations at a future e{sup +}e{sup {minus}} linear collider, using measurements that exploit the availability of polarizable beams. Stringent tests of supersymmetry from chargino production are demonstrated in two representative cases, and fermion and neutralino processes are also discussed.

  17. Precision muon physics

    NASA Astrophysics Data System (ADS)

    Gorringe, T. P.; Hertzog, D. W.

    2015-09-01

    The muon is playing a unique role in sub-atomic physics. Studies of muon decay both determine the overall strength and establish the chiral structure of weak interactions, as well as setting extraordinary limits on charged-lepton-flavor-violating processes. Measurements of the muon's anomalous magnetic moment offer singular sensitivity to the completeness of the standard model and the predictions of many speculative theories. Spectroscopy of muonium and muonic atoms gives unmatched determinations of fundamental quantities including the magnetic moment ratio μμ /μp, lepton mass ratio mμ /me, and proton charge radius rp. Also, muon capture experiments are exploring elusive features of weak interactions involving nucleons and nuclei. We will review the experimental landscape of contemporary high-precision and high-sensitivity experiments with muons. One focus is the novel methods and ingenious techniques that achieve such precision and sensitivity in recent, present, and planned experiments. Another focus is the uncommonly broad and topical range of questions in atomic, nuclear and particle physics that such experiments explore.

  18. In vitro evaluation of defined oligosaccharide fractions in an equine model of inflammation

    PubMed Central

    2013-01-01

    Background Dietary supplementation with oligosaccharides has been proven to be beneficial for health in several mammalian species. Next to prebiotic effects resulting in a modulation of gut micro biota, immunomodulatory effects of oligosaccharides have been documented in vivo. Supplementation with defined oligosaccharide fractions has been shown to attenuate allergic responses and enhance defensive immune responses. Despite the accumulating evidence for immunomodulatory effects, very limited information is available regarding the direct mechanism of action of oligosaccharides. This study aims to elucidate the effects of selected oligosaccharide fractions on the lipopolysaccharide (LPS) induced inflammatory response in equine peripheral blood mononuclear cells (PBMCs). We investigated three different products containing either galacto-oligosaccharides (GOS) alone, a combination of GOS with fructo-oligosaccharides (FOS), and a triple combination of GOS and FOS with acidic oligosaccharides (AOS), at different concentrations. These products have been used in an identical composition in various previously published in vivo experiments. As the selected oligosaccharide fractions were derived from natural products, the fractions contained defined amounts of mono- and disaccharides and minor amounts of endotoxin, which was taken into account in the design of the study and the analysis of data. Acquired data were analysed in a Bayesian hierarchical linear regression model, accounting for variation between horses. Results Exposing cultured PBMCs to either GOS or GOS/FOS fractions resulted in a substantial dose-dependent increase of tumour necrosis factor-α (TNF-α) production in LPS challenged PBMCs. In contrast, incubation with GOS/FOS/AOS resulted in a dose-dependent reduction of both TNF-α and interleukin-10 production following LPS challenge. In addition, incubation with GOS/FOS/AOS significantly increased the apparent PBMC viability, indicating a protective or